User’s Manual

IN"TEIRID AT A

User’s Manual

Publication Number 29-261R01

INFORMATION CONTAINED IN THIS
MANUAL IS SUBJECT TO DESIGN
CHANGE OR PRODUCT IMPROVEMENT

© INTERDATA INC., 1971
All Rights Reserved
Printed in U.S.A. ® February 1973

To aid in quickly locating a particular chapter, the index marks on the edge of this page are aligned with

QUICK REFERENCE INDEX

similar marks on the first page of each chapter.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

INTRODUCTION

PROCESSOR DESCRIPTION

DATA AND INSTRUCTION FORMATS AND STORAGE ADDRESSING

INSTRUCTION REPERTOIRE

INTERFACE DESIGN

CONTROL CONSOLE

INTERDATA SOFTWARE FAMILY

PERIPHERAL DEVICES AND MODULES

CONFIGURATION INSTALLATION PLANNING

APPENDICES

i/ii

USER’S MANUAL
TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION &+ 4 o s o 006 00eosonosssssosscsssnsosensssssasccoceesaes

—
1
-

1,1 The INTERDATA Family of Computers. .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.

.
=
1
juy

1,2 System Description . v c v s o v oo v oo oo v v v oot soosceeococcocenoncess

1.2,1 MeMOLIES o v o v v oo vosoosonssoooosssecsoosooconnssees
2 Direct Memory ACCESS + e v o v v v eeveossssoarossoosooancsss
3 Selector Channel. s v v e o v oot ovvoeosoeeececooesonsenoess
.4 The PTrOCESSOT 4 o v o o s 6 o s 6 00 ssasosessossesoccsssssssoss
5 The Multiplexor INput/OUt BUS « v v v oo v oo v v oo sovooososonnses

R
o W N

1.3 POTIPRETALS + ¢ ¢ 4 v e e o v v oo oo oo osonososssessssnossesnsessnnns
Digital MUltIPIEXOT + s s s o oo s v v s e vvosssconssovorssnooess
INTERTAPE Cassette System . o v v v v v v vevevovononsonsoneeee
IBM Compatible Magnetic Tapes . v v v eeee oo eosvsoeooooceees
Removable Cartridge Disc System o ¢ v s v ¢ e e oo e v ovvvonvooeens
Magnetic Drum Storage System . . . v v v o oo v v v s vesevoeoceenes
Data Communications EQuipment « o « o o o ¢ ¢ e s 060 e vovoceoecess
High Speed Paper Tape SySteIM . ¢ o o v oo oo s oo oo oo soooonsooss
System Modules + oo v evesvvoosooncsosssseoencoscccess

[
R W oW

.
WWMSAWO’O&N

.

.

.

il
[N

.
W IO U W

1
1
1
1
1
1
1
1

1
L N

1.4 SOfEWATE « o o e o o0 s oo osvoosossoasossassesssasossossssssnscssesse

1.4.1 N T =5 44) =
Loader DesScriptions .« v v v v v s v oo eenesseocesosoonoesonss
Text EAitor (TIDE) 4 v v v v vt v osososenossssonccsaoeoocnssse
Debug (CLUB) v o v v v oo vosoesnsossoscnnsessosocesnocssosse
FORTRAN (Models 70 and 80 0nly) s v v o o e v oo e v v v v oeovoseooss
Basic Operating System (BOSS) v ¢ v e v v e v s v e ecososssvsvesone
Real Time Operating System (RTOS) (Models 70 and 80 only)
TeSt ProgramsS . . o o o o o o o 0 00 6060 s sesosesossssasosssocsess

.
W3OS U W

R e
S = "= - NS S T NN

1.4
1.4
1.4
1.4
1.4
1.4
1.4

1.5 Customer SUPPOTL ¢ o o s o o o o 0 s 0 00 s 000t ssssssensossssosencsesos

1.5.1 Computation Center FacilitieS, . o v s s e e e s s s e v v e v nnevonnnsas
Field ServiCe o« v v v v v v st s v vvaasovessessenssocassonsnss
Training Center . . v oo v v oo s vvssosoossosossosnessonsans
Systems Engineering and Programmingo v e 0ot 00000 a0sa.
INTERCHANGE ..t tetveeoosconosssonssosssossossonss

« ¢ @
Tl W

il
ESEESEPN BRSNS S

1

1.5
1.5
1.5
1.5

v
[

2 PROCESSOR DESCRIPTION .+ ¢ v oo oo st ovooessoooccsssssocsssosssessosss

2.1 Micro-Programmed INTERDATA Processor Architecture 2-1

.
.
.
.
.
.
.
.
.
.
-
.
-
.
.
.

2.2 Processor Block Diagramccoecesseesoescocsscssscsoocsses 2-1

2.3 Processor Operation « o o o o s o o o e s s e v et osceossscosssccecssssasseees 2
2.8.1 Program Status Words. + v e s s o s s s oo ssosvoscossosssosssess 2=
2.3.2 Instruction Execution., . o o i o v v s v v oot esenvessossnscasoes 2
2.3.3 Main Memory Allocationeeeveoveosossoossoessasosess 2

iii

Chapter

2.4 Interrupt SyStem . « ¢ ¢« ¢ s ¢ ¢ e v ot et o s s eossssorsascosssesonsoans
2.4.1 Interrupt Procedureeeeoveesvccsnesocescoses
2.4.2 Internal INterTUPtS & v o v v v ot v v v et esvoveoosossscenes
2.4.3 Input/Output Control INtErTUPLS v v v v v v o v o oo o s s e s eooeses
2.4.4 The Automatic Input/Output Channel (Models 70 and 80 only) . . .

2.4.5 Special Interrupts

3 DATA AND INSTRUCTION FORMATS AND STORAGE ADDRESSING c e e e e s
3.1 Introduction « « s s s s s s s v e s o s s avssseoencsoanssse
3.2 Data FOrmatS. .o e oo esooeeesoossencsossocssssooes
3.2.1 Hexidecimal Notation. . « o o s s e s oo s s s v s vovoossnsonoseean
3.2.2 Fixed-Point Data ... c0veeveeeeoscsnosos
3.2.3 Floating-Point Data. . . . o o e v e v v enns e oo
3.2.4 Logical Datavesevvvsvsonoasoseas

3.3 Instruction Formatsvcevevesosoocososoecas
3.4 General Register Usage . v o v v v v e ososovovsoosesss
3.5 Storage Addressing « « ¢ v v o o s oo v e v s e sosoocoses
4 INSTRUCTION REPERTOIRE . 44t v et eeesveosocoosocess s e e
4.1 Introduction.........
4,2 Fixed-Point Load/Store Instructionso000.. e e s
4,2.1 Toad HAlfword « . v v v v v s e v e s oo v v e venss
4.2.2 Toad Multiple. . . o v e v vttt e v v e envooeens
4.2.3 Store Half word . + v v v v v v e v e v o v oneosons
4.2.4 Store Multiplecciveeerersveronone

4.3 Fixed-Point Arithmetic InstructionS, . . . « v ¢ v e v e v e v 0w e e e e
4,3.1 AddHalfword . v o v e e v sttt voeneononoons e
4.3.2 Add with Carry Halfword ... es0vvvvevensee
4,3.3 Subtract Halfword . . o v v v e e e s e s e enevenns
4.3.4 Subtract with Carry Halfword co e s o0 oo
4.3.5 Compare Logical Halfword . . o v e o e s e 0 000 s
4.3.6 Compare Halfwordeeeeeveoeooocone
4.3.7 Multiply Halfword . . v . ¢ o v s s s e s e v vaeoans
4.3.8 Multiply Halfword Unsigned ... c.¢eeooooeae
4,3.9 Divide Halfword . . o v v v v e v o v eoeveenas s e e

4.4 Logical and Bit Manipulating Instructions¢000 4. cee e

iv

o Te

4

.4.

.4.
4

B A
W N

TABLE OF CONTENTS

(Continued)

AND Halfword
OR Halfword
Exclusive OR Halfword ..
Test Halfword Immediate .

.

.

1
= W

B e
[or B B 1]

t

uarh»;arh-ulsﬂrusuxm-ﬂs
o e e e © 0 =T
WN O

Chapter

4.6

4.7

4.8

4.9

4.10

4,11

4.12

TABLE OF CONTENTS

(Continued)

Byte Handling Instructionseeeeeveoss
1 Load Byte v v v oo s v vvonveoonnneess
2 Store Byte v« v v v vt vt e v s annneonos
.3 Exchange Byte .. vv oo voeevoeeans
4 Compare Logical Byte o v v o vce 0 00 v e vw

Shift/Rotate InStTUCLIONS v v v v v v v v v v oo v s nossss

1 Shift Left Logical . .4 v v v v veeeenns
2 Shift Right Logical +.vuvvvvvoenenn.
3 Rotate Left Logical . . v v v v v v o v v 00w
.4 Rotate Right Logical00 uns
5

6

Shift Left Arithmetic . v v v v e e v v v v
Shift Right Arithmetic

N

6
6
6
6
6
6

Branch Instructions .. s e s e o s s e oo s vevaveoeses
7.1 Branch on True Condition.
7.2 Branch on False Condition ... v v eousw.
.7.8 BranchonIndeX . ..veeeceoooceeoss
7.4 Branchand Link . v v e e e e v e v e v veeonn

Input/Output INStructions . . eveeeeeeosooeesss
8.1 Acknowledge Interrupt « v o o e s e o 00 e 0.
8.2 Sense StatuS . v o v v s e v e v vseoeeocans
8.3 Output Command. « « e o oo ¢ e s 00 0oeeas
8.4 Read Data o oo v oot e vvovecooooosces
8.5 Write Data. o o o o o 0 v s s v e oo onnoesas
8.6
8.7
8.8

. Read Halfword e veveeveoeeoes
Write Halfword. . o v s s v s v v e v v v s v oo
Autoload . v v e vttt e et e rsorconenns

#rhn#rh:hbhrhﬂk

Block Input/Output Instructions . « o v v v v s oo v e v
4.9.1 ReadBlock ivesnnsnns
4,9.2 Write Block . o v v v v e vt v et vnnnnsnns

System Control Instructions ... eeeeeeveessess
4.10,1 Load Program Status Word.s ...
0.2 Exchange Program Status.

0.3 Simulate Interrupt. « « ¢ o v o0 e e v v o0 v
0.4 Supervisor Call .. .ueeeeeveeeooceas

4.1
4,1
4.1

Floating-Point Instructions (Models 70 and 80 only) .
4,11,1 Floating-Point 10ad .+ e e v e vsoasesos
1.2 Floating-Point Store ce0es 000
1.3 Floating-Point Add . « v v v v e e s eoeeese
1.4 Floating-Point Subtract c00 000
1.5 Floating-Point Compare. . + « v s e s o s o s »
1.6 Floating-Point Multiply « . ¢ o e o 06 0o 0o s
1.7 Floating-Point Divide ... veev oo oses

List Processing Instructions (Models 70 and 80 only)
4.12.1 Add to Top/Bottom of List o oo oo v e v
4.12.2 Remove From Top/Bottom of List......

TABLE OF CONTENTS

{Continued)

Chapter
5 INTERFACE DESIGN . .t e o e o cocoeoeoooesoososcsesecesasssccessssass
5.1 INtroduction + o o v v v o o v s e s e onosoesosaoasssoen
5.2 Systems Interface . . . o« vt ee et en s st a0 o
5.2.1 Multiplexor Channeleccceevesen
5,2,2 Interleaved Data Channel (Models 70 and 80 only)
5.3 Device Controller Logic Design, .« s« v e e v o0 0 s 0o
5.3.1 MultipleXor BUS « ¢ o o s s s oo oeeuvoosos
5.3.2 Device Controller Addressingo . e v
5.3.3 Dataand Status Input0 e
5.3.3.1 Datd c oo v v s osesosonns
5.3.3.2 Status + oo v e s v to oo oo
5.3.4 Data and Comrnand Output 0000
5.3.4.1 Data . o oo oo 0o0eosvecens
5,3.4.2 Command .. eveevveooes
5.3.5 Interrupt Control o0 eeeeeeeos
5.3.6 Multiplexor Bus Wiring« e oo o 0o v
5.3.7 Multiplexor Channel Timing
5.3.8 General Multiplexor Bus Interface
5.3.9 Interleaved Data Channel Interface Design.
5.4 MEmMOTY BUS 4 ¢ ¢ s osoeocsooosocscaasoscss
5.4.1 Introduction . v e v s s e o v oo v e ecescs
5.4.2 Memory Bus Iiines . . . coce oo s v oo e
5.5 Selector Channel. ¢ o o s e s e e v oo oo vaoeonsnsos
5.6 General Purpose Interfaceccooeceeocoonas
5.6.1 Universal Interface Module., . « v o ¢ s o o o«
5.6,2 General Purpose Interface Board.......
5.6.2.1 Jomponent Field Numbering .
5.6.2,2 Connector Layout « « « ¢ v o« «
5.6.2.3 Available Cables.,« .o
6 CONTROL CONSOLE ¢ 4 ¢ ¢ e e 6 nsssesosesssesocsons
6.1 Introduction o v o s e e o s e v e v s v eeeeoeoccsccese
6.2 Control Console Description « « o o ¢ v s e v oo v v o v
6.2.1 Key Operated Security Lock . .o e oo e v e o
6.2,2 Control Switches. . .. e v v s v e v oo v s osos
6.2.3 Function Switches v e v e v v o s

vi

Page

7
jay

(o2
1 i
Jany

A
S =Y

I
W W Yweworo

AR AR A A
e v o
ST NN

5-15
5-18
5-18

Chapter

6.3

6.4

TABLE OF CONTENTS

(Continued)

Control Console Operating Procedures

6.301

6.3.2
6.3.3
6.3.4
6.3.5
6.3.6

Power UP v v e oo oesoosososseses
Power DOWNl. s+ v v oo oo vosoeossone
Program Loading + . e oo eeseess oo
Program Execution c0 00 0e0ee
Program Termination0000 00
Manually Initiated Memory Operations .
6.3.6.1 Memory Read. « o e o 00 o »
6.3.6.2 Memory Write . o v o e v s »

Programming Considerationscooeeee..

Control Console I/O v v eveveeeeees
Console Interrupt + . oo e v e v s v veoae
Wait State . . o e v oo veooeovcoces
Power Fail ... cceeeeveorooencese

INTERDATA SOFTWARE FAMILY . . e oo eosvossoce

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Introduction « « e e o s e e o e oooeesococesnsen

Comparison of OS vs Stand-Alone Programs

Program Preparationce0c00c000s000o000eeos
Programming in an Operating System Environment.
Programming in a Stand-Alone Environment

7.8.1
7.3.2

Programming Conventions . . v v o o o v 00000 0 0o

-
Z
=

.

qqqqqqqqq
.
U'lU'lUICﬂSﬂCTIU’IU'IUI

1
2
3
.4
5
6
7
8
9

ERDATA Assembler Program

General Description
Assembly Proceduresv 0000
Assembler Language . . « o v o o0 00 s .
Machine Instruction Format
Assembler Instructions (Pseudo Ops) . .
Assembly Listing and Object Programs

o e ¢ o

Procedures for User-Defined Mnemonic Op-Codes

Basic Assembler Operating Instructions
OS Assembler Operating Instructions . .

Assembly Level Programming Techniques

L

FOR

T
7.7.1
7.7.2
7.7.3
7.7.4
7.7.5
7.7.6

RANIV .. ¢eeoeveovosessooscssocosoce

General Description¢04..0
FORTRAN Language Specifications . ..
Loading the FORTRAN Compiler
Memory Requirements. . . « o v e 0o o 0o
Compiler Execution Procedures
Loading a Compiled Program

.

oo

v 9

e o 0 e

CEC R EEY

s s 0 0 0 0 s a5 s 0w
.. ¢ s s 0 8 0 0 0
. s o e 0 0 0 0w
.. e 0 e 0 e
o P A R B R

D] LR
o0 0 0 LR . .
o . s e s 0 0 0 0 0
e e o s s . DECE Y .

. . Ly . .
-------- o0 e

g
%
®

[

mmc}cscl»mcacacs
IS0 0 Ww

O}G)CI?C?J@
O W W o w

7-9

7-9

7-12
7-13
7-18
7-21
7-38
7-41
7-42
7-51

7-64
7-64
7-64
7-65
7-67
7-69
7-69

vii

Chapter

viii

7.8

7.9

7.10

7.11

7.12

7.13

7.14

TABLE OF CONTENTS

(Continued)

Interactive FORTRAN ¢ ¢ v ¢ oo 00 o0 svoeooeses

7.8.1
7.8.2
7.8.3
7.8.4

General Description « . oeoveeeeosas
Features . . v v v e e v veveeeenenns
Useofthe System .. .o0ovvveeeennns

System Capacity « « o o o ¢ o v vvevesens

Loader Descriptions . v oo oo eveneeneosennss

7.9.1

©

« .

© W W
D

~N OO W

~3 ~3 -3 =3 =3 -3
.

General, .. .vvv et eeeennrnnnanns
50 Sequence Bootstrap Loader.,
Object Tape FOrmat oo vueveseeoeoss
Features of the OS Library Loader
Features of Stand-Alone I.oaders.
General Loader Features . o o o o o 0 o o o «
Operation of Stand-Alone Loaders

Editor (TIDE) Program .,e00vvuuuu..

7.10.1
7.10.2

Program Structurev00uvewe.

Operating Procedureso00eev...

Hexadecimal Debug (CLUB) Program

7.11.1

Terminology . ..veeeeeeoeonsenas
Description of Operations. . . .o oo 000
Bias Definition . v v v v v e vevnnnse
Cell Examination and Modification ., , . . .
Program Controle.ovevevesn
Utilities . v v v v o v et e oo vononsoees
Operating Procedures

Basic Operating System . . v e e oo v v eeeveenss

7.12,1

General Description « ..o oveeeouons
Operational Characteristics «
Programmable Commands e 004
Operator Commands . ..o oo eeveesos
System Configuration.coo600..

Disc Operating System . o o o « ¢ s oo 00 06 00 ssess

7.13.1

Introduction . « v v s s s vt evevveenen.
Features . v o v o v v vsovosonvsceose
Description « oo v vvnevvveseoecens
DOS Programmable Commands . .,
DOS Operator Commands + o v o v 000 v o
Configuration . v v v o vt e v eeveennenn

Real Time Operating System., . v v v v oo 00 oo 0ees

7.14,1
7.14.2
7.14.3
7.14,4

Introduction v v v o v o e e e evveeenoens
Features and Characteristics
System Concepts. o v v v o o0 s v nvneens
System Organizationcoo000 e

Chapter

8

8.1

8.2

(Continued)
|
PERIPHERAL DEVICES AND MODULES. ...
Introduction . « v v v e v e vsvvsessn
Teletypewriters + v oo oo oo oo ovwes
8.2.1 Introduction + o v o v s s s s s«
8.2.2 Configuration . . . v 000
8.2.3 Operating Procedures
8.2,4 Data Formate00000
8.2.5 Programming Instructions .
8.2.6 Programming Sequences . .
8.2, 7 Interrupts oo oeooeeosoos
8.2.8 Initialization
8.2.9 Device Number.

8.3

8.4

8.5

8.6

8.7

TABLE OF CONTENTS

High Speed Paper Tape Reader/Punch (HSPTR)

8.3.1
Status and Command .
Interrupts ... c000
Initialization
Device Number.,

G W N

oW 0o O o
.
W www

dReader ...oeveoessee
General Description .
Operator Controls. . .

Q
5

Data Format
Interrupts
Initialization
Operator Procedures .
Programming..,....

.
.

oooooocogococooooo
Rl R
O 00T U i W=

.

Status Indicator Lights.
Status and Command Bytes .

Removable Cartridge Disc System

.

Data Transfers.....
SpecificationS.

8.5.1
8.5.2
8.5.3
8.5.4
8.5.5

General Description ,

)
i
o
i

W o0 00 O O O
.

N NN Na

IO A WD

DRERY .
. . .

Synchronous Data Set Adapter

.

.

1
.2 Operational Characteristics
3 Specifications. « « ¢ ¢ 0 0 0 o

..

o .

General Description «....
Operational Characteristics
Disc Format ...eo00000

.

.

.

.

General Descriptionc0000..

.

ammable Asynchronous Line System (PALS)
Introduction . . . o . vovev e vnvvsnas
Data Format
Programming Instructions .
Programming Sequences ..
Interrupts ... e0c0 0000
Initialization
Device Number.,

oooooooooocf:oooooooo
= 00 00 =3 U NN

Chapter
8.8 INTERTAPE Cassette System . . « v o o s e v e s v s s 0000
8.8.1 SpecificationS. « v e e o e s o e v e e sesaorons
8.9 Automatic Memory Protect Controller¢vo0 0004
8.9.1 General DesScription « . ceeeoeseocoeoses
8.9.2 Operational Characteristics . ..o e 00 e
8.9.3 Specifications. . . e e e s s v s v s s e
8,10 Universal Clock Module « v v st e v esveevsososensse
8.10.1 General Description .. .eeeeevesoevcos
8.10.2 Operational Characteristics
8.10.3 Specifications ., « v e s ¢ e o e eeecsovreaces
8.11 The Eight Line Interrupt Modulec0v0eveens
8.11.1 General Description . ..ccesees e soees
8.11,2 Operational Characteristics + oo e e eoeo oo
8.11.3 Specifications ...cevecsesoorssecocss
8,12 Serial Line Printer .« e v e v oo v s covooecosssscss
8.12.1 General Description .. .cceveveeeeeces
8.12,2 Operational CharacteristiCs ..o sv 000004
8.12.3 SpecificationS. « o s s o e oo eseo o os oo
8.13 Loader Storage Unit (Model Numbers M70-104, M70-105)
8.13.1 SUMMAYY ¢ o s e s o o0 0000 0sssosesosecss
8.13.2 Functional Description. . « « v v e e a0 v o v ee o
8.13.3 Applicable ProCesS0TS « o o s s s 6 6 60000060
8.13.4 Ordering Procedureco000000a005:
8.14 Automatic Loader for Basic Model 74 (Model No. M74~101)
8.14.1 SUMMATY ¢ o o ¢ o s 00 s 0 0eoeeccosnscsooos
8.14.2 Functional Description. . o« o e v s v s 0000w
8.15 Selector Chamnel:seccocceoosoccscscccses
8.15.1 General Descriptioncceeeessoeses
8.15.2 Programming Instructionsec000c00
8.15.3 Programming Sequencescco0000
8.15.4 Interrupts + o v eveveecososssnscccecos
8.15.5 Initialization0ccceeovocecccecn
8.15.6 Device NUMDeY . ¢« o e o e s oo s ovovoovsoes
8.15.7 Sample Program. . o « s o s o s cs o oo oeesos
9 CONFIGURATION INSTALLATION PLANNING. . s o0 000000
9.1 Introduction ¢ o o o o s o s e v v e a0 o eevneosoocoooss
9,2 Integrated Circuit Boards . « v o o ot s e s s 0 s a0 s 0000
9.3 Basic Processor Chassis . . v v v v v v vvenoooocesss
9.4 System Expansion Chassiscc00ceeceeeess

’

TABLE OF CONTENTS
(Continued)

9.4.1
9.4.2

15 Inch System Expansion Chassis .
10 Inch System Expansion Chassis

.

.

.

Chapter

Appendix

Figure

1-1

NN NN
SR
N RN

1
= O 30O

I
(=]

NNL}Q[\D[\DN

1

2

TABLE OF CONTENTS
(Continued)

9.5 Circuit Board Distribution . . .eeecoeeeeoeoses
9.6 SystemCabinets..:......................
9.7 System Configuration Data ... e oo 0eveoovoeeees

9.7.1 Power Requirement. « « e s s o 0000000
9.7.2 System Cabinets Configuration

APPENDICES

INSTRUCTION SUMMARY - ALPHABETICAL00.
INSTRUCTION SUMMARY - NUMERICAL &+ o v v s s s 000 sss
EXTENDED BRANCH MNEMONICS00veveoeeos
OPCODE MAP . ..t eceeecocenssssssssossnsososcs
INSTRUCTION EXECUTION TIMES . ¢ ecvveovcoooeos
AUTOMATIC I/0 OPERATION AND TIMING DATA.......
I/OREFERENCES ..t 0svuevertonencesonnnncees
ARITHMETIC REFERENCES cccevcevcrocoseees

GLOSSARY OF TERMS ¢4 v v vveesoovconcoosoesons

ILLUSTRATIONS

System BlockDiagram. . « o e o e e e o oo s s 6 v 000 osoesaos

Processor Block Diagramecceeeeevoscsoseces
Program Status Word Format « o o o ¢ s o s s e o e s coooesse
Program Status Bits . o e s s o st 0t v e e v vt eessncsosns
1/0 Channel Operation Block Diagrameoooeeoosse
Automatic Interrupt Serviceo oo e s 000000000000
Channel Control Block Diagram. co oo ceeoooosees
Bit Configuration For Channel Command Word, . .« v v v s o .
Channel Command For Initialize and Output Commands . ., .
Channel Command Words for I/O Operation. . . . « v s o o ¢ o »
Channel Command Words for Termination. . . « ¢ o o v s 0 0o o

Page

Al-1
A2-1
A3-1
A4-1
Ab-1
A6-1
AT7-1
A8-1

A9-1

o
™

1
= LN N

Do

w

B0 B9 B0 B B B0 B0 DO BO BO
P e e e
oW

[5]

xi

]

UIO'IUIUIU‘ICIJ'IO‘IUIUIU“I
W oo OO R W

xii

ILLUSTRATIONS

(Continued)

AutomaticI/O .. v ve v v v eeennn
First/Second Channel Command Block

Fixed-Point Word Formats. ..
Floating-Point Word Format. .
Logical Data Word Formats . .
Instruction Word Formats ...
Data Word Formats

Circular LiSt « o « e o o ¢ 0 0 0o

.

Input/Output Rate Comparison. . .

System Interface, Block Diagram

Multiplexor Channel, Block Diagram
Processor/Device Controller Logic Interface (Sheet 1 of 2)
Processor/Device Controller Logic Interface (Sheet 2 of 2)
Multiplexor Bus Buffer « .o v oo s oo eeeovseess
Device Addressing, Logic Diagram
Data and Status Input Logic Diagram
Data and Command Output, Logic Diagram
Interrupt Control, Logic Diagram
Typical Universal Expansion Slot Wiring. .
Multiplexor Channel Timing .,
General Multiplexor Bus Interface .
Interleaved Data Chamnel, Block Diagram

Data Channel Timing Chart. ..

Data Channel/Multiplexor Bus Interface
Typical Memory Cycle.
MOS Memory Cycle. « v e v v e oo voso

Memory Bus Diagram . .

“ e 0 0 0

Example of Memory Bus Priorities . .
Model 74 and 70 Memory Bus Timing .

Model 80 Memory Bus Timing

st e 0 .

.

.

.

Typical Control Logic for Interfacing to the M

emory Bus.

Selector Channel, Block Diagrame0o0000%

Selector Channel, Flow Chart .

® e e s 00 000000 0

General Purpose Wire Wrap Board
Wire Wrap Posts/IC and Component Leads Connection
IC Circuit Board Numbering System..,.......

Example of 2 POWEY GALE v « ¢ o ¢ s ¢ o e 0 000 esese

General Purpose Interface Board Connector Layout

Control Console
Control Console Data Transfers

INTERDATA Software . .
BOSS Features .
DOS Features. .

6 0 600000

e e 0 0 0 0 0000

.

RTOS FeatureS. . v e o o v o e 0 e o v vwe

Program Preparation Sequence

.

Conditional Assembly Structures

Sample Program Source Deck .

...........

.

P R R
...... e o 0 et e s e ..
N I I R A Y ..
D R R R N R R R
R I I A

Page

ILLUSTRATIONS
(Continued)

Sample Program One-Pass Assembly Listing
0 Assembler Print Formats oo oo vvosvvsoeoeeeesn
1 Basic Assembler Memory Map . o v v s v v o 0o v oo s oo
2 PASS1 Operations « « o « e o s e s 000 s avososonssessas
3 PASS2 Operations « v o o s e o s s s 00 0ooosoccooososse
7-14 PASS3 Operations ¢ v s o s o s 0o e e s s v 0o s sosoosssseoe
7-15 OS Assembler Memory Map csees e s
7-16 0S Assembler PASS2 Assembly w1th Scratch ce s s s
7-17 1/0 Error Message Description. « « o o v e o v oo oo vooos oo
7-18 Memory Map at Compile Time Using BOSS/4B. .. .v0 ..
7-19 Execution Time Memory MaP « e e v o o s 6 000000600000
7-20 Loader MemoTy MapS « s o e o oo 000 oo esoooeosocscs
7-21 Loader Tape FOormat . « o o s s s s s esooeoeecosceoesse
7-22 Object Tape FOrmatsS ... s oo oeeeooosocooossssoo
7-23 Memory Map (as listed by the OS Library Loader)
7-24 Teletype Keyboard Layouto coeeeeeeecoooeoss
7-25 BOSS COre MAD ¢4 v v vvornnnsonsososacnasonons
7-26 RTOS Main MEMOTY « e o oo 006 eoooooseeoscssssese
7-27 Mass Storage Allocation. « o e e e o e s o e o e eeveoseosss
7-28 Interaction of RTOS Elements 4 « « ¢ o e s e s e s 0 s 0000000
7-29 Device Drivers and Memory MaP. « o o o« s o s o 0 0 0 0 0 0 0o
7-30 Typical RTOS Configurationscce0vevouesen.n

35 ASR Operating Modes veeeevoooosoocooeos
ASCII Character U (Even Parity), Eleven Bit Code
Teletype Keyboard 1.ayout + .4 oo oo ot vesovseavsoses
Data Byte Format . o o o o oo e v e e oo v vvoososssaecoes
Removable Cartridge Disc Format,« v oo v v v v o000
201 Synchronous Data Set Adapter Block Diagram.......
PALS Block Diagram. .. c e oo o oo s e s eooooooossees
Typical ASCII Character Format . . o v v v v v v v o v v v 0 oo
Answering Calls HDX and FDX . . . v v ve oo coonoos o
0 Line Turn-Around Read/Write and Write/Read
1 Memory Protect Controller Functional Block Diagram ...
-12 Universal Clock Module Block Diagram¢ee0 000
-13 Eight Line Interrupt Module Block Diagram.
-14 Memory AdJresSSing .+ o v oo e oo coeveoooscossensos
5 Memory Configuration, End on Byte Boundary « « « o o v ¢ 4 »
6 Starting and Final Address Data Bytes .« ¢ v e 0000 eeosn
-17 Read Data InstructionsS. « c e e s s ¢ s oo e e o e v oo eoossos
-18 Sample Program. « « s o oo o 0o s 00 s s asoaosososeossee

|
=000 90 U & Wk =

o o 00 0o 00 OO OO0 OO0 OO0 0o CO Q90 00 OO0 CO OO O O
L}

Typical 15-Inch Circuit Board, Component Side ,
Basic Processor ChassiS « v v oo s s oo v v vvvcoocecsesn
Basic Cabinet. « v v v s o st e v s v s vooescoscossense
Cabinet Accessories, Sheet 1 of 2 ., 00 vveeesen
Cabinet Accessories, Sheet20of 2 ce s en e
Basic Cabinet Physical Dimensions

Typical Examples-Configuration Data Sheet A (Sheet 1 of 2)
Typical Examples-Configuration Data Sheet A (Sheet 2 of 2)

‘wwmtoﬁowwco
OO B B WN

Sample Program One-Pass Object Tapeo e oo e venn

0 s 0 0 0 0 0 0 0 s e 0 e LY
e o 0 0 0 s 0 0 o LR) .
0 0 060 00 00 00 00 0 LR

PR R R I R R R R R R R R R
PR R R R R
R R I N A R R
R A I A PRI
e e o 00 e s 0 e 0 0. o0 e 0
o 66 00 0000 0 0 00 0 s e e e
I R I I A R R A R R R

e v e s e e s e e 0 0 s s e s s e

7-128
7-129
7-138
7-139

(|I3 co
|
DO = = W1 O

N o>

w
!

e 2]
[U 1 [
[\
S

[I I A I |
LS N N N N R U RO
SO0~ -1IOKR O OO

ocoooooooooo?ooooooooooooooo

Xiii

~3 -3 =3 -3 -3 -3
Lo

-3
1

TET
T T v - S IR (= S BN U R

~

-3
1
(=]

a3 ~3 =3 =31 =3
R N)
o IXETE.

D
R N el el el e o

5]

3 -3 ~3 a1 3

O O N
DN NN

S©ma® G W@ R ow®w=o

=

W

1

RS I I R R B R B e
&

1
wwmwswwmww

[=2]

xiv

INTERDATA Product Evolution .

Program Status Bit Definitions .
Core Memory Allocation
InterruptsS oo eevooeee

.

.

.

.

TABLES

Hexadecimal Binary, and Decimal Cross-Reference
Examples of Fixed-Point Representation.
Examples of Floating-Point Representation .

Designations for First and Second Operands

Memory Addressing Example

Model 80 Access and Transfer Times.

Core Memory Initialization ...
Auto Load Sequence« ..
Logical Unit Numbers
Typical Source Program
Typical Symbol Table
Typical Assembly Listing.....
Statement Error Flags.
Data Flags
Symbol Table Error Flags

0 8 0 00 060 00 00 0

Absolute and Relocatable Expression Rules
Instruction Format Summary
Summary of Assembler Instructions. . .
Symbol Table Capacity. .. .« ..o ..
1/0 Device Definition Table Selection for Basic Assembler
Source Program Format

Basic Assembler Operations. ..

Symbol Table Capacity. . . .o o
Logical Unit Number Specifications .
Logical Source Format
OS Assembler OperationS. « « « s ¢« o o

0OS Assembler Operations with Seratch

Examples of I/O Error Messages ...
Intrinsic Functions . . ¢ e e o0 0o« 0 o«
Basic External Functions « « o« o ¢ « o 0 o 5 »

Model 70 Interactive FORTRAN Summary

FORTRAN Operation Statements
Summary of Loader Features

Sequence for Models 74, 70, and 80

Device Definition Table Entries. . .

Loader SUMMATY 4 o s ¢ s 0o oo
Control Item Definitions.
Tape Codes (M08/09 Format) . .
Error MesSSages ¢« « o o o o 0 0 s o o
Line Addressing Summary
Line Arithmetic . . 00000 e

Command Repertoire. . « « o + ¢ o «
Summary of TIDE Features
Summary of CLUB Directives . . .

.

LY

LTI Y

LI Y

e 00

LR Y

1 1 1

ooooooooc}ooooooooo
© 0= U WN -

P
i

TABLES

(Continued)

RTOS Operator Commands + « « o« o o0 00 s o«
RTOS Supervisor Callseoveveeeos
RTOS Task Utility Task (TUT) Commands. .
RTOS Task Establisher (TET) Commands . .

.

.

TTY Interface Status and Command Byte Data

Sample Program Listing0000eee..

Reader and Punch Characteristics . + « ¢ o 0 o s &

Reader/Punch Status and Command Byte Format (Hex Address 13)
Card Reader Status and Command Byte Data (Hex Address 04) .

Sample Program for Card Reader

PALM Status and Command Byte Data

Interrupt Conditions

Selector Channel Status and Command Byte Data

Mounting DimensionS. « v e e o e e v o0 o s 000000

.

.

.

.

.

.

.

.

.

.

.

.

5 0 0 0 e 0 0 0 00 00 00060000

.

.

Page

7-131
7-134
7-135
7-136

® @ ®®®@®m®
BN oo

i
-
[\V]

xv/xvi

INTRODUCTION

CHAPTER 1

1.1 THE INTERDATA FAMILY OF COMPUTERS

INTERDATA was incorporated in September of 1966 with the objective of becoming a leader in the fast

growing and competitive minicomputer market.

competitive market segment.

Today, INTERDATA is a profitable major factor in this

Looking at the years since 1966, one can see a tremendous rate of increase in minicomputer performance
and a decrease in the price of hardware. This is evident from Table 1-1 which compares the price/per-

This is the result of an increasing market for in-
expensive computers, developments in a very competitive semiconductor market, and the proliferation of
minicomputer manufacturers in the late sixties.

formance of past and present INTERDATA Processors.

TABLE 1-1, INTERDATA PRODUCT EVOLUTION

1967

1968

1970

mooeL 3 | mooee & MooeL 5 [MODEL 74 | MoDEL 70 | MoDEL 80
MEMORY CYCLE TIME 1.5 (CORE) | 1.0(CORE) | 1,0 (CORE) | 1.0(CORE) | 1.0(cORE) [o.32:%(M9F)
MEMORY ACCESS TIME 0.6 045 045 0.3 0.3 280
MEMORY MODULE SIZE 4KB,8KB 8KB 8K8 8KB 8KB 16K B
INSTRUCTION TIME: RR 28.0 3.2 3.2 15 10 0.53
SF — — 44 2.0 1.5 0.53
RS 36.0 40 4.0 2.5 225 0.53
RX 38.0 6.0 6.0 3,25 3.25 i.0l
FIXED POINT MULTIPLY 140.0 230 230 40.0 60 2,25
FLOATING POINT MULTPLY 4900.0 % 140.0 140.0 300.0 % 54.0 240
PROGRAMMED I/0 LOOP 8KBPS 30KBPS 30KBPS 66KBPS 77KBPS 146 KBPS
SELECTOR CHANNEL 500KBPS 500KBPS 500kBPS | 2000kBPS | 2000kBPS | 4200KBPS

BIT INSTRUCTIONS,

FEATURES: SYSTEM 360/370 LIKE INSTRUCTION SET,DIRECT

ADDRESSING TO 64 KB, 16 GENERAL REGISTERS, 16 OR 32

NO. OF STANDARD INSTRUCTIONS 74 77 n3 100 13 13
MULTPLY/DIVIDE OPTIONAL OPTIONAL INCLUDED INCLUDED INCLUDED INCLUDED
FLOATING POINT — OPTIONAL INCLUDED —_ INCLUDED INCLUDED
LIST PROCESSING — OPTIONAL INCLUDED — INCLUDED INCLUDED
AUTOLOAD BOOTSTRAP —_ INCLUDED INCLUDED INCLUDED INCLUDED INCLUDED
IMMEDIAT INTERRUPTS _ _ INCLUDED INCLUDED INCLUDED INCLUDED
AUTOMATIC T/0 CHANNELS _— —_ INCLUDED —_— INCLUDED INCLUDED
8 OR 16 BIT I/0 BUS — — OPTIONAL INCLUDED INCLUDED INCLUDED
TELETYPE INTERFACE OPTIONAL OPTIONAL OPTIONAL _ INCLUDED INCLUDED
COMPATIBILITY WITH PREVIOUS

MODELS ? YES YES YES YES YES
BASIC LIST PRICE: %
8 KB PROCESSOR $12,600 $17,400 $11,200 $ 3,600 56,800 $14,900

% =SOFTWARE,
%% = WITH 16 KB

¥%%=WORST CASE AVERAGE WHEN ALTERNATING BETWEEN CPU AND DMA REQUESTED CYCLES.

However, as minicomputer hardware prices have decreased, software manpower costs have risen sharply.
As a result, system analysis, programming, and interfacing costs frequently overshadow hardware costs.
Even in OEM situations involving numbers of identical systems, the simplicity and speed with which these
development tasks can be performed is often a major factor in the successful introduction of a computer
based product.

These are some of the considerations that resulted in the unique INTERDATA architecture among minicom- -
puters. The INTERDATA architecture and instruction férmats are very similar to the IBM system 360-370

series of computers. INTERDATA added to the basic IBM 360-370 like instruction set, several classes of

instructions to increase the memory efficiency of the INTERDATA minicomputers. The advantages inherent

in this kind of architecture are the large, easy to learn and apply instruction set; direct addressing to a-

void the necessity for paging; 16 accumulators for the storage of partial results, 15 index registers for the

storage of frequently used pointers and for loop management; plus other features that make an INTERDATA

system eagieriand, therefore, less costly to use. In addition, INTERDATA Processors include such per-

formance features as built~in multiply divide, external cycle stealing, direct memory access ports, and

hardware interrupt discrimination, and vectoring for up to 256 devices.

1-1

These features are present in all INTERDATA New Series Processors, even the low priced Model 74 OEM
unit. The Model 70 adds a higher speed Processor, built-in floating-point, automatic I/0 channels, and
more external direct memory access channels. The Model 80 includes all Model 70 features implemented
in a very high performance Processor and memory configuration. All INTERDATA New Series Processors
are fully program and interface upward-compatible so that a quantity user can meet a broad range of per-
formance requirements in a given application area without having to redevelop software.

1.2 SYSTEM DESCRIPTION

Figure 1-1 shows the interrelationship of various elements in an INTERDATA New Series Model 74, 70 or
80 system. The following sections summarize the characteristics of each of the elements shown,

MEMORY
EXPANDABLE TO 64 KB

HIGH SPEED MEMORY BUS Q
PROCESSOR
16 GENERAL REGISTERS
HARDWARE FLOATING POINT %
HARDWARE MULTIPLY DIVIDE
AUTOMATIC I /O CHANNELS
SELECTOR ¥* K CUSTOMER
UPT —_— DESIGNE
CHANNEL | *——UP TO 4 TOTAL INFEREACE
SELECTOR BUS
DISCS DRUMS MAGNETIC
APES
UP TO 16 HIGH SPEED DEVICES
0 MULTIPLEXOR INPUT/OUTPUT BUS 4
_0____ eI —)
CONTROL
PANEL LINE PAPER TAPE MAGNETIC TAPE R eo o o0
PRINTER READER/PUNCH CASSETTE
—
DIGITAL MULTIPLEXOR
TELETYPEWRITER PAPER TAPE
READER /PUNCH
UP TO 255 DEVICES IN-SYSTEM
¥ NOT PRESENT IN THE MODEL 74
% % ONLY ONE(SELECTOR CHANNEL)IN
THE MODEL 74
Figure 1-1. System Block Diagram
1.2.1 Memories

The instruction directly addresses 64K 8-bit bytes of memory and Model 74, 70, and 80 memories can
be expanded to this capacity. Models T4 and 70 use core memories: 8K byte memory modules, 3

wire 3D design, with a 1.0 microsecond cycle time and a 300 nanosecond access time. The high speed
Model 80 uses dual 8K byte Metal Oxide Semiconductor (MOS) LSI memories or 16K byte modules, The
dual 8K byte MOS memories can overlap cycle times to a certain extent, resulting in an average cycle
time of 320 nanoseconds without overlap and 290 nanoseconds with overlap between 8KB blocks.

1-2

Memory Parity and Memory Protect with Privileged instfuction hardware are options. Both the core
and MOS memory systems present the same high speed Memory Bus for direct memory access.

1.2.2 Direct Memory Access

Up to four Direct Memory Access devices may be added to the Model 70 (core) and Model 80 (MOS) memory
systems, One direct Memory Access device can be added in the Model 74. Direct Memory Access devices
allow the operation of high speed peripherals (e.g. disks or drums) directly to/from memory. This enables
the user to perform simultaneous processing together with the high speed input/output transfer. This tech-
nique is memory cycle stealing. It is more efficient than Processor cycle stealing techniques that are pre-
sently used in some computers, To differentiate between the two, compare the maximum direct to memory
transfer rates to the reciprocal of the memory cycle time. - If they are not close, more than likely the less
efficient Processor cycle stealing technique is used. In Models 74 and 70, the maximum transfer rate is
2,000, 000 bytes per second. The Model 80 transfer rate is 4,750, 000 bytes per second maximum in read
burst and 6, 000, 000 bytes per second in write burst.

1.2.3 Selector Channel

The Selector Channel is a standard Direct Memory Access device that allows the connection of up to 9 high
speed peripheral devices directly to memory, The same Selector Channel is used on Models 74, 70, or 80.
The maximum transfer rates depend on the Processor used, and are the sameé as the rates in Paragraph 1.2, 2,
To use the Selector Channel, the program initializes the device itself, sends a starting and final address (each
16 bits) to the Selector Channel, and sends it a command to go. The Processor at this point can proceed to an-
other function. When the Selector Channel terminates the transfer, it generates a hardware interrupt to the
Processor. If customers have special high speed requirements, they can design a special interface to the
Memory Bus. These special interfaces plug into the Memory Bus just like a Selector Channel.

1.2.4 The Processor

The Processor is the heart of the system. It controls all the activities and performs all the arithmetic and
logical functions. It executes instructions in a specific sequence to do a specific job. The Processor is
discussed in detail in Chapter 2, however, for the purposes of this section, it should be remembered that

the Processor includes 16 hardware General Registers, fifteen of which can be used as index registers, and
hardware multiply/divide in all New Series INTERDATA Processors. Models 70 and 80 also include hardware
Floating Point instructions and a large number of Automatic Input/Output Channels (details in Chapter 2),

1.2.5 The Multiplexor Input/Output Bus

All medium to low speed devices connect to the Multiplexor Input/Output Bus. This is a request/response
bus, consisting of 30 lines; 16 bidirectional data lines, 8 control lines, a sync (response) line, and a sys-
tem initialize line (System Clear). There is a 15 microsecond automatic time out if a response (sync) is
not received. Only one of the 8 control lines is active at any one time defining the contents and use of the
16 data lines. Interrupt detection and hardware vectoring for each of 255 devices is standard in all New
Series INTERDATA Processors.

1.3 PERIPHERALS

A complete line of standard, off-the-shelf, peripheral devices dre available with the INTERDATA Proces—
sors. All system modules and device controllers previously designed for the Models 3, 4, and 5 are plug
compatible with the Multiplexor Bus. These field proven designs enable the user to select the devices or

modules required for his specific application. The following are examples of what is available.

1.3.1 Digital Multiplexor

The Digital Multiplexor provides an economical set of modular blocks to monitor or control digital lines.
A single controller, augmented with input and output modules of 128 lines each, provides the capability
for monitoring 2048 inputs and controlling 2048 outputs. The Digital Multiplexor uses a biased core tech-
nique for input sampling. This technique insures absolute DC isolation from the sense contact, excellent
common mode transient response and DC offset capability, which makes the Digital Multiplexor particu-
larly well suited for reliable use in noise contaminated environments.

1.3.2 INTERTAPE Cassette System

The INTERTAPE Cassette System provides dual drive transports, capable of transferring data at a rate of
1000 characters per second. This reliable and inexpensive unit makes an ideal substitute for paper tape
input/output equipment. With a storage capacity up to 500K bytes per cassette, or 1000K bytes total, the
INTERTAPE Cassette System is ideal for low speed auxiliary storage.

1.3.3 IBM Compatible Magnetic Tapes

Both the seven and nine track IBM compatible tape transports are available. These units operate with a
tape speed of 25 inches per second (ips), and are available with packing densities of 556 or 800 bits per
inch (bpi).

1.3.4 Removable Cartridge Disc System

The Removable Cartridge Disc System is a reliable and inexpensive mass storage system, capable of pro-
viding 2.5 or 5.0 Megabytes of storage per unit. Up to four discs can operate on each controller, pro-
viding a maximum storage capacity of 10.0 Megabytes per system., Average access time is 70 millisec-
onds and the transfer rate is 180, 000 bytes per second.

1.3.5 Magnetic Drum Storage System

‘The Magnetic Drum Storage System is capable of providing from 131K bytes to 1, 048K bytes of storage de-
pending on the drum system selected. Average access time is 8.7 milliseconds and the transfer rate is
230K bytes per second.

1.3.6 Data Communications Equipment

A complete line of character buffered adapters is available to service Bell 103, 201, 202, and 301 Data
Sets, as well as the 801 Automatic Dialer. This enables the Processor to easily accommodate applica-
tions requiring either synchronous or asynchronous communications.

1.3.7 High Speed Paper Tape System

The High Speed Paper Tape System provides a 300 character per second Reader and 60 character per sec-
ond Paper Tape Punch. These units can be provided individually, or as a combined package using the
same controller,

1.3.8 System Modules

A complete line of system modules provides the user with a simple and convenient means of creating spe-
cial interfaces. These general purpose interface modules greatly reduce or totally eliminate special de-
sign effort. Standard modules are available to handle eight-bit or sixteen-bit parallel input or output,
manual data entry, and decimal indicators.

1.4 SOFTWARE

INTERDATA Processors are supported by a comprehensive array of software comparable only with software
offered in support of much larger systems. Among these field proven software packages are the Assembler,
Editor, Debug, Loaders, Test Programs and a FORTRAN IV Compiler. INTERDATA also provides a Basic
Operating System (BOSS) and a Real-Time Operating System (RTOS). These fully supported software pack-
ages provide extensive capabilities in both business and scientific applications.

1.4.1 Assembler

The Assembler enables the user to code programs into symbolic language, which is translated by the As-
sembler into machine language. The Assembler accepts a source deck or tape consisting of user-coded
instructions, and outputs a source listing and binary -program object tape. The Assembler permits use of
extensive pseudo instructions such as EXTRN and ENTRY, enabling the user to code large programs as
multiple subroutines which can be linked together at load time. The Assembler also provides extensive
diagnostic messages to indicate source program errors.

1-4

1.4.1.1 Stand Alone Assembler

The Stand Alone Assembler program tape is provided in relocatable tape format. The Stand Alone Assem-
bler for the INTERDATA Processor requires a minimum of 8KB of core memory,

1.4. 1.2 Operating System (OS) Assembler

The O8 Assembler program is provided in relocatable paper tape format. The OS Assembler program exe-
cutes under the supervision of an Operating System. Device independence is one of the significant advan-
tages of the OS Assembler. All I/O is accomplished by Supervisor Call instructions. The OS Assembler
also provides the capability to use magnetic tape as a scratch memory, eliminating the need for multiple
passes of the source deck or paper tape.

1.4.2 Loader Descriptions

Four variations of compatible loaders are provided for loading binary object tapes generated by the Assem-
blers, FORTRAN IV Compiler, or Hexadecimal Debug Program. These loaders vary from the basic bin-
ary loader requiring minimum memory, to the sophisticated loaders capable of searching, locating, and
linking subroutines by name.

1.4.2.1 OS Library Loader

The OS Library Loader is the most comprehensive loader. This loader requires 4, 000 bytes of memory,
and runs under the supervision of the Basic Operating System (BOSS). It may be operated interactively
through the Console Teletype, or it may receive its operator commands from some other device such as
the card reader, thus permitting Batch load-and-go processing. All I/O is accomplished through the log-
ical 1/0 calls to BOSS.

1.4.2.1 General Loader

The General Loader is a stand-alone program, occupying approximately 1,500 bytes. The General Loader
accepts paper tape inputs from a Teletype or High Speed Reader, and logs error and information messages
on the Teletype. It provides program relocation, ENTRY and EXTRN handling, and handles forward refer-
ences within programs, This program is operated from the Processor Control Console.

1.4.2,3 Relocating Loader

The Relocating Loader is a stand-alone program occupying approximately 800 bytes. The Relocating
Loader accepts paper tape inputs from a Teletype or High Speed Reader, and displays error indications
on the Processor Control Console. It allows program relocation, and handles forward references within
programs. This program is operated from the Processor Control Console.

1.4.2.4 BOSS Resident Loader

The BOSS Resident Loader provides the same features as the Relocating Loader, but is operated through
operator commands entered on the Console Teletype. The BOSS Resident Loader is device independent
and allows input from any binary device.

1.4.3 Text Editor (TIDE)

TIDE is an on-line, interactive text editing program. The Text Editor permits the operator to create and
modify character-oriented text input from paper tape or the Teletype keyboard. The text may be assem-
bly language source statements, FORTRAN source statements, or any text in the literal sense. The fea-
tares of TIDE include adding test, modifying text, deleting text, and the copying of paper tape records.
The comprehensive set of keyboard commands greatly simplifies error correction, recoding, and char-
acter manipulation,

1.4.4 Debug (CLUB)

The Hexadecimal Debug Program (CLUB) provides maximum assistance in debugging user programs while
using minimum core memory. This interactive program permits the operator to direct the debugging oper-
ation by entering directives and associated data via the Teletype keyboard. Responses to these inputs are
shown on the Teletype page printer. The features of CLUB include the ability to monitor, modify, search,
print, and punch object tapes. The powerful breakpoint feature enables the operator to trace the logic of
his program by passing control between CLUB and the program being debugged.

1.45 FORTRAN (Models 70 and 80 Only)

The software includes both an Interactive FORTRAN System and an ANSI Standard FORTRAN IV Compiler.
The Interactive FORTRAN provides a Direct Mode for on-line evaluation of arithmetic expressions, and
an Editing Mode for the creation and manipulation of stored programs. The system combines the conve-
nience of a desk calculator with the programming power of FORTRAN,

The FORTRAN IV Compiler facilitates simple algebraic solutions to mathematical or scientific problems.
Programs are written as a sequence of statements using familiar arithmetic operations and English ex-
pressions. From these source statements, the compiler produces machine language programs that can
be executed by the Processor. The FORTRAN IV Compiler is supported on Models 70 and 80.

1.4.6 Basic Operating System (BOSS)

The Basic Operating System provides a method of program management that, by establishing conventional
responses to external and internal stimuli, creates an environment in which a single-user program can
function almost as a pure problem solver. BOSS allows programs to be device independent, which enables
the user to program more efficiently by concentrating more on the problem at hand and less on the tasks
of input/output processing and interrupt handling.

1.4.7 Real Time Operating System (RTOS) (Models 70 and 80 Only)

The Real Time Operating System maximizes machine utilization by providing a multi-programming cap-
ability for interleaving the execution of programs and overlapping I/0 operations. Automatic scheduling
of its facilities using a priority system enables RTOS to schedule its own resources without constant oper-
ator intervention. User flexibility is enhanced by device independent programming through logical de-
vice assignments and automatic acknowledgement of interrupts.

1.4.8 Test Programs

The Processor and Memory Tests are comprehensive routines which validate the execution of all instruc-
tions and core memory locations through extensive use of interactive loops and worst case patterns. Er-
ror messages which indicate the precise test that failed result from any hardware discrepancies. These
programs repeat execution until halted or until an error condition is detected. Test programs are also
provided for all standard peripheral devices to validate both the controller and the device operational
status.

1.5 CUSTOMER SUPPORT

At INTERDATA, customer support is paramount. The comprehensive line of customer support activities
maintained by INTERDATA insures total customer back-up, prior to and after delivery of an INTERDATA
Digital System.

1.5.1 Computation Center Facilities
INTERDATA maintains computation centers in both New Jersey and California. The facilities at these cen-

ters are available to customers at a minimal cost, enabling users to develop and debug application software
prior to delivery of their INTERDATA system., For details, contact your local INTERDATA Sales Office.

1-6

1.5.2 Field Service

INTERDATA maintains Field Service Engineers throughout the country, with headquarters in each of the
regional sales offices. All INTERDATA field service personnal are factory trained and have extensive
experience with INTERDATA installations. At the INTERDATA factory, back-up service is available and
a repair depot is maintained for all logic boards and memory packages. In the field, maintenance per-
sonnel are equipped with complete sets of spares and specialized diagnostic equipment. Working behind
all this is the factory Quality Control Team maintaining exacting standards for production and final check~
out. A customer's system is subjected to hours of running comprehensive tests and then, finally, "baked"
in a heat chamber for a number of additional hours before the system is certified and shipped.

1.6.3 Training Center

INTERDATA maintains a complete, professionally staffed, training center. INTERDATA provides com-
prehensive courses in both programming and maintenance at a level that customers find interesting, in-
formative, and challenging. The emphasis is placed on '"hands on experience'. All of the instructors on
the training staff have extensive prior experience training computer personnel in military and civilian
schools. Hundreds of programmers and customer engineers have already been successfully trained by
this staff.

1.56.4 Systems Engineering and Programming

In many instances where the system requirement of a specific application goes beyond the capability of stan-
dard hardware and software, customers have looked to INTERDATA for special assistance. To accommo-
date these requests, an experienced team is available to furnish the exact support required. Members of
this application team are selected from communications experts, senior programmers, analog specialists,
and process control specialists. They make up an elite group, chosen for their capability and experience

in solving specific problems. When a special interface is required, the solution can often be built quickly
from off-the-shelf modules. Whenever a solution is required, the application team approaches the problem
from the customer's viewpoint.

1.5.5 INTERCHANGE

INTERCHANGE, the INTERDATA user's group, is an active and growing association. All programs writ-
ten by INTERDATA users and submitted to the INTERCHANGE Library are available to other INTERDATA
users. Through this organization, customers gain a valuable "second level" of support by sharing ideas,
programs and special interfaces.

1-7/1-8

CHAPTER 2
PROCESSOR DESCRIPTION

2.1 MICRO-PROGRAMMED INTERDATA PROCESSOR ARCHITECTURE

INTERDATA introduced the first micro-programmed multi-accumulator minicomputer, the Model 3, in
1967. The typical minicomputer of that day had one or two accumulators, one index register, and four to
six instruction formats that were physically different from one another. The functions available in these
computers were also very limited. For example, in absence of ""subtract”, "logical OR', or '"logical Ex-
clusive OR" instructions, three to seven instructions had to be programmed to accomplish the desired
function. These characteristics limited the amount of hardware needed for the minicomputer and made
them cheaper for the minicomputer manufacturers. The same characteristics made this kind of minicom-
puter more difficult to program and, therefore, more costly to the user from a program development point
of view, These computers implemented their instructions directly in hardware and had a typical add time
of 10 to 30 microseconds.

In 1967, INTERDATA led the industry by introducing a powerful 360-like architecture, at minicomputer
prices, in the form of the Model 3. The 360 type Model 3 instruction set was easier to learn and use,
simplifying programming, and minimizing development costs. To implement a powerful architecture of
this type in hardware would have been prohibitively expensive. Thus, INTERDATA chose to design a very
fast Processor, with 16 basic instructions (micro-instructions) and a large number of accumulators, called
a Micro-Processor. The micro-instructions were then micro-programmed to fetch, interpret, and exe-
cute the user level instruction set. This is how, even today, the micro-instructions of Models 74, 70,

and 80 emulate the user level architecture and instruction set.

In 1967, the emulated approach to the INTERDATA architecture sacrificed some speed, but recent advances
in ROM technology have eliminated this speed penalty. As one looks at the New Series INTERDATA family

of computers, there can be no doubt that it is second to none. It has the easiest to use architecture, and it

is more than competitive in both price and performance.

Technology changes from one year to the next. It is possible to arrive at a new optimized minicomputer
architecture for each level of technology, but that would very significantly impact software compatibility.
Micro-programmed emulation is the answer from INTERDATA. While others had to introduce new, in-
compatible, architectures as a result of technological changes in the past five years, INTERDATA used
micro-programming to adapt the architecture to technology, thereby protecting everyone's investment in
INTERDATA software. INTERDATA Micro-Processors are all different, but the user level machine char-
acteristics have remained upward compatible from the Model 3 of 1967 to the Model 80 of 1972,

2.2 PROCESSOR BLOCK DIAGRAM

The Processor block diagram shown in Figure 2-1 illustrates the information flow in the Models 74, 70,
and 80,

MEMORY

ADDRESS DATA
MEMORY PROTECT

!

_{ MEMORY BUS
[SUM BUS |
W
— —— 0 I5
sTATUS |cC "gglﬂmgg op |[RI/MI|R2/%2 A‘}%’Zﬁf\s S |MAGNITUDE
FIXED POINT
REGISTERS
PROGRAM INSTRUCTION (16)
STATUS WORD REGISTER
J .) 0 31
slsxp.| FRACTION
ARITHMETIC
FLOATING POINT LOGIC

PRIVILEDGED REG(':)TERS UNIT
INSTRUCTION

HARDWARE l 1

CONTROL HARDWARE l OPERAND BUS | J
1/0 CHANNEL l
I OPERAND BUS 2]
o] MULTIPLEXOR 1/0 BUS UP TO 255 DEVICES H-
d:] &j E&I
CARD READER HSPTRP TTY DISPLAY PANEL

Figure 2-1. Processor Block Diagram

The 32-bit Program Status Word (PSW) defines the state of the Processor at any one time. The indivi-
dual bits in the 12-bit status portion of the PSW enable or disable different classes of interrupts within
the system. The four-bit Condition Code (CC) field reflects the result of an operation (e.g. zero, nega-
tive, ete.). The 16-bit Location Counter sequences the instructions in a program. See Figure 2-2,

PSW

STATUS cc LOCATION COUNTER

Figure 2-2. Program Status Word Format

The 32-bit Instruction Register holds the instruction for decoding by the hardware and micro-program. The
various fields of the instruction word will be explained later. When the Operation Code (OP Code) of

an instruction is decoded, the first operand is fetched from the registers and is gated to Operand Bus 1.
The second operand is gated to Operand Bus 2 from memory or from a register. The Arithmetic Logic
Unit (ALU) performs the operation and gates the result to the register, replacing the first operand, and
sets the proper Condition Code (CC) in the Program Status Word (PSW). Input/output operations can also
take place directly between the Memory Bus and the Processor's Multiplexor 1/O Bus.

2-2

2.3 PROCESSOR OPERATION

2.3.1 Program Status Words '

The left half of the PSW defines Program Status, the right half is the Location Counter. The Current PSW
controls instruction sequencing and maintains the status of the system in relation to the program currently
being executed. A program can change the Processor status by loading a New PSW. This is accomplished
by executing a Load Program Status Word (LPSW) or Exchange Program Status (EPSR) instruction. These
instructions are described in Chapter 4,

The interrupt mechanism of the Processor also involves the PSW. When an interrupt takes place, the Cur-
rent PSW is stored at a unique four-byte location called the Old PSW. After the Current PSW is stored, the
Current PSW Register is loaded from another four-byte location called the New PSW. Each and every in-
terrupt class has a unique set of Old and New: PSWs. The PSW swap takes place automatically and, after
the PSW swap, the program execution begins at the location specified by the Location Counter of the New
PSW. The reserved core locations for Old and New PSWs for all interrupts are defined in Section 2. 3. 3.

The meaning of each bit in the left half of the PSW, Status, and Cbndition Code is explained in Table 2-1 and
shown in Figure 2-3. The particular meaning or function of each bit applies when the bit is a logical ONE.

WT| El IMM|DF|AS|FPICTIPM[O!O0|O0|O|C|V|G]|L

Figure 2-3.. Program Status Bits

2.3.2 Instruction Execution

The 16-bit Location Counter field of the Program Status Word specifies the location of the next instruction
to be fetched and processed. The 16-bit address field has the capacity of directly addressing the maximum
core memory of 64K bytes, or 32K halfwords.

Note that since instructions are aligned on halfword boundaries, the value of the Location Counter must be
even, That is, Bit 15 of the Location Counter must be zero.

During the normal processing of a program, an instruction is fetched from the location specified by the
Location Counter, the instruction is executed, the Location Counter is incremented, and another fetch and
execute cycle begins. After instruction execution, (except for Branch or Control instructions) the Loca~-
tion Counter is incremented by two if the executed instruction is of the halfword 16-bit format, or by four
if the executed instruction is of the fullword 32-bit format.

Following Branch instructions or System Control instructions, the Location Counter is adjusted as a func-
tion of the particular instruction.

The sequencing of instructions during program execution is also changed if an interrupt occurs. In this
case, the PSW swap procedure saves the Current PSW in main memory so that, after an interrupt is pro-
cessed, execution can resume at the correct location.

TABLE 2-1. PROGRAM STATUS BIT DEFINITIONS

Bit Name Comments
0 wWT Wait State The Wait bit is set to halt program execution. When this
bitis set in the Current PSW, no program execution
takes place, butthe Processor will respond to all 1/0
and Machine Malfunction Interrupts, if theyare enabled.
1 EI External The External Interrupt Enable bit is set to make the
Interrupt Enable Processor responsive to interrupt signals from the
Multiplexor Bus.
2 MM Machine Malfunction The Machine Malfunction Enable bit allows an inter-
Interrupt Enable rupt to occur if a power fail is detected, if the machine
is equippped with the Memory Parity Option and a
memory parity error occurs, or during the restart
process following a power down.
3 DF Fixed Point Divide The Divide Fault Interrupt Enable bit allows the
Fault Interrupt Processor to interrupt when a Fixed-Point Divide
Enable instruction is attempted and the result cannot be
expressed in 16-bits.
4 AS Automatic Input/ The Automatic I/O Service Enable bit allows the
Output Service Processor to acknowledge I/0 Interrupts and
Enable service them automatically,
5 FP Floating-Point The Floating-Point Arithmetic Fault Interrupt
Arithmetic Fault Enable bit allows the Processor to interrupt if expo-
Interrupt Enable nent overflow or underflow occurs during any
floating-point operation.
6 CT Channel Termination Channel Termination Interrupt Enable bit pertains to
Interrupt Enable the Automatic I/0O Channel, which can be used in con-
junction with the Automatic I/O Service.
7 PM Protect Mode The Protect Mode bit enables Memory Protect and
detection of Privileged instructions. When the Protect
Mode is not enabled the Processor is said to be
in the Supervisor Mode.
8-11 TUnused Must be zero.
12 C Carry/Borrow The Condition Code bits are set or adjusted after the
13 v Overflow execution of instructions by the Processor.
14 G Greater than Zero
15 L Less than Zero

2.3.3 Main Memory Allocation

The Processor requires certain locations in main memory for Floating-Point Registers, register save

areas, and interrupting processing.

lowing paragraphs.

2-4

These locations are defined in Table 2-2 and described in the fol-

TABLE 2-2
CORE MEMORY ALLOCATION

Function

Hexadecimal

Assignment

Memory Address

Floating-Point Registers 00-03 Floating-Point Register, RO
(Models 70, 80 only) 04-07 Floating-Point Register, R2
08-0B Floating-Point Register, R4
0€-0F Floating-Point Register, R6
10-13 Floating-Point Register, R8
14-17 Floating-Point Register, R10
18-1B Floating-Point Register, R12
1C-1F Floating-Point Register, R14
Power-Fail Locations 20-21 Unassigned
22-23 Register Save Pointer
24-27 Current PSW Save Area
Interrupt PSWs 28-2B Old PSW FLPT Arithmetic Fault Interrupt
2C-2F New PSW FLPT Arithmetic Fault Interrupt
30-33 Old PSW Illegal Instruction Interrupt
34-37 New PSW Illegal Instruction Interrupt
38-3B Old PSW Machine Malfunction Interrupt
3C-3F New PSW Machine Malfunction Interrupt
40-43 Old PSW External Interrupt
44-47 New PSW External Interrupt
48-4B Old PSW Fixed-Point Divide Fault Interrupt
4C-4F New PSW Fixed-Point Divide Fault Interrupt
Reserved 50-7F Bootstrap Loader and Device Definition Table
Channel I/0 Termination 80-81 Termination Queue Pointer
Parameters 82-85 Old PSW Channel I/0 Termination Interrupt
(Models 70, 80 only) 86-89 New PSW Channel I/O Termination Interrupt
8A-8B Overflow Termination Pointer
8C-8F Old PSW Termination Queue Overflow Interrupt
90-93 New PSW Termination Queue Overflow Interrupt
Supervisor Call 94-95 Supervisor Call Argument Pointer
Parameters 96-99 Old PSW Supervisor Call
9A-9B New PSW (Status and Condition Code) Supervisor Call
9C-9D New PSW (Location Counter) Supervisor Call 0
9E-9F New PSW (Location Counter) Supervisor Call 1
A0-Al New PSW (Location Counter) Supervisor Call 2
A2-A3 New PSW (Location Counter) Supervisor Call 3
A4-A5 New PSW (Location Counter)Supervisor Call 4
A6-AT New PSW (Location Counter) Supervisor Call 5
A8-A9 New PSW (Location Counter) Supervisor Call 6
AA-AB New PSW (Location Counter) Supervisor Call 7
AC-AD New PSW (Location Counter) Supervisor Call 8
AE-AF New PSW (Location Counter) Supervisor Call 9
B0-B1 New PSW (Location Counter) Supervisor Call 10
B2-B3 New PSW (Location Counter) Supervisor Call 11
B4-B5 New PSW (Location Counter) Supervisor Call 12
B6-B7 New PSW (Location Counter) Supervisor Call 13
B8-B9 New PSW (Locatfon Counter) Supervisor Call 14
BA-BB New PSW (Location Counter) Supervisor Call 15
BC-CF Reserved
Interrupt DO-D1 Service Pointer, Device 0
Service D2-D3 Service Pointer, Device 1
Table D4-D5 Service Pointer, Device 2
.
.
.
.
2CC-2CD Service Pointer, Device 254
Service Pointer, Device 255

2CE-2CF

Floating-Point Registers - These eight 32-bit registers are used by the Floating-Point instruc-
tions in Models 70 and 80.

Power Fail Locations - The Register Save Pointer at Location X'22', points to the first of
16 consecutive halfword locations in memory where the General Reg-
isters are saved in the event of power failure. When power is re-
stored, the General Registers are restored automatically from these
locations. The Current PSW is saved and restored in similar fash-
ion from Location X'24' - X'27',

Interrupt PSW's - These locations are reserved for the Old and New PSWs for the var-
ious internal and external interrupts.

Bootstrap Loader - The Bootstrap Loader is called the 50 Sequence and is used to load
the more sophisticated loaders.

Channel I/0 Termination - These locations are used in conjunction with Termination interrupts
Parameters from automatic I/O channel operation in Models 70 and 80.
Supervisor Call Parameters - These locations are used for the PSW exchange associated with the

Supervisor Call (SVC) instruction.

Interrupt Service Table - The Processor uses this table to uniquely service each interrupting
device.

2.4 INTERRUPT SYSTEM
2.4.1 Interrupt Procedure

The interrupt structure of the Processor provides rapid response to internal and external events that re-
quire service by special software routines. Inthe interrupt response procedure, the Processor preserves
the current state of the machine, and branches to the required service routine. The service routine may
optionally restore the previous machine state upon completion of its service. The types of interrupts, with
their associated Enable/Disable PSW bits, are listed in Table 2-3. Interrupts without a controlling PSW bit
are always enabled.

TABLE 2-3. INTERRUPTS

Interrupt PSW Control Bit
External 1
Machine Malfunction 2
Fixed Point Divide Fault 3
Automatic I/0 Service 4
Floating-Point Arithmetic Fault 5
Channel Termination 6
Protect Mode 7
Illegal Instruction Cannot be disabled
Channel Termination Queue Overflow Cannot be disabled
Supervisor Call Cannot be disabled

2-6

Interrupts can occur at various times during processing. The Arithmetic Fault Interrupts occur during
execution of user instructions. The Illegal instruction and Protect Mode Interrupt occur as soon as the
offending instruction is recognized. The Supervisor Call Interrupt occurs as part of the execution of the
Supervisor Call instruction. The Machine Malfunction and I/O Service Interrupts occur following instruc-
tion execution. The Channel Termination Interrupt can also occur during a Load Program Status Word

or Exchange Program Status instruction.

The Interrupt Procedure is based on the concepts of Old, Current, and New Program Status Words. The
Current PSW, contained in a hardware register, defines the operating status|of the machine. When this
status must be interrupted, the Current PSW becomes an Old PSW and is stored in a memory location dedi-
cated to the type of interrupt that has occurred. The New PSW becomes the Current PSW by being loaded
from a dedicated location into the hardware PSW Register. The status portion of the Current PSW now con-
taing the operating status for the interrupt service routine. New Program Status Words for interrupt con-
trolled by:PSW bits should disable interrupts of their own class. Interrupts controlled by Bits 1 and 6
must disable interrupts of their own class to prevent the Processor from going into an endless loop. The
dedicated core locations for Old and New Program Status Words are shown in Table 2-2." The Program
Status Word exchange procedure does not change the contents of the New PSW location, and subsequent
interrupts of the same type are treated in the same way.

2.4.2 Internal Interrupts

The Processor can generate six Internal Interrupts. Of these, the Illegal Instruction and the Supervisor
Call cannot be inhibited. Inhibited Internal Interrupts are not queued.

2.4.2.1 Floating-Point Divide Fault Interrupt

The Fixed-Point Divide Fault Interrupt, enabled by Bit 3 of the Program Status Word, is indicative of divi-
sion by zero or quotient overflow. Quotient overflow is defined as quotient magnitude greater than 215-1.
The interrupt takes place before modification of the operand registers. After a Fixed-Point Divide Fault
Interrupt, the Old PSW Location Counter points to the next instruction following the Divide instruction.

2.4.2.2 Floating-Point Arithmetic Fault Interrupt

The Floating-Point Arithmetic Fault Interrupt enabled by Bit 5 of the Current PSW, occurs on exponent
overflow or underflow as well as on division by zero. In the case of division by zero, the interrupt takes
place prior to alteration of the operand register. An exponent overflow sets the results to +X'7TFFF FFFF',
An exponent underflow sets the results to X'0000 0000'. The Location Counter of the Old PSW points to
the next instruction.

2.4.2.3 Machine Malfunction Interrupt

Bit 2 of the Current Program Status Word controls the Machine Malfunction Interrupt. This error can oc-
cur on either a primary power fail, a memory parity error, or during the restart process following a
power down. If the memory is equipped with the parity option, the parity bit of each memory word is set
to maintain odd parity. This bit is recomputed during each memory read; if the computed bit is not equal
to the bit read out of memory and if Bit 2 of the current PSW is set, the Current Program Status Word is
stored at the Machine Malfunction Old PSW location, and the Currert PSW is loaded from the Machine Mal-
function Old PSW location, and the Current PSW is loaded from the Machine Malfunction New PSW loca-
tion. The Condition Code field of the Current PSW is then adjusted by setting the G flag (PSW 14) if the
parity error occurred on instruction read, or setting the V flag (PSW 13) if the error occurred on an oper-
and read. It is not possible to guarantee programmed recovery from a parity error.

NOTES

1. The Condition Code field of the Machine Malfunction
New PSW location in memory must be zero
2. The Model 74 does not set either V or G on parity error.

If enabled by Bit 2 of the PSW, a Machine Malfunction Interrupt occurs on power fail. Power fail occurs
when the optional Primary Power fail detector senses a low voltage, when the Initialize switch is depressed,
or when the key-operated power switch is turned off. After the PSW swap, the L flag of the Current PSW is
set. The software service subroutine for Machine Malfunction can distinguish power fail from parity er-
rors by Conditional Branch instructions. The user is allowed approximately 1 millisecond before the sys-
tem is shut down. On shut down, the Processor stores the Current Program Status Word in Locations
X'0024' through X'0027', and the General Registers in the consecutive locations starting at the address
contained in Location X'0022!', When power is restored, the registers are reloaded and the Current PSW

is restored from Locations X'0024' through X'0027'. If Bit 2 (Machine Malfunction) of this PSW is set, the
Processor makes a PSW exchange from the Machine Malfunction location. The software service routine
for the Machine Malfunction Interrupt can differentiate between the memory parity error, power failure,
and power up conditions by testing the Condition Code. Note that the V flag is set for parity error on oper-
and fetch, the G flag is set for parity error on instruction fetch, the L flag is set on power fail, and no
flags are set on power restore. Additionally, the Location Counter of the Machine Malfunction 0ld PSW,
may be compared with the contents of Locations X'0026' and X'0027' (Power Fail PSW save area). If they
are equal, a power failure and restore sequence has occurred.

2.4,2.4 Ilegal Instruction Interrupt

The Tilegal Instruction Interrupt is not represented by an enabling bit in the PSW and is, therefore, always
operative. An Iilegal instruction is defined as an Operation Code that is not in the instruction repertoire of
the Processor. No attempt is made to execute the Illegal instruction, nor is the Location Counter of the
Current PSW incremented. The Old PSW stored as a result of an Illegal Instruction Interrupt, points to
the address of the Illegal instruction.

2.4.2.5 Protect Mode Violation Interrupt

The Protect Mode Violation Interrupt is enabled when Bit 7 of the Current PSW is set, which puts the Pro-
cessor in the Protect Mode. The interrupt occurs, in this mode, when an attempt is made to execute a
Privileged instruction. Privileged instructions are all 1/0 instructions, and System Control instructions:
Load Program Status Word, Exchange Program Status, and Simulate Interrupt. When such an instruction
is attempted in this mode, the instruction is not executed, and the Illegal Instruction Interrupt procedure
takes place, as describe above. The Location Counter is not incremented, so that the Old PSW points to
the Privileged instruction that caused the interrupt. PSW Bit 7, when set, also enables Memory Protect.

2.4.2.6 Supervisor Call (SVC) Interrupt

This interrupt occurs as the result of an SVC instruction, which is used to communicate between running
programs and operating systems. The Supervisor Call Interrupt is not inhibitable. When an SVC instruc-
tion is executed, the following action takes place:

1. The Current PSW is stored at the Supervisor Call Old PSW location, Location X'0096'.

2. The effective address from the SVC instruction is stored at the Supervisor Call argument
pointer, Location X'0094',

3. The status portion of the Current PSW is loaded from the Supervisor Call New PSW Status
location, Location X'009A".

4, The Current Location Counter is loaded from one of the Supervisor Call New PSW Location
Counter locations.

2.4.3 Input/Output Control Interrupts

If individually enabled by the program, a peripheral device is allowed to request Processor service when
the device itself is ready to transfer data via an interrupt. The Processor may respond to this signal in
several ways depending on the setting of certain bits in the Program Status Word. The Processor has two
classes of interrupts directly related to peripheral device handling. These are External Interrupt and Im-
mediate Interrupt. Two other classes, the Channel Termination Interrupt and the Channel Queue Overflow
Interrupt can occur upon termination of an Automatic 1/0 channel sequence. PSW Bits 1 and 4, in combi-
nation, control the External and Immediate Interrupts.

2-8

If Bit 1 is reset, I/O Device Interrupt signals are ignored. The signal remains pending, however, until
PSW Bit 1 is set and the signal is acknowledged. Bit 6 of PSW controls the Channel Termination Interrupt.
The Channel Termination Queue Overflow Interrupt is always enabled.

2.4, 3.1 External Interrupt

If Bit 1 of the Current PSW is set, and Bit 4 is reset, an I/O Device Interrupt signal results in the following
action: The Current PSW is stored at the Input/Output Interrupt Old PSW location. The Current PSW is
loaded from the Input/Output New PSW location, From this point, software must acknowledge the interrupt,
identify the device. and take appropriate action. Note that the New PSW for External Interrupts must have
Bit 1 reset. This interrupt handling technique has been included in the INTERDATA New Series Processor
primarily to maintain compatibility with the older Models 3, 4, and 5.

2.4.83.2 Immediate Interrupt Service

If both Bit 1 and Bit 4 of the Current PSW are set, an interrupt signal from a peripheral device results in
the following Automatic I/O Service. The signal is automatically acknowledged and the device number re-
turned is used to index into the Interrupt Service Pointer Table in Locations X'00D0' to X'02CF'. See
Table 2-2. The Service Pointer obtained is the address of either an Old PSW save area, or a Channel
Command Word for a channel I/O operation. If Bit 15 of the Service Pointer is reset, the Current PSW

is stored in the fullword location whose address is contained in the Service Pointer Table. The halfword
whose address is the contents of the Service Pointer Table plus four contains the New PSW Status and Con-
dition Code fields. The Location Counter is set to a value equal to the contents of the Service Pointer
Table plus six and instruction execution resumes.,

Current PSW (0:31) ————— = (SERVICE POINTER) Old PSW Save Area
Current PSW (0:15) «——————— (SERVICE POINTER) + 4 New PSW
Current PSW (16:31) «—————— (SERVICE POINTER) + 6

Through this Immediate Interrupt mechanism, a unique service routine for any device number can be auto-
matically entered. Exit from the routine is made by executing a Load Program Status Word instruction
specifying the Old PSW location (Service Pointer) at the origin of the subroutine. If Bit 15 of the Service
Pointer is set in Models 70 and 80, the address contained is that of a Channel Command Word implying
that automatic I/O Channel service is required. This Processor activity is described in Chapter 4.

2.4.3.3 Automatic I/0 Channel Termination Interrupt

The termination of an Automatic I/O Channel operation may result in the storing of a termination pointer
in the circular list located at the address specified by the Queue Pointer location. If, at this time, Bit 6
of the Current PSW is set, the Current PSW is stored at the Channel Termination Old PSW location, and
the Current PSW is loaded from the Channel Termination New PSW location. In this way, the control soft-
ware is notified of the complétion of a channel I/0O operation. Whenever the Processor executes a Load
Program Status Word instruction or an Exchange Program Status instruction, it checks Bit 6 of the newly
loaded PSW. If Bit 6 of the loaded PSW is set, and there is an entry in the queue, this interrupt is taken.
This is described in detail in Section 2.4.4.

2.4.3.4 Channel Termination Queue Overflow Interrupt

If the Processor attempts to enter a Channel 1I/0 Termination Pointer in the Termination Queue and the
queue is already full, it stores the termination pointer at Location X'008A', the Overflow Termination
Pointer location; stores the Current PSW in Location X'008C', the Queue Overflow Old PSW location; and
loads the Current PSW from Location X'90', the Queue Overflow New PSW location. This action allows
the software to clear out the queue before any channel I/O terminations are lost. This interrupt cannot
be disabled.

2-9

2.4.4 The Automatic Input/Output Channel (Models 70 and 80 Only)

The Automatic Input/Output Channel executes channel programs that control the activities of peripheral de-
vices. The execution of channel programs takes place between the execution of user instructions, and re-
sults in a program delay rather than a program interrupt with an exchange of Program Status Words. The
I/0 Channel may generate an interrupt because of abnormal conditions or because of the occurrence of an
event for which the software had requested an interrupt. Bits 1 and 4 of the Current Program Status Word
control the operation of the 1/O Channel. EBEoth of these bits must be set to permit channel operations. Chan-
nel operations also depend on the Automatic I/O Service Table, the Channel Control Block with its associ-
ated Channel Command Word, and the Channel Termination Queue, see Figure 2-4. All features of the
Automatic I/O Channel may not be compatible with future INTERDATA machines.

BIT | OF CURRENT

PSW SET
x'0040
INTEIR{F?UPT BIT 4 OF CURRENT ;NTEER):JJ?:RTN:LSW
SIGNAL PSW RESET EXCHANGE
IMMEDIATE
@0 INTERRUPT PSW
5 & EXCHANGE
VRV
Q
IMMEDIATE INTERRUPT LOCATION 5
CHAIN VALUE
CHANNEL COMMAND WORD LOCATION DEVICE NUMBER l STATUS
CHANNEL COMMAND WORD

CHANNEL CONTROL
BLOCK

X'02CE’

AUTOMATIC I/0 SERVICE POINTER TABLE

A(CCW)
1} 1
xoosol A(QUEUE) /

CHANNEL TERMINATION
QUEUE

Figure 2-4. I/0 Channel Operation Block Diagram

2.4.4.1 Interrupt Pointer Table

The Interrupt Pointer Table starts at location X'00D0'. It contains a halfword entry for each of the 256 pos-
sible peripheral device addresses. If Bit 15 of the entry in this table is reset, then the entry is the address
of an Immediate Interrupt PSW exchange location. If Bit 15 of the entry is set, then the entry minus one is
the address of a Channel Command Word. See Figure 2-5.

2-10

2o1A10g (dnixeju] oTjBWONY °*G-Z 9InSidg

1831 ANV ss3uaay
AHOWIN INIWIUO3C ¢ quOM . QuOM T08LNOD L Jao . o -
LM @ = GNYIIWOD TINNVHI[*™ TINNYHD 3NDINN 0L 09 @ N
NOILYY3dO WNO4Y3d — _
%9018
T0YLINOD TINNVHD — = - ——
378VL ‘o1 $391A30
V.. ~-| ¥3Niod |5 9T . vN3HdINId
1dNHYILNI 9s2
MSd 010 Vo1 L L
3INILAOY¥ENS | -
301AN3S
1dNYY3ILNI _ —
e NOILY07 3NDINN OL dWNP o) L_ L]
MSd M3N MSd IONVHOXI ¢ ooayaav
MSd 010 N3A3

2-11

2.4.4.2 Channel Control Block

The Channel Control Block contains the Channel Command Word plus the storage locations and data re-
quired by the channel operation. The Channel Command Word is a bit encoded command that completely
describes the Automatic Channel Operation. Note that it is the address of the Channel Command Word
plus one that is entered in the Automatic I/O Service Table. A complete Channel Control Block is shown
in Figure 2-6.

CHAIN VALUE [e— REQUIRED IF CHAINING
SPECIFIED
FILLED IN BY CHANNEL ——w DEVICE NUMBER I FINAL STATUS le— FILLED IN BY CHANNEL

CHANNEL COMMAND WORD

BUFFER START FOR DATA —» START ADDRESS OR COUNT [*— COUNT REQUIRED FOR
TRANSFERS DECREMENT MEMORY AND
BUFFER END FOR DATA —»f END ADDRESS TEST

TRANSFERS

OUTPUT COMMAND BYTE —ef COMMAND BYTE] TERMINAL CHARACTER le—REQUIRED IF TERMINAL
FOR INITIALIZATION CHARACTER CHECKING

SPECIFIED FOR DATA TRANSFERS

Figure 2-6. Channel Control Block Diagram

2.4.4.3 Channel Termination Queue

The Channel Termination Queue is a circular list identical to those described under List Processing In-
structions in Section 4,11. The queue may be set up at any convenient core location. The maximum size
of the queue allows for 255 entries, but any convenient length may be used. The address of the queue must
be stored at location X'0080' prior to starting any channel program. The Automatic I/O Channel uses the
queue to indicate termination of a channel program.

2.4.4.4 General Operation

When the Processor detects the presence of an interrupt signal from a peripheral device, it automatically
acknowledges the signal and obtains the address of the device. It uses the device address times two to in-
dex into the Automatic I/O Service Table to the entry reserved for the device. If Bit 15 of the entry is re-
set, the Processor takes an Immediate Interrupt. If Bit 15 is set, the Processor activates the I/O Chan-
nel, The I/O Channel uses the entry minus one to locate the Channel Command Word. It decodes the com-~
mand word and performs the required service, using the data entries in the Channel Command Block as
necessary. If the channel operation for this device is not yet complete, the I/0O Channel returns control to
the Processor. The Processor now checks for pending interrupt signals. If none are present, it continues
program execution, If any are present, it services them before returning to program execution,

If the channel determines that the operation for this device is complete, it terminates the channel program
by storing the device address and final status in the Control Channel Block (CCB) and, for data transfers,
changes the Channel Command Word to a '"no operation'. This causes subsequent interrupt signals from
the device coming to this Channel Command Word to be ignored. At this point, the I/O Channel can take
any or all of the following actions:

1. Make an entry in the Termination Queue.
2. Chain to anothexr Channel Command Word.
3. Generate an Immediate Interrupt.

The action taken by the channel depends on the bit configuration of the Channel Command Word, Figure
2-4 shows the Channel Operation in block diagram form.

In the queuing operation, the channel generates a Queue Overflow Interrupt if the queue is full when it at-
tempts to make an entry.

2.4.4.5 Channel Command Words

There are three phases involved in channel operations. These are:
1. Initialization
2. 1/0 Operation
3. Termination

All three phases are controlled by the bit configuration of the Channel Command Word. A single Channel
Command Word can be encoded to perform all three types of operation. The bit assignments for Channel
Command Words are shown in Figure 2-7,

0,1,2.3.4.5.6.7.8,9 10101213 14,5
:1_:—\ [BYTES PER INTERRUPT SIGNAL

Nt 1o CONTINUE

vorl 11 CHAIN

reaol ToTolo UNASSIGNED MUST BE ZERO
WRITE ool L OUTPUT COMMAND

omt| |o[t1]|o HI/LO

ST | —oueue

NULL TERMINAL CHARACTER

L—UN-ASSIGNED MUST BE ZERO

Figure 2-7. Bit Configuration For Channel Command Word

2.4.4.6 Initialization

Bits 0 (INIT) and 8 (Output Command) of the Channel Command Word control the initialize phase of channel
operations. If Bit 0 (INIT) is set when the Channel decoded the command word, it resets Bit 0 (INIT) and
checks Bit 8 (Output Command). If Bit 8 is set, the channel issues the output command located at the
start of the Channel Control Block plus ten and returns control to the Processor. Channel operations with
the device resume when an interrupt signal from the device occurs. Since the channel resets bit zero, it
can pass through the initialize phase only once. This phase is-optional. The software may initialize the
device by Output Command instructions prior to starting the channel operation. The bit configurations of
the CCW for the Initialization phase are illustrated in Figure 2-8.

BIT 0,1,2,3.4.5.6,7.8,9,10/11 1213 14,15
! [T][|

CHANNEL COMMAND WORD FOR INITIALIZE WITHOUT OUTPUT COMMAND

BIT ,0,! 2. 3.4 56,7 8.9 1011 12131415

IEEREENEOREREEER

CHANNEL COMMAND WORD FOR INITIALIZE AND OUTPUT COMMAND

Figure 2-8. Channel Command for Initialize and Output Commands

2.4.4.7 1/O Operation

There are five distinct types of I/0 operation the Automatic I/O Channel can perform. These are:
1. Read
2, Write
3. Decrement Memory and Test
4. No Operation
5. Null

The Channel Command Word (CCW) configurations for these operations are illustrated in Figure 2-9.

0,1,2,3,4,5,6.7,8,9,1011,12,13,14,15
ololo] o l INT

A4 1
READ N BYTES PER INTERRUPT SIGNAL

0,1,2.3,4,5,6,7 8.9 1011213 14,15

I |0|0|0' ||| | | I N
PR T

READ N BYTES PER INTERRUPT SIGNAL -TERMINATE ON TERMINAL CHARACTER

(O, 1,2.3.4 5.6 7.8 9 ,10,1,12,i3,14,15
|0|O|l| |0| I | I N
F T T |

WRITE N BYTES PER INTERRUPT SIGNAL

o,1,2.3 4 5 6. 7.8,9 101!.12,3.14,I5

||0IO|I||I|||I N
TR . |

WRITE N BYTES PER INTERRUPT SIGNAL —~TERMINATE ON TERMINAL CHARACTER

0,1.2.3 4.5.6.7.8,.910111213 1415

ool JETTTTITT]

DECREMENT MEMORY AND TEST

I0|I|2|3|4|5 6 7|8|9|I0 1 |2|I3|I4|l5|
I

NO OPERATION

o | 2.3 4. 56,78, 9 101 1213 1415
ofIp1 |

NULL

Figure 2-9. Channel Command Words for I/0O Operation

For all Read/Write operations, Bits 12 through 15 must contain the number of bytes to be transferred on
each interrupt signal. All zeroes in these bit positions indicates that sixteen bytes are to be transferred
on each interrupt signal. The two halfwords following the Channel Command Word in the Channel Control
Block must contain the starting address of the I/O Buffer and the ending address of the I/O Buffer. After
the number of bytes specified for each interrupt signal has been transferred, the starting address is incre-
mented by the appropriate amount and compared to the ending address. If it is greater, the channel enters
the termination phase. If it is less, the channel returns control to the Processor for program execution.
Bit 5 of the Channel Command Word controls the optional terminal character data transfer. When this bit
is set, the transfer proceeds as described above with the exception that the last byte transferred on each
interrupt signal is compared with the terminal character byte located at Channel Control Block plus eleven.
If these two bytes match, the channel enters the termination phase. In this way, a channel program can
terminate because the buffer is exhausted or a terminal character has been found in the data stream,

2-14

Before starting a data transfer, the Automatic I/0O Channel checks the device status. Any non-zero status
condition will stop the transfer and cause the channel to enter the termination phase. Before entering the
termination phase, the Initial (INTI) bit and No Operation bit are set in the Channel Command Word, the
Queue bit is set to force an entry in the Termination Queue, and the Chain bit and Continue bit are reset
to prevent chaining,

The Decrement Memory and Test Operation causes the value contained in the halfword immediately fol-
lowing the Channel Command Word to be decremented by one for each interrupt signal. The new value is
compared to zero. If greater than zero, the channel returns control to the Processor for program execu-
tion. If equal to zero, the channel enters the termination phase without changing the Channel Command
Word to a '"no operation". Subsequent interrupt signals from the device will cause the count field to in-
crease negatively., The No Operation code in the Channel Command Word indicates that the channel is to
ignore any interrupt signal from the associated device. The channel itself sets this code in the command
word on completion of data transfers. The software can use this code to ignore unsolicited interrupt sig-
nals. The Automatic I/O Service Table should contain pointers to 'no operation'" control words for all non-
existent devices.

The Null Operation differs from the No Operation in that while no I/0 function is performed, the channel
enters the termination phase without setting the No Operation code.

2.4.4.8 Termination

The Automatic I/O Channel enters the termination phase upon completion of a data transfer, when the count
field of a Decrement Memory and Test Operation has reached zero, or when the Null Operation is decoded.
All of the operations in the termination phase are optional. If none are specified, the channel returns con-
trol to the Processor. The two termination functions are Queue and Chain. The CCW bit configuration

for Queuing and Chaining is shown in Figure 2-10. Bit 6 of the Channel Command Word controls queuing.
If this bit is set, the channel, on entering the termination phase, stores the address of the Channel Com-
mand Word in the Channel Termination Queue. The condition of Bit 7 of the Channel Word controls posi-
tioning with the queue. If Bit 7 is set, the entry is made at the bottom of the queue. If Bit 7 is reset, the
entry is made at the top of the queue. See Figure 2-11,

v0l2345678910I||2I3I4I5
(NN

QUEUE AT BOTTOM

0,1,2,3,4,5,6.7.8,910,11,12,13,14,15

ol TV

0,1,2,3.4.5,6,7,8.9,i011 12131415

TTT T T

0,1,2.3,4.5,6,7 8.9 101112131415

HENEREROOEE

CHAIN AND CONTINUE

QUEUE AT TOP

CHAIN

Figure 2-10, Channel Command Words for Termination

Bit 10 of the Channel Command Word controls chaining. In this operation, the channel stores the first
halfword of the Channel Control Block in the appropriate location in the Automatic I/O Service Table for
this device. This chain value may be either the address of another Channel Command Word or the ad-
dress of a PSW exchange location for the Immediate Interrupt. Subsequent interrupt signals will be han-
dled as indicated by this value. If the Chain bit and the Continue bit (Bit 11) are both set, the channel
checks the new value placed in the Service Pointer Table and takes appropriate action before returning
control to the Processor. In this way, depending on the new value stored in the Service Pointer Table, the
channel can either generate an Immediate Interrupt or start another channel program.

2-15

NOILONYLSNI

Y3ISN LXIN *+—

Ol NYNL3Y

O/1 suewomy °11-g 9ansrq

3JIAY3S 1dNYYILNI
SIH1 O1 N¥N13¥

Q314103dS ONINIVHD d1 a341ND3Y

$3A
TINNVHD A NI 37714
, 1S31 GNY
é AYOW3W LN3W3¥23a Y04 03HIND3IY LNNOD
\ ON 3NNILNOD
SH3IJISNVHL VIVO HO4 314103dS
_ ONINIIH) YILIVHVYHD TYNIWEIL 31 GININD3IY
HILOVHYHD TYNIWN3AL] 31A8 ONVWWOD
v GN
mz_Sow%m %9078 $s3¥aa 3
LdNYYILNI T3INNVHD
SN v LNNOD YO SS3HAAY 1HVLS
NIVHJ 13s NIVHD 138 qUOM ONVWWOD TINNVHD
SNLVLS TYNIJ — ¥3ISWNN 391A30
3NIVA NIVHD
] 0

é
a3LNVM
ONINIVHO

T3INNVHDI A8 NI 37714
SHIJISNVYL VIVA ¥0d 18VLS ¥334N8 —
SH3IJISNVYL VIVQ HO4 AN3 ¥344N8
NOILVYZITVILINI Y04 31A8 ONVWWOOD LNd1NO

-

¢ Q3LNV
9N19907
NOILVNINNIL
aN3no,

1S17 NO 3n3Nn0

1S31 GNV

AYOW3NW LNIW3YO3Q o QUOM

M = GNYWWOO T3NNVHO

3137dWO02D
NOI1vY3d0

ON

avioL

NOILVYY3d0 WYO4¥3d

%2078
TOYLNOD TI3INNVHD

2-16

2.4.4.9 Example of Channel I/O Programming

This example of Channel I/O Programming assumes a Teletype located at physical address X'02'. The
program is set up to:

1. Issue an Output Command to start the device.
2. Write 72 bytes from core memory to the device, one byte per interrupt signal.

3. On completion of the transfer, make an entry at the bottom of the Termination
Queue and chain to a second Channel Command Block without specifying Continue.

4, The second Channel Command Block writes an additional 72 bytes to the device
and terminates by chaining to an Immediate Interrupt and causing the interrupt
to occur.

The first Channel Command Block is shown in Figure 2-12A. The Chain value is set to point to the second
Channel Command Block. The Status Byte and Device Number are set to zero. The Channel Command
word is set for Initialize, Write, Queue, Queue Low, Output Command, and Chain; and transfers one byte
per interrupt signal. The next two halfwords point to the beginning and end of the 72 byte buffer. The Out-
put Command byte is set to enable and write. The user program stores the address of this Channel Com-
mand Block in location X'00D4', the Service Pointer Table entry for device{X'OZ'. It issues a Simulate In-
terrupt instruction specifying device X'02' to get the operation started. On execution of the Simulate Inter-
rupt instruction, the channel issues the Output Command and resets the Initialize bit. It gives control to
the Processor for the execution of normal instructions. As each subsequent interrupt signal is received
from the device, the Channel outputs one byte until it has output the entire buffer of 72 characters. Be-
tween each interrupt signal it returns control to the Processor. After the last byte has been transferred,
it sets the No Operation bit in the Channel Command Word, and puts the address of the Channel Command
Word at the bottom of the Channel Termination Queue located at the address specified by the contents of
X'0080! (Termination Queue Pointer). It stores the chain value (the address of the second Channel Com-
mand Word) in location X'00D4', Service Pointer Table entry for device X'02'.

On the next and on each subsequent interrupt signal the Channel is directed to the second Channel Command
Block. This block is illustrated in Figure 2-12B. The Chain value points to an Immediate Interrupt loca~
tion. The status and Device Number are set to zero. The Channel Command Word specifies Write, Chain,
and Continue. The Channel outputs the data as described above until the last byte is written. It then sets
the No Operation bit, stores the Immediate Interrupt address in the Service Pointer Table location for de-
vice X'02', and generates an interrupt allowing software to take over servicing this device. If, during the
data transfer, the Channel had received an unsatisfactory status from the device, it would have terminated
the operation by setting the Initialize and No Operation bits (bad status indicators) in the Channel Command
Word, suppressed Chaining, and forced an entry at the top of the Channel Termination Queue. Setting the
Continue bit in the second Channel Command Word caused the Channel to generate the Immediate Interrupt
on the same interrupt signal that caused output of the last data byte. If this bit were reset, the next inter-
rupt signal from the device would generate the Immediate Interrupt.

2-17

2.45 Special Interrupts

The Processor provides two classes of special interrupts. These are the Console Interrupt and the Mem-
ory Protect Interrupts.

2.4,5.1 Console Interrupt

The Processor provides for operator intervention in the following manner. If Bit 4 of the Current PSW is
set, the rotary Function switch is in the OFF position, and the RUN Function switch is depressed, depress-
ing the EXECUTE switch causes an interrupt signal from Device 01. Servicing this signal can be accom-
plished through the Immediate Interrupt.

2.4.5.2 Memory Protect Interrupt

If Bit 7 (Protect Mode) of the Current PSW is set, the Processor is said to be in the Protect Mode. Should
the program attempt to store into a protected core area (as defined by the mask in the Memory Protect
Controller) while the Processor is in the Protect Mode, an Interrupt signal is generated by the Memory
Protect Controller. Furthermore, if Bit 1 (External Interrupt Enable) of the Current PSW is set, this
interrupt is recognized and appropriate action can be taken. Refer to the Appendix for details on the mem-
ory Protect Controller. Note that if the External Interrupt is disabled, the Memory Protect Interrupt can-
not occur, however, the store operation is ignored and execution resumes at the next instruction.

2-19/2-20

CHAPTER 3
DATA AND INSTRUCTION FORMATS AND
STORAGE ADDRESSING

3.1 INTRODUCTION

A program is a set of instructions which directs.the Processor to perform a specific task. Ordinarily,
program instructions are stored in sequential memory locations. During the normal processing of a
program, an instruction is fetched from the location specified by the Location Counter, the instruction
is executed, the Location Counter is incremented, and another fetch and execute cycle begins.

3.2 DATA FORMATS

The INTERDATA Instruction Set manipulates data of three different word lengths: 8-bit bytes, 16-bit half-
words and 32-bit fullwords. This data may represent a fixed-point number, a floating-point number, or log-
ical data. The data is used as operands for the instructions, and is manipulated as indicated by the particu-
lar instruction being executed. ’

3.2.1 Hexadecimal Notation -

Binary information is expressed in hexadecimal notation (base 16) for purposes of simplicity. All references
to binary instructions, data, or addresses in INTERDATA software are made in hexadecimal notation.
Four binary bits of information are conventiently expressed by a single hexadecimal digit. Thus, byte infor-
mation is expressed by two hexadecimal digits, halfword information by four hexadecimal digits, and full-
word information by eight hexadecimal digits. Table 3-1 lists hexadecimal, binary and decimal equivalents.

3.2.2 Fixed-Point Data

The basic Fixed-Point Arithmetic operand is.the 16-bit halfword. In multiply and divide operations,
32-bit fullwords are manipulated. See Figure 3-1.

Fixed-point data is treated as signed 15-bit integers in the halfword format, and as signed 31-bit integers
in the fullword format. Positive numbers are expressed in true binary form with a sign bit of zero. Nega-
tive numbers are represented in two's complement form with a sign bit of one. Refer to Section 3.2.2.1
for further details.

The numerical value of zero is always represented with all bits zero. Table 3-2 shows several examples
of the fixed-point number representation used in INTERDATA Systems.

Since halfword arithmetic operands are 16-bit values, Fixed-Point Arithmetic instructions can be used
for address arithmetic. Logical, and Shift instructions can also be used for address manipulation or

computation.

For details on manipulating fixed-point quantities, refer to Section 4. 3.

3.2.,2,1 2's Complement Notation

Negative numbers are represented in 2's complement notation. A fixed-point number is negative only if
Bit 0 is set. To change the sign of a number, the 2's complement of the number is produced in a two-step

procedure:

1. Change all zeros to ones, and change all ones to zeros (complement every bit).

2. Add 1 to the number.

Example: The number five is represented in binary form as
0000 0000 0000 0101

Step 1. 1111 1111 1111 1010 (complement) = 1's complement of 5
Step 2. 1111 1111 1111 1011 (add one) = 2's complement of 5
The result is the 2's complement of 5, representing -5.

TABLE 3-1
HEXADECIMAL, BINARY, AND DECIMAL CROSS-REFERENCE

Hexadecimal Binary Decimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011 11
1100 12
1101 13
1110 14
1111 15

© o N o O s W N RO

HoEH O QW > © ©® 9. ok W D RO
-
S

Example: The binary 2-byte number (0001111110100101) can be expressed in hex
notation as X'1FA5S'

HALFWORD

0

1

15

S

INTEGER

15

INDEX QUANTITY

0

1

FULLWORD

31

S

INTEGER PRODUCT

31

INTEGER DIVIDEND

3-2

Figure 3-1. Fixed-Point Word Formats

TABLE 3-2
EXAMPLES OF FIXED-POINT REPRESENTATION

Number Decimal Binary Hexadecimal
215.1 32767 0111 1111 1111 1111 TFFF
20 1 0000 0000 0000 0001 0001
0 0 0000 0000 0000 0000 0000
-20 -1 1111 1111 1111 1111 FFFF
-215 -32768 1000 0000 0000 0000 8000

3.2.3 Floating-Point Data

A floating-point number consists of a signed exponent and a signed fraction. The quantity expressed by
this number is the product of the fraction and the number 16 raised to the power of the exponent. Each
floating-point value requires two halfwords. The floating-point format is shown in Figure 3-2.

»

011 718 11112 16116 19120 23|24 27128 31

Figure 3-2. Floating-Point Word Format

Sign and magnitude representation is used, in which the sign bit S is zero for positive values, and one for
negative values. The exponent X is expressed in excess 64 binary notation; that is, field X contains the
true value of the exponent +64.

The fraction contains six hexadecimal digits F1-F6. The value of a floating-point fraction can be expressed
as follows: Fy.1671+F,. 16 2+F 4. 1673+, ... +F 4. 1676,

A normalized floating-point number has a non-zero high-order hexadecimal fraction digit (F1). If the
high-order hexadecimal fraction digit (F1) is zero, the number is said to be unnormalized. The range of
the magnitude (M) of a normalized floating-point number is:

16 %%<m<a - 1678 o 165

or approximately

5.4 107 0<M<T7.2 o 1070

Table 3-3 shows several examples of the floating-point number representation used in INTERDATA Systems.

All floating-point numbers are assumed to be normalized prior to their use as operands. No pre-normaliza-
tion is performed, all results are post-normalized. The Floating-Point Load instruction will normalize
unnormalized floating-point numbers.

Exponent overflow is defined as a resultant exponent greater than 63. Exponent underflow is defined as a
resultant exponent less than -64. The Overflow flag is set whenever exponent overflow or underflow is
detected. The Greater Than flag is set on positive overflow, the Less Than flag is set on negative over-
flow, and both flags are reset on underflow. On overflow, the exponent and fraction of the result are

set to all ones. The sign of the result is not affected by the overflow. On underflow, the sign, exponent
and fraction of the sum are set to zero.

3-3

TABLE 3-3
EXAMPLES OF FLOATING-POINT REPRESENTATION

Decimal Value Binary Hexadecimal Value

1.0 0100 0001 0001 0000 4110
0000 0000 0000 0000 0000
-1.0 1100 0001 0001 0000 Cl110
0000 0000 0000 0000 0000
9.5 0100 0001 1001 1000 4198
0000 0000 0000 0000 0000
-0.5 1100 0000 1000 0000 C080
0000 0000 0000 0000 0000

—(1—16_6). 1693 1111 1111 1111 1111 FFFF

1111 1111 1111 1111 FFFF
—16"65 1000 0000 0001 0000 8010
' 0000 0000 0000 0000 0000
0.1+1676 0100 0000 0001 1001 4019
1001 1001 1001 1010 999A

The floating-point value in which all data bits are zero is called true zero. A true zero may arise as the
result of an arithmetic operation because of exponent underflow, or when a resultant fraction is zero
because of loss of significance. In general, zero values participate as normal numbers in all arithmetic
operations.

There are eight 32-bit Floating-Point Registers, which are addressed with the even numbers 0, 2, 4,
...., 14. The Floating-Point Registers are reserved core memory locations and are addressable only
by the Floating-Point instructions, which are described in Section 4. 10.

3.2.4 Logical Data

Logical operations manipulate 8-bit bytes, 16-bit halfwords, and 32-bit fullwords. All bits participate in
logical operations. The data words have the format shown in Figure 3-3.

LOGICAL DATA

LOGICAL DATA

LOGICAL DATA

Figure 3-3, Logical Data Word Formats

3-4

For upward compatibility with future machines, boundary conventions for halfwords and fullwords
should be observed.

3.3 INSTRUCTION FORMATS

Processor instructions represent one of four formats designated Register to Register (RR), Short Format
(SF), Register to Indexed Memory (RX) and Register to Storage (RS) instructions.

In general, each format specifies three things: The operation to be performed, the address of the first
operand, and the address of the second operand. The first operand is normally the contents of a General
Register. The second operand is normally the contents of another General Register, the contents of a
core memory location, or a data constant from the instruction word itself.

A 16-bit halfword format is used for Register-to-Register and Short Format instructions, The Short
Format instructions may be used to manipulate small quantities or execute short branches relative to the
present Location Counter. A 32-bit fullword format is used for the Register to Indexed Memory, and the

Register to Storage formats.

The specific formats are shown in Figure 3-4.

0 718 1112 15
[RR] op R1 R2
REGISTER TO REGISTER
0 7|8 1112 15
[SF] oP R1 DATA
SHORT FORMAT
0 7| 8 1112 15] 16 31
[RX] op R1 X2
REGISTER TO INDEXED MEMORY
0 718 1]12 15| 16 31
[RS] op R1 X2

REGISTER TO STORAGE

Figure 3-4. Instruction Word Formats

The eight-bit OP field in all formats specifies the machine operation to be performed. Operation codes
are represented as two hexadecimal characters.

The four-bit R1 field in the instruction formats specifies the address of the first operand. The R1
field is normally the address of a General Register,

The four-bit R2 field in the RR instruction format specifies the address of the second operand, which is
normally a register address.

The four-bit DATA field of the SF instructions supplies data in the case of Fixed-Point Arithmetic instruc-
tions, or a displacement from the current Location Counter in the case of Branch instructions.

A non-zero X2 field in the RX and RS formats specifies a General Register whose contents is used as an
index value. The index value (X2) may be positive or negative. If X2 is zero, no address modification
takes place. General Registers 1 through 15 can optionally be used for indexing, but General Register 0
can never be used for indexing.

The 16-bit Address field specifies a memory address in the RX format, or contains a value (data) to be
used as an immediate operand in the RS format.

The RR instructions are used for operations between registers. The first operand is the contents of the
register specified by the R1 field of the instruction word. The second operand is the contents of the
register specified by the R2 field.

The SF instructions are used for; short immediates, in which the data field specifies a four-bit data value;
short shifts, in which the data field specifies the shift count; and short branches, in which the data field
specifies a displacement (in halfwords) from the current instruction address.

The RX instructions are used for operations between register and memory with the option of indexing.

The first operand is the register specified by the R1 field of the instruction word. The second operand

is the contents of the memory location specified by the A field of the instruction word, or the sum of the A
field and the contents of the General Register specified by the X2 field if indexing is specified.

In the RS instructions, the first operand is the contents of the General Register specified by the R1 field
of the instruction word. The second operand is the number contained in the A field of the instruction,
or the sum of the A field and the contents of the General Register specified by the X2 field if indexing is
specified. The second operand of an RS instruction specifies the number of bit positions in Shift
instructions, or forms the second operand in Immediate instructions.

There are some exceptions to the first operand-second operand nomenclature used above. For example,
with Branch on Condition instructions, the R1 field of the instruction is a four-bit mask (M1) which is
ANDed with the Condition Code in the Current PSW. These instructions are discussed in Section 4.7.

Tor all Input/Output instructions, the contents of the register specified by R1 specifies the device number
for the I/O operation. For the Supervisor Call instruction, the Rl field specifies 1 out of 16 possible types
of supervisor call. With the Load Program Status Word (LPSW), Simulate Interrupt (SINT) and Auto Load
(AL) instructions, the R1 field must be zero. These instructions are described in Chapter 4.

Table 3-4 summarizes the first and second operand designations for each instruction format.

TABLE 3-4
DESIGNATIONS FOR FIRST AND SECOND OPERANDS

First The contents of the register specified RR, RX, RS and SF
Operand: by the R1 Field (R1).
The M1 Field RR, RX, and SF

Branch on Condition

The actual valie of the R1 Field. SsvCe
Second The contents of the register specified RR
Operand: by the R2 Field (R2).

The contents of the address derived RX

by adding the A field and the contents
of the General Register specified by
the X2 Field. [A + (X2)]

The A field plus the contents of the RS
General Register specified by the X2
Tield A + (X2)

The actual value of the R2 Field SF

3.4 GENERAL REGISTER USAGE

The 16 General Registers function as accumulators or Index Registers in all arithmetic and logical opera-
tions. Each General Register is a 16-bit halfword consisting of two 8-bit bytes. For arithmetic operations,
bit zero (leftmost position) is considered the sign bit using two's complement representation.

3-6

The General Registers are numbered from zero to fifteen (decimal), and written in hexadecimal notation
as; 0, 1, 2, 3, 4, 5, 6,7, 8 9, A, B, C, D, E, and F. The General Registers have not been given
specific functional assignments. However, the following operational restrictions should be noted:

1. It is not possible to use General Register 0 as an Index Register. In the RX and RS instruction
formats, a zero entry in the X2 field indicates that no indexing is to take place.

2. For Fixed-Point Multiply, Divide, and fullword Shift and Rotate instructions, the R1 field must
specify an even numbered General Register. See Sections 4.3 and 4. 6.

3. For Branch on Index instructions, the Rl field specifies the first of three consecutive General
Registers, and the value of the R1 therefore, should be equal to or less than 13, See Section 4.7. 3.

4. For Floating-Point instructions the R1 field must be an even value, and specify one of the
Floating-Point Registers rather than one of the General Registers.

5. With any RR type instruction, the R1 field and the R2 field can specify the same register, but
special attention should be given to note what the instruction will do. For example, with the
EPSR instruction, if the R1 field equals the R2 field, the program status is stored in a General
Register, but the program status is unchanged.

3.5 STORAGE ADDRESSING

The INTERDATA Instruction Set manipulates data of three different word lengths: 8-bit bytes, 16-bit
halfwords, or 32-bit fullwords. In each case, the bits are numbered from left to right, starting with
the number zero. The format for each word length is shown in Figure 3-5.

BYTE

0 7

HALFWORD

0 7|8 15

FULLWORD

0 71 8 1516 23|24 ij

Figure 3-5. Data Word Formats

Core memory locations are numbered consecutively, beginning at 0000, for each 8-bit byte. Operands
in memory are addressed by the RX type instructions. Since the address portion (A) of an RX instruction
is 16-bits wide, it is possible to directly address 65,536 bytes.

The Processor transfers binary information between memory and the Processor as 16-bit halfwords. The
instruction being performed determines if the address specified is that of a byte, a halfword, or a full-
word. If a byte of information is desired, either the left or right byte of the halfword read from memory
is manipulated as determined by the specific address. If a halfword of information is desired, the entire
16-bits read from memory are used. If a fullword is desired, a second 16-bits are read from memory
and combined with the original halfword.

NOTE

Bytes of information are addressed by their specific hexadecimal address.

A group of bytes combined to form a halfword or a fullword are addressed by
the leftmost byte in the group. Halfword or fullword operands must be
positioned at an address which is a multiple of two, Any memory reference
for either a halfword or a fullword of information must reference that half-
word or fullword with an address which is a multiple of two. The use of an
address which is odd may yield an undefined result. Table 3-5 illustrates
the addressing scheme.

MEMORY ADDRESSING EXAMPLE

TABLE 3-5

Address 0050 0051 0052 0053 0054 0055 0056 0057
Contents 01 23 45 67 89 AB CD EF
Operand Byte Byte Byte Byte Byte Byte Byte Byte
Length

and Halfword Halfword Halfword Halfword -
Position Fullword Fullword

For example, if the address referenced in Table 3-5 is 0050 ¢, then:

3-8

A Byte-Oriented instruction would extract the value 011 g 28 an operand.

A Halfword-Oriented instruction would extract the value 01237 g as an operand.

A Fullword instruction would extract the value 01234567, 5 as an operand.

CHAPTER 4
INSTRUCTION REPERTOIRE

4.1 INTRODUCTION

The instruction repertoire has been grouped by function in this chapter. The use and operation of each
instruction is presented in the following format:

1. An instruction word chart for each instruction including: Mnemonic operation code, and first
and second operand designations in the correct assembler format. The format type designated
by [SF], [RR], [RS], and [RX]. An instruction diagram with hexadecimal operation code and
the locations of all fields is also provided, for example:

SIS RN (SF}
0 7|8 1)12 15
27 R1 N
SHR R1,R2 (RR]
0 78 11412 15
0B R1 R2
SH R1,A(X2) [RX]
0 718 11]12 15|16 31
4B R1 X2 A
SHI R1,A(X2) . [RS]
0 718 1112 16|16 31
CcB R1 X2 A

2, A description of instruction operation,

3. An example of a diagrammatic representation of instruction operation is shown below.

SIs: (Rl)*+——(R1) - N
SHR: (Rl)<—— (R1) - (R2)
SH: (Rl)«———(R1) - [A + (X2)]

SHI: (R1)<~———(R1) - A - (X2)

4, A chart illustrating the possible variations of the Condition Code in the Current Program Status
Word as a result of performing the instruction: a one indicates set, a zero indicates reset. It is
important to note that any instruction which changes the Condition Code can change all four bits.
The conditions listed on the chart are only those conditions which are meaningful after a particular
ingtruction. Other bits may be changed, but their condition is not meaningful, for example:

Resulting Condition Code:

12,13 .14 15

Cl|V|G|L

0 DIFFERENCE IS ZERO.

0 | 1 | DIFFERENCE IS LESS THAN ZERO.

1 | O | DIFFERENCE IS GREATER THAN ZERO.

1 ARITHMETIC OVERFLOW.

1 BORROW.

5. A programming note to provide additional pertinent or clarifying information. All privileged
instructions and those instructions which may cause a memory protect violation are so noted, for
example:

Programming Note:

The Subtract Immediate Short (SIS) instruction, causes the four-bit second operand N to be subtracted
from the contents of the General Register specified by R1. This instruction is useful for decrementing
a register by a small value (e.g. X'2").

The Subtract Halfword Immediate (SHI) instruction, produces a value which is the difference between the
first operand General Register (R1), less the sum of the address field itself, and the content of a
General Register index (X2).

The symbols and abbreviations used in the instruction diagrams are defined as follows:

Parentheses or Brackets. Read as '"'the content of ...".

()
(]

-~ Arrow. Read as "is replaced by ..." or "replaces ...".

A The 16-bit halfword address which is a part of the RX and RS instructions.

R1 The address of a General Register the content of which is the first operand.

M1 Mask of four-bits specifying Branch on Condition testing.

R2 The address of a General Register the content of which is the second operand of an RR
instruction.

X2 The address of a General Register the content of which is used as an index value.

N The four-bit second operand used with Short Format Immediate instructions.

D The four-bit displacement value used with Short Format Branch instructions.

(0:7) A bit grouping within a byte, a halfword, or a fullword. Read as "0 thru 7 inclusive"

(8:15) "Bits 8 through 15 inclusive", etc.

(16:31)

PSwW Program Status Word of 32 bits containing the Status, Condition Code, and current
instruction address.

CcC Condition Code of four-bits contained in the PSW.

C Carry Bit contained in the Condition Code (Bit 12 of PSW).

v Overflow Bit contained in the Condition Code (Bit 13 of PSW).

G Greater Than Bit contained in the Condition Code (Bit 14 of PSW).

L Less Than Bit contained in the Condition Code (Bit 15 of PSW).

+ Arithmetic operations - Add,

- Subtract,

* Multiply,

/ and Divide respectively.

Logical comparison, when used (e.g., R1:R2).

4-2

4.2 FIXED-POINT LOAD/STORE INSTRUCTIONS

The Fixed-Point Load/Store instructions are used to transfer fixed-point (see 3. 2. 2) data between the
General Registers and core memory. The instructions described in this section are:

4.2,1 LIS Load Immediate Short
LCS Load Complement Short

LHR Load Halfword RR

LH Load Halfword

LHI Load Halfword Immediate
4.2,.2 LM Load Multiple
4,2,3 STH Store Halfword

4.2.4 STM Store Multiple

4.2.1

Load Halfword

4,2.1 Load Halfword

LIS R1,N [SF]
0 718 1112 15
24 R1 N
LCS R1,N [SF]
0 718 1112 15
25 R1 N
LHR R1,R2 [RR]
0 7| 8 11112 15
08 R1 R2
LH R1,A(X2) [RX]
0 718 11]12 15|16 3N
48 R1 X2 A
LHI R1,A{X2) [RS]
0 718 1112 15116 31
cs R1 X2 A

The second operand is loaded into the General Register specified by R1.

LIS: (R1)~—N

LCS: (R1)<—— -N

LHR: (R1)~——— (R2)

LH: (R1)=— [A + (X2)]
LHI: (Rl) e—— A + (X2)

Resulting Condition Code:

12 13 14,15

CiVvV|G|L

0 | 0 | OPERAND IS ZERO.
o | 1 | OPERAND IS LESS THAN ZERO.

1 | 0 | OPERAND 1S GREATER THAN ZERO.

Programming Note:

The Load Immediate Short (LIS) instruction, causes the four-bit second operand to be expanded to a
16-bit halfword with high order bits set to zero. This halfword is loaded into the General Register
specified by R1.

The Load Complement Short (LCS) instruction, causes the four-bit second operand to be expanded
to a 16-bit halfword with high order bits set to zero. The two's complement of this halfword is
loaded into the General Register specified by Rl.

These instructions may be used to preset a register with an index value, load a register with the
first operand for a subsequent arithraetic operation (e. g. add, multiply), or set the Condition Code
for supplemental testing by a Branch on Condition instruction.

4.2.2 Load Multiple

LM
0

R1,A(X2)

1

12

15

16

[RX]
31

D1

R1

X2

Sequential halfwords from memory are loaded into successive General Registers, beginning with the

General Register specified by the R1 field. The first halfword is defined by A + (X2)., The operation is
terminated when R15 is loaded from memory, Note that any number of sequential General Registers can be
loaded in this manner,

1. (Rl)=——[A + (X2)]
2. Rl: X'F'

if R1 = X'F', the instruction is finiched

if R1 # X'F', then:

3. Rl———R1+1

4. A <+———— A+ 2, return to Step 1

Resulting Condition Code:

Unchanged.

4.2.3 Store Halfword

STH

R1,A(X2)

1"

12

15

[RX]
3

40

R1

X2

The 16-bit first operand is stored in the core memory location specified by the second operand. The first
operand is unchanged.

STH: (R1) ———[A + (X2)]

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is subject to Memory Protect.

4.2.4 Store Multiple

STM R1,A(X2) [RX]
0 718 1112 15116 31

Do R1 X2 A

Successive General Registers are stored sequentially into memory, beginning with the General Register
specified by the R1 field. The first storage address is determined by A + (X2). The operation is terminated
when R15 is stored in memory. Note that any number of sequential General Registers can be transferred in
this manner.

1. (R1)

2. Rl: X'F'
if R1 = X'F', then instruction is finished
if R1 # X'F', then:

(A + x2)]

3, Rl<—R1+1

4, A <+——————A+ 2, return to step 1

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is subject to Memory Frotect.

The Store Multiple (STM) instruction in conjunction with the Load Multiple (LM) instruction is an aid
to subroutine execution. They permit the easy saving and restoring of the registers required by the
subroutine. The Store Multiple instruction can be used upon entering the subroutine, and the Load
Multiple would be the last instruction executed before returning from the subroutine.

4.3 FIXED-POINT ARITHMETIC INSTRUCTIONS
The Fixed-Point Arithmetic instructions provide for addition, subtraction, multiplication and division of
fixed-point data (see 3. 2.2) contained in the General Registers and/or core memory. Also included are
logical and arithmetic compare operations. The inst;'uctions described in this section are:
4.3.1 AIS Add Immediate Short
AHR Add Halfword RR
AH Add Halfword
AHI Add Halfword Immediate
AHM Add Halfword to Memory
4.3.2 ACHR Add with Carry Halfword RR
ACH Add with Carry Halfword
4.3.3 SIS Subtract Immediate Short
SHR Subtract Halfword RR
SH Subtract Halfword
SHI Subtract Halfword Immediate
4.3.4 SCHR Subtract with Carry Halfword RR
SCH Subtract with Carry Halfword
4.3.5 CLHR Compare Logical Halfword RR
CLH Compare Logical Halfword
CLHI Compare Logical Halfword Immediate
4.3.6 CHR Compare Halfword RR
CH Compare Halfword
CHI Compare Halfword Immediate
4.3.7 MHR Multiply Halfword RR
MH Multiply Halfword
4.3.8 MHUR Multiply Halfword Unsigned RR
MHU Multiply Halfword Unsigned
4.3.9 DHR Divide Halfword RR

DH Divide Halfword

4.3.1 Add Halfword

AlS R1,N [SF]
0 718 1)12 15
26 R1 N
AHR R1,R2 [RR]
0 7|8 11112 15
0A R1 R2
AH R1,A(X2) [RX]
0 7| 8 1112 15|16 31
4A R1 X2 A
AHI R1,A(X2) [RS]
0 7|8 11112 15|16 31
CA R1 X2 A
AHM R1,A(X2) [RX]
0 718 1112 15116 31
61 R1 X2 A

The second operand is added algebraically to the contents of the General Register specified by R1.

AIS: (R1)+——(R1) + N
AHR: (R1) =——— (R1) + (R2))
AH: (R1) =—— (R1) + [A + (X2)]
AHI: (R1l) +—— (R1) + A + (X2)
AHM: [A + (X2)] =(R1) + [A + (X2)]
Resulting Condition Code:

12,13 .14 15

cl|vi|G|lL

0| 0 | SUM IS ZERO.

0| 1 [SUM IS LESS THAN ZERO.

1| 0 | SUM IS GREATER THAN ZERO.
1 ARITHMETIC OVERFLOW.

1 CARRY.

Programming Note:

The Add Immediate Short (AIS) instruction, causes the four-bit second operand N to be added to the
contents of the General Register specified by R1. The result replaces the contents of Ri.

The Add Halfword Immediate (AHI) instruction, produces a value which is the algebraic sum of the
address field itself, the content of a General Register index (X2), and the first operand General
Register (R1).

The Add Halfword to Memory (AHM) instruction, causes the second operand [A + (X2)] to be added to
the contents of the General Register specified by R1. The result of the addition does not replace the
contents of R1, but instead is stored in core memory at the address specified by A + (X2). The first
operand (R1) remains unchanged. This instruction effectively permits every location in core memory
to be used as a counter.

This instruction is subject to Memory Protect.

4.3.2 Add with Carry Halfword

ACHR R1,R2 [RR]
0 71 8 11112 156
OE R1 R2
ACH R1,A(X2) [RX]
0 7|8 1112 16] 16 31
4E R1 X2 A

The 16-bit second operand and the Carry Bit of the Condition Code (PSW 12) are added algebraically to the
General Register specified by R1, The resulting sum is contained in R1. The second operand is unchanged.

ACHR: (R1)=<—(R1) + (R2) + C
ACH: (Rl)~——R1)+ [A+ (X2)] +C

Resulting Condition Code:

12 13 14 15

cl{v|G|L

0|0 | SuMm IS zERO.

0 | 1 | SUM IS LESS THAN ZERO.
110 | SUM IS GREATER THAN ZERO,
1 ARITHMETIC OVERFLOW.

1 CARRY.

Programming Note:

Multiple precision addition operations require a Carry forward from the least significant operands to
the most significant. To accomplish this, the locations containing the least significant portions of the
two operands are summed, using the Add Halfword (ATl instruction. A Carry forward, if it occurs, is
retained in the Carry Bit position of the Condition Code (PSW 12).

The locations containing the next least significant portions of the two operands are then summed, using
the Add with Carry Halfword (ACH) instruction. The Carry Bit contained in the Condition Code (set
from the previous addition) participates in this sum; the Carry Bit position is then set to reflect the
new result,

The Add with Carry Halfword (ACH) instruction, is used on succeeding pairs of operands until the
most significant operands of the multiple precision words have been summed. The resulting Condition
Code is valid for testing the multiple precision word.

4.3.3 Subtract Halfword
SIS R1,N [SF]
0 7|8 11112 15
27 R1 N
SHR R1,R2 [RR]
0 718 1112 15
08 R1 R2
SH R1,A(X2) [RX]
0 7|8 112 15] 16 31
4B R1 Xz
SHI R1,A(X2) [RS]
0 718 11712 15(16 31
cB R1 X2

The second operand is subtracted from the General Register specified by R1. The difference is contained

in R1.

The second operand is unchanged.

SIS:
SHR:

SH:

SHI:

(R1)<=——(R1) - N
(Rl)*~——H1) - R2)
(Rl)=——(R1) - [A + (X2)]
(R1)e——(R1) - A - (X2)

Resulting Condition Code:

12

13 14

16

C

V|G

L

1

0

0

DIFFERENCE IS ZERO.

DIFFERENCE IS LESS THAN ZERO.

DIFFERENCE IS GREATER THAN ZERO.

ARITHMETIC OVERFLOW.

BORROW.

Programming Note:

The Subtract Immediate Short (SIS) instruction, causes the four-bit second operand N to be subtracted

from the contents of the General Register specified by R1.

a register by a small value (e.g. X'2').

This instruction is useful for decrementing

The Subtract Halfword Immediate (SHI) instruction, produces a value which is the difference between the

first operand General Register (R1), less the sum of the address field itself, and the content of a

General Register index (X2).

4-10

4.3.4 Subtract with Carry Halfword
SCHR R1,R2 [RRI
0 7] 8 11112 15
OF R1 R2
SCH R1,A(X2) [RX]
0 7|8 11]12 15| 16 3
4F R1 X2

The 16-bit second operand with the Carry (borrow) Bit is subtracted from the General Register specified

by R1.

SCHR:
SCH:

The difference is contained in R1. The second operand is unchanged.

(R1)+——(R1) - (R2) - C
(Rl)=——(R1) - [A+ (X2)] - C

Resulting Condition Code:

12

13

15

c

\

L

DIFFERENCE IS ZERO.

DIFFERENCE IS LESS THAN ZERO.
DIFFERENCE 1S GREATER THAN ZERO.
ARITHMETIC OVERFLOW.

BORROW.

Programming Note:

See Add with Carry Halfword 4. 3. 2.

4-11

435 Compare Logical Halfword

CLHR R1,R2 [RR]

0 7|8 1112 15
05 R1 R2

CLH R1,A(X2) [RX1

0 7|8 11112 1516 31
45 R1 X2 A

CLHI R1,A(X2) [RS]

0 7|8 1112 15[16 31
C5 R1 X2 A

The first operand specified by Rl is compared logically to the 16-bit second operand. The result is
indicated by the setting of the Condition Code [PSW (12:1 5)] . Both operands remain unchanged.

CLHR: (R1) : (R2)
CLH: ®1) : [A+X2)]
CLHI: ®Rl) : A+ (X2)

Resulting Condition Code:

12,13 14 15

Cl|v|GjL

oo FIRST OPERAND EQUAL TO SECOND OPERAND.

0|1
} FIRST OPERAND NOT EQUAL TO SECOND OPERAND.
110
1 FIRST OPERAND LESS THAN SECOND OPERAND.
0 FIRST OPERAND EQUAL TC OR GREATER THAN

SECOND OPERAND.

Programming Note:

The logical comparison is performed by subtracting the second operand from the first operand. The
result is in the Condition Code setting, the operands are not modified.

The Compare Logical Halfword Immediate (CLHI) instruction, produces a value which is the logical
comparison of the address field itself plus the content of a General Register index (X2) with the first

operand General Register (R1).

4-12

4.3.6

Compare Halfword

CHR R1,R2 [RR]
0 7] 8 11{12 15
09 R1 R2
CH R1,A(X2) [RX]
0 718 11]12 15| 16 31
49 R1 X2
CHI R1,A(X2) [RS]
0 718 1112 15116 31
co R1 X2

The first operand specified by Rl is compared to the 16-bit second operand. The comparison is algebraic,
taking into account the sign and magnitude of each number. The result is indicated by the setting of the

Condition Code [PSW (12:1 5)] . Both operands remain unchanged.

CHR: (R1)
CH: (R1)
CHI: (R1)

(R2)
[A+(X2)]
A+ (X2)

Resulting Condition Code:

12

13 14 15

C

V[G]|L

FIRST OPERAND EQUAL TO SECOND OPERAND.

FIRST OPERAND LESS THAN SECOND OPERAND.

FIRST OPERAND GREATER THAN SECOND OPERAND.

FIRST OPERAND LESS THAN SECOND OPERAND.

FIRST OPERAND EQUAL TO OR GREATER THAN
SECOND OPERAND,

. Programming Note:

The Compare Halfword (CH) instructions, permniit arithmetic comparison of signed two's complement

16-bit integers. They facilitate fast comparisons for DO loop, and IF statement processing in

FORTRAN,

4-13

4.3.7 Multiply Halfword

MHR R1,R2 [RR]
0 718 1112 15
oc R1 R2
MH R1,A(X2) [RX]
0 7|8 11112 15| 16 31
4C R1 X2 A

The 16-bit second operand is multiplied by the contents of the General Register specified by R1 + 1. The Rl
field of the ingtruction must specify an even numbered register. The resulting 32-bit product is contained
in R1 and R1 + 1, an even-odd pair; the second operand is unchanged. The sign of the product is determined
by the rules of algebra.

MHR: (R1, Rl + 1)=——(R1 + 1)*(R2)
MH: (R1, Rl +1)<«—R1 + 1)*[A + (X2)]

Resulting Condition Code:

Unchanged.

Programming Note:

After multiplication, the most significant 15 bits with sign are contained in R1. The least significant
16 bits are contained in R1 + 1.

4.3.8 Multiply Halfword Unsigned

MHUR R1,R2 [RR]
0 718 11112 15
o9C R1 R2
MHU R1,A(X2) [RX]
0 7|8 112 15| 16 31
DC R1 X2 A

The 16-bit second operand is multiplied by the contents of the General Register specified by R1 + 1. All
16-bits of both operands are considered to be magnitude. The resulting 32-bit product is contained in R1

and

Rl + 1, the second operand is unchanged. The R1 field of the instruction must specify an even

numbered register.

MHUR: (Rl, Rl + 1)=+——(R1 + 1)*(R2)
MHU: (R1, Rl +1)«——(RL + 1)*[A + (X2)]

Resulting Condition Code:
Unchanged.

Programming Note:

This instruction is most useful in applications requiring multiple precision multiply capability.
Typically, a Multiply Halfword (MH) instruction would be used with the most significant halfwords of

the two operands, after the least significant parts of the two operands were multiplied using the Multiply
Halfword Unsigned (MHU) instruction. The partial products could then be summed.

4-14

4.3.9 Divide Halfword

DHR R1,R2 : [RR]
0 7|8 11412 15
oD R1 R2
DH R1,A(X2) [RX]
0 718 11112 15| 16 31
4D R1 X2 A

The 16-bit second operand is divided into the 32-bit dividend contained in the General Register specified by
Rl and R1 + 1. The first operand, R1l, must specify an even numbered register. The resulting 15-bit
quotient with sign is contained in R1 + 1; a 15-bit remainder with sign is contained in R1, the second operand
is unchanged. The sign of the result is determined by the rules of algebra; the sign of the remainder is the
same as the sign of the dividend.

DHR: (R1 + 1)=-—(R1, R1 + 1)/(R2)
(R1)+——Remainder
DH: (R1 + 1)=—(R1, R1 + 1)/ [A + (XZ)]

(R1)-«——— Remainder

Resulting Condition Code:

Unchanged.

Programming Note:

Attempted division by zero or a quotient which would be greater than X'8000' causes a Fixed-Point
Divide Fault Interrupt, if enabled by Bit 3 of the Program Status Word. The operands remain unchanged.

4-15

44 LOGICAL AND BIT MANIPULATING INSTRUCTIONS

The Logical instructions manipulate logical data (see 3. 2.4) such that each bit of the first operand is logically
combined with the corresponding bit in the second operand. The instructions described in this section are:

4.4.1 NHR AND Halfword RR
NH AND Halfword
NHI AND Halfword Immediate

4.4.2 OHR OR Halfword RR

OH OR Halfword

OHI OR Halfword Immediate
4.4.3 XHR Exclusive OR Halfword RR

XH Exclusive OR Halfword

XHI Exclusive OR Halfword Immediate
4.4.4 THI Test Halfword Immediate

4-16

44.1 AND Halfword

NHR R1,R2 [RR]
0 718 11112 15
04 R1 R2
NH R1,A(X2) [RX]
0 718 112 15] 16 31
a4 R1 X2 A
NH! R1,A(X2) [RSI
0 718 11112 1516 31
c4 R1 X2 A

The logical product of the 16-bit second operand and the content of the General Register specified by R1,
replaces the content of Rl, The 16-bit product is formed on a bit-by-bit basis.

NHR: (R1) «——(R1} AND (R2)
NH: (R1)«——(R1) AND [A + (X2)]
NHI: (R1) «——(R1) AND A + (X2)

Resulting Condition Code:

12 13 14 15
CiV|G|L
010 LOGICAL PRODUCT IS ZERO.
0} 1
LOGICAL PRODUCT IS NOT ZERO.
110

Programming Note:

The AND Halfword Immediate (NHI) instruction, produces a value which is the logical product of the
address field itself plus the content of a General Register index (X2) with the first operand General

Register (R1).

The truth table for the AND function is:

0AND O =0
0AND1=0
1AND 0=0
1 AND1 =1

4.4.2 OR Halfword

OHR R1,R2 (RR]
0 718 1112 15
06 R1 R2
o R1,A(X2) [RX]
0 7|8 11)12 15| 16 31
46 R1 X2 A
OHI R1,A(X2) [RS]
0 71 8 11112 15| 16 31
C6 R1 X2 A

The logical sum of the 16-bit second operand and the content of the General Register specified by R1, re-
places the content of R1. The 16-bit sum is formed on a bit-by-bit basis.

OHR: (R1)~<+——R1) OR (R2)
OH: (R1)+——(R1) OR [A + (X2)]
OHI: (R1)«+——(R1) OR A + (X2)

Resulting Condition Code:

12 13 14 15

C|VI[G]|L

010 LOGICAL SUM IS ZERO.

} LOGICAL SUM IS NOT ZERO.

Programming Note:

The OR Halfword Immediate (OHI) instruction, produces a value which is the logical sum of the
address field itself plus the content of the General Register index (X2) with the first operand General

Register (R1).

The truth table for the OR function is:

OORO0=0
OOR1=1
10R0=1
10R1=1

4-18

4.4.3 Exclusive OR Halfword
XHR R1.R2 [RR]
0 718 1112 15
07 R1 R2
XH R1,A(X2) [RX]
0 7|18 11112 16| 16 31
47 R1 X2
XHI R1,A(X2) [RS]
0 71 8 11112 15|16 31
c7 R1 X2

The logical difference of the 16-bit second operand and the General Register specified by R1, replaces

the content of R1. The 16-bit difference is formed on a bit-by-bit basis.

XHR: (R1)=<—(R1) XOR (R2)

XH: (R1)~——(R1) XOR [A + (X2)]

XHI: (R1)+—— (R1) XOR A + (X2)

Resulting Condition Code:

12 13 14 16

C{Vv|G|L

Programming Note:

The Exclugive OR Halfword Immediate (XHI) instruction, produces a value which is the logical
difference of the address field itself plus the content of the General Register index (X2) with the

first operand General Register (R1).

The truth table for the Exclusive OR function is:

0XOR 0=0
0XOR1=1
1XOR 0=1
1XOR1=0

010 LOGICAL DIFFERENCE IS ZERO.

} LOGICAL DIFFERENCE IS NOT ZERO.

4-19

444 Test Halfword immediate

THI R1,A(X2) [RS]
0 718 11]12 15116 31

C3 R1 X2 A

Each bit in the 16-bit second operand is logically ANDed with the corresponding bit in the General Register
specified by R1. The contents of R1 and the second operand remain unchanged.

THI: (R1) AND A + (X2)

Resulting Condition Code:

12 13 14,15

Clv|G| L

0]0 NONE OF THE BITS OF THE RESULT SET.

0|1 BIT O OF THE RESULT SET.

110 ONE OR MORE OF BITS 1-15 OF THE RESULT SET.

Programming Note:

The Test Halfword Immediate (THI) instruction can be used to test the state of individual bits or
combinations of bits in a General Register. For example, to test the state of Bit 6 in Register 3,

use THI 3, X'0200'.

4-20

45 BYTE HANDLING INSTRUCTIONS

The Byte Handling instructions provide for transferring bytes between core memory and the General

Registers. Compare Logical Byte is useful for testing a particular byte within memory. The instructions
described in this section are:

4.5.1

4.5.2

4.5.3

4.5.4

LBR

LB

STBR

STB

EXBR

CLB

Load Byte RR
Load Byte

Store Byte RR
Store Byte
Exchange Byte RR

Compare Logical Byte

4-21

45.1 Load Byte
LBR R1,R2 [RR]
0 7|8 112 15
93 R1 R2
LB R1,A(X2) [RX]
0 718 11112 15116 31
D3 R1 X2 A

The eight-bit second operand is loaded into the right-most (least'significant) eight-bits of the General
Register specified by R1. The left-most (most significant) eight-bits of R1 are set to zero. The second

operand is unchanged.

LBR:

LB:

R1 (8:15)~—— R2 (8:15)
R1 (0:7)+——— Zero
R1 (8:15)+——[A + (X2)]
R1 (0:7) #me——u Zero

Resulting Condition Code:

Unchanged.

45.2 Store Byte

STBR R1,R2 [RR]
0 7|8 11]12 15
92 R1 R2
STB R1,A(X2) [RX]
0 718 11)1 12 15116 31
D2 R1 X2

The right-most (least significant) eight-bit byte of the first operand is stored in the General Register or core
memory location specified by the second operand. The first operand is unchanged.

4-22

STBR:
STB:

[R1 (8:15)]—=R2 (8:15)

[R1 (8:15)] —[A + (X2)]

Resulting Condition Code:

Unchanged.

Programming Note:

In the Register-to-Register (RR) form of this instruction, the left-most byte of R2, (0:7), is

unchanged.

The RX Store Byte (STB) instruction is subject to Memory Protect.

45.3 Exchange Byte
[RR]

EXBR R1,R2
0 7 11112 15
94

R1 R2

The two eight-bit bytes of the second operand are exchanged and loaded into the General Register specified
by R1.
EXBR: R1 (0:7) <«=—R2 (8:15)
R1 (8:15)«————R2 (0:7)

Resulting Condition Code:

Unchanged.

Programming Note:

R1 and R2 may specify the same General Register.

454 Compare Logical Byte
[RX]

cLB R1,A(X2)
0 7 15[16 31

R1 X2

D4

The least significant eight-bit byte of the first operand is logically compared to the eight-bit second
operand. The result is indicated by the setting of the Condition Code [PSW (12:15)] . Neither operand is

changed.
CLB: R1(8:15) : [A+ (X2)]

Resulting Condition Code:

12,13 14 15
clviac|L
olo FIRST OPERAND EQUALS SECOND OPERAND,
01 }
FIRST OPERAND DOES NOT EQUAL SECOND OPERAND.
1]0
1 FIRST OPERAND IS LESS THAN SECOND OPERAND,
0 FIRST OPERAND IS EQUAL TO OR GREATER THAN SECOND OPERAND.

’

4.6 SHIFT/ROTATE INSTRUCTIONS -

The Shift/Rotate instructions provide for arithmetic and logical manipulation of information contained in the
General Registers. Bits shifted out of the high or low order end of a General Register are passed through
the Carry Bit position of the Condition Code (PSW 12). After execution of a Shift instruction, the last bit
which was shifted out is contained in the Carry position. The double-precision Shift and Rotate instructions
manipulate a pair of General Registers. The R1 field of these instructions must specify an even numbered
register. The register specified contains the most significant 16 bits of the fullword operand. The next
sequential General Register contains the least significant 16-bits.

A shift of zero positions causes the Condition Code to be set properly with no alteration to the information
contained in the General Register. The instructions described in this section are:

4.6.1 SLLS Shift Left Logical Short
SLHL Shift Left Halfword Logical

SLL Shift Left Logical

4.6.2 SRLS shift Right Logical Short

SRHL Shift Right Halfword Logical

SRL Shift Right Logical

4.6.3 RLL Rotate Left Logical

4.6.4 RRL Rotate Right Logical

4.6.5 SLHA Shift Left Halfword Arithmetic
SLA Shift Left Arithmetic

4.6.6 SRHA Shift Right Halfword Arithmetic
SRA Shift Right Arithmetic

4.6.1

Shift Left Logical

SLLS R1,N [SF]
0 718 11412 15
1 R1 N
SLHL R1LA(X2) [RS]
0 718 1112 15|16 31
cD R1 X2 A
SLL R1,A(X2) (RS]
0 71 8 11112 15] 16 31
ED R1 X2 A

The content of the first operand is shifted left the number of positions specified by the second operand. High
order bits shifted out of Position 0 are shifted through the Carry Bit of the PSW and then lost. Zeros are
shifted into the low order bit position. '

(R1)

0 15
v SLLS AND SLHL
(C)
(R1) (R1+1)
0 15(16 31
v
(C) SLL

Resulting Condition Code:

12,13 14

15

C|V]|G

L

0

0

RESULT IS ZERO.

RESULT IS LESS THAN ZERO.

RESULT IS GREATER THAN ZERO.

LAST BIT THAT WAS SHIFTED OUT WAS A ZERO.

LAST BIT THAT WAS SHIFTED OUT WAS A ONE.

Programming Note:

For the Shift Left Logical Short (SLLS) instruction, the N field (Bits 12 through 15) of the instruc-

tion specify the number of positions the content of R1 is to be shifted.

For the Shift Left Halfword Logical (SLHL) instruction, only the low order four-bits (12 through 15)
of A + (X2) are used for the shift count.

The Shift Left Logical (SLL) instruction, shifts Registers Rl and R1 +1, an even-odd pair.

The R1

field of the instruction must specify an even register., The shift count is specified by the low order

five-bits (11 through 15) of the value A + (X2). The Carry is formed by the output of R1.

4-25

4.6.2 Shift Right Logical

SRLS RIN (SF}

0 8 112 15
2 R1 N

SRHL R1,A(X2) [RS]

0 7|8 1112 15|16 31
cc R1 X2 A

SRL R1,A(X2) [RS]

0 7|8 1112 15]16 31
EC R1 X2 A

The content of the first operand is shifted right the number of bit positions specified by the second operand.

Low order bits shifted out of Posgition 15 are shifted thru the Carry Bit of the PSW and then lost.

are shifted into Pogition 0.

Zeros

(R1)
0 15
SRLS AND SRHL ()
(R1) (R1+ 1)
0 15116 31
SRL ONLY (C)

4-26

Resulting Condition Code:

12,13 14

15

ClVI|G

L

RESULT IS ZERO.
RESULT IS LESS THAN ZERO.

RESULT 1S GREATER THAN ZERO.

LAST BIT THAT WAS SHIFTED OUT WAS A ZERO.

LAST BIT THAT WAS SHIFTED OUT WAS A ONE.

Programming Note:

See.Shift Left Logical 4. 7.1.

4.6.3 Rotate Left Logical
[RS]

RLL R1,A(X2)
31

0
EB R1 X2 A

The 32-bit first operand specified by Rl is shifted left, end around, the number of positions specified by the
low order five bits of the value A + (X2). All 32-bits of the fullword are shifted. Bits shifted out of Position
0 are shifted into Position 31. A shift specification of 16-bits interchanges the two halves (R1, R1 + 1) of the

first operand.

Resulting Condition Code:

12 13 14 /15

C|V|G|L

0|0 RESULT IS ZERO.

RESULT 1S GREATER THAN ZERO.

RESULT 1S LESS THAN ZERO.

Programming Note:

The Rotate Left Logical (RLL) instruction, rotates Registers R1 and R1 + 1, an even-odd pair.
The R1 field of the instruction must specify an even register.

0 15(16 31
(R1) (R1+1)
e —]
RLL

4-27

4.6.4 Rotate Right Logical

RRL R1,A(X2) [RS]
0 718 1112 15]16 31)

EA R1 X2 A

The 32-bit first operand specified by Rl is shifted right, end around, the number of positions specified by
the low order five bits of the value A + (X2). All 32-bits of the fullword are shifted. Bits shifted out of
Position 31 are shifted into Position 0. A shift specification of 16-bits interchanges the two halves (R1,
R1 + 1) of the first operand.

(R1) (R1+1)

RRL L

Resgulting Condition Code:
12 13 14 15

CiviGg}|tL

0 | 0 | RESULT IS ZERO.
1 | 0 | RESULT IS GREATER THAN ZERO.

0 | 1] RESULT IS LESS THAN ZERO.

Programming Note:

The Rotate Right Logical (RRL) instruction, rotates Registers Rl and Rl + 1, an even-odd pair.
The R1 field of the instruction must specify an even register.

4-28

4.6.5 Shift Left Arithmetic

SLHA R1,A(X2) [RS]

0 718 11}12 15116 31
CF R1 X2 A

SLA R1,A{X2) [RS]

0 7|8 1112 15| 16 31
EF R1 X2 A

The content of the first operand is shifted left the number of bit positions specified by the second operand.
The Sign Bit is unchanged. High order bits shifted out of Position 1 are shifted through the Carry Bit of the
PSW and then lost, Zeros are shifted into the low order bit position.

(R1)
o[1 15
s
© SLHA
(R1) (R1+1)
01 1516 31
s
Y
() SLA

Resulting Condition Code:

12,13 14 15

ClVv|G|L

0|0 RESULT IS ZERO.
o1 RESULT iS LESS THAN ZERO.
110 RESULT IS GREATER THAN ZERO.

0 LAST BIT THAT WAS SHIFTED OUT WAS A ZERO.

1 LAST BIT THAT WAS SHIFTED OUT WAS A ONE,

Programming Note:

For the Shift Left Halfword Arithmetic (SLHA) instruction, the shift count is specified by the low
order four-bits (12 through 15) of the value of A + (X2).

The Shift Left Arithmetic (SLA) instruction, shifts Registers R1 and R1 + 1, an even-odd pair. Rl
must specify an even register, The shift count is specified by the low order five-bits (11 through 15)
of the value of A + (X2).

4.6.6 Shift Right Arithmetic

SRHA R1,A(X2) [RS]

0 7] 8 11112 15|16 31
CE R1 X2 A

SRA R1,A(X2) [RS]

0 718 11]12 15[16 31
EE R1 X2 A

The content of the first operand is shifted right the number of bit positions specified by the second operand.
The Sign Bit, Bit 0, of R1 is unchanged and is shifted right into Bit 1; therefore, Bit 0, is propagated right as
many positions as specified by the second operand. Low order bits of the first operand are shifted through

the Carry Bit of the PSW and then lost.

(R1)

15
S
v
SRHA ()
{R1) (R1 + 1)
0 15116 31
S
]
SRA (C)

Resulting Condition Code:

12,13 14

15

CiV|G

L

0

0

RESULT IS ZERO.

RESULT IS LESS THAN ZERO.

RESULT IS GREATER THAN ZERO.

LAST BIT THAT WAS SHIFTED OUT WAS A ZERO.

LAST BIT THAT WAS SHIFTED OUT WAS A ONE.

Programming Note:

For the Shift Right Halfword Arithmetic (SRHA) instruction, the shift count is specified by the low
order four-bits (12 through 15) of the value of A + (X2).

The Shift Right Arithmetic (SRA) instruction, shifts Registers R1 and R1 + 1, an even odd pair.

R1 must specify an even register.

The shift count is specified by the low order five-bits (11

through 15) of the value of A + (X2). The Carry is formed by the output of R1 + 1 instead of R1.

4-30

4.7 BRANCH INSTRUCTIONS

Branch instructions are programmed decisions providing entry to subprograms, as well as testing the result
of arithmetic, logical, or indexing operations.

Many Processor operations result in setting of the Condition Code in the Program Status Word [PSW (1 2:15)].
The Branch on Condition instructions implement the testing of the Condition Code through use of a mask field
contained in the instruction itself (M1 field).

The four-bit M1 field is not a register address, but rather an image of the Condition Code to be tested. The
instructions described in this section are:

4.7.1 BTBS Branch on True Backward Short
BTFS Branch on True Forward Short
BTCR Branch on True Condition RR
BTC Branch on True Condition

4.7.2 BFBS Branch on False Backward Short
BFFS Branch on False Forward Short

BFCR Branch on False Condition RR

BFC Branch on False Condition
4.7.3 BXH Branch on Index High
BXLE Branch on Index Low or Equal

4.7.4 BALR Branch and Link RR

BAL Branch and Link

4-31

4.7.1 Branch on True Condition

BTBS M1,D [SF]
0 718 112 15
20 M1 D
BTFS M1,D [SF]
0 7|8 1112 15
21 M1 D
BTCR M1,R2 [RR]
0 7| 8 11712 15
02 M1 R2
BTC M1,A(X2) [RX]
0 718 11]12 15)16 31
42 M1 X2 A

The Condition Code field of the Program Status Word PSW (12:15) is tested for the condition specified by
the Mask Field (M1). If any of the conditions tested are found to be true, a Branch is executed to the 16-bit
address specified by the second operand. If none of the conditions tested are found to be true the next
sequential instruction is executed.

4-32

Tested Condition True:

BTBS: [PSW-(16:31)] <—— [PSW (16:31)]-2D
BTFS: [PsW (16:31)] «=—— [PSW (16:31)]+2D
BTCR: [PSW (16:31)] 4—— (R2)

BTC: [Psw (1 6:31)] -— A+ (X2)

Tested Condition Falge:

BTBS:
BTFS: } [Psw (16:31)] +— [PsW (16:31)]+2
BTCR:

BTC: [Psw (16:31)] =———PSW (16:31)}+4
Programming Note:

A logical AND is performed between each bit in the Condition Code and its corresponding bit in the M1
field. If any resultant bit is a one, the Branch will occur. The Condition Code [PSW (12:1 5)] is not
changed. For example, if the Condition Code is 1010 and the M1 field is 1000, the Branch occurs with
Branch on True instructions.

The Branch on True Backward Short (BTBS) instruction, causes a Branch to an address relative to the
present Location Counter when the tested condition is true. The displacement is specified by the D
field (Bits 12 through 15) of the instriuction. The D field (times two) is subtracted from the present
Location Counter to generate the address of the next instruction.,

The Branch on True Forward Short (BTFS) instruction, causes a Branch to an address relative to the
present Location Counter when the tested condition is true. The displacement is specified by the I
field (Bits 12 through 15) of the instruction, The D field (times two) is added to the present Location
Counter to generate the address of the next instruction.

The Short Branch instructions (e.g. BTBS), are appropriate for Branches which specify small
displacements from the present Location Counter, for example, in sense status loops used for
program controlled I/O.

4.7.2 Branch on False Condition

BFBS M1,D ‘ [SF]
0 718 1112 15
22 M1 D
BFFS M1,D [SF]
0 7|8 1112 15
23 M1 D
BFCR M1,R2 [RR]
0 7] 8 11[12 15
03 M1 R2
BFC M1,A(X2) . [RX]
0 718 11412 15] 16 31
43 M1 X2 A

The Condition Code field of the Program Status Word [PSW (12:1 5)] is tested for the condition specified by
the mask field (M1). If all conditions tested are found to be false, a Branch is executed to the 16-bit
address specified by the second operand. If any of the conditions tested are found to be true the next
sequential instruction is executed.

Tested Condition False

BFBS: PSW (16:31)+—[PSW (16:31)] -2D
BFFS: PSW (16:31)|=———[PSW (16:31)] +2D
BFCR: [PSW (16:31)}«——— (R2)

BFC: (PSW (16:31)}e————A + (X2)

Tested Condition True

BFBS:
BFFS:} [PSW (16:31)] ~——[Psw (16:31)] +2
BFCR:
BFC: [PSW (16:31)] «—— [PSW (16:31)] +4

Programming Note:

A logical AND is performed between each bit in the Condition Code and its corresponding bit in the
M1 field. If any resultant bit is a one, the Branch will not occur. The Condition Code [Psw (1 2:15)]
is not changed. For example, if the Condition Code is 1010 and the M1 field is 1100, the Branch
does not occur with the Branch on False instruction.

The Branch on False Backward Short (BFBS) instruction, causes a Branch to an address relative to
the present Location Counter when the tested condition is false, The displacement is specified by
the D field (Bits 12 through 15) of the instruction. The D field (times two) is subtracted from the
present Location Counter to generate the address of the next instruction.

The Branch on False Forward Short (BFFS) instruction, causes a Branch to an address relative to
the present Location Counter when the tested condition is false. The displacement is specified by
the D field (Bits 12 through 15) of the instruction. The D field (times two) is added to the present

Location Counter to generate the address of the next instruction.

Branch on False Condition with a mask of 0 is an Unconditional Branch.

4-33

4.7.3 Branch on Index

BXH R1,A(X2) : [RS]

0 718 112 156116 31
co R1 X2 A

BXLE R1,A(X2) [RS]

0 7|8 11412 16] 16 31
C1 R X2 A

Prior to execution of this instruction, the General Register specified by the first operand (R1) must contain
a 16-bit starting index value, R1 + 1 must contain a 16-bit increment value, and R1 + 2 must contain a 16-bit
comparand (limit or final value). All values may be signed.

Execution of this instruction causes the index (R1) to be incremented by (R1 + 1) and logically compared to
the index limit, (R1 + 2).

4-34

BXH: (R1) «——(R1) + (RL + 1)
(R1) : (R1 + 2)
if (R1) > (R1 + 2), then [PSW (16:31)] =—— A + (X2)
if (R1)< (R1 + 2), then [PSW (16:31)]4——[PSW (16:31)]+4
BXLE: (R1)+———(R1) + (R1 + 1)
(R1) : (R1 + 2)
if (R1)< (R1 + 2), then [PSW (16:31)] =—— A + (X2)
if (R1) > (R1 + 2), then [PSW (16:31)] =—— [PSW (16:31)]+4

Resulting Condition Code:

Unchanged.

Programming Note:

For the Branch on Index High (BXH) instruction, the contents of R1 + 1 should be negative. As long
as the index (R1) is greater than the limit (R1 + 2), the 16-bit address specified by the second
operand is transferred to the instruction address field of the Program Status Word [PSW 1 6:31)] .
The next instruction executed will be accessed from the location specified by the new instruction
address. When the count is not greater than the index limit, the instruction following Brarch on
Index High will be executed.

For the Branch on Index Low or Equal (BXLE) instruction, the contents of R1 + 1 should be positive.
As long as the index (R1) is equal to or less than the limit (R1 + 2), the 16-bit address specified by
the second operand is transferred to the instruction address field of the Program Status Word

[PSW 1 6:31)] . The next instruction executed will be accessed from the location specified by the
new instruction address. When the count is greater than the limit, the instruction following Branch
on Index Low will be executed.

The Branch on Index High and Branch on Index Low instructions are appropriate for rapid loop con-
trol, particularly when one or more of the instructions in the loop is indexed.

General Register 13 is the maximum specification for the R1 field.

4.7.4 Branch and Link

BALR R1,R2 [RR]
0 7| 8 11112 15
01 R1 R2
BAL R1,A(X2) [RX]
0 718 11]12 15[16 31
M R1 X2 A

The address of the next sequential instruction is saved in the General Register specified by the first
operand (R1), and an Unconditional Branch is executed to the 16-bit address specified by the second
operand. In all INTERDATA Processors except the Model 3, the effective second operand is derived
before the contents of register Rl are changed. See note below.

BALR: (R1) ~——————[PSW (16:31)] +2
[PSW (16:31))}«—— (R2)
BAL: (R1) +———————— [PSW (1 6:31)] +4

[PSW (16:31)]«—— A + (X2)
Condition Code:
Unchanged.

Programming Note:

The Branch and Link instruction may be used for entry to sub-programs, It differs from the
Branch Unconditional instruction in that the incremented Location Counter value is preserved in a
specified General Register to be used as the sub-program exit address. Exit from the sub-program
is effected by a Branch Unconditional instruction through the General Register in which the exit
address has been maintained. Note that in the Model 3, if the same register is specified in

both the first and second operands of the BALR instruction (R1 = R2), R1 will be loaded with

the saved address of the next instruction before it is used to derive the second operand. In

all other INTERDATA Processors, the effective second operand is derived before the contents

of R1 are changed.

4-35

4.8 INPUT/OUTPUT INSTRUCTIONS

The 1/0 instructions provide for the transfer of data between the Processor and the peripheral devices on the
Multiplexor Bus. All of the instructions described in this section are privileged and, if executed with the
Processor in Protect Mode (PSW Bit 7 set), result in an Hlegal Instruction Interrupt.

Following most I/0 instructions, the V flag in the Condition Code indicates an instruction time-out. That
is, due to an improper device response - either the addressed device does not exist, or it did not respond
correctly - the specified I/O operation was not performed. Following Sense Status or Acknowledge Interrupt
instructions, the Condition Code (CVGL) also reflects Bits 4 through 7 of the device status. With standard
INTERDATA device controllers, Bit 5 of the status byte, which is reflected in the V flag in the Condition
Code, is defined as Examine Status. This means that status byte should be examined. Following Sense
Status and Acknowledge Interrupt instructions, therefore, the occurence of the V flag with status Bits 0
through 3 equal zero indicates instruction time-out, For a complete definition of the bits in either command
bytes, or status bytes, refer to documentation on the device in question. The instructions described in this
section are:

4.8.1 AIR Acknowledge Interrupt RR
Al Acknowledge Interrupt

4.8.2 SSR Sense Status RR

SS Sense Status
4.8.3 OCR Output Command RR 4.8.6 RHR Read Halfword RR
ocC Output Command RH Read Halfword
4.8.4 RDR Read Data RR 4.8.7 WHR Write Halfword RR
RD Read Data WH Write Halfword
4.8.5 WDR Write Data RR 4.8.8 AL Autoload
WD Write Data

4-36

4.8.1 Acknowledge Interrupt

AIR R1.R2 [RR]
0 718 11112 15
9F R1 R2
Al R1,A(X2) [RX]
0 7|8 1112 15| 16 31
DF R1 X2 A

The address of the interrupting device replaces the content of the 16-bit General Register specified by the
first operand (R1). The eight-bit device status byte replaces the content of the location specified by the
second operand. The Condition Code is set equal to the right-most four bits in the device status byte. The
device interrupt condition is then cleared.
AIR: [R1 (8:15)]+——Device address
[R1 (0:7)] +=———2Zero
[R2 (8:15)] =——— Status byte
[R2 (0:7)] ~— Zero
[PSW (12:15)] =—— Status byte (4:7)
Al: [R1 (8:15)] =—— Device number
[R1 (0:7)] =——— Zero
[A + (X2)] =— Status byte
[Psw (12:15)]e——Status byte (4:7)

Resulting Condition Code:

12.13,14 15
clviaGgiL
1 DEVICE BUSY (BSY)
1 EXAMINE STATUS (EX) OR TIME OUT
1 END OF MEDIUM (EOM)

1 DEVICE UNAVAILABLE (DU)

Programming Note:

These instructions are privileged.

The RX form (AI) is subject to Memory Protect.

4-37

4.8.2 Sense Status

SSR R1,R2 [RR]
0 718 1112 15
9D R1 R2
ss R1,A(X2) [RX]
0 7|8 112 15| 16 31
DD R1 X2

The 16-bit General Register specified by the first operand (R1) contains the device address. The device is
addressed and the eight-bit device status byte replaces the content of the location specified by the second
operand. The Condition Code is set equal to the right-most four bits of the device status byte. The first

operand is unchanged.

SSR: [R2 (8:15)] «—————— status byte
[r2 (0:7)] =—————Zero
[PsW (12:15)] «———— Status byte (4:7)
88: [A + (X2)) «————— Status byte
[PswW (12:15)]«——— status byte (4:7)

Resulting Condition Code:

12 13 14 16
C|V|G| L
1 DEVICE BUSY (BSY}
1 EXAMINE STATUS (EX) OR TIME OUT
1 END OF MEDIUM (EOM)
1 DEVICE UNAVAILABLE (DU)

Programming Note:

These instructions are privileged.

The RX form (SS) is subject to Memory Protect.

4-38

4.8.3 Output Command

OCR R1,R2 [RR]
0 8 11112 15
9E R1 R2
oC R1,A(X2) [RX]
(1] 8 11112 15] 16 31
DE R1 X2 A
The device is

The 16-bit General Register specified by the first operand (R1) contains the device address.
addressed and the eight-bit device command byte specified by the second operand is transmitted to the

addressed device. Both operands remain unchanged.

OCR: Device <— [R2 (8:15)]
ocC: Device «—[A + (X2)]

Resulting Condition Code:

INSTRUCTION TIME OUT

Programming Note:

The Examine Status bit is set if the device cannot complete the command action, These instructions

are privileged.

4.8.4 Read Data
RDR R1,R2 [RR]
0 718 1112 15
8 R1 R2
RD R1,A(X2) [RX]
0 718 112 15[16 3N
DB R1 X2 A

The 16-bit General Register specified by the first operand (R1) contains the device address. The device is
addressed and a single eight-bit data byte is trangmitted from the device replacing the content of the location
specified by the second operand.
RDR: [R2 (8:15)]<+—Data byte
[R2 (0:7)] +——2Zero
RD: [A + (X2)] «——Data byte

(Continued on next page)

4-39

Resulting Condition Code:

12,13 14 15

1 INSTRUCTION TIME QUT

Programming Note:

These instructions are privileged.
The RX form (RD) is subject to Memory Protect.

These instructions should not be used with 16-bit oriented device controllers. Note that standard
INTERDATA peripheral devices use 8-bit oriented device controllers. For 16-bit oriented devices,
use Read Halfword/Write Halfword instructions.

485 Write Data

WDR R1,R2 [RR]
0 7| 8 11]12 15

9A R1 R2

WD R1,A(X2) [RX]
0 7|8 11)12 15| 16 31

DA R1 X2 A

The 16-bit General Register specified by the first operand (R1) contains the device address. The device is
addressed and a single eight-bit data byte is transmitted to the device. Both operands remain unchanged.

WDR: [R2 (8:15)]—(Device)
WD: [A + (X2)] —(Device)

Resulting Condition Code:

12 .13 14 15
C|V|G]|L
1 INSTRUCTION TIME OUT

Programming Note:

These instructions are privileged.

These instructions should not be used with 16-bit oriented device controllers. Note that standard
INTERDATA peripheral devices use 8-bit oriented device controllers. For 16-bit oriented devices,
use Read Halfword/Write Halfword instructions.

4-40

4.8.6 Read Halfword
RHR R1,R2 [RR]
0 7| 8 11112 15
99 R1 R2
RH R1,A(X2) [RX]
0 718 11]12 15] 16 31
D9 R1 X2 A

The 16-bit General Register specified by R1 contains the device address. The device is addressed and a
16-bit halfword is received from the device replacing the contents of the second operand. The Read Half-
word instruction is implemented such that it can work with both 8-bit byte oriented device controllers and
with 16-bit halfword oriented device controllers. If the controller is byte oriented the Processor inputs two
8-bit bytes, if the controller is halfword oriented the Processor inputs one 16-bit halfword.

RHR: [R2 (0:7)] «=——— First Data Byte
[R2 (8:15)}«————Second Data Byte

} 8-bit oriented device controller

[R2 (021 5)}4————— Halfword of Data 16-bit oriented device controller

RH: [A + (X2)]<——— First Data Byte
[A + (X2) + IJ«—— Second Data Byte

} 8-bit oriented device controller

[A + (X22,<—————- Halfword of Data 16-bit oriented device controller
12 13 14,15
ClV|G|L
1 INSTRUCTION TIME OUT

Programming Note:

These instructions are privileged.

The RX form (RH) is subject to Memory Protect,

With the RX form (RH), the effective address A+(X2) must be an even value.

4.8.7 Write Halfword

WHR R1,R2 [RR]
0 718 11112 15
98 R1 R2
WH R1,A(X2) [RX]
|0 7|8 11112 15| 16 31
D8 R1 X2 A

The 16-bit General Register specified by Rl contaings the device address. The device is addressed and a
16-bit halfword is transmitted to the device from the location specified by the second operand. The Write
Halfword instruction is implemented such that it can work with both 8-bit byte oriented device controllers
and with 16-bit halfword oriented device controllers. If the controller is byte oriented the Processor out-
puts two 8-bit bytes, if the controller is halfword oriented the Processor outputs one 16-bit halfword.

WHR: [R2 (0:7)]—— Device
8-bit oriented device controller

[R2 (8:15)] — Device
[R2 (0:1 5)]——> Device 16-bit oriented device controller

WH: [A + (X2)]J— Device
8-bit oriented device controller

[A + (x2) + 1]—Device
[A + (X2)]——>Device 16-bit oriented device controller

Resulting Condition Code:

12 13

INSTRUCTION TIME OUT

Programming Note:

The Read Halfword and Write Halfword instructions are useful with devices requiring two bytes
per transfer. Since the transfer is accomplished with one instruction instead of two, both time
and core are saved. Some examples of devices with which these instructions can be used are
Halfword 1I/O Module, 16-line Interrupt Module, conversion equipment (i.e. D/A and A/D Con-
verters), Card Reader, and Control Panel.

With the RX form (WH), the effective address A+(X2) must be an even value.

These instructions are privileged.

4-42

4.8.8 Autoload

AL A(X2) [RX]

D5 R X2 A

The Autoload instruction loads memory with a block of data from a byte oriented input device (e. g. Tele-
type, photo-electric Paper Tape Reader, Magnetic Tape, etc.). The data is read a byte at a time and
stored in successive memory locations starting with location X'80'. The last byte is loaded into the
memory location specified by the address of the second operand, A + (X2). Any blank or zero bytes that
are input prior to the first non zero byte are considered to be leader and are therefore ignored; all other
zero bytes are stored as data. The input device is specified by memory location X'78'. The device
command code is specified by memory location X'79',

1. ne——o
2. (X'80' + n)~——Dbyte
3, ne—-n+1

4. I A+ (X2)< X'80'+ n, instruction is finished, otherwise return to equation 2.

Resulting Condition Code:

12,13 ,14 15

ClV|G|L

0]0|0}| 0| DATA TRANSFER COMPLETED CORRECTLY.
1 DEVICE BUSY (BSY)

1 EXAMINE STATUS (EX) OR TIME OUT.
1 END OF MEDIUM (EOM)

1 DEVICE UNAVAILABLE (DU).

Programming Note:

This instruction is privileged.

This instruction is subject to Memory Protect.

The R1 field of an Autoload machine instruction must contain 0,

This instruction should not be used with 16-bit oriented device controllers. Note that standard

INTERDATA peripheral devices use 8-bit oriented device controllers. For 16-bit oriented devices,
use Read Halfword/Write Halfword instructions.

4-43

4.9 BLOCK INPUT/OUTPUT INSTRUCTIONS

The Block I/0 instructions provide for the transfer of blocks of data between the 1/0 device and memory.
These instructions are privileged and, if executed in the Protect Mode (PSW Bit 7 set), result in an Ille-
gal Instruction Interrupt.

Following most 1/0 instructions, the V flag in the Condition Code indicates an instruction time-out. That
is, due to an improper device response - either the addressed device does not exist, or does not respond
correctly - the specified 1I/O operation was not performed. With standard INTERDATA device controllers,
Bit 5 of the status byte, which is reflected in the V flag in the Condition Code, is defined as Examine Status.
This means that the status byte should be examined. Following Sense Status and Acknowledge Interrupt in-
structions, therefore, the occurrence of the V flag with status Bits 0 through 3 equal to zero indicates in-
struction time-out. For a complete definition of the bits in either command bytes or status bytes, refer to
the documentation on the device in question. The instructions described in this section are:

4,9.1 RBR Read Block RR
RB Read Block

4,9,2 WBR Write Block RR
WB Write Block

4-44

4.9.1 Read Block

RBR R1,R2 [RR]
0 718 11112 15
97 R1 R2
RB R1,A+(X2) [RX}
0 7|8 11112 15} 16 31
D7 R1 X2 A

The 16-bit General Register specified by the first operand (R1) contains the device address. The 16-bit
second operand location, (R2) or [A + (XZ)] containg the starting address of the data buffer to be trans-
ferred. The next sequential halfword, (R2 + 1) or [A + (X2) + 2] contains the ending address of the data
buffer. The starting address must be equal to, or less than, the ending address. Data transfer is inclusive
of the buffer limits. If the starting address is greater than the ending address, no transfer takes place

and the instruction terminates with the Condition Code equal to zero.

The Read Block instruction causes transfer of eight-bit data bytes from a device to consecutive memory
locations. No other instructions are executed during transfer of the data block.

The Condition Code portion of the Program Status Word [PSW (12:1 5)] will be set to zero after a normal
transfer. In the event of an abnormal block data transfer, the Condition Code will not be zero.

Resulting Condition Code:

12,13 .14 15

ClVv]G|L

0{0|0]0| BLOCKDATA TRANSFER COMPLETE CORRECTLY,

1 DEVICE BUSY (BSY)

1 EXAMINE STATUS (EX) OR TIME OUT
1 END OF MEDIUM (EOM)

1 DEVICE UNAVAILABLE (DU)

Programming Note:

These instructions are privileged.
These instructions are subject to Memory Protect.

These instructions should not be used with 16-bit oriented device controllers. Note that standard
INTERDATA peripheral devices use 8-bit oriented device controllers. For 16-bit oriented devices,
use Read Halfword/Write Halfword instructions.

For RBR, General Register 14 is the maximum specification for the R2 field.

4-45

49.2 Write Block

WBR R1,R2 [RR]
0 7] 8 11]12 156
96 R1 R2
wB R1,A(X2) [RX]
0 718 11[12 15| 16 31
D6 R1 X2 A

The 16-bit General Register specified by the first operand (R1) contains the device address. The 16-bit
second operand location, (R2) or [A + (xz)] containg the starting address of the data buffer to be transferred.
The next sequential halfword, (R2 + 1) or [A + (X2) + 2] contains the ending address of the data buffer. The
starting address must be equal to, or less than, the ending address. Data transfer is inclusive of the buffer
limits. If the starting address is greater than the ending address, no transfer takes place and the instruc-

tion terminates with the Condition Code equal to zero.

The Write Block instruction causes transfer of eight-bit data bytes from consecutive memory locations to a
device. No other instructions are executed during transfer of the data block. The Condition Code portion
of the Program Status Word [PSW (12:15)] will be set to zero after a normal transfer. In the event of an
abnormal block data transfer, the Condition Code will not be zero.

Resulting Condition Code:

12,13 14 15

cl|v]|G|L

0| 0]0]| 0| BLOCK DATA TRANSFER COMPLETED CORRECTLY.
1 DEVICE BUSY (BSY)
1 EXAMINE STATUS (EX) OR TIME OUT.

1 END OF MEDIUM (EOM).

1 DEVICE UNAVAILABLE (DU).

Programming Note:

These instructions are privileged.

This instruction should not be used with 16-bit oriented device controllers. Note that standard
INTERDATA peripheral devices use 8-bit oriented device controllers, For 16-bit oriented devices,
use Read Halfword/Write Halfword instructions.

For WBR, General Register 14 is the maximum specification for the R2 field.

4-46

4.10 SYSTEM CONTROL INSTRUCTIONS

The System Control instructions provide a means for the program to set the Program Status Word, swap
PSW's, trigger special interrupt handling, and communicate with a supervisor program. Some of these
instructions are privileged and may be executed only with the Processor in the Supervisor Mode (i.e. Bit 7
of the PSW reset). Any attempt to execute these instructions in the Protect Mode results in an Illegal

Instruction Interrupt.

4.10.1 LPSW

4.10.2 EPSR

4.10.3 SINT

4.10.4 SVC

Load Program Status Word

Exchange Program Status

Simulate Interrupt

Supervisor Call

4.10.1 Load Program Status Word

LPSW A(X2)
0

12

The instructions described in this section are:

[RX]
31

c2

X2

A 32-bit operand is loaded into the Current Program Status Word.

[PsW (0:31)] ~——[A + (x2)]

Resulting Condition Code:

Determined by PSW loaded by the instruction.

Programming Note:

This instruction is privileged.
The R1 field of a Load PSW instruction must contain 0.

The second operand is unchanged.

4-47

4.10.2 Exchange Program Status

EPSR R1,R2 [RR]
0 71 8 11112 15

95 R1 R2

The Current Program Status, PSW (0:15), is stored into the register specified by R1. The content of R2

then becomes the Current Program Status, [PSW (0:15)] . Note that if R1 = R2, this results in the Program
Status being copied into R1, but otherwise remaining unchanged. This instruction is useful for capturing the
running Program Status, enabling or disabling interrupts, or loading the Condition Code with a specified
value.

EPSR: [PSW (0:15)}—R1
[(PSW (0:15)}+—R2

Resulting Condition Code:

Determined by New PSW.

Programming Note:

This instruction is privileged.
4.10.3 Simulate Interrupt

SINT A(X2) [RS]
0 718 11]12 15116 31

E2 X2 A

The least significant eight-bits of the second operand, A + (X2), is presented to the Interrupt Handler as a
device number. The device number indexes into the Service Pointer Table at X'00D0' and results in either
an Immediate Interrupt or an I/O Channel operation.

Programming Note:

This instruction is privileged.

The R1 field of a Simulate Interrupt instruction must contain 0.

4-48

4.10.4 Supervisor Call

sve R1,A(X2) {RX]
0 718 112 15116 31

E1 R1 X2 A

The Supervisor Call instruction is used to initiate certain functions in the Supervisor program. The second
operand address, A + (X2), may be a pointer to the core location of the parameters the Supervisor program
will need to complete the function specified.

The value, A + (X2), is stored in core location X'0094'. The Current Program Status Word is stored in the
fullword core location at X'0096'. Core location X'009A' contains the New Program Status value. Core
locations X'009C' through X'00BB' contain sixteen new Location Counter values, one for each type of Super-
visor call,

The type of Supervisor call is specified in the Rl field of the instruction. Sixteen different calls are provided
for. Return from the Supervisor is made by executing a Load Program Status Word instruction specifying
the stored "Old" PSW in location X'0096'.

(X'0094') +————n—" A+ (X2)
(X'0096') ~————— [PSW (0:31)]
(X'009A") ——————— [PSW (0:15)]
(X'009C"' + 2 *R1) ——> EPSW (16:31)]

Resulting Condition Code:

Defined by New PSW,

Programming Note:

This instruction provides a convenient means of switching from the Protect Mode to the Supervisor
Mode. Return to the Protect Mode is accomplished by a Load Program Status Word or Exchange
Program Status instruction.

4-49

4.11 FLOATING-POINT INSTRUCTIONS (Models 70 and 80 Only)

The Floating-Point instructions provide for loading, storing, adding, subtracting, multiplying, dividing,
and comparing of floating-point operands. In order to produce correct normalized results, the Arithmetic
instructions require normalized floating-point operands. If the operands are not normalized (with the ex-
ception of the floating-point load instructions), the results of the instructions are undefined. The Floating-
Point Load instruction normalizes an un-normalized floating-point number. The data format for the Float-
ing-Point instructions is identical to that of the 360 single-precision floating-point number (see 3. 2. 3).

The R1 and R2 fields of the Floating-Point instructions must specify even Floating-Point Registers (0, 2,
4, 6, etc.). Note that the Floating-Point Registers are reserved core memory locations. Quantities in
Floating-Point Registers can be manipulated only with Floating-Point instructions. The instructions de-
scribed in this section are:

4.11,1 LER Floating-Point Load RR
LE Floating-Point Load
4.11.2 STE Floating-Point Store
4,11.3 AER Floating-Point Add RR
AE Floating-Point Add
4,11.4 SER Floating-Point Subtract RR
SE Floating-Point Subtract
4,11.5 CER Floating-Point Compare RR
CE Floating-Point Compare
4,11,6 MER Floating-Point Multiply RR
ME Floating-Point Multiply
4,11.7 DER Floating-Point Divide RR
DE Floating-Point Divide

4-50

4.11.1 Floating-Point Load

LER R1,R2 (RR]
0 78 1}12 15
28 R1 R2
LE R1,A(X2) ‘ [RX]
0 7|8 11412 15[16 31
68 R X2 A

The floating-point second operand is normalized and placed in the Floating-Point Register specified as the
first operand. During normalization, the fraction is shifted left hexadecimally (four-bits at a time) until the
most significant hexadecimal digit is not zero. The exponent is decremented by one for each hexadecimal
shift required. Zeros are shifted into the least significant hexadecimal digit of the fraction. The second

operand is unchanged.

If the normalization causes exponent underflow, the entire floating-point result is set to zero, and the Over-
flow (V) flag is set.

LER: (R1)~— (R2)

LE: (R1)=—/[A + (X2)]

Resulting Condition Code:

12 13 14 15
C{V|G| L
0| 0| ZERO.

0 | 1} LESS THAN ZERO.
1 | 0 | GREATER THAN ZERO.

110 | 0| EXPONENT UNDERFLOW.

Programming Note:

In the event of underflow, the Floating-Point Arithmetic Fault Interrupt is caused, if enabled by Bit
5 of the PSW,

4.11.2 Floating-Point Store

STE R1,A(X2) [RX]
0 71 8 1112 15]16 31

60 R1 X2 A

The floating-point first operand is placed in the core memory location specified by A + (X2). The first
operand is unchanged.

STE: (R1)—[A + (X2)]

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is subject to Memory Protect.

4.11.3 Floating-Point Add

AER R1,R2 [RR]
0 7|8 11]12 15
2A R1 R2
AE R1,A(X2) [RX]
0 718 11112 15116 31
6A R1 X2 A

The exponents of the two operands are compared. If the exponents differ, the fraction with the smaller
exponent is shifted right hexadecimally (four-bits at a time), and its exponent is incremented by one for
each hexadecimal shift until the twoexponents agree. The fractions are then added algebraically, If a
Carry results, the exponent of the sum in incremented by one and the fraction (result) is shifted right one
hexadecimal position (four-bits). The Carry is shifted back into the most significant hexadecimal digit of
the fraction. If an exponent overflow results, the exponent and fraction of the result are set to all ones, and
the Overflow flag is set. The sign of the result is not affected by the overflow.

If no Carry results from the addition of fractions, the sum is normalized. During normalization, the
fraction is shifted left hexadecimally (four-bits at a time) until the most significant hexadecimal digit is not
zero. The exponent is decremented by one for each hexadecimal shift required. Zeros are shifted into the
least significant hexadecimal digit of the fraction.

If the normalization causes exponent underflow; the sign, exponent, and fraction of the sum are set to zero,
and the Overflow flag is set. If a zero sum is generated from adding two equal magnitudes with unlike signs,
the entire floating-point result is zeroed.

AER: (R1)=—(R1) + (R2)
AE: (R1)=~—(R1) + [A + (X2)]

Resulting Condition Code:

12,13 14 16

C|V|G|L

o|o SUM 1S ZERO.

0|1 SUM IS LESS THAN ZERO.
110 SUM IS GREATER THAN ZERO.
11X |X EXPONENT OVERFLOW.

110]0 EXPONENT UNDERFLOW.

Programming Note:

In the event of overflow or underflow, the Floating-Point Arithmetic Fault Interrupt is caused, if
enabled by Bit 5 of the PSW.

4-52

4.11.4 Floating-Point Subtract

SER R1,R2 ‘ [RR]
0 7| 8 1112 15
2B R1 R2
SE R1,A(X2) [RX]
0 7|8 1112 15(16 31
6B R1 X2 A

The exponents of the two operands are compared. If the exponents differ, the fraction with the smaller
exponent is shifted right hexadecimally (four-bits at a time), and its exponent is incremented by one for
each hexadecimal shift until the two exponents agree. The fractions are then subtracted algebraically. If
a Carry results, the exponent of the difference is incremented by one and the fraction (result) is shifted
right one hexadecimal position (four-bits). The Carry is shifted into the most significant hexadecimal digit
of the fraction. If an exponent overflow occurs, the exponent and fraction of the result are set to all ones,
and the Overflow flag is set. The sign of the result is not affected by the overflow.

If no Carry results from the subtraction of fractions, the difference is normalized by shifting the fraction
left hexadecimally (four-bits at a time) until the most significant hexadecimal digit is not zero. The expo-
nent is decremented by one for each hexadecimal shift required. Zeros are shifted into the least significant
hexadecimal digit of the fraction.

If the normalization causes exponent underflow, the entire floating-point result is set to zero, and the
Overflow flag is set.

SER: (R1) «=———(R1) - (R2)
SE: (R1) =————(R1) -[A + (X2)]

Resulting Condition Code:
12 .13 14 15

Civ| G |L

0|0 DIFFERENCE IS ZERO.

0 |1 DIFFERENCE IS LESS THAN ZERO.

t 1o DIFFERENCE IS GREATER THAN ZERO.
1| X | X EXPONENT OVERFLOW.

11010 EXPONENT UNDERFLOW.

4-53

4.11.5 Floating-Point Compare

CER R1,R2 [RR]
0 718 11112 15
29 R1 R2
CE R1,A(X2) [RX]
0 718 11112 15| 16 31
69 R1 X2 A

The first operand is compared to the second operand. Comparison is algebraic, taking into account the
gign, fraction, and exponent of each number. The result is indicated by the setting of the Condition Code
[Psw (12:15)]. Both operands remain unchanged.

(R2)
: [A+ (X2)]

Resulting Condition Code:

CER: (R1)

CE: (R1)

12,13 .14 15

clvie]|L
olo
0|1
110
0

0

4-54

FIRST OPERAND EQUALS SECOND OPERAND.
FIRST OPERAND 1S LESS THAN THE SECOND OPERAND.
FIRST OPERAND 1S GREATER THAN THE SECOND OPERAND.

FIRST OPERAND IS LESS THAN OR EQUAL TO THE SECOND OPERAND.

FIRST OPERAND IS GREATER THAN OR EQUAL TO THE SECOND OPERAND.

FIRST OPERAND IS LESS THAN THE SECOND OPERAND.

4.11.6 Floating-Point Multiply

MER R1,R2 } [RR]
0 718 1112 15
2C R1 R2
ME R1,A(X2) [RX]
0 7|8 1112 15|16 31
6C R1 X2 A

The exponents of the two operands are added to produce the exponent of the result. The resultant exponent
is readjusted to excess 64 notation. If an exponent overflow occurs, the exponent and fraction of the prod-
uct are set to ones, and the Overflow flag is set. The sign of the product is determined by the rules of
algebra. If an exponent underflow occurs, the entire floating-point result is set to zero, and the Overflow
flag is set. In either event, the Floating-Point Arithmetic Fault Interrupt is caused, if enabled by Bit 5
in the PSW.

If an exponent overflow or underflow does not occur, the multiplication takes place. If the product is zero,
the entire floating-point result is zero. K the result is not zero, normalization may occur. During
normalization, the fraction is shifted left hexadecimally (four-bits at a time) until the most significant
hexadecimal digit is not zero. The exponent of the result is decremented by one for each hexadecimal shift
required. After normalization, the product is rounded to 24-~bits.

If normalization causes the exponent to underflow, the entire floating-point result is set to zero, and the
Overflow flag is set.

MER: (R1)~=—(R1)*(R2)
ME: (R1)~—(R1)*[A + (X2)]

Resulting Condition Code:
12,13 14,15

C|V|G|L

0 | 0 | PRODUCT IS ZEROC.

0 | 1 | PRODUCT IS LESS THAN ZERO.

1 | 0 | PRODUCT IS GREATER THAN ZERO.
1 | X | X | EXPONENT OVERFLOW.

110 |0 | EXPONENT UNDERFLOW.

Programming Note:

The sum of the exponents of the two operands must be less than 64, or overflow occurs, producing the maxi-
mum possible value as a product. For example, the multiplication 1/2 x 1663 * 1 = 1/2 x1663*1/16 x 161 =
1/32 x 1664 causes an overflow, rather than the result 1/2 x 1663, Due to a rounding technique, the re-
sult of a floating-point multiply is more accurate in Models 70 and 80 than in Models 4 and 5.

4-55

4.11.7 Floating-Point Divide

DER R1,R2 [RR]
0 7| 8 11112 15
2D R1 R2
DE R1,A{X2) [RX]
0 7|8 11)12 15|16 31
6D R1 X2 A

The exponents of the two operands are subtracted to produce the exponent of the result. The resultant
exponent is readjusted to excess 64 notation, If an exponent overflow occurs, the exponent and fraction
of the quotient are set to all ones, and the Cverflow flag is set. The sign of the quotient is determined by
the rules of algebra. If an exponent underflow occurs, the entire floating-point result is set to zero, and
the Overflow flag is set. If the divisor (the second operand) is zero, the operands are unchanged. In the
event of exponent overflow, underflow, or division by zero; the Floating-Point Arithmetic Fault Interrupt
is caused, if enabled by Bit 5 of the PSW,

If the exponent overflow or underflow does not occur, and if the divisor is not zero, the second operand is
divided into the first operand. Division continues until the quotient is normalized, adjusting the exponent
for each additional division required. If an exponent underflow occurs, the entire floating-point result is
set to zero, and the Overflow flag is set.

No remainder is returned to the user. The quotient is rounded to compensate for the loss of the remainder.

DER: (R1)=—(R1)/(R2)
DE: (R1)=—(R1)/[A + (X2)]

Resulting Condition Code:
12 13 14 15

CI|V|G|L

0|0 QUOTIENT IS ZERO.

0 {1 QUOTIENT 1S LESS THAN ZERO.
110 QUOTIENT IS GREATER THAN ZERO.
1 (XX EXPONENT OVERFLOW.

11040 EXPONENT UNDERFLOW.

111100 DIVISOR EQUAL TO ZERO.,

Programming Note:

Division by zero, overflow, or underflow cause a Floating-Point Arithmetic Fault Interrupt,
if enabled by Bit 5 of the PSW. Inspection of the Condition Code of the Old PSW indicates
the actual cause of the interrupt. If the Carry flag is set, then the divisor was zero. If the
Carry flag is not set, then either overflow or underflow caused the interrupt. In this case,
if the Greater than (G) or Less than (L) flag is set, the interrupt was caused by an overflow.
If the G or L flag is reset, the interrupt was caused by an underflow.

The difference of the exponents of the two operands must be less than 64, or overflow occurs,

producing the maximum possible value as a quotient, even when normalization of the computed
mantissa would bring the resultant exponent within range.

4-56

4.12 LIST PROCESSING INSTRUCTIONS (Models 70 and 80 Only)

The List Processing instructions manipulate a circular list defined as follows:

0 78 15
NUMBER OF SLOTS NUMBER OF SLOTS
IN THE LIST USED
CURRENT TOP NEXT BOTTOM

SLOT 0

SLOT 1
~ ¥

SLOT n

The first two halfwords contain the list parameters. Immediately following the parameter block is the list
itself. The first halfword in the list is designated Slot 0. The remaining slots are designated 1, 2, 3, etc.
up to a2 maximum slot number which is equal to the number in the list minus one. An absolute maximum of
255 halfword slots is specifiable. (Maximum slot designation is equal to X'FE',)

The first parameter byte indicates the number of slots (halfwords) in the entire list. The second parameter
byte indicates the current number of slots being used. When this byte equals zero, the list is empty; when
this byte equals the number of slots in the list, the list is full. Once initialized, this byte is maintained
automatically. It is incremented when elements are added to the list and decremented when elements are
removed.,

The third and fourth bytes of the list parameters specify the current top of the list and the next bottom of the
list respectively. These pointers are also updated automatically. See Figure 4-1.

SLOT n
CURRENT TOP
. SLOT 0

“—[50711

OCCUPIED SLOT 2
SECTION SLOT 3

SLOT 4
SLOT 6
SLOT 7

NEXT BOTTOM —&

Figure 4-1, Circular List

The instructions described in this section are:
4.12,1 ATL Add to Top of List

ABL Add to Bottom of List
4.12,2 RTL Remove from Top of List

RBL Remove from Bottom of List

4.12.1 Add to Top/Bottom of List

ATL R1,A(X2) [RX]

0 718 112 1516 31
64 R1 X2 A

ABL R1,A(X2) [RX]

0 7|8 11112 15116 31
65 R1 X2 A

The General Register specified by R1 contains the element to be added to the list. The second operand,

A + (X2), specifies the address of the list. The number of slots used tally is compared to the number of
slots in the list as specified by the first byte of the list., If the number of slots used tally is equal to the
number of slots in the list an overflow condition exists. The element is not added to the list and the instruc-
tion terminates with the V flag set in the PSW, If the number of slots used tally is less than the number of
slots in the list; it is incremented by one, the appropriate pointer is changed, the element is added to the
list, and the instruction terminates with a Condition Code of zero.

Resulting Condition Code:

12 13 14 16

C{V|G|L

0|10 0] LISTOVERFLOW.

00| 0| 0| ELEMENT ADDED SUCCESSFULLY.

Programming Note:

The Add to Top of List (ATL) instruction, manipulates the Current Top Pointer in the list. If no
overflow occurred, the Current Top Pointer, which points to the last element added to the top of the
list, is decremented by one and the element is inserted in the slot pointed to by the new Current Top
Pointer. If the Current Top Pointer was zero on entering this instruction the Current Top Pointer
is set to the maximum slot number in the list. This condition is referred to as list wrap.

The Add to Bottom of List (ABL) instruction, manipulates the Next Bottom Pointer. If no overflow
occurred, the element is inserted in the slot pointed to by the Next Bottom Pointer, and the Next
Bottom Pointer is incremented by one. If the incremented Next Bottom Pointer is greater than the
maximum slot number in the list, the Next Bottom Pointer is set to zero. This condition is referred
to as list wrap.

This instruction is subject to Memory Protect.

4-58

4.12.2 Remove From Top/Bottom of List

RTL R1,A(X2) [RX]

0 718 112 15(16 31
66 R1 X2 A

RBL R1,A(X2) [RX]

0 718 11412 15| 16 31
67 R1 X2 A

The element removed from the list is placed in the General Register specified by R1. The second operand,
A + (X2), specifies the address of the list, If, on entering the instruction the number of slots used tally is
zero, the list is already empty and the instruction terminates with V flag set in the PSW, This condition

is referred to ag list underflow. If underflow does not occur the number of slots used tally is decremented
by one, the appropriate pointer is changed, and the element is extracted and placed in R1, The instruction
terminates with the Condition Code equal to zero if the list is now empty, or with the G flag set if the list is

not yet empty.

Resulting Condition Code:

12 13 14 16
CiVvV|(G|L
oj1|0]|0
ojojofo
o|o0|1]0

LIST WAS ALREADY EMPTY.

LIST IS NOW EMPTY.

LIST IS NOT YET EMPTY,

Programming Note:

The Reinove from Top of List (RTL) instruction, manipulates the Current Top Pointer. If no under-
flow occurred, the Current Top Pointer points to the element to be extracted. The element is ex-
tracted and placed in R1. The Current Top Pointer is incremented and compared to the maximum slot

number.
Pointer is set to zero. This condition is referred to as list wrap.

If the Current Top Pointer is greater than the maximum slot number, the Current Top

The Remove from Bottom of List (RBL) instruction, manipulates the Next Bottom Pointer. If no
underflow occurred, and the Next Bottom Pointer is zero it is set to the maximum slot number
(list wrap); otherwise it is decremented by one and the element now pointed to is extracted and placed

in R1.

This instruction is subject to Memory Protect.

4-59/4-60

CHAPTER 5
INTERFACE DESIGN

5.1 INTRODUCTION

This chapter discusses the INTERDATA Input/Output (I/0) System. There are several methods of communi-
cation between the Processor and peripheral devices and/or other system elements. The methods vary in
speed, sophistication, and the amount of attention required by the Processor. Thus, the systems interface
may be tailored to the individual user's needs and it may be gracefully expanded as the user's requirements
grow.,

There are two primary purposes for this chapter; 1. to familiarize the user with the INTERDATA systems
interface, and 2. to provide the data required to permit the user to effectively interface peripheral equip-
ment to the INTERDATA Digital System. A functional description of each I/0 subsystem is given later in
this chapter, followed by a detailed description of each I/0 instruction, and rules and specifications for
designing-interfaces to the Digital System.

5.2 SYSTEMS INTERFACE

Figure 5-2 is a block diagram of an INTERDATA Digital System emphasizing the systems interface capa-
bility. Note that there are two separate methods of interfacing to peripheral devices or system elements:

1. To the Multiplexor Bus
2, To the Memory Bus in Models 70, 74 or to the DMA Bus in Model 80

The following paragraphs describe each of the interface methods.

MODEL 74 MODEL 70 MODEL 80
Multiplexor Bus, Program Loop 66KBPS T6KBPS 150KBPS
Multiplexor Bus, Automatic I/0 49KBPS 60KBPS
Multiplexor Bus, Read/Write Block 250KBPS 330KBPS 500KBPS
Multiplexor Bus, Interleaved Data Channel 440KBPS 1000KBPS
Memory Bus or DMA via single Selector
Channel (SELCH) 2000KBPS 2000KBPS 1850KBPS*

*At the 1850KBPS rate, the Model 80 CPU is guaranteed every other memory cycle, without CPU loading
during DMA transfers. Rates to 3.15 MB are possible with a single SELCH and the CPU in the Wait state.

Figure 5-1. Input/Output Rate Comparison

5.2.1 Multiplex

The Multiplexor Channel is a byte or halfword oriented I/O system which communicates with up to 255 pe-
ripheral devices. The Multiplexor Bus consists of 30 lines; 16 bi-directional Data Lines, 8 Control Lines,
5 Test Lines, and an Initialize Line.

The lines in the Multiplexor Bus are:

Data Lines D00:15 (Processor *—- Device) 16 Lines ATN (=) 1 Line
SR (») 1 Line SYN (=) 1 Line
DR () 1 Line Test Lines {(HW (<—) 1 Line
: CMD (») 1 Line DC () 1 Line
Control DA (») 1 Line DCR (-) 1 Line

Lines ADRS (—-) 1 Line .
ACK (») 1 Line Initialize gorpa ») 1 Line

DACK (») 1 Line Line

CLO7 () 1 Line

5-1

MEMORY

& DMA BUS OR MEMORY BUS (16 BITS) P
PROCESSOR
) \
S MULTIPLEXOR BUS (8 OR 16 BITS) 4
3
9 A
DEVICE DEVICE DATA
CONTROLLER| |CONTROLLER CHANNEL %i'fﬁ;gf | E(':ggg; é”HEA“NONRET_ .
(BYTE) (HALFWORD) (HALFWORD)
LK) e ® o | DEVICE e o0 0 e o o o
265 DEVICES
y
S SELECTOR CHANNEL BUS (8 OR 16 BITS) 4
® & o
16 DEVICES

Figure 5-2. System Interface, Block Diagram

Figure 5-3 is a block diagram of the Multiplexor Channel. The following general definitions apply to the
lines in the Multiplexor Bus.

Data Lines DO00:15

The data lines are used to transfer one 8-bit byte or one 16-bit halfword of data between the Processor and
the device. One byte of address or command is transferred from the Processor to the device over Data
Lines 8:15 (D08:15) when accompanied by either an Address (ADRS) or a Command (CMD) control line.
One byte of data or one halfword of data is transferred from the Processor to the device when accompanied
by the Data Available (DA) control line. The device, in response to an Acknowledge (ACK) control line or
a Sense Status (SR) control line, sends one byte of address or status information to the Processor over
D08:15. In response to a Data Request (DR) control line, the device sends either an 8-bit byte or a 16-bit
halfword of data to the Processor. The device always sends a Synchronize (SYN) signal to the Processor
to indicate that it has either received the data from the Processor or that it has sent the data to the
Processor. The SYN signal is removed immediately after the Processor removes the control line.

MODEL 70

PROCESSOR
1
é MULTIPLEXOR BUS 5)
Y] i
16 10 24 19 25 21
A
TYPICAL BYTE TYPICAL HALFWORD TYPICAL DATA
ORIENTED ORIENTED CHANNEL
CONTROLLER CONTROLLER - CONTROLLER

Figure 5-3. Multiplexor Channel, Block Diagram

Control Lines

SR

DR

ACK

DA

CMD

ADRS

DACK

CLO070

Test Lines

ATN

HW

Status Request. The device controlier must present device status to Data Lines D08:15,
followed by a SYN,

Data Request. The device controller presents data to Data Lines 8:15 or 0:15 (D08:15 or
D00:15), followed by a SYN. If a Halfword (HW) of data is presented, the HW test line is
also active.

Acknowledge. The interrupting device controller presents its address on D08:15, followed by
a SYN.

Data Available. The Processor presents data on D00:15 for transfer to the device., The device
controller accepts the low byte or the entire halfword and responds with a SYN.

Command. The Processor presents a Command Byte on D08:15. The device controller accepts
the Command Byte and responds with a SYN,

Address. The Processor presents an Address Byte on D08:15. The device controller accepts
the Address Byte and responds with a SYN.

Data Channel Acknowledge (Models 70 and 80 only). The Processor presents an address
of zero on D08:15. The ADRS control line and the DACK control line are simultaneously
active. The interrupting Data Channel device controller becomes selected and responds
with a SYN. As a result of addressing device zero (a null address), only the selected
data channel device controller remains addressed.

This control line is activated by the Processor when a Power Fail condition is detected by the
Processor, if the Power Fail option is equipped. This line is held active until the SCLRO
signal occurs.

Attention. Any device desiring to interrupt the Processor will activate the ATN line and hold
this line until an ACK is received from the Processor.

Halfword. The HW line is activated by a halfword oriented device controller whenever it is
communicating normally with the Processor. The HW line is not activated when a device
controller is operating in the Interleaved Data Channel mode.

DC Data Channel Request (Models 70 and 80 only), Any Data Channel device desiring to
interrupt the Processor will activate the DC line and hold this line until a DACK is
received from the Processor.

DCR Data Channel Read (Models 70 and 80 only). "The selected Data Channel device éontrols
the state of the DCR line, high for read, low for write, from the device

SYN Synchronize. This signal is generated by the device to inform the Processor that it has
properly responded to a control line.

Initialize Line

SCLR System Clear. This is a metallic contact to ground that occurs during Power Fail, Power Up,
or Initialize.

NOTE

All control lines, except ACK and DACK, are connected in parallel to all
devices. These lines are activated by the Processor in response to an
external interrupt. The ACK line is connected in series with all devices. If
no interrupt is pending in the first controller when the ACK or DACK signal
arrives, the signal is passed on daisy chain fashion to the next controller, and
so on until it is captured by the interrupting controller. See definition of ACK
and DACK.

Communication over the Multiplexor Bus is performed on a request/response basis where each sequence
of events is controlled by the micro-program contained in the Processor's Read-Only-Memory. A typical
sequence to perform an I/0 instruction with a device controller is:

1. The Processor addresses the device controller by placing an eight-bit address on the data lines
and activating the ADRS control line, The device controller whose address corresponds to the
Address Byte on the data lines responds by setting its Address flip-flop and returning SYN to the
Processor. (All other device controllers reset their Address flip-flops.) Once a device controller
is addressed it remains so until another device is addressed or until the system is initialized.

The addressed device controller responds to all subsequent activity on the Multiplexor Bus.

2. I the I/O instruction involves transferring data from the Processor to the device controller, the
Processor places the data on the data lines and activates the appropriate control line. The
addressed device controller responds with a SYN after it has received the data, the Processor
then removes the control line.

3. If the I/0 instruction involves transferring data to the Processor from the device controller, the
Processor activates the appropriate control line, and waits for the device controller to respond
by placing the data on the data lines and activating SYN. When the Processor receives SYN, it
accepts the data and removes the control line.

4. In all cases the device controller removes the SYN whenever the Processor removes the control
line.

The sequence described here is somewhat simplified for the sake of clarity. The exact sequence for each
I/0 instruction is listed later in this chapter.

Whenever a device controller desires, it may interrupt the Processor by activating the ATN test line. This
may be done by any device controller at any time, regardless of whether it is addressed or not. If
interrupts are enabled by the Current Program Status Word, the Processor responds to ATN by interrupting
the currently running program and directing the Processor to a new program (or a new micro-program)
which identifies and services the interrupt as required.

5-4

5.2.2 Interleaved Data Channel (Models 70 and 80 Only)

The Interleaved Data Channel provides high speed low cost autonomous memory access on an instruction
steal basis. Data transfer between the device controller and memory is accomplished over the Multiplexor
Bus. Internal Processor registers provide the necessary buffering between the memory and the device
controller., A typical sequence to perform an Interleaved Data Chanuel cycle is:

1. When the device controller is ready it requests a Data Channel cycle by activating the DC test line.
This line is separate from, and of higher priority than, the ATN line. The Processor responds
to this line by addressing device zero, and at the same time activating the DACK control line. The
DACK line is "daisy chained" through all Data Channel devices until it is captured by the highest
priority controller requiring Data Channel service. That device controller becomes the "on line'
device.

2. The on line device controller controls the DCR test line which specifies either a Read or a Write
operation to memory. If the Data Channel operation is Read from memory, the Processor inputs
a 16-bit memory address from the device controller, reads the contents of that address from
memory, and outputs the 16-bits read out to the device controller.

3, If the Data Channel operation is Write to memory, the Processor inputs a 16-bit memory address
and a 16-bit data halfword, and then it writes that data into the memory at the specified address.

The sequence described here is somewhat simplified for the sake of clarity. The exact sequence for each
kind of Data Channel operation is discussed later in this chapter.

5.3 DEVICE CONTROLLER LOGIC DESIGN

This section describes the procedures to follow in designing device controllers which connect to the
Multiplexor Bus. While it is impossible to describe all possible controllers, this section explains repre-
sentative circuits in sufficient detail to permit design of most controllers.

5.3.1 Multiplexor Bus

The Multiplexor Channel is a byte or halfword oriented I/0O system which communicates with up to 255
peripheral devices. The Multiplexor Bus consists of 30 lines; 16 bi-directional Data Lines, 8 Control
Lines, 5 Test Lines, and an Initialize Line as previously described.

All buses are false type, i.e. low level is active, high level is inactive., The device controller circuits
used to communicate with the Multiplexor Bus are shown in Figure 5-4.

In a typical case, a device controller will receive an 8-bit Address Byte, an 8-bit Command Byte, and
either an 8-bit data byte or a 16-bit data halfword from the Processor over the 16 bi-directional Data
Lines (D00:15). Likewise, a device controller will send an 8-bit Address Byte, an 8-bit Status Byte,
and either an 8-bit data byte or a 16-bit data halfword to the Processor over the 16 bi-directional Data
Lines (D00:15). When only a byte of data is transferred, that byte is passed over the lower eight Data
Lines (D08:15). The load resistors for all lines in the Multiplexor Bus are located in the Processor.

Each device controller is permitted one TTL load on any of the 16 bi-directional Data Lines, the

8 Control Lines, or the single Initialize Line. Each device controller is permitted one high power open
collector TTL OR tie onto each of the 16 bi-directional Data Lines and each of the 5 Test Lines. (The
open collector bus driver must be capable of sinking 48 ma at 0.4 VDC max collector voltage.) This gives
the Processor a basic Multiplexor Bus drive capability of 10 device controllers. A Multiplexor Bus Buffer
Figure 5-5, is available for extending the drive capability of the Multiplexor Bus incrementally by 16.

5-5

T

(g Jo T 199YS) 90BLIoU] 01807 JS[[OIJUOD 9O1AS(]/I0SSI0AJ
219071 31LA8 3INO

viva
ANYIWNOD
ssawaay 03ovH _ GERLA!
N 1907 ALIHOIYd
viva 3A1303Y _
SNLVLS 219071 TOHLNOD ,_
ss3yaav _ i
anas ,
¥3TTOHLNOD ﬁ ¥3T104LNOD
301A30 o . _ 30130

t | 1

*y-g 0an31 g

ey HOSS3IO0Hd

-
INIT IZIVILING L

—_—
S3INIM LS3L S

)

04710S

oge

-+

Elele]

oa

R s A 1)

N1V

>

L

-—

NAS

0ge

%0va

0X0V

0010

T

§a

us

va

SHOV

®e

Anwo

oge

T

-—
G1:00Q SINIT VLVa
IVNOILD3HIQI18 9L

G1°80Q

0gg

ey 40SSIO0Hd

£0-:00Q

liviashallals

5-6

(z 30 Z 199YQ) 208IU] 01807 JIS[[OIIUOCY) 9IIAS(/I0SSO00IJ -G oandri

JI1907 ¥ITT0HLNOD T3NNVHD VIVA HLIM QHOMATVH 21907 AHOMITVH

vivd viva
ANVINKOD oIovyd o%ovalL 0Xova OIVL ONVWWOO 0X0vy IOVl
$S340aV

S$S3Haav
21901 21907 21907 ALIHOIYd
ALIHOIYd ALIHOIYd
IAI303Y
viva viva
e 21907 10H1NOD SNLVLS 21907 10HLNCD
3AI303H
ssayaav |_ ssayaay [_
an3s anas

H3ITI0HLNOD H3770Y1NOD 43T10HLNOD Y37M10HLNOD
3I01A30 301A30 301A3Q 301A30

e N R S S = f

Bl

4od

J

L

5-7

D000

O
T

DO1

o

D010

A
]

D1
D150

’
|

Lgﬁ

SRO SR

=]

&

DRO DR

(=]

MULTIPLEXOR) RACKO BUFFERED
BUS > MULTIPLEXOR
BUS

JU
tMiJ
T
il

TACKO MULTIPLEXOR
BUS

T/
[

ADRSO

CMDO

CLO070

YWY

ATNO

4
O00)
i

SYNO

HW!

[e]

SCLRO

.
]
}

%]
O
p
D
o

Figure 5-5. Multiplexor Bus Buffer

5.3.2 Device Controller Addressing

Refer to Figure 5-6 during the following description. The dotted lines around the groups of logic functions
represent INT ERDATA standard logic. Further details on the logic packs may be found later in this
chapter. The designer may use his own logic packs provided they are level compatible with INTERDATA
logic, When a device controller is addressed, the eight-bit address code is placed on the Data Lines (D080
through D150). The two buffers provide the true and false data lines. The Address Decoder circuit is
hard-wired on each controller with its assigned address code, and the eight coded outputs are applied to

an eight input gate. Thus, the Decoded Device output (DD1) goes true. The Address control line (ADRSI1)
then strobes the DD1 line into the ADRS flip-flop.

The Synchronize (SYN) signal is returned to the Processor, during the presence of ADRSI, via the Address
Sync line, (ADSY0). Notice that an OR gate is used here for returning the other device Command Syne
lines. The set output from the Address flip-flop, called Device Enable (DENBL1), is used to gate all other
I/0 control lines to the device controller., When another device is addressed, the Decoded Device line
(DD1) is low, causing the ADRS1 strobe line to reset the Address flip—flop and disabling the controller.
Thus, only one device controller may be addressed at any time. During the address cycle, only the

device that was addressed returns a SYN.

NOTE

The designer must design the device controller such that when some other
device is addressed, the previously addressed controller will clear its Address

flip-flop as soon as possible, and, in no case more than 350 nanoseconds,
Otherwise the system could have two devices addressed simultaneously.

The device controller logic must delay SYN until it has reacted to the Multiplexor Bus control line, how-
ever, unnecessarily long delays serve only to reduce the system input/output operation.

NOTE

If the device controller is a 16-bit halfword oriented controller it activates the
Halfword Enable Line (HWO0) immediately when its Address flip-flop is set. The
HWO is used by the Processor to determine if the device is capable of sending or
receiving 16-bit halfword data in parallel.

5.3.3 Data and Status Input

5.3.3.1 Data

Figure 5-7 shows how a byte or halfword of data may be read into the Processor. When an 8-bit byte
oriented device controller is addressed, DENBL1 is high, enabling the Data Request (DR) control line from
the Processor. The DR enables the data byte onto the eight bottom Data Lines (D080 through D150). If

a 16-bithalfword oriented device controller is addressed, one data byte is enabled as described above,
and a second data byte is enabled onto the eight top Data Lines (D000 through D070) by an active Halfword
(HW) signal. A system requirement is that the addressed controller must respond to all control lines

(i. e., Data Request) with a SYN.

5.3.3.2 Status

Figure 5-7 shows how a byte of status may be read into the Processor. When the byte or halfword
oriented device controller is addressed, DENBL1 is high, enabling the Status Request (SR) control line
from the Processor. Open collector gates are used for OR tying multiple data and status sources onto
the eight Data Lines (D080 through D150), A system requirement is that the addressed controller must
respond to all control lines (i.e., Data Request) with a SYN.

5-9

Ceurrer B [~ Device |
I | NUMBER |
SELECTION
D081
l o0y 5l |
ot
ooso——ujo—u)o—‘Ml—o/ |
| — | oor | o |
| - a—
D090)o—rﬁ@—l—o/
| — D101 I o |
D100 —t—_)o—l—- D100 | - |
| - I D111 | —_— = =
| |) \D—:— l_ADRS DECODER
o110 D110 | . I | |
' L | ' |
l_. _______ J L] : |
r—— - ——= o [T } |
| N\ To——] !
D120 — ‘)o—LR'—zo—I——U’ | | |
MULTIPLEXOR L | | L]
BUS | I D3 o | SR —
— \>o_',__
D130 30—14)OJM—O/ |
| — | D141 | o |
| _ | o—-
o140 — D140 : P |
| |_Di51 a |
0150——%—)o—l-)o—:—mﬂl——o/ |
L_-_ - _.1 ——_
DD1
nors 1~ — E:_ ______ — WO MULT;I:J!;EXOR
| o I 16 BIT CONTROLLERS
ADRS 0 —-{>o } | | D)_‘LT_’ DENB1 ONLY
| C— |}
| L—1 |
| — |
| } f&— ADRS FLIP-FLOP
S (|
[~ — — — T laosvo
SYN o—;—oq—< é :
L _P_

Figure 5-6. Device Addressing, Logic Diagram

we1delq o180 jnduy snyels pue ejeq *L-¢ oISy

NI viva
Ni vivag NI SNLVIS

L1
.

DENB1
HWO

lEX‘ s51

DU 1 EYAl

|

|

|

1

|

|

|

J

.

%
o
I 501
____T‘ﬂ

C

L 'F;EE_]
|
—
-
FC_E
J,—CCI:

i Ol € E—
g) SRSYO

I —dT T
—CH
I l
’ |
I

| —(_ i
1 i
| |

e
g m |||||||||||||||||||| M HOX3WILINW
a

5-11

The device controller logic should place a high on BSY1 until the data is ready. The Processor may now
be synchronized to the device data rate by testing the device status until the Busy bit is low. Then, when
the Busy bit is low, the program may transfer data. Device synchronization can also be achieved by
generating an interrupt when the data is ready. :

The End of Medium (EOM) bit is normally placed high at the termination of the device medium, such as
End of Card. The Device Unavailable (DU) bit typically signifies that device power is not turned on.

The Examine Status (EX) bit is used to signify other appropriate device conditions. In this case, the user
assigns S01 through S31 to appropriate conditions, such as Parity Error, etc. :

It is appropriate to note here that the Busy Status is unconditionally defined such that data cannot be trans-
ferred unless Busy is false. The remaining status bits are defined as required by the device controller.
Not all device controllers require all eight status bits.

Device controllers must be designed such that the Processor or the Selector Channel maintains the Status
Request line once the current status of the device is presented. Specifically, if the status changes while

the Status Request line is true, the status byte returned to the Processor or Selector Channel should also
change. '

5.3.4 Data and Command Output
5.3.4.1 Data

Figure 5-8 shows how a data byte may be output from the Processor. The buffered true and false Data
Lines (D081 through D151 and D080 through D150) from Figure 5-6 connect to the set and reset inputs of
the Data Register.

NOTE

If the device controller is a 16-bit halfword oriented controller it must
typically invert Data Lines D000 through D007 also.

When the device is addressed, DENBL1 is high, enabling the control line DAG1 to strobe the data condition
into the J-K flip—flop Data Register. The DASYO line also returns the SYN signal to the Processor.

5.3.4.2 Command

The command lines are shown on Figure 5-8 as being used in the toggle mode., For example, a high on
Bit 8 (D081) sets a control relay when CMG1 goes high. A high on Bit 9 (D091) resets the relay. Bits

14 and 15 are shown operating an indicator. Other pairs of bits may be used to enable/disable interrupts,
ete.

Again, note that definition of the command bits is a function of the device controller only. Not all device
controllers require eight separate commands. However, up to 256 commands are possible.

5.3.5 Interrupt Control

Figure 5-9 shows a complete general purpose interrupt and interrupt acknowledge logic system. When

an interrupt is generated, the Queue flip~flop is DC set via a differentiated negative going pulse. The
output from the Queue flip-flop generates an Attention signal (ATNO) to the Processor. ATNO is connected
to the interrupt line in the Processor. The program responds with an Acknowledge Interrupt signal, which
is received by the controller as Receive Acknowledge (RACK). Since the Queue flip-flop was set prior to
receiving RACK, the output of Gate Gl disables Gate G9, holding the Gate G9 output high. The high output
from Gate G9 stops TACKO from sending the Acknowledge to the next device. Thus, RACK1 and the Gate
G2 output generate ATSYO via Gate G3. ATSYO0 sends a SYN back to the Processor, and also forces the
outputs from G18 through G25 high.

5-12

| COSVO
SYNO | o<} @ cosvo
|
| DENB1
’ 1
p
pao {>o
|
! 1’>¢
CMDO |)
| ?f
: DAG! ;cmm .
| Do T T T T T T Meommanos |
]
| H
! |
| |
(DO Tl
| L Ho J
‘ D14 : '
| 0 +
[
|
| D15
} 1
| D010
|) —
| D000 * o;
| , 0 DATA OUT
l l
- DO71 T
S,
’ D070) T
| K o
|
I D081 T—
| ——qgr
| D0%0 K o DATA OUT
T
)
: D151 TR
S— T
|
| D150 4 K o

MULTIPLEXOR
BUS

Figure 5-8. Data and Command Output, Logic Diagram

5-13

wexderq oo ‘joxguo) jdnixojul *g-g 9anSig

r—— —™

mad

¥3Q003a sHav

b s 4 rﬁ
I*a rﬂ

—4

— HIGWNN
301A30

~-

G+

Al W LASLY

0sL @
I
!

080 Q

Uq

JOAITMONMIDV

1avsia-+

-
Ay
1GVNI TS

| HOLV1

L - Em_(w_n_

&

g ONAS

. 1z9 9z9
* 89
FAa) _ . oMoy
“Mm] | °% JTomove
i 0 1)
-d1
d014—dI1d
3IN3no 1" sa ! hd ONLY
WHVY| go
LdNYYILNI
dozy I

5-14

This causes the device number wired in by the address strap board to appear on the inputs of Gates G10
through G17. Thus, the ATSY1 output from Gate G4 enables the device number onto the Data Lines
(D080 through D150).

The output from Gate G4 also raises the Acknowledge signal to the device. On receiving the SYNO, the
Processor lowers RACK1, causing the output of Gate G4 to drop. This in turn causes the Queue flip-flop
to reset,

NOTE

If the interrupt has not set the Queue flip-flop, the RACKI1 signal passes
through Gate G2 to TACKO, and on to the next device.

If RACK1 is high in response to another device, the output from Gate G2 is low, thus disabling the
interrupt from affecting Gate G1. However, the interrupt remains in the Queue flip-flop, and is serviced
after completion of the previous interrupt service.

The ENABFF0 and ARMFFO0 lines provide control over the Interrupt Queue flip-flop and the ATNO line to
the Processor, Normally, two bits of a command byte (Bits 0 and 1) are decoded such that, with Bit 0
true and Bit 1 false, the Queue flip-flop is disabled. That is, the flip-flop may be set, however, its
output is held low. Gate G6, whose input is ENABFF0 from the false side of the ENABLE latch, provides
this function. The command byte, with Bit 0 false and Bit 1 true, is decoded (ENABL goes false) and
sets the ENABLE latch which allows new interrupts or a queued interrupt to be recognized. Bits 0 and

1, both true, are decoded to drive DISARM false which sets the DISARM latch, The false side of the latch
is used to clear the Queue flip-flop and to prevent the interrupt line from setting it. The DISARM latch

is cleared whenever the ENABLE or DISABLE commands are recognized. Encoded commands ENABLE/
DISABLE/DISARM thus provide interrupt masking or inhibiting within the device controller.

As described previously, the Control Line, CL050, from the Processor carries the Interrupt Acknowledge
(ACK) signal. This line breaks up into a series of short lines to form the "daisy-chain" priority system.
The ACK signal must pass through every controller that is equipped with Interrupt Control circuits. This
includes all device controllers except a few special cases.

Back panel wiring for interrupt control is shown in Figure 5-10. At a given position, the Received ACK
(RACKO) appears at Pin 122-1 and the Transmitted ACK (TACKO0) at Pin 222-1. The daisy-chain bus is
formed by a series of isolated lines which connect Terminal 222-1 of a given position to Terminal 122-1
of the next position (lower priority). On unequipped positions, a jumper shorts 122-1 and 222-1 of the
same connector to complete the bus, Back panels are wired with jumpers on all positions. Whenever
a card chassis position is equipped with a controller, the jumper from 122-1 to 222-1 must be removed
from the back panel at that position.

TFor controllers that occupy several positions, the jumper is removed only at the position where the
controller board has ATN/ACK circuits.

5.3.6 Multiplexor Bus Wiring

Wiring for the Multiplexor Bus and for the Selector Channel Bus is identical (same) in the Processor and
expansion chassis. Each card position contains two connectors with the Multiplexor and Memory Buses
wired to each at pin positions indicated in Figure 5-10.

5.3.7 Multiplexor Channel Timing

Both the Input and Output operations on the Multiplexor Channel make use of request/response signaling.
This allows the system to run at its maximum speed whenever possible, but permits a graceful slowdown
if the characteristics of a particular device controller requires signals of longer duration. Device
controller designs should keep Multiplexor Channel usage as fast as possible, consistent with practical
circuit margins. Doing this assures the fastest computer input/output operation when a system is con-
figured with a number of peripheral devices.

5-15

M
40

35

30

25

20

1/0 CONNECTIONS — TOP

15

10

05

00

P5 GND
GND GND
P15 % P15/P22
N15 % N15/P5S
MD150 MD160
130 140 P5 GND
110 120 GND GND
090 100 P15 REQO
070 080 N15 ENO
050 060 ACTO TACO
030 040
MD010 MD020
*% EXVT MDO00 XRACKO
%% TEMPA | %% VT MA130 MA140
%% WRTO %% TEMPB 110 120
SCLRO HWO 090 100
070 080
MAO50 MAOB0
SYNO ATNO RDACKO TDACKO
RACKO TACKO DCO DCRO
CLO70 DAO SCLRO HWO
DRO CMDO
SRO ADRSO
D140 D150 SYNO ATNO
120 130 RACKO TACKO
100 110 CLO70 DAO
080 090 DRO CMDO
060 070 SRO ADRSO
040 050 D140 D150
020 030 120 130
D000 D010 100 110
WRTOA MS000 080 090
MS010 020 060 070
030 040 040 050
050 060 020 030
070 080 DO0O D010
090 100 MAO030 MA040
110 120 020 021
130 140 01 02
MS150 MS160 010 o1
GND GND MAO000 MAOO1
P5 GND PARO MAQD
ROW 1 ROW 2 INHO ¥ ERO/P5S
WO % LRO/P22
CONN 1 P15/P5 | % N15/ P5
GND GND
130 - 07 (_)1__ = oD
_'CONN NO ROW 1 ROW 2
-BOARD NO
-PIN NO CONN 0
- ROW OF CONN

*Model 74 and 70/Model 80 Back Panel

**Model 74 and 70 Back Panel Only

41
40

30

25

20

05

00

Users may not put any load on the P22 and P58 lines in Model 80

Figure 5-10. Typical Universal Expansion Slot Wiring

DATA CHANNEL LINES (BTM ONLY)

1/O CONNECTIONS — BTM

Timing for typical Input/Output operations are shown on Figure 5-11, On the Output operation, the
Processor places a signal on the data lines followed by an appropriate control line signal. This stagger
(T1) will vary, but it is guaranteed to be at least 100 nanoseconds. When the device controller has re-
ceived the Output Byte, the SYN signal is returned to the Processor, which terminates the control line
signal, Realizing that T5 is 100 nanoseconds minimum, the SYN delay T2 should be only long enough to
guarantee proper reception of the Output Byte. The control line/data line removal time (T3) is important
where single-rail to double-rail operation is used - e.g. the ADRS flip-flop on Figure 5-6. A minimum
of 100 nanoseconds is guaranteed for T3. For SYN generation as per Figure 5-6 and 5-9, the control
line signal is DC coupled through the gates to form the SYN signal. The SYN removal time (T4) should be
minimized. This delay should not be unnecessarily extended since the Processor will not begin another
Input/Output operation until SYN is removed.

D08:15
PROCESSOR #DEVICE

T6

ADRS, DA OR CMD
CONTROL LINES

SYNC DEVICE #PROCESSOR L]

T T5
T3 100 ns MINIMUM T T3
T5 >

T2 T4

T2
T4

SEE TEXT

T6 350 MINIMUM FOR ADRS. ALL a. OUTPUT
OTHERS HAVE NO MINIMUM
BUT DROP AFTER SYNC IS
RETURNED.

SR, DR OR ACK
CONTROL LINES
D08:15

DEVICE TO PROCESSOR e —
SYN)

DEVICE TO PROCESSOR

T ‘T1 » T4 <
T2 SEE TEXT T2 T3
T3

T4 100 ns MINIMUM b. INPUT

Figure 5-11. Multiplexor Channel Timing

It should be emphasized that the times shown on Figure 5-11 are defined for signals on the Multiplexor
Channel. Within a given controller, one signal may flow through more gates than another signal and these
delays must be considered.

For the Input operation, the Processor places a signal on a control line., The currently addressed device
controller should gate signals to the data lines as soon as possible to keep T1 at a minimum. The SYN
delay (T2) must guarantee that the Input Byte is on the data lines considering the slowest data gates and
the fastest SYN gates. The Processor will remove the control line signal when SYN is received with a
minimum delay (T4) of 100 nanoseconds. With SYN and the byte gate DC coupled to the control line, the
removal delay (T3) will be the sum of the corresponding gate delays. The Processor considers the opera-
tion complete when SYN falls,

When the control signal is ACK, the delay T1 will include the cumulative Gate G8/G9/G26/G27 delays
(See Figure 5-9) for all the controllers between the responding controller and the Processor. This
will be less than the Processor time-out even with the maximum limit of 255 controllers.

NOTE

With a SYN delay of 50 nanoseconds, device controllers must be designed to accept
a minimum width of 170 nanoseconds on all control line pulses except ADRS and
DACK which are guaranteed to be 350 nanoseconds minimum, The SYN delay in

the device controller may be increased to effectively lengthen the control line pulses
if it is absolutely necessary. It is essential to realize that after the Processor ini-
tiates a control line signal, the Processor does nothing until the SYN signal is re-
turned by the device controller; one or more cycles are skipped if necessary and the
data transfer rates decreased proportionally. While this may not affect a particular
device controller, the overall system performance is degraded. Furthermore, if a
device controller fails to respond with a SYN in the time out period of approximately
15-35 microseconds, the Processor will abort the instructions.

5.3.8 General Multiplexor Bus Interface

Figure 5-12 illustrates a general interface to the Multiplexor Bus which may be used when designing custom
device controllers, either 8-bit byte or 16-bit halfword oriented. (If an 8-bit byte oriented interface is being
designed, Gates connecting to D001:071 and to DAT001:071 can be eliminated.) The address straps

can be hardwired by the user for any device number from 03 to 255. Address 01 and 02 are hardwired

for the Control Console and Teletypewriter, respectively. The user can use the Gated Status Request
(SRG0) or the Gated Data Request (DRGO) control lines to gate status or data from appropriate points in

his logic. Data from the Processor is available to the user's circuits, double rail, at the points labeled
D001:151 and D000:150. The user can use the Gated Data Available (DAGO) and the Gated Command (CMGO)
control lines to gate the data from the Processor to appropriate points in his logic. The delay of the SYNO
signal should be arranged such that it is the minimum delay necessary for the custom controllers to func-
tion properly, per Section 5.3.7.

5.3.9 Interleaved Data Channel Interface Design
The Data Channel feature of the Model 70 and 80 Processor provides high speed, autonomous memory ac-
cess to customer designed device controllers. Halfword data transfer to memory is accomplished over

the Multiplexor Bus in the Burst Mode,

Interfaces to the Data Channel must follow the same general design rules which apply to regular interfaces
to the Multiplexor Bus.

The program initiates a Data Channel operation, usually by issuing an Output Command instruction. Then
the Data Channel device completes the transfer without further direction by the Processor.

When a memory access is desired, the controller activates the Data Channel Request line (DC). This line
is separate from and of higher priority than the normal I/0O Attention line (ATN)..

The Data Channel Request is honored on an instruction stealing basis.

The Processor acknowledges the DC line by addressing device number zero and also activating the DACK
control line. (Addressing device number zero resets the Address flip-flop in all devices.)

5-18

/~Nohz 2 TYPICAL

3" |oar
'
s
15 9982 19-038 2
OEE™_oaros a
& stom g
<o 5 %3
2150090 _
Gl-o-4
DATIOL
. STI0 DD
1ig Y2102 19-038 3
OFg" oarm {0041
; T
<o B3} DATOS
216:0"0 200; GND o 0081 'n)
241
_| oarosi
141y PS @ o
T Joariar 1007 o
2o STi2| a 114 >R8O @ 0081 -0
nr 19-038 3
> 6 ?—o—nu oaTIB oaTo7I
w20 o] o o
awm Bazt Kps
21450070 @ 0071
2|7:D|3°
Slon
DAT(4)
8 Tstiar nu
D140
18 > 19-030 3
O3 oars
i sTisl
o
<o B3 i
o T
219 YISO |
(NOTE 2)
19-001
¢
™
1 =
14
‘€
¢
ADRSO N\ oiep
219 >——— 1 = al
-015) Jio-00)- T »
19-017 T
e DRGO
0RO N\ Jo-0%p- -0
120 K
=" P
[—To-os) RGO,
SRO | /at —0
" 1K Ll \
e ._m"’“”*] neL i) DA%
DAQ [0 [al CMGO
221 P o s R s] o
—o-onk [o- 000 s (NOTE 2)
220 SEMDO AN T 1 - 8
o7 00804 08| El £ DENBLICY
XFERO m XFERI 00904 Jo-003) 19-045}
128)————.—_. 0 1 P
¢
jaipc070 @ cwon o 0091 | T enaLs
[[_ensLi
SCLRO SCLRI
126 19-018)o-
="
axt
CKO
VZZH i9-015 19-018)o—{i9- 018 §ATMODD
l Ps o TERMI
TER o S [i9-017 -
L= @. Io-016] ‘D"
) SREQO Ll
225 ofis-038
. TACKO \
COLUPE 19-0i7 222 1000t =
l2syPATNO__ /o ——0 T
f C——
NOTES:

19-016 GATES » TI SN74HOI OR EQUAL
19-004 GATES » TI SNISS3T OR EQUAL
19-003 GATES » TI SNIS849 OR EQUAL
19045 GATES = TI 74HI08 OR EQUAL
19-038 GATES = TT 74I83 OR EQUAL
19-001 GATES~TI SNIS86I OR EQUAL
19-017 GATES « TI SNT4HIO OR EQUAL
19-015 GATES » TI SN74HO4 OR EQUAL

|, SYMBOL SHOWN BY “[]" ARE POINTS AVAILABLE TO DESIGNER.
2.0PTION TO BE DECIDED AT TIME OF LAYOUT.
3.19-036 GATES » TI SN7438 OR EQUAL

Figure 5-12, General Multiplexor Bus Interface

The Data Channel Acknowledge line (DACK) is ''daisy chained'" through all device controllers on the Data
Channel. The device controller closest to the Processor that originated the Data Channel Interrupt cap-
tures the DACK signal. That device becomes the 'on line' device and controls the DCR line. The DCR
line tells the micro-program whether a memory Write (DCR=0) or a memory Read (DCR=1) operation is
to be performed.

If 2 memory Read is requested, the micro-program reads the 16-bit memory address from the controller.
The selected location is read and the 16-bit data is output to the controller.

If 2 memory Write is requested, the micro-program reads the 16-bit memory address from the controller,
then reads the 16-bit data word. The data word is stored in the selected core location.

If another memory cycle is desired, the device controller re-activates the DC line.

Figure 5-13 shows a block diagram of a typical Data Channel device controller. Figure 5-14 illustrates
the timing for a typical Data Channel Read and Write operation.

6 MULTIPLEXOR BUS 8)
4 MULTIPLEXOR BUS
? CONTROL LOGIC
@)
COMMAND
AND |
STATUS .
LOGIC A 16 416
DATA ADDRESS
TRANSFER
CONTROL
LOGIC
DEVICE

Figure 5-13. Interleaved Data Channel, Block Diagram

Figure 5-15 illustrates a general interface to the Multiplexor Bus which may be used when designing custom
interfaces to the Interleaved Data Channel, Note that the logic circuits in Figure 5-15 are nearly identical
to those in Figure 5-13, (Standard Multiplexor Bus Interface). A second daisy chain circuit has been added
(Gates G94 through G101) to the data channel interface, This daisy chain captures the RDACK0/TDACKO
pulse, and farces-the interface Address flip~-flop (¥1) set.

The user's circuit must provide a Set Data Channel (SDC0) request pulse to initiate a Data Channel (DC)
operation., At the same time the user provides a RD1 level (high for read, low for write) to indicate the
type of operation. The Select flip-flop (F5) is set when this interface captures the data channel cycle, and
remains set until the cycle is complete.

Note from Figure 5-10 that the Interleaved Data Channel control line DCO, DCRO, and the daisy chain
priority line RDACKO0/TDACKO appear only on the 0 level connector on the back panel. Therefore Data
Channel devices must connect into the 0 level connectors. Note also that these lines are not reconstituted
by the Bus Buffer,

Note on Figure 5-15 that when a Data Channel device is selected (i.e., SEL flip-flop set) it must not hold
the HW line active even though all data transmitted over the Multiplexor Bus is 16-bit parallel,

s

118D Surmiy, [ouwey) Bjed “HI-G 2andLg

'SSIYAAY AHOWIAW L18-91 ¥ SANIS 3DIAIA IHL 't
"(S538QAV TINN ¥) TYAYILNI SIHL SOHIZ =61:000 €

“ALI#V10 HOA ‘€ 3LON 335 "TVOIdAL Su 009

30IML NMOHS SN8 TYNOILO3HI0~18 NOWWOO V SI 61:000 'Ol '1353Y 3YV SYITTOHLNOD 1TV 40 SdO7d SSIHAAV IHL
"AHOW3W WOH3 QV3H = MOT/'AHOWIW OL ILIYM =HDIH,; ¥3Q "6 LVHL JYNSSY OL HONON3 ONOT A3AV130 38 ATNOHSONAS T

“IVAHILNI SIHL NI JWIL ANV 03SV3T138 38 AVWOd '8 “1INNVHO O/1 ILYWOLNY HO

"IQOW LSHNE NI SNIDIE 310AD 1INNVHO VIVA LXINIHL £ I1dILINN JHOLS/AVOT '0/1 ¥D0718 HO4 LdIOX3 ST v S AWIL
"AHOWIW WOHH 1NOAV3IY 118-9L V¥ SLNJLNO HOSSIOOHd IHL "9 AONILYT TVOIdAL ‘JWIL ANV LV GILVAILOV 38NVO OO 'L

:S3LON
je— 300N 1SYNE D35/83 00% <= D357 G = 3SVD 1539 »|

310A2

"AHOW3W OL NILLIdM
S! HOIHM GYOM V.LVQ 118-91 v SON3S 301A30 3HL

(301A30 WOY4 AHOWIW OL 3LI4M) VI T1INNVHO V1va

av3d AHOW3W

¥ 310N

m 9 310N */

v Yo ca:0n ——aY

d

q
/1]

w0

6 3LON ~H Z3ILON N
A 1

I }
o h 2

83ION — ¢

. 370AD .
A mtEsEozms J

{301A30 04 AHOWIW WOY4 GV3IH) I119M TINNVHO Viva

S 310N

¥ 310N

_ Ye— F3ion —

3

_ 6 310N

R mm JLON ~
Z

£ 310N W

o

(0L 3LON —»

(0L 31ONe—

IREERN

(321IA30—»NdD)

(301A30—NdD)

S3aNIT
sNg XNW

SL:00d

§1:00Q

ava

le]

ONAS
42a

Mova

syav

§1:00Q

61:00Q

4a

ONAS

d0a

0va

syav

5-21

/HOTE 2 TYPICAL

13>-2040

0080

t9-036)

0ost o)
DATOS{ o

SET REQUEST FLOP
(100 ns TYPICAL)
(READ/WRITE (HI FOR RD)

ROI

DCRO 227

? w_ DAY
T
L 3 —
1o-038 0"
: %_.w.m_a
2] — 8709 1y
o &
2'5:00,0
ot
; :;:_ oATIOH
2 STI0L 8
g 3200 19-038 3 _1_"
ool
° Eg oaru_p
2| — st/
o 533
L
28 oy o0
1
HI) Ps 0
0| It DATI2I 100
! § —fsmiai DD
D120 —.
n7 19-030 31—~
1 N DATI3| Ta]
2 8T
_wtfo— 0
<@ F83
217 :DISO
e
TR
o0 2 8TI4l a
ne 19-038 31
I DATISI a
§ sTelL_H
-Nz
<@ AN
218 YISO | [
L
) RBACKO| 19-018
19-001
9016

}]E FY ¥ 3

219 YRORSO I‘ » s
B -00))\ [§ Y [e-03e)o 1 5¥Miz5
1 | o
¥ seLm
oo I
DRO ﬂ PRAO_A
120v—-—————l_, . K . @
Fo-022p RGO
119 Y300 w- ——{_/'” " o L=y oaco_p
ono N, oo I cmoo
22 — {7 on K o M0 1
[o N ro—o] L)
5EMDO .) -
o @ D080A 008! N oENBLIA
124 YREERO . XFERL Oy DO90A [o3 m{',’“"
1
121 5ELOT0 [5-09)%. cuon D09t »—‘j ! EneLL
|y 9-043|
126 SSCLRO) SOLR(k ¢ o s
122 SPASKO N\ [— AL
o i = =) O
I “r:mno Ay]
i 224 o0 Jo »——D—q
SREQl o]
zzn 3
e 1 e 1
S s T T
223)&——@ ! o8003 A
NOTES:

1. SYMBOL SHOWN BY *[1" ARE POINTS AVAILABLE TO DESIGNER.
2.0PTION TO BE DECIDZD AT TIME OF LAYOUT.
319-036 GATES = TI INT438 OR EQUAL

Figure 5-15.

5-22

19-016 GATES = TI INTAHOI OR EQUAL
19-004 GATES « TT 3NI8837 OR EQUAL
19-003 GATES » TI 3NI3849 OR EQUAL
I 45 GATES « TI 74HIO8 OR EQUAL
19-038 GATES =TI 74183 OR EQUAL
19-00! GATES« TI $NISBSI OR EQUAL

19-017 GATES « TT ON74HIO OR EQUAL
19-018 OATES = TI N74HO04 OR EQUAL

Interleaved Data Channel/Multiplexor Bus Interface

54 MEMORY BUS
5.4.1 Introduction

The Memory Bus provides a high speed communications path between the memory modules on one side,
and the Processor, Selector Channels, or specially designed Direct Memory Access Channels on the other
side. Before the Memory Bus is covered in detail, the various memory systems used on the Model 74,
70, and 80 are covered in the following paragraphs.

The Models 74 and 70 use 8, 192-byte, 3 wire 3D core memory modules with a 1. 0 microsecond cycle time
and a 300 nanosecond access time. Core memories have a destructive readout; when a 16-bit memory loca-
tion is read, the read currents (ERO and LRO in Figure 5-16) reset the location to zero in the read process.

A 1.00 USEC -
=

ERO
| [L——- (EARLY READ)

LRO |_
——‘____.r (LATE READ)
INHO (INHIBIT)
WO l I (WRITE)
READOUT L
RESTORE
RECOVERY
READ PORTION WRITE L

o

Figure 5-16. Typical Memory Cycle

In the Model 80, 16, 384-byte MOS memory modules are used. This module consists of two 8,192 byte
blocks, one for even halfword addresses, and one for odd halfword addresses. This arrangement allows
for the overlapped fetching of sequential halfwords thereby decreasing the execution time. The cycle
time of MOS memories varies depending on how much one can interleave memory cycles, MOS mem-
ories have a non-destructive readout; when a 16-bit memory location is read, the contents of that lo-
cation are not altered. Also, a write cycle request in solid state memories does not neccessitate a
"read" half cycle to reset the location to zero prior to writing into it. A simplified MOS memory cycle
is illustrated in Figure 5-17,

REQUEST Y
[creQo] | [
120
ADDRESS DRIVE | | |
| i
CLOCK AND CHIP | 1 [
SELECT DRIVE | | 1
DATA OUT i —'f L)
| |

TIME nsec |-———;so————g<———|oo———|50i-—
I | I

Figure 5~17. MOS Memory Cycle

5-23

The appropriate Processor maintenance manual should be consulted for a more detailed description of
both the core and MOS memories.

MAO00: 15
MDO0O0: 15
MS00: 15 MODEL 80 ONLY
s MEM
PROCESSOR CONTROL (2) ve g[c-)EF:J
TIMING (4)
PARO
DMAC CONTROL (4) L\
MODELS 70,80
ONLY
DMAC #1
|1 DMAC #2
l DMAC #3

I DMAC #4

Figure 5--18. Memory Bus Diagram

5.4.2 Memory Bus Lines

Both the core memories and the MOS memories are interfaced through a similar Memory Bus. The
Memory Bus consists of 58 lines, and only one device may communicate with it at any one time, The
58 lines are described (see Figure 5-19, 5-20, and 5-21 as needed and Table 5-1):

REQO
PROCESSOR | gno 1 i
V.

L TACO ACTO TACO ACTO
MEMORY BUS l f ‘
CONTROLLER _]

DMAC #1 DMAC #2 DMAC #3

REQO ——-l
f MODEL 70 AND 80 ONLY
ENO ———l____f‘_:_ MARKS TIME DMAC MAY
SWITCH ONTO BUS

—

Figure 5-19. Example of Memory Bus Priorities

5-24

TABLE 5-1. MODEL 80 ACCESS AND TRANSFER TIMES

Options
FIRST ACCESS TIMES Standard Burst
Worst Case Access Time (ATWC) 940 940
Best Case Read Access Time (ATBCR) 510 510
Best Case Write Access Time (ATBCW) 400 400
TRANSFER TIMES
Worst Case with CPU Fetch (32 bit read) ATWC+n800* ATWC+n420%
Best Case Read Burst TABCR-+n420%* =
Best Case Write Burst TABCW-+n330%* =
*n=pumber of transfers
NOTE 5
J—
REQO-»({CPU—DMAC) |} l NoTE2 | L L S
/ — b ____
ENO (CPU—=DMAC) LnoTe 1 NOTE 4 L __ L ___ i
ERO
Znotes | I L.
LRO
MEMORY cPU _.MEMOHY l l
TIMING DMAC) ynHo
[1 i
wo I 1 I
MEM. STROBED R/O o
s o L
(MS00:15) { 230 8 EARLIEST NOTE 6
CPU — MEMORY | i
(DMAC) LATEST
4 60 310
240 1
420 I 60 1 300 T 60
NOTES: 420 160

1) REQO MAY FALL AT ANY TIME. THE DELAY
FROM REQO TO ENO IS IN THE RANGE 1000 CYCLE TIME
10 TO 250 NS

I] MEMORY DATA (MDO0O0: 15) MUST BE

2) THE DMAC WHICH CAPTURES ENO MUST d SETTLED 55NS BEFORE INHO &
REMOVE REQO WITHIN 150 NS. UNLESS 455 T MUST REMAIN UNTIL 20 NS AFTER
THE NEXT MEMORY CYCLE IS WANTED INHO.

3) MEMORY TIMING WILL BEGIN APPROX, 120-140NS \ MEMORY ADDRESS (MAOO: 15} MUST
FOLLOWING ENO. THE DMAC MUST APPLY BE SETTLED 20 NS BEFORE ERO &
MAOQO0:16 WITHIN 10O NS OF ENO. MUST REMAIN UNTIL 20 NS AFTER

INHO. BOTH MD & MA MUST BE

4) END WIDTH WILL BE IN THE RANGE OF REMOVED FROM THE BUS WITHIN

250 TO 750 NS ON THE MODEL 70 AND 100NS AFTER INHO

BETWEEN 125 AND 875 NS ON THE
MODEL 74 DEPENDING ON WHETHER OR
NOT THE MEMORY IS CURRENTLY BUSY.

5) THE DMAC MUST ACTIVATE REQO WITHIN 650
NS OF ENO TO INSURE GETTING THE NEXT
MEMORY CYCLE FOR BURST MODE OPERATION.

6) THE MS BUS SHOULD BE IGNORED IF THE
OPERATION 1S WRITE TO MEMORY.

7 ALL TIMES SHOWN ARE TYPICAL UNLESS
OTHERWISE NOTED.

Figure 5-20. Model 74 and 70 Memory Bus Timing

Burwiy, sng LI0ws 08 [9POIN °*TE-S oInSLd

“3710A0 HOL3d v HOd AHOWIW STV3ILS NdD NIHM WNWIXVIN suUOb6 SI 3WIL SSADOV I10AD 1SHId VNG ISVYD LSHOM :L ILON

*NOILD3S SIHL 40 N3 1V 9 3LON 33S ! IWIL SN8 VWA 3ZIT11N OL SITOAD ILVYNYILIV GIMOTTV S| HSIN4IY ¥O
NdO *3A08V SNOILIAGNOD SL33ANW 31VYH 1S3ND3Y 3HL 31 3T0AD AYOW3INW Y¥3IHLIO A¥3A3 d33LNVHVNS SI VWA IHL :9 JION

‘AT3AILO3dS3Y
SUQEE LV 37TO0AD SLSHNE 3LI¥M "3JLVLIS LIVM NI S1 NdD IHL dI su02b 0STV SI JNIL IT1DAD 1539 IHLNOILLO
dVH1S QYVANVLS 3HL HLIM"SS3OOV SNIVO YW 3HL 3ONO 1NO G3N0071 SINdJ 3HL 3TIHM SLSH¥NE Av3H Y04
suQO2H S1 INIL 37940 NNIWIXYW FHL A3 TTVLSNI SI NOILdO dVHLS LSYNE 41°3T0AD GV3IY (119 2€) HOL3d V ¥O4
S310AD ILVNYILTV STIVILS NdD 3HL ANV SGV3Y AYOWIW S1SIAND3Y VWA N3HM sUQO08 SI 3WIL 3T10AD WNWIXVYW :S 3 LON

"370A0 1VHL H1IM
03ddVI43A0 38 0STIVY T17IM ON3 ‘(MO SAVLS OD3Y d1 ¥0) 310AD VWA LNIHYNONOD ¥V ONIYNG MO S309 003Y 41 :¥ 310N

“3WIL 37181SS0d 1S31v1 3HL 1V
(HOL34) NOILONYLSNI QYOM TN V 304 310X ¥V STVILS NdI IHL NIHM SUNIJ0 SIHL 'SUGES SI ADNILVT WAKIXYIN :€ ILON

‘ON3 40 ON3 WOYd suOgl NIHLIM ViVQ ONV
SUOO! NIHLIM TVYNOIS VOLYM GNV VIVQ SS3YAAY 3718VLS 30IAOYd ANY OD3Y IAOW3Y L1SNN OVIWA G3103713S 3HL :2 310N

"NNKWININ Su06 S HLGIM ON3 "¥31V7 suGl MO S309 ON3 "3WIL ANV LY 171vd AV OD3Y :I 3LON

| S 310N SUGES OL 621 —»)
j \\F
_ _ € 310N 37040 ANOWIW VNG
i ol <
A
1N0QY3Y | 3LINM ¥Od4 MO
_ A /¥ 1va/0 aLium Y04 ﬂo_x 34v5 1NOG 0S1:000SW
LA A 7 : 0S1: 000aW
\\\\‘ d\\\
x JONYHD xv q8v1S SS3INAAY i 3¥VD 1NOQ Ov1:000VH
Q\\\‘ d\\
_ -.. L 310N OHNI
_ \\\ d\\-
= »gov \\\ \.\\
x x 3114m 504 MOT* QV3Y H04 FISIH 34VI 1NOQ VOL¥M
q\\\ ’ suogI—»
su Q0 J SUQZ (e— le—— SU 001 ON3
. le—su 02 S f— ,
[e——su 06— | 310N
- S ob3y

\|
T

¥ 310N

2 310N

=

5-26

Request (REQO)

Enable (ENO)

TACO FROM HIGHER PRIORITY

&

T»_A-CE’.- G -

DMAC

This is a request for memory from a Selector Channel or

a custom designed Direct Memory Access Channel (DMAC).
More than one device may activate this line at any time,
Unless these devices want consecutive memory cycles,
REQO must be released within 130 nsec after the trailing
edge of ENO,

The Processor responds to REQO by activating ENO. The
delay from REQO to ENO, leading edge to leading edge, is
15-250 nsec., depending on state of memory.

ENO daisy-chains through all Selector Channels and DMAC's
(TACO and ACTO on Figure 5-19), and the captured daisy-
chain pulse is ANDed with the rising edge ENC to set the
"Select flip-flop in a DMAC. Figure 5-22 illustrates a
suitable circuit for this action.

ACTO CONNECTED
TO ENO ON HIGH-
EST PRIORITY
DMAC ONLY

ENO
INHO G2

CLRO USED TO INITIALIZE
CIRCUITS ON POWER UP,

DERIVE FROM SCLRO LINE
RELAY CONTACT a

a8) TACO .
G6
- G7 Jo—e
1] & REQUEST REQO ,
STARTO 4 1 G1 <
FROM USER . dt
— WRITE
G4>04p— Gs} K o D) WRTOA:
0 SELECT
J o1
—qT
ms
K oe <
CLRO Y
) MD :
MEMORY DATA
-] MA
MEMORY
ADDRESS

STARTO (30 TO 100 NS) FROM USER CKT SETS REQUEST FLOP WHEN
USER'S MEM. ADRS & DATA REGISTERS ARE READY. CPU RESPONDS TO
REQO WITH ENO. IF THIS DMAC DID NOT REQUEST SERVICE IT PASSES
THE DAISY CHAIN PULSE (ACTO) ON TO THE NEXT DMAC AS TACO. IF
THIS DMAC DID REQUEST SERVICE IT CAPTURES THE ACTO PULSE (A
30 NS GLITCH ON TACO IS PERMISSIBLE). ON THE RISING EDGE OF ENO
THE REQUEST FLOP IS RESET & THE SELECT FLOP IS SET. THE SELECT
FLOP ENABLES THE DMAC TO THE MEMORY BUS (MS, MD, & MA). THE
SELECT FLOP IS RESET AT THE END OF THE MEMORY CYCLE BY THE
RISING EDGE OF INHO.

Figure 5-22. Typical Control Logic for Interfacting to the Memory Bus

5-27

Early Read (ERO)
Late Read (LRO)

Inhibit (INHO)
Write (W0)

Write (WRTOA)

Memory Address Lines
(MAO00:14)

Memory Strobed Readout
Lines (MS00:15)

These two lines control the "read" half of a core memory
cycle and they are generated by the Processor approximately
120-140 nanoseconds after the trailing edge of ENO, These
two signals are not used in the MOS memory system, and are
not generated by the Model 80 Processor.

In Models 70 and 74, two lines control the "write' half of a
core memory cycle. These are INHO and W0. They are
generated by the Processor. The leading edge of INHO in~
dicates to the DMAC that data, from a Memory Read opera-
tion, is available. The trailing edge of this signal indicates
the termination of the memory cycle, WO is used by the mem-
ory.

In the Model 80 System, INHO (leading edge) indicates that
the data readout onto the data lines is valid. The duration
of INHO is 40 nanoseconds. WO is not generated by the
Model 80 Processor.

WRTOA has no role in the core memory. In the MOS System,
a Selector Channel or similar interface specifies to the mem-
ory via WRTOA a read or write operation. WRTOA is low

for a write operation, WRTOA must be stable from 100
nanoseconds after ENO until the end of INHO, WRTOA is

used in the Models 70 and 74 to enable the Parity logic for
the generation of correct Parity on DMAC Write operations.

The DMAC may activate these lines no later than 100 nano-
seconds following the trailing edge of ENO, These address
lines must be settled 50 nanoseconds or more before
MD00:15 memory data lines and remain stable until 20 nano-
seconds after INHO. The address lines must be released no
later than 100 nanoseconds after INHO,

These lines carry the pulsed signal memory readout on all
memory operations, The leading edge of the readout occurs
X nanoseconds after the trailing edge of ENO for M 70, 74
while M80 read out cannot be anticipated but is concurrent
with INHO.

a. M70, 74: 410 to 470 nanoseconds from ENO

b. M80: 10 nanoseconds before INHO leading edge to
20 nanoseconds following INHO trailing edge

The duration of this pulse is:

a. M70, 74: 60 to 100 nanoseconds

b. M80: 70 nanoseconds

In M70, 74 systems the selected DMAC must return this
readout onto the memory data lines (MD00:15) and it must
be settled during the entire INHO pulse.

In M80 systems MS and MD lines are strapped together,
therefore the readout is also present on the memory data
lines (MDO00:15) and it is settled during the entire INHO
pulse. The selected DMAC therefore shall not return MS
contents onto the MD lines,

Memory Data Lines These lines carry data to be written into memory.
(MD00:15)
MDO00:15 must be settled during the interval described in
Figure 5-20 for the Models 70 and 74 and Figure 5-21 in
the Model 80,

NOTES: 1. MS16 and MD16 correspond to the Parity Bit. The Processor controls these lines in the
Core System. The DMAC must not load these lines. In the MOS System, parity is checked
and generated in the memory system litself,

2. The MS00:15 and MDO00:15 lines are OR tied on the MOS memory module side and form a
16-bit bidirectional bus for that system, For the sake of comparibility with the Model 74
and 70 Memory Buses however, they appear as separate uni-directional lines.

3. There are two additional control lines in the Core System to provide externally generated
memory busy and memory access timing for future product expansion.

4. All logic levels are TTL compatible. A true condition corresponds to less than +0.4 vdc,
a false condition corresponds to more than +2.5 vdc.

5. The custom interface is permitted one TTL standard load and two TTL open collector
power gate OR ties (48 milliamperes sink at 0.4 VDC). The customer may not OR tie onto
ERO, LRO, INHO, W0, PARO, MS00:16 and the two extra control lines. The Memory Bus
may not be extended physically beyond the Processor and first expansion chassis (about 15
inches total).

6. The larger number given for the MOS System Timing in this section allows the Processor
to have alternate memory cycles. It is further recommended that any DMAC that is to sup-
port a transfer rate in excess of 2,400,000 bytes per second, be buffered. This prevents
data loss as a result of a refresh cycle, which occurs once every 45 microseconds.

55 SELECTOR CHANNEL

The optional Selector Channel provides block data transfer between one of up to 16 I/0 devices, and
memory. Once initiated, the transfer is independent of the Processor. The program gpecifies the
device address, the type of operation (Read or Write), the starting address in memory, and the final
memory address of the transfer. The Selector Channel then completes the transfer, cycle stealing from
the Processor, without further direction by the Processor. Upon completion of the transfer, or termina-
tion of the transfer due to a fault, the Selector Channel Busy condition is dropped and the Processor is
notified via an interrupt.

The Selector Channel operates at a maximum rate of 2,000, 000 bytes per second in a Model 74 or 70
gystem, This peak rate does not allow simultaneous processing. On the Model 80, the Selector Chan-
nel can transfer at a maximum transfer rate of 3,150, 000 bytes per second. This assumes that the
Processor is in the Wait state, not vying for memory, and that the data transfer between the SELCH

and the device on the SELCH bus is in the Halfword (16-bit) mode. If a user program is being executed
gimultaneously a worst case transfer rate of 1,850, 000 bytes per second can be achieved. This assumes
the CPU will get every other memory cycle.

The DMA port on the Model 80 is capable of transfer rates up to 4,760,000 bytes per second. This trans-
fer rate can only be achieved with multi-Selector Channel configurations, or a customer designed DMAC.

Figure 5-23 is a block diagram of the Selector Channel. Address lines to, and data lines to and from the
Memory Bus are shown on the right side. The Memory Bus Control Logic (one of several arbitrary
functional groupings used only for purposes of this block diagram) gates an address to the Memory Bus
and data to or from the bus depending upon the direction of transfer. The Selector Channel Data Register
(DR) stores the 16-bit data halfword to/from memory. The Transfer Control Logic gates the data between
the Selector Bus (shown on the bottom) and the Data Register in either 8-bit bytes or 16-bit halfwords,
depending on the device. The address circuits are shown in the upper right area, The Final Address
Register (FR) is loaded in two bytes from the Multiplexor Bus. The Address Register (AR) is loaded with
the starting address in two bytes. After each byte of data transfers to/from the device, the Address

5-29

Register is incremented and its contents is compared to the contents of the Final Address Register. When
AR=FR, a terminate signal is sent to the Transfer Control Logic. If AR#FR, the next data transfer is
initiated to/from the device.

The Multiplexor Bus is shown on the left side of Figure 5-23. Note that the Multiplexor Bus may be gated to
any one of six places. The gates are functionally represented by a six position rotary switch. With the
gating as shown, and assuming the Transfer Control Logic is also as shown, the Multiplexor Bus including
all 16 Data Lines is gated directly to the Selector Bus. This is the condition which exists when the Selector
Channel has not been addressed. Thus, all devices on the Selector Channel may be used via the Multiplexor
Channel if the Selector Channel is not in use. Four of the remaining five points onto which the Multiplexor
Bus may be gated, are the Upper and Lower halfs of FR and AR. The sixth point is designated Command
and Sense Logic. Commands from the Processor are decoded in this block to produce control signals for
the Transfer Control Logic and the Multiplexor Input Control Logic.

FINAL ADDRESS

REGISTER
8
7 FR
16 BIT
8/
MULTIPLEXOR
INPUT CONTROL
LOGIC / MATCH
U <: DETECT
v -
L |
N [
| | ADDRESS
P REGISTER
: | k]
E
X : o0— — / g N\ |
[0} O~ —=|—p-° A
R)——--8 O— — | 8 13, AR /\
: 8 8
8 § o- —le—r S 16 BIT
U o — e
S 7
M
8] N
b 16) E
A v
R
COMMAND MEMORY R
AND SENSE |- INCREMENT e <::>
LOGIC CONTROL B
LOGIC U
s
16 \
y
L — | DATA {/
| o] TRANSFER | REGISTER
CONTROL %% ”
LOGIC :—~\-<.? o ———ta—%
DR
16 BIT

SELECTOR BUS >

8 OR 16 BIT CONTROLLERS

Figure 5-23. Selector Channel, Block Diagram

5-30

The following is a typical sequence of operation for a Selector Channel 1/0 operation. Figure 5-24 is a flow
chart of Selector Channel operation. Circled numbers on Figure 5-24 refer to steps in the following sequence:

1. The device controller is addressed and the appropriate command sent to it (for example, Read
Tape Forward).

2. The Selector Channel AR and FR are loaded via four byte transfers from the Multiplexor Channel.
The FR may be odd or even,

NOTE
Steps 1 and 2 may be reversed.
3. A command which specifies if this is an input operation (information received from the device)
is sent to the Selector Channel from the Multiplexer Channel, (The Selector Channel is initialized

and returns to the output state - information to the device - whenever a Read Data or Write Data
instruction is issued to the Selector Channel.)

4. A GO Command which starts the transfer operation is sent from the Multiplexor Channel to the
Selector Channel.
NOTE

The Processor is now free to continue its program while the block I/O transfer

is performed by the Selector Channel on a cycle-stealing basis. Steps 5 through
8 apply solely to Read operations (memory to device). Steps 9 through 12 apply
to Write operations (device to memory).

5. If this is a Read operation, the Selector Channel requests memory service via the built-in
memory port in the Processor. When service is granted, the Selector Channel fetches a
halfword from memory.

6. When memory data becomes available, it is gated to the DR,

7. The Status Byte from the device is examined. If the device Busy Bit (Bit 4) is true, the Selector
Channel waits for it to become false. If any of the Status Bits 5, 6, or 7 are true, the transfer
is terminated.

8. Data (either an 8-bit byte or a 16-bit halfword depending on the controller) is transferred from the
DR to the device when the device is not busy. If AR=FR, the transfer is terminated. If not, the
AR is incremented, and if there is a carry (AR=0) the transfer is terminated. If the contents of the
AR is even another byte is transferred to the device.

9. If this is a Write operation, the Status Byte is input from the device. If the Busy is true, the
Selector Channel waits for it to become false. If any of the other three bits in the status code are
true, the transfer sequence is terminated. If all bits are false, the sequence continues.

10. Data is transferred from the device to the DR when the device is not busy. If AR=FR, the transfer
is terminated. If not, the AR is incremented, and if there is a carry (AR=0) the transfer is
terminated.

11. If the contents of the AR is even, another byte is transferred to the device. (The sequence returns
to Step 9.)

12. The Selector Channel requests memory service.

13. The halfword in DR is written into the addressed memory location when granted memory.

Steps 14 through 16 describe the termination sequence, Any of the following conditions will cause
termination:

a. AR=FR
b. AR increments to Zero (carry out of AR).
A status failure from the device (EX, EOM, or DU).

d. A Stop Command from the Processor.

5-31

START

ADDRESS DEVICE

® CONTROLLER
(2) 1OAD AR AND FR ‘ ‘
~ INPUT STATUS BYTE
! ! (® oPER. cMmD.
INPUT STATUS .
BYTE (@ cocmp.
YES NO
No .~ STATUS
ALL FALSE
?
STATUS_ no
ALL FALSE
? TRANSFER 1 BYTE
DEVICE TO DR
TRANSFER 1BYTE
DR TO DEVICE
E
AR =FR? YES YES AR = FR
NO NO
INCR
) INCREMENT AR
AR YES AR
CARRY? CARRY?
- ACCESS HS
v @
©) ACCESS HS MEMORY (1) RESET BUS o s s
LOAD HALFWORD
LOAD HALFWORD IN DR (15 SET ATN Foanne
! [

Figure 5-24. Selector Channel, Flow Chart .

5-32

" 'NOTE -

If the Selector Channel is in a memdry cycle when the Stop Command is
received from the Processor, execution of the Stop Command will be delayed
until the completion of the memory cycle.

14. Reset the Selector Channel Busy indication.

15. Set the Selector Channel Attention flip-flop to generate an interrupt to the Processor.

16, After the Processor acknowledges the interrupt and addresses the Selector Channel, it will send
a Status Request to the Selector Channel. The status received will be the status of the active
device on the SELCH Bus with the Busy Bit forced to zero. To determine whether the transfer
terminated normally, the contents of AR may be Read by issuing two Data Requests to compare
its contents with the final memory address.

The Selector Channel is complete on one mother-board which is mounted in any even numbered
Universal Expansion Slot.

5.6 GENERAL PURPOSE INTERFACE
INTERDATA provides the user with two general purpose modules to aid in the customer design effort.
The Universal Interface Module is a general purpose 16-bit Input/Output interface to the Multiplexor Bus.
It is on a 7' x 15" printed circuit board. The General Purpose Interface Board allows the user to easily
mount his integrated circuits and other components, to develop a prototype design.
5.6.1 Universal Interface Module
The Universal Interface Module (UIM) provides a fully buffered, byte or halfword (16-bit) oriented inter-
face module for data transfers between the Processor Multiplexor Bus and byte or halfword oriented
equipment provided by the user. The UIM is a transparent interface in that the function of any I/0 in~
struction issued to the module depends upon the user's equipment. Data transfer rates can approach
100, 000 bytes per second (100KBS) depending on the user's equipment.
Operational Characteristics
This module contains the following major functions:

Sixteen Data Output Lines

Sixteen Data Input Lines

Four Command Lines

Eight Status Input Lines

One Interrupt Line to the Processor

One System Clear Line to the User
Data can be transferred between the Universal Interface Module and the Multiplexor Bus in an eight bit
byte mode (two eight bit bytes per halfword) or in a sixteen bit parallel (halfword) mode. The data trans-
fer mode is set up under program control. The interrupt line can be disabled, enabled, or disarmed
within the Universal Interface Module under program control.
The sixteen Data Output Lines are used in two modes of operation:

In the eight-bit byte mode, the first of two Write Data instructions places a data byte onto

the most significant Data Output lines. The second places the second byte onto the least
significant Data Output Lines.

In the Halfword Mode, 16 bits of data are placed simultaneously onto the Data Output lines.
The sixteen Data Output lines are latched with flip-flops.

The Sixteen Data Input lines are also available in two modes of operation:
In the eight-bit byte mode, the first of two Read Data instructions read a data byte from the
most significant Data Input lines and loads it onto the Multiplexor Bus. The second instruc-

tion reads a second data byte from the least significant Data Input lines and loads it onto
the Multiplexor Bus.

In the halfword mode, all 16-bits on the Data Input lines are loaded onto the Multiplexor Bus.
The Output Command instruction results in the following action:

The two most significant bits of the command byte disable, enable, or disarm the interrupt
logic.

The third bit of the command byte determines the data transfer mode. That is, byte mode
or halfword mode. The fourth bit is not used.

The four least significant bits of the command byte are loaded onto the-Command Lines to
the user. These four lines are latched by flip-flops. These lines are ordinarily used to pro-
vide Data Ready or Data Request signals to the user's logic.

Eight Status Input lines are also available to the user. The user connects the desired lines to eight status
input lines. To read in the eight status lines, the program executes a Sense Status instruction which gates
the eight status lines into the Processor like a status byte.

Specifications

Universal Interface Module, INTERDATA Product No. M48-009
Dimensions - 7" x 15"
Weight - 2 pounds

Power Requirements - +5, 0 Vdc 0.85 amps

Installation

The Universal Interface Module may be installed in either the right or left half position of a standard 15"
chassis, depending on the system configuration, The module also includes a 50 wire, 28 gauge, stranded,
10 foot, open ended cable, This device is not intended for use with a Selector Channel.

Inputs:

The 16 Data Input lines, 8 Status Input lines, and 1 Interrupt line are terminated on the 7"
module as shown below.

LOW LEVEL ACTIVE,
=7 ma EACH >
FROM USER

4
(2]

Module Input Termination

Outputs: .

The 16 Output lines, 4 Control lines, and 1 Initialize line from the module are driven as
shown below. Each output can sink 30 ma.

P5

LOW LEVEL ACTIVE,
- P 30 ma EACH
TO USER

Module Output Driver

5.6.2 General Purpose Interface Board

The General Purpose Interface Board (M48-002) requires one circuit board slot position in an INTERDATA
15 inch chassis. The board measures 15 inches square and can accomodate up to 117 Integrated Circuit
Modules (IC's). Either 14 or 16 pin Dual in Line Packs (DIP's), can be accomodated. The IC's are usually
soldered directly into their designated board locations. If removable or interchangable IC's are desired,
commercially available IC sockets, with 300 mil mounting centers, can be soldered into the IC board
locations by the user.

The General Purpose Wire Wrap board provides locations for a total of 416 axial lead components (re-
sistors, capacitors, and diodes) mounted to the left (Positions 1 and 2) and to the right (Positions 3 and

4) of the IC packs. See Figure 5-25, All discrete components are soldered into the board., When the com-
ponents are machine mounted, Position 2 in a field containing a 14 pin IC pack and Positions 2 and 3 in

a field containing a 16 pin IC pack, can not be used due to the proximity of the components, board loca-
tions and the installed IC packs. Care should be exercised when manually installing components in Posi-
tions 2 and 3 of a field containing an IC pack. '

The circuit board contains 25 mil square wire wrap posts which correspond directly to the IC pins, com-~
ponent leads, and cable connections. All interconnections between components and the connectors are

made by wire wrapping to the 25 mil square wire wrap posts. See Figure 5-26.

5.6.2.1 Component Field Numbering

The wire wrap board is divided into 117 fields. FEach field can accomodate one IC (fixed or socket) and
up to four other components. Refer to Figure 5-25 for IC field numbers and component location designation.

Use Field A8 as an example (refer to Figure 5-27). The component designation takes the form A8-ITR, and
A8-1BR; where A8 is the board field, 1 indicates component location one (as viewed from the Apparatus Side),
T designates the top pin, B desiginates the bottom pin, and R indicates a resistor. The IC pack pin orien-
tation is bottom left to right, Pins 1-8; top right to left, Pins 9-16.

An example of a power gate mounted directly on a circuit board is shown in Figure 5-28. Note that the pin
numbers correspond directly with the actual IC pin number. Note further that the IC is located in Field

A8 and the diode is in component Position 1 of that field.

5.6.2,2 Connector Layout

Figure 5-29 shows the pin numbering system for the two standard 84 pin back panel connectors, and the two
standard 50 pin cable connectors. The fourth and fifth digits indicate the board number, 00-07. The sixth
and seventh digits specify the connector field 00 (zero), or 01 (one). INTERDATA uses the symbol (see
Figure 5-29) indicated for a back panel connection for schematic drawings.

5.6.2.3 Available Cables

INTERDATA provides two cables for use with this board. Cable 17-179 is a 10 foot, open ended cable
with 25 twisted pair, 28 ga. stranded, and is useful for connecting to user circuits, Cable 17-178 is

a 3 1/2 foot, 25 twisted pair, 28 ga. stranded cable, suitable for interconnecting more than one GPWW
board. Cables are purchased separately.

etececctccee
Mo,

:E:..“....:::

0
Sessssncane
poie)

YY1 YYY LA

P T T YT T Y

R

°
etecsssessse
“":N.‘l"""

ce®000s0se,

H
seesescecnne
LT L XY TY A4S

sattercene,

.
RN Doyt

PO YT Y Y T Y

*
esecsccacess
L2

ee®tesssen,

.:...L.;....
vese®

Sesssseeees
)

. .
eescessccee Ry

0

etececsssece
(o)

.....'.'....

oI

APPARATUS oSessesecscelosecessesces
25-p88 Fveetelooeifleceece

eatotssnee,, ..

ecesssescsne

ee®t0scsse,

.
se000000ene

63

®®nessesee®

sefitessese,

stecnesennne
K3
533

steegascress

.
seeetoseccce
*%eecesece®® i

RS TY LYY TLLS

.
s0ssssvvsesn

SoedBaaete

*
XITYXTIYTYYY
AT YT LS

235

.. .
seMlecscccccssee

.
»
©

shesecenceee
Ke,

.
.
YT TY N .
IIOY Ry s .5
.
H .
X IYTYY YT
48 e .
.
.10
.
.
.
.
(]
.
.
X

POC Y YT TT T

0
tssccssecese
*esssecee®

3
LXLRTYYIYYY Y
AT TTTLAS

CONN 2

MNecsecscsccscvsccssosssonsasn
—®eeseccscevsessssescnnsse

.0 (X .
eesessee
o0 . .40
LASTY L YYTRAS P
.
FORTTITITTIN .
secasecssne hd °
e o35
e 0 0 0 .
stesanseces W Sevncsrecrollolorcrsecsreledengannnen M
®sesvsene®? AT YT T A . a4 .
.
JETTITTTYIN IOFTTTITITINN PP TTrrrrssy s
vesssnncesse M
. (3 e .
esessssssnee 0800000000 tersrscenee .
[T COIPRPPORTY DRPN) AR s

FLITYTIYTINN S

seflloe] ..

.
LXTYYYYYIYY

.
®essssccene
i AL T LYY TS

9
o

.
esevesscenss
ce

RATTYY) YYY LS

0
eofecaccsscsace

0
o stecsnsesens

AT TTTAAY RATYPYUPY TR L)

POCTITITYTIOS FOUTTTTTTTIN PO

[} 0

Figure 5-25.

INTERCONNECTIONS BETWEEN
COMPONENTS AND IC. PINS

General Purpose Wire

TO

Njeecssesscccsccorsrsscsnencossvccsssensnns

.
DAAAAAAAALYY FYY Xy g Ly (] [esl® * |3
seen . .
.
M
.
e o0
o
eptteocenn, .
M
eenee o :
. ees
e BZoinee N RIS MOM LRI HR R0t PORY T ANEt PN T et M
12 E2] M
oellee N wollee ol oollee cofleee M
)

Wrap Board

CABLE CONNECTION

WIRE WRAP POST

N !

I.C.PACK

COMPONENTS CAN NOT
BE MACHINE MOUNTED IN
POSITION 2 WITH A 14 PIN IC
PACK OR IN POSITIONS 2 AND 3
WITH A 16 PIN IC PACK.

| ™ A\

?
L L~

CONN |
~2 0000000000000 000cstet0srnssssessssessos

NUeocssssssccscesnernccnrsssscscsccscsccccnne

25- 288RO0COS5

®eesccrseesessecencesssnenseversronsRees

~ ~
~ ~ N
‘k-\-~\\\‘\~\\\~\::\\‘ o~ ~

25 MIL SQUARE WIRE WRAP POSTS CONNECTED TO ALL
I.C. PINS,COMPONENT LEADS.AND CABLE CONNECTIONS,

Figure 5-26.

5-36

Wire Wrap Posts/IC and Component Leads Connection

QIS

APPARATUS
SIDE
25-288

0
eeesessee
EO

.
*%oersense®®

ce®®

eeesvcone

84 PIN
CONNECTORS

0:...".2... -:...“.3....-

.
.

IC PACK
ORIENTATION
6 9

1 8

Figure 5-27. IC Circuit Board Numbering System

Al

Bl

Cl

844 6 FO

A8

Dl

[BT [\

El

IT«TB

A8

Figure 5-28. Example of a Power Gate

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

ssessecsesssnan

' ram ©
o
(M2 o
o
=]
@
©
©
~
1
0
40 N\ . o
.y
P
P
35
30

N
o
CONN O

eessessssasecssssessceccsessee
eeescsssdssssesssscsccccscscscee

FIELD A8
A8-1 TR —»

A8-1BR —»

5-37

41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
1S
14
13
12
[
10
09
[0X:}
o7
06
05
04
03
02
ol
00

>II2--0

SYMBOL FOR

BACK PANEL CONNECTION

84 PIN

BACK PANEL CONNECTORS

—AL

FIELD

0
[

0C0O0DO0OO0ODO0OO0DO0DO0ODO0OOD0ODOODODOOODO0OOODOOOO0O0OO0O0O0O00OO0OO0O0O0O00O0O0O0O0

oM 000 000000000000 O0O0O00O00O0CO0000000O0000O0OO0CO0O0O0O0O0OO0OO0

41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
H
10
09
[oF:]
o7
06
05
04
03
02
ol
00

00000000 000000000000 0C00O000O0000O00O000O0O0O0CO0ODO0OO0O0O0

Tigure 5-29.

FIELD
0
o 150 - 070!
[o]
° CONNECTOR FIELD NO.
o BOARD LOCATION NO.
° PIN NO.
g ROW OF CONNECTOR
)

o)
[o]
[o]
(o]
o 50 PIN
° CABLE CONNECTORS
o ﬁ A
o F'.ﬁ'er FL%‘nD
[o]
o 24 o o 24 [o) [
o 23} o o 23l o o
(o] 22 (o] (o] 22 o (o]
(o] 21 o] (o] 21 [o
(o] 20 (o] o 20 (e} [o]
(o] 19 (o] (o] 19 o [o]
[o] |18 (o] (o] 18 o (]
(o] 17 (o] (o] |7 o [o]
[o] 16 o) o] 16 (o] [o]
o 5] o o 5| o o
o 4]l c¢ o 4] o o
[e] 13 [o] o] 13 [o] o
[o] 12 [o] [e) 12 o] (o]
(] 11l [o] (o] 11 o] (o)
o woflo o o]o o
) o9l o o o9] o o
[e] 08 (o] (o) 08 o] o]
o 07 [o] (o] o7 (o] o]
o oe|l o o o6 | o o
(o] 05 (o] (o] 05 o) o]
(o) o4 (o] Q 04 (o) [o]
) 03] o o 3] o o
° 0ozl o o 2| o o
(o] [o]] [e) o 0l o] (o]
o 00 o o 00 o o
2 T 2 T 2

General Purpose Interface Board Comector Layout

CHAPTER 6
CONTROL CONSOLE

6.1 INTRODUCTION

This chapter describes the Control Console which operates with the INTERDATA Processors. The Control
Console provides the system operator with visual indications of the state of the Processor as well as man-
ual control over the system

6.2 CONTROL CONSOLE DESCRIPTION

The Control Console, shown in Figure 6-1, is a RETMA standard 5 1/4" x 19" panel which is plug remov-
able from the Processor. It displays the current state of the Processor and provides all necessary man-
ual controls for the system. The Control Console includes the following control and display elements:

Indicators ~ Power ON Lamp
- .Wait Lamp
- Display Register D1 - 16 Bits (top)
- Display Register D2 - 16 Bits (bottom)
Data Switches - Sixteen Data/Address Switches
Control Switches - Key operated OFF-ON-LOCK, Security Lock Switch
- Initialize Switch (INT)
- Execute Switch (EXE)
Function Switches - Single Switch (SGL)
- Run Switch (RUN)
- Twelve Position Rotary Function Switch

A functional description of each of these control and display elements is given in this section.
6.2.1 Key Operated Security Lock

This is a three-position, OFF-ON-LOCK, key-operated locking switch, which controls the primary power

to the system. This switch can also disable the Control Console, thereby preventing any accidental manual

input to the system. The POWER indicator lamp associated with the key lock switch is located in the up-
per left corner of the Control Console, The POWER lamp is lit when the key lock switch is in the ON or
LOCK position. The relationship between the key lock switch positions, primary power, and the Control
switches is:

OFF The primary power is Off.
ON The primary power is On and the Control switches are enabled.

LOCK The primary power is On and the Control switches are disabled.

6.2.2 Control Switches

The Control switches on the Control Console are active only when the key-operated locking switch is in the
ON position, The function of each of these switches is as follows:

INITIALIZE (INT) The momentary Initialize (INT) switch causes the system to be initialized.
After this initialize operation, all device controllers on the system Mul-
tiplexor Bus are cleared and certain other functions in the Processor
are reset. Initialize is not disabled when the key-switch is in the
lock position.

XE SGL RUN! 0

Figure 6-1. Control Console

EXECUTE (EXE) The momentary Execute (EXE) switch causes the Processor to perform the
Control Console operation selected by the Function switches, as discussed
in Section 6. 2. 3.

6.2.3 Function Switches

The three Function switches, SINGLE (SGL), RUN (RUN), and the 12 position rotary Function switch are
used to place the Processor in various operating modes. The Processor is controlled by setting the
function switches in the proper positions and then depressing the Execute (EXE) switch to activate the
function. The various Processor modes, and the method of entering each mode, are as follows:

ADDRESS - To enter the ADDRESS Mode
a) the 12 position Function switch must be in the ADR/MRD position
b) the SGL switch must be UP
c) the RUN switch must be UP
The desired address is specified on the 16 Data/Address switches. When the Execute
(EXE) switch is depressed, the specified address is placed into the address portion
of the Current Program Status Word PSW (16:31). (When the address is transferred
from the Data/Address switches, the least significant bit (PSW31) is cleared so that the
resulting address is always even.) The complete PSW is displayed on Display Register
D1 (top) and Display Register D2 (bottom). This address can be used to read data from
memory, to write data to memory, or to start the execution of a program.

MEMORY READ - To enter the MEMORY READ Mode
a) the 12 position Function switch must be in the ADR/MRD position
b) the SGL switch must be DOWN
c) the RUN switch must be UP
When the EXE switch is depressed, the data read from memory is displayed on
the Display Register D2 (bottom) indicator lamps, and the address incremented
by 2 of that data is displayed on the Register Display D1 (top) lamps. The ad-
dress portion of the PSW is also incremented by 2. Depressing EXE repeatedly
displays consecutive locations from memory.

MEMORY WRITE - To enter the MEMORY WRITE Mode
a) the 12 position Function switch must be in the OFF/MWR position
b) the SGL switch must be DOWN
¢) the RUN switch must be UP
The desired word to be written is specified on the 16 Data/Address switches. When the
EXE switch is depressed, the data written to memory is displayed on the Display Register
D2 (bottom) lamps, and the address incremented by 2 of that data is displayed on the Reg-
ister Display D1 (top) lamps. The address portion of the PSW is also incremented by 2.
Depressing EXE repeatedly writes data from the Data/Address switches into consecutive
memory locations.

6-2

RUN - To enter the RUN Mode

a) the 12 position Function switch may be in any position except OFF/MWR or
ADR/MRD

b) the SGL switch must be UP
c) the RUN switch must be DOWN
When the EXE switch is depressed, the Processor begins program execution. In the
RUN Mode, the Display Registers are idle. The program can use the Control Con-
sole as an I/0 device. If the program does not output to the Display Registers, these
registers retain the last value displayed prior to entering the RUN Mode.

SINGLE - To enter the SINGLE Mode
a) the 12 position Function switch may be in any position except OFF/MWR or
ADR/MRD

b) the SGL switch must be DOWN

c) the RUN switch must be DOWN

This mode allows programs to be executed, one instruction at a time, each time the

EXE switch is depressed. The Display Registers 1 and 2 contain various information

specified by the 12 position Function switch after each EXE as follows:

INS -~ the next instruction to be executed is displayed. The first halfword from

memory is shown in Display Register D1 (top) and the second halfword
from memory is shown in Display Register D2 (bottom).

PSW- the Current Program Status Word is displayed. The Program Status and
the Condition Code is shown in Display Register D1 and the Location Counter
is shown in Display Register D2.

RO:1
R2:3
R4:5 the pair of general registers specified by the switch is displayed. For
R6:7 example: if the switch is in the R8:9 position, General Register 8 is
R8:9 displayed on Display Register D1 and General Register 9 is displayed
RA:B on Display Register D2,
RC:D
RE:F
HALT - To enter the HALT Mode
a) the 12 position Function switch may be in any position except OFF/MWR or
ADR/MRD.

b) the SGL switch may be UP or DOWN (don't care)

¢) the RUN switch must be UP

When the EXE switch is depressed, the Processor enters a HALT Mode which is non-
interruptable. Any of the information listed above under the SINGLE Mode can be dis-
played on Display Register D1 and D2 by placing the 12 position Function switch in the
proper position and depressing the EXE switch.

When the Processor is in the HALT Mode, the WAIT indicator on the Control Console lights. The WAIT
indicator also lights between instructions when the Processor is in the SINGLE Mode. Finally, the
WAIT indicator lights when an executing program enters the WAIT state by setting Bit 0 of the PSW.
Note that the program initiated Wait state is interruptable, while the console initiated HALT Mode is not
interruptable,

6.3 CONTROL CONSOLE OPERATING PROCEDURES
6.3.1 Power Up

To power up and initialize (clear) the system:
1. Turn the key-operated security lock clockwise from the OFF position to the ON position.

2. Depress the momentary Initialize (INT) Control switch, to initialize the system.

This action provides electrical power to the system, and leaves the Processor in the HALT Mode. It is
recommended that before the system is used, a few important pointers and New PSWs in core memory be
initialized. The locations in memory to be adjusted are shown in Table 6-1,

TABLE 6-1
CORE MEMORY INITIALIZATION
Location Function Sugge.sted Comment
(hex) Setting
0022 Pointer to register 0058 This pointer should contain the address
save area ' of a block of 32 bytes which are
available for register save and
restore operations.
0034 New PSW for Illegal 8000 If an Tllegal instruction occurs, this
0036 Instruction Interrupts 0050 New PSW clears all interrupts and
puts the Processor into Wait state
with Location Counter = 0050,
003C New PSW for Machine 8000 This New PSW treats Machine
003E Malfunction Interrupts 0050 Malfunction Interrupts the same as
Illegal instructions for purposes of
initialization.
0050 Auto-Load sequence for D500 This sequence uses the Auto-Load
0052 loading programs 00CF instruction at 50 followed by an Uncon-
0054 4300 ditional Branch to 80 to perform initial
0056 0080 program loads. With this sequence loca-
tion 78 should be loaded with Device
0078 XXYY Number XX and Command Byte YY.
Refer to Appendix 8 for information
on I/0 devices.

The memory locations mentioned previously can be set using Memory Write operations as follows:

1.

6.

Enter '0022'- (0000 00000010 0010) into the Data/Address switches, release the SGL switch, set the
rotary Function switch to ADR, and depress the EXE switch.

Enter '0058' (0000 0000 0101 1000) into the Data/Address switches, depress the SGL switch, set the
rotary Function switch to MWR, and depress the EXE switch. This enters value '0058' into location '0022',

Enter '0034' in the Data/Address switches, release the SGL switch, set the rotary Function
switch to ADR, and depress the EXE switch.

Enter '8000' into the Data/Address switches, depress the SGL switch, set the rotary Function
switch to MWR, and depress the EXE switch.

Enter '0050' into the Data/Address switches, and depress the EXE switch. These steps enter values
'8000' and '0050' into memory starting at '0034'.

Follow similar steps until all specified locations in memory have been set properly.

Once these locations are set, their contents can be verified using Memory Read operations as follows:

1.

2,

6-4

Enter '0022' into the Data/Address switches, release the SGL switch, set the rotary Function
to switch ADR, and depress the EXE switch.
Depress the SGL switch, set the rotary Function switch to MRD, and depress the EXE switch. At this

point, the address ('0024') should be displayed in Register Display D1, and the contents of '0022"
('0058') should be displayed in Register Display D2.

3. Enter '0034' into the Data/Address switches, release the SGL switch, set the rotary Function
switch to ADR, and depress the EXE switch.,

4. Depress the SGL switch. set the rotary Function switch to MRD, and depress the EXE switch. At this
point, Register Display D1 should show the address ('0036') and Register Display D2 should show
the contents of '0034' ('8000').

5. To examine the next location, depress the EXE switch. At that time, Register Display D1 should
show the address ('0038'), and Register Display D2 should show the data ('0050").

6. Follow similar steps until all appropriate locations have been verified.

Once memory locations are set and verified, it is still necessary to initialize the Current PSW. Note that
while the Location Counter [PSW (16:31)] can be set using the ADR/MRD position of the rotary Function
switch, there is no way to directly adjust the program status [PSW (0:15)] from the Control Panel.

When power is turned on, the program status is loaded from memory location 0024, the PSW save area.
Following a cold start, this initial setting is arbitrary, The program status can be set in two ways:

either by executing an LPSW or EPSR instruction, or by servicing an interrupt with a PSW swap. For
system initialization, the recommended procedure is to execute an Illegal instruction, which forces the
Illegal instruction PSW swap. Using core memory settings suggested above, this PSW initialization can

be performed by starting program execution at location '0034', which is an Illegal instruction. The specific
steps are:

1. Enter '0034' into the Data/Address switches, release the SGL switch, set the rotary Function
switch to ADR, and depress the EXE switch.

2. Depress the RUN switch, set the.rotary Function switch to a position other than OFF/MWR
or ADR/MRD, and depress the EXE switch.

The result of performing these two steps is that the Processor attempts to execute the contents of location
'0034' ('8000') which is an Illegal instruction. An Illegal instruction PSW swap occurs, which loads the pro-
gram status with '8000', loads the Location Counter with 50, and leaves the Processor in the Wait'State. At
this point, if the EXE is depressed, the Processor executes the Auto-Load sequence at '0050",

6.3.2 Power Down

To shut down power to the system,

1. Place the Processor in the HALT Mode as described in Section 6. 2. 3.

2. Turn the key-operated security lock to the OFF position.

This removes AC power from the system and forces a Primary Power Fail Interrupt to the Processor.
Refer to 6. 4.4 for further defails.

6.3.3 Program Loading

There are many ways to load the memory with programs and/or data, Most programs are loaded using
one of the program loaders associated with the system software. Refer to Chapter 11 for details on
loaders and other software programs.

The Auto-Load sequence, referred to in the previous section, is useful for loading programs when the
system is being initially loaded, or when no other program loaders are in memory. The sequence
recommended in the previous section is described below:

TABLE 6-2
AUTO LOAD SEQUENCE
Location Contents Instruction
50 D500 AL X'CF! AUTO LOAD
00CF
54 4300 ‘ B X'80' BRANCH TO 80
0080
78 XXYY DC X'XXYY' DEV NO AND CMND

This sequence is based on the Auto-Load instruction, which is described in Section 5.3.10., This instruction
reads eight-bit data bytes from Device XX into memory, starting at location 0080. The load operation
proceeds until the device indicates a termination status, or until a specified upper limit is reached. In the
sequence above, the limit is defined as location '00CF', which allows 80 bytes to be read. With the Auto-Load
instruction, the device address to be used is specified in byte location '78', and the command byte which
starts the device is specified in byte location '79'. Leading zero data bytes are skipped and not loaded. This
sequence is appropriate with a Teletype or a paper tape reader which transfers eight-bit data bytes. When
the Auto-Load instruction terminates, the Branch instruction transfers control to location '0080'. This
Auto-Load sequence can be easily changed to meet other requirements. The upper limit (00CF), at 0052,

can be changed to load programs of different length. The transfer address ('0080"), at '0056', can be changed
to branch to a different location. Following the Auto~Load instruction, it is possible to test the Condition
Code to determine exactly how the Auto-Load operation terminated. An all zero Condition Code implies that
the specified program length was loaded. A non-zero Condition Code implies that the device terminated the
load sequence before the program length was satisfied.

6.3.4 Program Execution

To begin the execution of a program, the system must be in the Halt Mode.
1. Set the rotary Function switch to ADR/MRD.
2. Release the SGL switch.
3. Enter the program starting address in the 16 Data/Address switches.
4. Depress the momentary EXE switch.
5. Set the rotary Function switch to a position other than OFF/MWR or ADR/MRD.
6. Depress the RUN switch.
7

. Depress the momentary EXE switch. The Processor is now in the RUN Mode.

To execute a program in the Single Step Mode-one instruction at a time-the system mustbe in the HALT Mode.
1. Set the rotary Function switch to ADR/MRD.
. Release the SGL switch.
. Enter the program starting address in the 16 Data/Address switches,

2

3

4. Depress the EXE switch.

5, Depress the SGL switch and the EUN switch.
6

. Set the rotary Function switch to select the register(s) desired for display. (Must be a posi-
tion other than OFF/MWR or ADR/MRD.)

7. Depress the EXE switch to execute one instruction.

8. Repeat Step 7. to execute successive instructions.
At any time during the single-step sequence, the rotary Function switch can be adjusted to change the
selection of registers to be displayed. To examine more than one register pair without executing more
instructions, release (raise) the RUN switch. This leaves the Processor in the HALT Mode. Then select
the registers to be displayed with the rotary Function switch, and depress the EXE switch to observe those

registers. Depress the RUN switch to resume single-step execution. Note that the system is not respon-
sive to I/O Interrupts while in the Single Step Mode.

6.3.5 Program Termination

To manually halt the execution of a program,

1. Set the rotary Function switch to a position other than OFF/MWR or ADR/MRD.

2. Release the RUN Switch.

3. Depress the momentary EXE switch.
When the Processor enters the HALT Mode, the Register Displays are updated as specified by the rotary
Function switch. For example; if the EXE switch is depressed with the rotary Function switch set at the PSW
position, the execution is halted and the Current PSW is displayed on the Register Displays. Each time
the EXE switch is depressed, while in the HALT Mode, the Register Displays are updated as specified by the

rotary Function switch. Therefore, to display different register pairs once the Processor is in the HALT
Mode, change the rotary Function switch setting and depress the EXE switch.

6.3.6 Manually Initiated Memory Operations

6.3.6.1 Memory Read

To display the contents of memory locations on the Register Displays the Processor must be in the HALT
Mode.

1. Set the rotary Function switch to the ADR/MRD position.

2. Release the SGL switch.

3. Enter the memory read starting address in the 16 Data/Address switches.
4, Depress the EXE switch,

5. Depress the SGL switch.

6. Depress the EXE switch.

7. The address read from, plus two, appears in Register Display D1. The data read from memory
appears in Register Display D2.

8. Repeat from Step 6. to read successive memory locations. The Location Counter is automatically
incremented each time the EXE switch is depressed.

6.3.6.2 Memory Write

To write data from the Data/Address switches into memory the Processor must be in the HALT Mode.
1. Set the rotary Function switch to the ADR/MRD position.
2. Release the SGL switch.
3. Enter the memory write starting address in the 16 Data/Address switches.
4. Depress the EXE switch.
5, Set the rotary Function Switch to the OFF/MWR position.
6. Depress the SGL switch.

7. Enter the data to be written in the 16 Data/Address switches.
8. Depress the EXE switch.
9. The address written into plus two appears in Register Display D1. The data written into memory
appears in Register Display D2.
10. Repeat from Step 7. to write into successive memory locations. The Location Counter is auto-

matically incremented each time the EXE switch is depressed.

6.4 PROGRAMMING CONSIDERATIONS

6.4.1 Control Console I/O

The Control Console is available to any running program as an I/O device with Device Address 01, The
status and command bytes for the Control Console are summarized in Appendix 8. The status byte indi-
cates the setting of the Function switches, The command byte specifies either Normal or Incremental
Mode, which pertains to data transfers. In the Normal Mode, the selection logic which determines which
half of the Data/Address switches and which byte of the Register Displays is transferred is reset every
time the Control Console is addressed on the Multiplexor Bus. The Control Console is addressed by
every I/0 instruction using Device Address 01. Subsequent Read or Write instructions transfer sub-
sequent bytes as shown in Figure 6-2. Normal I/O instructions, therefore, can be used to input data from
the Data/Address switches, and output data to the Register Displays.

REGISTER DISPLAY 1 |0‘000] Iooool Iooool |oooo|
[J [J
Y v
D4 D3
REGISTER DISPLAY 2 [Ooool Iooool Loooo] Ioooo]
- J \ J
A4 Y
D2 D1
DATA/ADDRESS SWITCHES l | I]—I Ll I I] LI] | | | I | I |
. J \ J
v h 4
s2 s1
Data Transferred
Instructions
Executed Normal Mode Incremental Mode
(RR or RX)
RD st s1
RD si 2
RD s s1
RD s s2
RH s1, s2 s1, S2
RH s1.'S2 s1, s2
RB* S1, $2, S1, S2 s1, S2, 81, S2
WD D1 D1
WD D1 D2
WD D1 D3
WD D1 D4
WH D1, D2 D1, D2
WH D1, D2 D3, D4
wB* D1, D2, D3, D4 D1, D2, D3, D4

* RB and WB instructions can only be used if the rotary Function switch is in the OFF/MWR or
ADR/MRD position assuring zeros in Status Bits 4 through 7. Appendix 8.

Figure 6-2.

Control Console Data Transfers

6.4.2 Console Interrupt

In the Processor, an interrupt can be generated from the Control Console as follows:
1. The program must have Bit 4 of the Current PSW set, which specifies Automatic I/O Service Mode.

2. The operator must have the rotary Function switch in the OFF/MWR position, the SGL switch
released, the RUN switch depressed, and then depress the EXE switch.

This feature enables an operator to inform the running program that some operator service or function is
needed. No acknowledgement of the interrupt is needed by the running program. If the Automatic I/O
Service Mode is not enabled, console interrupts are not generated and are not queued.

6.4.3 Wait State

The running program can put the Processor into the Wait State by setting Bit 0 of the Current
PSW. The operator is informed of this action by the WAIT indicator lamp lighting. The Pro-
cessor can leave the Wait State and resume execution in two ways:

1. An interrupt can occur, caucing a PSW swap and the execution of a routine to service the interrupt.
When the routing restores the original PSW, the Wait State will be re-established.

2. The operator places the Processor into the RUN Mode as described in Section 7.2.3, which causes
the execution to resume at the address specified by the Location Counter [PSW (16:31)] .

Note that the use of the programmed Wait State must be considered carefully when using Single-Step Mode.
That is, with single-step execution it is possible to madvertently "step through' the Wait State, through
rapid or continuous use of the EXE switch.

6.4.4 Power Fail

Depressing the INT switch of the Control Console deactivates the system clear relay (SCLRO) in the
system for a brief interval (approximately one-second). When this happens, the Processor saves the
Current PSW in memory locations 0024 and 0026, and the 16 General Registers in the block indicated by
the contents of 0022, and then follows an orderly shut-down sequence, which preserves the data within
memory. When the relay is reactivated, the PSW and General Registers are reloaded from memory, and
the device controllers are all initialized. At this point, the Processor interrogates the Control Console.
If the Function switches are not set up to enter the RUN Mode, the Processor enters the HALT Mode and
the WAIT lamp is illuminated. If the Function switches are set up to enter the RUN Mode, the Processor
examines Bit 2 of the restored PSW. If PSW Bit 2 (the Machine Malfunction Interrupt Enable) is set, the
Processor then performs the appropriate PSW swap for Machine Malfunction Interrupts. The purpose of
this interrupt is to inform the running program that a power failure/restore has occurred. If Bit 2 of the
PSW is not set, program execution resumes where it left off, with no Machine Malfunction Interrupt.

The use of the INT switch should be considered carefully when Bit 2 of the Current PSW is enabled.

6-9/6-10

CHAPTER 7
INTERDATA SOFTWARE FAMILY
7.1 INTRODUCTION

A comprehensive family of software products is available for use on INTERDATA Processors. The
INTERDATA software family is outlined in Figure 7-1.

® OPERATING SYSTEMS
— BASIC OPERATING SYSTEM
— DISC OPERATING SYSTEM
— REAL TIME OPERATING SYSTEM
® COMPILERS
— INTERACTIVE FORTRAN
— ANSI STD FORTRAN (FORTRAN I¥)
ASSEMBLERS
— CONDITIONAL ASSEMBLIES
UTILITIES
— LOADERS,DUMPS,MEMORY CHANGE , DEBUG
— TEXT EDITOR

Figure 7-1, INTERDATA Software

This family includes three powerful operating systems to simplify program development and implementation.
The Basic Operating System (BOSS) and Disc Operating System (DOS) are batch oriented systems, while the
Real Time Operating System (RTOS) is a comprehensive multi-programming, foreground/background system.
All systems support device independent programming.

The major features of these operating systems are outlined in Figures 7-2, 7-3, and 7-4.

DEVICE INDEPENDENT PROGRAMMING
CONSOLE OPERATOR INTERFACE
PROGRAM LIBRARY MAINTENANCE
DISC FILE SUPPORT

VERY SMALL SIZE

Figure 7-2. BOSS Features

DEVICE INDEPENDENT PROGRAMMING
OVERLAPPED I/0
OPERATOR COMMANDS FROM ANY INPUT DEVICE
CATALOGED OPERATOR COMMAND FILES

— JOB CONTROL LANGUAGE
SEQUENTIAL ,RANDOM OR DIRECT FILE ACCESS
BLOCKING AND DE-BLOCKING OF LOGICAL RECORDS
BUFFERED FILE OPERATIONS

Figure 7-3. DOS Features

DEVICE INDEPENDENT PROGRAMMING
OVERLAPPED I/0
CONSOLE OPERATOR INTERFACE
WIDE RANGE OF FUNCTIONS

— PROGRAM/OPERATOR CALLABLE
WIDE RANGE OF SUPPORTED DEVICES
BULK/CORE AND ALL-CORE VERSION
MULTIPROGRAMMING
DYNAMIC MEMORY ALLOCATION
BACKGROUND PROCESSING

— LANGUAGE PROCESSING

— PROGRAM TESTING

— LIBRARY MAINTENANCE
MEMORY PROTECT—-ALL PROGRAMS
REAL TIME FORTRAN INTERFACE

Figure 7-4. RTOS Features

Two FORTRAN compilers are available for the INTERDATA family of Processors. Interactive FORTRAN
is a simple, easy to learn, subset of FORTRAN that allows the user to use the computer system in a time-
sharing-like mode. For more complex problems, a full ANSI Standard FORTRAN (FORTRAN 1V) compiler
is available. A comprehensive real time FORTRAN IV interface is available under the Real Time Oper-
ating System (RTOS).

Most programs in the INTERDATA software family are available in stand-alone versions with integral

1/0 routines, and in OS versions for use with operating system I/O routines. The operator commands used
with the various OS programs vary slightly depending on the operating system being used. In this chapter,
BOSS commands are used in all operating system version descriptions. For details on operator commands
used under the other operating systems, refer to the appropriate operating system manual.

Every program in the INTERDATA standard product family is fully documented and supported. In addition,
INTERDATA specifically includes these software products in its standard warranty.

The sections of this chapter dealing with BOSS, DOS, RTOS, and FORTRAN IV present summary information
only. For details on these programs, refer to the appropriate programming manual.

This chapter describes only the more widely used software products. For a summary of other programs
currently available, refer to the Available Software List, Publication Number 29-239. In addition, many
useful software packages are available from the INTERCHANGE User's Group Library. An INTERCHANGE
Program Library Catalog of these programs is available upon request.

7.2 COMPARISON OF OS vs STAND-ALONE PROGRAMS

This section contains descriptions of both the Basic Software Package, which includes stand-alone programs,
and the OS Software Package, which includes programs that run under an Operating System. The programs
in these packages are:

Basic Software Package OS Software Package
REL Loader 06-024 REL Loader 06-024
General Loader 06-025 OS Library Loader 03-030
Basic Assembler 03-024 . OS Assembler 03-025
Hex Debug 03-013 OS Hex Debug 03-032
Text Editor 03-026 OS Text Editor 03-027

A detailed explanation of these programs is found later in this chapter. This section compares the general
usage of Operating System (OS) programs with the stand-alone programs.

The stand-alone programs listed above contain driver routines which allow the programs to work with an
ASR-33 or ASR-35 Teletype, a High Speed Paper Tape Reader/Punch, and/or a Line Printer. The Basic
Assembler also supports a Card Reader. These programs are device dependent, in the sense that they
function with those devices and only those devices. The Device Definition Table in the 50 Sequence is used
to select which of the above devices to use. Refer to Section 7.9. 2.

The OS programs, on the other hand,, use the Basic Operating System (BOSS), the Disc Operating System
(DOS), or Real Time Operating System (RTOS) for 1/0 which means they are device independent. The OS
programs use logical unit numbers, and therefore, function with any device by making the proper device

assignment. A typical use of legical unit numbers is OS programs is as depicted in Table 7-1.

TABLE 7-1
LOGICAL UNIT NUMBERS

Logical Unit Number Usage
0 Console or operator device
1 . SBource input device
2 Binary output device
3 List output device
4 Scratch input/output device
5 Keyboard input/output device
6 Binary input device
7 X

7.3 PROGRAM PREPARATION

The steps required to prepare a program are summarized in this section. The first step in implementing
a program is to write the program using assembly language statements as described in Section 7.5 and in
the Assembler Language Manual, Publication Number 29-230., Given a symbolic description of a program,
the preparation process involves 11 steps as listed below. Programs and their object tapes, mentioned
below, are numbered only by their program numbers without revision levels. Refer to a current Available
Software List, Publication Number 29-239, for current revision levels,

1. Enter a 50 Sequence into memory, if necessary, and set up the Device Definition Table.
2, Load the REL Loader or an Operating System.
3. Load the Text Editor (TIDE)
4, Prepare program source tapes/card decks.
5. Load the Basic or OS Assembler,
6. Assemble the source tape/card decks.
7. Load an appropriate loader, the REL, General, or OS Library Loader, if necessary.
8. Load the user's object tape(s).
9. Load Hex Debug (CLUB) if necessary.
10. Execute/test/debug the object program.
11. Punch new tape if desired or correct source as necessary and reassemble.

These 11 steps are summarized in Figure 7-5. These steps are discussed in the following two sections,
differentiating the Stand-Alone and Operating System environment. BOSS is used as an example in the Op-
erating System section. A similar procedure is used under RTOS or DOS.

7.3.1 Programming in an Operating System Environment

The 11 steps summarized in Figure 7-5 are discussed in the following paragraphs as they relate to the
user in a Basic Operating System environment using the BOSS Software Package.

STEP 1. If the appropriate 50 Sequence is not already in memory, it must be manually entered using the
Control Panel. This includes the setting up of the Device Definition Table. Location X'0078'
must contain the Binary Input Device physical address and command byte information.

STEP 2. Load the desired Basic Operating System.

STEP

N

7-4

l CODE SYMBOLIC PROGRAM

[]

I MANUALLY ENTER 50 SEQUENCE

1

LOAD RELOCATING LOADER

LOAD OPERATING SYSTEM (BOSS)
(ASSIGN PHYSICAL-TC—~LOGICAL RELATIONSHIP)

=]

| ™%

SOURCE

NO PROGRAM

NEED EDITING
TO
TAPE

| LOAD TEXT EDITOR (TIDE)]
| > -

TYPE PROGRAM IN ASSEMBLY LANGUAGE l

KEYPUNCH CARDS]

| PUNCH SOURCE PROGRAM TAPE l

ALL SQURCE
TAPES PUNCHED
CORRECTLY

NC

g
| LOAD ASSEMBLER
Te

]

NO

SOURCE
DECK/TAPES

| ASSEMBLE SOURCE CARD DECK/TAPE l

ALL
CORRECT
ASSEMBLY LISTINGS

NO

NEED EDITING

AND OBJECT
TAPE (S)
DONE?

EXTRN/ENTRY

LOAD REL LOADER

LINKAGE INVOLVED
2

0s

USE BOSS RESIDENT LOADER

LOAD GENERAL LOADER

LOAD OS LIBRARY LOADER

NO

YES

OBJECT
TAPES

BINARY IMAGE:
DUMP WITH CLUB'S “Q"
DIRECTIVE.

M@/M17: DUMP WITH CLUB'S L

0" DIRECTIVE.

MO08/M16: REASSEMBLE
CORRECTED SOURCE

LOAD USER PROGRAM OBJECT TAPE (S)

ALL
PROGRAMS LOADED

NO

NEED
CORRECTION

CORRECTLY?

| LOAD HEX -DEBUG (CLUB)]
Tes-

YES

[resticomrect user proGRAM () wiTH cLuB |

REASSEMBLE

SWITCH CHOOSE YES
DESIRED FORMAT OF PROGRAM
USER OBJECT OK
PROGRAM
Figure 7-5. Program Preparation Sequence

STEP 3.

A. Put the proper bootstrap BOSS tape in the tape reader.

B. At the Control Panel, set the Data/Address switches to X'0050', select ADRS MODE, and
depress EXECUTE.

C. Depress INITIALIZE.
D. Select Run Mode, and depress EXECUTE.

E. The tape starts to move, unless the reader is a Teletype. In this case, start the tape
moving by toggling the reader switch to START (ASR-33) or to RUN (ASR-35).

F. When errors are detected during the load, the tape stops. In this case, reposition the tape
to the previous record gap and depress EXECUTE. ' Refer to Section 7. 9 for details on
error recovery procedures.

G. The load is complete when the BOSS tape has been read to the end and the message '"BOSS"
is printed on the System Console. With the Basic Operating System in memory, it is nec-
essary to assign physical device addresses to the logical unit numbers to be used. Refer
to Table 7-1 for logical unit number usage.

Now that the Basic Operating System has the physical-to-logical device relationships defined,
either the Text Editor or OS Assembler can be loaded by the BOSS Resident Loader.

When the configuration contains a card reader and source programs are in card deck form, the
user skips Steps 3 and 4 and goes directly to Step 5 to assemble his card deck. Source tapes can
be created using the OS Text Editor, Tape Number 03-027M16, To load the OS Text Editor:

A. Put the OS Text Editor (TIDE) tape in the tape reader.

B. At the console device, define the desired Bias value with the BIAS command; if the next
available location is satisfactory, no BIAS command is needed.

C. Command BOSS to load from the logical unit (LU) that corresponds to the physical tape
reader by typing LOAD LU.

D. If errors are detected during the load, the tape stops and BOSS notifies the operator on the
System Console with a message.

If the Bias selected requests the Resident Loader to load over the BOSS area, the messages
printed are:

LD ERR
EOJ

The user should recheck the defined Bias setting. If the loader detects a sequence record
number error or check sum error it prints the respective messages:

SEQ ERR or CKSM ERR
PAUSE PAUSE

The user can reposition the tape to the previous record gap and type CONTINUE. If the
calculated load address exceeds memory the message printed is:

MEM FULL
EOJ

If Input/Output errors occur, BOSS prints the message:

I/0 ERR XXNN
PAUSE

where XX = bit status of error
and NN = physical device address

STEP 4.

STEP 5.

STEP 6.

STEP 7.

STEP 8.

E. The load is complete when the tape data has been read to the end, and BOSS reports on the
System Console device the next available location (XXXX) in memory that can be loaded
by printing the message END XXXX. BOSS awaits further direction.

Now that OS Text Editor (TIDE) is in memory, BOSS can be directed to start the TIDE program
by typing START XXXX where XXXX is the starting location of the TIDE program. TIDE uses
logical unit number as follows:

EI_ Logical Function

01 Source Input Device
02 Binary Output Device
03 List Device

05 Keyboard Device

Prior to TIDE's execution, the user must have these assigned as desired.

The user's source tapes can now be prepared by the methods available with TIDE. For details
of the use of TIDE, refer to Section 7.10. To bring control back to BOSS, after the source
tapes are created, type the TIDE Control command letter "E" whenever TIDE is in the Command
Mode. BOSS responds with the message EOJ (End Of Job).

Given the source card deck(s), or the source tape(s) as prepared by TIDE, the next step is to
assemble the source program into an assembly listing and object program. For this step,

the OS Assembler, Program Number 03-025, must be loaded into memory. Again, a Bias is
selected, as desired, using the BIAS command in BOSS. Users with more than 16KB of core
could load the Assembler above OS TIDE, by typing LOAD LU, where LU is the logical load
device and BOSS automatically loads the OS Assembler at the next available location discussed
above. However, it is generally advisable, to always allow as much core memory as possible
for the OS Assembler's Symbol Table. Procedures to load the OS Assembler are the same

as those described in Step 3, for the OS TIDE program,

Now that the OS Assembler program is in core memory, the operator assembles his source
card deck(s) or source tape(s) by following the operating instructions specific to the OS
Assembler running under BOSS control. These are described in Section 7.5. At the end of
assemblies, BOSS responds with the message EOJ (End Of Job).

For each source program assembled, the OS Assembler generates an assembly listing which
may call attention to a multitude of error conditions, some of which may indicate the object

tapes produced are in error. The user should inspect his assembly listing(s) to determine
whether to continue at this point or to correct his source and reassemble, The OS Assembler
generates object tapes in loader format which are ""zoned" when output to a Teletype punch

device and '"non-zoned" when output to a non-Teletype punch device. The object tapes may be
absolute or relocatable depending on how the source program was written. When they are
relocatable, a Bias must be selected and defined to the loader that loaded them. If the user
programs involve ENTRY's or EXTRN's, the OS Library Loader, Tape Number 03-030M16, must
be loaded since the BOSS Resident Loader does not provide linkage capability. If no ENTRY/
EXTRN linkage is involved, see Step 8, and use the BOSS Resident Loader to load the user
program(s). To load the OS Library Loader, place Tape Number 03-030M16 in the tape reader,
reset the Bias to the next available location above BOSS and follow the general loading procedures
outlined in Step 2 above.

With the BOSS Resident Loader or OS Library Loader in memory, the user's object tapes can

be loaded. The loading process is as described above for the BOSS Resident Loader or reference
may be made to Section 7.9 for details on any loader. If, for some reason, the user's object
tapes do not load correctly, the user checks the loaders' error indications, or rechecks his
assembly listings, to determine if it is necessary to either reassemble his source program, or
to return to the editing process to correct his source program,

STEP 9.

STEP 10.

STEP 11.

BOSS allows absolute memory examination and modification, so that if these debugging aids
suffice, the user can proceed to Step 11. If it is necessary to test or debug the user program
just loaded, the OS Hexadecimal Debut (CLUB), Tape Number 03-032M16, should be loaded
following similar procedures as described in Step 3 above.

With BOSS and its Resident Loader or OS Library Loader, the user programs, and OS Hex
Debug, in memory, the user is now ready to debug his program, Refer to Section 7.11

for the operating procedures and debugging techniques described in detail. Control is returned
to BOSS when executing the CLUB program by typing the OS CLUB "*'" asterisk directive.

If during the debugging, it is determined that a reassembly is in order, the user corrects his
source and returns to the editing process. Once the user is assured his object program runs
correctly, he may elect one of several ways to format his hard copy of the object program.

The user may punch a binary memory image M14 tape using CLUB's "Q'' directive, or an MO09/M17
absolute binary object tape in loader format using CLUB's "O'" directive, or he may adjust

his source and reassemble to obtain a new assembly listing and object tape in M08, M09,

M16, or M17 loader format.

7.3.2 Programming in a Stand-Alone Environment

The 11 steps summarized in Figure 7-4 {o prepare a user program are discussed in the following para-
graphs as they relate to stand-alone programs in the Basic Software Package,

STEP 1.

STEP 2.

STEP 3.

If the appropriate 50 Sequence is not already in memory, it must be manually entered using the
Control Panel.

In order to get the TIDE Program into memory, the REL Loader, Program Number 06-024 is
required. The loader is entered into memory as follows:

A. Put the loader tape in the tape reader, observing the first character alignment when the
50 Sequence used does not contain the Auto Load feature.

B. Set the Data/Address switches to X'50', select ADRS Mode, and depress EXECUTE.
C. Depress INITIALIZE.
D. Select Run Mode, and depress EXECUTE.

E. If a Teletype is in use, start the tape moving by toggling the reader switch to START
(ASR-33) or RUN (ASR-35). After a momentary delay, the lights flash on the right half
of Display Register 2 indicating that the tape is actually loading. If this does not occur,
check to see if all the proper loader procedures above were followed.

F. If errors are detected during the load, the tape stops. In this case, reposition the tape
to the previous record gap and depress EXECUTE. Refer to Section 7.9 for details
on error recovery procedures.

G. The load is complete when the tape has been read to the end, and the Processor halts with
the WAIT light illuminated.

Now that the loader is in memory, the TIDE program can be loaded. This is done as follows:

A. Put the TIDE tape in the tape reader.
B. Depress EXECUTE. This executes the REL Loader and starts the TIDE tape moving.

C. If errors are detected during the load, the tape stops. In this case, reposition the tape
to the previous record gap and depress EXECUTE.

D. The load is complete when the tape has been read to the end, and the Processor with the
WAIT light illuminated.

STEP 4.

STEP 5.

STEP 6.

STEP 7.

STEP 8.

STEP 9.

STEP10.

STEP11.

7-8

Now that TIDE is in memory, the source tapes can be prepared. For details on the use of TIDE,
refer to Section 7. 10.

Given the source tapes as prepared by TIDE, or the source card deck, the next step is to
assemble the source. For this step, the Basic Assembler, Tape Number 03-024M10, must be
loaded into memory as follows:

Put the assembler tape into the tape reader, observing the first character alignment when
the 50 Sequence used does not contain the Autoload feature.

Set the Data/Address Switches to X'50', select ADRS Mode, and depress EXECUTE.
Depress INITIALIZE.

Select Run Mode, and depress EXECUTE.

If a Teletype is in use, manually start the tape moving.

If errors are detected, the tape stops. In this case, reposition the tape to the previous
record gap and depress EXECUTE.

The load is complete when the tape has been read to the end, and the Processor halts
with the WAIT light illuminated.

The use of the Basic Assembler is described in Section 7. 5.

For each source program assembled, the Basic Assembler generates an object tape in loader
format; zoned when output to a TTY punch, non-zoned to non-TTY punch devices. These object
tapes must now be loaded into memory. The object tapes may be absolute or relocatable,
depending on how the source program was written. If object tapes are relocatable, a bias
must be selected and defined to the loader. If the programs involve ENTRY or EXTRN linkage,
the General Loader, Program Number 06-025, is required. The proper loader should be
entered into memory, using the same procedure as described under Step 2.

With the loader in memory, the object tapes can be loaded. The loading process is described
in detail in Section 7.9

If it is necessary to test or debug the user programs just loaded, the Hex Debug Program (C LUB)
may be useful.

The use of CLUB is described in Section 7. 11.

Once the user is assured his object program runs correctly, he may punch a binary core image
M14 tape of his program with CLUB's "Q" directive, or may punch an M09/M17 absolute binary
object tape with CLUB's "O" directive. He may adjust his source and reassemble to obtain a
new assembly listing and object tape in M08, M09, M16, or M17 tape format.

7.4 PROGRAMMING CONVENTIONS

This section summarizes some of the conventions used in programs and documentation supplied by
INTERDATA.

Convention Comments

Hexadecimal Notation INTERDATA documentation uses hexadecimal notation extensively. The letter
X denotes that the following alphanumeric characters, enclosed in single quote
marks, form a hexadecimal number. Thus, X'50' indicates 50, 4.

In some contexts, hexadecimal notation is used exclusively. For example,
CLUB, the interactive debug program, uses hexadecimal numbers only. Also,
a program listing as generated by the assembler, describes the binary form of
the program in hexadecimal. In these cases, the X'---' notation is not used
and all numbers are assumed to be hexadecimal. In general, memory locations
and program starting addresses are also defined in hexadecimal.

ASCII Codes Standard programs supplied by INTERDATA represent characters in ASCII code.
This character code is defined in Appendix 8, The ASCII code represents each
character with 8 bits in which the high-order bit is available for parity. The
Parity Bit may change according to the input/output devices in use. Internal
to the Processor, most programs mask the high order bit to zero, and handle
the character in terms. of the 7-bit codes. The Assembler generates the 8-bit
form of ASCII codes for characters with the high order bit zero.

Slashed Zeros Certain documents use a slash to identify the digit zero (0) as opposed to the
letter "Q".
Device Number 2 Some INTERDATA programs, such as CLUB, TIDE and the test programs,

assume that Device Number 2 is a Teletype. This device is used for keyboard
inputs and message printouts. The REL Loader, General Loader and the Basic
Assembler take the special steps when Device Number 2 is specified in the
Binary Device Definition at X'78'. These special steps involve XON and XOFF
characters which control tape motions.

Device Number 4 The Basic Assembler assumes the card reader is Device Number 4.
Refer to Appendix 8 for other Standard-Preferred Device Addresses.

Memory Size Notation Memory sizes are described in terms of KB, which indicates "binary"
thousands of bytes. A '"binary' thousand is 1024.

7.5 INTERDATA ASSEMBLER PROGRAM
7.5.1 General Description

This section describes the Assembly Language for the INTERDATA Processor family. It also describes
the format of the assembly listing and binary object program.

INTERDATA Digital Systems are centered around a Processor which can be programmed to solve a wide
range of problems. The program to be executed by a Processor consists of binary coded instructions and
data which are stored in a memory.

To assist the process of defining and generating a program, the user can write his program in a symbolic
way, using what is called assembly language. In the assembly language, programs are represented using
symbols and mnemonic abbreviations for the instructions and data in the program. The statements in the
assembly language which represent the program constitute the source form of the program. Table 7-2 is
an example of an assembly language source program that searches an area of memory for the first
occurrence of the Number 15,

The translation from the symbolic source program to the binary object program is done by the Assembler.
The Assembler reads the source program, statement by statement, from punched paper tape or cards.

TABLE 7-2,
TYPICAL SOURCE PROGRAM
Name Operation Operand Comment

ORG X'100! : SET THE LOCATION COUNTER
BEGIN LHI 2, TOP TOP OF DATA TABLE

LHI 3,2 HALFWORD INCREMENT

LHI 4, BOTTOM BOTTOM OF DATA ri‘ABLE

LHI 10,156 SEARCH VALUE OF 15
LOOK CLH 10, 0(2) ' COMPARE

BE FINI BRANCH ON EQUAL TO FINI

BXLE 2, LOCK NOT FOUND GO LOOK FURTHER
FINI LPSW WAIT STOP THE PROGRAM
WAIT DC X'8000', A(BEGIN)
TOP DS 1000
BOTTOM DS 2

END BEGIN

As the statements are read, a Symbol Table is accummulated. This table contains every symbol and the
value of the Location Counter where the symbol was encountered. For the previous example, the complete
symbol Table is shown in Table 7-3.

TABLE 7-3.
TYPICAL SYMBOL TABLE
Symbol Value (in hexadecimal)
BEGIN 0100
BOTTOM 050C
FINI 011C
LOOK 0110
TOP 0124
WAIT 0120

The Assembler generates both anobjecttape and a listing. The object tape contains the binary information
to be loaded into memory. The listing is a printed record which shows each source statement and the binary
information generated for that statement., The binary information on a listing is always represented in
hexadecimal form as shown in Table 7-4.

There are two versions of the Assembler Program available. They are the Basic Assembler, Program
Number 03-024, and the OS Assembler, Program Number 03-025.

7-10

TABLE 7-4.
TYPICAL ASSEMBLY LISTING

Location Data Name Operation Operand Comments

0100 ORG X'100! SET THE LOCATION COUNTER

0100 C820 BEGIN LHI 2, TOP TOP OF DATA TABLE
0124

0104 C830 LHI 132 HALFWORD INCREMENT
0002

0108 C840 LHI 4, BOTTOM BOTTOM OF DATA TABLE
050C

010C C8A0 LHI 10,15 SEARCH VALUE OF 15
000F

0110 45A2 | LOOK CLH 10,0(2) COMPARE
0000

0114 4330 BE FINI BRANCH ON EQUAL TO FINI
011C

0118 C120 BXLE 2, LOCK NOT FOUND GO LOOK FURTHER
0110

011C C200 FINI LPSW WAIT STOP THE PROGRAM
0120

0120 8000 WAIT DC X'8000', A(BEGIN)
0100

0124 TOP DS 1000

050C BOTTOM DS 2

050E END BEGIN

BEGIN 0100

BOTTOM | 050C

FINI 011C

LOOK 0110

TOP 0124

WAIT 0120

The basic Assembler is a stand-alone program that operates in a minimum of 8KB memory.

This version of the Assembler has the feature that the floating-point conversion logic, which is used to
assemble floating-point data, can be overlaid to provide additional Symbol Table area. With this feature,
more symbols, and therefore larger programs, can be assembled if floating-point data conversions are not
required. Programs which do involve floating-point data must specify FLOAT in the first option (OPT)
statement, which prevents the floating-point logic from being overlaid. Error checks are provided to
detect if either FLOAT is specified, or floating-point data is encountered after the floating-point logic is
over-written. Refer to Basic Assembler Operating instructions in the Section 7. 12 for further details.

The OS Assembler requires an Operating System and a minimum of 16KB memory. It has the additional
PAUSE, IF, TITLE, DB functions; sequence check and scratch options; eveness error check; listing error
count; and assembles symbolic short format, extended RR branch instructions, and several optional in-
struction sets.

7.5.2 Assembly Procedures

The Assembly may take one, two, or three passes of the source program to complete the assembly. The
number of passes is controlled by an option control statement in the source program. Refer to the OPT
pseudo operation for details. When so directed, the Assembler makes an assembly, complete with listing
and object tape, in one pass. In this case the assembly time is minimized, but the resulting object tape is
longer, and the program listing is not complete because of forward reference representation.

With two-pass assemblies, the first pass is devoted to the development of the Symbol Table. On the second
pass, the listing is printed and the object tape is punched. Assemblies are normally performed using two
passes. The two-pass procedure is appropriate except where the input-output device configuration prohibits
punching and printing on the same pass. In this case, the three-pass assembly can be used. With a three-
pass assembly, the Symbol Table is built on pass one, the listing is printed on pass two and the object tape
is punched on pass three.

The assembly listing is produced as part of the assembly process. The listing contains the source state-
ments and the data generated from each statement. The first four hexadecimal digits in the left-hand
column represent the value of the Location Counter or values of symbols resulting from EQU Assembler
statements. The next four hexadecimal digits represent the data generated by the Assembler from the
source statement.

Error flags may precede the Location Counter values. These flags indicate that an error was encountered
in interpreting the statement. The meaning of each flag is shown in Table 7-5.

TABLE 7-5.
STATEMENT ERROR FLAGS

Error Flag Meaning
Blank Correct Assembly
F Format error
M Multiple defined symbol
O Operation nmemonic invalid
T Truncation error, a constant or expression has overflowed the specified limits
R Relocation error, a meaningless combination of relocatable symbols in an
expression
S Symbol table overflow
U Undefined symbol
Sequence Number Error
E Even-number violation in R1 or R2 field

Whenever an invalid op-error (O) occurs, the Assembler always advances the Location Counter by four
bytes so that the program can be easily patched for debugging.

A flag immediately following the data generated by the Assembler indicates whether the data is relocatable,
absolute, or a forward reference. These flags are defined in Table 7-6.

TABLE 7-6.
DATA FLAGS
Data Flag Meaning
Blank Absolute Data
R Relocatable Data
F Forward Reference Data

7-12

The Symbol Table that was accumulated during PASSI is printed following the END assembly pseudo-op.
Any statements containing symbols preceded by a U (Undefined symbol) error flag can be corrected at this
time and PASS1 of the assembly process repeated.

The Symbol Table is again printed following the END assembly pseudo-op of PASS 2, The symbols are
listed alphabetically with their values., K the symbol is defined, the value is followed by an R if that value
is relocatable. If the symbol is undefined, the last value of the Location Counter for a statement referenc-
ing the undefined symbol is printed. This value is called a reference address. The programmer uses the
reference address to directly locate where the undefined symbol appears in the program listing,

Preceding each symbol is a field for error flags.

The Symbol Table printout contains one of the two character flags shown in Table 7-7, preceding each
symbol:

TABLE 7-17.
SYMBOL TABLE ERROR FLAGS

Flag Description
2 Spaces Correct locally defined symbol
U Space Undefined local symbol
M Space Multiply defined local symbol
*Space Properly used EXTRN or ENTRY symbol
*k Symbol used in the operand of EXTRN or ENTRY not used properly or at all

within the program

* < An ENTRY symbol used as an EXTRN in the program (never defined), became
referenced

*> An EXTRN symbol used as an ENTRY in the program (became defined)

D* Symbol used in the operand of both an EXTRN and an ENTRY line (gets written

on object program as an ENTRY, if defined; as an EXTRN, if referenced.)

*M Any EXTRN or ENTRY that became multiply defined

7.5.3 Assembler Language

Source Statements

There are two basic kinds of source statements, instruction statements and comment statements. Instruc-
tion statements are used for Machine instructions and Assembler instructions. The instruction statements
may have the following information fields:

Name
Operation
Operand

- Comments

Common statements, which begin with an asterisk (*) in Column 1, should not be confused with the comment
field of the instruction statement. Comment statements can occupy the entire statement line.

7-13

Instruction Statements - The comment and instruction statements are written by the programmer on a cod-
ing form that has the various fields clearly marked. This form, when filled out, is used to generate the
source paper tape or source cards that are read by the Assembler during the assembly process. The Name
(label) begins in Column 1, the Operation begins in Column 10, the Operand begins in Column 16, and the
Comments are usually in Columns 35-60, The fixed field positions are a convenience for the programmer
only, and are not required by the Assembler.

The Assembler simply requires that fields be separated by at least 1 space but not more than 14 spaces.
The fields are described in the following paragraphs.

Name

A name consists of from one to six characters. The name must be written with the first character in
Column 1, and it must not contain any blanks. Names are used by the programmer to identify data and
instructions in the program. The first character must be a letter; the remaining five characters can be
letters or numbers. Typical names are:

NAME OPERATION OPERAND

START
ARG1
LOOP2

Operation

The operation field specifies a Machine instruction mnemonic that is translated by the Assembler to machine
code, or it specifies an Assembler instruction mnemonic to control the assembly process. An operation is
always required in an instruction statement, and should be written on the coding form beginning in Column
10. No blanks may be used within the operation. Typical operations are:

NAME OPERATION OPERAND

ORG
LHI
AHR
DC

Operand

Operands identify the data to be used by the instruction., The type of operand and the number of operands
required depend on the particular instruction appearing as the operation. No blanks may appear within or
between operands. Typical operands are:

NAME OPERATION OPERAND
AH R6, TEMP
BL OUT
STH R6, TABLE (R5)
B IN

Comment

Comments are descriptive text. Comments are printed on the assembly listing, along with the name,
operation, and operand of the source statement. Comments are written beginning after the first blank

in the operand, and can contain 26 characters. In general, Columns 35-60 are used when only 72 columns
are available for listing.

Comment Statements - Comment statements are descriptive text that can occupy the entire source state-

ment line. Comment statements are written with an asterisk (*) in Column 1, followed by any descriptive
text the programmer desires. They should contain no more than 55 characters in addition to the asterisk
when only 72 columns are available for the assembly listing as is the case for users listing on a Teletype
printer. Comment statements do not produce binary object information and are used only as documenting
aids. Several comment statements are:

* THIS IS A COMMENT STATEMENT
* IT CAN BE USED ANYWHERE IN A
* PROGRAM AS A PROGRAMMER

* AND DOCUMENTATION AID

*

*X<OR =Y/Z? IF SO, GO ON

Character Set - All source statements are written using the following characters:

Alphabetics A through Z
Numerics 0 through 9
Special characters + -, =% 1 ()blank

and all characters printable on a Teletype
Special characters considered
alphabetic $or. or @

The dollar sign ($), period (.), and at-sign (@) are considered by the INTERDATA Basic and OS Assemblers
as special alphabetic characters. That is, they may be used as the first character of any symbol, but only
as a symbol's first character. This feature is provided so that users who wish to reference the ENTRY
name® of the INTERDATA FORTRAN Run-Time Library Subroutines may assemble such EXTRN symbols
as $A, .0, or @V,

Assembler Language Structure

Each entry in a source statement may be composed of one or more items depending on the kind of source
statement being written.

- A name, when present must be a symbol

- An operation, always present, must be a Machine Instruction mnemonic or an Assembler
instruction mnemonic

- An operand may be composed of one or more expressions, which in turn are composed of
symbols, constants, and arithmetic combinations of symbols and constants

- A comment is optional

Symbols - A symbol is the name of a location or value. It is used in the name of a statement, as an
operand, or within an expression. In either case, symbols consist of from one to six characters. The
first character must be alphabetic. The characters that can be used for a symbol are:

Alphabetics A through Z
Special Alphabetics $, . , @ allowed only as the first character of a symbol
Numerics 0 through 9

The following symbols are valid and could be used as a name, as an operand, or within an expression.

T2
LOOP25
N

STOP
av

$N

.0

7-15

The following symbols are invalid for the reasons given:

SYMBOL ERROR CONDITION

2TOP First character is not alphabetic

COMMAND More than six characters

ATOD Contains a blank

X4/2 Contains a special character, a slash

AB@12 Contains a special alphabetic character in other than the symbol's first

character position

Instruction Constants - Instruction constants appear as an operand for both Machine instructions and
Assembler instructions. An instruction constant can be one of three types:

- Decimal
- Hexadecimal
- Character

In general, instruction constants define 16~bits or a halfword of information. The type of constant is
identified by a prefix code.

CODE CONSTANT TYPE
None Halfword Decimal
H Halfword Decimal
X Hexadecimal

C Character

Decimal constants can be from one to five decimal digits, not to exceed 32, 767 maximum or -32, 768
minimum, and are written as:

125
32765
-15

Hexadecimal constants can be from one to four digits. The hexadecimal digits are:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
The hexadecimal constant must be enclosed in single quotation marks and be preceded by the letter X,

Leading zeros are not necessary. The hexadecimal constants generated are right justified to form 16-bit
halfwords. Examples are:

X'F! generates X'000F!
X'D4E!’ generates X'0D4E'
X'030' generates X'0030'

Character constants used in the operand field of an instruction statement can be from one to two charac-
ters. The permissible characters are:

Alphabetics A through Z

Numerics 0 through 9

Special characterics + - =% () blank
and all ASCII coded characters printable on the Teletype except the single
quote (').

-

The character constant must be enclosed in single quotation marks and be preceded by the letter C. A
single character within the quotes is right justified to form a 16-bit halfword. Each character is trans-

lated into a byte of seven bit ASCII code.

C'*! generates X'002A"
Cc'12! generates X'3132'

C'XY! generates X'5859'

Expressions - An expression is a symbol, a constant, or a series of such items separated by the arith-

metic operations + (addition), and - (subtraction), Examples of valid expressions are:

SAM

5

LOOP+4
TABLE+X'12A!
STOP-GO+2
C'A'+l

-FROG

Relocatable and Absolute Expressions - An expression is absolute if its value is absolute. Similarly, an

absolute expression does not change as a function of the physical location of the program in the machine.

The value of a relocatable expression does change when the location of the program changes. The relocat-
able value changes by the difference in byte locations between the originally assigned area of storage and

the newly assighed area of storage.

An expression, when evaluated, produces a value which is considered absolute or relocatable according to

the rules outlined in Table 7-8.

TABLE 7-8.
ABSOLUTE AND RELOCATABLE EXPRESSION RULES
A+B A-B
A is absolute, B is absolute Absolute Absolute
A is absolute, B is relocatable Relocatable Invalid
A is relocatable, B is absolute Relocatable Relocatable
A is relocatable, B is relocatable Invalid Absolute

Location Counter - The value of the Location Counter can be referenced by using an *, which means,
Teurrent value of Location Counter." Addressing relative to the Location Counter is on a byte basis.
To specify an address that is one-RX instruction forward, the correct expression would be *+4.,

In the first two examples below, the Branch (B) ihstruction transfers to the instruction labeled LOOP 25.
In the last example below, the Load Program Status Word instruction would halt the Processor ready to
execute the instruction labeled LOOP 25,

NAME OPERATION OPERAND
B *+8
LHI R6,0

LOOP25 LB R5, TABLE(RS)
B *+6
SHR R6,R6

LOOP25 LB R5, TABLE(R6)
LPSW *+4
DC X'8000', LOOP25

The proper alignment of the Location Counter to halfword memory boundaries is provided by the Assem-
bler. If a character data constant specification is followed by an instruction or halfword data, halfword
alignment is forced. The value of the Location Counter is absolute or relocatable depending on the oper-
and entry of the Assembler ORG instruction, If the expression appearing as the operand is relocatable,
the Location Counter value (*) is relocatable; if the expression is absolute, the Location Counter value is
absolute. If no ORG is specified in a program, the Location Counter starts at relocatable zero.

7.5.4 Machine Instruction Format

The Assembler provides the facility for representing all the Machine instruction operation codes with
mnemonics., The binary instruction is generated by the Assembler from the operation mnemonic and the
operand. Table 7-9 summarizes the formats used.

The mnemonic in the operation field specifies the desired function, i.e., add. Each basic instruction has
a unique mnemonic that is used as the operation. These mnemonics, machine operations, and their names
are listed in Appendices 1 and 2. Extended Branch mnemonics are listed in Appendix 3. Some instruction
examples are:

RR - Format Instructions

NAME OPERATION OPERAND
GO LHR 1,2
BALR R15,R12
LOOP12 AHR 3,3
DHR DEND, ISOR
BTCR 8, EXIT
BFCR 3, ERROR
BTCR BUSY, SENSE
RETURN BR EXIT
NOPR
BCR CARRY
BLR R13

7-18

SF - Short Format Instructions

NAME OPERATION OPERAND
LIS R12,15
AIS R12,1
ICS R3,1
SIS COUNT, ONE
SLLS R2, 8
BTBS 8,2
BTFS 4,6
BEFBS BUSY,1
BFFS 5,10
LOOP BNES NOTEQL
NOTEQL BNLS LOOP
BMS END
BNZS *48
END BS LOOP
RX - Format Instructions
NAME OPERATION OPERAND
TEST1 STH R7, TEMP
MH 13, TABLE(3)
LH TWELV, 0(X7)
AH X'B', TOP+4(5)
BTC 8, HANGUP
BFC 3, DONE
BL HANGUP
BZ DONE
NOP ,
B ENTRY (INDEX)
RS - Format Instructions
NAME OPERATION OPERAND
LHI 0,X'9DAE"
AHI R7,1
BXLE R4, LAST1
SLHL R12,8
AL X'CF!
SINT 2
LPSW *+4

TABLE 7-9.
INSTRUCTION FORMAT SUMMARY

Type Machine Format Assembly Format* Applicable Instructions
Bits 8 4 4 16 | OPERATION OPERAND
OP R1 R2 opP R1,R2 All RR except branches
RR OP M1 R2 oP Mi1,R2 BTCR or BFCR
OP M1 R2 OPX R2 BR or NOPR or Extended RR Branch Mnemonics
OP R1 N oP R1,N Short Format Immediate
SF OP M1 D oP M1,D Short Format Branches
OP M1 D OPX A* Short Format Extended Branch Mnemonics
OP R1 X2 A oP R1, A(X2) | All RX except branches
RX OP M1 X2 A oP M1, A(X2)| BTC or BFC
OP M1 X2 A OPX A(X2) B or NOP or Extended Branch Mhemonics
RS OP R1 X2 A oP R1,A(X2) |All RS except LPSW, SINT, AL
OP 0 X2 A OPX A(X2) LPSW, SINT, AL

OoP
OPX
R1

R2

X2

M1

AX

Designation

*Assembly Format Key

Interpretation

-Basic Machine instruction mnemonic.
-Extended Machine instruction mnemonic,

-Any expression whose generated absolute value is a single hexadecimal digit, rep-
resenting the general/floating register acting as the first operand in Machine
instructions. :

-Any expression whose generated absolute value is a single hexadecimal digit, rep-
resenting the general/floating register acting as the second operand in Machine
instructions,

-Any expression whose generated absolute value is a single hexadecimal digit, repre-
senting the General Register acting as an Index Register in Machine instructions.

-Any expression whose generated absolute value is a single hexadecimal digit, repre-
senting the Condition Code field of Machine Branch instructions.

-Any expression whose generated absolute value is a single hexadecimal digit, repre-
senting an actual numeric constant (0 through 151g) imbedded in the Machine Short
Immediate instructions.,

-Any expression whose generated absolute value is a single hexadecimal digit, repre-
senting a displacement by halfwords, in the BTFS, BTBS, BFFS, BFBS instructions.

-Any expression whose generated absolute or relocatable value is up to 16 bits or four
hexadecimal digits, representing either an address or constant acting as a portion
of the second operand of Machine instructions.

-Same source expression as A above, except that the A* value, when subtracted from
the current Location Counter and divided by two, generates the object displacement
D as defined for the BTFS, BTBS, BFFS, BFBS instructions, That is, the user pro-
grams the Extended Branch Mnemonics, with symbolic address field operands when
the address appears tc be within 15 halfwords of the branch. When the Assembler
generates the object op-code, Condition Code, and displacement value D, the pro-
grammer is alleviated from the tedious selection of direction, Condition Code, and
halfword displacement values at programming time. The recoding of short branches
necessitated by maintenance programming changes within the short branch area is
lessened by the fact that these extended short branches have symbolic operands in
the source as opposed to absolute halfword displacement valves in the source.

7-20

7.5.5 Assembler Instructions (Pseudo-Ops)

Assembler instructions are used to control the assembly process, define symbols, and generate data.
Assembler instruction statements do not always generate data as the Machine instruction statements do.
The following paragraphs describe the Assembler instructions. Refer to Table 7-10, for a summary

of the Assembler control instruction statements.

Symbol Definition Instructions

EQU - Equate Symbol

NAME OPERATION OPERAND
A symbol EQU A defined expression
required

The EQU Assembler instruction is used to equate a symbol to the value of an expression. The value of the
symbol is relocatable or absolute as determined by the expression. Symbols used in the expression must
be previously defined. Disregarding this rule, causes assembly listing errors and the object program tape
may not load correctly. The EQU Assembler instruction is commonly used to equate symbolic General
Register names to their appropriate value.

NAME OPERATION OPERAND
LOOP EQU LOOP1
TOP EQU END-64
DELTA EQU BOTTOM-TOP
HERE EQU *
START EQU X'01FE'
BLANKS EQU cr !
R6 EQU 6
R7 EQU 7

LHR R6, R7

One purpose of symbolic register designations is in the ease with which registers can be reassigned with-
out extensive recoding. To change from General Register 6 to General Register 1 requires changing only
the R6 EQU 6 Assembler statement to an R6 EQU 1 Assembler statement,

ENTRY - Identify Entry-Point Symbol

NAME OPERATION OPERAND

Not used ENTRY One or more symbols
separated by a comma

7-21

TABLE 7-10.

SUMMARY OF ASSEMBLER INSTRUCTIONS

EQU
ENTRY
EXTRN

DB

OPT

ORG

END
PAUSE
IF
TITLE

Specify Options
-PASS1
-PASS2
-PASS3

-PUNCH
-NOPNCH

-PRINT
-NOPRNT

-STOP
-GO

-FLOAT
-SCRT

-SQCHK

Symbol Definition Instructions

Equate Symbol
Identify Entry-Point Symbol
Identify External Symbol

Data Definition Instructions

Define Constant, used to specify
the following data types

Character Constant

Hexadecimal Constant

Address Constant

Halfword Decimal Constant

Floating~Point Constant (Single-Precision)

Floating~Point Constant (Double-Precision)
Define Byte
Define Storage

Assembler Control Instructions

One Pass Assembly
Two Pass Assembly
Three Pass Assembly

Punch Object Tape
No Punching of Object Tape

Print Assembly Listing
No Printing of Assembly Listing

Stop After Each Pass
Go, After Each Pass, to the next Pass

Floating-Point Required (Basic Assembler only)
Write Source on to Scratch Device (OS Assembler only)
Check sequence numbers of source statement (OS Assembler only)

Set Location Counter

Conditional/Multiple Assembly of an Instruction

End Assembly, and transfer address if operand is present
Assembly Pause

Conditional Assembly

Listing Title and Format Control

The ENTRY Assembler instruction identifies symbols that are defined in this program and may be used by
some other program. This permits programs that are assembled separately to communicate with each
other. Only those symbols identified as entry symbols are available to other separately assembled pro-
grams. All ENTRY statements must precede any symbol definitions in the program. An example is:

NAME OPERATION OPERAND
ENTRY SIN, COSIN
SIN LHI R7, TEMP2
COSIN LHI R8, TEMP3
END
EXTRN - Identify External Symbol
NAME OPERATION OPERAND
Not Used EXTRN One or more symbols separated
by commas

The EXTRN Assembler instruction identifies symbols that are defined in another program that are
referenced by this program. This permits programs that are assembled separately to communicate with
each other. Only those symbols identified as ENTRY symbols in another program should be identified as
externally defined in this program. All EXTRN statements must precede any references to the symbols
called out as EXTRN's in the program.

An example is:

NAME OPERATION OPERAND
EXTRN SIN, COSIN
iSAL R15, SIN
.BAL R15, COSIN
iSND

Any symbols declared as EXTRN's must be used with the following restrictions:
1. EXTRN symbols must not be combined in arithmetic expressions, i.e.
LH 3, SIN+2
2., EXTRN symbols must not be used in the R1, R2, or X2 fields of an instruction: i.e.

LHR COSs, 2 used in R1 field illegally
LHR 3, SIN used in R2 field illegally
LH 3, 2(SIN) used in X2 field illegally

3. EXTRN symbols must not be used with Assembler pseudo~ops such as DO, EQU, END, etc.

The utility of the ENTRY, EXTRN Assembler instructions is realized when subroutines are written. Rather
than having to assemble the main program and its subroutines at the same time in order to establish
correct communication, the ENTRY, EXTRN capability permits the main program to be assembled and

then loaded with the previously assembled subroutines. The symbols identified by ENTRY or EXTRN
statements are then linked at load time by any linking loader, such as the General Loader.

7-23

Consider the following two hypothetical programs:

NAME OPERATION OPERAND
* MAIN PROGRAM
*
EXTRN RIPLE, DABB
START LHI R7,17
LHI R15,X'FOF0"
STH R1,DABB
BAL R7,RIPLE
B START
END

* SUBROUTINE RIPLE
*

ENTRY RIPLE,DABB
START LH R2,DABB
AHI R2,C"*-!
BR R7
DABB DS 2
RIPLE EQU START
END

The symbols RIPLE and DABB are used by the main program, but their values are not known at assembly
time. Since they are defined as EXTRN's, the symbols RIPLE and DABB and the location at which they are
referenced in the main program, are punched on the object tape or cards along with the rest of the
assembled main program. In a similar fashion, when the subroutine is assembled, the symbols RIPLE

and DABB and their values are punched along with the subroutine.

As the main program and subroutines are loaded, the loader accumulates a table of references to symbols
and their values. This information is used by the loader to link the main program and subroutine by
replacing every reference to RIPLE and DABB by the values passed on from the subroutine by the ENTRY
Assembler instruction. Note that the General Loader or another linking loader must be used to load the
object tape for any program involving ENTRY's or EXTRN's.

Data Definition Instructions

There are three Data Definition instructions, Define Constant (DC), Define Byte (DB), and Define Storage
(DS). These Assembler instructions provide a convenient means to define and reserve data storage.

DC - Define Constant

NAME OPERATION OPERAND
A symbol DC One or more operands
optional separated by commas

The DC Assembler instruction is used to define constants and generate actual data, These constants may
be character, hexadecimal, decimal, address, or floating-point constants, The type of constant is
indicated by a prefix code.

7-24

CODE CONSTANT TYPE MACHINE FORMAT

(0] Character a byte of seven-bit ASCII Character Code Per Character

X Hexadecimal 16-bit binary

H Decimal 16-bit binary (two's complement notation)
A Address 16-bit binary

E Floating-Point 32-bit binary (floating-point)

Single-precision

D Floating-Point 64-bit binary (floating-point)
Double-precision

C - Character Constant. The character constant can be any length. It must be enclosed in single quotation
marks and preceded by a C.

NAME OPERATION OPERAND
MESG1 DC C'LOAD THE TAPE'
DC. C'EXECUTE AT 19FE'

Each character is translated into one eight-bit byte of storage. If an odd number of characters is specified,
a blank character is automatically appended. This maintains halfword boundary alignment for any following
machine instructions. If only one character appears between the quote marks, the eight-bit byte is left
justified in the halfword, with the code for blank X'20' in the right half, In general, all characters are
translated into seven-bit ASCII code, with the most significant bit zero, As an example of this alignment
process, the following two data definition instructions are equivalent in length. Each instruction generates
14 bytes of data,

NAME OPERATION OPERAND
DC C'AN ODD NUMBER'
DC C'AN EVEN NUMBER'

X - Hexidecimal Constant, A hexadecimal constant can be from one to four digits. The hexadecimal
digits are:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F

The hexadecimal constants must be enclosed in single quotation marks and preceded by an X. Examples
are:

NAME OPERATION OPERAND
DATAL DC X'1FE'
" DC X'C800'

The hexadecimal constant is converted to a properly aligned 16-bit halfword, If fewer than four digits
are specified, the digits are right justified and leading zeros generated. For example, the following data
constants are equivalent and result in a 16-bit data constant, X'001C'.

7-25

NAME OPERATION OPERAND

DC X'1C!
DC X'01C!
DC X'001C'

H - Haliword Decimal Constants. A decimal constant can be from one to five digits plus sign. They cannot
exceed +32, 767 maximum or ~32, 768 minimum. The decimal digits are enclosed in single quotation marks and
preceded by the letter H. No commas marking the thousandths position should be included.

DC H'-792', H'-30000'

The decimal constant is converted to a properly aligned, right justified 16~bit integer in two's complement
notation.

H'32767' generates X'TFFF!
H'-32768' generates X'8000'
H'-1' generates X'FFFF!'
H'-0' or H'0' generates X'0000'
H'+1" generates X'0001"

A - Address Constant, An address constant is a storage address that is translated into a constant. It is
a relocatable or absolute constant as determined by the combination of symbols and constants in the
expression, Unlike other constants, the address constant is enclosed in parentheses and preceded by the
letter A.

NAME OPERATION OPERAND
DC A(LOOP+2)
DC A(TABLE)
DC A(TOP-BOTTOM)

The address constant stored is relocatable or absolute as determined by the rules given in Table 11-10.
The following examples show how a gingle DC instruction can be used to define different types of data.
Each operand is separated from the next with a comma,

NAME OPERATION OPERAND
DATUM1 DC X'0F00', C'ABCD'
MSG2 DC C'A MESSAGE', H'132!
DC A(ARGA1l),A(HEX-16), X'39'

Decimal constants and address constants may be created without the H' ' and A () notation if desired.
For example:

NAME OPERATION OPERAND
DC 123,H'123'
DC SAM, A(SAM)
DC TOP+39, X-Y

Note that although the address constant A () notation is optional in a DC constant, the A () notation
around a symbol in a Machine instruction operand is illegal.

7-26

E - Floating-Point Constant (Single-Precision). The source form of the floating-point constant consists of
a decimal number, as formatted below, enclosed in single quotes and preceded by the letter E. The format
of the decimal number is as follows:

1. An optional leading plus sign or a minus sign.
2. One or more decimal digits that may include a decimal point.

3. An optional E character followed by an optional leading plus sign or a minus sign and one or two
decimal digits, denoting a power of ten.

NAME OPERATION OPERAND

DC E'+(decimal number)E+NN'

If, however, the decimal number specified cannot be fully expressed in six hexadecimal digits with the
resultant exponent of base 16 in excess 64 notation, (for example E'1234567E73'), the proper order of
magnitude results, but only six hexadecimal digits of precision can be maintained for single precision.
That is, decimal numbers in the range from approximately 5.4 X 10-79 to 7.2 X 10775 can be represented
in the above format but only with six hexadecimal digits of precision for single precision floating-point
numbers. The conversion is accurate to the most significant six hexadecimal digits.

Each single-precision floating-point data constant (E) entry is translated by the Assembler into a floating-
point number in a specified binary representation requiring two halfwords.

There cannot be any blanks within or between E constants, and they must be separated from each other
with a comma as in the last two examples below:

NAME OPERATION OPERAND
DC E'7.2E+75' approximate maximum
DC E'5,4E-79' approximate minimum
DC E'7, 1E+75'
DC E'5.5E-79'
DC E'+127,47E-45'
DC E'-4.007E0'
DC E'123456'
DC E'1E-74', E'1LE-75'

The Assembler produces an error flag when any of the following occurs:

ERROR FLAG ERROR

F Multiple decimal points occur before the
number is terminated, or an E encountered.

F Any decimal point occurs after the E is
encountered.

T The specified power of ten is not in the

range -99 to 99,

7-27

ERROR FLAG ILLEGAL EXAMPLES

F (Format error) DC E'10, 03.49'
F DC E'10.03E4.0'
F DC E'2DASE-30'
F DC E'10, 000’

T (Truncation error) . DC E'1E-100'

T bC E'478E+100'

Single precision numbers whose magnitude exceeds the largest possible number are converted to the
largest floating-point number which is X'7FFF', X'FFFF' for positive values and X'FFFF', X'FFFT'

for negative values. Numbers whose magnitudes are less than the smallest possible number are converted
to true floating-point zero, which is X'0000', X'0000',

NAME OPERATION OPERAND
DC E'7,3E+75'
DC E'5.3E-T79'
DC E'1E-99'
DC E'1E+99'
DC E“73E+76'
DC E'123456E83'

D - Floating-Point Constant (Double Precision). The double precision floating-point constant source
format is identical to single-precision except that the decimal number enclosed in single quotes is pre-
ceded by the letter '""D",

NAME OPERATION OPERAND

DC D'+(decimal number)E+NN'

Each double precision floating-point data constant is translated by the Assembler into a specified binary
notation requiring four halfwords having the following format:

S X F1 F2
F3 F4 F5 F6
F7 8 F9 F10
F11 F12 F13 F14
Where:

S = Sign of the fraction

X = Exponent of the hexadecimal base, in excess 64 notation
and F1 - 1671+ .., tFy4° 16'14 = fractional number where each Fi=a hexadecimal digit.
For S = 0, the value of the number N generated is:

- . -1 . -2 . -1 . 18X

N=+ JFl 167+ Fo e 1672+ ... +F - 16 4§ 16

ForS=1

= - . 1671 . 162 . 16714 3 .
N = 3F1 1671+ Fy e 1672+, F v 16 z 16%

7-28

The range of values, rules for source formatting, and error notification are the same as those mentioned
for single-precision floating-point constants, However, precision is expanded to fourteen hexadecimal
digits as opposed to six. The Assembler uses double and half precision arithmetic with rounding to trans-
late both 'E' and 'D' constants and thereby provides such accuracy as demonstrated in the examples below
(i. e. : the conversion is accurate to 14 most significant hexadecimal digits).

SOURCE DATA CONSTANT ~ HEX DATA GENERATED VALUE
DC D'1! 4110 0000 0000 0000 1
DC D'10' ~ 41A0 0000 0000 0000 10
DC D'7. 2E+75' 7FFE BOE3 AD97 8760 7.2X1079
DC D'+7. 3E75' 7FFF FFFF FFFF FFFF 7.8X107% max.
DC D'5, 4E-79' 0010 01D1 33A9 49F6 5.4X10~79 min.
DC D'5, 3E-79' 0000 0000 0000 0000 True zero
DC D'1267650600228229401496703205376' 5A10 0000 0000 0000 1625
DC D'. 7888609052E-3" 2810 0000 0000 0000 2-100
DC D'9, 094947017729282379150390625E-12" 3710 0000 0000 0000 16-10

DB - Define Byte

The Define Byte Assembler instruction is used to define consecutive eight-bit bytes of data. It is only
available in the OS Assembler.

NAME OPERATION OPERAND

a symbol, DB One or more operands

optional separated by commas
DB *

The label of a DB statement receives the value of the current Location Counter, whether even or odd,
absolute or relocatable. The use of the label is restricted in that, if it is used in the operand field of
any non-DB type instruction, then the label must be on an even boundary.

'The operation mnemonics are the letters DB, The operand field may contain one or more operands, each
separated by a comma, and the entire string of operands end with a space or carriage return. There
may be an even or odd number of operands.

Each of the fields: Label, Operation, Operand and Comment field, must be separated from each other
by at least one space.

Each of the DB operands may be any legal assembler expression which represents an absolute value. For
each operand, the least significant 8-bits of the 16-bit value are used to generate one 8-bit data byte, and
the Location Counter is incremented by one. A DB statement with n operands, therefore, increments the
Location Counter by n bytes. Following a DB statement, the Location Counter may have an odd value. Since
the Location Counter must be aligned on a halfword boundary (even value) before using normal instruction
statements, a special case of the DB operation (DB *) is provided which enables the programmer to achieve
halfword instruction alignment. This gpecial case is discussed below.

When the Assembler extracts the right-most 8-bit data byte from the 16-bit expression value, certain
error checking is performed.

An Undefined error flag (U) is generated if undefined symbols are used in the expression. A Format
error flag (F) is generated if the expression value is relocatable. A Relocatability error flag (R) is
generated if the absolute and relocatable combination rules are not followed. A Truncation error flag (T)
is generated if the current Location Counter (*) is not referenced in the expression, and the most signifi-
cant eight bits of the value are not X'00' or X'FF'. A Truncation error flag (T) is also generated if the
current Location Counter (*) is referenced in the expression, and the most significant nine bits of the
value are not all zeros or all ones, Note: Since there is only one field for assembly errors per line, the
order of error precedence from the high to low is 8, ¥, M, O, T, U, R, E, That is, if the error involved
both a U and F error, the F error is shown. In general, for DB operands which do not involve the current
Location Counter (*), no error flags result if the value of the expression is in the range -256 to +255.

For DB operands which do involve the current Location Counter (*), no error flags result if the value of
the expression is in the range -128 to +127,

7-29

This type of testing for truncation errors allows the use of DB to generate eight-bit 2's complement
numbers. For example, legal DB expressions are:

A DB X'F7! generates X'I'7!
DB 128 generates X'80'
DB B-* generates X'02' (The displacement from HERE to B = +2 bytes)
DB -1 generates X'FF'

B DB A-* generates X'FC' (The displacement A-B = -5 bytes)

The exception to the above rules is the special case DB *, in which an asterisk followed by a space or
carriage return is the only argument of the DB statement. This special case is provided to allow the
programmer to align the Location Counter properly before using normal machine instructions. This
statement should be used following any sequence of DB statements to make the Location Counter an even
value. If the Location Counter is already even, then DB * has no effect, If the Location Counter is odd,
an all-zero's data byte is generated, and the Location Counter is incremented to the next even value,
Failure to observe proper halfword alignment may cause the Assembler to produce object tapes that
cannot be loaded correctly. Other restrictions related to DB are that the operands can contain neither
EXTRN's nor forward references on PASS1 assemblies. On PASS2 or PASS3 assemblies forward
references defined later in the program are permissible. Legal and illegal examples of DB statements
are shown below.

LEGAL EXAMPLES ILLEGAL EXAMPLES
DEFINED ERROR
SOURCE BYTE SOURCE FLAG
RELZRO EQU * RELZRO EQU *
RELS80O EQU *+X'80' RELS80 EQU *+X'80'
ORG X'80' ORG RELS80
ABS80 EQU * ABS80 EQU X80
LOOP55 DB ABS80+32 A0 DB *~-RELZRO
DB X'007E"' TE DB ABS80-RELS0 R
DB 64 40 DB *+2 F
DB 0 00 DB C'Xy!' T
DB -2 FE DB C'34' T
DB H'80' 50 DB 256 T
DB C'A! 41 DB -257 T
DB C'*! 2A DB X'107E! T
DB 1+5-2 04 DB RELZRO F
DB LOOP55 80 A DB UNDEF U
DB * NONE GENERATED | B DB *+A R
DB R15 oF C DB *-A+B+C R
DB -256 00 DB E'1E10' F
DB 255 FP DB D'2,5E, 10' F
DB X'FI Ir'F DB H'257' T
DB -1 IF LHI 3, 2 CAUSES TAPE TO
DB REL80-RELZRO80 LOAD
INCORRECTLY
DB *-LOOPS5 10 DB *
DB LOOP55-* EF END
DB *-LOOP55-2 10
DB * 00
DB X'FI80',-3, *-*80
FD
00
DB ABS80~-LOOP55 00
DB * NONE GENERATED
END

To summarize, the processing sequence for the DB statement is as follows:

1. If the statement is DB *, with no other operands, the Location Counter is tested. It it is even,
no action is taken, If it is odd, a zero data-byte is generated, and the Location Counter is
incremented by one.

2. If other operands are present, excluding the Location Counter *, the absolute 16-bit value of the
expression must be in the range X'FF00 to X'00FF' (-256 to +255) or else a truncation error
occurs. If other operands are present, including the Location Counter *, the absolute defined
16-bit value of the expression must be in the range X'FF80' to X'007F' (-128 to +127) or else
a truncation error occurs. In any case, the right byte of the 16-~bit value is generated as the
defined byte and the Location Counter is incremented by one.

DS - Define Storage

NAME OPERATION OPERAND
A symbol DS A defined (even) expression
optional

The DS Assembler instruction is used to reserve storage instruction areas. The value of the expression
in the operand entry determines the number of bytes reserved. If a symbol appears as a name, the
value of the symbol is the location of the first byte reserved. No data is generated and the storage area
reserved is not set to zero. When the operand expression mistakenly requests an odd number of bytes to
be reserved, the assemblers force the odd number to one more byte in order to maintain halfword align-
ment for the assembly of the instruction statement,

Example:
NAME OPERATION OPERAND
INAREA DS 80
OUTPUT DS TABLE-TABLE2

Asgsembler Control Instructions

Assembler control instructions are used to control the Location Counter, the number of passes, between
pass stops, printing and punching, conditional or multiple assembly of instructions, and assembly ter-

mination. None of these Assembler instructions generate Machine code instruction or constants in the
object program.,

OPT - Specify Options

NAME OPERATION OPERAND
Not used OPT One or more operands
separated by commas

The OPT statement must be the first statement in the program. The OPT Assembler instruction is used to
specify the following assembly options.

- Number of Passes: PASS1, PASS2, PASS3
- Printing: PRINT, NOPRNT

- Punching: PUNCH, NOPNCH

- Between Pass Stop: STOP, GO

- Program Label: LAB=ABCDEF

7-31

- Scratch: SCRT (OS Assembler only)

- Source Sequence Check: SQCHK (OS Assembler only)

- Program Contains Floating-Point Data Constants: FLOAT (Basic Assembler only)

Typical OPT statements for both Basic and OS Assemblers might be:

NAME OPERATION OPERAND
OPT PASS2, PUNCH, GO
OPT PUNCH, NOPRNT, PASS1
OPT STOP, PRINT, PASS3, PUNCH
OPT PASS1, LAB=PROG3

PASS 1, One-Pass Assembly Option. Specifying the PASS 1 option, causes the source tape or cards to be
read once by the Assembler. The printed assembly listings and punched object tape are produced in
accordance with the punching and printing options that have been specified.

An assembly under the "OPT PUNCH, PRINT, PASS 1" option statement produces an assembly listing,
writes the object code, and halts after one pass over the source statements. Object tapes from one-pass
assemblies must be loaded by some linking loader, such as the General Loader. Therefore, PASS 1
assemblies should only be specified when it is feasible to use a large linking loader, such as the General
Loader at load time and when no forward references appeared within expressions in the source deck or tape.

PASS 2, Two-Pass Assembly Option. Specifying the PASS 2 option causes the source tape or cards to be
read twice by the Assembler., The printed assembly listing and punched object are produced during the
second pass. As with the PASS 1 option, they are produced in accordance with the punching and printing
options that have been specified.

PASS 8, Three-Pass Assembly Option. Specifying the PASS 3 option causes the source tape or cards to be
read three times by the Assembler. The principal use of the PASS 3 option is to produce two pass
assemblies of a program using a Teletypewriter, which cannot accept printing and punching simultaneously.
The three pass assembly is identical to the two pass except that the assembly listing is produced during the
second pass and the object program is produced during the third pass.

PRINT, Print Assembly Listing Option. Specifying the PRINT option causes the assembly listing to be
printed during:

the first pass of a one-pass assembly,
the second pass of a two-pass assembly, or
the second pass of a three-pass assembly.

NOPRNT, No printing option. Specifying the NOPRNT option suppresses any printing of the assembly
listing.

PUNCH, Punch object option. Specifying the PUNCH option causes the object program to be output during:

the first pass of a one-pass assembly,
the second pass of a two-pass assembly, or
the third pass of a three-pass assembly.

NOPNCH, No object program option. Specifying the NOPNCH option suppresses production of the object
program,

STOP, Stop after each pass option. Specifying the STOP option causes the Assembler to stop after each
pass of the assembly.,

GO, Go to the next pass option. Specifying the GO option causes the Assembler to go immediately to the
next pass of the assembly without operator intervention,

7-32

LAB = nnnnnn, object program label. A program label can be one to six characters; the first character
must be an alphabetic character, subsequent characters can be letters or digits. The program label is

written on the object tape in symbolic form. When using the General Loader, program labels are typed
at load time. When using the OS Loader, program labels are held for use in Memory Map printouts.

‘The options can appear in any order in the OPT statement, except that for the program label to get written
on object tape for PASSL assemblies, the PASSL option symbol must precede the LAB=SYMBOL option.

The OS Assembler provides two additional options. Their symbols are "SCRT" for electing a scratch
operation and '""SQCHK'" for electing a source sequence check to assure that source statements are
positioned in ascending sequential order.

SCRT, Scratch Option. Specifying the SCRT option causes the OS Assembler to scratch (or to copy) the
source read in from the logical SOURCE DEVICE onto the logical SCRATCH DEVICE during pass one. On
subsequent passes, the source statements are then read from those copied onto the SCRATCH DEVICE.

SQCHK, Sequence Check Option. Specifying the SQCHK option causes the OS Assembler to compare each
source statement's sequence number against the preceding statement's sequence number. The identifi-
cation sequence number of a source statement must reside in a fixed positional field in Columns 73 to 80
(inclusive) of the 80-character source record. Each successive sequence number must be greater (in
ASCII) than the one preceding it. The leading option statement does not have its sequence checked. The
OS Assembler's first sequence number is initialized to eight spaces X'2020202020202020', so that the user
may elect to fill the entire field, Columns 73 to 80 with a sequence identifier or to allow most significant
leading spaces and right-justified numbers. In either case, the least significant digit resides in
character position 80 of the source record. Under the SQCHK option, when a source statement contains
a sequence number which is illegally equal to or lower than its predecessor, the user is notified with an
error message on the List Device, unless printing is suppressed (such as when "NOPRINT'" has been
opted or when the logical LIST DEVICE has been assigned to a null device).

When a sequence check error occurs, the error message consists of a partial or total listing of the source
line in error with the Location Counter preceded by a number sign (#). Note that when the sequence error
occurs on PASS 1 of multiple-pass assemblies, a partially assembled listing of the line in error follows the
(#) error flag. Other errors present, such as '"U" for undefined, should be ignored. The user checks and/
or corrects sequence errors by repositioning source statements on pass one, aborts the current assembly
process and restarts pass one over again. When it can be determined that the statement out of sequence
did not affect assembled data or logic, the user may elect to continue his assembly without correcting the
error,

When a sequence error occurs on the listing pass, the sequence error message (#) is followed by a fully
assembled line, such that any listing of other errors should be noted.

FLOAT, Floating-Point option., The Basic Assembler provides an additional control option. FLOAT, to
define the presence of Floating-Point Define Constants (DC) within the user's source program. The
Assembler's floating-point logic requires over 1KB of memory. Not specifying FLOAT in the option
statement causes the Assembler to overlay the floating-point logic area with the Symbol Table. This over-
lay allows an expansion of memory available for entering symbols into the Symbol Table by approxi-
mately 1,000 bytes. This means that a larger number of symbols and, therefore, a greater number of
source statements can be assembled.

Adding 1, 000 bytes of memory to the Symbol Table size increases its capacity to handle an additional

100 six-character symbols, or 125 four-to—five character symbols, or 166 two-to-three-character symbols.
That is, in a user program that contains, on an average, as much as one four-to-five character symbol-
definition per five source statements, approximately 500 source statements can be assembled in addition

to the amount provided floating-point users.

This option is provided mainly for users assembling large non-floating-point programs with the Basic
Assembler and limited to the required minimum of 8KB memory.

7-33

If no OPT statement or specification of a particular option appears, the assumed options are as follows.
Both the Basic and Operating System Assemblers assume:

- PASS2
- PRINT
- PUNCH
- STOP

The Operating System Assembler also assumes no SQCHK option unless specified, and no SCRT option
unless specified.

The Basic Assembler also assumes no FLOAT option unless specified.

ORG - Set Location Counter

NAME OPERATION OPERAND
Not used ORG A defined (even) relocatable
or absolute expression.

The ORG Assembler instruction is used to control the Location Counter., ORG causes the Location Counter
to be set to the value of the expression in the operand entry. The value is relocatable or absolute as
determined by the expression.

The Location Counter is initialized to relocatable zero before each assembly. If no ORG Assembler
instruction appears at the beginning of the program, the Location Counter begins at relocatable zero.

Symbols appearing in the operand of the ORG must be previously defined.

The ORG Assembler instruction assures proper halfword alignment for any following machine instructions
by always forcing the value of the Location Counter to be even. An odd operand value is forced one byte
address less. For example, the following two ORG statements produce a Location Counter value of
X'o19C!',

NAME OPERATION OPERAND
ORG X'019D’
ORG X'019C'

To obtain a relocatable program, no ORG statement is necessary. A program can be made absolute at
any time by using an ORG with an absolute operand, like ORG X'100'. Once a program is absolute, it can
be made relocatable again by referring to a previously defined relocatable symbol. For example:

NAME OPERATION OPERAND
OPT

START EQU *
ORG X'1000'
ORG START+100
END

7-34

DO - Conditional/Multiple Assembly of an Instruction

NAME OPERATION OPERAND
A symbol DO A single defined
optional ‘ absolute expression

The DO Assembler instruction causes the statement immediately following the DO statement to be processed
as many times as specified by the value of the expression in the operand entry. If the value is zero, the
next statement is skipped. The conditional assembly of instructions and generation of data is often used to
configure standard programs at assembly time, For example:

NAME OPERATION OPERAND
DO CNFGR1
BAL R15,SUBRI1
DO 1-CNFGR1
BAL R1, SUBR3

If CNFGR1 has a value of 1, the Branch and Link to SUBRL is generated. If the value of CNFGRL1 is 0, the
Branch and Link to SUBR3 is generated.

END - End Assembly

NAME OPERATION OPERAND
A symbol END A defined absolute or
optional relocatable expression (optional)

The END Assembler instruction terminates the assembly of the program. The value of the expression, if
present, designates the place in the program where control is transferred after the program has been
loaded.

If an expression is not present, no automatic transfer of control takes place after loading. An example
follows:

NAME OPERATION OPERAND
ORG 100

PLACEl LHI R3,DATA2

LAST END PLACEl

The optional symbol, LAST, points to the next sequential halfword address beyond the cbject program,
After loading this example program, Processor control is automatically transferred to location X'0100'
(PLACEL).

OS Assembler Control Instructions

In addition to those pseudo-ops described earlier, the OS Assembler, Program Number 03-025, pro-
vides three more Assembler control instructions. They are the assembly pause "PAUSE" statement,
the conditional assembly "IF'" statement, and the listing title and format control "TITLE" statement.

7-35

When the PAUSE, IF, or TITLE statement mnemonics are illegally encountered by the Basic Assembler,
Program Number 03-024, the "O'" operation error is generated on the line's assembly listing and
reservation of four bytes occurs in the object program.

PAUSE - Assembly Pause

NAME OPERATION OPERAND

Not used PAUSE Not used

The PAUSE OS Assembler control instruction appears anywhere in the user's source program to pause or
suspend the assembly process. Upon encountering the PAUSE statement, the OS Assembler requests the
Operating System under which it is running to suspend execution of the OS Assembler. The OS then
notifies the operator of the encounter by listing a "PAUSE" message on the System Console. The operator
intervenes, if and as desired, and/or resumes execution of the OS Assembler by using the OS commands
available. The OS Assembler continues its assembly process as modified by the operator intervention.
When the operator resumes execution directly after the "PAUSE'" message, the OS Assembler continues its
assembly process of reading source, etc.

The label and operand fields of the PAUSE Source statement are neither required nor processed by the OS
Assembler. The operation mnemonic PAUSE must be preceded by at least one space.

IF - Conditional Assembly

NAME OPERATION OPERAND

Not used IF A defined expression

The IF OS Assembler control instruction provides conditional assembly capability of segments within
modularly constructed programs. The IF Statement provides conditional assembly of a sequential set of
instructions as distinct from the aforementioned DO statement which provides conditional assembly (or
multiple assembly) of a single instruction.

The name field of an IF statement is not required nor processed by the OS Assembler. The operand field
contains any defined expression, such as, a single symbol whose definition occurs at the beginning of the
source program.,

When the IF operand expression has a non-zero value, unconditional assembly of the following source
statements take place. When an IF statement is encountered where its operand expression has an
absolute zero value, the conditional assembly mode is set into effect. Source statements continue to be
read but they do not become assembled. Under conditional assembly mode, source statements are read
until either an END statement is read, which terminates an assembly pass, or read to the next IF
statement that contains a non-zero valued operand. When another IF statement is read whose operand is
non-zero, the Assembler reverts to the unconditional assembly mode and the following statements become
assembled at the location where the assembly process left off at any preceding IF (zero) statement. Refer
to Figure 7-6, Conditional Assembly Structures.

TITLE - Listing Title and Format Control

NAME OPERATION OPERAND

Not used TITLE 56 characters

The TITLE OS Assembler control instruction provides assembly listing title(s) and format control capa-
bility. An assembly listing produced by the OS Assembler contains a header line at the top of each page.
The operand of the TITLE statement is placed in this header line. The TITLE statement operand consists
of 56 characters not counting leading spaces. However, to maintain consistency throughout the Assembler
Language, at least one space must follow the operation mnemonic TITLE. The first non-blank character
of the operand is printed in Column 6 on the assembly listing header line.

7-36

IF MAGTAP

IF DRUM

IF LINEPR

IF CARD'

*MAIN PROGRAM

/
/

END

IF HSPTP

IF HSPTR

INSERT IN SYMBOL DEFINITION AREA

HSPTP EQU 1

HSPTR EQU 0

DRUM EQU 1
MAGTAP EQU 0

TTY EQU O

CARD EQU 1

0S Assembler sequentially assembles the
sections preceded by IF statements for:
CARD, LINEPR, DRUM, HSPTP; and does
not assemble the sections preceded by IF
statements for: TTY, MAGTAP, HSPTR.

Figure 7-6.

DRUM EQU 0
MAGTAP EQU 1
LINEPR EQU 0
TTY EQU 1

CARD EQU 0

0S Assembler sequentially assembles the
sections preceded by |F statements for:
TTY, MAGTAP, HSPTR, HSPTP; and does
not assemble the sections preceded by IF
statements for: CARD, LINEPR, DRUM.

Conditional Assembly Structures

7-37

The 72-character page header line on the assembly listing pages are headed by the page number on the
upper right corner of 72-column listing pages. Every header line, whether blank or filled, is followed

by a blank line to separate it from the printing of assembled instructions. When a single TITLE statement
is imbedded in the source program as the first statement or after the option statement, every listing page
contains that title in the top header line. During the listing pass, each occurence of a TITLE statement
within the source produces a form feed and change of title in the header line.

Therefore, the format control capability provided can be used two ways:

1. When the user wishes to maintain the same general title throughout his program listing but also
wishes to section off certain sets of instructions (such as subroutines), he inserts duplicate TITLE
statements with identical operands at those pertinent places within the source.

2. When the user wishes to both change titles and section off sets of instructions on the listing, he

inserts multiple TITLE statements with different operands at the applicable places within the
source.

7.5.6 Assembly Listing and Object Programs

Refer to Figures 7-7, 7-8, and 7-9 consecutively for a presentation of one program in source form,
assembled under the PASS1 option into (zoned standard-loader format) object form, and its assembly
listing. Note that the program presented exercises 15 of the 16 loader control items available, from

X'0' through X'F' (X'E' is unused by the assemblers). Refer to Figure 7-10 for the general specifications
of the Basic and OS Assembler assembly listings.

7-38

Figure 7-7.

Sample Program Source Deck

] NI | FLEAR AFTER LOAD:ERECITES 9 CLEAR 11 ™
1nS | IC | PORELZER+2) START CLEARING FROM BIAS + 2 [R
| RS RECZER TATE LOADS AT REL EIAS] E
| FOF | RELZER - DERUG ATT TNSTRUCTION I =
3 ”SYNBDL - 1 <
FAFTER EFECUTIAN, ERANCH TO EWTCRNALLY DEF INED"SYMEQL". [=
] NZ | LABEL LOOP URTIL ALL [&
| BHI [JE00NT, 3 BUNP INDEN THTG © m %
AEEL | BTH |10, 0(COUNTS CLEAR ALL CELLS AFOVE EIAS -] =
|FH [F4UNTETAS FETCH annm-:n‘u‘r“r‘msr CELL T
FLEAR |P<HR 0y U ZERD OUT REGISTER ZERO [K
1 [“
| frs ||:x ol)' FROGRAM LOADS AT X' 00G0° I “
|| 1 | “
oo L R
PESU It . . 1 19
%
1 I il |
| ENTRY] ELEAR [E
| EXTRH EPHEDC 1 E
| 1] [B
SOURCE FORMy| GBJECT FORM) S — I =
ONE PROGRAFTS) DIFFERENT FORAS : 1 a
AT rﬂzpnsq BF THIS PROGRAM SENT EXAMPLES OF i = l
[TITLE) BAMPLE quuRﬂ"l 7 FROM BIAS+Z T0 TOP<OF-CORE | | o |
pPT T Fas iCH; B - e
:"::@,:T::»?ﬁ;o Lo T S S — »,‘Ermumi :
ﬂnﬂllllﬂllllllﬂnl.n“ﬁﬂhiiuﬂﬂllﬂ.,ﬂ.llﬂn,nnﬂﬂ|ﬂMMHMllnﬂllIDMMHDBIIMMMMIIMMHMUH .
T2 4SBT {30000 1212 10[i5116 1700 49 0 2022 23202575 22 28 29 30 3 57 70 34 05 36 34 5839 40 41 42 43 64 43 46 40 43 49 50 51 52 51 5 %5 56 5T 50 40 60 61 62 53 61 65 68 67 68 63 70 1) 72|73 2425 98 21 10 13 40 H
IIIIIIIlIlIIHII.,II,IIIIIIHIIIlll,lll,IIHIIII\IIHIIIIIIIIIHIIIIIIHIIIIHIH ,
11212212111HIHUHHZHZZHZZZHH|Z1711121122211112111121112111222212222212211
13333333[3(330,33030235833,3333 31111 93333334333333333193333333333333333333(3(33333333
A eyl H IEEEENRERNIIIIRFNFYRR NN}
55555555/5[55555/5/5555 IR I AMA §95556555/5)59565555
z CRESCENT PLACE, OCEANPORT, NEW JERSEY 07757
IHHGEN,EﬁiSGBEEBFTB&EGGIGEIEIEEEG16565EGEEﬁﬁiﬁiiHEIEEMBHEHSHHGEHEGﬁﬁﬁi
HHIHH1'.)177.11771.HIH.HHHHHHuH)HIHHHHHHHHHHHHIHHHII
BO00880BB8RBA0/BIE2BBA BE08E (BBAL gBEY BUBR8BEBOBBBB80888 080880888 88800008/888808488¢8
9!!99‘19!9!9HQHHs!9!“7!!9!HMG!!999‘15ﬂ‘l!!99!!!!9“9!!!!99!99”9!HHHHMHH
\4 Sra oo alale e g JP};délIé,s’é 52 1 BN 454547 484950 5142 52 58 5556 50 S8 59 60 61 62 89 (0 62 63 &2 0 69 10 1 2l0n v 0 1 6 e

Record Sequence Number = X‘FFFF’

Record Check Sum = X'7628"
Loader Control Item (F) Program Label contained in next 12 data items.

BOAOUDE-BWA [BRO

Loader Control Item (3), Toggle from relocatable mode to absolute mode.
Loader Control 1tem {6), Load program address X'0080’ absolute,
(ORG X‘0080")

Loader Control Item (8), Load 2 bytes absolute into X'0080"
(XHR 0, 0)

Loader Controt Item (A), Load 4 bytes absoiute into X‘0082’
{LH COUNT, BIAS}

Loader Control Item {A), Load 4 bytes absolute into X'0086'
(STH 0,0 (COUNT))

b [OCCO0OH®S |OONO [0000

Loader Control Item (A}, Load 4 bytes absolute into X‘008A’
(AHI COUNT, 2)

Loader Control Item (A), Load 4 bytes absolute into X'008E"
{BNZ LABEL)

e 0006 e0vccee oo esvese o o

Loader Control Item (A), Load 4 bytes absolute into X'0092"
(B SYMBOL)

Loader Control Item (B), Load 4 bytes retocatable into X'0096’
(NOP RELZER)

Loader Control Item {3), Toggle from absolute mode to relocatable.

Loader Control ltem (6), Load Program address X’0000’ relocatable.
(ORG RELZER)

Loader Control Item {3), Toggle from relocatable mode to absolute.

Loader Control 1tem (6), Last Reference address of BIAS = X'0084’ absolute.
{BIAS becomes defined)

Loader Control Item (3}, Toggle from absolute mode to relocatable.
Loader Control Item (7}, Definition address of BIAS = X‘0000° relocatable.

Loader Control Item (2), Unchain: Place definition value in references, until X'0000’ end.
Loader Contro! Item (9), Load 2 bytes rel ble in X'0000’ rel bl
{BIAS DC A(RELZER+2))

Loader Control Item (3), Toggle from relocatable mode to absolute. (END CLEAR statement)
Loader Control Item {7), Definition address for Global Symbol “CLEAR",

Loader Control Item (D), Definition symbol follows in next 12 data items.

Loader Control Item (8), Reference address for Global Symbol “SYMBOL.".

Loader Control Item (C), Reference symbol follows in next 12 data items,

Loader Control Item (4), Load Transfer Address X‘0080" (Transfer to X‘0080’ after foad)

Loader Control Item (3), Toggle from absolute mode to relocatable
Loader Control Item (5), Load program address (next available relocatable location)

Loader Control Item (1), End of Tape signal.
Loader Control item (0), Read next record signal, when record contains no (1) control item.

Figure 7-8. Sample Program One-Pass Object Tape

7-39

SAMPLE PROGRAM CLEARS MEMORY FROM BI1AS+2 TO TOP=-OF~CORE PAGE 1

© MAIN PURPOSE OF THIS PROGRAM IS TO PRESENT EXAMPLES OF
ONE PROGRAM'S DIFFERENT FORMS @

® SOURCE FORMs OHBJECT FORMs ASSEMBLY LISTING

-

0000R ENTRY CLEAR

0000R EXTRN SYMBOL
-
0001} COUNT EQu 1
0000R RELZER EQU .
3
0080 ORG Xe80°* PROGRAM LOADS AT X10080°
3
0080 0700 CLEAR XHR 0+0 ZERO OUT REGISTER ZERO
0082 4810 LH COUNTBIAS FETCH ADDRESS OF FIRST CELL
0000F
0086 4001 LABEL STH 090 (COUNT) CLEAR ALL CELLS ABOVE BIAS
0000
008A CAlO AH] COUNT 2 BUMP INDEX INTO CORE
0002
00BE 4230 BNZ LABEL LOOP UNTIL ALL CLEARED
0086
® AFTER EXECUTIONs BRANCH TO EXTERNALLY DEFINED "SYMBOLY.
0092 4300 8 SYMBOL
0000F
0096 4200 NOF RELZER DEBUG AID INSTRUCTION
0000R
0000R ORG RELZER DATA LOADS AT REL BIAS
0000R 0002R BIAS oc A(RELZER+2) START CLEARING FROM BIAS ¢ 2
0002R END CLEAR AFTER LOADSEXECUTES AT CLEAR

B81AS 0000R
« CLEAR 0080
COUNT 0001
LABEL 0086
RELZER 0000R
* SYMBOL 0094

Figure 7-9. Sample Program One-Pass Assembly Listing

' ASSEMBLY LISTING FORMAT 1)
7 2
/BLANK COMMENT STATEMENT é EQUENGE
: ‘Ml m / %
[é f gl m;m/omém Z
: 1 4 N/
coLumn [1-2| 3-8 [7]8| 9-12 [13[14-16] 17-22 oai2a| 2620 [a0] 31 —=| (47 72 (\ 87| sso6

TTY LISTING TRUNCATED CJ
@72 COLUMN'S

SYMBOL TABLE PRINTOUT COLUMN
. /7 1-2 BLANK, U, M, », +x, +M, D, +>, + < AS DESCRIBED IN SECTION 11.3.2
é SYMBOL % HEX DATA| or 3-8 USER'S SYMBOLS LISTED IN ASCENDING ALPHANUMERICAL ORDER
S /// " 9-10 BLANK
coLumn [1-2| 3-8 |e-10| 11-14 |15

11-14 FOUR HEXADECIMAL DIGITS WHOSE MEANING DEPENDS ON FLAGS:
(1) WHEN FLAGS =BLANK, =, M, M, »> HEXDATA CONTAIN ACTUAL
DEFINITION VALUE OF SYMBOL.

(2) WHEN FLAGS = U, <, »x HEX DATA = THE SYMBOL'S LAST
REFERENCE ADDRESS

15 b (BLANK) MEANS HEX DATA IS ABSOLUTE
R MEANS HEX DATA IS RELOCATABLE

Figure 7-10. Assembler Print Formats

7-40

7.5.7 Procedures for User-Defined Mnemonic Op-Codes

A feature has been added to the assembler that permits the user to define his own mnemonics for machine
op-codes. This feature is especially useful for those users who have generated the micro-programming
necessary for developing new machine instructions for the INTERDATA Processors. This feature also
permits the user to assign different mnemonics to already existing machine op-codes.

The method used to define new mnemonics to the Assembler is the EQU statement. The format of the
statement is as follows:

NAME OPERATION OPERAND
New EQU A Constant
Mnemonic

The name field of the EQU statement contains the user's desired new mnemonic. The new mnemonic may
then be used in the operation field of any succeeding instruction statements. The user's new mnemonic
may consist of from one to five characters, the first of which must be a letter and the others must be
either letters or numbers. It cannot contain any special characters or blanks between characters.

The operand field of the EQU statement contains a constant, which when interpreted by the Assembler,
must have a 16-bit halfword value of the form (in hexadecimal):

nnxy
where nn = hexidecimal digits of an op-code

andx =0, y =8 for one word (RR or SF) instruction
or x=0, y=2 for two word (RX or RS) instruction,

or y=C for one word extended (RR or SF) instruction in which x is the Condition Code,
or y=3 for two word extended (RX or RS) instruction in which x is the Condition Code.
NOTE

It is suggested that the choice of nn = F0 be restricted to allow compatibility
with the HEX-DEBUG programs' use of F000 for breakpoints.

Legal Examples

GENERATES IN

NAME OPERATION OPERAND OBJECT PROGRAM
LOOPL EQU X'2208'

LOOP1 5, 6 X'2256'
MOVE EQU X'3302"

MOVE 4, 3(7) X'3347', X'0003'
OoP EQU X'89AC!

OP 4 X'89A4"
LINK EQU X'41F3!

LINK 2 X'41F0', X'0002'

7-41

Tllegal Examples

NAME OPERATION OPERAND ILLEGAL BECAUSE
SAM EQU X'1238'

SAM 5, 6 Third hex digit not 0.
FROG EQU X'5555'

FROG 4, 3, (7) Fourth hex digit not legal.
oP EQU X'89AC!

oP 4, 5 Too many arguments.
CALL EQU X'41F3'

CALL SAM(100) Index value greater than 15.

7.5.8 Basic Assembler Operating Instructions

General Description and Configuration

The Basic Assembler program runs on any of the INTERDATA Processors containing 8KB

(8,192 bytes) or more of memory. The Basic Assembler can use any of the following peripheral

devices: ASR33 or ASR35 Teletype (TTY), High Speed Paper Tape Reader (HSPTR), High Speed Paper
Tape Punch (HSPTP), Card Reader, or Line Printer. The Assembler can be loaded from either a
Teletype (TTY) reader or a High Speed Tape Reader (HSPTR). The Assembler reads ASCII-coded

source from either a TTY reader or HSPTR, or reads Hollerith coded cards from a Card Reader. It
punches binary object output to either a TTY punch device or High Speed Paper Tape Punch (HSPTP). It
prints ASCII-coded assembly listing output to either a TTY printer or line printer. When the configuration
contains either a TTY or a Card Reader, the Basic Assembler assumes that the TTY is interfaced to the
Processor as Device Number 02, and the Card Reader as Device Number 04.

Basic Assembler Program Availability

The Basic Assembler program is identified by Part Number 03-024. The object program is provided as
Part Number 03-024M10, a bootstrap binary object paper tape which loads via the 50 Sequence. The
assembly listing of the Basic Assembler is provided as Part Number 03-024A13.

Memory Allocation

The Basic Assembler program requires a minimum of 8KB of memory. Refer to Figure 7-11,

Basic Assembler Memory Map, for an overall view of the assembler layout in 8KB memory.
Approximately 6.4KB is required for basic assembler logic, and 1KB for floating-point conversion logic.
Additional memory is required by the Basic Assembler for a Symbol Table. In a minimal system of 8KB,
about 600 bytes are available for the Symbol Table when the user requires the Floating-Point option
(FLOAT); otherwise, 1600 bytes are available.

7-42

X"1FFF
SYMBOL TABLE
Symbol Table builds from here with OPTION FLOAT.

(1KB) FLOATING POINT LOGIC

-
Lt —

Symbol Table builds from here with no OPTION FLOAT.

BASIC ASSEMBLER
PROGRAM LOGIC

SIZE X'0098’ TOP—OF—-CORE POINTER PRESET = X'1FFF’
PASS33 X'0092 Restart PASS3 of a 3PASS Assembly

PASS23 X‘008C’ Restart PASS 2 of a 3PASS Assembly

PASS22 X‘0086’ Restart PASS2 of a 2PASS Assembly

PASS1 X'0080' Start First Pass Operations

X'007E’ LIST DEVICE: OC: DISABLE, WRITE

X007¢’ SOURCE DEVICE: OC: DISABLE, READ
X'007A" OBJECT DEVICE: OC: DISABLE, WRITE
X'0078' BINARY LOAD DEVICE: OC: DISABLE, READ

DEVICE DEFINITION TABLE

50 SEQUENCE
X'0050" -

DEDICATED LOW CORE

X‘0000"

Figure 7-11. Basic Assembler Memory Map

Each unique legal symbol encountered in the user's program is built into a symbol entry which is stored
in the Assembler's Symbol Table, building upward from the top of the Basic Assembler program. There-
fore, the total memory required by the Basic Assembler to do a particular assembly depends on the
number of symbols in the user's program.

The number of bytes required by a symbol entry depends upon the number of characters in the symbol. A
one-character symbol requires four bytes, a two or three-character symbol requires six bytes, a four
or five-character symbol requires eight bytes, and a six-character symbol requires ten bytes.

The Symbol Table capacity may be expanded further by users who have more than 8KB memory available. The
Basic Assembler contains a Top-of-Core pointer residing at X'0098 ' and pointing to X'IFFF' for 8KB. The
Assembler builds its Symbol Table up to this address. Users with 12KB memory should set this pointer to
X'2FFF' to use an additional 4KB for their Symbol Tables. Users with 16KB should set this pointer to
X'3SFFF' to use an additional 8KB for their Symbol Tables, etc.

Refer to Table 7-11, Symbol Table Capacity, for the number of average 4 or 5 character symbols and
approximate size of user programs that can be assembled in an 8, 12, or 16KB core memory.

Loading Procedures

The Basic Assembler program object tape, Part Number 03-024M10, is a bootstrap self-loading tape. It
does not require any loader program tape to be loaded first. It is loaded by the memory resident 50 Sequence
Loader as shown in Table 7-38. Prior to loading the Basic Assembler, a 50 Sequence Loader must be

entered into memory, along with the address of the selected Binary Input Device at X'0078'. That is,
location X'0078' should contain X'1399' to load 03-024M10 from the High Speed Paper Tape Reader, or
X10294' to load from the TTY reader. Refer to the Section on I/O Device Selection for entering the user's
desired Assembler I/0 device selections at this same time.

7-43

TABLE 7-11.
SYMBOL TABLE CAPACITY

- oy
Top-of-Core Appro)$1mate Core No. Averag.e Sized Size** Of User
Pointe Available for Symbols in User Program
olnter Symbol Table Program g
X'1FFF' OPTION FLOAT 80 400 Source Statements
for 8KB 640 bytes
X'1FFF!' 1640 bytes 205 1,020 Source Statements
for 8KB
X'2FFF! 5640 bytes 705 3,525 Source Statements
for 12KB
X'SFFF' 9640 bytes 1,205 6,025 Source Statements
for 16KB
*An average sized symbol (each of which requires eight bytes) consists of four or five
characters
**Size of User Program assumes that a user program contains one symbol definition per five
source statements.

Given the 50 Sequence Loader in memory, the steps required to load the Basic Assembler Tape, 03-024M10,
are:

1. Place the bootstrap tape in the tape reader anywhere on the blank leader portion.
2. Set Data/Address Switches to X'50', Select ADRS Mode, and depress EXECUTE.
3. Depress INITIALIZE,

4. Select Run Mode, and depress EXECUTE.

5. If a Teletype is being used as the load device, manually start the tape motion by moving the TTY
reader switch to START on the ASR-33 TTY, or to RUN on the ASR-33 TTY. When approximately
a foot of tape data has been read, the right half of Register Display 2 flashes to indicate that the
tape is actually loading. If this does not occur, check to see that the loading procedures were
followed correctly; e.g. that the 50 Sequence Loader is intact and that location X'0078' is set
correctly.

6. If the reader stops and the Processor halts before the end of the tape is reached, an error has
been detected. In this case, reposition the tape for the previous record gap and push EXECUTE
to reread the previous record.

7. When all of the program has been loaded, the tape stops, and Processor control is transferred
directly to the Assembler, which halts.

Note that during the bootstrap loading process, memory locations from X'1DF0' to X'1FFE' are used.

1/0 Device Selection

The Basic Assembler is programmed to use the Device Definition Table, located in low memory at X'0078'
through X'007E'. A physical device address and the device Output Command is found at each of these loca-
tions, This information is entered into memory by the user and is necessary for the Basic Assembler to
accomplish its I/O operations, i.e., data transfers between the peripherals and the Processor. The
halfword at location X'0078', Binary Input Device, is only used to load the Assembler. The Assembler
does not use this halfword during its assembly operations.

The three halfwords that must be set prior to executing the Basic Assembler are those it uses for Binary
Object Device at X'007A', Source Input Device at X'007C', and List Device at X'007E',

Each halfword of 1/0 information in the Device Definition Table has the following format:

BITS 0 718 156
DEVICE ADDRESS COMMAND BYTE

Refer to Table 7-12 for a summary of the selection of entries appropriate to the Basic Assembler.

The Basic Assembler reads ASCII coded source paper tape froin either a TTY reader or High Speed Paper
Tape Reader or it reads Hollerith coded source cards from a Card Reader.

The assembled binary object data is written to either a TTY punch or High Speed Paper Tape Punch.
The assembly listing is printed on either a TTY printer or a Line Printer.
Therefore, when using the Basic Assembler, the user must select either a TTY or HSPTP for his object

device, either a TTY reader, HSPTR, or Card Reader for his source device, and either a TTY or Line
Printer for his list device.

TABLE 7-12.
I/0 DEVICE DEFINITION TABLE SELECTION FOR BASIC ASSEMBLER
Location Name I/0 Device Selection
X'007A! Binary Object Device 0298 TTY Punch

1392 HSPT Punch

X'007C’ Source put Device 0294 TTY Reader
1399 HSPT Reader
04A0 Card Reader

X'007E! List Device 0298 TTY Printer
62C0 Line Printer

Source Format

The Basic Assembler program, Program Number 03-024, accepts source statements written in INTER~
DATA Assembler Language.

This program does not recognize the Sequence Check (SQCHK), the Scratch (SCRT) options (specific to the
OS Assembler), the Assembly Pause (PAUSE), Listing Format and Title control (TITLE), or the condi-
tional assembly (IF) OS Assembler Control instruction statements.

It recognizes only those instruction statements specified in Section 7. 5.4.

Refer to Table 7-13 for the general sequence or order of source statements with a program,

When using the Basic Assembler to assemble source paper tape, the tape may contain any number of
statements. Each statement can contain any number of characters (up to 80 legal characters are
processed) followed by a carriage return. The characters should be punched in ASCII code. The most
significant bit of each character is ignored by the Assembler; therefore, either the seven-bit or eight-bit
form of ASCII is acceptable. Blank tape, rub outs, line feeds, and all characters whose seven-bit ASCII
code is less than X'20', a space, are ignored. That is, the Assembler's character set consists of the
alphanumeric characters A-Z, 0-9, and any ASCII character printable on the TTY printer.

7-45

TABLE 7-13.
SOURCE PROGRAM FORMAT

Type Of . .
Statement Function Ranking Order

OoPT Option Control First or not at all

ENTRY Global Symbol Definition Prior to symbol's use

EXTRN Global Symbol Reference Prior to symbol's use

EQU Local Symbol Definition Prior to label's use and after operands' symbol
definition.

ORG Location Specification Inserted to define load location where necessary.
Optional if whole program sequentially relocatable
from relocatable zero.

DO Conditional/Multiple Just prior to the conditional/multiple assembled

Instruction Assembly instruction.

(MACHINE Program Logic

INSTRUC TIONS)

(*COMMENT Documentation Aid

STATEMENTS) Intermixed

DC Define Constants

DS Reserve Storage

END End of Program Signal Required as last statement.

If more than 80 legal characters appear in cne source statement, the Assembler processes only the first
80 characters but continues reading tape until a terminal carriage return ends the statement, Statements
should be separated on the source tape by at least five or six non-printing characters. This statement
separation is required due to the start/stop characteristics of a Teletype tape reader. Source tapes
typically use eight blank rows between records. Actually, any non-printing character other than carriage
return is sufficient. The Basic Assembler, therefore, assembles source paper tapes created by TIDE,
by OS TIDE, or those created manually on the TTY punch,

When using the Basic Assembler for assembling from the Card Reader, Hollerith coded characters are
converted to bytes of seven-bit ASCII code. The card input driver halts for overflow or motion errors so
that the Assembler never processes cards known to be in error. However, when illegal card codes are
read, they become converted to an ASCII asterisk, "*", Assembly listings which contain intermittently
scattered "*'" characters are an indication of card reader errors.

Option Control

The INTERDATA Basic Assembler provides a one-pass, two-pass, or three-pass assembly, It is preset
to provide a PASS2 assembly with the PRINT, PUNCH, STOP, and no FLOAT options in effect when no
option statement is contained in the source tape or card deck. At assembly time, the programmer may
choose the number of passes and other options desired for the assembly. The options are specified with
the "OPT" control statement which must be the first source statement of the source program. Refer to
Table 7-14 for a summary of Assembler operations that occur during a one, two, or three-pass assembly

The user specifies the symbols PASS1, PAS32, or PASS3 in the option statement operand for a one-pass,
two-pass, or three-pass assembly respectively.

7-46

TABLE 7-14.
BASIC ASSEMBLER OPERATIONS

Assembly Type
Pass Number
PASS1 PASS2 PASS3
1 Read Source
Write Listing Read Source Read Source
Write Object
2 Rea.td Soyrce Read Source
Write Listing Write Listin,
Write Object J
3 Read Source
Write Object

Of the three types, a one-pass assembly is fastest, but restricts the programmer's use of forward re-
ferences within expressions at programming time. ¥or example, such expressions as SYMBOL + 10 are
illegal for one-pass assemblies when SYMBOL is not defined because it is a forward reference. Additionally,
a.one-pass assembly produces larger object program tapes. One-pass assemblies produce a listing in

which the forward references are not defined. Two-pass and three-pass assemblies produce a complete
listing of the object code which is more useful at debugging time.

Both the assembly listing and object tape are produced simultaneously on a single-pass assembly, or on
the second pass of a two-pass assembly., A three-pass assembly permits the printing of the assembly
listing on the second pass and the punching of the object on the third pass.

PRINT Specifies that an assembly listing is desired.

NOPRNT Suppresses printouts of both the assembly listing and symbol table,

PUNCH Specifies that an object tape is desired.

NOPNCH Suppresses object output.

STOP Causes the Assembler to pause between passes after the operator is notified of the next
pass,

GO Causes the Assembler to immediately read source after the operator is notified of the
next pass.

LAB=SYMBOL Produces an object program label. For one-pass assemblies, the option PASS1 must
precede LAB = SYMBOL.

FLOAT Causes the Assembler to maintain its floating-point conversion logic by adjusting the
Symbol Table pointer above the floating-point routines.

The Basic Assembler automatically expands its Symbol Table capacity by the 1, 000 bytes, originally
contained for floating-point conversion, during any assembly that does not specify FLOAT in its first
source option statement.

Users who are limited to exactly 8KB of memory and who desire the assembly of either single or
double-precision floating point data constants are required to specify the option symbol FLOAT in their
option statement. This option statement must be the first source statement in the user's program. When
the Basic Assembler does not see the option, OPT FLOAT, etc., as the first source statement of any
program assembly, its floating point conversion logic is overlaid by the Symbol Table.

7-47

If the user does specify FLOAT and the floating point has already been destroyed, he is informed by the
forced printing of the OPT statement with an "F'" format error. The Basic Assembler would have to be
reloaded once this error occurs in order to re-establish the floating point logic in memory.

Users requiring the FLOAT option are limited as to the number of symbols the Basic Assembler can
process when using only 8KB memory and may need to assemble large programs in smaller segments.

Note that all programs containing floating point constants must individually specify the FLOAT option, and
all programs using FLOAT must be assembled consecutively after loading the Basic Assembler.

Operating Procedures

After loading the bootstrap Basic Assembler program tape, 03-024M10, the Processor halts. I it is known
that the Device Definition Table is set up properly in memory, the user readies the I/0O devices as needed and
executes the Basic Assembler by depressing EXECUTE at the Control Panel. To ready the I/0O devices

as needed means to power-up, bring on-line, supply with paper, etc., those devices that are to be used
during the particular pass to be run. For example, for a single-pass assembly to produce both an assembly
listing and object tape, the user must ready the list device and object device, in addition to the source
device. For a two-pass assembly, the object device need not be readied until the second pass.

Once the Device Definition Table is set up, the following procedures may be used to start execution of the
Basic Assembler's first pass operations:

1. Set the Data/Address switches to X'0080', the Basic Assembler's ORIGIN,

2. Select ADRS Mode and depress EXECUTE.

3. Select Run Mode and depress EXECUTE.

Upon execution at ORIGIN, the Assembler issues a form feed to the List Device and prints the message
"PASS1" and begins reading source to build its Symbol Table.

Once the assembly starts, the procedures vary according to the number of passes specified in the OP TION
statement. Refer to Figures 7-12, 7-13, and 7-14 for a summary of the particular procedures to follow.

ASSEMBLY UNDER PASS1 OPTION (NO FLOAT)

OPERATOR BASIC ASSEMBLER

Ready System

Load Basic Assembler

Set 1/0 Device Definitions

Ready 1/0 Devices

Execute at X‘0080°
Prints PASS1
Clears SYMBOL TABLE
Reads Source till END Statement
Expands SYMBOL TABLE over FLOAT
logic
Prints Assembly Listing
Writes Binary Object Program
Lists SYMBOL TABLE
Halts at X'0080’ for next assembly

Figure 7-12, PASS1 Operations

7-48

ASSEMBLY UNDER ASSUMED OPTIONS™

OPERATOR

_ BASIC ASSEMBLER

Ready System

Load Basic Assembler

Set 1/0 Device Definitions
Ready 1/O Devices
Execute at X'0080’

Ready Object Device
Re-ready Source
Depress EXECUTE

Prints PASS1
Clears SYMBOL TABLE
Reads Source till END Statement

Expands SYMBOL TABLE over FLOAT

logic

Lists SYMBOL TABLE
Prints PASS2

Halts

Reads Source till END Statement
Prints Assembly Listing

Writes Binary Object Program
Halts at X'0080’ for next assembly

*Assumed Options: PASS2, PRINT, PUNCH, STOP, (no FLOAT)

Figure 7-13. PASS2 Operations

ASSEMBLY UNDER PASS3, STOP, FLOAT OPTION

OPERATOR

BASIC ASSEMBLER

Ready System

Load Basic Assembler
Set 1/0 Definitions
Ready 1/0 Devices
Execute at X'0080"

Re-ready Source
Depress EXECUTE

Ready Object Device
Re-ready Source
Depress EXECUTE

Prints PASS1

Clears SYMBOL TABLE

Reads Source till END Statement
{SYMBQL TABLE does not overlay
FLOAT logic)

Lists SYMBOL TABLE

Prints PASS2

Halts for next pass

Reads Source till END Statement
Prints Assembly Listing

Lists SYMBOL TABLE

Prints PASS3

Halts for next pass

Reads Source till END Statement
Writes Binary Object Program
Lists SYMBOL TABLE

Halts at X“0080' for next assembly

Figure 7-14, PASS3 Operations

7-49

As the Basic Assembler reads the source program, it performs the operations appropriate to the current
pass, as shown in Table 7-14.

Each pass proceeds until an END statement is encountered. When this occurs, the current pass is
completed. When the END statement is read during PASS1, the Assembler prints out the Symbol Table.
All undefined symbols are preceded by a U error flag. All multiple defined symbols are preceded by an
M error flag. All improperly used EXTRN/ENTRY symbols are preceded by the asterisk combined with
specific error flags such as: *<, *>, *M, *D, ** which are described in Section 7.5, 2 and shown in
Table 7-7. The source program can be corrected at this time and the first pass restarted.

If an excess number of symbols is read by the Assembler, Symbol Table overflow is shown at the time it
occurs by listing the source statement that caused the overflow. These source statements are flagged with
an S error flag. When this error occurs, the user must restart and expand his Symbol Table size by
discarding the FLOAT option, if he has not already done so, by adjusting the Assembler's Top-of-Core
pointer or reduce the number/size of symbols in the user program to obtain a correct assembly.

When the current pass is not the final pass of an assembly, the next pass is identified with a PASS
message, and the Assembler halts when the STOP option is in effect, To begin reading source for the
next pass, depress EXECUTE after re-readying the Source Input Device with the source tape or card
deck. When the GO option is specified in the OPTION statement, the next pass is identified with a PASS
message, and the Assembler begins reading source without operator intervention.

The above procedures are repeated for each pass. When the completed pass is the final pass, the Assembler
halts at its origin. In this case, if EXECUTE is depressed, the Symbol Table is cleared, the Assembler
prepares itself for another assembly, prints PASS1 and starts to read source. Rather than proceed with
another program, however, the Assembler can be restarted on PASS2 or PASSS if desired. The restart
addresses are:

PASS 1 X'0080'
PASS 2 of 2 X'0086'
PASS 2 0f 3 X'0092'

When all I/0 data transfers take place correctly, the Basic Assembler clears the lights in Register
Display 2 (lower right byte) on the Control Panel. Whenever a peripheral I/O device cannot transfer data
correctly, the Assembler writes into Register Display 2, that peripheral's eight-bit physical device
address. The status byte received from the device is contained in General Register 5.

Except for some errors that occur with a Card Reader, the Assembler remains in a sense status loop with
the Processor WAIT light off until the condition is corrected, such as bringing on-line a device that was
off-line. The Assembler then continues its input or output operation where it left off, transferring the last
character available prior to the error condition., When this is not feasible, as in the case of reading tape
from a TTY tape reader, and the tape has moved past that character, the source tape may be repositioned
manually to the beginning of the last source statement and the Basic Assembler may be restarted at
location X'0114' to reassemble that line from its beginning.

Whenever the Assembler detects an I/0 error in a card reader data transfer, the Assembler does not
process the card in error. Card reader I/O errors must be handled in one of two ways. TFor a card
causing a Pick Fail error, the user must reproduce the bottom card in the hopper if the front edge is
mutilated, replace it in the hopper, depress MOTOR-on and depress the card reader START button. For
any other card error where a card either passes entirely or partially through the read station, the user
must re-read the card that passed into the stacker or got jammed in the read station. When the WAIT
light is on after an I/0 error, the Assembler has halted the CPU due to Motion Error or Error Overflow.
In this case, after the user has transferred the last (TOP) card from the stacker to the bottom of hopper;
he depresses both the MOTOR-on and the START button, and must also depress EXECUTE on the
Processor.

7-50

Assembly Listing and Object Programs

The physical formats of both the assembly listing and object programs differ and depend upon the respective
I/0 Device Selection in the Device Definition Table.

The assembly listing, when written to a line printer, contains 96 columns of print per listing line. How-
ever, on the TTY printer, only 72 columns are printed, The INTERDATA Assemblers allow free formatted
source which, upon tabulation with the binary object code generated, produces an assembly listing having an
aligned format as described in Section 7. 5. 3.

The object program contains approximately 30 inches of blank paper tape as leader.

On a High Speed Paper Tape Punch, the object program is punched in INTERDATA standard non-zoned
loader format. That is, the program tape is segmented into records of 109 characters with 108 data bytes
preceded by a byte of X'F0' and each record is separated from the next by a gap of eight frames of blank
tape. When absolute, the object tape is designated M17, when relocatable M16.

On a TTY punch, the object program is punched in INTERDATA standard zoned loader format. That is,
the program tape is segmented into records of 216 characters with 108 data bytes using two tape characters

per data byte. Each record is separated from the next by a gap of eight frames of blank tape. When
absolute, the object tape is designated M08, when relocatable M09.

7.5.9 OS Assembler Operating Instructions

General Description

The OS Assembler accepts the source form of a program, consisting of a sequential set of source state-
ments as described in Section 7.5.3. This section describes the operations of, and the operating proce~
dures for, the OS Assembler, Program Number 03-025.

The INTERDATA OS Assembler program provides users with extended assembler capability in an INTER-
DATA OS environment. The OS Assembler features:

1. Conditional assembly of modularly segmented source programs by means of the OS Assembler
"IF" statement.

2, Automatic page numbering on the listing,
3. Listing format control and header line page titling by means of the "TITLE" statement.

4, Provision of an optional SCRATCH capability by means of specifying '"SCRT" in the option
statement,

5. Optional selection of a source statement sequence number check for ascending alpha-numerical
identification numbers of eight characters positioned in the last eight bytes of an 80 byte source
record.

6. Use of double-buffered object data output operations that occur simultaneously with source line
reads and listings, executing under an OS that permits I/O to overlap processing,.

7. Use of controlled assembly pauses by means of the "PAUSE" statement.

Configuration

The OS Assembler program runs on an INTERDATA Processor with 16KB or more of memory us-

ing an INTERDATA Operating System. The OS Assembler does not access peripheral devices

directly with Read/Write instructions. It performs all I/O through the OS to logical devices having pre-
assigned logical unit numbers. Input/Output operations are initiated by Supervisor Call (SVC) instructions

7-51

which, upon execution, are interpreted by the OS to accomplish the direct data transfer. Thus, the OS
Assembler may be used with those I/0 devices for which the OS provides drivers.

This section describes the application and requirements of the logical, as differentiated from physical,
devices required for running an assembly in an OS environment.

The OS Assembler can utilize, depending upon the options selected, up to five logical devices as follows:
System Console Device, Source Device, Object Device, List Device, and Scratch Device.

OS Assembler Program Availability

The OS Assembler program tape is provided as Part Number 03-025M16, a relocatable binary object
paper tape in INTERDATA standard-loader, non-zoned format. Standard loader formats are described
in Loader Description Manual, Publication Number 29-231,

Memory Allocation

The OS Assembler program requires approximately 9KB of memory for its Assembler logic. Addi-
tional memory is required by the OS Assembler for its Symbol Table. Refer to Figure 7-15 for a
memory map of the OS Assembler layout.

TOP OF CORE

I

SYMBOL TABLE builds upward on pass 1

TOP OF 0S
ASSEMBLER
PROGRAM LOGIC

0S ASSEMBLER PROGRAM

))E,gggg,s Restart third pass of a 3-pass assembly
X0020'R +| Restart second pass of a 3-pass assembly
X:0000'R ®| Restart second pass of a 2-pass assembly
TOP OF OS | Start first pass operations
OPERATING SYSTEM
DEDICATED LOW CORE
X‘0000’

Figure 7-15. OS Assembler Memory Map

7-52

Each unique legal symbol encountered in the user's program is built into a symbol entry which is stored
in the Assembler's Symbol Table, building upward from the top of the OS Assembler program. Therefore,
the total memory required by the OS Assembler depends on the number of symbols in a user's program.

The number of bytes required by a symbol entry depends upon the number of characters in each specific
source symbol., A one-character symbol requires four bytes, a two or three character symbol requires
six bytes, a four or five character symbol requires eight bytes, and a six character symbol requires

ten bytes.

In an INTERDATA OS environment, with a 16KB system, where the OS Assembler takes 8KB, there is
3KB to 5KB available for the Symbol Table. Refer to Table 7-15 for the number of average four to five
character symbols acceptable in a source program and approximate size of user programs that can be
assembled when 3KB to 5KB is available for the Symbol Table.

TABLE 7-15.
SYMBOL TABLE CAPACITY

Memory Available For
The Symbol Table

Number of Average* Sized
Symbols in a User Program

Size of User Program
*ok

Acceptable
3KB 359 1,795 statements
4KB 512 2,560 statements
5KB 640 3,200 statements

*An average sized symbol consists of four or five characters.

**8ize of User Program is based on a user program that contains one symbol definition
per five source statements.

Loading Procedures

It is generally assumed that, at the load time of the OS Assembler, an Operating System is resident in
memory and in execution. Refer to the particular OS publications on the OS used, for details on load-
ing and executing the OS,

When using the OS Resident Loader, the load command should be used to load the OS Assembler program.
The BIAS location defined at load time is also the ORIGIN (ORG) or starting location for execution of the
OS Assembler's Pass 1 operations. The Bias selected is also the hexadecimal value that must be added
to the restart addresses necessary to restart the OS Assembler on various passes as described in Section
7.5.11, Selection of the Bias depends upon the location and size of the OS. In general, when the OS
resides in low memory, the Bias selected should be the next memory location above the OS available

for user programs, to make maximum use of memory for the Symbol Table.

Logical Device Selection

Prior to execution of the OS Assembler, the physical device addresses must be assigned with the OS in
such a way that each logical device to be utilized during the assembly is related to the user's physical
device configuration. Refer to Basic Operating System Program Manual, Publication Number B29-216,
for the specific procedures involved to establish this physical to logical relationship. The logical unit
numbers associated with the OS Assembler logical device assignment are represented in Table 7-16.
The Input/Output logical requirements of each device listed are specified by the function it performs for
OS Assembler data transfers.

TABLE 7-16.
LOGICAL UNIT NUMBER SPECIFICATIONS

Logical Logical Logical
Unit Device Funection
Number Name Requirements
00 System. Console Logging operator messages;

PASS 1, PASS 2, PASS 3, and
the "XXNN'' I/O Error message

01 Source Device Read ASCII Source

02 Object Device Write Binary Object Data
03 List Device Write ASCII Listing

04 Scratch Device Write/Read ASCII Source

Logical Source Format

The logical source format of a program acceptable to the OS Assembler is a sequential set of source
statements, written in INTERDATA Asserabler Language.

Upon execution, the OS Assembler reads the source by requesting the OS to read 80 byte ASCII records
from the Source Device, Logical Unit Number 01. Each source statement can be any length up to 80
ASCII characters. When the physical record contains more than 80 characters, the OS transfers only the
first 80 characters to the Assembler.

Refer to Table 7-17 for the general sequence or order of source statements within a program.

OS Assembler Operations

The INTERDATA OS Assembler provides a one-pass, two-pass, or three-pass assembly. It is preset to
provide an assembly with the PASS2, PRINT, PUNCH, STOP, no SCRT, and no SQCHK options in effect.
At assembly time, the programmer may choose the number of passes and other options desired for the
assembly, The options are specified with the "OPT" control statement at the beginning of the source
program. Refer to Table 7-18 and Table 7-19 for a summary of OS Assembler pass operations.

Of the three types, one-pass assemblies are fastest, but restrict the programmer's use of forward
references within source statement expressions at programming time., Additionally, one-pass assemblies
produce larger object program tapes requiring longer load time, Two-pass and three-pass assemblies give
a more complete listing of the object code which is most useful at debugging time.

Both the assembly listing and object programs can be produced simultaneously on a single pass assembly,
or on the second pass of a two-pass assembly. A three-pass assembly permits the singular production

of the assembly listing on the second pass and of the object program on the third pass, such that, for users
with dévices that cannot accept printing and punching simultaneously, one assembly still produces both
required listing and object program.

Pass 1 of a Single-Pass Assembly

Pass 1 is executed at the ORIGIN, the OS Assembler clears the Symbol Table, fetches from OS the maxi-
mum available core for building the Symbol Table, lists the message ""PASS1" on the System Console, and
begins to read source statements. When the option statement specifies the symbol '""PASS1", the OS
Assembler reads source from the Source Device (until the "END" source statement), builds the Symbol
Table, and simultaneously outputs the assembly listing to the List Device and the cbject program to the
Object Device, if both are requested. Listing may be suppressed by specifying the symbol "NOPRNT" in

7-54

the option statement.

Object program production may be suppressed by specifying the symbol "NOPNCH"

in the option statement. At the end of this single-pass assembly, the OS Assembler requests the OS to
output an END OF JOB message on the System Console. 'When the symbol "SCRT" (SCRATCH) is specified
in the option statement, a copy of the source statements is output to the Scratch Device and it is rewound
while the Symbol Table is listed. (When using BOSS/4B, the Symbol Table is not listed until after the
Scratch Device is completely rewound.)

TABLE 7-17.

LOGICAL SOURCE FORMAT

Strl:‘aig;:fxt Function Ranking Order
OPT Option Control First or not at all
PAUSE Assembly Pause Interjected as desired
TITLE Listing Title/Control Interjected as desired
IF Conditional Assembly Interjected between modular segments
ENTRY Global Symbol Definition Prior to symbol's use
(Internally Defined)
EXTRN Global Symbol Definition Prior to symbol's use
(Externally Defined)
EQU Local Symbol Definition Prior to label's use and after operand's
symbol definition
ORG Location Specification Inserted to define load location where
necessary. Optional if whole program
sequentially relocatable from relocatable
Zero.
DO Conditional/Multiple Prior to conditional/multiple assembled
Instruction Assembly instruction
(MACHINE
INSTRUCTIONS) Program Logic
(*COMMENT
STATEMENTS) Documentation Aid
Intermixed
DC Define Constants
DS Reserve Storage
END End of program signal Required as last statement

TABLE 7-18.
OS ASSEMBLER OPERATIONS

Assembly Type

Pass Number

PASS 1

PASS 2

PASS 3

1 Read Source Read Source Read Source
Write Listing
Write Object
2 Read Source Read Source
Write Listing Write Listing
Write Object
3 Read Source

Write Object

TABLE 7-19.
0OS ASSEMBLER OPERATIONS WITH SCRATCH

Pass Number

Assembly Type

PASS 1

PASS 2

PASS 3

Read Source
Write Scratch
Write Listing

Read Source
Write Scratch

Read Source
Write Scratch

1 Write Object
L e —_— —1 —
Rewind Scratch Rewind Scratch Rewind Scratch
Read Scratch Read Scratch
Write Listing Write Listing
2 Write Object
Rewind Scratch Rewind Scratch
Read Scratch
Write Object
3

Rewind Scratch

Pass 1 of a Multiple-Pass Assembly

Pass 1 of a Multiple-Pass Assembly is executed at the ORIGIN, the OS Assembler clears the Symbol
Table, fetches from OS the maximum available core for building the Symbol Table, assumes this is
"PASSL" of a "PASS2" assembly with "PRINT', "PUNCH", "STOP", no '""SCRT", no "SQCHK" options

and lists the message "PASSL" on the System Console.
"PASS2' or "PASS3'" symbol must be specified in the option statement.

For a multiple-pass assembly, either the
The OS Assembler's first pass

operations consist of reading the source from the Source Device (until the "END" statement) and building

the assembled program's Symbol Table.

The Symbol Table is listed on the List Device at the end of pass

one, unless the symbol "NOPRNT" is specified in the option statement. When the symbol "SCRT",

the SCRATCH option, is specified, the Assembler writes the source statements to the Scratch Device.

At the end of the first-pass operations of a multiple-pass assembly, the OS Assembler rewinds the Scratch
Device while listing the Symbol Table (under BOSS/4B the Symbol Table is not listed until after the Scratch
Device is completely rewound), and prepares to read the source statements from the Scratch Device on
subsequent passes. Before proceeding to the next pass, the OS Assembler lists the message "PASS2" on

the System Console.

Pass 2 of a Two-Pass Assembly

The OS Assembler also pauses by listing the message "PAUSE" on the System Con-
sole when the option statement does not specify "GO'".

The operator must then resume execution of the OS
Assembler to begin the second pass, e.g., under BOSS by typing CONTINUE.

Pass 2 of a Two-Pass Assembly is executed automatically after pass one, under the "GO" option, or
restarted at ORIGIN (ORG) plus X'0020', the OS Assembler lists the message '""PASS2" on the System

Console and begins second-pass operations.

Reading the source program from either the Source Device

or the Scratch Device (under the '""SCRT'" option), the Assembler simultaneously produces the assembly
listing on the List Device and the object program on the Object Device when both are requested. Listing

may be suppressed by specifying the symbol "NOPRNT" in the option statement. When the "SCRT" option
is in effect, the Scratch Device is again rewound at the end of the pass, while the Symbol Table is listing
on the List Device. (Under BOSS/4B, the Symbol Table is not listed until after the Scratch Device is
completely rewound.) As this is the final pass of a two-pass assembly, the OS Assembler requests the OS
to output an END OF JOB message on the System Console. When the OS has not altered memory, the
Symbol Table is still intact so that PASSZ can be restarted at ORIGIN (ORG) plus X'0020' for duplicate
assemblies without starting over again from ORIGIN for the first pass.

7-56

Pass 2 of a Three-Pass Assembly

Pass 2 of a Three-Pass Assembly is executed automatically after pass one, or restarted at ORIGIN plus
X'0028', the OS Assembler lists the message '""PASS2" on the System Console and begins two operations.
Reading the source from either the Source Device or the Scratch Device, the OS Assembler produces the
assembled program's assembly listing on the List Device, followed by a printout of the Symbol Table.

No object program is produced on this pass. When the "SCRT" option is specified, the Scratch Device is
again rewound during the listing of the Symbol Table. (Under BOSS/4B, the Symbol Table is not listed
until after the Scratch Device is completely rewound.) Before proceeding to the final pass, the OS
Agsembler lists the message "PASS3" on the System Console. The OS Assembler also pauses when the
option statement does not specify "GO'.

Pass 3 of a Three-Pass Assembly

Pass 3 of a Three-Pass Assembly is executed automatically after a second pass when the option statement
specifies '""PASS3" assembly, or restarted at ORIGIN (ORG) plus X'0034', the OS Assembler lists the
message "PASS3" on the System Console and begins pass three operations. Reading the source from
either the Source Device or the Scratch Device, the OS Assembler produces the assembled object program
on the Object Device, No assembly listing is produced on this pass. The Symbol Table is again listed

on the List Device, unless the symbol "NOPRNT" is specified in the option statement. When the "SCRT"
option is specified, the Scratch Device is rewound at the end of this pass. As this is the final pass of a
three-pass assembly, the OS Assembler requests that an END OF JOB message be output to the System
Console. Again, if the Symbol Table of the assembled program is still intact, then either pass two or
pass three may be restarted for duplicating either assembly listings or object programs, respectively.
The second pass may be restarted at ORIGIN plus X'0028' for listings or the third pass may be restarted
at ORIGIN plus X'0034' for object programs.

Operating Procedures

In general, the OS Assembler is operated as any other user program running under the specific Operating
System selected. The specific operations performed by the OS Assembler are mainly controlled by the
OPTION statement in the programs source form, once the OS Assembler is executed at ORIGIN.

Option control may be also modified at OS Assembler execution time by assigning a logical unit to a null
device. For example, under BOSS/4B, Program Number 03-021, the user input "ASSIGN 0200" assigns

the logical Object Device to a null physical device, such that, object program production is suppressed even
when the OS Assembler's PUNCH option is in effect. The user input "ASSIGN 0300'" assigns the List Device,
Logical Unit Number 03, to a null device, physical Device Address 00, such that, assembly listing is
suppressed.

When the List Device is assigned to a null device, one-pass assemblies and the second pass of two-pass
assemblies produce only the object program.

When the Object Device is assigned to a null device, one-pass assemblies and the second pass of two-pass
assemblies produce only the assembly listing.

The basic steps necessary to accomplish an assembly in an OS environment are:
1. Load the Operating System.

2. TLoad the OS Assembler program as per the load procedures of the Operating System. The first
load address or BIAS becomes the ORIGIN or starting execution address of the first-pass opera-
tions of the OS Assembler.

3. Using OS commands, assign the logical-to-physical device relationships necessary for the
assembly. For each logical unit number used in the assembly, assign a physical device address.

4, Ready the devices for the OS Assembler's first-pass operations; that is, all devices are to be
powered-up, on-line, supplied as needed, and ready to transfer their respective data (either
send or receive).

7-57

5.

Option control must be specified in the source program's first statement. Assumed options are
PASS2, PRINT, PUNCH, STOP, no SCRT, no SQCHK.

Execute the OS Assembler at ORIGIN to start first-pass operations as per the OS procedures for
user program execution. The OS Assembler prints the message "PASS1" and reads source
until the END statement.

For single-pass assemblies, with the symbol ""PASSL" in the option statement, the OS Assembler
ends operations by issuing to the OS, an END OF JOB supervisor call after all I/0 is completed.
The user removes both the assembly listing and object program, if both were generated, after
the END OF JOB message.

Continue to Step 8 for assemblies that have the symbols ""PASS2'" or "PASS3" in the option statement.

8.

For multiple-pass assemblies, the OS Assembler prints the message '""PASS2" on the System
Console after the first pass operations are completed. This notifies the operator that the

second pass is starting. When the message "PAUSE" is also printed, the operator then uses

the OS procedures to continue execution of pass two. When source is to be read from the Source
Device, the operator must re-ready source input in the Source Device once the message "PASS2"
is printed.

Upon completion of second-pass operations, for a "PASS2'" assembly, the OS Assembler ends
operations by issuing the OS an END OF JOB supervisor call. The user removes both the
agsembly listing and object program, if both were generated, after the END OF JOB message.
For a "PASS3" assembly, the user obtains the assembly listing.

Continue to Step 10 for assemblies that have the symbol "PASS3" in the option statement.

10.

11.

For three-pass assemblies, the OS Assembler prints the message "PASS3" on the System Console
after second-pass operations are completed. This notifies the operator that the third pass is
starting. When the message "PAUSE" is also printed, the operator then uses the OS procedures
to continue execution of pass three. When source is to be read from the Source Device, the
operator must re-ready the source input in the Source Device once the message ""PASS3" is
printed.

At the end of the third-pass operations, the OS Assembler again issues the OS and END OF JOB
Supervisor call, The user removes the object program after the END OF JOB message is printed.

The following steps apply under Operating Systems that do not alter core memory after END OF JOB
messages.

12,

13.

14.

15.

To restart the entire assembly process, for example, after correcting errors shown on the
listing of a user program with listing errors, use the OS command to execute the OS Assembler
at ORIGIN,

To restart the operations of the '"PASS2'" second pass, use the OS command to execute the OS
Assembler at ORIGIN plus X'0029'. This provides a duplicate copy of both the OS Assembler
listing and object program, if both "PRINT" and "PUNCH'" options are in effect.

To restart the operations of the ""PASS3" second pass, use the OS command to execute the OS
Assembler at ORIGIN plus X'0023'. This provides a duplicate copy of the assembly listing.

To restart the operations of the "PASS3" third pass, use the OS command to execute the OS
Assembler at ORIGIN plus X'0034', This provides a duplicate copy of the object program.

Refer to Figure 7-16 for an example of Operator/System Console printouts during an assembly under
the BOSS, Program Number 03-021.

7-58

(PASS 1)

0s 0s
BUILD SYMBOL
TABLE
LI
SOURCE* 0s SCRATCH
ASSEMBLER
0s 0s

SYSTEM CONSOLE

... END
SYMBOLS

0S = BOSS/48B;03-021
(Example of Console
printouts. User types
the underlined lines.)

(PASS 2)

BOSS/4B oS 0s
ASSIGN 0613 (CR)
BIAS 0C00 (CR)

SYMBOL TABLE

END - XXXX [T
ASSIGN 0104 (CR) os #
ASSIGN 0213
ASSIGN 0362 (C
ASSIGN 0485 (CR)
START 0C00 (CR)
PASS 1

PASS 2 0s 0S
PAUSE

CONTINUE .

EOJ

L/’_//

OBJECT PROGRAM

ASSEMBLER

ASSEMBLY
LISTING

T .. END
SYMBOLS

* OPTION STATEMENT:
OPT PASS2, PRINT, PUNCH, SCRT, STOP

Figure 7-16. OS Assembler PASS2 Assembly With Scratch

The OS Assembler writes the "XXNN I/O ERROR" message to the System Console whenever an error
condition exists during its data transfer requests to the Operation System. Refer to Figure 7-17 for a
binary interpretation of the '""XX'' portion of the I/O Error message under the BOSS Operation System.

X X
- VT Y

EX UNRECOVER-

Always ILLEGAL DU EOM EOF ABLE NOT USED NOT USED

1 ERROR

A A _J
~s
No Data Transferred Data Transferred to Assembler To Process

Tigure 7-17. I/O Error Message Description

7-59

In the "XXNN I/O ERROR” message:

XX = Two hexadecimal digits representing the eight-bit status byte depicting the type of error condi-
tions that occur before or during a data transfer.

NN Two hexadecimal digits representing the eight-bit physical device address of the device from

which or to which a data transfer could not take place correctly.

1}

Refer to Table 7-20 for examples of OS Assembler error messages running under the INTERDATA BOSS
Operating System.,

TABLE 7-20.
EXAMPLES OF I/0 ERROR MESSAGES

Error Messages Meaning Operator Intervention Required

C004 I/0 ERROR Illegal 1/0 requested | Check device 04 (card reader) assignment to a logical
of the physical de- write device. Reassign and to continue type CONTIN UE.
vice assigned to a
logical unit,

C062 I/O ERROR Illegal 1/0 requested | Check device 62 (line printer) assignment to a logical
read device. Reassign and to continue type CONTINUE.

A013 I/O0 ERROR Device Unavailable Check device 13 (High Speed Paper Tape Punch) for
depression of REMOTE button. Correct and to
continue type CONTINUE.

A004 I/0 ERROR Device Unavailable Check device 04 (card reader) for power-up, motor-on,
START button depressed, when this error occurs at
beginning of assembly. Check for MOTION, PICK FAIL,
LIGHT/DARK errors. On PICK FAIL the card has not
passed through the read station; correct the card when the
front edge is mutilated and continue. When card causing
other errors passes partially or totally through the read
station into the card stacker, place it back into the hopper
and continue to re-read it by typing CONTINUE,

9085 1I/0 ERROR EOM = End of NONE. Assembly continues.
Medium
8885 I/0 ERROR EOF = End of File ... Assembly continues, with Format error. X'1318'
(EOF) placed in buffer.
8495 I/0 ERROR UNREC = Un- NONE. Mag tape #95 may have parity errors. Assembly
recoverable Error continues with best guess data transfer. Operator must

inspect listing to see if this type of error affects user
assembly, such as, causing "M" Multiple Defined errors
on source statements with labels when the parity error
affected the main fields of the source statements.
Aborting the Assembly at this point is at the operator's
discretion.

Assembly Listing and Object Programs

The OS Assembler requests the OS to write the assembled program's assembly listing in seven-bit ASCII
to the List Device, Logical Unit Number 03. Refer to Section 7.5.6 for a detailed description of the
standard INTERDATA assembly listing format.

The OS Assembler requests the OS to write the assembled program's binary object data to the Object

Device, Logical Unit Number 02, Refer to Section 7.5.6 for a detailed description of the standard
INTERDATA binary object program format.

7-60

7.6 ASSEMBLY LEVEL PROGRAMMING TECHNIQUES

The INTERDATA Processors are characterized as being 3rd generation. The priv.cipal features of the
machine which merit this description are the 16 General Registers, the extensive instruction set, the
direct addressability of 64KB memory, and the byte addressing and manipulation features. All of these
features contribute to convenient and flexible programming, particularly when contrasted to other machines
with limited instruction sets and/or paged memory addressing schemes, The INTERDATA Processors,
therefore, in contrast to other machines:

1. Require less programmer effort to generate a given program.,

2. Facilitate generating larger and more sophisticated programs.

3. Allow more convenient updating or changing of a given program to meet new requirements,
4

. Result in better system efficiency during program execution.

To reap these benefits of the 3rd generation architecture, the machine features must be used properly
when programming the machine. The principal key to efficient use of the system lies in the proper allo-
cations of the 16 General Registers. In general, these registers can be used in such a way as to optimize
system performance, be it execution speed, core memory usage, or throughput. Some of the uses for
General Registers are as follows:

1. Subroutine returns as with BAL instruction.

2, Constants - frequently used values such as 1, 2, or 0,

3. Variaples - frequently used values such as pointers or indexes.
4, Device numbers - for use with I/O instructions.

5. Loop Counters - for controlling program loops.

6. General accumulators - for working values and temporary storage.

Register usage directly affects the sygtem performance in the following ways:

1. RR-type instructions occupy two-bytes in memory and RX or RS-type instructions occupy four-
bytes. The more quantities that reside in General Registers, the more RR-type-instructions are
used, and the faster the program.

2. RR-type instructions in general execute faster than RX or RS type instructions. The more
quantities that reside in General Registers, the more RR-type instructions are used, and the
faster the program.

3. The more quantities are maintained in General Registers, the fewer load-and-store-type instructions
are required for computations, and the more efficient the program in both core usage and execution
time.

The actual allocation of registers varies from one program to another, depending on the characteristics of
the problem and the performance objectives. By saving and restoring registers from memory at strategic
points, the use of the General Registers can vary within a program. A typical register allocation for gen-
eral programming is as follows:

subroutine returus 2
constants 3
variables 3
device numbers 2
loop counters 3
general accumulators 3

Total = 16 registers

An alternate approach to the use of General Registers that is appropriate to interrupt programming is to de-
vote certain registers for use only by interrupt routines. In this case, no register saving and restoring is
required to service an interrupt, which minimizes response time and overhead time for interrupt routines.

7-61

Congistent with General Register usage, most assembly language programs assign symbolic names to the
General Registers it uses; that is, if Register 3 is used as a counter, rather than writing

AHI 3,5

a mnemonic symbol such as COUNT is assigned the register number, and the instruction is written

AHI COUNT,5

In this way, assembly language listings become quite easy to read and are a valuable element of the program
documentation.

In addition to General Register usage, there are many specific techniques which can be used to improve
program efficiency. Some of these techniques are discussed below.

1. To clear General Register R, use the instruction

XHR R,R,
or
SHR R, R,

2. To test the sign of a value in General Register R, use the instruction
LHR R,R
which adjusts the Condition Code, but does not affect the contents of the register.
3. To shift General Register R left one bit, use the instruction
AHR R,R

4. To exchange the contents of General Registers A and B without using a third register, use the
sequence

XHR A,B
XHR B,A
XHR A,B

5. To control a loop with the minimum register and memory usage, use one Register C as follows:

up XHR C,C DOWN LHI C,START
LOOP . LOOP .
AIS C,1 SHI C,1
BP LOOP
BNZ LOOP

6. To control a loop with the fastest possible execution time, use a BXLE loop as follows:

LHI A, LOWER
LHI B, INCR
LHI C, FINAL
LOOP .

BXLE A, LOOP

7. To add both a constant Y, and the contents of Register Z to the contents of Register X, use the
indexed RS instruction

AHI X,Y (Z).

7-62

8. In a Model 3, which has no Load Multiple (LM) or Store Multiple (STM) instructions, use the follow-
ing sequence for subroutines that require full use of the 16 General Registers, where all subroutine
calls have the form BAL 15, SUBR.

SUBR STH 0, SAVREG+2
BAL 0,SAVER

B SAVREG
where

SAVER STH 1,SAVR1+2
STH 2,SAVR2+2

STH 15,SAVR15+2
BR 0

and

SAVREG LHI 0,0000
SAVRI1 LHI 1,0000

SAVR15 LHI 15,0000
BR 15

9, Where a direct correspondence exists between two sets of discrete values, the fastest method of
conversion from one to the other involves a programming technique called table look-up. One
application of table look-up procedures is that of code conversion.

*CHAR CONTAINS SOME 8-BIT VALUE
LB CHAR, ASCII (CHAR)

*CHAR CONTAINS ASCII CODE (CORRESPONDING 8-BIT)

ASCII DC X'FIRST TWO ASCII CODES!

DC X'LAST TWO ASCII CODES'

10. To save memory when passing arguments to subroutines, instead of loading General Registers with
the argument values, the called subroutine can load its required arguments into its General Registers
by using the linkage register to point to arguments in the calling sequence as follows:

BAL LINK, SUBR
DC A(ARG1)
DC A{ARG2)
DC A(ARGS)
DC A(ERROR)
CONTINUE

SUBR LH R1, 0(LINK) FETCH 1ST ARGUMENT
LH R2,2(LINK) FETCH 2ND ARGUMENT
LH R3, 4(LINK) FETCH 3RD ARGUMENT
B 6 (LINK) ERROR RETURN
B 8(LINK) RETURN TO CONTINUE

11. To count the number of 1's (bits set) in Register P, and place the result in Register Q, use the
sequence below, which is fast although somewhat tricky.

XHR Q,Q CLEAR Q
LHR P, P TEST P
BZ EXIT

LOOP AHI Q,1 INCR Q

NHI P,-1(P) CLEAR LEAST SIGNIFICANT BIT SET
BNZ LOOP AND TEST
EXIT

Following the above sequence for some sample value, such as P = X'0124', will help the reader
understand the operation of this sequence.

7.7 FORTRAN IV
7.7.1 General Description

The INTERDATA FORTRAN IV system is, with three minor exceptions, USASI Standard Fortran (X3.9-
1966). The FORTRAN IV system consists of the following:

FORTRAN IV Compiler 03-023
OS Library Loader 03-030
Run Time Library 07-040

This section provides a brief summary of the INTERDATA FORTRAN IV gsystem. The FORTRAN language
is described in the FORTRAN IV Reference Manual, Publication Number 29-220., The use of the FORTRAN
IV Compiler is described in the BOSS FORTRAN User's Guide, Publication Number 29-246. The OS
Library Loader is discussed in Section 7.9. The Run Time Library is described in the Run Time Library
Description, Publication Number 29-242.

The INTERDATA FORTRAN IV system operates in an INTERDATA Processor equipped with the 16KB or
more of memory. In a 16KB system, BOSS is required.

The FORTRAN Compiler is supplied as a relocatable paper tape, 03-023M16. The Run Time Library is
supplied as five relocatable paper tapes as follows:

Real/Integer Routines 07-040F01M16
Double Routines 07-040¥F02M16
Complex Routines 07-0401F03M16
Input/Output Routines 07-0401r04M16
Miscellaneous Routines 07-040F05M16

The OS Library Loader, 03-030M16, is used to load compiled programs and edit Run Time Library Tapes
as needed.

7.7.2 FORTRAN Language Specifications
The INTERDATA FORTRAN IV is a USASI (X3. 9-1966) Standard FORTRAN with the following exceptions:
1 A FORTRAN statement may consist of 160 characters excluding the statement number, if any,
and all non-essential blanks. This number allows, at a minimum, an initial statement and one con-
tinuation statement. Since blanks are not included in the 160 character maximum, additional con-

tinuation statements may be possible if Columns 7-72 of the initial statement and the first continua-
tion statement contain any blanks.

7-64

2. All Intrinsic and External Complex, and Double Precision functions must be explicitly declared in
the FORTRAN program. Refer to Tables 7-21 and 7-22 for a summary of Intrinsic and External
functions. ‘

EXAMPLE: COMPLEX C, CEXP
C = CEXP (C)

3. The auxiliary Input/Output statements REWIND, BACKSPACE, and ENDFILE have been eliminated.
These operations may be performed via CALL statements to Run Time Library subroutines. See
Run Time Library Description, Publication Number 29-242,

7.7.3 Loading the FORTRAN Compiler

The FORTRAN Compiler requires an operating system for purposes of input/output. The FORTRAN tape
can be loaded using the LOAD command in conjunction with the ASSIGN and BIAS commands. For example,
an operating system command sequence to load the compiler might be as follows:

ASSIGN 0213
BIAS 0C00
LOAD 2

This sequence assigns Logical Unit 2 to the High Speed Paper Tape Reader, sets the bias to X'0C00' and loads
a tape from Logical Unit 2.

TABLE 7-21,
INTRINSIC FUNCTIONS
Symbolic Number of Intrinsic Functions Type of:

Name Arguments Argument Function
ABS 1 Absolute Value (|a|) Real Real
IABS Integer Integer
DABS Double Double
AINT 1 Truncation (Sign of a times Readl Real
INT largest integer<(lal) Real Integer
IDINT Double Integer
AMOD 2 Remaindering* (aj (mod ap)) Real Real
MOD Integer Integer
AMAXO0 2 2 Choosing Largest Value Integer Real
AMAX1 (Max (ay, ag5+00..)) Real Real
MAXO Integer Integer
MAX1 Real Interger
DMAX1 Double Double
AMINO 22 Choosing Smallest Value Integer Real
AMIN1 (Min (a1, agseesee)) Real Real
MINO Integer Integer
MIN1 Real Integer
DMIN1 Double Double
FLOAT 1 Float (Conversion from Integer Real

integer to real)
IFIX 1 Fix (Conversion from real Real Integer
to integer)

7-65

TABLE 7-21.
INTRINSIC FUNCTIONS (Continued)

Symbolic Number of Intrinsic Function Type of:
Name Arguments Argument Function
SIGN 2 Transfer of Sign (Sign of as Real Real
ISIGN timés Iall) Integer Integer
DSIGN Double Double
DIM 2 Positive Difference Real Real
IDIM (a; - Min (aq, az)) Integer Integer
SNGL 1 Obtain most Significant Part Double Real
of Double Precision Argument

REAL 1 Obtain Real Part of Complex Complex Real
Argument

AIMAG 1 Obtain Imaginary Part of Complex Real
Complex Argument

DBLE 1 Express Single Precision Real Double
Argument in Double Precision
Form

COMPLX 2 Express Two Real Arguments Real Complex
in Complex Form (aj + ag \f -1)

CONJG 1 Obtain Conjugate of a Complex Complex Complex
Argument

*The function MOD or AMOD (a;,ay) is defined as a; - | al/ a, ” 'a2, where‘ ',’ﬂl 'is the integer whose mag-
nitude does not exceed the magnitude of x and whose sign is the same as x.

TABLE 7-22,
BASIC EXTERNAL FUNCTIONS
Symbolic Number of Basic External Function Type of:

Name Arguments Argument Function
EXP 1 Exponential (e?) Real Real
DEXP 1 Double Double
CEXP 1 Complex Complex
ALOG 1 Natural Logarithm (log, (a)) Real Real
DLOG 1 Double Double
CLOG 1 Complex Complex
ALOG10 1 Coramon Logarithm Real Real
DLOG10 Double Double
SIN 1 Trigonometric Sine (sin (a)) Real Real
DSIN 1 Double Double
CSIN 1 Complex Complex
COs 1 Trigonometric Cosine (cos (a)) Real Real
DCOS 1 Double Double
CCOSs 1 Complex Complex

7-66

BASIC EXTERNAL FUNCTIONS (Continued)

TABLE 7-22.

Symbolic Number of Basic External Functions Type of:

Name Arguments Argument Function
TANH 1 Hyperbolic Tangent (tanh (a)) Real Real
SQRT 1 Square Root ((a)l/ 2) Real Real
DSQRT 1 Double Double
CSQRT 1 Complex Complex
ATAN 1 Arctangent (arctan (a)) Real Real
DATAN 1 ‘ Double Double
ATAN2 2 (arctan (a;/as)) Real Real
DATAN2 2 Double Double
DMOD 2 Remaindering * Double Double

(a7 (mod ag))
CABS 1 Modulus Complex Real
*The function DMOD (a;, ag) is defined as ag - | al/az | ag, where | x | is the integer whose magnitude
does not exceed the magnitude of x and whose sign is the same as the sign of x.

7.7.4 Memory Requirements

Refer to Figure 7-18 for a memory map at compile time in a 16KB memory.

16K —»

~15.3K—

COMPILER
DICTIONARY

TABLE AREA
PUSH

COMPILER

- PULL TABLE

~3K

Qo —>

Figure 7-18.

‘MAG TAPE DRIVER

LINE PRINTER DRIVER

CARD READER DRIVER

HIGH SPEED PAPER TAPF

TELETYPE DRIVER

BOSS

DEDICATED CORE

Memory Map At Compile Time Using BOSS

7-67

In the 16K byte system, as shown in Figure 7-18, the Basic Operating System occupies about 3K bytes. The
FORTRAN Compiler occupies about 12. 3K bytes. This leaves approximately 0.7K bytes for the FORTRAN
Dictionary and Push-Pull Table. The dictionary is the Compiler's Symbol Table. The dictionary includes
entries for:

Statement Labels

Numeric Constants
Alphabetic Constants
Variable Names

Common Block Names
Subprogram Names
Temporary Storage Variables

Entries in the dictionary are variable length, so that Labels and variable names of less than six characters
require less table space than a six character Label or variable name.

The Push-Pull Table is a variable length area which is used as a pushdown stack during the decoding of
arithmetic expressions. Ata maximum, this table is about 150 bytes.

For approximately 0. 7K bytes of memory available for Table Area, a FORTRAN program might contain:

15 labels* = 150 bytes
5 variables (via = 100 bytes
specification
statementg)**
15 variables (not = 150 bytes
in specification
statements)*
6 temporaries = 48 bytes
10 constants = 100 bytes
Dictionary area = 548 bytes
Push Pull Table = 150 bytes
total table area = 698 bytes

The FORTRAN compiler is written so that, for systems with more than 16K bytes of memory, the Table Area
automatically increases to the top of available memory.

16K system: Table Area =0.7K
24K system: Table Area =8.7K
ete.

If during a compilation, the available Table Area (Dictionary + Push Pull) is insufficient for further entries,
the FORTRAN Compiler prints the following error message and terminates the job.

*LINE # XXXX ERROR #50
where XXXX is the last line processed.

*agsumed to be three or four character names.
**ggsumed to be two dimensional, with possible use in Common-Equivalence statements.

7-68

7.7.5 Compiler Execution Procedures

The FORTRAN Compiler uses four logical units as follows:

LOGICAL UNIT PURPOSE

1 Source Input

2 Binary Output

3 List Output

7 Error Message Output

These logical unit numbers must be assigned to physical devices via the ASSIGN command in the Operating
System prior to starting the Compiler. Normally, the Error Message Device is the same as the List De-
vice, which causes assigned error messages to be listed following the statements which caused the error.
THowever, if a listing is not desired, Logical Unit 3 can be assigned to 0, \the null device, which suppresses
listing output. Similarly, Logical Unit 2 can be assigned to 0 to suppress binary output. In this fashion,

a compilation can be performed generating only error messages.

A typical Operating System command sequence for device assignments might be:

ASSIGN 0104 Source Input Device
ASSIGN 0213 Binary Output Device
ASSIGN 0302 List Device

ASSIGN 0702 Error Message Device

This sequence assigns a Card Reader (X'04') as the Source Input Device, a High Speed Paper Tape Punch
(X'18') as the Binary Output Device, and a Teletype (X'02') as the list and Error Message Device.

The starting location for the FORTRAN Compiler is the BIAS or first location in the program. The BIAS
value is assigned prior to loading. If no programs are loaded after the Compiler, execution can be started
with the Operating System command START, since BOSS retains a transfer address to the correct location.
If programs are loaded after the Compiler, the command START bbbb can be used, where bbbb specifies
the first location of the Compiler.

Once started, the Compiler reads source statements and produces a symbolic listing and binary object tape
in a one-pass operation. The compilation proceeds until an END statement is detected, at which time a
Memory Map is printed. When the map is complete, the Compiler returns control to BOSS, and BOSS types
EOJ on the Console Device.

7.7.6 Loading a Compiled Program

Compiled programs use an operating system for purposes of input/output and interrupt control.

Binary object tapes generated by the Compiler are relocatable tapes in standard loader format (i.e. M08 or
M16 tape formats depending on whether they are zoned or not zoned). Due to the program linkage informa-
tion on the object tape, it is necessary to use the OS Library Loader, 03-030, to load these tapes.

Refer to Figure 7-19 for an Execution Time Memory Map using BOSS.

7-69

16K —»

BLANK
COMMON

BLANK COMMON

R.T.L. ROUTINES

VIA

B e e
________ T _LABEL2 _| (COMMON 1 | - commanD
ALLOCATED

} {BC COMMAND

USER WRITTEN
FORTRAN SUBROUTINE

MAIN
FORTRAN
PROGRAM
~JK —»
OS LIBRARY
LOADER
~JK—=
BOSS/48
0—»

Figure 7-19. Execution Time Memory Map

7.8 INTERACTIVE FORTRAN

7.8.1 General Description

This section contains a brief synopsis of the Interactive FORTRAN System which operates on the
INTERDATA family of Processors. Table 7-23 provides a summary of the Interactive FORTRAN System.,
Several versions of the Interactive FORTRAN, including an OS Interactive FORTRAN, Program Number
03-033, are available. Refer to User's Manual for Interactive FORTRAN, Publication Number 29-014,
for further information.

The Interactive FORTRAN System provides a Direct Mode for on-line evaluation of arithmetic expressions,
and an Editing Mode for the creation and manipulation of stored programs. The system combines the con~
venience of a desk calculator with the programming power of FORTRAN.

In many FORTRAN systems designed for small computers, the programming is simple, but the mechanics

of program preparation are complex. This is especially true of paper tape oriented machines for which it

is necessary to go through the phases of compiling, object tape loading, and system subroutine loading. The
handling of the paper tapes becomes laborious, when the whole procedure needs repeating for every program
correction. In contrast, the INTERDATA system requires no program preparation other than the entry of the
source information; corrections can be made while the programs remain in memory.

7-70

TABLE 7-23,

MODEL 70 INTERACTIVE FORTRAN SUMMARY

-«+—direct mode input
* edit mode input

= data input

? error

! memory full

Numbers - real only, E format
- precision 6-7 digits
- range *76

Variables - 2 char, names, letter first
- global, real only

- 2 char. names, letter first
- 1 or 2 dimensions

- global, real only

- subscripts 1,2,,...,N

Arrays

Expressions - use (,),+,-,*,/,**

Functions - SIN, COS, EXP, LOG, ATN

Statements - 2 digit statement numbers

- terminate with RETURN char.

- 54 char. max, no continuations

Programs - 2 char. names, letter first
- nesting to level of 5
- implicit RETURN at end

Operations - CALL P

- RETURN
- GOTON
- GO TO (N1,N2,...),X
- IF (X) N1,N2,N3
- DO N V=1,12
- CONTINUE
- DIMENSION A(L),...
- V=X
- TYPE A,B,...
- ACCEPT A,B,...

* - WRITE X,A,B,...

* - READ X,A,B,...

* - FUNCTION (X,A,B,...),C,D,..

.

Erase previous character with <—
Erase line with #
Interrupt execution with Switch 15

Editing Commands
SUBR or SUBROUTINE A

OoP OPEN N,X
I LIST

DE DELETE
EN END

System Commands
CL or CLEAR

PR PROGRAMS
VA VARIABLES
ER ERASE A
FR FREEZE
UN UNFREEZE

Direct Mode Operations
CALL P
DIMENSION A(L),...
V=X
TYPE A,B,...
ACCEPT A, B,...
WRITE X,A,B,...
READ X,A,B,...
FUNCTION

Ignored
C COMMENTS
REAL
INTEGER
COMMON
FORMAT

Memory Usage
20 bytes per statement (average)
6 bytes per variable
6+4N bytes per array

Features
2 character names
Free format input/output
2 dimensional arrays
All values real and global
FREEZE mode for speed-up
OS Version
Input
Output
Pause
EOJ

(X,A,B,...),C,D,...

* User programmable

7.8.2 Features

The system provides a set of FORTRAN operations and a set of system commands for editing, debugging,
and control. The FORTRAN set is chosen to provide the greatest computational power for the least memory
space required for its implementation. The system is designed expressly for on-line use. The user
communicates with the system through a Teletype. Features which assist the interaction between man and
machine are:

1. Single character indications which request input and reflect the mode of the system are as follows:

-direct-mode input request
* edit-mode input request
= data input request

2. All inputs are terminated by a carriage return. Until the terminating carriage return is received,
no processing takes place, and the input line can be corrected or changed at will.

3. Command directives and FORTRAN operations can be abbreviated during input to minimize typing.

4. Commands are provided for listing all defined variables and for listing the names of all defined
programs,

5. Commands for program creation, editing, and execution can be freely intermixed.
6. Error messages indicate the point in a program at which an error occurred during execution.

7. A performance improvement feature called FREEZE is provided. This operation alters the
stored programs so that they become "more compiled', and results in a substantial decrease in
execution time,

The system is designed to operate in systems with 8K bytes or more of memory, sufficient
working space is available for the user to create and execute a FORTRAN program with 30-70
statements and 10-50 variables. Any available memory above 8K is used to expand the user's
working space for more programs and data.

7.8.3 Use of the System

This interactive FORTRAN is operated and controlled from the Teletype keyboard. The system presents
two distinct modes to the user., The Direct Mode, which is characterized by the arrow character (=) in the
left margin, permits on-line assignment of variables, evaluation of expressions, etc. The Edit Mode,
which is characterized by an asterisk (*) in the left margin, allows the creation and modification of stored
programs. When the system is started, the user is given control at the keyboard in Direct Mode.

The user converses with the system in staternents, either FORTRAN operation statements or system com-
mands, Until the RETURN key is depressed, which terminates a statement, no processing takes place, and
the input line can be corrected or changed at will. The left arrow (=) key can be used anytime to erase the
last character in the line. The hashmark (#) key can be used anytime to erase the current line, When # is
depressed, the system advances one line so that the current statement can be retyped. This chapter dis-
cusses the details of program editing, system command, error messages, etc.

There are four types of operations: control, declarations, assignments, and input/output transfers. Table
7-24 summarizes the operation names in each class.

TABLE 7-24.
FORTRAN OPERATION STATEMENTS
Type FORTRAN Name Purpose
Control CALL Execute a Program
RETURN Exit from a Program
GO TO Transfer to a Statement
IF Compare an Expression to Zero

7-72

TABLE 7-24.
FORTRAN OPERATION STATEMENTS (Continued)

Type FORTRAN Name . Purpose
DO Define a Set of Statements to Execute
Repeatedly in a Loop
CONTINUE Define End of a "DO Loop"
Declaration DIMENSION) Define Name and Size of Arrays
Assignment Name=Value Assign a Value to Named Variable or
’ Array Element
Input-Output TYPE Print Values or Character Strings on
the Teletype Printer
ACCEPT ~ Input Numbers from Teletype Keyboard
and Assign to Variables or Array Ele-
ments
WRITE Transfer to assembly language output routine
User : .
Programmable READ Transfer to assembly language input routine
FUNCTION Transfer to assembly language function
routine
]

The commands used for program editing are:

SUBROUTINE Define a new subroutine or refer to existing subroutine,

OPEN Refer to a specific statement of referenced subroutine.

LIST List either entire subroutine or one statement of a subroutine.
DELETE Delete either entire subroutine or one statement of a subroutine.
END Terminate editing sequence.

These commands, except for SUBROUTINE, can be abbreviated to the first two characters to minimize
typing. The SUBROUTINE command can be abbreviated to the first four characters (SUBR).

7.8.4 System Capacity

Stand-alone systems operate on an INTERDATA Processor with 8K bytes or more of memory. The FOR-
TRAN program itself occupies approximately 6.5K bytes of memory. In an 8K byte memory, this leaves a
1. 5K byte working space for user’s stored programs and data. Any available memory above 8K bytes

can be used to expand the working space. The OS system requires 16KB memory.

Working space in memory is used as follows:

1. Stored statements require 20 bytes per average statement.
2. Defined variables require six bytes each.

3. Defined arrays require 6+4N bytes where N ig the number of elements in the array.

Each 1000 bytes of working space can hold 50 average statements, over 150 variables, or a 15 X 15 two
dimensional array.,

7~73

7.9 LOADER DESCRIPTIONS

7.9.1 General

Table 7-25 provides a summary of Loader Features. INTERDATA programs are normally supplied as
binary object paper tapes in one of six formats, These formats, and the corresponding part number
suffix, are as follows:

MO8 - Relocatable zoned loader format
MO09 - Absolute zoned loader format

M10 - Bootstrap (self-loading)

M14 - Eight-bit core image

M16 - Relocatable non-zoned loader format

M17 - Absolute non-zoned loader format

TABLE 7-25.
SUMMARY OF LOADER FEATURES

Absolute or relocatable programs
Post-load transfer

External references (EXTRN's) illegal
REL Loader Common usage illegal

06-024 Forward-reference-chain definitions legal
External definitions (ENTRY) ignored
Program labels ignored

Zoned or non-zoned tapes

Absolute or relocatable programs

Post-load transfer

Forward-reference-chain definitions legal

General Loader External references (EXTRN's) legal
06-025 External definitions (ENTRY's) legal

Programs labels typed-out |

Common usage illegal

Zoned or non-zoned tapes

No global symbols

Resident Loader compatible with REL Loader, 06-024. OS Library Loader
(03-030) compatible with General Loader, 06-025, plus facility for COMMON
usage, plus "OUT' mode.

7-74

The bootstrap (M10) tapes are loaded by using the 50 Sequence, as described in Section 7.9.2. Boot-
strap tapes are constructed from a combination of eight-bit, fast format, and loader format sections
that are appropriate for the program being loaded.

The eight-bit (M14) tapes are loaded by using the eight-bit loader in the 50 Sequence that is adjusted to
‘read the correct amount of data. Normally, the 50 Sequence is modified for this purpose by changing

the upper limit from X'CF!' to the appropriate value. This tape format is used only for certain test tapes,
such as the processor test and memory test, which cannot assume the presence of another loader pro-
gram in memory.

There are five loaders available for loading binary object tapes as generated by the Assembler, the Com-
piler, or Hex Debug Program. These loaders are:

Loader Program Part No.
1. OS Library Loader _ 03-030
2, The General Loader 06-025
3. The Relocating (REL) Loader 06-024
4. The OS Resident Loader Part of the Operating System

These loaders are compatible but vary in size and in the number of features provided. The most compre-
hensive is the OS Library Loader which occupies about 4000 bytes of memory, and runs under the Basic
Operating System. It may be operated interactively, through the Console Teletype, or it may read its
operator commands from some other device, such as a card reader, allowing latch load-and-go processing.
All 1/0 is accomplished through logical 1/0 calls to the Operating System. Programs being loaded may be
absolute or relocatable, they may contain entry points and external symbol references, forward references
with programs, and common block definitions, A program library may be created on a magnetic tape de-
vice, and the programs may be called by name, linked to other library or non-library programs, and exe-
cuted by operator commands, Additionally, programs may be output as an absolute load module suitable
for loading by any other loader. Load modules may consist of any number of programs, but all external
symbolic references will be converted to internal forward reference chains within the module. In this
way, the Loader can be used to link a group of programs which may be loaded by the Resident Loader,
overlaying the OS Library Loader. The Loader can print a Memory Map showing programs loaded or
programs in a load module.

The General Loader is a stand-alone program, occupying about 1500 bytes. It inputs paper tape from a
Teletype or from a highspeed reader, and logs messages on the Teletype. It provides program relocating,
ENTRY and EXTRN handling, and allows forward references within programs. This program is operated
from the Processor Control Panel.

The Relocating Loader is a stand-alone program occupying about 800 bytes. It reads paper tapes from a
Teletype or HSPTR, and displays error indication on the Processor Control Panel. It allows program
relocation, and forward references within programs. This program is operated from the Processor
Control Panel.

The Resident Loader provides the same features as the Relocating Loader, except that it is operated by
operator commands through the system Teletype, and makes use of the Operating System logical 1/0,
allowing input from any binary device.

Any program to be executed under the Operating System must be loaded by the Resident or the OS Library
Loader. 1If the program defines Common or contains any external references, it must be loaded by the
Library Loader, or the Library Loader may be used to produce a load module which may then be loaded

by the Resident Loader, Programs which do not require an Operating System may be loaded by one of the
stand-alone Loaders. If the program contains references to external symbols, the General Loader must be
used. Otherwise, the Relocating Loader may be used. .

7-75

The binary tapes generated by the Assembler can be absolute or relocatable. A pointer called BIAS identi-
fies the origin used in loading a Relocatable program. Absolute data is stored at the absolute location
specified for the data. Relocatable data is stored at its relative address, plus the value of the BIAS pointer.

The BIAS may be set to any address before a program is loaded, causing the program to be loaded upward in
memory from that address. Upon completion of any load, the Loader adjusts the BIAS point to the next
available location, above the highest location loaded. This occurs whether the loaded program was reloca-
table or absolute. Thus additional Relocatable programs are loaded in consecutive areas of memory.

During loading, the Loaders block attempts to load any data that would overwrite the Loader, either absolute
data at an address within the Loader, or relocatable data at such an address because of the current value

of BIAS. In addition, the General Loader will not load above itself, the OS Library Loader will not load
below 1tself, and the Resident Loader will not overwrite any part of tne Operating System. The Relocating
Loader loads above or below itself in memoxy. See Memory Maps, Figure 7-20,

0S LIBRARY LOADER GENERAL LOADER
cTop CTOP
LABELED COMMON

GENERAL LOADER

BLANK COMMON

LOADER SYMBOL TABLE LOADER SYMBOL TABLE
BUILDS DOWN BUILDS DOWN

1 PROGRAMS BUILD UP

OS LIBRARY LOADER PROGRAMS BUILD UP
UBOT . 80
BOSS
0000 0000
BOSS RESIDENT LOADER RELOCATING LOADER
CTOP CToP
COMMON* RELOCATING LOADER

PROGRAMS BUILD UP

t PROGRAMS BUILD UP

UBOT t 80

BOSS

0000 0000

CTOP = TOP OF CORE (LAST ADDRESS WITHIN MEMORY).
*COMMON USED ONLY IF LOADING A LOAD MODULE PRODUCED BY 0S LIBRARY LOADER.

Figure 7-20. Loader Memory Maps

7.9.2 50 Sequence Bootstrap Loader

The 50 Sequence for the INTERDATA Processor family is shown on Table 7-26. Note that the eight-bit
The Device Table, from X'78' to X'7F"' is changed according

loader is the same for all memory sizes.

to the device configuration at hand, The sequence shown in Table 7-27 is appropriate for Teletype input/

output. With this sequence, location X'22' should contain the value X'0058'. When loading bootstrap
(M10) tapes, refer to the program document to see which sequence is appropriate.

_ TABLE 7-26.
SEQUENCE FOR MODELS 74, 70, and 80

50
52
54
56
58
5A
5C
5E
60
62
64
66
68
6A
6C
6E
70
72
74
76
78
TA
7C
7E

D500 LOAD
00CF

4300

0080

AL X'CF'

B

X'80’

Reserved for Register Save Area

0294 BINDV
0298 BOUTDV
0294 SINDV
0298 LISTDV

DC
DC
DC
DC

X'0294'
X'0298'
X'0294'
X'0298'

The eight-bit loader stores eight-bit data bytes into memory from X'80' to X'CF' and transfers to X'80'.
This loader can read from Teletype, a High
Speed Paper Tape Reader, Cassette Tape, Nine-Track Magnetic Tape, or from any device which can trans-

This loader uses the Binary Input Device as defined in X'78',

fer 80 eight-bit data bytes, and can be started with a single eight-bit output command. When using the

eight-bit loader at X'50', three steps are required:

1. Place the tape in the reader device to be used. Note that with the Auto Load instruction on
Models 74, 70, and 80, leading zero data characters are ignored.

2. Prior to starting the loader at X'50', the INITIALIZE switch on the Control Panel should be

depressed.

3. When loading from a Teletype, the tape motion must be started manually, After the loader is

started at X'50', with an ASR-33, toggle the reader switch to START. With an ASR-35, put the

reader switch in RUN with the Teletype MODE Switch in the KT position.

=77

The Device Definition Table contains four halfwords. Each halfword specifies one device.

DEVICE NO. OUTPUT COMMAND

The left byte contains the device number. The right byte contains the output command required to start
that device. The four halfwords are used as follows:

X'"78' BINDV Binary Input Used by stand-alone loaders to select the load device.

X'TA' BOUTDV Binary Output Used by Basic Assembler, Hex Debug, and Text Editor to select
the punch device.

X'7C' SINDV Source Input Used by Basic Assembler, and Text Editor to select the source
input device.

X'7E' LISTDV Symbolic Output Used by Basic Assembler, Hex Debug, and Text Editor to select
the list device,

During loading operations, only BINDV at X'78' is used. During Basic Assembler operations, the other
three halfwords are used.

Table 7-27 shows the Device Definition Table entry for various devices.

TABLE 7-27.
DEVICE DEFINITION TABLE ENTRIES
Program Function Table Location Device Table Entry

Loaders Loading BINDV at X'78! Teletype 0294

High Speed Tape Reader 1399
Basic Assembler Punching Object | BOUTDV at X'7A! Teletype 0298
Hex Debug and High Speed Tape Punch 139A
Text Editor
Basic Assembler Reading Source SINDV at X'7C' Teletype 0294
and Text Editor High Speed Tape Reader 1399
Basic Assembler Listing LISTDV at X'TE! Teletype 0298
Hex Debug and High Speed Tape Punch 139A
Text Editor Line Printer 6280

The General and Relocating Toaders are provided in a relocating bootstrap form. The format of the tapes is
illustrated in Figure 7-21. The tapes consist of three segments: the boot portion in eight-bit format, a fast
formal copy of the REL Boot Loader, and the actual loader in standard M16 binary object tape format. When the
tape is loaded using the eight-bit loader at X'50', the following sequence of events takes place.

1. The eight-bit Loader at X'50' reads another Loader into X'80' to X'CF' and transfers to X'80'.

2. The program at X'80' reads the balance of the eight-bit data into X'DF0' to X'FF6', which includes
a Fast Format Loader.

7-78

8. An arithmetic checksum on the information from X'DF0' to X'FF6' is then tested. If the checksum
is correct, the process continues. If the checksum is not correct, the tape is stopped and the
program halts.

4, The Fast Format Loader then loads a special REL Boot Loader from X'80' to X'2AA',

5, The top of memory is then determined with a search technique, and the REL Boot Loader's Bias
is set a fixed distance from the top of memory. The REL Loader is placed X'400' from the top of
memory. The General Loader is placed X'600' from the top.

6. The REL Boot Loader then reads bthe' Loader program, which is in relocatable form, and relocates
it into the top portion of memory.

7. The REL Boot Loader computes checksums on each record, and halts whenever a checksum error
is detected. In this case, reposition the tape to the previous record gap and depress EXECUTE
to reread the record.

8. When the entire tape has been loaded, the Processor halts with the WAIT light illuminated. Depress
EXECUTE to transfer control to the loader just loaded.

BOOT-STRAP AND FAST-FORMAT LOADER IN 8-BIT FORMAT

LEADER

r FAST-FORMAT COPY OF REL BOOT LOADER

} LEADER

<

r REL OR GENERAL LOADER IN MI6 FORMAT

A -

Figure 7-21. Loader Tape Format

This sequence requires that the proper 50 Sequence is used, including the Binary Input Device Definition
in X'78'., The 50 Sequences are shown in Table 7-26.

Since the Loader portion of each tape is a relocatable object tape, it is possible to put the Loaders any-
where in memory. This can be done by using a bootstrap load to get the Relocating or General Loader
into the top of memory. The BIAS can then be adjusted and any Loader can then be relocated to any

arbitrary point in memory. Once relocated, CLUB can be used to dump an absolute tape of the loader
in that location.

A Loader Summary is provided in Table 7-28.
CAUTION

Note that when loading the bootstrap Loader tapes, memory from X'0080' to X'02AA’
and X'0DF0' to X'0FF6' is used. Any programs in this area of memory are over written.

7-79

TABLE 7-28.

LOADER SUMMARY

The following table is a summary of OS Library Loader Commands:

CMD: ARG1: ARG2: MEANING:
BIAS BBBB Set Bias to BBBB
BIAS Set Bias to End of Loader
BC LLLL Set Length of Blank Common
LC LLLL Set Length of Labeled Common
ouT LU LABEL Output Labeled Load-Module to LU
ouT LU Output Load-Module to LU
XouT End Load-Module, Write Last Record
GO Transfer to Loaded Program
MAP LU Output Memory-Map to LU
LABEL LU NAME Write Label-Record on File LU
FIND LU NAME Position LU to Start of Named Prog.
COPY LULU Copy One Program from LU Ato LU B
COPY LULU NAME Find and Copy Named Program
DUPE LULU Duplicate Until EOF or Dev END
DUPE LULU NAME Duplicate Until Name is Read
LOAD LU Purge Table, Load One Prog. from LU
LOAD LU NAME Find and Load a Program
LINK LU Load One Program from LU, Linking
LINK LU NAME Find and Link named Program
EDIT LU Load only Referenced Programs from LU
EDIT LU NAME Find Named Label and Edit
REWIND LU Rewind LU
EQOF LU Write a File~-Mark on LU
TABLE LU Write Table-Of-Contents to LU
END Exit to the OS

The following values pertain tothe Stand Alone Loaders. All valuesbelow are expressed in hexadecimal:

Starting address after boot load*
Restart Address in general#
Bias define address

Bias Definition value

Continue address

Approximate Loader size

Illegal control items

Ignored control items

Relocating Loader General Loader
nCo00 nAo00

ORG ORG

ORG + 8 ORG + 8

ORG + A ORG + A

ORG + 26 ORG +26
X'380' X'590'

C, EO0, E1, E2, E3 Eo, E1, E2, E3
D,F] memmmmmmmeees

*n=0, 1, 2, 3, ... for memory sizes 4K, 8K, 12K, 16K, etc.

#General Loader Restart

- sets BIAS to X'80'
- clears symbol table

- clears any transfer address

The following display indications are common to both Stand-Alone Loaders.

Comment

Display Lights Condition

XX00 Normal End Load Complete

XXO01 Checksum Error Following checksum or sequence number error
reposition tape and depress EXECUTE to re-read.

XXo02 Sequence Error

XX03 Attempt to load over loader

XX04 Ref-Chain Loader

XXFn Load Error Improper control item detected where n is the bad

item. Depress EXECUTE to ignore the data and
continue. Refer to Table 7-29 for a definition of
loader control items.

7-80

TABLE 7-29.
CONTROL ITEM DEFINITIONS

Control Item Meaning Numb?oﬁfogiaz; Ttems
0 Read next record 0
1 End of Program 0
2 Define chain 0
3 Toggle abs/rel mode 0
4 Load transfer address 4
5 Load program address 4
6 Load reference address 4
7 Load definition address 4
8 Data, 2 bytes absolute 4
9 Data, 2 bytes relative 4
A Data, 4 bytes absolute 8
B Data, 4 bytes relative 8
C Symbol, reference 12
D Symbol, definition 12
E Decode Next Item 1
EO Define Common-block 16
El Reference Common-block 16
E2 Common data, 2 bytes absolute 20
E3 Common data, 4 bytes absolute 24
E4 Reset sequence number to -1 0
F Program Label 12

7.9.3 Object Tape Format

Standard format binary object tapes are divided into records; records are separated by bank leader.

record contains 108 bytes of information. The first four bytes are organized as follows:

The sequence numbers are negative integers -1, -2,
first record in a program must have sequence number -1.

be loaded.

15

Byte 1 and 2 Sequence Number

15

Byte 3and 4 Checksum

Each

-3, ete. represented in two's complement form. The
Subsequent records must be in proper order to

The checksum is an odd parity Exclusive OR sum of all words in the record, except itself, plus a word of all

ONE's.

7-81

The remainder of the record is a sequence of items; an item is four-bits or a half-byte. There are two
types of items, control items and data items. There are 20 different control items, each of which is fol-
lowed by a certain number (which might be zero) of data items. The control items, and their meaning are
listed on Table 7-29,

Physically, two paper tape formats are used, both of which contain 108 bytes of data per record with blank
leader between records. The Loaders use the first non-blank character of each record to identify which
format is being used.

M16/17 Format: This format is used when punching paper tape on a high speed punch. The first non-blank
character of each record contains a X'F0'. This character is followed by 108 frames each containing one
data byte. Thus a complete record is 109 frames, of which the first is ignored. Each byte contains two
four-bit "items".

MO08/09 Format: This format is used when punching paper tape on a Teletype punch. A special set of non-
printing characters is used, such that only the four low order bits of each frame contain data. See Table
7-30. If one of these special characters is encountered before a X'F0' character is read, the record is
assumed to be of this format. Because only four-bits of each frame are used, the 108-byte record is
punched in 216 frames of paper tape, of each the upper four-bits are ignored by the loader input routine.

Either format may be read through any paper tape reader. Figure 7-22 shows a loader record in two
formats.

7.9.4 Features of the OS Library Loader

This loader functions under the BOSS or RTOS Operating System, interactively accepting commands and re-
sponding with messages to the console operator. Through available operator commands, a Program Library
File may be created. This file may be searched for a particular program, selectively copied onto another
I/0 unit, or be added to under the operator's control. Automatic link editing is available, allowing the oper-
ator with one command to load all library programs required for any one particular job. A group of pro-
grams may be speudo loaded, producing a single absolute load module which may be originated at any ad-
dress, and then loaded by the Resident Loader, the Relocating Loader, or the General Loader. This tape
contains forward references but no ENTRY or EXTRN symbols. It may be loaded over the Library Loader
by the Resident Loader. A program loaded by the OS Library Loader may reference external symbols, de-
fine Common Blocks, and contain forware references. At load time, the operator specifies the logical unit
to be used.

Library Loader Operation

The Library Loader should be loaded by the Resident Loader at the bottom of user memory. Any I/O devices
to be used by the loader should be assigned. The loader should be started at its origin. It outputs the
message "LOADER" indicating that it is ready to accept operator commands (which it request from Logi-

cal Unit 5). Every operator command consists of a word (of which the first two characters are decoded),
followed optionally by a space and a hexadecimal operand, followed optionally by another space and an al-
phanumeric argument. A carriage return terminates the command if it is entered via a Teletype. Op-
tional fields which are not used may be ignored. An example and description of each command follows.
Following the execution of any command, the message "LOADER" is logged, and another command may

be entered. See Table 7-28 for a summary of Loader commands.,)

BIAS bbbb

This command sets the Loader Bias, and thus the origin of the next relocatable program, to bbbb, After
loading any program, unless a Bias command is issued, the Bias is set to the next available location above
the highest address used. When the Loader is initially loaded, the Bias is set to the next location above the
Loader. This value is not initialized when the Loader is restarted. If no Bias value is specified in this
command, the Bias is set to the next location above the Loader.

7-82

TABLE 7

-30,

TAPE CODES
(M08/09 FORMAT)

Binary Hex
Zone Data Zone Data
1001 0000 9 0
1000 0001 8 1
1000 0010 8 2
1000 0011 8 3
1000 0100 8 4
1001 0101 9 5
1001 0110 9 6
1001 0111 9 7
1001 1000 9 8
1001 1001 9 9
1001 1010 9 A
1001 1011 9 B
1001 1100 9 o)
1001 1101 9 D
1001 1110 9 E
1001 1111 9 T
M16 FORMAT MO8 FORMAT
o LEADING o
Q000 o < X'FO’ .
38888 2003 c8) §§ §§§} SEQUENCE NUMBER X‘FFFF’
08e08° §—202800
0030 290 S 8%9:% }»CKSM X'4ADA’
[o] eQ O QO o O
o] ° 38 (o] § §O 3808
C O o o
*QQRTE?E § ‘é ol F=taBEL
5°8-538° 3 §Oo °ltso 44 58 52 45 46
°© @ § 7 20% P D X R E F
3 8 O oQ O
Qo o oQ
[o] : 80 ZOO
o S o % ooo|l 8 LOAD 2 BYTES, ABSOLUTE
© 080300, 8 8 o88°|f o766
Q0 0000 8 80 808
000 OGo OO o] [eleX-]e]
000, 5 © g 993 A = LOAD 4 BYTES, ABSOLUTE
o o 40
598,088 % é s €840 0001
OOg (o] g °
QO o Q Qo O
Q 0o 00 8 80 [20]
o° o E Oo <§ §o §o ° ETC.
00 0° O o O o
o [o] : () 8 g
o 87822 | 88 <

Figure 7-22, Object Tape Formats

7-83

FIND LU xXxxxxx

This command causes Logical Unit LU to be rewound (if it is a magnetic tape) and searched from the begin-
ning until a program labeled xxxxxx is found. The unit is then backspaced to the beginning of the found
program. The program may now be LOADed or LINKed, This command should be used to position a file
containing several programs. If this file is not a magnetic tape device, it should be positioned before the
first record on the tape before issuing this command, and back-spaced one record after this command is
completed, before attempting to load the found program. In the event that the requested program is not
found, the Find Command will terminate whenever an end-of-file or device end is encountered on the device.
In that case, the messages

EOF
xxxxxx NOT FOUND

are logged on the console device.
LOAD LU xxxxxXX

This command is used to initialize the Loacder and load a program at the current value of Bias. Before the
program is loaded, the Loader's Symbol Table is cleared, and previously defined Common blocks are re-
leased. This command should be used to load the first of a group of user programs not related to any
previous job. If a program Label is specified in the command, Logical Unit LU is first searched for LU
program xxxxxx as described above under Find. If no Label is specified, the first program encountered on
Logical Unit LU is loaded. Following a LOAD operation, the logical unit specified is left positioned past the
end of the program loaded.

LINK LU xXxXxXxxXx

This command is used to load additional programs needed after using the Load command to load the first
program, The Symbol Table is not cleared, so the loaded program may be linked to any previously loaded
program, and may reference previously defined Common blocks. The program is loaded using the current
value of Bias. If a program Label is specified in the command, Logical Unit LU is first searched for
program xxxxxx as described previously under Find. I no Label is specified the first program encountered
on Logical Unit LU is loaded and linked. Following a LINK operation, the logical unit specified is left
positioned past the end of the program loaded.

EDIT LU xXxXxxxx

This command is used to search a library tape or file, and selectively load those programs needed to satisfy
external references (EXTRN's) within programs previously loaded. The criterion for loading during an EDIT
operation is if the Label of a program in the library file matches the symbolic name of any EXTRN in the
Loader's Symbol Table. The EDIT command causes the following to occur.

1. If a program Label is specified in the command, logical unit LU is searched for program xxxxxx
as described above under FIND. If no Label is specified, the logical unit is rewound.

2, The Loader's Symbol Table is searched for undefined EXTRN's. If there are none, the operation
terminates.

3. I there are undefined EXTRN's in the Symbol Table, Logical Unit LU is searched forward from its
current position for a label matching an undefined EXTRN. If such a Label is found, that program
is loaded and linked, and Step 2 is repeated. I an end-of-file or device end is encountered while
searching, an appropriate message is logged and the operation terminates. If the Label ENDVOL
is read, the EDIT operation is unconditionally terminated. This Label may be placed at the end
of each tape or a paper tape program library to prevent reading off the end of the tape.

Following an EDIT operation, the MAP command can be used to determine if any more undefined EXTRN's
remain in the Symbol Table.

7-84

MAP LU

This command outputs a Memory Map to Logical Unit LU. This may be a map showing the location of pro-
grams loaded into memory, or it may show the locations of programs output in a load module. In

either case, the map includes only those programs processed during and after the last LOAD operation.
(LINK and EDIT operations add to the map, LOAD begins a new one.) The map shows the starting address
of each labeled program, the next available address, the location of every ENTRY defined, the starting
address of each Common Block defined, and a list of any undefined EXTRN's. An example of a Memory
Map appears in Figure 7-23. Under PROGRAMS in the map, the last value shown which has no name

is the next available address is memory, which is the current value of Bias. Under COMMON-BLOCKS In
the map, Blank Common is identified by the Label //.

PROGRAMS:

2362 .U 238A .V 2398

ENTRY—POINTS:

2118 SUB1 236E .U 238E .V

COMMON-BLOCKS:

7FAE R 7FC2 X 7FCA Y 7FCE W
7F5E //

UNDEFINED:

ZERO @i .Q P

Figure 7-23. Memory Map (As Listed by the OS Library Loader)

BC nnnn
LC nnnn

These commands must be issued before the LOAD command if the program being loaded allocates Common,
The Loader handles two types of Common. They are Labeled Common, and Blank Common. The chief dif-
ference between the two is that Labeled Common may be preloaded withdata (FORTRAN BLOCK DATA) while
Blank Common may not. The Loader allocates memory for common variables and links common variable
references with the associated blocks of memory at load time. To use memory ecfficiently, the Loader must
know in advance, the total length, in bytes, of each kind of Common used. BC sets the maximum length of
Blank Common and LC sets the maximum length of Labeled Common to nnnn, where nnnn is the number of
bytes to be reserved for common, expressed hexadecimally.

GO

This command transfers control from the OS Library Loader to the transfer address of the loaded programs.
If no transfer address is specified, the message CMD-ERR is logged.

LABEL LU xxXxXXXX

This command is used in conjunction with adding programs to a library file. If the program to be added to
the library does not have a Label, then this command can be used to give a program a Label in the file.

The command causes the loader to output one record to Logical Unit LU contining the program Labcl xxxxxx.
The Label must not exceed six alphanumberic digits. If it does, only the first six are used. This command
could be used prior to an assembly or compilation which writes the binary object program to Logical Unit LU.

7-8%

In conjunction with magnetic tape library formats, this operation searches for an end of file and then back-
spaces over the file mark prior to writing the Label, and generates an end of file and backspaces over the
file mark after writing the Label. This command should never be used between an OUT and XOUT com-
mand. If it is, the command is rejected, and the message CMD-ERR is logged.

OUT LU xXXXXX

This command selects the output mode which is used to generate a load module rather than load programs
into memory. In this mode, during LOAD, LINK,. and EDIT operations, all data that would normally be
loaded into memory is output in loader format to Logical Unit LU. All programs are output as absolute
code, originated at the value of Bias in effect when the load module is created. Any external references or
common references are resolved and converted to forward references without symbolic names. Thus, a
load module program can be loaded by any INTERDATA loader, including the REL Loader or BOSS Resident
Loader. By resetting the value of Bias for the load module, below the top of the OS Library Loader, and
loading the load module with the BOSS Resident Loader, a user can effectively overlay the OS Library
Loader at run time, although its features may be used at load time.

If a program Label is specified in the command, a Label record with the name xxxxxx is generated as
described with the LABEL command prior to selecting the output mode.

XOoUuT

The command XOUT is used in conjunction with generating a load module. This command, which has no
argument, generates the final record of the load module, and cancels the output mode. A typical command
sequence to create a load module would be OUT, BIAS, LOAD, LINK, EDIT, and XOUT.

In conjunction with magnetic tape library formats, the OUT command searches for an end of file and then
backspaces over the file mark so that the output module always becomes the last program on the tape. Also,
the XOUT command generates an end of file following the last record, and then backspaces over the file
mark.

REWIND LU
This command rewinds Logical Unit LU.
COPY LULU XxXxXxxX

This command causes onc program to be copied from the first logical unit to the second. If a program Label
is specified in the command, the first logical unit is first searched for program xxxxxx as described above
under Find. If no Label is specified, the first program encountered on the first logical unit is copied.
Following a COPY operation, the first logical unit specified is left positioned past the end of the program
copied. The COPY command with an argument xxxxxx cannot be used with a non-backspaceable (paper

tape) device. The COPY without an argument can be used to copy paper tape from the input device.

In conjunction with magnetic tape library formats, the COPY command searches the second logical unit for
an end of file and then backspaces over the file mark prior to copying the program, and generates an end
of file and backspaces over the file mark after copying the program.

EOF LU
This command writes an end of file to Logical Unit LU and then backspaces over the file mark.
DUPE LULU xxxxxx

This command causes programs to be copied continuously from the first logical unit to the second until
program xxxxxx is found. The specified program is not copied, and the operation terminates. If no Label
is specified, programs are copied until an end of file or device end on the first logical unit is detected.

In conjunction with magnetic tape library formats, the DUPE command searches the second logical unit for
an end of file and then backspaces over the file mark prior to copying programs, and generates an end of
file and backspaces over the file mark when the operation terminates.

7-86

To duplicate an entire file of programs from Logical Unit 1 to Logical Unit 2 the following command sequence
is sufficient.

TABLE LULU

This command scans the first logical unit and lists all program Labels on the second logical unit. Thus a
table of contents of a file containing many Labeled programs may be obtained. Any program in the file
without a Label is not shown in the list.

END
This command returns control to the operating system. It may be issued at any time and the Loader may
subsequently be restarted from its origin without losing any previously loaded data. The Loader tables are

initialized only when executing a LOAD command. It is therefore possible to exit the loader temporarily
(such as to reassign an I/0 device) and return to it during a sequence of related operations.

Library Loader Error Messages

MEM-FULL

This message is logged if a program being loaded exceeds the available memory. This may happend if too
little Common space is allocated (if the program defined Common) or if too large a program is loaded. A
table of Labels, Common, and external symbol names is kept, building downward from the bottom of Common
(see Memory Maps). If the program overlaps the table, the above message is logged, and the load is
aborted.

CMD-ERR
This message is logged when the loader does not recognize an operator command, if a Label command is
found between an OUT and XOUT commands or if GO is issued when no transfer address has been specified
in any loaded program.

NO PROGRAMS
This message is logged if a MAP is requested and no labeled programs have been loaded.
EOF

A file mark has been read during binary input.

CKSM-ERR
A record has been read in which the checksum does not match the checksum computer by the loader. IFol-
lowing this message, the loader pauses. If the input device is paper tape, it may be manually backspaced
one record before continuing the load. Magnetic tape is automatically backspaced on continue.

SEQ ERR

A record has been read out of sequence. Reposition the input unit and continue.

REF LOOP

A Loop has been found in a forward or external reference thread. The input tape has been generated
incorrectly.

M xxxxxx

An entry point (xxxxxx) has been defined more than once. The load continues, and the previous definition
remains in effect. The new definition is ignored.

LOAD ABORTED

An unrecoverable error condition has caused a load in progress to be aborted. It is necessary to repeat the
original LOAD command, as the table may contain incorrect symbol locations.

ADRS-ERR

A program has attempted to load below the top of the Loader. The program may contain absolute data at
such an address, or the BIAS may be set incorrectly. The load process is aborted.
DEV END
A device went off line or returned an END-OF~-MEDIUM status during input.
1/0 DEV ERR

A parity error has been detected on input or on off line condition has been detected on output. If it is an
input error, the BOSS status byte and device address in hex-notation appear on the next line.

LOAD ERR
An illegal control item was detected during a load.
xxxxxx NOT FOUND

An end of device condition has occurred before locating the Label xxxxxx during a search operation.

Magnetic Tape File Procedures

The OS Library Loader may be used to create, maintain, and manipulate a file of programs, using the set
of operator commands described. A library file must be in standard loader format, and each program must
be Labeled. Following the last library program, there must be a file mark. Each of the commands which
may be used to write out a binary object record is designed with magnetic tape in mind. Before any record
is written by the LABEL, COPY, DUPE, and OUT directives, the output file is positioned to the gap
immediately preceding the file mark. This is done by searching forward for the mark, and then backspacing
over it. After writing the final record of a program or load module, a file mark is written, and backspaced
over. It should be pointed out that these functions have no effect on non-magnetic tape devices, and so these
commands are not limited to magnetic tape operations. Because these directives never allow a write to a
magnetic tape without first positioning it past its end of information, they may only be used to add to an
existing library.

To create a new library, the REWIND and EOF commands are used to place an initial file mark on the be-
ginning of the tape. Once this is done, programs may be copied onto the tape by using the COPY or DUPE
commands. If the program to be copied onto the tape does not already have a Label, a preceding Label
may be written before it using the LABEL command. As programs are added to the file, the file mark is
propagated along, following the last one.

Any time the library is read, and a file mark is encountered, the operation is terminated immediately, the
message EOF is logged, and the tape is backspaced over the mark. If a LOAD, LINK, EDIT, FIND, COPY,
or DUPE terminates with EOF, it indicates that the system was searching for a Label not found on the tape
being searched. It is the normal termination for the TABLE command.

Paper Tape to Mag Tape Procedures

Since paper tape devices are not backspaceable, the FIND LU xxxxxx requires the operator to manually
backspace one record when xxxxxx is found. The user may either use a COPY LULU (no name) or a
combination of FIND LULU xxxxxx, manually backspace, and then COPY LULU (no name) to copy paper
tape programs.

7-88

If it is desired to write a program on a library file by some other program (such as the object output from a
compiler or an assembler) the tape should first be positioned to the end with the command FIND LU (no
name). Then the new material should be added and then the EOF command should be issued. If the LABEL
command is issued prior to the assembly or comp11at1on, it leaves the file positioned past the Label
written, at the end of information.

7.9.5 Features of Stand-Alone Loaders

Unlike the device independent OS Library Loader, the stand-alone loaders contain drivers for only Teletype
and paper tape devices. The following general comments apply to the REL and General Loaders:

1. The input device for loading is defined by the Binary Input Device in the Device Definition Table in
low memory. Specifically, the halfword at X'78' is interpreted as follows:

DEV NO. COMMAND

This halfword for various devices is shown below:

Teletype 0294
High Speed Paper Tape Reader 0399
High Speed Reader/Punch 1399

2. When reading binary data from tape, leader and illegal characters are skipped.

3. Checksums and sequence numbers are checked after each binary record is read. Appropriate
error halts are used when errors are detected.

4, All loaders are provided in Relocatable bootstrap form. Specifically, each tape contains a re-
locating bootstrap sequence followed by the actual loader in normal relocatable object format.
When using the bootstrap sequence, the loader is placed into the top of available core memory.
Once the REL or General Loader is in the top of core, any of the Loaders can then be relocated to
any other arbitrary point in memory.

5, The first location (ORG) of each Loader is the starting location.

6. While a tape is being read, the Loaders output the data bytes to Register Display 2 for confirmation
of Loader operations.

7. In the REL Loader, Control Panel Display Register 2 is used to identify the meaning of loader
halts. The light patterns used are:

XX00 NORMAL END

XX01 CHECKSUM ERR

XX02 SEQUENCE ERR

XX03 ATTEMPT TO LOAD OVER LOADER
XX04 REF LOOP

XXFX X~CONTROL ITEM ENCOUNTERED

Refer to Table 7-28 for a summary of improper control items,

8. The Loaders transfer to the program loaded, if specified on the object tape.

When the REL or General Loader is executed at its starting address (ORG), the Bias value is set to X'80'.
This Bias value is used during program loading to adjust any relocatable data values. Note that absolute
programs are stored at the absolute location specified for the data. Relocatable programs are stored from
the location indicated by Bias upward into memory. After a program has been loaded, the Bias value is
adjusted to point to the next available location. To indicate that the load is complete, the Loader halts with the
the WAIT light illuminated, and with XX00 contained in the Register Display. At this time, the adjusted

Bias value is held in Register 0. This register may be displayed on the panel.

If more programs are to be loaded, place the next tape in the reader, with the rotary Function switch

in RUN, depress EXECUTE. This procedure starts the loader executing at ORG + 26, which is the continue
location. The continue operation uses the current value of Bias, and does not reset it to X'80'. Multiple
relocatable tapes are thus loaded one after another into adjacent areas of core memory.

If it is desired to load a relocatable program at any arbitrary point in core memory, it is necessary to
redefine the Bias value. To adjust the Bias pointer, use the following procedure.

1. Change the halfword at ORG + A in the Loader to the desired Bias value.

2, Start the Loader executing at ORG + 8, rather than the normal start or continue location.

Note that the value at ORG + A remains until changed to a new value. The Loader can always be restarted
at ORG + 8 which resets the Bias to the value contained in ORG + A,

7.9.6 General Loader Features

In addition to the capabilities already discussed, the General Loader provides various features not available
with the Relocating Loader.

Bias Printout

At the start of every load operation, the General Loader types the current value of the Bias pointer on the
Teletype. This printout occurs prior to reading the first record of a new program, and the message is
of the form

BIAS = XXXX

where the XXXX represents the current Bias value in hexadecimal form.

Messages

Other messages which are typed on the Teletype are as indicated in Table 7-31.

ENTRY/EXTRN Handling

Programs generated by the Assembler can use ENTRY's or EXTRN to achieve cross referencing and link-
age with external programs. In this case, the object tape for these programs contains the symbouc

names declared as ENTRY's or EXTRN's, The General Loader uses a Symbol Table to remember these
names when a program is loaded. This Symbol Table builds downward in core memory from the origin
(ORG) of the General Loader. Each entry in the Loader Symbol Table requires eight bytes of memory.

Since the Loader Symbol Table is building downward into memory, and the programs being loaded are
building upward into memory, the Loader checks to see that the loading program does not overwrite the
Symbol Table. If the loading program requires data stored above the current bottom of the Symbol Table,
a MEMORY FULL message is generated, and the Loader halts.

When the General Loader is executed at its start location (ORG) or its BIAS redefinition location (ORG + 8),
the Symbol Table is cleared of all names. Executing the General Loader at its continue location (ORG + 26)
does not change the state of the Symbol Table.

At the end of each program load, the Symbol Table is scanned for undefined symbols. Any undefined sym-
bols are typed in the form:

U XXXXXX

7-90

TABLE 7-31.
ERROR MESSAGES

Message Meaning

CKSM ERR A checksum error was detected after reading the previous record.
Reposition the tape to the beginning of the record and depress
EXECUTE to reread the record.

SEQ NUM ERR A sequence number error was detected after reading the previous
error. Reposition the tape to the proper record and depress
EXECUTE to try again. This error usually occurs when the tape
is improperly positioned following a checksum error.

MEMORY FULL This message is caused by a conflict between the General Loader
and the loading program, The program being loaded has not
been loaded to conclusion, The alternatives are:

A, Load Fewer programs

B. Make absolute tapes of the programs to be loaded and
then use the REL Loader which requires less memory.

C. Eliminate some EXTRN's and ENTRY's to reduce the
size of the Symbol Table.

Note that the General Loader cannot load programs above itself
in memory.

NORMAL END This case occurs when a program has successfully loaded and no
END transfer address has been specified or if undefined external
references remain, All undefined external references are listed
on the Teletype preceded by a U prior to printing the NORMAL
END message. If a transfer address is specified and no unde-
fined symbols remain, the Loader transfers directly to the ad-
dress specified, and no NORMAL END message occurs.

LOAD ERR This message results if an illegal control item is detected dur-
ing load. Depress EXECUTE to ignore the control item and
proceed with the load. The E control item is explained in
Section 7.9. 3.

REF LOOP This message results if an endless forward reference or exter-
nal reference chain is encountered. It indicates that the input
tape was generated incorrectly.

Where XXXXXX is the symbol name. All such undefined names are printed preceding the NORMAL END
message. An undefined symbol results from the fact that the symbol was declared as an EXTRN in some
program, and no program yet loaded has declared that same symbol as an ENTRY. As soon as some
loading program declares that symbol as an ENTRY, the symbol becomes defined. If more than one pro-
gram declares a symbol as ENTRY, the message:

M XXXXXX

is typed at the time the multiple definition occurs, where XXXXXX is the symbol name. In this case, the
first value defined remains in the Symbol Table, and the second definition value is ignored.

At the end of each program load, the Loader transfers immediately to the program that has been loaded,
only if a transfer address is specified on the tape, and if the Symbol Table contains no undefined symbols.
If any symbols in the table are undefined at the end of a load, those symbols are listed, NORMAL END is
printed, and the Loader halts, waiting to load the next program.

Forward Reference Definitions

Program object tapes generated by one-pass assemblies or load modules involve forward references to
symbols which are defined later in the program. The Loader uses a chaining procedure for satisfying any
forward references at the time the symbol definition is encountered.

An example of a forward reference in a program is:

OPT PASS1, PUNCH
LH 3, SAM
BR 5
SAM DC 3
END

In this case, the reference to SAM occurs before SAM is defined. There are several restrictions on the
use of forward reference during one-pass assemblies, and on the use of symbols which are ENTRY's or
EXTRN's for the program to be loaded properly. The restrictions are:

1. Such symbols must not be combined in arithmetic expressions such as:
ILH 3, SAM + 2

2. Such symbols must not be used in the R1 or R2 field for an instruction such as:
LH 3, 2(SAM)

3. Such symbols must not be used as operands assembler pseudo-ops such as DO, EQU, END etc.;
for example:

DO SAM

Note that with the EQU statement, the operand must be defined when it is used, with one, two, or three
pass assemblies,

Label Handling

Programs generated by the assembler can be labeled through the use of the OPT pseudo-op such as:
OPT PASS2, PUNCH, LAB = ABCDEF
The program Label can be up to six characters. The first character must be a lei:ter; subsequent charac-

ters can be letters or digits. The object tape, in this case, contains the program LABEL in symbolic form.
When the General Loader detects a program Label, the Label is typed in the form

LABEL = ABCDEF

If object tupes which contain label's are loaded by the REL Loader, the Label is ignored by the Loader.
7.9.7 Operation of Stand-Alone Loaders

The steps required to load and operate the Stand Alone Loaders are summarized below.

1. Manually enter the 50 sequence into memory if it is not already there. Specify the device to be used
for loading at location X'78', the Binary Input Device definition. See Table 7-26 for a listing of
the 50 Sequences.

2. Place the Loader tape in the tape reader with the first data character before the read fingers or
photo diodes.

3. Enter X'0050' into the Control Panel switches, select ADRS Mode and depress EXECUTE.
4, Depress INITIALIZE. Select Run Mode, and depress EXECUTE.

7-92

5. If an ASR 33 Teletype is being used as the input device, it is necessary to toggle the reader switch
to START, which starts the tape moving. If an ASR 35 Teletype is in use, the MODE switch should
be put in RUN to start the tape. If a High Speed Paper Tape Reader is in use, the tape will start
by itself.

6. If no input errors occur, the entire tape is read to the end, at which time the Processor halts with
the WAIT light illuminated, and XX00 contained in the Display Register.

7. If checksum errors are detected during tape input, the tape will stop and the Processor will halt
with the WAIT light illuminated and XX01 contained in the Display Register. When this occurs,
reposition the tape to the previous record gap, and depress EXECUTE to reread the record. If
the error halt occurs due to the first record on the tape, restart the entire load procedure.

8. Put the tape to be loaded into the tape reader. If the tape to be loaded is relocatable, and a
specific Bias value is required, enter the Bias value into ORG + A, and set the starting address
to ORG + 8. If the tape to be loaded is absolute, or if the Bias value of X'0080' is satisfactory, set
the starting address to ORG. Depress INITIALIZE. Select Run Mode, and depress EXECUTE.

9, If improper control items are detected during the load, the tape will stop, and the Processor will
halt with the WAIT light illuminated and XXFn contained in the Display Register, where n is the
bad control item. When this occurs, it must be determined if the right Loader is being used. That
is, if the object tape involves ENTRY's or EXTRN's or forward references, the General Loader
should be used.. If Common blocks are called for, the OS Library Loader should be used. If the
Loader is -appropriate, and the tape is proper, depress EXECUTE to skip the improper data and
proceed with the load.

11. When the load is complete, the tape stops. If no transfer address is specified on the tape, the
Processor halts with the WAIT light illuminated and XX00 contained in the Display Register. I a
transfer address is specified, the Relocating Loader will transfer directly to the location specified.
The General Loader transfers only if the Symbol Table contains no undefined symbols.

10, If checksum errors are detected during the load, the tape stops and the Processor halts with the
WAIT light illuminated and XX01 contained in the Display Register. Reposition the tape to the
start of the last record read, and depress EXECUTE to reread the record.

12. If more tapes are to be loaded, return to Step 8 and repeat the process.
7.10 EDITOR (TIDE) PROGRAM

TIDE is an on-line, interactive text editor program. It is designed to create and modify character-oriented
text material which is stored on paper tape, or input through the Teletype keyboard. The text may be an
assembly language program, a FORTRAN program, or any text in the literal sense.

TIDE is directed by an operator through the keyboard of a Teletype terminal, Upon receiving a keyboard
input directive, the editor will read text from a specified input device into a designated area of core memory.
The editor allows the user to examine, change, delete, and/or modify the text while it remains in core
memory. When the editor receives a keyboard output directive, the revised text can then be output to the
specified output device.

7.10.1 Program Structure

Operating Modes

TIDE has two modes of operation: Command and Edit. The program indicates the current mode by printing,
in Column 1 of the Teletype, a left arrow () for the Command Mode or an asterisk (*) for the Edit Mode.
In the Command Mode, the program accepts keyboard commands which specify an editing procedure, or
which specify a text input or output operation. From an Edit command, TIDE enters the Edit Mode, Edit
Mode allows the user to insert, append, or modify the text, after which control returns to the Command
Mode.

Basic Unit

The basic unit of the stored text is a variable length line from 1 to 81 ASCII code characters long including

a line terminating Carriage Return (CR). Each line of input is stored in a line buffer until the CR terminates
the input, or the buffer becomes full, The line buffer contents are then moved to the text buffer. If the text
buffer contains a symbolic source program, each source statement is one line of text. The statements, or
lines, have unique decimal addresses which are sequenced in ascending order; the first statement in the
buffer has address number one (1), This allows editing of any statement by line address rather than core
location address.

Line Addressing

A specific line can be referenced by its decimal number address n. To examine line n, type the decimal
number followed by a carriage return. The Teletypewriter will list:

nZzzZz...2

where n is the line number, and Z the text contained in line n. This becomes the line currently available
for examination or modification and is called the open line. All forms of line examinations are exclusive
to the Command Mode («—) and will never cause transfer to the Edit Mode (*). Any attempt to examine a
line not contained in the buffer, or to reference a nonexistent line is ignored and a question mark (?) is
typed on the Teletype.

The execution of some TIDE commands will change the pogition of a line in the text buffer, and consequently
change the line number. This line number change does not affect the contents of the line.

To facilitate line addressing and determine the number of bytes used in the text buffer, the symbols in
Table 7-32 have been implemented. All of the symbols with the exceptionof the up arrow (f) cause the
listed line to become the open line.

7-94

TABLE 7-32,
LINE ADDRESSING SUMMARY

Terminating .
Symbol Character Function

n CR Opens and lists line number n (a decimal number)

Carriage Return None Opens and lists the line preceding the current open
line

Line Feed CR Opens and lists the line following the current open
line

*(asterisk key) CR Lists the current open line

. (period key) CR Lists the last line in the text buffer

f (upper arrow key) CR Lists the byte count of the contents of the text buffer.
The count is shown in decimal. A count greater than
9999 causes an error message.

Command Formats

Commands are entered through the keyboard in one of the following general formats:

Format Tg}fan;ia;‘;i:g Description
X CR Editor performs Command X
Xn CR Editor performs Command X on n lines
X a,b CR Editor performs Command X on lines a through

b inclusive. Both a and b must be positive with
b not less than a

In each command, n, a, and b are decimal numbers, hereafter called arguments, and command X directs
the editor to perform the specific operations described later in the manual. All command formats are
terminated by a CR. If there is an error in the command format, no action is taken and program control
returns to the Command Mode («—), One or more spaces should separate the arguments from the command.

Line Addressing and Command Arguments can involve arithmetic using addition and subtraction. Some
sample formats are shown in Table 7-33. When using line arithmetic with two argument commands
(general format X a, b), the rules for a and b still apply, i.e., both a and b are positive and b 2 a.

Commands

The three main functions of the TIDE editor program are input, modification, and output. The input com-
mands are used to enter text into TIDE's buffer. The input commands are Append (A), and Insert (I). The
modification commands direct various manipulations of the text already stored in TIDE's buffer. The
modify commands are Delete (D), and Change (C). The output commands produce a hard copy of the text
on the command-specified output device. That is, TIDE dumps its text buffer in a printout or punches a
source tape, as requested. The output commands are Print (P), Output (O), and List (L). Command-
specified I/0 devices are explained in Section 7. 10. 2,

TABLE 7-33.
LINE ARITHMETIC

Sample Terminating Descriotion
Format Character b
2417 CR List line number 9
.-8 CR Lists the eighth line before the last line in the text
buffer
. CR Lists the line indicated by subtracting the decimal
number address of the current open line from the
decimal number address of the last line in the text
buffer.
X *+3 CR Editor performs command X on the third line follow-
ing the current open line.
X *+3,.-6 CR Editor performs command X on lines (*+3) through
(.-6), inclusive.

Additional editing capability is provided with the setup commands, The Tabulate (T) and No Tabulation (N)
commands allow the user to select or suppress assembly listing tabulation of his text during Print or List
operations. The Kill text buffer (K) command allows the user to start TIDE's execution at its origin,
clear the enter text buffer, and enter the Command Mode to begin again.

Reproduce (R) and Skip Tape (S) commands are provided to facilitate the merging of partially edited text
tapes with the user's updated text in the buffer. The Reproduce command copies text from one device to

another and the Skip command can be used to pass over lines of text on a source tape.

Refer to Table 7-34 for the definitions and descriptions of TIDE's command repertoire.

Command Examples

This section presents examples of the user-TIDE interaction using the Append, Print, Change, and List
commands. Example (a) shows a user appending text. Examples (b), (¢), and (d) are interdependent in
that they show a Print, Change, and List of the same buffer of modified text, In the following, the symbol
(XX refers to a nonprinting keyboard input.

(a) Append
Append two lines of text to the current text buffer.

|

B

A
* APPEND LINES TO
* THE TEXT BUFFER
*

|

(b) Print

Print lines one through five without tabs.
B

P 1,5 CCRD

LINE ONE STILL LINE NUMBER ONE
LINE TWO DELETED IN EXAMPLE C
LINE 3 NUMBER WILL CHANGE
LINE 4 NUMBER WILL CHANGE
LINE 5 NUMBER WILL CHANGE

———

7-96

(c)

(@

Change

Given example b, assume the open line is number two. Insert two lines. Open line number four
is printed.

o V.

c

* INSERT A LINE

* INSERT ANOTHER LINE

*

4 LINE 3 NUMBER WILL CHANGE
List

List lines one through five for example(c)after C command execution. Note the change in line
numbers.

1,5 CCR)

LINE ONE STILL LINE NUMBER ONE
INSERT A LINE

INSERT ANOTHER LINE

LINE 3 NUMBER WILL CHANGE
LINE 4 NUMBER WILL CHANGE

——
The letters n, a, and b as used in Table 7-34 have the following definitions:

!

S o .

a decimal number

n

first argument, a decimal number

second argument, not less than a, a decimal number

TABLE 7-34.
COMMAND REPERTOIRE

Function Command Response Definition Description

Input A * Append The editor enters the Edit Mode (*) and

Input An none Append TIDE enters the Edit Mode after which

accepts input from the keyboard., The
typed text line is appended following the
last line of text (if any) in the buffer.
Each line of input is terminated with a
CR. After a * response, the Append
operation is terminated by depressing
BK. After termination, the last line
input, now the open line, and its deci-
mal number address are printed.

TIDE returns to the Command Mode («-).

n lines n lines are read from the Source Input
Device. See Section 7.10.2, After
termination, this command continues
as the A command.

7-97

TABLE 7-34,

COMMAND REPERTOIRE (Continued)

Function

Command

Response Definition

Description

Input

Input

Modify

Modify

Modify

In

Da, b

* Insert

none Insert
n lines

none Delete

none Delete
lines a
through b

* Change

The editor enters the Edit Mode (*)
and accepts text lines from the key-
board to be inserted preceding the
open line. Insertions are made in the
order in which lines are input. Each
line is terminated by depressing CR
and the operation is terminated by
depressing BK. Upon termination,
the open line with its corrected deci-
mal address is printed and control
goes to the Command Mode («—).

Control transfers to the Edit Mode
after which n lines of text are read
from the Source Input Device (See
Section 7.10.2) and are inserted
into the text buffer as described for
the I command. Upon termination,
the open line with its corrected line
number is printed and control goes
to the Command Mode (),

The editor deletes the current open
line. The line following the deleted
line is now the open line and is
printed along with its corrected line
number., Control returns to the
Command Mode (). If the last line
in the buffer is the open line and it is
deleted, the new last line is now the
open line and it is listed.

Lines a through b inclusive are de-
leted. Line b+1 becomes the open
line and is printed along with its cor-
rected decimal address., TIDE re-
mains in the Command Mode ().

If line b+1 is non-existent, the last
line is opened and listed.

The open line is deleted. Control then
goes to the Edit Mode (*) through
which insertions can be made as in
the I command. After insertions are
made, the command is terminated by
depressing BK. The line following the
deleted line becomes the open line

and is printed along with its corrected
decimal number address. Control
transfers to the Command Mode ().
If the last line in the buffer is the open
line and it is changed without inser-
tion, the new last line is now the open
line and is listed.

9-908

TABLE 7-34.

COMMAND REPERTOIRE (Continued)

Function Command Response Definition Description

Modify Ca, b * Change lines This command deletes lines a through
a through b b inclusive then continues as the C

command.

Output P none Print This command must be preceded by
the T or N command. The P com-
mand prints the contents of the text
buffer in T or N unnumbered line for-
mat on the List Device (See Section
3.2)., The editor remains in the
Command Mode (w—).

Output Pa,b none Prints lines Lines a through b inclusive are

a through b printed as in the P Command.

Output (¢] none Output The entire text buffer is punched in
punched the standard source tape format on
tape the Binary Output Device., TIDE

remains in the Command Mode (<—).

Output Oa, b none Output lines This command punches lines a through
a through b b inclusive and continues as the O
on punched Command,
tape

Output L none List The contents of the text buffer are
printed in T or N numbered line for-
mat on the teleprinter. Printing may
be terminated by depressing BK. The
open line will be listed. The editor
remains in the Command Mode (=—).

Output La,b none List lines Lines a through b inclusive are
a through b printed and terminated as in the L

Command.

Setup T -— Tabulate This command sets the tabulate flag

output for format control. Output is
similar to the Assembler format when
the List and Print commands are
subsequently used.

Setup N -+~——e Untabulated This command resets the tabulate
output flag for no format control. Output

spacing is as in the text buffer when
the list and Print commands are sub-
sequently used. This flag state is
N when TIDE is started at the origin,
Setup K TIDE Kill text This command starts TIDE at the
-~ buffer ORG as described in Section

7.10,2, Starting Location.

7-99

TABLE 7-34.
COMMAND REPERTOIRE (Continued)

Function Command Regponse Definition Description
Other R none Reproduce Thig command reads lines of text
text from the Source Input Device and re-

produces the text on the Binary Output
Device. See Section 7.10.2, No
information from the tape enters

the text buffer. Duplication may be
terminated by taking the Binary Input
Device off-line. TIDE remains in the
Command Mode (=),

Other Rn none Duplicate n The number of lines specified in the
lines of argument are duplicated on the Binary
text Output Device. I/O devices are as

stated for the R command., No infor-
mation from the tape enters the text
buffer. After n lines are reproduced,
the last line reproduced is printed,
TIDE remains in the Command Mode
(~*)-

Other] none Skip The Binary Input Device (See Section
7.10.2) advances until halted.

After manual halt, the open line and

its number are printed. The editor

remains in the Command Mode (~-).

Other Sn none ~ Skipn The number of lines specified in the
lines argument are skipped as in the S
Command. After n lines are skipped,
the last line skipped is printed.

Errors

The error message for improper TIDE command entries or for a line of text (from any input device) which
exceeds the character limit, is the question mark(?). If a command entry error is made, no action is taken
upon the information in the text buffer, TIDE responds with an error message (?), and remains in the Com-
mand Mode (e, If the text line exceeds 80 characters, the error message (?) is printed and program control

is transferred to the Command Mode («=). None of the characters in the line are entered into the text

buffer. If the error occurs in either the command or text entry modes, and is discovered before depressing the
CR, the mistake may be corrected. Corrections are made by typing a left arrow («=) which deletes the last
character in the line, or by typing a symbol (#) which deletes the entire line., Control remains in the current
mode of operation.

Another TIDE error flag is the exclamation point (!) which means the text buffer has overflowed. When this
happens, the line which caused the overflow is not entered into the text buffer and the text buffer is unchanged.
TIDE returns to the Command Mode (==). To enter more information, it is necessary to delete one or more
lines from the buffer. To reread the line which caused overflow, it is necessary to backspace the input

tape one line, and adjust the buffer contents to make more room.

In the event of an I/O device error, TIDE prints the message "IOERR XXNN" where XX is a status word
specifying device status and NN ig the device number.

STATUS CODE DEVICE NUMBER

7-100

Control returns to the Command Mode (=), After the device problem is remedied, re-issue the ap-
propriate TIDE command. :

7.10.2 Operating Procedures
Loading

TIDE is available in two versions: Program Number 03-026 is a stand-alone version with self-contained
input/output drivers; Program Number 03-027 is designed to execute under the Operating System and
consequently has no internal input/output capability. Both versions are functionally the same.

Program Number 03-026 is a relocatable program which requires about 5K bytes of memory including a
2000 byte text buffer. To load 03-026, use the Relocating Loader, Program Number 06-024, or the
General Loader, Program Number 06-025. Refer to Loader Descriptions Manual, Publication Number
29-231, for use of these loaders.

Program Number 03~027, is a relocatable program which requires about 4K bytes of memory including a
2000 byte text buffer. To load 03~027, use the LOAD Command in the Operating System.

1/0 Device Selection

Prior to executing the stand-alone version of TIDE, Program Number 03-026, the following halfwords in the
Device Definition Table of the 50 Sequence should be set up.

Location Symbolic Name Used With TIDE Commands
X'007A" BOUTDV Reproduce, Output

X'007C’ SINDV Append, Insert, Reproduce, Skip
X'007E! LISTDV Print

Each halfword contains the following information.

DEVICE NUMBER OUTPUT COMMAND

The appropriate halfwords for various devices are shown below.

BOUTDV X'0298' Teletype Punch

BOUTDV X'1392' High Speed Paper Tape Punch
SINDV X'0294' Teletype Input with Printing
SINDV X'02A4' Teletype Input, no Printing
SINDV X'1399' High Speed Paper Tape Input
LISTDV X10298' Teletype Output

LISTDV X'6280' Lineprinter Output

Prior to executing the Operating System version of TIDE, Program Number 03-027, the following device as-
signments should be made to the logical units listed below.

Logical Unit Function Used With TIDE Commands
01 Source Input Append, Insert, Reproduce, Skip
02 Binary Output Reproduce, Output
03 List Print
05 Keyboard Command Entries, TIDE Responses, Append, Insert, Change, List

7-101

Greater device flexibility is available with the Operating System version of TIDE than with the stand-alone
version. Refer to Section 7. 12 for details on device assignments. Possible specific device assignments
follow:

Source Input 01FF Teletype Input (paper tape)
Source Input 0102 Teletype Input Keyboard
Source Input 0113 High Speed Paper Tape Input
Source Input 0104 Card Reader Input

Source Input 0185 Magnetic Tape Input

‘Binary Output 02FF Teletype Punch

Binary Output 0213 High Speed Paper Tape Punch
Binary Output 0285 Magnetic Tape Output

List 0302 Teletype Output

List 0362 Line Printer Output
Keyboard 0502 Teletype Input/Output

Starting Location

If the execution of TIDE is started at the origin (ORG), the text and line buffer pointers are set to the first
locations of the buffers. Registers and appropriate locations are initialized, and the message TIDE, along
with the Command Mode Flag (=) is printed.

If TIDE is started at location ORG + 4, no initialization occurs, the current state of the buffers and pointers
is unchanged, and the Command Mode Flag (w-) ig printed.

Termination Commands: E and !

Two additional commands are available in TIDE to terminate execution and in the operating system version, to
return control to the operating system. To momentarily halt program execution, type an exclamation mark
(). Stand-alone TIDE types "PAUSE' then halts. Depressing EXECUTE causes execution to restart at
ORG + 4. The OS version issues a SVC pause to the operating system. Typing CONTINUE causes TIDE

to restart at ORG + 4. To end program execution, type E. Stand alone TIDE types EOJ (end of job) and
halts. Depressing EXECUTE causes execution to restart at ORG. OS TIDE igsues an SVC End of Job.

Tape Format

Tapes produced by the Output (O) command of TIDE are always in the standard source tape format. Each
line of binary text is followed by a CR, LF, and eight blanks. The format for each character is seven bit
ASCI code.

Input tapes for TIDE should be in the standard source tape format; however, the minimum format requirements
are that each line should be terminated by a Carriage Return (CR) but must contain no more than 80 charac-
ters. In addition, successive statements must be separated by at least five or six blank characters. If a

line length error (?) occurs, the tape must be manually adjusted to the next line. If the text buffer capacity

is exceeded (!), manually backspace the tape one line. In the latter case, editing can be done on the text
already in the text buffer.

Text Buffer Size

When loaded, TIDE provides a text buffer for 2000 characters. The user may adjust the size of the text
buffer by inserting the beginning and ending absolute addresses into locations X'0008'R and X'000A'R
respectively., The text buffer may be located anywhere in core, providing it does not overwrite TIDE or
other resident programs. When started at ORG, TIDE tests the text buffer limits and if they overwrite,
TIDE forces them to the locations originally specified in the editor. Table 7-35 is a summary of tide
features.

7-102

TABLE 7-~35.
SUMMARY OF TIDE FEATURES

SYMBOL DEFINITION
TIDE Initial Execution Message
- Command Mode
* Edit Mode
? Error Message
! Text Buffer Overflow
IOERR XXNN 1/0 Device Error

TIDE CONTROL CHARACTERS

-

KEY DEFINITION/ACTION
* Lists the open line
. Lists the last line in the text buffer
1 Lists the byte count of the current

contents of the text buffer

Opens and lists the line following the

current open line

Opens and lists the line preceding the

current open line

Erase the line just typed from the

keyboard, cancels an incorrect
command

B Deletes the last character typed

Returns to Command Mode

E End of job.

! Pause
SPECIAL TIDE ADDRESSES
HEXADECIMAL
LOCATION DEFINITION

0000 + Bias Starting location. Program
initializes and resets buffer pointers.

0004 + Bias Restart location. Program does not
initialize and buffer pointers are not
reset.

0008 + Bias Location which defines the first
address of the text buffer. This
address must not overwrite the TIDE
Program,

000A + Bias Location which defines the last

address of the text buffer. This
address must be within core limits
and greater than the starting
address of the text buffer.

7-103

7.11 HEXADECIMAL DEBUG (CLUB) PROGRAM

The Hexadecimal Debug Program, known as CLUB, is an on-line hexadecimal debug program. Its purpose
is to provide maximum assistance in debugging a user program while using a minimum of memory storage.
The user of CLUB directs the debugging operation by entering directives and associated data via the Tele-
type keyboard. Responses to these inputs are usually shown on the Teletype page printer. Features of
CLUB are as follows:

Memory cell examination and modification

Register examination and modification

Relative addressing of cells

Address arithmetic

Execution of user program

Multiple breakpoints

Search on limits for masked value

Print the content of memory bounded by limits

Punch the content of memory bounded by limits in standard loader format
Punch the content of memory bounded by limits in eight-bit format
Disagssemble the content of memory using instruction mnemonics

The two versions of CLUB that are available are:

1. 03-013 Hex Debug
2. 03-032 OS Hex Debug

Hex Debug, 03-013, is a self-contained version which includes all features of CLUB, along with I/0 routines
for supporting CLUB operations on a Teletype, High Speed Paper Tape Reader or Punch, and a Line
Printer. This version runs on any INTERDATA Procegsor with 4K bytes or more of memory.

OS Hex Debug, 03-032, is similar in features, but this version requires one of the INTERDATA operating
systems for I/0. This version runs on any INTERDATA Processor with 8K bytes or more of memory.
ory. All1/0 in OS Hex Debug is performed via logical units which are assigned at run time by the OS
Assign Command.

7.11.1 Terminology

The term cell, as used in the following discussion, refers to a halfword (16-bit) memory location.

An open cell is the cell that is currently available for modification. To operate on a cell in memory, it
must be made the current open cell. Only one cell at a time is considered open.

Directives are instructions to CLUB and consist of a single character (Teletype key), other than 0-9 or
A-F. Directives are given to CLUB through the Teletype keyhoard, see Figure 7-24, Each directive
initiates an action. Most directives are to be preceded by an argument, and followed by a carriage return,

The argument is the address or data value which is used by the directive. Leading zeros are not necessary.
Data inputs are in a hexadecimal format using the characters 0-9 and A-F, All other characters are as-
sumed to be directives to CLUB. An undefined directive given to CLUB is completely ignored and no action
is taken.

The relative addressing feature permits the user of CLUB to reference the addresses indicated on his pro-
gram listing when debugging relocatable programs. This feature completely eliminates the problems of
address arithmetic normally associated with debugging relocatable programs. The relative addressing
feature is implemented by adding a value to the addresses referenced by the user of CLUB. The value is
called a Bias.

7-104

OOOOOOOOOOOO®
HROOOEHLOLOOO®®
HOOOOOOOOOO®@ e
@ED@@@(%@@@

Figure 7-24. Teletype Keyboard Layout

7.11.2 Description of Operations

There are four classes of directives:
1. Bias Definition
2. Cell Examination and Modification
3. Program Control
4. Utilities

The directives for each class are defined by showing the directive (Teletype key) in a circle and the defini-
tion to the right of the directive, followed by a description of its function and an example. The underline is
used in the examples to differentiate between the user's input and CLUB's output response. The user's input
is underlined. A Carriage Return, represented by (CR), must terminate every user command., If a # is
typed by the user at any time during the input in a command, that line is ignored and a new command should
be input,

7.11.3 Bias Definition

©) BIAS

The relative addressing feature permits the user to reference the address indicated by his program listing
when debugging relocatable programs. In order to make use of the relative addressing feature, the first
directive to be used when debugging a relocatable program should be the "I'"" directive. The "I" directive
sets the relative address Bias. If the "I'" directive is preceded by a hexadecimal input, the relative address
Bias is set to the value of that input. If nothing precedes the "I'', the Bias is cleared (set to zero).

Example: 3001

The user normally sets the Bias value to the first location within a program. The Bias value is cleared
whenever CLUB is executed at its starting location. By never specifying a Bias with the "I'" directive, the
relative addressing feature can be ignored.

Once a Bias is entered, all addresses equal to or larger than the Bias value, are shown relative to that

Bias and are indicated clearly as such by an appended "R, While a Bias is entered, no cell having an
address less than the Bias value can be directly opened by using the "¥'" (space bar) directive. If, however,
a cell below the current Bias is to be shown, its address is shown absolute with no appended "R". This could
happen, for example, if the user's program branched mistakenly to any point below its origin. Upon re-
turning to CLUB with an Illegal instruction, the address is clearly distinguished as absolute and outside the
beginning of his program.

7-105

7.11.4 Cell Examination and Modification

The directives described in this section provide memory cell examination and modification. These direc-
tives are generally preceded by some hexadecimal input. Hexadecimal inputs are accepted until a directive
is received; the last four hexadecimal characters are then used as the address or data. The input of leading
zeros is not necessary.

OPEN CELL

The space bar is the cell examination directive. Typed after an address, it causes that cell's address,
relative to the Bias, and the content of that cell to be printed. If no address was specified prior to typing
the space bar, the address of cell zero, as displaced by a previous Bias entry and its contents are printed.
For example, if the user types 1FEY, CLUB outputs the address 01 FE and the content of that cell XXXX.

Example: 1FEP (;B

01 FE XXXX

However, if a previous Bias entry of 100 had been made, in order to open that same cell the user would type:

FE$ (CR)
00FER XXXX

The trailing "R" on addresses indicates that the address is relative to the current value of the Bias.

RUB
CLOSE THE OPEN CELL

This directive causes CLUB to close the open cell and output a carriage return and line feed, This directive
is not available in OS CLUB.

@ RESHOW CONTENTS MINUS THE BIAS

The slash"/" directive causes CLUB to show the contents of the open cell relative to the Bias. This is
particularly useful when debugging a Relocatable program. If no Bias is entered, the contents are reshown
absolute., Note that this directive does not change the actual contents of the open cell in memory.

Example: If the bias is get to 2500:
FEp
00FER 3A64

1564R

@ OPEN NEXT SEQUENTIAL CELL

To open the next cell in sequence, the user types a "LINE FEED", followed by a carriage return. The
current open cell is closed, and the address and content of the next sequential cell are printed.

Example: 1FE}J S:Ez

01FE XXXX
LINE FEED (CR)
0200 NNNN

7-106

OPEN PRECEDING CELL

To open the previous cell instead of the next cell in sequence as in "LINE FEED" above, the user types a
singular carriage return. The current open cell is closed and the address and content of the previous cell
are printed.

Example: 1FEB
01FE XXXX

OIFC YYYY
(T) TRANSFER TO CONTENTS

This directive causes the content of the current open cell to become the address of the new open cell. The
address and content of the new open cell are printed.

Example: 1FEJ

O1FE_ 03EO
T CR,
03E0 XXXX

Since all addresses are assumed relative to the Bias and the address contained in the current open cell is an
absolute address, the Bias is subtracted to maintain correct relative addressing.

Example: If the Bias is set to 100, the
previous example would produce
the following results:

FEp
00FER 03E0

0ZEOR XXXX

@ ADD

The plus directive causes the hexadecimal characters entered just prior to the plus to be added to the
address of the current open cell, this sum becomes the address of the new open cell. The address and
content of the new open cell are printed.

Example: 1FES (CR)

01FE 03E0
202+
0400 XXXX

@ SUBTRACT

The minus directive causes the hexadecimal characters entered just prior to the minus to be subtracted from
the address of the current open cell, this difference becomes the address of the new open cell. The address
and content of the new open cell are printed.

Example: 1FE6 (CR)

01FE O03E0
1C-
01E2 XXXX

7-107

@ REGISTER SELECTION

The status of the 16 General Registers at the time of entry to CLUB, or upon encountering a breakpoint, is
saved in a reserved area within the CLUB program. The registers are restored from this area when the
"G" or "W" directive is executed. This area may be accessed for examination or modification by the "R"
directive. The hexadecimal character typed just prior to the '"R" directive selects 1 of the 16, saved
register., This cell becomes the current open cell and may be operated on as such,

Example: 9R »
REG9 XXXX

LINE FEED (CR)

REGA XXXX

4 CR)

REGE XXXX
REGD XXXX
108. (CR)
REGD 0108

The status of the 32-bit PSW register is saved in the fullword location at SAVOLD, as shown on the Hex Debug
program listing. This location should be referenced to examine or change the PSW register following a
breakpoint, or prior to giving a GO command,

O MODIFY CONTENTS ABSOLUTE

The period is the directive to modify the open cell. The content of the current open cell is replaced by the
four hexadecimal characters entered just prior to the period. The input of leading zeros is not necessary,
although acceptable as in the following example. I no hexadecimal entry is made, the cell is zeroed.

Example: 1FEJ
01FE 03F0

045C.

OIFE_045C
.
OIFE 0000

@ MODIFY CONTENTS RELATIVE

The colon causes the content of the current open cell to be replaced by the sum of the Bias and the four
hexadecimal characters entered just prior to the colon. This permits the user to easily insert relative
addresses without the necessity of address arithmetic when making modifications to a program.

Example: 1001 (CR)

1ABY
01ABR_9A02

544: (CR)
0IABR 0644

7.11.5 Program Control

The program control directives "X, Y, Z, K, G, and W" permit the user to direct the operation of his
program through the use of CLUB. At a point within the user's program, it is frequently desirable to return
control to CLUB. This is accomplished by inserting a breakpoint at the address at which the transfer of
control is to take place.

(X) INSERT BREAKPOINT
The "X" directive causes a breakpoint to be inserted at the address specified by the preceding hexadecimal

input. If no address is specified, the breakpoint is inserted in the current open cell. All breakpoint
addressing is relative to the current value of the Bias.

7-108

Up to eight breakpoints at a time may be resident in the user's program. If a breakpoint insertion is re-
quested and eight breakpoints have already been inserted, the message EXCESS BREAKPOINT is printed and
the address of the current open cell or the specified cell and its content is printed.

When the breakpoint is inserted, the address at which the breakpoint is inserted and its new content are
printed, and that address becomes the current open cell.

Example: If the breakpoint is inserted.

1FEB
01FE 03EO0
01FE E1F0

If the breakpoint is rejected:
1FE (CRD

01FE 03E0

EXCESS BREAKPOINT
01FE O03EO0

If an address is specified:

LFES (CR)

01FE 03E0
25AX
025A E1F0

The E1 FO is a SVC instruction that is inserted into the user's program by the "X' directive using OS Hex
Debug. When this instruction is detected by the Processor, it causes control to be transferred to the OS.
The OS returns control to OS Hex Debug so that OS Hex Debug can interpret the breakpoint, In the 03-013
version the inserted breakpoint value is the Illegal instruction X'F000'.

When the "X" directive is specified, the open cell address is placed as the first half-word entry in a
Breakpoint Table. The next halfword(s) to be entered is the instruction itself: one halfword for an RR; two
halfwords for an RX, or RS instruction. The last entry is a Branch to the next executable instruction in the
user's instructions. When a breakpoint occurs, the address where the breakpoint occurred is compared to
all breakpoint addresses in the Breakpoint Table. If it is not found, the message ILLEGAL INSTRUCTION
and the address and contents of the cell are printed, If the address is found, the message BREAKPOINT
and the breakpoint address and its content are then printed. The Bias is not cleared and the address
printed is relative to the Bias. The copying of the instruction and the inserting of a Branch instruction

into the Breakpoint Table for an "X'" directive are required for executing the breakpoint with the GO or GO
WAIT directives, Caution is required in declaring a breakpoint so that the address specified in the "X'' direc-
tive is the starting address of an instruction and not the address portion of an RX or RS instruction.

@ ZAP BREAKPOINT

The "Z" directive causes the removal of a single breakpoint, If the ""Z'" directive is preceded by a hexadeci-
mal input, the breakpoint at the address specified by that input is removed. I no address was specified,

the breakpoint is removed from the current open cell, All addressing is relative to the current value of the
Bias. The breakpoint is removed, the address is restored, and the contents of the cell are printed. If no
breakpoint is found at the address indicated, the message NO BREAKPOINT and the address and content of
the cell are printed.

Example: 01 FEY

0lFE FE1F0

z (CR)

01FE O03E0

3E0Z
NO BREAKPOINT

03E0 XXXX

7-109

@ KILL ALL BREAKPOINTS

The "K" directive removes all resident breakpoints from the user's program. Upon completion of this
directive, the message CLUB is printed. If there is an open cell, that cell is closed.

Example: K

CLUB
@ SHOW BREAKPOINT LOCATIONS

The "Y" directive causes CLUB to print out a list of the locations of all breakpoints. The addresses are
always shown absolute, independent of the Bias values used when the breakpoints are defined. If CLUB
has no record of any breakpoint entries, none are shown. The message CLUB is printed upon completion
of the ""Y" directive and the current open cell, if any, is closed.

Example: Y

010E
012B
01FC
0464
0266
20BC
2300
23B8
CLUB

(@ o

The "G" directive causes CLUB to restore the 16 General Registers and transfer Processor control to the
user's program. If the "G" directive is preceded by a hexadecimal input, execution begins at the address
specified by that input. If no address is specified, execution begins at the current open cell. All addressing
is relative to the current Bias. A carriage return and line feed is output in response to this directive to
indicate that transfer of control is about to take place.

Before transferring control to the open address of the "G" directive, this address is compared to the break-
point addresses found in the Breakpoint Table. If not found, a normal transfer occurs., If this address is
indeed a breakpoint, then CLUB executes the Breakpointed instruction, and returns control at the next
sequential user instruction. The breakpoint remains in effect.

Example: 0LFE C820

Control transfers to 01FE
Example: 01FE €820

2006_(CR)

Control transfers to 0200

See the NOTE under the "W directive description for special handling of GO to cell 0000R,
In the OS CLUB, the execution of any Illegal instructions causes the operating system to type an Illegal in-

struction message and causes control to return to the OS. In the 03-013 version, the message ILLEGAL
INSTRUCTION is typed, and CLUB retains coatrol.

7-110

@ GO WAIT

The"W" directive causes CLUB to restore the 16 General Registers and place the Processor in a Wait

state at the address specified by the hexadecimal characters input, just prior to the "W'. If no address

ig specified, the Processor is halted at the address of the current open cell. That is, the Processor

halts with the PSW Location Counter containing either the address specified or the open cell address. All
addressing is relative to the current Bias. A carriage return and line feed is output in response to this
directive to indicate that transfer of control is about to take place. Execution of breakpoints is as described
in the "G'" directive.

Example: 01FE 03E0
w

Processor halts with 01 FE in PSW Location Counter.

Example: 01LFE 03E0

100W
Processor halts with 0100 in PSW Location Counter.

Example: With a bias of 100 entered:

00FER_ 03E0
w

Processor halts with 01 FE in PSW Location Counter.
NOTE

There is one exception for both the "G'" and ""W" directives, Processor control
cannot be transferred to cell 0000R by typing "W', or "G'. Cell 0000R must
first be made the open cell. Once a Bias is entered, cell 0000R can be opened
by typing the space bar. Then type the "G" or "W'.

7.11.6 Utilities

The Utility directives provide a means of searching or capturing a user's program. They consist of the
following directives. 'S, P, Q, O, N'". At the completion of each of these directives, the message CLUB
is typed and any open cell is closed.

Certain directives are required for setting up and controlling the operation of CLUB utilities. The "L, H,

V, M'" directives must be entered for the Search "'S" directive. The "L" and '"H" directives must be entered
for Print "P", Disassembly "N", and the Dump Core on Tape "O" and "Q" directives. A carriage return and
line feed is output in response to each of these directives. The "Break Key' stops all Utility directive opera-
tions in the 03-013 versions., In the 03-032 version, the "*'"and " ! "' directives allow communication be-
tween CLUB and the OS.

(® LOW LIMIT
The "L'" directive defines the low limit address for Utility operations such as the Search, Print, Disassembly,
and the "O" and "Q" Tape Dump directives. The hexadecimal characters entered just prior to the "L be-

come the low limit. The low limit address is made relative to the Bias at the time of execution of the Utility
directives. A carriage return and line feed is output in response to the "L" directive.

Example: 1FEL
(@) HIGH LIMIT
The '"H" directive defines the high limit address for Utility operations. The hexadecimal characters entered
just prior to the "H'" becoming the high limit. The high limit address is made relative to the Bias at the time
of execution of the Utility operations. A carriage return and line feed is output in response to the '""H"

directive.

Example: 260H (CR)

7-111

(¥) VALUE

The "V" directive defines the value to be used by the Search directive. The hexadecimal characters
entered just prior to the "V" character becomethe search value. A carriage return and line feed is output
in response to the "V'" directive.

Example: 300V
(M) Mask

The "M" directive defines the mask to be used by the Search directive. The hexadecimal characters entered
just prior to the "M" character become the search mask. A carriage return and line feed is output in
response to the '""M" directive.

Example: FOOM
() sEArcH

The ""S" directive causes CLUB to make a search and print the address and content of every cell, in the
section of memory bounded by the low and high limits, whose masked content is equal to the masked value.
The address printed when relative to a Bias are flagged with a trailing "R'". The message CLUB is printed
upon completion of the search.

Example: The search for a 3 in the second hexadecimal digit
position is accomplished with the following procedure:

1FEL low limit
260H high limit
300V value
FOOM mask

s do search

01FE 03E0 address and content
025A 43A0 address and content
CLUB

The "8" directive is utilized most commonly as a debugging technique for locating instructions branching to a
particular address or for locating those instructions changing the content of a particular cell. To accom-
plish this, set the address of the cell either being branched to or being changed into value, set FFFF into
Mask, set the low and high limits desired and type "'S'".

(® pRINT

The "P" directive causes CLUB to print the content of every cell in the section of memory bounded by the
low and high limits. The addresses printed when relative to a Bias are flagged as such with a trailing R.
CLUB masgks off the least significant digit of the low limit for format purposes. The message CLUB is
printed upon completion of the directive. The printing format is shown below.

Example:

1230 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
1240 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
CLUB

7-112

Where 1230 is the address of the first halfword in the line, and XXXX is the content of the successive cells.
With version 03-013, the printing is output to the device previously selected in the Device Definition Table
as LISTDV at location X'7E' which should normally contain one of the following:

X'"7E! 0298 Teletype Page Printer
139A High Speed Paper Tape Punch
6280 Line Printer

With 03-032, printing is to Logical Unit 3, which must be assigned in the OS.
(O) OUTPUT TAPE IN STANDARD LOADER FORMAT

The "O" directive causes CLUB to output on tape the contents of every cell in the section of memory
bounded by the low and high limits relative to the current Bias. The tape is absolute and in standard loader
format. If the punch device is the Teletype, core is dumped in the M08 Zoned Format, If the punch device
is not the Teletype, the tape is punched in the M16 format. With 03-013, it is output to the punch device
selected in the Device Definition Table as the Binary Output Device (BOUTDYV) at location X'7A' which should
contain one of the following:

X'7A! 0298 Teletype Punch Device
139A High Speed Paper Tape Punch

Upon receipt of the "O" directive, the 03-013 CLUB puts the Processor in the Wait state. The punch should
then be turned ON and EXECUTE depressed. The tape is then punched with leader and trailer and the Proc-
essor returned to the Wait state. The punch should then be turned OFF and EXECUTE depressed. The
High Speed Paper Tape Punch can be turned OFF by depressing INITIALIZE before depressing EXECUTE.
The message CLUB is then printed out on the Teletype. With 03-032, punching is to Logical Unit 2, which
must be assigned in the OS. The resulting tape can be loaded with the REL, General, BOSS Resident, or

OS Library Loader.

Example: If the user wished to dump core memory from cell
address 1000 through cell address 15AC inclusive:

1000L low limit

15ACH high limit

(¢ Processor then halts.

- User should turn punch ON and depress
EXECUTE.

Tape is punched, Processor then halts.

User should turn punch OFF (depress

INITIALIZE) and depress EXECUTE,
CLUB

DUMP CORE IN EIGHT-BIT FORMAT

The "Q" directive causes CLUB to output to tape the content of every cell in the section of memory defined
by the low and high limits. With 03-013 this tape is punched in eight-bit format and output to the device
selected in the Device Definition Table as the Binary Output Device (BOUTDV) at location X'7A' which
should contain one of the following:

X'7A! 0298 Teletype Punch Device
139A High Speed Paper Tape Punch

NOTE
Because of the eight-bit format and the fact that some eight-bit configurations

can indicate certain control characters such as WRU, XON, XOFF, etc., to
the Teletype, this directive cannot be used with some ASR-33 Teletypes.

7-113

Upon receipt of the "Q'" character, the 03-013 CLUB puts the Processor in a Wait state. The punch should
then be turned ON and EXECUTE depressed. The tape ig then punched with leader and trailer and the
Processor returned to the Wait state. The punch should then be turned OFF and EXECUTE depressed.
The message CLUB ig then printed out on the Teletype. The resulting binary tape can be loaded by adjust-
ing the Model 3 50 Sequence loader low and high addresses found at locations '52' and 5A' respectively.

With 03-032, punching is to Logical Unit 2 using a write binary operation to produce a binary record.
NOTE

With OS CLUB the binary tape produced contains a leading "FO0" character which
should be ignored when loading by positioning the tape past this character on the
input device being used.

low limit

high limit

Processor then halts,

User should depress EXECUTE,

Tape is punched, Processor then halts.
User should turn punch OFF and depress
EXECUTE.,

Example: 100L CCR)

CLUB

NOTE

CLUB forces halfword alignment on the low and high limits relative to the Bias.
CLUB dumps core from an even halfword address obtained from the low limit
through an even halfword address obtained from the high limit, both relative

to the Bias.

(N) DISASSEMBLY

The "N' directive causes CLUB to output a disassembly of the section of memory bounded by the low and
high limits relative to the current Bias. With 03-013, this printout will be on the device selected as
LISTDV in the Device Definition Table at location X'7E! just as does the Print "P" directive. Refer back
to "P" directive on device selection procedures. With 03-032, printing is to Logical Unit 3, which must be
assigned in the OS. Upon completion of the "N directive, the message CLUB is printed on the Teletype.

A 50 Sequence is disassembled as follows:

Example: 50L (CR)

TEH

0050 €820 LHI 2, 0080
0080

0054 C830 LHI 3, 0001
0001

0058 €840 LHI 4,00CF
00CF

005C D3A0 LB A, 0078
0078

0060 DEAO oc A, 0079
0079

0064 9DAE SSR A,E

0066 08EE LHR E,E

0068 4230 BTC 3,0064
0064

006C DBA2 RD A, 0000(2)
0000

0070 €120 BXLE 2,0064

7-114

0064

0074 - 4300 BFC 0,0080
0080

0078 1399

007A 0392 BFCR 9,2

007C © 04A0 NHR A,0

007E 6280

CLUB

NOTE

The Disassembler cannot distinguish data which appears as Legal instructions
as contained in X'7A' and X'7C'. However, recoghizable data, such as in
X'78' produces blanks, Note also, that extended branches are disassembled
with mnemonics BTC, BTCR, BFC, or BFCR.

BREAK STOP

In the 03-013 version only, the "BREAK KEY" directive causes CLUB to discontinue whatever output
operation it is currently engaged in and print the message CLUB. Its intended purpose is to allow the user
to stop the operation of the Print "P"', Search "8", Disassembly "N", and the Dump Core on Tape "O" and
"Q" directives at any time deemed necessary and retain control in CLUB, If the BREAK KEY is hit during
a dump tape directive, the Processor halts as with a normal completion of the "O" and "Q" directive in
order to allow the user to turn the punch OFF and then depress EXECUTE. The message CLUB is then
printed,

© END

In the 03-032 version only, the END directive causes CLUB to restore a special pointer in the OS, and
return control to the OS via an End of Job supervisor call. This directive is appropriate whenever it is
desired to return control to the OS.

@ PAUSE

In the 03-032 version only, the PAUSE directive enables the CLUB user to return to the OS without disturbing
breakpoints, registers, limits, etc. To return to CLUB, the user uses the OS CONTINUE directive.

7.11.7 Operating Procedures

The program tapes available for the two versions of CLUB are:
1. HEX DEBUG 03-013M16
2. OS HEX DEBUG 03-032M16
All tapes are relocatable, and have the starting address at the ORIGIN, or the first location of the program.

Note that absolute tapes of CLUB can be obtained by using the output operations in CLUB to punch the CLUB
program itself.

Loading Procedures

Since all CLUB programs are relocatable in non-zoned Loader format, they can be loaded with either the
General Loader, Program Number 06-025, or Relocating Loader, Program Number 06-024. OS Debug,
Program Number 03-032, can be loaded using the LOAD directive in the OS or via the OS Library Loader,
Program Number 03-030.

Detailed loading procedures for Hex Debug, Program Number 03-013, are:

1. Load the General or Relocating Loader into memory. Refer to Loader Descriptions Section 7.9
for a detailed explanation of these standard loaders.

7-115

2. Place the CLUB program tape in the tape reader.

3. If the user wishes CLUB to be loaded into location X'80', address the Processor at the Loader's
starting location and depress EXECUTE, CLUB is loaded at X'80',

4. To load CLUB elsewhere, enter the Bias to be used by the Loader, the address at which CLUB
is to be loaded, into the Bias Definition location within the Loader. Then start the Loader at its
Bias Define Restart Address, which loads CLUB at the specified location.

Starting Location

The starting location for CLUB is the first instruction in the program. That is, if relocatable CLUB is
loaded without changing the Bias in the Reloading or Gene;‘al Loader, it is loaded at X'80' and execution of
CLUB begins at X'80', However, if the Loader's Bias is set to X'1000', CLUB is loaded at X'1000' and
execution would begin at that location.

CLUB can be restarted at any time at that same address. However, in order to restart C LUB without de-
stroying its record of breakpoint entries, CLUB must be re-entered through its Illegal Instruction Trap. A
common method for accomplishing this is to have the Processor execute a location above the top of memory,
execute any cell containing 0000, or execute any other Illegal instruction, for stand-alone CLUB, For OS
CLUB, execute any cell containing X'E1F0',

Program Size

Both versions of CLUB require about 8KB of memory. If the disassembly or output features are not re-
quired by the CLUB user, the coding for these functions, which is at the top of CLUB, may be overlaid
to provide more user space. The user should examine the CLUB listing for the starting address of the
output routine (symbolic name OUTPUT) and the disassembly routine (symbolic name DISASM), If one
or both of these routines are overlaid, the directives that pertain to these routines should not be used.
A summary of CLUB Directives is provided in Table 7-36.

Device Selection
In version 03-013, the devices used are:

1. LISTDV - The Print "P" or Disassembly ""N" operations cause a printout on the List Device,
which is selected in halfword location X'7E' (LISTDV) in the Processor's Device Definition Table.
Byte X'7TE' (LISTDV) should contain the device number and byte X'7F' (LISTDV+1) should contain
the command byte normally used with print device. That is, halfword location X'7E' should con-
tain one of the following:

0298 . Teletype Punch Device
139A High Speed Paper Tape Punch Device
6280 Line Printer

2. BOUTDV - The Dump Core on Tape "O" or "Q" directives cause a tape to be punched on the punch
device, which is selected in halfword location X'7A! (BOUTDYV) in the Processor's Device Defini-
tion Table. Byte X'7A' (BOUTDV) contains the device number and X'7B' (BOUTDV+1) contains the
command byte, normally used with a punch device. That is, halfword location X'7A', should con-
tain one of the following:

0298 Teletype Punch Device
139A High Speed Paper Tape Punch Device

Refer to individual device description manuals for a detailed explanation of command bytes.

In version 03-032, the logical devices used are:
Logical Unit 2 Same as BOUTDV, Binary Output Device
Logical Unit 3 Same as LISTDV, for ASCII Output

Logical Unit 5 Used as keyboard printer device for all common inputs and message outputs.

These logical units must be assigned us ing the ASSIGN command in the OS prior to starting the execution
of OS Hex Debug.

7-116

TABLE 7-36.

SUMMARY OF CLUB DIRECTIVES

BIAS DEFINITION

I BIAS

CELL EXAMINATION AND

MODIFICATION
» OPEN CELL
RUB CLOSE OPEN
ouT CELL
/ RESHOW CON-
TENTS MINUS
THE BIAS
LINE OPEN NEXT
FEED SEQUENTIAL
CELL

RETURN OPEN PRE-
CEDING CELL

T TRANSFER TO
CONTENTS

+ ADD

- SUBTRACT

R REGISTER
SELECTION

. MODIFY CON-
TENTS ABSOLUTE

MODIFY CON-
TENTS RELATIVE

3.

PROGRAM CONTROL

X INSERT BREAK-
POINT

Z ZAP A BREAK-
POINT

K KILL ALL BREAK-
POINTS

Y SHOW BREAKPOINT
LOCATIONS

G GO EXECUTE

w GO WAIT

UTILITIES

L LOW LIMIT

H HIGH LIMIT

v VALUE

M MASK

S SEARCH

P PRINT

o} OUTPUT TAPE
(STANDARD LOADER
FORMAT)

Q OUTPUT TAPE
(EIGHT BIT FORMAT)

N DISASSEMBLE

BREAK STOP

DELETE LINE

* END

! PAUSE

7-117

7.12 BASIC OPERATING SYSTEM

7.12.1 General Description

The Basic Operating System (BOSS), the smallest member of the INTERDATA family of operating systems,
enables the user to efficiently develop and maintain programs on small hardware configurations. The soft-
ware package provides physical file handling on many bulk storage devices such as disc, tape or cassette.
BOSS allows programs to be device-independent and provides console operator support and general program-
ming service. A System Generation capability is included to provide the flexibility necessary to meet the
needs of a variety of individual systems requirements. Figure 7-25 provides a core map.

MODULE
. SUPTOP
12 DRUM DRIVER
h—————-—-————_--—-——--——-—-—-—-—-————-—.
DRUM FILE ALLOCATION TABLE
DISC DRIVER
11 e o ———— — —— — —_—— —
DISC FILE ALLOCATION TABLES
10 BULK STORAGE COMMON CODING and
"AL'" and "LE'" COMMAND PROCESSOR
9 "FF, "RW" and "WF'" COMMAND PROCESSOR
8 MAGNETIC TAPE DRIVER and
"BF" COMMAND PROCESSOR
7 LINE PRINTER DRIVER
6 CARD READER DRIVER
5 HSPTR and HSPTR/P DRIVER
RESIDENT LOADER and
4
"BIAS" COMMAND PROCESSOR
3 AETAB
2 LUTAB
la COMMAND TABLE
TTY DRIVER
s — " — —— — . a— — —— — — — — — a——
1 BOSS/70 EXECUTIVE — SYSGO2 (X'2D0")
e — ——————— e e SYSGO(X'DO")
DEDICATED CORE

Figure 7-25. BOSS Core Map

7-118

7.12.2 Operational Characteristics

BOSS is extremely compact, typically requiring less than 4K bytes of main memory.

. BOSS supports both random and sequential access devices.

. Disc files may be allocated by the operator, providing both efficiency of operation and ease of use. Files
are referenced by logical unit numbers.

. Input/Output operations are device-independent, allowing hardware swapping without having to alter the
existing software.

. Operator commands can be automatically read from any input device, relieving the operator of lengthy
and error-prone console operations, at the same time increasing system utilization.

. Sets of operator commands may be catalogued on disc for subsequent retrieval by the BOSS supervisor.
Thus a FORTRAN source program update, compile, link, load and run sequence may be initiated with a
single console command.

. Up to 256 logical units (files) may be accommodated. A physical disc unit may be partitioned into up to
128 logical units.

. Commands to BOSS may be accepted from any input device including catalogued Disc Files. This allows
the user to batch jobs with job control statements. With the batch capability, FORTRAN compilations
and executions are possible using the job control statements.

7.12.3 Programmable Commands

All BOSS programmable commands are performed by issuing SVC instructions. The SVC instructions which
are in BOSS are:

1. Read-Write-Control SVC (SVC1) for both I/O wait-proceed, and sequential and Random access.

2, Supervisor Service (SVC) (SVC2).

3. End of Job (SVC3).

7-119

7.12.4 Operator Commands

Allocate Allocate initial number of cylinders and logical record length for a file,
List Extents List all files and logical units.

Write File Mark Write File Mark Record.

Skip Forward To File Mark Skip Forward to File Mark (Magnetic Tape).
Backspace To File Mark Backspace to File Mark (Magnetic Tape).
Rewind Rewind File,

Save Place a specified core area onto a file (LU).
Transfer Control Transfer operator command input to LU,
Start Start a program,

Load Load a program from LU,

Assign Assign a logical unit to physical device.
Bias Specify a bias address.

Halt Halt a program.

Continue Continue a program,

Open Open a location.

Replace Replace value at location.

+ Open at location +2.

— Open at location — 2, —2.

7.125 System Configuration

The minimum BOSS configuration should contain the following items:

Model 74, 70, 80, 85, 50 or 55 Processor with 16KB Model 74, 70, 80, 85, 50 or 55 Processor with
16KB.

Additional devices supported under BOSS include:

Teletypewriter

Line Printer — Low or High Speed
Card Reader

Moving Head Disc Drives — Up to 4
High Speed Paper Tape Reader/Punch
Magnetic Tape

Drum

INTERTAPE Cassette

7-120

7.13 DISC OPERATING SYSTEM

7.13.1

Introduction

This section is intended only as a summary of the major features of the INTERDATA Disc Operating System.
This operating system is fully described in DOS Reference Manual, Publication Number 29-293. The Disc
Operating System (DOS) enables the user to efficiently develop and maintain disc resident libraries of pro-
grams and data files. It provides for program segmentation, direct or sequential file access, file protection,
blocking and de-blocking of logical records, overlapped input/output operations, and catalogued files of oper-
ator commands.

7.13.2 Features

Some of the outstanding features of DOS are:

5.

6.

8.

9.

10,

All peripheral operations are fully overlapped with both processing and other peripheral oper-
ations.

Tasks need not be totally memory resident - tasks can be segmented and overlayed from disc.

Direct and sequential disc file handlers provide blocking and de-blocking of data for efficient
processing of disc and magnetic tape files.

Disc throughput is optimized by buffering file accesses. DOS checks a main memory buffer
for the presence of a logical record before making an access to the disc.

Disc storage is allocated and protected by DOS, thus limiting the effect of program errors on
system performance.

Disc files may be allocated dynamically by DOS or absolutely by the operator providing both ef-
ficiency of operation and ease of use. Files are referenced by a mnemonic file name.

Input/Output operations are device independent allowing hardware swapping without having to
alter the existing software.

Operator commands can be automatically read from any input device, relieving the operator of
lengthy and error-prone console operations, at the same time increasing system utilization.

Sets of operator commands may be cataloged on disc for subsequent retrieval by the DOS super-
vigsor. Thus a FORTRAN source program update, compile, link, load and run sequence may be
initiated with a single console command.

The entire DOS program can be rapidly bootstrap loaded from disc.

7-121

7.13.3 Description

This section provides a description of the DOS features.

1.

7.

8.

10.

11.

12,

13.

14.

7-122

Concurrent I/0 - I/0O can be performed as I/0 wait or I/O proceed.

Logical to Physical Device Independence - The operator may with minimum constraints trans-
fer control from one device to another without modifying his program.

Logical Units - Up to 16 logical units (files) may be open at any one time,

Batch Operation - Commands to DOS may be accepted from any input device including cataloged
Disc Files. This allows the user to batch jobs with jobs with job control statements.

Load and Go Operations - With the batch capability, FORTRAN compilations and executions are
possible using the Job Control statements.

Named Files - The DOS allows the user to have up to 200 named files on the Disc.

Allocation - The DOS allows the user to initially allocate disc space but will automatically al-
locate further disc space up to maximum of 3 cylinders to satisfy user requirements, This
automatic overflow allocation is invisible to the user.

File Manipulation - The DOS allows files to be named, examined and manipulated, The user
may save a program in core by transferring it to a disc file, may copy a disc file to another
disc file, or may append a disc file to another disc file. Additionally, a file may be deleted
and all files may be listed with appropriate parameters.

Tile Attributes and Protection -- Associated with each disc file is set of attributes which the
user may set. The attributes include read and write protection plus data and file descriptors.
The file protection will allow a user to save a file and protect against unauthorized access to
that file.

Accegs Method - The DOS provides two access methods - sequential and direct access. Se-
quential mode is normally used to access records consecutively such as in compilations and
assemblies whereas direct access mode allows accessing particular record by specifying a
logical record number. Direct access is useful in updating master files on disc and in access-
ing large tables that are kept on disc.

Record Format - All disc files consist of a set of logical records. A physical record contains
one or more logical records. The physical record size which is the same for all files is a
system generation parameter which can be a multiple of the sector size up to 1K bytes. The
number of logical records per physical record is calculated based upon the user specifying the
logical record length, which may be different for each file. All accesses to the disc by the user
are via logical records whereas internally all disc operations are via physical records. The
logical record size may not exceed the physical record size. The DOS will not block logical re-
cords such that they cross physical record boundaries,

File Format - A file requires a 6-character name which is contained in a name directory. The
file contains at least one cylinder (about 12KB) and may be as large as 200 cylinders. The file
may be designated as direct or sequential and containing ASCII, binary or core image data.

Disc Format - The disc consists of up to 200 named files and a file directory. The file directory
consists of an unused cylinder table and a table of named files with pointers and attributes.

Disc I/O - The user program performs all disc I/0O via an SVC 1 instruction. Operations which
can be performed are described elsewhere but basically the user specifies the operations Read/
Write, Wait/Proceed, Random/Sequential, data type or a specific control operation (i.e. Rewind).

15. Disc Buffering - In order to insure a minimum of accesses, the user may specify the length of

the logical records within a physical record as well as the access method. DOS will determine

if a logical record is already in core rather than do an automatic access and if a write operation
is requested, will place the logical record in the DOS buffer and output the buffer only when neces-
sary. In a sequential file for write operations, a read is not performed.

16. Overlays - The user will be allowed to issue an SVC to fetch a named absolute overlay into core

17,

18.

at location UTOP and transfer control to the overlay. The overlay may communicate to the
main program via EXTRN/ENTRY but it may not itself issue an SVC fetch overlay, since it
would overlay itself. When the overlay is done, control is returned to the main program. This
ability is useful in running FORTRAN programs which are too large to fit in core but when
divided into a root program and subroutines can fit if the root program is resident and the sub-
routines can overlay each other. The generation of the named overlays with the linkages to the
root program is handled by a separate program external to DOS itself.

FORTRAN Programming with Direct Accessing - A FORTRAN program may access a specific

logical record by calling a disc position subroutine prior to executing a Read or Write statement.
FORTRAN READ or WRITE statements will then access the disc sequentially from the logical
record specified.

Disc Pack Interchange - The DOS allows the interchange of Disc packs since all of the control in-

formation required by the DOS is resident on the Disc pack.

7.13.4 DOS Programmable Commands

All DOS programmable commands are performed by issuing SVC instructions. The DOS is upward compatible
with all SVC instructions presently in the Basic Operating System. The SVC instructions in DOS are:

1.

Read-Write-Control SVC (SVC 1) for both 1/0 wait-proceed, and sequential and Random access.

Supervisor Service SVC (SVC 2)

End of Job (SVC 3)

Execute Operator Command (SVC 4)

Fetch Overlay (SVC 5)

7-123

7.13.5 DOS Operator Commands

ALLOCATE

ACTIVATE

PACK

INITIALIZE

CLOSE

ATTRIBUTE

DELETE

LIST UNITS PACK

LIST

WRITE FILE MARK

SKIP FORWARD TO
FILE MARK

BACKSPACE TO
FILE MARK

REWIND

COPY

TRANSFER CONTROL

START

RUN

LOAD

LOAD DISC

ASSIGN

BIAS

POSITION

HALT

CONTINUE

OPEN

REPLACE

+

T-124

Allocate initial number of cylinders and logical record length for a file.

Activate (ASSIGN) a disc file at beginning or end of file.

Disc pack has been changed.

Initialize the Disc, specifying new pack or old pack,
Close a disc file,

Specify attribute for a disc file.

Delete a disc file.

List DOS logical/physical device assignments.

List all files, attributes on disc, and logical units.
Write File Mark Record.

Skip Forward to File Mark (Magnetic Tape).

Backspace to File Mark (Magnetic Tape).

Rewind file,

Copy from LU to LU (may be disc files).
Transfer operator command input to LU,
Start a program.

Load the program from Disc and begin execution.
Load a program from LU.

Load a program from Disc.

Assign a logical unit to physical device.
Specify a bias address.

Position a file to a subfile.

Halt a program.

Continue a program.

Open a location.

Replace value at location.

Open at location +2

Open at location -2

7.13.6 Configuration

The minimum DOS configuration should contain the follbwirig iteims:

The Model 70 or 80 Processor with 24KB
Teletypewriter

High Speed Paper Tape Reader Punch
Moving Head Disc (Diablo) and Controller

Additional devices supported under DOS include:

Cagssette Tape

Line Printer - Low or High Speed
Card Reader

Additional Disc Drives - Up to 4
Magnetic Tape

7.14 REAL TIME OPERATING SYSTEM

7.14.1 Introduction

The use of digital computers in areas requiring rapid response to asynchronous events has provided the
solution to many problems in industrial control, production monitoring, and data collection. These ap-
plications require a sophisticated, versatile, operating system incorporating the following features:

1.
2.

6.

Input and output devices must be operated at their rated speeds.

The system must be multiprogrammed to assure prompt response to control system
events.

Actions which occur at definite times, or within definite time periods must
be scheduled according to a system clock.

The system must be able to quickly reallocate its hardware resources to meet an
external demand for a high priority function.

Program development and testing should be simplified and speeded through the use
of the background processing facility of the operating system.

Changes to, and additions of, application programs must be processed with minimum
interference with oneline system functions.

The INTERDATA Real Time Operating System (RTOS) incorporates these design characteristics. This sec-
tion is intended only as a summary of the major features of RTOS. A complete description of this system is
contained in the RTOS Reference Manual, Publication Number 29-240.

7.14.2 Features and Characteristics

The Real Time Operating System makes maximum use of the advanced architecture of the INTERDATA
Model 70 and 80 Processors. It is specifically designed to operate in on-line industrial control appli-
cations. Some of the outstanding features of the Real Time Operating System are:

1.

Field proven performance. RTOS is currently operational in a wide variety of

industrial applications. Its design philosophy and implementation have been
throughly proven. RTOS is covered by the comprehensive INTERDATA warranty.

Up to 16 levels of priority, In addition, tasks can share time on the same priority
level.

Multi-programming. Many application programs can operate concurrently with
interleaving.

Dynamic main memory allocation. Main memory is allocated to non-resident tasks,
at task execution time. All tasks are fully relocatable. The number of tasks that
can be active at any time is limited only by the amount of memory available.

7-125

5. Segmentation facilities, Facilities are provided to permit large tasks
to be easily segmented.

6. Device independence. The form of the user task call to an 1I/0 device is
insensitive to device type. Thus, changes in I/O device hardware can be
made without affecting application software.

7. Background processing, Complete facilities are provided to permit assemblies,
compilations, and program testing, in a background mode, while the system is
performing its primary control function.

8. Memory protection. All tasks running under RTOS are executed under the
surveillance of the INTERDATA comprehensive memory protection hard-
ware. In addition, the RTOS executive provides protection of mass storage
information.

9. Upward compatibility. Program written to run under the INTERDATA Basic
Operating System (BOSS) will execute under RTOS with no modification required.

10.. Distributed processing. A synchronous communication package is available for
use with RTOS to support communication between INTERDATA Processors. This
package supports multi-dropped, master-slave Processor configurations.

11. FORTRAN Interface. RTOS provides a re-entrant FORTRAN interface to facilitate efficient
real-time FORTRAN programming, In addition, a series of re-entrant subroutines are
provided under RTOS to bring the FORTRAN user some of the system capabilities that are
usually only available to the assembly language programmer.

7.14.3 System Concepts

RTOS Tasks

The fundamental programming unit within RTOS is the task. A task may consist of a single program, or
it may include a main program and a number of subprograms. Tasks may be permanently core resident,
or they may be loaded from the system library as required. The total number of tasks allowed in core
at any given time is a system generation parameter that is limited only by the amount of core available.
Once in core, a task may exist in any one of four states. It may be:

Active
Ready
Suspended
Dormant

The active task is the one currently executing instructions, and only one task may be in this state at any
given instant in time. Other tasks in core are in one of the other states. They may become active
depending on various combinations of circumstances. Paragraph 7.14.4 gives detailed descriptions of
task states and task management,

Scheduling

Each task within RTOS has a Task Control Block (TCB) that contains all the information required by RTOS
for scheduling the task, Task states change dynamically, that is, they go from active to any of the other
states, or they go from dormant or suspended to ready. Whenever the state of any task changes, or on
periodic clock interrupts, the scheduler looks at the list of ready tasks and determines on the basis of
priority level and time of last activation which task to make active. The priority of each task is a param-
eter contained within the TCB. It is assigned when the task is first established, and it may be changed
by means of a special operator command. There are several ways in which a task may move into the
ready state, These include:

The passage of a preset time interval,
The completion of an I/0 transfer.

A command from the operator.

The availability of requested core.

The completion of another task.

The occurrance of an external interrupt.

7-126

Of these, the last three merit further explanation.- In RTOS, any task may request that another task be

put into the ready state. If the requested task is not in core, RTOS loads it from the system library, if
there is sufficient core available. If there is not “enough core available, the requesting task moves into the
suspended state, waiting for core. As other tasks terminate, core becomes available, and eventually there
is enough to load the requested task. At this time, both tasks may move into the ready state, or the re-
questing task may choose to continue in the suspended state waiting now for completion of the requested task.

The use of external interrupts to schedule tasks requires special coding techniques described in the Real
Time Operating System (RTOS) Reference Manual, Publication Number B29-240. Briefly, however, a task
may be controlled by up to eight hardware interrupts. The controlling interrupts may originate in the eight
Line Interrupt Module or in any device capable of producing unsolicited interrupts. When a controlling
interrupt occurs, RTOS notifies the task by making an entry in a queue within the task. If the task was
dormant at the time of the interrupt, it is made ready. If the interrupt came from a device capable of
transmitting data, one byte of data is passed to the task along with the notification of the occurrence of the
interrupt. This mechanism has particular value in the area of data communications,

Core Utilization

Figure 7-26 shows a typical core map for an RTOS installation. RTOS itself occupies low main memory.
Within this area are the permanently resident system modules and tables and a reserved area in which non-
resident system modules are loaded as required from the system library. Part of the permanently resi-
dent RTOS area may optionally be used for user written supervisor programs. These programs may con-
trol special 1/0 devices, or they may be directly linked to the Eight Line Interrupt Module.

NON-RESIDENT
TASK
AREA

RESIDENT
TASK
AREA

TASK COMMON

RE-ENTRANT LIBRARY

USER DEFINED

USER DEFINED

RTOS RESIDENT

Figure 7-26. RTOS Main Memory

The re-entrant library is an optional feature of RTOS. It may be loaded at system generation time with
frequently used re-entrant subroutines. Any task within the system may reference subroutines in the re-
entrant library. The RTOS task loader establishes the necessary linkages.

The task common area is another optional feature of RTOS. It is labeled common and established at sys-
tem generation time. This area provides a convenient means for tasks to set up a common data base.

7-127

The remaining resident and non-resident task areas of main memory are allocated in 1024 byte blocks.
Each block must start at an address that is a multiple of 1024. The 1024 byte block size corresponds to
the hardware memory protect block size. All tasks must be loaded beginning at the start of a block. Non-
resident tasks are stored on bulk storage in relocatable form., Memory is allocated dynamically to non-
resident tasks on an as needed basis. Thus, the number of non-resident tasks that can be concurrently
active is limited only by the amount of memory available.

Security and Protection

RTOS uses the hardware memory protect feature of the Model 70 and Model 80 Processors to protect the
integrity of all tasks within the system. When RTOS activates a tagk, it sets up a unique memory pro-
tect pattern that allows that task to modify core only within its own task block (and the task common block
if required). The limits of all data transfers into core for a task are checked to make sure they do not
violate the protect pattern. Input-output devices may also be protected. They may be assigned to specific
tasks, and other tasks are not allowed to use them. In the area of operator commands, RTOS has two
modes of operation. It may be unprotected, that is, responsive to all commands entered from the sys-
tem Teletype. RTOS can also run in a protected mode, that is, not responsive to operator commands. A
single operator command puts the system in the protect mode. Thus, if the operator puts the system in
the protect mode and locks the console, unauthorized tampering with the system Teletype or console will
have no effect on the system.

Mass Storage Allocation

RTOS supports one or more mass storage random access devices. It is organized as shown in Figure 7-27.
the first section is reserved for a core image copy of RTOS itself. When the system is initialized, this
copy of RTOS is loaded into core by a bootstrap loader. The next portion of storage contains the system
library. This library contains relocatable copies of all tasks and task overlays within the system. The size
of this library may be changed at any time, and the number of tasks stored in the library has no relation to
the number of tasks allowed to be in core. Tasks may be added or deleted at any time. The remainder of
the mass storage is divided into user files. Each file is treated somewhat as a separate 1/0 device, and

as such, can be protected and reserved for a particular task or group of tasks. The size of each file is
determined by an operator command. Files may be accessed randomly or sequentially.

USER
FILES

SYSTEM LIBRARY

RTOS CORE IMAGE

Figure 7-27. Mass Storage Allocation

7-128

7.14.4 System Organization

The basic entity within RTOS is the task. A task is a block of code treated as a unit by the scheduler. It
may consist of a single program, a program and subprograms, or a program and its overlays. The task
is the item scheduled by the scheduler, multiprogrammed with other tasks, protected or unprdtected as a
unit, and uniquely identified by a task identifier. Each task in the system has a Task Control Block (TCB)
associated with it. The TCB becomes an integral part of the task when the task is created. It resides with
the task in the system library. When a task is brought into core, ‘a portion of the TCB containing informa--
tion pertinent to overall system operation is loaded into the RTOS area where it can be protected at all
times. The amount of core reserved for protected TCB is a system generation parameter that governs
the total number of tasks that may be in core at any time. The remainder of the TCB is loaded into core
at the starting location of the task. -

Types of Tasks

Tasks are of two types: user tasks and supervisor tasks. User tasks execute in user mode (privileged
instructions trapped) with core protected except for the task's own area and, if used by the task, task
common. These tasks are always loaded at 1K boundaries so that they may be memory protected as a
unit when other user tasks are active. Supervisor tasks execute in the supervisor mode. They are
considered a part of RTOS but are scheduled and may share Processor time with other tasks of both types.
See Figure 7-28. -

W\
SVC CALLS
N
N
SYSTEM
INTERRUPTS TASK |
TASK 2 LUSER TASKS
EXECUTIVE
TASK 3
SCHEDULER -
7
SUPERVISOR
(OPERATOR
COMMAND
PROCESSOR) | SUPERVISOR
TASKS
3
TASK
LOADER
-
.
7
DEVICE DEVICE DEVICE
DRIVER DRIVER DRIVER
T L
7
DEVICE DEVICE DEVICE

Figure 7-28. Interaction of RTOS Elements

7-129

Task Management

Tasks in core exist in one of four states:

Active Only one task is active at any one time, The active task is executing instructions
and continues to be active until an interrupt occurs. A task may be made active
only by the task scheduler.

Ready A task is ready whenever it cannot be active because a higher priority task is
active. Whenever the scheduler gets control, it makes the highest priority ready
task the active task.

Suspended A task may be suspended for any of four reasons. It may be in a task wait state,
waiting for another task to terminate. It may be in an I/O wait state, waiting to
access a busy device, or waiting for the completion of a data transfer. It may be
in a console wait state caused by an operator command or a pause request. Or,
it may be in a time wait state, waiting for a specified period of time to elapse,
or waiting until a specified time of day.

Dormant A task is dormant when it has terminated itself or when it has been cancelled by
the operator. Unless the task is designated as permanently core resident (by
setting the appropriate flag in the TCB), all core allocated to the task, including
its protected TCB, is released when the task becomes dormant.

A task is said to be busy whenever it is in the active, ready, or suspended state, and not busy when it is
dormant. Whenever a task calls another task, the calling task is placed in the task wait state if the called
task is busy. When the called task terminates, the calling task is put in the ready state. When it becomes
the active task it reissues the call and may elect to suspend itself until the called task terminates, or it
may elect to continue concurrently with it.

Tasks move from state to state depending on conditions that exist within the system at any given instant
in time. The active task moves to the ready state whenever the scheduler finds a higher priority ready
task. The active task is suspended when it requests any services of the operating system. It becomes

dormant when it terminates itself or when a situation (illegal instruction, protect mode violation) arises
in which the system terminates the task abnormally. A ready task is made active when it becomes

the highest priority ready task. Suspended tasks become ready when the condition that suspended them

is removed. Permanently resident dormant tasks become ready when they are called into execution by

another task or by an operator command., See Table 7-37.

7-130

TABLE 7-37.
RTOS OPERATOR COMMANDS

ONLY FIRST FOUR LETTERS OF EACH COMMAND NEED TO BE ENTERED

ASSIGN TASK NAME, LU,PA,X ASSIGN LOGICAL TO PHYSICAL RELATION-
SHIP FOR I/O DEVICES WITH PROTECT BIT

ALLOCATE PA, LLLL, HHHH SET FILE LIMITS FOR DATA FILES ON DRUM

CALL NAME LOAD TASK FROM DRUM INTO CORE

CANCEL NAME ABORT NAMED TASK

CONNECT NAME, LU, PA, X LINK USER DEVICE DRIVERS TO OPERATING
SYSTEM

CONTINUE NAME REMOVE NAMED TASK FROM CONSOLE WAIT

DATE MMDDYY INITIALIZE SYSTEM DATE

DELETE NAME UNCONDITIONALLY DELETE FROM CORE

EXECUTE NAME LOAD AND GO FROM DRUM

EXTASK NAME TYPE OUT TCB INFORMATION

HALT NAME PUT NAMED TASK IN CONSOLE WAIT

LEXT PA ' LIST FILE EXTENTS OF PA

MAP TYPE OUT A MAP OF CORE

OPEN XXXX OPEN LOCATION XXXX AND TYPE OUT ITS
CONTENTS

OPTION NAME, bbbb SET OPTIONS FOR TASK IN BINARY FORMAT

PRIORITY NAME, XX CHANGE PRIORITY OF CORE RESIDENT TASK

PROTECT PUT SYSTEM IN PROTECTED STATE

RDDATE TYPE OUT SYSTEM DATA IN FORM DD/MM/YY

RDTIME TYPE OUT SYSTEM TIME OF DAY HH:MM:SS

REPLACE XXX, XXXX REPLACE CONTENTS OF OPEN LOCATION,
HALFWORD OR FULLWORD

START NAME PUT NAME IN READY STATE

TELL NAME, MESSAGE PASS MESSAGE TO NAME

TIME HHMMSS INITIALIZE SYSTEM TIME OF DAY

COMMANDS FOR MAGNETIC TAPE TYPE DEVICES

BSFM PA BACKSPACE TO FILE MARK

FRFM PA SKIP FORWARD TO FILE MARK

REWIND PA REWIND

WTFM PA WRITE FILE MARK

7-131

Priorities

At any time when more than one task is in the ready state, only one of them can be made active. The task
scheduler decides which of the ready tasks to make active. In a real time situation, some tasks are more
important, or more urgently needed than others. Whenever a task is established, it is given a priority, a
number signifying its importance relative to the other tasks with which it must compete for Processor time,
1/0O devices, and other system resources. The task scheduler activates tasks according to priority level.
Within each priority level it activates task in such a way that tasks share the Processor equitably.

When a new task is created, it is given a numerical priority that is kept in its TCB in the system library.

If the operator loads the task, he can specify a new priority that remains with the task until it terminates.
If he does not specify a new priority, the task's priority defaults to that contained in the system library
TCB. I a task is called by another task, the calling task can specify a new priority that remains with the
task until it terminates. If the calling task does not specify a new priority, the called tagk assumes the
higher of two priorities -- its own previously established priority, or that of the calling program. One way
or another an incoming task receives a priority number that determines its position in the priority thread
for as long as it is core resident or until it is changed by an operator command. As a new task is moved
into the ready state it is placed in the priority thread for its level. It time-shares the Processor with other
tasks on the same level. In this way, no compute bound task can prevent other tasks on the same priority
level from being activated.

RTOS Executive

The RTOS executive is a collection of routines that are entered as a result of internal interrupts. Such
interrupts include all Supervisor Calls, Illegal instructions, Arithmetic Faults, 1/O Termination, 1/0
Queue Overflow, and Console Interrupts. The type of interrupt determines the action taken, but in general,
interrupts handled by the executive are of two types. Some are handled very quickly within the executive,
and others merely cause the executive to start a supervisor task that does the necessary servicing. The
executive operates with memory unprotected, in supervisor mode, but with I/O interrupts enabled. Thus
1/0 transfers may occur without being delayed, but I/O termination and initiation wait. The executive
always exits through the task scheduler. Normally the status of at least one task is changed by the executive
in the servicing of an interrupt. This means that the task that was active at the time of the interrupt may no
longer be the. highest priority ready task when the executive exits. For this reason, whenever the executive
is entered on an interrupt, it saves the interrupted task's PSW and registers in the save area of the task's
TCB. When it exits, the scheduler decides which task is next to be made active and restores its registers
and reloads its PSW.

The executive consists of five major sections: the interrupt handler, the task control block administrator,
the task scheduler, the tagk initiator, and the task terminator. The interrupt handler has an entry point
for each of the internal interrupt new Program Status Words in the Models 5 and 70. It also contains the
task save routine, which saves the current status of the interrupted task, and code for implementation of
trivial supervisor calls. The scheduler contains a scanner that can locate the TCB of the next task to be
activated. Italsocontains a task restore routine that restores the registers and loads the PSW of the tagk
being made active. The TCB administrator is called by the supervisor call implementation routines and
other supervisor routines to follow threads and modify task status within the task control blocks. This
routine, unlike the rest of the RTOS executive, is re-entrant, as it may be called from many different
executive routines as well as many supervisor tasks. Its working values are kept in registers, and the
only core it modifies is contained in task control blocks. It modifies TCB pointers in an order that leaves
all threads continuous at all times so that the scheduler can always activate a task, and the TCB adminis-
trator, if re-entered, can always follow all of the TCB pointers.

The task initiator is started by the executive in response to a supervisor call requesting that a particular
task be put in the ready state. This routine loads and starts library resident tasks. This includes alloca-
tion of core for the task and threading its TCB into the ready thread in a position determined by its
priority.

The task terminator routine is started by the executive in response to supervisor call for end of job or a
cancel request from the Operator Command Processor task, It adjusts the task status to dormant, removes
any tasks waiting for this task from the task wait state, and unless the task is designated as a permanently
core resident task, it releases all core associated with the task including its protected TCB.

7-132

RTOS Supervisor

The RTOS Supervisor task consists of a collection of subroutines. This task is similar to user-written tasks
except that it remains in core after termination and does not appear in the system library. It executes in
the supervisor mode, and has access to the TCB administrator. It performs logical I/O and issues super-
visor calls as user tasks do, and is scheduled by the RTOS executive. See Table 7-38.

The Operator Command Processor task is a data driven task that accepts, interprets, and acts upon com-
mands issued from the operator device.

The I/O setup task is activated by the executive in response to a request for I/0. It links to the particular
driver for the initial setup required. It then triggers the driver by issuing a Simulate Interrupt instruction
and terminates itself.

The 1/0 terminate task is started when an I/0 Termination Queue Interrupt occurs. It removes the top
entry from the queue and links to the associated driver termination routine. It then removes from I/0 wait
state any tasks waiting for the device and terminates itself.

The supervisor task is started by the routines in the executive whenever such a routine needs to log an
operator message. Because the executive is not a tagk, it can neither issue 1/0 calls directly nor be sus-
pended while an 1/O device is busy. To handle operator messages, therefore, the executive adds a message -
identifier to a circular list and initiates the supervisor task, The task now removes messages from the
queue, first-in-first-out, and logs them while the executive continues processing, Processing is halted

only in the tagk responsible for the message, in order to keep the queue from becoming saturated.

The loader-task is initiated by the executive to load tasks and task-overlays from the drum into core. It
resembles the INTERDATA OS Library Loader except that its input must come from the system library
file. It scans the library-index to find the requested task and then loads the protected (low core resident)
portion of the tasks TCB. It then allocates core for the remaining portion of the task control block and the
task itself, if sufficient core cannot be found, the caller is placed in core-wait until some non-resident task
terminates. If core is available, the remainder of the task is loaded.

When a running tasks requests an overlay, the loader brings the overlay into the space reserved for it in the
calling task.

Task Creation

The Task-Establisher Task (TET) is an interactive program which may be used as a task under RTOS to
establish other tasks. It loads, links, and edits programs (object files from agsemblies or compilations)
outputting the resulting code as a relocatable copy of the task, preceeded by the TCB, also in relocatable
format. This output can only be loaded by the task loader. A Task Utility Task (TUT) may be used to insert
the new task in the system task-library. See Tables 7-39 and 7-40.

The Task Establisher requires one scratch-device and an output device, in addition to input device(s) and the
console device. It accepts commands interactively and requires three passes (two if no overlays are used)
to complete its job. Inputs are scanned and copied onto scratch while a Symbol Table is built up during

pass one. Pass two outputs the actual task, and pass three outputs the overlays. Passes two and three

use the scratch file output in pass one as input.

RTOS System Library File

The RTOS library is a random access file consisting of an index of named tasks and a relocatable copy of
each task and its overlays. This library is accessed by the RTOS Loader when a task is to be called into
core, or by the library maintenance programs when tasks are to be inserted or deleted. Deleting a task
merely removes its name from the index, and releases its space in the file. Inserting a task adds it to the
end.

7-133

TABLE 7-38.
RTOS SUPERVISOR CALLS

Meaning
PLACE CALLER IN CONSOLE WAIT
STORAGE ALLOCATION WITHIN TASK'S CORE
STORAGE DE-ALLOCATION WITHIN TASK'S CORE
MODIFY CALLERS PSW
GET ADDRESS OF UNPROTECTED TCB
CONTENTS OF R CONVERTED TO ASCII HEX
TYPE MESSAGE ON OPERATOR CONSOLE DEVICE
GET TIME OF DAY FROM SYSTEM
GET CURRENT DATE FROM SYSTEM

SUSPEND CALLER UNTIL A SPECIFIED TIME
OF DAY

SUSPEND CALLER A SPECIFIED NUMBER OF
MILLISECONDS

TYPE MESSAGE, ACCEPT ANSWER INTO TELL
BUFFER

STORAGE ALLOCATION IN 1K BLOCKS

STORAGE DE-ALLOCATION IN 1K BLOCKS

SVC 1,XXXX 1/0
SVC 2, XXXX SERVICE REQUEST
Code Function
1 PAUSE
2 GET STORAGE
3 RELEASE STORAGE
4 SET STATUS
5 FETCH POINTER
6 UNPACK
7 LOG MESSAGE
8 INTERROGATE CLOCK
9 REQUEST DATE
10 TIME WAIT
11 INTERVAL WAIT
12 LOG MSG. & AWAIT RESPONSE
13 ALLOCATE N 1K BLOCKS
14 RELEASE N 1K BLOCKS
SvC 3,49 END OF JOB
SVC 5, XXXX FETCH OVERLAY
SVC 6, XXXX EXECUTE TASK
SvC 8, LU SIMULATE INTERRUPT ON LU
SVC 10, XXXX CANCEL TASK

7-134

TABLE 7-39..
RTOS TASK UTILITY TASK (TUT) COMMANDS

COMMANDS ARE ENTERED USING THE TELL COMMAND EXCEPT 'COMMAND' and 'RETURN'

PURGE CLEARS TASK LIBRARY OF ALL TASKS

INSERT READ TASK LOAD MODULE FROM LU2 AND INSERT
IN TASK.LIBRARY

DELETE NAME DELETE NAMED TASK FROM SYSTEM LIBRARY

COPY NAME COPIES NAMED TASK FROM LIBRARY TO LU2

INDEX GENERATE A LIST OF ALL TASKS IN LIBRARY TO LU 3

OPEN NAME LOAD TCB INTO CORE - ALLOW MODIFICATIONS
PRIORITY NN SE’i‘ PRIORITY

OPTION NNNN NNNN NNNN NNNN SET OPTIONS IN BINARY

ASSIGN LU, PA SET LOGICAL UNITS

CORE NNNN SET CORE SIZE PARAMETER

DISPLAY LIST TCB ON LU 3
CLOSE REWRITE TCB, WITH MODIFICATIONS, ONTO LIBRARY
COMMAND READ FURTHER TUT COMMANDS FROM LU 1 NOT

FROM RTOS TELL COMMAND

RETURN CAUSES A RETURN FROM COMMAND MODE TO TELL MODE

END CAUSES TUT TO GO TO END-OF-JOB

RTOS Timekeeping

RTOS maintains two clocks, a time of day clock and an interval timer. The time of day counter is a fullword
count kept in seconds since midnight. It is driven by the 120Hz interrupt from the Universal Clock. This
counter is initialized to zero on system start-up and may be set by the SETTIME operator command. A

task may request the current time of day either as a binary fullword denoting seconds since midnight, or as
an ASCII character string representing two digits each of hours, minutes, and seconds, A task may request
that it be placed in time wait until a specified time of day. The particular time must be specified as a full-
word denoting seconds since midnight. The time of day counter is incremented every second and compared
with the first task in the time of day wait thread. The tasks in this thread are arranged in an order such
that the first in the list is the next to be made ready.

A task may also request that it be placed in time wait for a specified interval. The interval must be speci-
fied in a halfword denoting milliseconds from now. These requests are queued with each task in the queue
containing the difference between its wait interval and that of the next shortest interval. They are threaded
such that the shortest interval from now is first. The Universal Clock is used to drive this thread.

It is set to queue an interrupt when the amount of time specified by the task in the top of the queue has
elapsed.

7-135

TABLE 7-40,

RTOS TASK ESTABLISHER (TET) COMMANDS

10.

11.

12,

ESTABLISH NAME
ASSIGN LU, PA
PRIORITY X
OPTION bbbb

GET XXXX
TELBFR XXXX
EXCLUDE NAMEL,....
LOAD LU

LINK LU

EDIT LU

XOUT LU

END

INTQ XXXX

MAP LU

TCB LU

ASSIGNS NAME TO TASK BEING ESTABLISHED
ESTABLISH LOGICAL TO PHYSICAL RELATIONSHIP
SETS PRIORITY OF TASK BEING ESTABLISHED
STORiE]S OPTIONS IN BINARY INTO TCB

REQUIRED 'GET STORAGE' IN HEX

RELATIVE ADDRESS OF THE TELL BUFFER
SUBROUTINES IN RE-ENTRANT LIBRARY

LOAD MAIN PROGRAM FROM LU

LINK A SINGLE PROGRAM TO THE MAIN PROGRAM
SEARCH FILE AND LINK NECESSARY PROGRAMS

OUTPUT BINARY MODULE

RELATIVE ADDRESS OF INTERRUPT Q
MAP OF TASK BEING ESTABLISHED

PRINT OUT GENERATED TCB

Once the LOAD Command has been issued, commands 2 through 7 are illegal until

another task is established.

RTOS I/0O Control

Any task running under RTOS requests I/0 through the use of a Supervisor Call instruction. This results
in the activation of the I/O setup task which locates the device control block (DCB) for the I/O device and

links to the device driver.

Within the device driver, there are two distinet programs. One of these oper-

ates as an extension of the I/O setup task and runs with interrupts enabled. It never issues I/O instructions
directly, but passes parameters to a second driver program that runs with interrupts disabled. This pro-
gram services device interrupts and directly drives the device.

FORTRAN Programming

The advantages gained from writing application programs in FORTRAN are many. It is an easy language
to use; it is familiar to many scientists and engineers ; and it is well suited to handling complex numerical
calculations that at best are difficult in assembly language. RTOS supports the use of FORTRAN in several
ways. The Compiler itself can easily be converted to an RTOS task for doing on-line compilations., The
output from the Compiler is accepted by the task establisher which can link and edit from the FORTRAN

run time library.

Frequently used subroutines from the run time library may be kept in the RTOS re-

entrant library so that there need be only one copy of each in memory. There are also six reentrant sub~
routines supplied with RTOS that bring to the FORTRAN user some of the capabilities of RTOS that would
otherwise be available only to assembly language users.

7-136

START — Causes a named task to be started after a specified delay.

TRNON — Causes a named task to be started at a specified time of day.

IFETCH — Causes a named overlay to be loaded.

ICLOCK — Requests the current time of day.

WAIT — Puts the program in a delayed state.

SYSIO — Allows the program to perform all I/0 functions without going through the

standard FORTRAN I/0O subroutine.

These subroutines and their use are described in detail in the manual on real time extensions to FORTRAN,
07-048A15.

System Configuration

The first consideration in planning an RTOS system involves the proper selection and allocation of hardware
resources. The minimum hardware requirements for an RTOS system, in addition to the Processor, are:

1. 24 KB of memory
2. Memory Protect
3. Power fail/Auto restart
4, Teletype
5. High Speed Paper Tape Reader/Punch
6. Universal Clock
Starting from this point, many configurations are possible., Standard RTOS drivers are available for:

Nine Track Magnetic Tape
Drum

Disc

Line Printer

Card Reader

Centronics Printer
Digital Multiplexor

It is also practical to include in the configuration special devices such as:
Analog to Digital Conversion Equipment
Digital to Analog Conversion Equipment
CRT Display Units

Drivers for these devices may be written by the user or provided by INTERDATA as specials.

MEMORY REQUIREMENTS

The principal elements of a complete RTOS system are RTOS proper, the reentrant library, user
written system tasks, user tasks, and a data area called task common. Figure 7-29 shows the relative
position of these elements in memory, and gives some information regarding their sizes. The exact
size of an RTOS system, or the total amount of memory required for any application is a function of
many parameters including:

Types and peripheral device supported.

Number and size of user tasks required to be resident in memory at any given time.
The routines resident in the reentrant library.

The size of task common.

7-137

7-138

TOP OF
MEMORY

0000

THE SIZES GIVEN BELOW IN BYTES ARE SUBJECT TO CHANGE,
AND ARE FOR ESTIMATING PURPOSES ONLY.

DEVICE
TELETYPE

PAPER TAPE READER/PUNCH

CARD READER
LINE PRINTER

MAGNETIC TAPE

DRUM

CARTRIDGE DISC %
UNIVERSAL CLOCK
DIGITAL MULTIPLEXOR
INTERRUPT MODULE

SIZE SIZE
HEXADECIMAL DECIMAL

436 1078
IDA 474
19C 412
98 152
2C2 706
ICA 458
200 512
142 322
22 146
38 56

% THESE DRIVERS MAY REQUIRE 2 DCB'S,
| PER DEVICE ADDRESS.

Figure 7-29a.

SIZE (BYTES) %

RTOS Device Drivers

SOME MULTIPLE

THIS OPTIONAL TASK COMMON AREA 1S

TASK COMMON OF 1KB USED FOR INTER-TASK COMMUNICATION.
IF USED, MUST BE A MULTIPLE OF 1KB.
Tn USER TASKS RESIDE IN THIS AREA,
-] EACH TASK MUST START ON SOME | kB
. BLOCK BOUNDRY AND OCCUPY SOME
. MULTIPLE OF IKB CONSECUTIVE BLOCKS.
USER . AS REQUIRED
TASKS T3 FOR USER TASKS | MEMORY REQUIRED FOR USER TASKS 1S
ALLOCATED DYNAMICALLY AT LOAD TIME.
T2
TI

SUBROUTINES

THE REENTRANT LIBRARY HOLDS
RESIDENT ROQUTINES WHICH ARE
AVAILABLE TO EVERY TASK. THE SIZE

[
REENTRANT : . AND CONTENT OF THIS LIBRARY IS FIXED
LIBRARY DURING SYSTEM GENERATION.
TABLE 8 PER ENTRY
DRIVERS | SEE LIST, FIG.4-la| ONE DRIVER PER TYPE OF DEVICE.
DCB'S 64 EACH ONE DCB PER PHYSICAL DEVICE
TCB'S 52 EACH ONE TCB PER USER TASK.
RTOS ———y
SUPERVISOR| 4764
T aanen |
LOADER | 2988 12624 | THE BASE PORTION OF RTOS WHICH IS
execomive | 4se2 REQUIRED FOR EVERY SYSTEM.
RESERVED LOCATIONS | 736

% SIZES SHOWN ARE SUBJECT TO CHANGE, AND ARE FOR ESTIMATING PURPOSES ONLY.

Figure 7-29b. Memory Map

Figure 7-29. Device Drivers and Memory Map

In round numbers the size of RTOS itself varies from 13KB to 20KB, depending on the device drivers,
the number of device control blocks, and the number of task control blocks included in the system.

The size of the total memory required varies from 24KB to 64KB depending on the selected configura~
tion of RTOS, and the amount of memory required for the reentrant library, user tasks, and task
common,

Some examples of complete configurations are shown in Figure 7-30,

64KB ™ CoOMMON %%
60KB
FORTRAN
COMPILER
TASK
44KB
24KB 40KB OTHER
USER
USER USER
TASK TASK TASKS
R.LIBRARY
14KB [g "LIBRARY 17K8 I'R_LIBRARY
RTOS RTOS RTOS
RTOS
BASE 12624 BASE 12624 BASE 12624
4 TCB'S 208 8 TCB'S 416 16 TCB'S 832
8 DCO'S 512 15 DCB'S 960 2] DCB'S 1344
TTY DRIVER 1078 TTY DRIVER 1078 (2) TTY DRIVER 1078
PTR/P DRIVER 474 PTR/P DRIVER 474 PTR/P DRIVER 474
CR DRIVER 412 CR DRIVER 412 CRDRIVER 412
UNIV CLOCK DRIVER 322 UNIV CLOCK DRIVER 322 UNIV CLOCK DRIVER 322
ADC/DAC DRIVER % 212 DISC DRIVER 458 DISC DRIVER 458
DIGITAL MUX DRIVER 146 8-LINE INT. MOD DRIVER 56 8-LINE INT.MOD DRIVER 56
15988 DIGITAL MUX DRIVER __ 146 DIGITAL MUX DRIVER 146
16946 ADC/DAC DRIVER % 212
(2) M. TAPE DRIVER 706
L.PRINTER DRIVER _ 152
18816
REENTRANT LIBRARY
TABLE (10) 80 TABLE (20) 160 TABLE (30) 240
ROUTINES 214
16282 OTHER ROUTINES 764 FORTRAN 1/0 %% 4102
17870 OTHER ROUTINES _1864
25022
= |6KB = 18KB = 25KB
USER TASK AREA __8KB 22KB 39KB
TOTAL 24KB 30KB 64KB

CONFIGURATION A

9 NOT STANDARD
%3 OPTIONAL

CONFIGURATION B

CONFIGURATION C

Figure 7-30. Typical RTOS Configurations

7-139/7-140

CHAPTER 8
PERIPHERAL DEVICES AND MODULES

8.1 INTRODUCTION

This chapter describes some of the peripheral devices and modules that are available from INTERDATA.
The ASR 33 and 35 Teletypewriters, the Paper Tape Reader/Punch, the Card Reader and the Selector Chan~
nel are covered in detail including sample programs which provide the user with an introduction on program-

ming INTERDATA supplied peripherals., In addition, detailed specifications are provided on the following pe-
ripheral devices and modules,

Removable Cartridge Disk System

201 Synchronous Data Set Adapter

Programmable Asynchronous Line System (PALS)
INTERTAPE Cassette System

Automatic Memory Protect Controller

Universal Clock

The Eight Line Interrupt Module

8.2 TELETYPEWRITERS
8.2.1 Introduction

This specification contains a description of the M48-010 (02-262) Teletype (TTY) Interface and the infor-
mation necessary to program the TTY. This programming information also pertains to the Teletype in-
terface which is built into the Model 50, 70, and 80 Processors. This interface is program compatible
with previous Teletype interfaces with minor exceptions.

This interface contains a hard-wired character format/baud rate with a 20 milliampere TTY loop and
may be used with the 33 ASR/KSR or 35 ASR/KSR TTY or any equivalent terminal.

This interface is contained on a single 7" x 15" printed circuit board and will adapt a single TTY to the
Multiplexor Channel,

The following is pertinent information associated with this product:
Character Code 8 level, 11 unit code (one start and two stop bits).
Transmission Method Serial by bit,

Transmission Speed 10 characters/second, 110 baud.

The following is pertinent information for applicable Teletypewriters.
Device INTERDATA Product Number M46-000 (ASR33) and M46-001 (ASR35)
Model Numbers - ASR33 and ASR35
Data Rate - 10 Characters per second
Printer Width - 72 Characters maximum
Paper Feed - Pin feed
Dimensions - W 22", D 18-1/2", H 32-7/8 (without stand) overall ASR33
W 38-1/2", D 24", H 38-1/2" (includes stand) overall ASR35
Weight - 44 pounds desk top ASR33
225 pounds (includes stand) ASR35

Power Requirement - 115VAC 60Hz

15A start up - ASRS33
3A running

12A start up - ASR35
4A running

115VAC 50 Hz models are available
8.2.2 Configuration
The 7" x 15" TTY Interface may be used with Model 50, 70, 74, 80 or equivalent INTERDATA Processors.
8.2.3 Operating Procedures

8.2.3.1 ASR 33 Features

A three position power switch is located to the right and below the keyboard, When rotated left to the posi-
tion marked LINE, power is applied to the TTY and the device is logically connected to the Processor.
With the switch in the OFF or LOCAL position, the TTY is logically disconnected from the system (DU=1),

8.2,3.2 ASR 35 Features

The ASR 35 is a heavy-duty version of the ASR 33. Operation of the ASR 35 is similar to the ASR 33 with
the following exceptions.

1, The tape reader and tape punch controls are different as explained later in this description.

2. The ASR 35 has a Mode Control switch to the left of the keyboard., The meanings of the five
positions of this switch are illustrated in Figure 8-1.

3. Several additional keys, such as Local Line Feed, are provided. The meanings of these keys
are self-explanatory.

8-2

Mode Line Local

=

KB (
K (Keyboard) Computer
- Printer -
\

-

KT (Keyboard Tape) Reader Reader

KB KB
Computer
Printer Printer

Punch Punch

09Ty

\
-

T (Tape) Reader

Computer

yojuls

Printer

\ Off
B p_.{puncu}— Line

Printer |

rs [COmpuwr

Off
(Tape to Tape Send) lKB J——-DlPuncFl Line Not Applicable
Non ASCII Tapes Not Used

TTR Punch Computer

(Tape to Tape Rev) Not Applicable

Reader

"

Not Used

Non ASCII Tapes

Figure 8-1, 35 ASR Operating Modes

8.2.3.3 Paper Tape Reader

The paper tape reader is controlled by a four-position switch* on the reader. The four positions are
MANUAL START, MANUAL STOP, AUTO, and FREE., When the switch is moved to the MANUAL START
(START) position, the tape in the reader is advanced at ten characters per second. Tape motion continues
until the reader switch is moved to the MANUAL STOP (STOP) position, In the AUTO (STOP) position,
tape motion can bhe under program control, assuming that the Power switch is in the LINE position, The
control characters which affect the reader are X-ON (X'91') which starts the tape motion, and X'OFF
(X'93') which stops the tape motion. The FREE (FREE) position permits the tape to be moved manually
over the read mechanism.

*Some TTYs have a three-position switch labelled START, STOP and FREE, The relationship of the three-
position switch to the four-position switch is shown in parenthesis.

8-3

8.2, 3.4 Paper Tape Punch

The ASR 85 Paper Tape Punch is enabled only when the ASR 35 MODE switch is in the KT or TTR position,
In these modes, the punch is controlled via TAPE and FAPE keys. TAPE and FAPE characters are de-
scribed above. Refer to Figure 8-1 for details. Following the program transfer of a TAPE character to
start the ASR 35 Paper Tape Punch, the program should output two or three rubout characters (X'FF') to
achieve data synchronization prior to punching the data.

To manually turn off the punch on an ASR 33 TTY, the following steps are required:
1. Turn the Power switch to LOCAL mode.
2. Depress the UNLOCK key on the tape punch,
3. Strike the FARE key while the CTRL key is depressed.

If the ASR 33 is not in a LOCK "ON" mode (depress UNLOCK to release the LOCK "ON" mode), and the
Power switch is in the LINE position, the tape punch can be under program control.

The specific control characters which affect the punch are TAPE (X'92'), which starts the punch, and
TAPE (X'94'), which stops the punch. The punch controls are achieved by outputting the appropriate
character to the Teletype. Note that the TAPE and FAPE characters, themselves, get punched on the
tape.

The tape punch can be manually started in an alternate way. If the punch is not already on, strike the
TAPE key with the CTRL key depressed, and the Power switch in LOCAL mode, This technique is equiv-
alent to transferring a TAPE ON character to the Teletype from the Processor,

The ASR 35 Paper Tape Punch is enabled only when the ASR 35 MODE switch is in the KT or TTR posi-
tion. In these modes, the punch is controlled via TAPE and FAPE keys. TAPE and FAPRE characters
are described above. Refer to Figure 8-1 for details. TFollowing the program transfer of a TAPE char-
acter to start the ASR 35 Paper Tape Punch, the program should output two or three rubout characters
(X'FF') to achieve data synchronization prior to punching the data.

8.2.4 Data Format

Figure 8-2 shows the character format and Figure 8-3 shows the ASR 33 keyboard layout,

I 2 3 4 5 6 7 8
| | | [I [1 | I l STOP BITS l
[2 NEXT CHARACTER
START BIT— e DATA BITS | START 8IT
L 11 BITS |
= 100 MS/CHARACTER o

Figure 8-2. ASCIH Character U (Even Parity), Eleven Bit Code

8-4

UNSHIFT ABCOEFGHIJKLMNOPORSTUVWXYZl23 5 6 7ee¢/.-..:
SHIFT w#S8%8 ¢ () <+ ¥

DOOOOOOOOOOO®

EAO®®®OOOOO®S
0®OOOOOOOO®
DOOOOOOOOD

‘ SPACE BAR)

Figure 8-3., Teletype Keyboard Layout

NOTE

Teletypewriters purchased from INTERDATA
have the even parity keyboard option implemented.

8.2.5 Programming Instructions

8.2.5.1 Programming Instructions

1, Sense Status (SS or SSR). The Sense Status instruction is used to interrogate the TTY and
character status.

2. Output Command (OC or OCR). The Output Command instruction selects Read/Write, Key-
board Block/Unblock, and interrupt Enable/Disable and Disarm,

3, Write Data (WD or WDR). The Write Data instruction is used to load the output character
into the Data Register.

4, Read Data (RD or RDR). The Read Data instruction is used to read an assembled character
into the Processor.

5, Acknowledge Interrupt (Al or AIR). The Acknowledge Interrupt instruction is used to service
interrupts and returns the address and status of the interrupting device.

8-5

8.2.5.2 Status and Command Bytes

Table 8-1 contains the TTY Interface status and command byte data.

TABLE 8-1, TTY INTERFACE STATUS AND COMMAND BYTE DATA

BIT NUMBER 0 1 2 3 4 5 6 7
STATUS BYTE ov X BRK X BSY EX X DU
COMMAND BYTE | DISABLE | ENABLE | UNBLOCK| BLOCK | WRITE READ - —_
. — J
DISARM

X = Unassigned (associated status bit = 0)

— = Unused

STATUS

ov Overflow: In the read mode, this status bit is set if the previously received character is not
read before the present character is assembled. Double character buffering permits a full
character grab-time; 100 milliseconds. OV is reset with an Output Command (OC)*, Read Data
Instruction, or initialize. In the Write mode, OV is forced reset.

BRK Line Break: This bit is set when the serial data line from the TTY is a ZERO (Space) for
longer than one character period or if the first Stop bit is missing (see Figure 8-2), In the
receive mode, the character is assembled and BRK is set when the BSY interrupt occurs.

This status bit remains active until the line goes to a ONE (line break on TTY released).

BSY Busy: This bit is set when it is not possible to transfer a character through the interface.
Thus, in the Read mode, it is normally high and goes low whenever a character is received
and ready to be read by the Processor. In the Write mode, it is normally low and goes high
when the Processor outputs a character, and low when the interface is ready for the next char-
acter. An interrupt is generated, if enabled, when Busy goes low.

EX Examine: This bit is set when either or both of status Bits 0 and 2 are set,

DU Device Unavailable: This bit is set whenever the Power switch on the Teletype is in the
LOCAL or OFF positions.

COMMAND

DISABLE Disable Interrupt: This bit set prevents the device from interrupting the Processor, but al-
lows interrupts to be queued,

ENABLE Enable Interrupt: This bit set allows the device to interrupt the Processor,

DISARM Setting both the DISABLE and the ENABLE bits prevents the device from interrupting or
queueing the interrupts.

UNBLOCK Setting this bit causes characters read from the keyboard or tape reader to be printed (and
punched if the tape punch is on).

BLOCK Setting this bit prevents characters read from the keyboard or tape reader from being
printed or punched, It also prevents the normal actions of control codes (such as X-ON,
WRU, etc.) when entered from the reader or keyboard.

WRITE Setting this bit places the interface in the Write mode allowing data to be output from the
Processor to the printer or punch.

READ Setting this bit places the interface in the Read mode allowing data to be input from the
keyboard or tape reader.

*Output Command READ for Model 70 built-in TTY.

8-6

8.2.6 Programming Sequences

8.2.6.1 Programming Notes

1'

3‘

Paper Tape Reader. Note that when stopping the tape reader under program control, the tape
may advance one or two characters between the time the X OFF character is issued and the time
the tape comes to a complete halt. Similarly on starting a tape, one or two characters may be
missed before synchronization is attained. Therefore, tapes to be read under program control
should be formatted to account for the start/stop characteristics of the Paper Tape Reader.

These procedures apply to both the ASR 33 and the ASR 35 Teletypes. The ASR 35 Paper Tape
Reader is enabled, however, only when the ASR 35 Mode switch is in the KT, T, or TTS posi-
tions, See Figure 8-1 for details,

Paper Tape Punch. When using the punch, if a character is output which is equivalent to the
WRU (X'05'), this causes the TTY to send a string of 20 characters which mutilates the char-
acters being punched. For this reason, and the fact that punching a TAPE OFF (X'94') turns
off the punch, binary tapes with arbitrary eight bit characters cannot be punched., By conven-
tion, binary tapes are usually punched on the Teletype using a "zoned" data format, with four
bits of data and four bits of zone per tape frame, The 16 tape characters used are X'90', X'81',
X'82', X'83', X'84', X'95":X'9F",

Keyboard, The Carriage Return (CR) character requires approximately two character periods
to return the Teletype carriage. Thus, if it is followed immediately by a printing character,
this character may be printed while the type-mechanism is still moving. To avoid this pos-
gibility, CR may be followed by a non-printing character. By convention, CR is always fol-
lowed by a Line Feed (LF) at the end of a line.

If the keyboard is operated or the Paper Tape Reader is moving while the Processor outputs
data to the Teletype, the output data can be either garbled or lost. In this situation, the con-
flict in the data transfers can be detected in the program by the response of the Overflow flag
(V) following a Write Data (WD or WDR) instruction, which indicates that the Write operation
was not successful, If the Overflow flag occurs after a Write Data instruction, the instruction
should be re-executed to correctly transfer the character from the Processor to the TTY.

8.2.6.2 Programming Examples

The programmed steps required to start the reader are:

ocC DEV,WRITE Set Write Mode
WAIT1 SS DEV,STATUS Wait for BSY=0

BTC BSY, WAIT1

WD DEV,XON Start Tape

oC DEV,READ Set Read Mode
WAIT2 Ss DEV,STATUS Wait for BSY=0

BTC BSY, WAIT2

RD DEV,DATA Read a Character

The programmed steps required to stop the reader are:

oC DEV,WRITE Set Write Mode
WAIT3 ss DEV,STATUS Wait for BSY=0

BTC BSY, WAIT3

WD DEV,XOFF Stop the Tape

Other routines for transferring data to and from the TTY are shown in Table 8-2.

8.2.7 Interrupts

The 7" x 15" TTY Interface contains the Arm/Disarm and Disable feature. An interrupt is generated, if
enabled, when BSY goes low or if BRK goes high.

In the Write mode, when BSY drops, there is no hardware restriction on when this interrupt must be ser-
viced. This is due to the start/stop nature of the data transmissions. In the Read mode, however, the user

must service the interrupt within one character period (100 milliseconds). Failue to do this may result in
an OV status,

8.2.8 Initialization

When the INITIALIZE switch on the Processor Control Panel is depressed, the following occurs:
1. The DISARM, BLK, and READ command functions are set.
2, The BSY status bit is set.
3. The BRK, EX and OV status bits are reset,
4. Any pending interrupts are cleared.

TABLE 8-2, SAMPLE PROGRAM LISTING

OPT PASS2, PRINT, NOPNCH
*INPUT *
*
sk
*A BYTE WILL BE INPUT TO R4 FROM THE TELETYPE
*REGISTERS R3, R4, R15 WILL BE USED
*THE CALL IS BAL R15, INPUT
*
*
0000R ENTRY INPUT
0000R C830 INPUT LHI R3, DEVNO LOAD DEVICE NUMBER
0002
0004R DE30 ocC R3,UNBLOK SET DEVICE MODE
0012R /
0008R 9D34 SENS SSR R3,R4 INPUT STATUS
000AR 42F0 BIC 15, SENS
0008R
000ER 9B34 RDR R3,R4 INPUT BYTE
0010R 030F BR R15 RETURN TO CALL
0003 R3 EQU 3
0004 R4 EQU 4
000F R15 EQU 15
0012R A400 UNBLOK DC X'A400" DISABLE, UNBLOCK, READ
0002 DEVNO EQU 2
0014R END
DEVNO 0002
* INPUT 0000R
R15 000F
R3 0003
R4 0004
SENS 0008R
UNBLOK 0012R

8-8

TABLE 8-2. SAMPLE PROGRAM LISTING (CONTINUED)

0000R
0000R

0004R

0008R
000AR

000ER
0010R
0003
0004
0005
000F
0002
0012R
0014R

BLOCK
DEVNO
OoUTPUT
R15

R3

R4

R5

SENS

OPT PASS2, PRINT, NOPNCH, STOP

*QUTPUT
*

*
*A BYTE WILL BE OUTPUT FROM R4 TO THE TELETYPE
*REGISTERS R3,R4,R5,R15 WILL BE USED

*THE CALL IS BAL R15,0UTPUT
*

*

ENTRY OUTPUT
C830 OUTPUT LHI R3,DEVNO LOAD DEVICE NUMBER
0002
DE30 oC R3,BLOCK SET DEVICE MODE
0012R
9D35 SENS SSR R3,R5 INPUT STATUS
42F0 BTC X'F', SENS LOOP IF NOT RDY
0008R
9A34 WDR R3,R4 OUTPUT BYTE
030F BR R15 RETURN TO CALL
R3 EQU 3
R4 EQU 4
R5 EQU 5
R15 EQU 15
DEVNO EQU 2
9800 BLOCK DC X'9800' DISABLE, BLOCK, WRITE
END
0012R
0002
0000R
000F
0003
0004
0005
0008R

8-9

TABLE 8-2. SAMPLE PROGRAM LISTING (CONTINUED)

0000R
0000R

0004R

0008R

000CR

0010R
0012R

0016R

001AR

001ER
0020R

0024R

0003
0004
0005
0006
000F
0002
0028R
002AR

BLOCK
DEVNO
R15
R3
R4
R5
R6
SENS
* TYPOUT

486F
0000
485F
0002
C830
0002
DE30
0028R
9D34
42F0
0010R
DA36
0000
CA60
0001
0565
4280
0010R
430F
0004

9800

0028R
0002
000F
0003
0004
0005
0006
0010R
0000R

OPT PASS2, PRINT, NOPNCH, STOP
*TTY OUTPUT EXAMPLE DISABLE, BLOCK, WRITE

*TYPOUT
*

*

*A SERIES OF BYTES WILL BE OUTPUT

*AS DETERMINED BY THE CALLING SEQUENCE
*

*REGISTERS R3,R4,R5,R6,R15,WILL BE USED
*THE CALLING SEQUENCE IS

* BAL R15, TYPOUT

* DC A(MESS) STARTING ADDRESS

* DC A(END) ENDING ADDRESS+1

*

*
ENTRY TYPOUT

TYPOUT LH R6, O(R15) GET STARTING ADRS
LH R5, 2(R15) GET ENDING ADRS
LHI R3,DEVNO LOAD DEVICE NUMBER
oc R3, BLOCK SET MODE

SENS SSR R3,R4 INPUT STATUS
BTC X'F', SENS TEST STATUS
WD R3, O(R6) OUTPUT DATA
AHI R6, 1 INCREMENT ADRS
CLHR R6,R5 TEST FOR END
BTC X'8', SENS LOOP IF NOT
BFC 0,4(R15) RETURN TO CALL

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R15 EQU 15

DEVNO EQU 2

BLOCK DC X'9800"
END

8-10

8.2.9 Device Number

The TTY Interface is assigned Device Number X'02'., This may be changed by a minor wiring alteration

in the interface. When the M48-010 (02-262) Teletype Interface is used on a Model 50, 70, or 80 Processor,
the device numbers must be adjusted so that it differs from that used by the Teletype controller built into the
Processor,

8.3 HIGH SPEED PAPER TAPE READER/PUNCH (HSPTR)

This section provides information on the operation and programming of the High Speed Paper Tape Reader,
and the Combination High Speed Reader/Punch. INTERDATA Product Numbers M46-240 and M46-242 re-
spectively. Included in this section is a general description, a table of status and command bytes, and sample
programs for each device.

The above products all include a single-board device controller. Note, that with the Combination Reader/
Punch, since there is only one device controller, the devices cannot be used simultaneously. To read
and punch tapes at the same time, it is necessary to use products which would provide separate device
controllers for each device.

8.3.1 General Description

Table 8-3 lists general characteristics of the reader, the punch, and the controller,

TABLE 8-3
READER AND PUNCH CHARACTERISTICS
Characteristics Reader Punch
Type Photo-electric Electro-mechanical
Tape Width adjustable tape guides for 11/16" same as the Reader
and 1" tape (6 and 8 level tapes)
Speed maximum of 300 characters- maximum of 75

per-second characters-per-second

Tape handling paper, paper-mylar, and mylar same as the Reader

capable of stopping on a character will punch the

character and stop

Stop time

Run/Load Switch allows loading or changing of tapes same as the Reader

of varying widths

Power Switch

Dimension

Rack Mountable

Weight

Power Requirement

applies AC power to Reader

19"W, 7"H, 63'"D

Yes

26% 1bs.

220VAC/115VAC, 50/60 Hz

applies AC power to
Punch

19"W, 103"H, 22"D (R/P
combination)

No (mount on slide)

60 lbs.
(R/P combination)

same as the Reader

8.3.2 Status and Command

Table 8~4 provides Status and Command Byte Data for the HSPTR/P.

TABLE 8-4

READER/PUNCH STATUS AND COMMAND BYTE FORMAT

(HEX ADDRESS 13)

BIT NUMBER 0 1 2 3 4 5 6 7
STATUS BYTE ov NMTN | BSY EX DU
COMMAND BYTE DISABLE ENABLE STOP | RUN INCR SLEW WRITE | READ
STATUS BIT DESCRIPTIONS
Bit Reader Punch

ov The Overflow bit is set when the Buffer The Overflow bit is always in a
Register is loaded from the Reader reset condition in the Write Mode.
before the previous character has
been transferred. This condition can
only happen in the Slew Mode.

NMTN The No-Motion bit is set when the The No-Motion bit is always in
Reader has been issued a Stop command a reset condition in the Write
and the tape has stopped on the next Mode.
character.

BSY The Busy bit is set when the Buffer The Busy bit is set when the tape
Register is empty, waiting for a is advancing and in punch cycle.
character from the Reader, or the
Reader is in Load condition or the
Reader power is not stabilized.

EX The Examine bit is set whenever The Examine bit is always
OV=1 or NMTN=1, reset in the Write mode.

DU The Device Unavailable bit is set The Device Unavailable bit is set
when the power to the Reader is when the power to the Punch is off,
off, or the Run/Load lever is in or internal voltages have not stabi-
the Load position or the power is lized, or Run/Load switch is in
not stablized, or if the drive sig- Load position,
nal is received and new feed hole
is not sensed within 10 ms, indi-
cates either no tape or torn tape
and serves as the out of tape sig-
nal.

COMMAND BIT DESCRIPTIONS

DISABLE This command inhibits interrupts from Same as the Reader.
the device controller from interrupting
the Processor. interrupts are queued.

ENABLE This command permits interrupts from Same as the Reader.
the device controller to interrupt the
Processor.

8-12

TABLE 8-4
READER/PUNCH STATUS AND COMMAND BYTE FORMAT
(HEX ADDRESS 13) (Continued)

COMMAND BIT.DESCRIPTIONS (Continued)

Bit Reader- : Punch

STOP This command halts the motion of the Not used.
tape. The next character to be read
is positioned over the sense lights
when the tape stops.

DISARM When DISABLE and ENABLE are Same as the Reader.
both set to one. This command pre-
vents the device from interrupting
or queuing the interrupts.

RUN This command starts the tape moving Not used.
and leaves the controller in the Run
Mode.

INCR In this mode of operation, the tape is Not used.

advanced.one character when the
controller is in the Run Mode and a
Read Data instruction is executed.
The tape stops after encountering the
next character, The tape remains
stopped until a Read Data instruction
is issued by the Processor, which
will start the tape moving.

SLEW In this mode of operation, the tape Not used.
is advanced, reading continuous.
characters, until stopped.]
WRITE Designates the High Speed
Paper Tape Punch.

READ Designates the High Speed Paper
Tape Reader,

8.3.3 Interrupts
When enabled in the Read Mode, the device controller generates an external device interrupt when a data
character is present in the controller, waiting to be transferred to the Processor or Device Unavailable.

When enabled, in the Write Mode, the device controller generates an external device interrupt when the
controller is ready for another character to be punched, or Device Unavailable.

8.3.4 |Initialization
When the INT switch on the Processor is depressed, the following occurs:
1. Interrupts of all kinds are disarmed.
2. The NMTN and EX Status bits are set.
3. The DISARM, STOP, INCR, and READ command functions are set.
8.3.6 Device Number
The High Speed Reader/Punch is normally assigned address X'03' if using a reader only. If using both a

reader and a punch, address X'13' is normally assigned. These device numbers are easily changed by a
minor modification to the device controllers.

84 CARD READER

8.4.1 General Description

The Card Reader, INTERDATA Product Number 7-510, employs a photoelectric read station and a vacuum
throat feed assembly. A special "wide strobe" read technique is used to preclude loss of data, even on

cards which have been mispunched by as much as plus or minus one-half column.

The card read rate is in excess of 200 cards per minute with a 500 card capacity for both the input hopper
and the output stacker.

Throughout the read operation, light current checks, dark current checks, and card motion checks are con-
tinuously performed to verify the performance of the Card Reader.

Card Reader

Dimensions: 13"H, 12"D, 23"W
Weight: 75 lbs.
Power Requirement: 115VAC, 300VA max.

8.4.2 Operator Controls
POWER

The lighted POWER pushbutton applies AC power to all circuits. The pushbutton indicator lights when the
power is on.

MOTOR Start

The lighted MOTOR pushbutton starts the drive motor if no error indicator lights are lit. The pushbutton
lights when the drive motor is running.

Read START

The lighted START pushbutton clears all error indicators and advances the Card Reader to the "readv" state
to begin a read cycle upon receipt of the proper signal. The pushbutton lights when the switch is depressed
and no errors have been detected.

Read STOP

The lighted STOP pushbutton inhibits further read cycles until Read START is again depressed. Read STOP

action is delayed until the current read cycle is completed. The pushbutton is lights when the switch is de-
pressed, or if the Card Reader is stopped due to an error detection.

8.4.3 Status Indicator Lights
POWER On

The indicator on the POWER switch lights when power is applied to the Card Reader.

MOTOR On

The MOTOR switch indicator lights when the motor is running.

Read START

The START switch lights when the switch is depressed and no malfunctions have been detected.

Read STOP

The STOP switch lights when the switch is depressed or the Card Reader has stopped due to a trouble .
detection, as described in the following paragraphs.

PICK FAIL
If a card fails to be picked upon command, the PICK FAIL indicator lights.

CARD MOTION Error

If the interval between the time the selected card enters the read station and the time the card leaves, does
not correspond to 85 + 1/3 columns (the total card width), the CARD MOTION indicator lights.

LIGHT CURRENT Error

When all photo-read-cells do not conduct whenever a card is not in the read station, the LIGHT CURRENT
indicator lights.

DARK CURRENT Error

The DARK CURRENT indicator lights if all photo-read-cells do not go dark for some instant between
the beginning of the card and Column 1, or between Column 80 and the end of the card.

8.4.4 Status and Command Bytes

Table 8-5 illustrates the Status and Command Byte coding for the Card Reader.

8.4.5 Data Format

A card Feed command causes the card to move over the photo-read-cells column by column, starting with
Column 1., Every column read (blank columns are read as all bits zero) generates a data strobe for that
column and initiates a data transfer cycle. The first Read Data instruction reads the top six rows of the
column; the second Read Data instruction reads the bottom six rows of that column. Figure 8-4 is an ex-
ample of the data byte format,

8.4.6 Interrupts

When enabled (Bit 1 of the Command byte set), the Card Reader device controller generates an external de-
vice interrupt for each column read. The interrupt indicates to the Processor that data is available for
transfer.

8.4.7 Initialization

When the INT pushbutton on the Processor is depressed, the following occurs:

1. The NMTN and EOM bits are set.
2. The EOV bit is reset.
3. The BSY and EX bits are set.

8.4.8 Operator Procedures
After applying power to the Card Reader, allow it a few minutes to warm up. Cards should be placed face

down in the hopper with the 12-edge toward the operator. Additional cards may be added to the hopper
without interfering with the operation.

8-15

TABLE 8-5
CARD READER STATUS AND COMMAND BYTE DATA
(HEX ADDRESS 04)

BIT
NUMBER 0 1 2 3 4 5 6 7
STATUS
BYTE EOV TBL HE NMTN BSY EX EOM DU
COMMAND
BYTE DISABLE ENABLE FEED
EOV The EOV bit is set when the data is not taken from the device controller buffer before
the next column of data arrives from the read station. This bit is reset by a FEED
Command.
TBL /DU These bits are set when the Card Reader fails to pick a card upon command, or when an
error condition occurs in the Card Reader. The error conditions are:
1. Card Motion Error
2. Light Current Error
3. Dark Current Error
These error conditions prevent the reading of any more cards until manually reset by
the operator.
HE The Hopper Empty (HE) bit is set when there are no cards in the input hopper. The HE
bit must be manually reset by the operator.
NMTN The NMTN bit is set except for the time between a FEED Command and the time it takes
for a card to pass through the read station.
BSY The BSY bit is set while the device controller is awaiting data from the Card Reader.
It resets when the data is available to be transferred.
EX The EX bit sets when any one of the upper four (4) bits of the Status byte is set.
EOM The EOM bit is set whenever NMTN bit is set, or when the input hopper becomes empty.
DISABLE This command disables the Card Reader Device Interrupt. Interrupts are queued.
ENABLE This command enables the Card Reader Device Interrupt.
FEED This command initiates a new card feed cycle; however, no action occurs if TBL, DU,
or HE is set.
BIT NUMBER 0 1 2 3 4 5 6 7
FIRST DATA
ROW NUMBER 12 11 0 1 2 3 BYTE
SECOND DATA
ROW NUMBER 4 5 6 7 8 9 BYTE

NOTE: Bit numbers 0 and 1 should always be zero.

8-16

Figure 8-4., Data Byte Format

8.4.9 Programming

A sample card input routine is shown in Table 8~6. In the sample program, not that the Hopper Empty

(HE) is checked before other bits. This bit does not become set until the last card is read. I 80 columns
are not read from each card, there is a Card Reader malfunction, as all blank columns should be read as

Zeros.

See the Hollerith punched-card codes for the ASCII character set shown in the Appendices.

TABLE 8-6
SAMPLE PROGRAM FOR CARD READER

*
*

* NON-INTERRUPT CARD READER ROUTINE
*

DEVNUM EQU 1 REGISTER DEFINITIONS
STATUS EQU 2
INDEX EQU 3
INCR EQU 4
LIMIT EQU 5
TEMP EQU 6
RETURN EQU 15
SINDV EQU X'7c 50 SEQUENCE SOURCE INPUT DEVICE
*
READ XHR INDEX, INDEX ZERO INDEX VALUE
LIS INCR, 2 SET UP INCREMENT
LHI LIMIT,158 SET UP LIMIT
LB DEVNUM, SINDV SET DEVICE NUMBER
WAIT SSR DEVNUM, STATUS
THI STATUS, X'20' HOPPER EMPTY CHECK
BNZ EMPTY GO HANDLE HE CONDITION
THI STATUS, X'41' DON'T ISSUE FEED TILL TBL/DU & HE CLEAR
BTBS 2,7 GO WAIT
*
FEED oC DEVNUM, SINDV+1 START CARD READER
SENSE SSR DEVNUM, STATUS
BTC 7, ERROR BITS SHOULD NOT BE SET
BTBS 8,3 BUSY BIT SET HANG, GO TO SENSE
RH DEVNUM, BUFFER(INDEX) FIRST CHAR., READ ALL ROWS
BXLE INDEX, SENSE 80 COLUMNS READ
SSR DEVNUM, STATUS AT END OF CARD'S 80 COLUMNS
THI STATUS, X'C1' CHECK EOV/TBL/DU BITS
BNZ MOTION TO CATCH MOTION/CURRENT ERRORS
THI STATUS,X'2!
BFBS 2,7 WAIT TILL EOM SETS

*

* NOW PROCESS CARD INFORMATION IN BUFFER BY

* DOING HOLLERITH TO ASC11 CONVERSION ROUTINE
*

BR RETURN

BUFFER DS 160

*

EMPTY EQU * HANDLE INPUT HOPPER EMPTY

*

ERROR EQU * HANDLE ERROR CONDITIONS

*

MOTION EQU * HANDLE MOTION, EOV,CURRENT ERRORS
END

8.5 REMOVEABLE CARTRIDGE DISC SYSTEM
8.5.1 General Description

The INTERDATA Removable Cartridge Disc System provides a low cost, random access, bulk storage

facility for the INTERDATA family of Processors. The system consists of a removable cartridge disc
drive capable of storing 2,457,600 8-bit bytes of formatted data, a disc drive controller which can han-
dle four disc drives, and a system power supply which handles two disc drives.,

The disc drives use an IBM 2315 cartridge or equivalent for its storage media. Spindle speed and head
positioning are both electronically controlled, thus eliminating many mechanical assemblies and electri-
cal components. This electrical and mechanical simplicity results in high reliability, ease of mainten-
ance, and low operating costs. The physical package results in low power dissipation with no external
cooling required.

The disc controller is designed to operate with a Selector Channel for autonomous block transfers. The
nominal data transfer rate is 180 K bytes per second. Data transfers in block sizes from 256 bytes to
12,288 bytes are made possible by the controller's ability to cross sector and head boundaries. Simul-
taneous seek and over-lapping seek/data transfers are permitted in multiple disc drive configurations to
minimize access time. Extensive hardware error checking by the controller allows complete data trans-
fer monitoring for use in error detection and recovery programs.

8.5.2 Operational Characteristics

The disc drive assemblies are structured around a rigid base plate resting on three resilient shock mounts
which provides for their mounting. The spindle/blower is driven by a DC motor integrally mounted on the
spindle shaft. Rotation speed of the motor is servo controlled, from a crystal oscillator to within + 1% of
1500 rpm. This control is independent ofvariations in line frequency or voltage. Brushes on the DC motor
are sealed within the motor housing and have a life expectancy in excess; of 10, 000 hours. The blower is
integrally mounted on the spindle. Incoming air passes through an Absolute Filter (retaining 99.97% of
particles over 0.3 microns) and is forced directly into the cartridge, cleaning it and maintaining a posi-
tive pressure within the drive. The two read/write heads are positioned over the desired track under con-
trol of an electronic servo. While positioning, this servo counts its way to the track and adjusts the speed
of the motion dependent on the number of tracks still to be moved. Once in position, the same servo holds
the heads over the track. Positioning under this method is extermely precise, guaranteeing complete in-
terchangeability of cartridges between drives, if!desired.

The disc drive controller can be functionally divided into three parts: the computer interface, including
address decoding; the drive controls which are concerned with drive status and head position; and the data
transfer portion which is concerned with writing and reading.

The controller responds to five different addresses, one assigned to each of the four disc drives plus its
own, and transfers data to the last disc accessed. Interrupts from any of the discs or the controllers are
queued and respond with the proper interrupt address for the interrupt source.

The disc controller portion may be regarded as four separate controllers, except that only one may be ad-
dressed at one time, The disc controller accepts commands and responds with the status of the disc drive
addressed when issued a Sense Status instruction. The data transfer portion of the controller receives
commands initiating requests for Read, Read Check, and Write. It also responds to Sense Status instruc-
tions by issuing status conditions of the addressed disc drive.

8.6.3 Disc Format

The 2315 type cartridge contains a single disc with data recorded on both surfaces. See Figure 8-5 for
disc format diagram, Since all tracks having the same number are vertically aligned, the cartridge may
be considered to be organized into 200 cylinders. Each cylinder contains two tracks having the same track
number. The heads are physically positioned to the same track number on both surfaces of the disc al-
lowing data to be accessed by cylinders to minimize access time.

8-18

NOT
USED

DEFT|HEAD]

tre] 0/1 6] 8 4 2 i 128 64| 32 | I6 8 4 2 I

C A y
SECTOR ADDRESS CYLINDER ADDRESS

-

LONGITUDINAL
PARITY FIELD

N

SYNG HEADER ™
FIELD
T
FIELD avoralev;rs GAP| 256 88IT BYTE DATA FIELD BYOTE|BY|TE

GAP“]

TRACK 000
TRACK 202

Figure 8-5, Removable Cartridge Disc Format

The data on each track is subdivided into 24 equal sectors. Each sector is divided into four main fields: a
Sync Field, a two byte Header Field, 256 byte Data Field and a 16 bit Longitudinal Parity Field. The Header
Field contains the cylinder, sector and head address as well as a defective track flag which was recorded

on the disk when a surface analysis program was run. The hardware tests the Header Field prior to com-
mencing a data transfer. If a defective track or an address mismatch is detected, the controller aborts

the data transfer. The 16 bit Longitudinal Parity Field is added at the end of the data field by the controller
during a Write operation and is read at the end of a Read operation to ensure data reliability.

8.5.4 Data Transfers

The normal data transfer commands are Read, Read Check, and Write. Two special commands, Read For-
mat and Write Format, are used only for the operation of disc formatting. Any sector on any track may be
accessed by execution of the following general sequence of commands, It is assumed that the heads of the
disc file of interest are at the proper cylinder.

To cause data transfers to occur:

Sense status of the Selector Channel, If not busy, then

Sense status of the data controller, If flag "Controller Idle" is a one, the controller is

not busy, then

Sense status of the file, If all Astatus bits are zero except for possibly the write protect
flag, data may be transferred to or from the disc.

Load the Selector Channel with initial and final addresses.

Write data giving the cylinder address. This operation selects the file and gives the
controller the cylinder address it should find recorded in the Header Field of the disc.

Write data to the controller, giving the sector address and the head number.

Output Command to the controller, giving the operation required. The operation will

begin when the correct sector is under the head.

8. Output Command to start the Selector Channel.

Upon termination of a data transfer the Selector Channel generates an interrupt to the Processor and other

disk activities may now begin.

8.5.5 Specifications

Operational Characteristics for Removal Cartridge Disc Drive System.

Data Storage

Capacity

8-20

Uses IBM 2315 Cartridge or approved equivalent: double frequency recording.

Bit Density

Track Density
Nominal Transfer Rate
Per Cartridge

Track

Cylinder

Sector

Sectors per Track
Tracks per Cylinder
Sectors per Cartridge
Tracks per Cartridge

Cylinders per Cartridge

2200 BPI
100 TPI
180K Bytes per second
2,457,600 Data Bytes
6,144 Data Bytes
12,288 Data Bytes
256 Data Bytes
24
2
9,744
406 (including 6 spares)

203 (including 3 spares)

Access Time Rotation

Average Latency Time’

~1,500 RPM + 1%

.20 msec

Head Positioning including settling time

Maximum Track to Track

Average
Dimensions Disc Drive Height
Width

Depth

15 msec

70 msec

6 1/2 inches
17 1/2 inches

22 7/8 inches

Weight

Power

This unit is available for either rack mounting in a
standard 19 inch RETMA Rack or placement on a
table top.

Approximately 40 pounds
Voltage Required 115 VAC +10% 60 cycle +1Hz or
220 VAC, 50Hz (with modification

on power supply transformer wiring),

Input Current (Max.) 7 Amp.

Dimensions Disc Drive Controller Boards

Weight

Power

Options

M46-410

M46-411

M46-412

M46-413

M46-420

M49-023

10.5" x 9. 75"
1.5 pounds each

3.0 amps of +5 volts D,C,

Removable Cartridge Disc System (Rack Mounting version)., 2.5 million bytes. Includes
1 x 4 controller with first disc drive. For expansion,

Removable Cartridge Disc Drive Expansion 2.5 million bytes (Rack Mounting version),

Removable and Fixed Cartridge Disc System (Rack Mounting version) 5. 0 million bytes.
Includes 1 x 4 controller with first drive.

Removable and Fixed Cartridge Disc Drive Expansion 5.0 million bytes (Rack Mounting
version).

Removable Cartridge Disc interface, with cable.

Disc Expansion power supply.

For additional information, see the Cartridge Disc Controller Instruction Manual, Publication Number

B29-254.

8.6 201 SYNCHRONOUS DATA SET ADAPTER

8.6.1 General Description

The 201 Synchronous Data Set Adapter is a double buffered character interface and controller to any Bell
201 Data Set or equivalent. It provides a telecommunication link between the Processor and the data set
for common carrier switched or leased lines. Either half duplex (2 wire) or full duplex (4 wire) opera-
tion can be accomodated. The use of synchronous modems provide a higher baud rate than may be realized
with asynchronous modems over a voice grade facility, thus allowing high speed terminals to transmit

data in a more efficient manner. Provisions via hardware options provide a variety of variable functions
for the user. These options include such functions as ''sync' character detect, character length, parity
and half or full duplex modes. Special character recognition (other than Sync), block character checking
and generation and code translation is under program control. See Figure 8-6,

{ wmemory |

| ProcEssor |

d MULTIPLEXOR I/0 BUS [/}
t
¥
801
201 201 201
DATA SET AvToManC DATA SET DATA SET
ADAPTER INSERRACE ADAPTER ADAPTER
1
N —
7 [NoLL mooem]
801 CLOCK SOURCE
201 o 201 L]
DATA SET AUDTlg?_"‘E‘;'? DATA SET
N [inTerFace |
(OPTICNAL)
| terminaL/compuTER |
2 OR 4 WIRE
LEASED LINE
201 201
DATA SET DATA SET
INTERFACE INTERFACE
| teRmiNAL /compuTER | [TerminaL/computer |

Figure 8~6. 201 Synchronous Data Set Adapter Block Diagram
8.6.2 Operational Characteristics

The 201 Synchronous Data Set Adapter consists of a single board controller which performs three (3) gen-
eral functions.

1. Data Set Interface ~ Provides control lines to a synchronous modem which is Bell 201
compatible. Full data set control to and from the modem is available.

2. I/O Interface - Contains the necessary logic to communicate with the Multiplexor Bus
of an INTERDATA Processor.

3. Character Control - Provides serial to parallel and parallel to serial conversion, appends
and tests parity, provides a match between the serial data stream and the strapped Synch
character and automatically switches to the synchronized mode when a match is detected,
provides an interrupt for error conditions in addition to the normal End of Character
interrupt.

8-22

The transmission is serial synchronous by character and bit utilizing a hard-wired ""Sync" character for
character synchronization, Any six, seven, or eight bit character code may be used. Operation is half
or full duplex. All turn-around timing, control-line coordination and status reporting is automatically
handled by the adapter.

Data Terminal Ready and Sync Search are controlled by the program for automatic call reception, discon-
nect, and lockout. The 201 Adapter may also be used in conjunction with an 801 Automatic Dialer Inter-
face for call origination. Ring, Data Carrier and Data Set Ready are brought into the adapter to provide
full Data Set status information. The adapter may operate in the interrupt mode to provide maximum
program efficiency.

8.6.3 Specifications

The 201 Synchronous Data Set Adapter is contained on a single printed circuit board.

Dimensions 14,88'" x 15, 38"
Weight 1.5 pounds
Power +5V at 2. 0A

-15V at 0.05A
+15V at 0.05A

Data Set Interface RS-232 compatible using DIP, with wide hysteresis and line
filters to improve noise immunity.

Mode Half or Full Duplex (strap option)

Transmission Speed Up to 9600 baud. Clocking source within the modem

Character Format (strap option)

-Character Size Six, Seven, or Eight bits
-Parity* 0Odd, Even, None
Synch Character Recognition Strap option which may include parity, if equipped.

Data Set Status
(generates interrupt if enabled)
-Carrier
-Data Set Ready
-Ring
Other Status
(set at end of character)
-Parity Fail
-Sync Character Detect
-Send and Receive Overflow
Data Set Control

-Request to Send (Half-Duplex Mode)
-Data Terminal Ready

INTERDATA Product Number M47-000
Note that the above data set adapters do not include cables to the data set.

Cable 10-054 Data Set cable, 50 feet

*Parity may be enabled/disabled with a strap option. When parity is enabled, odd or even parity is
selectable under program control.

8-23

NOTE

There are various options, and models available on
Western Electric or equivalent 201 Type Data Sets.
The user should insure that the options or model he
selects are compatible with the selected INTERDATA
Adapter and that he understands the programming
ramifications if any. The user may obtain information
regarding the data set and network from his local tele-
phone company representative or from the appropriate

manuals supplied by the Bell System or the Data Set

Manufacturer.

8.7 PROGRAMMABLE ASYNCHRONOUS LINE SYSTEM (PALS)

8.7.1 Introduction

The PALS provides an interface between a Multiplexor Bus or Selector Channel and a variety of asyn-

chronous data sets in either the Half-Duplex (HDX) or Full-Duplex (FDX) Mode.

See Figure 8-7. Be-

cause of the wide variety of data sets and terminals available, the potential user must determine the

suitability of the PALS for his given application and network.

PROCESSOR

& MULTIPLEXOR BUS

ASYN LINE) SWITCHED
MODULE CONT MODEM | NETWORK

MODEM (LEASED LINE)

- PALM

LOCAL
TERMINAL

SWITCHED |

MODEM NE TWORK

PALS BUS

T
|
!
uP TO
23 PALMS
!

PALM

ANY COMBINATION OF ABOVE

[}
L

Figure 8-7. PALS Block Diagram

8-24

MODEM

TERMINAL

TERMINAL

TERMINAL

A basic system consists of an Asynchronous Line Module Controller board (ALMC) and one Programmable
Asynchronous Line Module (PALM). One PALM contains four FDX or HDX lines, The system may be ex-
panded by adding one PALM for each additional four lines, Each line has two consecutive addresses, an
even address for the Receive side and an odd address for the Transmit side, There is an interrupt flip-
flop associated with each side.

The ALMC provides eight standard baud rates and optionally four customer specified baud rates, Any
of these baud rates may be used by all PALMs in a system.

Each HDX or FDX line can be programmed to adapt the character format and baud rate to a wide variety
of data sets and their associated terminals,

8.7.2 Data Format
8.7.2.1 Specifications
The following is a list of the salient PALS specifications:
1. Baud Rates Available - The following staﬁdard baud rates are provided by the ALMC: 75,
110, 134,49, 150, 300, 600, 1200, and 1800 baud. In addition, four other baud rates which
have the relationship N, N/2, N/4, and N/8 can be provided with a special wiring option,
2. Baud Rates Equipped - Any four of the above may be provided as a customer option,
3. Maximum Number of Lines - Up to 92 lines per ALMC; any combination of HDX/FDX.
4, Character Format (under program control).
a. Character Size - 5, 6, 7, or 8 data bits
b. Parity - Odd, even, or none
c. Stop Bits - One or two
5. RS-232C Interface

6. Data Set Control (Programmable)

a. Data Terminal Ready (CD) - Program control is provided over CD to provide for auto-
matic call reception, disconnect, and lockout.

NOTE

Parenthesis indicate RS-232C designation
for indicated functions.,

b. Reverse Channel Transmit (SA)* - Permits a supervisory signal to be transmitted over
a secondary data path while simultaneously receiving data.

c. Request to Send (CA) - Active to maintain the Adapter in the Transmit Mode. In HDX
operation, the inactive state maintains the adapter in the Receive Mode.

d. Data Terminal Busy* - Enables the '"Make Busy" feature when active,
7. Data Set Status - The following lines from the data set effect the status bits: CLEAR TO

SEND (CB), CARRIER (CF), RING (CE), REVERSE CHANNEL RECEIVE (SB), and DATA
SET READY (CC).

*Optional features in some data sets.

8-25

8.

10,

11,

Echoplex - A programmable feature to transmit received data back to the data set in addition
to assembling the character.

Other Features - The PALS provides a double-buffered character to permit a full character
"grab time", The Start bit is automatically generated and transmitted by the hardware and,
in the Receive Mode, the Start bit must be present for at least one half bit time before the
character assembly commences, thereby reducing the noise susceptibility of the system.

Method of Transmission - Serial, asynchronous by character, synchronous by bit.
Distortion:

Transmit -The transmit data distortion shall be £+ 3% per character,

Receive -The PALM adjusts the data sampling strobe with each character received and

tolerates a data bit distortion of +43%. In addition, the long term transmission
rate may vary by +5%.

8.,7.2.2 Transfer Format

Asynchronous operation requires that all characters be preceded by one Start bit and have one or two Stop
bits appended after the last bit or the parity bit, if selected. The Start and Stop bits serve to delineate char-
acters. A typical format for the Teletypewriter is shown in Figure 8-8.

STOP
BITS

PARITYfe——————— CHARACTER BITS —-————SL‘I\TRT

T i
| i

7 | 6 5 4 | 3 2 |
! I

9.1
4 ms l. —————+ SERIAL DATA FLOW

100 ms

Figure 8-8. Typical ASCII Character Format

Note that to send seven useful bits of information, eleven code elements (bits) are required. Therefore, to
send useful information at 70 bits/second, the system must operate at 110 bits/second.

The single Start bit is generated by the hardware, and the character size/parity and number of Stop bits are
under program control.

Order of Transmission

TRANSMITTING

Lmza] l | - | : | * | 5] STLs?aj PROCESSOR BYTE
P4 b4 b
[[| [I | | | }—=rocommunicarion Line

L——- FIRST BIT TRANSMITTED

RECEIVING

coumumcfﬁ%ﬁ —fmse| | | | | | [ss]

8-26

TO PROCESSOR

8.7.3 Programming Instructions

The Processor I/0 instructions are used to communicate with the PALM. The following paragraphs de-
scribe how Processor 1/0 instructions may be used with the system,

8.7.3.1 PALM Program Instructions

1,

2.

3.

40

6.

Sense Status (SS or SSR). The Sense Status instruction is used to determine if character trans-

fers are complete and correct, and to interrogate the associated data set status.

Output Command (OC or OCR). The Output Command instruction is used to answer or discon-

nect calls, to set the PALM in the Receive or Transmit Mode, and to select the character for-
mat, Two Command bytes are required to perform these functions.

Write Data (WD or WDR). The Write Data instruction is used to load the output character into

the Data Register.

Read Data (RD or RDR). The Read Data instruction is used to read an assembled character

into the Processor.

Acknowledge Interrupt (AI or AIR). The Acknowledge Interrupt instruction is used to service

interrupts. Execution of this instruction returns the address and status of an interrupting line.

Communications Instructions. The PALM accomodates the Communications instructions in
the Communications Processors.

8.7.3.2 Status and Command Bytes

Table 8-7 contains the PALM Status and Command Byte Data.

TABLE 8-7. PALM STATUS AND COMMAND BYTE DATA

BIT NUMBER
0 1 2 3 4 5 6 7
INSTRUCTION
PF FR CARR
PALM STATUS ov or RCR BSY EX RING
[povempt ERR OFF
CL28
RCT WRT
RCV DIS EN ECHO- TRANS
PALM COMMAND 1 DTR or or 1
SND DIS EN PLEX DTB LB RD
STOP
PALM COMMAND 2 CLK SEL BIT SEL BIT PARITY 0

PALM STATUS

ov*

PF*

The Overflow status bit is set if the previously received character is not read be-
fore the present character is assembled. Double-character buffering in the PALM
permits a full-character "grab-time'". The Overflow status can only become active
in the Receive side and is reset at the next end of character only if the failure con-
dition disappears (i.e., cleared by a Read Data instruction). The Overflow char-
acter is assembled,

In the Read Mode, this bit is set when the received parity disagrees with the pro-
grammed parity, If parity is not selected via an Output Command, this bit remains
inactive. The PF status bit is reset at the end of the next character if the failure
condition disappears.

CL2S The lack of Clear to Send signifies that the modem can no longer transmit data. In the
Write Mode, this status bit set indicates that Clear to Send (CB) is not being received
from the data set. This condition also forces BSY=1. In the Read Mode, this bit is
forced inactive., A Transition from CL2S=0 to CL2S=1 will cause an interrupt.

FR ERR* Framing Error is active to indicate that the received character has no Stop bit(s).
That is, the line is in the SPACE state instead of the MARK state at Stop bit time. If
the character has two Stop bits, only the first is tested, and the character assembly
terminates after the first Stop bit. In the case of a Framing Error, the character is
assembled. A non-zero character can signify an illegal character. An all zero bit
character with Framing Error can signify the beginning of a line break sequence. In
the case of a line break (prolonged space), if the line remains spacing, only the first
character is assembled, Subsequent space characters are not assembled until a MARK
to SPACE transition is received. Not that because of this characteristic where the line
break facility is being employed, a line break decision must be based on the receipt of
a single zero character with Framing Error,

RCR REVERSE CHANNEL RECEIVE (SB). This is an option in some half-duplex data sets
(e.g., 202C). This status bit is active if a data set equipped with this option has this
line in the SPACE condition. If equipped, this status bit represents the present state
of the equivalent data set lead. If the data set does not have the Reverse Channel op-
tion, this status bit is always inactive. Any transition on this signal causes an interrupt,
if enabled.

BSY The dropping of BSY (and related interrupt) normally signifies that the adapter is able
to transfer data to/from the Processor. This bit is forced active (BSY=1) if DATA SET
READY (CC) from the data set is OFF. This indicates that the data set is not able to
handle digital data because of an abnormal condition such as being in the Talk or Test
Mode. In addition to the above, in the Read Mode, BSY is active when a character is
not assembled; and in the Write Mode, BSY is active if CLEAR TO SEND (CB)=0, or if
the interface cannot accept another character for transfer. An interrupt is generated,
if enabled, when BSY goes inactive.

In the Read Mode, when an OV occurs, the BSY status bit is zero and a Read Data in-
struction must be issued to set the Busy bit to its correct (ONE) state.

EX EXAMINE=0OV+PF+DATA SET READY+FRERR. This bit is disabled in FDX on the
Write side.

CARR OFF The CARRIER lead off is an indication that no valid incoming data is being received.
In the Receive side, this bit is active to indicate that CARRIER (CF) is not being re-
ceived from the data set. In the Write Mode, this status bit is forced inactive when
REQUEST TO SEND (CA) is active. A transition of this status bit in either direction
causes an interrupt, if enabled.

RING This status bit is active when the RING (CE) lead from the data set is active thus indi-
cating the reception of a call. An interrupt is generated, if enabled, when RING (CE)
goes active. In FDX operation, RING (CE) is always forced inactive on the Transmit
(Send) side. The Ring status represents the present state of the equivalent data set
lead.

*These status bits are set at End of Character time when the BUSY bit is reset. Since

the resetting of BUSY causes an interrupt (if enabled), these bits do not generate indi-
vidual interrupts.

PALM COMMANDS

In the PALM Command 1, the DTR, ECHOPLEX, RCT/DTB, TRANS LB, and WRT/RD
bits are shared by the Transmitter and Receiver, however, the EN/DIS bits are separate
for Transmit and Receive.

8-28

DTR

ECHO-
PLEX

RCT/DTB

TRANS
LB

WRT/RD

PALM Command 2 is shared by both the Transmit and Receive sides, consequently the
command may be issued to either address.

In HDX operation, the unused side has the interrupts disarmed. In FDX operation,
these bits must be independently programmed as follows, To change EN/DIS on the
Receive side, issue a Command with the WRT/RD bit=0. To change the EN/DIS on the
Transmit side, issue a Command with the WRT/RD bit=1,

DISABLE ENABLE
0 0 No change
0 1 Enable
1 0 Disable (Interrupt queued)
1 1 Complement (Change state)

DATA TERMINAL READY (CD) to the data set. When this command bit is active, it
causes CD to be turned ON, allowing automatic answering of an incoming call, This
line must be ON to permit the data set to enter and remain in the data mode. When
this bit is OFF, it does not permit automatic answering of an incoming call and causes
an existing connection to disconnect if held OFF for a period specified by the manufac-
turer of the data set.

When this bit is\active, it causes data received from the data set to be transmitted back
to the data set on the TRANSMITTED DATA (BA) line, The PALM also assembles the
character as in the normal data mode. This feature, if used, is normally used for HDX
operation in the Read Mode to provide visual verification of the data received by the re-
mote computer. This command must not be issued while transmitting a character.

RCT (Reverse Channel Transmit) (SA) is optional on 202C-type data sets, DTB (Data
Terminal Busy) is optional on 103-type data sets. If Reverse Channel equipped, this
command bit is gated directly to the Secondary Transmitted Data (SA) line. The in-
active state of this bit must be equal to ONE to satisfy the RS-232C requirements, that
is, the bit set will cause a MARK state to be gated on the reverse channel, The bit re-
get will cause a SPACE to be transmitted on the reverse channel, For data sets equip-
ped with the Data Terminal Busy option, the active condition of this command bit will
"busy-out' the terminal thereby not allowing a call to be answered and returning the
busy signal to the calling terminal.

Transmits a continuous space to the data set. This condition overrides the Echoplex
feature. If this command is issued while data is being transmitted, the transmitted
data will be mutilated.

This command bit controls REQUEST TO SEND (CA) to the data set. When this bit is
programmed active, REQUEST TO SEND is gated to the data set if DATA SET READY*
(CC) is active. When this bit is programmed inactive, the hardware deactivates RE-~
QUEST TO SEND (CA) after the following delays: If character transfers are in progress,
the hardware insures that the last character has been transmitted, then delays one milli-
second to permit the last data bit to clear the data set before dropping REQUEST TO
SEND (CA). BSY is forced active during this line turn-around and does not drop until a
character is received. However, CL2S, CARR OFF, RING, RCR, and DSRDY may still
generate interrupts, if enabled. See Figures 8-9 and 8-10,

*DATA SET READY (CC) is always forced active on the Transmit side in FDX operation,

8-29

ANSWER CALL HDX MODE (202-TYPE DATA SET)

TO| FROM
D.S.|DATA SET INTERRUPT
ol e|Zl| conpmion STATUS COMMENTS
A A A
o= | €|
ojlxjxzjo|ojo
“l=l-l-1-H = - == — = _ -X@E_ _| IDLE STATE
RING — | X'gF
o, RING CONTINUES UNTIL DTR IS ACTIVATED
- |- RING—=1 | XBF
S Y Y U 1 P X'ge’ DTR_ANSWERS CALL
_____ X'ga"_ _| DSRDY INDICATES THAT THE DATA SET IS ON LINE

| CARROFF-+0 x'ge AT THIS TIME THE COMMUNICATIONS LINK IS
ESTABLISHED FOR RECEIVE MODE, BSY DROPS
WHEN FIRST CHARACTER 1S RECEIVED

IF ADAPTER IS TO TRANSMIT FIRST, CONTINUE

cL2s=0 x'4g' COMMAND RQ2S=1. CL2S STATUS IS ENABLED
__________ IN TRANSMIT MODE

CL2S —= | @ THE ADAPTER MAY TRANSMIT WHEN CL2S=1.

«——NOTE 2

NOTE 1:CL2S 1S DE-ACTIVATED WHEN RQ2S:=0

NOTE 2: CARR IS DE-ACTIVATED WHEN RQ2S = | (CARR OFF=0)

NOTE 3! THE STATUS SHOWN ONLY REFLECTS THE LINE CONDITIONS,
NOT PF, OV, OR FR ERR. IN ADDITION REVERSE CHANNEL
IS IGNORED SINCE THIS 1S SUBJECT TO USER'S PROTOCOL.

NOTE 4! IF DTR IS SET WHEN RING OCCURS, THE CALL WILL BE ANSWERED
AUTOMATICALLY (RING TERMINATES AND DSRDY BECOMES ACTIVE).

(A)
ANSWER CALL FDX MODE (103 —TYPE DATA SET)

To | FROM
DS.[DATASET| ' ot

ollelSlel conpiTion STATUS COMMENTS
o|al2] ||
o= d]|n|d
o|lx|x|o]olo

x'48' (SND)
X'@F(RCV)_|(IN FDX, RING INTERRUPT AND STATUS
%'a8"(SND) |{ 1S GENERATED ON RECEIVE SIDE ONLY
| X'@F'(RCV)
X'48' (SND)
X'BE'(RCV) | COMMAND DTR ANSWERS CALL

X'@A'(RCV)_| DSRDY ACTIVE

X'g8'(RCV) | INTERRUPT ON RECEIVE SIDE
X'@' (SND) [INTERRUPT ON SEND SIDE. THE ADAPTER
MAY TRANSMIT NOW. CHARACTER ASSEMBLY

x'g8' (RCv)| MAY COMMENCE SHORTLY AFTER CL2S:zi.

NOTE |: CARR OFF AND DSRDY FORCED LOW ON TRANSMIT SIDE.
NOTE 2! REVERSE CHANNEL NOT APPLICABLE IN FDX(RCR=0)

NOTE 3: THE STATUS SHOWN ONLY REFLECTS THE LINE CONDITIONS, NOT PF,
OV,OR FR ERR,

(B)

Figure 8-9. Answering Calls HDX and FDX

T0 | FROM
D.S.|DATASET INTERRUPT
R "CONDITION STATUS COMMENTS
=
bl
—~
BSY—* O (RCV) 0 (RCV) | RECEIVE CHARACTER INTERRUPT
T B e ’
>u X'@8'(RCV) | LAST READ DATA SETS RCV BSY
w2 < B e.e..---——- . — ——
00
wE X'g¢e (RCV) | COMMAND ADAPTER TO TRANSMIT MODE
(RQ2S IS ACTIVATED 250 us AFTER THE COMMAND)
- X'48'(SND) | WITH RQ2S SET, CL2S STATUS IS ENABLED.
- cL2s—= | @ (sND) | cL2S=1 INTERRUPT. USER MAY NOW OUTPUT DATA.
N Bl i i _
=
(7]~}
Z0 o
<=
[+ 4
[
NOTE I: INITIAL CONDITIONS: CONNECTION ESTABLISHED AND
ADAPTER IS RECEIVING CHARACTERS.
NOTE 2: CARR OFF STATUS FORCED INACTIVE AND CARRIER INTERRUPTS INHIBITED.
NOTE 3: CL2S STATUS FORCED INACTIVE AND CL2S INTERRUPTS INHIBITED.
NOTE 4t THE STATUS SHOWN ONLY REFLECTS THE LINE CONDITIONS,NOT PF,
OV,OR FR ERR. IN ADDITION REVERSE CHANNEL IS IGNORED SINCE
THIS 1S SUBJECT TO USER'S PROTOCOL.,
(A)
LINE TURN-AROUND WRITE ~READ (202-TYPE DATA SET)
FROM
INTERRUPT
CONDITION STATUS COMMENTS
BSY—+=0(SND) [} TRANSMIT CHARACTER INTERRUPT
- |
Sw x'ge LAST WRITE DATA SETS BSY, AT THIS TIME TWO
2! BN ' | CHARACTERS ARE QUEUED IN THE ADAPTER.
<= COMMAND ADAPTER TO RECEIVE MODE.BSY
- | e (. | D X'@8' | REMAINS ACTIVE UNTIL A CHARACTER IS RECEIVED.
DEACTIVATION OF RQ2S IS DELAYED UNTIL Ims
x'gs' AFTER THE LAST CHARACTER IS TRANSMITTED.
CARROFF —e | X'ga' INHIBIT IS REMOVED FROM CARR WHICH CAUSES
_____ o AN INTERRUPT WHEN RQ2S—s0. NOTE 3
CARROFF—+0 x'pg LINE TURN- AROUND COMPLETE
W, 8SY—+>0(RCV)) FIRST RECEIVE CHARACTER INTERRUPT
w <
o8
['4

LINE TURN-AROUND READ-WRITE (202-TYPE DATA SET)

T NOTE I: INITIAL CONDITIONS: CONNECTION IS ESTABLISHED AND ADAPTER
IS TRANSMITTING CHARACTERS.

NOTE 2: CARR OFF STATUS FORCED INACTIVE AND CARRIER INTERRUPTS INHIBITED.

NOTE 3. WITH A 103 TYPE DATA SET, CARRIER MAY BE PRESENT CONTINUOUSLY
IN WHICH CASE THE CARROFF-#»1 INTERRUPT WILL NOT OCCUR AFTER
DEACTIVATING RQ2S.

NOTE 4. CL2S STATUS FORCED INACTIVE AND CL2S INTERRUPTS INHIBITED

NOTE 5: THE STATUS SHOWN ONLY REFLECTS THE LINE CONDITIONS,NOT PF,
OV, OR FR ERR. IN ADDITION REVERSE CHANNEL 1S IGNORED SINCE
THIS IS SUBJECT TO USER'S PROTOCOL.

(B)
Figure 8-10, Line Turn-Around Read/Write and Write/Read

8-31

CLK SEL CLOCK SELECT enables one of four baud rates.
NOTE

The associated ALMC is wired to customer
specifications to provide four of the available
eight baud rates to all lines in a system.

BIT POS 0 1 CLOCK
0 0 CLKA (Lowest Baud Rate)
0 1 CLKB
1 0 CLKC
1 1 CLKD

BIT SEL-BIT SELECT Select the number of data bits/character

BIT POS 2 3 NO, OF DATA BITS
0 0 5
0 1 6
1 0 7
1 1 8

If fewer than eight data bits are selected when a Write Data is issued in the Write Mode, the data must be
right-justified and unused bits are "Don't Care'. In the Read Mode, when a Read Data is issued, the char-
acter is presented to the Processor right-justified with unused bits (this includes selected Parity and Stop
bits) forced to the zero state.

STOP BIT 0=1 Stop Bits
1=2 Stop Bits

When the line is programmed for two Stop bits, the PALM Transmits both., However, the Receiver only
samples the first Stop bit.

PARITY | BIT POS 5 6 PARITY
1 0 ODD
1 1 EVEN
0 X NONE

In the Write Mode, if parity is enabled (Bit 5=1), the PALM generates and transmits the selected parity.

In the Read Mode, if parity is enabled, the PALM compares the received parity with the selected parity and
generates the PF status if a disagreement is detected.

If parity is disabled (Bit 5=0), the hardware ignores parity. When transmitting, the hardware appends a
Stop bit after the last data bit and, when receiving, disables the Parity Detection Circuit.

NOTE

The least significant bit of the Command
Byte must be a 1 or 0 as indicated to permit
the hardware to distinguish between the two
commands.

8-32

8.7.4 Programming Sequences -

8.7.4.1 Switched Line Operation

To originate a call, the operator depresses the TALK key on the data set and dials the desired number. When
the call is answered, a carrier is heard (being sent by the data set receiving the call). The operator then de-
presses the DATA key.

The operator may now hang up and depress the AUTO key to return the equipment to automatic receive fol-
lowing this call. When the DATA key is depressed (the Data Light remains lit for the duration of the call,
the EX status bit drops (DATA SET READY)(CC) as does the Carrier-Off status bit. The PALM should be
initialized to the Read Mode and thus be interrupted by thé receiving Carrier. When Carrier-Off drops, the
PALM should be switched to the Write Mode to transmit data. Following the call, both sets (originating and
receiving) should be issued a Command Read and DTR to disconnect. This procedure is typical, but not nec-
essary. The user is free to design his own hand-shake sequence. Figures 8-9 and 8-10 show timing se-
quences for answering calls and line turn-around. The following is offered for general information only.
With wide variations between data set characteristics and common carrier procedures, the operating proced-
ures may have to be modified. The user should ensure that the characteristics of the devices connected to
the PALS are compatible with the descriptions in this specification.

In Figure 8-9, DTR and RQ2S are initially OFF, The status is X'0E' before RINGing commences. The RING
causes an interrupt and a status of X'0F'. The RING status bit is active for the period of the RING from the
data set.

When RING drops, the status is X'0E' and another interrupt is generated each time RING -~—1, RING con-
tinues until the program activates DTR to answer the call, Shortly after DTR is programmed ON, the data
set responds with DSRDY=1. This causes EX—0 and the status at this time is X'0A' (BSY=1 and CARR
OFF=1),

When the data link is established, the data set turns CARR ON which generates an interrupt and a status of
X'08' (BSY=1). If the adapter remains in the Receive Mode, Busy stays active until a character is received.
If the adapter is to transmit first, the program turns RQ2S ON (Command with the WRT bit active). With
RQ2S ON, the CL2S status from the data set is enabled. Since this bit is initially OFF, an interrupt is gen-
erated when RQ2S is turned ON and another interrupt is generated when the data set responds with CL2S=1.
The adapter may now transmit,

The user must be cautioned that Figures 8-9 and 8-10 assume ideal conditions. For example, in a typical
switched network environment, more than one interrupt may be generated as carrier is initially established,
or the Received Data from the local data set may be active during a connect or disconnect sequence. These
problems can be attributed to the type (manufacturer) of data set employed, the options implemented in the
data set and also the switched network. In particular, if the Received Data from the data set is active before
carrier is established, the PALM will commence to assemble a "garbage'' character. This can resultina
Receive Busy interrupt with any or all of the character status bits active (PF, FRERR, OV). These status
bits will then remain active until a Read Data is executed (to set Busy and reset OV) and a valid character

is received (to reset PF and FRERR).

8.7.4.2 Leased Line Operation

In leased line operation, because a connection is permanently established, no dial-up or disconnect is
needed. Both stations are normally initialized to the Read Mode. Either end can originate a transfer by
going into the Write Mode, which causes the receiving station to interrupt when the Carrier appears. Upon
receiving characters, the receiving end is in the Read Mode, and a data transfer takes place. The exact
hand-shake protocol is up to the user.

8-33

8.7.4.3 Half-Duplex Operation (202-Type Data Set)

In the Half-Duplex operation, only one terminal can transmit at any one time. To change the direction of
transmission, the channel must be turned around. The question arises as to who indicates channel turn-
around. The convention is normally held that the Processor turns the line around when it has a message

to transmit. Data sets (e.g., 202C type) normally used in Half-Duplex operation, should be equipped with
the Reverse Channel option which is used to signal the requirement to reverse the direction of transmission
or to break the data flow. An important operating convention affecting Reverse Channel operation results
from the presence of echo suppressors in long-distance lines. These suppressors normally disallow trans-
mission of an echo.

In data communications, the echo suppressor must be disabled, as it must be possible to transmit simul-
taneously in both directions (Main Channel and Reverse Channel). The echo suppressor becomes re-enabled
if the tone on the line is absent for a period exceeding 100 milliseconds. To prevent the re-enabling of the
echo suppressor, the convention should be adopted that the Reverse Channel is held ON (high) when the main
channel is OFF and vice versa. This convention ensures that a tone is on the line at all times.

The Reverse Channel is normally held ON when the Processor is accepting data. The Processor signals its
desire to transmit by lowering (OFF) the Reverse Channel and switching to the Write Mode. A program de-
lay should normally be introduced to allow the terminal on the other end to turn its Reverse Channel ON and
enable its Read Mode. This delay is a function of the terminal on the other end. This delay can be 200 to
1200 milliseconds, If the device at the other end is set up to indicate through the Reverse Channel signaling
that it is ready to receive data, this can be used instead of a program delay. When the Processor is trans-
mitting, a break condition sent from the terminal to signify that the terminal wants to transmit is signified
by the Receive Reverse Channel going from ON (high) to OFF (low). The Processor should then raise its
Reverse Channel lead high (ON) and transfer to the Read Mode. The interface automatically introduces the
necessary time delay before presenting data to the Processor to ensure valid data transfer and not transition
noise,

8.7.5 Interrupts

The PALS has interrupt control logic which sequentially scans all interrupt sources in the system. This
logic has the following characteristics:

1. It scans all equipped lines in groups of 16 addresses, commencing with the lowest addressable
line and incrementing to the others.

2. If an interrupt is detected in a group of 16 addresses, the hardware assigns priority to the line
with the lowest address. Note that, in FDX operation, this is always the Receive side.

3. After all interrupts in the group have been serviced, scanning continues with the next group.

4. An interrupt which is queued on a line that has interrupts disabled is not recognized by the
scanner. See Table 8-8 for interrupt conditions.

5. If an interrupt is detected by the scanner, the hardware requires that an Interrupt Acknowledge
followed by a status request be received; i.e., an AI AIR instruction. Interrupt scanning does
not continue until the above instruction is issued. When programming with Automatic I/0, the
user must issue a Sense Status. Note that any instruction that issues an interrupt acknowledge
and status request as part of the microsequence (such as the AI, Communication Instructions,
Selector Channel etc.) will satisfy the above requirements.

6. In HDX operation, when an interrupt is detected on the Transmit or Receive side of a given line,
the address of the Receive side (even) is always returned.

7. In HDX operation, the side not being used has interrupts disarmed (not queued),

8. The sequencer takes 1.08 microseconds to scan a group of 16 addresses, In a fully implemented
system (92 lines), it takes 13,24 microseconds to scan all lines, This is the maximum delay to
interrupt the Processnr after an interrupt condition occurs on a PALM,

9. If an interrupt is present on an enabled line, it can become queued in the interrupt scanner even

if the interrupt is disabled before it is serviced. This condition can result in an interrupt from
a disabled line. Servicing this interrupt clears the Attention flip-flop on this line while disabled.

8-34

TABLE 8-8. INTERRUPT CONDITIONS

HDX FDX
INT, COND. REC TRANS
RING ———— 1 X X
CARR OFF ——» 1 X (RD) X
CARR OFF — 0 X (RD) X
RCR ——— 1 X X
RCR —————— 0 X X
DSRDY ———= 0 X X
*BSY ——— 0 X X X
CL2S — 1 X (WRT) X

*An interrupt is also generated in HDX operation when going from READ to WRITE mode if
CL2S initially=0; i.e., when CL2S goes from 0 to 1 which causes a BSY interrupt.

8.7.6 Initialization

When the Initialize pushbutton on the Display Panel is depressed (or power failure restart sequence), the
OV, PF, and FR ERR status bits cannot be guaranteed. Because of this, the programmer should take
precautions to ignore these bits on the first interrupt., The PALM is placed in the Disable Mode, The in-
terrupt line may be active upon initialization. For this reason, it is necessary to execute an Interrupt
Acknowledge on power up or initialization.

The command bits DTR, ECHOPLEX, RCT, TRANS LB and WRT/RD are reset to their inactive state.
8.7.7 Device Number

The PALS has contiguous addressing with the lowest address 2 X'10", This is a strap option.

The addresses on a PALM are determined by the physical position of the mother-board in the system with
the first mother-board having the lowest addresses.

Two consecutive addresses are assigned to each FDX line, with the even address for the Receive side and
the odd address for the Transmit side. In HDX operation, each side responds to either address.

In FDX operation, only one Command 2 is required. Command 2 should never be issued while a character
transfer is in progress since this may mutilate the character (Transmit or Receive).

NOTE

There are various options and models available on Western
Electric or equivalent 103/202 Type Data Sets. The user should
insure that the options or model he selects are compatible with
the selected INTERDATA Adapter and that he understands the
programming ramifications if any, The user may obtain infor-
mation regarding the data set and network from his local tele-
phone company representative or from the appropriate manuals
supplied by the Bell System or the Data Set Manufacturer.

§-35

8.8 INTERTAPE CASSETTE SYSTEM

The INTERTAPE Cagsette System provides the user with a low cost sequential mass storage device in an
environment where fast (millisecond) access times-are not a necessity. Two significant advantages result

from the use of this system. First the magnetic cassettes provide a convenient input/output medium.
Second, the cassettes on line may serve as an extension to main memory for the storage of data and
program files. Although they cost about the same as high speed paper tape reader/punch combinations,
the INTERTAPE Cassette System is faster, especially on output, and much easier to handle in most

applications than paper tape.

The system consists of a 15 inch controller that plugs into a standard INTERDATA chassis and the dual
transport which mounts into a standard 19 inch RETMA rack. The dual transport (vs single transport)
system enables the user to edit, compress or decompress data, and to increase the reliability of the

system. The mechanism is manufactured for INTERDATA by a well known manufacturer of MIL-SPEC

tape transports.

The system uses cassettes that conform to ECMA-34 and proposed ANSI X3B/523 standards. Data is re-
corded on the tape in the form of records separated by inter-record gaps. Groups of records may be
separated by a file gap, An ECMA/ANSI standard compatible cassette can be generated under program
control. The unit also includes hardware read-after-write check capability increasing greatly the re-

liability of the cassette system.

8.8.1 Specifications

Number of Cassette Transports

Storage Capacity

Data Packing Density

Transfer Rate

Tape Speed

Type of Recording Technique
Rewind Time

Inter-Record Gap

End of File

Error Checks

Start Time
Stop Time

Operating Temperature Range

Operating Relative Humidity Range

Record Size

8-36

two

250, 000 bytes/cassette/side
500, 000 bytes per cassette
1,000, 000 bytes per system
800 bits per inch (bpi)

1, 000 bytes/second peak, to 480 bytes/second in read
continuous mode with a record size of 80 bytes

10 inches per second (ips)

Phase encoded, 1600 fepi

40-70 seconds (300 ft.)

0. 85 inch

Special hardware generated character in 0. 85 inch gap

LRC generation and check, signal drop out detection,
hardware read-after-write check

105 msec
50 msec

20°-30°C (Cassette Tape)
59-48°C (Tape Transport)

20% to 80%

Variable, under program control

Power Requirements 115/220 VAC, 60/50 Hz, 80 Watts
Weight 19 1bs + Power Supply

Controls Common POWER ON switch, ON LINE and REWIND
switches for each transport
Indicator lights are: ON LINE, REWIND, LOAD POINT,
POWER ON, WRITE ENABLE, and Processor SELECT.

Dimensions T"Hx 19" Wx 15" D

8.9 AUTOMATIC MEMORY PROTECT CONTROLLER

8.9.1 General Description

The automatic Memory Protect Controller (MPC) permits available memory to be divided into blocks. As
any combination from 1 to 64 blocks can be selected, a range of from 512 bytes to 64K bytes of memory
can be protected under program control. The Processor is permitted to read data from any core location,
but may write data only into unprotected locations. Any attempt to write into a protected block of memory
is aborted and the memory protect hardware generates an 1/O interrupt as an indication to the Processor
that an illegal write was attempted. See Figure 8-11.

r MA4|

10F 4 CWRI
MAOOH MAS | DECODER
MAO ||
> waozl] ttt
T0 MAO2I
MEMORY | Mao3l | BLOSK | wmao CROTECTO
CONTROL > maoar | TO
MAO4! | STRAPPING [MAII 4 LINE - e PROTECTO
BOARD | >—MAOH | STRAP * 7o o CONTROL MEMORY
MAOSI MAZI 4 LINE REGISTER CIRCUIT CWRO CONTROL
-—————————<
MAO6! MA3 ! DECODER (CONVERT BOARD
>
L WRITE TO READ)
CONTROL
I DATA LINES ONTRO

8 /f8

<MULTIPLEXOR CHANNEL BUS>

Figure 8-11, Memory Protect Controller Functional Block Diagram

8.9.2 Operational Characteristics

The optional block size of 512, 1,024, or 2,048 bytes per block* is selected by a hardwired strap on the

Memory Protect Controller. The block protect pattern is selectable and alterable under program control.
The status and command bytes for the Memory Protect Controller are shown below.

Memory Protect Controller status is returned to the Processor upon execution of a Sense Status instruc-
tion. The status provides the following indications to the Processor:

PON Indicates memory protect is active

PWF Indicates an attempt has been made to write into protected memory area. This bit is reset
on an output, or an Acknowledge Interrupt instruction.

EX Examine is set when PWT is set.

*The automatic MPC used on the Model 80 has a 1,024 byte per block size only.

Output Commands selectively control the protect feature of the Memory Protect Controller as well as its
interrupt capability. The output command bits perform the following functions:

DISARM Disarms interrupt circuit and prohibits queuing of interrupts.

ARM Arms interrupt circuit and allows for automatic queuing of interrupts,
PON Enables the protect feature of the controller
POFF Disables the protect feature of the controller

The following are valid commands for the Memory Protect Controller.

Once an Output Command is given, the protect pattern may be set up with consecutive Write Data instruc-
tions. Eight Write Data instructions are required to alter the entire 64 blocks. A ONE in the data byte
will cause the corresponding block to become protected memory and a ZERO will cause the block to be-
come unprotected. The relation between the data bytes of the Write Data instructions and the 64 blocks

is shown below.

1st Write data sets up blocks 0-7
2nd Write data sets up blocks 8-15
3rd Write data sets up blocks 16-23
4th Write data sets up blocks 24-31
5th Write data sets up blocks 32-39
6th Write data sets up blocks 40-48
7th Write data sets up blocks 49-56
8th Write data sets up blocks 57-64

If more than eight Write Data instructions are executed after the Output Command, the protect pattern
will wrap around, i.e., the ninth Write Data instruction will change blocks 0-7, etc.

Initialization preconditions the Memory Protect Controller such that interrupts are disarmed, the PON
and PWF flip-flops are cleared and the protect pattern remains unchanged.

8.9.3 Specifications

MT70-101 Automatic Memory Protect Controller.

Dimensions 7.5" x 15"
Weight 2 pounds
Number of Blocks 64

Block Size Standard 1, 024

Optional 512, or 2,048 bytes (Model 70 only)
(is available for customer wiring)

Protect Pattern Program Alterable
Preferred Device Address X'AE'
Power Requirements +5V at 1, 0 amperes

8-38

8.10 UNIVERSAL CLOCK MODULE
8.10.1 General Description

The Universal Clock Module consists of two clock devices, The first is a Programmable Precision Inter-
val Clock (PIC) and the second is an AC Line Frequency Derived Clock (LFC). Each of the clocks is com-
pletely independent of the other for maximum convenience. Figure 8-12,

IMHZ CRYSTAL
OSCILLATOR
e |
LA _
(OPTIONAL
CONNECTION)
CLOCK
DIVIDER
RESOLUTION
SELECT
REGISTER
INTERVAL INTERRUPT AND
COUNTER CONTROL LOGIC AC LINE
INTERRUPTS
INPUT OUTPUT 2y AC LINE CONTROL
BUFFER BUFFER oMo s FREQUENCY el
{RIC) (cIc) CLOCK
T WRITE DATA lREAD DATA I I

MULTIPLEXOR BUS

TO
PROCESSOR <

Figure 8-12. Universal Clock Module Block Diagram

8.10.2 Operational Characteristics
PROGRAMMABLE PRECISION INTERVAL CLOCK

The Programmable Precision Interval Clock is dynamically variable through program control. It provides
the user with a Processor interrupt and program accessible counter giving resolutions of 1, 10, and 100
microseconds, as well as 1 millisecond through an interval range of 212, The master time base for the
PIC is provided by a one megahertz crystal oscillator which can be disabled so that an external master
time base oscillator may be used.

8~-39

Basic PIC operation is as follows:

1. Resolution and Interval data is sent to the PIC input buffer where it resides until new data
is supplied.

2. At the start of the clock through the Command Word, the resolution and interval data in the
input buffers are transferred to the Interval Counter and the Resolution Select Register. The
Interval Counter begins to decrement at the selected resolution rate.

3. At the conclusion of the interval (Interval Counter equals zero), a program interrupt is gener-
ated if enabled, and the Interval Counter and Resolution Select Registers are reloaded from the
input buffers. The clock continues to run and once again begins to decrement the Interval
Counter. Since the input buffer is not used except after the Interval has completed, the user
may reload a new interval anytime before the completion of the present interval.

4. The PIC is provided with an output buffer so that the Interval Counter may be interrogated
without disturbing its operation.

The PIC will interrupt at the conclusion of each clock interval, if enabled. It should be noted that the
clock does not stop but merely creates an interrupt and restarts using the last selected resolution and
interval count.

AC LINE FREQUENCY DERIVED CLOCK

The LFC is derived from the AC power line with a clock rate of twice the line frequency. This clock has
not setup procedure other than to enable, disable, or disarm the interrupt circuit.

8.10.3 Specifications

Universal Clock Module.

Power Requirements +5 VDC + 5%, 1 ampere
12 VDC 10 milliamperes
Dimensions 7" x 15 3/8"
Accuracy PIC - +.01% Crystal controlled Oscillator
LF¥C - Line Frequency
Resolution (PIC) - 1 us, 10 us, 100 us, 1 ms.
Interval PIC

1 us to 4,095 us, 10 us to 40,950 us, 100 us to 409, 500 ms.
(corresponding to resolution)

LFC
8.33 ms on 60 Hz line
10 ms on 50 Hz line

Program Control PIC - Control to Clock
Command - Disable, Disarm, Enable, Start

Status - Overflow
Write Data Byte 1, 2, - Resolution and Interval Count

Output to Processor
Read Data 1, 2, - Current Interval Count

LFC - Command - Disable, Enable, Disarm

Product Number M48-000 Universal Clock Module

8.11 THE EIGHT LINE INTERRUPT MODULE

8.11.1 General Description

The Eight Line Interrupt Module gives the user the capability of generating interrupts in the INTERDATA
Processor from his external source. This interrupt module provides a simple, low-cost means of inter-
facing a variety of alarms, sensors, push button indicators, etc. with the Central Processing Unit (CPU).
The utilization of the Eight Line Interrupt Module allows the user to selectively recognize or ignore, on
a priority basis, the occurrence of random external events under program control. See Figure 8-13.

DATA

l CONTR TACKO
| OLZLINES PRIORITY

[« ADDRESS ENCODER RACKO
AND BUFFER INTERRUPT

COMMAND !}

Ji g

amMmnc

DOWVLMOODT

8-BIT 8-8BIT

b8 o} queue | mask
[REGISTER | REGISTER

Figure 8-13. Eight Line Interrupt Module Block Diagram
8.11.2 Operational Characteristics
Outstanding features of the Eight Line Interrupt Module are:
The module is contained on one 7' board.
Up to eight external interrupt lines may be hardwired in a desired priority.
The user has the strapping option of edge or level sensing.

Eight lines to set interrupts and eight lines which indicate interrupt acknowledgement
are provided the user.

Provisions are made so that the lowest priority line can be used to mask off interrupts
from lower priority devices on the Multiplexor Bus.

Two gated command lines are available to the user.

Each interrupt is reset upon acknowledgement unless strapped for level sensitive oper-
ation, in which case the Interrupt Queue Register tracks its input.

Interrupts may be generated under program control which allow test and diagnostics
to take place without the presence of the users external equipment,

The user is provided with eight interrupt lines, each corresponding to a bit (with its own device address)
in the Queue Register and 8 more lines, each of which is pulsed, as its corresponding queued interrupt is
acknowledged by the Processor. All lines are accessible to the user via a 10 foot open ended twisted pair.

Each bit in the eight bit Queue Register has its own device address. There is also an eight bit Mask Reg-
ister whose bits enable the recognition of corresponding queued interrupts. The magk bit for the lowest
priority interrupt line can be used at the user's option to disable interrupts from lower priority input-out-
put modules on the Multiplexor Bus. The Eight Line Interrupt Module will interrupt the Processor when
any bit in the Queue Register is set and its corresponding mask bit is set.

8-41

When an Acknowledge Interrupt command is sent by the Processor to this module, the address ‘corre-
sponding to the highest priority interrupt queue flip-flop (whose mask bit was set) is returned to the
Processor and the queue bit is reset (with the exception of level sensing). In different command modes,
the following actions can take place under program control: Queue. Register bits can be reset or set
selectively, or in groups; the Mask Register can be loaded with a new pattern to enable or disable
selected lines.

8.11.3 Specifications

Eight Line Interrupt Module.
INTERDATA Product Number (M48-001)

References Eight Line Interrupt Module Instruction Manual,
Publication Number 29-288

Dimensions 7" x 15"
Weight 1. 0 pounds with cables.
Power Requirements Voltage - +5 VDC @ .75 amperes

Power Consumption - .75 amperes

8.12 SERIAL LINE PRINTER

8.12.1 General Description

The Serial Line Printer offers high performance at low cost making it ideally suited for a diversity of
applications. It prints at a rate of 165 characters per second, 10 characters per inch, and up to 132 chax-
acters per line. Line printing speed is approximately 60 full lines per minute to 150 short lines per mi-
nute. The printer is supplied with an INTERDATA parallel interface.

The Serial Line Printer features pin feed form handling for forms up to 14 3/8 inches in width, a full line
buffer, and a two channel vertical format control for top of form and vertical tabulation.

8.12.2 Operational Characteristics

The Serial Printer is a completely self-contained unit which includes the mechanical and electro-mechan-
ical components, control logic, character pattern generator, line buffer and power supply. A matrix
method of printing is utilized with a print head consisting of 7 print solenoids mounted on a carrier.
Printing is accomplished through selective pulsing of the print wires as the print head moves from left

to right across the character space and the print line. The solenoids are activated independently up to
five times for any one character. This technique provides enough force to produce a minimum of five
legible copies (an original plus four carbons).

Four control switches and tl.ree indicator lights are housed on the operator's panel, The four control
switches are:

Stop-Start Switch - supplies power to the printer unit in the start position with switch illuminated.

Top of Form Switch - used for manual slewing to top of form.

Select Switch - used to select the printer after turning on power.

Forms Override - provides operator override on the paper out switch allowing the operator to com-
plete the form being printed before changing paper.

The indicator lights are:

Hardware Alarm - indicates head carrier has exceeded right margin.

Paper Out - indicates out of paper or a paper handling malfunction.

Multiple Purpose - used in special applications.

In addition to the alarm indicators, an audio alarm is activated for the out of paper condition, paper
handling malfunction, and if the head carrier exceeds the right hand margin, The audio alarm is also
sounded when a Bell Code (X'07') is received.

The parallel interface to the Serial Printer is completely contained on a standard INTERDATA 7 inch
printed circuit board,

The printer recognizes six non-printing commands as follows:

CR (X'0D') Causes the printer buffer to print, causes the carriage to return, and causes
the form to be advanced one line.

FF (X'0C") Causes the form to be advanced to the first punch in Channel 1 of the form feed
tape.

VT X'0B') Causes the form to be advanced to the first punch in Channel 2 of the form feed
tape.

LF (X'0A") Causes the form to be advanced one line.

BELL (X'07") Activates the audio alarm for 2 seconds,

SO (X'0E") Causes the buffer to print elongated characters (66 characters per line instead
of 132).

When the 132nd character is loaded into the print buffer, an automatic CR is generated (i.e., the buffer
is printed, the carriage is returned, and the form is advanced one line).

8.12.3 Specifications

Dimensions: Width - 27 % inches
Height - 11 }inches
Depth - 19 % inches
Weight: 155 pounds
Print Speed 60 to 150 LPM, 132 columns
Power Requirements: 117 VAC %= 10% 60 Hz

230 VAC +10% 50 Hz

813 LOADER STORAGE UNIT (Model Nos. M70-104, M70-105)

8.13.1 Summary

The Loader Storage Unit is designed to support remote or unattended systems where automatic local or
remote reinitialization of the system is required.

8-43

8.13.2 Functional Description

The Loader Storage Unit consists of a controller, a hardware watchdog timer, and from one to 16 non-
volatile storage modules of 128 bytes each. The whole unit is contained on one 7' x 15" card, has a fixed
device assignment, and plugs into the standard INTERDATA Multiplexor Bus.

When entering a restart phase, the Processor checks for the presence of the Loader Storage Unit. If pres-
ent, the Processor then loads, from the storage modules, information defining the start/end locations in
main memory, and the program status word for starting the program once loading is complete, The Loader
Storage Unit has a capacity of up to 2048 bytes and comes complete with 16 I/C sockets. Additional Loader
Storage Units may be installed if more than 2048 bytes are required, however the first unit must contain
the logic to load from successive units.

The hardware watchdog timer feature must be reset under program control periodically or the module will
force an automatic restart operation. Depending on a switch setting, this could cause a normal auto-restart
or load operation. This watchdog feature may be disabled manually or under program control.

8.13.3 Applicable Processors

Model 74

Model 70
Note: Not all units are micro-programmed to support LCU,
Model 80

8.13.4 Ordering Procedure

When ordering storage modules for the Load Storage Unit, customers must supply a paper tape and listing
with the desired binary load data.

8.14 AUTOMATIC LOADER FOR BASIC MODEL 74 (Model No. M74-101)

8.14.1 Summary

This option is designed to support automatic loading of no-display Model 74s from most input devices.
8.14.2 Functional Description

This module, approximately 24" x 43", plugs into the display connector on the Processor board containing
the display controller, Sixteen copper straps are contained on the module. A customer may cut these straps
to provide a device address and command byte to activate an automatic load sequence in the Model 74.

This may load from any suitable standard INTERDATA peripheral (teletypewriter, high speed paper tape
reader, a rewound Intertape Cassette or magnetic tape). In general, the automatic loader can support any
device which transfers 8 bit data and can be activated by a single output command. Transfer rates of up

to 100K bytes per second can be supported.

A simple switch assembly is provided to activate the module and provide basic control functions for a no-
display configuration.

8.15 SELECTOR CHANNEL

8.15.1 General Description

The 02-232 Selector Channel (SELCH) controls the transfer of data between I/0 devices and memory at rates
of up to 2, 000, 000 bytes per second. Up to 9 1/O devices canbe connected to the Selector Channel, but only
one device can transfer data at a time. The advantage in using the Selector Channel is that other program
processing can occur simultaneously with the transfer of data between the I/0 device and memory, This is
accomplished by allowing the Selector Channel and the Processor to access memory on a cycle-stealing basis.
In some instances, the execution times of the program in progress are affected, while in others, the effect is
negligible, This depends upon the rate at which the Selector Channel and Processor both compete for access
to memory. Data transfer to the device may be made in either the Byte or Halfword Mode.

8.15.2 Programming Instructions

Table 8-9 illustrates the Selector Channel Status and Command Byte coding., A Sense Status instruction (SS
or SSR) is used to transfer the status byte from the Selector Channel Device Controller to the Processor.
The least significant four bits (4:7) of the status byte are copied into the Condition Code during the Sense
Status operation. Branch instructions can test these four bits directly.

The Output Command instruction (OC or OCR) causes a command byte to be sent to the Selector Channel
Controller,

TABLE 8-9. SELECTOR CHANNEL STATUS AND COMMAND BYTE DATA

BIT NUMBER 0 1 2 3 4 6 7
STATUS BYTE BSY
COMMAND BYTE READ GO STOP

STATUS

BSY This bit is set when the Selector Channel is in the process of trans-

ferring data.

COMMAND

READ This command changes the mode of the Selector Channel from Write
to Read., In the Read Mode, data is transmitted from the active device
on the Selector Channel and written into memory. Whenever a data
transmission has been completed, the Selector Channel is placed in the
Write Mode. Each time a Read operation is required, a Read Com-~
mand must be issued.

GO This command initiates a data transmission., This command can be is-
sued at the same time the Read/Write Mode is established.

STOP This command halts any data transmission in progress, and initializes
the Selector Channel for starting a new operation, It should be given

when the Selector Channel terminates.

The Write Data (WD or WDR) or Write Halfword (WIH or WHR) instructions may be used to send the start-
ing and final addresses to the Selector Channel Controller.

The Read Data (RD or RDR) or Read Halfword (RH or RHR) instructions may be used to obtain the last Pro-
cessor memory location either written into or read from memory.

8-45

The Write Block (WB or WBR) instruction should not be used since the status byte returned to an idle SELCH,
by the WB or WBR instruction, is the status of any active device on the SELCH Bus with Bit-4 (BSY) forced
to a zero.

If an interrupt is pending, an Immediate Interrupt or Acknowledge Interrupt instruction (AI or AIR) clears the
interrupt and causes the device number of the Selector Channel (X'F0' preferred) and status of the peripheral
device to be sent to the Processor.

8.15.3 Programming Sequences

Programming a device on the Selector Channel consists of setting up the device, setting up the Selector
Channel, and sending a GO command to the Selector Channel. When all devices on the Selector Channel
are idle, the Selector Bus becomes a part of the Multiplexor Bus. This provides the path to set up the de-
vice and the Selector Channel.

The last device addressed prior to sending the GO command is the device the Selector Channel controls,
assuming that the device is connected to the Selector Channel, The program must, therefore, send the
GO command before addressing any other device, Note that when the SELCH device is being addressed,
prior to the GO command, the Single Mode may not be used since the Display Panel is addressed in this
mode,

During data transfer, the Selector Channel provides a direct data path between the device and memory.
Until the transfer is complete, no I/0 instiruction can be issued to any device on the Selector Channel, in-
cluding the device transferring data. If devices on the Selector Channel Bus are referenced while the Se-
lector Channel is busy, the False Sync bit is set (V Condition Code).

The initialization of a device on the Selector Channel Bus is accomplished by executing an Output Command
(OC or OCR) instruction. Refer to the device Programming Manual for the bit configuration of the Output
Command. Note that the Selector Channel has a unique device number just like all other I/O devices. Out-
put Commands, as with all Input/Output instructions, affect only the device addressed.

The Selector Channel has a 16-bit incrementing Address Register and a 16-bit Final Address Register.
The user program loads the starting address into the incrementing Address Register and the final address
into the Final Address Register. Transfer is completed when the incrementing Address Register matches
the Final Address Register. The address limits are expressed inclusively; transfers begin and end on the
addresses placed in the starting and final address registers.

The memory is addressed on halfword boundaries; that is, each time memory is accessed, two bytes or a

halfword are obtained, 16-bit addressing is used, with the least significant bit, Bit-15, determining the
byte desired. See Figure 8-14.

CORE MEMORY

0 7,8 5
HALFWORD
o EVEN BYTE 0DD BYTE
BYTE BYTE
2
BYTE BYTE
4
BIT-15:0 BIT-15=1
o 14, 15
BIT 15 SPECIFIES ODD OR
MEMORY ADDRESS REGISTER *—EVEN BYTE

Figure 8-14, Memory Addressing

8-46

Each time the Selector Channel accesses memory, two bytes (halfword) are transferred. It is mandatory
that data transfers begin on a halfword boundary. The following results if data transfers are ended on byte
boundaries:

1. Write Mode (memory to device) - End on byte boundary (Bit-15 = 0) - No effect.

2. Read Mode (device to memory) - End of byte boundary (Bit-15 = 0) - The previous contents of
the last odd byte in memory is written into the current odd byte in memory. See Figure 8-15,

0 7,8 15
ugl’_‘;wEOR'[;AST — EVEN BYTE 00D BYTE
) - BOTH BYTES HAVE
SAME VALUE
LAST HALFWORD —| BYTE BYTE
2

A—— LAST BYTE SPECIFIED
Figure 8-15., Memory Configuration, End on Byte Boundary

The user program specifies the mode, either Read or Write, and gives the GO command. The following
sections provide details for programming the Selector Channel,

8.15,3.1 Starting and Final Addresses

An Output Command with the Stop bit set should be issued prior to starting any operation on the Selector
Channel to clear any preceding conditions, Four successive bytes are required to specify the starting and
final addresses of the user's buffer area. Either the Write Data (WD or WDR) or Write Halfword (WH or
WHR) instructions may be used to send the starting and final addresses to the Selector Channel Controller.
Figure 8-16 defines the four bytes used for addressing.

STARTING ADDRESS

[HIGH 78« LOW *|5
1 2
3 4

FINAL ADDRESS

1. Starting Address High (Bits 0:7)
2, Starting Address Low (Bits 8:15)
3. Final Address High (Bits 0:7)
4. Final Address Low (Bits 8:15)

Figure 8-16. Starting and Final Address Data Bytes

8.15.3.2 Status and Commands

A Sense Status instruction (SS or SSR) is used to transfer the status byte from the Selector Channel Device
Controller to the Processor. The least significant four bits (4:7) of the status byte are copied into the Con-
dition Code during the Sense Status operation. Branch instructions can test these four bits directly. The
gtatus byte returned by the SELCH when idle, is the status of any device on the SELCH Bus with Bit-4 (BSY)
forced to a zero, The Output Command instruction (OC or OCR) is used for transmitting the command byte
to the Selector Channel Controller.

8.15.3.3 Termination

Data transmission between the Selector Channel and the device presently connected to it is halted if any of the
following conditions occur:

1. The starting address matches the final address. This denotes a normal termination,

2. The starting (incrementing) address goes from all Ones to all Zeros (maximum count), In
this case, a match has not occurred and is considered an abnormal termination.

3. Any of the DU, EOM, or EX status bits of the device presently connected to the Selector
Channel changes to a One. This is also an abnormal termination,

4, A Stop command is sent to the Selector Channel via a user program,

The termination condition is determined in one of two ways: by a status scan, or by the interrupt method.,
These methods are described in the following paragraphs. An Output Command Stop should be issued to the
Selector Channel following its termination,

NOTE

In the status scan method of programming, it is possible
for the Busy Bit to change from One to Zero during a Sense
Status instruction without returning the SELCH to Idle. To
guarantee the Idle Mode after Busy = 0 on a Sense Status
instruction, a Stop command should be sent to the SELCH.

Status Scan. The status of the Selector Channel Controller may be examined by issuing a Sense
Status (SS or SSR) instruction. The Busy Bit (Bit-4) is a One while transmission is in progress,
and Zero when transmission is terminated. One method of testing for termination would be to
continually or periodically test the Bugy Bit of the Selector Channel Controller. The change from
One to Zero would then indicate the termination of a data transfer. When the Selector Channel is
busy, only the Busy Bit (Bit-4) is present in the status byte and all other bits are Zero. At ter-
mination, the status of the device is presented in the status byte, except for the Busy Bit which is
Zero,

Interrupt Method, When data transmission is initiated on the Selector Channel, the interrupt is al
ways enabled, If external device interrupts are enabled (PSW Bit-1 set), the Processor is inter-
rupted when the Selector Channel terminates, The interrupt can be serviced via Immediate Inter-
rupt or Acknowledge Interrupt instruction (Al, AIR), which clears the interrupt and causes the de-
vice number of the Selector Channel (X'F0' preferred) and status of the peripheral device to be sent
to the Processor. The Busy Bit is treated in the manner described previously for Status Scan.

8.15,3.4 Reading the Final Address

The last Processor memory location either written into or read from may be obtained by executing a pair
of Read Data (RD or RDR) instructions or a Read Halfword (RH or RHR) instruction. The Read Block (RB
or RBR) instruction should not be used. This information permits a user program to verify a successful
data transmission or determine at what address termination occurred. Figure 8-17 illustrates the order in
which the data is read into the Processor,

[R HIGH »718= LOW 15

FINAL ADDRESS [2

1. TFinal Address High (Bits 0:7)
2, Final Address Low (Bits 8:15)

Figure 8-17. Read Data Instructions

8.15.4 Interrupts

Refer to Section 8.15,3,3 Termination, Interrupt Method.

8.15.5 Initialization

Whenever the Initialize switch (INT) on the Display Panel is depressed, or a Stop command is issued, the
following actions occur:

1. Any data transmission in process is halted and the Stop Mode is effected.
2. The Selector Channel is placed in the Write Mode.
3. The Selector Channel is made idle.

4. The Selector Channel interrupt is reset.
8.15.6 Device Number

The Selector Channel is normally assigned device number X'F0', but may easily be changed by a minor
wiring modification on the Selector Channel Device Controller board. Refer to the Installation Specifica-
tion, 02-232A20, for specific details.

Figure 8-18 presents a sample driver program for a magnetic tape unit connected to the Selector Channel.
The purpose of this sample program is to show the program instructions used to control the Selector Channel
and the order in which they may be executed.

The function of Subroutine 1 is to prepare the Selector Channel and device for a data transfer. Upon entry to
Subroutine 1, Steps 1, 2, and 3 load the device number of the Selector Channel into a register and tests the
Selector Channel's Busy Bit. If the Busy Bit is set, return is made to the calling program via the Busy Exit.
If the Selector Channel ig idle, Steps 5 and 6 test the status of the tape unit, If the tape unit status reveals it
is available, Step 7 sends a command to the tape unit. If the tape unit is not available, return is made to the
calling program via the error return exit. Steps 8 through 11 load the Selector Channel's Address Register.
Step 12 then gives the GO command to the Selector Channel initiating the data transfer.

The function of Subroutine 2 is to service the interrupt caused by the Selector Channel, Step 14 acknowledges
the interrupt, and at the same time loads the status of the device into register Status. Steps 15 and 16 read
the incrementing (start) register of the Selector Channel and load the results into memory locations, LFINLH
and LFIXLL, Steps 17 through 19 compare the actual ending address to that loaded into the Final Address
Register. If not equal, return is made to the call program via the error return exit; if equal, return is made
to the normal return.

8-49

8.15.7 Sample Program

Figure 8-18 provides a sample program for the Selector Channel,

#
@ SAMPLE ORIVER PROGRAM FOR A MAGNETIC
@ TAPE UNIT UNDER CONTROL UF SELECTOR
@ CHANNEL INTERFACE
*
¢ NORMAL RETURN =-REGISTER 15
@ BUSY RETURN = REGISTER 15+4
@ ERROR RETURN = REGISTER 15+8
-4
SUBROUTINE 1 INITIALIZES DEVICE AND SELECTOR CHANNEL
<+
0000R CBAO SUBR1 LHI SCUVNUsX'FO? (1) LUADS DEVICE NUMBER OF
00F 0
SEL CHAN IN REGISTER
0004R 9DAC SSR SCDVNUSSTATUS (2) TEST SEL CHAN AVAIL-
0006R 428F BTC 8s4 (RETURN) (3) BUSY RETURN
0004
000AR C8BO LHI TPOVNUs X920 (4) LOADS DEVICE NUMBER OF
0020
o TAPE UNIT IN REGISTER
000ER 9DBC SSR TPDVNU,STATUS (S) TEST TAPE UNIT AVAIL-
@ ABLE FOR COMDS
0010R 45C0 CLH STATUS.COMSAT (6) TST STATUS OF TPE UNII
005AR
0014R 423F BNE B(RETURN) ERROR RETURN
0008
0018R DEBO 0c TPDVNUSCMDMOD (7) COMMANDS TAPE UNIT 10
0052R
@ READ MODE
001CR DEAO ocC SCOVNUSRESET RESET SC REGISTERS
0054R
<t
0020R DAAO wh SCOVNUsSTARTH (8) SENUS BITS 0-7 OF
0056R
START ADDR TO SEL CHAN
0024R DAAO WD SCDVNU,STARTL (9) SENUS BITS 8=15 OF
0057R
M START ADDR TO SEL CHAN
00728R DAAD) SCDVNU,FINALH (10) SENDS BITS 0-7 OF
0058R
@ END ADDR TO SEL CHAN
002CR DAAO Wb SCOVNUWFINALL (11)SENUS RITS 8=15 OF
0059K
@ END ADDR TO SEL*CHAN
0030R DEAO oc SCOVNU + GORD (12) STARTS DATA TRANSFEK
0053R
® BETWEEN TARE AND CORE
0034R 030F BR RETURN (13) RETURN TO CALLING ROUTINE
4+
b 44 43 ¢b 2 15 3k 28 35 2 35 2 23 40 25 3B 3 b 3P S 48 5 42 b SE SF 81 27 28 3% 3F 48 <F SF b 3b < P 33 33 48 3 4 43 48 22 4% 25 3 33 35 45 24 3P 45 35 45 4P 3P 3P 3F
SUBROUTINE 2 SERVICES INTERRUPT KETURN
1%
0036RrR 9F9C SHURZ AlR DEVICESTATUS (14) ACKNOWLEDGE INTERRUPY
o AND ORTAIN STATUS
0038R DEAQ 0C SCHVNU yRESE | SENU STOP TO SELECTOR
0054R

Figure 8-18. Sample Program

8-50

003CR

0040R

0044R
0048R
004CR

0050R
00S2R
0053R
0054R
0056R
0057R
0058R
0059R
0009
000A
0008
000C
000N
000E
VO0OF
00SAR
005CR
00SNR
005ER
ADNDR

CMDMOD
COMSAT
OEVICE
FINALH
FINALL

GORD

LFINLH
LFINLL

RESET

RETURN

SBUR?

SCNVNU
STARTH
STARTL
STATUS

SUBR1
TEST

DBAO
005CR

bBAO
00SDR

48E0
005CR
45E0
0058R
423F
0008
030F
9930

0808

000D
0052R
005AR
0009
0058R
0059R
0053k
005CR
005S0R
0054KR
000F
0036R
000A
0056R
0057k
voouc
0000R
000E

TPDVNU 0008

CMDMOD
GORD
RESET
STARTH
STARTL
FINALH
FINALL
DEVICE
SCDVNU
TPDVNU
STATUS
ADDR
TEST
RETURN
COMSAT
LFINLH
LFINLL

RD
RD

LH
cLH
BNE
BR

EQU
DC

DS

EQU
s

EQU
EQU
E£QU
EQU
EQU
EQu
EQU
EQU
S

Ewuy
END

SCOVNU,sLFINLH
SCDVNU s LFINLL

TESTsLFINLH
TESTsFINALH
B8 (RETURN)

RETURN
X19930°
CMDMOD+1
X10808¢
2
STARTH+1
2
FINALH+1
9

10

11

12

13

14

15

2

2
LFINLH+1

CHANNEL FOLLOWING TERM.
(15) READ SEL CHAN BITS

0=-7 FOR ENDING ADDR
(16) READ stL CHAN RITS

8-15 FOR ENDING ANDDR
(17) LOADS ACTUAL ENDING ADDR

(18) TO COMPARE WITH SPECIFIED
(19) ERROR RETURN

(20) RETURN TO CALLING ROUTINE

CUNTAINS EXPECTED STATUS

Figure 8-18. Sample Program

(Continued)

8-51/8-52

CHAPTER 9
CONFIGURATION INSTALLATION PLANNING

9.1 INTRODUCTION

Modularity is the key word which describes the INTERDATA building block approach to configuring digital
systems. The highly modular structure of the digital equipment permits custom configuration to suit the
user's exact needs. It also provides the means for gracefully expanding a digital system as the user's
requirements grow. This chapter describes the organization of the INTERDATA Digital System. Included
are descriptions of the integrated circuit boards, the Processor and system expansion chassis, and the
system cabinets,

9.2 INTEGRATED CIRCUIT BOARDS

Three sizes of circuit boards (7", 10", and 15") are used in INTERDATA Digital Systems. The user's
requirements and system configuration determine which type of circuit board is used in a particular system.

The standard 15 inch circuit board, Figure 9-1, can be used in either the basic Processor chassis or in the
15 inch system expansion chassis, Product Number M49-020.

Figure 9-1. Typical 15-Inch Circuit Board, Component Side

The standard 7 inch circuit board is used for less sophisticated device controllers and system modules.
The unique back panel wiring of the 15 inch system expansion chassis permits two 7 inch circuit boards
(fastened together) to occupy the same card file slot.

This packaging scheme also permits use of the 10 inch INTERDATA circuit board to provide current
INTERDATA users (device controller and system module) compatibility with the Model 74, 70, and 80
systems,

The methods of integrating the 10 inch circuit board into a Model 70 Digital System are:
1. With an adapter card, Product Number M49-003, which permits the 10 inch circuit board to be used
in either the basic Processor chassis, or in the system 15 inch expansion chassis, Product Number

M49-020. This method can only be used for single circuit board interfaces.

2. With a 10 inch system expansion chassis, Product Number M49-000, which is prewired for up to
s8ix 10 inch circuit cards.

9.3 BASIC PROCESSOR CHASSIS

The basic Processor is packaged in a single RETMA standard 7 inch rack mountable chassis. (Figure
9-2). This chassis includes a power supply, cooling fans, and room for eight standard 15 inch printed
circuit boards. The Model 74 Processor takes two PC boards, the Model 70 Processor takes four PC
boards, the Model 80 Processor takes four PC boards. The 8, 192 byte core memory in the Models 74
and 70, and the 16, 384 byte MOS memory in the Model 80 take one PC board position in the chassis.
The remaining circuit board slots are universal expansion slots which may accept any combination of
the following:

1. Additional 8,192 byte core memory or 16, 384 MOS memory modules.

2. Standard INTERDATA 15 inch peripheral device controllers.

3. Standard INTERDATA 7 inch peripheral device controllers (two per slot can be accommodated).

4. Standard INTERDATA 10 inch peripheral device controllers with adapter.

5. Standard INTERDATA Selector Channel.

6. User designed interfaces to either the Multiplexor Bus (I/O Bus) or the Memory Bus.

These circuit boards may be placed in the basic Processor chassis as required by the particular system
configuration subject to certain configuration constraints.

HINGE SIDE\/ POWER SUPPLY o
AIR FLOW]

7"

/
@ 17%" ° 1
PROCESSOR
el

g
I = b
1, s DISPLAY PANEL / /
l l : 16" upméa'r“%\lbpmem
L
" 19 %' 5'5LOT
2%

Figure 9-2, Basic Processor Chassis

9.4 SYSTEM EXPANSION CHASSIS

Two system expansion chassis (10 inch and 15 inch) are available for expanding INTERDATA Digital Systems.
The system expansion chassis have the same dimensions as the basic Processor chassis. See Figure 9-2.
When configuring a multi-chassis system there are four rules that must be followed:

1. The system expansion chassis must be mounted below the basic Processor chassis.
2. All chassis must be contiguous. ‘

3. All 15 inch system expaunsion chassis (M49-020) must precede the 10 inch system expansion chassis
(M49-000).

4, Multiboard peripheral device controllers (on 10 inch circuit boards) can only be used in the 10 inch
system expansion chassis.

9.4.1 15 Inch System Expansion Chassis

The 15 inch system expansion chassis, INTERDATA Product Number M49-020, contains eight universal
expansion slots which can accept combinations of memory modules, single board peripheral controllers,
systems modules, Selector Channels, or user designed interfaces as described for the basic Processor

chassis (Section 9. 3). Included with this chassis are the cooling fans and system interconnecting cables.

9.4.2 10 Inch System Expansion Chassis

The 10 inch system expansion chassis, INTERDATA Product Number M49-000, contains six 10 inch I/0 ex-
pansion slots which can accept any combination of up to six wire-wrap or copper peripheral controllers,
systems modules, or user designed interfaces as described for the basic Processor chassis (Section 9. 3).
Included with the chassis are the coolihg fans and system interconnecting cables. The power supply is pur-
chased separately. Power for this chassis is provided by the System Power Supply, INTERDATA Product
Number M49-002.

9.5 CIRCUIT BOARD DISTRIBUTION

An INTERDATA Digital System may be configﬁred in a variety of ways. However, the following factors
must be considered when determining circuit boardidistribution within the basic Processor and the system
expansion chassis.

1. The Selector Channel can only be placed in Slot 0 of the Processor chassis, or Slots 6, 4, 2,
or 0 of the system expansion chassis.

2. All slots below the position where the SELCH is inserted become SELCH Bus slots. (This only
applies within the chassis containing the SELCH.) The SELCH Bus extends down the left side con-
nectors (front view). Note that all 7", and 10" with adapter, device controllers that are connected
to the Multiplexor Bus from the right side connectors: (front view) may be inserted in vacant SELCH
Bus slots,

3. The SELCH Bus can be extended by cable to any even numbered slot in an I/O chassis adjacent to the
chassis containing the SELCH controller.

4, The Universal Clock module (7"'x15") is always mounted on the right side (front view).
5. The Memory Protect module (7''x15") is always mounted on the left side, and is normally mounted
with the Universal Clock module.

NOTE

The Memory Protect Module must be placed ahead of all other 1/0 device control-
lers, including the SELCH.

6. All device addresses are hard-wired on the device controller cards, so that the distribution of I/0
device controllers in the chassis normally need only be considered as a matter of convenience.

7. The 15 inch systein expansion chassis, M49-020, and the basic Processor chassis may only be used
for single board I/O device controllers. For multi-board 10 inch device controllers, use the 10 inch
gystem expansion chassis, 49-000.

9-3

9.6 SYSTEM CABINET

Two variations of the system cabinets are available for housing INTERDATA Digital Systems,

The system cabinet, INTERDATA Product Number M49-004, is a basic cabinet with accessories. See
Figures 9-3, 9-4, and 9-5. This cabinet includes the basic cabinet with two side skins, chassis support
rails, exhaust fan and filter, necessary filler panels, and AC Distribution Panel.

PERFORATED TOP — 60% OPEN
AREA

REAR DOOR

MTG. UPRIGHTS

(2 PAIR) —<

SEE FIGURE 9-5
l.—— BASIC RACK

FRAME

THRU HOLES FOR
— BOLTING ADJACENT
STRUCTURES

£

N CASTERS & LEVELERS

AIR GRILLE: UNDER BASE OF RACK

REMOVABLE COVER PLATE
FOR “RAISED FLOOR"
CABLE ROUTING

(ZZIZ 7107

Figure 9-3. Basic Cabinet

HINGE SIDE
32-3/16 , .
o T
b ~ :
|

- O
/1 M1| kEY HOLES FOR MOUNTING
™\ SIDE SKINS.
SIDE SKINS LIFT ON e
0 AND OFF : “FLUSH"

' DOOR

33-1/4 oot

K]
N STIFFENING

HAT SECTION
6-7 \
66-7/8 e
MOUNTING
SURFACE
[
~ 21-3/8

, I T

L1/ \
L~ HALF
/ N SIZE DOOR
4\ KL& SIDE PANEL /8
U
8 EA. 115V AC RECEPTACLES
FOR PERIPHERAL AND
AC CONVENIENCE OUTLETS INTERNAL RACK REQUIREMENTS
FOR SCOPES & SOLDERING
2-3/8 IRONS, ETC.
3.5

15/64

LY

15" TYPE

RE-SETABLE, SYSTEM 14/3 S 600V
20 AMP A.C. CIRCUIT BREAKERS A.C.INPUT
LINE CORD
WITH 3 PRONG
AC POWER PANEL PLUG

Tigure 9-4. Cabinet Accessories, Sheet 1 of 2

18-5/16

BOLTS TO
RACK UPRIGHT

~
Q9
e SPACER (2)
HINGE 19 RETAINING
BRACKET
N (2)
P\ FILLER PANELS

#10-FLATWASH (4}
#10-SPLIT LOCK (4)

#10-32 X 3/8 LG
PHPS
(4)

32 RECEPTACLE HOLES FOR
15 PIN CINCH TYPE TTY OR
PERIPHERAL CONNECTOR

59-3/16

It
N J%

/ FULL DOOR
I

“FLUSH"
LATCH

2% X 4% CUT—OUT FOR
CUSTOMER REQ'D SPECIAL
CONNECTOR PANEL

CONNECTOR PANEL

/" 2SLOTS 1/4 W X 1-1/4 LG FOR

VERT. ADJUSTMENT

7/8

e
23-7/16

}\\ CHASSIS SUPPORT RAIL

Figure 9-4, Cabinet Accessories, Sheet 2 of 2

9-6

-
3

21-3/8———’4

j@¢———30"" DEEP ——»

— —

TOP VIEW

l¢————22-1/8 WIDE ————]
4—-——31——19-1/8————>

HINGE
POINT

-4 1-1/2 SUPPORT SURFACE
1"

¢

[]

64-3/4 USABLE PANEL OPENING ————— ¥

A

I
|
[
\ 18.31 '

¢ HOLE TO HOLE

17-13/16

BETWEEN
UPRIGHTS

!

T

7"

¢

BASE OF REAR
| A DOOR

- YP
| 1-1/27 3

———\

67-7/8

AN

FLOOR LEVEL

]
1];7]
= =
< <
[+ 4 g o« ©
& ® = & =
(o] s} (o] o~
-9 o o N
o o
o] 2D l
[72) w
oy
i, L3-9/32 TYP
SECTION A-A

UPRIGHTS: 1/8 THK CRS, TAPPED
= WITH 10-32 HOLES ON
RETMA Qs/s -5/8-1/2

SUPPORT RAILS 1/8 THK CRS WITH

SLOTS FOR VERT
ADJUSTMENT

RAILS ARE NOT SUPPLIED WITH
BASIC SYSTEMS CABINET

WEIGHT 300
FINISH BLACK TEXTURES
I VINYL PAINT
UPRIGHTS
SUPPgRT CHROMATE
RAILS CONVERSION

OPEN AREA IN REAR
OF RACK IS USED FOR MTG
OF “BLANK’ CONNECTOR
PANEL OR “FUSED A.C.”
CONVENIENCE MODULE AND
1/0 CONNECTOR PANEL

Figure 9-5. Basic Cabinet Physical Dimensions

9-7

9.7 SYSTEM CONFIGURATION DATA

The flexibility derived from the modular cesign concept of the INTERDATA equipment permits a wide
variety of system configurations. Therefore, care must be taken during the planning and installation
of a Digital’ System to insure that the resulting system configuration meets the user's requirements,
and that the equipment is installed correctly in the system cabinets.

To accomplish this, the digital system configuration is divided into four phases. The first phase is
determining the requirements of the system. In this phase, as in all four phases, INTERDATA Sales
Engineers will provide detailed information on INTERDATA hardware. To solve specific application oriented
problems, the INTERDATA Technical Support Group, and Systems Group are available.

The second phase is the physical distribution of the various circuit boards within the chassis as discussed in
Section 9-5.

The last two phases, determining the power requirements of the system, and determining the physical con-
figurations of the equipment in the system cabinets, are discussed in the following sections.

9.7.17 Power Requirements

The Processor power supply provides ample power to the basic Processor chassis. However, as expan-
sion items are integrated into a digital system, care must be taken to insure that adequate regulated
power is available for all of the equipment. The following example illustraizs the power requirements
for a typical Model 70 system. Note that the basic Processor chassis includes a power supply for that
chassis only; the 15 inch Expansion chassis includes a power supply for that chassis only; and that a
power supply must normally be purchased separately for the 10 inch I/O chassis, unless a complete
power balance has been calculated for all chassis other than the Processor chassis.

Configuration . Power
Quantity Produect Number Description +5V +16V -16V
1 M70-000 Model 70 Processor with 8,192 17 2.4 2.4
Byte Core Memory

3 M70-300 8,192 Byte Memory Module 4.5 0.3 0.6
1 M70-100 Power Fail Protection - - -
1 MT70-103 Selector Channel 2.3 - -
1 M70-101 Memory Protect 1.0 - -
1 M48-000 Clock Module 1.0 - -
1 M46-000 Teletypewriter - - -
1 MO07-735 Disc 3.0 - -
1 M49-000 ExpansionChassis - - -
1 M49-020 Expansion Chassis - - -
1 M49-002 Power Supply

Total Power Required in Amperes 28.8 2.7 3.0

Power Balance Example

Processor +5V. +16V. -16V
Basic Processor Power Supply 24.0 3 3
Basic Processor Chassis Power requirement -21.5 2.7 3.0

2.5 .3 0

Processor power is adequate (not normally necessary to do this, since the power supply is designed to
handle maximum possible Processor Chassis Configuration).

Expansion Chassis

M49-002 Expansion Chassis Power Supply 24.0 3 3

Power required for items not in

Processor chassis -17.3 - -
168.7 3 3

Ample power available to support the M49-000 Expansion chassis, in which the disc controller would be
mounted. Refer to the current INTERDATA price list for complete power requirement information.
9.7.2 System Cabinets Configuration

Configuration Data Sheet A, Figure 9-6, serves as aid in the physical layout of components within a system
cabinet.

When configuring system cabinets, the following information should be noted:

EXTERNAL FRONT
1. The Control and Filler Panels must be mounted immediately in front of the Processor chassis.
2. The half door must occupy location MU5-23.
3. The Air Grill occupies location MU1-4. '
4. TFiller Panel C should be used in front of any chassis unless a door is present.
5, Doors cannot be mounted over the Control Panel.

INTERNAL FRONT
1. All chassis must be contiguous.
2. The system expansion chassis must be mounted below the Processor chassis.
3. Peripherals are normally mounted above the Processor chassis.
4, The system expansion chassis must be located immediately below the Processor chassis.
5. The optional blower including baffle occupies location MU1-5.

INTERNAL REAR
1. The AC Convenience Panel normally occupies location MU1-2.
2. The I/O Connector Panel normally occupies location MU3-5.

3. Therelay module mounting dimension includes 3-1 /2" of space to allow for the replacement of the
relays.

4. Power supplies for the Processor and system expansion chassis are mounted immediately
behind the respective chassis.

5. The paper tape punch or magnetic tapes 'rear' space is not usable.

Table 9-1, Mounting Dimensions, provides vertical measurements and mounting unit requirements for other
cabinet accessories and some of the available peripheral devices. Figure 9-6 illustrates the use of
Configuration Data Sheet A for a Model 70 Processor with an INTERTAPE Cassette, Digital Multiplexor,
Drum, and Magnetic Tape mounted in two M49-004 System Cabinets.

MOUNTING UNITS

_—— e = o - - - — = N
—Nubmmwmwo—wuauoﬂmoo

IMU 2 1-3/4"

TOTAL SPACE

AVAILABLE
164-3/4"
37 MU

CONFIGURATION DATA SHEET "A"

CUSTOMER

PHYSICAL LAYOUT

EXTERNAL FRONT

P.0. or QUOTE NO.

DATE

INTERNAL FRONT

INTERNAL REAR

[~ _FILLERPANELD _ |

DIGITAL MPX CHASSIS |

| _cassevTe _ |

| PROCESSOR CHASSIS _ |

[PROCESSOR |

POWER SUPPLY — |

FILLER A [T T T T T T B
7 __ 10"expansion | [EXPANSION _ __ __|
D N _cHassis) [_powem suppLy |
I I A N AT TN T A T
T T [T __ POWERSUPPLY _ _ |
I T YV 1T R Y e B B
IR I e B S . | A
)| T T T T T | TTERMINATION PANEL
T T T T € ___SPARE_ |

] BAFFLE [o

[- 1= | | _T/0 CONNECTOR PANEL
o _AIRGRILL BLOWER

_____ - [T (OPTIONAL)___ [_AC.DISTRIBUTION PANEL]

ATay

9-10

Figure 9-6. Typical Examples - Configuration Data Sheet A (Sheet 1 of 2)

CONFIGURATION DATA SHEET "A" CUSTOMER
PHYSICAL LAYOUT P.0. or QUOTE NO. DATE
EXTERNAL FRONT INTERNAL FRONT INTERNAL REAR
- _ — 1\ _ _ _1+-—\—— ——
Y R I A B S ——
35 R B I B I ——
Wl 11— -] -
| I I A N O —
el - — - - 1rce=_-—__ _ _ _ 1+
31 — o _ 1 L ___ _UNAVAILABLE |
30f __ MAGNETIC TAPE _ _MAcNeTicTAPE _ V]
eof oisPLAY Yy - oPLAY Y}]
el - — — "\ 11— -]
P22 R I I B SO —
PP O N U i I —
28 - - 1}V — ——]
24
w2l 1 __ __ _]k]
22y 0 I ___ I — __SPARE _ __ ___|
~2) I SPARE]
Qof —// —7fFT7 —— (V- I - -
2| _ — — — 1 b __ __]|} _DRUMPOWERSUPPLY _ |
© 18]
214 I _ [I I
L] R I -]
Sl T T T T T T [orummemory 1| UNAVAILABLE
l4_~____HALFDOOR_________ [T S —
13 - B B N B
™]
T R B AN i A ———
ol e [- |
9 1L | SPARE
of B i
MU = |-3/4" 7y] _ 1 L e
TotaL space 6§ 1L SPARE
AVAII.A.LE 5]
P — 1 —~ 7| | __T/0 CoNNECTOR PANEL
s{ _ _ARGRILL _ _ %]
3 | (N O W — | _AC,CONVENIENCE PANEL |
|
ara

Figure 9-6. Typical Examples - Configuration Data Sheet A (Sheet 2 of 2)

9-11

TABLE 9-1. MOUNTING DIMENSIONS

Product Description Ux::t;:::lg' d Mez:lf;;ﬁn ¢

External Front

Display Panel with Filler 'A’ 4 ™

Halfsize Door 19 33-1/4"

Air Grill 4 ™

Filler A 1 1-3/4"

Filler B 3 5-1/4"

Filler C 4 ™

Filler D 6 10-1/2"
Internal Front

Processor Chassis 4 ™

15" Expansion Chassis 4 ™

10" Expansion Chassis 4 ™

*Paper Tape Reader 4 A

*Paper Tape Punch 9 15-3/4"

*INTERTAPE with Filler A 4 7"

(for air circulation) - Filler goes below INTERTAPE

*Mag Tape Drive 14 24-1/2"

Drum Unit (131KB-524KB) 8 14"

Removable Cartridge Disk System 7 12-1/4

Blower, including 1-3/4'" baffle mounted on top of 5 8-3/4"

blower

Paper Tape Handler 4 7"
Internal Rear

Processor Power Supply 4 "

Expansion Chassis Power Supply 4 ™

Paper Tape Punch 9 15-3/4"

Magnetic Tape 14 24-1/2"

Drum Power Supply 3 5-1/4"

AC Convenience Panel 2 3-1/2"

I/0 Connector Panel 3 5-1/4"

Rear Blank Panel (fits below rear door) 4 ™

Digital Mux Chassis 3 5-1/4"

Relay Module - with screw terminals and clearance 6 10-1/2"

for relay access

64 Input Screw Terminal Panel 7 12-1/4"

Input Power Supply for Digital Mux 3 5-1/4"

NOTE: Rear door covers all but the four lowest Mounting Units

*Allow for these modules in external front layout.

9-12

APPENDIX 1
INSTRUCTION SUMMARY - ALPHABETICAL

INSTRUCTION OP CODE MNEMONIC PAGE NO.

Acknowledge Interrupt DF - Al 4-37
Acknowledge Interrupt RR OF AIR 4-37
Add Halfword 4A AH 4-8

Add Halfword Immediate CA AHI 4-8

Add Halfword RR . 0A AHR 4-8

Add Halfword Memory 61 AHM 4-8

Add Tmmediate Short 26 AIS 4-8

**Add to Bottom of List 65 ABL 4-58
**Add to Top of List 64 ATL 4-58
Add with Carry Halfword 4E ACH 4-9

Add with Carry Halfword RR 0E ACHR 4-9

AND Halfword 44 NH 4-17
AND Halfword Immediate C4 NHI 4-17
AND Halfword RR 04 NHR 4-17
Autoload D5 AL 4-43
Branch and Link 41 BAL 4-35
Branch and Link RR 01 BALR 4-35
*Branch on False Condition 43 BFC 4-33
*Branch on False Condition RR 03 BFCR 4-33
*Branch on True Condition 42 BTC 4-32
*Branch on True Condition RR 02 BTCR 4-32
*Branch on True Backward Short 20 BTBS 4-32
*Branch on True Forward Short 21 BTFS 4-32
*Branch on False Backward Short 22 BFBS 4-33
*Branch on False Forward Short 23 BFFS 4-33
Branch on Index High Co BXH 4-34
Branch on Index Low or Equal C1 BXLE 4-34
Compare Halfword 49 CH 4-13
Compare Halfword Immediate Cc9 CHI 4-13
Compare Halfword RR 09 CHR 4-13
Compare Logical Byte D4 CLB 4-23
Compare Logical Halfword 45 CLH 4-12
Compare Logical Halfword Immediate C5 CLHI 4-12
Compare Logical Halfword RR 05 CLHR 4-12
Divide Halfword 4D DH 4-15
Divide Halfword RR (1)) DHR 4-15

*see Extended Branch Mnemonics in Appendix 3 for forty-four (44) additional symboiic instructions.
**Models 70, 80 only

Al-1

INSTRUCTION OP CODE MNEMONIC PAGE NO.

Exchange Byte RR 94 EXBR 4-23
Exchange Program Status RR 95 EPSR 4-48
Exclusive OR Halfword 47 XH 4-19
Exclusive OR Halfword Immediate (o) XHI 4-19
Exclusive OR Halfword RR 07 XHR 4-19
**Floating - Point Add 6A AE 4-52
**Floating - Point Add RR 2A AER 4-52
**Floating -~ Point Compare 69 CE 4-54
**Floating - Point Compare RR 29 CER 4-54
**Floating - Point Divide 6D DE 4-56
**Floating - Point Divide RR 2D DER 4-56
**Floating - Point Load 68 LE 4-51
**Floating — Point Load RR 28 LER 4~51
**Floating - Point Multiply 6C ME 4-55
**Floating - Point Multiply RR 2C MER 4-55
**Floating - Point Store 60 STE 4-51
**Floating - Point Subtract 6B SE 4-53
**Floating - Point Subtract RR 2B SER 4-53
Load Byte D3 LB 4-~22
Load Byte RR 93 LBR 4-22
Load Complement Short 25 LCS 4-4

Load Halfword 48 LH 4-4

Load Halfword Immediate C8 LHI 4-4

Load Halfword RR 08 LHR 4-4

Load Immediate Short 24 LIS 4-4

Load Multiple D1 LM 4-6

Load Program Status Word C2 LPSW 4-47
Multiply Halfword 4C MH 4-14
Multiply Halfword RR oC MHR 4-14
Multiply Halfword Unsigned DC MHU 4-14
Multiply Halfword Unsigned RR 9C MHUR 4-14
OR Halfword 46 OH 4-18
OR Halfword Immediate Cé6 OHI 4-18
OR Halfword RR 06 OHR 4-18
Output Command DE oC 4-39
Output Command RR 9E OCR 4-39

**Models 70, 80 only

Al-2

OP CODE

INSTRUCTION MNEMONIC PAGE NO.
**Read Block D7 RB 4-45
**Read Block RR 97 RBR 4-45
Read Data DB RD 4-39
Read Data RR 9B RDR 4-39
Read Halfword D9 RH 4-41
Read Halfword RR 99 RHR 4-41
Rotate Left Logical EB RLL 4-27
Rotate Right Logical EA RRL 4-28
**Remove from Bottom of List 67 RBL 4-59
**Remove from Top of List 66 RTL 4-59
Sense Status DD SS 4-38
Sense Status RR 9D SSR 4-38
Shift Left (Fullword) Arithmetic EF SLA 4-29
Shift Left (Fullword) Logical ED SLL 4-25
Shift Left (Halfword) Arithmetic CF SLHA 4-29
Shift Left (Halfword) Logical cDh SLHL 4-25
Shift Left Logical Short 91 SLLS 4-25
Shift Right (Fullword) Arithmetic EE SRA 4-30
Shift Right (Fullword) Logical EC SRL 4-26
Shift Right (Halfword) Arithmetic CE SRHA 4-30
Shift Right (Halfword) Logical CcC SRHL 4~26
Shift Right Logical Short 90 SRLS 4-26
Simulate Interrupt E2 SINT 4-48
Store Byte D2 STB 4-22
Store Byte RR 92 STBR 4-22
Store Halfword 40 STH 4-6
Store Multiple DO STM 4-5
Subtract Halfword 4B SH 4-10
Subtract Halfword Immediate CB SHI 4-10
Subtract Halfword RR 0B SHR 4-10
Subtract Immediate Short 27 SIS 4-10
Subtract with Carry Halfword 4F SCH 4-11
Subtract with Carry Halfword RR OF SCHR 4-11
Supervisor Call El svC 4-49
Test Halfword Immediate C3 THI 4-20
**Write Block D6 WB 4-46
**Write Block RR 96 WBR 4-46
Write Data DA WD 4-40
Write Data RR 9A WDR 4-40
Write Halfword D8 wWH 4-42
Write Halfword RR 98 WHR 4-42

**Models 70, 80 only

Al1-3/A1-4

APPENDIX 2
INSTRUCTION SUMMARY - NUMERICAL

OP CODE MNEMONIC INSTRUCTION PAGE NO.
01 BALR Branch and Link RR 4-35
02 BTCR Branch on True Condition RR 4-32
03 BFCR Branch on False Condition RR 4-33
04 NHR AND Halfword RR 4-17
05 CLHR Compare Logical Halfword RR 4-12
06 OHR OR Halfword RR 4-18
07 XHR Exclusive OR Halfword RR 4-19
08 LHR Load Halfword RR 4-4
09 CHR Compare Halfword RR 4-13
0A AHR Add Halfword RR 4-8
0B SHR Subtract Halfword RR 4-10
0C MHR Multiply Halfword RR 4-14
0D DHR Divide Halfword RR 4-15
0E ACHR Add with Carry Halfword RR 4-9
OF SCHR Subtract with Carry Halfword RR 4-11
20 BTBS Branch on True Backward Short 4-32
21 BTFS Branch on True Forward Short 4-32
22 BFBS Branch on False Backward Short 4-33
23 BFFS Branch on Falgse Forward Short 4-33
24 LIS Load Immediate Short 4-4
25 LCS Load Complement Short 4-4
26 AIS Add Immediate Short 4-8
27 SIS Subtract Immediate Short 4-10

*%98 LER Floating-Point Load RR 4-51

**29 CER Floating-Point Compare RR 4-54

**k2A AER Floating-Point Add RR 4-52
**2B SER Floating-Point Subtract RR 4-53
*%92C MER Floating-Point Multiply RR 4-55
**2D DER Floating-Point Divide RR 4-56
40 STH Store Halfword 4-6
41 BAL Branch and Link 4-35
42 BTC Branch on True Condition 4-32
43 BFC Branch on False Condition 4-33
44 NH AND Halfword 4-17
45 CLH Compare Logical Halfword 4-12
46 OH OR Halfword 4-18
47 XH Exclusive OR Halfword 4-19
48 LH Load Halfword 4-4
49 CH Compare Halfword 4-13
4A AH Add Halfword 4-8
4B SH Subtract Halfword 4-10
4C MH Multiply Halfword 4-14
4D DH Divide Halfword 4-15
4F ACH Add with Carry Halfword 4-9
4AF SCH Subtract with Carry Halfword 4-11

**60 STE Floating-Point Store 4-51
61 AHM Add Halfword Memory 4-8

**64 ATL Add to Top of List 4-58

**65 ABL Add to Bottom of List 4-58

**Models 70, 80 only

A2-1

OP CODE MNEMONIC INSTRUCTION PAGE NO.
**66 RTL Remove from Top of List 4-59
**GT RBL Remove from Bottom of List 4-59
**68 LE Floating-Point Load 4-51
**69 CE Floating-Point Compare 4-54
**GA AE Floating-Point Add 4-52
**6B SE Floating-Point Subtract 4-53
**6C ME Floating-Point Multiply 4-55
**6D DE Floating-Point Divide 4-56

90 SRLS Shift Right Logical Short 4-26
91 SLLS Shift Left Logical Short 4-25
92 STBR " Store Byte RR 4-22
93 LBR Load Byte RR 4-22
94 EXBR Exchange Byte RR 4-23
95 EPSR Exchange Program Status RR 4-48

*%96 WBR Write Block RR 4-46

**Q7 RBR Read Block RR 4-45
98 WHR Write Halfword RR 4-42
99 RHR Read Halfword RR 4-41
9A WDR Write Data RR 4-40
9B RDR Read Data RR 4-39
9C MHUR Multiply Halfword Unsigned RR 4-14
9D SSR Sense Status RR 4-38
9E OCR Output Command RR 4-39
9F AIR Acknowledge Interrupt RR 4-37
Cco BXH Branch on Index High 4-34
Cc1 BXLE Branch on Index Low or Equal 4-34
C2 LPSW Load Program Status Word 4-47
C3 THI Test Halfword Immediate 4-20
C4 NHI AND Halfword Immediate 4-17
C5 CLHI Compare Logical Halfword Immediate 4-12
(o1 OHI OR Halfword Immediate 4-18
Cc7 XHI Exclusive OR Halfword Immediate 4-19
C8 LHI Load Halfword Immediate 4-4
Cc9 CHI Compare Halfword Immediate 4~13
CA AHI Add Halfword Immediate 4-8
CB SHI Subtract Halfword Immediate 4-10
CC SRHL Shift Right (Halfword) Logical 4-26
CD SLHL Shift Left (Halfword) Logical 4-25
CE SRHA Shift Right (Halfword) Arithmetic 4-30
CF SLHA Shift Left (Halfword) Arithmetic 4-29
DO STM Store Multiple 4-5
D1 LM Load Multiple 4-6
D2 STB Store Byte 4-22
D3 LB Load Byte 4-22
D4 CLB Compare Logical Byte 4-23
D5 AL Auto Load 4-43

**¥D6 WB Write Block 4-46

**D7 RB Read Block 4-45
D8 WH Write Halfword 4-42
D9 RH Read Halfword 4-41
DA WD Write Data 4-40
DB RD Read Data 4-39
DC MHU Multiply Halfword Unsigned 4-14
DD SS Sense Status 4-38

**Models 70, 80 only

A2-2

OP CODE MNEMONIC INSTRUCTION PAGE NO.
DE ocC Output Command 4-39
DF Al Acknowledge Interrupt 4-37
El svC Supervigor Call 4-49
E2 SINT Simulate Interrupt 4-48
EA RRL Rotate Right Logical 4-28
EB RLL Rotate Left Logical 4-27
EC SRL Shift Right (Fullword) Logical 4-26
ED SLL Shift Left (Fullword) Logical 4-25
EE SRA Shift Right (Fullword) Arithmetic 4-30
EF SLA Shift Left (Fullword) Arithmetic 4-29

A2-3/A2-4

APPENDIX 3
EXTENDED BRANCH MNEMONICS

INSTRUCTION OP CODE (M1) MNEMONIC OPERANDS

Branch on Carry 428 _BC A(X2)

Branch on Carry RR 028 BCR R2

Branch on No Carry 438 BNC A(X2)

Branch on No Carry RR 038 BNCR R2

Branch on Equal 433 " BE A(X2)

Branch on Equal RR 033 BER R2

Branch on Not Equal 423 BNE A(X2)

Branch on Not Equal RR 023) BNER R2

Branch on Low 428 BL A(X2)

Branch on Low RR 028 BLR R2

Branch on Not Low 438 BNL A(X2)

Branch on Not Low RR 038 BNLR R2

Branch on Minus 421 BM A(X2)

Branch on Minus RR 021 BMR R2

Branch on Not Minus 431 BNM A(X2)

Branch on Not Minus 031 BNMR R2

Branch on Plus 422 BP A(X2)

Branch on Plus RR 022 BPR R2

Branch on Not Plus 432 BNP A(X2)

Branch on Not Plus RR 032 : BNPR R2

Branch on Overflow 424 BO A(X2)

Branch on Overflow RR 024 BOR R2

Branch Unconditional 430 B A(X2)

Branch Unconditional RR 030 _ BR R2

Branch on Zero 433 BZ A(X2)

Branch on Zero RR 033 BZR R2

Branch on Not Zero 423 BNZ A(X2)

Branch on Not Zero RR 023 BNZR R2

No Operation 420 ‘ NOP

No Operation RR 020 NOPR

Branch on Carry Short 208 BCS A (Backward Reference)
218 BCS A (Forward Reference)

Branch on No Carry Short 228 BNCS A (Backward Reference)
238 BNCS A (Forward Reference)

Branch on Equal Short 223 BES A (Backward Reference)
233 BES A (Forward Reference)

Branch on Not Equal Short 203 BNES A (Backward Reference)
213 BNES A (Forward Reference)

A3-1

INSTRUCTION

OP CODE (M1)

MNEMONIC

OPERANDS

Branch on Low Short

Branch on Not Low Short

Branch on Minus Short

Branch on Not Minus Short

Branch on Plus Short

Branch on Not Plus Short

Branch on Overflow Short

Branch Unconditional Short

Branch on Zero Short

Branch on Not Zero Short

A3-2

208
218

228

238 -

201
211

221
231

202
212

222
232

204
214

220
230

223
233

203
213

BLS
BLS

BNLS
BNLS

BMS
BMS

BNMS
BNMS

BPS
BPS

BNPS
BNPS

BOS
BOS

BS
BS

BZS
BZS

BNZS
BNZS

A (Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A (Backwa.rd Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

APPENDIX 4

OP CODE MAP

0 2 4 6 9 c D E
W BTBS STH STE SRLS BXH STM %
BALR BTFS BAL AHM SLLS BXLE LM
BTCR BFBS BTC ///////// STBR LPSWP STB SINTP
BFCR BFFS BFC ///% ' LBR) THI LB // ////
NHR LIS NH ATL EXBR NHI CLB /////
CLHR LCS CLH ABL EPSR P CLHI AL P //
OHR AIS OH RTL wBR P OHI ws P //////
XHR SIS XH RBL RBR P XHI RB P /////
LHR LER LH LE wHR P LHI wh P //////
CHR CER cH CE RHR P CHI RH P ////
AHR AER AH AE wpR P AHI wp P
SHR SER SH SE RDR P SHI rD P RLL
MHR MER MH ME MHUR SRHL MHU SRL
DHR DH ssrR P SLHL ss P SLL
ACHR ///// ACH //// /| ocr P SRHA oc P SRA
SCHR /// SCH /// AR P SLHA Al P SLA
RR RX RR RS RX RS

P = Privileged Instructions

A4-1/A4-2

APPENDIX 5
INSTRUCTION EXECUTION TIMES

MODEL 74
Instr. RR or SF RS No Index RS Indexed RX No Index
ACH 1,75 3.50
AH 1.50 2,50 3.00 3.25
AHM 4,75
Al 4,25 6.75
AIS 2.25
AL 6.25+3. 250
BAL 2,00 3.00
BFBS 2.25/8.75
BFC 2.25/2.00 3.25/3. 00
BFFS 2.25/3.50 ‘
BTBS 2,00/4.00
BTC 2.00/2.25 3.00/3.25
BTFS 2.00/3.75
BXH 4,50/5.,00 4.50/5.00
BXLE 4.75/4.75 4.75/4.75
CH 2,25/2,50 3.25/8.50 3.75/4.00 4.25/4.50
CLB 4,25
CLH 1.50 2.50 3.00 3.25
DH 54,25/54. 25/56. 5
EPSR 4,00
EXBR 2.00
LB 2,25 4,00
ICS 2.25
LH 1.50 2.50 3.00 3.25
LIS 2.25
LM 4,0+1.5n
LPSW 6.25 6.75
MH 86.50/438.50/50. 50
MHU 33.75/40.75/47.75
NH 1.50 2,50 3.00 3.25
ocC 3.50 4,50
OH 1.50 2.50 3.00 3.25
RB 5.75+3. 5n+1, 25XR2 5, 25+3, 5n
RD 3.25 6.25
RH 4,25/3,25 5.75/5.50
RLL 5,00+1.50n 5. 00+1, 50n
RRL 5.00+1.50n 5.00+1.50n
SCH 1.75 3.50
SH 1.50 2,50 3.00 3.25
SINT 8.25 8.75
SIS 2.25
SLA 6.00+1.50n 6.00+1,50n
SLHA 6.00+1.00n 6,00+1.00n

56.00/56. 00/58. 2556, 0/56. 0/58. 25

RX Indexed

6.75+3, 25n
3.50

3.75/3.50

3.50/3.75

4,.25/4,50
4.25
3.25

4.00
3.25

4.0+1.5n

Comments

n=no. of bytes
n=no. of bytes

No Branch/Branch
No Branch/Branch
No Branch/Branch
No Branch/Branch
No Branch/Branch
No Branch/Branch
No Branch/Branch
No Branch/Branch

Signs alike/differ

Best/Ave/Worst

n=Registers

38.25/45, 25/52. 25 38. 25/45. 25/52, 25 Best/Ave/Worst
35.50/42.50/49,5035.50/42.50/49, 50 Best/Ave/Worst

5, 25+3, 5n
6.25
5.50/5.50

n=Bytes
Byte/HW

n=Shifts
n=Shifts

n=Shif§s
n=Shifts

A5-1

Instr. RR or SF RS No Index RS Indexed RX No Index
SLHL 4,25+1,.25n 4.25+1,25n

SLL 6.00+1.50n 6.00+1.50n

SLLS 3.25+1, 25n

SRA 6.75+1.75n 6.75+1,75n

SRHA 4,25+1,25n 4.25+1,25n

SRHL 4,25+1.25n 4.25+1,25n

SRL 6.75+1.50n 6.75+1.50n

SRLS 3.25+1,.25n

Ss 3.50 6,25

STB 2,75 4,50

STH 3.75

STM 5, 0+1, 25n
SvC 10.50 10.50

THI 2,50 2.50

WwB 6. 25+2, 75n+1. 256XR2 5,75+2,75n
WD 3.50 4,50

WH 5.00/3.75 6.00/4,50
XH 1.50 2.50 3.00 3.25

Normal I/0O Interrupt - 7.75 microseconds
Immediate Interrupt
Machine Malfunction
Illegal Instruction
Auto-Boot Loader

- 7.75 microseconds
- 8. 00 microseconds
- 8. 25 microseconds
- 3 microseconds /byte

RX Indexed

6.25
4,50
3.75
5, 0+1, 25n

5, 75+2, 750
4,50
6.00/4,50

3.25

Comments

n=Shifts
n=Shifts
n=Shifts

=Shifts
n=Shifts
n=Shifts
n=Shifts
n=Shifts

n=Registers

n=Bytes

Byte/HW

PSW Bit 6, No Queue Service Interrupt: add 2.75 microseconds to LPSW or EPSR or PSW SWAP.

Queue Service Interrupt: add 8.50 microseconds to LPSW or EPSR or PSW SWAP.

A5-2

Instr.

ABL
ACH
AE
AH
AHM
Al
AlIS
AL
ATL

BAL
BFBS
BFC
BFFS
BTBS
BTC
BTFS
BXH
BXLE

CE
CH

CLB
CLH

DE
bH
EPSR
EXBR

LB
LCS
LE
LH
LIS
LM
LPSW

ME
MH
MHU
NH

oC
OH

RB
RBL
RD

RH

RLL
RRL
RTL

RR or SF

1.25
21.25/25.25/34
1.0

2.75
1

7
.5

10.75/12.75/9.75
2.0/2.25

1.0

105/108.25/116.25
10.25/12/10.25/10.5
3.25

1.0

.0
.5
2

«25

5/13.25/19.25/27.5

o e
PR

60.5/74.25/91.25
8/9/8.75/8.25
6.0

1.0

2.25
1.0

&
g
w
=

MODEL 70

RS RS Indexed
2,25 3.25
5.0/4.5 6.0/5.5
5,0/5.0 6.0/6.0
3.0/3.25 4.0/4.25
2,25 " 8,25
2.0 3.0
5,25 6.25
2,25 3.25
2,25 3,25

3.5+1,0(n-1) 4.5+1.0(n-1)
3.5+1.0(n-1) 4.5+1,0(n-1)

RX

5/13/13

3.25
23/26.5/83.5
3.25

4.0

5.0

6.5+ 4.5n
5/11,5/11.75

2.5

2.75/3.0

2.75/8.0

12.0/138.0/9.75
4,0/4.25

3.75
3. 25

106.75/109.5/117. 25
12.25/14/12.25/12. 5

3.25

13.25/14/20/29
3.0

4.5+ 1.5n

54.25/73.5/91.75
10/11/10.75/10, 25
8.0

3.25

3.25
6.5+ 3n
4.25/11,75/12

4.5
5.5/4.75

4.25/13/13

Comments

OVF/NORM/WRAP

MIN/AVE/MAX

n=no, of bytes
OVF/NORM/WRAP

No BR/BR
No BR/BR
No BR/BR
No BR/BR
No BR/BR
No BR/BR
No BR/BR
No BR/BR

Fot/ g =/ty -
Signs alike/Signs differ

MIN/AVE/MAX
/=) =)=

0/BEST/AVE/WORST

n=no. of regs.

MIN/AVE/MAX
++/ =)t ==

n=no, of bytes
EMPTY/NORM/WRAP

BYTE/HALFWORD
n=no. of shifts

n=no. of shifts.
EMPTY/ NORM/WRAP

A5~3

Instr.

SCH
SE
SH
SINT

SIS
SLA
SLHA
SLHL
SLL
SLLS

SRA
SRHA
SRHL
SRL
SRLS
S8
STB
STE
STH
STM
svC

THI
WD
WH

XH

A5-4

RR or SF
1.25
22/30.5/29.25
1.0

See I/O Channel Timing

1.5

2. 0+, 25(n-1)

2. 0+.25(n-1)
2,25
2.0

5. 0+3n
2,25
3.5/2.75

1.0

RS RS Indexed

2.25 3.25

3,5+, 25(n-1) 4.5+.25(n-1)
3.5+.25(n-1) 4.5+.25(n-1)
2. 75+.25(n-1) 3, 75+.25(n-1)
3,0+, 25(n-1) 4.0+.25(n-1)

3. 25+, 25(n-1) 4.25+,25(n-1)
3.25+.25(n-1) 4.25+,25(n-1)
2. 75+.25(n-1) 3.75+.25(n-1)
3.0+.25(n-1) 4. 0+.25(n-1)

7.0 8.0
2,25 3.25
2.25 3.25

RX
3.25
25/31.5/48.75
3.25

5.5+3n
4,25
4.75/4.0

3.25

Comments

MIN/AVE/MAX

n=no. of shifts
n=no. of shifts
n=no. of shifts
n=no. of shifts
n=no. of shifts

n=no. of shifts
n=no. of ghifts
n=no. of shifts
n=no. of shifts
n=no, of shifts

n=no, of regs.

n=no. of bytes

BYTE/HALFWORD

Instr.

ABL
ACH
AE
AH
AHM
Al
AIS
AL
ATL

BAL
BFBS
BFC
BFFS
BTBS
BTC
BTFS
BXH
BXLE

CCs
CE
CH
CLB
CLM

DE
DH

ECS
EPSB
EXBR

LB
LCS
LE
LH
LIS
LM
LPSW

ME
MH
MHU
NH

ocC
OH

MODEL 80

RR or SF RS*

.53
12.01/13.61/23,01
.53 .53

1.61
.53

1.13
.53/1.33
.53/1.01
.53/1.33
.53/1.33
.53/1.01
.53/1.33
2.45/3.13
2.45/3.13

4,97/5.67
1.38/1.73 1.18/1.53
.53 .53

32.89/82,89/34,09
3.03

1.73
.53

.53
.53
4.76/8.76/14.76
.53 .53
.53

2.29
23.27/24.47/24.77
2.25
2.25
.53 .53

1.06
.53 .53

* No additional time is required for indexing.

RX
2.95/5.51/5. 81
1.01
11.41/13.01/22,41
1.01
1.49
2.29

3.99+1, 8L+2.4n
2.95/5.97/6.27

1.13

.63/1.13

.63/1.13

4.37/5.07
1.41/1.81
1.38
1.01

32.29/32.29/33,49
3.23

1.06

4.16/8.16/14.16
1.01

1.03+.5n
19.27/20.47/20.77

2.73
2.73

Comments
OVFL/NORM/WRAP

MIN/AVE/MAX

L=Leador n=Bytes
OVF/NORM /WRAP

No Branch/Branch
No Branch/Branch
No Branch/Branch
No. Branch/Branch
No Branch/Branch
No Branch/Branch
No Branch/Branch
No Branch/Branch

Signs alike/differ
Signs alike/differ

MIN/AVE/MAX

MIN/AVE/MAX

n=no. of Registers

MIN/AVE/MAX

A5-5

Instr. RR or SF RS* RX Comments

RB 3.6442,.4n 3.72+2,4n n=Bytes

RBL 3.18/4.16/4.46 EMPTY/NORM/WRAP
RD 1.06 2.12

RH 1.06/1.46 1,94/2.34 HALFWORD/BYTE
RLL .85+, 1n n=no. of shifts - 1
RRL .85+.1n n=no. of shifts - 1
RTL 3,18/4.16/4.46 EMPTY/NORM/WRAP
SCH .53 1.01

SE 12.26/13,86/23.26 11.61/13.21/22.61 MIN/AVE/MAX

SH .53 .53 ' 1.01

SINT See Automatic I/O Times

SIS .53

SLA .85+,1n n=no, of shifts - 1
SLHA .65+, 1n n=no. of shifts ~ 1
SLHL .55+, 1n .65+, 1n n=no, of shifts ~ 1
SLL .856+.1n n=no, of shifts ~ 1
SRA .85+.1n n=no. of shifts - 1
SRHA .65+, 1n n=no, of shifts - 1
SRHL .55+, 1n .65+, 1n n=no. of shifts - 1
SRL .85+,1n n=no. of shifts - 1
SS 1.06 2,12

STB .53 1.26

STE 3.17

STH 1.41

STM 1.23+,5n n=no. of Registers
sSvC 3.65

THI .53

WB 8.44+2,4n 3.724+2.4n n=Bytes

WD 1.06 2.32

WH 1.06/1.46 1.64/2.04 HALFWORD/BYTE
XH .53 .53 1.01

* No additional time is requii'ed for indexing.

A5-6

APPENDIX 6
AUTOMATIC IO OPERATION AND TIMING DATA

E
l RESET PSWBIT 4 |£EVNO = A+(X2)]
A <« X'0040°
L : j -SET
LACKNOWLEDG;I
(SHEET 4)
(SHEET 4) FETCH AUTO 1/0
SERVICE POINTER
QFLAG « 0
PTR BIT 15 RESET
SET
STORE STATUS
FETCH ccw AT PTR ADDR
STORE LOC AT
PTR ADDR +2
GET STATUS

DATA
TRANSFER

NO FROM PTR ADDR
+4 SET LOC TO

PTR ADDR +6

NOP, INIT, DMT
AND NULL
(SHEET 3)
DATA TRANSFER
(SHEET 2)
Sheet 1 of 4

A6-1

AG-2

READ

(SHEET 1)
DATA TRANSFER
C

LOAD CURRENT
ADDR AND FINAL
ADDR FROM CCB

SET BYTE COUNT
FROM CCW

4

ADDRESS DEVICE

GET STATUS

STATUS

NO

BITS 4:7
=0

READ/

READ DATA STORE
IN CUR ADDR. INCR.
,CUR ADDR. DEC.
BYTE COUNT

COUNT=0

YES

WRITE

SET INIT, NOP,
QBITS; RESET
CHAIN, CONTINUE
IN CCW

BYTE COUNT

WRITE DATA FROM
CUR ADDR. INCR
CUR ADDR. DEC

YES COUNT =0

NO AIHAR

STORE CUR. ADDR.
INTO CCB

CUR > FINAL

DONE

(SHEET 4)

BIT SET

YES

NO

FETCH T CHAR

FROM CCB

T CHAR =
LAST CHAR

DONE
(SHEET 4)

YES

Sheet 2 of 4

SET NOP
IN CCW

STORE CCW
IN CCB

)

TERMINATION
(SHEET 4)

(SHEET 1)
NOP, INIT, DMT AND NULL

v

NO

TERMINATION
(SHEET 4)

DONE
(SHEET 4)
RESET INIT
STORE CCW
IN CCB
ocl - YES
NO
NO
YES ch
NO DATA TRANSFER
ADDRESS DEVICE
omT (SHEET 2)
YES
FETCH COUNT OUTPUT COMMAND
FROM CCB BYTE FROM CCB
DECREMENT
AND RESTORE
DONE
YES (SHEET 4)
NO
Ej
DONE . TERMINATION
(SHEET 4) (SHEET 4)
Sheet 3 of 4

A6-3

A6-4

(SHEETS 2 AND 3)

(SHEET 3)
TERMINATION

STORE DEVNO/
STATUS IN CCB

(SHEET 1) NO
PSW
EXCHANGE
A . YES
l SET Q FLAG
YES
A < X ‘0082
NO
PSW EXCHANGE PUT A (CCW) IN PUT A (CCW)
FROM A QUEUE HI OR LO INTO X "008A’
CHAIN A < X 0080
YES
PUT CHAIN VAL
IN AUTOMATIC
1/0 SERVICE TABLE PSW EXCHANGE
(THIS SHEET)
NO
YES

RE—ENTER (SHEET 1)

-«— MEANS EXECUTE NEXT INSTRUCTION AS SPECIFIED BY PSW.

* - IF INTERRUPT SIGNAL IS PRESENT, FIRMWARE WILL SERVICE IT
BEFORE EXECUTION OF THE NEXT INSTRUCTION.

Sheet 4 of 4

MODEL 70
AUTOMATIC INPUT/OUTPUT INTERRUPT SERVICE TIMES

NOP NULL DMT oCI READ WRITE STTTDUS
BASE 12,00 | 15.25 | 17.00 |[17.25 | 18.00+2.5n | 18.75+2.25n [20.00
INIT — 3.50 3.50 — 4,75 4,75 4.75
Eifc‘:‘lR ne — — - | = 2.75 2,75 —
TCHAR match | — — — — 6.5 6.5 —
* count=0 — — 1.75 — 3.75 3.75 —
or CUR=final
(QUEUE high — 11.00 | 11.00 — | 11.00 11,00 —
QUEUE low — 12.75 | 12.75 — 12.75 12.75 —
2(CHAIN — 3.0 3.0 — 3.0 8.0 —
CONTINUE — 1.25+ | 1.25+ | — 1. 25+ 1.25+ —
(QSVC INT. 3.5 3.5 3.5 3.5 3.5 3.5 3.5

1. Reason for termination
2. Termination Procedure

All times are given in microseconds. To determine the execution time of a particular interrupt, add to the
base time, the time for each pertinent option. For example: a Write of one character using a Termination
Character (TCHAR) with no match takes 21,00 (BASE)
plus 2. 75 (TCHAR no match)
23. 75 microseconds

SINT Execution time is the same. Add 1.6 microseconds if indexed.
On Read and Write times, n is the number of bytes transferred per interrupt.

Normal Interrupt Latency Time: 4 microseconds

Non-Interruptable Instructions: Load/ Store Multiple, Read/Write Block, Autoload, Automatic I/O Service,
Supervisor Call, Remove from Top/Bottom of List, Add to Top/Bottom of
List

Machine Malfunction Interrupt: 7. 75us

Normal I/0 Interrupt: 7.25us

Immediate I/O Interrupt: 7.75us

One HW Burst
Interleaved Data Channel Read 7.5 us 4,5n
Interleaved Data Channel Write 7.75 us 4,75n

n = halfwords
These times assume the standard 1. 00 microsecond core

memory with no interference from a Selector Channel or
any other device on the memory bus.

A6-5

MODEL 80

AUTOMATIC INPUT/OUTPUT INTERRUPT SERVICE TIMES

Assume Ideal Device Response

A

N\

BAD
NOP NULL DMT oC READ WRITE STATUS
BASE 6.40 8.35 7.70 9, 38 11.09+1.6n 11.29+1,6n 17.41
INIT - 1.60 1.60 - 2.40 2.40 2.40
TCHAR no
match -— -— 1.68 1.68 -
TCHAR
match - - 3. 86 3.86 --
14
1.65
Count=0
LStrt=End - 1.78 1.78 -—
(QUEUE high - 6. 87 6.87 - 6. 87 6.87 -
QUEUE low - 7.30 7.30 - 7.30 7.30 -
24 QUEUE*
- -2, -2. - -2, -2, -
overflow 68 2.68 2,68 2.68 2.68
CHAIN - 1.85 1.85 - 1.85 1.85 -
-3.74 -3.74 -3.74 -3.74
CONTINUE - + + - + + -
LQSVC INT, 3.12 3.12 3.12 3.12 3.12 3.12 3.12

1. Reason for termination
2. Termination procedure

*If queue overflow occurs, no chain or continue or queue service interrupt can occur.

n = Number of bytes per interrupt

Times are given in microseconds.

SINT Execution times 0.65 microseconds less than IO service times.

Immediate interrupt = 4.42 microseconds
Normal I/0O interrupt = 4.10 microseconds
MALF interrupt = 4, 05 microseconds

Interleaved Data Channel Read 1. 85 microseconds/transfer
Interleaved Data Channel Write 2. 07 microseconds /transfer

A6-6

APPENDIX 7
I/0 REFERENCES

CONTROL CONSOLE STATUS AND COMMAND BYTE DATA
(HEX ADDRESS 01)

BIT
NUMBER 0 1 2 3 4 5 6 7
STATUS
BYTE MODE REGISTER DISPLAY
COMMAND
BYTE NORM INC
STATUS:
[smeiester o [1 [o [o [x| x | x | x]
RUN 1 0 0 0 X X b4 X
HALT 1 1 0 0 b4 b4 X X
MODE MEM WRITE 0 0 0 1 0 0 0 0
MEM READ 0 0 1 0 0 0 0 0
\. ADRS 0 0 1 1 0 0 0 0
OFF -0 0 0 0
(INST 0 0 1 0
PSW 0 1 0 0
RO, R1 1 0 0 0
R2, R3 1 0 0 1
REGISTER R4, R5 L 0 L 0
DISPTAY R6, R7 1 0 1 1
R8, R9 1 1 0 0
RA, RB 1 1 0 1
RC, RD 1 1 1 0
(RE, RF 1 1 1 1
COMMAND:
NORM In the Normal Mode, Byte 0 of the Register Display or Data/Address switches
is accessed each time an I/O operation is directed to the Control Console.
INC In the Incremental Mode, subsequent I/O operations access subsequent

bytes of the Register Display or Data/Address switches.

AT-1

TELETYPE/ASCII HEX CONVERSION TABLE

HEX (MSD) > 0 1 2 3 4 |5 | s 7
(LSD) | roletype 8 DEPENDS UPON PARITY*
Tape 7 0 0 0 0 1 1 1 1
Channels —e{ 0 0 1 1 o o1 1
5 0 1 0 1 o {1 | o 1
4 | 3| 2 1
0 0 0 0 0 NULL | . DC, SPACE 0 @ | P
1 o[oo 1 SOM X-ON ! 1 A |Q
2 o | o |1 0 | EoA gﬁPE " 2 | B |R
3 0 |0 |1 1 EOM X-OFF # 3 | c |s
4 0 110 0 | EOT g‘;iE $ 4 | D |T
5 0 1 0 1 | WRU ERR % 5 | E |U
6 0 | 1 1 0 | RU SYNC & 6 F |V
7 0o |1 1 1 BELL LEM ! 7 G |w
8 1 0| o 0 | FE, So (8 H [X
9 1 0 | o 1 HT/SK 8y) 9 |1 Y
A 1 0 1 0 LF So * J |z
B 1 0 1 1 | vT S3 + ; K [
C 1 1 0 0 FF Sa , < L |~ ACK
D 1 1 0 1 CR S5 - = M] ‘K‘,IggE
E 1 1 1 o | so Sg > |~ 4 ESC
F 1 1 1 1 SI Sq / ?2 |0 |« DEL

*Parity bit adjusted for even parity (even number of 1's) on input from Teletype keyboard. Parity
bit is ignored on output to Teletype printer..

AT7-2

ASCII CARD CODE CONVERSION TABLE

7-BIT " 7-BIT
ASCII CARD , ASCII CARD
GRAPHIC CODE CODE * GRAPHIC CODE CODE
SPACE 20 BLANK @ 40 8-4
! 21 12-8-7 A 41 12-1
" 22 8-17 - B 42 12-2
23 8-3 o} 43 12-3
$ 24 11-8-3 D 44 12-4
% 25 0-8-4 E 45 12-5
& 26 12 F 46 12-6
27 8-5 G 47 12-7
(28 12-8-5 H 48 12-8
) 29 11-8-5 I 49 12-9
S 2A 11-8-4 J 4A 11-1
+ 2B 12-8-6 K 4B 11-2
s 2C 0-8-3 L 4C 11-3
- 2D 11 M 4D 11-4
. 2E 12-8-3 N 4E 11-5
/ 2F 0-1 0 4F 11-6
0 30 0 P 50 11-7
1 31 1 Q 51 11-8
2 32 2 R 52 11-9
3 33 3 S 53 0-2
4 34 4 T 54 0-3
5 35 5 U 55 0-4
6 36 6 v 56 0-5
7 37 7 W 57 0-6
8 38 8 X 58 0-7
9 39 9 Y 59 0-8
: 3A 8-2 VA 5A 0-9
; 3B 11-8-6 [5B 12-8-2
< 3C 12-8-4 N 5C 11-8-1
= 3D 8-6] 5D 11-8-2
> 3E 0-8-6 A 5E 11-8-7
? 3F 0-8-7 -~ 5F 0-8-5

AT-3

EIGHT-LINE INTERRUPT MODULE STATUS
AND COMMAND BYTE DATA
(HEX ADDRESS 20-27)

BIT NUMBER 0 1 2 3 4 5 6 7
STATUS BYTE 0 0 0 0 0 0 0 0
COI\I/BI%/[,?ED DISABLE ENABLE RESET SET CLEAR GCMDO GCMD1 *

*Bit not used.

The status byte is always zero.

DIS - Disable DEVICE INTERRUPT (but allow queueing)

ENAB - Enable DEVICE INTERRUPT

RESET - Establish Reset Mode, one Write Data selectively reset interrupt lines.
SET - Establish Set Mode, one Write Data selectively set interrupt lines.
CLEAR - Clear all pending interrupts

GCMDO, GCMD1 - These Command bits may be optionally gated-out to a user's own equipment.
Their function, if used, is dependent upon this external equipment,

Any command in which Bit 2 and 3 = 0 places the module in the Load Mask Mode. In the Load Mask Mode,
one Write Data is required to set the mask.

INITIALIZATION - Disables, interrupts, clears all commands, clears all pending interrupts, and places
the module in the Load Mask Mode.

AT7-4

AUTOMATIC MEMORY PROTECT
STATUS AND COMMAND BYTE DATA
(HEX ADDRESS AE)

BIT
NUMBER 0 1 2 3 4 5 6 7
STATUS
* * * * *
BYTE P ON PWF EX
COMMAND
* * * *
BYTE DISARM ARM P ON P OFF

* Bit not used.

STATUS

P ON -

PWF -

EX -

COMMAND

DISARM -

ARM -

P ON -

P OFF -

PROTECT
PATTERN -

INITIALI-
ZATION -

This Status bit is set when memory protection is enabled.

The Protected Write Flag is set when an attempt has been made to write into a
protected area of memory. PWF is reset only by an Output Command (OC or OCR),
an Acknowledge Interrupt (AI or AIR), or the INITIALIZE pushbutton.

The Examine bit is set whenever the PWF bit is set.

This Command bit disables the device interrupt feature and prevents interrupts from
being queued.

This Command bit enables a device interrupt to occur when an attempt is made to
write into a protected area of memory.

This Command bit enables memory to be protected as per the protection pattern.
This Command bit overrides all memory protection.

After an output command (any output command), the protect pattern may be set up
with consecutive Write Data instructions. If more than eight Write Data instructions

are issued, then the protect pattern will wrap around. The ninth WD instruction will
change Blocks 0-7 etc.

Dis-arm interrupts, clears PON and PWF flip-flops, and leaves the protect
pattern un-changed.

A7-5

SELECTOR CHANNEL STATUS AND
COMMAND BYTE DATA

(HEX ADDRESS F0)
BIT NUMBER 0 1 2 3 4 5 6 7
STATUS BYTE BSY
COMMAND BYTE READ GO STOP

BSY This bit is set when the Selector Channel is in the process of transferring data.

READ This command changes the mode of the Selector Channel from Write to Read. In the Read Mode,
data is transmitted from the active device on the Selector Channel and written into core memory.
Whenever a Read Data or a Write Data Instruction is issued to the Selector Channel, the Selector
Channel is placed in the Write Mode. Each time a READ operation is required, a Read Command
must be issued.

GO This command initiates a data transmission. This command can be issued at the same time the
Read/Write Mode is established.

STOP This command halts any data transmission in process, and initializes the Selector Channel

for starting a new operation. It should be given when the Selector Channel Terminates.

DEVICE NUMBER

The Selector Channel is normally assigned device number X'F0', but may easily be changed by
a minor wiring modification on the Selector Channel device controller board. Refer to the
maintenance manual for specific details.

INITIALIZATION

AT7-6

Whenever the Initialize switch on the Processor is depressed, or a Stop Command is issued,
the following actions occur:

1. Any data transmission in process is halted and the Stop Mode is effected.

2. The Selector Channel is placed in the Write Mode.

3. The Selector Channel is made idle.

4, The Selector Channel interrupt is reset.

i i TINNVHO
€ 0sld WOLOT1AS
2 0SIq SSTHAQV IST
savd
1 osIa
0 osta
LNOD O8I qdVL
IDATLLIVO DVK
ATIVAOWTH | HI¥NOJ
"TOULNOD AIVL
LOZLO¥d DVI
XHOWIN QuHL
AIVL
DVI
anoods
AdVL
dOW 0/1 wnya DV
TVSHIAINA OILINDVI | 8L 6L
LSHIA
¥TIVIA
08 .
ZHO9 |TTAVINVA) WILSAS , SHALNTIA
. Bleleg o) ' ALLASSVO ANIT
, TVSHIAIND - . anoods HLOg
Xd0d TI0d | Xdnd 2/t . LINT
L3S vLvd 13S VIvVa , IOVIOLS
202/501 _202/£01 TIAVOT
: WNALSES
XN ALLASSVO
TVLIDIQ LSuLd
098
TVSHAAINA
- (48 OL 82 $4AV) - (42 03 0z SUaAV)
TTINAOW LANTHILNI ANIT 8 ANOOES TOW LAOMALNI ANIT 8
W00 HONAJ
/EIAVIY | MMM
XINO HONAd
Xdnd Tiad | Xdoda z/t —— XINO
L3S VLVa 13s viva @avo Ma¥ §dVL| ALL AVIdSIQ
108/102 108/102 gAYV
K a a o) q v 6 8 L 9 S ¥ 4 2 1

TIIVLI SSTIAAY QYT IAId-TEVANV.LS

0

asn

0 *——QsT

AT-7/A7-8

68
137
274
549

1 099

© i o

16

67
134

268
536
073
147

294
589
179
3569

719
438
877
755

511

65
131
262
524

048
097
194
388

7T
5564
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

128

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

776

W= o

T o O

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40

APPENDIX 8

ARITHMETIC REFERENCES

TABLE OF POWERS

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

OF TWO

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

494

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

625

312 b5
656 25
828 125

914 062
957 031
478 515
739 257

869 628
934 814
467 407
733 703

366 851
183 425
091 1712
545 856

772 928

25
625
812

906
453
226
613

806
903
951
475

237

25

125
562
281

640
320
660
830

915

625
312
156
078

039

25
125

062 5

A8-1

TABLE OF POWERS OF SIXTEEN

A8-2

16" n
1 0
16 1
256 2
4 096 3
65 536 4
1 048 576 5
16 Vi 216 6
268 435 456 7
4 294 967 296 8
68 719 476 736 9
1 099 511 627 776 10
17 592 186 044 416 11
281 474 976 710 656 12
4 503 599 627 370 496 13
72 057 594 037 927 936 14
152 921 504 606 846 976 15
—
s
Decimal Values
HEXADECIMAL TO DECIMAL CONVERSION TABLE
BYTE BYTE
HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 926 6 6
7 28,672 7 1,792 7 112 7 7
8 32,768 8 2,048 8 128 8 8
9 36,864 9 2, 304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
B 45,056 B 2,816 B 176 B 11
C 49,152 C 3,072 C 192 C 12
D 53,248 D 3,328 D 208 D 13
E 57,344 E 3,584 E 224 E 14
F 61,440 F 3,840 F 240 F 15

HEXADECIMAL ADDITION TABLE

10
11
12
13
14
15
16
17

18

19

1A
1B
1C
1D
1E

10
11
12
13
14
15
16
17
18
19

1A
1B
1C
1D

10
11
12
13

14
15
16
17

18
19

1A
1B
1C

10
11
12

13
14
15
16
17

18

19

1A
1B

10
11
12

13
14
15
16
17
18
19
1A

10
11

12

13
14
15
16
17

18
19

10
11
12
13
14
15
16
17
18

10
11
12
13

14
15
16

10
11
12
13
14
15
16

117

10
11

12
13
14
15

10
11
12
13
14

10
11
12
13

10
11

12

e

10
11

10

HEXADECIMAL MULTIPLICATION TABLE

N || v Jo - |o oo [[R O A |- |K
H 110 A [<le |o [jo v |F (N9 =
o N |® |t (18 |© |~ oo | | 1A |0 [A|R
O |d]lo | |9 | o |8 |0 o (o |
- |d]eo | | | & |~ |o % < |M |0 |A
< || [~ |H A Jo (b |la [k [O[8]0 (R
|l |9 | |6 [© | jo |0 | | |A}|O
<+ |o |Q | o |0 o |0 | |
Sl P I - TIB2|IR ISR |S < (A
© = |O | |0 A |0 |0 |A [|w |F|<]®
2 |N Q| | [[0 |© [0 []o |ofje |
< |Hlo |aa |[O o |lo € s |FH |Jo |0]O |©
A || Q|n | | |5 [|o [© | oo |®
a Al lA o |H o | |d e |O|v|H |-
|l [o | |d |6 j© |© |||
oclo|lolo o |o|o|o|o |lo]le|o|lolwn
P el IPSTN IS IS - T I T 7= T - I S S
Hlo|[O]lo i< |o o |Rilo Qv |A|la|a
|| N[| [|F || |d|0]|
Ola]lo |H | i<]o o |O|la|o [B|x|g
hiril Il BV IPCE I B DS S RE S I R I Y-S)
< |m|v]|lo |Hlo|lo A |a | |Ola|e /A
|- | =N NN ||]S
wl|lo|lo|lw|le|O]jo vl |Q]|leolxr|xe|R
adla|lm|lm S| R | |d B O

o | [e = [
O |& i e ot m 21813 |K % m
o lalw |Jo]lo |<|OIH
d|lo|lo |<|O|F |m || ||| =]~
Aln]lw|vw]o|c]lo|la|d|mr|[O]|IA[R]|M
qa|ow|w|w]lo|~|lo|lo|<d|m|O|A|H]|HK

A8-3

A8-4

TABLE OF MATHEMATICAL CONSTANTS

Constant Decimal Value Hexadecimal
Value

T 3.14159 26535 89793 3.243F 6A89
-1 0.31830 98861 83790 0.517C C1B7
VT 1.77245 38509 05516 1.C5BF 891C
Lnw 1.14472 98858 49400 1.250D 048F
e 2,71828 18284 59045 2.B7TE1 5163
el 0.36737 94411 71442 0.5E2D 58D9
Ve 1.64872 12707 00128 1.A612 98E2
logl 0e 0.43429 44819 03252 0.6F2D EC55
logoe 1.44269 50408 88963 1.7154 7653
Y 0.57721 56649 01533 0.93C4 67E4
Lnvy -0.54953 93129 81645 -0.8CAE 9BC1
v2 1.41421 35623 73095 1.6A09 E668
Ln2 0.69314 718056 59945 0.B172 17F8
logl 02 0.30102 99956 63981 0.4D10 4D42
V1o~ 3.16227 76601 68379 3.298B 075C
Lnl0 2.30258 50929 94046 2.4D76 3777

APPENDIX 9
GLOSSARY OF TERMS

This appendix explains some terms and concepts used in INTERDATA programs and program documentation.
The terms are arranged in alphabetical order for easy reference.

8-Bit Loader Any loader which reads 8-bit bytes from some device such as a Teletype or paper
tape reader, and stores the bytes directly into memory. The '"560 Sequence' which
resides from X'50' to X'7F' in memory includes an 8-bit loader. This loader reads
8~bit bytes from the Binary Input Device and stores them from X'80' to X'CF', and
then transfers to X'80'. Refer to Section 9. 3.5 for more details on the 50 Sequence.

50 Sequence The 50 Sequence resides in core memory from X'50' to X'7F' and contains an 8-bit
loader and a Device Definition Table., This sequence must be manually entered into
memory using control panel memory Write operations. This area of core memory
should be reserved for the 50 Sequence; once keyed into memory, this sequence nor-
mally remains there, available for use. The Device Definition Table uses four
halfwords to define devices for four functions: binary inputs, binary outputs, source
inputs, and symbolic outputs. Various programs refer to the 50 Sequence for device
definition. Refer to Section 9. 3.5 for more details on the 50 Sequence.

Absolute Programs designed to occupy a fixed set of locations in the core memory are called
absolute programs. For example, an absolute program designed for bytes 80-99
in memory does not execute correctly if moved (relocated) to bytes 180-199 in
memory. See Relocatable.

Assembler The assembler programs translate the source form of a program into a form which
can be conveniently loaded into the system by a loader program. INTERDATA pro-
vides assembler programs which convert assembly - language programs into binary
object tapes. See Object and Source.

Bias The base value used by a loader to load a relocatable program is called the bias. The
bias value is added to all relocatable quantities during the loading process. See
General Loader.,

Bootstrap Tapes Certain program tapes are provided with the appropriate loaders on the tape itself.
These tapes are loaded into memory using the 8-bit loader at 50, All bootstrap tapes
have a part number with an M10 designation. See 50 Sequence and Fast Format.

Compiler A compiler is a program for translating a higher-level language program into
machine language, for execution by the Processor. INTERDATA provides a FORTRAN
IV Compiler which recognizes USASI FORTRAN as definad by standard X3. 9-1966.

A9-1

Editor

Fast Format

Firmware

Floating- Point.

FORTRAN

General Loader

Listing

Loader

Loader Format

Micro-Programs

Object

A9-2

It facili-
Such a

An editor is a program which manipulates symbolic or textual information.
tates the creation, examination, and modification of character oriented data.
program is useful for the creation and editing of source tapes. See Source.

Bootstrap tapes for programs, such as the General Loader or the Basic Assembler,
employ a fast format for data organization. This format is essentially an 8-bit format
which minimizes loading time on slow devices. Fixed length records are used,
however, to facilitate checksum procedures. A transfer address may be specified in
the first record of a Fast Format tape. See Bootstrap.

Micro-programs which are written for a Read-Only-Memory (ROM) are called firm-
ware, as opposed to conventional machine language programs which are called
software. See Micro-Program.

A method of representing numbers with a mantissa or fraction, and an exponent or
characteristic. For example, in the number .5 x 103, the .5 is the mantissa and the
3 is the exponent of the base 10. INTERDATA systems represent floating-point
numbers in a floating hexadecimal format using a 24 bit fraction and a 7 bit exponent
of the base 16, in excess 64 notation.

The FORTRAN language permits the statement of arithmetic problems in an algebraic-
type format. INTERDATA provides both a FORTRAN IV Compiler and an Interactive
FORTRAN interpreter which permits problems to be created and executed in an inter-
active manner. The FORTRAN IV Compiler recognizes the USASI standard FORTRAN
language; the Interactive FORTRAN program uses an abbreviated form of the
FORTRAN language. ,
The General Loader is used in a stand-alone (not operating system) environment., This
loader handles absolute or relocatable programs with external program linkages and
forward reference definitions which occur on object tapes from one-pass assemblies.
The loader bias and error messages are printed on the Teletype for operator con-
venience. See One-Pass and Bias.

The assembler inputs a source tape and generates an object tape and a listing. The
object tape contains the binary information to be loaded into memory. The listing is a
printed record which shows each source statement, and the binary information
generated for that statement. The binary information is represented in hexadecimal
form.,

A loader is a type of program which, when executed by the machine, reads information
from a peripheral device and loads the core memory with instructions and data.

The object tapes generated by the assembler programs use a specific tape format
known as loader format. These object tapes include control and linkage information
in addition to the instructions and data of the assembled program, Tapes in this
format must be loaded by the REL Loader, or General Loader; BOSS Resident
Loader, or OS Library Loader.

INTERDATA machines involve a Read-Only-Memory (ROM) used to control basic
Processor operations. The sequence of commands which reside in the ROM is
called a micro-prograrn. See Firmware.

Object tapes are tapes produced by the assembler in standard loader format. For each
source tape assembled, there is an object tape. A loader reads the object tapes and
places the corresponding instructions and data in core memory. See Assembler,
Loader, and Source. -

One-Pass

Operating System

Part Number

Program

Relocatable

Relocating Loader

Source

The assembler takes one, two, or three passes across the source tape to complete

an assembly. The number of passes is controlled by an option control statement

in the source program., When so directed, the assembler makes an assembly, complete
with listing and object tape, in one pass. One pass assemblies minimize the time
required for an assembly, although there are some restrictions on the programs

that can be assembled. Two pass assemblies are normally used. Three pass
assemblies are appropriate when the physical devices in use prohibit printing and
punching on the same pass.

An operating system is a program which handles all the house-keeping or overhead
tasks within a computer so that programs can be as independent from hardware
details as possible. The operating system also sets standards and conventions so

that programs are compatible with one another. INTERDATA provides a Basic
Operating System (BOSS) for the Models 4, 5 and 70. BOSS handles all 1I/O transfers
in a device independent fashion, services all systems interrupts and services operator
commands.

Each program is identified by a part number which defines the pregram and the
revision level. For example, the part number for the REL loader is 06-024R01. In
this number, the 06-024 identifies the specific program, and RO1 indicates the

revision level. The various elements of this program, such as the object tape,

carry a suffix to the basic number. For example, 06-024R01M10 identifies the
bootstrap object tape, and 06-024R01A13 identifies the assembly listing. Part numbers
are discussed in Section 9. 8.

A program is a set of machine instructions which, when executed by the machine,
performs some useful functions. Programs are often referred to as software.

Programs designed to be loaded anywhere in core memory are called relocatable.
For example, a program which occupies 26 bytes could be loaded into X'80' - X'99'
or X'180' - X'199' and executed from either location. Relocatable programs may be
loaded with the REL Loader, General Loader, the BOSS Resident Loader, or the

OS Library Loader. Some INTERDATA programs are absolute and some are
relocatable. When loading an absolute or relocatable program, it is important to
determine that the required memory space is available. See Absolute.

The Relocating Loader (REL) is appropriate for loading absolute or relocatable binary
object tapes from 1, 2, or 3 pass assemblies. This loader is not appropriate for
linking to external programs. See Relocatable and One-Pass.

A source is a mnemonic or easy-to-read representation of a program. Source pro-
grams can be written using Assembler language or FORTRAN Compiler language.
The source is often prepared as a source paper tape, or source deck of punched
cards. See Object.

A9-3/A9-4

Notes

CUT ALONG LINE

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions,
criticisms, etc. concerning this publication.

From Date
Title Publication Title
Company Publication Number
Address
FOLD FOLD
Check the appropriate item.
Error (Page No.w——, Drawing No.)
Addition (Page No.——, Drawing No. e)
Other (Page No. , Drawing No. —)
Explanation:
FOLD FOLD

Fold and Staple
No postage necessary if Mailed in U.S. A.

STAPLE STAPLE

FIRST CLASS
PERMIT No. 22
OCEANPORT , N.J.
SR
BUSINESS REPLY MAIL
=
No Postage Necessary If Mailed In U.S. A,
U
Postage Will Be Paid By: .
D
TN EIIRID AT A"
2 Crescent Place
Oceanport, New Jersey 07757 EE———
P
PUBLICATIONS DEPT. T —
FOLD FOLD

STAPLE STAPLE

	0001
	0002
	001
	003
	004
	005
	006
	007
	008
	009
	00a
	00b
	00c
	00d
	00e
	00f
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-19
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-001
	07-002
	07-003
	07-004
	07-005
	07-006
	07-007
	07-008
	07-009
	07-010
	07-011
	07-012
	07-013
	07-014
	07-015
	07-016
	07-017
	07-018
	07-019
	07-020
	07-021
	07-022
	07-023
	07-024
	07-025
	07-026
	07-027
	07-028
	07-029
	07-030
	07-031
	07-032
	07-033
	07-034
	07-035
	07-036
	07-037
	07-038
	07-039
	07-040
	07-041
	07-042
	07-043
	07-044
	07-045
	07-046
	07-047
	07-048
	07-049
	07-050
	07-051
	07-052
	07-053
	07-054
	07-055
	07-056
	07-057
	07-058
	07-059
	07-060
	07-061
	07-062
	07-063
	07-064
	07-065
	07-066
	07-067
	07-068
	07-069
	07-070
	07-071
	07-072
	07-073
	07-074
	07-075
	07-076
	07-077
	07-078
	07-079
	07-080
	07-081
	07-082
	07-083
	07-084
	07-085
	07-086
	07-087
	07-088
	07-089
	07-090
	07-091
	07-092
	07-093
	07-094
	07-095
	07-096
	07-097
	07-098
	07-099
	07-100
	07-101
	07-102
	07-103
	07-104
	07-105
	07-106
	07-107
	07-108
	07-109
	07-110
	07-111
	07-112
	07-113
	07-114
	07-115
	07-116
	07-117
	07-118
	07-119
	07-120
	07-121
	07-122
	07-123
	07-124
	07-125
	07-126
	07-127
	07-128
	07-129
	07-130
	07-131
	07-132
	07-133
	07-134
	07-135
	07-136
	07-137
	07-138
	07-139
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	A1-1
	A1-2
	A1-3
	A2-1
	A2-2
	A2-3
	A3-1
	A3-2
	A4-1
	A5-1
	A5-2
	A5-3
	A5-4
	A5-5
	A5-6
	A6-1
	A6-2
	A6-3
	A6-4
	A6-5
	A6-6
	A7-1
	A7-2
	A7-3
	A7-4
	A7-5
	A7-6
	A7-7
	A8-1
	A8-2
	A8-3
	A8-4
	A9-1
	A9-2
	A9-3
	notes
	replyA
	replyB

