®

|
Tocd)
=
£ o
rafd T
o
o
g
=9
Tl
=
|4
L)

h] e ct - riemnte Softrware

NeXTSTEP
GENERAL REFERENCE

Volume 2

NeXTSTEP Developer's Library Release 3
NeXT Computer, Inc.

A
vv

Addison-Wesley Publishing Company i

Reading, Massachusetts - Menlo Park, California New York « Don Mills, Ontario
Wokingham, England - Amsterdam * Bonn * Sydney * Singapore * Tokyo * Madrid
San Juan - Paris * Seoul * Milan * Mexico Gity * Taipei

NeXT and the publishers have tried to make the information contained in this manual as accurate and
reliable as possible, but assume no responsibility for errors or omissions. They disclaim any warranty

of any kind, whether express or implied, as to any matter whatsoever relating to this manual, including
without limitation the merchantability or fitness for any particular purpose. In no event shall NeXT or
the publishers be liable for any indirect, special, incidental, or consequential damages arising out of
purchase or use of this manual or the information contained herein. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to
notify the purchaser.

NeXTSTEP General Reference Copyright © 1990-1992 by NeXT Computer, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher or copyright owner. Printed in the United States of
America. Published simultaneously in Canada.

NeXTSTEP 3.0 Copyright © 1988-1992 by NeXT Computer, Inc. All rights reserved. Certain portions of the
software are copyrighted by third parties. U.S. Pat. Nos. 5,146,556; 4,982,343. Other Patents Pending.

NeXT, the NeXT logo, NeXTSTEP, Application Kit, Database Kit, Digital Webster, Indexing Kit, Interface
Builder, Mach Kit, NetInfo, Netinfo Kit, Phone Kit, 3D Graphics Kit, and Workspace Manager are
trademarks of NeXT Computer, Inc. PostScript and Display PostScript are registered trademarks of Adobe
Systems, incorporated. Novell and NetWare are registered trademarks of Novell, Inc. ORACLE is a
registered trademark of Oracle Corp. PANTONE is a registered trademark of Pantone, Inc. SYBASE is a
registered trademark of Sybase, Inc. UNIX is a registered trademark of UNIX Systems Laboratories, Inc.
All other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1){ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 [or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

PANTONE®* Computer Video simulations used in this product may not match PANTONE-identified solid
color standards. Use current PANTONE Color Reference Manuals for accurate color.

*Pantone, Inc.’s check-standard trademark for color.

This manual describes NeXTSTEP Release 3.
Written by NeXT Publications.

This manual was designed, written, and produced on NeXT computers. Proofs were printed on a NeXT
400 dpi Laser Printer and NeXT Color Printer. Final pages were transferred directly from a NeXT optical
disk to film using NeXT computers and an electronic imagesetter.

3456789 10-CRS-96959493
Third printing, November 1993

ISBN 0-201-62221-1

Contents

Volume 1:

Introduction

Chapter 1: Root Class
Chapter 2: Application Kit
Chapter 3: Common Classes and Functions

Volume 2:

4-1 Chapter 4: Database Kit
4-3 Introduction

4-19 Classes

4-175 Protocols

4-211 Types and Constants

5-1 Chapter 5: Display PostScript
5-3 Introduction

5-5 PostScript Operators

5-57 Single-Operator Functions
5-69 Client Library Functions
5-91 Types and Constants

6-1 Chapter 6: Distributed Objects
6-3 Introduction

6-19 Classes

6-41 Protocols

6-49 Types and Constants

71 Chapter 7: Indexing Kit
7-3 Introduction

7-11 Classes

7-111 Protocols

7-167 Functions

7-177 Types and Constants
7-183 Other Features

8-1 Chapter 8: Interface Builder
8-3 Introduction

8-11 Classes

8-25 Protocols

8-53 Types and Constants

9-1 Chapter 9: Mach Kit
9-3 Introduction

9-5 Classes

9-31 Protocols

9-37 Types and Constants

10-1 Chapter 10: MIDI Driver API
10-3 Introduction

10-7 Functions

10-19 Types and Constants

111 Chapter 11: Netinfo Kit
11-3 _Introduction

11-5 Classes

11-33 Functions

11-35 Types and Constants

121 Chapter 12: Networks: Novell NetWare
12-3 Introduction

131
13-3
13-15
13-37
13-39

14-1
14-3
14-7

15-1
15-3
15-5
15-13
15-33

16-1
16-3
16-5
16-93
16-123
16-157

17-1
17-3
17-7
17-121
17-129

18-1
18-3
18-5
18-23

19-1
19-3
19-11

Chapter 13: Phone Kit
Introduction

Classes

Functions

Types and Constants

Chapter 14: Preferences
Introduction
Classes

Chapter 15: Run-Time System
Introduction

Classes

Functions

Types and Constants

Chapter 16: Sound
Introduction

Classes

Sound Functions

Sound Driver Functions
Types and Constants

Chapter 17: 3D Graphics Kit
Introduction

Classes

Functions

Types and Constants

Chapter 18: Video
Introduction

Classes

Types and Constants

Chapter 19: Workspace Manager
Introduction
Classes

B-1
C-1
D-1
E-1

Appendices

Appendix A: Data Formats

Appendix B: Default Parameters
Appendix C: Keyboard Event Information
Appendix D: System Bitmaps

Appendix E: Details of the DSP
Suggésted Reading
Glossary

Index

Database Kt

4-4
4-4
4-4
4-5
4-6
4-7
4-8
4-8

4-9

4-10
4-10
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-16

Introduction
Tools for Building a Database Application
Adaptors
Linking the Adaptor
Models
Relationships
Database Palette for Interface Builder
Levels of Detail in a Database Application
High Level: Interface Builder Palette Objects Only
Mid Level: The DBModule’s Fetch Groups
Qualifiers and Custom Associations
Low Level: The Data Access Layer
DBDatabase
DBProperties
DBExpression
DBValue
Transferring Information Between Application and Database
DBRecordList
DBRecordStream
DBBinder
The Database’s Query Language
Formatting and Editing
Classes and Protocols
Inheritance Hierarchy

4-1

4-2

4-19
4-20
4-24
4-51
4-66
4-70
4-75
4-87
4-90
4-93
4-96
4-105
4-111
4-122
4-136
4-139
4-165
4-168

4-175
4-176
4-179
4-181
4-183
4-186
4-187
4-189
4-190
4-193
4-194
4-197
4-200
4-206
4-208

4-211
4-212
4-216

Classes
DBAssociation
DBBinder
DBDatabase
DBEditableFormatter
DBExpression
DBFetchGroup
DBFormatter
DBImageFormatter
DBImageView
DBModule
DBQualifier
DBRecordList
DBRecordStream
DBTableVector
DBTableView
DBTextFormatter
DBValue

Protocols
DBContainers
DBCursorPositioning
DBCustomAssociation
DBEntities
DBExpressionValues
DBFormatConversion
DBFormatlnitialization
DBFormatterValidation
DBFormatterViewEditing
DBProperties
DBTableDataSources
DBTableVectors
DBTransactions
DBTypes

Types and Constants
Defined Types
Symbolic Constants

4 Database Kit

Library: libNeXT_s, libsys_s
Header File Directory: /NextDeveloper/Headers/dbkit

Import: dbkit/dbkit.h

Introduction

The Database Kit provides a comprehensive set of tools, classes, and protocols for building
applications that use a high-level entity-relationship model to manipulate database servers
such as those provided by Oracle or Sybase. The kit provides services that include:

* Communication with client-server databases.

* Modeling properties (attributes and relationships) of each database.

* Record management and buffering.

» Data flow between record managers and the application user interface.
» User interface objects for display and editing.

Database Kit 4-3

4-4

Tools for Building a Database Application

To build a database application in NeXTSTEP, in addition to Project Builder and Interface
Builder, you must have:

* An adaptor for each type of database you will use.

* A model (built with DBModeler) for each database you will use, specifying the entities
available to your application and their properties (attributes and relationships).

* A palette of database accessories to supplement Interface Builder’s standard palettes.

Adaptors

The Database Kit includes adaptors for ORACLE® and for SYBASE®. The supplied
adaptors are installed in the directory /NextLibrary/Adaptors. Each is a bundle having a
name that ends in the extension “.adaptor”. Adaptors may also be installed in the
application’s own bundle, or in directories on a standard search path, searched in the
following sequence:

* The application bundle

* ~/Library/Adaptors

* /LocalLibrary/Adaptors
* /NextLibrary/Adaptors
* /usr/local/lib/Adaptors

Additional adaptors may be supplied by NeXT or by third parties; it’s possible to build your
own, but directions for doing so are outside the scope of this manual (see NeXTSTEP
Development Tools and Techniques, Chapter 7, “DBModeler”).

The adaptor is necessary not only for communicating with the database when your
application runs, but also for building the data model and testing its user interface during
development with Interface Builder.

Linking the Adaptor

When your application uses one of the separately-provided adapters, you must include a
directive that will require the compiler to link symbols required by the adaptor as well as
those from your own application. This can be done by including the following in the file
Makefile.preamble:

OTHER_LDFLAGS = -u l1ibNeXT_s -u libsys_s

(The effect of this statement is to undefine the symbols libNeXT _s and libsys_s. The
undefined references force the loading of the corresponding object files.)

Chapter 4: Database Kit

Models

Before you can start building the application, you must have a model of the entities you will
use and their properties (attributes and relationships).

To create a model, you need access to the database you will model. When you have the
authorization (which may require an account name and password), launch the DBModeler
application (it’s in the /NextDeveloper/Apps directory). To create a new model, select
“Model” and then “New.” DBModeler first asks you to select an adaptor from among those
currently installed; the list should include the OracleAdaptor and Sybase Adaptor, plus any
others that have been installed in your home directories or on the host you are using. Then
it asks you to identify the database you want and to supply login information. DBModeler
connects to the database by way of the adaptor you chose. (If the connection failed, you
may need to set up your database server. In general, if you can connect with Sybase’s isql
or Oracle’s sqlplus, then you should be able to connect from DBModeler.)

When connected, DBModeler automatically reads from the data dictionary a list of the
database’s entities and their attributes. This is called the default model.

=

Employee

G

In the display, each entity is represented by a card-tray icon in the upper scrollable window.
For the selected entity, the name you assign, the internal name, and the list of its properties
appear below. DBModeler allows you to extend and edit the default model. To begin with,
you can replace the database’s internal names for entities with names by which they’ll be
known in your application. :

Database Kit 4-5

4-6

Relationships

Note: If your application is going to use relationships formed by joining entities in the
database, this is where you define them: in the model, rather than in the application itself.

To create a new relationship, from the Property submenu select New Relationship. Select
the Inspector menu item and, in the Inspector, name the relationship. You now need to
specify which entity the relationship maps to (that is, which table to join to). To do this,
select a second entity and drag its icon to the empty framed area in the Inspector.

The Inspector’s browser should now be populated with attributes of that entity you dragged
in. Select an attribute in the left browser and one in the right browser to indicate which
columns of each table should be joined. Set the radio buttons to indicate whether the
relationship is “to one” or “to many.”

A saved model resides in a bundle whose name ends in the “.dbmodel” extension. To be
found by Interface Builder when you’re building the application, or by the application itself
when it’s running, the model file must be located in a standard place. Directories are
searched in the following order:

» The application bundle

» ~/Library/Databases

* /LocalLibrary/Databases
* /NextLibrary/Databases
¢ /usr/local/lib/Databases

Chapter 4: Database Kit

Database Palette for Interface Builder

The first time you use Interface Builder to build a database application, you’ll need to load
the database palette. Choose Load Palette from the Tools menu; in the file browser, select
/NextDeveloper/Palettes/DatabaseKit.palette. (Thereafter, Interface Builder remembers
that you want it and loads it automatically.)

The DatabaseKit palette includes three new objects for work with databases:

DBModule The file-cabinet icon represents your application’s access to a
database. Double-clicking opens a browser that displays its
contents.

DBTableView A scrollable view for the display of textual (character or numeric)

data from the database.
DBImageView A view for TIFF or EPS data from the database.

While you’re building a database application with Interface Builder, you drag into the
application’s file window the icon that represents a DBModule. When you double-click
that icon, Interface Builder opens a browser that shows the entities defined in the model and
their attributes. You select one of those entities. (If you need to make use of several
entitites, drag a new DBModule icon for each.)

When you save the application’s nib file, your DBModule object is included in what’s
saved. At run time, the DBModule and relevant portions of the model file are loaded into
the application. Because the DBModule continues to refer back to the model file, the
finished application will continue to require access to the model. If you subsequently edit
the model file to which the application refers (for example, to use the same model with a
different database), the application’s behavior will change accordingly.

" You could construct a simple application using instances from the three classes DBModule,
DBTableView and DBImageView, creating the need instances just by dragging them from
the database palette. A DBModule provides target/action methods. Since the methods
include requests to fetch data, when you test the interface with Interface Builder’s Test
Interface command, it can actually connect to the database and fill the views with real data.

Since your application probably won’t be limited to connecting to the database and
scrolling through its data, the rest of the kit provides methods that allow you to customize
and control the exact behavior.

Database Kit 4-7

4-8

Levels of Detail in a Database Application

The Database Kit’s classes can be roughly grouped into levels by the amount of detail they
conceal and automate, or (conversely) the amount of control they give to the application.
If you work at the higher levels, you will never need to make explicit use of many of the
kit’s classes, protocols, or methods.

High Level: Interface Builder Palette Objects Only

At the highest level (that is, least visible detail), it’s possible to construct an application
solely by connecting objects dragged from the Interface Builder palettes. The application
has no source other than its nib file; its objects are generated at run time when the
application loads the interface file. Because it depends only on its nib file, it can be run in
Interface Builder’s test mode even without compiling it. In addition to a model and an
adaptor (essential to every database application), such an application needs:

¢ One or more DBModule objects, dragged from Interface Builder palette. Each module
represents one entity in the database.

* One or more View objects (for example, instances of Browser, TextField, DBTableView,
or DBImageView.

* One or more controls (for example, instances of Button).

The outlets of the controls are connected to the DBModule’s target/action methods in the
usual way (by Control-dragging between them, and selecting action methods in the
Connections Inspector). For example, to connect to a TextField, a Form, or a Matrix of
FormCells or TextField cells, drag the database field to the user interface object you with
to connect. The DBModule object contains several action methods, such as
fetchAllRecords:, nextRecord:, previousRecord:, saveChanges:, and deleteRecord:.
In a large application, these methods are often called programmatically, but to get started,
it’s convenient to invoke them from a Button or a Menu.

If you want the DBModule to pick up any editing the user does, you’ll need to connect the
textDelegate outlet of the text-editing user interface object to the DBModule. (Otherwise
the DBModule will have no way of finding out when the user edits a text value.)

To connect to a Rich Text editor, simply make a database connection as usual. In order to
store actual rich text (RTF) in the database, however, the database field must be of type
“object,” class “NXData,” and format “RTE.”

Chapter 4: Database Kit

To connect a display object (for example, an NXBrowser), open the DBModule’s browser
by double clicking the DBModule icon. Within the browser, navigate to select the database,
entity, and attribute you want. (Note that there’s a distinct icon for each of these levels.)
Drag an attribute icon from the DBModule browser to the NXBrowser object. If you want
the action of selecting a row in the NXBrowser to move the DBRecordList cursor to that
row, then connect the target of the NXBrowser to takeValueFrom: of the DBModule.

To connect a DBTableView, drag off a DBTableView from the Database Kit palette and
drag database field objects from the DBModule editor to the column you wish to connect.
To add extra columns, deposit the field icon on any part of the DBTableView other than a
column (the scroll bars, for example).

Mid Level: The DBModule’s Fetch Groups

For each DBModule that you drag from the palette to the application, at run time the
Database Kit creates one or more DBFetchGroups. The role of the fetch groups is to
synchronize the fetching of data when one part of the display is dependent on another, and
in particular when you have included a one-to-many relationship. For example, you might
have in one DBTableView a display of the firm’s departments, and in another DBTable View
beside it, the employees within a department. Each time the user selects a record in the
higher level display (that is, selects a particular department), you want the display of
employees to show that department’s employees. The fetch group for the subordinate level
(employees) is notified each time there’s a change in selection, and issues a fetch command
to get the appropriate new data. Thus the set of DBFetchGroups corresponds to the nodes
of the tree of data dependencies for the module. There’s always at least one fetch group,
called the root fetch group, and as many others as necessary for all the dependent displays
that use the same DBModule.

Qualifiers and Custom Associations

Most database applications will need a way to select a subset of records by sending a query
to the database server. Since most NeXTSTEP database applications are built using
DBModules dragged from the Interface Builder palette, you need a way to ask the
DBModule to fetch a subset of records. To constrain the records retrieved, you create a
custom object, and in it define a method that creates a DBQualifier object and uses it as an
argument of the method fetchContentsOf:usingQualifier:. In most cases, this method’s
first argument is nil, meaning that the source is the database entity corresponding to the
DBModule. (The first argument can also be a DBValue object containing a record-key or
relationship value from some other DBRecordList.). The second argument is the qualifier
for the fetch.

Database Kit 4-9

4-10

In addition to connecting DBModules to the standard NeXTSTEP interface objects, you
can also connect DBModules to objects of your own. The process is the same: drag a
database field off the DBModule editor and deposit it one of your objects. You will have
to compile the application in order for the code for your objects to be linked in. When you
run the application, a DBAssociation will be made between your object and one of the
module’s DBFetchGroups. When the application is running, the DBFetchGroup will call
any of the following methods that your object implements:

— associationContentsDidChange:

— associationSelectionDidChange:

— associationCurrentRecordDidDelete:
— association:setValue:

— association:getValue:

Of these, the most important is association:setValue:. It will be called any time the
database field value changes (for example, when the data is first fetched, when the user
selects a different record, or when the user changes that value in the user interface).

Custom associations are most useful for implementing your own user interface objects
(such as Custom Views) or passing information through the nib file owner or some Custom
Object of your own.

Low Level: The Data Access Layer

The Database Kit Access Layer is a collection of Objective C objects and protocols
designed to work with the Interface Builder to allow relatively painless access to a variety
of “external” sources of data. There are seven basic classes in this group:

* DBDatabase

* DBValue

¢ DBRecordStream
* DBRecordList

e DBQualifier

* DBExpression

¢ DBBinder

DBDatabase

A DBDatabase object represents two important aspects of an external source of data: the
structure that the information takes, and the nature of the application’s connection to that
database. Each application typically has a single instance of the DBDatabase class
communicating with any given database. An application can have many DBDatabase

Chapter 4: Database Kit

objects, communicating with multiple “backed” databases; in special situations, there can
also be several DBDatabase objects communicating with the same database (but
embodying different views of it).

A DBDatabase object represents the view onto a given database from the perspective of the
Database Kit. This view, or data model, represents the various components of information
available from the database in the form of Objective C objects. For instance, a database
containing employee information might contain attributes such as an employee’s name or
address. Within the DBDatabase object that corresponds to the employee database,
information about these pieces of data is assigned to objects; the objects contain such things
as the Objective C type or the string “employeeName” for the employee’s name. The actual
classes of objects used to represent a data model are not specified by the Database Kit; the
only requirement placed on them is that they obey the DBProperties protocol.

DBProperties

DBProperties represent what is commonly called the “schema” of a database. This schema
can come from one of two places: a representation that has been stored in the file system as
a “bundle file,” or from the DBDatabase object itself (a representation of that database’s
“data dictionary”). Although the default data model that is provided by a DBDatabase
object is often sufficient to build applications, there are several advantages to storing a
reusable representation of a database’s schema. Once stored in this way, the database
representation can be easily accessed by name. In addition, special components such as
complicated queries or relationships between particular pieces of data can be designated as
a part of the data mode] and reused. Finally, multiple data models can be supported for a
given database; these models can be tailored to the needs of the design perspective or
permissions of the application programmer. DBProperties can be obtained directly from a
DBDatabase object by name.

DBExpression

A DBExpression encapsulates a database expression as an object. A database expression
specifies the attributes of data to be returned from an entity in the database. The simplest
expression contains just the name of an existing attribute (just as the simplest expression in
algebra is simply the name of a variable). A slightly more complex expression provides the
name of a database attribute, but specifies a type for the data to be delivered (perhaps
requiring a type conversion). A more complex expression (called a derived expression)
defines a new property by some operations on one or more of the entity’s existing attributes.
For example, the expression “((salary / manager.salary) * 100.0)” might define a new
property, the employee’s salary stated as a percentage of the manager’s salary. Data
resulting from such an expression is derived from data in the database, but doesn’t exist as
a separate item anywhere in the database. Because a DBExpression may be simple, typed,

Database Kir 4-11

4-12

or derived, the fields of a DBRecordList can be described by a list of DBExpressions, one
DBExpression for each static field. In databases that support the notion, an expression can
represent aggregate or composite types of information, such as “the average age of
customers.”

DBValue

Once you’ve procured or created an object that conforms to the DBProperties protocol, you
can use this object in conjunction with a DBValue object to extract actual values from the
“data-bearing” objects of the kit. The information represented by and contained in
Database Kit objects can never be accessed directly; this makes sense, since the “real” data
resides externally. Instead, DB Value objects are used as proxies for extracting, inserting,
circulating, or modifying the external information.

The DB Value is a simple, generic container for many different kinds of data. It provides
an easy and universal way for objects in the Database Kit to refer to many different kinds
of raw data. DBValues can be set and read using familiar methods such as setStringValue:
and intValue. Additionally, they can perform basic type conversions automatically, such
as converting integer-valued contents into their string representation, much as some
Application Kit objects do. DBValues can be used to hold both Objective C objects and
arbitrary ranges of opaque bytes; because of this, the Database Kit is able to archive and
unarchive Objective C objects and complex structured data (such as TIFF images) to and
from remote data sources.

Transferring Information Between Application and Database

How is information actually retrieved from or sent back to the database? There are three
important objects for this purpose:

¢ DBRecordStream
¢ DBRecordList
 DBBinder

All of these objects link “external” pieces of data to “internal” Objective C variables or
objects; of the three, the DBRecordList and the DBRecordStream are more commonly
used, since they provide a much higher level of abstraction than the DBBinder. The
DBBinder is useful in certain more advanced situations, notably when passing data directly
into Objective C object classes or when doing very sophlstlcated operations with the
underlying query language for a given database.

Chapter 4: Database Kit

If your application relies on objects dragged from the Database palette, you need only
create one or more DBTableViews. At run time, when your nib file is loaded, to support
the DBTableViews, supporting DBRecordLists are created for you, along with a
DBFetchGroup for each node of the data you’ve requested, and DBAssociations to map the
link from fetch group to a vector (static column or row) of the display. In this situation, the
principal intermediate storage for the data being transferred is the DBRecordList. Your
application may also create and manage DBRecordLists explicitly.

For an application characterized by systematic sequential processing of an entire set of
records (without a browsing display, perhaps with no display at all), it is more efficient to
create a DBRecordStream instance. You can manipulate its fields in the same way as those
of a DBRecordList, but you can look at only one record (the current record), and the only
way to change the cursor is to move ahead by one, to the next record.

DBRecordList

The DBRecordList is an object that is organized into repeating rows of data. The layout is
specified by a list of DBProperties, and is identical for each row. The rows of datain a
DBRecordList can be created from scratch by an Objective C program and inserted into a
DBDatabase, or, conversely, they can be created when a DBRecordList receives their
contents from a database. The rows in a DBRecordList can be manipulated, modified,
deleted, and eventually resubmitted to the database; the DBRecordList takes care of the
housekeeping necessary to identify where the individual pieces belong.

The value for any individual DBProperty can be retrieved from a given row into a DB Value,
and directly manipulated or modified by an application. DB Values can even be used as
“sources” for other DBRecordLists. For example, in an orders database, the DB Value
representing an “order” might be used as the source for a DBRecordList full of “line items.”

DBRecordStream

DBRecordStream is the superclass of DBRecordList, and is a simpler and more efficient
object. Again, it is organized into repeating rows of identical records; in the
DBRecordStream these rows are abstracted as a continuous, unidirectional stream. There
is no random access to the records, as there is in the DBRecordList. Instead, the
DBRecordStream has a “cursor” through which only the current record may be accessed
and modified. This object is especially useful in situations where there is an
indeterminately large number of records to be accessed in order, such as batch filtering or
updates to a database.

Database Kir 4-13

4-14

DBBinder

The third data-bearing component of the Database Kit is the DBBinder. This object
represents specific Objective C objects or variables that have been directly “pinned” to
corresponding DBProperties for the database. The objects and variables in question can
have their values placed into the database, or filled in from the database. Both
DBRecordList and DBRecordStream are implemented by using DBBinder objects, but in
a way that is transparent to the application. Explicit use of a DBBinder is appropriate only
for applications that for some reason cannot make effective use of DBRecordList or
DBRecordStream.

When data is fetched to a DBBinder, it is stored in a container: an object (usually a List
object) that conforms to the DBContainers protocol. The container serves as an
unstructured repository. To make the data available as Objective C objects, the DBBinder
offers two alternate strategies:

» To return each record as a generic record, with self-describing components that
incorporate the properties

» To return each record as an instance of an application-supplied prototype class

If you provide a prototype class, you can specify that attributes of the data are mapped to
instance variables declared in the class (by associateRecordIvar:withProperty:) or are
made available by “set” and “return” methods declared in the class (by the method
associateRecordSelectors::withProperty:).

The Database’s Query Language

In many cases, programs built using the Database Kit in conjunction with Interface Builder
will never have to involve themselves with the underlying query language for a database,
since both the DBRecordList and the DBBinder cooperate with their DBDatabases’
adaptors to generate query expressions automatically. These queries are available to the
programmer; you can choose to override them. When you need access to the query
language, however, there are two objects that support it in a simple way: DBExpression
and DBQualifier.

DBRecordList, DBRecordStream, and DBBinder can restrict the set of data that they are
manipulating through the use of DBQualifier objects. A qualifier has (associated with it)
an expression in some query language, for example, “lastname = ‘Smith’” or “age > 72
AND hatsize < 6.5.” Typically, a given database has its own unique query language; the
DBQualifier object is a way to pass the complete expressivity of any ASCII-based query
language through to the programmer of the Database Kit. A wide range of expressions can

Chapter 4: Database Kit

be built using a DBQualifier, from simple strings to complex trees of Objective C objects.
Furthermore, the values contained in a DBQualifier can be obtained “lazily” from other
Objective C objects; this allows very dynamic database applications to be easily built
and configured.

In order to be meaningful in the context of a given data-bearing object, the “owners” of
every DBExpression or DBQualifier that are used within a query must match. It would
make very little sense, for example, to ask for the DBProperty “employee.age” (the age of
an employee) in a DBRecordList that was qualified with the DBQualifier “department is
accounting,” unless the department being specified was that of the employee in question.
Because of this, DBExpressions and DBQualifiers are always created “relative to” some
entity in the DBDatabase.

The four types of components that have been described make up a generalized framework
for communicating with and manipulating data that exists “outside” of a program. There
is an object to represent the external database (DBDatabase), several objects that can be
used together to identify specific items in that database (DBProperties, DBExpressions, and
DBQualifiers), objects that stand in for the specified set of items (DBRecordStream,
DBRecordList, and DBBinder), and finally, an object that represents the concrete value for
a specific item (DBValue).

Formatting and Editing

The DBTableView class displays data using the DBFormatter class, whose subclasses are
DBImageFormatter, DBTextFormatter (for read-only applications) and
DBEditableFormatter (for applications in which the user may edit the display). Details of
the appearance of a data field are governed by the DBTableVectors protocol. For a
DBTableView, each “cell” (the field at the intersection of a particular row and column) is
formatted by calling the formatter appropriate to its row and its column.

Classes and Protocols

The Database Kit comprises sixteen public classes, ten protocols, and an additional five
informal protocols. (To review, in the Objective C language, a class may have instances
that contain data; each instance is able to perform all the instance methods defined for its
class. Like a class, a protocol defines a set of methods; however, a protocol can’t be
instantiated. When a class conforms to a protocol, it thereby gains the ability to perform
any of the protocol’s methods. An informal protocol is a set of related methods—usually
defined as a category of Object—but without a formal procedure for conforming to them
as a whole.)

Database Kir 4-15

Inheritance Hierarchy

Most of the Database Kit’s classes inherit only from Object. The two database view classes
inherit from Control, View, and Responder, and from ScrollView, View, and Responder
respectively. The three formatter classes inherit from the abstract superclass DBFormatter.

DBModule

— DBDatabase

- DBRecordStream — DBRecordList
- DBExpression

- DBQualifier

-~ DBFetchGroup

Object -
- DBAssociation

Control DBImageView
- Responder — View -—-E
ScrollView-— DBTableView

- DBTableVector
DBTextFormatter

- DBFormatter DBEditableTextFormatter

DBImageFormatter
~ DBValue

- DBBinder

The Database Kit’s public classes and protocols may be roughly grouped by function
as follows:

High level DBModule
DB Value
DBTransactions (protocol)

User interface DBImageView
DBTableView
DBTableVector
DBTableVectors (protocol)
DBFormatter
DBImageFormatter
DBTextFormatter
DBEditableFormatter
DBFormatter ViewEditing (protocol)
DBFormatterValidation (informal protocol)

4-16 Chapter 4: Database Kir

Objectifying database access =~ DBDatabase
DBEntities (protocol)
DBProperties (protocol)
DBQualifier
DBExpression
DBExpressionValues (protocol)
DBTypes (protocol)

Record buffering DBRecordStream
DBRecordList
DBTableDataSources (informal protocol)

View/fetch coordination DBAssociation
DBCustomAssociation (informal protocol)
DBFetchGroup

Explicit control of data transfer DBBinder
DBContainers (protocol)
DBCursorPositioning (protocol)

Conversion to database formats DBFormatConversion (protocol)
DBFormatlnitialization (protocol)

Database Kit

4-17

4-18

Classes

4-20

DBAssoCiation

Inherits From: Object

Declared In: dbkit/DBAssociation.h

Class Description

A DBAssociation object is the link between a property in a DBRecordList and a user
interface object—called the destination—that displays and lets the user manipulate values
for that property. DBAssociation objects are created and owned by DBFetchGroup objects;
a DBFetchGroup automatically creates and configures a DB Association for each interface
object that it (the DBFetchGroup) manages, so that you never need to create DBAssociation
objects directly. In addition, you should rarely need to create a subclass of DB Association.
(However, if you create your own user interface class to display database values, that class
will need to implement some of the DBCustomAssociation category methods.)

You retrieve DB Association objects through DBModule’s associationForObject: method
(DBModules manage DBFetchGroups), as explained in the specification for the
DBModule class. Once you’ve gotten a DB Association, you should only send it querying
messages; you never alter a DBAssociation directly.

Instance Variables

None declared in this class.

Method Types
Initializing — initFetchGroup:expression:destination:
Querying the object — destination
— fetchGroup
- expression

Chapier 4: Database Kir

' Manipulating the object — contentsDidChange
— setDestination:
— currentRecordDidDelete
— endEditing
— selectedRowAfter:
— selectionDidChange
— validateEditing
— getValue:
— setValue:

Instance Methods

contentsDidChange
— contentsDidChange

Notifies the DB Association that the destination’s contents have changed. You never invoke
this method directly; it’s invoked automatically by an internal mechanism.

currentRecordDidDelete
— currentRecordDidDelete

Notifies the DBAssociation that the current record (in the associated DBRecordList) has
been deleted. You never invoke this method directly; it’s invoked automatically by an
internal mechanism.

destination

— destination

Returns the user interface object that’s associated with this DB Association.

endEditing
— endEditing

Tells the DBAssociation to disallow further editing in the user interface object. You never
invoke this method directly; it’s invoked automatically by an internal mechanism.

Classes: DBAssociation — 4-21

4-22

expression

— expression

Returns the DBExpression that represents the property associated with this DB Association.

fetchGroup
— fetchGroup

Returns the DBFetchGroup that owns this DB Association.

getValue:

- getValue:value

Instructs the DB Association to copy the value from its destination into value. You never
invoke this method directly; it’s invoked automatically by an internal mechanism.

initFetchGroup:expression:destination:

— initFetchGroup:aFetchGroup expression:anExpr destination:aDest

Initializes an instance of DBAssociation such that anExpr, a DBExpression object that
represents a property in a DBRecordList, is associated with the destination aDest. The
DBAssociation will be owned by aFetchGroup. You never invoke this method directly; it’s
invoked automatically by the owning DBFetchGroup object.

setDestination:

— setDestination:newDestination

Sets the DBAssociation’s destination. You should rarely need to invoke this method
directly. Returns self.

selectedRowAfter:
~ (unsigned int)selectedRowAfter:(unsigned int)previousRow
Returns the index of a row in the DB Association’s destination to which this association

is linked. You never invoke this method directly; it’s invoked automatically by an
internal mechanism.

Cﬁapﬁr 4: Database Kit

selectionDidChange
— selectionDidChange

Notifies the DBAssociation that there has been some sort of change in the current row of
the DBFetchGroup. You never invoke this method directly; it’s invoked automatically by
an internal mechanism.

setValue:

— setValue:value

Sets a value in the DB Association’s DBRecordList. You never invoke this method directly;
it’s invoked automatically by an internal mechanism.

validateEditing
— validateEditing

Invokes validation for the DBAssociation’s destination after editing. You never invoke this
method directly; it’s invoked automatically by an internal mechanism.

Classes: DBAssociation 4-23

4-24

DBBinder

Inherits From: Object
Conforms To: DBCursorPositioning
Declared In: dbkit/DBBinder.h

Class Description

The DBBinder class provides a mechanism for connecting individual data items in a
database to particular objects, variables, and methods in your application. Most
applications benefit by avoiding DBBinders and working instead with higher-level classes
such as DBRecordList or DBRecordStream. You should create and use DBBinder objects
only if your application needs to augment or modify the functionality provided by
DBRecordStream or DBRecordList.

Preparing a DBBinder

To access a database, a DBBinder must be initialized and associated with a database model
through a DBDatabase object, as shown below: :

/* Initialize the DBBinder through the init method. */
DBBinder *myBinder = [[DBBinder alloc] init];

/* Associlate 1t with a DBDatabase through the setDatabase: method. = */
[myBinder setDatabase:myDB];

Furthermore, the DBBinder must be informed of which properties in which tables in the
database it should accommodate. There are two ways to do this:

¢ If you can determine the list of properties that you’re interested in, you should inform
the DBBinder through the setProperties: method. As a convenience, the
initForDatabase:withProperties:andQualifier: method lets you initialize the
DBBinder and set its DBDatabase and property list (and an optional property qualifier)
in a single breath. An example of this method is given in the next section.

Chapter 4: The Database Kit

* Alternatively, you can describe the properties that you want as an expression in the
database’s query language, passing the expression (a string) as the argument to the
evaluateString: method, as shown below:

/* Select all the properties in the "Weight" table. */
[myBinder evaluateString:"select * in Weight"];

The optional qualifier described as part of the initForDatabase:... method can be set
separately, through the setQualifier: method. The qualifier, of which there can be but one
at a time per DBBinder, is used to filter properties when the DBBinder is told to select data
from the database. (See the “Qualification” section, below for more on the qualifier.)

Records and Containers

The pith of a DBBinder is a collection of objects that hold records from a database table.
Each object, called a record, holds one record from the database. The collection of a
DBBinder’s record-holding objects is stored in a container object. Record and container
objects, however, aren’t built into the DBBinder class—you have to specify what sorts of
objects you want to assume these two roles.

Specifying a container is easy, you invoke the setContainer: method, passing an object that
conforms to the DBContainers protocol. That object will be used by the DBBinder to store
record objects when the DBBinder fetches from the database. Barring any specialized
requirements, a DBBinder is well served using a List object as its container (DBBinder
defines a List category that allows a List to pose as a DBContainers-conforming object).
You can also use a DBBinder without setting its container. For a container-less DBBinder,
fetching data is done one record at a time and can only step forward through the database.

Setting a record object takes a bit more thought. There are two general approaches: You
can specify an object yourself that will be copied for each record, or you can let the
DBBinder create and assemble a class dynamically, instances of which it will then create
to store records.

The first approach centers around the setRecordPrototype: method. To this method you
pass an object that will be copied as records are fetched from the table, one copy per record.
But you’re not done yet. To actually get a record’s property values into a copy of the
prototype record object, you must create an association between each property and one of
the record object’s instance variables, or between a property and a pair of methods, one to
set and the other to retrieve the property’s value. These associations are created through
the associateRecordlIvar:withProperty: and associateRecordSelectors::withProperty:
methods. You can mix and match associations within a record object such that some
properties are associated with instance variables and others are associated with method
pairs, but a single property can only be associated with one variable or one pair of methods.

Classes: DBBinder 4-25

For example, let’s say you want to access a table that contains information about convicted
felons. Furthermore, you’re only interested in a felon’s name and the length of his or her
sentence. To accommodate the records in the table you create a class called FelonRecord,
for which the interface file might look like this:

@interface FelonRecord : Object
{

char *name;

float sentence;

}
gend
Having connected to the database and the table (as described in the DBDatabase class and

DBEntities protocol descriptions), you would create a DBBinder object, set the record
prototype, and associate the appropriate properties with the designated instance variables:

DBDatabase myDB;

id felonTable;

id nameProp, sentenceProp;

List *propList = [[List alloc] initCount:2];
DBRBinder *aBinder;

/* Get the database, entity, and properties. */

myDB = [DBDatabase findDatabaseNamed:"Crime Data" connect:YES];
felonTable = [myDB entityNamed:"Convicts"];

nameProp = [felonTable propertyNamed: "Name"] ;

sentenceProp = [felonTable propertyNamed:"Sentence Length"];

[propList addObject :nameProp];
[propList addObject:sentenceProp];

/* Initialize the binder. */

aBinder = [[DBBinder alloc] initForDatabase:myDB
withProperties:propList
andQualifier:nill;

/* Set the container, record prototype, and associations. */
[aBinder setContainer:[[List alloc] init]];

[aBinder setRecordPrototype: [[FelonRecord alloc] init];

[aBinder associateRecordIvar:"name" withProperty:nameProp] ;
[aBinder associateRecordIvar:"sentence" withProperty:sentencePropl];

The DBBinder is now ready to fetch records from the table (as described in the
following section).

4-26 Chapter 4: The Database Kit

Warning:

The other approach to creating a record object prototype requires less work and is

more adaptable, but it’s also less controllable. It centers around the method
createRecordPrototype. When a DBBinder receives a createRecordPrototype message,
it creates and assembles, while you wait, a class (by default, a subclass of Object) that will
be used to create record objects. This new class defines a set of instance variables that
match, in number, name, and type, the properties that the DBBinder knows about (as set
through the methods described in the previous section, and possibly modified by
addProperty: and removePropertyAt:). When a record is fetched, an instance of the
class is created and its instance variables are bound to the record’s properties. Fetching
(through the fetch method) automatically invokes createRecordPrototype, thus you
needn’t invoke it yourself.

You can prepare the dynamic record class through two DBBinder class methods:

* setDynamicRecordClassName: takes a string argument that’s used to name the class
that DBBinder will create; by default, DBBinder gives the class an arbitrary, but unique,
name. The argument that you pass must itself be a unique class name—it mustn 't name
an existing class.

» setDynamicRecordSuperclassName: also takes a string argument that names a class,
but for this method the named class must exist. It’s used as the superclass for the class
that DBBinder will create (which, as mentioned above, is Object by default). This is of
particular use if you’ve created a class whose set of instance variables are known to
match, to some extent, the properties in the table that you’re binding to. If the set isn’t
complete, the subclass (the class that DBBinder will create) will be given a sufficient
number of additional instance variables.

Since these are class methods, invoking either of them will affect all subsequent
invocations of createRecordPrototype for all DBBinder instances. Classes that were

- previously created are unaffected.

Of the two approaches, the setRecordPrototype: method takes priority. Reinforcing this,
you shouldn’t send createRecordPrototype to a DBBinder that has previously received a
setRecordPrototype: message.

Using a DBBinder

The point of all this, of course, is to gain access to the data in the actual database.

Having set up your DBBinder, you can command it to retrieve data through the select,
selectWithoutFetching, and fetch methods (select performs a select and a fetch;
selectWithoutFetching just selects). The insert, update, and delete methods write data
back to the database. In addition, the evaluateString: method can be used to command the
adaptor associated with the DBBinder’s DBDatabase to evaluate the given string, and
thereby produce data or modify data.

Classes: DBBinder — 4-217

4-28

After fetching data into a DBBinder’s record objects, you can point to a particular record by
positioning the “cursor” in the container. This is done through the DBCursorPositioning
protocol methods such as setNext and setTo:. (If the DBBinder doesn’t have a container, then
only the setNext method can be used; in this case, setNext causes a fetch to be performed.)

Having positioned the cursor, you can retrieve a DB Value object from the pointed-to record
for a particular property through the valueForProperty: method. You can then examine
and modify the DBValue; any changes you make will be imprinted on the record in the
DBBinder and will be written back to the database when the DBBinder receives an
update message.

The DBBinder class also provides an asynchronous fetch mechanism, provoked by the
fetchInThread method. When the DBBinder receives a fetchInThread message, it
creates a separate thread in which the fetch is performed. (Note that asynchronous fetching
requires containers.) To check on the progress of a threaded fetch, use the method
checkThreadedFetchCompletion:.

Qualification

You can give a DBBinder a DBQualifier object through the setQualifier: or
initForDatabase:withProperties:andQualifier: method. The DBQualifier is applied to
data that’s obtained through DBBinder’s fetch and select methods; note, however, that it
isn’t used by evaluateString:.

Instance Variables

id database;

id recordPrototype;

id container;

id delegate;

database The DBDatabase object with which this DBBinder is
associated.

recordPrototype A template for the DBBinder’s record objects.

container The repository for record objects.

delegate The receiver of notification messages.

Chapter 4: The Database Kit

Adopted Protocols

DBCursorPositioning — setFirst
— setNext
— setPrevious
— setLast
—setTo:
— currentPosition

Method Types

Initializing — init
— initForDatabase:withProperties:andQualifier:
— free

Connecting to a database — database
— setDatabase:

Managing properties — getProperties:
— setProperties:
— addProperty:
— removePropertyAt:

Managing the qualifier — qualifier
— setQualifier:

Managing the container — container
— setContainer:
— setFlushEnabled:
— isFlushEnabled
— setFreeObjectsOnFlush:
— areObjectsFreedOnFlush

Managing the record prototype + setDynamicRecordSuperclassName:
+ setDynamicRecordClassName:
- setRecordPrototype:
— createRecordPrototype
— ownsRecordPrototype
— recordPrototype
— associateRecordIvar:withProperty:
— associateRecordSelectors::withProperty:
— valueForProperty:

Classes: DBBinder 4-29

Ordering and ignoring records — addRetrieveOrder:for:
— removeRetrieveOrderFor:
— retrieveOrderFor:
— positionInOrderingsFor:
— ignoresDuplicateResults
— setlgnoresDuplicateResults:

Accessing the database — fetch

— select
— selectWithoutFetching
— insert

- —update
— delete
— evaluateString:
— adaptorWillEvaluateString:

Fetching in a thread — fetchInThread
— cancelFetch
— checkThreadedFetchCompletion

Limiting a fetch — setMaximumRecordsPerFetch:
— maximumRecordsPerFetch
—recordLimitReached

Using the shared cursor for several binders
— setSharesContext:
— sharesContext

Managing general resources —reset
— flush
— scratchZone

Appointing a delegate — delegate
— setDelegate:

Archiving —read:
— write:

Class Methods

setDynamicRecordClassName:

+ setDynamicRecordClassName:(const char *)aName

Sets the name of the record class that’s dynamically created and assembled by the
createRecordPrototype method. The argument must not name an existing class; if it does,

4-30 Chapter 4: The Database Kit

invocations of createRecordPrototype will fail. An argument of NULL erases the
previously established class name. Lacking the instruction provided by this method, the
DBBinder class creates a class name that’s arbitrary and unique. The dynamic record class
mechanism only applies to DBBinder objects that have no prototype record objects; in
other words, it applies only to DBBinders that haven’t received a setRecordPrototype:
message. See the class description above for a detailed description of the dynamic record
class mechanism. Returns self, regardless of the viability of the argument.

See also: + setDynamicRecordSuperclassName:, - setRecordPrototype:

setDynamicRecordSuperclassName:

+ setDynamicRecordSuperclassName:(const char *)aName

Identifies, by name, the class that’s used as the superclass of the record classes that are
created by createRecordPrototype. The argument must name an existing class; if it
doesn’t, invocations of createRecordPrototype will fail. By default, dynamic record
classes are subclasses of Object; an argument of NULL to this method will return the
superclass to the default. The dynamic record class mechanism only applies to DBBinder
objects that have no prototype record objects; in other words, it applies only to DBBinders
that haven’t received a setRecordPrototype: message. See the class description above for
a detailed description of the dynamic record class mechanism. Returns self, regardless of
the viability of the argument.

See also: + setDynamicRecordClassName:, — setRecordPrototype:

Instance Methods

acceptValues:forProperty:
— acceptValues:(BOOL) flag forProperty:(id <DBProperties>)aProperty

Establishes whether the given property will accept values from the database. By default,
all properties are set to accept values. This method is typically invoked by the adaptor
that’s associated with the DBBinder’s DBDatabase to proclaim that certain properties don’t
correspond to actual categories in the database—for example, a property that represents a
relationship (as created by a database model file) would be set to not accept values.

See also: — propertyAcceptsValues:, — provide Values:forProperty:,
— qualifyValues:forProperty:

Classes: DBBinder 4-31

4-32

adaptorWillEvaluateString:
— (BOOL)adaptorWillEvaluateString:(const unsigned char *)aString

Returns YES if the adaptor associated with the DBBinder’s DBDatabase object will accept
the given string for evaluation, otherwise returns NO. (This is determined by sending a
binder:willEvaluateString: message to the DBDatabase.)

See also: — binder:willEvaluateString: (DBDatabase)

addProperty:
— addProperty:anObject

Adds the given object (which should conform to the DBProperties protocol) to the
DBBinder’s list of properties that it’s interested in. The list can’t contain duplicates; if
the property is already present, the addition isn’t performed. The return value should
be ignored.

Typically, you only use this method if you’re building the DBBinder’s property list
incrementally, and so will rely on the DBBinder to create a record class dynamically. If

"you'’re setting your own prototype record object (through setRecordPrototype:), you

should, rather than use this method, inform the DBBinder of its properties all at once,
through initForDatabase: withProperties:andQualifier: or setProperties:.

See also: — setProperties:, — getProperties:, — removePropertyAt:

addRetrieveOrder:for:
— addRetrieveOrder:(DBRetrieveOrder)anOrder for:(id <DBProperties>)aProperty

Establishes the order in which records are retrieved from the database (and stored in the
DBBinder’s container). Using the value of the aProperty property as a retrieval “key,”
records are retrieved in least-to-greatest or greatest-to-least order, as anOrder is
DB__AscendingOrder or DB_DescendingOrder. If anOrder is DB_NoOrder, the default,
the property is removed from the retrieval order scheme. Returns self.

You can invoke this method for as many properties as you choose, but the order in which
the invocations are performed is important: The first invocation establishes the primary
retrieval order property, the second establishes the secondary such property, and so on. If
two or more records have the same value for their primary properties, their order is
determined according to the values of their secondary properties. If they still can’t be
distinguished, the decision falls to the tertiary properties, and so on.

Chapter 4: The Database Kit

Note well that it’s the adaptor—not the DBBinder—that retrieves records. If the adaptor
that you’re using doesn’t support the notion of an ordered retrieval, then this method is
for naught.

See also: —retrieveOrderFor:, — removeRetrieveOrderFor:,
— positionInOrderingsFor: '

areObjectsFreedOnFlush
— (BOOL)areObjectsFreedOnFlush

Returns YES if the objects in the DBBinder’s container are freed when the DBBinder is
flushed, otherwise returns NO. Flushing is explained in the description of the flush method.
By default, the objects are freed.

See also: - setFreeObjectsOnFlush:, — setFlushEnabled:

associateRecordlvar:withProperty:

— associateRecordIvar:(const char *)variableName
withProperty:(id <DBProperties>)aProperty

Associates the record object instance variable named variableName with the given property
such that when a record is fetched from the database, the value of the named instance
variable (in the record object that’s created to hold the record) is set to the value at the
property. The property’s value is coerced, if possible, to match the data type of the instance
variable. If aProperty isn’t in the DBBinder’s list of properties, the association isn’t made
and nil is returned, otherwise non-nil is returned.

You should only invoke this method if you’re setting your own prototype record object
(through the setRecordPrototype: method). Furthermore, the prototype record must
already be set when you invoke this method, and it must contain an instance variable with
the given name. Failing these, the association isn’t made (although the return value will
still be non-nil).

Rather than associate a property with an instance variable, you can associate it with a pair
of instance methods, through the associateRecordSelectors:withProperty: method.
However, a single property can be associated with only one instance variable or one
method pair; invoking this method with a particular property undoes the effect of a
previous invocation of this or of the associateRecordSelectors:withProperty: method
for that property.

See also: — associateRecordSelectors::withProperty:

Classes: DBBinder 4-33

4-34

associateRecordSelectors::withProperty:

— associateRecordSelectors:(SEL)set
:(SEL)get
withProperty:(id <DBProperties>)aProperty

Associates the record object instance methods sef and get with the given property such that
when a record is fetched from the database, the value at the property is set through the set
method, and when the record is written back to the database, the value is retrieved through
the get method. Either or both of the selector arguments may be NULL. If non-NULL, the
set method must take exactly one argument, the value that’s being set; the get method must
take no arguments. The data type of the value returned by the get method should match that
of the ser method’s argument.

You should only invoke this method if you’re setting your own prototype record object
(through the setRecordPrototype: method). Furthermore, the prototype record must have
already been set, and the object must respond to the set and ger methods (if they’re
non-NULL). If it doesn’t respond, or if aProperty isn’t in the DBBinder’s list of properties,
the association isn’t made and nil is returned. Otherwise, the method returns non-nil.

Rather than associate a property with a pair of methods, you can associate it with an

_instance variable, through the associateRecordIvar:withProperty: method. However, a

single property can be associated with only one instance variable or one method pair;
invoking this method with a particular property undoes the effect of a previous invocation
of this or of the associateRecordIvar:withProperty: method for that property.

See also: — associateRecordIvar:withProperty:

cancelFetch

— cancelFetch

Interrupts an asynchronous fetch. You can also use this method after a successful
synchronous fetch to ensure that idle resources are reclaimed.

See also: — fetchInThread, — fetch, — fetchDone: (DBDatabase)

checkThreadedFetchCompletion:
— checkThreadedFetchCompletion:(double)timeout
If you’re not using the Application Kit’s event loop, you should invoke this message after

an asynchronous fetch to ensure that the delegate message binderDidFetch: is sent. The
argument is the maximum amount of time, in seconds, to wait before returning. Returns

Chapter 4: The Database Kir

nil (and the message isn’t sent) if the time limit expires before the fetch completes,
otherwise returns self.

See also: —fetchInThread

container
— (id <DBContainers>)container

Returns the DBBinder’s container object, as set through setContainer:. The container,
which must conform to the DBContainers protocol, holds the record objects that are created
when the DBBinder fetches data. A DBBinder has no default container and can operate
without one, although this impedes some of the object’s functionality. Lacking a container,
a DBBinder can’t perform an asynchronous fetch, and its cursor can only be positioned
through the setNext method.

See also: — setContainer:

createRecordPrototype
— createRecordPrototype

Creates and assembles a class that’s used to create record objects. The class is given
sufficient instance variables to hold the DBBinder’s properties (one instance variable per
property). By default, the name of the class that’s created is arbitrary and unique and its
superclass is Object. You can change these settings through the setDynamicRecordClass:
and setDynamicRecordSuperclass: class methods. This method has no effect and returns
nil under the following conditions:

» If the DBBinder’s current prototype record object isn’t nil.

» [If the DBBinder has no properties.

* If the name set through setDynamicRecordClass: names an existing class.
¢ If the class named by setDynamicRecordSuperclass: doesn’t exist.

Upon success, this method returns the class that it created.

This method is automatically invoked when the DBBinder fetches data, thus you needn’t
invoke it directly. In general, it’s a good idea to never invoke this method; however, if you
do—for example, to examine the return value—you should send a setRecordPrototype:nil
message to the DBBinder before the next fetch to ensure that the correct class will

be assembled.

See also: + setDynamicRecordClass:, + setDynamicRecordSuperclass:

Classes: DBBinder 4-35

4-36

database
— (DBDatabase *)database
Returns the DBDatabase object that’s associated with the DBBinder.

See also: - initForDatabase:withProperties:andQualifier:, - setDatabase:

delegate
— delegate

Returns the object that will receive notification messages for the DBBinder.

See also: — setDelegate:

delete
— delete

Deletes from the database each of the DBBinder’s record objects.

Before the operation begins, a binder WillDelete: message is sent to the DBBinder’s
delegate (with the DBBinder as the argument); if the delegate message returns NO, then the
deletion isn’t performed and this method returns nil. After all the records have been
processed, the DBBinder is flushed. If the records were successfully deleted, a
binderDidDelete: message is sent to the delegate and self is returned, otherwise the
delegate message isn’t sent and nil is returned.

As each record is deleted, one of two messages is sent to the container’s delegate (if the
DBBinder has a container, if the container has a delegate, and if the delegate implements
the method):

* binder:didAcceptObject: if the record was deleted.
* binder:didRejectObject: is sent if the record couldn’t be deleted.

For both methods, the first argument is the DBBinder and the second is the record object.
The values returned by these methods are ignored.

See also: — deleteData: (DBDatabase)

evaluateString:
— (BOOL)evaluateString:(const unsigned char *)aString

Tells the adaptor to evaluate and execute the commands that are encoded in aString. The
DBBinder’s qualifier isnt applied to the evaluation.

Chapter 4: The Database Kir

Before the evaluation is performed, a binder:willEvaluateString: message is sent to the
DBBinder’s delegate. If the delegate message returns NO, then the evaluation isn’t
performed and this method immediately returns NO.

The evaluation itself is performed by sending an evaluateString:using: message to the
DBDatabase, passing aString and self as the arguments. Before the message is sent, the
DBBinder is flushed. If the DBDatabase message returns NO, then this method returns
NO, otherwise a binder:didEvaluateString: message is sent to the delegate and YES
is returned. o

See also: — evaluateString:using: (DBDatabase)

fetch
—fetch

Fetches data from the database and places it in the DBBinder’s record objects. If the
DBBinder has a container, the container is filled with record objects until it contains the
number of records set by setMaximumRecordsPerFetch: or there’s no more data to fetch.
If the binder has no container, a single record is fetched from the database (however, in that
case you should use the setNext method, rather than this one, to fetch data).

Before the fetch begins, the DBBinder’s delegate is sent a binder WillFetch: message;
after, it’s sent binderDidFetch:. If binderWillFetch: returns NO, the fetch isn’t
performed and this method immediately returns nil.

The DBDatabase method fetchData: is invoked—iteratively if there’s a container—to
perform the fetch. As each record of data is fetched, a copy of the DBBinder’s prototype
record object is created to hold the data. If the DBBinder’s prototype record hasn’t been
set, a class is dynamically assembled to fill the need, as explained in the description of
createRecordPrototype.

The fetch continues until there’s no more data to retrieve, or until the previously set record
limit (as set through the setMaximumRecordsPerFetch: method) has been reached. If the
fetch ended because the record limit was reached, the next fetch will continue where the
previous one ended.

After the fetch has ended, the DBBinder’s cursor is set to the first record in the container
(or to the single fetched record if there is no container) and self is returned. If there was no
data to fetch, or if there’s a fetch in progress (and the DBBinder has a container), the cursor
isn’t set, fetchDone: is sent to the DBDatabase, and nil is returned.

If the fetch ended by exhausting the source data—in other words, it didn’t end because the
record limit was reached—you should then invoke cancelFetch to reclaim resources that
were used during the fetch. Use the recordLimitReached method to test whether the fetch
ended because it reached the limit while there was more data to fetch.

Classes: DBBinder 4-37

4-38

fetchinThread
— fetchInThread

Fetches data asynchronously from the database by performing the fetch in a separate
thread. The general mechanism and conditions are as described in the fetch method, but
with these differences:

* An asynchronous fetch only works if the DBBinder has a container.

* Youshouldn’t invoke cancelFetch after invoking this method unless you actually want
to abort the fetch.

* The record limit set through setMaximumRecordsPerFetch:has no effect on an
asynchronous fetch.

If there is no container, or if the binderWillFetch: delegate message returns NO, then the
fetch isn’t performed and this method returns nil. Otherwise, this method returns self while
the fetch proceeds in the background. When the fetch is complete, the binderDidFetch:
method is sent to the delegate.

If you’re not using the Application Kit’s main event loop, you should follow this method
with an invocation of checkThreadedFetchCompletion: to synchronize the fetch thread
with the main thread and to ensure that the binderDidFetch: message is sent.

To be used in an asynchronous fetch, the DBBinder’s container must be thread-safe (it must
be re-entrant). Alternatively, if you limit yourself to DBCursorPositioning methods, such
as setTo: and setNext:, you can access the container regardless of the type of fetch
employed.

See also: —fetch, — cancelFetch, — checkThreadedFetchCompletion:

flush
— (BOOL)flush

If flushing is enabled, this empties the DBBinder’s container. Furthermore, if the
DBBinder has been told to free-on-flush, the records that were in the container are freed
and the prototype record object is set to nil. By default, both flushing and free-on-flush are
enabled. Returns YES if flushing is enabled, NO if not.

This method always interrupts a fetch, if one is in progress, whether or not flushing
is enabled.

Chapter 4: The Darabase Kit

The following DBBinder methods may cause flush to be invoked:

— evaluateString:

— selectWithoutFetching
— insert

—update

— delete

— setProperties:

— reset

— free

See also: — setFlushEnabled:, — setFreeOnFlush:

free

—free

Frees the DBBinder and its records. If the DBBinder owns the prototype record object, it
too is freed.

getProperties:
— (List *)getProperties:(List *)aList
Fills aList with the DBBinder’s properties, then returns the List directly and by reference.

The order of the properties in the List is that by which they were added to the DBBinder.
You mustn’t free the contents of aList, although you may free the List itself.

See also: - initForDatabase:withProperties:andQualifier:, — setProperties:,
— addProperty

ignoresDuplicateResults
— (BOOL)ignoresDuplicateResults

Returns YES if the DBBinder is set to ignore duplicate records during a select. The default
is YES. The instruction to ignore duplicate results is implemented by including a
SELECTDISTINCT in the SQL expression sent to the adaptor. It’s up to the adaptor to
support this (the Oracle and Sybase adapters supplied with the Database Kit do).

See also: - setIgnoresDuplicateResults:

Classes: DBBinder 4-39

4-40

init
— init
The designated initializer for the DBBinder class, init initializes and returns the DBBinder.

All the objects that the DBBinder owns or knows of, such as its container, properties,
DBDatabase, and DBQualifier are set to nil. Its boolean attributes are set as follows:

Attribute Value
flushing enabled? YES
frees properties on flush? YES
ignores duplicates? YES
shares context? NO

See also: - initForDatabase:withProperties:andQualifier

initForDatabase:withProperties:andQualifier:

— initForDatabase:aDBDatabase
withProperties:(List *)propertyList
andQualifier:(DBQualifier *)aDBQualifier

Invokes init and then sets the DBBinder’s DBDatabase, properties, and DBQualifier as
given by the arguments. The properties in propertyList are added to the DBBinder’s own
List, thus the argument may be freed.

See also: —init

insert

— insert
Inserts into the database each of the DBBinder’s record objects.

Before the operation begins, a binderWilllnsert: message is sent to the DBBinder’s
delegate (with the DBBinder as the argument); if the delegate message returns NO then the
insertion isn’t performed and nil is immediately returned by this method. After all the
records have been processed, the DBBinder is flushed. If the records were successfully
inserted, a binderDidInsert: message is sent to the delegate and self is returned, otherwise
the delegate message isn’t sent and nil is returned.

Chapter 4: The Database Kit

As each record is inserted, one of two messages is sent to the container’s delegate (if the
DBBinder has a container, if the container has a delegate, and if the delegate implements
the appropriate method):

* binder:didAcceptObject: if the record was inserted.
* binder:didRejectObject: is sent if the record couldn’t be inserted.

For both methods, the first argument is the DBBinder and the second is the record object.
The values returned by these methods are ignored.

See also: — insertData: (DBDatabase)

isFlushEnabled
— (BOOL)isFlushEnabled

Returns YES if the DBBinder has flushing enabled, otherwise return NO. The default is
YES. See the description of the flush method for more information. (Note that sharing a
cursor is incompatible with flushing, so setSharesContext: has the side effect of
disabling flushing.)

See also: — flush, — setFlushEnabled:, — setSharesContext:

maximumRBecordsPerFetch
— (unsigned intymaximumRecordsPerFetch

Returns the maximum number of records that will be retrieved during a synchronous fetch,
as set through the setMaximumRecordsPerFetch: method. By default, this limit is set to
DB_Nolndex, which imposes no limit.

See also: — setMaximumRecordsPerFetch:, — recordLimitReached, — fetch

ownsRecordPrototype
— (BOOL)ownsRecordPrototype

Returns YES if the DBBinder owns its prototype record object—in other words, if it will
create a record class for you (when createRecordPrototype is invoked). If you’ve set the
prototype record object yourself, through setRecordPrototype:, then this returns NO.

Classes: DBBinder 4-41

4-42

positioninOrderingsFor:

— (unsigned int)positionInOrderingsFor:(id <DBProperties>)aProperty
Returns an integer that indicates the level (primary, secondary, tertiary, and so on) at which
the given property is used to order the records that are retrieved from the database. The
ordering position of a particular property is the order in which it was added to the
ordering mechanism (amongst the currently “active” ordering properties) through the

addRetrieveOrder:for: method. A return of DB_NolIndex means that the property isn’t
used in the ordering mechanism. '

See also: — addRetrieveOrder:For:

qualifier
— (DBQualifier *)qualifier

Returns the DBQualifier object that was set through setQualifier: or initForDatabase:
withProperties:andQualifier:. The qualifier is used to qualify values during a select.

See also: — setQualifier:, — initForDatabase: withProperties:andQualifier:

read:
—read:(NXTypedStream *)stream

Reads the DBBinder from the typed stream stream. Returns self.

recordLimitReached

— (BOOL)recordLimitReached
If the previous fetch was stopped because the DBBinder’s record limit (as set through the
setMaximumRecordsPerFetch: method) was reached, then this returns YES. By default,

this returns NO; the flush method will also set this to return NO, whether or not flushing is
enabled. See the description of the fetch method for an example of the use this method.

See also: — setMaximumRecordsPerFetch:, — maximumRecordsPerFetch, — fetch

Chapter 4: The Database Kit

recordPrototype

— recordPrototype
Returns the DBBinder’s prototype record object. If you’ve set the object yourself, through
setRecordPrototype:, then that object is returned. Otherwise, this returns nil unless

you’ve previously invoked createRecordPrototype directly, or unless this is called from
within a subclass implementation of fetch.

See also: - setRecordPrototype, — createRecordPrototype

removePropertyAt:
— removePropertyAt:(unsigned int)index

Removes the property at the given index. To find the index of a particular property, get the
DBBinder’s List of properties through the getProperties: method, and then ask for the
index by sending indexOf: to the List, passing the property as the argument. Returns the
property (or nil if there was none).

See also: — setProperties:, — addProperty:

removeRetrieveOrderFor:
—removeRetrieveOrderFor:(id <DBProperties>)aProperty

Removes the given property from the list of properties that are used to sort records as
they’re being fetched. The property’s retrieve order constant is set to DB_NoOrder.
Returns nil if the property hadn’t previously been added to the record-sorting list (if it
hadn’t previously received an addRetrieveOrderFor: message), otherwise self is
returned.

See also: — addRetrieveOrderFor:, — positionInOrderingsFor:

reset

—reset

Restores the DBBinder to a virgin state. The DBBinder is first flushed (which cancels a
fetch, if one is in progress), then the objects that it has allocated, and any that you’ve
allocated in the scratch zone, are freed. The setProperties: and free methods automatically
cause a reset.

See also: — flush, — scratchZone

Classes: DBBinder 4-43

4-44

retrieveOrderFor:
— (DBRetrieveOrder)retrieveOrderFor:(id <DBProperties>)aProperty
Returns a constant that indicates the order in which records are retrieved when aProperty

is used as a retrieval key (see the addRetrieveOrder:for: method for a further
explanation). The retrieval order constants are:

Constant Meaning

DB_NoOrder The property isn’t part of the ordering scheme
DB_AscendingOrder Least to greatest

DB_DescendingOrder Greatest to least

See also: — addRetrieveOrder:for:, — positionInOrderingsFor:

scratchZone

— (NXZone *)scratchZone
Returns the zone in which the DBBinder allocates the objects that it owns. The objects in
the zone are freed during a reset; the zone is made public so you can use it to allocate your

own supporting objects and have them freed during a reset as well. Note that the zone may
be different after each reset.

See also: —reset

select

—select

Selects and fetches data from the database. First, selectWithoutFetching is invoked; if
that returns nil, then this returns nil. If the method was successful, then fetch is invoked,;
the value returned by fetch is returned by this method.

See also: - selectWithoutFetching, — fetch

selectWithoutFetching
— selectWithoutFetching
Selects records from the database, using the DBBinder’s qualifier (as set through

setQualifier: or initForDatabase:withProperties:andQualifier:) to qualify the records
that are selected.

Chapter 4: The Database Kit

Before the operation begins, a binderWillSelect: message is sent to the DBBinder’s
delegate (with the DBBinder as the argument); if the delegate message returns NO, then the
select isn’t performed and nil is immediately returned by this method. Otherwise, the
DBBinder is flushed, and a selectData: message is sent to the DBDatabase. If selectData:
returns NO, then this method returns nil. If the select was successful, a binderDidSelect:
message is sent to the delegate and self is returned, otherwise the delegate message isn’t
sent and nil is returned.

If the DBBinder is set to ignore duplicate results and the adaptor supports this feature
(both the Oracle and the Sybase adaptors do), then only the first of duplicate records will
be selected.

See also: - select, — setIgnoreDuplicateResults, — selectData: (DBDatabase)

setContainer:

— setContainer:(id <DBContainers>)anObject

Sets the container that’s used to store record objects. The argument must either adopt the
DBContainers protocol, or it can be a List object—DBBinder defines a category of List that
allows its instances, and those of its subclasses, to pose as DBContainers-conforming
objects. Most DBBinders are well served using a List as a container. For more on the
theory and practice of containment, see the class description, above.

Returns the previous container.

setDatabase:
— setDatabase:(DBDatabase *)aDatabase

Sets the DBBinder’s database. Returns the previous DBDatabase object.

setDelegate:
— setDelegate:anObject

Sets the object that receives notification messages for the DBBinder.

Classes: DBBinder 4-45

4-46

setFlushEnabled:
- setFlushEnabled:(BOOL)flag

Establishes whether the DBBinder is capable of being flushed, as explained in the
description of the flush method. The default is YES.

See also: — flush, — setFreeObjectOnFlush:

setFreeObjectsOnFlush:
— setFreeObjectsOnFlush:(BOOL)flag
Establishes whether the DBBinder will free its records when it’s flushed. Setting this to

YES is effective only if the DBBinder is capable of being flushed, as established by the
setFlushEnabled: method. The default is YES (the default flush-enablement is also YES).

See also: — flush, — setFlushEnabled:

setignoresDuplicateResults:
— setlgnoresDuplicateResults:(BOOL)flag

Establishes whether duplicate records are ignored during a select. The default is YES.

The instruction to ignore duplicate results is implemented by including a
SELECTDISTINCT in the SQL expression sent to the adaptor. It’s up the adaptor to
support this; the Oracle and Sybase adapters supplied with the Database Kit do.

See also: —ignoresDuplicateRecords, — selectWithoutFetching

setMaximumRecordsPerFetch:
- setMaximumRecordsPerFetch:(unsigned int)limit

Sets, to limit, the maximum number of records that will be retrieved during a synchronous
fetch. When the limit is reached, the fetch is stopped but the “pointer” into the selected data
isn’t reset, thus the next fetch will start where the previous one ended. The limit only
applies to synchronous fetches; the asynchronous fetch method fetchInThread ignores the
record limit.

See also: — maximumRecordsPerFetch, — recordLimitReached, — fetch

Chapter 4: The Database Kit

setProperties:
— (List *)setProperties:(List *)aList
Resets the DBBinder and then adds to it the properties in aList. Returns the argument.

See also: — getProperties:, — addProperty:, — removePropertyAt:

setQualifier:
— setQualifier:(DBQualifier *)aQualifier
Sets the qualifier that’s used during a select. Returns self.

See also: - qualifier

setRecordPrototype:
— setRecordPrototype:anObject

Sets the object that’s copied to store the results of a fetch. See the class description for a
full explanation of the record prototype object.

See also: - recordPrototype, — createRecordPrototype

setSharesContext:
— setSharesContext:(BOOL)flag

Determines whether the DBBinder shares its cursor with other DBBinders that have done
so. The default is NO. Making a DBBinder share its cursor disables flushing. Returns self.

Shared cursor behavior depends on the implementation of the adaptor rather than the
database; it’s provided in both the Oracle and the Sybase adaptors as a way of achieving
atomic updates. Sharing the cursor also provides a slightly more efficient use of memory.

See also: — sharesContext

sharesContext
— (BOOL)sharesContext

Returns YES if the DBBinder shares its cursor with other DBBinders, otherwise
returns NO.

See also: — setSharesContext:

Classes: DBBinder — 4-47

4-48

update
— update

Updates the records in the database by sending an updateData:self message to the
DBDatabase for each of the DBBinder’s record objects.

Before the operation begins, a binderWillUpdate: message is sent to the DBBinder’s
delegate (with the DBBinder as the argument); if the delegate message returns NO, then the
update isn’t performed and nil is immediately returned by this method. After all the records
have been processed, the DBBinder is flushed. If the records were successfully updated, a
binderDidUpdate: message is sent to the delegate and self is returned, otherwise the
delegate message isn’t sent and nil is returned.

As each record is updated, one of two messages is sent to the container’s delegate (if the
DBBinder has a container, if the container has a delegate, and if the delegate implements
the appropriate method):

* binder:didAcceptObject: if the record was updated.
¢ binder:didRejectObject: is sent if the record couldn’t be updated.

For both methods, the first argument is the DBBinder and the second is the record object.
The values returned by these methods are ignored.

See also: — updateData: (DBDatabase)

valueForProperty:
— (DBValue *)valueForProperty:(id <DBProperties>)aProperty

Returns a DB Value object for the given property of the currently pointed-to record. Use
the DBCursorPositioning methods, such as setNext and setTo:, to set the cursor to point to
a particular record. The object that’s returned is owned by the DBBinder and shouldn’t
be freed.

write:
— write:(NXTypedStream *)stream

Writes the DBBinder to the typed stream stream. Returns self.

Chapter 4: The Database Kit

Methods Implemented by the Delegate
binder:didEvaluateString:

— binder:aBinder didEvaluateString:(const unsigned char *)aString

Invoked after the given string has been successfully evaluated by DBBinder’s
evaluateString: method. The return value is ignored.

binder:willEvaluateString:
— (BOOL)binder:aBinder willEvaluateString:(const unsigned char *)aString

Invoked before the given string is evaluated by DBBinder’s evaluateString: method. A
return of NO will thwart the evaluation.

binderDidDelete:
— binderDidDelete:aBinder

Invoked after the DBBinder has successfully deleted récords through the delete method.
The return value is ignored.

binderDidFetch:
— binderDidFetch:aBinder

Invoked after the DBBinder has successfully fetched records through the fetch or
fetchInThread method. The return value is ignored.

binderDidInsert:
_ binderDidInsert:aBinder

Invoked after the DBBinder has successfully inserted records through the insert method.
The return value is ignored.

binderDidSelect:
— binderDidSelect:aBinder

Invoked after the DBBinder has successfully selected data through the
selectWithoutFetching method. The return value is ignored.

Classes: DBBinder 4-49

4-50

binderDidUpdate:
— binderDidUpdate:aBinder

Invoked after the DBBinder has successfully updated the database through the update
method. The return value is ignored. '

binderWillDelete:
— (BOOL)binderWillDelete:aBinder

Invoked before the DBBinder attempts to delete records from the database through the
delete method. A return of NO will thwart the attempt.

binderWillFetch:
— (BOOL)binder WillFetch:aBinder

Invoked before the DBBinder attempts to fetch data through the fetch or fetchInThread
method. A return of NO will thwart the attempt.

binderWillinsert:
— (BOOL)binderWillInsert:aBinder

Invoked before the DBBinder attempts to insert records into the database through the insert

~ method. A return of NO will thwart the attempt.

binderWillSelect:
— (BOOL)binderWillSelect:aBinder

Invoked before the DBBinder attempts to select data from the database through the
selectWithoutFetching method. A return of NO will thwart the attempt.

binderWillUpdate:
— (BOOL)binderWillUpdate:aBinder

Invoked before the DBBinder attempts to update the database through the update method.
A return of NO will thwart the attempt.

Chapter 4: The Database Kit

DBDatabase

Inherits From: Object

Declared In: dbkit/DBDatabase.h

Class Description

A DBDatabase object acts as a representation of an external database. Your application
sends messages to the DBDatabase object as if it were the database; the DBDatabase object
then forwards them to an adaptor that knows how to translate and format the messages
appropriately for the type of database the application is using. In a high level application—
that is, one built by dragging one or more DBModules from Interface Builder’s database
palette—the DBModules will in fact make use of a DBDatabase as their intermediary for
communication with the database, but your application will not need to create or address
DBDatabase objects directly.

A DBDatabase object maintains:

* A connection to the database
* A model of the database’s entities
» The use of transactions to treat a sequence of operations as an indivisible “atom”

Only if your application needs more specific control of any of those areas should it make
explicit use of a DBDatabase object. For example, you might want to regulate the database
connection directly, to discover the database’s entities independently of their description in
the model file, or to establish your own transaction boundaries.

Class methods in DBDatabase can supply the names of databases that are available in your
computing environment. The class gets this information by scanning standard directory
paths for database models and database adaptors, residing in bundles identified by the
extensions “.dbmodel” and “.adaptor”.

To use a database, your application (either explicitly, or through its DBModule) creates a
DBDatabase object. The application opens a connection to the database and reads or writes
data by sending messages to the DBDatabase object. If your application uses several
different databases, or several models of the same database, it will need a separate
DBDatabase object for each model of each database.

Classes: DBDatabase 4-51

4-52

The DBDatabase’s Adaptor and its Model
To gain access to data in the database, each DBDatabase object must have:

* An adaptor that manages communication with the database
* A model of the data that the database contains

An adaptor is specific to a type of database or DBMS product. It acts as a sort of delegate
for your DBDatabase object (or objects). The adaptor contains the DBMS-specific code
for accessing a particular vendor’s client library. You communicate with the database
primarily by sending messages to a DBDatabase object, which passes them to the adaptor
you have designated, which in turn translates them and relays them to the database server.

A model contains data dictionary information, as well as other information used to map the
Database Kit’s high-level model to the lower-level database structure.- The model defines
what you can talk about in framing requests to the database. It lists the entities in a
particular database, and their attributes and relationships. The model doesn’t have to
describe everything in the database; it’s only required to cover the entities, attributes, and
relationships your application may use.

When first instantiated, a DBDatabase has no data model and no adaptor. There are two
main ways the DBDatabase object can obtain its model:

* By loading a previously prepared model from a model file
* By asking the database to supply a model (called the default model)

In addition to the list of entities and attributes, a model file may contain other useful
information about the database and its use. This typically includes the name of the adaptor
that the database requires, a default login string for connecting to it, and perhaps specific
login strings for individual users of the application.

The DBDatabase’s Records

To access data in the database, the usual procedure is to create an instance of
DBRecordStream (for sequential access) or its subclass DBRecordList (for random
access). The sections on those two classes describe their methods to fetch, save, or update
data. Those methods makes use of an intermediate class called DBBinder. Many
applications will require never need to make any explicit mention of a DBBinder.
However, to support applications that choose to deal directly with their DBBinders, the
DBDatabase class provides certain methods that typically are invoked from a DBBinder
and therefore identify the sending DBBinder in their argument.

Chapter 4: Database Kit

Delegate

Before executing certain database operations, the DBDatabase object notifies its delegate;
if you implement the corresponding methods in the delegate, the delegate can insert a check
on those operations before they’re passed to the database. It can also receive notification
of commands to commit or roll back a transaction. The delegate may also implement a
logging system. When logging is enabled, the delegate writes a record of each command
sent to the database.

Instance Variables

id delegate;

delegate The object that receives notification messages

Method Types

Initializing the class + initialize

Reporting what’s available + adaptorNames
+ databaseNamesForAdaptor:

Initializing an instance — initFromFile:

Describing the model source ~ — directory
— name
— setName:
— currentAdaptorName
— defaultAdaptorName
— defaultLoginString
— currentLoginString
— loginStringForUser:

Describing the database model - entityNamed:
— getEntities:

Revising the data dictionary — emptyDataDictionary
— loadDefaultDataDictionary

Classes: DBDatabase 4-53

Connecting to the database + findDatabaseNamed:connect:
— connect
— connectUsingString:
— connectUsing Adaptor:andString:
— disconnect
— disconnectUsingString:
— isConnected
— connectionName

Managing transactions — beginTransaction
— rollbackTransaction
— commitTransaction
—isTransactionInProgress
— areTransactionsEnabled

— enableTransactions:
Using a delegate — delegate

— setDelegate:
Evaluating an arbitrary string - evaluateString:
Controlling the user interface — arePanelsEnabled

— setPanelsEnabled:
Archiving —read:

— write:

Class Methods

adaptorNames

+ (const char **)adaptorNames

Returns a list of the names of adaptors available to the DBDatabase class.

The DBDatabase class maintains a list of adaptor names. It initially constructs the list by
searching the application’s bundle and then the directories ~/Library/Adaptors,
/usr/local/lib/Adaptors, /LocalLibrary/Adaptors, and finally /NextLibrary/Adaptors.
It searches for bundles whose names have the extension “.adaptor”. The list returned
contains the set of distinct adaptor names, without the extension or the path. (Thus a local
adaptor shadows another adaptor of the same name.)

4-54 Chapter 4: Database Kit

databaseNamesForAdaptor:
+ (const char **)databaseNamesForAdaptor:(const char *)anAdaptorName

Returns a list of the names of databases that the named adaptor serves. Typically, an
adaptor class serves a single type of database, but might be used with any of several
databases of the same type. An adaptor instance connects to a single database.

A DBDatabase object can be identified either by its id or by an arbitrary name. Assigning
a name to a DBDatabase object (through the setName: method) adds that name to a table
maintained by the DBDatabase class. Each name in the table identifies exactly one
DBDatabase. The class initially constructs the list by searching the application’s bundle
and then the directories ~/Library/Databases, /usr/local/lib/Databases,
/LocalLibrary/Databases, and finally /NextLibrary/Databases. It searches for bundles
whose names have the extension “.dbmodel”.

If the argument is NULL, the method returns the names of databases for all available
model files.

findDatabaseNamed:connect:

+ findDatabaseNamed:(const char *)aName
connect:(BOOL)flag

Returns the already instantiated DBDatabase having the specified name, if one exists. If no
DBDatabase of that name has been instantiated, the method searches the table maintained
by the DBDatabase class, and then (if it finds no match there) through a standard sequence
of directory paths for a file named aName.dbmodel. The path sequence is
~/Library/Databases, /LocalLibrary/Databases, and finally /NextLibrary/Databases.

If the method finds aName for which no DBDatabase object has yet been instantiated, it
creates a new DBDatabase object, initializes it and then loads into it the database
description it finds in the model file.

When flag is YES and there is not yet a connection to the database, the method makes the
connection, using the default login string and the adaptor identified in the database
description just loaded.

Returns the DBDatabase object (whether previously existing or just created). However,
returns nil if aName wasn’t found, or if flag was YES but the method wasn’t able to connect
to the database. When the method attempts to connect but is unsuccessful, the method also
frees the DBDatabase object, so that subsequent use of the same method with the same
database bundle will require a new DBDatabase object (and a fresh loading of the database
description). A DBDatabase object returned by findDatabaseNamed:connect: should
never be freed.

Classes: DBDatabase 4-55

4-56

initialize

+ initialize
Initializes the class object. The initialize message is sent for you before the class object
receives any other message; you never send an initialize message directly. Returns self.

Instance Methods

arePanelsEnabled

— (BOOL)arePanelsEnabled
Reports whether (when connecting to a remote database) the DBDatabase object will
prompt the user for required items that it didn’t find in the database bundle. Items for

which the DBDatabase may prompt the user include login string, user name, password and
alert panels.

An application designed for interactive use will usually run with panels enabled, whereas
one that is run as a batch or background job without a user interface must run with
panels disabled.

Returns YES if panels are enabled, NO otherwise. The default at initialization is YES.

areTransactionsEnabled
— (BOOL)areTransactionsEnabled

Reports whether the transaction facility is enabled in the adaptor through which the database
is connected. Returns YES if the database is connected and transactions are enabled.

beginTransaction

— (BOOL)beginTransaction
Signals the adaptor that a transaction is about to begin. The database then takes whatever
action it provides for safeguarding a transaction; typically, it groups all changes that follow

so that they can be combined in a single operation. If it subsequently must roll back the
changes, the original data remains intact.

Returns YES if there is a connection to the database, the adaptor has the transactions
facility enabled, and no transaction is already in progress.

See also: — commitTransaction, — rollbackTransaction

Chapter 4: Database Kit

commitTransaction
— (BOOL)commitTransaction

Causes a transaction started with beginTransaction to be committed. Any changes to the
data that have been queued up since the previous beginTransaction will be irreversibly -
made in the database. Returns YES if the transaction was committed: that is, if a
transaction was in progress and the database was able to commit it successfully. If the
database server supports referential integrity and these integrity checks fail, this method
returns NO.

Important: A return of NO does not mean that the transaction has been closed. It remains
open. That way, the application retains the option to take remedial action before trying
again to commit. The transaction will remain open until rollbackTransaction is called.

If the delegate implements db:log: (to maintain a log file), each use of commitTransaction
generates a log entry containing the name of the method and text indicating whether the
cancellation succeeded or failed.

See also: —rollbackTransaction

connect

— (BOOL)connect
Opens a connection to the database, using the default login string. If no adaptor has been
specified, the connection is established through the default adaptor. Returns YES if the

connection was successfully established or already existed. Invoking this method is
equivalent to invoking connectUsingString: with aString set to NULL.

If the delegate implements db:log: (to maintain a log file), each use of connect generates
alog entry containing the name of the method and language-specific text indicating success
or failure.

See also: connectUsingString:

connectionName

— (const unsigned char *)connectionName

Returns the name of the adaptor’s current connection to a database, or NULL if there is no
adaptor or the adopter is not connected to a database. When an adaptor establishes a
connection to a database, it retains the name of the database to which it is connected.

Classes: DBDatabase . 4-57

connectUsingAdaptor:andString:

— (BOOL)connectUsingAdaptor:(const char *)aClassname
andString:(const unsigned char *)aString

Opens a connection to the database by way of the adaptor identified by aClassname, using
the login string aString. When the connection is established (or already exists), the method
asks the database for its default data dictionary and loads it into the DBDatabase object.

If aClassName is the same as the name of the adaptor that the DBDatabase is already using,
this method simply continues to use it. But if aClassName differs from the name of the
current adaptor, or there is no current adaptor, the method instantiates one from the
adaptor bundle named aClassName, replacing the former instance, if any. (The
DBDatabase class maintains a list of known adaptor bundles and database bundles; see
the discussion of adaptorNames.) If the login string aString is NULL, the method uses
the default login string.

Returns YES if the connection is made (or already existed). If the delegate implements
db:log: (to maintain a log file), each use of connectUsingAdaptorNamed:andLoginString:
generates a log entry containing the name of the method and language-specific text
indicating success or failure.

See also: connectUsingString:

connectUsingString:
— (BOOL)connectUsingString:(const unsigned char *)aString

Instructs the adaptor to connect to the database, using the login string aString. If aString is
NULL, uses the default login string.

Returns YES when the method makes a new connection to the database, and NO if the
database is already connected (or no connection can be made). If the delegate implements
db:log: (to maintain a log file), each use of connectUsingString: generates a log entry
containing the name of the method and language-specific text indicating success or failure.

See also: connectUsingAdaptorNamed:andLoginString:

currentAdaptorName

— (const char *)currentAdaptorName
Returns the name of the current adaptor, or NULL if none has been set.

(The name of an adaptor to be used by default is among the items stored in the bundle
from which the DBDatabase object was initialized; however, the method
connectUsingAdaptorNamed:andString: can specify a different adaptor.)

4-58 Chapter 4: Database Kir

currentLoginString
— (const unsigned char *)currentLoginString

Returns the text of the current login string, or NULL if none has been set.

defaultAdaptorName
— (const char *)defaultAdaptorName

Returns the name of the adaptor that will be used by default. (The name of the default
adaptor is among the items stored in the bundle from which the DBDatabase object was
initialized.)

defaultLoginString
— (const unsigned char *)defaultLoginString

Returns the text of the login string that will be used by default when the adaptor connects
to the database. (The default login string is among the items stored in the bundle from
which the DBDatabase object was initialized.)

delegate
— delegate

Returns the DBDatabase object’s delegate.

directory

— (const char *)directory

Returns the path to the directory containing the bundle from which the DBDatabase object
was initialized.

disconnect
~ (BOOL)disconnect

Closes the connection to the database. The DBDatabase object then loads the default data
dictionary. Returns YES if the connection was successfully closed. Invoking the disconnect
method is equivalent to invoking disconnectUsingString: with aString set to NULL.

See also: disconnectUsingString:

Classes: DBDatabase 4-59

4-60

disconnectUsingString:
— (BOOL)disconnectUsingString:(const unsigned char *)aString
Closes the connection to the database by sending it the command aString. The DBDatabase

object then loads the default data dictionary. Returns YES if the connection was
successfully closed.

See also: disconnect

emptyDataDictionary
— emptyDataDictionary

Frees the DBDatabase object’s currently loaded data dictionary. The entity names, adaptor
name, and login string are zeroed. Returns self.

enableTransactions:
— (BOOL)enableTransactions:(BOOL)flag

Controls the right to use transactions—that is, permits use of the methods
beginTransaction, commitTransaction, and rollbackTransaction—according to the
value of flag. If the database supports transactions, transactions are enabled by default.
Returns YES if the adaptor is able to comply, NO otherwise.

If the delegate implements db:log: (to maintain a log file), each use of enableTransactions
generates a log entry containing the name of the method, the argument (YES or NO) and
language-specific text indicating whether the adaptor was able to comply.

entityNamed:
— (id <DBEntities>)entityNamed:(const char *)aName
Returns the entity named aName from the DBDatabase object’s list of entities, or nil if

aName is invalid. The length and spelling of aName must exactly match the name of an
entity; entities are supposed to have unique names.

Chaprer 4: Database Kir

Warning:

evaluateString:

— (BOOL)evaluateString:(const unsigned char *)aString
Passes the adaptor a request to evaluate the string aString. This method is most useful to
an application that sets up its own DBBinders to transfer data to and from the database. The

method makes it possible to pass SQL directly to the database, for example to call stored
procedures or to pass SQL data definition statements.

If the evaluation fetches data, note that this method bypasses the Databse Kit’s standard
procedures for describing the data to be fetched. As a consequence, fetched data won’t be
automatically accessible by its properties. This method can be used to fetch data only in an
application that sets up its own DBBinders to receive the fetch, and its own mappings from
the binder’s container to objects that encapsulate the data.

Returns YES if the string is successfully evaluated. If the delegate implements the method
db:willEvaluateString:usingBinder:, the evaluation is permitted only if the delegate
returns YES to that notification.

If the delegate implements db:log: (to maintain a log file), each use of evaluateString:
generates a log entry containing the name of the method, the return value, and the string
proposed for evaluation.

getEntities:
— (List *)getEntities:(List *)aList

Fills aList with references to all of the entities in the database’s model. This is the only way
to get a complete list of entities from the DBDatabase object. Returns aList.

initFromFile:

— initFromFile:(const char *)aPath

Initializes the DBDatabase object from the database model information in the bundle
identified by the path aPath. Model information (database name, login string, adaptor
name, and entities) are read from the file. Returns self.

isConnected
— (BOOL)isConnected

Returns YES if the database connection is currently open (ready to fetch or store data).

Classes: DBDatabase 4-61

4-62

isTransactionInProgress
— (BOOL)isTransactionInProgress

Returns YES if a transaction has been started (by beginTransaction) and has not yet been
committed or rolled back.

loadDefaultDataDictionary
— loadDefaultDataDictionary

Reads the data dictionary of the database ands fills the list of entities with the information
thus obtained. This method has no effect if the DBDatabase object is not connected to a
database or if it already has a non-empty list of entities or attributes.

Returns self.

loginStringForUser:

— (const unsigned char *)loginStringForUser:(const char *)aUser

Returns the login string for the user identified by aUser, as recorded in the database bundle
from which the DBDatabase object was initialized. However, if aUser does not exactly
match the name of a user as recorded in the bundle’s string table, the method returns the
default login string.

name

— (const char *)name

Returns the name assigned to the DBDatabase object in the table maintained by the
DBDatabase class.

See also: — setName:, — findDatabseNamed:

read:
—read:(NXTypedStream *)stream

Standard archiving method for retrieving a DBDatabase object from a typed stream.

Returns self.

Chapter 4: Database Kit

rollbackTransaction
— (BOOL)rollbackTransaction
Causes the database to roll back all changes since a preceding startTransaction. Returns

YES if the rollback was successful. Returns NO is the database could not roll back the
transaction or there was no transaction in progress.

If the delegate implements db:log: (to maintain a log file), each use of rollbackTransaction
generates a log entry containing the name of the method and text indicating whether the
cancellation succeeded or failed.

See also: dbWillRollbackTransaction

setDelegate:
— setDelegate:anObject

Makes anObject the delegate of the DBDatabase. Returns self.

setName:
— (BOOL)setName:(const char *)aString

Sets the name of the database to aString. Returns YES.

setPanelsEnabled:
— setPanelsEnabled:(BOOL)flag

Causes panels to be enabled or disabled. Panels are used to inform the user of unusual
conditions or prompt the user to supply parameters that have not been stored (for example,
apassword). If the application is to run unattended or as a program without an Application
object, it’s essential to suppress panels. By default, a new DBDatabase is initialized to
show panels. Returns self.

Note that when panels are enabled, a request for an attention panels (but not for a login or
password panel) is forwarded to the delegate if the delegate implements
notificationFrom:message:code:. ‘

See also: arePanelsEnabled, notificationFrom:message:code:

Classes: DBDatabase 4-63

write:
— write:(NXTypedStream *)stream

Archives the DBDatabase object to the stream identified by stream. Returns self.

Methods Implemented by the Delegate

db:log:
— db:aDatabase log:(const char *)fmt, ...

Logs the notifications of database commands. The method receives a format string and a
variable number of arguments, to be used with vsprintf(). The following fragment
illustrates a possible implementation:

@implementation Control (DatabaseDelegate)
- db:aDatabase log: (const char*) format,
{
va_list args;
static char buf[1024];
va_start (args, format);
vsprintf (buf, format, args);
if ([self respondsTo:@selector(setStringvValue:)])
[self setStringValue:buf];
else
syslog (LOG_NOTICE, buf);
return self;

}
@end

db:notificationFrom:message:code:

— (BOOL)db:aDatabase
notificationFrom:anObject
message:(const unsigned char *)msg
code:(int)n

Invoked when the database encounters an exceptional situation. If your application
appoints a delegate and it responds to this method, the method replaces a call to the generic
attention panel. :

This message originates from an object (often the adaptor) that wishes to notify the user of
some unusual condition. The argument msg is a string supplied by the object that sent the
message (and should have been selected from the strings for the appropriate language). The

4-64 Chaprer 4. Database Kir

argument code is a numeric indication of the type of problem (usually, as supplied by the
database vendor). The delegate method may choose to interpret the value of code.
However, if the delegate doesn’t implement this method, the message is handled by the
default attention panel, which ignores code. (The ability to put up panels is by default
enabled; you can explicitly enable it with setPanelsEnabled:.) The panel’s only message
is the text specified by msg, and its only button is labeled “OK.” Returns YES if the panel
was successfully displayed and acknowledged by the user.

db:willEvaluateString:usingBinder:

— (BOOL)db:aDb
willEvaluateString:(const unsigned char *)aString
usingBinder:aBinder

Invoked before database control string (for example, in SQL) is sent to the database.
Returning YES permits the string to be sent.

dbDidRollbackTransaction:
— dbDidRollbackTransaction:aDatabase

Invoked when the database has rolled back the current transaction.

dbDidCommitTransaction:

— dbDidCommitTransaction:aDatabase

Invoked when the database has committed the current transaction.

dbWillRollbackTransaction:
— dbWillRollbackTransaction:aDatabase

Invoked when the database is about to roll back a transaction.

dbWillCommitTransaction:
— dbWillCommitTransaction:aDatabase

Invoked when the database is about to commit a transaction.

Classes: DBDatabase 4-65

DBEditableFormatter

Inherits From: DBFormatter : Object

Declared In: dbkit/DBEditableFormatter.h

Class Description

DBEditableFormatter is one of three subclasses of DBFormatter that support the display
and editing of data in DBTableView. The others are DBTextFormatter and
DBImageFormatter. DBEditableFormatter supports user revisions of the displayed data.
Although DBTextFormatter is capable of faster character-based display, it’s limited to
read-only use. See the description of the superclass, DBFormatter.

Instance Variables
id font;
id editView;
id drawCell;

font The current font
editView The view now being edited
drawCell The TextField cell that’s being edited

Method Types

Initializing — init

— free
Manipulating the font — font

— setFont:

4-66 Chapter 4: Database Kir

Displaying and editing — drawFieldAt::inside:inView:withAttributes::
usePositions::
— editFieldAt::inside:in View:withAttributes::
usePositions::onEvent:
- — abortEditing
— endEditing
Archiving — write:
—read:
— finishUnarchiving

Instance Methods

abortEditing
— abortEditing

Forces an end to the current editing (if any), discarding any changes the user may have
made. Returns self.

drawFieldAt:inside:inView:withAttributes::usePositions::

— drawFieldAt:(unsigned int) row
:(unsigned int)column
inside:(NXRect *)frame
inView:aView
withAfttributes:(id <DBTableVectors>) rowAttrs
:(id <DBTableVectors>) columnAttrs
usePositions:useRowPos
:(BOOL)useColumnPos

Draws one field of data. You never invoke this method directly; it’s invoked automatically
by the DBTableView that’s using this DBEditableFormatter when a field needs to be
displayed.

Classes: DBEditableFormatter 4-67

4-68

editFieldAt::inside:inView:withAttributes::usePositions::onEvent:

- (BOOL)editFieldAt:(unsigned int)row
:column
inside:(NXRect *)frame
inView:view
withA ttributes:(<DBTable Vectors>)rowAttrs
:(<DBTableVectors>)columnAttrs
usePositions:(BOOL)useRowPos
:(BOOL)useColumnPos
onEvent:theEvent

Prepares the DBEditableFormatter for editing. You never invoke this method directly; it’s
invoked when the user acts on the DBTableView.

endEditing
— (BOOL)endEditing

Invoked to terminate editing in the current field, usually when the user clicks in a different
field (thereby indicating that editing in this one is complete). Returns YES if successful
(this, if the method is able to make the window that sent the message the first responder).

finishUnarchiving
— finishUnarchiving

Invoked after a DBEditableFormatter’s instance variables have been unarchived (using
read:) as a final step in initialization. Your application should not need to invoke this
method explicitly. Returns self.

font

—font

Returns the DBEditableFormatter’s Font object.

free
— free

Frees the DBEditableFormatter instance..

Chapter 4: Database Kir

init

— init
Initializes the DBTextFormatter instance. In the course of initializing, the display font is
set to the user’s default font at 12.0 point. Returns self.

read:
—read:(NXTypedStream *) stream

Restores the values of the object’s instance variables from the archive stream, including its
font and delegate. Returns self.

setFont:
—setFont:aFont

Sets the current font to the Font object aFont. Returns self.

write:
— write:(NXTypedStream *) stream

Writes the DBTextFormatter’s instance variables to stream, including its font and its
delegate.

Closes the connection to the database by sending it the command aString. The DBDatabase
object then loads the default data dictionary. Returns YES if the connection was
successfully closed.

See also: disconnect

Classes: DBEditableFormatter 4-69

4-70

DBEXxpression

Inherits From: Object

Conforms To: DBProperties
DBExpressionValues

Declared In: dbkit/DBExpression.h

Class Description

A DBExpression encapusulates a database expression as an object. A database expression
specifies a property of data to be returned from an entity in the database. A fetch is
governed by a list of DBExpressions, one for each of the properties to be returned (and also
by a DBQualifier that specifies which records are to be included.)

The DBExpression class provides methods that let you refer to existing properties, specify
the type of data to be returned for a property, and combine existing properties to create a
new one.

Every DBExpression is relative to an entity; the entity is specified in the initForEntity:...
methods:

* initForEntity:fromDescription:
» initForEntity:fromName:usingType:

You can change the entity or description of an existing DBExpression by sending it a
setEntity:andDescription: message.

Format of a DBExpression’s Description

The text of a DBExpression is called its description. The description is constructed in
much the same way as a printf statement. That is, it consists of a quoted string containing
the symbols needed to construct the expression with placeholders for the various values,
followed by the names of the objects to be substituted for the placeholders. The following
substitution symbols may occur within the quoted string:

Chapter 4: Database Kit

Symbol Expected value

%5 A constant string (const char *).

Jop | A (const char *) that names one of the entity’s properties.

%d An int.

Yot A double or float.

% @ An object that conforms to the DBExpressionValues protocol, or a

property object created by the Database Kit. (The former includes
DBExpression, allowing you to created a nested expression.)

%% No value—this passes a single ‘%’ literally.

The rest of the format string should comprise query-language operators and symbols, the
names of properties, and whitespace. For example, suppose you have a boxes entity that
has properties named “height”, “width”, and “depth.” To create a DBExpression that
calculates the volume of a box, you would do the following:

id h = [boxes propertyNamed:"height"];

id w = [boxes propertyNamed: "width"];
id d = [boxes propertyNamed:"depth"];
DBExpression *volume = [[DBExpression alloc] initForEntity:boxes

fromDescription:"%@ * %@ * %@", h,w,d];

/* Setting the name isn’t essential, but it’s a good idea. */
[volume setName: "volume"];

To evaluate a DBExpression, you send it an expressionValue message. The return is a
string in the query language used by the adaptor, representing the expression.

Using a DBExpression

A DBExpression object adopts the DBProperties protocol, and so can be used in any
situation that requires a property. To retrieve data for a DBExpression, before executing a
fetch, you add the DBExpression to the list of expressions maintained by the object that
you’re using to fetch data (a DBRecordList, DBRecordStream, or DBBinder). You can use
a DBExpression to get the value for a property from a record by passing it to methods such
as DBBinder’s valueForProperty: or DBRecordList’s getValue:forProperty:.

The two most important differences between a DBExpression that you’ve created and a
property that you’ve retrieved from an entity are these:

* You can’t write the value for a self-created DBExpression back to the source.
* You create it, you free it.

Classes: DBExpression 4-11

Instance Variables

None declared in this class.

Adopted Protocols

DBExpressionValues — expressionValue
— isDeferredExpression

DBProperties — name
— setName:
— entity
— matchesProperty:
— property Type
— isSingular
— isReadOnly
— isKey

Method Types

Creating and freeing a DBExpression
— initForEntity:fromDescription:
— initForEntity:fromName:usingType:
— copyFromZone:
— free

Setting the entity and description
— setEntity:andDescription:

Archiving —read:
— write:

Instance Methods

copyFromZone:
— copyFromZone:(NXZone *)zone

Creates and returns a copy of the receiving DBExpression. The new object is created in the
given zone.

4-72 Chapter 4: Database Kit

free
—free

Frees the DBExpression.

’ initForEntity:fromDescription:

— initForEntity:(id <DBEntities>)anEntity
fromDescription:(const unsigned char *)descriptionFormat, ...

A designated initializer for the DBExpression class, this initializes a freshly allocated
DBExpression by setting its entity to anEntity and setting its description as specified by the
other arguments. The description is in the style of a printf statement: descriptionFormat
is a quoted string that establishes the format of the description, the following arguments
supply the description with values. The arguments are separated by commas. See the class
description above for the rules governing the format of the description string.

If the description refers to a single, unmanipulated property, then the DBExpression will be
“simple”’—the property that the DBExpression represents will be the property referred to
in the description. If the description manipulates one or more existing properties, then the
object is “derived,” and a new property object is created to describe the manipulation. The
data type of a derived DBExpression is a string, and it’s given a unique name.

Returns self, or nil if either of the arguments is nil.

See also: - initForEntity:fromName:usingType:

initForEntity:fromName:usingType:
— initForEntity:(id <DBEntities>)anEntity
fromName:(const char *)aPropertyName
usingType:(const char *)aType

A designated initializer for the DBExpression class, this initializes a freshly allocated
DBExpression by setting its entity to anEntity, and creating a property object (owned by
the DBExpression) that points to the property named by aPropertyName. The data type of
the new property is set to alype, so that data retieved by this expression will be coerced to
the indicated type.

Returns self, or nil if anEntity is nil or if the named property doesn’t exist in the entity.

See also: — initForEntity:fromDescription:

Classes: DBExpression 4-13

read: ,
—read:(NXTypedStream *)stream

Reads the DBExpression from the typed stream stream. Returns self.

setEntity:andDescription:

— setEntity:(id <DBEntities>)anEntity
andDescription:(const unsigned char *)descriptionFormat, ...

Replaces the DBExpression’s entity and description with those provided by the arguments.
See the class description for more information on the format of the description string.

See also: — initForEntity:fromDescription:

write:
— write:(NXTypedStream *)stream

Writes the DBExpression to the typed stream stream. Returns self.

4-74 Chaprer 4: Database Kit

DBFetchGroup

Inherits From: Object

Declared In: dbkit/DBFetchGroup.h

Class Description

A DBFetchGroup routes information from a DBRecordList to the various user interface
objects that display its contents. It also routes flow in the reverse direction, when the user
edits the displays. A DBFetchGroup belongs to a DBModule; each DBModule has at least
one DBFetchGroup. A DBFetchGroup contains a set of DB Associations; each maps one
database property to be fetched (a DBExpression) to an element of the application program,
usually an element of the user interface, such as a TextField, a DBImageView, or a row or
column within a DBTableView.

If your application relies on the Database Kit’s standard facilities, you will not need to make
explicit use of DBFetchGroup. In Interface Builder, you need only drag an instance of
DBModule off the palette and make connections between it and elements of your user
interface. Atrun time, the necessary DBFetchGroups and their various DB Associations will
be created for you automatically when the nib module is loaded into the running application.

In a DBModule, its prime (and perhaps only) fetch group is called its root fetch group. The
module may also require one or more subordinate fetch groups. Whenever the expression
being fetched traverses a one-to-many relationship, the DBModule requires separate
DBRecordLists, each with its own DBFetchGroup. The fetch groups are in a hierarchy that
corresponds to the data being fetched. For example, suppose your application has a
scrollable display of customers; for each customer there is a list of orders; for each order
there’s a list of items in the order. As the user selects a customer, the order display must be
updated to show that customer’s orders. As the user selects an order, the item display must
be updated tg show that order’s line items. The synchronization is managed by a set of
three DBFetchGroups, each with its own DBRecordList. The root DBFetchGroup
manages data for the customer display. Subordinate to it, a second DBFetchGroup keeps
the order display in step with the currently selected customer. And subordinate to that, a
third DBFetchGroup keeps the line-item display in step with the currently selected order.

Whenever there’s a fetch, the DBFetchGroup takes care of updating the display to reflect
the data newly arrived in the record list. Similarly, when the user edits a control, the
DBFetchGroup updates the record list, and then notifies any other elements that may

be displaying the same property. The first fetch of a DBFetchGroup causes a
setProperties:ofSource: message to be sent to its DBRecordList.

Classes: DBFetchGroup ~ 4-75

4-76

The DBFetchGroup also manages a second kind of user-interface state: the current record
and the current selection (which may be one record or several). The notion of “current
record” exists because controls can display one value at a time, although a record list can
contain many records. The current record is the one displayed in a TextField or a
DBImageView. The fetch group remembers which record in the record list is the current
record. The designation of a current record can be changed by the user or under

program control.

Note: The DBFetchGroup’s current record and selected record list are independent of the
cursor of a DBRecordSteam or DBRecordList.

Multiple Selection

In an object that can display a list of values, such as an NXBrowser or a DBTableView, the
user can make a multiple selection. Shift-click selects additional records without
deselecting those already selected. They don’t have to be contiguous. But when there is a
multiple selection, no record is the current record, and subordinate displays keyed to the
current record are cleared.

The DBFetchGroup relies on objects in the user interface (such as the DBTableView)
to represent multiple selection to the user. The DBFetchGroup will make use of
multiple-selection information (as in deleteCurrentSelection), but does not manage it.
If your application needs to set a multiple selection, it should send the appropriate
DBTableView one of its selection-setting messages. Then, to keep the DBFetchGroup
synchronized with change in selection at the DBTableView, it must send the

following messages:

[[theTableView dataSource] tableViewDidChangeSelection:theTableView];

Instance Variables

None declared in this class.

Method Types

Initializing — initEntity:
— setName:

Chapter 4: Database Kir

Reporting current context — name
— module
— entity
—recordList
— currentRecord
— recordCount

Controlling current selection — setAutoSelect:
— doesAutoSelect
— setCurrentRecord:
— clearCurrentRecord
— selectedRowAfter:
— redisplayEverything

Manipulating contents — deleteCurrentSelection
— insertNewRecordAt:
— fetchContentsOf:usingQualifier:

Dealing with changes — hasUnsavedChanges
— validateCurrentRecord
— saveChanges
— discardChanges

Using associations — addExpression:
— makeAssociationFrom:to:
— takeValueFromAssociation:
— addAssociation:
— removeAssociation:

Using a delegate — delegate
— setDelegate:

Instance Methods

addAssociation:

— addAssociation:newAssociation

Adds an association to the list of associations that govern the DBFetchGroup’s selection of
rows. The argument newAssociation is a DBAssociation object. Returns self.

Classes: DBFetchGroup — 4-77

4-78

addExpression:

~ addExpression:newExpression

Adds the DBExpression anExpression to the list of expressions that the DBFetchGroup will
fetch from the database. These expressions are passed to the DBRecordList that the fetch
group uses to get data into and out of the database. Returns self.

clearCurrentRecord
— clearCurrentRecord

Deselects the currently selected record (or records), so that there is no selected record.
DBAssociations that may have been involved in the formerly selected records are notified
of the change. Returns self. However, if there is no permission to change the rows of the
DBFetchGroup’s DBRecordList, the method has no effect and returns nil.

currentRecord
— (unsigned int)currentRecord

Returns the position (index number) of the current record in the DBFetchGroup’s
DBRecordList.

delegate
— delegate

Returns the DBFetchGroup’s delegate.

See also: —setDelegate

deleteCurrentSelection

— deleteCurrentSelection

Deletes the currently selected row (or rows) from the DBFetchGroup’s DBRecordList.
Following the deletion, no rows are selected. All DBAssociations are notified of the change.

Returns self. However, if no rows were selected, or there is no permission to change the
rows of the DBFetchGroup’s DBRecordList, the method has no effect and returns nil.

Chapter 4: Database Kit

discardChanges
- discardChanges

Terminates any editing changes currently in progress for this DBFetchGroup and
recursively for any of its subordinate DBFetchGroups. All the DBAssociations involved
are notified so that they can update the display accordingly. Returns self.

doesAutoSelect
- (BOOL)doesAutoSelect

Returns YES if autoselection is in effect.. When this flag has been set to YES, following
each fetch through the DBFetchGroup, the first retrieved record is selected; following a
delete, the first remaining record after the first deleted record is selected. When the flag is
NO, following fetch or delete, no record is selected.

entity
— entity

Returns the DBEntity to which the DBFetchGroup belongs.

fetchContentsOf.usingQualifier:
— fetchContentsOf:aSource usingQualifier:aQualifier

Replaces the content of the current DBRecordList by records fetched from the database.
Any editing in progress for this fetch group is terminated and changes are lost. The
argument aSource may be nil, in which case all records in the DBFetchGroup’s entity are
fetched. If aSource is a DB Value containing NULL, the effect is to clear the DBRecordList
without fetching any new records.

Alternatively, aSource may be a DB Value that specifies a relationship. For example,
suppose the relationship joins the entity called Department to the entity called Employees,
containing the employees belonging to each department. The DBValue may contain a
specific value for the property “Department Number” and also the entity to which it is
joined (Employees). Records will be fetched for all employees in the indicated department,
using the key value of Department Number as a foreign key that qualifies the selection of
records from Employees.

The argument aQualifier is a DBQualifier that further restricts the records that will be fetched.

Classes: DBFetchGroup — 4-79

If the parent DBModule’s delegate responds to fetchGroupWillFetch:, it is notified.
Similarly, after the fetch, if the DBModule’s delegate responds to fetchGroupDidFetch:,
it is a notified. Provided the fetch is successful, the various DB Associations are notified
that the contents of their views has changed, so they can redraw themselves. The current
record index is set to O (the index of the first record). Returns self.

hasUnsavedChanges
— (BOOL)hasUnsavedChanges

Returns YES if there are unsaved changes in this DBFetchGroups’s DBRecordList, or in
any of its subordinate DBRecordLists, and NO otherwise.

initEntity:
— initEntity:anEntity

Initializes an instance of DBFetchGroup. The fetch group thus initialized will coordinate
~ fetches for the owning DBModule from the DBEntity named anEntity. Returns self.

insertNewRecordAt:
— (BOOL)insertNewRecordAt:(unsigned int)index
Instructs the DBFetchGroup’s DBRecordList to insert a new record at the position

indicated by index. When index is negative, the method appends the new record (that is,
inserts it at the end of the DBRecordList instance.

Returns YES if the DBRecordList is able to comply, and NO otherwise. A NO return may
arise if the application has no authorization to modify rows, if no records have been fetched,
or if for any reason the DBRecordList returns NO.

If the DBFetchGroup has appointed a delegate and the delegate implements the method
fetchGroup:didInsertRecordAt:, the method insertNewRecordAt: notifies the delegate.
The delegate may then fill in default values in the new record.

makeAssociationFrom:to:

— makeAssociationFrom:anExpr to:aView

Creates a new instance of DB Association for the destination DBFetchGroup. The new
association will link the DBExpression anExpr (an expression to be fetched) with the user
interface object aView where the data is displayed. Returns the new DBAssociation.

4-80 Chapter 4: Database Kit

module
— module

Returns the DBModule instance to which the receiving DBFetchGroup belongs.

name

— (const char *)name

Returns the name of the DBFetchGroup. Fetch groups that are created automatically are
given names that match the names assigned in the model. Fetch groups that were created
by the application and initialized (for example, by initEntity:) remain unnamed until
explicitly named by setName:.

See also: — setName:

recordCount
— (unsigned int)recordCount

Returns the number of records in the DBFetchGroup’s DBRecordList.

recordList
—recordList

Returns the DBRecordList instance that the receiving DBFetchGroup serves.

redisplayEverything

- redisplayEverything
Causes redisplay of all the fields governed by the DBFetéhGroup’s DBAssociations. (The
redisplay is prompted by sending all the DB Associations a notification that the contents
changed, and they respond in the same way as for any other change to their contents.) As

a side effect, this method checks the value of the current record index, and, if it is out of
range, sets it to the index of the last record. Returns self.

Classes: DBFetchGroup 4-81

4-82

removeAssociation:
— removeAssociation:anAssociation

Removes the indicated association from the DBFetchGroup’s list of associations.
Returns self.

saveChanges

— saveChanges
Saves changes made to any of the records governed by the receiving DBFetchGroup and
any subordinate DBFetchGroups. Before saving, the method terminates any editing that

may have been in progress in the affected DBFetchGroups. After saving, notifies the
DBModule’s delegate that the save took place. Returns self.

selectedRowAfter:

— (unsigned int)selectedRowAfter:(unsigned int)previousRow
Returns the index of the first selected row that is located after the row specified by
previousRow. (Ordinarily, there is one selected row, also known as the current row. But

under some conditions the user may select multiple rows. In that case, the return is the
index of the first of them.)

If no row is selected, or the only selected rows occur earlier than previousRow, returns
DB_Nolndex (which other methods interpret to mean “after the last record”).

setAutoSelect:

— setAutoSelect:flag
Enables or disables autoselection, according to whether flag is YES or NO. When
autoselection is enabled, following each fetch through the DBFetchGroup, the first

retrieved record is selected; following a delete, the first remaining record after the first
deleted record is selected. When flag is NO, following fetch or delete, no record is selected.

setCurrentRecord:
— setCurrentRecord:(unsigned int)newlndex
Sets the index of the current record to newlndex. However, if the proposed value is less

than the index of the first record, sets it to the first record; if the proposed value is greater
than the last record, sets it the last record. If executing this method changes the current

Chapter 4: Database Kit

record index, the DBFetchGroup’s DB Associations are notified that the selection changed
(and can update the display accordingly). Returns self.

setDelegate:
— setDelegate:anObject

Makes anObject the DBFetchGroup’s delegate. Returns self.

See also: — delegate

setName:
— setName:(const char *)aName
Sets the name of the DBFetchGroup. This method is invoked automatically when the fetch

group is created, and your application will need to call it explicitly only if you explicitly
create a new fetch group. Returns self.

See also: — name

takeValueFromAssociation:

— takeValueFromAssociation:anAssociation

Takes a value from the part of the display governed by anAssociation, and inserts it in the
corresponding position in the DBFetchGroup’s DBRecordList. The method then updates
the display of other displayed fields that are governed by other DB Associations belonging
to the same DBFetchGroup. Returns self.

validateCurrentRecord
— (BOOL)validateCurrentRecord

Returns YES if changes that have been proposed for the current record are valid (or if there
is no current record).

The validation is done in two stages. If there is a TextField editor for the field that changed,
itreviews the changes first. If the TextField editor says NO, that’s the return. If there is no
text field editor, or the editor raises no objection to the change, the task of validation is
passed to the DBModule’s delegate. (Each DBFetchGroup is owned by a DBModule.)
Whatever the delegate returns becomes the return for this method.

Classes: DBFetchGroup 4-83

4-84

Methods Implemented by the Delegate

fetchGroup:didinsertRecordAt:
— fetchGroup:fetchGroup didInsertRecordAt:(int)index

Notification that the DBFetchGroup fetchGroup has inserted a record in its DBRecordList
at the position indicated by index.

fetchGroup:willDeleteRecordAt:
— fetchGroup:fetchGroup willDeleteRecordAt:(int)index

Invoked when the DBFetchGroup fetchGroup is about to delete the record at index from the
DBRecordList. The notification is sent by the DBFetchGroup method
deleteCurrentSelection. The notification gives the delegate a chance to note the fact (for
example, to adjust its count of records, or to record information about the deleted record).
It doesn’t matter what this method returns, since the calling method ignores the result. The
behavior of fetchGroup:willDeleteRecordAt: is simply a notification, without an
opportunity to intercede. But it’s sent in advance of the actual deletion so that the delegate
method can—if desired—take a look at the record before it’s gone.

fetchGroup:willFailForReason:

— (DBFailureResponse)fetchGroup:fetchGroup
willFailForReason:(DBFailureCode)code

Invoked when a failure is reported from the DBRecordList owned by fetchGroup. The
reason for failure is encoded as one of the following DBFailureCodes:

DB_ReasonUnknown = 0
DB_RecordBusy
DB_RecordStreamNotReady
DB_RecordHasChanged
DB_RecordLimitReached
DB_NoRecordKey
DB_RecordKeyNotUnique
DB_NoAdaptor
DB_AdaptorError
DB_TransactionError

Chapter 4: Database Kit

The failure response that is returned must be one of the following constants, declared as
type DBFailureResponse in the header file dbkit/enums.h:

DB_NotHandled Displays a default attention panel but takes no other action

DB_Abort Terminates the operation that encountered the error in its
present state, and displays an attention panel

DB_Continue Ignores the problem; permits the action to continue if
possible.

If the delegate does not implement this method, the effect is the same as returning
DB_NotHandled.

fetchGroup:willValidateRecordAt:
— (BOOL)fetchGroup:ferchGroup willValidateRecordAt:(int)index

Notification that the DBFetchGroup ferchGroup, while preparing to save its DBRecordList,
has reached the point at which it would be appropriate to insert a validity check on the
record indicated by index. If you implement this method in the DBModule’s delegate, you
can insert any checks you like. These might include checks for internal consistency
between fields, or even checks that require a separate query to the database (for example,
“Is this person already in the database?” or “Is data for ‘Salary’ consistent with ‘Salary
Range’ for this person’s job title?”)

Notice that validation for a single field (“Is this a valid phone number?” or “Is this in a valid
format for a telephone number?”’) should be handled when a field editor notices that the user
has changed a field’s display. See the DBModule delegate method textWillChange.

If your implementation of fetchGroup:willValidateRecordAt: returns YES (or if your
delegate doesn’t respond to that method), the record is treated as valid. If it returns NO, the
record is treated as invalid, the attempt to save records fails, and the user is notified by an
attention panel.

fetchGroupDidFetch:
— fetchGroupDidFetch:fetchGroup

Invoked when fetchGroup has completed a fetch from the database.

Classes: DBFetchGroup 4-85

fetchGroupDidSave:
— fetchGroupDidSave:fetchGroup

Invoked when fetchGroup has completed a save to the database.

fetchGroupWillChange:
— fetchGroupWillChange:fetchGroup

Invoked when fetchGroup is about to record change based on input from the user interface.

fetchGroupWillFetch:
— fetchGroupWillFetch:fetchGroup

Invoked when fetchGroup is about to fetch data from the database.

fetchGroupWillSave:
— (BOOL)fetchGroupWillSave:fetchGroup

Invoked when fetchGroup is about to save the contents of the fetch group to the database.

4-86 Chaprer 4: Database Kit

DBFormatter

Inherits From: Object

Declared In: dbkit/DBFormatter.h

Class Description

DBFormatter is an abstract superclass; each of its subclasses provides a mechanism that
formats and displays data in a DBTableView. The Database Kit provides three
DBFormatter subclasses:

* DBImageFormatter scales, aligns, and displays images.
« DBTextFormatter displays uneditable text.
* DBEditableFormatter displays editable text.

The central method in a DBFormatter is
drawFieldAt::inside:in View: withA ttributes::usePositions::. This method defines the
way in which a DBFormatter formats and displays data. It’s invoked automatically by the
DBTableView when it wants to display a value. The default implementation of this method
does nothing; each subclass must implement it in a meaningful way.

Instance Variables

id value;

value The value to be formatted

Method Types

Getting and displaying a value - getValueAt::withAttributes::usePositions::
— drawFieldAt::inside:in View:withAttributes::
usePositions::

Batching format requests — beginBatching:
— resetBatching:
— endBatching

Classes: DBFormatter 4-817

4-88

Instance Methods

beginBatching:
~ beginBatching:(id <DBTableVectors>)attrs

Tells the DBFormatter that a formatting session is about to begin. You never invoke this
method directly; it’s invoked automatically by the DBTableView just before it sends the
first in a series of drawFieldAt::... messages. The end of the formatting session is
signalled by the endBatching message and it’s restarted through resetBatching:.

The default implementation of beginBatching: does nothing. You can reimplement this
method in a subclass to perform pre-formatting initialization. The return value is ignored.
The argument to this method (and to resetBatching:) is currently unused (it’s always nil).

drawFieldAt::inside:inView:withAttributes::usePositions::

— drawFieldAt:(unsigned int)row
:(unsigned int)column
inside:(NXRect *)frame
inView:view
withAttributes:(id <DBTableVectors>)rowAttrs
:(id <DBTable Vectors>)columnAttrs
usePositions:(BOOL)useRow
:(BOOL)useColumn

Retrieves a value from the data source, formats it, and displays it. The DBFormatter
implementation of this actually does nothing and returns self; it’s up to the subclasses to
implement this method in meaningful ways.

Typically, an implementation follows these steps:

5. The value is retrieved. This is done by forwarding the method’s arguments to
getValueAt::..., thus:

[self getValueAt:row :column
withAttributes:rowAttrs :columnAttrs
usePositions:useRow :useColumn}];

6. The value that’s set by getValueAt::... (keep in mind that the method sets the value
instance variable) is formatted for display.

7. The formatted value is displayed inside frame, which is given in view’s coordinate
system. Note well that the focus will be locked on view before this message is sent—
you don’t have to lock focus yourself.

Chapter 4: Database Kit

endBatching
— endBatching

Notifies the DBFormatter that a formatting session is over. See the beginBatching:
method for more information.

See also: - beginBatching:, — resetBatching:

getValueAt::withAttributes::usePositions::

— getValueAt:(unsigned int) row
:(unsigned int) column
withAttributes:(id <DBTableVectors>) rowAttrs
:(id <DBTableVectors>) columnAttrs
usePositions:(BOOL) useRowPos
:(BOOL) useColumnPos

Retrieves a value from the data source, places it in the DBFormatter’s value instance
variable, and then returns the variable. You never invoke this method from your
application; however, if you create a subclass of DBFormatter, you’ll need to invoke it from

You shouldn’t need to reimplement this method in a subclass.

resetBatching:
— resetBatching:(id <DBTable Vectors>)attrs

Tells the DBFormatter to restart a formatting session. See the beginBatching: method for
more information.

See also: — beginBatching:, — endBatching

Classes: DBFormatter 4-89

4-90

DBImageFormatter

Inherits From: DBFormatter : Object

Declared In: dbkit/DBImageFormatter.h

Class Description

DBImageFormatter is one of three subclasses of DBFormatter; the others are
DBTextFormatter and DBEditableFormatter (which deal with text rather than images). See
the description of the superclass, DBFormatter.

Instance Variables

id defaultImage;

defaultlmage Used when the source to be formatted contains no image

Method Types

Initializing — init
— free
Default - — setDefaultImage:anlmage
— defaultlmage
Drawing — drawFieldAt::inside: inView:withAttributes::
usePositions::
Archiving — write:
- read:

Chapter 4: Database Kit

Instance Methods

defaultimage
— defaultImage

Returns the default image. This is the image that drawFieldAt:... will substitute if asked
to draw a field that does not contain an image.

drawFieldAt:inside:inView:withAttributes::usePositions::
— drawFieldAt:(unsigned int) row
:(unsigned int) column
inside:(NXRect *)frame
inView:view
withAttributes:(id <DBTableVectors>) rowAttrs
:(id <DBTableVectors>) columnAttrs
usePositions:useRowPos
:(BOOL)useColumnPos

Displays an image in one field of data. You never invoke this method directly; it’s invoked
automatically by the DBTableView that’s using this DBEditableFormatter when a field
needs to be displayed.

The displayed image is centered vertically; its horizontal alignment is controlled by
rowAttrs or columnAttrs; it may be centered, left aligned, or right aligned. The image is
clipped to the frame.

Returns self.

See also: — getValueAt::withAttributes::usePositions:: (DBFormatter),
- setAlignment (DB Vectors protocol)

free

—free

Frees the DBImageFormatter instance.

Classes: DBImageFormatter 4-91

init
—init
Initializes the DBImageFormatter instance. In the course of initializing, an initial value is

set for the default image (to be displayed when a field where an image was expected in fact
has none). Returns self.

read:
—read:(NXTypedStream *) stream

Restores the values of the object’s instance variables from the archive stream, including its
font and delegate. Returns self.

setDefaultimage:

- setDefaultIlmage:animage

Makes anlmage the image that drawFieldAt:... will substitute when asked to draw a field
that doesn’t contain an image. If you haven’t explicitly set a default image, the default
established when the DBImageFormatter is initialized is a gray rectangle. Returns self.

write:
— write:(NXTypedStream *) stream

Writes the DBTextFormatter’s instance variables to stream, including its font and its delegate.

4-92 Chapter 4: Database Kit

DBImageView

Inherits From: Control : View : Responder : Object

Declared In: dbkit/DBImageView.h

Class Description

A DBImageView displays a single NXImage object bordered by one of four types of frame.
Providing editing is enabled, the user can drag a new image into a DBImageView’s frame
(using the Application Kit’s image-dragging mechanism).

The Database Kit permits a DBImageView object to be connected to any database field
whose data is of type object and class NXImage.

Instance Variables

None declared in this class.

Method Types

Internals — initFrame:
— drawSelf::
Accessing the image —image
— setImage:
Accessing the border — setStyle:
— style
Editing — isEditable
— setEditable:

Classes: DBImageView — 4-93

4-94

Instance Methods

drawSelf::
— drawSelf:(const NXRect *)rects :(int)rectCount

Draws the DBImageView. You never invoke this method yourself, it’s invoked
automatically by the Application Kit’s display mechanism. Returns self.

See also: — drawSelf:: (View; Application Kit)

image
— image

Returns the image view’s NXImage object.

initFrame:

— initFrame:(const NXRect *)frameRect

Initializes the image view with the given frame. Returns self.

isEditable
— (BOOL)isEditable
Returns YES if the image can be replaced or deleted.

See also: — setEditable:

setEditable:
— setEditable:(BOOL)flag

Makes the DBImageView editable or not, as flag-is YES or NO. When an image view is
editable, it still must be deleted or replaced as a whole; “editable” doesn’t involve fiddling
with bits.

See also: — isEditable

Chapter 4: Database Kit

setimage:
— setImage:newlmage

Sets the image view’s NXImage to newlmage. Returns self.

setStyle:
— setStyle:(int)newStyle

Sets the style in which the image’s border is drawn. The argument newStyle must be one
of the following:

DB_ImageNoFrame = 0
DB_ImagePhoto
DB_ImageGrayBezel
DB_ImageGroove

See also: - style:

style
— (int)style

Returns the current border style, as one of the possible styles listed as arguments of
setStyle:.

Classes: DBImageView — 4-95

4-96

DBModule

Inherits From: Object

Declared In: dbkit/DBModule.h

Class Description

The DBModule class provides the connection between the Database Kit’s user interface
layer and its access layer. It does this by letting you associate a set of interface objects with
a set of DBRecordLists. The methods defined by DBModule control the flow of data
between the interface objects and the DBRecordLists. The class also defines a handful of
convenience methods that control transactions between a DBModule’s “main”
DBRecordList (the DBRecordList association with the root fetch group, as explained

below) and the external database.

It’s strongly recommended that you use Interface Builder to create and instantiate
DBModule objects. (For this, you need the Database Kit palette, described in the section
“Database Palette for Interface Builder” in this chapter’s introduction.) Through Interface
Builder you can denote the record lists that a DBModule will represent and specify the
connections between these record lists and the objects in your application’s interface.

Because of Interface Builder’s intercession, you don’t need to know much about the
DBModule class. However, you may want to use DBModules to inspect or modify data as
it’s shuffled between a database and your application’s user interface. For this, you need to
know a little bit about how DBModules are built.

Record Lists, Fetch Groups, and Associations

When it’s initialized (through initDatabase:entity: method), a DBModule automatically
creates two objects: a DBRecordList, as described by the arguments of the initialization
method, and an instance of DBFetchGroup, called the root fetch group. An instance of
DBFetchGroup represents a single DBRecordList and associates it with one or more
interface objects; the root fetch group is the object that corresponds to the DBModule’s
(initial) DBRecordList. If the DBRecordList contains only one-to-one relationships, then
the root fetch group is sufficient for the DBModule. However, if there are one-to-many
relationships in the DBRecordList, additional DBFetchGroups must be created and added
to the DBModule, one for each such relationship. (If you use Interface Builder, the
additional DBFetchGroups, if needed, are created and added automatically.)

Chapter 4: Database Kir

DBFetchGroups are important not only for the utility that they bring to DBModule, but also
because it’s through the DBFetchGroup that you can get to a DBModule’s DBRecordList
objects (which opens the door to the classes in the Database Kit’s acces layer). You can
retrieve a DBModule’s list of DBFetchGroups through its getFetchGroups: method.

As stated above, a DBFetchGroup contains only one DBRecordList, but can associate that
DBRecordList with any number of user interface objects. Each such association (in other
words, each association between an interface object and a DBRecordList) is represented by
aDBAssociation object. It’s the DBAssociation’s task to take data from the DBRecordList,
permute it (if necessary), and send it to the interface object for display. It must also perform
the opposite function, updating the data in the DBRecordList as the user manipulates the
data in the interface. If you’re using the standard interface objects supplied by the Database
Kit and the Application Kit to display data, then you never need to be aware of the
DBAssociations in your application. However, if you want to use a custom interface
object—an instance of a class of your own design—then that object must implement the
DBCustomAssociation informal protocol. You can retrieve the DB Association for a
particular interface object through DBModule’s associationForObject: method.

Instance Variables

id database;

id delegate;

database The DBDatabase object through which the module is
connected to the database

delegate The object that receives notification messages

Method Types

Initializing a DBModule — initDatabase:entity:
Querying the DBModule — database
— entity

Classes: DBModule 4-97

Accessing fetch groups and associations
— getFetchGroups:
— rootFetchGroup
— fetchGroupNamed:
— addFetchGroup:
— associationForObject:
- editingAssociation

Performing transactions — fetchContentsOf:usingQualifier:
— fetchAllRecords:
- saveChanges:
— discardChanges:
— deleteRecord:
— appendNewRecord:
— insertNewRecord:

Browsing the record list —nextRecord:
— previousRecord:

Interface methods — takeValueFrom:
— textDidEnd:endChar:
~ textWillChange:
- textWillEnd:

Accessing the delegate - setDelegate
~ delegate:

Instance Methods
addFetchGroup:
~ addFetchGroup:aFetchGroup

Adds the given DBFetchGroup object to the list of fetch groups that the DBModule
manages. Returns self.

appendNewRecord:

— appendNewRecord:sender

Creates a new record and adds it to the end of the root fetch group’s DBRecordList. This
is a convenience method that’s implemented by sending an insertNewRecordAt: message
to the root fetch group. Returns self if the record was successfully appended; otherwise
returns nil.

See also: —insertNewRecordAt: (DBFetchGroup)

4-98 Chapter 4: Database Kit

associationForObject:
— associationForObject:anObject

Returns the DB Association object that’s associated with the given user interface object.

database
— database

Returns the DBDatabase object for which the DBModule was created.

See also: — initDatabase:entity:

delegate
— delegate

Returns the DBModule’s delegate.

See also: — setDelegate:

deleteRecord:
— deleteRecord:sender

Deletes the currently selected records by sending deleteCurrentSelection to the root fetch
group and returns self.

See also: — deleteCurrentSelection (DBFetchGroup)

discardChanges:

— discardChanges:sender

Terminates any editing changes currently in progress for the DBModule’s fetch groups.
The user interface object and the corresponding instance of DBRecordList are cleared in
response to this message. All the DB Associations involved are notified so that they can
update the display accordingly. The method is implemented by sending a discardChanges
message to the DBModule’s root fetch group. Returns self.

Classes: DBModule 4-99

editingAssociation
- editingAssociation

Returns the DB Association that is currently involved in editing (the one that contains the text
insertion cursor). If none of the DB Association objects is involved in editing, returns nil.

entity
— entity

Returns the DBEntity corresponding to this DBModule.

See also: — initDatabase:entity:

fetchAllRecords:
— fetchAllRecords:sender

Fetches records into the root fetch group. This method is implemented by invoking
fetchContentsOf:usingQualifier: with aSource and aQualifier both nil. Returns self,
unless the fetch fails. The fetch will fail if the connection to the database is closed and
cannot be reopened, or if any of the fetch groups has unsaved changes that may not

be discarded.

fetchContentsOf:usingQualifier:
— fetchContentsOf:aSource usingQualifier:aQualifier

Replaces the records in the current DBRecordList with records fetched from the database.
Any editing in progress for this fetch group is terminated.

The argument aSource may be a DBEntity; it may also be a DB Value that specifies a
relationship. When it specifies a relationship, the DB Value object contains both the key
value of a source entity and the target entity to which it is joined; such an object responds
YES to an isEntity message. For example, if the DB Value is the value “10” for the attribute
“Department,” the effect is to use “Department = 10” as a key that defines the set of records
to be fetched. If aSource is nil, the DBModule’s DBEntity is assumed.

The argument aQualifier is a DBQualifier that further restricts the records that will be
fetched. If aQualifier is nil, there is no further qualification and all records are returned.

If the parent DBModule’s delegate responds to fetchGroupWillFetch:, it is notified.
Similarly, after the fetch, if the DBModule’s delegate responds to fetchGroupDidFetch:,
it is a notified, giving it a change to set up null values for the DBRecordList. The various

4-100 Craprer 4: Database Kir

DBAssaciations are notified that the contents of their views has changed, so they can
redraw themselves. The current record index is set to O (the index of the first record).

Returns self when the fetch is successful, and nil otherwise. A nil return may arise if the
root fetch group has unsaved changes that may not be discarded.

See also: - fetchContentsOf:usingQualifier: (DBFetchGroup),
— isEntity (DBTypes protocol)

fetchGroupNamed:
— fetchGroupNamed:(const char *)aName

Returns the DBFetchGroup whose name matches aName (as declared in the model file or
set through the DBFetchGroup method setName:). If aName is nil, the method returns the
root fetch group. Returns nil if the name isn’t found.

getFetchGroups:
— getFetchGroups:(List *)aList

Fills aList with the DBModule’s DBFetchGroup objects. Returns aList.

initDatabase:entity:
— initDatabase:aDatabase entity:anEntity

Initializes an instance of DBModule for the given database and entity, and creates and adds
the object’s root fetch group. Returns self.

insertNewRecord:

— insertNewRecord:sender

Creates a new record and inserts it into the root fetch group’s DBRecordList. This is done
by sending an insertNewRecordAt: message to the root fetch group, passing the index of
the current record as the argument. Returns self if the record was successfully inserted;
otherwise returns nil.

See also: — insertNewRecordAt: (DBFetchGroup)

Classes: DBModule 4-101

nextRecord:
— nextRecord:sender

Advances the currently selected record in the root fetch group to the next record in the list.
If there is no currently selected record, does nothing. Returns self.

previousRecord:

— previousRecord:sender

Moves the current selection back to the previous record. However, if there is no currently
selected record, does nothing. Returns self.

rootFetchGroup
— rootFetchGroup

Returns the module’s one required DBFetchGroup (the first in the list of fetch groups).

saveChanges:

— saveChanges:sender

Causes all changes made within the module to be saved to the database, by saving all the
module’s fetch groups. Returns self, but nil if any error occurred.

Instructs the root DBFetchGroup to save the changes that the user has introduced by editing
the module’s data display. Returns self if the changes were successfully saved (or if there
were no changes to save).

If the database supports transactions and no other transaction is in progress, the
saveChanges: method signals the start of a new transaction before starting the save, and
commits the transaction if the save is completed successfully. Thus all changes within the
module are saved as a single transaction (see the DBDatabase methods beginTransaction
and commitTransaction).

If for any reason the save could not be carried out, saveChanges: returns nil, and leaves
the database unchanged. There are several reasons a save might be unsuccessful. Before
starting the save, the fetch groups may run a validation check. The method also notifies the
DBModule’s delegate by sending it a moduleWillSave message, giving the delegate a
chance to interpose its own checks. When the save has been carried out, the method again
notifies the delegate, this time by sending it a moduleDidSave message. The delegate may
still object at this point; if it does, the save is rolled back.

4-102 Chapter 4: Database Kit

setDelegate:
— setDelegate: anObject

Makes anObject the delegate of the DBModule instance. Returns self.

takeValueFrom:

— takeValueFrom:sender

Notifies the DBModule that the user modified one of the displays (DBImageView,
NXBrowser). The DBModule finds the corresponding DB Associations and through them
their DBFetchGroups and causes the object’s new value to be read into the appropriate part
of the DBRecordList. Returns self; however, if sender has no association linking it to the
module’s DBRecordList, returns nil.

textDidEnd:endChar:

— textDidEnd:textObject endChar:(unsigned shortywhyEnd
Called by a DBEditableTextFormatter object when it has relinquished first responder
status. The argument whyEnd identifies the character (Tab, Shift-Tab, or Return) that
caused the sender to cease being first responder. A return of YES permits the change to

proceed; a return of NO prevents the change and selects the entire text field. Your
application will not normally need to use this method explicitly.

textWillChange:
— (BOOL)textWillChange:ztextObject
Called by a DBEditableTextFormatter object when the user first makes a change to an

editable field in the display. A return of YES permits editing to proceed. Your application
will not normally need to use this method explicitly.

textWillEnd:

— (BOOL)textWillEnd:textObject
Called by a DBEditable TextFormatter object when it is about to relinquish first responder
status. A return of YES permits the change to proceed; a return of NO prevents the change

and selects the entire text field. Your application will not normally need to use this
method explicitly.

Classes: DBModule 4-103

Methods Implemented by the Delegate

moduleDidSave:
— moduleDidSave:module

Called when module has completed a save to the database.

moduleWillLoseChanges:
— (BOOL)moduleWillLoseChanges:module

Called when module is about to discard changes received from the user interface.

moduleWillSave:
— (BOOL)moduleWillSave:module

Called when module is about to save its data to the database.

4-104 Chaprer 4: Database Kit

DBQualifier

Inherits From: Object
Conforms To: DBExpressionValues
Declared In: dbkit/DBQualifier.h

Class Description

A DBQualifier object creates a predicate statement, expressed in the database’s query
language, that’s applied as records are fetched from the database. Records that don’t pass
the predicate, or description, aren’t selected for the fetch. The predicate that’s created by
a description is usually one or more expressions in which the value for a property is
compared to a constant value, or to the value for another property.

Creating a Description

A DBQualifier’s description is created through the initForEntity:fromDescription: or
setEntity:andDescription: methods. You can add to an existing description through the
addDescription: method. Each of these methods takes a printf-style format-and-values
list as its final argument: The first element (the format) is a quoted string that establishes
the format of the description, the following elements supply the description with values.
Neighboring elements are separated by a comma.

Strings, numbers, and objects can be represented in the format string through the following
substitution symbols:

Classes: DBQualifier 4-105

Format symbol Expected value

%s A constant string (const char *).

%p A (const char *) that names a property of the object’s
entity.

%d An int.

%t A double or float.

% @ An object that conforms to the DBExpressionValues

protocol, or a property object created by the Database Kit.
(The former includes DBQualifier, allowing you to
created a nested qualification.)

0% No value—this passes a single ‘%’ literally.

The rest of the format string should comprise valid query-language operators and symbols,
the names of properties, and whitespace. The adaptor applies the description as a
predicate, so you needn’t define it as such yourself—for example, if you’re creating a
DBQualifier description in SQL, a “WHERE” is automatically appended to your
description by the adaptor.

Applying a DBQualifier
Once you’ve created a DBQualifier, there are two ways to apply it:

» If you’re using a DBRecordStream or DBRecordList, you can qualify a fetch by
passing a DBQualifier object as the argument to the fetchUsingQualifier: method.

» If you’re using a DBBinder, you can set the qualifier that’s used in subsequent
selects through setQualifier: or initForDatabase:withProperties:andQualifier:.
(DBBinder separates the select and fetch operations; the qualification is actually
placed on the select.)

As an example, let’s say you want to retrieve records from the “grocers” database, but you
only want those grocers that have a hat size greater than 12 and an IQ less than 95. You
could create a DBQualifier and apply it thus:

/* The grocers entity is assumed to exist. */
id hatProp = [grocers propertyNamed:"hatsize"];
id igProp = [grocers propertyNamed:"iqg"];

float minHat = 12.0;

int maxIQ = 95;

4-106 Chapter 4: Database Kit

/* Create the qualifier. */
DBQualifier *bigButEmpty =
[[DBQualifier alloc] initForEntity:"grocers"
fromDescription:"%@ > %d AND %@ < 95",
hatProp, minHat, igProp, maxIQ]:

/* Apply it to a fetch (assume that the DBRecordList exists). */
[aRecList fetchUsingQualfier:bigButEmpty];

Using the convenience of the “%p” substitution, the same description could have been
created without the use of property objects:

fromDescription:"%p > %d AND %p < %d4",
"grocers.hatsize", minHat, "grocers.ig", maxIQ];

Instance Variables

None declared in this class.

Adopted Protocols

DBExpressionValues — expressionValue
— isDeferredExpression

Method Types

Initializing and freeing + initialize
— initForEntity:
— initForEntity:fromDescription:
— copyFromZone:
— free

Modifying — addDescription:
— setEntity:andDescription:
— setName:
— empty

Querying —name

— entity

— isEmpty
Archiving —read:

— write:

Classes: DBQualifier 4-107

Class Methods
initialize -
+ initialize

Initializes the DBQualifier class. This is invoked automatically; you should never invoke
it directly.

Instance Methods

addDescription:

— addDescription:(const unsigned char *)descriptionFormat, ...

Appends the string that’s created by the arguments to the DBQualifier’s current description.
The arguments are in the style of a printf statement; see the class description above for the
rules governing the format of the description string. Returns self.

See also: — initForEntity:fromDescription:, — setEntity:andDescription:

copyFromZone:
— copyFromZone:(NXZone*)z

Creates a copy of the DBQualifier, allocating space for it from zone z. Returns the copy.

empty
— (BOOL)empty

Deletes the DBQualifier’s description. Returns YES.

See also: — isEmpty

entity
— (id <DBEntities>)entity

Returns the entity object to which this DBQualifier can be applied, as set through
setEntity:andDescription: or one of the initForEntity: methods.

See also: — initForEntity:fromDescription:, — setEntity:andDescription:

4-108 Chapter 4: Database Kit

free
— free

Frees the DBQualifier.

initForEntity:
— initForEntity:(id <DBEntities>)anEntity
The designated initializer for the DBQualifier class, this initializes a freshly allocated

DBQualifier by setting its entity to the argument, but leaving its description empty.
Returns self.

See also: - initForEntity:fromDescription:, — setEntity:andDescription:

initForEntity:fromDescription:
— initForEntity:(id <DBEntities>)anEntity
fromDescription:(const unsigned char *)descriptionFormat, ...

Initializes a freshly allocated DBQualifier by setting its entity to anEntity and setting its
description as specified by the other arguments, in the style of a printf statement:
descriptionFormat is a quoted string that establishes the format of the description, the
following arguments supply the description with values. Neighboring arguments are
separated by a comma. See the class description above for the rules governing the format
of the description string.

See also: — initForEntity:, — setEntity:andDescription:

iSEmpty
— (BOOL)isEmpty

Returns YES if the DBQualifier’s description is empty (if it hasn’t been set or if the object
has received an empty message). If the DBQualifier has a description, this returns NO.

See also: — empty

Classes: DBQualifier 4-109

name

— (const char *)name

Returns the name of the DBQualifier, as set through setName:. The ability to name a
DBQualifier is provided as a convenience, and to support interface objects. The name isn’t
used by the mechanism that accesses the database—in other words, a name isn’t as
important for a DBQualifier’s as it is for a property or entity.

See also: — setName:

read:
—read:(NXTypedStream *)stream

Reads the DBQualifier from the typed stream stream. Returns self.

setEntity:andDescription:

— setEntity:(id <DBEntities>)anEntity
andDescription:(const unsigned char *)descriptionFormat, ...

Sets the DBQualifier’s entity and description as given by the arguments. See the
addDescription: method and the class description, above, for more information on the
description format. Returns self.

See also: — addDescription:, — initForEntity:fromDescription:

setName:
— (BOOL)setName:(const char *)aName

Sets the name of the DBQualifier to alName. The name isn’t essential, as discussed in the
name method description. Returns YES.

See also: — name

write:
— write:(NXTypedStream *)stream

Writes the DBQualifier to the typed stream stream. Returns self.

4-110 Chaprer 4: Database Kit

DBRecordlList

Inherits From: DBRecordStream : Object

Conforms To: DBContainers
DBCursorPositioning

Declared In: dbkit/DBRecordList.h

Class Description

The DBRecordList class supports buffered access to records in a database. A DBRecordList
object fetches groups of records from a database and presents them as an array that can be
accessed using the methods declared in the DBCursorPositioning protocol. A DBRecordList
object permits modifications, deletions, and insertions to the individual records which can
then be saved to the database as a group. This batch approach to record operations
distinguishes DBRecordList from its superclass, DBRecordStream. Note, however, that
this increased functionality comes at the cost of increased memory usage.

Setting Up a DBRecordList

You prepare a DBRecordList to fetch records in the same way you would a
DBRecordStream. (See the DBRecordStream class specification for details.)

Additionally, using the setRetrieveMode: method, you can specify whether the fetch will
be done synchronously or asynchronously. By default, a DBRecordList retrieves records
synchronously, meaning that it won’t respond to further messages until it retrieves all records
selected by a given query. If you specify the asynchronous mode, the DBRecordList creates
a separate Mach thread to fetch the records. The DBRecordList itself is immediately ready
to respond to further messages. As the separate thread fetches records, it passes them back
to the DBRecordList, which adds them to its list.

There are actually two asynchronous modes, identified by the constants
DB_BackgroundStrategy and DB_BackgroundNoBlockingStrategy. These modes

differ only in the way the DBRecordList behaves when asked to access a record that
hasn’t yet returned from the database. For example, if a DBRecordList using the
DB_BackgroundStrategy receives a setLast message before all records have been retrieved,
the setLast method will block until it can access the last record. If the DBRecordList were
using the DB_BackgroundNoBlockingStrategy, the setLast method would return nil
immediately, indicating a failure to access the last record.

Classes: DBRecordList 4-111

Accessing and Modifying Data

All of DBRecordStream’s methods for accessing and modifying records (for example,
deleteRecord, isModified, and get Value:forProperty:) work with DBRecordL.ist objects.
However, since a DBRecordList can contain multiple records, it also declares methods that
take an additional argument, a record index (deleteRecordAt:, isModifiedAt:, and
getValue:forProperty:at:).

Methods that access records but don’t specify an index act on the record at the present
position of the cursor. The cursor can be reported or set by methods declared in the
DBCursorPositioning protocol.

Note: The internal cursor maintained by a DBRecordList is independent of the
DBFetchGroup’s current row or current selection (which depend on actions in the
user interface).

Saving Changes

As with a DBRecordStream object, a DBRecordList object attempts to save additions,
changes, and deletions when it receives a saveModifications message. If an error

occurs during the save operation, the DBRecordList sends its delegate a
recordStream:willFailForReason: message (see the DBRecordStream class description
for more information). At the same time, the DBRecordList’s cursor is set to point to the
row that is failing. Any rows that fail will be “dirty” after the saveModifications has
completed. This combination of events lets you go back and fix failures, and then resubmit.

Instance Variables

None declared in this class.

Adopted Protocols

DBContainers — addObject:forBinder:
— count
— empty
— freeObjects
— objectAt:forBinder:
— prepareForBinder:

4-112 Chapter 4: Database Kir

DBCursorPositioning — currentPosition
— setFirst
— setLast
— setNext
— setPrevious
— setTo:

Method Types

Initializing and freeing — init
— free
— clear

Setting the retrieval mode — setRetrieveMode:
— currentRetrieveMode

Fetching data from the database — fetchUsingQualifier:
— fetchUsingQualifier:empty:
— fetchRecordForRecordKey:
— recordLimit
— setRecordLimit:

Accessing data — getValue:forProperty:
— getValue:forProperty:at:
— getRecordKey Value:
— getRecordKey Value:at:

Modifying data — setValue:forProperty:
— setValue:forProperty:at:
— insertRecordAt:
— appendRecord
—newRecord
—isNewRecord
— isNewRecordAt:
— deleteRecord
— deleteRecordAt:
—isModified
— isModifiedAt:
— isModifiedForProperty:at:

Using record indexes — positionForRecordKey:
— moveRecordAt:to:
— swapRecordAt:withRecordAt:

Saving data — saveMaodifications

Classes: DBRecordList 4-113

Instance Methods
appendRecord
— appendRecord

Adds an empty record at the end of the record list by invoking DBRecordList’s
insertRecordAt: method. Returns the value returned by insertRecordAt:.

See also: —insertRecordAt:, — newRecord, — deleteRecord, — deleteRecordAt:

clear

— clear

Resets the DBRecordList. The DBRecordList’s record data, list of properties, and list of
key properties are emptied. Its database instance variable is set to nil, but its delegate
remains unchanged. Its status is set to DB_NotReady. Returns self.

See also: — empty (DBRecordStream)

currentRetrieveMode
— (DBRecordListRetrieveMode)currentRetrieveMode

Returns the DBRecordList’s retrieve mode, which can be DB_SynchronousStrategy,
DB_BackgroundStrategy, or DB_BackgroundNoBlockingStrategy. See the class
description above for more information.

See also: — setRetrieveMode:

deleteRecord
— deleteRecord

Deletes the current record. Returns nil if there’s no current record; otherwise, returns self.

See also: — deleteRecordAt:

4-114 Chapter 4: Database Kit

deleteRecordAt:
— deleteRecordAt:(unsigned)index

Deletes the record at position index. Returns nil if there’s no record at index; otherwise,
returns self.

See also: — deleteRecord, — currentPosition (DBCursorPositioning)

fetchRecordForRecordKey:
— fetchRecordForRecordKey:(DB Value *)aValue

Fetches the record identified by the record key stored in aValue. Typically, this method is
used to find data in DBRecordLists containing related information. For example, suppose
one DBRecordList contains employee data and another contains department data. The
department data for a specific employee can be found by first getting the value of the
department number from the employee record (see getRecordKeyValue:at:) and then

- using it as the argument to fetchRecordForRecordKey: in a message to the DBRecordList
containing department information.

Returns nil if no record has the supplied key value or if an error occurs; otherwise,
returns self.

See also: - fetchUsingQualifier:, — fetchUsingQualifier:empty:

fetchUsingQualifier:
— fetchUsingQualifier:(DBQualifier *)aQualifier

Invoking this method is equivalent to invoking — fetchUsingQualifier:empty: with YES
as the argument to empty:. See — fetchUsingQualifier:empty:, below.

fetchUsingQualifier:empty:
— fetchUsingQualifier:(DBQualifier *)aQualifier empty:emptyFirst

Loads the DBRecordList with records from the database. Before invoking this method, use
setProperties:ofSource: to specify the source and properties of the data to be retrieved.
The scope of the retrieved records is controlled by aQualifier. For example, assuming the
data source is an SQL database, aQualifier could be an object that represents the expression
“where name = ‘Holbein’”. If aQualifier is nil, all records are retrieved.

Classes: DBRecordList 4-115

If emptyFirst is YES, before loading new data, the method first empties the DBRecordList
and its list of properties. Setting emptyFirst to NO leaves records already fetched in the
DBRecordList, and append to them the unique records retrieved by the current fetch. In
that case, the effect of successive invocations with different qualifiers builds in the
DBRecordList the union of the sets returned by the various qualifiers.

Each fetch can be done synchronously or asynchronously, depending on the fetch mode
in effect at the time the fetch is begun (see the class description above for details). If
you specify an invalid fetch mode, fetchUsingQualifier:empty: raises a
DB_UNIMPLEMENTED_ERROR exception.

A synchronous fetch is subject to a limit on the total number of records in the
DBRecordList, set by setRecordLimit:. If the number of qualifying records would
exceed that limit, the DBRecordList receives that number, and the delegate is sent a
recordStream:willFailForReason: message with the argument DB_RecordLimitReached.

Returns nil if the data can’t be selected (for example, if the DBDatabase isn’t connected to
the database) or if the qualifier and DBRecordList refer to different entities in the database;
otherwise, returns self. After fetchUsingQualifier:empty: returns, the DBRecordList’s
current record is set to the first record in the list.

See also: — cancelFetch, — fetchUsingQualifier:, — setProperties:ofSource:

free

— free

Releases the storage for the DBRecordList.

getRecordKeyValue:
— getRecordKeyValue:(DBValue *)aValue

Places the value of the current record’s key property (or properties) into aValue.

Returns nil if the DBRecordList has status DB_NotReady or if there is no current record;
otherwise, returns aValue.

See also: — getRecordKeyValue:at:

getRecordKeyValue:at:
— getRecordKeyValue:(DBValue *)aValue at:(unsigned)index

Places the value of the key property (or properties) for the record at index into aValue.

4-116 Chapter 4: Database Kit

This method is especially useful when data must be exchanged between DBRecordLists.
For example, suppose one DBRecordList supplies employee information and another
supplies department information to the user interface of an application. A user can change
an employee’s department by selecting from a list of department names. After a department
name is selected, you can use getRecordKeyValue: to determine the corresponding record’s
key value so that you can set the department identification in the employee’s record.

Returns nil if the DBRecordList has status DB_NotReady or if there is no record at index;
otherwise, returns aValue.

See also: — getRecordKeyValue:

getValue:forProperty:
— getValue:(DB Value *)aValue forProperty:aProperty

Places the value for the property aProperty of the current record into the DB Value object
aValue and returns aValue.

See also: — setValue:forProperty:at:, — setValue:forProperty,
— getValue:forProperty:at:

getValue:forProperty:at:

- getValue:(DB Value *)aValue
forProperty:aProperty
at:(unsigned)index

Places the value for the property aProperty of the record at position index into aValue and
returns aValue. aProperty is an object that conforms to the DBProperties protocol. Such
an object is returned by DBDatabase’s propertyNamed: method. The argument index
identifies the record within the DBRecordList and has the range from O to the value
returned by the count method.

See also: — setValue:forProperty:at:, — setValue:forProperty,
— getValue:forProperty:

init
— init
Initializes a newly allocated DBRecordList. The DBRecordList’s delegate instance

variable is set to nil, its retrieve mode is set to DB_SynchronousStrategy, and its cursor (its
current record) is set to DB_Nolndex. Returns self.

This method is the designated initializer for DBRecordList.

Classes: DBRecordList 4117

insertRecordAt:
— insertRecordAt:(unsigned)index

Adds a new, empty record to the record list at index. The newly inserted record becomes
the current record.

Returns nil if the DBRecordList has a DB_NotReady status or if an error prevents the
insertion of the record. Otherwise, returns self.

See also: — appendRecord, — deleteRecord, — deleteRecordAt:

isModified
— (BOOL)isModified

Returns YES if any record in the DBrecordList has been modified, added, or deleted;
NO otherwise.

See also: — isModifiedAt:, — isModifiedForProperty:at:

isModifiedAt:
— (BOOL)isModifiedAt:(unsigned int)index

Returns YES if the record at index is new or has been modified; NO otherwise.

See also: —isModified, — isModifiedAt:for:

isModifiedForProperty:at:
— (BOOL)isModifiedForProperty:aProperty at:(unsigned int)index

Returns YES if aProperty in the record at index has been modified since the record was
added to the DBRecordList or fetched from the database; NO otherwise.

See also: — isModified, — isModifiedAt:

isNewRecord
— (BOOL)isNewRecord

Returns YES if the current record is new; that is, it the result of the DBRecordList receiving
an appendRecord, insertRecordAt:, or newRecord message.

See also: — isNewRecordAt:, — isModified

4-118 Chapter 4: Database Kit

isNewRecordAt:
— (BOOL)isNewRecordAt:(unsigned int)index

Returns YES if the record at index is new; that is, if it was produced by the DBRecordList’s
receiving an appendRecord, insertRecordAt:, or newRecord message.

See also: —isNewRecord, — isModified

moveRecordAt:to:
—moveRecordAt:(unsigned int)sourcelndex to:(unsigned int)destinationlndex

Moves the record at sourcelndex to destinationIndex. Returns nil if there is no record at
sourcelndex or if an error prevents the insertion of the record are destinationIndex;
otherwise, returns self. '

newRecord
—newRecord

Creates a new, empty record by invoking DBRecordList’s insertRecordAt: method and
passing the index of the current row as the argument. Before this operation can take place,
the DBRecordList attempts to save modifications of the current record to the database. If
these changes can’t be saved, newRecord returns nil, and no new record is created.
Otherwise, newRecord returns self, and the new record becomes the current record.

See also: — saveModifications

positionForRecordKey:
— (unsigned int)positionForRecordKey:(DB Value *)aValue

Searches the records in the DBRecordList for the first record whose key value matches
aValue. Returns DB_Nolndex if no such record is found; otherwise, returns the index of
the matching record.

recordLimit

— (unsigned int)recordLimit

Returns the maximum number of records that a fetch can deliver to a DBRecordList (as set
by setRecordLimit:). If no limit has been set, returns DB_Nolndex.

Classes: DBRecordList 4-119

saveModifications

— (unsigned int)saveModifications

Saves to the database any changes (additions, deletions, or modifications) that have been
made to the list of records. If the database supports transactions and there’s no transaction
in progress, this save operation is nested within a new transaction, called a local
transaction. If there is already a transaction in progress for the RecordList's database, the
modification is attempted within that transaction context, without generating a new
transaction.

The possible return values from saveModifications are as follows:

Value Reason
0 ’ The save operation was successful.
1 The save completed but not all records were saved. This

happens if errors are encountered but the delegate
requests that the save proceed anyway.

DB_Nolndex Either the DBRecordList isn’t ready (its status is
DB_NotReady or DB_NoRecordKey), or one or more
records in the database have changed since they were
fetched and the delegate hasn’t forced the modifications to
be saved. (See recordStream:willFailForReason:
(DBRecordStream))

If a local transaction can’t be committed due to errors, a DB_TRANSACTION_ERROR
exception is raised.

If the attempt to save modifications fails, the DBRecordList’s delegate is notified by
sending it a recordStream:willFailForReason: message, and the DBRecordStream’s
internal cursor is set to the first of the first of the records that should have been saved
but weren’t.

See also: — areTransactionsEnabled (DBDatabase), — beginTransaction (DBDatabase)

setRecordLimit:

— setRecordLimit:(unsigned int)count
Makes count the maximum number of records that can be retrieved during a fetch. If a fetch
is attempted with a qualifier that would fetch more than this number of records, the method

returns the maximum number permitted but sends a recordStream:willFailForReason:
message to the delegate with the argument DB_RecordLimitReached. Returns self.

4-120 Chapter 4: Database Kit

setRetrieveMode:
— setRetrieveMode:(DBRecordListRetrieveMode)aMode

Sets the DBRecordList’s retrieve mode, which can be DB_SynchronousStrategy,
DB_BackgroundStrategy, or DB_BackgroundNoBlockingStrategy. See the class
description above for more information.

See also: — currentRetrieveMode:

setValue:forProperty:
— setValue:(DBValue *)aValue forProperty:aProperty

Sets the value for aProperty in the current record to that contained in aValue. Returns a
nonzero value if successful; otherwise, returns nil.

See also: — getValue:forProperty:, — setValue:forProperty:at:

setValue:forProperty:at:

- setValue:(DB Value *)aValue
forProperty:aProperty
at:(unsigned int)index

Sets the value for aProperty in the record at index to that contained in aValue. Returns a
nonzero value if successful; otherwise, returns nil.

See also: — getValue:forProperty:, — setValue:forProperty

swapRecordAt:withRecordAt:
— swapRecordAt:(unsigned int)anlndex withRecordAt:(unsigned int)anotherIndex

Transposes the locations of two records. Both arguments must be valid positions in the
DBRecordList’s sequence of records. Returns self, but if an argument is invalid, returns
nil.

Classes: DBRecordList 4-121

DBRecordStream

Inherits From: Object

Declared In: dbkit/DBRecordStream.h

Class Description

The DBRecordStream class defines an object that gives stream-based access to records in a
database. Once a fetch has been made, a DBRecordStream allows sequential access to the
returned records, from first to last. The position in the stream is referred to as the cursor or
current record (but note that this cursor is unrelated to the current record or current selection
in the user interface or the DBFetchGroup). The position in the stream can only be changed
by advancing it by 1 (by the setNext method), and can’t be set back. You can’t access the
records in random order. (To get random access, use DBRecordList, a subclass of
DBRecordStream.) A DBRecordStream allows the addition of records, also one at a time.

Setting Up a DBRecordStream

You create a new DBRecordStream object in the usual way, by sending alloc and init
messages. Before you can use a DBRecordStream to access records in a database, you must
specify the source of the data (say, the “authors” table of an SQL database) and the
properties (for example, name, address, and telephone number) that are to be fetched from
that source. The setProperties:ofSource: method lets you do both.

id database, authors, recordStream, propertyList;

database = [DBDatabase findDatabaseNamed:"pubs" connect:YES];
authors = [database entityNamed:"authors"];

recordStream = [[DBRecordList alloc] init];

propertyList = [[List alloc] init];

[authors getProperties:propertyList];
[recordStream setProperties:propertyList ofSource:authors];

To allow modification of records in the database, a DBRecordStream must know the key
property (or properties) for the source. A key property uniquely identifies individual
records within the source. For example, within a table of employee data, the employee’s
identification number uniquely identifies the records. Typically, the model created by

4-122 Chapter 4: Database Kir

DBModeler identifies the key properties of the data sources, but you can set them directly
using setKeyProperties:.

Optionally, you can specify that the records be returned in sorted order. Sending an
addRetrieveOrder:for: message to the DBRecordStream associates a sorting order with
a property. These messages are additive; for example:

id lastName, firstName;

firstName = [authors propertyNamed: "au_fname"];

lastName = [authors propertyNamed:"au_lname"];

[recordStream addRetrieveOrder:DB_AscendingOrder for:lastName];
[recordStream addRetrieveOrder:DB_AscendingOrder for:firstName];

The records will be retrieved in alphabetical order according to the authors’ last names. For
authors having identical last names, the retrieval order will be determined by first names.

Fetching Data

A DBRecordStream accesses data in the database when it is sent a fetchUsingQualifier:
message.

[recordStream fetchUsingQualifier:nill;

If the qualifier argument is nil, all records within the source will be made available through
the DBRecordStream. If you supply a qualifier, only the set of records meeting its
restrictions (for example, “au_lname = ‘Smith’”’) will be made available.

Accessing Data in the DBRecordStream

After receiving a fetchUsingQualifier: message, the DBRecordStream can be queried
for record data. The first record returned by the fetch operation is available immediately;
the second and subsequent records can be accessed by sending the DBRecordStream
setNext messages.

You access the data within a record indirectly, through DB Value objects. The
getValue:forProperty: method causes the DBRecordStream to set a DB Value object’s
value equal to a specified property in the current record:

id authors, state, recordStream, value;

state = [authors propertyNamed: "state"];
value [[DBValue alloc] init];

[recordStream getValue:value forProperty:state];
printf ("state: %s\n", [value stringValue]);

Classes: DBRecordStream 4-123 .

Modifying Records

The data in the DBRecordStream’s current record can be modified using the
setValue:forProperty: method. The current record can be deleted by invoking
deleteRecord.

To add a new record to the DBRecordStream, you first create an empty record by sending
anewRecord message. The DBRecordStream responds by using its current set of
properties (as returned by getProperties:) to create an empty record. Once the empty
record has been created, you can set the values for its properties as you would any record.

These modifications, deletions, and additions only affect the current record in the
DBRecordStream. To reflect these changes in the database itself, you must send the
DBRecordStream a saveModifications message. If the database being accessed supports
transactions, they should always be enabled before saving modifications. In general, it’s
both safer for the integrity of the data involved and much more efficient to do this.

Emptying, initing, or fetching records into the DBRecordStream (or DBRecordList) resets
it to an “unmodified” state. After that, modifications are tracked until the DBRecordList is
refilled or it receives a saveModifications message.

Responding to Notification that a Modification Will Fail

A DBRecordStream (or its subclass DBRecordList) notifies its delegate of the impending
failure of an operation that would modity, delete, or add records to the database. The
delegate receives a recordStream:willFailForReason: message. It can then take action to
review the condition that caused the failure. In some circumstances, it can refuse to accept
the failure.

Saving a record (or a set of records) happens in two stages. First the records are verified.
Then they are written out to the database. If a failure occurs during the verification stage,
the application can choose to abort the transaction. Having the delegate return YES to the
notification recordStream:willFailForReason: means that the delegate assents to the
failure, and permits the entire save to fail. (This failure doesn’t, of itself, abort the
transaction of which the save is part.) Alternatively, the application can pretend that the
verification succeeded and let the save proceed.

If a failure occurs during the writing stage, here again the delegate can either return YES
(thereby assenting to the failure and aborting the operation), or it can return NO (thereby
skipping the particular record for which writing failed but going ahead with writing the
others). If you choose to have the delegate return NO, you may be left with a situation in
which the record’s “modified” flag is set and so is the “modified” flag for its
DBRecordStream or DBRecordList, but the offending record is nevertheless unsaved, and
the transaction will nevertheless continue, commit, and return success.

4-124 Chapter 4: Database Kir

Warning: Before having the delegate return NO to recordStream:willFailForReason:, you should
be very sure this is what you want it to do! Returning NO permits what looks like
successful completion of a save, despite the fact that some of the application’s data still
differs from the data in the database.

For failures denoted by the failure codes DB_NoRecordKey or
DB_RecordStreamNotReady, there isn’t much you can do to keep going. In those
situations, the method fails regardless of what the delegate returns.

Instance Variables

id delegate;

id source;

id properties;

id database;

delegate The object that responds to notification messages

source The database entity from which records are to be retrieved
properties The list of properties of records to be retrieved

database The DBDatabase object that owns the record stream

Method Types

Initializing and freeing — init
— free

Setting up a DBRecordStream — addRetrieveOrder:for:
— setProperties:ofSource:
— getProperties:
— setKeyProperties:
— getKeyProperties:

Fetching data — fetchUsingQualifier:
— cancelFetch
— currentRetrieveStatus

Accessing data — getValue:forProperty:
— getRecordKey Value:
- setNext

Classes: DBRecordStream 4-125

Modifying data — setValue:forProperty:
—newRecord
— isNewRecord
— deleteRecord
— isModified
— isReadOnly

Saving modifications — saveModifications
Resetting a DBRecordStream — clear

Assigning Delegates — delegate
— setDelegate:
— binderDelegate
— setBinderDelegate:

Instance Methods

addRetrieveOrder:for:
— addRetrieveOrder:(DBRetrieveOrder)anOrder for:(id <DBProperties>)aProperty

Associates a retrieval order with the property aProperty. The permissible values of
anOrder are:

Constant Meaning

DB_NoOrder Remove ordering associated with aProperty
DB_AscendingOrder Sort records in ascending order of the values in aProperty
DB_DescendingOrder Sort records in descending order of values in aProperty

You can specify sort orders for multiple properties by sending multiple
addRetrieveOrder:for: messages; the sorts will be nested. For example, assume you
specify an ascending order for a property associated with employee names and a
descending order for a property associated with employee salaries. Records will be
retrieved in alphabetical order based on the employee’s last name and, for employees
having the same last name, will be ordered in descending numerical order based on salaries.

If an addRetrieveOrder:for: message hasn’t been sent to a DBRecordStream object, it
retrieves records in ascending order of the first property in its property list.

Returns a nil if an error occurs; otherwise, returns self.

See also: — getProperties:

4-126 Chapter 4: Database Kit

binderDelegate
— binderDelegate

Returns the delegate used by the DBRecordStream’s DBBinder objects.

See also: — setBinderDelegate:

cancelFetch

— cancelFetch

Terminates the current fetch operation and causes a fetchDone: message to be sent to the
DBRecordStream’s DBDatabase object. Returns self.

See also: - fetchUsingQualifier:, — fetchDone: (DBDatabase)

clear
—clear

Resets the DBRecordStream. The DBRecordStream’s record data, list of properties, and
list of key properties are emptied. Its database instance variable is set to nil, but its
delegate remains unchanged. Its status is set to DB_NotReady. Returns self.

See also: — currentRetrieveStatus, — free

currentRetrieveStatus
— (DBRecordRetrieveStatus)currentRetrieveStatus

Returns the DBRecordStream’s status, which can be:

Constant Meaning

DB_NotReady Not ready to fetch or insert data

DB_Ready Ready to fetch or insert data

DB_FetchInProgress Fetch in progress; more records are available

DB_FetchCompleted Fetch finished; no more records remain
delegate

— delegate

Returns the DBRecordStream’s delegate or nil if no delegate has be set.

See also: - setDelegate:, — recordStream:willFailForReason: (delegate method)

Classes: DBRecordStream 4-127

deleteRecord
— deleteRecord

Deletes the current record in the DBRecordStream and causes the DBRecordStream to
access the next record in sequence, if any.

Returns nil if the deletion can’t be accomplished; otherwise, returns self. If the deletion
fails, the DBRecordStream will attempt to notify its delegate of the reason, and the cursor
remains unchanged (pointing to the record that should have been deleted but wasn’t).

See also: — recordStream:willFailForReason: (delegate method)

fetchUsingQualifier:
— fetchUsingQualifier:(DBQualifier *)aQualifier

Selects data from the database and makes it available to the DBRecordStream. The scope
of records retrieved from the database is controlled by aQualifier. For example, assuming
the data source is an SQL database, aQualifier could be an object that represents the
expression “where name = ‘Holbein’”. If aQualifier is nil, all records in aSource are
selected. The argument aQualifier and the current property list must refer to the same
entity; otherwise an error occurs.

In case of error, this method makes the DBRecordStream’s list of properties empty, and
returns nil. Otherwise, returns self.

See also: — cancelFetch, — setProperties:ofSource:

free

— free

Releases the storage for the DBRecordStream.

getKeyProperties:
- (List *)getKeyProperties:(List *)keyList

Fills keyList with objects that represent the key properties of the DBRecordStream. Each of
these objects conforms to the DBProperties protocol. Returns the newly filled List object.

See also: — setKeyProperties:

4-128 Chapter 4: Database Kit

getProperties:
— (List *)getProperties:(List *)propertyList

Places the DBRecordStream’s property list in propertyList and returns propertyList.

See also: - setProperties:ofSource:

getRecordKeyValue:
— getRecordKeyValue:(DBValue *)aValue

Places the value of the current record’s key property (or properties) in aValue.

This method is especially useful when data must be exchanged between
DBRecordStreams. For example, suppose one DBRecordStream supplies employee
information and another supplies department information to the user interface of an
application. A user can change an employee’s department by selecting from a list of
department names. After a department name is selected, you can use getRecordKeyValue:
to determine the corresponding record’s key value so that you can set the department
identification in the employee’s record.

Returns nil if the DBRecordStream has status DB_NotReady; otherwise, returns aValue.

getValue:forProperty:
— getValue:(DBValue *)aValue forProperty:aProperty

Places the value for aProperty into aValue. This method is the only means of retrieving
record data stored in the DBRecordStream.

When aProperty is a relationship, the method sets aValue so that it includes the key value
of the relationship’s source property and the entity that is the relationship’s target. (In that
case, sending aValue the DBValues message isEntity would get the response YES.) The
fact that the value object identifies the target entity is exploited by the method
setProperties:ofSource:.

If the status of the DBRecordStream is DB_NotReady, this method return nil. Otherwise,
it returns the DB Value object.

See also: - setValueFor:from:, — propertyNamed: (DBDatabase),
— isEntity (DB Values protocol), — setProperties:ofSource:

Classes: DBRecordStream 4-129

init
— init
Initializes and returns a newly allocated DBRecordStream. The DBRecordStream’s

delegate instance variable is set to nil and its retrieve status is set to DB_NotReady.

This method is the designated initializer for DBRecordStream.

isModified
— (BOOL)isModified

Returns YES if the current record has been modified since it was added to the
DBRecordStream or fetched from the database; NO otherwise.

See also: — isNewRecord

isNewRecord
— (BOOL)isNewRecord

Returns YES if the current record is new; that is, it the result of the DBRecordStream
receiving a newRecord message.

See also: —newRecord, — isModified

isReadOnly
— (BOOL)isReadOnly

Returns YES if the records in the DBRecordStream can only be read, not modified. If a
DBRecordStream’s key properties haven’t been set, isSReadOnly will return YES.

See also: — setKeyProperties:, — getKeyProperties:

newRecord

—newRecord

Creates a new, empty record. Before this operation can take place, the DBRecordStream
attempts to save modifications of the current record to the database. If these changes can’t

4-130 Chapter 4: Database Kit

be saved, newRecord returns nil, no new record is created, and the cursor is not advanced.
Otherwise, newRecord returns self, and the cursor is advanced to make the new record the
current record.

See also: — saveModifications

saveModifications
— (unsigned int)saveModifications

Saves the new or modified record to the database. If the database supports transactions and
there’s no transaction in progress, this save operation is nested within a new transaction.

If there is no transaction in progress, a new transaction is created for this operation. If the
modifications can be made to the database, this transaction is committed. An error during
this commit process raises a DB_TRANSACTION_ERROR exception.

Returns these values:

Value Reason
1 The save operation was successful.
0 There were no modifications to save.
DB_Nolndex Either the DBRecordStream isn’t ready (its status is

DB_NotReady or DB_NoRecordKey), or the record in
the database has changed since it was fetched and the
delegate hasn’t forced the modification to be saved. (See
recordStream:willFailForReason:)

If the attempt to save modifications fails, the delegate is notified by sending it a
recordStream:willFailForReason: message, and the DBRecordStream’s internal cursor
is not advanced to the next record.

See also: — areTransactionsEnabled (DBDatabase), — beginTransaction (DBDatabase)

setBinderDelegate:
— setBinderDelegate:newDelegate

Sets the delegate for the DBRecordStream’s DBBinder objects. This delegate can intercede
in operations that would add or modify the database. See the DBBinder class specification
for more information.

See also: — binderDelegate

Classes: DBRecordStream 4-131

setDelegate:
— setDelegate:anObject
Sets the DBRecordStream’s delegate. Returns self.

See also: — delegate, — recordStream:willFailForReason: (delegate method)

setKeyProperties:
— (List *)setKeyProperties:(List *)propertyList
Sets the DBRecordStream’s list of key properties to propertyList. Each of the objects in

propertyList must conform to the DBProperties protocol. Typically, key properties are
identified in the database model using DBModeler, so you rarely invoke this method.

Returns nil if any property in propertyList is not a property of the DBRecordStream’s
source; otherwise, returns the property list.

See also: - getKeyProperties:

setNext
— setNext

Advances the DBRecordStream’s internal cursor by 1, so that it points to the next record in
the group of records made available by a fetch operation.

Returns self if successful and nil if not. A nil return can mean that there are no further
records to return or that the DBRecordStream was unable to save modifications to the
current record.

See also: — saveModifications

setProperties:ofSource:
— (List *)setProperties:(List *)propertyList ofSource:aSource

Sets the properties that will be fetched or stored by a DBRecordStream, or its subclass, a
DBRecordList. The properties transferred will be those contained in propertyList. The
argument aSource specifies the entity that contains the properties. If aSource is nil, the
entity for the first property in propertyList is used.

The argument aSource can also be a DB Value object representing the value of a
relationship. In that case, it contains the key value of a source property and the entity of the
relationship’s target. For example, suppose your application has two record lists, one

4-132 Chapter 4: Database Kit

containing orders (called orderRL) and another containing line items (called
lineltemRL). They are joined by a relationship in which a key vatue from orderRL serves
as a foreign key to lineltemRL.

The following code fragment prepares to fetch or insert records by using value to hold both
a value from orderRL and the “line item” entity to which the relationship joins it. When
value is suppied as the argument of ofSource:, the effect is to specify both the property to
be fetched and the qualifier that selects records from lineItemRL.

[orderRL getValue:value forProperty:lineltems];
[lineItemRL setProperties:proplList ofSource:value];
/* Fetch or insert records here */

The application should send a setProperties:ofSource: message before doing anything
with a DBRecordStream or DBRecordList. Once the list of properties has been set, the
application can send fetchUsingQualifier: messages, based on the list of properties that
has been set. To a DBRecordList, the application can also send
fetchUsingQualifier:empty:, or can make multiple inserts or multiple deletes. (After
once calling setProperties:ofSource:, you shouldn’t call it again until you really need to
establish a new property list, since each use discards any prior data without saving.)

Returns nil if the properties in propertyList don’t share the same entity or if some other
error occurs; otherwise, returns self.

See also: — getProperties:, — getValue:forProperty:, — isEntity (DB Values protocol)

setValue:forProperty:
— setValue:(DB Value *)aValue forProperty:aProperty

Sets the value for aProperty in the current record to that contained in aValue. Returns a
nonzero value if successful; otherwise, returns nil.

See also: - getValue:forProperty:

Methods Implemented by the Delegate

recordStream:willFailForReason:
— (BOOL)recordStream:sender willFailForReason:(DBFailureCode) aCode

Responds to a message informing the delegate that a modification couldn’t be saved to the
database. In general, returning YES to this message acknowledges the failure and permits
the operation to be aborted, thereby aborting the local transaction of which it is part.

Classes: DBRecordStream 4-133

Note: If the local transaction is nested within another transaction, it is the application’s
responsibility to either rollback or commit the outer transaction.

Returning NO skips the specific record involved but permits the operation to continues the
processing of others records (if any).

The aCode argument identifies the reason for the failure and can have the following values:

Constant
DB_RecordHasChanged

DB_RecordKeyNotUnique

DB_RecordStreamNotReady

DB_NoRecordKey

DB_AdaptorError

Meaning

- The record in the database has changed since it was

fetched by the DBRecordStream. Saving the
modification would overwrite someone else’s changes.
Returning YES to this message acknowledges the
failure and permits the operation to be aborted.
Returning NO skips the record and continues with

the others.

More than one record in the database corresponds to the
record in the DBRecordStream that is being updated or
deleted. Returning YES to this message acknowledges
the failure and permits the operation to be aborted.
Returning NO permits a delete to proceed with the other
records, but can’t help an update, since update is never
permitted with an ambiguous key.

The DBRecordStream isn’t ready for this operation (its
status is DB_NotReady). The boolean return value of
the message is ignored.

The modification couldn’t be saved because no property
(or combination of properties) within the record was
identified as the record key. The boolean return value of
the message is ignored.

The modification couldn’t be saved because of some
sort of error reported by the adaptor. Returning YES to
this message acknowledges the failure and permits the
operation to be aborted. Returning NO skips the record
and continues with the others.

See also: — saveModifications, - setDelegate:, — delegate

4-134 Chapter 4: Database Kit

recordStreamPrepareCurrentRecordForModification:
— (BOOL)recordStreamPrepareCurrentRecordForModification:aRecordStream

Notifies the delegate of a proposed modification to the current record, verifies that the
record is unique, and permits modification to proceed only if the return is YES.

If implemented, this delegate method provides an alternative to the standard check that a
DBRecordStream performs before deleting or modifying a record. (The DBRecordStream
or its subclass normally verifies that a record still exists, and that it is unique. It invokes a
“confirming select” on the DBDatabase using the key value, and then compares all
properties to see that none has changed. The select is usually a locking select.) This
delegate method replaces that mechanism, making the delegate responsible for verification
and locking. If the method returns YES, the record is considered to be verified, and
modification proceeds. If the method returns NO, the record is not modified, which may
cause the entire sequence containing saveModifications: to fail, depending on the
transaction model being used.

This method should not call any of the methods implemented by DBRecordStream or
DBRecordList other than getValue:forProperty:

Classes: DBRecordStream 4-135

DBTableVector

Inherits From: Object
Conforms To: DBTableVectors
Declared In: dbkit/DBTableVector.h

Class Description

There’s a DBTableVector to represent each of the fields (that is, each of the static rows or
columns) in a DBTableView. The DBFormatter for each row or column consults the
corresponding DBTableVector for the value of various parameters that affect the display.

Instance Variables

id identifier

id formatter

id titleFont;
NXCoord minSize
NXCoord maxSize
NXCoord currentSize
char *title;

identifier The vector’s identifying attribute
formatter The vector’s DBFormatter

titleFont The font for the vector’s title

minSize The vector’s minimum height or width
maxSize The vector’s maximum height or width
currentSize The vectors current height ot width
title The vector’s title

4-136 Chapter 4: Database Kit

Adopted Protocols

DBTableVectors — formatter
— setFormatter:
— identifier
— setldentifier:
— isEditable
— setEditable:
—isResizable
— setResizable:
— isAutosizable
— setAutosizable:
— size
- sizeTo:
— minSize
— setMinSize:
— maxSize
— setMaxSize:
—title
— setTitle:
- titleFont
— setTitleFont:
— titleAlignment
— setTitleAlignment:
— contentAlignment
— setContentAlignment:

Method Types

Creating the object — initIdentifier:
— free

Classes: DBTableVector 4-137

Instance Methods

free

— free

Frees the space that the DBTableVector was allocated. Returns self.

initldentifier:

— initIdentifier:newldentifier

Initializes a new instance of DBTableVector for the property identified by newldentifier.
Returns self.

4-138 Chapter 4: Database Kir

DBTableView

Inherits From: ScrollView : View : Responder : Object

Declared In: dbkit/DBTableView.h

Class Description

DBTableView is a class that displays data in a table. It’s similar to the Matrix class, but
with two important differences: First, the data resides not in the DBTableView instance but
in an external data source (usually a DBRecordList). Second, the table’s rows and columns
can be individually resized and repositioned by the user.

A DBTableView object consists of up to three different views: A row title view, a column
title view, and a content view. The content view can be made scrollable, horizontally,
vertically, or both. The row and column title views display title information; the titles
automatically scroll with their contents. Either or both the title views may be hidden.

Rows and Columns

Although the appearance of the DBTableView is completely configurable, the usual
arrangement is to have a fixed number of properties (fields) arranged as columns. Columns
are therefore said to be the table’s szatic axis. The rows, representing records, vary
dynamically with the data source or with the qualifier used to select records. In that case,
rows are said to be the table’s dynamic axis. Usually such a DBTableView has column titles
but no row titles. (If you ask for titles on a dynamic axis, the display shows consecutive
integers, reporting the record’s position in the data source.)

When a new DBTableView is initialized, it has no rows and no columns, and neither rows
nor columns are static. Sending it the first addColumn:withTitle: message both adds a
column and makes columns static rather than dynamic. Similarly, sending it an
addRow:... message would do the same thing for rows. A few applications may want to
have both rows and columns static. In the common case (that is, static columns, dynamic
rows), you call addColumn:... for each column, and then hook up a data source to provide
the data. The rows will then be determined lazily at display time through the data source’s
getValueFor:at:into: method. Like a very lazy browser, the DBTableView doesn’t
cache data.

Classes: DBTableView 4-139

There are two ways to refer to a static vector: by its row or column number, or by the
property that it represents. Most of the methods that manipulate specific rows or columns
refer to them by row number or column number. These numbers are like indexes to an
array: if the user or the application moves a vectors to a new position, or deletes or inserts
a vector, the row or column numbers change accordingly.

Formatting

To format the display of its content view, a DBTableView uses subclasses of the abstract
superclass DBFormatter (see the specifications of DBFormatter, DB TextFormatter,
DBEditableFormatter, and DBImageFormatter). A formatter is responsible for taking the
data from a particular row/column intersection within the DBTableView’s grid and
displaying it in a particular rectangle on the screen. That row/column intersection is in
some ways like a Cell within a Matrix object, but there are important differences. Whereas
a Cell actually stores its data, a formatter does not; a DBTable View must always refer to its
data source to get the values it displays.

Although a formatter displays the field at a single row/column intersection, its formatting
rule applies to any of the fields having the same property. That is, in the usual case (with
static columns), it applies to all the fields in a particular column. When rows are static, it
applies to all the fields in a particular row. Since the formatter can apply either to a row or
to a column, it is said to apply to a vector—that is, to one axis of the table (be it row or
column). The DBVectors protocol provides methods for specifying the format of fields
within a vector.

Response to User Action

Although DBTableView is not a subclass of Control, it does implement the target/action
paradigm, so that the target to be notified and the action to be performed can be selected in
Interface Builder’s Conection Inspector. Whenever the user double clicks, or selects a new
row or column, whether by mouse action or by pressing the arrow keys, notification is sent
to the delegate.

'4-140 Chaprer 4: Database Kit

Instance Variables

id delegate

id dataSource

id rowLayout

id columnLayout
id rowHeading

id columnHeading
id rowsClip-

id columnsClip

id gridView

id rowSel

id columnSel

id cornerView

id target

SEL action

SEL doubleAction

delegate

dataSource
rowLayout
columnLayout
rowHeading
columnHeading
rowsClip
columnsClip
gridView
rowSel
columnSel
corner View
target

action

doubleAction

The object notified of a double click or change of
selection

The DB Association linking this view to its data
Row layout information

Column layout information

Heading of the selected row

Heading of the selected column

Clip view for the row headings

Clip view for the column headings

The actual data view

The list of selected rows

The list of selected columns

View in the upper left corner of the DBTableView
The object that receives target/action messages
Selector of the action of a target/action message

Selector of the action of a double-click message

Classes: DB TableView

4141

Method Types

Initializing and freeing — initFrame:
— free

Setting up the DBTableView — setDataSource:
— dataSource

Setting and reporting formatting
— formatterAt::
— dynamicRows
— dynamicColumns
— isRowHeadingVisible
~ isColumnHeading Visible
- setlntercell:
— getlntercell:
— setGridVisible:
— isGridVisible
— acceptArrowKeys:
— doesAcceptArrowKeys
— allowVectorReordering:
— doesAllow VectorReordering
— allowVectorResizing:
— doesAllow VectorResizing

Notifying the DBTableView of change
— reloadData:
— layoutChanged:
— rowsChangedFrom:to:
— columnsChangedFrom:to:

4-142 Chapter 4: Database Kir

Handling rows and columns — columnCount
—rowCount
— columnList
—rowList
— rowAt:
— columnAt:
— addColumn:at:
— addColumn:withTitle:
~ addColumn:withFormatter:andTitle:at:
~ removeColumnAt:
— moveColumnFrom:to:
—addRow:at:
— addRow:withTitle:
— addRow:withFormatter:andTitle:at:
— removeRowAL:
— moveRowFrom:to:

Editing support - editFieldAt::
— setEditable:
— isEditable
— endEditing

Handling the selection — setMode:
— mode
— allowEmptySel:
— doesAllowEmptySel
— selectedRowCount
— selectedColumnCount
— selectedRow
— selectedColumn
— isRowSelected:
— isColumnSelected:
— deselectAll:
— selectAll:
— setRowSelectionOn::to:
— setColumnSelectionOn::to:
— selectRow:byExtension:
— selectColumn:byExtension:
— deselectRow:
— deselectColumn:
— selectedRowAfter:
— selectedColumnAfter:
— sendAction:to:forSelectedRows:
— sendAction:to:forSelectedColumns:

Classes: DBTableView 4-143

Setting DBTableView components
—rowHeading
— setRowHeading:
— setRowHeading Visible:
— columnHeading
— setColumnHeading:
— setColumnHeading Visible:

Adjusting the view — drawSelf::
— scrollClip:to:
— isHorizScrollerVisible
— setHorizScrollerRequired:
— isVertScrollerVisible
— setVertScrollerRequired:
—tile
— sizeTo::
— scrollRowToVisible:
— scrollColumnTo Visible:
— acceptsFirstResponder

Transmitting action — setAction:
— action
— setDoubleAction:
— doubleAction
— setTarget:
— target

Archiving —read:
— write:
— finishUnarchiving

Appointing a delegate — setDelegate:
— delegate

Instance Methods

acceptArrowKeys:
— acceptArrowKeys:(BOOL)flag

Enables or disables the arrow keys for keystrokes the user makes within the DBTableView,
as flag is YES or NO. The default when a DBTableView is initialized is YES. Returns self.

‘When atleast one row is selected, T moves the selection to the row below the highest selected
row, and to the row above it (if necessary, scrolling to make the newly selected row visible);
the horizontal arrows do nothing. Similarly, when at least one column is selected, «— moves

4-144 Chapter 4: Database Kit

the selection to the column to the left of the leftmost selected column, and — to the column
to the right of it (if necessary, scrolling to make the newly selected column visible); the
vertical arrows do nothing. In either case, arrows don’t wrap around; if the selection is the
first or last vector, pressing the arrow that points to the edge does nothing.

See also: — doesAcceptArrowKeys

acceptsFirstResponder
— (BOOL)acceptsFirstResponder

Returns YES if the DBTableView accepts the role of first responder for its Window.

action
— (SEL)action

Returns the selector for the action method that will be sent to the DBTableView’s target
when a target/action event occurs in the DBTableView. Usually, this is the action you
selected in Interface Builder’s Connections Inspector.

addColumn:at:
— addColumn:identifier at:(unsigned int)aPosition

Inserts a new static column into the DBTableView. The data for the new column will come
from the DBRecordList’s attribute identified by identifier. The new column will be inserted
so that it precedes the column whose column-number (before the insertion) was aPosition.
Nottitle is assigned to the new column; its formatting will be handled by a default formatter.
Return self.

addColumn:withFormatter:andTitle:at:

— addColumn:identifier
withFormatter:formatter
andTitle:(const char *)title
at:(unsigned int)aPosition

Inserts a new static column into the DBTableView. The data for the new column will come
from the DBRecordList’s attribute identified by identifier. Text for the new column’s title
will be taken from title. The column’s formatting will be handled by formatter. The new
column will be inserted so that it precedes the column whose column-number (before the
insertion) was aPosition.

Classes: DBTableView 4-145

4-146

addColumn:withTitle:
~ addColumn:identifier withTitle:(const char *)title

Appends a new static column following the last existing column in the DBTableView. The
data for the new column will come from the DBRecordList’s attribute identified by
identifier. Text for the new column’s title will be taken from #itle. The new column has its
own default DBTextFormatter. Returns self.

addRow:at: .

— addRow:identifier at:(unsigned int)aPosition

Inserts a new static row into the DBTableView. The data for the new row will come from
the DBRecordList’s attribute identified by identifier. The new row will be inserted so that
it precedes the row whose row-number (before the insertion) was aPosition. No title is

assigned to the new row; its formatting will be handled by a default formatter. Returns self.

addRow:withFormatter:andTitle:at:

— addRow:identifier
withFormatter:;formatter
andTitle:(const char *)title
at:(unsigned int)aPosition

Inserts a new static row into the DBTableView. The data for the new row will come from
the DBRecordList’s attribute identified by identifier. Text for the new row’s title will be
taken from title. The row’s formatting will be handled by formatter. The new row will be
inserted so that it precedes the row whose row-number (before the insertion) was aPosition.
Returns self.

addRow:withTitle:
- addRow:identifier withTitle:(const char *)title

Appends a new static row following the last existing row in the DBTableView. The data
for the new row will come from the DBRecordList’s attribute identified by identifier. Text
for the new row’s title will be taken from title. The new row gets it its own
DBTextFormatter. If the DBTableView previously had no rows, adding a row makes rows
static. Returns self.

Chapter 4: Database Kit

allowEmptySel:
— allowEmptySel:(BOOL)flag

Permits the user to deselect a vector (with shift-click) when that would leave nothing
selected (or prohibits it, when flag is NO). The default is NO. Returns self.

See also: — doesAllowEmptySel

allowVectorReordering:

— allowVectorReordering:(BOOL)flag
Permits the user to drag a static vector to a new position within the DBTableView (or
prohibits it, when flag is NO). The default is YES. To drag a vector, the user must click in
the vector’s title area (to select it) and then drag; it isn’t possible to drag an untitled vector.
The new ordering of vectors depends on the ordering of their midpoints. That is, if column

B is to the right of column A, to reverse their positions the user must drag B until its
midpoint is to the left of A’s midpoint. Returns self.

See also: — doesAllowVectorReordering

allowVectorResizing:

— allowVectorResizing:(BOOL)flag
Permits the user to drag the edges of a static vector so as to change its height or width (or
prohibits it, when flag is NO). To resize a vector, the user must start to drag from a position
over the title’s edge. In that position, the cursor changes to a double arrow (like this <> for

a column, or the corresponding vertical form for a row). It isn’t possible to resize an
untitled vector. Returns self.

See also: — doesAllowVectorResizing

columnAt:
— (id <DBTableVectors>)columnAt:(unsigned int)aPosition

Returns the object that controls the formatting of the (static) column identified by
aPosition.

Classes: DBTubleView 4-147

columnCount

— (unsigned int)columnCount

For a DBTableView with static columns, returns the number of columns. For a table view
whose columns are dynamic, returns the number of columns in the data source.

columnHeading
— columnHeading

Returns the view that contains the DBTable’s column headings.

columnlList

-~ columnList

Returns a list of the identifiers of successive columns in the order that they currently appear
in the DBTableView. (If columns aren’t static, returns nil.)

columnsChangedFrom:to:

— columnsChangedFrom:(unsigned int)startColumn to:(unsigned int)endColumn

Notification that the data source has changed the values in a block of consecutive columns,
so their display should be redrawn. The first of the changed columns is identified by
startColumn, the last by endColumn. Returns self.

dataSource

— dataSource

Returns an object that identifies the source from which the DBTableView is getting the data
it’s displaying. The returned object is a private subclass of DB Association; sending it a
fetchGroup message will return the fetch group that is fetching the data.

4-148 Chapter 4: Database Kir

delegate
— delegate

Returns the DBTableView’s delegate. The delegate receives notification of a double
click within the DBTableView, or any of the actions that cause a change in the row or
column selected.

deselectAll:
— deselectAll:sender

If empty selection is permitted, deselects all selected vectors and their row or column
headings. If empty selection is not permitted, deselects all but the first. Notifies the
deleegate by sending it a table ViewDidChangeSelection: message, and sends an action
message to the DBTableViews’s target. Returns self.

See also: — allowEmptySel

deselectColumn:

- déselectColumn:(unsigned int)column

Deselects the indicated column. However, if this is the only selected column and an empty
selection is not allowed, does nothing. Returns self.

deselectRow:

— deselectRow:(unsigned int)row

Deselects the indicated row. However, if this is the only selected row and an empty
selection is not allowed, does nothing. Returns self.

doesAcceptArrowKeys
— (BOOL)doesAcceptArrowKeys

Returns YES if arrow keys are enabled while the DBTableView is first responder.

See also: — acceptArrowKeys

Classes: DB TableView 4-149

doesAllowEmptySel
- (BOOL)doesAllowEmptySel

Returns YES if the DBTableView permits the user to deselect a vector (with Shift-click)
when that would leave nothing selected. The default is NO.

See also: — allowEmptySel

doesAllowVectorReordering
— (BOOL)doesAllow VectorReordering

Returns YES if the DBTableView permits the user to drag a static vector (row or column)
to a new position. The default is YES.

See also: — allowVectorReordering

doesAllowVectorResizing
— (BOOL)doesAllowVectorResizing

Returns YES if the DBTableView permits the user to resize a static vector (row or column).
The default is YES.

See also: — allowVectorResizing

doubleAction
— (SEL)doubleAction
Returns the selector for the action to be taken when the user double clicks within the

DBTableView. (Usually, the action is interpreted as a request to edit a particular
row/column intersection within the table.)

drawSelf::

— drawSelf:(const NXRect *)rects :(int)count v
Invoked by various methods during scrolling or dragging to redraw the DBTableView.
Your application shouldn’t need to call this method directly. The argument rects is a list of

pointers to the coordinates of rectangles in which the DBTableView is visible, while count
is the number of such rectangles. Returns self.

4150 Clapter 4: Database Kir

dynamicColumns
— (BOOL)dynamicColumns
Returns YES if the DBTableView’s columns are dynamic: that is, if the number of available

columns is determined by the number of records available (in contrast to the static number
of attributes).

dynamicRows
— (BOOL)dynamicRows
Returns YES if the DBTableView’s rows are dynamic: that is, if the number of available

rows is determined by the number of records available (in contrast to the static number of
attributes).

editFieldAt::
— editFieldAt:(unsigned int)row :(unsigned int)column
Selects the entry at the indicated row and column, and invokes an editor. This achieves

programmatically the effect the user would produce by double-clicking a field within the
DBTableView’s content view.

Editing a field permits the user to change the text displayed there. When the user signals
completion (by pressing Enter, or by clicking outside the field being edited), the editor may
invoke methods to validate the revised field, and, if itis acceptable, copy its value to the
table view’s data source. Returns self.

endEditing
— endEditing

Invoked automatically to redraw the field that has been edited at the conclusion of editing.
Returns self.

finishUnarchiving

— finishUnarchiving
Invoked as the last step in reading a DBTableView from an archive, to position the table
view within its frame, layout its rows and columns and their headings (if appropriate), and

initialize the selection of rows and columns. You shouldn’t need to invoke this explicitly,
since it is done automatically as part of the process of reading from an archive. Returns self.

Classes: DBTableView 4-151

formatterAt::

— formatterAt:(unsigned int)row :(unsigned int)column
Returns the formatter responsible for the field at the intersection of the indicatated row and
column of the display. In a typical display, one axis (usually columns) is static and the
other (usually rows) is dynamic. In that case, the same formatter applies throughout a given
static position, and the dynamic index is immaterial. If there is no formatter explicitly

assigned to the specified field, the method returns a default formatter for the type of data
(text or image).

You may want to override this method in order to apply, different formatting rules.

free
—free

Frees the storage used by a DBTableView instance (by freeing the table view’s various
internal components before invoking the superclass’s free method). Returns nil.

getintercell:
— getIntercell:(NXSize *)theSize

Reports the number of pixels of spacing between adjacent cells, by setting theSize with the
two values, for horizontal and vertical separation. The default is 2, 2. Returns self.

initFrame:
— initFrame:(const NXRect *)newFrame

Initializes a DBTableView instance within the frame boundaries specified by newFrame.
The new view has no rows or columns, and both axes are considered dynamic. Initially,
there is no title; there are column headings but not row headings; vertical scrollbars but not
horizontal ones. Reordering and resizing are enabled (but this has no effect until rows or
columns become static). The arrow keys are enabled. Returns self.

isColumnHeadingVisible
- (BOOL)isColumnHeading Visible

Returns YES if the column-heading view (containing the headings for all columns) is visible.

4-152 Chapter 4: Database Kit

isColumnSelected:
— (BOOL)isColumnSelected: (unsigned int)column

Returns YES if the indicated column is selected.

isEditable
— (BOOL)isEditable

Returns YES if the DBTableView is editable.
See also: — setEditable

isGridVisible
— (BOOL)isGrid Visible

Returns YES if the DBTableView’s grid lines are visible.
See also: - setGridVisible

isHorizScrollerVisible
— (BOOL)isHorizScroller Visible

Returns YES if the horizontal scroller is visible. The default is NO.

See also: — setHorizScrollerRequired

isRowHeadingVisible
— (BOOL)isRowHeadingVisible

Returns YES if the row-heading view (containing the headings for all rows) is visible.

isRowSelected:
— (BOOL)isRowSelected:(unsigned int)row

Returns YES if the indicated row is selected.

Classes: DBTableView 4-153

isVertScrollerVisible
- (BOOL)isVertScrollerVisible

Returns YES if the vertical scroller is visible. The default is YES.

See also: — setVertScrollerRequired

layoutChanged:
— layoutChanged:sender

Invoked when there is any change in the number, position, width, height, titling, or format
of the DBTableView’s content, to update all of these. Returns self.

mode
— (int)mode
Returns the selection mode.

See also: — setMode

moveColumnFrom:to:

— (BOOL)moveColumnFrom:(unsigned int)oldPos to:(unsigned int)newPos
Changes the position of one of the static columns. The column to move is identified by
oldPos, its position before the move. Its new position will be newPos. That is, in the new
sequence, it will precede the column that used to be at newPos. The method also makes the

corresponding change in the column headings. Returns YES if the move is permitted, NO
otherwise. It is never permissible to move a dynamic column.

See also: — allowVectorReordering:, — doesAllowVectorReordering

4-154 Chapter 4: Database Kit

moveRowFrom:to:
— (BOOL)moveRowFrom:(unsigned int)oldPos to:(unsigned int)newPos

Changes the position of one of the static rows. The row to move is identified by oldPos, its
position before the move. Its new position will be newPos. That is, in the new sequence,
it will precede the row that used to be at newPos. The method also makes the corresponding
change in the row headings. Returns YES if the move is permitted, NO otherwise. It is
never permissible to move a dynamic row.

See also: — allowVectorReordering:, — doesAllowVectorReordering

read:
—read:(NXTypedStream *)stream

Unarchives a DBTableView object from the archive identified by stream.

reloadData:

—reloadData:sender

Rechecks the layout and redraws the display. Returns self.

removeColumnAt:

— removeColumnAt:(unsigned int)columnPosition

Deletes a static column (and its heading) from the display. Returns self.

removeRowAt:

- removeRowAt:(unsigned int)rowPosition

Deletes a static row (and its heading) from the display. Returns self.

rowAt:
- (id <DBTableVectors>)rowAt:(unsigned int)aPosition

Returns the object that controls the formatting of the static row whose row number
is aPosition.

Classes: DBRTableView 4-155

rowCount

— (unsigned int)rowCount

For a DBTableView with static rows, returns the number of rows. For a table view whose
rows are dynamic, returns the number of rows in the data source.

rowHeading

— rowHeading

Returns the view that contains the DBTableView’s row headings.

rowlList
—rowList

Returns a list of the identifiers of successive static rows in the order that they currently
appear in the DBTableView. (If rows aren’t static, returns nil.)

rowsChangedFrom:to:

— rowsChangedFrom:(unsigned int)startRow to:(unsigned int)endRow

Notification that the data source has change the values in a block of rows, so their display
should be redrawn. The first of the changed rows is identified by startRow, and the last by
endRow. Returns self.

scrollClip:to: ,
— scrollClip:aClip to:(const NXPoint *)newOrigin

Changes the portion of the content of the clip view aClip that is visible. The change makes
the position newOrigin (in the content view’s coordinates) appear at the clip view’s origin
(that is, its lower left corner). This message is usually sent automatically, in response to
scrolling in the view aClip. It is used to coordinate the scrolling of the content view and
the two heading views with a table view, or when the arrow keys make the selected portion
of the view outside the clip view. Returns self.

4-156 Chapter 4: Database Kit

scroliColumnToVisible:
— scrollColumnToVisible:(unsigned int)column

Scrolls the content view and column headings horizontally so that the requested column is
visible. Returns self.

scrollRowToVisible:
— scrollRowToVisible:(unsigned int)row

Scrolls the content view and row headings vertically so that the requested row is visible.
Returns self.

selectAll:

— selectAll:sender

Provided the DBTableView is in list mode (permitting multiple selection), selects all rows
and columns and their headings. Notifies the delegate by sending it a
tableViewDidChangeSelection: message. Returns self.

selectColumn:byExtension:
— selectColumn:(unsigned int)column byExtension:(BOOL)flag

Selects the column (and its heading) identified by column. When flag is YES and the
DBTableView’s mode permits multiple selection, includes column in the set of selected
columns. Otherwise, this method deselects other columns. Returns self.

selectedColumn

— (int)selectedColumn

Returns the column number of the selected column. Column numbers are successive
integers starting at 0, for the columns actually displayed, in their current left-to-right order
in the display. Returns —1 of no column is selected.

Classes: DBTableView 4-157

selectedColumnAfter:
— (unsigned int)selectedColumnA fter:(unsigned int)aColumn

Returns the column number of the first selected column that is further to the right than
aColumn. If aColumn is DB_Nolndex and there is at least one selected column, returns the
first selected column. If no column is selected, or there is no selected column to the right
of aColumn, returns DB_Nolndex.

selectedColumnCount

— (unsigned int)selected ColumnCount

Returns the number of selected columns.

- selectedRow

— (int)selectedRow

Returns the row number of the selected row. Row numbers are successive integers starting
at 0, for the rows actually displayed, in their current top-to-bottom order in the display.
Returns -1 if no row is selected.

selectRow:byExtension:
— selectRow:(unsigned int)row byExtension:(BOOL)flag

Selects the row (and its heading) identified by row. When flag is YES and the
DBTableView’s mode permits multiple selection, includes row in the set of selected rows.
Otherwise, this method deselects other rows. Returns self.

selectedRowAfter:

— (unsigned int)selectedRowA fter:(unsigned int)aRow

Returns the row number of the first selected row that is further down than aRow. If aRow
is DB_Nolndex and there is at least one selected row, returns the first selected row. If no
row is selected, or there is no selected row lower than aColumn, returns DB_Nolndex.

4-158 Chapter 4: Database Kit

selectedRowCount
— (unsigned int)selec_tedRowCount

Returns the number of selected rows.

sendAction:to:forSelectedColumns:

— sendAction:(SEL)anAction
to:anObject
forSelected Columns:(BOOL)flag

Sends the message anAction to the object anObject once for each column (when flag is NO)
or once for each selected column (when flag is YES). Returns self.

sendAction:to:forSelectedRows:

— sendAction:(SEL)anAction
to:anObject
forSelectedRows:(BOOL)flag

Sends the message anAction to the object anObject once for each row (when flag is NO) or
once for each selected row (when flag is YES). Returns self.

setAction:
— setAction:(SEL)aSelector

Sets the action method that will be sent to the DBTableView’s target when a target/action
event occurs in the DBTableView.

See also: — action

setColumnHeading:
- setColumnHeading:newColumnHeading

Sets the view that contains the DBTable’s column headings.

See also: — columnHeading

Classes: DBTableView 4-159

setColumnHeadingVisible:
— setColumnHeadingVisible:(BOOL)flag

Causes the DBTableView to include a heading view across the top of the columns (when
flag is YES), or to omit it (when flag is NO). This in turn causes the DBTableView to
recompute its layout and redisplay in response to the change,

setColumnSelectionOn::to:

— setColumnSelectionOn:(unsigned int)start
:(unsigned int)end
to:(BOOL)flag

Selects (when flag is YES) or deselects (when flag is NO) the block of columns from start
to end, inclusive. Returns self.

setDataSource:

— setDataSource:aSource

Makes aSource the data source from which the DBTableView gets its values, and
redisplays the table. Returns self.

setDelegate:
— setDelegate:delegate

Makes delegate the DBTableView’s delegate. Returns self.

See also: — delegate

setDoubleAction:
— setDoubleA ction:(SEL)aSelector

Sets the action method that will be sent to the DBTableView’s target when there’s a
double-click in the DBTableView. Returns self. '

4-160 Chapter 4: Database Kit

setEditable:
— setEditable:(BOOL)flag

Permits or prohibits editing (as flag is YES or NO). The default is YES. Returns self.

See also: — isEditable

~ setGridVisible:

— setGridVisible:(BOOL)flag
Makes grid lines between adjacent rows and columns of the content view visible or not (as
flag is YES or NO). The space the gridlines use is in addition to the intercell spacing. (Row

and column headings always have a separating line, regardless of whether there’s a grid in
the content view.) Returns self.

See also: — isGridVisible, — setIntercell:

setHorizScrollerRequired:

— setHorizScrollerRequired:(BOOL)flag
Includes or omits a horizontal scroller along the lower edge of the DBTableView, as flag is
YES or NO. Including a scroller takes space away from the area otherwise available for
the content display. When a scroller is included, it contains a slider and scroll buttons when

the total width of the columns exceeds the width of the display; at other times it’s blank..
Returns self.

See also: — isHorizScrollerVisible

setintercell:
— setIntercell: (const NXSize *)aSize

Sets the number of pixels that separate adjacent rows and columns. The argument aSize
specifies two values, for horizontal and vertical separation. When gridlines are used, the
space they use is in addition to the intercell spacing. Returns self.

Classes: DBTableView 4-161

setMode:
— setMode:(int)newMode

Sets the DBTableView’s selection mode. The possible values are member of the
enumeration set DBSelectionType, to wit:

DB_LISTMODE Shift-clicking a vector adds it to the current selection if it
is not already selected, or removes it if it is. (Deselecting
a vector may not be permitted if it is the only selected
vector and empty selection is not permitted.)

DB_RADIOMODE Selecting a vector automatically deselects the previous
selection.
DB_NOSELECT Selecting a vector is not permitted.
setRowHeading:

- setRowHeading:newRowHeading
Sets the view that contains the DBTable’s row headings.

See also: — rowHeading

setRowHeadingVisible:
- setRowHeading Visible:(BOOL)flag
‘Causes the DBTableView to include a heading view down the left side of the rows (when

flag is YES), or to omit it (when flag is NO). Changing the row heading in turn causes the
DBTableView to recompute its layout and redisplay in response to the change.

setRowSelectionOn::to:

— setRowSelectionOn:(unsigned int)start
:(unsigned int)end
to:(BOOL)flag

Selects (when flag is YES) or deselects (when flag is NO) the block of rows from start to
end, inclusive. Returns self.

4-162 Chapter 4: Database Kit

setTarget:
— setTarget:anObject

Makes anObject the target of a target/action message sent in response to an event within
the DBTableView. Returns self.

setVertScrollerRequired:
— setVertScrollerRequired:(BOOL)flag

Includes or omits a vertical scroller along the left edge of the DBTableView, as flag is YES
or NO. Including a scroller takes space away from the area otherwise available for the
content display. When a scroller is included, it contains a slider and scroll buttons while
when the total width of the columns exceeds the width of the display; at other times it’s
blank. Returns self.

See also: — isVertScrollerVisible

sizeTo::
— sizeTo:(NXCoord)width :(NXCoord)height

Resets the overall size of the DBTableView, and then recomputes its layout and redisplays it.

target
— target

Returns the object that is the target for a target/action event in the DBTableView.

tile
— tile

Places the DBTableView’s three component views (content, column heading, and row
heading—or as many of them as have been made visible) within the DBTableView’s frame.
Returns self.

Classes: DBTableView 4-163

write:
— write:(NXTypedStream *)stream

Archives the DBTableView object by writing it to the NXTypedStream identified by
stream. Returns self.

Methods Implemented by the Delegate

tableView:movedColumnFrom:to:

— tableView:sender moved ColumnFrom:(unsigned int)old to:(unsigned int)new
Invoked when the user changes the position of a static column. By implementing this
method, the delegate can take corresponding action of its own; for example, it might

recompute a sort of the displayed record reflecting the changed sequence of columns.
Returns self.

tableView:movedRowFrom:to:

— tableView:sender movedRowFrom:(unsigned int)old to:(unsigned int)new

Invoked when the user changes the position of a static rows. By implementing this method,
the delegate can take corresponding action of its own. Returns self.

tableViewDidChangeSelection:
_ ~ tableViewDidChangeSelection:a7ableView
Invoked when the user has changed the selection. The delegate may wish to respond by

making corresponding changes to another display that is synchronized with the TableView
that sent the message. Returns self.

tableViewWillIChangeSelection:
— (BOOL)tableViewWillChangeSelection:a7able View

Invoked when the user has taken action to change the selection. By implementing this
method, the delegate has a chance to interpose some test of its own. Returning YES permits
the change in selection to proceed.

4-164 Chapter 4: Database Kir

DBTextFormatter

Inherits From: DBFormatter : Object

Declared In: dbkit/DBTextFormatter.h

Class Description

DBTextFormatter is one of three subclasses of DBFormatter; the others are
DBEditableFormatter and DBImageFormatter. For read-only character-based
display of numeric or character information, DBTextFormatter is faster than
DBEditableTextFormatter. See the description of the superclass, DBFormatter.

Instance Variables

id font;

BOOL batching;

font The current font for displaying text

batching YES if the same formats apply to a batch of records

Method Types
Initializing — init
— free

Manipulating font — font
— setFont:

Batching format requests — beginBatching:
—resetBatching:
— endBatching
Archiving — write:
—read:

Classes: DBTextFormatter 4-165

Instance Methods
beginBatching:
— beginBatching:(id <DBTableVectors>)attrs

Notifies the DBTextFormatter that a formatting session is about to begin. You never invoke
this method directly; it’s invoked by the DBTableView that’s using this object as a
formatter. The end of a formatting session is signalled by endBatching.

See also: - endBatching, — resetBatching:

endBatching
— endBatching

Notifies the DBTextFormatter that a formatting session is over. You never invoke this
method directly; it’s invoked by the DBTableView that’s using this object as a formatter.
The beginning of a formatting session is signalled by beginBatching:.

See also: - beginBatching:, — resetBatching:

font

— font

Returns the DBTextFormatter’s Font object.

free

— free

Frees the DBTextFormatter instance.

init
—init

Initializes the DBTextFormatter instance. In the course of initializing, the display font is
set to the system default font at 12 point and batching is turned off. Returns self.

4-166 Chapter 4: Database Kir

read:
—read:(NXTypedStream *)stream

Reads the DBTextFormatter from stream. Returns self.

resetBatching:
- resetBatching:(id <DBTableVectors>) attrs

Same as beginBatching:, but has no effect if batching is already in effect. Returns self.

setFont:

—setFont:aFont

Sets the current font to the Font object aFont. Returns self.

write:
— write:(NXTypedStream *)stream

Archives the DBTextFormatter to stream. Returns self.

Classes: DBTextFormatter 4-167

DBValue

Inherits From: Object
Conforms To: DBExpressionValues
Declared In: dbkit/DBValue.h

Class Description

The DB Value class provides objects that can embody different types of data. DBValue
objects are used throughout the Database Kit to retrieve and modify arbitrarily typed
values.

A DB Value object consists of two parts: a value and a type. The value and type are set at
the same time, through methods such as setIntValue: and setStringValue:; the value is
passed as the argument, the type is set as indicated by the method’s name. Once this
information has been set, you can retrieve the DB Value’s value through methods such as
intValue and stringValue. The value is converted, if possible, to the requested return type.
You can retrieve a DB Value’s type—the type that was named by the method that set the
value—as a DBTypes-conforming object through the valueType method.

The type of a DB Value object can be one of the following:

* An object

* Astring

* Aninteger

* A single-precision floating-point number
* A double-precision floating point number
e NULL

The type conversion mentioned above applies only to strings, numeric values, and NULL;
you can’t convert an object to or from the other data types.

The primary use the Database Kit makes of DBValue objects is to store the values that are
contained in a record. The objects are necessary because you can’t examine or set a
record’s values directly: You have to get a record value (indexed by property) into a

DB Value object, examine and/or modify the DB Value, and set the DBValue back into the
record. Getting and setting record values is typically done through the DBRecordList (or
DBRecordStream) methods getValue:forProperty: and setValue:ForProperty:.

4-168 Chapter 4: Database Kit

The following example demonstrates how to use a DBRecordList and a DB Value to modify
the record that the DBRecordList is currently pointing to:

/* Create a DBValue to retrieve and modify a record value. */
DBValue *age = [[DBValue alloc] init];

/* Retrieve the value of a property from a DBRecordList. */
/* (aRecordList and aProperty are assumed to exist. */
[aRecordList getValue:age forProperty:ageProperty];

/* Modify the value and write it back to the record. */
[birthRight setFloatValue:[age intValue]+1.0];
[aRecordList setValue:age forProperty:aProperty];

DBBinder also defines a method, valueForProperty:, that returns a DB Value that contains
the value of the current record for a particular property. However, unlike with a

DBRecordList, you can modify the DB Value returned by this method and so modify the
record directly.

DB Values are also used to store the values of a record’s key properties, and to store the
value that’s embodied in a DB Association.

Instance Variables

None declared in this class.

Adopted Protocols

DBExpressionValues — expressionValue
— isDeferredExpression

Classes: DBValue 4-169

Method Types

Creating and Freeing + initialize
— init
— free
Setting values — setDoubleValue:
— setFloatValue:
— setIntValue:
— setObjectValue:
— setObjectValueNoCopy:
— setString Value:
— setString ValueNoCopy:
— setValueFrom:
— setNull

Reporting values — valueType
—isEqual: .
— doubleValue
— floatValue
— intValue
— objectValue
— stringValue
—isNull

Archiving —read:
— write:

Class Methods
initialize
+ initialize

Prepares the class for use. You normally don’t need to invoke this method; however, if
you’re creating a subclass that implements an initialize method, you should certainly send
initialize to super as part of the implementation. Returns self.

4170 Chapter 4: Database Kit

Instance Methods

doubleValue
— (double)doubleValue

Returns the DB Value’s value converted to a double-precision floating-point number. If the
conversion can’t be performed, a DB_COERCION_ERROR exception is raised.

floatValue
— (float)floatValue

Returns the DBValue’s value converted to a single-precision floating-point number. If the
conversion can’t be performed, a DB_COERCION_ERROR exception is raised.

free

—free

Frees the DB Value.

init
— init

The designated initializer for the DB Value class, init initializes a newly allocated
DB Value object.

intValue
— (int)intValue

Returns the DB Value’s value converted to an integer. If the conversion can’t be performed,
a DB_COERCION_ERROR exception is raised.

Classes: DBValue 4-171

isEqual:
— (BOOL)isEqual:(DBValue *)anotherValue

Compares the DBValue with anotherValue and returns YES or NO as their values are or
aren’t equivalent. The two objects’ types needn’t be the same; the method will convert
the argument’s value to that of the receiving DB Value, if necessary, and then perform the
comparison. A DB_COERCION_ERROR exception is raised if the conversion

isn’t supported.

isNull
— (BOOL)isNull

Returns YES if the DBValue’s value hasn’t been set, or if it’s been set to the null value
appropriate for its type. ‘

objectValue
— objectValue

Returns the DBValue’s value. The value must be an object, otherwise a
DB_COERCION_ERROR exception is raised.

read:
—read:(NXTypedStream *)stream

Reads the DB Value from the typed stream stream. Returns self.

setDoubleValue:
— setDoubleValue:(double)aDouble

Sets the DB Value’s value to aDouble and declares its type to be a double. Returns self.

setFloatValue:
— setFloatValue:(float)aFloat

Sets the DBValue’s value to aFloat and declares its type to be a float. Returns self.

4-172 Chapter 4: Database Kit

setintValue:
- setIntValue:(int)anlnt

Sets the DB Value’s value to anlnt and declares its type to be an integer. Returns self.

setNull
— setNull

Sets the DBValue’s value and type to NULL. Returns self.

setObjectValue:
— setObjectValue:(id)anObject

Sets the DB Value’s value to a copy of anObject and declares its type to be an object.
Returns self.

setObjectValueNoCopy:
— setObjectValueNoCopy:(id)anObject

Sets the DBValue’s value to anObject and declares its type to be an object. Returns self.

setStringValue:
— setStringValue:(const char *)aString

Sets the DB Value’s value to a copy of aString and declares its type to be a string.
Returns self.

setStringValueNoCopy:
— setStringValueNoCopy:(const char *)aString

Sets the DB Value’s value to point to aString and declares its type to be a string.
Returns self.

Classes: DBValue 4-173

setValueFrom:
— setValueFrom:(DB Value *)aValue

Sets the DB Value’s value and type to those of aValue. Returns self.

stringValue
— (const char *)stringValue

Returns the DB Value’s value converted to a string. If the conversion can’t be performed, a
DB_COERCION_ERROR exception is raised.

valueType
— (id <DBTypes>)valueType
Returns a private, DBTypes-conforming object that stores the DBValue’s type. To get a

string that represents the Objective C data type from this object, you would send it an
objcType message. The following table gives DBTypes string representations of the

DBValue types:
DBValue type DBTypes representation
object “@”
Stl'ing “*’9
integer “1”
float “f”
double “d”
NULL NULL
write:

— write:(NXTypedStream *)stream

Writes the DB Value object to the typed stream stream. Returns self.

4-174 Chapter 4: Database Kit

Protocols

DBContainers

Adopted By: DBRecordList

Declared In: dbkit/containers.h

Protocol Description

When a DBBinder fetches a record from a database, it creates a record object to store the
data and stores the record object in a container. The DBContainers protocol allows an
object to be used as just such a container. See the DBBinder class description for more
information on how containers are used.

The DBContainers protocol declares a set of mandatory methods as well as two optional
methods, binder:didAcceptObject: and binder:didRejectObject:. These two are
notification methods that are invoked by the DBBinder when objects from the container are
used in database-modification operations.

Note: The DBBinder class implements DBContainers as a category of List (declared in the
header file dbkit/DBBinder.h). This permits a DBBinder to use a List object as a
container.

Method Types

Mandatory methods — addObject:forBinder:
— count
— empty
— freeObjects
— objectAt:forBinder:
— prepareForBinder:

Optional methods — binder:did AcceptObject:
— binder:didRejectObject:

4-176 Chapter 4: Database Kit

Instance Methods

addObject:forBinder:
— addObject:anObject forBinder:(DBBinder *)aBinder
Adds the record object anObject to the container. If the addition is successful, this returns

self, otherwise it returns nil. This method is invoked automatically—once per record—by
the DBBinder that owns the container as it fetches records from the database.

binder:didAcceptObject:

— binder:(DBBinder *)aBinder didAcceptObject:anObject
This method is automatically invoked by aBinder (the DBBinder that owns the container)
after each successful insert, update, or delete operation; anObject is the record object that
was operated on. This is an optional method that a DBContainers-adopting class can
implement to create specialized behavior; if the method isn’t implemented, then it isn’t

invoked. The implementation mustn’t change the contents of the container. The return
value is ignored.

binder:didRejectObject:
— binder:(DBBinder *)aBinder didRejectObject:anObject

This method is automatically invoked by aBinder (the DBBinder that owns the container)
after each unsuccessful insert, update, or delete operation; anObject is the record object that
was operated on. This is an optional method that a DBContainers-adopting class can
implement to create specialized behavior; if the method isn’t implemented, then it isn’t
invoked. The implementation mustn’t change the contents of the container. The return
value is ignored.

count

— (unsigned int)count

Returns the number of objects in the container.

empty
— empty

Removes the container’s contents, but doesn’t free them.

Protocols: DBContainers 4-177

freeObjects
— freeObjects

Frees the container’s contents.

objectAt:forBinder:
— objectAt:(unsigned)index forBinder:(DBBinder *)aBinder

Returns the object at the index’th place in the container. Returns nil if index is out of
bounds.

prepareForBinder:
— (unsigned int)prepareForBinder:(DBBinder *)aBinder

Prepares the container for a data operation. For example, if the container is lazy—if it
compacts, sorts, or otherwise keeps itself up-to-date only on demand—then this is the place
for it to dust itself off. Returns the number of objects in the container.

4-178 Chapter 4: Database Kir

DBCursorPositioning

Adopted By: DBRecordList
DBBinder
Declared In: dbkit/cursors.h

Protocol Description

The DBCursorPositioning protocol lets an object be used as a cursor (or pointer) into a list
of records, as contained by a DBRecordList or a DBBinder’s container. You should need
to adopt this protocol in a custom class only if you’re creating your own container for a
DBBinder (in the manner of DBRecordList). And in that case, you should only access
records through methods defined by your container. In other words, if you position the
cursor by sending your object one of the DBCursorPositioning messages, you shouldn’t
then try to retrieve record values through DBBinder’s valueForProperty: method.

Method Types

Setting the position — setFirst
— setLast
— setNext
— setPrevious
— setTo:

Querying the position — currentPosition

Instance Methods

currentPosition

— (long)currentPosition

Returns the index of the record to which the cursor is currently pointing.

Protocols: DBCursorPositioning 4-179

setFirst
— setFirst

Sets the cursor to point to the first record in the container and returns that record. Returns
nil if the container holds no records.

setLast
— setLast

Sets the cursor to point to the last record in the container and returns that record. Returns
nil if the container holds no records.

setNext
— setNext

Sets the cursor to point to the next record in the container and returns that record. Returns
nil and doesn’t move the cursor if it’s currently pointing to the last record.

setPrevious
— setPrevious

Sets the cursor to point to the previous record in the container and returns that record.
Returns nil and doesn’t move the cursor if it’s currently pointing to the first record.

setTo:
— setTo:(long int)index

Sets the cursor to point to the index’th record in the container and returns that record.
Returns nil and doesn’t move the cursor if index is out of bounds.

4-180 Chapter 4: Database Kir

DBCustomAssociation

(informal protocol)

Category Of: Object
Declared In: dbkit/DB Association.h

Category Description

Where an application uses a custom subclass of DB Association to record the link between
a data source (such as a DBRecordList or the contents of a DBBinder), the object in the user
interface that displays the associated data should implement methods from this informal
protocol. They correspond to instance methods in DB Association.

Method Types

Access to the associated value — association:setValue:
— association:getValue:

Notifications to the associated display
— associationContentsDidChange:
— associationSelectionDidChange:
— associationCurrentRecordDidDelete:

Instance Methods

association:getValue:
— association:association getValue:(DB Value *)value

Gets the value of the associated destination, and copies it to value. Returns self.

See also: — getValue: (DB Association class)

Protocols: DBCustomAssociation 4-181

association:setValue:
— association:association setValue:(DB Value *)value
Causes the destination to display value. Returns self.

See also: —setValue: (DB Association class)

associationContentsDidChange:

— associationContentsDid Change:association

Notification that there has been a change to the data values in a portion of the
DBFetchGroup’s DBRecordList, necessitating a corresponding change in the user
interface object.

associationCurrentRecordDidDelete:
— associationCurrentRecordDidDelete:association

Notification that the current record has been deleted from the DBFetchGroup’s
DBRecordList, necessitating a corresponding change in the user interface object.

associationSelectionDidChange:

- associationSelectionDidChange:association
Notification that there has been some sort of change in the current record of the
DBFetchGroup. The change could be to change the selection to a different row, or to add a

selection, or to deselect an existing section so that no row is selected. Usually the change
is produced by something the user did.

4-182 Chapter 4: Database Kir

DBEntities

Adopted By: no NeXTSTEP classes
Incorporates: DBTypes
Declared In: dbkit/entities.h

Protocol Description

The DBEntities protocol lets an object represent a database entity. An entity comprises a
list of data categories, or properties. As data is read from a database for a particular entity,
an “instance” of the entity (a record) is created and filled with data, one datum per property.

It’s tempting to speak of an entity as a database table. They’re similar. You can think of a
table as the corporealization of an entity. Put another way, an entity describes how a table
organizes its data into columns (properties). However, you should keep in mind that an
entity doesn’t contain data (nor do the properties within the entity). Furthermore, neither
entities nor properties are “placeholders” for data. Entities and properties neither store nor
make room for data, they simply provide a description of the type and location of data so
some other object (a record) can be created to adequately store this data.

Typically, an application doesn’t create entity objects directly, but, instead, reads them from
a database model file. This is performed by creating a DBDatabase object and connecting
it to the file (through methods described in the DBDatabase class specification). You can
retrieve, in a List, the entity objects that the DBDatabase read from the model file by
sending the DBDatabase a getEntities: message. Alternatively, you can retrieve a single
entity object by name through entityNamed:. Both of these methods return private
DBEntities-conforming objects that are created and owned by the Database Kit.

Entity object are used as arguments in a handful of important methods. Most notable of
these, you typically use an entity as the source in an invocation of DBRecordList’s
setProperties:ofSource:. In addition, an entlty is required by the DBQualifier and
DBExpression initialization methods.

Protocols: DBEntities 4-183

The DBEntities protocol incorporates the DBTypes protocol. It does this for one reason:
the type of Objective C data described by a property that represents a relationship is a
DBEntities object. Thus, if the isEntity message returns YES when sent to the value
returned by sending propertyType to a property, then that property is a relationship. This
is demonstrated in the following example:

/* Get the properties from an entity. Check for relationships. */
int counter;

List *propList = [[List alloc] init];

id prop;

[anEntity getProperties:propList];
for (counter = 0; counter < [aList count]; counter++)
{
prop=[aList objectAt:counter];
if ([[prop propertyType] isEntityl)
printf ("Property named %s is a relationship.\n", [prop name]);

}

Warning: You should never send the DBTypes messages objcClassName or databaseType to the
private entity objects that are returned by the aforementioned DBDatabase methods. The
private entity class implements these DBTypes methods to raise
DB_UNIMPLEMENTED_ERROR exceptions.

Itisn’t anticipated that you should need to create your own class that adopts the DBEntities
protocol. The entity objects returned by getEntities: and entityNamed: should be
adequate for most applications.

Method Types

Querying the object - name
— database
— getProperties:
» — propertyNamed:
Comparing the object * — matchesEntity:

4-184 Chapter 4: Database Kit

Instance Methods

database
— (DBDatabase *)database

Returns the DBDatabase object that created the entity.

getProperties:
— getProperties:(List *)aList

Returns, in aList, a list of the entity’s properties. Each object in the list conforms to the
DBProperties protocol.

matchesEntity:
— (BOOL)matchesEntity:(id <DBEntities>)anEntity

Returns YES or NO if the receiving entity and anEntity were created from the same model
file entity.

name

— (const char *)name

Returns the entity’s name. This is the same name as given to the entity in the model file
from which it was read.

propertyNamed:
— propertyNamed:(const char *)aName

Returns the property named aName. If the entity has no such property, nil is returned.

Protocols: DBEntities 4-185

4-186

DBExpressionValues

Adopted By: DBExpression
DBQualifier
DBValue

Declared In: dbkit/expressionValues.h

Protocol Description

The DBExpressionValues protocol allows an object to be used in a query-language
statement. Its principal method, expressionValue, returns a string that gives an object’s
representation as it should appear in such a statement.

A second method, isDeferred Expression, returns a boolean that indicates whether the
invocation of expressionValue should be deferred until the “last possible moment.” This
is useful for classes, such as DBExpression, that concatenate values stored in separate
objects. As the larger expression is being built, the DBExpression asks each of the
value-holding objects whether it is deferred. If the values aren’t deferred, it can send an
expressionValue message as soon as the value-holding object is added. But if any is
deferred, it should delay until all the objects are in place, and then send an expressionValue
message to each of them.

Instance Methods

expressionValue
— (const char *)expressionValue

Returns the value of an expression object as a string that represents the expression in the
query language.

isDeferredExpression
— (BOOL)isDeferredExpression

Returns YES if evaluation of the expression should be deferred (for example, until related
expressions are ready).

Chapter 4: Database Kir

DBFormatConversion

(informal protocol)

Category Of: Object

Declared In: dbkit/customType.h

Category Description

This category is the companion of the category DBFormatlnitialization. The two provide
part of the mechanism the Database Kit uses to transfer Objective C objects between the
database and the application. DBFormatConversion provides a method that specifies the
format of the data contained in a buffer that the adaptor will use while transferring data
from the application to the database. You’ll need explicit use of these methods only if your
application uses formats other than those already supported in the Database Kit. (The kit
supports any object in the archive format appropriate to its class, as well as NXData using
RTF format, or NXImage using TIFF or EPS format.)

Instance Methods

writeBuffer.ofLength:usingFormat:

— writeBuffer:(void **)bufferPtr
ofLength:(unsigned *)lengthPtr
usingFormat:(const char *)aFormatName;

If your application creates a custom class that’s associated with a property and your class
implements this method, this method will be invoked automatically when the Database Kit
tries to store the object into the database.

The pointer *bufferPtr may point either to an existing buffer or to NULL. If it points to an
existing buffer, *lengthPtr points to the buffer’s length. But if *bufferPtr points to NULL,
the method should allocate space for a new buffer as needed, and should write the length it
allocates into the location that *lengthPtr points to.

Protocols: DBFormatConversion 4-187

The argument aFormatName is a string containing the name of the format in which the data
is written. The Database Kit defines the following names for formats:

. “EPS, ’
° “RTF”
* “TIFF”

Alternatively, the string may be the name of any type your application recognizes, as
declared in DBModeler’s Attribute Inspector for data of type Object.

4-188 Chapter 4: Database Kit

DBFormatinitialization

(informal protocol)

Category Of: Object

Declared In: dbkit/types.h

Category Description

This category is the companion of the category DBFormatConversion. The two provide
part of the mechanism the Database Kit uses to transfer Objective C objects between the
database and the application. DBFormatlInitialization provides a method that specifies the
format of the data contained in a buffer that the adaptor uses while reading data from the
database. You’ll need explicit use of these methods only if your application uses formats
other than those already supported in the Database Kit. (The kit supports any object in the
archive format appropriate to its class, as well as NXData using RTF format, or NXImage
using TIFF or EPS format.)

Instance Methods

initFromBuffer:ofLength:withFormat:

— initFromBuffer:(void *)buffer
ofLength:(unsigned)length
withFormat:(const char *)aFormatName

If your application creates a custom class that’s associated with a property and your class
implements this method, this method will be invoked automatically when the Database Kit
tries to read data from the database for delivery as an instance of your class.

The argument buffer is an already allocated buffer, and length describes the buffer’s length.

The argument aFormatName is a string containing the name of the format in which the data
is written. The Database Kit defines the following names for formats:

° ‘ GEP S 2"
° 3 (RTF’ ’
° ‘ VI‘IIFF’ k4

Alternatively, the string may be the name of any type your application recognizes, as
declared in DBModeler’s Attribute Inspector for data of type Object.

Protocols: DBFormatInitialization 4-189

DBFormatterValidation

(informal protocol)

Category Of: Object

Declared In: dbkit/tableProtocols.h

Category Description

This informal protocol is one of the mechanisms the Database Kit uses to place objects into
the database. If a class is associated with a property and it implements this method, this
method will be called when the kit tries to store the object into the database.

Method Types

Notifications by identifiers — formatterDidChange ValueFor::to:sender:
— formatterWillChange ValueFor::sender:
— formatterWillChange ValueFor::to:sender:

Notification by position — formatterDidChangeValueFor:at:to:sender:
— formatterWillChange ValueFor:at:sender:
— formatterWillChange ValueFor:at:to:sender:

Instance Methods

formatterDidChangeValueFor::sender:

— formatterDidChangeValueFor:rowldentifier
:columnldentifer
sender:sender

Notification that may be sent when the formatter has changed the value in a field. The field
that changed is identified by its rowldentifier and its columnldentifier (for the situation in
which both rows and columns are static).

The argument sender is the sender of the message (usually a formatter). Returns self.

4-190 Chapter 4: Database Kir

formatterDidChangeValueFor::to:sender:

— formatterDidChangeValueFor:rowldentifier
:columnlidentifer
to:aValue
sender:sender

Notification that may be sent when the formatter has changed the value in a field. The field
that changed is identified by its rowldentifier and its columnldentifier (for the situation in
which both rows and columns are static).

The argument aValue is the object that contains the new value. The argument sender is the
sender of the message (usually a formatter). Returns self.

formatterDidChangeValueFor:at:sender:

— formatterDidChangeValueFor:identifier
at:(unsigned int)position
sender:sender

Notification that may be sent when the formatter has changed the value in a field. The field
that changed is identified by its identifier (usually associated with a column, but could be
the identifier of a row if rows are static) and its position (usually a row number, but could
be a column number if columns are dynamic).

The argument sender is the sender of the message (usually a formatter). Returns self.

formatterDidChangeValueFor:at:to:sender:

— formatterDidChangeValueFor:identifier
at:(unsigned int)position
to:aValue
sender:sender

Notification that may be sent when the formatter has changed the value in a field. The field
that changed is identified by its identifier (usually associated with a column, but could be
the identifier of a row if rows are static) and its position (usually a row number, but could
be a column number if columns are dynamic).

The argument aValue is the object that contains the new value. The argument sender is the
sender of the message (usually a formatter). Returns self.

Protocols: DBFormatterValidation 4-191

formatterWillChangeValueFor::to:sender:

— (BOOL)formatter WillChangeValueF or:rowldentifier
:columnldentifier
to:aValue
sender:sender

Notification that may be sent when the formatter is about to change the value in a field. The
field in which the proposed change will take place is identified by its rowldentifier and its
columnldentifier (for the situation in which both rows and columns are static).

The argument aValue is the object that contains the proposed new value. The argument
sender is the sender of the message (usually a formatter). Returning YES permits the
change to be recorded in the record list (and thus ultimately in the database).

formatterWillChangeValueFor:at:to:sender:

— (BOOL)formatter WillChange ValueFor:identifier
at:(unsigned int)position
to:aValue
sender:sender

Notification that may be sent when the formatter is about to change the value in a field. The
field in which the proposed change will take place is identified by its identifier (usually
associated with a column, but could be the identifier of a row if rows are static) and its
position (usually a row number, but could be a column number if columns are dynamic).

The argument aValue is the object that contains the proposed new value. The argument
sender is the sender of the message (usually a formatter). Returning YES permits the
change to be recorded in the record list (and thus ultimately in the database).

4-192 Chapter 4: Database Kit

DBFormatterViewEditing

Adopted By: no NeXTSTEP classes

Declared In: dbkit/DBEditableFormatter.h

Protocol Description

The method in this protocol provides a means by which a view containing a field that is

being edited can receive a message from the object doing the editing (for example, an
instance of DBEditableFormatter).

Instance Methods

formatterDidEndEditing:endChar:
— (BOOL)formatterDidEndEditing:sender endChar:(unsigned shortywhyEnd

Invoked by an editor when the user completes editing of an editable field by pressing one
of the keys that moves to another field (Return, Tab, or Shift-Tab). The field that was being
edited is redrawn, and the cursor is moved to the next field, depending on which character

was whyEnd: NX_RETURN, NX_TAB, or NX_BACKTAB. Returns YES, unless invoked
while no field was being edited.

Protocols: DBFormatterViewEditing 4-193

DBProperties

Adopted By: DBExpression

Declared In: dbkit/properties.h

Protocol Description

An object that conforms to the DBProperties protocol represents a named category of
information in an entity (an object that conforms to the DBEntities protocol). Put less
formally, a property represents a column in a database table. For example, a table that
contains information about a physician’s patients might contain the columns “name”,
“address”, and “blood type”. The “name” column would be represented as a single
property object; similarly, “address” would be a separate property.

While a property object represents a column, it doesn’t contain the data that’s in the
column—data is contained in a table’s rows, or records. A records is said to have a value
for a property: A record from the physician’s patients table would have a value for the
blood type property.

A property object describes a column, primarily, through three elements, an entity, a name,
and a data type:

» The entity is the object to which the property belongs—a property can only belong to
one entity at a time.

* Within an entity, a property has a unique name such that if two property objects belong
to the same entity and have the same name, then they’re representing the same category.

* A property’s data type establishes the type of data that’s held by a record for that
property—all values for that property must be of the same type. The type is embodied
in a private object that conforms to the DBTypes protocol; the object can be retrieved
through the propertyType method.

To retrieve a list of properties contained in a particular entity object, you send the entity a
getProperties: message. You can find a particular property by name by sending the entity
a propertyNamed: message. The DBProperties that these methods return are created
privately by the Database Kit when the entity is read from a model file. You would typically
use these properties to initialize a DBBinder, DBRecordList, or DBRecordStream object.
Properties are also needed by methods defined by these classes as “value indices” into
records. For example, the DBBinder method valueForProperty: returns the DB Value

4-194 Chapter 4: Database Kit

object that’s stored in the current record for the given property. Put more naturally, the
method returns the value in a particular column.

The DBExpression class adopts the DBProperties protocols. The DBExpression objects
that you create and the properties returned by the DBEntities methods described above
should suffice for most applications—you shouldn’t need to create your own class that
adopts the DBProperties protocol.

Method Types

Identifying a property — name
— setName:
— entity

Querying a property — property Type
— isSingular
— isReadOnly
—isKey
— matchesProperty:

Instance Methods

entity
— (id <DBEntities>)entity

Returns the entity to which the property belongs.

isKey
— (BOOL)isKey

Returns YES if the property can be used as a key property for its entity. A key property is
one that can distinguish the records in the entity; in other words, the value of each record
for the key property must be unique.

isReadOnly
— (BOOL)isReadOnly

Returns YES if the data categorized by the property is read-only; in other words, if it can’t
be written back to the database.

Protocols: DBProperties 4-195

isSingular
- —(BOOL)isSingular

Returns YES if the property represents an attribute or a one-to-one relationship.
Otherwise—to wit, if it’s a one-to-many relationship—it returns NO.

matchesProperty:
— (BOOL)matchesProperty: (id <DBProperties>)aProperty

Returns YES if the receiving property and aProperty identify the same thing—if they’re in
the same entity and have the same name. Otherwise returns NO.

name
— (const char *)name
Returns the property’s name. For a property read from a model file, this is the name given

it by the DBModeler application. To name a DBExpression object, use the setName:
method.

propertyType |
— (id <DBTypes>) propertyType

Returns a DBTypes-conforming object that encapsulates the property’s data type. All the
values that the property categorizes are of this type.

setName:
— (BOOL)setName:(const char *)aName

Sets the property’s name to a copy of aName. This method is designed to be used to name
DBProperties objects that you create yourself (as explained in the class description, above,
such objects will almost certainly be DBExpressions). You shouldn’t alter the name of a
property that was created for you from a model file. Returns YES if the name was set as
requested, otherwise return NO.

4-196 Chapter 4: Database Kit

DBTableDataSources

(informal protocol)

Category Of: Object

Declared In: dbkit/tableProtocols.h

Category Description

The DBTableDataSource protocol provides methods used by the DBTableView and its
formatters to determine what should be displayed to the user. The object designated as the
DBTableView’s data source must be prepared to report how many rows of data are
available, to supply values for a given row and column, and to accept modified values for
a given row and column.

Method Types

Reporting table size —rowCount
— columnCount
Getting/setting data — getValueFor:at:into:

— getValueFor::into:
— setValueFor:at:from:
— setValueFor::from:

Instance Methods

columnCount

— (unsigned int)columnCount

Returns the number of columns in the data table from which values are being displayed.

Protocols: DBTableDataSources 4-197 .

getValueFor::into:

— getValueFor:rowldentifier
scolumnidentifier
into:aValue

Copies the value of an attribute from the data source (for example, a DBRecordList) into
the object aValue. The arguments rowldentifier and columnldentifier are properties (so this
method of extracting a value does not depend on position either in the data source or in the
display). Returns self.

See also: — getValueFor:at:into:

getValueFor:at:into:

— getValueFor:identifier
at:(unsigned int)aPosition
into:aValue

Copies the value of an attribute from a position in the data source (for example, a
DBRecordList) into the object aValue. The argument identifier describes the desired
attributed in terms used by the source, rather than those used by the display, which may
differ. (See the discussion of identifier in the DBTableVectors protocol.) The argument
aPosition is an index in the source table. Returns self.

See also: — getValueFor::into:

rowCount

— (unsigned int)rowCount

Returns the number of rows in the data table from which values are being displayed.

4-198 Chapter 4: Darabase Kit

setValueFor:from:

— setValueFor:rowldentifier
:columnlidentifier
from:aValue

Sets an attribute in the data source (for example, a DBRecordList) so that its value becomes
aValue. The arguments rowldentifier and columnldentifier are properties (so this method
of setting a value does not depend on position either in the data source or in the display).
Returns self.

See also: — setValueFor:at:from:

setValueFor:at:from:

— setValueFor:identifier
at:(unsigned int)aPosition
from:aValue

Sets an attribute at a position in the data source (for example, a DBRecordList) so that its
value becomes aValue. The argument identifier describes the target attributed in terms used
by the source, rather than those used by the display, which may differ. (See the discussion
of identifier in the DBTableVectors protocol.) Copies the value of the object aValue into
aPosition, an index in the source table. Returns self.

See also: — setValueFor::from:

Protocols: DBTableDataSources 4-199

DBTableVectors

Adopted By: DBTableVector

Declared In: dbkit/tableProtocols.h

Protocol Description

Methods in the DBTableVectors protocol are used to specify the formatting of cells within
a DBTableView. In general, a format applies throughout a vector (that is, one of the table’s
rows or columns). When a DBTableView is structured so that attributes are shown as static
columns while records are dynamically arranged on successive rows, there is usually a
separate format for each static column, but a single row format that applies to all rows.

An identifier identifies an attribute (that is, a field) as it is known to the data source from
which data is being taken. (The data source is an association to a fetch group for
DBRecordList or DBRecordStream. Fields in the associated data source may be at
different positions or have different names from those used in the display.)

A formatter is the DBFormatter object responsible for formatting the display.

Method Types
Controlling/reporting formatter — formatter
— setFormatter:

Controlling/reporting data link - identifier
— setldentifier:

Controlling/reporting editing — isEditable
- setEditable:

4-200 Chaprer 4: Database Kir

Controlling/reporting size — isResizable
— setResizable:
— isAutosizable
— setAutosizable:
— size
—sizeTo:
— minSize
— setMinSize:
— maxSize
- setMaxSize:

Controlling/reporting title — title
— setTitle:
— titleFont
— setTitleFont:
— titleAlignment
— setTitleAlignment:

Controlling/reporting content alignment
— contentAlignment
- setContentAlignment:

Instance Methods

contentAlignment
- (int)contentAlignment

Returns the horizontal alignment of the row or column’s content. The return value can be
one of three constants: NX_LEFTALIGNED, NX_CENTERED, or
NX_RIGHTALIGNED.

formatter
— formatter

Returns the formatter responsible for displaying items.

Protocols: DB TableVectors 4-201

identifier
— identifier

Returns the property of the data source from which the displayed data is taken.

isAutosizable
— (BOOL)isAutosizable

Returns YES if the row or column is autosizable (that is, it resizes itself in response to a
change in the DBTableView’s content view).

isEditable
— (BOOL)isEditable

Returns YES if the displayed row or column is editable.

isResizable
— (BOOL)isResizable

Returns YES if the row or column is resizable (that s, it permits the user to change its width
in the display).

maxSize
— (NXCoord)maxSize

Returns a vector’s greatest permissible size (the width or a column or the height of a row).
minSize

— (NXCoord)minSize

Returns a vector’s least permissible size (the width or a column or the height of a row).

4-202 Chapter 4: Database Kit

setAutosizable:
— setAutosizable:(BOOL)flag

Permits or prohibits autosizing of the row or column, as the value of flag is YES or NO.

setContentAlignment:
— setContentAlignment:(int)align

Sets the horizontal alignment of the row or column’s content. The argument align can be
one of three constants: NX_LEFTALIGNED, NX_CENTERED, or
NX_RIGHTALIGNED.

setEditable:
— setEditable:(BOOL)flag

Permits or prohibits editing of the row or column, as the value of flag is YES or NO.

setFormatter:

— setFormatter:newFormatter

Makes newFormatter the object responsible for displaying an item in this vector (row or
column). Returns self.

setldentifier:
— setldentifier:aDataAttribute

Sets the attribute of the data source from which the displayed data is taken.

setMaxSize:
- setMaxSize:(NXCoord)newMaxSize

Sets a vector’s greatest permissible size (the width or a column or the height of a row)

Protocols: DBTableVectors 4-203

setMinSize:
- setMinSize:(NXCoord)newMinSize

Sets a vector’s least permissible size (the width or a column or the height of a row).

setResizable:
— setResizable:(BOOL)flag

Permits or prohibits resizing the row or column, as flag is YES or NO.

setTitle:

— setTitle:(const char *)title

Sets the title of the row or column to fitle.

setTitleAlignment:
— setTitleAlignment:(int)align

Sets the horizontal alignment of the row or column’s title. The argument align can be one
of three constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

setTitleFont:
— setTitleFont:fontObj

Sets the font used to draw the row or column’s title to fontObj.

size
— (NXCoord)size
Returns the width and height of the display cell.

sizeTo:
— (NXCoord)sizeTo:(NXCoord)newSize

Sets the width and height of the display cell to the values in newSize. Returns self.

4-204 Chapter 4: Database Kit

title
— (const char *)title

Returns the title of the row or column.

titleAlignment
- (int)titleAlignment

Returns the horizontal alignment of the row or column’s title. The return value can be one
of three constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

titleFont
— titleFont

Returns (as a Font object) the font for the row or column’s title.

Protocols: DBTableVectors 4-205

DBTransactions

Adopted By: no NeXTSTEP classes

Declared In: dbkit/transactions.h

Protocol Description

This protocol defines the three methods that are required of an adaptor that supports
transaction processing.

Method Types

Basic transaction commands - beginTransaction
— commitTransaction
— rollbackTransaction

Instance Methods

beginTransaction
— (BOOL)beginTransaction

The adaptor tells the database to start a transaction. Returns YES to indicate success, NO
otherwise, based on the response from the database.

commitTransaction
— (BOOL)commitTransaction

The adaptor tells the database to commit the current transaction. Returns YES to indicate
success, NO otherwise, based on the response from the database.

4-206 Chapter 4: Database Kit

rollbackTransaction
— (BOOL)rollbackTransaction

The adaptor tells the database to roll back the current transaction. Returns YES to indicate
success, NO otherwise, based on the response from the database.

Protocols: DBTransactions 4-207

DBTypes

Adopted By: no NeXTSTEP classes

Declared In: dbkit/types.h

Protocol Description

The methods in the DBTypes protocol return information about the type of data that’s held
or described by the object upon which they are invoked (principally, DBProperties and
DB Value objects, as explained below). This information doesn’t necessarily correspond to
an actual value—a DBTypes object may not even embody a “real” value, and the protocol
makes no provision for storing values—it simply provides a means for abstractly
describing a data type.

The protocol’s two primary methods are objcType and databaseType; they return strings
that represent, respectively, an Objective C data type, and a data type as given in the actual
database. The Database Kit uses the following convention in representing Objective C data
types as strings:

Objective C type DBTypes representation
id “@”

char * ok

int “”

float “f”

double “d”

The value returned by databaseType, on the other hand, is completely adaptor-dependent.
In addition, not all objects have a database type. For example, a relationship that’s read
from a database model file isn’t represented in the actual database, and so will have no
database type.

None of the public Database Kit classes implements the DBTypes protocol. However, the
kit automatically creates private DBTypes-conforming objects which it uses to store the
data types of properties and DBValues. The DBProperties method propertyType returns
such a private DBTypes object, as does DBValue’s valueType method.

4-208 Chapter 4: Database Kir

Method Types

Querying for type — objcType
— databaseType
— objcClassName
Comparing types — isEntity
— matchesType:

Instance Methods

databaseType
— (const char *)databaseType

Returns a string that represents the object’s data type as it resides in the database from
which it was read (or to which it will be written).

isEntity
— (BOOL)isEntity

Returns YES if the object’s data type is an id that conforms to the DBEntities protocol,
otherwise returns NO. This method is intended to be used to determine if a property is a
relationship. The data type of a relationship is an entity; thus if this method returns YES
when invoked upon a DBProperties object, that property is a relationship.

matchesType:
— (BOOL)matchesType:(id <DBTypes>)anObject

Returns YES if the object’s data type matches that of anObject, otherwise returns NO.

objcClassName

— (const char *)objcClassName

If the object’s type is an id, this returns the name of the id’s class. If the type isn’t an id,
this returns nil.

Protocols: DRTypes 4-209

objcType
— (const char *)objcType

Returns a string that represents the object’s Objective C data type. The strings that are used
by the Database Kit to represent the standard Objective C types are listed in the class
description, above.

4-210 Chapter 4: Database Kit

Types and Constants

Defined Types

DBExceptions
DECLARED IN dbkit/exceptions.h

sYNopsis typedef enum _DBAccessErrors {
DB_UnimplementedException = DB_ERROR_BASE,
DB_CoercionException,
DB_FormatException,
DB_CursorException,
DB_CommitException
} DBExceptions;

DESCRIPTION Exceptions raised during a database access.

DBFailureCode
DECLARED IN dbkit/enums.h

SYNOPSIS typedef enum {
DB_ReasonUnknown,
DB_RecordBusy,
DB_RecordStreamNotReady,
DB_RecordHasChanged,
DB_RecordLimitReached,
DB_NoRecordKey,
DB_RecordKeyNotUnique,
DB_NoAdaptor,
DB_AdaptorError,
DB_TransactionError

} DBFailureCode;

DESCRIPTION Error codes returned by an adaptor.

4-212 Chapter 4: Database Kit

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

DBFailureResponse
dbkit/enums.h

typedef enum {
DB_NotHandled,
DB_Abort,
DB_Continue

} DBFailureResponse;

Possible returns from methods that respond to a failure notification.

DBImageStyle
dbkit/DBImageView.h

typedef enum {
DB_ImageNoFrame,
DB_ImagePhoto,
DB_ImageGrayBezel,
DB_ImageGroove

} DBImageStyle;

Style of frame to surround an image.

Types and Constants: DBF ailureResponse

4-213

DBRecordListRetrieveMode
DECLARED IN dbkit/enhms.h

SYNOPSIS typedef enum _DBRecordListMode {
DB_SynchronousStrategy,
DB_BackgroundStrategy,
DB_BackgroundNoBlockingStrategy,

} DBRecordListRetrieveMode;

DESCRIPTION Access strategy used by a DBRecordList.

DBRecordRetrieveStatus
DECLARED IN dbkit/enums.h

sYnopsis typedef enum _DBRecordRetrievalStatus {
DB_NotReady,
DB_Ready,
DB_FetchLimitReached,
DB_FetchInProgress,
DB_FetchCompleted
} DBRecordRetrieveStatus;

DESCRIPTION Status of a DBRecordStream or a DBRecordList.

4-214 Chapter 4: Database Kir

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

DBRetrieveOrder
dbkit/enums.h

typedef enum {
DB_NoOrder,
DB_AscendingOrder,
DB_DescendingOrder
} DBRetrieveOrder;

Order in which retrieved records are sorted.

DBSelectionMode
dbkit/DBTableView.h

typedef enum {
DB_RADIOMODE,
DB_LISTMODE,
DB_NOSELECT

} DBSelectionMode

Modes in which the user may select rows or columns in a DBTableView.

DB_RADIOMODE Selecting a row or column deselects those previously selected.

DB_LISTMODE Selecting a previously unselected row or column adds it to the
selection already made; selecting a previously selected row or

column deselects.

DB_NOSELECT No selection is permitted.

Types and Constants: DBRetrieveOrder 4-215

Symboli¢ Constants

Error Code Base Value

DECLARED IN dbkit/exceptions.h
synopsis DB_ERROR_BASE

DESCRIPTION Constant added to Database Kit error codes.

Format Types

DECLARED IN dbkit/customType.h

SYNOPSIS Name Value
DBFormat_EPS "EPS"
DBFormat_RTF "RTE"
DBFormat_TIFF "TIFF"

DESCRIPTION Type of the source image to be displayed or transferred.

No Index Indicator
DECLARED IN dbkit/enums.h
sYNopsis DB_Nolndex

DESCRIPTION No selected position in an indexed array (such as DBTableView).

4-216 Chapter 4: Database Kit

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

Null Values

dbkit/DB Value.h

Name Value
DB_NullDouble (NAN)
DB_NullFloat (NAN)
DB_NullInt ((int)Ox 7ffffffe)

Null returns of appropriate type.

Record Limit Default
dbkit/DBFetchGroup.h

DB_DEFAULT_RECORD_LIMIT 1000

Maximum number of records that a DBFetchGroup will fetch unless explicitly set by the

DBRecordList method setRecordLimit:.

Types and Constants: Null Values

4-217

4-218

Diusplay PostScript

5-3
5-5

5-57
5-58
5-59
5-59
5-60

5-69

5-91
5-93
5-102

Introduction
PostScript Operators

Single-Operator Functions
Operands and Arguments
Argument Data Types

Return Values

PS and DPS Functions

Client Library Functions

Types and Constants
Defined Types
Symbolic Constants

5-1

5 Display PostS m;bz‘

Library: 1libNeXT_s.a
Header File Directory: /NextDeveloper/Headers/dpsclient

Import: dpsclient/dpsclient.h

Introduction

This chapter describes the NeXTSTEP implementation of the Display PostScript® Client
Library, and NeXTSTEP’s additions to the catalog of PostScript operators. The Client
Library and PostScript operators are mainly documented by Adobe Systems, Inc. (see
“Suggested Readings” at the end of Volume 2). Documented here are only those elements
that are unique to or different in the NeXTSTEP implementation.

The chapter is divided into four sections:

e “Operators” describes the PostScript operators that are unique to NeXTSTEP, or that
have different effects from the same operators as implemented by Adobe. You can use
these operators as you would any of the standard operators provided by Adobe.

» “Single Operator Functions” lists the C functions that correspond to the NeXTSTEP
operators. These functions fulfill the guarantee that for every operator there will be a
C-language function interface. The list of functions given in this section are offered
without description (for which you must refer to the similarly named operator in the
“Operators” section).

Display PostScripr 5-3

¢ “Client Library Functions” describes the NeXTSTEP-specific functions that provide an
interface to the Display PostScript system.

* “Types and Constants” describes the defined types and symbolic constants used in
NeXTSTEP’s implementation of the Display PostScript Client Library.

5-4 Chapter 5: Display PostScript

PostScript Operators

This section contains descriptions of the PostScript operators that are either unique to
NeXTSTEP or that have different or additional effects in the NeXTSTEP implementation
of the Display PostScript system. The standard PostScript operators are documented by
Adobe Systems Inc. (see “Suggested Reading” at the end of Volume 2).

The PostScript operators can be used only in PostScript language code. However, every
operator has a C function interface associated with it, allowing you to execute the operator
from a program or application written in C or Objective C. The functions that correspond
to the NeXTSTEP-unique operators described here are glven in the “Single-Operator
Functions” section of this chapter.

Some operators shouldn’t be used in applications that use the Application Kit. In addition,
some standard operators are unimplemented in NeXTSTEP. Both categories of operators
are marked with a warning in the descriptions in this section.

5-6 Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

adjustcursor
dx dy adjustcursor —

Moves the cursor location by (dx, dy) from its current location. dx and dy are given in the
current coordinate system. If the current device isn’t a window, the invalidid error is
executed. '

invalidid, stackunderflow, typecheck

currentmouse, setmouse

alphaimage

pixelswide pixelshigh bits/sample matrix datasrc [...datasrc,] multiproc ncolors
alphaimage —

Renders an image whose samples include an alpha component. (Most programmers should
use NXImageBitmap() instead of alphaimage.) This operator is similar to the standard
colorimage operator (as documented by Adobe Systems). However, note the following:

¢ When supplying the data components, alpha is always given last—either as the last data
source (datasrc,) if the data is given in separate vectors, or as the last element in a set
of interleaved data.

* The ncolors operand doesn’t account for alpha—the value of ncolors is the number of
color components only.

invalidid, limitcheck, rangecheck, stackunderflow, typecheck, undefined,
undefinedresult

PostScripr Operators: adjustcursor 5-7

5-8

ERRORS

SEE ALSO

ERRORS

SEE ALSO

ERRORS

SEE ALSO

basetocurrent
bx by basetocurrent cx cy

Converts (bx, by) from the current window’s base coordinate system to its current
coordinate system. If the current device isn’t a window, the invalidid error is executed.

invalidid, stackunderflow, typecheck

basetoscreen, currenttobase, currenttoscreen, screentobase, screentocurrent

basetoscreen
bx by basetoscreen sx sy

Converts (bx, by) from the current window’s base coordinate system to the screen
coordinate system. If the current device isn’t a window, the invalidid error is executed.

invalidid, stackunderflow, typecheck

basetocurrent, currenttobase, currenttoscreen, screentobase, screentocurrent

buttondown
— buttondown isdown
Returns true if the left or only mouse button is currently down; otherwise it returns false.

Note: To test whether the mouse button is still down from a mouse-down event, use
stilldown instead of buttondown; buttondown will return frue even if the mouse button
has been released and pressed again since the original mouse-down event.

none

currentmouse, rightbuttondown, rightstilldown, stilldown

Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

cleartrackingrect
trectnum gstate cleartrackingrect —

Clears the tracking rectangle identified by trectnum, as set by settrackingrect, in the device
referred to by gstate (or the current graphics state if gstate is null). If no such rectangle
exists, the invalidid error is executed.

invalidid, stackunderflow, typecheck

settrackingrect

composite
src, srcy, width height srcgstate dest, dest, op composite —

Performs the compositing operation specified by op between pairs of pixels in two images,
a source and a destination. The source pixels are in the window device referred to by the
srcgstate graphics state, and the destination pixels are in the current window. If srcgstate
is null, the current graphics state is assumed. If either graphics state doesn’t refer to a
window device, the invalidid error is executed.

The rectangle specified by src,, src, width, and height defines the source image. The
outline of the rectangle may cross pixel boundaries due to fractional coordinates, scaling,
or rotated axes. The pixels included in the source are all those that the outline of the
rectangle encloses or enters.

The destination image has the same size, shape, and orientation as the source; dest, and
dest, give destination’s location image compared to the source. (Even if the two graphic
states have different orientations, the images will not; composite will not rotate images.)

Both images are clipped to the frame rectangles of their respective windows. The
destination image is further clipped to the clipping path of the current graphics state. The
result of a composite operation replaces the destination image.

op specifies the compositing operation. The choices for op and the result of each operation
are given in the following illustration.

invalidid, rangecheck, stackunderflow, typecheck

compositerect, setalpha, setgray, sethsbcolor, setrghcolor

PostScripr Operators: cleartrackingrect 5-9

Destination
Source before

opaque opaque

transparent transparent

Operation Destination after

Copy Source image.

Clear Transparent.

Sum of source and destination images, with color values approaching 0 as a limit.

Sum of source and destination images, with color values approaching 1 as a limit.
(PlusL is not implemented for the MegaPixel Display.)

Source image wherever source image is opaque, and destination image elsewhere.

Destination image wherever destination image is opaque, and source image elsewhere.

Sin Source image wherever both images are opaque, and transparent elsewhere.

Din Destination image wherever both images are opaque, and transparent elsewhere.

Sout Source image wherever source image is opaque but destination image is transparent,
and transparent elsewhere.

Dout Destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Sato Source image wherever both images are opaque, destination image wherever destination

P image is opaque but source image is transparent, and transparent elsewhere.

Figure 5-1. Compositing Operations

5-10 Chapter 5: Display PostScript

ERRORS

SEE ALSO

compositerect
dest, dest, width height op compositerect —

In general, this operator is the same as the compeosite operator except that there’s no real
source image. The destination is in the current graphics state; dest,, desty, width, and height
describe the destination image in that graphics state’s current coordinate system. The effect
on the destination is as if there were a source image filled with the color and coverage
specified by the graphics state’s current color parameter. op has the same meaning as the
op operand of the composite operator; however, one additional operation, Highlight, is
allowed.

On the MegaPixel Display, Highlight turns every white pixel in the destination rectangle to
light gray and every light gray pixel to white, regardless of the pixel’s coverage value.
Repeating the same operation reverses the effect. (Highlight may act differently on other
devices. For example, on displays that assign just one bit per pixel, it would invert every
pixel.)

Note: The Highlight operation doesn’t change the value of a pixel’s coverage component.
To ensure that the pixel’s color and coverage combination remains valid, Highlight
operations should be temporary and should be reversed before any further compositing.

For compositerect, the pixels included in the destination are those that the outline of the
specified rectangle encloses or enters. The destination image is clipped to the frame
rectangle and clipping path of the window in the current graphics state.

If the current graphics state doesn’t refer to a window device, the invalidid error is
executed.

invalidid, rangecheck, stackunderflow, typecheck

composite, setalpha, setgray, sethsbhcolor, setrgbcolor

copypage

Warning: This standard PostScript operator has no effect in the NeXTSTEP
implementation of the Display PostScript system.

PostScript Operators: compositerect 511

5-12

ERRORS

SEE ALSO

ERRORS

SEE ALSO

ERRORS

SEE ALSO

countframebuffers
— countframebuffers count

Returns the number of frame buffers that the Window Server is actually using.
stackoverflow

framebuffer

countscreenlist
context countscreenlist count

Returns the number of windows in the screen list that were created by the PostScript context
specified by context. This is in contrast with countwindowlist, which returns the number
of windows created by the context without regard to their inclusion in the screen list.

If context is O, all windows in the screen list are counted, without regard to the context that
created them.

invalidid, rangecheck, stackunderflow, typecheck

countwindowlist, screenlist, windowlist

countwindowlist
context countwindowlist count

Returns the number of windows that were created by the PostScript context specified by
context. This is in contrast with countscreenlist, which returns the number of windows in
the screen list that were created by the PostScript context specified by context.

If context is 0, all windows are counted, without regard to the context that created them.
stackunderflow, typecheck

countscreenlist, screenlist, windowlist

Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

ERRORS

SEE ALSO

currentactiveapp
— currentactiveapp context
Warning: Don’t use this operator if you’re using the Application Kit.

Returns the active application’s context. This operator is used by the window packages to
assist with wait cursor operation.

stackoverflow

setactiveapp

currentalpha
— currentalpha coverage

Returns the coverage parameter of the current graphics state.
none

composite, setalpha

currentdefaultdepthlimit
— currentdefaultdepthlimit depth

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
defaultDepthLimit class method instead. ’

Returns the current context’s default depth limit. This value determines a new window’s
depth limit.

stackoverflow

setdefaultdepthlimit, setwindowdepthlimit, carrentwindowdepthlimit,
currentwindowdepth

PostScript Operators: currentactiveapp 5-13

currentdeviceinfo
window currentdeviceinfo min max iscolor

Returns device-related information about the current state of window. min and max are the
smallest and largest number of bits per sample, respectively, and iscolor is a boolean value
indicating whether the device is a color device.

ERRORS invalidid, stackunderflow, typecheck

currenteventmask
window currenteventmask mask

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
eventMask method instead.

Returns the current Window Server-level event mask for the specified window.
ERRORS invalidid, stackunderflow, typecheck

SEE ALSO seteventmask

currentframebuffertransfer
fbnum currentframebuffertransfer redproc greenproc blueproc grayproc

Returns the current transfer functions in effect for the framebuffer indexed by fbnum.
Jfbnum ranges from 0 to (countframebuffers — 1).

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO setframebuffertransfer, countframebuffers, framebuffer

5-14 Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

ERRORS

SEE ALSO

currentmouse
window currentmouse xy

Warning: Don’t use this operator if you're using the Application Kit. Use Window’s
getMousel.ocation: instead.

Returns the current x and y coordinates of the mouse location in the base coordinate system
of the specified window. If the mouse isn’t inside the specified window, these coordinates
may be outside the coordinate range defined for the window. If window is 0, the current
mouse position is returned relative to the screen coordinate system.

invalidid, stackunderflow, typecheck

basetocurrent, basetoscreen, buttondown, rightbuttondown, rightstilldown,
setmouse, stilldown

currentowner
window currentowner context

Returns a number identifying the PostScript context that currently owns the specified
window. By default, this is the PostScript context that created the window.

invalidid, stackunderflow, typecheck

setowner, termwindow, window

currentshowpageprocedure
window currentshowpageprocedure proc

Returns the PostScript procedure that’s executed when the showpage operator is executed
while the specified window is the current device.

invalidid, stackunderflow, typecheck

setshowpageprocedure

PostScript Operators: currentmouse 5-15

5-16

currentrusage

— currentrusage ctime utime stime msgsend msgrcv nsignals nvcsw nivesw

Returns information about the current time of day and about resource usage by the Window
Server, as provided by the UNIX system call getrusage(). The items returned, and their

types, are as follows:

Name Type Value

ctime float Current time in seconds, modulo 10000

utime float User time for the Server process in seconds

stime float System time for the Server process in seconds

msgsend int Messages sent by the Server to clients

msgrcv int Message received by the Server from clients

nsignals int Number of signals received by the Server process

NVCSW int Number of voluntary context switches

nivesw int Number of involuntary context switches
currenttobase

cx ¢y currenttobase bx by

Converts (cx,cy) from the current coordinate system of the current window to its base
coordinate system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, currenttoscreen, screentobase, screentocurrent

Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

ERRORS

SEE ALSO

currenttoscreen
cx cy currenttoscreen sx sy

Converts (cx, cy) from the current coordinate system of the current window to the screen
coordinate system. If the current device isn’t a window, the invalidid error is executed.

invalidid, stackunderflow, typecheck

basetocurrent, basetoscreen, currenttobase, screentobase, screentocurrent

currentuser
— currentuser uid gid

Returns the user id (#id) and the group id (gid) of the user currently logged in on the console
of the machine that’s running the Window Server.

stackoverflow

currentwaitcursorenabled
context currentwaitcursorenabled isenabled

Returns the state of context’s wait cursor flag. If context is 0, returns the state of the global
wait cursor flag. '

invalidid, stackunderflow, typecheck

setwaitcursorenabled

PostScript Operators: currenttoscreen 517

5-18

ERRORS

SEE ALSO

ERRORS

ERRORS

SEE ALSO

currentwindow
— currentwindow window

Returns the window number of the current window. Executes the invalidid error if the
current device isn’t a window.

invalidid

windowdeviceround

currentwindowalpha
window currentwindowalpha alpha

Returns an integer indicating whether the Window Server is currently storing alpha values
for the specified window. Possible alpha values are:

—2 Window is opaque; alpha values are explicitly allocated.
0 Alpha values are stored explicitly
2 Window is opaque; no explicit alpha

invalidid, stackunderflow, typecheck

currentwindowbounds
window currentwindowbounds x y width height

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
getFrame: or Application’s getScreenSize: method instead.

Returns the location and size of the window in screen coordinates. Pass O for window to
get the size of the entire workspace (the smallest rectangle that encloses all active screens).

x and y will be in the range [-2', 21> —1]; width and height will be in the range [0, 10000].
invalidid, stackunderflow, typecheck

movewindow, placewindow

Chaprer 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

currentwindowdepth
window currentwindowdepth depth
Warning: Don’t use this operator if you’re using the Application Kit.
Returns window’s current depth. The invalidid error is executed if window doesn't exist.
invalidid, stackunderflow, typecheck

setwindowdepthlimit, currentwindowdepthlimit, setdefaultdepthlimit,
currentdefaultdepthlimit

currentwindowdepthlimit
window currentwindowdepthlimit depth

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
depthLimit method instead.

Returns the window’s current depth limit, the maximum depth to which the window can
be promoted. Unless altered by the setwindowdepthlimit operator, a window’s depth limit
is equal to its context’s default depth limit. The invalidid error is executed if window
doesn’t exist.

invalidid, stackunderﬁow, typecheck

setwindowdepthlimit, currentwindowdepth, setdefaultdepthlimit,
currentdefaultdepthlimit

PostScript Operators: currentwindowdepth ~ 5-19

5-20

ERRORS

SEE ALSO

ERRORS

SEE ALSO

ERRORS

SEE ALSO

currentwindowdict
window currentwindowdict dict
Warning: Don’t use this operator if you’re using the Application Kit,
Returns the specified window’s dictionary.
invalidid, stackunderflow, typecheck

setwindowdict

currentwindowlevel

window currentwindowlevel level
Returns window’s tier. Executes the invalidid error if window doesn't exist.
invalidid, stackunderflow, typecheck

setwindowlevel

currentwriteblock
— currentwriteblock doesblock

Returns whether the Window Server delays sending data to a client application whenever
the Server’s output buffer fills. currentwriteblock assumes the current context. If
doesblock is true, the Server waits until the buffer can accept more data. If doesblock is
false, the Server discards data that can’t be accepted immediately.

none

setwriteblock

Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

dissolve
src, src, width height srcgstate dest, dest, delta dissolve —

The effect of this operation is a blending of a source and a destination image. The first
seven arguments choose source and destination pixels as they do for compeosite. The exact
fraction of the blend is specified by delta, which is a floating-point number between 0.0 and
1.0; the resulting image is:

delta *source + (1— delta)*destination

If srcgstate is null, the current graphics state is assumed. If srcgstate or the current graphics
state does not refer to a window device, this operator executes the invalidid error.

invalidid, stackunderflow, typecheck

composite

dumpwindow
dumplevel window dumpwindow —
Warning: Don’t use this operator if you’re using the Application Kit.

Prints information about window to the standard output file. Only dumplevel O is
implemented. The information printed is the position and number of bytes of backing

" storage for the window.

invalidid, rangecheck, stackunderflow, typecheck

dumpwindows

PostScript Operators: dissolve 5-21

5-22

ERRORS

SEE ALSO

ERRORS

SEE ALSO

dumpwindows
dumplevel context dumpwindows —
Warning: Don’t use this operator if you're using the Application Kit.

Prints information about all windows owned by context to the standard output file. If
context is 0, it prints information about all windows. Only dumplevel 0 is implemented.

invalidid, rangecheck, stackunderflow, typecheck

dumpwindow

erasepage
— erasepage —
Warning: This standard operator is different in the NeXTSTEP implementation.
Erases the entire window to opaque white.
invalidid

copypage, showpage

findwindow
x y place otherwindow findwindow x'y' window found

findwindow starts from a given position in the screen list, as explained below, and searches
for the first window below that position that contains the point (x, y). The x and y values
are given in screen coordinates.

The starting position is determined by place and otherwindow. place can be Above or
Below, and otherwindow is the window number of a window in the screen list. If you
specify Above 0, findwindow checks all windows in the screen list.

Chapter 5: Display PostScript

ERRORS

ERRORS

ERRORS

SEE ALSO

If a window containing the point is found, findwindow returns true, along with the window
number and the corresponding location in the base coordinate system of the window.
Otherwise, it returns false, and the values of x', y', and window are undefined.

rangecheck, stackunderflow, typecheck

flushgraphics
— flushgraphics —

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
flushWindow method instead.

Flushes to the screen all drawing done in the current buffered window. If the current
window is retained or nonretained, flushgraphics has no effect.

invalidid, stackunderflow, typecheck

framebuffer
index string framebuffer name slot unit romid x y width height maxdepth

Provides information on the active frame buffer specified by index, where index ranges
from O to countframebuffers—1. string must be large enough to hold the resulting name
of the frame buffer. sloris the NeXTbus™ slot the frame buffer is physically occupying. If
a board supports multiple frame buffers, unit uniquely identifies the frame buffer within a
slot. The ROM product code is returned in romid. The bottom left corner of the frame
buffer is returned in x and y (relative to the screen coordinate system). The size of the frame
buffer in pixels is returned in width and height. maxdepth is the maximum depth
displayable on this frame buffer (for example, NX_TwentyFourBitRGB).

The limitcheck error is executed if string isn’t large enough to hold name. The rangecheck
error is executed if index is out of bounds.

limitcheck, rangecheck, stackunderflow, typecheck

countframebuffers

PostScript Operators: flushgraphics ~ 5-23

5-24

ERRORS

SEE ALSO

ERRORS

SEE ALSO

ERRORS

SEE ALSO

frontwindow
— frontwindow window
Warning: Don’t use this operator if you’re using the Application Kit.

Returns the window number of the frontmost window on the screen. If there aren’t any
windows on the screen, frontwindow returns 0.

none

orderwindow

hidecursor
— hidecursor —

Removes the cursor from the screen. It remains in effect until balanced by a call to
showcursor.

none

obscurecursor, showcursor

hideinstance
x y width height hideinstance —

In the current window, hideinstance removes any instance drawing from the rectangle
specified by x, y, width, and height. x, y, width, and height are given in the window’s current
coordinate system.

invalidid, stackunderflow, typecheck

newinstance, setinstance

Chapter 5: Display PostScript

image
dict image ~

Allows a window’s graphics state object to be used as a source of sample data. dict must
be an image dictionary in which only those keys listed in the following table are significant:

Key Type Value or Meaning

ImageType integer (Required) Must be 2.

XOrigin real (Required) X origin of the source rectangle in user
space coordinates as specified by the transformation in
the DataSource entry.

YOrigin real (Required) Y origin of the same.

Width real (Required) Width of the same.

Height real (Required) Height of the same.

ImageMatrix array (Required) The transformation matrix.

DataSource gstate (Required) A graphics state object that contains the

device that will be used as the source of sample data.
This device will also be used to determine the pixel
representation for the source, and the color space to be
used by the image.

Interpolate boolean (Optional) Request for image interpolation.

UnpaintedPath (various) (Return value) If some of the pixels in the source
weren’t available (because of clipping), then the
UnpaintedPath entry contains a userpath in the current
(destination) user space that encloses the area that
couldn’t be filled.

PixelCopy boolean (Optional) If true, indicates that the source pixels
should be copied directly, without going through the
normal color conversion, transfer function, or
halftoning. The bits per pixel of the source must match
the bits per pixel of the destination, otherwise a
typecheck error will occur. If false or not present, the
pixels will be imaged in the usual way.

PostScript Operators: image ~ 5-25

5-26

ERRORS

SEE ALSO

ERRORS

SEE ALSO

invalidid, rangecheck, stackunderflow, typecheck

alphaimage

initgraphics
— initgraphics —

Warning: This standard operator has additional effects in the NeXTSTEP implementation
of the Display PostScript system.

In addition to the effects documented by Adobe, this operator sets the coverage parameter
in the current window’s graphics state to 1 (opaque) and turns off instance drawing

none

hideinstance, newinstance, setalpha, setinstance

machportdevice
width height bbox matrix hostname portname pixelencoding machportdevice —

Sets up a PostScript device that can provide a generic rendering service for device-control
programs requiring page bitmaps from PostScript documents. For each rendered page,
machportdevice sends a Mach message containing the page bitmap to a port that has been
registered with the name server on the network.

width and height are integers that determine the number of device pixels for the page.

bbox is an array of integers that defines the rectangle (by giving its lower left and uppér
right corners) that encompasses the imageable area. The array takes the form

[lowerLeftX lowerLeftY upperRightX upperRightY]

For the common case where the entire raster is imageable, bbox may be expressed as an
empty array. If bbox isn’t in the correct form, or if any portion of the rectangle it expresses
falls outside [0 O width height], a rangecheck results. The bitmap data is stored in x-axis
major indexing order. The device coordinate of the lower left corner of the first pixel is

Chapter 5: Display PostScript

(0,0), the coordinate of the next pixel is (1,0) and so on for the entire scanline. Scanlines

are long-word aligned.

matrix is the default transformation matrix for the device.

hostname and portname are strings that together identify the port that will receive the Mach
messages. If hostname is empty, the local host is assumed. If it’s “*”, the port is searched
for on all available hosts. If (in any case) the port can’t be found, a rangecheck results.

pixelencoding is a dictionary describing the format for the image data rendered by the
Window Server. It should contain these entries:

Key Type
samplesPerPixel integer
bitsPerSample integer
colorSpace integer
isPlanar boolean

defaultHalftone dictionary

initial Transfer procedure

jobTag integer

Value
Must be 1.

Must be 1 or 2.
Color space specification (see below).

true if sample values are stored in separate arrays
(currently must be false).

Passed to sethalftone during device creation to
set up device default halftone.

Passed to settransfer during device creation to
set up the initial transfer function for device.

Allows machportdevice to tag rendering jobs.
This value is included in the jobTag field of all
printpage messages generated by this device.

The value of colorSpace should be one of the following values, predefined in nextdict:

Name Value Description

NX_OnelsBlackColorSpace 0
NX_OnelsWhiteColorSpace 1
NX_RgbColorSpace 2
NX_CmykColorSpace 5

Monochromatic, high sample value is black.
Monochromatic, high sample value is white.
RGB, (1,1,1) is white.

CMYK, (0,0,0,0) is white.

Only the following combinations of colorSpace and bitsPerSample are supported:

colorSpace bitsPerSample

NX_OnelsBlackColorSpace
NX_OnelsWhiteColorSpace

1
2

PostScript Operators: machportdevice 5-27

5-28

EXAMPLES

These read-only pixel-encoding dictionaries are predefined in nextdict:

Name Description)
NeXTLaser-300 NeXT Laser Printer at 300 dpi resolution
NeXTLaser-400 NeXT Laser Printer at 400 dpi resolution

NeXTMegaPixelDisplay MegaPixel Display’s 2 bits-per-pixel gray

The pagebuffer data is passed out-of-line, appearing in the receiving application’s address
space. (If the receiver is on the same host, the received pagebuffer references the same
physical memory as the Window Server’s pagebuffer, and is mapped copy-on-write.) The
application should use vin_deallocate() to release the pagebuffer memory when it’s no
longer needed. The receiver must acknowledge receipt of the data by sending a simple
msg_header_t (with msg_id == NX_PRINTPAGEMSGID) back to the remote_port
passed in the print message. The Window Server will not continue executing the page
description until acknowledgement is received.

If more than one copy of the page is needed (through either the copypage or #copies
mechanism) each copy is sent as a separate message. In this case the same pagebuffer will
be sent in multiple messages. The letter, legal, and note page types are gracefully ignored.

Messaging errors cause the invalidaccess error to be executed.

This example sets up a 400 dpi 8.5 by 11 inch page on a raster with upper left origin (as
with the NeXT 400 dpi Laser Printer) and sends its print page messages to the port named
“nlp-123” on the local host:

/dpi 400 def
/width dpi 8.5 mul cvi def
/height dpi 11 mul cvi def

width height % page bitmap dimensions in pixels

[] use it all

[dpi 72 div 0 0 dpi -72 div 0 height] % device transform

() (nip-123) host (local) & port

NeXTLaser-400 % pixel-encoding description

machportdevice

This example sets up an 8 by 10 inch page on the same 8.5 by 11 inch

o

oe

page. It specifies a 400 dpi raster with 1/4 inch horizontal margins
and 1/2 inch vertical margins:

/dpi 400 def

/width dpi 8.5 mul cvi def

/height dpi 11 mul cvi def

/topdots dpi .5 mul cvi def

/leftdots dpi .25 mul cvi def

Chapter 5: Display PostScript

ERRORS

width height % page bitmap dimensions in pixels
[

leftdots

topdots

width leftdots sub

height topdots sub
] % imageable area of bounding box

dpi 72 div
0
0
dpi -72 div
leftdots
height topdots sub
1 % device transform

() (nlp-123) % host (local) & port
NeXTLaser-400 % pixel-encoding description
machportdevice

Note that in this example, the user space origin is at the lower left corner of the imageable
area (leftdots, height-topdots) in the device raster coordinate system. Usually, the
imageable area is meant to correspond with the ultimate destination of the bits. For
example, a printer may have a constant-sized pagebuffer with a fixed orientation in the
paper path, but be able to accept various sizes of paper. In this case, the page bitmap size
will always be fixed, but the imageable area and default device transformation can be
adjusted to make the user space origin appear at the lower left corner of each printed page.

invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

movewindow
xy window movewindow —

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
moveTo:: method instead.

Moves the lower left corner of the specified window to the screen coordinates (x, y). No
portion of the repositioned window can have an x or y coordinate with an absolute value
greater than 16000. The operands can be integer, real, or radix numbers; however, they are
converted to integers in the Window Server by rounding toward 0.

PostScript Operators: movewindow — 5-29

ERRORS

SEE ALSO

ERRORS

SEE ALSO

ERRORS

SEE ALSO

ERRORS

The window need not be the frontmost window. This operator doesn’t change window’s
ordering in the screen list.

invalidid, rangecheck, stackunderflow, typecheck

currentwindowbounds, placewindow

newinstance

— newinstance —
Removes any instance drawing from the current window.
invalidid

hideinstance, setinstance

nextrelease
— nextrelease string

Returns version information about this release of NeXTSTEP.
stackoverflow

osname, ostype

NextStepEncoding :
— NextStepEncoding array

Pushes the NextStepEncoding vector on the operand stack. This is a 256-element array,
indexed by character codes, whose values are the character names for those codes.

stackoverflow

5-30 Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

obscurecursor
— obscurecursor —

Removes the cursor image from the screen until the next time the mouse is moved.
It’s usually called in response to typing by the user, so the cursor won’t be in the way.
If the cursor has already been removed due to an obscurecursor call, obscurecursor
has no effect.

none

hidecursor, revealcursor

orderwindow
place otherwindow window orderwindow -

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
orderWindow:relativeTo: instead.

Orders window in the screen list as indicated by place and otherwindow. place can be
Above, Below, or Out:

* If place is Above or Below, the window is placed in the screen list immediately above
or below the window specified by otherwindow.

» If place is Above or Below and otherwindow is 0, the window is placed above or below
all windows in its tier.

» If place is Above or Below, otherwindow must be a window in the screen list; otherwise,
the invalidid error is executed.

* If place is Out, otherwindow is ignored, and the window is removed from the screen list,
S0 it won’t appear anywhere on the screen. Windows that aren’t in the screen list don’t
receive user events.

Note: orderwindow doesn’t change which window is the current window.
invalidid, rangecheck, stackunderflow, typecheck

frontwindow

PostScripr Operators: obscurecursor 5-31

5-32

ERRORS

SEE ALSO

ERRORS

SEE ALSO

osname
— osname string

Returns a string identifying the operating system of the Window Server’s current operating
environment. osname is defined in the statusdict dictionary, a dictionary that defines
operators specific to a particular implementation of the PostScript language. osname can
be executed as follows:

statusdict /osname get exec
none

nextrelease, ostype

ostype
- ostype int

Returns a number identifying the operating system of the Window Server’s current
operating environment. ostype is defined in the statusdict dictionary, a dictionary that
defines operators specific to a particular implementation of the PostScript language. ostype
can be executed as follows:

statusdict /ostype get exec
none

nextrelease, osname

Chapter 5: Display PostScript

ERRORS

SEE ALSO

placewindow
x y width height window placewindow —

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
placeWindow: method instead.

Repositions and resizes the specified window, effectively allowing it to be resized from any
corner or point. x, y, width, and height are given in the screen coordinate system. No
portion of the repositioned window can have an x or y coordinate with an absolute value
greater than 16000; width and height must be in the range from 0 to 10000. The four
operands can be integer or real numbers; however, they are converted to integers in the
Window Server by rounding toward 0.

placewindow places the lower left corner of the window at (x, y) and resizes it to have a
width of width and a height of height. The pixels that are in the intersection of the old and
new positions of the window survive unchanged (see Figure 5-2). Any other areas of the
newly positioned window are filled with the window’s exposure color (see
setexposurecolor).

width
This is what the window t the window
looks like before placewindow ’-g) pfore placewindow
is called. Notice which pixels E\ otice which pixels
survive unchanged after the hanged after the

call to placeWindow. This b\Window Thia
allows a window to be resized
from any corner or point.

xy)
Before placewindow After placewindow

Figure 5-2. placewindow

After moving or resizing a window with placewindow, you must execute the initmatrix
and initclip operators to reestablish the window’s default transformation matrix and default
clipping path.

invalidid, rangecheck, stackunderflow, typecheck

currentwindowbounds, movewindow, setexposurecolor

PostScript Operators: placewindow 5-33

5-34

ERRORS

ERRORS

playsound
soundname priority playsound —

Plays the sound soundname. The Window Server searches for a standard soundfile of
the name

soundname.snd

The search progresses through the following directories in the order given, stopping when
the sound is located.

~/Library/Sounds
/LocalLibrary/Sounds
/NextLibrary/Sounds

No error occurs if the soundfile isn’t found: The operator has no effect.

The soundfile’s playback is assigned the priority level priority. The playback interrupts any
currently playing sound of the same or lower priority level.

stackunderflow, typecheck

posteventbycontext
type x y time flags window subtype miscO miscl context posteventbycontext success

Posts an event to the specified context. The nine parameters preceding the context
parameter coincide with the NXEvent structure members (see “Types and Constants” for
the definition of the NXEvent structure). The x and y coordinate arguments are passed
directly to the receiving context without undergoing any transformations. window is the
Window Server’s global window number. Returns true if the event was successfully posted
to context, and false otherwise.

You use this operator to post an application-defined event to your own application. Use
Mach messaging to communicate between applications.

stackunderflow, typecheck

Chapter 5: Display PostScript

ERRORS

SEE ALSO

readimage
x y width height procy [... proc,_;] string bool readimage —

Reads the pixels that make up the rectangular image described by x, y, width, and height
in the current window. (Most programmers should use NXReadBitmap() instead of
this operator.)

Usually the image is the rectangle that has a lower left corner of (x, y) in the current
coordinate system and a width and height of width and height. If the axes have been rotated
so that the sides of the rectangle are no longer aligned with the edges of the screen, the
image is the smallest screen-aligned rectangle enclosing the given rectangle.

You typically call sizeimage before readimage (sending it the same x, y, width, and height
values you’ll use for readimage) to find out ncolors, the number of color components that
readimage must read. bool is a boolean value that determines whether readimage reads-
the alpha component in addition to the color component(s) for each pixel. The total number
of components to be read for each pixel, together with the multiproc value returned by
sizeimage, determine », the number of procedures that readimage requires. If multiproc
is false, n equals 1. Otherwise, n equals the number of color components plus the alpha
component, if present.

readimage executes the procedures in order, O through n—I, as many times as needed. For
each execution, it pushes on the operand stack a substring of string containing the data from
as many scanlines as possible. The length of the substring is a multiple of

width * bits/sample * (samples/proc) | 8

rounded up to the nearest integer. (The width and bits/sample values are provided by the
sizeimage operator. samples is the number of color components plus 1 for the alpha
component, if present.)

The samples are ordered and packed as they are for the image, colorimage, or alphaimage
operator. For example, the alpha component is last and, if necessary, extra bits fill up the
last character of every scanline. Note that the contents of string are valid only for the
duration of one call to one procedure because the same string is reused on each procedure
call. The rangecheck error is executed if string isn’t long enough for one scanline.

i-angecheck, stackunderflow, typecheck

alphaimage, sizeimage

PostScript Operators: readimage 5-35

5-36

ERRORS

SEE ALSO

ERRORS

SEE ALSO

revealcursor
— revealcursor —

Redisplays the cursor that was hidden by a call to obscurecursor, assuming that the cursor
hasn’t already been revealed by mouse movement. If the cursor hasn’t been removed from
the screen by a call to obscurecursor, revealcursor has no effect.

none

obscurecursor

rightbuttondown
— rightbuttondown isdown
Returns frue if the right mouse button is currently down; otherwise it returns false.

Note: To test whether the right mouse button is still down from a mouse-down event, use
rightstilldown instead of rightbuttondown; rightbuttondown will return zrue even if the
mouse button has been released and pressed again since the original mouse-down event.

none

buttondown, currentmouse, rightstilldown, stilldown

Chapter 5: Display PostScript

ERRORS

SEE ALSO

EXAMPLE

ERRORS

SEE ALSO

rightstilldown
eventnum rightstilldown stilldown

Returns true if the right mouse button is still down from the mouse-down event specified
by eventnum; otherwise it returns false. eventnum should be the number stored in the data
component of the event record for an event of type Rmousedown.

stackunderflow, typecheck

buttondown, currentmouse, rightbuttondown, stilldown

screenlist
array context screenlist subarray

Fills the array with the window numbers of all windows in the screen list that are owned by
the PostScript context specified by context. It returns the subarray containing those window
numbers, in order from front to back. If array isn’t large enough to hold them all, this
operator will return the frontmost windows that fit in the array.

If context is 0, all windows in the screen list are returned.

This example yields an array containing the window numbers of all windows in the screen
list that are owned by the current PostScript context:

currentcontext
countscreenlist % find out how many windows
array % create array to hold them

currentcontext screenlist % fill it in
invalidaccess, invalidid, rangecheck, stackunderflow, typecheck

countscreenlist, countwindowlist, windowlist

PostScript Operators: rightstilldown — 5-37

5-38

ERRORS

SEE ALSO

ERRORS

SEE ALSO

ERRORS

SEE ALSO

screentobase
sx sy screentobase bx by

Converts (sx, sy) from the screen coordinate system to the current window’s base coordinate
system. If the current device isn’t a window, the invalidid error is executed.

invalidid, stackunderflow, typecheck

basetocurrent, basetoscreen, currenttobase, currenttoscreen, screentocurrent

screentocurrent
sx sy screentocurrent cx cy

Converts (sx,sy) from the screen coordinate system to the current coordinate system of the
current window. If the current device isn’t a window, the invalidid error is executed.

invalidid, stackunderflow, typecheck

basetocurrent, basetoscreen, currenttobase, currenttoscreen, screentobase

setactiveapp
context setactiveapp —
Warning: Don’t use this operator if you’re using the Application Kit.

Records the active application’s main (usually only) context. setactiveapp is used by the
window packages to assist with wait cursor operation. '

invalidid, stackunderflow, typecheck

currentactiveapp

Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

setalpha
coverage setalpha —

Sets the coverage parameter in the current window’s graphics state to coverage. coverage
must be a number between 0 and 1, with O corresponding to transparent, 1 corresponding
to opaque, and intermediate values corresponding to partial coverage. This establishes how
much background shows through for purposes of compositing.

stackunderflow, typecheck, undefined

composite, currentalpha, setgray, sethshcolor, setrghcolor

setautofill
flag window setautofill —

Applies only to nonretained windows; sets the autofill property of wirndow to the value of
flag. If true, newly exposed areas of the window or areas created by placewindow will
automatically be filled with the window’s exposure color. If false, these areas will not
change (typically they will continue to contain the image of the last window in that area).
If the current device is not a window, this operator executes the invalidid error.

invalidid, stackunderflow, typecheck

placewindow, setexposurecolor, setsendexposed

setcursor
X ymx my setcursor —

Sets the cursor image and hot spot. Rather than executing this operator directly, you’d
normally use a NXCursor object to define and manage cursors.

PostScript Operators: setalpha 5-39

5-40

ERRORS

SEE ALSO

A cursor image is derived from a 16-pixel-square image in a window that’s generally placed
off-screen. The x and y operands specify the upper left corner of the image in the window’s
current coordinate system. The mx and my operands specify the relative offset (in units of
the current coordinate system) from (x, y) to the Aot spot, the point in the cursor that
coincides with the mouse location. Assuming the current coordinate system is the base
coordinate system, mx must be an integer from 0 to 16, and my must be an integer from 0
to —16. After setcursor is executed, the image in the window is no longer needed.

The cursor is placed on the screen using Sover compositing. The cursor’s opaque areas
(alpha = 1) completely cover the background, while its transparent areas (alpha < 1) allow
the background to show through to a greater extent depending on the alpha values present
in the cursor image. '

Note: To make the off-screen window transparent, you can use compositerect with Clear.

The rangecheck error is executed if the image doesn’t lie entirely within the specified
window or if the point (mx, my) isn’t inside the image. If the current device isn’t a window,
the invalidid error is executed.

invalidid, rangecheck, stackunderflow, typecheck

hidecursor, obscurecursor, setmouse

setdefaultdepthlimit
depth setdefaultdepthlimit —

Warning: Don’t use this operator if you’re using the Application Kit.

Sets the current context’s default depth limit to depth. The Window Server assigns each
new context a default depth limit equal to the maximum depth supported by the system.
When a new window is created, its depth limit is set to its context’s default depth limit.

These depths are defined in nextdict:

Depth Meaning

NX_TwoBitGray 1 spp, 2bps, 2bpp, planar
NX_EightBitGray 1 spp, 8bps, 8bpp, planar
NX_TwelveBitRGB 3 spp, 4bps, 16bpp, interleaved

NX_TwentyFourBitRGB 3 spp, 8bps, 32bpp, interleaved

Chapter 5: Display PostScript

ERRORS

SEE ALSO

where spp is the number of samples per pixel; bps is the number of bits per sample; and bpp
is the number of bits per pixel, also known as the window’s depth. (The samples-per-pixel
value excludes the alpha sample, if present.) planar and interleaved refer to how the
sample data is configured. If a separate data channel is used for each sample, the
configuration is planar. If data for all samples is stored in a single data channel, the
configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar
configurations (4 for NX_TwoBitGray and 16 for NX_EightBitGray). Interleaved
configurations already account for an alpha sample whether or not it’s present; thus, the
number of bits per pixel for NX_TwelveBitRGB and NX_TwentyFourBitRGB depths
remains unchanged.

The constant NX_DefaultDepth is also available. If depth is NX_DefaultDepth, the
context’s default depth limit is set to the Window Server’s maximum visible depth, which
is determined by which screens are active. '

The rangecheck error is executed if depth is invalid.
rangecheck, stackunderflow, typecheck

currentdefaultdepthlimit, setwindowdepthlimit, currentwindowdepthlimit,
currentwindowdepth

seteventmask
mask window seteventmask —

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
setEventMask: method instead.

Sets the Server-level event mask for the specified window to mask. For windows created
by the window packages, this mask may allow additional event types beyond those
requested by the application. The following operand names are defined for mask:

PostScript Operators: seteventmask 5-41

5-42

Mask Operand

Event Type Allowed

Lmousedownmask Mouse-down, left or only mouse button
Lmouseupmask Mouse-up, left or only mouse button
Rmousedownmask Mouse-down, right mouse button
Rmouseupmask Mouse-up, right mouse button
Mousemovedmask Mouse-moved
Lmousedraggedmask Mouse-dragged, left or only mouse button
Rmousedraggedmask Mouse-dragged, right mouse button
Mouseenteredmask Mouse-entered
Mouseexitedmask Mouse-exited
Keydownmask Key-down
Keyupmask Key-up
Flagschangedmask Flags-changed
Kitdefinedmask Kit-defined
Sysdefinedmask System-defined
Appdefinedmask Application-defined
Allevents All event types
ERRORS invalidid, stackunderflow, typecheck
SEE ALSO currenteventmask
setexposurecolor
— setexposurecolor —
Applies to nonretained windows only; sets the exposure color to the color specified by the
current color parameter in the current graphics state. The exposure color (white by default)
determines the color of newly exposed areas of the window and of new areas created by
placewindow. The alpha value of these areas is always 1 (opaque). If the current device
is not a window, this operator executes the invalidid error. ”
ERRORS invalidid, stackunderflow, typecheck
SEE ALSO placewindow, setautofill, setsendexposed

Chapter 5: Display PostScript

ERRORS

setflushexposures
flag setflushexposures —
Warning: Don’t use this operator if you’re using the Application Kit.

Sets whether window-exposed and screen-changed subevents are flushed to clients. If flag
is false, no window-exposed or screen-changed events are flushed to the client until
setflushexposures is executed with flag equal to true. By default, window-exposed and
screen-changed events are flushed to clients.

invalidid, stackunderflow, typecheck

setframebuffertransfer
redproc greenproc blueproc grayproc fbonum setframebuffertransfer —

Warning: This operator should only be used for the development of screen-calibration
products.

Sets the framebuffer transfer functions in effect for the framebuffer indexed by fbnum.

fbnum ranges from 0 to countframebuffers—1. The framebuffer transfer describes the
relationship between the framebuffer values of the display, and the voltage produced to
drive the monitor.

The initial four operands define the transfer procedures: Monochrome devices use
grayproc (but see the Note below), color devices use the others. The procedures must be
allocated in shared virtual memory. In addition, the Window Server assumes that the
framebuffer values are directly proportional to screen brightness. This is 1mportant for the
accuracy of dithering, compositing, and similar calculations.

The default transfer for NeXT Color Displays is
{1 2.2 div exp } bind dup dup {}

Note: setframebuffertransfer is unsupported on the current generation of NeXT
monochrome displays.

PostScript Operators: setflushexposures ~ 5-43

5-44

ERRORS

SEE ALSO

ERRORS

SEE ALSO

It’s possible to make framebuffer transfer functions persist beyond the lifetime of the
Window Server by storing a property in the NetInfo screens database. In the local NetInfo
domain, /localconfig/screens holds the configuration information for the screens known to
the Window Server (MegaPixel, NeXTdimension, and so on). These specify the layout and
activation state of the screen. The NetInfo defaultTransfer property can contain a string
of PostScript code suitable for execution by the setframebuffertransfer operator (without
the fbnum parameter). For example, the following represents the NetInfo configuration for
a NeXTdimension screen with a default gamma of 2.0:

localhost:1# niutil -read . /localconfig/screens/NeXTdimension
name: NeXTdimension
slot: 2
unit: 0

defaultTransfer: {1 2.0 div exp } dup dup dup
bounds: 0 1120 0 832

active: 1

_writers: *

The defaultTransfer property is used to configure the screen each time the Window Server
starts up. This allows monitor calibration products to save their settings so the next time
the Window Server starts up, the new values will be used. Note that in some cases, the
Netlnfo configuration state for a monitor will not have active equal to 1, although the
monitor is being used by the Window Server. If there are no active screens (screens that are
explicitly marked as being active), the Window Server uses a suitable default, however, the
other NetInfo properties for that screen are ignored. Thus, you must be sure that the screen
for which you are adding a defaultTransfer value has active set to 1.

invalidid, stackunderflow, typecheck

setframebuffertransfer, countframebuffers, framebuffer

setinstance
flag setinstance —

Sets the instance-drawing mode in the current graphics state on (if flag is true) or off (if flag
is false).

stackunderflow, typecheck

hideinstance, newinstance

Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

setmouse
Xy setmouse —

Moves the mouse location (and, correspondingly, the cursor) to (x, y), given in the current
coordinate system. If the current device isn’t a window, the invalidid error is executed.

invalidid, stackunderflow, typecheck

adjustcursor, basetocurrent, currentmouse, screentocurrent

setowner

context window setowner —

Sets the owning PostScript context of window to context. The window is terminated

automatically when context is terminated.
invalidid, stackunderflow, typecheck

currentowner, termwindow, window

setsendexposed
flag window setsendexposed —
Warning: Don’t use this operator if you're using the Application Kit.

Controls whether the Window Server generates a window-exposed subevent (of the
kit-defined event) for window under the following circumstances:

¢ Nonretained window: When an area of the window is exposed, or a new area is created
by placewindow

* Retained or buffered window: When an area of the window that had instance drawing
in it is exposed

PostScript Operators: setmouse 5-45

5-46

ERRORS

SEE ALSO

ERRORS

SEE ALSO

By default, window-exposed subevents are generated under these circumstances. In any
case, the window-exposed subevent isn’t flushed to the application until the Window Server
receives another event.

invalidid, stackunderflow, typecheck

setflushexposures, placewindow, setautofill, setexposurecolor

setshowpageprocedure
proc window setshowpageprocedure —
Warning: Don’t use this operator if you’re using the Application Kit.

Sets the PostScript procedure that’s executed, for the specified window, when the
showpage procedure is executed. proc must be allocated in shared virtual memory.

invalidid, stackunderflow, typecheck

currentshowpageprocedure

settrackingrect

x y width height leftbool rightbool insidebool userdata trectnum gstate
settrackingrect —

or

x y width height optionarray trectnum gstate settrackingrect —

Important: The settrackingrect operator boasts two form, distinguished by the number
and contents of the operands that are passed. The operator itself looks at its operands to
determine how to proceed. The common portion of the two forms is described immediately
below. Attention is then paid to the features that set the forms apart.

Chapter 5: Display PostScript

Sets a tracking rectangle in the window referred to by gstate to the rectangle specified by
x, y, width, and height (in the coordinate system of that graphics state). If gstate is null, the
window referred to by the current graphics state is used. trectnum is an arbitrary integer
that can be any number except 0. It’s used to identify tracking rectangles; no two tracking
rectangles can share the same trectnum value. Any number of tracking rectangles may be
set in a single window.

The tracking rectangle will remain in effect until cleartrackingrect is called, or until
another tracking rectangle with the same trectnum is set.

Form 1

x y width height leftbool rightbool insidebool userdata trectnum gstate
settrackingrect —

In this form, the application receives mouse-exited and mouse-entered events as the cursor
leaves and reenters the visible portion of the tracking rectangle. In the event record for a
mouse-exited or mouse-entered event, the data component will contain trectnum along
with the event number of the last mouse-down event.

userdata is an arbitrary integer that you assign to the tracking rectangle. Since several
tracking rectangles can share the same userdata value, you can use userdata to identify an
object in your application that will be notified when a mouse-entered or mouse-exited event
occurs in any of the tracking rectangles.

You can specify that mouse-entered and mouse-exited events be generated only if certain
mouse buttons are down. If leftbool is true, the events will be generated only when the left
mouse button is down; likewise for rightbool and the right mouse button. If both leftbool
and rightbool are true, the events will be generated only if both mouse buttons are down.
If both leftbool and rightbool are false, the position of the mouse buttons isn’t taken into
account in generating mouse-entered and mouse-exited events.

settrackingrect causes the Window Server to repeatedly compare the current cursor
position to the previous one to see whether the cursor has moved from inside the tracking
rectangle to outside it or vice versa. insidebool tells settrackingrect whether to consider
the initial cursor position to be inside or outside the tracking rectangle:

« If insidebool is true and the cursor is initially outside the tracking rectangle, a
mouse-exited event is generated.

» If insidebool is false and the cursor is initially inside the tracking rectangle, a
mouse-entered event is generated.

PostScript Operators: settrackingrect 5-47

5-48

EXAMPLE

ERRORS

SEE ALSO

ERRORS

SEE ALSO

Form 2
x y width height optionarray trectnum gstate settrackingrect —

In this form, settrackingrect sets special event-gathering attributes of a rectangle (events
are not generated when the boundary is crossed).

optionarray contains Key-value pairs that define the attributes that you're interested in. An
empty option array is meaningless and will raise a rangecheck error. The following keys
are currently defined:

Key Type Meaning

Pressure bool Treat non-zero pressure values as a mouse-down (false by default)
Coalesce bool Coalesce mouse motion events (frue by default)

This example turns pressure on and coalescing off (thereby switching the default values):
0 0 10 10 [/Pressure true /Coalesce false] 1 null settrackingrect
invalidid, rangecheck, stackunderflow, typecheck

cleartrackingrect

setwaitcursorenabled
bool context setwaitcursorenabled —

Allows applications to enable and disable wait cursor operation in the specified context.
If context is 0, setwaitcursorenabled sets the global wait cursor flag, which overrides
all per-context settings. If the global flag is set to false, the wait cursor is disabled for
all contexts.

invalidid, stackunderflow, typecheck

currentwaitcursorenabled

Chapter 5: Display PostScript

ERRORS

SEE ALSO

setwindowdepthlimit
depth window setwindowdepthlimit —

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
setDepthLimit: method instead.

Sets the depth limit of window to depth. These depths are defined in nextdict:

Depth Meaning

NX_TwoBitGray 1 spp, 2bps, 2bpp, planar
NX_FightBitGray 1 spp, 8bps, 8bpp, planar
NX_TwelveBitRGB 3 spp, 4bps, 16bpp, interleaved

NX_TwentyFourBitRGB 3 spp, 8bps, 32bpp, interleaved

where spp is the number of samples per pixel; bps is the number of bits per sample; and bpp
is the number of bits per pixel, also know as the window’s depth. (The samples-per-pixel
value excludes the alpha sample, if present.) planar and interleaved refer to how the
sample data is configured. If a separate data channel is used for each sample, the
configuration is planar. If data for all samples is stored in a single data channel, the
configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar
configurations (4 for NX_TwoBitGray and 16 for NX_FEightBitGray). Interleaved
configurations already account for an alpha sample whether or not it’s present; thus, the
number of bits per pixel for NX_TwelveBitRGB and NX_TwentyFourBitRGB depths
remains unchanged.

Another constant, NX_DefaultDepth, is defined as the default depth limit in the Window
Server’s current context. If depth is NX_DefaultDepth, then the window’s depth limit is set
to the context’s default depth limit. If the resulting depth is lower than the window’s current
depth, the window’s data is dithered down to this depth, which may result in the loss of
graphic information.

The rangecheck error is executed if depth is invalid. The invalidid error is executed if
window doesn’t exist.

invalidid, rangecheck, stackunderflow, typecheck

currentwindowdepthlimit, setdefaultdepthlimit, currentdefaultdepthlimit,
currentwindowdepth

PostScripr Operators: setwindowdepthlimit 5-49

5-50

ERRORS

SEE ALSO

ERRORS

SEE ALSO

setwindowdict
dict window setwindowdict —
Warning: Don’t use this operator if you’re using the Application Kit,
Sets the dictionary for window to dict.
invalidid, stackunderflow, typecheck

currentwindowdict

setwindowlevel
level window setwindowlevel —

Sets the window’s tier to that specified by level. Window tiers constrain the action of the
orderwindow operator; see orderwindow for more information.

You rarely use this operator. To make a panel float above other windows, use the Panel
class’s setFloatingPanel: method.

Attempting to change the level of workspaceWindow executes the invalidaccess error.
(workspaceWindow is a PostScript name whose value is the window number of the
workspace window.)

invalidaccess, invalidid, rangecheck, stackunderflow, typecheck

currentwindowlevel, orderwindow

Chapter 5: Display PostScript

setwindowtype
type window setwindowtype —

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
setBackingType: method instead.

Sets the window’s buffering type to that specified. Currently, the only allowable type
conversions are from Buffered to Retained and from Retained to Buffered. All other
possibilities execute the limitcheck error.

ERRORS invalidaccess, invalidid, limitcheck, stackunderflow, typecheck

SEE ALSO window

setwriteblock
bool setwriteblock —

Sets how the Window Server responds when its output buffer to a client application fills. If
bool is true, the Server defers sending data (event records, error messages, and so on) to
that application until there’s once again room in the output buffer. In this way, no output
data is lost—this is the Server’s default behavior. If bool is false, the Server ignores the
state of the output buffer: If the buffer fills and there’s more data to be sent, the new data
is lost. setwriteblock operates on the current context.

Most programmers won’t need to use this operator. If you do use it, make sure that you
disable the Window Server’s default behavior only during the execution of your own
PostScript code. If it’s disabled while Application Kit code is being executed, errors will
result.

ERRORS stackoverflow, typecheck

SEE ALSO currentwriteblock

PostScript Operators: setwindowtype 5-51

showcursor
— showcursor —

Restores the cursor to the screen if it’s been hidden with hidecursor, unless an outer
nested hidecursor is still in effect (because it hasn’t yet been balanced by a showcursor).
For example:

% cursor is showing initially

a0

hidecursor hides the cursor
hidecursor % cursor stays hidden

showcursor % cursor still hidden due to first hidecursor

o

showcursor displays the cursor
ERRORS none

SEE ALSO hidecursor

showpage
— showpage —

Warning: This standard operator is different in the NeXTSTEP implementation of the
Display PostScript system.

This has no effect if the current device is a window; otherwise, it functions as documented
by Adobe.

ERRORS none

SEE ALSO copypage, erasepage

5-52 Chapter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

sizeimage

xy width height matrix sizeimage pixelswide pixelshigh bits/sample matrix
multiproc ncolors

Returns various parameters required by the readimage operator when reading the image
contained in the rectangle given by x, y, width, and height in the current window. (See
readimage for more information.)

pixelswide and pixelshigh are the width and height of the image in pixels. The operand
matrix is filled with the transformation matrix from user space to the image coordinate
system and pushed back on the operand stack.

The other results of this operator describe the window device and are dependent on the
window’s depth. Each pixel has ncolors color components plus one alpha component; the
value of each component is described by bits/sample bits. If multiproc is true, readimage
will need multiple procedures to read the values of the image’s pixels. Here are the values
that sizeimage returns for windows of various depths:

Window Depth ncolors bits/sample multiproc
NX_TwoBitGray 1 2 true
NX_EightBitGray 1 8 true
NX_TwelveBitRGB 3 4 false
NX_TwentyFourBitRGB 3 8 false

stackunderflow, typecheck

alphaimage, readimage

stilldown
eventnum stilldown stilldown

Returns true if the left or only mouse button is still down from the mouse-down event
specified by eventnum; otherwise it returns false. eventnum should be the number stored in
the data component of the event record for an event of type Lmousedown.

stackunderflow, typecheck

buttondown, currentmouse, rightbuttondown, rightstilldown

PostScript Operators: sizeimage 5-53

5-54

ERRORS

SEE ALSO

termwindow
window termwindow —

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s close
method instead.

Marks window for destruction. If the window is in the screen list, it’s removed from the
screen list and the screen. The given window number will no longer be valid; any attempt
to use it will execute the invalidid error. The window will actually be destroyed and its
storage reclaimed only after the last reference to it from a graphics state is removed. This
can be done by resetting the device in the graphics state to another window or to the null
device.

Note: After you use the termwindow operator, if the terminated window had been the
current window, you should use the nulldevice operator to remove references to it.

invalidid, stackunderflow, typecheck

window, windowdevice, windowdeviceround

window
X y width height type window window

Warning: Don’t use this operator if you’re using the Application Kit. Create a Window
object instead.

Creates a window that has a lower left corner of (x, y) and the indicated width and height.
X, y, width, and height are given in the screen coordinate system. No portion of a window
can have an x or y coordinate with an absolute value greater than 16000; width and height
must be in the range from 0 to 10000. Exceeding these limits executes the rangecheck
error. The four operands can be integer or real numbers; however, they are converted to
integers in the Window Server by rounding toward 0. This operator returns the new
window’s window number, a nonzero integer that’s used to refer to the window.

type specifies the window’s buffering type as Buffered, Retained, or Nonretained.

The new window won’t be in the screen list; you can put it there with the orderwindow
operator. Windows that aren’t in the screen list don’t appear on the screen and don’t receive
user events.

Gﬁabter 5: Display PostScript

ERRORS

SEE ALSO

ERRORS

SEE ALSO

The window operator also does the following:

» Sets the origin of the window’s base coordinate system to the lower left corner of
the window

» Sets the window’s clipping path to the outer edge of the window
* Fills the window with opaque white and sets the window’s exposure color to white

Note: This operator does not make the new window the current window; to do that, use
windowdeviceround or windowdevice.

invalidid, rangecheck, stackunderflow, typecheck

setexposurecolor, termwindow, windowdeviceround

windowdevice
window windowdevice —

Sets the current device of the current graphics state to the given window device. It also sets
the origin of the window’s default matrix to the lower left corner of the window. One unit
in the user coordinate system is made equal to 1/72 of an inch. The clipping path is reset
to a rectangle surrounding the window. Other elements of the graphics state remain
unchanged. This matrix becomes the default matrix for the window: initmatrix will
reestablish this matrix.

windowdevice is rarely used in NeXTSTEP since the coordinate system it establishes isn’t
aligned with the pixels on the screen. Use the related operator windowdeviceround to
create a coordinate system that is aligned.

Don’t use this operator lightly, as it creates a new matrix and clipping path. It’s
significantly more expensive than a setgstate operator.

invalidid, stackunderflow, typecheck

windowdeviceround

PostSeript Operators: windowdevice ~ 5-55

5-56

ERRORS

SEE ALSO

EXAMPLE

ERRORS

SEE ALSO

windowdeviceround
window windowdeviceround —

Sets the current device of the current graphics state to the given window device. It also sets
the origin of the window’s default matrix to the lower left corner of the window. One unit
in the user coordinate system is made equal to the width of one pixel, approximately 1/92
inch. The clipping path is reset to a rectangle surrounding the window. Other elements of
the graphics state remain unchanged. This matrix becomes the default matrix for the
window: initmatrix will reestablish this matrix.

Don’t use this operator lightly, as it creates a new matrix and clipping path. It’s
significantly more expensive than a setgstate operator.

invalidid, stackunderflow, typecheck

windowdevice

windowlist
array context windowlist subarray

Fills the array with the window numbers of all windows that are owned by the PostScript
context specified by context. It returns the subarray containing those window numbers, in
order from front to back. If array isn’t large enough to hold them all, this operator returns
the frontmost windows that fit in the array.

This example yields an array containing the window numbers of all windows that are
owned by the current PostScript context:

currentcontext
countwindowlist % find out how many windows
array % create array to hold them

currentcontext windowlist ¢ fill it in
stackunderflow, typecheck

countscreenlist, countwindowlist, screenlist

Chapter 5: Display PostScript

Single-Operator Functions

5-58

The Display PostScript system provides a C function for each operator in the PostScript
language, allowing you to execute individual PostScript operators from your application.
Adobe Systems Inc. provides the primary documentation for these operators and for
pswrap, the utility that creates a C function for one or more PostScript operators.

NeXT has added several operators and their corresponding single-operator functions to the
basic Display PostScript system. The operators are described in the section “PostScript
Operators,” and the functions are listed (without description) in this section.

Operands and Arguments

Some of the C functions listed in this section take arguments that match the operands of
their corresponding PostScript operators. Some functions also take pointers that return
values by reference, corresponding to results returned on the operand stack by the
PostScript operators. Where an argument corresponds to an operand, the argument takes
the operand’s name as given in the “PostScript Operators” section. If an operator takes or
returns an array of values, the corresponding C function will take an extra argument that
gives the size of the array.

Other C functions have no arguments (or an insufficient number of arguments) where the
corresponding PostScript operators expect operands or leave results on the operand stack.
These functions assume that they’ll be called with the appropriate objects already on the
operand stack, and they’ll leave any PostScript objects they generate on the operand stack
instead of returning them.

To support the functions that use the operand stack rather than arguments, the Display
PostScript system has several additional functions for putting values on and getting values
off the stack: '

Chapter 5: Display PostScript

Function Effect

PSsendint() Puts one value of the specified type on the operand stack
PSsendfloat()

PSsendboolean()

PSsendstring()

PSgetint() Gets one value from the stack
PSgetfloat()

PSgetboolean()

PSgetstring()

PSsendintarray() Puts an array of values on the stack
PSsendfloatarray()
PSsendchararray()

PSgetintarray() Gets an array of values from the stack
PSgetfloatarray()
PSgetchararray()

Argument Data Types

In addition to the standard C types, the functions listed here use boolean and userobject
as argument data types. A boolean variable is an int having either a zero or a nonzero
value. The zero value is equivalent to the PostScript value false, and the nonzero value
is equivalent to the PostScript value frue. The userobject type is an int that refers to
the value returned by DPSDefineUserObject(). The appearance of these types in the
function listings is simply to assist in understanding—you can’t use these types directly
in your code.

Functions that require a graphics state userobject argument can use the constant v
NXNullObject to refer to the current graphics state.

Return Values

All the functions listed here return veid—a single-operator function’s return value is
never significant.

Single-Operator Functions 5-59

PS and DPS Functions

For each operator, there are actually two C functions: One that takes a context argument
and another that assumes the current PostScript context. The functions that take a context
argument have a “DPS” prefix; those that assume the current context have a “PS” prefix.
For example, the adjustcursor operator is represented by these functions:

DPSadjustcursor(DPSContext context, float x, float y)
PSadjustcursor(float dx, float dy)

Only the single-operator functions prefixed with “PS” are listed here.

5-60 Chapter 5: Display PostScript

PSadjustcursor(float dx, float dy)

PSalphaimage(void)

PSbasetocurrent(float bx, float by, float *cx, float *cy)

PSbasetoscreen(float bx, float by, float *sx, float *sy)

PSbuttondown(boolean *isdown)

PScleartrackingrect(int trectnum, userobject gstate)

PScomposite(float src,, float srcy, float width, float height, userobject srcgstate, float desty,

float desty, int op)

The value passed as op should be one of the following:

NX_CLEAR NX_SIN NX_SATOP
NX_COPY NX_DIN NX_DATOP
NX_SOVER NX_SOUT NX_PLUSD
NX_DOVER NX_DOUT NX_PLUSL
NX_XOR

PScompositerect(float dest,, float dest,, float width, float height, int op)
The value passed as op should be one of the constants listed under PScomposite(), plus
NX_HIGHLIGHT.

PScountframebuffers(int *count)

PScountscreenlist(int context, int *count)

PScountwindowlist(int context, int *count)

PScurrentactiveapp(int *contexr)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentalpha(float *coverage)

Single-Operator Functions: PSadjustcursor ~ 5-61

PScurrentdefaultdepthlimit(int *depth)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentdeviceinfo(userobject window, int *min, int *max, int *iscolor)

PScurrenteventmask(userobject window, int *mask)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentframebuffertransfer(void)

PScurrentmouse(userobject window, float *x, float *y)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentowner(userobject window, int *context)

PScurrentshowpageprocedure(void)

PScurrentrusage(float *ctime, float *utime, float *stime, int *msgsend, int *msgrcv, int
*nsignals, int *nvesw, int *nivesw)

PScurrenttobase(float cx, float cy, float *bx, float *by)
PScurrenttoscreen(float cx, float cx, float *sx, float *sy)
PScurrentuser(int *uild, int *gid)
PScurrentwaitcursorenabled(boolean *isenabled)
PScurrentwindow(userobject *window)
PScurrentwindowalpha(userobject window, int *alpha)

PScurrentwindowbounds(userobject window, float *x, float *y, float *width,
float *height)
Warning: Don’t use this function if you’re using the Application Kit.

5-62 Chapter 5: Display PostScript

PScurrentwindowdepth(userobject window, int *depth)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowdepthlimit(userobject window, int *depth)
Warning: Don’t.use this function if you’re using the Application Kit.

PScurrentwindowdict(userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowlevel(userobject window, int *level)
PScurrentwriteblock(bool *doesblock)

PSdissolve(float src,, float srcy, float sourceWidth, float width, userobject srcgstate,
float dest,, float desty, float delta)

PSdumpwindow(int dumplevel, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSdumpwindows(int dumplevel, userobject context)
Warning: Don’t use this function if you’re using the Application Kit.

PSfindwindow(float x, float y, int place, userobject otherwindow, float *x', float *y',
userobject *window, boolean *found)

The value passed as place should be one of the following:

NX_ABOVE
NX_BELOW

PSflushgraphics(void)
Warning: Don’t use this function if you’re using the Application Kit.

PSframebuffer(int index, int stringlen, char string[], int *slot, int *unit, int *romid, int *x,
int *y, int *width, int *height, int *maxdepth)

PSfrontwindow(int *window)
Warning: Don’t use this function if you’re using the Application Kit.

Single-Operator Functions: PScurrentwindowdepth ~ 5-63

PShidecursor(void)
PShideinstance(float x, float y, float width, float height)

PSmachportdevice(int width, int height, const int bbox[], int bboxSize,
const float matrix[], const char *hostname, const char *portmame,
const char *pixelencoding)

PSmovewindow(float x, float y, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSnewinstance(void)
PSnextrelease(int size, char string[])
PSobscurecursor(void)

PSorderwindow(int place, userobject otherwindow, int window)
Warning: Don’t use this function if you’re using the Application Kit.

The value passed as place should be one of the following:

NX_ABOVE
NX_BELOW
NX_OUT

PSosname(int size, char string[])
PSostype(int *type)

PSplacewindow(float x, float y, float width, float height, userobject window)'
Warning: Don’t use this function if you’re using the Application Kit.

PSplaysound(const char *soundname, int priority)

PSposteventbycontext(int type, float x, float y, int time, int flags, int window, int subtype,
int miscO, int miscl, int context, boolean *success)

5-64 Chapter 5: Display PostScript

PSreadimage(void)

PSrevealcursor(void)

PSrightbuttondown(int *isdown)
PSrightstilldown(int eventnum, boolean *stilldown)
PSscreenlist(int context, int count, int array[])
PSscreentobase(float sx, float sy, float *bx, float *by)
PSscreentocurrent(float sx, float sy, float *cx, float *cy)

PSsetactiveapp(int context)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetalpha(float coverage)
PSsetautofill(boolean flag, userobject window)
PSsetcursor(float x, float y, float mx, float my)

PSsetdefaultdepthlimit(int depth)
Warning: Don’t use this function if you’re using the Application Kit.

PSseteventmask(int mask, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

See the constants listed under “Event Type Masks” in the section “Types and Constants”
for a list of mask values.

PSsetexposurecolor(void)

PSsetflushexposures(boolean flag)
Warning: Don’t use this function if you’re using the Application Kit.

“Single-Operator Functions: PSreadimage 5-65

5-66

PSsetframebuffertransfer(void)
PSsetinstance(boolean flag)

PSsetmouse(float x, float y)

PSsetowner(userobject context, userobject window)

PSsetsendexposed(boolean flag, userobject window)"
Warning: Don’t use this function if you’re using the Application Kit.

PSsetshowpageprocedure(int window)
Warning: Don’t use this function if you’re using the Application Kit.

PSsettrackingrect(float x, float y, float width, float height, boolean leftbool,
boolean rightbool, boolean insidebool, int userdata, int trectnum, userobject gstate)

Note: Only the Form 1 version of the settrackingrect operator is offered as a C function.
PSsetwaitcursorenabled(boolean flag)

PSsetwindowdepthlimit(int depth, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetwindowdict(userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetwindowlevel(int [level, userobject window)

PSsetwindowtype(int zype, userobject window)
Warning: Don’t use this function if you’re using the Application Kit

PSsetwriteblock(int flag)

PSshowcursor(void)

Chapter 5: Display PostScript

PSsizeimage(float x, float y, float width, float height, int *pixelswide, int *pixelshigh,
int *bits/sample, float matrix[], boolean *multiproc, int *ncolors)

PSstilldown(int eventnum, boolean *stilldown)

PStermwindow(userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSwindow(float x, float y, float width, float height, int type, int *window)
Warning: Don’t use this function if you’re using the Application Kit.

PSwindowdevice(userobject window)
PSwindowdeviceround(userobject window)

PSwindowlist(int context, int count, int subarray[])

Single-Operator Functions: PSsizeimage ~ 5-67

5-68

Chient Library Functions

The Display PostScript Client Library comprises functions (and function-like macros)
that gain access to the Display PostScript system. The library is system-dependent; the
functions described in this section comprise that part of NeXTSTEP’s implementation
of the Client Library that varies from the specification provided by Adobe Systems Inc.,
as described in their Display PostScript System Reference Manual.

5-70 Chapter 5: Display PostScript

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

SEE ALSO

DPSAddFD(), DPSRemoveFD()
Monitor a file descriptor
dpsclient/dpsNeXT.h

void DPSAdAFD(int fd, DPSFDProc handler, void *userData, int priority)
void DPSRemoveFD(int fd)

DPSAdAAFD() registers the function handler to be called each time your application
asks for an event or peeks at the event queue. The function is called provided the following
are true:

» The file descriptor fd must be valid and open; typically fd is generated through a call to
open(). There needn’t be any data waiting to be read on fd.

* priority, an integer from O to 30, must be equal to or greater than the application’s current
priority threshold. See DPSAddTimedEntry() for a further explanation.

DPSFDProc, handler’s defined type, takes the form
void *handler(int fd, void *userbData)

where fd is the file descriptor that prompted the function call and userData is the same
pointer that was passed as the third argument to DPSAdAFD(). The userData pointer is
provided as a convenience, allowing you to pass arbitrary data to handler.

DPSRemoveFD() removes the specified file descriptor from the list of those that the
application will check.

Typically, DPSAddFD() is used to listen to a socket or pipe; it’s rarely used to monitor a
common file.

DPSAddPort(), DPSAddTimedEntry()

Client Library Functions: DPSAddFD() 5-711

DPSAddNotifyPortProc(), DPSRemoveNotifyPortProc()

SUMMARY Set the handler function for the notify port
DECLARED IN dpsclient/dpsNeXT.h

synopsis void DPSAddNotifyPortProc(DPSPortProc handler, void *userData)
void DPSRemoveNotifyPortProc(DPSPortProc handler)

DESCRIPTION DPSAddNotifyPortProc() registers handler as the function that’s called when a message
arrives on the notify port, the unique port, created through the task_notify() Mach function,
on which notifications (such as port death) are sent. You don’t need to create the notify port
yourself; DPSAddNotifyPortProc() creates it for you if it doesn’t already exist.

DPSPortProc, handler’s defined type, takes the form
void #*handler (msg_header_t *msg, void *userData)

where msg is a pointer to the message that was received at the port and userData is the
same pointer that was passed as the second argument to DPSAddNotifyPortProc().
The userData pointer is provided as a convenience, allowing you to pass arbitrary data
to handler.

The notify port can have only one handler at a time; adding a handler removes the current
one. You can remove the port’s handler without specifying a new one with the
DPSRemoveNotifyPortProc() function. The function’s argument must match the notify
port’s current handler.

SEe ALsO DPSAddPort(), DPSAddTimedEntry()

5-72 Chapter 5: Display PostScript

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

SEE ALSO

DPSAddPort(), DPSRemovePort()

Monitor a Mach port
dpsclient/dpsNeXT.h

void DPSAddPort(port_t port, DPSPortProc handler, int maxMsgSize, void *userData,
int priority)
void DPSRemovePort(port_t port)

DPSAddPort() registers the function handler to be called each time your application
asks for an event or peeks at the event queue. The function is called provided the following
are true:

* The Mach port port must be valid and it must hold a message waiting to be read.

» priority, an integer from O to 30, must be equal to or greater than the application’s current
priority threshold. See DPSAddTimedEntry() for a further explanation.

DPSPortProc, handler’s defined type, takes the form

void *handler(msg_header_t *msg, void *userData)

where msg is a pointer to the message that was received at the port and userData is the same
pointer that was passed as the fourth argument to DPSAddPort(). The userData pointer is
provided as a convenience, allowing you to pass arbitrary data to handler.

If, within handler, you want to call msg_receive() to receive further messages at the port,
you must first call DPSRemovePort() to remove the port from the system’s port set. (This
is because your application can’t receive messages from a port that’s in a port set.) After
your application is finished receiving messages directly from the port, it can call
DPSAddPort() to have the system continue to monitor the port.

The contents of the message buffer msg, as received by handler, are invalid after the
function returns. If you need to save any of the information that you find.

The maxMsgSize argument is an integer that gives the size, in bytes, of the largest message
you expect to receive.

DPSRemovePort() removes the specified Mach port from the list of those that the
application will check.

DPSAddFD(), DPSAddTimedEntry()

Client Library Functions: DPSAddPor:() 5-713

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

DPSAddTimedEntry(), DPSRemoveTimedEntry()
Create a timed entry
dpsclient/dpsNeXT.h

DPSTimedEntry DPSAddTimedEntry(double period, DPSTimedEntryProc handler,
void *userData, int priority)
void DPSRemoveTimedEntry(DPSTimedEntry tag)

DPSAddTimedEntry() registers handler as a “timed entry,” a function that’s called
repeatedly at a given time interval. period determines the number of seconds between calls
to the timed entry. Whenever an application based on the Application Kit attempts to
retrieve events from the event queue, it also checks (depending on priority) to determine
whether any timed entries are due to be called. userData is a pointer that you can use to
pass some data to the timed entry.

The function registered as handler has the form:

void *handler (DPSTimedEntry tag, double now, char *userData)

where teNumber is the timed entry identifier returned by DPSAddTimedEntry(), now is
the number of seconds since some arbitrary point in the past, and userData is the pointer
DPSAddTimedEntry() received when this timed entry was installed.

An application’s priority threshold can be set explicitly as an integer from O to 31 through
a call to DSPGetEvent() or DPSPeekEvent(). It’s against this threshold that priority is
measured (note that priority can be no greater than 30—the additional threshold level, 31,
is provided to disallow all inter-event function calls). However, if you’re using the
Application Kit, you should access the event queue through Application class methods such
as getNextEvent:. Although some of these methods let you set the priority threshold
explicity, you typically invoke the methods that set it automatically. Such methods use only
three priority levels:

Constant Meaning

NX_BASETHRESHOLD Normal execution
NX_RUNMODALTHRESHOLD An attention panel is being run
NX_MODALRESPTHRESHOLD A modal event loop is being run

5-74 Chapter 5: Display PostScript

RETURN

SUMMARY
DECLARED IN

SYNOPSIS

DESCRIPTION

When applicable, you should use these constants as the value for priority. For example, if
you want handler to be called during normal execution, but not if an attention panel or a
modal loop is running, then you would set priority to NX_BASETHRESHOLD.

DPSRemoveTimedEntry() removes a previously registered timed entry.

DPSAddTimedEntry() returns a number identifying the timed entry or —1 to indicate
an error.

DPSAsynchronousWaitContext()
Procede asynchronously while PostScript code is executed
dpsclient/dpsNeXT.h

void DPSAsynchronousWaitContext(DPSContext context, DPSPingProc handler,
void *userData)

This function is similar to the more familiar DPSWaitContext() functions, except that
rather than wait for all PostScript code to execute, it returns immediately, allowing your
application to procede while the PostScript code is executed in the background. The
DPSPingProc function handler is called (with context and userData as its two arguments)
when all the PostScript code has been executed. The DPSPingProc function takes the form

void *handler(DPSContext context, vold *userData);

Warning: Be careful when you use this function; you mustn’t send more PostScript
code while waiting for the handler to be called. In general, it’s best to not make any
demands on the Application Kit or the Client Library if you’re waiting for an asynchronous
handler to return.

Client Library Functions: DPSAsynchronousWaitContext() ~ 5-15

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

DPSCreateContext(), DPSCreateContextWithTimeoutFromZone(),
DPSCreateNonsecureContext(), DPSCreateStreamContext()

Create a PostScript execution context
dpsclient/dpsNeXT.h

DPSContext DPSCreateContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc)

DPSContext DPSCreateContextWithTimeoutFromZone(const char *hostName,
const char *serverName, DPSTextProc textProc, DPSErrorProc errorProc, int timeout,
NXZone *zone)

DPSContext DPSCreateNonsecureContext(const char *hostName,
const char *serverName, DPSTextProc textProc, DPSErrorProc errorProc, int timeout,
NXZone *zone)

DPSContext DPSCreateStreamContext(NXStream *stream, int debugging,
DPSProgramEncoding progEnc, DPSNameEncoding nameEnc,
DPSErrorProc errorProc)

DPSCreateContext() establishes a connection with the Window Server and creates a
PostScript execution context in it. The new context becomes the current context. The first
argument, hostName, identifies the machine that’s running the Window Server; the second
argument, serverName, identifies the Window Server that’s running on that machine. With
these two arguments and the help of the Mach network server nmserver, the Mach port for
the Window Server can be identified. If hostName is NULL, the network server on the local
machine is queried for the Window Server’s port. If serverName is NULL, a default name
for the Window Server is used.

The last two arguments, zextProc and errorProc, refer to call-back functions (defined in the
Client Library specification) that handle text returned from the Window Server and errors
generated on either side of the connection.

For an application that’s based on the Application Kit, you could create an additional
context by making this call:

DPSContext c;

¢ = DPSCreateContext (NXGetDefaultValue ([NXApp appName], "NXHost"),
NXGetDefaultValue ([NXApp appName], "NXPSName"),
NULL,)
NULL) ;

5-76 Chapter 5: Display PostScript

RETURN

EXCEPTIONS

This example queries the application’s default values for the indentity of the host machine
and the Window Server. By doing this, the new context is created in the correct Window
Server even if that Server is not on the same machine as the application process.

The context that DPSCreateContext() creates allocates memory from the default
allocation zone. Also, when there’s difficulty creating the context, DPSCreateContext()
waits up to 60 seconds before raising an exception. If you want to change either of these
parameters, use DPSCreateContextWithTimeoutFromZone(). Its two additional
arguments let you specify the zone for the context to use when allocating context-specific
data and a timeout value in milliseconds.

DPSCreateNonsecureContext() creates a ‘“nonsecure” context in which you can use
PostScript operators that are normally disallowed. The most significant of these are
operators that let you write files.

DPSCreateStreamContext() is similar to DPSCreateContext(), except that the new
context is actually a connection from the client application to a stream. This connection
becomes the current context. PostScript code that the application generates is sent to the
stream rather than to the Window Server. The first argument, stream, is a pointer to an
NXStream structure, as created by NXOpenFile() or NXMapkFile(). The debugging
argument is intended for debugging purposes but is not currently implemented. progEnc
and nameEnc specify the type of program and user-name encodings to be used for output
to the stream. The last argument, errorProc, identifies the procedure that’s called when
errors are generated.

Few programmers will need to call either of these functions directly: The Application Kit
manages contexts for programs based on the Kit. For example, when an application is
launched, its Application object calls DPSCreateContext() to create a context in the
Window Server. Similarly, to print a View the Kit calls DPSCreateStreamContext() to
temporarily redirect PostScript code from the View to a stream.

Each of these functions returns the newly created DPSContext structure.
DPSCreateContext() and DPSCreateContextWithTimeoutFromZone() raise a
dps_err_outOfMemory exception if they encounter difficulty allocating ports or other

resources for the new context. They raise a dps_err_cantConnect exception if they can’t
return a context within the timeout period.

Client Library Functions: DPSCreateContext() 577

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

5-78

RETURN

DPSCreateContextWithTimeoutFromZone() — See DPSCreateContext()
DPSCreateNonsecureContext() — See DPSCreateContext()

DPSCreateStreamContext() — See DPSCreateContext()

DPSDefineUserObject(), DPSUndefineUserObject()
Create a user object
dpsclient/dpsNeXT.h

int DPSDefineUserObject(int index)
void DPSUndefineUserObject(int index)

DPSDefineUserObject() associates index with the PostScript object that’s on the top of
the operand stack, thereby creating a user object (as defined by the PostScript language).
If index is O, the object is assigned the next available index number. The function returns
the new index, which can then be passed to a pswrap-generated function that takes a
user object.

Warning: To avoid coming into conflict with user objects defined by the Client Library or
Application Kit, use DPSDefineUserObject() rather than the PostScript operator
defineuserobject or the single-operator functions DPSdefineuserobject() and
PSdefineuserobject().

DPSUndefineUserObject() removes the association between index and the PostScript
object it refers to, thus destroying the user object. By destroying a user object that’s no
longer needed, you can let the garbage collector reclaim the previously associated
PostScript object.

DPSDefineUserObject(), if successful in assigning an index, returns the index that the
object was assigned. If unsuccessful, it returns 0. :

DPSDiscardEvents() — See DPSGetEvent()

Chapter 5: Display PostScript

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

DPSDoUserPath(), DPSDoUserPathWithMatrix()
Send an encoded PostScript path to the Window Server
dpsclient/dpsNeXT.h

void DPSDoUserPath(void *coords, int numCoords, DPSNumberFormat numType,
unsigned char *ops, int numOps, void *bbox, int action)

void DPSDoUserPathWithMatrix(void *coords, int numCoords,
DPSNumberFormat numType, unsigned char *ops, int numOps, void *bbox, int action,
float matrix[6])

DPSDoUserPath() and DPSDoUserPathWithMatrix() send an encoded user path to the
Window Server and then execute, upon that path, the operator specified by action. The use
of these functions, rather than the analogous step-by-step path construction, is encouraged;
rendering an encoded path is much more efficient than executing the individual PostScript
operators that would otherwise be needed.

An encoded user path consists of an array of coordinate values, a sequence of PostScript
operators, and a bounding box specification. The values in the coordinate array are used as
operands to the operators; the operands are distributed to the operators in the order that
they’re given. The resulting path must fit within the bounding box.

The coordinates, operators, and bounding box are given by the functions’ first five
arguments:

* The array of coordinate values is given by coords.
* numCoords is the number of elements in coords.

* numType specifies the data type of the coordinates, as described below. All the values
in coords must be of the same type.

* ops is the sequence of PostScript operators, represented by constants as listed below.

* The bounding box is defined by the four coordinate values that you pass as an array in
the bbox argument. These are passed as operands to the setbbox operator. (If you don’t
supply a setbbox as part of the ops sequence, one is inserted for you.)

Client Library Functions: DPSDoUserPath() 5-19

The following integer constants represent the data types that you can pass as the
numType argument:

Constant Meaning

dps_float single-precision floating-point number
dps_long 32-bit integer

dps_short 8-bit integer

You can also specify 16- and 32-bit fixed-point real numbers. For 16-bit fixed-point
numbers, use dps_short plus the number of bits in the fractional portion. For 32-bit
fixed-point numbers, use dps_long plus the number of bits in the fractional portion.

These constants are provided for ops:

dps_setbbox
dps_moveto
dps_rmoveto
dps_lineto
dps_rlineto
dps_curveto
dps_rcurveto
dps_arc
dps_arcn
dps_arct
dps_closepath
dps_ucache

Once the user path has been constructed, the operator specified by action is executed. The
value of action is an index into Display PostScript’s encoded system names; the following
constants, provided as a convenience, represent the most commonly used actions:

dps_uappend
dps_ufill
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill
dps_inueofill
dps_inustroke
dps_def
dps_put

5-80 Chapter 5: Display PostScript

- SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

DPSDoUserPathWithMatrix()’s matrix argument represents the transformation matrix
operand used by the ustroke, inustroke, and ustrokepath operators. If matrix is NULL,
the argument is ignored.

The following program fragment demonstrates the use of DPSDoUserPath() as it creates
and strokes a user path (an isosceles triangle) within a bounding rectangle whose lower left
corner is located at (0, 0) and whose width and height are 200.

short coords(6] = {0, 0, 200, 0, 100, 200};

char ops[4] = {dps_moveto, dps_lineto,dps_lineto,
dps_closepath};

short bbox[4] = {0, 0, 200, 200};

DPSDoUserPath (coords, 6, dps_short, ops, 4, bbox, dps_ustroke);

DPSDoUserPathWithMatrix() — See DPSDoUserPath()

DPSFlush(), DPSSendEOF()
Send PostScript data to the Window Server
dpsclient/dpsNeXT.h

void DPSFlush()
void DPSSendEOF(DPSContext context)

DPSFlush() flushes the application’s output buffer, forcing any buffered PostScript code or
data to the Window Server.

DPSSendEOF() sends a PostScript end-of-file marker to the given context. The
connection to the context isn’t closed or disturbed in any way by this function.

Client Library Functions: DPSDoUserPathWithMatrix() 5-81

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

DPSGetEvent(), DPSPeekEvent(), DPSDiscardEvents()

Access events from the Window Server
dpsclient/dpsNeXT.h

int DPSGetEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

int DPSPeekEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

void DPSDiscardEvents(DPSContext context, int mask)

DPSGetEvent() and DPSPeekEvent() are macros that access event records in an
application’s event queue. These routines are provided primarily for programs that don’t
use the Application Kit. An application based on the Kit should use the corresponding
Application class methods (such as getNextEvent: and peekNextEvent:into:) or the
function NXGetOrPeekEvent() so that it can be journaled. DPSDiscardEvents()
removes all event records of a specified type from the queue.

DPSGetEvent() and DPSPeekEvent() differ only in how they treat the accessed event
record. DPSGetEvent() removes the record from the queue after making its data available
to the application; DPSPeekEvent() leaves the record in the queue.

DPSGetEvent() and DPSPeekEvent() take the same parameters. The first, context,
represents a PostScript execution context within the Window Server. Virtually all
applications have only one execution context, which can be returned using
DPSGetCurrentContext(). Applications having more than one execution context can use
the constant DPS_ALLCONTEXTS to access events from all contexts belonging to them.

The second argument, anEvent, is a pointer to an event record. If DPSGetEvent() or
DPSPeekEvent() is successful in accessing an event record, the record’s data is copied into
the storage referred to by anEvent.

mask determines the types of events sought. See the section “Types and Constants” for a
list of the constants that represent the event type masks. To check for more than one type
of event, you combine individual constants using the bitwise OR operator.

If an event matching the event mask isn’t available in the queue, DPSGetEvent() or
DPSPeekEvent() waits until one arrives or until rimeout seconds have elapsed, whichever
occurs first. The value of timeout can be in the range of 0.0 to NX_FOREVER. If timeout

5-82 Chapter 5: Display PostScript

RETURN

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

is 0.0, the routine returns an event only if one is waiting in the queue when the routine asks
for it. If timeout is NX_ FOREVER, the routine waits until an appropriate event arrives
before returning.

The last argument, threshold, is an integer in the range 0 through 31 that determines which
other services may be provided during a call to DPSGetEvent() or DPSPeekEvent().

Requests for services are registered by the functions DPSAddTimedEntry(),
DPSAddPort(), and DPSAdAFD(). Each of these functions takes an argument specifying
a priority level. If this level is equal to or greater than threshold, the service is provided
before DPSGetEvent() or DPSPeekEvent() returns.

DPSDiscardEvents()’s two parameters, context and mask, are the same as those for
DPSGetEvent() and DPSPeekEvent(). DPSDiscardEvents() removes from the
application’s event queue those records whose event types match mask and whose context
matches context.

DPSGetEvent() and DPSPeekEvent() return 1 if they are successful in accessing an event
record and O if they aren’t.

DPSAddAFD(), DPSAddPort(), DPSAddTimedEntry(), DPSPostEvent(),
NXGetOrPeekEvent()

DPSinterruptContext()

Warning: This function is unimplemented in the NeXTSTEP version of the Client Library.

DPSNameFromTypeAndindex()
Access the system and user name tables
dpsclient/dpsNeXT.h

const char *DPSNameFromTypeAndIndex(short type, int index)

Client Library Functions: DPSInterruptContext() 5-83

DESCRIPTION

RETURN

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

5-84

RETURN

SEE ALSO

DPSNameFromTypeAndIndex() returns the text associated with index from the
system or user name table. If fype is —1, the text is returned from the system name table;
if type is 0, it’s returned from the user name table.

The name tables are used primarily by the Client Library and pswrap; few programmers
will access them directly.

This function returns a read-only character string.

DPSPeekEvent() — See DPSGetEvent()

DPSPostEvent()

Create an event

dpsclient/dpsNeXT.h

int DPSPostEvent(NXEvent *anEvent, int atStart)

DPSPostEvent() lets you add an event record to your application’s event queue without
involving the Window Server. anEvent is a pointer to the event record to be added. atStart
specifies where the new record will be placed in relation to any other records in the queue.
If atStart is TRUE, the event is posted in front of all others and so will be the next one your
application receives. If atStartis FALSE, the event is posted behind all others and so won’t
be returned until events that precede it are processed.

You can free, reuse, or otherwise mangle anEvent after you’ve posted it without fear of
corrupting the posted record. DPSEvent() copies the record it receives and posts the copy.

Note that event records you post using DPSPostEvent() aren’t filtered by an event filter
function set with DPSSetEventFunc().

DPSPostEvent() returns O if successful in posting the event record; it returns —1 if
unsuccessful in posting the record because the event queue is full.

DPSSetEventFunc()

Chapter 5: Display PostScript

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

DPSPrintError(), DPSPrintErrorToStream()

Print error messages
dpsclient/dpsNeXT.h

void DPSPrintError(FILE *fp, const DPSBinObjSeq error)
void DPSPrintErrorToStream(NXStream *stream, const DPSBinObjSeq error)

DPSPrintError() and DPSPrintErrorToStream() format and print error messages
received from a PostScript execution context in the Window Server. The error message is
extracted from the binary object sequence error. DPSPrintError() prints the error
message to the file identified by fp; DPSPrintErrorToStream() prints the error message
to stream.

You rarely need to call these functions directly. However, if you reset the error handler for
a PostScript execution context, the new handler you install could use one of these functions
to process errors that it receives.

DPSPrintErrorToStream() — See DPSPrintError()
DPSRemoveFD() — See DPSAddFD()
DPSRemovePort() — See DPSAddPort()
DPSRemoveTimedEntry() — See DPSAddTimedEntry()

DPSResetContext()

Warning: This function is unimplemented in the NeXTSTEP version of the Client Library.

DPSSendEOF() — See DPSFlush()

Client Library Functions: DPSPrintError() 5-85

DPSSetDeadKeysEnabled()

SUMMARY Allow dead key processing for a context’s events
DECLARED IN dpsclient/dpsNeXT.h
sYNopsts void DPSSetDeadKeysEnabled(DPSContext context, int flag)

DESCRIPTION DPSSetDeadKeysEnabled() turns dead key processing on or off for contexr. If flag is 0,
dead key processing is turned off; otherwise, it’s turned on (the default).

Dead key processing is a technique for extending the range of characters that can be entered
from the keyboard. In NeXTSTEP, it provides one way for users to enter accented
characters. For example, a user can type Alternate-e followed by the letter “e” to produce
the letter “€ ”. The first keyboard input, Alternate-e, seems to have no efect—it’s the “dead
key ”. However it signals Client Library routines that it and the following character should
be analyzed as a pair. If, within NeXTSTEP, the pair of characters has been associated with
a third character, a keyboard event record representing the third character is placed in the
application’s event queue, and the first two event records are discarded. If there is no such
association between the two characters, the two event records are added to the event queue.

See the NeXT User’s Reference manual for a listing of the keys that produce accent
characters.

DPSSetEventFunc()

SUMMARY Set the function that filters events
DECLARED IN dpsclient/dpsNeXT.h

sYNopsis DPSEventFilterFunc DPSSetEventFunc(DPSContext context, DPSEventFilterFunc func)

5-86 Chapter 5: Display PostScript

DESCRIPTION

RETURN

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

DPSSetEventFunc() establishes the function func as the function to be called when an
event record is returned from the PostScript context context in the Window Server. The
registered function is called before the event record is put in the event queue. If the
registered function returns 0, the record is discarded. If the registered function returns 1,
the record is passed on for further processing.

Only event records coming from the Window Server are filtered by the registered function.
Records that you post to the event queue using DPSPostEvent() aren’t affected.

A DPSEventFilterFunc function takes the following form:

int *func(NXEvent *anEvent)

DPSSetEventFunc() returns a pointer to the previously registered event function. This lets
you chain together the current and previous event functions.

DPSPostEvent()

DPSSetTracking()

Coalesce mouse events
dpsclient/dpsNeXT.h

int DPSSetTracking(int flag)

DPSSetTracking() turns mouse event-coalescing on or off for the current context. If flag
is 0, coalescing is turned off; otherwise, it’s turned on (the default).

Event coalescing is an optimization that’s useful when tracking the mouse. When the
mouse is moved, numerous events flow into the event queue. To reduce the number of
events awaiting removal by the application, adjacent mouse-moved events are replaced by
the most recent event of the contiguous group. The same is done for left and right
mouse-dragged events, with the addition that a mouse-up event replaces mouse-dragged
events that come before it in the queue.

DPSSetTracking() returns the previous state of the event-coalescing switch.

Client Library Functions: DPSSetTracking() 5-87

DPSStartWaitCursorTimer()

SUMMARY Initiate a count down for the wait cursor
DECLARED IN dpsclient/dpsNeXT.h
sYNoOPsIS void DPSStartWaitCursorTimer()

DESCRIPTION DPSStartWaitCursorTimer() triggers the mechanism that displays a wait cursor when an
application is busy and can’t respond to user input. In most cases, wait cursor support is
automatic: You’ll only need to call this function if your application starts a time-consuming
operation that’s not initiated by a user-generated event.

Client Library routines and the Window Server cooperate to display the wait cursor
whenever more than a preset amount of time elapses between the time an application takes
an event record from the event queue and the time the application is again ready to consume
events. However, when an application starts an operation that isn’t initiated by an event—
such as one caused by receiving a Mach message or by processing data from a file (see
DPSAddPort() and DPSAddFD())—the wait cursor mechanism is bypassed. To ensure
proper wait cursor behavior in these cases, call DPSStartWaitCursorTimer() before
beginning the time-consuming operation.

SEE ALsO DPSAddFD(), DPSAddPort(), setwaitcursorenabled

DPSSynchronizeContext()
SUMMARY Synchronize a context with your application
DECLARED IN dpsclient/dpsNeXT.h
synopsis int DPSSynchronizeContext(DPSContext context, int flag)

DESCRIPTION DPSSynchronizeContext() causes DPSWaitContext() to be called after each pswrap
function is called, thus synchronizing the PostScript context with your application.

5-88 Chaprer 5: Display PostScript

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

DPSTraceContext(), DPSTraceEvents()
Trace data and events
dpsclient/dpsNeXT.h

int DPSTraceContext(DPSContext context, int flag)
void DPSTraceEvents(DPSContext context, int flag)

DPSTraceContext() and DPSTraceEvents() control the tracing of data and events
between a PostScript execution context (or contexts) in the Window Server and an
application process.

The first argument for both functions, context, specifies the context to be traced. An
application’s single context can be returned with DPSGetCurrentContext(). Applications
having more than one execution context can use the constant DPS_ALLCONTEXTS to
trace all contexts belonging to them.

The second argument, flag, determines whether tracing is enabled.

When data tracing is enabled (DPSTraceContext()), a copy of the PostScript code
generated by an application and the values returned to it by the Window Server is
sent to UNIX standard error. Values returned to the application are marked by the
prepended string:

[}

% value returned ==>

When event tracing is enabled (DPSTraceEvents()), information about each event that the
application receives is sent to UNIX standard error. For example, for a left mouse-down
event the listing might look like this:

Receiving: LMouseDown at: 343.0,69.0 time: 1271899
flags: 0x0 win: 6 ctxt: 76128 data: 1111,1

The listing displays the fields of the event record: type, location, time, flags, local window
number, PostScript execution context, and data. The contents of the data field listing
depends on the event type; for instance, in the preceding example the event number and the
click count were displayed.

Client Library Functions: DPSTraceContext() 5-89

RETURN

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

For applications based on the Application Kit, there are two preferable methods for turning
on data tracing: You can use the NXShowPS command-line switch when you launch an
application from Terminal. Alternatively, when you run the application under GDB, you
can use the showps and shownops commands to control tracing output. Similarly, there
are more convenient ways to turn on event tracing: You can use the NXTraceEvents
command-line switch when you launch an application from Terminal. Alternatively, when
you run the application under GDB, you can use the traceevents and tracenoevents
commands to control event-tracing output.

Only one tracing context can be created for the supplied context. If you attempt to create
additional tracing contexts for a context that’s already being traced, no new context is
created and DPSTraceContext() returns —1.

DPSTraceContext() returns 0 if successful in creating a tracing context, or —1 if not.

DPSTraceEvents() — See DPSTraceContext()
DPSUndefineUserObject() —» See DPSDefineUserObject()

NX_EVENTCODEMASK()

Generate an event mask for an event type
dpsclient/event.h

int NX_EVENTCODEMASK(int type)

This handy utility macro returns an event mask that corresponds to the given (single)
event type.

5-90 Chapter 5: Display PostScript

Types and Constants

The types and constants given in this section are used by the Display PostScript language.
The scope and significance of a particular item depends on the file in which it’s declared:

* dpsclient.h defines types and constants that are common to all implementations of the
Display PostScript language.

* dpsfriends.h defines types and constants that may vary in different implementations of
the language. Documented here are only those elements that, as implemented in
NeXTSTEDP, are different from the implementation supplied by Adobe.

* dpsNeXT.h defines types and constants that are unique to the NeXTSTEP
implementation of the Display PostScript language.

5-92 Chapter 5: Display PostScript

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

Defined Types

DPSContextRec
dpsclient/dpsfriends.h

typedef struct _t_DPSContextRec {
char *priv;
DPSSpace space;
DPSProgramEncoding programEncoding;
DPSNameEncoding nameEncoding;
struct _t_ DPSProcsRec const * procs;
void (*textProc)();
void (*errorProc)();
DPSResults resultTable;
unsigned int resultTableLength;
struct _t_ DPSContextRec *chainParent, *chainChild;
DPSContextType type;

} DPSContextRec, *DPSContext;

The DPSContextRec structure represents a Display PostScript context.

DPSContextType
dpsclient/dpsfriends.h

typedef enum {
dps_machServer,
dps_fdServer,
dps_stream

} DPSContextType;

These represent the context types supported by NeXT’s version of Display PostScript, as
used in the type field of a DPSContextRec structure.

Types and Constants: DPSContextRec 5-93

DPSErrorCode
DECLARED IN dpsclient/dpsclient.h

sYNoPsIs typedef enum _DPSErrorCode {
dps_err_ps = DPS_ERROR_BASE,
dps_err_nameTooLong,
dps_err_resultTagCheck,
dps_err_resultTypeCheck,
dps_err_invalidContext,
dps_err_select = DPS_NEXT_ERROR_BASE,
dps_err_connectionClosed,
dps_err_read,
dps_err_write,
dps_err_invalidFD,
dps_err_invalidTE,
dps_err_invalidPort,
dps_err_outOfMemory,
dps_err_cantConnect

} DPSErrorCode;

DESCRIPTION Error codes passed to a DPSErrorProc() function.

DPSEventFilterFunc
DECLARED IN dpsclient/dpsNeXT.h
syNopsis typedef int (*DPSEventFilterFunc)(NXEvent *ev);

DESCRIPTION Call-back function used to filter events.

5-94 Chapter 5: Display PostScript

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

DPSFDProc

dpsclient/dpsNeXT.h

typedef void (*DPSFDProc)(int fd, void *userData);

Call-back function used when a file descriptor is registered through DPSAddFD().

DPSNumberFormat
dpsclient/dpsNeXT.h

typedef enum _DPSNumberFormat {
#ifdef __ BIG_ENDIAN_ _
dps_float = 48,
dps_long =0,
dps_short = 32
#else
dps_float = 48+128,
dps_long = 0+128,
dps_short = 32+128
} DPSNumberFormat;

These constants are used by the DPSDoUserPath() function to describe the type of

numbers that are being passed.

Types and Gonstants: DPSFDProc

5-95

DPSPingProc
DECLARED IN dpsclient/dpsNeXT.h

syNnopsis typedef void (*DPSPingProc)
(DPSContext ctxt,
void *userData);

DESCRIPTION Call-back function used by DPSAsynchronousWaitContext().

DPSPortProc
DECLARED IN dpsclient/dpsNeXT.h
sYNopsis typedef void (*DPSPortProc)
(msg_header_t *msg,

void *userData);

DESCRIPTION Call-back function used when a port is registered through DPSAddPort().

DPSTimedEntry
DECLARED IN dpsclient/dpsNeXT.h
synopsis typedef struct __DPSTimedEntry *DPSTimedEntry;

DESCRIPTION The retumn type for DPSAddTimedEntry().

5-96 Chapter 5: Display PostScript

DPSTimedEntryProc
DECLARED IN dpsclient/dpsNeXT.h
sYNopPsIs typedef void (*DPSTimedEntryProc)
(DPSTimedEntry timedEntry,

double now,
void *userData),

DESCRIPTION Call-back function used when a timed entry is registered through DPSAddTimedEntry().

DPSUserPathAction
DECLARED IN = dpsclient/dpsNeXT.h

sYNopsiS typedef enum _DPSUserPathAction {

dps_uappend,
dps_ufill,
dps_ueofill,
dps_ustroke,
dps_ustrokepath,
dps_inufill,
dps_inueofill,
dps_inustroke,
dps_def,
dps_put

} DPSUserPathAction;

DESCRIPTION These constants are convenient representations of some of the PostScript operator indices,
suitable for enroliment in the action array passed to DPSDoUserPath().

Types and Constants: DPSTimedEntryProc ~ 5-97

DPSUserPathOp
DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef enum _DPSUserPathOp {
dps_setbbox,
dps_moveto,
dps_rmoveto,
dps_lineto,
dps_rlineto,
dps_curveto,
dps_rcurveto,
dps_arc,
dps_arcn,
dps_arct,
dps_closepath,
dps_ucache

} DPSUserPathOp;

DESCRIPTION These constants represent the PostScript operators that can be passed in
DPSDoUserPath()’s operator array.

NXCoord

DECLARED IN dpsclient/event.h
sYNoPsIs typedef float NXCoord

DESCRIPTION Used to represent a single coordinate in a Cartesian coordinate system.

5-98 Chapter 5: Display PostScript

NXEvent

DECLARED IN dpsclient/event.h

sYNopsis typedef struct _NXEvent {
int type;
NXPoint location;
long time;
int flags;
unsigned int window;
NXEventData data;
DPSContext ctxt;

} NXEvent, *NXEventPtr;

DESCRIPTION Represents a single event; this structure is also known as the event record. The fields are:

~ type The type of event (see “Event Types,” below)
location The event’s location in the base coordinate system of its window
time The time of the event (in hardware-dependent units) since system startup
flags Mouse-button and modifier-key flags (see “Event Flags,” below)
window The window number of the window associated with the event
data Additional type-specific data (see “NXEventData,” below)
ctxt The PostScript context of the event

Types and Constants: NXEvent 5-99

NXEventData

DECLARED IN dpsclient/event.h

SYNOPSIS typedef union {
struct {
short eventNum,;
int click;
unsigned char pressure;
} mouse;
struct {
short repeat;
unsigned short charSet;
unsigned short charCode;
unsigned short keyCode;
short keyData;
} key;
struct {
short eventNum;
int trackingNum;
int userData;
} tracking;
struct {
short subtype;
union {
float F[2];
long L[2];
short S[4];
char C[8];
} misc;
} compound;
} NXEventData;

DESCRIPTION This structure supplies type-specific information for an event. It’s a union of four
structures, where the type of the event determines which structure is pertinent:

* mouse is used for mouse events.

¢ Kkey is used for keyboard events.

» tracking is for tracking-rectangle events.

* compound is for system-, kit-, and application-defined events.

5-100 Chapter 5: Display PostScript

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

NXPoint
dpsclient/event.h

typedef struct _NXPoint {
NXCoord x;
NXCoord y;

} NXPoint;

Represents a point in a Cartesian coordinate system.

NXSize
dpsclient/event.h

typedef struct _NXSize {
NXCoord width;
NXCoord height;
} NXSize;

Represents a two-dimensional size.

Types and Constants: NXPoint 5-101

Symbolic Constants

All Contexts

DECLARED IN dpsclient/dpsNeXT.h
synopsis DPS_ALLCONTEXTS

DESCRIPTION This constant represents all extant contexts.

Alpha Constants
DECLARED IN dpsclient/dpsNeXT.h

sYNOPSIS NX_DATA
NX_ONES

DESCRIPTION These constants represent alpha values.

Character Set Values
DECLARED IN dpsclient/event.h

sYNoOPSIS NX_ASCIISET
NX_SYMBOLSET
NX_DINGBATSSET

DESCRIPTION These constants represent the values that may occur in the data.key.charSet field of an
NXEvent structure.

5-102 Chapter 5: Display PostScript

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

Compositing Operations
dpsclient/dpsNeXT.h

NX_CLEAR
NX_COPY
NX_SOVER
NX_SIN
NX_SOUT
NX_SATOP
NX_DOVER
NX_DIN
NX_DOUT
NX_DATOP
NX_XOR
NX_PLUSD
NX_HIGHLIGHT
NX_PLUSL

These represent the compositing operations used by PScomposite() and the

NXImage class.

Error Code Bases

dpsclient/dpsclient.h

DPS_ERROR_BASE
DPS_NEXT_ERROR_BASE

These constants represent the lowest values for Display PostScript error codes.

Types and Constants: Compositing Operations

5-103

Event Types

DECLARED IN dpsclient/event.h

SYNOPSIS Type
NX_NULLEVENT

NX_LMOUSEDOWN
NX_LMOUSEUP
NX_LMOUSEDRAGGED

NX_MOUSEDOWN
NX_MOUSEUP
NX_MOUSEDRAGGED

NX_RMOUSEDOWN
NX_RMOUSEUP
NX_RMOUSEDRAGGED

NX_MOUSEMOVED
NX_MOUSEENTERED
NX_MOUSEEXITED
NX_KEYDOWN
NX_KEYUP
NX_FLAGSCHANGED

NX_KITDEFINED
NX_SYSDEFINED
NX_APPDEFINED

NX_TIMER
NX_CURSORUPDATE
NX_JOURNALEVENT

NX_FIRSTEVENT
NX_LASTEVENT
NX_ALLEVENTS

DESCRIPTION

Meaning
A non-event

Left mouse-down
Left mouse-up
left mouse-dragged

Same as NX_LMOUSEDOWN
Same as NX_LMOUSEUP
Same as NX_LMOUSEDRAGGED

Right mouse-down
Right mouse-up
Right mouse-dragged

Mouse-moved
Mouse-entered
Mouse-exited
Key-down
Key-up event
Flags-changed

Application Kit-defined
System-defined
Application-defined

Timer used for tracking
Cursor tracking
Event used by journaling

The smallest-valued event constant
The greatest-valued event constant
A value that includes all event types

These constants represent event types. They’re passed as the type field of the NXEvent

structure that’s created when an event occurs.

5-104 Chapter 5: Display PostScript

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

Event Type Masks

dpsclient/event.h

NX_NULLEVENTMASK
NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_KITDEFINEDMASK
NX_APPDEFINEDMASK
NX_SYSDEFINEDMASK
NX_TIMERMASK
NX_CURSORUPDATEMASK
NX_MOUSEDOWNMASK
NX_MOUSEUPMASK
NX_MOUSEDRAGGEDMASK
NX_JOURNALEVENTMASK

These masks correspond to the event types defined immediately above. They let you query
the type field of an NXEvent structure for the existence of a particular event type.

Forever
dpsclient/dpsNeXT.h

NX_FOREVER

A long, long time. Typically used as the timeout argument to DPSGetEvent().

Types and Constants: Event Type Masks

5-105

Keyboard State Flags Masks

structure’s flags mask.

5-106 Chapter 5: Display PostScript

" DECLAREDIN dpsclient/event.h

SYNOPSIS Type Meaning
NX_ALPHASHIFTMASK Shift lock
NX_SHIFTMASK Shift key
NX_CONTROLMASK Control key
NX_ALTERNATEMASK Alt key
NX_COMMANDMASK Command key
NX_NUMERICPADMASK Number pad key
NX_HELPMASK Help key
NX_NEXTCTRLKEYMASK Control key
NX_NEXTLSHIFTKEYMASK Left shift key
NX_NEXTRSHIFTKEYMASK Right shift key
NX_NEXTLCMDKEYMASK Left command key
NX_NEXTRCMDKEYMASK Right command key
NX_NEXTLALTKEYMASK Left alt key
NX_NEXTRALTKEYMASK Right alt key

" DESCRIPTION These masks correspond to keyboard states that might be included in an NXEvent
structure’s flags mask. The masks are grouped as device-independent
(NX_ALPHASHIFTMASK through NX_HEILPMASK) and device-dependent
(all others).
Miscellaneous Event Flags Masks
DECLARED IN dpsclient/event.h

SYNOPSIS Type Meaning
NX_STYLUSPROXIMITYMASK Stylus is in proximity (for tablets)
NX_NONCOALSESCEDMASK Event coalescing disabled

DESCRIPTION These masks correspond to miscellaneous states that might be included in an NXEvent

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

Window Backing Types

dpsclient/dpsNeXT.h

NX_RETAINED
NX_NONRETAINED
NX_BUFFERED

These represent the three backing types provided by window devices (and used by the

Application Kit’s Window objects).

Window Screen List Placement
dpsclient/dpsNeXT.h

NX_ABOVE
NX_BELOW
NX_OUT

These represent the placement of a window device in the screen list.

Types and Constants: Window Backing Types

5-107

5-108

Distributed Obyects

6-4

6-10
6-12
6-12
6-13
6-13
6-14
6-15
6-16
6-16
6-17
6-17
6-17
6-18

Introduction
Terminology
Making an Object Available
Establishing a Connection
Sending Data Between Applications
Structures
Pointers to Data
Memory Allocation
Types That Don’t Work
Sharing Objects
Reference Counting
Object Copies vs. Proxies
Determining the Object to Encode
Moving an Object Between Applications
Asynchronous Messages
Robust Usage
Application Deaths
Exceptions
Memory Leaks
Using Protocols for Efficiency
Restricting Messages
Security
Multithreaded Applications
Relationship to Speaker/Listener

6-1

6-2

6-19
6-20
6-34
6-38

6-41
6-42
6-44
6-46

6-49
6-50
6-51

Classes
NXConnection
NXProxy

Object Additions

Protocols

NXDecoding
NXEncoding
NXTransport

Types and Constants
Defined Types
Symbolic Constants

6

Distributed Obyects

Library: libsys_s.a
Header File Directory: /NextDeveloper/Headers/remote
Introduction

The Distributed Objects system provides a relatively simple way for applications to
communicate with one another by allowing them to share Objective C objects, even
amongst applications running on different machines across a network. They are useful for
implementing client-server and cooperative applications. The Distributed Objects system
subsumes the network aspects of typical remote procedure call (RPC) programming, and
allow an application to send messages to remote objects using ordinary Objective C syntax.

The Distributed Objects system takes the form of two classes, NXConnection and
NXProxy. NXConnection objects are primarily bookkeepers that manage resources passed
between applications. NXProxy objects are local objects that represent remote objects.
When a remote object is passed to your application, it is passed in the form of a proxy that
stands in for the remote object; messages to the proxy are forwarded to the remote object,
so for most intents and purposes the proxy can be treated as though it were the object itself.
Note that direct access to instance variables of the remote object isn’t available through the

Proxy.

Distributed Objects 6-3

6-4

Terminology

In this document, the terms “server” and “client” are used loosely. Whenever an object in
an application is returned to a remote application, the object effectively becomes a server,
capable of responding to remote messages. For this document, “client” refers to the object
originating a remote message, and “server” refers the remote object responding to the
message. For example, if a database server sends a remote message to a database client,
from the perspective of the Distributed Objects system the database server is the client of
the message.

Making an Object Available

The Distributed Objects system allows an application to send a message to an object that
exists in another application. The message may include most data types (including objects)
as arguments, and it may return most data types, again including objects. Clearly, no
messages can be sent to a remote application until the local application has gotten a proxy
to some object in the remote application. Therefore, in order to bootstrap the
communication process, one or more objects must be made available by name using the
Network Name Server. Such an object is known as a root object, and is available to any
application that knows the registered name of the object. While it is possible to have
multiple objects available by name, it is also common to have just one, and to get additional
proxies to remote objects in response to messages (to both the root object and objects
returned by the root object).

Here is a simple example that shows how to make an instance of the MyServer class
available to other applications: ’

id myServer = [[MyServer alloc] init];
id myConnection = [NXConnection registerRoot: myServer
withName: "exampleServer"];

[myConnection run];

The first line creates myServer, the object that is to be made available to other applications.
The next line registers myServer as a root object, available to any application that asks for
the object named “exampleServer”. This method returns an NXConnection object that will
dispatch messages sent from remote objects and track resources (such as objects) vended
to connecting applications. The last line tells the connection object to begin its process of
waiting for messages and dispatching them to the proper receivers. The run method shown
doesn’t return, but there are variations that run the connection concurrently in another
thread or pseudo-concurrently from the DPS client routines that dispatch events.

Chapter 6: Distributed Objects

Establishing a Connection

In the example above, an instance of MyServer is made available under the name
“exampleServer”. Another application can get a proxy to the object like this:

id server = [NXConnection connectToName:"exampleServer"];

When this message is sent, a connection to the application that registered the MyServer
object is established. The returned object, server, is a proxy to the remote MyServer object.
Because server forwards messages across the connection to the MyServer object, it can
generally be treated as though it were that object.

Connections may also be formed automatically when proxies are passed between
applications. For example, imagine that two client objects (call them client A and client B)
have connected to a server object. If client B sends its id to the server, the server gets a
proxy to client B. If client A then asks the server to return client B, the server does this
by returning client B, which is actually its proxy. However, client A doesn’t receive a
proxy to the server’s proxy. Instead, a new connection is established between client A and
client B, and client A receives its own direct proxy (over the new connection) to client B.

Sending Data Between Applications

The Distributed Objects system can use most data types as message arguments or return
values. Here are some examples:

[server aSimpleMessagel]; // no parameters

[server useAnInteger: 12]; // simple scalars

[server useAnIntByReference: &i]; // sending a pointer

[server useAString:"hello"]; // sending a string

[server useAnId: self]; // send an arbitrary local object
[server useAnotherId: server]; // send back the shared object!

In both the useAnIntByReference: and useAString: methods, a pointer is automatically
dereferenced on the client side, and the resulting data is sent to the server. On the server
side, space for the data is allocated, and a pointer to the local data is received. The server’s
allocated copy of the data is local in scope and will be freed by the system when the server’s
method returns.

In the useAnld: method, the server is passed an id to a local object, and the server receives
aproxy to that object. In the useAnotherId: method, the server is passed the client’s proxy
to the server. The Distributed Objects system makes sure that the correct object is returned;
in this case the server receives the local id for itself rather than a proxy.

Introduction 6-5

6-6

The Distributed Objects system allows callbacks in the midst of a method implementation.
For example, the server can send a message back to the client in the midst of its useAnld:
implementation. Such a callback doesn’t deadlock, and can be useful, but its ramifications
must be carefully considered. Methods in the client can be invoked by the server before
the client’s invocation of the useAnld: method returns.

Structures

The Distributed Objects system can utilize structures for both message arguments and as
return values, but there are some important limitations. The following example
demonstrates that complex structures can be passed as arguments in remote messages:

typedef struct {
char aChar;
int anInt;
unsigned int bitfield:3;
enum { red, green, blue } color;
id anObject;
char *aString;
int arrayl[2];
} exampleStruct;
exampleStruct e = {'a',9,5,green,nil, "Hello", {42,17}};

[server useStructByValue:e];
[server useStructByReference:&e];

In general, a structure to be used as a parameter for a remote message can’t contain pointers.
Pointers are only valid in one address space, so the Distributed Objects system would have
to reconstruct the pointer’s data on the remote end. The system can’t know how deep to
recurse when dereferencing pointers, so it implements the simple case and doesn’t
dereference pointers to most types, with two exceptions. Structures can contain pointers to
objects (ids) and pointers to character strings. At the time a remote message is sent, these
pointers must point to valid data or they must be null pointers, since the system may need
to send the pointer’s data across the connection in order to yield a valid pointer on the
remote side.

Structures can be passed both by value and by reference. In the current implementation,
however, structures can only be returned by reference. In other words, a remote method
can’t return a structure, but it can return a pointer to a structure. If a method returns a
structure by reference, memory for the structure is allocated on the caller’s side, and the
caller is responsible for freeing this memory.

Chapter 6: Distributed Objects

Pointers to Data

The Distributed Objects system can send data by reference as well as by value. Pointers
used in remote messages must point to valid data or be null, since they may need to be
dereferenced. By default, when you send most data types by reference, the data is copied
across the connection so the server can receive a valid local pointer. The data then may or
may not be modified, and is copied back across the connection so the client gets any
modifications to the data. Needless copying of data is not efficient, so the Distributed
Objects system adds three new Objective C keywords to determine how data passed by
reference should be copied. The keywords are in, out, and inout. In arguments are copied
from the client to the server, but not copied back. Out arguments are not sent the server,
but are copied back to the client, presumably because the server filled in a value. Inout
arguments are copied in both directions. By default, const pointer arguments are treated as
in parameters, and all other pointer arguments are treated as inout. Here are some example
definitions showing directionality of arguments:

- sendAnInt: (in int *)p;
- receiveAnInt: (out int *)p;
- sendAndReceiveAnInt: (inout int *)p;

The system can’t tell whether a pointer points to a single data item or to an array; it assumes
all char pointers point to null-terminated strings and that all other pointers point to single
data elements. If you have arrays that must be passed by reference, you might consider
encapsulating the data in a custom object or using a subclass of NXData.

Memory Allocation

When you send in or inout pointer parameters to the server, the system must allocate space
for the data on the server side (so that it can supply a pointer valid in the server’s address
space). This memory is owned by the system and is local to the scope of the server’s
method; it is freed automatically when the server’s method returns.

The Distributed Objects system can allocate client memory for string and structure
parameters. To return strings or structures in this manner, you must pass a pointer to a char
pointer or a pointer to a structure, so that the system can allocate the memory and make the
pointer point to it. If the system allocates memory to return data to the client, the client is
responsible for freeing this memory. You must be careful about returning data in this
manner, because you receive a pointer to an allocated copy of the data if you send the
message to a remote object (through a proxy) but you receive a pointer to the data itself (as
with ordinary Objective C) if you send the message to a local object. Here is an example

Introduction 6-7

6-8

that gets a string by sending a char pointer by reference, and then frees the string only if it
sent the message to a remote object:

char *cp;

[anObject getString:&cp];

printf ("The string is %s",cp);

if ([anObject isProxy]) free(cp):;

The Distributed Objects system also allocates memory in the client’s address space in order
to return a pointer to a structure as a method return value. Again, the client is responsible
for freeing this memory.

Types That Don’t Work

The Distributed Objects system can’t send the following data types:

* Unions—The Distributed Objects system can’t distinguish how to correctly encode the
data to send it to the server.

» void *—This is a generic pointer, and the system can’t correctly dereference it and
encode the data.

» Pointers in structures, other than those of type char * and id.

In addition, remote methods can’t return data of type double or struct (though pointers to
structures work). These limitations may be lifted in future implementations.

Sharing Objects

The most important data type that the Distributed Objects system can use in messages,
both as arguments and as return values, is id. Objects are usually passed around as
proxies, which forward messages to their corresponding real objects and thus appear to
be those objects.

Proxies (instances of the NXProxy class) are created automatically when an object is
returned to a remote application. To give a client access to a remote object, two proxies are
created, one on the server side and one on the client side. The proxy on the server side is
known as a local proxy because it tracks a local resource (an object in the proxy’s
application). A local proxy is used for reference counting by the server’s NXConnection
object, and to send incoming messages to its corresponding real object. Local proxies are
generally hidden from view in the Distributed Objects implementation, and most of their
functionings are uninteresting to application developers. More interesting to developers

Chaprer 6: Distributed Objects

are remote proxies, the objects returned to the client that can generally be treated as though
they were the remote objects themselves. These objects receive messages from the client
directed to the real object and forward the messages across the connection.

Consider the following code in which a client needs to access a server’s list of
Widget objects:

List *alList;

Widget *aWidget;

alList = [server widgetList];
aWwidget = [alist objectAt:0];

In the third line, the server returns its list of widgets to the client. The List object exists in
the server application, and the client gets a proxy to that List object, which is assigned to

aList. In the fourth line, the client sends a message to aList, and the message is forwarded
by the proxy to the actual List object in the server. The List implementation in the server
returns the first Widget object in the list. Again, the Widget object is local to the server, so
the client receives a proxy to the Widget.

The example above demonstrates that it is very easy to have proxies created. This is an
important feature of the Distributed Objects system, but it has performance ramifications
that must be considered. Consider the common case where a method in the server returns
self. The system assumes that you actually intend to return a usable object to the client, so
it will return a proxy for the server to the client. If the client’s connection doesn’t already
have a proxy to the server, one will be created. This may or may not be what you intend.
It makes most sense to return some non-object type (like int) from methods that will be
called remotely, unless the object is really intended to be used. (Returning objects isn’t
horribly expensive, however, and an object is represented by only one proxy on a given
connection, even if it is returned many times.)

Reference Counting

With the Distributed Objects system, it is possible for an object to be shared by several
applications. Since an object may be in use by many applications, a reference counting
‘scheme may be necessary to insure that an object in use doesn’t go away simply because a
single application is done with it and frees it. The NXReference protocol is declared to
allow objects to implement reference counting. Both the NXConnection and NXProxy
classes conform to this protocol in order to know to what extent references are being held.
You may wish to make your shared objects conform to this protocol; NXConnection will
check if your object conforms to the NXReference protocol before it gives away references
to it. If your object conforms to the protocol, a reference is added to the object the first time
the object is seen on a connection. Note that a reference is not added every time an object
is vended, only the first time it is seen on each connection. This works well if the object

Introduction 6-9

6-10

arrives only once per client application. In other cases, you can add areference to an object
every additional time you receive it, and eliminate the reference (by sending it the free
message) every time you are finished with the object.

Object Copies vs. Proxies

While it is often desirable to share an object through the use of proxies, you may
occasionally want to pass a copy of an object rather than a proxy. For example, if you have
an object that doesn’t change over time, it may be more efficient to pass the object by copy
rather than as a proxy; messages to the local copy will require much less overhead than
remote messages over a connection. As another example, if an object will be sent many
messages before it changes, it may be most efficient to send a copy of the object and send
the messages to the copy. This is because sending one large remote message is often more
efficient than sending many small remote messages; the overhead of the messaging process
is typically much higher than the cost of data transmission.

A new keyword, bycopy, has been added to the Objective C language to indicate that an
object passed as a method parameter ought to be copied rather than passed as a proxy. (The
default, without the bycopy keyword, is to pass the object as a proxy.)

In the following method declarations, the first method copies the widget across the
connection; messages to the copy of the widget will be fast, but changes to the original
object will not be reflected in the copy (and vice versa). In the second method, a proxy to
widget is given out. The message overhead for remote messages is higher than for
messages to a local object, but the widget is truly shared by the applications.

- useCopiedWidget: (bycopy in id) widget;
- useSharedWidget: widget;

To copy an object over a connection, the receiving application must have a copy of the
object’s class implementation. This is necessary because the object must be instantiated on
the receiving side. Also, an object that is to be copied over a connection must conform to
the NXTransport protocol; this protocol defines how an object encodes and decodes itself
across a connection. The protocol is as follows:

@protocol NXTransport

- encodeUsing: (id <NXEncoding>)portal;

- decodeUsing: (id <NXDecoding>)portal;

- encodeRemotelyFor: (NXConnection *)connection
freeAfterEncoding: (BOOL *)flagp isBycopy: (BOOL)isBycopy;

@end

Chapter 6: Distributed Objects

When an object is to encode itself, it is sent an encodeUsing: message where the portal
argument is an object that conforms to the NXEncoding protocol and thus knows how to
encode various data types across a connection. To create the copy of the object on the
receiving side, the object is allocated and a decodeUsing: message is sent to it. The newly
allocated object is not initialized, so the decodeUsing: implementation generally should
invoke the object’s designated initializer method. You may occasionally want to substitute
another object instead of using the instance that the Distributed Objects system allocated.
If you return the substitute object instead of self, the substitute object will be used and the
system will free the initially allocated memory.

As an example of copying objects, consider the List class, which implements the
NXTransport protocol to copy a List object across the connection. The objects in the list
are not copied, so the list copy will contain proxies to the objects the real list contains. This
behavior may be necessary, because the contents of the list might not conform to the
NXTransport protocol and therefore might not be able to be copied. However, if you know
the list will only contain objects that conform to the protocol, it may be reasonable to use a
list that can be copied, together with its contents, across a connection. The following
subclass of List demonstrates exactly this, and shows how a newly allocated object is
initialized in the decodeUsing: method:

@implementation FullCopyList
- encodeUsing: (id <NXEncoding>)portal {
int 1, n = [self count];
[portal encodeData:&n ofType:"i"];
for (i = 0; 1 < n; i++)
[portal encodeObjectBycopy: [self objectAt:i]1];
return self;

- decodeUsing: (id <NXDecoding>)portal {
int 1, n;
[portal decodeData:&n ofType:"i"];
[self initCount:n];
for (i = 0; 1 < n; i++)
[self addObject: [portal decodeObject]]:
return self;
}
@end

Iﬂhwa%aQOﬂ 6-11

6-12

Determining the Object to Encode

When an object is to be vended to a remote application, the
encodeRemotelyFor:freeAfterEncoding:isBycopy: method determines what object
gets encoded. The default behavior of this method, inherited from the Object class, is to
return a local proxy to the object; when the local proxy is encoded, it’s received as a remote
proxy to the object. However, if this method returns self, the NXTransport methods for the
object are invoked to copy the object over the connection. The implementation of this
method should generally test the value of the isBycopy parameter to determine what object
to encode:

- encodeRemotelyFor: (NXConnection *)connection
freeAfterEncoding: (BOOL *)flagp
isBycopy: (BOOL) isBycopy

if (isBycopy) return self; // encode the object, copying it

// otherwise, super’s behavior is to encode a proxy

return [super encodeRemotelyFor:connection
freeAfterEncoding:flagp
isBycopy:isBycopy];

Moving an Object Between Applications

It is occasionally useful to move an object from one application to another, and the
encodeRemotelyFor:freeAfterEncoding:isBycopy: method shown above allows you to
do this by setting a flag indicating that the original object is to be freed after encoding and
then specifying that the object is to be encoded by copying it across the connection. Note,
however, that when you move an object you must be very careful that other applications do
not have problems due to the original object getting freed. The following example
demonstrates an object that will move every time a reference is given to a remote
application.

- encodeRemotelyFor: (NXConnection *)connection
freeAfterEncoding: (BOOL *)flagp
isBycopy: (BOOL) isBycopy

*flagp = YES;
return self;

Chapter 6: Distributed Objects

Asynchronous Messages

By default, remote messages are performed synchronously; execution of the client code
doesn’t continue until the method in the server returns and the Distributed Objects system
sends a reply back to the client (containing the return value if there is one). However, a new
keyword for method return values, oneway, has been added to the Objective C language to
specify asynchronous messages. When a client sends an asynchronous message to the
server, the method returns to the client immediately. Oneway messages implicitly return
void since the client doesn’t wait for a return value from the server. If a method doesn’t
need to return data and the client doesn’t need to stay synchronized to the server, there can
be several advantages to oneway, asynchronous messages. Because the client continues
processing rather than waiting for the server, overall throughput may increase. Less
obviously, oneway messages can provide the client with a measure of control over when
the client is willing to receive messages back from the server. The server may send a
message (like a callback) back to the client anytime the client’s connection is running or
the client awaits a reply from the server. Occasionally it’s unacceptable to receive a
callback from the server in the middle of a method implementation (an example might be
where the callback is used to clean up and free objects in the client); in such a case you can
use oneway messages to help insure that the connection is not running and the client won’t
receive messages until it’s ready to do so.

Robust Usage

Although the Distributed Objects system greatly simplifies the sharing of objects,
applications that communicate with other applications (distributed applications) are
inherently more complex than stand-alone applications. Issues regarding application
deaths, communication problems, security, exception handling, and resource allocation
must be considered. This section discusses some of the considerations for writing robust
distributed applications.

Introduction 6-13

Application Deaths

Distributed applications generally need to know when cooperating applications die. For
example, a server application should know when a client application dies (due to an
application crash, a system crash, a signal, or other reason) so it can deallocate resources
held on the client’s behalf, and also avoid sending messages to a client that no longer exists.
The Mach operating system tracks all resources held by a process, including the Mach ports
used by the Distributed Objects system to send remote messages. The operating system
notifies the Distributed Objects system of port deaths when an application dies. The
Distributed Objects system, in turn, allows any number of objects to register for notification
of the invalidation of the NXConnection object that is used to communicate over its port.

An object must do two things to be notified of the death of a cooperating application:
* It must register for notification of invalidation of the connection to the application.

* It must conform to the NXSenderIsInvalid protocol and take appropriate action when
the connection is invalidated.

If the application has no Application object, it must spawn a separate thread to disburse port
death notifications. This can be done as follows:

[NXPort worryAboutPortInvalidation];

Note that in this case, senderIsInvalid: messages will be sent from the resultant separate
thread, so the receiving object should be thread-safe.

Typically, a new connection is created to vend the first object from one application to
another. When your application gets an object in this manner, it should use the returned
proxy to get the connection over which the object is accessed, and register for invalidation
notification to know when the object becomes inaccessible. The following code gets the
proxy for a remote server object and registers for notification of when the server goes away:

server = [NXConnection connectToName:REGISTERED NAME onHost:"*"];

if (server)

{
NXConnection *myConnection = [server connectionForProxy];
[myConnection registerForInvalidationNotification:self];
[myConnection setDelegate:self];

}

In this example, the client also registered itself as the connection’s delegate. In this way,
the client can be informed (using the connection:didConnect: delegate method) when new

6-14 Chapter 6: Distributed Objects

connections are automatically created that share myConnection’s input port. New, direct
connections are formed when proxies are handed between applications. (This eliminates
the inefficiency of sending a message over a connection to a proxy that would then forward
the message over another connection to the real object.) When a new connection is formed
in this manner, the client then has a dependency on the application from which it received
the new object, so it should similarly register for invalidation notification on the new
connection and it should set the delegate of the new connection appropriately.

If an object registered for a connection’s invalidation notification, it receives a
senderIsInvalid: message from the NXConnection object when the connection is broken
(when the connection receives a port death notification indicating an application death,
typically). Proper behavior in response to such a notification is nontrivial. The application
can examine the NXConnection’s list of remote objects (by the remoteObjects method) to
determine what objects, presumably in use by the application, are no longer accessible.
There is no single solution to dealing with application deaths, but a robust architecture is
generally one that enables associating a resource to a connection and allows the application
to deal with the implications of a broken connection with a cooperating application.

Exceptions

The Distributed Objects system returns exceptions that are raised by method
implementations. In other words, if a client sends a message to an object in the server and
the implementation in the server raises an exception (see NX_RAISE), the exception is
forwarded to the client. Also, the Distributed Objects system can raise exceptions in
response to communication problems. For this reason, messages to remote objects should
generally be bracketed by NX_DURING..NX_ENDHANDLER constructs. Keep in
mind that control isn’t returned to a method that doesn’t catch an exception that gets raised;
for programs using the Application Kit, unhandled exceptions are caught by the
Application object’s run method, which simply continues the event loop.

Introduction 6-15

6-16

Memory Leaks

For local messages, returning a pointer to data involves no memory allocation. However,
for remote messages, the system must allocate memory to return data, which increases the
opportunity to “leak” memory (in other words, to have allocated memory that has no
pointer references, is essentially forgotten and will never be freed). Your application
architecture should avoid sending data that needs to be allocated on the client side, or
should make it as apparent as possible when data is coming from a remote source. There
may still be situations where it isn’t immediately obvious whether the recipient of a
message is a remote object or not; in this case, if you receive a pointer to data you should
check whether the object was a proxy, and if so, take responsibility for freeing the data
when you are done. See “Memory Allocation” earlier in this chapter for an example.

Using Protocols for Efficiency

A message sent to a remote object through a proxy may require two round-trip messages.
The first round trip is a request to the real object for its method signature, which specifies
the types the method requires as arguments. This enables the proxy to encode the data that
it has been passed and forward it to the real object. Note that a method signature is not
cached; without the use of protocols, it will need to be fetched for every message. The
second message (also a round-trip, unless it’s a oneway message) is used to send the actual
message including its encoded arguments, and to return the result.

You can eliminate the need for the first round-trip message by specifying to the proxy the
protocol that the corresponding real object conforms to. It’s generally known in advance
what messages a client will send to a server; the protocol could be as small as a single
message a client uses to query the server or as large as every message the server responds
to. When a protocol is specified, the proxy knows the types of the arguments for every
message you anticipate sending to the server, and the initial (and somewhat expensive)
round-trip message is avoided. If the client sends a message to the server that isn’t in the
protocol, nothing untoward happens, but an additional round-trip to retrieve the method
signature is required. Here is an example of setting the protocol that a client will use to
send messages to a server object:

@protocol serverMethods

- (int)addClient: (id <clientMethods>)remoteClient;
- getRecordForName: (char *)name

@end

server = [NXConnection connectToName:REGISTERED_NAME onHost:"*"];
if (server)
[server setProtocolForProxy:@protocol (serverMethods)];

Chapter 6: Distributed Objects

Restricting Messages

A key feature of proxies is that they forward any message, including arguments, to the real,
remote object. If you return a server object to a remote client, the client can send any
message that the server responds to. In fact, the proxy returned to the client will forward
any message, whether the server responds to it or not. For security considerations, you
might limit the implementation of an object that is to be given out to only methods that the
object is willing to receive from remote clients. This is often not practical, however.

An alternative is to group the methods that an object is willing to receive from remote
clients into a protocol. You can then use an NXProtocolChecker object (from the Mach
Kit) to enforce the protocol. The NXProtocolChecker object forwards all messages in its
assigned protocol, but raises an exception for other messages. When an object returns itself
as a result of a message forwarded through a protocol checker, the checker substitutes its
own id for the real object to prevent the sender from receiving an id that can receive
unchecked messages.

Security

When you register an object with the Network Name Server, it is available to any
application that knows the object’s name. Because an application must know the object’s
name, a modicum of security is provided; however, if security is an issue you should not
make sensitive objects (or objects capable of providing sensitive objects) available through
the Network Name Server. One possible solution is to register only a security validation
object with the Network Name Server. This object could require clients to identify
themselves as known secure objects before vending sensitive objects.

Multithreaded Applications

The Distributed Objects system is thread-safe. This means that with the proper precautions,
the Distributed Objects system can be used to write a multithreaded server. Perhaps more
important to application writers is that you can write a server that runs in the main
application thread but responds to messages coming from clients running in different
threads. This is useful because many parts of the system are not thread-safe and therefore
cannot be invoked by clients outside the main thread, but non-thread-safe tasks can be
performed on the client’s behalf by a server in the main thread. See the discussion of

C threads in NeXTSTEP Operating System Software for information about which parts of
the system are thread-safe.

Introduction 6-17

Relationship to Speaker/Listener

The Speaker and Listener classes in the Application Kit provide a subset of the
functionality of the Distributed Objects system. The Distributed Objects system provides
a more flexible and dynamic way of communicating between applications. Speaker and
Listener are still used by applications to communicate with the Workspace Manager, and
will continue to be provided in the near future for backwards compatibility. Nevertheless,
the Distributed Objects system is a superior system and should be regarded as a move
towards obsoleting the Speaker and Listener classes. '

6-18 Chapter 6: Distributed Objects

Classes

6-20

NXConnection

Inherits From: NXlnvalidationNotifier (Mach Kit) : Object

Conforms To: NXSenderIsInvalid
NXReference (NXInvalidationNotifier)

Declared In: remote/NXConnection.h

Class Description

The NXConnection class is used to establish a connection that allows objects in one process
to send messages to objects in another process, and it defines instances that manage the
local side of such a connection.

To establish a connection, some object must first be registered with the Network Name
Server using registerRoot:withName:. This creates an NXConnection and makes the
given root object available (through connectToName:) to any application that knows the
registered name.

NXConnection objects can also be automatically created by the system. When a proxy is
vended to an application, the application doesn’t receive a proxy to the proxy. Instead, a
new connection is formed if necessary, and the application receives a proxy to the original
object. The delegate method connection:didConnect: is used to inform the application of
the automatic creation of new connections.

An NXConnection maintains a table containing an NXProxy object for every local object
that has been vended. It also maintains a table of remote NXProxy objects; these proxies
are used to send messages to real objects that exist in other applications. A local NXProxy
is created automatically by an NXConnection when a local object is vended to another
application. Similarly, a remote NXProxy is created automatically when a remote object is
vended to the NXConnection; this remote proxy forwards the messages it receives to its
corresponding real object, with the effect that it generally appears to be the real object to
the local application.

Chapter 6: Distributed Objects

Running a Connection

When a connection is created, it is able to originate messages, and it sends these messages
out to a port known as its ouz-port (available though the outPort method). Having sent a
message, the connection will generally need to receive a reply message, which comes in
over the connection’s in-port. While it awaits this reply, the connection may dispatch
messages in response to other messages that appeared on its in-port. However, once the
desired reply is found, the connection will return its thread of control back to the caller, and
the connection won’t be able to receive unsolicited messages. In order to wait on
unsolicited messages, a connection must be run, a process that involves waiting for
messages on its in-port. The connection’s thread is unavailable for other tasks while it runs.
For this reason, there are a variety of run methods that allow a connection to run
concurrently from the event loop, in its own thread, or for a limited period of time. The run
methods are:

—run
— runWithTimeout:

— runlnNewThread

— runFromAppKit

— runFromAppKitWithPriority:

A connection can receive remote messages from connections running in other threads or
processes, and it will queue up these messages and dispatch them locally from its own
thread. However, you cannot run a connection in one thread and send outgoing two-way
messages over that connection from another thread; the process of running the connection
has the connection’s thread waiting on the in-port, so this port is not available for a return
message for the caller’s thread.

Instance Variables

id delegate

delegate The connection’s delegate

Adopted Protocols
NXSenderIsInvalid - senderIsInvalid:

Classes: NXConnection — 6-21

Method Types

connectToName:
connectToName:fromZone:
connectToName:onHost:
connectToName:onHost:fromZone:
connectToPort:
connectToPort:fromZone:
connectToPort:withInPort:
connectToPort:withInPort:fromZone:

Establishing a connection

+ 4+ + + 4+ + + +

Ascertaining connections + connections:

Registering an object + registerRoot:
+ registerRoot:fromZone:
+ registerRoot:withName:
+ registerRoot:withName:fromZone:

Eliminating references + removeObject:
Invalidation + unregisterForlnvalidationNotification:
Statistics + messagesReceived
Timeouts + setDefaultTimeout:

+ defaultTimeout

— setInTimeout:

— setOutTimeout:

— inTimeout

— outTimeout
Zone usage + setDefaultZone:

— defaultZone
Assigning a delegate - setDelegate:

— delegate
Returning port objects — inPort

— outPort
Getting and setting the root object

—rootObject

— setRoot:

Imported and exported objects — remoteObjects
- localObjects

Returning a proxy — getLocal:
— newRemote:withProtocol:

6-22 Chapter 6: Distributed Objects

Running a connection —run
’ — runWithTimeout:
— runlnNewThread
— runFromAppKit
— runFromAppKitWithPriority:

Freeing an NXConnection instance
— free

Class Methods

connections:

+ connections:(List *) aList

Adds all the application’s NXConnections to the supplied list aList (but doesn’t delete its
prior contents). A reference is added to every connection in the list. Returns aList.

connectToName:

+ (NXProxy *)connectToName:(const char *)rootName

Returns an NXProxy to the object registered with the Network Name Server as rootName.
This method is a cover for connectToName:onHost:fromZone: with a null host-name and
using the NXConnection class’s default zone.

connectToName:fromZone:

+ (NXProxy *)connectToName:(const char *)rootName fromZone:(NXZone *)zone

Returns an NXProxy to the object registered with the Network Name Server as rootName.
This method is a cover for connectToName:onHost:fromZone: with a null host-name and
using the specified zone zone.

connectToName:onHost:
+ (NXProxy *)connectToName:(const char *)rootName
onHost:(const char *)hostName

Returns an NXProxy to the object registered with the Network Name Server as rootName.
This method is similar to connectToName:onHost:fromZone: using the NXConnection
class’s default zone.

Classes: NXConnection 6-23

6-24

connectToName:onHost:fromZone:

+ (NXProxy *)connectToName:(const char *)rootName
onHost:(const char *)hostName
fromZone:(NXZone *)zone

Returns an NXProxy to the object registered with the Network Name Server as rootName,
or nil if no connection can be established. Functionally, this method can be thought to
return that root object. If hostName is explicitly specified, this method queries the Network
Name Server on hostName for the object registered under rootName. If hostName is
NULL, this method queries the Network Name Server on the local host. If hostName is
“*»_this method will query the Network Name Server on each machine on the subnet until
it finds an object registered under rootName. Note that querying each machine on a subnet
can take a bit of time, so if the host is known, it should be specified.

In addition to creating and returning an NXProxy, this method creates an NXConnection.
If this connection will be used to receive remote messages (as is the common case), you
will need to run it by sending it a variation of the run message. A connection that isn’t
run will dispatch incoming messages only while it awaits a callback in response to a locally
initiated message, so unsolicited remote messages will not be handled in a timely manner.
To get the connection of the returned proxy (in order to run it), use NXProxy’s
connectionForProxy method.

If zone is specified, the objects associated with the new connection will be allocated
from that zone; if zone is NULL they will be allocated from the NXConnection class’s
default zone.

See also: + registerRoot:withName:, — runFromA ppKit,
— connectionForProxy (NXProxy)

connectToPort:
+ (NXProxy *)connectToPort:(NXPort *)aPort
Returns an NXProxy to the root object for the connection identified with the port

aPort, or nil if no connection can be established. This method is a cover for
connectToPort:fromZone: using the NXConnection class’s default zone.

connectToPort:fromZone:
+ (NXProxy *)connectToPort:(NXPort *)aPort fromZone:(NXZone *) zone

Returns an NXProxy to the root object for the connection identified with the port aPort, or
nil if no connection can be established. You can use this method to establish a connection

Chapter 6: Distributed Objects

based on a port you are vended. In other words, you can use this method to establish a
connection based on another connection’s out-port that is handed to your application.

If zone is specified, the objects associated with the new connection will be allocated from that
zone; if zone is NULL they will be allocated from the NXConnection class’s default zone.

See also: + connectToName:onHost:, — outPort, + connectToPort:withInPort:

connectToPort:withinPort:
+ (NXProxy *)connectToPort:(NXPort *)aPort withInPort:(NXPort *)inPort
Returns an NXProxy to the root object for the connection identified with the port aPort, or

nil if no connection can be established. This method is a cover for
connectToPort:withInPort:fromZone: using the NXConnection class’s default zone.

connectToPort:withinPort:fromZone:

+ (NXProxy *)connectToPort:(NXPort *)aPort
withInPort:(NXPort *)inPort
fromZone:(NXZone *)zone

Returns an NXProxy to the root object for the connection identified with the port aPort, or
nil if no connection can be established. The supplied port inPort will be used to receive
incoming messages.

If zone is specified, the objects associated with the new connection will be allocated from that
zone; if zone is NULL they will be allocated from the NXConnection class’s default zone.

See also: + connectToName:onHost:, + connectToPort:

defaultTimeout

+ (int)defaultTimeout
Returns the default connection timeout interval in milliseconds. The interval is 15000
milliseconds unless set to some other value by setDefaultTimeout:. A connection will

initially use the default timeout interval for both its input and output ports; however, these
values can be changed for any port using the setInTimeout: or setOutTimeout: method.

Classes: NXConnecrion 6-25

6-26

defaultZone

+ (NXZone *)defaultZone
Returns the default zone for all connections. If a zone isn’t specified when a connection is
created, memory (and objects) associated with the connection will be allocated from this

zone. The default zone is initially set to NXDefaultMallocZone(), but can be set to another
zone using setDefaultZone:.

messagesReceived
+ (int)messagesReceived
Returns the number of messages received by all connections in the application. This value

can be helpful when you attempt to optimize an application’s performance by minimizing
remote messages.

registerRoot:
+ registerRoot:anObject

Establishes anObject as a root object, creating a new NXConnection if necessary.
This method is a cover for registerRoot:fromZone: using the NXConnection class’s
default zone.

registerRoot:fromZone:
+ registerRoot:anObject fromZone:(NXZone *)zone

Establishes anObject as aroot object, creating a new NXConnection if necessary. anObject
isn’t advertised by the Network Name Server, though you can allow other objects to access
it by vending its in-port to private clients, who can then connect to that port using
connectToPort:. Returns anObject’s NXConnection, which must then receive a variant of
the run message to receive unsolicited remote messages and forward them to anObject.

If zone is specified, the objects associated with the new connection will be allocated
from that zone; if zone is NULL they will be allocated from the NXConnection class’s
default zone.

See also: + registerRoot:withName:, — runFromAppKit, — inPort

Chapter 6: Distributed Objects

registerRoot:withName:
+ registerRoot:anObject withName:(const char *)name
Establishes anObject as a root object, creating a new NXConnection if necessary. This

method is a cover for registerRoot:withName:fromZone: using the NXConnection
class’s default zone.

registerRoot:withName:fromZone:

+ registerRoot:anObject
withName:(const char *)name
fromZone:(NXZone *)zone

Establishes anObject as a root object, creating a new NXConnection if necessary.
anObject is advertised by the Network Name Server with the name name. Returns
anObject’s NXConnection, which must then receive a variant of the run message to
pass remote messages to anObject.

If zone is specified, the objects associated with anObject’s connection will be allocated
from that zone; if zone is NULL they will be allocated from the NXConnection class’s
default zone.

See also: — runFromAppKit

removeObject:
+ removeObject:anObject

Removes all proxies to anObject. If anObject has been vended to clients, the clients hold
proxies for it which ought to be removed before anObject is destroyed. You will therefore
probably need to invoke removeObject: in anObject’s free method to avoid dangling
references and memory leaks. Returns self.

setDefaultTimeout:
+ setDefaultTimeout:(int)interval

Sets the default connection time interval to interval. A connection initially uses this
interval for both its input and output ports; however, these values can be changed for any
port using the setInTimeout: or setQOutTimeout: method.

See also: + defaultTimeout

Classes: NXConnection 6-27

6-28

setDefaultZone:

+ setDefaultZone:(NXZone *)zone

Sets the default zone for all connections. If a zone isn’t specified when a connection is
created, memory (and objects) associated with the connection will be allocated from this
zone. The default zone is initially set to NXDefaultMallocZone().

See also: + defaultZone

unregisterForinvalidationNotification:
+ unregisterForInvalidationNotification:anObject
Unregisters anObject so it won’t be notified of the invalidation of any of its connections.

See also: — unregisterForInvalidationNotification: (NXInvalidationNotifier),
— registerForInvalidationNotification: (NXInvalidationNotifier)

Instance Methods

delegate
— delegate

Returns the connection’s delegate.

free
— free
Removes a reference to the connection. If outstanding references remain, the

NXConnection isn’t actually freed and this method returns self. If no references remain,
this method frees the NXConnection and the proxies it maintains and returns nil.

getlLocal:
— getLocal:anObject

Returns the local NXProxy for anObject, or nil if anObject isn’t represented by a local
proxy on the receiving NXConnection. Vending anObject’s local proxy is essentially the
same as vending anObject itself except that by vending the local proxy you determine the
connection over which anObject is referenced.

Chapter 6: Distributed Objects

inPort
— (NXPort *)inPort

Returns the connection’s in-port, the NXPort used by the connection to receive
incoming messages.

inTimeout
— (int)inTimeout

Returns the timeout interval (in milliseconds) for incoming messages. A value of —1
means the connection will wait forever for incoming messages.

See also: — setInTimeout:, — outTimeout

localObjects
— (List *)localObjects
Creates and returns a List of the proxies to local objects vended by the connection. The

proxies belong to the connection and should not be altered, but the returned List should be
freed by the sender of this message.

newRemote:withProtocol:
— newRemote:(unsigned int)anObject withProtocol:(Protocol *)proto

Creates and returns a remote proxy for the local object identified by anObject. This proxy
can then be given to other objects to vend anObject over the receiving connection.
anObject is the id of the local object, though you must cast it to an unsigned integer to
satisfy the implementation. proto, if non-NULL, is used to specify the protocol that
anObject responds to; performance is increased if the protocol is specified because a
round-trip message to fetch argument types (for encoding purposes) is obviated.

outPort
— (NXPort *)outPort

Returns the connection’s out-port, the NXPort object used to identify the remote port (and
connection) that the receiving connection communicates with. This NXPort can be used to
create a new connection by connectToPort:.

Classes: NXConnection 6-29

6-30

outTimeout

— (int)outTimeout

Returns the timeout interval (in milliseconds) for outgoing messages. A value of —1 means
outgoing messages will never time out.

See also: — setOutTimeout:, — inTimeout

remoteObjects

— (List *)remoteObjects
Creates and returns a List of the proxies to remote objects maintained by the receiving
connection. The proxies belong to the connection and should not be altered, but the
returned List should be freed by the sender of this message. If the connection becomes

invalid, objects in the application will no longer be able to send remote messages to the
objects in this List.

See also: — localObjects

rootObject
—rootObject

Returns the connection’s root object, which is the object returned (by way of a proxy) to
other applications when they connect to the NXConnection.

See also: + registerRoot:withName:, — setRoot

run

—run
Runs the connection by waiting for messages and dispatching them. This method runs in
the same thread that it was invoked from, and it doesn’t return until the connection is

invalidated. If the connection becomes invalid, this method returns self. This method is a
cover for runWithTimeout: with an argument of —1.

See also: — runFromAppKit, — runInNewThread, — runWithTimeout:

Chapter 6: Distributed Objects

runFromAppKit
— runFromAppKit

Runs the connection by waiting for messages and dispatching them. This method adds the
connection’s port to those that the DPS client library monitors for messages, at a priority of
NX_RUNMODALTHRESHOLD. When a message arrives over the connection, it will be
handled between events. The connection isn’t really run concurrent to the application, but
the effect is close enough to concurrency for most uses.

This method is typically the best way to run a connection that will dispatch messages to
objects that use the Application Kit or Window Server, since these objects cannot be
messaged from multiple threads. (Note, however, that the connection run from the DPS
client library can communicate with connections running in separate threads.)

This method immediately returns self.

See also: — run, — runFromA ppKitWithPriority:, — runInNewThread,
— runWithTimeout:

runFromAppKitWithPriority:
— runFromA ppKitWithPriority:(int)priority
Runs the connection by waiting for messages and dispatching them. This method adds the

connection’s port to those that the DPS client library monitors for messages, at a priority of
priority. Otherwise this method is identical to runFromAppKit.

runinNewThread
— runInNewThread

Runs the connection by waiting for messages and dispatching them. This method forks a
new thread that invokes the run method; it then immediately returns self. All messages
sent to this connection are dispatched by the new thread. Because the Window Server and
Application Kit aren’t thread-safe, you shouldn’t send messages to a connection in a
separate thread that call upon them. If you need some concurrency in a connection that will
invoke the Window Server or Application Kit, you should use runFromAppKit.

See also: — runFromAppKit, — run, — runWithTimeout:

Classes: NXConnection 6-31

6-32

runWithTimeout:

— runWithTimeout:(int)zimeout

Runs the connection by waiting for messages and dispatching them. This method runs for
timeout milliseconds or until the connection is invalidated before returning self. If timeout
is (-1) the connection will run forever or until it is invalidated, whichever occurs first.

See also: — runFromAppKit, — runInNewThread, — run

senderlsinvalid:

— senderIsInvalid:sender
Responds to a message that the connection’s port has died. This method invalidates the
connection, invalidates the proxies to remote objects (which can no longer be accessed),
and sends a free message to all the local objects vended by the connection that conform to
the NXReference protocol, thereby giving up the connection’s references to these objects.

sender is an instance of a private port management class; your code shouldn’t send
messages to it.

setDelegate:
— setDelegate:anObject

Sets the connection’s delegate. Returns self.

setinTimeout:

— setInTimeout: (int)timeout
Sets the connection’s timeout for incoming messages to timeout milliseconds. This is the
amount of time the connection will wait for return parameters, return values, callbacks, and

thelike. If a message isn’t received before the timeout, an exception will be raised. Setting
timeout to —1 results in an infinite timeout interval. Returns self.

See also: + setDefaultTimeout:, — setOutTimeout:

Chapter 6: Distributed Objects

setOutTimeout:

— setOutTimeout:(int)timeout

Sets the connection’s timeout for outgoing messages to timeout milliseconds. This is the
amount of time the connection will wait for a message send to succeed. If an outgoing
message can’t be sent before the timeout, an exception will be raised. Setting timeout to
—1 results in an infinite timeout interval, and setting it to O has the effect that a message will
be delivered only if the receiver’s port has room. Returns self.

See also: + setDefaultTimeout, — setInTimeout

setRoot:
—setRoot:anObject

Sets the connection’s root object to anObject. This method should be invoked only for a
connection that doesn’t have a root object.

See also: — rootObject

Methods Implemented By The Delegate

connection:didConnect:

— connection:(NXConnection *)conn didConnect:(NXConnection *)newConn
Notifies conn’s delegate that a new connection has been established using conn’s input port.
newConn is the NXConnection object that was just created. This method must return the

NXConnection object that should be used, which is typically newConn; if another
connection is returned, the application is responsible for freeing newConn.

Classes: NXConnection 6-33

6-34

NXProxy

Inherits From: none (NXProxy is a root class.)

Conforms To: NXReference (Mach Kit)
NXTransport

Declared In: remote/NXProxy.h

Class Description

The NXProxy class defines objects that are used to stand in for real objects (descendants of
the Object class), where the real objects may exist within another process, even across a
network. To the application, the NXProxy appears to be the real object, though the real
object may not be directly accessible. The real object is known as the proxy’s
correspondent, indicating both that the objects are counterparts and that the real object is
required to respond to messages sent to the proxy.

The NXProxy class defines very few methods, because proxies respond to very few
messages directly. Instead, when an NXProxy receives a message that it doesn’t respond
to, it encodes the message, including the arguments, and forwards it to its remote
correspondent (the “real” object). The actual communication details involved in
forwarding the message are taken care of by an NXConnection object. The message is then
acted upon by the real object, and any return values and parameters are encoded and sent
back to the proxy.

An application never instantiates NXProxy objects directly; they are created for your
application when you are given a reference to an object that doesn’t exist in your address
space. The proxies vended to your application are reference-counted, so only a single
NXProxy per connection is instantiated for any real object. When you’re done with a
remote object, you should typically send it a free message to eliminate its remote proxy
locally and its local proxy remotely. This will decrement the reference-count on the proxy,
and free it if there are no outstanding references. The free message will also be forwarded
to the proxy’s correspondent, which will free it (or dereference it if the object conforms to
the NXReference protocol). An application alternatively might free the proxy’s
NXConnection, which will free all the connection’s resources, including all its proxies.

The methods defined in this class are the ones that the NXProxy class directly responds to.
Unless otherwise noted, none of these methods are forwarded to the proxy’s correspondent.

Chapter 6: Distributed Objects

Instance Variables

None declared in this class.

Adopted Protocols

NXReference — addReference
— free
— references

NXTransport — encodeRemotelyFor: freeAfterEncoding:isBycopy:
— encodeUsing:
— decodeUsing:

Method Types

Returning the proxy’s connection
— connectionForProxy
Freeing an NXProxy instance — freeProxy

Determining if an object is a proxy
— isProxy

Specifying a protocol — setProtocolForProxy:

Instance Methods

connectionForProxy

— connectionForProxy

Returns the local NXConnection instance used by the receiving NXProxy. A client might
send messages to the returned NXConnection to be notified of invalidations (such as port
deaths), or to instruct it to begin receiving messages with a variant of the run message.

See also: — registerForInvalidationNotification (NXInvalidationNotifier in Mach Kit),
— runFromAppKit (NXConnection)

Classes: NXProxy 6-35

6-36

free
— free

Decrements the reference count on the proxy. If there are remaining references to the proxy,
the free message isn’t forwarded across the connection and this method returns self. If there
are no remaining references, the proxy forwards the free message to its corresponding object,
invokes the freeProxy method to free the proxy locally, and returns nil.

freeProxy

— freeProxy

Frees the receiving NXProxy instance. You generally shouldn’t send this message; itisn’t
forwarded across the connection, so remote NXConnection objects may still have
references to the freed NXProxy and it won’t get removed from remote hashtables. If you
want to free the local proxy and eliminate outstanding references, the real object should
obey the NXReference protocol; then when you send the object a free message, the proper
dereferencing (and perhaps freeing) will occur both locally and remotely.

isProxy
— (BOOL)isProxy

Returns YES to indicate that the receiver is an NXProxy rather than a normal object. This
method is also implemented in a category of the Object class (where it returns NO), so you
can send this message to any object to determine whether it is a real object or a proxy.

setProtocolForProxy:

— setProtocolForProxy:(Protocol *)proto

Formally establishes the messages and arguments that the proxy will forward to its
corresponding object. It’s a good idea to send this message to an NXProxy immediately
after it is vended to your application.

If you don’t send this message to a proxy (and therefore a protocol isn’t established), at
run-time the proxy doesn’t know a message’s argument types, and can’t immediately
encode the arguments. It must then send a remote message to its corresponding object to
get the argument types. This round trip increases the cost of the message. You should
therefore send the setProtocolForProxy: message to the proxy to cache the argument
types, alleviating the need for the initial round trip.

Chapter 6: Distributed Objects

If you send a message that isn’t in the established protocol, the round trip to establish the
argument types will still be performed. You must take care that the argument types in the
given protocol proto accurately reflect the argument types of the methods in the proxy’s
corresponding object; otherwise the arguments will not be correctly encoded. Returns self.

Classes: NXProxy 6-37

6-38

Object Additions

Category Of: Object

Declared In: remote/transport.h

Category Description

The Distributed Objects system adds two methods, isProxy and encodeRemotelyFor:
freeAfterEncoding:isBycopy:, to the root Object class. These methods allow all normal
objects to be remotely accessed and allow objects to be differentiated from proxies acting
in their stead. Only these two method are described here. See Chapter 1, “Root Class,” for
a general description of the Object class and the methods it defines.

Instance Methods

encodeRemotelyFor:freeAfterEncoding:isBycopy:

— encodeRemotelyFor:(NXConnection *)connection
freeAfterEncoding:(BOOL *)flagp
isBycopy:(BOOL)isBycopy

Encodes a proxy for the receiving object over the supplied connection to ensure that all
objects are capable of being remotely accessed.

This method is responsible for returning the object that must be encoded to send the receiver
over connection. The default implementation returns a local proxy to the receiver which,
when encoded, yields a remote proxy that forwards all messages to the original object.

You can override this method to change how an object is transported. If you return another
object (like self), that object will be encoded instead. The returned object must conform to
the NXTransport protocol. You may wish to test the isBycopy flag and return self only if the
object (rather than a proxy) is to be copied across the connection. If you want the receiving
object to be freed after it is encoded, you can set the boolean pointed to by flagp to YES.

Chapter 6: Distributed Objects

isProxy
— (BOOL)isProxy

Returns NO to indicate that the receiver is a normal object and not a proxy. This method is
also implemented by the NXProxy class (where it returns YES), so you can send this
message to any object to determine whether it is a real object or a proxy.

Classes: Object Additions 6-39

6-40

Protocols

NXDecoding

Adopted By: a private class

Declared In: remote/transport.h

Protocol Description

An object that implements the NXDecoding protocol is passed as the portal argument for
the decodeUsing: message of the NXTransport protocol. The object implementing the
decodeUsing: method should send the portal object messages from the NXDecoding
protocol to decode the data required to instantiate a local copy of the encoded object.

Every method in the NXDecoding protocol corresponds to a method in the NXEncoding
protocol, and is used to receive data encoded at the other end of a connection in order to
move objects that adopt the NXTransport protocol. See the Distributed Objects
introduction for more information.

Instance Methods

decodeBytes:count:

— decodeBytes:(void *)buffer count:(int)count

Decodes data (of size count bytes) into buffer.

decodeData:ofType:
— decodeData:(void *)data of Type:(const char *)type

Decodes a data structure, whose fields are indicated by the character string fype, into the
buffer indicated by data. type is specified with the following format characters:

6-42 Chapter 6: Distributed Objects

Format Character

*@Q."b""mﬂ

%

!

{<type>}
[<count><type>]

decodeMachPort:

Data Type

char
short

int

float
double

id

char *
NXAtom
SEL

int; corresponding data won’t be read or written
struct
array

— decodeMachPort:(port_t *)portPointer

Decodes a Mach port and returns it in the variable indicated by portPointer.

decodeObject
— decodeObject

Decodes and returns an object. The object could have been encoded with either
encodeObject: or encodeObjectBycopy:.

decodeVM:count:

— decodeVM:(void **)bufferPointer count:(int *)count

Decodes memory, returning the buffer in the variable indicated by bufferPointer and the
size in the variable pointed to by count.

Protocols: NXDecoding 6-43

6-44

NXEncoding

Adopted By: a private class

Declared In: remote/transport.h

Protocol Description

An object that implements the NXEncoding protocol is passed as the portal argument for
the encodeUsing: message to distribute an object that adopts the NXTransport protocol.
The object implementing the encodeUsing: method should send the portal object messages
from the NXEncoding protocol to encode the data required to instantiate a copy of the
object on the other end of the connection.

Every method in the NXEncoding protocol has a corresponding method in the
NXDecoding protocol that will be used to receive encoded data. See the Distributed
Objects introduction for more information.

Instance Methods

encodeBytes:count:
— encodeBytes:(const void *)buffer count:(int)count

Encodes the buffer (of size count bytes) indicated by buffer.

encodeData:ofType:
— encodeData:(void *)data of Type:(const char *)type

Encodes the data structure pointed to by dara, whose fields are indicated by the character
string type, consisting of the following values:

Chapter 6: Distributed Objects

Format Character Data Type

C char

s short

i int

f float

d double

@ id

* char *

% NXAtom

: SEL

! int; corresponding data won’t be read or written

{<type>} struct

[<count><type>] array
encodeMachPort:

— encodeMachPort:(port_t)port

Encodes the Mach port port.

encodeObject:
— encodeObject:anObject

Usually encodes a proxy to anObject. The object to be encoded is determined by sending
anObject an encodeRemotelyFor:freeAfterEncoding:isBycopy: message, which will, by
default, return a proxy to anObject.

encodeObjectBycopy:
— encodeObjectBycopy:anObject

Usually encodes anObject, so that a copy will be instantiated on the other end of the
connection; the object to be encoded is determined by sending anObject an
encodeRemotelyFor:freeAfterEncoding:isBycopy: message. anObject must conform
to the NXTransport protocol.

“encodeVM:count:

— encodeVM:(const void *)bytes count:(int)count

Encodes memory (of count bytes) that was allocated with vm_allocate().

Protocols: NXEncoding 6-45

6-46

NXTransport

Adopted By: List (common classes)
NXData (Mach Kit)
NXPort (Mach Kit)
NXProxy class (Distributed Objects)

Declared In: remote/transport.h

Protocol Description

The NXTransport protocol allows objects to be copied over a Distributed Objects
connection. This protocol consists of three methods:

- encodeRemotelyFor: freeAfterEncoding: isBycopy:
- encodeUsing:
- decodeUsing:

When an object must be vended over a connection, the
encodeRemotelyFor:freeAfterEncoding:isBycopy: method is invoked to determine
what object is sent. The Object class implements a version of this method that returns an
NXProxy; thus all objects may be sent over a connection in virtual form through the use of
a proxy. Classes can override this method to specify another object (that conforms to the
NXTransport protocol) to be sent over the connection. By sending a real object over the
connection rather than a proxy, some applications can save the overhead of remote
messaging (though if the object changes, keeping copies synchronized is an issue).

When an object is to be encoded, it is sent an encodeUsing: message. The porral argument
for this message is an object that implements the NXEncoding protocol and thus knows
how to encode various data types. The object to be encoded should send data to portal
that allows a copy of itself to be decoded.

In order to create the copy of the object on the receiving side, the object is allocated and
a decodeUsing: message is sent to it. The newly allocated object is not initialized, so
the decodeUsing: implementation generally should invoke the object’s designated
initializer method.

Chapter 6: Distributed Objects

Instance Methods

decodeUsing:
— decodeUsing:(id <NXDecoding>)portal

A newly allocated instance is sent this message in order to initialize itself when an object
has been sent by copy over a connection. The instance is not initialized, so it should
generally invoke the object’s designated initializer. You must send messages (from the
NXDecoding protocol) to the portal object to fetch any data that was encoded; these
messages may be sent before or after initializing the new instance.

This method generally returns self to indicate that self is the object that is to be used as the
local copy of the sent object. If it returns another object, that object is used as the local
copy, and the instance that received this message is freed.

See also: — encodeUsing:

encodeRemotelyFor:freeAfterEncoding:isBycopy:

— encodeRemotelyFor:(NXConnection *)connection
freeAfterEncoding:(BOOL *)flagp
isBycopy:(BOOL)isBycopy

This method is responsible for returning the object that must be encoded to send the
receiver over connection. The default implementation inherited from the Object class
returns a local proxy to the receiver which, when encoded, yields a remote proxy that
forwards all messages to the original object.

You can override this method to change how an object is transported. If you return another
object (like self), that object will be encoded instead. The returned object must conform to
the NXTranspert protocol. You may wish to test the isBycopy flag and return self only if
the object (rather than a proxy) is to be copied across the connection. If you want the
receiving object to be freed after it is encoded, you can set the boolean pointed to by flagp
to YES.

A typical implementation of this method simply ensures that the object or a proxy gets
encoded, based on the value of isBycopy: '

- encodeRemotelyFor: (NXConnection *)connection
freeAfterEncoding: (BOOL *)flagp isBycopy: (BOOL) isBycopy
{
if (isBycopy) return self;
return [super encodeRemotelyFor:connection
freeAfterkEncoding: flagp isBycopy:isBycopy];

Prorocols: NXTransport 6-417

encodeUsing:

— encodeUsing:(id <NXEncoding>)portal
This method must send enough data to portal (an object that conforms to the NXEncoding
protocol) that a copy of the object can be created on the other side of a connection using the

decodeUsing: method. See the introduction to Distributed Objects for an example
implementation of this method.

6-48 Chapter 6: Distributed Objects

Types and Constants

Defined Types

NXRemoteException

DECLARED IN remote/NXProxy.h

SYNOPSIS typedef enum {
NX_REMOTE_EXCEPTION_BASE,
NX_couldntSendException,
NX_couldntReceiveException,
NX_couldntDecodeArgumentsException,
NX_unknownMethodException,
NX_objectInaccessibleException,
NX_objectNotAvailableException,
NX_remotelnternalException,
NX_multithreadedRecursionDeadlockException,
NX_destinationInvalid,
NX_originatorInvalid,
NX_sendTimedOut,
NX_receiveTimedOut,
NX_REMOTE_LAST_EXCEPTION

} NXRemoteException

DESCRIPTION These are the exceptions that the Distributed Objects system might raise as a result of a
remote message gone awry.

6-50 Chapter 6: Distributed Objects

Symbolic Constants

Timeout Constants

DECLARED IN remote/NXConnection.h
sYNoPsiS NX_ CONNECTION DEFAULT_TIMEOUT

DESCRIPTION This is the default timeout for a connection (currently, 15 seconds).

Types and Constants: Timeout Constants ~ 6-b1

6-52

Indexing Kt

7-3 Introduction

7-5 Architecture of the Indexing Kit
7-6 Storage Management

7-6 Associative Access

7-8 Data Management

7-9 File System Searching

7-9 Text Parsing

7-10 Query Processing

7-11 Classes

7-12 IXAttributeParser
7-20 IXAttributeQuery
7-23 IXAttributeReader
7-29 IXBTree

7-34 IXBTreeCursor
7-41 IXFileFinder

7-48 IXFileRecord

7-53 IXLanguageReader
7-56 IXPostingCursor
7-58 IXPostingList
7-66 [XPostingSet

7-71 IXRecordManager
7-81 IXStore

7-93 IXStoreBlock
7-97 IXSto