
(J)

In

SCO® XENIX® System V
Operating System
Tutorial and User's Guide

SCO® XENIX® System V
Operating System
Tutorial and User's Guide

17 June 1993 ostu

© 1983-1991 The Santa Cruz Operation, Inc.
© 1980-1991 Microsoft Corporation.
© 1989-1991 AT&T.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95061, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights
in Technical Data and Computer Software Clause of the United States Department of
Defense Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 52.227-7013. The
Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California 95061, U.S.A.

Microsoft, MS·DOS, and XENIX are trademarks of Microsoft Corporation.
UNIX is a registered trademark of UNIX Systems Laboratories in the U.S.A. and other
countries.

Document Version 2.3.4C
Date: 28 March 1991

Contents

1 Introduction

Introduction 1-1
About This Thtorial 1-2
Notational Conventions 1-4

2 Basic Concepts

Introduction 2-1
Accounts 2-2
Files 2-4
Naming Conventions 2-8
Commands 2-13
Input and Output 2-16
Summary 2-19

3 Logging In

Introduction 3-1
Gaining Access to the System 3-2
Keeping Your Account Secure 3-6
Changing Your Terminal Type 3-8
Entering Commands 3-10
Summary 3-12

4 Working with Files and Directories

Introduction 4-1
Working with Directories 4-2
Working with Files 4-8
Editing Files with vi 4-15
Printing Files 4-19
Processing Text Files 4-23
Using File and Directory Permissions 4-27
Summary 4-33

-i-

5 Housekeeping

Introduction 5-1
Making Backups 5-2
Copying Diskettes 5-10
Getting Status Infonnation 5-12
Controlling Processes 5-14
Shell Programming 5-19
Summary 5-21

6 XENIXDesktop Utilities

Introduction 6-1
Using the System Clock and Calendar 6-2
Using the Mail Service 6-4
Using the Automatic Reminder Service 6-10
Using the Calculator 6-11
Summary 6-13

-ii-

Chapter 1

Introduction

Introduction 1-1

About This Tutorial 1-2

Notational Conventions 1-4

Introduction

Introduction
This tutorial is an introduction to the use of your XENIX system. It is
intended for users who have little or no familiarity with XENIX systems.

The operating system is a software package that controls the actions of
your computer system. It makes it easy for you, as a user, to get the com­
puter to do some very complex tasks.

For example, if you want to find out who is currently using the system,
just type the command who. The operating system calls up an already­
existing program that tells the computer to find out who is logged in, and
to display the list of names on your screen. If you had to use a program­
ming language to tell the computer to display the list, it would take
several lines of code. With XENIX operating systems, there is no need to
learn a programming language, because the programs have already been
written for you. You never actually see these programs; what you see are
the results of executing them when you type the one-word commands.

Another feature of the XENIX system is that it allows more than one per­
son at a time to use the computer system. It does this by taking advantage
of the speed with which computers operate. The operating system stores
all of the commands from every user and gives them to the computer's
hardware one at a time. The operating system and the hardware work so
quickly that each user perceives his or her command as being executed
immediately. In fact, you will probably not even be able to tell that any­
one else is using the system.

In addition to allowing more than one person to use the system at the
same time, XENIX systems also permit the simultaneous running of vari­
ous printers, other peripherals, and tasks. For these reasons, XENIX sys­
tems are referred to as multi-user, multi-tasking operating systems.

The aim of this tutorial is to teach you how to do useful work on a XENIX
system as quickly as possible. XENIX systems are distributed with over
two hundred commands and programs. The commands and programs
described in this tutorial are those that you will use most often, and those
that you will find most useful. To this end, it is not necessary to provide
you with complete information about each command described in this
tutorial. For complete information, refer to the appropriate sections of the
XENIX Reference and the XENIX User's Guide.

Introduction 1-1

About This Tutorial

About This Tutorial
This tutorial is organized as follows:

• Chapter 1, "Introduction," presents an overview of the contents of
the entire tutorial, and explains how to use it.

• Chapter 2, "Basic Concepts," explains the concepts that you need
to understand to work effectively in the XENIX environment. The
chapters that follow presuppose an understanding of the material
presented in this chapter.

• Chapter 3, "Logging In," explains how to log in to the system, how
to keep your account secure, how to edit the login prompt and how
to enter XENIX commands.

• Chapter 4, "Working with Files and Directories," explains how to
perform some of the basic tasks involving files and directories.
This chapter explains how to create files and directories, how to
move, copy, delete, and rename files and directories. The chapter
also explains how to use various XENIX text processing utilities,
and how to use access permissions with files and directories.

• Chapter 5, "Housekeeping," explains how to use XENIX "house­
keeping" utilities. This chapter explains how to create backups,
how to copy diskettes, how to get information about the status of
the system, and how to place commands in the background, The
chapter also contains a brief discussion of shell programming.

• Chapter 6, "XENIX Desktop Utilities," explains how to use the
XENIX desktop utilities. This chapter explains how to use the
automatic reminder service, how to communicate with other users
on the system and how to use the system calculator.

The best way to use this tutorial is to begin by reading Chapter 2. This
will provide you with the background information that you need in order
to understand the material presented in subsequent chapters. You should
then read Chapters 3 through 6 at your terminal, entering commands as
instructed in the examples.

1-2 XENIX Tutorial

About This Thtorial

Each section of each chapter is a self-contained unit. You do not have to
read previous sections in order to understand the material presented in
any particular section. If you only need to know how to perform a specif­
ic task, you can turn to the section of the chapter that explains how to per­
form that task. For example, if you already know how to create files but
are not sure how to print them, turn to "Printing Files" in Chapter 4,
"Working with Files and Directories." In this case, you do not have to
read the first sections of Chapter 4 in order to understand "Printing Files."

Introduction 1-3

Notational Conventions

Notational Conventions
This tutorial uses the following notational conventions:

• Examples in the text are indented.

• Directories and filenames are printed in italics.

• New concepts reviewed in the chapter summaries are printed in
italics.

• Commands that you enter are printed in boldface type.

• Keys to be pressed are printed in boldface type. For example, the
Return key is represented by:

(Return)

• Key combinations are printed in boldface and are hyphenated.
An example is:

(Ctrl)d

When you see a key combination, you are supposed to hold down
the first key and press the second key. In this example, you should
hold down the Control key and press the d key.

• An uppercase letter in parentheses is often appended to command
names, as in:

1-4

touch(C)

The letter in parentheses refers to the section of the XENIX Refer­
ence that contains complete information on the command.

XENIX Thtorial

Chapter 2

Basic Concepts

Introduction 2-1

Accounts 2-2
User Accounts 2-2
Super User Account 2-3

Files 2-4
Ordinary Files 2-4
Special Device Files 2-5
Directory Files 2-5
Directory Structure 2-6

Naming Conventions 2-8
Filenames 2-8
Pathnames 2-8
Sample Names 2-9
Special Characters 2-10

Commands 2-13
Command Line 2-13
Syntax 2-14

Input and Output 2-16
Redirection 2-17
Pipes 2-18

Summary 2-19

Introduction

Introduction
This chapter explains the basic concepts that you need to understand to
work effectively in the XENIX environment. After reading this chapter,
you should understand the fundamentals of user accounts, as well as how
the system's files and directories are organized and named, how com­
mands are entered, and how a command's input and output can be
redirected. It is important to read this chapter before proceeding to the
tutorial chapters that follow.

Basic Concepts 2-1

Accounts

Accounts
To organize and record each user's activities, the system administrator
gives everyone an account. There are two main types of accounts: User
and Super User. Both of these are described in the following sections.

User Accounts

User accounts are the type most commonly issued. They are given to
anyone who needs to log in to a XENIX system. Your user account con­
tains the following information:

• Your login name. This is the name by which you are known on the
system. It is the name you enter at the login prompt.

• Your password. To increase system security, each user may be
given a password. This password is entered when you log in to the
system.

• Your group identification. Each user is known to the system as an
individual and as a member of a group. Group membership is
important for system security reasons. As a member of a group,
you may be permitted to access files and directories that you can­
not access as an individual.

• Your "home directory." This is the place in the file system where
you can keep personal files. When you first log in to the system,
you are placed in your home directory.

• Your "login shell." This is the program that reads and executes the
XENIX commands you input. In most cases, your login shell will
be the "Bourne shell." The Bourne shell uses the dollar sign ($) as
a prompt. However, you may be configured to use the "e-shell,"
which uses the percent sign (%) as a prompt. The Korn shell is
similar to the Bourne shell, but has advanced features such as
command-line editing. The "Visual shell," a menu-driven inter­
face, is also available. Throughout this tutorial, the expression
"XENIX prompt" is used to refer to your shell prompt, whether it is
the percent sign or the dollar sign.

Once an account has been established for you, you can manipulate the
files, directories, and commands that make up a XENIX system.

2-2 XENIX Tutorial

Accounts

Super User Account

In addition to each user's individual account, every XENIX system has a
"super user" account. (The super user is also referred to as "root.") In
order to perform certain system administration tasks, the system adminis­
trator must log in as the super user. The super user has free rein over the
system. The super user can read and edit any file on the system, as well
as execute any program.

Basic Concepts 2-3

Files

Files
The file is the fundamental unit of the XENIX filesystem. There are three
different types ofXENIX files: ordinary files (what we usually mean when
we say "file"), special device files, and directories. Each of these is
described in the sections that follow.

Ordinary Files

An ordinary file is simply a collection of 8-bit bytes. Ordinary files are
usually documents, program source code, or program data. Executable
binary files, or computer programs, are also considered ordinary files.
The bytes of an ordinary file are interpreted as text characters, binary
instructions, or program statements, by the programs that examine them.

Every ordinary file has the following attributes:

• a filename (not necessarily unique),

• a unique filesystem number called an inode number,

• a size in bytes,

• a time of last change,

• a set of access permissions,

• an owner and a group.

File Protection

On a multi-user system, it is often necessary to "protect" certain files,
denying some users access to the files while allowing access to others.
Files are protected by assigning appropriate "access permissions" to
them. XENIX systems provide three levels of access permissions:

read

write

2-4

Having read permission on a file allows a user to view
the contents of the file with such commands as cat and
more. A user with read-only permission cannot edit a
file.

Having write permission on a file allows a user to edit
the file.

XENIX Thtorial

execute

Files

If the file is a program, having execute permission on the
file allows a user to run the program. You cannot run a
program for which you do not have execute permission.

Access permissions are assigned by a file's owner. (By default, the owner
of a file is its creator.) Any combination of the three levels is permitted.
This allows the file's owner to determine which users can read, write,
and/or execute the file. Note that the super user has read, write, and exe­
cute permissions on all files on the system.

The XENIX file security mechanism is very flexible. It allows separate
access permissions to be set for a file's owner, a file's group, and for all
other users. In a typical case, the owner of a file might have read and
write permissions, the group read-only permission, and all other users no
access permissions at all.

Special Device Files

Each physical device on the system, such as hard and floppy disks,
lineprinters, terminals, and system memory, is assigned to a "special
file." These files are also called "special device files." Special device
files are not discussed in this tutorial. (For more information on special
device files, see the XENIX System Administrator's Guide.)

Directory Files

Directory files are more like file drawers than files. They are places
where files are stored (conceptually, not physically). A directory file is
usually referred to as a "directory," and contains the names and locations
of the files "within it."

Like ordinary files, directories can be protected by assigning appropriate
access permissions. These are read, write and execute. In order to do
anything useful in a directory, a user must have execute permission on
that directory. Execute and write permissions determine whether files can
be added to or removed from a directory. Execute and read permissions
determine whether the contents of a directory can be listed. Access per­
missions are assigned to a directory by its owner. By default, the owner
of a directory is its creator.

Basic Concepts 2-5

Files

Directory Structure

With multiple users working on multiple projects, the number of files in a
filesystem can proliferate rapidly, creating an organizational nightmare.
The inverted "tree-structured" directory hierarchy that is a feature of
XENIX systems allows users to organize large numbers of files efficiently.
Related files can be grouped together in a single directory. ill addition to
ordinary files, a directory can contain other directories, sometimes called
"subdirectories." Subdirectories themselves can contain ordinary files
and more subdirectories, and so on. The cd command is used to move
from one directory to another.

ill this typical tree of files, the root of the tree is at the top and the
branches of the tree grow downward. Directories correspond to "nodes"
in the tree, while ordinary files correspond to "leaves." Figure 2-1
represents this inverted tree-structured directory hierarchy.

/ (root)

I
I

I I
bin usr dev

I I
I

I I
chmod gwenl markt tty 1 a

I I
I I I I

mail news text data

Figure 2-1 A Typical Filesystem

ill Figure 2-1, the names bin, usr, dev, gwenl, and markt all represent
directories, and are all nodes in the tree. At the top of the tree is the root
directory, which is given the name slash (/). The names mail, news, text,
and data all represent ordinary files, and they are all "leaves" of the tree.
The file chmod is the name of a command that can be executed. The
name tty] a is a special device file. It represents a terminal and is also
represented in the tree.

If a directory contains a downward branch to other files or directories,
those files and directories are "contained" in the given directory. All
directories and files on the system are contained in the root directory. ill
Figure 2-1, the files mail and news are contained in the directory gwenl,
which itself is contained in the directory usr. The directory usr, in turn, is
contained in the root directory.

2-6 XENIX Tutorial

Files

It is possible to name any file in the system by starting at the root and
traveling down any of the branches to the desired file. Files can also be
named relative to any directory. XENIX naming conventions are dis­
cussed later in this chapter.

The User Directory

Each user is given a personal or "home" directory. This is a place where
you can keep files that no other user is likely to need. Within the home
directory, you may have other subdirectories that you own and control.
All of the home directories on a XENIX system are often placed in the usr
directory, as illustrated by Figure 2-2.

I
adam

I
text text

usr
I

I
eve

I

temp

Figure 2-2 A Typical User Directory

mary

I
text

In Figure 2-2, the usr directory contains each user's home directory.
There are three users on this system, adam, eve, and mary.

Basic Concepts 2-7

Naming· Conventions

Naming Conventions
Every single file, directory, and device on a XENIX system has both a
filename and a pathname. Filenames and pathnames are discussed in the
following two sections.

Filenames

A filename is a sequence of 1 to 14 characters consisting of letters, digits
and other special characters such as the underbar (_). Every single file,
directory, and device in the system has a filename. Although you can use
almost any character in a filename, it is best to confine filenames to the
alphanumeric characters and the period. Other characters, especially con­
trol characters, are discouraged for use in filenames.

Filenames should be indicative of a file's contents. For example, a file
containing purchase orders should have a name like orders, rather than
filel. Note that filenames must be unique only within directories and
need not be unique system-wide. Different directories can contain
different files that have the same name. For example, there can be several
files named text on a single system, as long as those files are each in
separate directories.

When a filename contains an initial period, it is "hidden," and it is not
displayed by the Ie command. System configuration files are often hidden.
However the Ie -a command does display hidden files. The dash (-) is
used in specifying command options and should be avoided when naming
files. In addition, the question mark (?), the asterisk (*), brackets ([and
]), and all quotation marks should never be used in filenames, because
they have special meaning to the XENIX shell. (For more information on
these characters, see "Special Characters" later in this chapter.)

Pathnames

A pathname is a sequence of directory names followed by a simple
filename, each separated from the previous name by a slash. If a path­
name begins with a slash, it specifies a file that can be found by beginning
a search at the root of the entire tree. Otherwise, files are found by begin­
ning the search at the user's current directory (also known as the working
directory). The pwd command is used to print the name of the working
directory on the screen.

2-8 XENIX Thtorial

Naming Conventions

A patbname beginning with a slash is called afull or absolute pathname.
The absolute patbname is a map of a file's location in the system. Abso­
lute patbnames are unique: no two files, directories, or devices have the
exact same absolute patbname. A patbname not beginning with a slash is
called a relative pathname, because it specifies a path relative to the
current directory.

Sample Names

Among the directory and file names commonly found on XENIX systems
are:

/

/bin

/usr

/dev

/dev/console

/dev/ttyXX

/lib

/usr/lib

/tmp

/usr/joe/run

Basic Concepts

The name of the root directory.

The directory containing most of the frequently
used XENIX commands.

The directory containing each user's personal
directory. The subdirectory, /usr/bin contains fre­
quently used XENIX commands not in /bin.

The directory containing special device files.

The special device file associated with the system
console.

The names of special device files associated with
system ports. XX represents a number, such as la
or 006. Most ports are assigned to terminals.

The directory containing files of "libraries" used
for system development.

The directory containing directories with XENIX
applications.

The directory for temporary files.

A typical full patbname. It is the patbname of a
file named run belonging to a user named joe.

2-9

Naming Conventions

bin/script A relative pathname. It names the file script in
subdirectory bin of the current working directory.
If the current directory is the root directory (/), it
names /bin/script. If the current directory is
/usr/joe, it names /usr/joe/bin/ script.

filel Name of an ordinary file in the current directory.

All files and directories, with the exception of the root directory, have a
"parent" directory. This directory is located immediately above the given
file or directory. The XENIX filesystem provides special shorthand nota­
tions for the parent directory and for the current directory:

The shorthand name of the current directory. For example,
.!filexxx names the same file as filexxx, in the current direc­
tory.

The shorthand name of the current directory's parent direc­
tory. For example, the shorthand name . .1 .. refers to the
directory that is two levels "above" the current directory.

Special Characters

XENIX systems include a facility for specifying sets of filenames that
match particular patterns. Suppose, for example, you are working on a
large book. The different chapters of the book might be kept in separate
files, whose names might be chptl, chpt2, chpt3, and so on. You might
even break each chapter into separate files. For example, you might have
files named chptl.l , chptl.2, chptl.3, and so on.

If you want to print the whole book on the lineprinter, you could enter the
following command:

Ip chapl.l chapl.2 chapl.3 ...

Entering so many filenames in a command quickly becomes tedious, and
will probably lead to mistakes. Fortunately, there is a shortcut. A
sequence of names containing a common pattern can be specified with the
use of special "wildcard" characters. The wildcard characters discussed
in this chapter are:

* Matches zero or more characters

[] Matches any character inside the brackets

? Matches any single character

2-10 XENIX Tutorial

Naming Conventions

For example, you can enter:

Ip ehap*

The asterisk (*) means "zero or more characters of any type," so this
command translates into "send all files whose names begin with the word
chap to the lineprinter." This is a quick and effective way of printing all
the files that make up your book.

This shorthand notation is not a unique property of the Ip command. It
can be used with any command. For example, you can list the names of
the files in the book by typing:

Ie ehap*

The asterisk is not limited to the last position in a filename. It can be
used anywhere in a filename and can occur several times. An asterisk by
itself matches all filenames not containing slashes or beginning with peri­
ods:

cat *

This command displays all files in the current directory on your terminal
screen.

The asterisk is not the only pattern-matching feature available. Suppose
you want to print only chapters 1 through 4, and 9. You can enter:

Ip ehap[12349]*

The brackets ([and]) mean "match any of the characters inside the
brackets." A range of consecutive letters or digits can be abbreviated, so
you can also do this with the following command:

Ip ehap[1-49]*

(Note that this does not try to match chapl* through chap49*, but rather
chapl* through chap4* and chap9*.) Letters can also be used within
brackets: "[a-z]" matches any character in the range "a" through "z".

The question mark (?) matches any single character:

Ie ?

Basic Concepts 2-11

Naming Conventions

This command lists all files that have single-character names. The fol­
lowing command lists information about the first file of each chapter (Le.,
chap].] , chap2.], ...):

I chap?1

If you need to tum off the special meaning of any of the wildcard charac­
ters (*, ?, and [...]) enclose the entire argument in single quotation
marks. For example, the following command lists only a file named "?"
rather than all one-character filenames:

I '? ' C •

Pattern-matching features are discussed further in "The Shell" chapter of
the XENIX User's Guide.

2-12 XENIX Tutorial

Commands

Commands
You have already been introduced to three useful XENIX commands, le,
Ip, and cat. The Ie command is used to display directory contents, the Ip
command to print files and the cat command to display file contents.

Commands are executable programs. When you enter the name of a com­
mand, the system looks for a program with that name and executes the
program, if it can be found. Command lines can also contain arguments
that specify options or files that the program needs. The command line
and command syntax are discussed in the next two sections.

Command Line

The XENIX system always reads commands from the "command line."
The command line is a line of characters that is read by the shell to deter­
mine what actions to perform. (There are four shells available: the
Bourne shell, the C-shell, the Korn shell, and the Visual shell.) The shell
reads the names of commands from the command line, finds the execut­
able program corresponding to the name of the command, then executes
that program. When the program finishes executing, the shell resumes
reading the command line.

When you enter commands at a terminal, you are actually editing a line of
text called the "command-line buffer." The command-line buffer
becomes a command line only when you press (Return). The command­
line buffer can be edited with the (Bksp) and (Ctrl)u keys. If the INTER·
RUPT key is pressed before (Return), the command-line buffer is erased.
(On most keyboards, the (Del) key is the INTERRUPT key.)

Multiple commands can be entered on a single command line, provided
they are separated by a semicolon (;). For example, the following com­
mand line prints out the current date and the name of the current working
directory:

date; pwd

Basic Concepts 2-13

Commands

Commands can be submitted for processing in the "background" by
appending an ampersand (&) to the command line. This mode of execu­
tion is similar to "batch" processing on other systems. The main advan­
tage of placing commands in the background is that you can execute other
commands from your terminal in the "foreground" while the background
commands execute. For example, the following command outputs disk
usage statistics in the directory /usr, a fairly time-consuming operation,
without tying up your terminal:

du lusr > diskuse &

The output of this du command is placed in the file diskuse, by redirect­
ing output with the greater-than symbol (». (Redirection of input and
output is discussed in "Input and Output" below. Background processing
is discussed in "Advanced Tasks.")

Syntax

The general syntax for commands is:

emd [options][arguments] [filename] [•••]

By convention, command names are lowercase. Options are always pre­
ceded by a dash (-) and are not required. They are used to modify the
command. For example, the Ie command lists, in columnar format, the
contents of a directory. The same command with the -I option (Ie -I) pro­
duces a long listing of a directory's contents, including file size, permis­
sions, ownership and date.

In some cases, options can be grouped to form a single option argument,
as in the following command:

Ie -rl

This command is really a combination of two options, where the -rl
option selects the option that lists all files in the directory in both reverse
alphabetical order and with the long format.

2-14 XENIX Tutorial

Commands

Sometimes multiple options must be given separately, as in the following
command:

copy -a -v source destination

Here the -a option tells the copy command to ask the user for
confirmation before copying source to destination. The -v option
specifies "verbose", which causes copy to list the names of the files that
are copied, as they are copied.

Other arguments, such as search strings, can also be given, as in the fol­
lowing command:

grep 'string of text' data.file

The string of text in this example is a single argument, and is the series of
characters, or string, for which the grep command searches in the file
data.file.

Basic Concepts 2-15

Input and Output

Input and Output
By default, the operating system assumes that input comes from the ter­
minal keyboard and that output goes to the terminal screen. To illustrate
typical command input and output, enter:

cat

This command now expects input from your keyboard. It accepts as many
lines of input as you enter, until you press (Ctrl)d which is the "end-of­
file" or "end-of-transmission" indicator.

For example, enter:

this is two lines (Return)
of input (Return)
(Ctrl)d

The cat command immediately outputs each line as you enter it. Since output is
sent to the terminal screen by default, that is where the lines are sent. Thus, the
complete session will look like this on your terminal screen:

$ cat
this is two lines
this is two lines
of input
of input
$

The flow of command input and output can be "redirected" so that input
comes from a file instead of from the terminal keyboard and output goes
to a file or lineprinter, instead of to the terminal screen. In addition, you
can create "pipes" to use the output of one command as the input of
another. (Redirection and pipes are discussed in the next two subsec­
tions.)

2-16 XENIX Thtorial

Input and Output

Redirection

On XENIX systems, a file can replace the terminal for either input or out­
put. For example, the following command displays a list of files on your
terminal screen:

Ie

But if you enter the following command, a list of your files is placed in
the file filelist (which is created if it does not already exist), rather than
sent to the screen:

Ie > filelist

The symbol for output redirection, the greater-than sign (», means "put
the output from the command into the following file, rather than display it
on the terminal screen." The following command is another way of using
the output redirection mechanism:

cat n f2 f3 > temp

This command places copies of several files in the file temp by redirecting
the output of cat to that file.

The output append symbol (») works very much like the output redirec­
tion symbol, except that it means "add to the end of." The following com­
mand means "concatenate filel, file2, and file3 to the end of whatever is
already in temp, instead of overwriting and destroying the existing con­
tents. "

cat filel file2 file3 » temp

As with normal output redirection, if temp doesn't already exist, it is cre­
ated for you.

In a similar way, the input redirection symbol «) means "take the input
for a program from the following file, instead of from the terminal." As an
example, you could enter the following command to send a file named
letter. txt to several people using the XENIX mail facility:

mail adam eve mary joe < letter .txt

(See Chapter 6 of this tutorial for information on mail.)

Basic Concepts 2-17

Input and Output

Pipes

One of the major innovations of XENIX systems is the concept of a
"pipe." A pipe is simply a way to use the output of one command as the
input of another, so that the two run as a sequence of commands called a
"pipeline. "

For example, suppose that you want to find all unique lines in frank. txt,
george. txt, and hank. txt and view the result. You could enter the follow­
ing sequence of commands:

sort frank.txt george.txt hank.txt > tempi
uniq < tempi > temp2
more temp2
rm tempi temp2

But this is more work than is necessary. What you want is to take the out­
put of sort and connect it to the input of uniq, then take the output of
uniq and connect it to more. You would use the following pipe:

sort frank.txt george. txt hank.txt I uniq I more

The vertical bar character (I) is used between the sort and uniq com­
mands to indicate that the output from sort, which would normally have
been sent to the terminal, is to be used as the input of the uniq command,
which in tum sends its output to the more command for viewing.

The following command is another example of a pipe. The we command
counts the number of lines, words, and characters in its input. The who
command prints a list of users currently logged on, one per line. Thus, the
following pipeline tells you the number of users who are logged in by
counting the number of lines that come from the who command:

who I we -I

Notice the difference in output between we -I and we. By default, we tells
you how many lines, words, and characters there are in the input. How­
ever, we -I tells you only how many lines.

Any program that accepts input from the keyboard can accept input from
a pipe instead. Any program that displays output to the terminal screen
can send input to a pipe. You can have as many elements in a pipeline as
you wish.

2-18 XENIX Tutorial

Summary

Summary
Accounts are assigned to each user to help organize the computer system
and to keep track of everyone's activities. Without an account, you can­
not log in to the system. There are two types of accounts: user and super
user. User accounts are the more common type, and are given to every
user. Super users accounts provide access to all other accounts and files,
and are usually only given to the system administrator.

With XENIX systems, all information is stored in files. Special device
files store information about the different hardware components of the
system. These pre-made files come with the system, and you cannot
manipulate or rename them. Ordinary files, on the other hand, can be cre­
ated, named, and edited by you. Groupings of files are stored in direc­
tories. Directories can also contain other directories (called subdirec­
tories) in addition to files.

You can tell the computer to execute a task by giving it a XENIX com­
mand. The line on which the command is typed is called the command
line, and is read by the operating system whenever you press (Return).

You can instruct the operating system to send output to a device other
than a terminal screen (such as a printer or a file). Likewise, you can
designate an input source to be something other than a terminal. For
example, you can use the pipe character to tell the operating system to
use the output from one command as the input for another. By stringing
XENIX commands together in this way, you can create your own custom­
ized command sequences.

For a complete explanation of the commands presented in this chapter,
see the XENIX User's Guide and the XENIX Reference.

Basic Concepts 2-19

Chapter 3

Logging In

Introduction 3-1

Gaining Access to the System 3-2
Logging In 3-2
Logging Out 3-3
Changing Your Password 3-3

Keeping Your Account Secure 3-6
Password Security 3-6
Good Security Habits 3-6

Changing Your Terminal 'lYpe 3-8

Entering Commands 3-10
Entering a Command Line 3-10
Erasing a Command Line 3-10
Halting Screen Output 3-11

Summary 3-12

Introduction

Introduction
This chapter explains how to perfonn the following basic tasks on a
XENIX system:

• Log in to the system,

• Log out of the system,

• Change your password,

• Reset your tenninal type,

• Enter a XENIX command,

• Erase an incorrect command line,

• Stop and start screen output.

This chapter is designed as a tutorial. The best way to use this chapter is
to read it at your tenninal, entering commands as instructed in the exam­
ples.

None of the commands described in this chapter is described in great
detail. For a complete explanation of each command, refer to the XENIX
Reference.

Logging In 3-1

Gaining Access to the System

Gaining Access to the System
To use a XENIX system, you must first gain access to it by logging in.
When you log in, you are placed in your home directory. Logging in,
changing your password, and logging out are described below.

Logging In

Before you can log in to the system, you must be given a system
"account." In most cases, your account is created for you by your system
administrator. However, if you need to create the account yourself, refer
to the XENIX System Administrator's Guide for information on creating
user accounts. This section assumes that your account has already been
created.

Normally, the system sits idle and the prompt "login:" appears on the ter­
minal screen. If your screen is blank or displays nonsense characters,
press the (Return) key a few times.

When the "login:" prompt appears, follow these steps:

1. Enter your login name and press (Return). If you make a mistake as
you type, press (Ctrl)u (hold down the (Ctrl) key and press the u
key) to start the line again. After you press (Return), "Password:"
appears on your screen.

2. Enter your password and press (Return). The letters of your pass­
word do not appear on the screen as you enter them, and the cursor
does not move. This is to prevent other users from learning your
password. If you enter your login name or password incorrectly,
the system displays the following message:

3-2

(Login innomet
login:

If you get this message, enter your login name and password again.

XENIX Thtorial

Gaining Access to the System

3. Depending on how your system is configured, you mayor may not
be prompted to enter your terminal type. If you are prompted for
your terminal type, you see a line like the following:

(TERM= (unknown)

Enter your terminal type if you see this line. (If you are not sure
how to specify your terminal type, contact your system administra­
tor.)

Once you have entered all the correct information, the "prompt charac­
ter" appears on the screen. This is a dollar sign ($) for Bourne or Korn
shell users and a percent sign (%) for C-shell users. The prompt tells you
that your XENIX system is ready to accept commands from the keyboard.

Depending on how your system is configured, you may also see a "mes­
sage of the day" after you log in.

Logging Out

The simplest way to log out is to enter logout at the % prompt for C-shell
users, or exit at the $ prompt for Bourne shell users. You might also be
able to logout by pressing (Ctrl)d at the prompt. However, some systems
are configured to prevent logout with (Ctrl)d. The reason for this is that
(Ctrl)d signifies the end-of-file on XENIX systems, and it is often used
within programs to signal the end of input from the keyboard. Since peo­
ple sometimes make the mistake of pressing (Ctrl)d several times, they
often find themselves unintentionally logged out of the system. To
prevent this, system administrators may disable logout with (Ctrl)d.

Familiarize yourself with the logout procedure by pressing (Ctrl)d, if you
are currently logged in. If this does not work, log out by entering logout
(C-shell) or exit (Bourne or Korn shell). If you are not logged in, log in
and then log out, experimenting with (Ctrl)d and with logout or exit.

Changing Your Password

To prevent unauthorized users from gaining access to the system, each
authorized user can be given a password. When you are first given an
account on a XENIX system, you are assigned a password by the system
administrator. Depending on the security scheme used at your site, you
may always be assigned passwords, or, allowed to choose your own.
Some XENIX systems require you to change your password at regular

Logging In 3-3

Gaining Access to the System

intervals. Whether yours does or not, it is a good idea to change your
password regularly (at least once every two months) to maintain system
security.

Use the passwd command to change your password. Follow these steps:

1. Enter the following command and press (Return):

passwd

You see:

Changing password for user
Old password:

Your login name appears in place of user.

2. Carefully enter your old password. It is not displayed on the screen. If
you make a mistake, press (Return). The message "Sorry" appears,
then the system prompt. Begin again with step 1.

3. The following message appears after you enter your old password and
press (Return):

Enter new password (minimum 5 characters)
Please use a combination of upper and lower case letters and numbers.
New password:

Enter your new password and press (Return). It is generally a good
idea to use a combination of numbers and lower-case and upper-case
letters in yourpassword.

4. You see the following message:

(Re-enter new password:

3-4 XENIX Thtorial

Gaining Access to the System

Enter your new password again.· If you make a mistake, you see the
following message:

~ They don't match; try again

Begin again with step 1 if you see this message.

When you complete the procedure, the XENIX prompt reappears. The next
time you log in, you must enter your new password.

Logging In 3-5

Keeping Your Account Secure

Keeping Your Account Secure
Security is ultimately the responsibility of the user. The careless use and
maintenance of passwords represents the greatest threat to the security of
a computer system.

Password Security

Here are some specific guidelines for passwords:

1. Don't use passwords that are easy to guess. Passwords should be at
least six characters long and include letters, digits, and punctuation
marks. (Example: frAiJ6*)

2. Passwords should not be names (even nicknames), proper nouns, or
any word found in /usr/dict/words. (Don't use a password like:
terry9)

3. Always keep your password secret. Passwords should never be
written down, sent over electronic mail, or verbally communicated.
(Treat it like the PIN number for your instant teller card.)

Good Security Habits

There are simple, good security habits. Here are some general guidelines:

1. Remember to log out before leaving a tenninal.

2. Use the lock(C) utility when you leave your tenninal, even for a
short time.

3. Make certain that sensitive files are not publicly readable. (See
the discussion of file and directory pennissions in Chapter 4 of this
tutorial for infonnation on how to do this.)

4. Keep any floppies or tapes containing confidential data (program
source, database backups) under lock and key.

3 -6 XENIX Tutorial

Keeping Your Account Secure

5. If you notice strange files in your directories, or find other evi­
dence that your account has been tampered with, tell your system
administrator.

Logging In 3-7

Changing Your Terminal Type

Changing Your Terminal Type
To communicate with the operating system via your terminal, you must
tell it what type of terminal you have. On most systems, the system con­
sole is already configured for use. However, serial terminals of various
types can be connected to a XENIX system. If you are working from a
serial terminal, it can be important to know how to specify your terminal
type.

The terminal type is displayed each time you log in. You can change the
value of the terminal type displayed by editing the .profile file in your
home directory. If you are using the C-shell, you do not have a .profile
file. Instead, you must edit the .login file in your home directory.

There are at least two reasons why you might want to change the value of
the terminal type displayed:

• You might have a new terminal that is not the same model as your
old terminal. If so, the terminal type displayed by your old .profile
(.login) file will be incorrect.

• The terminal type displayed might be "unknown" or "ansi" or
another setting which is not correct for your terminal. This would
require you to type in your terminal type every time you log in. By
changing the terminal type to the setting that is correct for your
terminal, all you have to do is press (Return) when prompted for
your terminal type. There is no need for you to enter the terminal
type.

To permanently change the terminal type displayed, use vi to edit .profile
(.login). In order to use vi to make these changes, it may be necessary to
manually set the terminal type for the current session. To make this ini­
tial specification, enter the commands listed below.

Bourne or Korn shell:

TERM=termtype; export TERM

3-8 XENIX Thtorial

Changing Your Terminal Type

C-shell:

setenv TERM termtype

where termtype is your terminal type. The terminals(M) manual page con­
tains a list of supported terminals. In addition, the file /etc/termcap contains
entries for all terminals supported under XENIX.

Once you have temporarily set the terminal type, you can use vi to make the
appropriate changes in .profile (.login) so that the the terminal type is set au­
tomatically whenever you log in. Chapter 4 of this tutorial explains how to
use vi.

Once in vi, move the cursor to the line that looks like the following:

eval 'tset -m :\?unknown -s -r -Q'

Change unknown (or whatever the value is) in this line to the terminal type of
your terminal. For example, if you normally log in on a vtl 00 terminal, you
would change the line to:

eval 'tset -m :\?vt100 -8 -r -Q'

Each time you log in, you would then see the message:

TERM = (vt100)

Press (Return) and the terminal type is set to vt100. There is no need to enter
vt100.

Logging In 3-9

Entering Commands

Entering Commands
Before you begin working with the commands described in the rest of this
tutorial, you should be familiar with three very useful XENIX features.
These are character type-ahead and the special key-combinations used to
erase the command line, and stop and start screen output. These features
are discussed below.

Entering a Command Line

Entering a command line consists of typing characters and then pressing
(Return). Once you press (Return), the computer reads the command line
and executes the specified commands. No command entered on the com­
mand line is executed until (Return) is pressed.

You can enter as many command lines as you want without waiting for
the commands to complete their execution and for the prompt to reappear.
This is because XENIX systems support character type-ahead. The system
can hold up to 256 characters in the kernel buffers that read keyboard
input. Experiment with this type-ahead feature by entering the following
commands, one right after the other, without waiting for a previous com­
mand to finish executing. (Always press (Return) after entering a com­
mand. In the following example, press (Return) after entering each com­
mand.)

Ie -Ia
du -a
Ie -Fa

These commands generate a long listing of all the files in the current
directory, then display disk usage statistics for these files, and finally list
the files again, but in a different format.

Erasing a Command Line

Typing errors are bound to occur when you enter commands. To erase the
current command line, press (Ctrl)u. When you press (Ctrl)u, the command
line is ignored and the cursor skips to the next line. Press (Return) to get
the prompt back.

3-10 XENIX Thtorial

Entering Commands

Halting Screen Output

Data often scrolls across your screen faster than you can read it. To halt
scrolling temporarily, press (Ctrl)s. To restart scrolling, press (Ctrl)q.
Experiment with (Ctrl)s and (Ctrl)q by entering the following command,
then pressing (Ctrl)s to stop the output and (Ctrl)q to restart it:

Is Ibin

Logging In 3-11

Summary

Summary
For security reasons, XENIX systems require that all users have a login
name and a password. To access the operating system, enter your login
name at the login prompt, and your password at the password prompt. If
you enter either incorrectly, you must start over from the beginning.

Once you have accessed the system, you can change your password at any
time by using the passwd command. To enter this or any other XENIX
command, you must press (Return) after typing the name of the command
on the command line. If you need to erase the command line, press
(Ctrl)u.

The (Ctrl)s and (Ctrl)q keys respectively stop and continue the scrolling of
information across your terminal screen.

If you need to permanently change your terminal type designation, you
must edit the file (.profile or .login) that contains the designation. This
file is always in your home directory.

When you are through using the system, enter logout if you are using the
C-shell, or exit if you are using the Bourne or Korn shell. After entering
this command, you are logged out of the system.

For a complete explanation of the commands presented in this chapter,
see the XENlX User's Guide and the XENlX Reference.

3-12 XENIX Thtorial

Chapter 4

Working with Files
and Directories

Introduction 4-1

Working with Directories 4-2
Printing the Name of Your Working Directory 4-2
Listing Directory Contents 4-2
Changing Your Working Directory 4-4
Creating Directories 4-4
Removing Directories 4-5
Renaming Directories 4-6
Copying Directories 4-6

Working with Files 4-8
Displaying File Contents 4-8
Listing Invisible (Dot) Files 4-10
Deleting Files 4-10
Combining Files 4-11

Renaming Files 4-12
Moving Files 4-12
Copying Files 4-13
Finding Files 4-13

Editing Files with vi 4-15
Entering Text 4-15
Moving the Cursor 4-15
Deleting Text 4-16
Inserting Text 4-17
Leaving vi 4-17

Printing Files 4-19
Using lp 4-19
Using lp Options 4-20
Canceling a Print Request 4-20
Finding Out the Status of a Print Request 4-21

Processing Text Files 4-23
Comparing Files 4-23
Sorting Files 4-24
Searching for Patterns in a File 4-24
Counting Words, Lines, and Characters 4-25

Using File and Directory Permissions 4-27
Changing File Permissions 4-30
Changing Directory Permissions 4-31

Summary 4-33

Introduction

Introduction
This chapter explains how to perform the following tasks on a XENIX sys­
tem:

• Print the name of the current directory,

• List directory contents,

• Change to another directory,

• Create, remove, rename, and copy directories,

• Display the contents of files,

• Delete, combine, rename, move, copy, and search for files,

• Use the full-screen text editor vi to create files,

• Print files,

• Compare and sort files,

• Search for patterns in a file,

• Count words, lines and characters in a file,

• Use file and directory permissions.

This chapter is designed as a tutorial. The best way to use this chapter is
to read it at your terminal, entering commands as instructed in the exam­
ples.

None of the commands described in this chapter is described in great
detail. For a complete explanation of each command, refer to the XENIX
Reference.

Working with Files and Directories 4-1

•

Working with Directories

Working with Directories
Because of the hierarchical structure of the XENIX filesystem, any XENIX
system has many directories and subdirectories. There are several com­
mands that simplify working in directories. These commands are
described in the following sections.

Printing the Name of Your Working Directory

The directory you are "in" at any given time is your "working" directory.
All commands are executed relative to the working directory. The name
of this directory is given by the pwd command, which stands for "print
working directory." To find out what your current working directory is,
enter the following command:

pwd

When you first log in to the system, you are placed in your home direc­
tory.

Listing Directory Contents

Several related commands are used to list the contents of directories:

Ie This command is a variation of the Is command. The Is com­
mand alphabetizes and displays directory contents. The Ie
command alphabetizes directory contents and displays them in
columnar format.

If This command does the same as Ie, and it also marks direc­
tories with a slash (I) and executable files (computer pro­
grams) with an asterisk (*).

Enter the following command to list the contents of /usr/bin:

Ie lusr/bin

This directory contains many of the executable files with which you work
in the XENIX environment. Entering Ie with no directory name lists the
contents of the current directory.

4-2 XENIX Thtorial

Working with Directories

The I command is also useful. It is equivalent to the Is -I command,
which produces a "long" listing of a directory's contents. Here is an
example output of a long listing:

total 338
-rw-rw-r-- 1 markt pub 4448 Mar 1 09:16 l.intro.OO
-rw-rw-r-- 1 markt pub 4457 Mar 1 09:29 l.intro.s
-rw-rw-r-- 1 markt pub 33836 Mar 1 09:30 2.concepts.00
-rw-rw-r-- 1 markt pub 35096 Mar 1 12:49 2.concepts.s
-rw-rw-r-- 1 markt pub 52197 Mar 1 15:09 3.basic.s
-rw-rw-rw- 1 markt pub 39835 Feb 16 11:02 4.advan.s

Reading from left to right, the information given for each file or directory
by the I command includes:

• Permissions - The permissions for the first file in the above figure
are -rw-rw-r--. This line tells you that the file is an ordinary file,
that the owner and group members have read and write permission,
and that all other users have read permission. For details about file
and directory permissions, see "Using File and Directory Permis­
sions" later in this chapter.

• Number of links - A link is a path to a file. In the above example,
all of the files have one link.

• Owner - The owner's name is the login name of the person who
created the file.

• Group - A group is an organization of users set up by the system
administrator.

• File size in bytes

• Time of last modification

• Filename

The figure at the top lists the total number of "blocks" used on the disk to
store these files. A single block is 512 bytes. In the case of the example
shown, the files account for 338 blocks, or 173056 bytes.

Working with Files and Directories 4-3

Working with Directories

Changing Your Working Directory

Your working directory represents your location in the filesystem. To
move to a new location in the XENIX filesystem, use the cd command.

Entering cd with no arguments places you in your home directory. Try it.
Enter cd. To be sure you are now in your home directory, enter pwd.

To move to a directory other than your home directory, you must specify
that directory as an argument to the cd command. For example, enter the
following command to move to /usr/bin:

cd lusr/bin

Verify that you are in /usr/bin by entering pwd.

Change to the "root" directory by entering the following command:

cd I

The root directory is at the "top" of the filesystem. All other directories
are "below" it. Enter If to examine the files and directories in the root
directory. Then enter cd to return to your home directory. (For more in­
formation on the root directory, refer to Chapter 2 of this tutorial.)

Some shorthand notation is available to help you move quickly through
the filesystem. To move up one directory from your current directory,
enter:

cd •.

Enter the following command to move up two directories:

cd •• 1 ••

If you entered this latter command from your home directory, you are prob­
ably in the root directory. Verify this by entering pwd.

Creating Directories

To create a subdirectory in your working directory, use the mkdir com­
mand. Enter cd to move to your home directory and then enter the fol­
lowing command to create a subdirectory named tempdir:

mkdir tempdir

4-4 XENIX Thtorial

Working with Directories

Verify that tempdir exists with the If command. Change to tempdir with
the cd command and verify that tempdir is empty with another If com­
mand. Finally, use the touch(C) command to create two empty files in
tempdir:

touch tempfile1 tempfile2

Enter If one more time to verify that tempfilel and tempfile2 were created.

You can only create subdirectories in a directory if you have write per­
mission in that directory. If you do not have write pennission and you use
mkdir to create a subdirectory, you see the following message:

rnkdir: cannot access directory_name

In this message, directory name refers to the directory in which you
attempted to create a sulxlifectory. Verify this by trying to create a sub­
directory in the Jetc directory, a directory in which you probably do not
have write pennission:

mkdir /etdtemp

Removing Directories

Use the rmdir command to remove a directory. This command will not
work if the directory has files or subdirectories in it. Verify this by mov­
ing to your home directory with the cd command and then entering the
following command to remove tempdir, the directory created earlier in
"Creating Directories:"

rmdir tempdir

You should see the following message:

rmdir: tempdir not empty

You must remove tempfilel and tempfile2 from tempdir before rmdir
deletes tempdir. But don't remove these files just yet. They are used in
another example later in this chapter.

Working with Files and Directories 4-5

Working with Directories

Renaming Directories

To rename a directory, use the mv command. For example, cd to your
home directory and then enter the following command to rename tempdir,
the directory created earlier in "Creating Directories," to newdir:

mv tempdir newdir

Verify the name change by entering If. Note that the files in newdir are
unaffected by the change. Verify this by entering the following com­
mand:

If newdir

Copying Directories

The copy command copies directories. Of course, before you can copy the
contents of one directory into another, you must have write permissions
on the second directory.

To copy the Inewdir directory created earlier in "Renaming Directories"
to Itmplnewdir, enter the following command:

copy $HOMEinewdir itmpinewdir

In this command, "$HOME" is shorthand for the pathname of your home
directory. You can use it wherever you would enter the pathname of your
home directory.

When you make a copy of a directory, all or the files in the directory are
copied to the new directory. To verify that the files in $HOMElnewdir
were copied to Itmplnewdir, enter the following command:

If itmpinewdir

Remove Itmplnewdir by entering the following commands:

4-6

rm itmpinewdiri*
rmdir itmpinewdir

XENIX Tutorial

Working with Directories

The first command removes the files in itmpinewdir, the second command
removes itmpinewdir. Verify that itmpinewdir is removed by entering the
following command:

If Itmp

Remove $HOMEinewdir by entering the following commands:

rm $HOME/newdir/*
rmdir $HOME/newdir

Working with Files and Directories 4-7

Working with Files

Working with Files
File manipulation (creating, deleting, displaying, combining, renaming,
moving, and copying) is one of the most important capabilities an operat­
ing system provides. The XENIX commands that perform these functions
are described in the following sections.

Displaying File Contents

The more command displays the contents of a file, one screenful at a
time. It cannot be used to edit files. If the file contains more than one
screenful of data, you see the following prompt after each screen of text is
displayed:

--More--(XX%)

XX% represents the percentage of the file displayed. Press the (Return)
key to display another line. Press the (Space) (spacebar) to display
another screen.

Try the following command:

more /etc/termcap

This causes the contents of letcltermcap to display on the screen. To quit
more before letc!termcap is finished displaying, press q for quit.

The more command does not allow you to scroll backward, toward the
beginning of the file. However, you can search forward for patterns with
more by using the slash (I) command. For example, enter the following com­
mands to search for a line containing "process" inletcltermcap:

more /etc/termcap
/process

You see the following message at the top of the screen:

(... skipping

If the pattern is found, it is displayed two lines below this message. If the pat­
tern is not found, "Pattern not found" is displayed.

4-8 XENIX Thtorial

Working with Files

If you are looking at a file with more and decide that you want to edit the file,
you can invoke the vi editor by pressing v. Of course, you must have write
permission on a file before you can edit it with vi or any other text editor. To
display the file's contents, you only need read permission.

You will often use more in pipes. For example, more is useful when you
want to list the contents of a directory in long format. Enter the following
command to display a long listing of the contents of Ibin, one screenful at a
time:

I Ibin I more

(For more information on pipes, refer to Chapter 2 of this tutorial.)

The head and tail commands display the beginning and the end of a file,
respectively. With no options, they display the first or last 10 lines. Enter the
following command to display the last 10 lines of letcltermcap:

tail /etc/termcap

You can specify exactly how many lines you want displayed. Enter the fol­
lowing command to display the first 20 lines of letc!termcap:

head -20 /etc/termcap

Enter the following command to display the last 20 lines of letc!termcap:

tail -20 /etc/termcap

The cat command also displays the contents of a file. Unlike more, cat con­
tinuously scrolls the file until you stop the scroll with (Ctrl)s. (Ctrl)q contin­
ues scrolling. Scrolling stops automatically when the end of the file is
reached. To stop scrolling before the end of the file, press INTERRUPT,
which is the (Del) key on most keyboards.

Enter the following command to display the contents of letc!termcap. Use
(Ctrl)s and (Ctrl)q to stop and start the scrolling and INTERRUPT to halt the
scrolling before the end of the file is reached:

cat /etc/termcap

Working with Files and Directories 4-9

Working with Files

Listing Invisible (Dot) Files

Filenames beginning with a period (dot) are invisible; the normal listing
commands like 1, Ie, etc., do not display these files. These commands
include a -a option that lists all files. For example, the command:

Ie -a

might display a list of files like this:

(. .cshrc .login prints quotes globals

The "." and " .. " refer to the present and upper directories, respectively.
The files .cshrc and .login are invisible files.

Deleting Files

The rm command is used to delete files. We have used it throughout this
chapter to delete various files. Use cd to change to your home directory
and enter the following command to create three new files:

touch tempfilel tempfile2 tempfile3

Delete tempfile3 by entering the following command:

rm tempfile3

The-i option allows you to remove files interactively by asking you if
you really want to delete each of the files specified on the command line.
If you press y followed by a (Return), the given file is removed. If you
press n, the file is left untouched. This option is useful when removing
files from a directory that contains many files. It helps you avoid erasing
files accidentally that you really want to keep.

Experiment with the -i option by entering the following command:

rm -i tempfilel tempfile2

4-10 XENIX Thtorial

Working with Files

Note that you can place several filenames on the rm command line. This
is true for most XENIX commands. You can also use wildcard characters.
For example, instead of entering the above command, you could enter the
following:

rm -i tempfile*

(The use of wildcard characters on the command line is discussed in
Chapter 2 of this tutorial.)

Combining Files

In addition to displaying files, the cat command can be used to combine
several existing files into a single new file. This is done by redirecting
the output of cat into a new file. The greater-than sign (» is used for
redirection. If the new file does not exits, it is created automatically. (If
you are not familiar with redirection, see Chapter 2 of this tutorial.)

Use cd to move to your home directory and enter the following command
to combine Jete/motd and Jete/defaultJtar into a file named catfile:

cat /etc/motd /etc/default/tar > catfile

Now display the contents of the new file catfile with the more command:

more catfile

The symbol » can be used with cat to append one file to the end of
another file. For example, to append the contents of Jete/motd to catfile,
enter the following command:

cat /etc/motd » catfile

The contents of Jete/motd should now be placed at the beginning and at
the end of catfile. Verify this with the following head and tail commands:

head -20 catfile
tail -20 catfile

Working with Files and Directories 4-11

Working with Files

Renaming Files

The mv command is used to move files around the XENIX filesystem and
also to rename files. Use cd to move to your home directory. Rename
cat file, created earlier in "Combining Files, "to catfile2 by entering the
following command:

mv catfile catfile2

After this move is completed, catfile no longer exists. The file catfile2
exists in its place. Verify this by entering the following command:

Ie

Moving Files

To move a file into another directory, give the name of the destination
directory as the final name in the mv command. You do not need to
specify the destination filename. For example, enter the following com­
mand to move catfile2, created earlier in "Renaming Files," to the Itmp
directory:

mv $HOME/catfile2 Itmp

To be sure that catfile2 is in Itmp and not in the current directory, enter
the following command:

Ie • Itmp

(Remember that you can enter more than one argument on most command
lines, and that the dot (.) stands for the current directory.)

Finally, move catfile2 back to the current directory by entering the fol­
lowing command:

mv Itmp/catfile2 .

The mv command always checks to see if the last argument is the name
of a directory. If it is, all files designated by filename arguments are
moved into that directory. However, if you do not have write pennission
on the directory to which you are attempting to move files, the move fails.

4-12 XENIX Thtorial

Working with Files

Copying Files

The cp command is used to copy files. There are two forms of the cp
command, one in which files are copied into a directory and another in
which a file is copied to another file.

Use cd to change to your home directory. Then enter the following com­
mand to copy the contents of catfile2, created earlier in "Renaming
Files," to catfile3:

cp catfile2 catfile3

You now have two files with identical contents. To copy catfile2 and
catfile3 to the Itmp directory, enter the following command:

cp catfile2 catfile3 itmp

This last command can be simplified by using a wildcard character:

cp catfile* itmp

Like the mv command, cp always checks to see if the last argument is the
name of a directory, and, if so, all files designated by filename arguments
are copied into that directory. However, unlike the mv command, cp
leaves the original file untouched. There should now be two copies of
catfile2 and catfile3 on the system, one copy of each in the current direc­
tory and one copy of each in Itmp.

Finding Files

A XENIX file system can contain thousands of files. Because of this, files
can often get lost. The find command is used to search the filesystem for
files. The command has the form:

find pathname -name filename -print

The pathname is the pathname of the directory that you want to search. The
search is recursive; it starts at the directory named and searches downward
through all files and subdirectories under the named directory.

Working with Files and Directories 4-13

Working with Files

The -name option indicates that you are searching for files that have a specif­
ic filename. The -print option indicates that you want to print the pathnames
of all the files that match filename on your screen.

Enter the following command to search all directories and subdirectories for
catfile2, the file created earlier in "Renaming Files:"

find I -name catfile2 -print

It may take a few minutes for this command to finish executing. The output
of this find command should indicate that there are at least two occurrences
of catfile2, one in Itmp and one in your home directory. Remove catfile2 and
catfile3 from Itmp and from your home directory by entering the following
command:

rm Itmp/catfile* $HOME/catfile*

4-14 XENIX Tutorial

Editing Files with vi

Editing Files with vi
The vi text editor is a full-screen editor included with XENIX operating
systems. The sections that follow briefly explain how to use vi. For a
more complete discussion, see the XENIX User's Guide.

Entering Text

Change to your home directory with the cd command and enter the fol­
lowing command to create a file called temp file:

vi temp file

A message appears indicating that you are creating a new file. You are
then placed in vi.

There are two modes in vi: Insert mode and Command mode. Use Insert
mode to add text to a file. Use Command mode to edit existing text in a
file. Since tempfile is empty, press i to enter Insert mode.

Enter the following lines of text, pressing (Return) after each line. If you
make a mistake typing, use the (Bksp) key to erase the mistake and con­
tinue typing:

This tutorial is very, very helpful.
It makes learning to use a XENIX system easy.
I'm glad I have this tutorial.

After you enter the last line, press the (Esc) key. It takes you out of Insert
mode and places you in Command mode.

Moving the Cursor

Although many cursor-movement commands are available in vi, only the
four basic ones are discussed here:

h When you are in Command mode, pressing the h key moves
the cursor one character to the left.

When you are in Command mode, pressing the I key moves the
cursor one character to the right.

Working with Files and Directories 4-15

Editing Files with vi

k When you are in Command mode, pressing the k key moves
the cursor up one line.

j When you are in Command mode, pressing the j key moves
the cursor down one line.

Experiment with these cursor-movement keys on the text you entered.
Note that, if your keyboard has arrow keys, these usually perform in the
manner of h, I, k and j.

Deleting Text

Deleting text with vi is very easy. Different commands allow you to
delete characters, words and entire lines.

To delete a single character, place the cursor on that character with the
cursor-movement keys and press the x key. Experiment with th~ x key by
deleting the comma in the first line.

To delete a word, place the cursor on the first character of the word and
press dw (press d, release it, and press w). Experiment with this by plac­
ing the cursor on the first character of "very" in the first line and pressing
dw.

To delete an entire line, place the cursor anywhere on that line and press
dd (press d, release it, and press d again). Experiment with this by plac­
ing the cursor on the third line and pressing dd. Your file should now
contain the following text:

This tutorial is very helpful.
It makes learning to use the system easy.

4-16 XENIX Thtorial

Editing Files with vi

Inserting Text

The i and 0 keys can be used to insert text. We have already used the i
key to enter text in an empty file. To enter additional text on an existing
line, move the cursor to the point where you want the new text to begin,
press i to enter Insert mode, enter the text, and press (Esc) to return to
Command mode. For example, move the cursor to the "e" in "easy" in
the second line, press i, enter the word very, press the (Space), and press
(Esc) to return to Command mode. The second line should now be:

It makes learning to use the system very easy.

The 0 key can be used to insert a new line. To use it, move the cursor to
the line directly above the place in the file where the new line is to be
inserted and press o. A new line is inserted, with the cursor placed at the
beginning. You are also automatically placed in Insert mode. Try this by
moving the cursor to the second line of tempfile and press o. Now enter
more text. Press (Esc) when you are finished.

Leaving vi

Most of the time, you will want to save your file before leaving vi. To do
this, enter Command mode and type :x. This command saves the file you
are editing and returns you to the XENIX prompt.

In some cases, you will want to leave vi without saving your work. To do
this, enter Command mode and type :q!. This command returns you to
the XENIX prompt, without saving the changes that you made to your file.

Leave tempfile by pressing :x. Re-enter tempfile by entering the follow­
ing command:

vi temp file

Working with Files and Directories 4-17

Editing Files with vi

Insert some text using either the i or the 0 key, press (Esc) and then enter
q! to quit without saving your changes. Display temp/de by entering the
following command:

cat temp file

You will notice that the last set of changes you made do not appear.
Remove tempfile by entering the following command:

rm temp file

4-18 XENIX Thtorial

Printing Files

Printing Files
To print files, use the Ip command. This is one of a group of commands
known as the print service commands. The lineprinter commands are
easy to use and very flexible. With a few simple commands, you can
print multiple copies of a file, cancel a print request, or ask for a special
option on a particular printer. Check with your system administrator to
find out what lineprinters and printer options are available on your sys­
tem.

Using Ip

Use cd to change to your home directory and enter the following com­
mand to create a file with which you can experiment:

cp letc/motd $HOME/printfile

This command places a copy of fetefmotd in your home directory, naming
it printjile. The file fete/motd is the "message of the day file." Its contents
are displayed every time you log in to a XENIX system.

A directory must be "publicly executable" before you can use Ip to print
any of the files in that directory. This means that other users must have
execute permissions on the directory. Enter the following command to
make your home directory publicly executable:

chmod o+x $HOME

(See "Using File and Directory Permissions" later in this chapter for
more information on chmod(C).)

Enter the following command to print printjile:

Ip printfile

This command causes one copy of printjile to print on the default printer
on your system. A banner page might be printed along with the file. Note
that you can print several files at once by putting more than one name on
the Ip command line.

Working with Files and Directories 4-19

Printing Files

When you print with lp, a "request ID" is displayed on your screen. A
request ID might look like the following:

pr4-532

The first part (pr4) is the name of the printer on which your file is printed. The
second part (532) identifies your job number. Should you later wish to cancel
your print request or check its status, you will need to remember your request
ID. (Canceling and checking on print requests are discussed below.)

You can also use lp with pipes. For example, enter the following command to
sort and then print a copy of Jete! passwd, the file that contains system account
information:

sort letc/passwd I Ip

(For more information on sort(C), see" Sorting Files" later in this chapter.)

Usinglp Options

The lp command has several options that help you control the printed out­
put. You can specify the number of copies you want printed by using the
number option, -no For example, to print two copies of printfile, enter:

Jp priotfile -02

Several different printers are often attached to a single XENIX system. With
the -d option, you can specify the printer on which your file is to be printed.
To print two copies of printfile on a printer named laser, enter:

Ip print file -n2 -dlaser

Check with your system administrator for the names of the printers available
on your system.

Canceling a Print Request

Use the cancel command to cancel any of your print requests. With this
command, you can only cancel your own requests. The system adminis­
trator is the only person allowed to cancel the requests of other users. If
the system administrator cancels one of your print requests, you are auto­
matically notified via mail.

4-20 XENIX Thtorial

Printing Files

The cancel command takes as its argument the request ID. For example,
to stop printing one of your files with a request ID of laser-245, you would
enter:

cancel laser-245

Experiment with cancel by using Ip to print printfile and then using cancel to
cancel the print request. When you are finished, enter the following com­
mand to remove printfile:

rm printfile

You can also use the cancel command to stop whatever is currently printing
on a particular printer. For example, to cancel whatever file is currently
printing on the printer laser, you would enter the following command:

cancel laser

If you cancel a file that does not belong to you, mail reporting that the print
request was canceled is automatically sent to the file's owner.

Finding Out the Status of a Print Request

Use the Ipstat command to check on the status of your print request. To
use it, simply enter the following:

lpstat

The Ipstat command produces output like the following:

prtl-121 cindym 450 Dec 15 09:30
laser-450 cindym 4968 Dec 15 09:46

Working with Files and Directories 4-21

Printing Files

Note that entering Ipstat with no options displays information on your
files only, not those of other users. To generate a report for all users on
your computer, use lpstat with the -0 option. Nothing is displayed by the
Ipstat command if the print job is complete.

The first column of the Ipstat output shows the request ID for each of your
files being printed. The second column is your login name. In the third
column, the number of characters to be printed is shown, and the fourth
column lists the dates and times the print requests were made.

To learn the status of a particular file, use the Ipstat command with the
file's request ID. For example, to find out the status of a file with the
request ID of laser-256, you would enter the following command:

Ipstat laser-256

The status of that file only is displayed.

You can also request the status of various printers on your system by using the
-p option or by giving the name of the particular printer you are interested in.
Enter the following command to find out the status of all the printers on your
system:

Ipstat -p

To find out the status of a printer named laser, you would enter the following:

Ipstat -plaser

The request ID and status information for each file currently waiting to be
printed on laser is displayed.

4-22 XENIX Tutorial

Processing Text Files

Processing Text Files
XENIX systems include a set of utilities that let you process information
in text files. These utilities enable you to compare the contents of two
files, sort files, search for patterns in files, and count the characters,
words, and lines in files. These utilities are described below.

Comparing Files

The diff command allows you to compare the contents of two files and to
print out those lines that differ between the files. To experiment with diff,
use vi to create two files to compare. The files will be men and women.
First cd to your home directory. Then enter the following command at
the XENIX prompt:

vi men

When you are placed in vi, press the i key to enter Insert mode, and then
type the following lines:

Now is the time for all good men to
Come to the aid oftheir party.

Press (Esc) to return to Command mode and save men by entering :w.
While still in Command mode, enter the following command to create
women:

:n women

You see the following message:

"women" No such file or directory

You are then placed in women. Press i to enter Insert mode and then enter
the following lines:

Now is the time for all good women to
Come to the aid of their party.

Press (Esc) to return to Command mode, then :x to save women and leave
vi. You have now created men and women.

Working with Files and Directories 4-23

Processing Text Files

Enter the following command to compare the contents of these two files:

diff men women

This diffcommand should produce the following output:

lcl
< Now is the time for all good men to

> Now is the time for all good women to

The lines displayed are the lines that differ from one another in the two files.

Sorting Files

One of the most useful file processing commands is sort. When used
without options, sort alphabetizes lines in a file, starting with the leftmost
character of each line. These sorted lines are then output to the screen, or
to a file if redirection is used on the sort command line. This command
does not affect the contents of the actual file.

Enter the following command to display an alphabetized list of all users
who have system accounts:

sort /etc/passwd

The sort command is useful in pipes. Enter the following command to
display an alphabetized list of users who are currently using the system:

who I sort

Searching for Patterns in a File

The grep command selects and extracts lines from a file, printing only
those lines that match a given pattern. Enter the following command to
print out the lines in /etc/passwd that contain your login information.
There will probably be only one such line:

grep login /etc/passwd

4-24 XENIX Thtorial

Processing Text Files

Be sure to replace login in this command with your login name. Your
output should be similar to the following:

forbin:OVbYnTHxp: 6005: 104 :Dr. Charles Forbin, cpo: /u/forbin: /bin/csh

Note that whenever wildcard characters are used to specify a grep search
pattern, the pattern should be enclosed in single quotation marks (').
Note also that the search pattern is case sensitive. Searching for "joe"
will not yield lines containing "Joe".

As another example, assume that you have a file named phonelist that
contains a name followed by a phone number on each line. Assume also
that there are several thousand lines in this list. You can use grep to find
the phone number of someone named Joe, whose phone number prefix is
822, by entering the following command:

grep 'Joe' phonelist I grep '822-' > joes.number

The grep utility first finds all occurrences oflines containing the word "Joe"
in the file phonelist. The output from this command is then filtered through
another grep command, which searches for an "822-" prefix, thus removing
any unwanted" Joes." Finally, assuming that a unique phone number for Joe
exists with the "822-" prefix, that name and number are placed in the file
joes .number.

Two other pattern searching utilities are available. These are egrep and
fgrep. Refer to grep(C) in the XENIX Reference for more information on
these utilities.

Counting Words, Lines, and Characters

The we utility is used to count words in a file. Words are presumed to be
separated by punctuation, spaces, tabs, or newlines. In addition to count­
ing words, we counts characters and lines.

Use ed to change to your home directory. Then enter the following com­
mand to count the lines, words, and characters in the file men, created ear­
lier in "Comparing Files:"

we men

Working with Files and Directories 4-25

Processing Text Files

The output from this command should be the following:

16 68 men

The first number is the number oflines in men, the second number is the num­
ber of words and the third number is the number of characters. Remove men
and women by entering the following command:

rm *men

To specify a count of characters, words, or lines only, you must use the -c, -w,
or -1 option, respectively. For example, enter the following command to
count the number of users currently logged onto the system:

who I we -1

The who command reports on who is using the system, one user per line. The
we -1 command counts the number of lines reported by the who command.
This is the number of users currently on the system.

4-26 XENIX Thtorial

Using File and Directory Permissions

Using File and Directory Permissions
XENIX systems allow the owner of a file or directory to restrict access to
that file or directory. This is done with permission settings. Permissions
on a file limit who can read, write and/or execute the files. Permissions
on a directory limit who can cd to the directory, list the contents of the
directory, and create and delete files in the directory.

To determine the permissions associated with a given file or directory, use
the I command. Use cd to change to your home directory and then enter I
to get a long listing of the files in this directory.

Permissions are indicated by the first 10 characters of the output of the I
command. The first character indicates the type of file and must be one of
the following:

Indicates an ordinary file.

b Indicates a block special device such as a hard or floppy
disk. Hard and floppy disks can be treated as both block
and character special devices.

c Indicates a character special device such as a lineprinter or
terminal.

d Indicates a directory.

m Indicates a shared data file.

n Indicates a name special file.

p Indicates a named pipe.

s Indicates a semaphore.

Working with Files and Directories 4-27

Using File and Directory Permissions

From left to right, the next nine characters are interpreted as three sets of
three permissions. Each set of three indicates the following permissions:

• Owner permissions,

• Group permissions, and

• All other user permissions.

Within each set, the three characters indicate permission to read, to write,
and to execute the file as a command, respectively. For a directory, "exe­
cute" permission means permission to search the directory for any files or
directories.

Ordinary file permissions have the following meanings:

r The file is readable.

w The file is writable.

x The file is executable.

The permission is not granted.

For directories, permissions have the following meanings:

r

w

x

4-28

Files can be listed in the directory; the directory must also
have "x" permission.

Files can be created or deleted in the directory. As with
"r", the directory itself must also have "x" permission.

The directory can be searched. A directory must have "x"
permission before you can move to it with the cd com­
mand, access a file within it, or list the files in it.
Remember that a user must have "x" permission to do any­
thing useful to the directory.

XENIX Thtorial

Using File and Directory Permissions

The following are some typical directory permission combinations:

d--------

drwx------

drwxr-x---

drwxr-x--x

No access at all. This is the mode that denies
access to the directory to all users but the super
user.

Limits access to the owner. The owner can list
the contents of this directory and the files in it (if
they have appropriate permissions), cd to the
directory, and add files to, and delete files from,
the directory. This is the typical permission for
the owner of a directory.

In addition to allowing the owner all of the above
access permissions, this setting allows group
members to list the contents of this directory and
files within it and to cd to this directory. How­
ever, group members cannot create files in, or
delete files from, this directory. This is the typical
permission an owner gives to others who need
access to files in his or her directory.

In addition to allowing the owner and the group
all of the above access permissions, this setting
allows users other than the owner or members of
the group to cd to this directory. However,
because the r is not set for others, other users can­
not list the contents of this directory with any of
the Is commands. This mode is rarely used, but it
can be useful if you want to give someone access
to a specific file in a directory without revealing
the presence of other files in the directory.

The fete directory contains files whose permissions vary. Examine the
permissions of the files in this directory by entering the following com­
mand:

I Jetc I more

Working with Files and Directories 4-29

Using File and Directory Permissions

Changing File Permissions

The chmod command changes the read, write, execute, and search per­
missions of a file or directory. It has the form:

chmod instruction filename

The instruction argument indicates which permissions you want to change
for which class of users. There are three classes of users, and three levels of
permissions. The users are specified as follows:

u User, the owner of the file or directory.

g Group, the group the owner of the file belongs to.

o Other, all users of the system who are not in u or g.

a All users of the system.

The permissions are specified as follows:

r Read, which allows permitted users to look at but not change or
delete the file.

w Write, which allows permitted users to change or even delete the
file.

x Execute, which allows permitted users to execute the file as a com­
mand.

Use cd to move to your home directory. Then enter the following command
to create tempfile:

touch temp file

The permissions on tempfile are probably:

-rw-r--r--

Verify this by entering the following command:

I temp file

4-30 XENIX Thtorial

Using File and Directory Permissions

Enter the following command to give yourself (the file's owner) execute
permissions on tempfi1e:

chmod u+x temp file

Verify the permissions change with the I command. (Of course, since
tempfile is neither a binary nor a script, having execute permission on it is
meaningless.)

Enter the following command to give the group and other users write permis­
sion on tempfile:

chmod go+w temp file

Verify the permissions change with the I command.

The chmod command also allows you to remove permissions. For example,
enter the following command to prohibit others from writing to tempfile:

chmod o-w temp file

Remove tempfile with the following command:

rm temp file

Changing Directory Permissions

Directories also have an execute permission, even though they cannot be
executed in the same way that a script or binary file can. For directories,
the execute attribute is needed in order to do any useful work in a direc­
tory. Users who do not have execute permission for a directory cannot cd
to the directory, list the names of files in the directory, or copy files to or
from the directory.

Working with Files and Directories 4-31

Using File and Directory Permissions

The permissions on your home directory are probably set to the follow­
ing:

drwxr-xr-x

Verify this by entering the following command:

I -d $HOME

You probably see output like the following:

(drwxr-xr-x 4 markt pub 240 Feb 10 09:09 lu/markt

This setting allows you, the directory's owner, to cd to the directory, to list
the contents of the directory and of the files within it (if the file permissions
also allow), and to create and delete files in the directory. This setting also
allows members of the group and other users to cd to the directory, to list the
directory's contents and also the contents of files within the directory, if file
permissions allow.

To deny any useful access to others, enter the following command:

chmod o-x $HOME

Verify that the permissions were changed with the following command:

I -d $HOME

Your output should look like the following:

(drwxr-xr-- 4 markt pub 240 Feb 10 09:09 lu/markt

Now, only you and members of the group have access to your directory. If
you want to restore access to your home directory to other users, enter the fol­
lowing command:

chmod o+x $HOME

4-32 XENIX Thtorial

Summary

Summary
Directories and subdirectories are created to organize the XENIX filesys­
tern. Each directory or subdirectory can contain both files and other
directories, and can be accessed by anyone with read permission for the
file or directory in question.

Whenever you move to a different directory, it becomes, by definition,
your working directory. There are XENIX commands for:

• Displaying the name of the working directory,

• Creating directories,

• Removing directories,

• Renaming directories,

• Copying directories,

• Listing directory contents,

• Changing your working directory.

The files that reside in directories are the most basic means of storing data
on a XENIX system. Each file "belongs" to a directory somewhere on the
system; it is impossible for a file to exist without a "parent" directory.

You can manipulate files in the same ways that you can manipulate direc­
tories (described above). There are XENIX commands for:

• Creating files,

• Deleting files,

• Displaying files,

• Combining files,

• Renaming files,

• Moving files,

• Copying files,

• Printing files.

You can also set the access permissions for any of your files or direc­
tories. This feature gives you control over who can read, edit, and execute
your files and directories.

Working with Files and Directories 4-33

Summary

XENIX systems provide a full-screen text editor that is very useful for
editing files. This editor, called vi, can be called up from anywhere on
the system. While you are in vi, you can add or delete text to or from a
file, change the existing text, or create a new file.

If you have access to a printer, you can produce a hard copy of any of
your files. If you have more than one printer, you can choose which one
to use. You can also specify the number of copies to be printed, check the
status of a print request, and cancel a print request at any time.

XENIX systems provide a set of utilities that let you process the informa­
tion in text files. These utilities enable you to:

• Count the characters in a file,

• Count the words in a file,

• Count the lines in a file,

• Compare the contents of two files,

• Sort files

• Search for patterns in a file.

For a complete description of the commands and utilities presented in this
chapter, see the XENIX User's Guide and the XENIX Reference.

4-34 XENIX Tutorial

Chapter 5

Housekeeping

Introduction 5-1

Making Backups 5-2
Formatting Diskettes and Tapes 5-2
Using tar to Create Backups 5-3
Listing the Contents of Backups 5-5
Extracting Files from Backups 5-5
Shorthand tar Notation 5-7

Copying Diskettes 5-10

Getting Status Information 5-12
Finding Out Who Is on the System 5-12
Determining Disk Usage 5-12

Controlling Processes 5-14
Placing a Command in the Background 5-14
Delaying the Execution of a Command 5-15
Finding Out Which Processes are Running 5-17
Killing a Process 5-18

Shell Programming 5-19

Summary 5-21

Introduction

Introduction
This chapter explains how to perform "housekeeping" tasks on a XENIX
system. Housekeeping tasks are maintenance tasks that you perform peri­
odic ally, tasks that provide you with information about system resources,
as well as tasks that let you operate more efficiently in the XENIX
environment. This chapter explains how to perform the following house­
keeping tasks:

• Create backups of valuable files and directories,

• Extract files from backup media,

• Make copies of floppy diskettes,

• Find out who is on the system,

• Determine how much disk space is used/free,

• Run a command in the background,

• Delay and kill the execution of commands,

• Use the shell programming language to automate tedious tasks.

This chapter is designed as a tutorial. The best way to use this chapter is
to read it at your terminal, entering commands as instructed in the exam­
pIes.

None of the commands described in this chapter is described in great
detail. For a complete explanation of each command, refer to the XENlX
Reference.

Housekeeping 5-1

Making Backups

Making Backups
Backing up all the filesystems on a XENIX system is often the responsibil­
ity of the system administrator. However, individual users often find it
useful to create periodic backups of the particular files with which they
work. These backups are created with the tar command.

Floppy diskettes are the backup media used most often. Cartridge tapes
are also used for backups. However, floppy diskettes and some cartridge
tapes must be formatted before they can be used. The sections that follow
explain how to format floppy diskettes and certain cartridge tapes and
how to use tar to create backups.

Formatting Diskettes and Tapes

To format a 5.25 inch 1.2 megabyte diskette (double-sided, double­
density) in the first floppy drive, enter the following command:

format

You are instructed to insert a diskette into the drive and press (Return).

If your first floppy drive is a 5.25 inch double-sided high-density drive,
enter the following command to format a 1.2 megabyte diskette in it:

format Idev/rfd096ds15

To format a 3.5 inch nOK micro-floppy diskette in the first floppy drive,
enter:

format Idev/rfd096ds9

By replacing the 0 that follows the rfd in these commands with a 1, you
can format diskettes in a second floppy drive on your system.

It is not necessary to format most cartridge tapes. However, cartridge
tapes used with the mini tape drives must be formatted. To format one of
these cartridges, enter:

format Idev/rctmini

5-2 XENIX Tutorial

Making Backups

Using tar to Create Backups

The tar command is used to create backups. The syntax of tar is:

tar [key] [files]

The key argument controls the actions of tar. The files argument specifies
which files to back up.

The keys used most often are:

c Creates a backup.

x Extracts files from backup media.

t Lists the contents of backup media.

v Displays the name of each file being processed.

f Creates backups on a specified device.

u Creates a backup only if the file has not been backed up ~
before, or if the file has been modified since the last backup. ~

Creating a Backup

The steps outlined below explain how to back up all of the files in your
home directory onto floppy diskettes. Experiment with tar by following
these steps.

To back up a different directory, merely cd to that directory and follow
these same steps. To back up onto a tape, substitute the special device file
associated with the tape, such as Idevlrctmini or IdevlrctO, for the floppy
device file listed in these commands.

1. Log in on the console. This allows you to work within arm's reach
of the floppy drive.

Housekeeping 5-3

Making Backups

2. Detennine how many floppy diskettes you need and fonnat that
many, using the format command as described in "Fonnatting
Diskettes and Tapes" above. To detennine how many diskettes to
fonnat, enter the following command:

du -a

Your output should look like the following:

12 . /1. intro. s
74 ./2.concepts.s
14 ./2.concepts.err
0 ./.err
60 ./5.house.s
32 ./3.1og.s
2 ./err
2 . /0. title
30 ./6.desk.s
112 ./4.files.s
12 ./4.files.err
4 ./3.1og.err
356

The number at the bottom represents the total number of 512 byte
blocks used by the files in the current directory. In this example,
you need a total of 512 x 356 bytes, or roughly 183 kilobytes. You
only need to fonnat a single floppy disk to backup this directory.

3. Enter the following command to back up all of the files in your
home directory to 5.25 inch 1.2 megabyte floppy diskettes in the
first floppy drive:

5-4

tar cvf Idev/fd096ds15 .

If tar requires more than 1 diskette, you are prompted to insert
another "volume." Insert another diskette if you see this prompt.
The tar command is finished when the shell prompt reappears.

XENIX Thtorial

Making Backups

To make a backup of just a single file onto a 1.2 megabyte diskette, enter:

tar cvf Idev/fd096ds15 ./filename

Note that filename is preceded by a dot and a slash (./). This tells tar to
treat filename as a "relative" rather than an "absolute" filename. (For
more information, see tar(C).)

tar will recreate, on the backup media, all subdirectories of the directory
you are backing up. Thus, if you have a /hin directory in your home
directory, tar will create a backup of it, and all the files in it, on the
backup media.

Listing the Contents of Backups

To list the contents of a 5.25 inch 360 kilobyte tar-floppy in the first
floppy drive, enter:

tar tvf Idev/fd048ds9

To list the contents of a 5.25 inch 1.2 megabyte tar-floppy in the first •
floppy drive, enter:

tar tvf Idev/fd096ds15

To list the contents of a 3.5 inch tar micro-floppy in the first floppy drive,
enter:

tar tvf Idev/fd0135ds9

Experiment with this tar option by placing the backup of your home
directory that you created in the previous section into the first floppy
drive. Enter the appropriate command to list its contents.

Extracting Files from Backups

We recommend that you extract files from backup media into a temporary
directory on the hard disk. Once in the temporary directory, you can use
the mv command to move the extracted files to the correct location on the
filesystem. The reason for using a temporary directory is that tar will
overwrite any files on the hard disk that have the same name as the file
being extracted from the backup media. This can result in files being
overwritten accidentally.

Housekeeping 5-5

Making Backups

To extract all of the tar-format files from a 5.25 inch 360 kilobyte diskette
in the first floppy drive, enter:

tar xvf Idev/fd048ds9

To extract tar-format files from a 5.25 inch 1.2 megabyte floppy diskette
in the first floppy drive, enter:

tar xvf Idev/fd096ds15

To extract a single file from a 1.2 megabyte floppy in the first floppy
drive, enter:

tar xvf Idev/fd096ds15 ./filename

Note that filename is preceded by a dot followed by a slash (./). This
assumes that filename was copied to the tar floppy diskette with a dot (•),
as in the examples in "Using tar to Create Backups." When you copy files
to a tar floppy with a dot, the ./ is prefixed to the filenames. Because you
must enter a filename exactly as it appears on the floppy when extracting
a file with tar, you must enter '/filename iffilename was copied to the tar
floppy with a dot.

Experiment with these tar commands by placing the diskette containing
the backup of your home directory (that you created in "Using tar to Cre­
ate Backups") into the first floppy drive. Follow these steps:

1. Enter the following command to change to Itmp:

cd Itmp

2. Create a subdirectory in Itmp by entering:

mkdir login

Replace login with your login name.

3. Enter:

cd login

5-6 XENIX Thtorial

Making Backups

4. If you are a Bourne or Korn shell user, and if your first floppy drive
is a 1.2 megabyte drive, experiment with extracting a single file by
entering the following command to extract .profile:

tar xvf /dev/fd096ds15 .I.profile

If you are a C-shell user, enter:

tar xvf /dev/fd096ds15 .I.login

If your floppy drive is not a 1.2 megabyte drive, enter the appropri­
ate special device filename.

5. To check that the files were actually copied to the hard disk, enter:

Ie -a

The -a option tells Ie to show hidden files, those whose filenames
begin with a dot (.).

6. To experiment with extracting all of the files on a tar floppy, enter
the following command if your first floppy drive is a 1.2 megabyte
drive:

tar xvf /dev/fd096ds15

If your floppy drive is not a 1.2 megabyte drive, enter the appropri­
ate special device filename.

Shorthand tar Notation

The tar command also provides shorthand notation. This notation allows
you to specify numbers in place of full special device filenames. The file
/etc!default/tar assigns numbers to the various floppy and tape devices.
Enter the following to display the contents of /etc!default/tar:

more /ete/default/tar

Housekeeping 5-7

Making Backups

Your output should look similar to the following:

* device block size tape
archiveO=/dev/rfd048ds9 18 360 n
archivel=/dev/rfd148ds9 18 360 n
archive2=/dev/rfd096ds15 10 1200 n
archive3=/dev/rfd196ds15 10 1200 n
archive4=/dev/rfd096ds9 18 720 n
archive5=/dev/rfd196ds9 18 720 n
archive6=/dev/rfd0135ds18 18 1440 n
archive7=/dev/rfdl135ds18 18 1440 n
archive8=/dev/rctO 20 0 Y
archive9=/dev/rctmini 20 0 Y

* The default device •..
archive=/dev/rfd096ds15 10 1200 n

This file assigns 0 to the first 360 kilobyte drive, 1 to the second 360 kilo­
byte drive, 2 to the first 1.2 megabyte drive, 3 to the second 1.2 megabyte
drive, and so forth.

To copy all the files in the current directory to 5.25 inch 360 kilobyte
diskettes in the first floppy drive, enter:

tar cv .

(The default device is device O. You do not have to specify the default
device name in the command in order to use the default device.)

To copy all the files in the current directory to 5.25 inch 1.2 megabyte
diskettes in the first floppy drive, enter:

tar cv2 .

5-8 XENIX Thtorial

Making Backups

To extract filename from a 3.5 inch 720 kilobyte tar micro-floppy in the
first floppy drive, enter:

tar xv4 .Ifilename

Note that the version of letc!defaultltar on your system may differ from
that shown here. This is because your system administrator may have
edited it. Before you use this shorthand notation, double-check the
assignments in the letc!default/tar file on your system.

Housekeeping 5-9

Copying Diskettes

Copying Diskettes
To protect against the loss of data stored on floppy disks, you can use the
diskcp(C) command to make copies of your floppy diskettes.

You must copy information onto formatted disks. If you format floppies
on a XENIX system, you can use them over again without reformatting. If
you have disks that have been formatted under another operating system,
you must reformat them on a XENIX system before you can use them to
make copies of XENIX disks. Be aware that floppies formatted under
some operating systems cannot be used under other operating systems,
even with reformatting.

The diskcp command can format floppies before making copies. The fol­
lowing steps explain how to use diskcp:

1. Place the disk that you want to copy, the "source" floppy, in your
primary floppy drive. If you created a backup of your home direc­
tory, as instructed in "Using tar to Create Backups," experiment
with diskcp by using this backup. Place it in the floppy drive.

2. Place another floppy in the other drive. This floppy is the "target"
disk. Note that any information already on the target disk will be
destroyed.

If you have only one disk drive, leave the source floppy in the
drive. It will be copied to the computer's hard disk, and from there
to the target floppy. You will be prompted to remove the source
floppy and insert the target floppy.

3. To format the target floppy as a 1.2 megabyte floppy before copy­
ing, enter the command:

5-10

diskcp -f

If you do not need to format the target floppy, and if the floppy you
are copying is a 1.2 megabyte floppy, enter:

diskcp

XENIX Thtorial

Copying Diskettes

If your computer has dual floppy drives, enter the following com­
mand to copy a 1.2 megabyte source floppy directly on a formatted
target floppy:

diskcp -d

4. Follow the instructions as they appear on your screen. Note that,
with a single drive system, you are prompted to remove the source
disk and insert the target disk.

5. If you made a copy of the backup of your home directory, place
this floppy in the first floppy drive and verify that the files were
copied correctly by entering:

tar tvf /dev/fd096ds15

If your floppy is a 360 kilobyte floppy, enter:

tar tvf /dev/fd048ds9

Note that you can use the shorthand tar notation in these com­
mands, as explained in "Shorthand tar Notation" above.

Housekeeping 5-11

Getting Status Information

Getting Status Information
Because a XENIX system is a large, self-contained computing environ­
ment, there are many things that you may want to find out about the sys­
tem itself, such as who is logged in and how much disk space is available.
The sections that follow explain how to do this.

Finding Out Who Is on the System

The who command lists the names, terminal line numbers, and login
times of all users currently logged onto the system. Enter the following
command to find out who is on your system:

who

Your output should look like the following:

arnold tty1a Apr7 10:02
daphne tty1b Apr7 07:47
elliot tty1c Apr7 14:21
ellen tty2a Apr7 08:36
gus tty2b Apr7 09:55
adrian tty2c Apr7 14:21

The finger command can also be used to find out who is on the system. It pro­
vides more detailed infOlmation. To use it, simply enter finger.

Determining Disk Usage

The df command displays figures on disk free space. When used without
options, it reports the number of free blocks and inodes in all the filesys­
tems on your computer. A block is 512 bytes, and an inode is a data
structure reserved for information about a file. Enter the following com­
mand to display disk free space figures:

df

5-12 XENIX Tutorial

Getting Status Information

Your output should look like the following:

(/dev/root): 5956 blocks 1437 inodes

This means that in the idev/root filesystem, there are 5956 blocks and
1437 inodes free. 5956 blocks is roughly equivalent to 3 megabytes.

When used with the -v option, df reports on the percent of blocks used as
well as the number of blocks used and free. Enter the following com­
mand:

df -v

Your output should look like the following:

Mount Dir
/
/y
/u

Filesystem blocks
/dev/root 80152
/dev/y 82194
/dev/u 50000

used
70192
34314
37840

free
9960

47880
12160

% used
88%
42%
76%

This output indicates that on the idev/root filesystem 88% of the blocks,
or 70192 blocks out of a total of 80152, are used. 9960 blocks are still
free.

Housekeeping 5-13

Controlling Processes

Controlling Processes
A command that is executing is considered a process. On a XENIX sys­
tem, a user can run several processes at the same time, one in the fore­
ground and several others in the background. The foreground process is
the one that is currently executing on your terminal. This is the only pro­
cess that can accept input from your keyboard. For instance, when you
are editing with vi, the vi program is running as a foreground process.

Keyboard input cannot be sent to background processes. It is often useful
to execute processes that are time consuming or require no keyboard
input in the background. Controlling foreground and background pro­
cesses is the subject of this section.

Placing a Command in the Background

Normally, commands sent from the keyboard are executed in strict
sequence. One command must finish executing before the next command
can begin. However, if you place a command in the background, you can
continue to enter commands in the foreground, even if the background
command is not finished executing.

To place a command in the background, put an ampersand (&) at the end
of the command line. For example, enter the following command to cre­
ate, and then count, the characters in a large file. Note that this command
line is two lines long. This is made possible by placing the backslash (\)
on the command line before pressing (Return). The backslash tells the
shell that the command line continues on the next line:

cat ietcitermcap ietcitermcap ietcitermcap > large file; \
wc -c large file > characters &

The output of the wc part of the command is redirected to characters. If
you issued this command without redirecting the output, the output would
print on your screen, no matter what else you might be doing. This can be
very disruptive. Redirecting the output of a background command to a
file is a simple way of avoiding such disruptions.

Use cat to display the contents of characters. When you are finished, use
rm to remove both large file and characters.

5-14 XENIX Tutorial

Controlling Processes

When commands are placed in the background, you cannot abort them by
pressing the INTERRUPT key, as you can with foreground commands.
You must use the kill command to abort a background process. This com­
mand is described in "Killing a Process," below.

Delaying the Execution of a Command

In addition to putting commands in the background, you can delay com­
mand execution. This is done with the at command. This command
allows you to set up a series of commands to be executed at a specified
time in the future. Use of this command is controlled by the system
administrator; you can use it only after he or she has enabled you to do so.

The at command accepts standard input. The simplest form of the com­
mand is:

at time day < file

Note

Use of the at command is subject to the discretion of the system
administrator. See the section "Permitting Users Access to Job Sched­
uling" in the "Using the Job Scheduling Commands: at, cron and
batch" appendix of the XENIX System Administrator's Guide for
details.

Thefile argument is the name of the file that contains the command or com­
mands to be executed. The time argument is the time of day, in digits, fol­
lowed by "am" or "pm." One- and two-digit numbers are interpreted as
hours, three- and four-digit numbers as hours and minutes. You cannot use
time arguments of more than four digits. The day argument is optional. It is
either a month name followed by a day number, or a day of the week. If no day
is specified, the command is executed the next time the specified time occurs.

Forexample, suppose that you have a large file that you want to print, but you
don't want to do this during work hours because it will monopolize the print­
er for a long time. You could use at to print the file late at night, when nobody
is in the office. To do so, first use vi to create a file containing the print com­
mand. Call the file printfile. This file might contain the following line:

Ip filename

Housekeeping 5-15

Controlling Processes

Thefilename argument is the name of the large file that you want to print.

After you create printjzle, enter the following command:

at Upm wed < printfile

There is no need to place this command in the background. Once you enter it
and press (Return), the XENIX prompt reappears. This causes the command
inprintjzle to be executed at 11 :OOp.m. on Wednesday.

Note that at is unaffected by logging out. To display a list of files that you
have waiting to be processed with at, use the at -I command. This command
also lists the following infonnation:

• Thefile'sIDnumber.

• The command invoking the file (at or batch).

• The date and time the file is processed.

To cancel an at command, first check the list of files you have waiting to be
processed and note the file ID number. Then use the at -r command to
remove the file or files from the list.

The at -r command has the fonn:

at -r ID-number

For example, the following command removes file number 504510300.a,
canceling whatever commands were included in that file:

at -r 504510300.a

Note that a user can only cancel his or her own files.

The files lusrlliblcronlat.allow and lusrlliblcronlat.deny control who has
access to the at command. On many systems, only the super user is allowed
to use at. Contact your system administrator if you need to use the at com­
mand but are denied access to it.

5-16 XENIX Tutorial

Controlling Processes

Finding Out Which Processes are Running

The ps command stands for "processes status" and displays information
about currently running processes. This information is crucial if you need
to kill a background process.

To display information about commands that you currently have running,
enter the following:

ps

Your output should look like the following:

PID TTY TIME COMMAND
49 2a 0:28 sh

11267 2a 0:00 ps

The PID column gives a unique process identification number that can be
used to kill a particular process. The TTY column shows the terminal
with which the process is associated. The TIME column shows the cumu­
lative execution time for the process. The COMMAND column shows
the actual command that is executing.

Enter the following command to display information about all the pro­
cesses running on the system:

ps -e

To find out about the processes running on a terminal other than the one you
are using, use the -t option and specify the terminal number. For example, to
find out what processes are associated with terminal 2c, enter:

ps -t2c

Housekeeping 5-17

Controlling Processes

Killing a Process

To stop execution of a foreground process, press your terminal's INTER·
RUPT key. This is often the (Del) key. Pressing this key will kill what­
ever foreground process is currently running. To kill all your processes
executing in the background, enter the following command:

kill 0

To kill only a specified process executing in the background, you need to
enter the following command:

kill signal_number process JD _number

The signal_number is optional. It is sometimes needed to kill "stubborn"
processes. Even stubborn processes can usually be killed with signal_ num­
ber 9. Find out the process JD _number with the ps command.

As an example, try killing the process associated with your shell. Note that
when you log in to the system, you are placed in a shell. If you kill this shell
process, you log yourself out. Enter ps and look at the process ID associated
with either sh or csh in the COMMAND column. Suppose that this number is
4831. To kill your shell, enter the following command:

kill ·9 4831

After entering this command, you see the login prompt again. Try it!

To guard against other users having control over your account, you can only
kill your own processes.

Note

Killing a process associated with the vi editor can result in unpredict­
able terminal behavior. Also, temporary files that are normally created
when a command starts, and then deleted when the command finishes,
can be left behind after a kill command. Temporary files are normally
kept in the directory Itmp. You should check this directory periodically
and delete your old files.

5-18 XENIX Thtorial

Shell Programming

Shell Programming
The Bourne, Korn, and C-shell offer powerful programming features. If
you have ever done batch programming in MS-DOS, you have some idea
of what shell programming on a XENIX system is like. This section
discusses the rudiments of shell programming. For a more complete dis­
cussion, see "The Shell," "Korn Shell," and "The C-Shell," in the XENIX
User's Guide.

In "Placing a Command in the Background," you were instructed to enter
the following command:

cat /etc/termcap /etc/termcap /etc/termcap > large file; \
wc -c large file > characters &

However, you could have placed these commands in a file and executed
the file.

Try it by creating a file called command.file with vi. Place the following
lines in command.file:

cat /etc/termcap > large file
cat /etc/termcap » large file
cat /etc/termcap » large file
wc -c large file > characters

After placing these four lines in command.file, type :x to save it and quit
vi. Now you must enter the following command to make command.file
executable:

chmod +x command. file

Finally, execute command.file in the background by entering the follow­
ing command:

command. file &

After a few moments, enter the following command to verify that
command.file executed correctly:

cat characters

Housekeeping 5-19

Shell Programming

In fact, using some of the more sophisticated shell programming features
that let you control the flow of a program, you could have written
command.file as follows:

for name in /etc/termcap
do

cat $name $name $name > largefile
done
wc -clargefile > characters

Whenever you place XENIX commands in a file, always remember to use
the chmod command to make the file executable. (The chmod command
is discussed in "Using File and Directory Permissions" in Chapter 4 of
this tutorial.)

5-20 XENIX Tutorial

Summary

Summary
With XENIX systems, files are automatically stored in the computer's
memory. There are provisions for creating backup copies of files, which
can be stored on cartridge tapes or floppy diskettes. Once a backup copy
has been made, you can display its contents, extract files from it, and run
off additional copies. The operating system accepts both 3.5 inch and
5.25 inch diskettes that have any of the commonly-produced memory
capacities (360K, nOK, 1.2M, 104M).

A currently-running command is called a process. On XENIX systems,
you can run several processes at the same time by putting one in the fore­
ground and the rest in the background. The foreground process is the one
that shows up on your terminal screen, and is the only one that will accept
input from your keyboard. When you enter commands, you must specify
which ones should be put into the background. If you do not, the operating
system assumes that they should all be in the foreground, and will execute
them one at a time.

There are several commands for controlling the execution of processes.
The commands covered in this chapter allow you to delay the execution
of a process until a specified time, and to kill a foreground or background
process.

There are also commands that provide information about the operating
system itself. The commands presented in this chapter allow you to find
out who is logged into the system, how much space is left on the system's
main storage disk, and what processes are currently running.

Both the C-shell, Bourne shell, and Korn shell provide environments for
writing very useful programs. You can write a shell program by creating
a text file that contains a series of XENIX commands and then designating
the file as executable. After that, the file (program) is executed whenever
you enter the filename at the shell prompt.

For details about the commands presented in this chapter, see the XENIX
User's Guide and the XENIX Reference.

Housekeeping 5-21

Chapter 6

XENIX Desktop Utilities

futroduction 6-1

Using the System Clock and Calendar 6-2
Finding Out the Date and Time 6-2
Displaying a Calendar 6-2

Using the Mail Service 6-4
Sending Mail 6-4
Receiving Mail 6-5
Writing to a Tenninal 6-7

Using the Automatic Reminder Service 6-10

Using the Calculator 6-11

Summary 6-13

Introduction

Introduction
XENIX systems include a series of "desktop" utilities, programs that help
you organize your work environment, and programs that allow you to
communicate with other users on the system. This chapter describes
these utilities, explaining how you can:

• Display the date, time and a calendar,

• Communicate with other users on the system,

• Use the system's automatic reminder service,

• Use the system's interactive calculator.

This chapter is designed as a tutorial. The best way to use this chapter is
to read it at your terminal, entering commands as instructed in the exam­
ples.

None of the commands described in this chapter is described in great
detail. For a complete explanation of each command, refer to the XENIX
Reference.

XENIX Desktop Utilities 6-1

Using the System Clock and Calendar

Using the System Clock and Calendar
There are commands that display the date and time, as well as commands
that display a calendar for virtually any month or year that you choose.
The following sections explain these commands.

Finding Out the Date and Time

The date command displays the date and time. Enter:

date

Your output should look like the following:

~ Man Jan 25 08:26:13 PST 1988

Displaying a Calendar

The cal command displays the calendar of any month or year that you
specify. For example, to display the calendar for March 1952, enter:

cal mar 1952

6-2 XENIX Thtorial

The result is:

March 1952

S M Tu W Th F S
1

2 3 4 5 678
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

Using the System Clock and Calendar

The most common month abbreviations are accepted. The month can also be
expressed as a digit. To display the calendar for an entire year, leave out the
month. The year must always be expressed in full. The command cal 88 dis­
plays the calendar for the year 88, not 1988.

XENIX Desktop Utilities 6-3

Using the Mail Service

Using the Mail Service
Several programs allow you to communicate with other users on a XENIX
system. Two of the most useful are mail and write. The mail program
allows you to send a message to a user's system "mailbox." The write
program allows you to write a message directly to a user's terminal, if the
user is logged into the system. Both of these programs are described
below.

Sending Mail

The mail program is a system-wide facility that permits you to exchange
mail with other users. Experiment with mail by sending a message to
yourself. To do so, enter the following command:

mail login

Be sure to replace login with your login name.

Depending on how your system administrator has configured your mail
system, you may see the following prompt:

Subject:

If you see this prompt, enter a short description of the message to follow.
In this case, enter test.

You can now enter your message. When you are finished, press (Ctrl)d to
terminate message entry and mail your message. However, an alternative
method is available for composing a message. If you enter -v, (a tilde,
followed by a v) you are placed in vi. Once in vi, you can compose your
message, using all the features available in vi. This method of composing
a message is much more flexible than the other, as it allows you to correct
mistakes in your message before you send it. Correcting mistakes in a
message produced only with mail often results in control characters
cluttering up the message.

6-4 XENIX Thtorial

Using the Mail Service

If you use vi to compose your message, enter :x when you are finished,
then {Ctrl)d to terminate message entry. Again, depending on how your
mail system is configured, you mayor may not see the following prompt:

Cc:

If you do see this prompt, enter the names of those users who should
receive "carbon copies" of this message. It is often convenient to Cc:
yourself. Since this is a test message to yourself, just press (Return). You
are now returned to the XENIX prompt.

Often you will want to send a text file to other users on the system. You
can use the XENIX redirection facility to do this. Suppose that the file
you want to send is named schedule, that it is in the current directory, and
that you want to send it to users Naomi and Bea. To do so, enter the fol­
lowing command at the XENIX prompt:

mail naomi bea < schedule

Sending files this way is fast because you do not have to enter mail.

The mail facility has many options. These options allow you to include
already composed messages in a mailing, to enclose a message you are
responding to in your reply, to create mail aliases to send messages to
several users at once, and so forth. These options are discussed in detail
in "mail" in theXENIX User's Guide.

Receiving Mail

When you log in, you may see the following the message:

(you have mail

To read your mail, enter:

mail

XENIX Desktop Utilities 6-5

Using the Mail Service

A list of message headers is displayed, each with a number in front of it.
The list should look similar to the following:

1 john Wed Sep 21 09:21 26/782 "Notice"
2 sam Tue Sep 20 22:55 6/83 "Meeting"
3 tom Mon Sep 19 01:23 6/84 "Invite"

Reading from left to right, the headers tell you who the message is from, the
date and time it was sent, the number oflines and characters in the message,
and the message's subject.

To read a message, simply enter the number of the message you want to read,
then press (Return). For example, to read the message from sam, enter 2 and
then press (Return). Read the message that you sent to yourself, as described
in the previous section.

There are several things you can do with your mail messages after you read
them. You can delete them, save them, and/or respond to them.

To delete a message, press d, the message number and then (Return). To save
a message in your mailbox, press ho, the message number and then (Return).
To save a message infilename in the current directory, press s, the message
number, type filename and press (Return). Iifilename does not exist, mail
creates it.

1\vo commands are available for responding to mail. These are the r and R
commands. If you press r, followed by the number of a message, followed by
(Return), followed by a response, your response is sent to the author of the
message. If you press R, followed by the number of a message, followed by
(Return), followed by a response, your response is sent to the author of the
message plus all users who were on the Cc: list of the original message.

After reading a message, you might want to list your message headers again.
Do so by entering h followed by (Return). If you have more messages than
will display on the screen, enter h+ followed by (Return). This will cause the
next 18 message headers to display. To display the previous 18 message
headers, enter h-.

6-6 XENIX Tutorial

Using the Mail Service

Note that you can send mail from within the mail program. To send mail to a
usernamed "joe" from within mail, simply enter the following command:

mail joe

Then follow the steps outlined above in "Sending Mail" to send a message to
joe.

To quit mail, enter q followed by (Return).

Respond to the message that you sent yourself by doing the following:

1. Enter mail by typing mail.

2. Enter rnumber, where number is the number of the message that you
sent to yourself.

3. Press (Return).

4. Compose your response. Remember that you can enter -v to compose
your response in vi.

5. Press (Ctrl)d to terminate your response. If you compose your
response in vi, you will have to press :x to leave vi and then (Ctrl)d.

6. Press (Return) to send the response.

7. Type restart. This will cause mail to display any messages that were
sent to you while you were in mail.

8. You should see yourresponse to the message you sent yourself. Press
the number that corresponds to this response to view it.

9. When you are finished looking at your messages, press q to leave
mail.

Writing to a Terminal

The write program allows you to send messages directly to another user's
terminal. You can reach another user as long as he or she is logged into
the system and has not turned off write access to his or her terminal. For
example, to write to joe's terminal, enter:

write joe

XENIX Desktop Utilities 6-7

Using the Mail Service

After you execute this command by pressing (Retum),joe sees a message like
the following on his terminal:

(Message from login tty012 ...

The login in this message is your login name. Torespond,joe enters:

write login

Again, login is replaced by your login name.

From this point on, each line that you enter is displayed both on your own ter­
minal screen and on joe's. Each line that joe enters is displayed on both his
screen and yours. To terminate the writing of text to joe, enter (Ctrl)d alone
on a line. Joe has to do the same to terminate his write session with you.

A typical procedure for coordinating communication in a two-way write is
for each party to end each line with a distinctive signal, normally (0) for
"over." The last line of a message is often followed by (00) for "over and
out."

Experiment with write by sending a message to yourself. Do so by entering
the following command:

write login

Replace login with your login name. You should see a message like the fol­
lowing:

Message from login ttynn ...

Now simply enter your message. Since you are writing to yourself, every­
thing you enter appears on your screen twice.

Forexample, your write session might look like the following:

Hello Mark 0

Hello Mark 0

Remember, we have a meeting at 12:00. 0

Remember, we have a meeting at 12:00. 0

Right, see you there. 00

Right, see you there. 00

Press (Ctrl)d to terminate the write session.

6-8 XENIX Thtorial

Using the Mail Service

If you do not want to be interrupted by a message, enter the command mesg n
any time after you have logged in. Anyone that tries to write to you after you
have entered this command is denied permission. If you want to once again
be accessible via the write program, enter mesg y. If you want write access to
automatically be turned offwhenever you log in, put the mesg n command in
your .login file.

XENIX Desktop Utilities 6-9

Using the Automatic Reminder Service

Using the Automatic Reminder
Service
An automatic reminder service is available to all users. Once each day,
the operating system automatically searches each user's home directory
for a file named calendar, the contents of which might look like the fol­
lowing:

1/23 David's wedding
2/9 Mira's birthday
3/30 Paul's birthday
4/27 Meeting at 2:00
9/1 Karen's birthday
10/3 License renewal

Each line of calendar is examined. Lines containing today's and
tomorrow's dates are extracted and mailed to you. To look at these rem­
inders, you must invoke mail.

The file calendar is not created for you automatically. You have to create
it yourself if you want to use this reminder service. It must be in your
home directory.

Use vi or any other XENIX text editor to create and edit calendar. Be
sure to place each date/event entry on a separate line. Dates can be
specified in a variety of formats. Any of the following is acceptable:

6-10

9n
Sep. 7
september 7

XENIX Thtorial

Using the Calculator

Using the Calculator
The be command invokes an interactive desktop calculator that can be
used like a hand-held calculator. A typical session with be is shown
below. Note that the session is begun by entering be at the XENIX
prompt and ended by entering quit on a line by itself. Comments explain
what action is performed after each input line.

XENIX Desktop Utilities 6-11

Using the Calculator

Action Comment

be Activate be
123.456789 + 987.654321 Add and output
1111.111110
9.0000000 - 9.0000001 Subtract and output
-.0000001
64/8 Divide and output
8
1.12345678934 * 2.3 Note precision
2.58395061548
19%4 Find remainder
3
3A 4 Exponentiation
81
2/1*2 Note precedence
4
2/(1 *2) Note precedence again
1
x =46.5 Assign value to x
y=52.5 Assign value to y
x + y + 1.0000 Add and output
100.0000
obase=16 Set hex output base
15 Convert to hex
F
16 Convert to hex
10
64 Convert to hex
40
255 Convert to hex
FF
256 Convert to hex
100
512 Convert to hex
200
quit Must type whole word

Also available are scaling, function definition, and programming state­
ments much like those in the C programming language. Other features
include assignment to named registers and subroutine calling. For more
information, see the bc(C) manual page.

6-12 XENIX Thtorial

Summary

Summary
XENIX systems have several utilities that help you organize your work
environment and communicate with other users on the system. There are
XENIX utilities for:

• Displaying the current date and time,

• Displaying a calendar for any month of any year,

• Reminding you of upcoming events,

• Invoking an interactive calculator.

XENIX systems include a electronic mail system that lets you send and
receive messages to and from other users. When you send mail to some­
one, your message is stored in the recipient's mailbox until he or she
retrieves it. By using this format, the mail utility does not interrupt other
users, and allows messages to be sent to users who are not currently
logged in.

In addition to the mail utility, there is a write utility that lets you com­
municate directly with another user. To use this utility, both the sender
and the recipient must be logged in. As each person types a message, it
immediately appears on both users' terminals.

For details about the commands and utilities presented in this chapter, see
the XENIX User's Guide and the XENIX Reference.

XENIX Desktop Utilities 6-13

Index

Special
Characters

& See Ampersand (&)
* See Asterisk (*)
[] See Brackets ([])
- See Dash (-)
See Greater-than sign (»
. See Period (.)
? See Question mark (?)
/ See Slash (I)

A

-a option, function 2-15
Absolute pathname. See Pathname
Adding 6-12
Ampersand (&)

background command 2-14
background process 5-14

Append
files 2-17,4-11
text. See Output

Argument, option. See Option
Asterisk (*)

filename, not used in 2-8
filename wildcard 2-11
pattern matching functions 2-11

at command 5-15
at -r command 5-16

B

Background
command 2-14
process 5-14, 5-18

ampersand (&) operator 5-14
Backups

1.2 megabyte diskettes 5-4
creating 5-2, 5-4
extracting tar-fonnat files 5-6
floppy disks, how many to format 5-4

Backups (continued)
listing the contents of a tar floppy 5-5
shorthand tar notation 5-7
tar command 5-3
using nOK micro-floppies 5-5

Batch processing 2-14
bc command, calculating 6-11
/bin directory, contents of 2-9
Binary file. See File
BKSP key, command-line bufler editing

2-13
Block special device 4-27
Bourne shell 2-2
Brackets ([])

filename, not used in 2-8
pattern-matching functions 2-11

C

cal command 6-2
Calculating, example 6-11
calendar command 6-10
cancel command See lp command
cat

command 4-9, 5-14
file

combining 4-11
cd command

directory change 2-6
use 4-4

Change
directory 2-6, 4-4
terminal types 3-8

Character
counting 4-25
special device 4-27

chmod command 4-30, 4-32, 5-19
Command

at command 5-15
at -r command 5-16
background submitta12-14
batch processing 2-14
be command 6-11
cal command 6-2
calendar command 6-10
cat command 4-9, 4-11, 5-14

1-1

Index

Command (continued)
cd command 4-4
chmod command 5-19
copy command 4-6
cp command 4-13
dash (-) use 2-8
date command 6-2
df command 5-12
diffcommand 4-23
diskcp command 5-10
du command 3-10, 5-4
executing 2-13

sequence 5-14
find command 4-13
finger command 5-12
fonnat command 5-2
grep command 4-24
head command 4-9
kill command 5-18
I command 4-3, 4-9
lc command 3-10, 4-2, 4-12
If command 4-2
line. See Command line
lowercase letters 2-14
mkdir command 4-4
more command 4-8, 4-9
multiple commands 2-13
mv command 4-12
options 2-14
passwd command 3-3
program, invoking 2-13
ps command 5-17
nn command 4-10, 4-14
nndir command 4-5
sort command 4-24
syntax 2-14
tail command 4-9
tar command 5-3, 5-5
wc command 4-25
who command 4-24, 4-26, 5-12

Command line
ampersand (&) effect 2-14
buffer defined 2-13
defined 2-13
entry 3-10
erasure 3-10
interpretation 2-13
mUltiple commands 2-13
RETURN key effect 3-10

Control characters, filename use restric­
tions 2-8

Copy
command 4-6
directories 4-6

1-2

Copy (continued)
files 4-13
floppy diskettes 5-10
See cp command

Counting, wc command 4-25
cp command 4-13
Create

backups
1.2 megabyte diskettes 5-4
720K micro-floppies 5-5
extracting tar-fonnat files 5-6
floppy disks, how many to format

5-4
listing the contents of a tar floppy

5-5
several volumes 5-4
shorthand tar notation 5-7
tar command 5-3

directories 4-4
C-sheIl2-2
Ctrl-d, end-of-file 3-3
Ctrl-u

command-line buffer editing 2-13
line kill 3-10

Current directory
changing 4-4
description 4-4
printing 4-2
shorthand name 2-10

D

d command, mail, message delete 6-6
Dash (-)

command option use 2-8
filename, not used in 2-8

Dash (-), permission
denial notation 4-28
ordinary file notation 4-27

date command 6-2
Delete

d command 6-6
file 4-10

/dev directory, contents of 2-9
Device, pathname 2-9
Device special file. See Special device

file
df command 5-12
diffcommand 4-23
Directory

See also Filename
access permission. See Permission

Directory (continued)
/bin. See /bin directory
changing 4-4
command. See cd command
contents of 2-5
copying 4-6
creating 4-4
current directory. See Current

directory
Idev. See Idev directory
diagram 2-7
filename

required 2-8
unique to directory 2-8

/lib. See /lib directory
long listing 4-3
parent directory. See Parent directory
pathname required 2-9
permission notation 4-27
protection 2-5
removing 4-5
renaming 4-6
search permission. See Permission
Itmp directory 5-18
user control 2-7
/usr. See /usr directory
working directory. See Current

directory
diskcp 5-10

copying a 1.2 megabyte floppy 5-10
formatting a 1.2 megabyte floppy

5-10
using two floppy drives 5-11

Displaying a file 4-8
Dividing 6-12
du command 3-10, 5-4

E

Editing files 4-15
Exponentiation 6-12

F

File
access

control 2-5
permissions. See Permission

adding. See Create

Index

File (continued)
alphabetizing. See sorting
appending 4-11
attributes 2-4
binary file 2-4
change time 2-4
combining 4-11
composition 2-4
copying 4-13
creating

permission. See Permission
read permission control 2-5
write permission control 2-5

defined 2-4
deleting 4-10

write permission control 2-5
directory. See Directory
displaying 4-8, 4-9
dot 4-10
editing 4-15
filename. See Filename
group 2-4
invisible 4-10
manipulating 4-8
moving 4-12
name. See Filename
owner 2-4
pathname required 2-9
pattern search. See Pattern matching

facility
permissions

changing 4-30
I command 4-27
listing 4-3
See Permission

protection 2-4
removing 4-10
renaming 4-12
scratch file directory 2-10
size in bytes 2-4
sorting 4-24
special file. See Special device file
temporary file. See Temporary file
types 2-4

Filename
asterisk (*) wildcard 2-11
characters' use restrictions 2-8
described 2-8
example 2-10
long listing 4-3
question mark (?) use 2-12
required 2-4, 2-8
unique to directory 2-8

Filesystem, diagram 2-6

1-3

Index

find command 4-13
Finding a file 4-13
finger command 5-12
Floppy diskette, copying. See diskcp

5-10
Foreground process 5-18
fonnat command 5-2
Fonnatting media

1.2 megabyte diskettes 5-2
1.2 megabyte floppy diskettes 5-2
720K micro-floppy diskettes 5-2
fonnat command 5-2
mini tape cartridges 5-2

Full pathname. See Pathname, absolute

G

Greater-than sign (»
file combination 4-11
output redirection 2-17

grep command 4-24
Group permission. See Pennission

H

head command 4-9
Home directory 2-2,4-4

I

Inode, number, required for file 2-4
Input

keyboard origin 2-16
redirecting. See Redirect
tenninating 3-3

INTERRUPT key
command-line buffer cancellation

2-13
foreground process killing 5-18

K

Kernel buffers, maximum keyboard
input 3-10

1-4

kill command 5-18
Killing a process 5-18

L

I command 4-3, 4-9
lc command 3-10, 4-2, 4-12
Less-than symbol «), input redirection

2-17
If command 4-2
/lib directory, contents of 2-9
Line, counting. See wc command
Link, long listing 4-3
Listing. See I command

Logging in, login procedure 3-2
Logging out, logout procedure 3-3
Login procedure 3-2
lpcommand

cancel 4-20
-d option 4-20
lpstat command 4-21
-n option 4-20
pipes, use with 4-20
pr command, use with 4-20

lpstat command 4-21
-p option 4-22

M

Mail
composing a message 6-4
d command 6-6
exit

q command 6-7
h command 6-6
ho command 6-6
message

deleting 6-6
displaying 6-6
listing 6-6
saving 6-6

prompt 6-5
qcommand

exit 6-7
quitting 6-7
reading 6-5
reminder service 6-10
responding to a message 6-7

Mail (continued)
s command 6-6
sending 6-4
using vi 6-4

Make directory. See mkdir command
Mini tape cartridges, fonnatting 5-2
mkdir command 4-4
more command 4-8, 4-9
Move. See mv command
mv command 4-12

directory moving 4-6
file moving 4-12

N

Name special file 4-27
Named pipe 4-27

o

0, message end 6-8
00, message end 6-8
Option

grouping 2-14
multiple options

grouping 2-15
separate listing 2-15

regulations 2-15
Ordinary file. See File
Output

appending
procedure 2-17
symbol (») 2-17

control 3-11
redirecting 4-11

See Redirect
resuming 3-11
stopping 3-11
tenninal screen destination 2-16

p

Parent directory
described 2-10
shorthand name 2-10

passwd command 3-3
Password 3-4

Index

Password 3-4 (continued)
changing 3-4
composition 3-4
user accounts 3-6

Pathname
absolute

example 2-9
required 2-9
slash (/) significance 2-9

defined 2-8
fuU2-9
relative

defined 2-9
example 2-10

structure 2-8
Pattern matching facility

canceling 2-12
characters 2-11
described 2-10
grep command 4-24

Period (.)
filename use 2-8
working directory, changing 4-4

Pennission
block special device notation 4-27
denial notation 4-28
directory pennissions

assignment 2-5
changing 4-30
combinations designated 4-29
creating a file 4-28
deleting a file 4-28
file listing notation 4-28
notation 4-27
search notation 4-28
search permission 4-31
write permission 2-5

execute notation 4-28
file permissions

creating a file 4-28
deleting a file 4-28
denial notation 4-28
execute permission 4-28
file listing notation 4-28
file protection 2-5
notation 4-27
read notation 4-28
required 2-4
write notation 4-28

notation 4-27
read notation 4-28
search notation 4-28
symbols designated 4-27
types 4-28

1-5

Index

Pennission (continued)
write notation 4-28

PID, process identification number 5-17
Pipe

function 2-18
symbol (I) 2-18
used with more command 4-9

Pipeline, defined 2-18
Print working directory. See pwd

command
Printer

command 4-19
options 4-20
See lp command

Printing 4-19
Process

background. See Background
foreground 5-18
status 5-17

Prompt character 3-3
ps command 5-17
pwd command 4-2

Q

Question mark (?)
filename, not used in 2-8
pattern-matching functions 2-11
single character representation 2-12

Quotation mark, single (')
filename, not used in 2-8
pattern matching, canceling 2-12

Quotation marks, double (") 2-8

R

r character, read permission notation
4-28

Redirect
input

procedure 2-17
symbol «) 2-17

output
procedure 2-17, 4-11
symbol (» 2-17

Relative pathname. See Pathname
Reminder service, automatic 6-10
Remove

directory

1-6

Remove (continued)
directory (continued)

nndir command 4-5
file 4-10

RETURN key
command execution 3-10
command-line buffer submittal 2-13
mail, message display 6-6

rm command 4-10, 4-14
nndir command 4-5

s

Screen
scrolling 3-11
terminal 3-11

Scrolling
control 3-11
screen, stopping 3-11

Search
file, search for 4-13
permission. See Pennission
strings

example 2-15
Security, user accounts 3-6
Semaphore 4-27
Semicolon (;), command separation

2-13
Shared data file 4-27
Shell, command interpretation 2-13
Single quotation mark. See Quotation

mark, single (')
Slash ({), pathname significance 2-8
sort command 4-24
Special characters

designated 2-11
pattern matching 2-10

Special device file
described 2-5

Status
command. See ps command
infonnation procedures 5-12

Subdirectory 4-4
Subtracting 6-12
Super user account 2-3
Switch. See Option
System, basic concepts 2-1

T

tail command 4-9
tar command 5-3, 5-5
Temporary file

directory (/tmp) 5-18
kill command warning 5-18

Terminal
changing 3-8
screen

output 3-11
writing to. See write command

Text editing. See vi
/tmp directory 2-9, 5-18
'JYpe-ahead 3-10

u
User

classification 4-30
permission. See Permission

User account 2-2
group identification 2-2
home directory 2-2
login name 2-2
login shell 2-2
password 2-2

/usr directory, contents of 2-9
/usr/bin directory, contents of 2-9
/usr/lib directory, contents of 2-9

v
-v option 2-15
Vertical bar (I)

pipe symbol 2-18
vi

Command mode 4-15
cursor-movement keys 4-15
deleting text 4-16
entering text 4-15
exiting 4-17
Insert mode 4-15
inserting text 4-17
moving the cursor 4-15
saving a file 4-17
using 4-15

Index

w
wcharacter

directory permission notation 4-28
file permission, write notation 4-28

wc command 4-25
word count 2-18

who command 4-24, 4-26, 5-12
logged in users list 2-18

Word, counting. See wc command
write command 6-7

message end 6-8

x
x character

directory permission search 4-28
file permission, execute notation 4-28

1-7

SCO® XENIX® System V

Operating System

User's Guide

The Santa Cruz Operation, Inc.

© 1983-1991 The Santa Cruz Operation, Inc.
© 1980-1991 Microsoft Corporation.
© 1989-1991 AT&T.
All Rights Reserved.

No part of this pllblication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95061, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights
in Technical Data and Computer Software Clause of the United States Department of
Defense Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 52.227-7013. The
Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are trademarks of Microsoft Corporation.
UNIX is a registered trademark of UNIX Systems Laboratories in the U.S.A. and other
countries.

Document Version 2.3.4C
Date: 28 March 1991

Contents

1 Introduction

Overview 1-1
About This Guide 1-2
Notational Conventions 1-3

2 vi: A Text Editor

Introduction 2-1
Demonstration 2-2
Editing Tasks 2-18
Solving Common Problems 2-54
Setting Up Your Environment 2-56
Summary of Commands 2-63

3 mail

Introduction 3-1
Demonstration 3-2
Basic Concepts 3-6
Using mail 3-12
Commands 3-19
Leaving Compose Mode Temporarily 3-29
Setting Up Your Environment: The .mailrc File 3-35
Using Advanced Features 3-40
Quick Reference 3-44

4 Communicating with Other Sites

Introduction 4-1
Using Micnet 4-2
UsingUUCP 4-6
Logging in to Remote Systems 4-15

5 The Shell

Introduction 5-1
Basic Concepts 5-2
Shell Variables 5-11
The Shell State 5-18
A Command's Environment 5-20
Invoking the Shell 5-22
Passing Arguments to Shell Procedures 5-23
Controlling the Flow of Control 5-26

-i-

Special Shell Commands 5-40
Creation and Organization of Shell Procedures 5-44
More About Execution Flags 5-46
Supporting Commands and Features 5-47
Effective and Efficient Shell Programming 5-55
Shell Procedure Examples 5-60
Shell Grammar 5-68

6 The C-Shell

Introduction 6-1
Invoking the C-shell 6-2
Using Shell Variables 6-4
Using the C-Shell History List 6-7
Using Aliases 6-10
Redirecting Input and Output 6-12
Creating Background and Foreground Jobs 6-13
Using Built-In Commands 6-14
Creating Command Scripts 6-17
UsingtheargvVariable 6-18
Substituting Shell Variables 6-19
Using Expressions 6-21
Using the C-Shell: A Sample Script 6-22
Using Other Control Structures 6-25
Supplying Inputto Commands 6-26
Catching Interrupts 6-27
Using Other Features 6-28
Starting a Loop at a Terminal 6-29
Using Braces with Arguments 6-31
Substituting Commands 6-32
Special Characters 6-33

7 The Korn Shell

Introduction 7-1
Starting ksh 7-2
Using the kshBuilt-in Editors 7-3
Accessing Commands in the History File 7-8
Customizing the ksh Environment 7 -1 0
Manipulating Commands Wider Than the Screen 7 -16
Using Expanded cd Capabilities 7-17

8 The Visual Shell

What is the Visual Shell? 8-1
Getting Started with the Visual Shell 8-2
The Visual Shell Screen 8-4
Visual Shell Reference 8-8

- ii-

Chapter 1

Introduction

Overview 1-1

About This Guide 1-2

Notational Conventions 1-3

Overview

Overview
This guide provides extensive information on several of the most useful
XENIX facilities, including mail, the vi text editor, uucp, and micnet. In
addition, the guide includes information on the four XENIX "shells": the
Bourne shell, the Kom Shell, the Visual shell, and the C-shell.

Introduction 1-1

About This Guide

About This Guide
This guide is organized as follows:

Chapter 1, "Introduction" provides an overview of the contents of this
guide and gives a list of the notational conventions used throughout.

Chapter 2, "vi: A Text Editor" explains how to use the XENIX fullscreen
editor, vi.

Chapter 3, "mail" explains how to use the XENIX electronic mail facility.

Chapter 4, "Communicating with Other Sites" explains how to transfer
files to and from and how to execute commands on other computer sites.
These other sites might be UNIX or XENIX sites, but they do not need to
be. They can, for instance, be MS-DOSTM sites.

Chapter 5, "The Shell" explains how to use the XENIX Bourne shell.

Chapter 6, "The C-Shell" explains how to use the features of the XENIX
C shell.

Chapter 7, "The Korn Shell" explains how to use the powerful features of
the XENIX Korn shell.

Chapter 8, "Using The Visual Shell" explains how to use the menu­
driven Visual shell.

1-2 XENIX User's Guide

Notational Conventions

Notational Conventions
This guide uses a number of notational conventions to describe the syntax
of XENIX commands:

Initial Capitals

boldface

Introduction

Initial Capitals indicate the name of a com­
mand or mode. When a command is intro­
duced it is followed by the keystroke that
invokes it, (i.e. the Insert (i) command).

Boldface indicates a command, option, flag,
or program name to be entered as shown.
Keystrokes are boldfaced when they indi­
cate a command to enter as shown, (i.e.
enter the i command and press (Return)).
Commands that are issued while within a
program, such as a file editor like vi(C), are
not boldfaced so they will not be confused
with commands given to the shell.

Boldface indicates the name ofaXENIX
utility or library routine. (To find more in­
formation on a given utility, consult the
"Alphabetized List" in the appropriate
Reference for the manual page that
describes it.)

1-3

Notational Conventions

italics

screen font

[]

" "

1-4

Italics indicate a filename. This pertains to
library include filenames (Le. stdio.h), as
well as, other filenames (Le. /etc/ttys).

Italics indicate a placeholder for a com­
mand argument. When entering a command,
a placeholder must be replaced with an
appropriate filename, number, or option.

Italics indicate a specific identifier, sup­
plied for variables . and functions, when
mentioned in text.

Italics indicate a reference to part of an
example.

Italics indicate emphasized words or
phrases in text.

This font is used for screen displays and
messages.

Brackets indicate that the enclosed item is
optional. If you do not use the optional
item, the program selects a default action to
carry out.

Brackets indicate the position of the cursor
in text examples.

Ellipses indicate that you can repeat the
preceding item any number of times.

Vertical ellipses indicate that a portion of a
program example is omitted.

Quotation marks indicate the first use of a
technical term.

Quotation marks indicate a reference to a
word rather than a command.

XENIX User's Guide

Chapter 2

vi: A Text Editor

Introduction 2-1

Demonstration 2-2
Entering the Editor 2-2
Inserting Text 2-3
Repeating a Command 2-4
Undoing a Command 2-4
Moving the Cursor 2-5
Deleting 2-6
Searching for a Pattern 2-10
Searching and Replacing 2-11
Leaving vi 2-13
Adding Text From Another File 2-13
Leaving vi Temporarily 2-14
Changing Your Display 2-15
Canceling an Editing Session 2-16

Editing Tasks 2-18
How to Enter the Editor 2-18
Moving the Cursor 2-19
Moving Around in a File: Scrolling 2-22
Inserting Text Before the Cursor: i and I 2-23
Appending After the Cursor: a and A 2-23
Correcting Typing Mistakes 2-24
Opening a New Line 2-24
Repeating the Last Insertion 2-24
Inserting Text From Other Files 2-24
Inserting Control Characters into Text 2-29
Joining and Breaking Lines 2-29
Deleting a Character: x and X 2-29
Deleting a Word: dw 2-30
Deleting a Line: D and dd 2-30
Deleting an Entire Insertion 2-31
Deleting and Replacing Text 2-31
Moving Text 2-35
Searching: I and? 2-39
Searching and Replacing 2-40
Pattern Matching 2-42

Undoing a Command: u 2-45
Repeating a Command:. 2-46
Leaving the Editor 2-47
Editing a Series of Files 2-48
Editing a New File Without Leaving the Editor 2-50
Leaving the Editor Temporarily: Shell Escapes 2-51
Performing a Series of Line-Oriented Commands: Q 2-52
Finding Out What File You're In 2-53
Finding Out What Line You're On 2-53

Solving Common Problems 2-54

Setting Up Your Environment 2-56
Setting the Terminal Type 2-56
Setting Options: The set Command 2-57
Displaying Tabs and End-of-Line: list 2-58
Ignoring Case in Search Commands: ignorecase 2-58
Displaying Line Numbers: number 2-58
Printing the Number of Lines Changed: report 2-59
Changing the Terminal Type:term 2-59
Shortening Error Messages: terse 2-59
Thrning Off Warnings: warn 2-60
Permitting Special Characters in Searches: nomagic 2-60
Limiting Searches: wrapscan 2-60
'fuming on Messages: mesg 2-60
Mapping Keys 2-61
Abbreviating Strings 2-61
Customizing Your Environment: The .exrc File 2-62

Summary of Commands 2-63

Introduction

Introduction
Any ASCn text file, such as a program or document, may be created and
modified using a text editor. There are two text editors available on
XENIX systems, ed and vi. ed is discussed in the "ed" chapter of this
manual.

vi (which stands for "visual") combines line-oriented and screen-oriented
features into a powerful set of text editing operations that will satisfy any
text editing need.

The first part of this chapter is a demonstration that gives you some
hands-on experience with vi. It introduces the basic concepts you must be
familiar with before you can really learn to use vi, and shows you how to
perform simple editing functions. The second part is a reference that
shows you how to perform specific editing tasks. The third part describes
how to set up your vi environment and how to set optional features. The
fourth part is a summary of commands.

Because vi is such a powerful editor, it has many more commands than
you can learn at one sitting. If you have not used a text editor before, the
best approach is to become thoroughly comfortable with the concepts and
operations presented in the demonstration section, then refer to the
second part for specific tasks you need to perform. All the steps needed to
perform a given task are explained in each section, so some information is
repeated several times. When you are familiar with the basic vi com­
mands you can easily learn how to use the more advanced features.

If you have used a text editor before, you may want to turn directly to the
task-oriented part of this chapter. Begin by learning the features you will
use most often. If you are an experienced user of vi you may prefer to use
vi(C) in the XENlX Reference instead of this chapter.

This chapter covers the basic text editing features of vi. For more
advanced topics, and features related to editing programs, refer to vi(C) in
the XENlX Reference.

vi: A Text Editor 2-1

Demonstration

Demonstration
The following demonstration gives you hands-on experience using vi, and
introduces some basic concepts that you must understand before you can
learn more advanced features. You will learn how to enter and exit the
editor, insert and delete text, search for patterns and replace them, and
how to insert text from other files. This demonstration should take one
hour. Remember that the best way to learn vi is to actually use it, so don't
be afraid to experiment.

Before you start the demonstration, make sure that your terminal has been
properly set up. See the section "Setting the Terminal Type," for more
information about setting up your terminal for use with vi.

Entering the Editor

To enter the editor and create a file named temp, enter:

vi temp

Your screen will look like this:

"temp" [New file]

Note that we show a twelve-line screen to save space. In reality, vi uses
whatever size screen you have.

You are initially editing a copy of the file. The file itself is not altered
until you save it. Saving a file is explained later in the demonstration.
The top line of your display is the only line in the file and is marked by
the cursor, shown above as an underline character. In this chapter, when
the cursor is on a character that character will be enclosed in square
brackets ([]).

2-2 XENIX User's Guide

Demonstration

The line containing the cursor is called the current line. The lines con­
taining tildes are not part of the file: they indicate lines on the screen
only, not real lines in the file.

Inserting Text

To begin, create some text in the file temp by using the Insert (i) com­
mand. To do this, press:

Next, enter the following five lines to give yourself some text to experi­
ment with. Press (Return) at the end of each line. If you make a mistake,
use the (Bksp) key to erase the error and enter the word again.

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Press the (Esc) key when you are finished.

Like most vi commands, the i command is not shown (or "echoed") on
your screen. The command itself switches you from Command mode to
Insert mode.

When you are in Insert mode every character you enter is displayed on the
screen. In Command mode the characters you enter are not placed in the
file as text; they are interpreted as commands to be executed on the file. If
you are not certain which mode you are in, press (Esc) until you hear the
bell. When you hear the bell you are in Command mode.

Once in Insert mode, the characters you enter are inserted into the file;
they are not interpreted as vi commands. To exit Insert mode and reenter
Command mode you will always press (Esc). This switching between
modes occurs often in vi, and it is important to get used to it now.

vi: A Text Editor 2-3

Demonstration

Repeating a Command

Next comes a command that you will use frequently in vi: the Repeat
command. The Repeat command repeats the most recent Insert or Delete
command. Since we have just executed an Insert command, the Repeat
command repeats the insertion, duplicating the inserted text. The Repeat
command is executed by entering a period (.) or "dot" . So, to add five
more lines of text, enter" .". The Repeat command is repeated relative to
the location of the cursor and inserts text below the current line.
(Remember, the current line is always the line containing the cursor.)
After you enter dot (.), your screen will look like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Undoing a Command

Another command which is very useful (and which you will need often in
the beginning) is the Undo (u) command. Press

u

and notice that the five lines you just finished inserting are deleted or
"undone" .

2-4 XENIX User's Guide

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now enter:

u

Demonstration

again, and the five lines are reinserted! This undo feature can be very
useful in recovering from inadvertent deletions or insertions.

Moving the Cursor

Now let's learn how to move the cursor around on the screen. In addition
to the arrow keys, the following letter keys also control the cursor:

h Left

Right

k Up

j Down

The letter keys are chosen because of their relative positions on the key­
board. Remember that the cursor movement keys only work in Command
mode.

Try moving the cursor using these keys. (First make sure you are in Com­
mand mode by pressing the (Esc) key.) Then, enter the H command to
place the cursor in the upper left comer of the screen. Then enter the L
command to move to the lowest line on the screen. (Note that case is sig­
nificant in our example: L moves to the lowest line on the screen; while I
moves the cursor forward one character.) Next, try moving the cursor to
the last line in the file with the goto command, G. If you enter 2G, the
cursor moves to the beginning of the second line in the file; if you have a
10,000 line file, and enter 8888G, the cursor goes to the beginning of line
8888. (If you have a 600 line file and enter 800G the cursor does not
move.)

vi: A Text Editor 2-5

Demonstration

These cursor movement commands should allow you to move around well
enough for this demonstration. Other cursor movement commands you
might want to try out are:

w Moves forward a word

b Backs up a word

o Moves to the beginning of a line

$ Moves to the end of a line

You can move through many lines quickly with the scrolling commands:

{Ctrl)u

{Ctrl)d

{Ctrl)f

{Ctrl)b

Scrolls up 1/2 screen

Scrolls down 1/2 screen

Scrolls forward one screenful

Scrolls backward one screenful

Deleting

Now that we know how to insert and create text, and how to move around
within the file, we are ready to delete text. Many Delete commands can
be combined with cursor movement commands, as explained below. The
most common Delete commands are:

2-6

dd Deletes the current line (the line the cursor is on),
regardless of the location of the cursor in the line.

dw Deletes the word above the cursor. If the cursor is in the
middle of the word, deletes from the cursor to the end of
the word.

x Deletes the character above the cursor.

d$ Deletes from the cursor to the end of the line.

D Deletes from the cursor to the end of the line.

dO Deletes from the cursor to the start of the line.

Repeats the last change. (Use this only if your last com­
mand was a deletion.)

XENIX User's Guide

Demonstration

To learn how all these commands work, we will delete various parts of
the demonstration file. To begin, press (Esc) to make sure you are in Com­
mand mode, then move to the first line of the file by entering:

IG

At first, your file should look like this:

[F)iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

To delete the first line, enter:

dd

Your file should now look like this:

[T)ext contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the word the cursor is sitting on by entering:

dw

vi: A Text Editor 2-7

Demonstration

After deleting, your file should look like this:

[clontains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

You can quickly delete the character above the cursor by pressing:

x

This leaves:

[olntains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now enter a w command to move your cursor to the beginning of the
word lines on the first line. Then, to delete to the end of the line, enter:

d$

2-8 XENIX User's Guide

Your file looks like this:

ontains
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Demonstration

To delete all the characters on the line before the cursor enter:

dO

This leaves a single space on the line:

Lines contain characters.
Files contain text.
Text contains lines.
Characters form words.
Words form text.
Lines contain characters.
Characters form words.
Words form text.

For review, let's restore the first two lines of the file.

Press i to enter Insert mode, then enter:

Files contain text.
Text contains lines.

Press (Esc) to go back to Command mode.

vi: A Text Editor 2-9

Demonstration

Searching for a Pattern

You can search forward for a pattern of characters by entering a slash (/)
followed by the pattern you are searching for, tenninated by a (Return).
For example, make sure you are in Command mode (press (Esc», then
press

H

to move the cursor to the top of the screen. Now, enter:

Ichar

Do not press (Return) yet. Your screen should look like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Press (Return). The cursor moves to the beginning of the word characters
on line three. To search for the next occurrence of the pattern char, press
n (as in "next") . This will take you to the beginning of the word charac­
ters on the eighth line. If you keep pressing "n" vi searches past the end
of the file, wraps around to the beginning, and again finds the char on line
three.

Note that the slash character and the pattern that you are searching for
appear at the bottom of the screen. This bottom line is the vi status line.

The status line appears at the bottom of the screen. It is used to display
infonnation, including patterns you are searching for, line-oriented com­
mands (explained later in this demonstration), and error messages.

2-10 XENIX User's Guide

Demonstration

For example, to get status infonnation about the file, press (Ctrl)g. Your
screen should look like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain [c)haracters.
Characters form words.
Words form text.

"temp" [Modified) line 4 of 10 --4%--

The status line on the bottom tells you the name of the file you are edit­
ing, whether it has been modified, the current line number, the number of
lines in the file, and your location in the file as a percentage of the number
of lines in the file. The status line disappears as you continue working.

Searching and Replacing

Let's say you want to change all occurrences of text in the demonstration
file to documents. Rather than search for text, then delete it and insert
documents, you can do it all in one command. The commands you have
learned so far have all been screen-oriented. Commands that can perfonn
more than one action (searching and replacing) are line-oriented com­
mands.

Screen-oriented commands are executed at the location of the cursor. You
do not need to tell the computer where to perfonn the operation; it takes
place relative to the cursor. Line-oriented commands require you to
specify an exact location (called an "address") where the operation is to
take place. Screen-oriented commands are easy to enter, and provide
immediate feedback; the change is displayed on the screen. Line­
oriented commands are more complicated to enter, but they can be exe­
cuted independent of the cursor, and in more than one place in a file at a
time.

All line-oriented commands are preceded by a colon which acts as a
prompt on the status line. Line-oriented commands themselves are
entered on this line and tenninated with a (Return).

vi: A Text Editor 2-11

Demonstration

In this chapter, all instructions for line-oriented commands will include
the colon as part of the command.

To change text to documents, press (Esc) to make sure you are in Com­
mand mode, then enter:

: 1 ,$s/text/ documents/g

This command means "From the first line (1) to the end of the file ($),
find text and replace it with documents (s/text/documentsl) everywhere it
occurs on each line (g)".

Press (Return). Your screen should look like this:

Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
Words form documents.
Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
[W)ords form documents.

Note that Text in lines two and eight was not changed. Case is significant
in searches.

Just for practice, use the Undo command to change documents back to
text. Press:

u

2-12 XENIX User's Guide

Your screen now looks like this:

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Leaving vi

Demonstration

All of the editing you have been doing has affected a copy of the file, and
not the file named temp that you specified when you invoked vi. To save
the changes you have made, exit the editor and return to the XENIX shell,
enter:

:x

Remember to press (Return). The name of the file, and the number of lines
and characters it contains are displayed on the status line:

"temp" [New file] 10 lines, 214 characters

Then the XENIX prompt appears.

Adding Text From Another File

In this section we will create a new file, and insert text into it from
another file. First, create a new file named practice by entering:

vi practice

vi: A Text Editor 2-13

Demonstration

This file is empty. Let's copy the text from temp and put it in practice
with the line-oriented Read command. Press (Esc) to make sure you are in
Command mode, then enter:

:r temp

Your file should look like this:

[FJiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

The text from temp has been copied and put in the current file practice.
There is an empty line at the top of the file. Move the cursor to the empty
line and delete it with the dd command.

Leaving vi Temporarily

vi allows you to execute commands outside of the file you are editing,
such as date. To find out the date and time, enter:

:!date

2-14 XENIX User's Guide

Demonstration

Press (Return). This displays the date, then prompts you to press (Return)
to reenter Command mode. Go ahead and try it. Your screen should look
similar to this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

: !date
Man Jan 9 16:33:37 PST 1985
[Press return to continue]

Changing Your Display

Besides the set of editing commands described above, there are a number
of options that can be set either when you invoke vi, or later when editing.
These options allow you to control editing parameters such as line num­
ber display, and whether or not case is significant in searches. In. this sec­
tion we will learn how to turn on line numbering, and how to look at the
current option settings.

To turn on automatic line numbering, enter:

:set number

vi: A Text Editor 2-15

Demonstration

Press (Return). Your screen is redrawn, and line numbers appear to the
left of the text. Your screen looks like this:

1 Files contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
5 Words form text.
6 Files contain text.
7 Text contains lines.
8 Lines contain characters.
9 Characters form words.

10 Words form text.

You can get a complete list of the available options by entering:

:set all

and pressing (Return). Setting these options is described in the section
"Setting Up Your Environment," but it is important that you be aware of
their existence. Depending on what you are working on, and your own
preferences, you will want to alter the default settings for many of these
options.

Canceling an Editing Session

Finally, to exit vi without saving the file practice, enter:

:q!

and press (Return). This cancels all the changes you have made to prac­
tice and, since it is a new file, deletes it. The prompt appears. If practice
had already existed before this editing session, the changes you made
would be disregarded, but the file would still exist.

2-16 XENIX User's Guide

Demonstration

This completes the demonstration. You have learned how to get in and
out of vi, insert and delete text, move the cursor around, make searches
and replacements, how to execute line-oriented commands, copy text
from other files, and cancel an editing session.

There are many more commands to learn, but the fundamentals of using
vi have been covered. The following sections will give you more detailed
infonnation about these commands and about other vi commands and fea­
tures.

vi: A Text Editor 2-17

Editing Tasks

Editing Tasks
The following sections explain how to perform common editing tasks. By
following the instructions in each section you will be able to complete
each task described. Features that are needed in several tasks are
described each time they are used, so some information is repeated.

How to Enter the Editor

There are several ways to begin editing, depending on what you are plan­
ning to do. This section describes how to start, or "invoke" the editor with
one filename. To invoke vi on a series of files, see the section "Editing a
Series of Files. "

With a Filename

The most common way to enter vi is to enter the command vi and the
name of the file you wish to edit:

vi filename

If filename does not already exist, anew, empty file is created.

At a Particular Line

You can also enter the editor at a particular place in a file. For example, if
you wish to start editing a file at line 100, enter:

vi +100 filename

The cursor is placed at line 1000ffilename.

At a Particular Word

If you wish to begin editing at the first occurrence of a particular word,
enter:

vi +Iword filename

2-18 XENIX User's Guide

Editing Tasks

The cursor is placed at the first occurrence of word. For example, to begin
editing the file temp at the the first occurrence of contain, enter:

vi +/contain temp

Moving the Cursor

The cursor movement keys allow you to move the cursor around in a file.
Cursor movement can only be done in Command mode.

Moving the Cursor by Characters: h, I, f, F, t, T, (Space), (Bksp)

The (Space) bar and the 1 key move the cursor forward a specified number
of characters. The (Bksp) key and the h key move it backward a specified
number of characters. If no number is specified, the cursor moves one
character. For example, to move backward four characters, enter:

4h

You can also move the cursor to a designated character on the current
line. F moves the cursor back to the specified character, f moves it for­
ward. The cursor rests on the specified character. For example, to move
the cursor backward to the nearest p on the current line, enter:

Fp

To move the cursor forward to the nearest p, enter:

fp

The t and T keys work the same way as f and F, but place the cursor
immediately before the specified character. For example, to move the
cursor back to the space next to the nearest p in the current line, enter:

Tp

If the p were in the word telephone, the cursor would sit on the h.

The cursor always remains on the same line when you use these com­
mands. If you specify a number greater than the number of characters on
the line, the cursor does not move beyond the beginning or end of that
line.

vi: A Text Editor 2-19

Editing Tasks

Moving the Cursor by Lines: j, k

The j key moves the cursor down a specified number of lines, and the k
key moves it up. If no number is specified, the cursor moves one line. For
example, to move down three lines, enter:

3j

Moving the Cursor by Words: w, W, b, B, e, E

The w key moves the cursor forward to the beginning of the specified
number of words. Punctuation and nonalphabetic characters (such as
!@#$%"&*(L+{ HrI\'<>/) are considered words, so if a word is fol­
lowed by a comma the cursor will count the comma in the specified num­
ber.

For example, your cursor rests on the first letter of this sentence:

No, I didn't know he had returned.

If you press:

6w

the cursor stops on the k in know.

W works the same way as w, but includes punctuation and nonalphabetic
characters as part of the word. Using the above example, if you press:

6W

the cursor stops on the r in returned; the comma and the apostrophe are
included in their adjacent words.

The e and E keys move the cursor forward to the end of a specified num­
ber of words. The cursor is placed on the last letter of the word. The e
command counts punctuation and nonalphabetic characters as separate
words; E does not.

B and b move the cursor back to the beginning of a specified number of
words. The cursor is placed on the first letter of the word. The b command
counts punctuation and nonalphabetic characters as separate words; B
does not. Using the above example, if the cursor is on the r in returned,
enter:

4b

and the cursor moves to the t in didn't.

2-20 XENIX User's Guide

Editing Tasks

Enter:

4B

and the cursor moves to the first d in didn't.

The w, W, b and B commands will move the cursor to the next line if that
is where the designated word is, unless the current line ends in a space.

Moving the Cursor by Lines

Forward: j, (Ctrl)n, +, (Return), LINEFEED, $

The (Return), LINEFEED and + keys move the cursor forward a specified
number of lines, placing the cursor on the first character. For example, to
move the cursor forward six lines, enter:

6+

The j and (Ctrl)n keys move the cursor forward a specified number of
lines. The cursor remains in the same place on the line, unless there is no
character in that place, in which case it moves to the last character on the
line. For example, in the following two lines if the cursor is resting on the
e in characters, pressing j moves it to the period at the end of the second
line:

Lines contain characters.
Text contains lines.

The dollar sign($) moves the cursor to the end of a specified number of
lines. For example, to move the cursor to the last character of the line four
lines down from the current line, enter:

4$

Backward: k, (Ctrl)p

(Ctrl)p and k move the cursor backward a specified number of lines, keep­
ing it on the same place on the line. For example, to move the cursor
backward four lines from the current line, enter:

4k

vi: A Text Editor 2-21

Editing Tasks

Moving the Cursor on the Screen: H, M, L

The H, M and L keys move the cursor to the beginning of the top, middle
and bottom lines of the screen, respectively.

Moving Around in a File: Scrolling

The following commands move the file so different parts can be displayed
on the screen. The cursor is placed on the first letter of the last line
scrolled.

Scrolling Up Part of the Screen: (Ctrl)u

(Ctrl)u scrolls up one-half screen.

Scrolling Up the Full Screen: (Ctrl)b

(Ctrl)b scrolls up a full screen.

Scrolling Down Part of the Screen: (Ctrl)d

(Ctrl)d scrolls down one-half screen.

Scrolling Down a Full Screen: (Ctrl)f

(Ctrl)f scrolls down a full screen.

Placing a Line at the Top of the Screen: z

To scroll the current line to the top of the screen, press:

z

then press (Return). To place a specific line at the top of the screen, pre­
cede the z with the line number, as in

33z

Press (Return), and line 33 scrolls to the top of the screen. For information
on how to display line numbers, see the section "Displaying Line Num­
bers: number."

2-22 XENIX User's Guide

Editing Tasks

Inserting Text Before the Cursor: i and I

You can begin inserting text before the cursor anywhere on a line, or at
the beginning of a line. In order to insert text into a file, you must be in
Insert mode. To enter Insert mode press:

i

The "i" does not appear on the screen. Any text typed after the "i"
becomes part of the file you are editing. To leave Insert mode and reenter
Command mode, press (Esc). For more explanation of modes in vi, see
the section "Inserting Text."

Anywhere on a Line: i

To insert text before the cursor, use the i command. Press the i key to
enter Insert mode (the "i" does not appear on your screen), then begin
entering your text. To leave Insert mode and reenter Command mode,
press (Esc).

At the Beginning of the Line: I

Using an uppercase "I" to enter Insert mode also moves the cursor to the
beginning of the current line. It is used to start an insertion at the begin­
ning of the current line.

Appending After the Cursor: a and A

You can begin appending text after the cursor anywhere on a line, or at
the end of a line. Press (Esc) to leave Insert mode and reenter Command
mode.

Anywhere on a Line: a

To append text after the cursor, use the a command. Press the a key to
enter Insert mode (the "a" does not appear on your screen), then begin
entering your text. Press (Esc) to leave Insert mode and reenter Command
mode.

At the end of a Line: A

Using an uppercase "A" to enter Insert mode also moves the cursor to the
end of the current line. It is useful for appending text at the end of the
current line.

vi: A Text Editor 2-23

Editing Tasks

Correcting Typing Mistakes

If you make a mistake while you are typing, the simplest way to correct it
is with the (Bksp) key. Backspace across the line until you have back­
spaced over the mistake, then retype the line. You can only do this, how­
ever, if the cursor is on the same line as the error. See the sections "Delet­
ing a Character: x and X" through "Deleting an Entire Insertion" for
other ways to correct typing mistakes.

Opening a New Line

To open a new line above the cursor, press O. To open a new line below
the cursor, press o. Both commands place you in Insert mode, and you
may begin entering immediately. Press (Esc) to leave Insert mode and
reenter Command mode.

You may also use the (Return) key to open new lines above and below the
cursor. To open a line above the cursor, move the cursor to the beginning
of the line, press i to enter Insert mode, then press (Return). (For informa­
tion on how to move the cursor, see the section "Moving the Cursor.") To
open a line below the cursor, move the cursor to the end of the current
line, press i to enter Insert mode, then press (Return).

Repeating the Last Insertion

(Ctrl)@ repeats the last insertion. Press i to enter Insert mode, then press
(Ctrl)@.

(Ctrl)@ only repeats insertions of 128 characters or less. If more than 128
characters were inserted, (Ctrl)@ does nothing.

For other methods of repeating an insertion, see the sections "Repeating
the Last Insertion," "Inserting Text From Other Files," and "Repeating a
Command."

Inserting Text From Other Files

To insert the contents of another file into the file you are currently editing,
use the Read (r) command. Move the cursor to the line immediately
above the place you want the new material to appear, then enter:

:r filename

2-24 XENIX User's Guide

Editing Tasks

where filename is the file containing the material to be inserted, and press
(Return). The text of filename appears on the line below the cursor, and
the cursor moves to the first character of the new text. This text is a copy;
the original filename still exists.

Inserting selected lines from another file is more complicated. The
selected lines are copied from the original file into a temporary holding
place called a "buffer", then inserted into the new file.

1. To select the lines to be copied, save your original file with the
Write (:w) command, but do not exit vi.

2. Enter:

:e filename

where filename is the file that contains the text you want to copy,
and press (Return).

3. Move the cursor to the first line you wish to select.

4. Enter:

mk

This "marks" the first line of text to be copied into the new file
with the letter "k".

5. Move the cursor to the last line of the selected text. Enter:

"ay'k

The lines from your first "mark" to the cursor are placed, or
"yanked" into buffer a. They will remain in buffer a until you
replace them with other lines, or until you exit the editor.

6. Enter:

:e#

to return to your previous file. (For more information about this
command, see the section "Editing a New File Without Leaving
the Editor.") Move the cursor to the line above the place you want
the new text to appear, then enter:

"ap

vi: A Text Editor 2-25

Editing Tasks

This "puts" a copy of the yanked lines into the file, and the cursor
is placed on the first letter of this new text. The buffer still contains
the original yanked lines.

You can have 26 buffers named a, b, c, up to and including z. To name and
select different buffers, replace the a in the above examples with whatever
letter you wish.

You may also delete text into a buffer, then insert it in another place. For
information on this type of deletion and insertion, see the section "Mov­
ing Text."

Copying Lines From Elsewhere in the File

To copy lines from one place in a file to another place in the same file, use
the Copy (co) command.

co is a line-oriented command, and to use it you must know the line num­
bers of the text to be copied and its destination. To find out the number of
the current line enter:

:nu

and press (Return). The line number and the text of that line are displayed
on the status line. To find out the destination line number, move the cursor
to the line above where you want the copied text to appear and repeat the
:nu command. You can also make line numbers appear throughout the
file with the linenumber option. For information on how to set this
option, see the section "Displaying Line Numbers: number." The follow­
ing example uses the number option to display line numbers in a file.

1 [FJiles contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
5 Words form text.

2-26 XENIX User's Guide

Editing Tasks

Using the above example, to copy lines 3 and 4 and put them between
lines 1 and 2, enter:

:3,4 co 1

The result is:

1 Files contain text.
2 Lines contain characters.
3 [Clharacters form words.
4 Text contains lines.
5 Lines contain characters.
6 Characters form words.
7 Words form text.

If you have text that is to be inserted several times in different places, you
can save it in a temporary storage area, called a "buffer", and insert it
whenever it is needed. For example, to repeat the first line of the follow­
ing text after the last line:

[Fliles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

1. Move the cursor over the F in Files. Enter the following line,
which will not be echoed on your screen:

"ayy

This "yanks" the first line into buffer a. Move the cursor over the
Win Words.

vi: A Text Editor 2-27

Editing Tasks

2. Enter the following line:

flap

This "puts" a copy of the yanked line into the file, and the cursor is
placed on the first letter of this new text. The buffer still contains
the original yanked line.

Your screen looks like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
(F]iles contain text.

If you wish to "yank" several consecutive lines, indicate the number of
lines you wish to yank after the name of the buffer. For example, to place
three lines from the above text in buffer a, enter:

fla3yy

You can also use "yank" to copy parts of a line. For example, to copy the
words Files contain, enter:

2yw

This yanks the next two words, including the word on which you place the
cursor. To yank the next ten characters, enter:

lOyl

1 indicates cursor motion to the right. To yank to the end of the line you
are on, from where you are now, enter:

y$

2-28 XENIX User's Guide

Editing Tasks

Inserting Control Characters into Text

Many control characters have special meaning in vi, even when typed in
Insert mode. To remove their special significance, press (Ctrl)v before typ­
ing the control character. Note that (Ctrl)j, (Ctrl)q, and (Ctrl)s cannot be
inserted as text. (Ctrl)j is a newline character. (Ctrl)q and (Ctrl)s are
meaningful to the operating system, and are trapped by it before they are
interpreted by vi.

Joining and Breaking Lines

To join two lines press:

J

while the cursor is on the first of the two lines you wish to join.

To break one line into two lines, position the cursor on the space preced­
ing the first letter of what will be the second line, press:

r

then press (Return).

Deleting a Character: x and X

The x and X commands delete a specified number of characters. The x
command deletes the character above the cursor; the X command deletes
the character immediately before the cursor. If no number is given, one
character is deleted. For example, to delete three characters following the
cursor (including the character above the cursor), enter:

3x

To delete three characters preceding the cursor, enter:

3X

vi: A Text Editor 2-29

Editing Tasks

Deleting a Word: dw

The dw command deletes a specified number of words. If no number is
given, one word is deleted. A word is interpreted as numbers and letters
separated by whitespace. When a word is deleted, the space after it is also
deleted. For example, to delete three words, enter:

3dw

Deleting a Line: D and dd

The D command deletes all text following the cursor on that line, includ­
ing the character the cursor is resting on. The dd command deletes a
specified number of lines and closes up the space. If no number is given,
only the current line is deleted. For example, to delete three lines, enter:

3dd

Another way to delete several lines is to use a line-oriented command. To
use this command it helps to know the line numbers of the text you wish
to delete. For infonnation on how to display line numbers, see the section
"Displaying Line Numbers: number."

For example, to delete lines 200 through 250, enter:

:200,250d

Press {Retum).

When the command finishes, the message:

50 lines

appears on the vi status line, indicating how many lines were deleted.

It is possible to remove lines without displaying line numbers using short­
hand "addresses". For example, to remove all lines from the current line
(the line the cursor rests on) to the end of the file, enter:

:.,$d

2-30 XENIX User's Guide

Editing Tasks

The dot (.) represents the current line, and the dollar sign stands for the
last line in the file. To delete the current line and 3 lines following it,
enter:

:.,+3d

To delete the current line and 3 lines preceding it, enter:

:.,-3d

For more information on using addresses in line-oriented commands, see
vi(C) in the XENIX Reference.

Deleting an Entire Insertion

If you wish to delete all of the text you just entered, press (Ctrl)u while
you are in Insert mode. The cursor returns to the beginning of the inser­
tion. The text of the original insertion is still displayed, and any text you
enter replaces it. When you press (Esc), any text remaining from the origi­
nal insertion disappears.

Deleting and Replacing Text

Several vi commands combine removing characters and entering Insert
mode. The following sections explain how to use these commands.

Overstriking: rand R

The r command replaces the character under the cursor with the next
character entered. To replace the character under the cursor with a "b",
for example, enter:

rb

vi: A Text Editor 2-31

Editing Tasks

If a number is given before r, that number of characters is replaced with
the next character entered. For example, to replace the character above
the cursor, plus the next three characters, with the letter "b", enter:

4rb

Note that you now have four "b"s in a row.

The R command replaces as many characters as you enter. To end the
replacement, press (Esc). For example, to replace the second line in the
following text with "Spelling is important.":

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Move the cursor over the T in Text. Press R, then enter:

Spelling is important.

Press (Esc) to end the replacement. If you make a mistake, use the (Bksp)
key to correct it. Your screen should now look like this:

Files contain text.
Spelling is important[.]
Lines contain characters.
Characters form words.
Words form text.

2-32 XENIX User's Guide

Editing Tasks

Substituting: sand S

The s command replaces a specified number of characters, beginning with
the character under the cursor, with text you enter. For example, to substi­
tute "xyz" for the cursor and two characters following it, enter:

3sxyz

The S command deletes a specified number of lines and replaces them
with text you enter. You may enter as many new lines of text as you
wish; S affects only how many lines are deleted. If no number is given,
one line is deleted. For example, to delete four lines, including the current
line, enter:

4S

This differs from the R command. The S command deletes the entire
current line; the R command deletes text from the cursor onward.

Replacing a Word: cw

The cw command replaces a word with text you enter. For example, to
replace the word "bear" with the word "fox", move the cursor over the
"b" in "bear". Press:

cw

A dollar sign appears over the "r" in bear, marking the end of the text
that is being replaced. Enter:

fox

and press (Esc). The rest of "bear" disappears and only "fox" remains.

vi: A Text Editor 2-33

Editing Tasks

Replacing the Rest of a Line: C

The C command replaces text from the cursor to the end of the line. For
example, to replace the text of the sentence:

Who's afraid of the big bad wolf?

from big to the end, move the cursor over the b in big and press:

c

A dollar sign ($) replaces the question mark (?) at the end of the line.
Enter the following:

little lamb?

Press {Esc}. The remaining text from the original sentence disappears.

Replacing a Whole Line: cc

The cc command deletes a specified number of lines, regardless of the
location of the cursor, and replaces them with text you enter. If no number
is given, the current line is deleted.

Replacing a Particular Word on a Line

If a word occurs several times on one line, it is often convenient to use a
line-oriented command to replace it. For example, to replace the word
removing with "deleting" in the following sentence:

In vi, removing a line is as easy as removing a letter.

Make sure the cursor is at the beginning of that line, and enter:

:s/removing/deleting/ g

Press {Return}. This line-oriented command means "Substitute (s) for the
word removing the word deleting, everywhere it occurs on the current line
(g)". If you don't include a g at the end, only the first occurrence of
removing is changed.

2-34 XENIX User's Guide

Editing Tasks

For more information on using line-oriented commands to replace text,
see the section "Searching and Replacing."

Moving Text

To move a block of text from one place in a file to another, you can use
the line-oriented m command. You must know the line numbers of your
file to use this command. The number option displays line numbers. To
set this option, press (Esc) to make sure you are in Command mode, then
enter:

set number

Line numbers will appear to the left of your text. For more information
on setting the number option, see the section "Displaying Line Numbers:
number."

The following example uses the number option. For other ways to dis­
play line numbers, see the section "Finding Out What Line You're On."

1 [FJiles contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
5 Words form text.

To insert lines 2 and 3 between lines 4 and 5, enter:

:2,3m4

vi: A Text Editor 2-35

Editing Tasks

Your screen should look like this:

1 Files contain text.
2 Characters form words.
3 Text contains lines.
4 Lines contain characters.
5 [W]ords form text.

To place line 5 after line 2, enter:

:5m2

After moving, your screen should look like this:

1 Files contain text.
2 Characters form words.
3 [W]ordsform text.
4 Text contains lines.
5 Lines contain characters.

To make line 4 the first line in the file, enter:

:4mO

2-36 XENIX User's Guide

Your screen should look like this:

1 [T]ext contains lines.
2 Files contain text.
3 Characters form words.
4 Words form text.
5 Lines contain characters.

Editing Tasks

You can also delete text into a temporary storage place, called a "buffer,"
and insert it wherever you wish. When text is deleted it is placed in a
"delete buffer." There are nine "delete buffers."

The first buffer always contains the most recent deletion. In other words,
the first deletion in a given editing session goes into buffer 1. The second
deletion also goes into buffer 1, and pushes the contents of the old buffer 1
into buffer 2. The third deletion goes into buffer 1, pushing the contents of
buffer 2 into buffer 3, and the contents of buffer 1 into buffer 2. When
buffer 9 has been used, the next deletion pushes the current text of buffer 9
off the stack and it disappears.

Text remains in the delete buffers until it is pushed off the stack, or until
you quit the editor, so it is possible to delete text from one file, change
files without leaving the editor, and place the deleted text in another file.

Delete buffers are particularly useful when you wish to remove text, store
it, and put it somewhere else. Using the following text as an example:

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the first line by entering:

dd

vi: A Text Editor 2-37

Editing Tasks

Delete the third line the same way. Now move the cursor to the last line
in the example and press:

"Ip

The line from the second deletion appears:

Text contains lines.
Characters form words.
Words form text.
[L]ines contain characters.

Now enter:

"2p

The line from the first deletion appears:

Text contains lines.
Characters form words.
Words form text.
Lines contain characters.
[F]iles contain text.

Inserting text from a delete buffer does not remove the text from the
buffer. Since the text remains in a buffer until it is either pushed off the
stack or until you quit the editor, you may use it as many times as you
wish.

It is also possible to place text in named buffers. For information on how
to create named buffers, see the section "Inserting Text From Other
Files."

2-38 XENIX User's Guide

Editing Tasks

Searching: / and ?

You can search forward and backward for patterns in vi. To search for­
ward, press the slash (/) key. The slash appears on the status line. Enter
the characters you wish to search for. Press (Return). If the specified pat­
tern exists, the cursor will move to the first character of the pattern.

For example, to search forward in the file for the word "account", enter:

/account

Press (Return). The cursor is placed on the first character of the pattern.
To place the cursor at the beginning of the line above "account", for
example, enter:

/account/-

To place the cursor at the beginning of the line two lines above the line
that contains "account", enter:

/account/-2

To place the cursor two lines below "account", enter:

/account/+ 2

To search backward through a file, use ? instead of / to start the search.
For example, to find all occurrences of "account" above the cursor, enter:

?account

To search for a pattern containing any of the special characters (. * \ [] -
$ and A), each special character must be preceded by a backslash. For
example, to find the pattern "U.S.A.", enter:

/U\.s\.A\./

vi: A Text Editor 2-39

Editing Tasks

You can continue to search for a pattern by pressing:

n

after each search. The pattern is unaffected by intervening vi commands.
and you can use n to search for the pattern until you enter a new pattern
or quit the editor.

vi searches for exactly what you enter. If the pattern you are searching for
contains an uppercase letter (for example. if it appears at the beginning of
a sentence), vi ignores it. To disregard case in a search command, you can
set the ignorecase option:

:set ignorecase

By default. searches "wrap around" the file. That is, if a search starts in
the middle of a file. when vi reaches the end of the file it will "wrap
around" to the beginning. and continue until it returns to where the search
began. Searches will be completed faster if you specify forward or back­
ward searches. depending on where you think the pattern is.

If you do not want searches to wrap around the file, you can change the
"wrapscan" option setting. Enter:

:set nowrapscan

and press (Return) to prevent searches from wrapping. For more informa­
tion about setting options, see the section "Setting Up Your Environ­
ment."

Searching and Replacing

The search and replace commands allow you to perform complex changes
to a file in a single command. Learning how to use these commands is a
must for the serious user of vi.

The syntax of a search and replace command is:

g/patternl /s/[pattern2]/[options]

2-40 XENIX User's Guide

Editing Tasks

Brackets indicate optional parts of the command line. The g tells the
computer to execute the replacement on every line in the file. Otherwise
the replacement would occur only on the current line. The options are
explained in the following sections.

To explain these commands we will use the example file from the
demonstration run:

[FJiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Replacing a Word

To replace the word "contain" with the word "are" throughout the file,
enter the following command:

:g/contain lsI/are Ig

This command says "On each line of the file (g), find contain and substi­
tute for that word (sl/) the word are, everywhere it occurs on that line (the
second g)". Note that a space is included in the search pattern for contain;
without the space contains would also be replaced.

After the command executes your screen should look like this:

[FJiles are text.
Text contains lines.
Lines are characters.
Characters form words.
Words form text.

vi: A Text Editor 2-41

Editing Tasks

Printing all Replacements

To replace "contain" with "are" throughout the file, and print every line
changed, use the p option:

:g/contain lsI/are Igp

Press (Return). Mter the command executes, each line in which "con­
tain" was replaced by "are" is printed on the lower part of the screen. To
remove these lines, redraw the screen by pressing {Ctfl)r.

Choosing a Replacement

Sometimes you may not want to replace every instance of a given pattern.
The c option displays every occurrence of pattern and waits for you to
confirm that you want to make the substitution. If you press y the substitu­
tion takes place; if you press (Return) the next instance of pattern is dis­
played.

To run this command on the example file, enter:

:g/contain/ sl/are/gc

Press (Return). The first instance of "contain" appears on the status line:

Files £9AtiliP text.

Press y ,then (Return). The next occurrence of contain appears.

Pattern Matching

Search commands often require, in addition to the characters you want to
find, a context in which you want to find them. For example, you may
want to locate every occurrence of a word at the beginning of a line. vi
provides several special characters that specify particular contexts.

2-42 XENIX User's Guide

Editing Tasks

Matching the Beginning of a Line

When a caretC') is placed at the beginning of a pattern, only patterns
found at the beginning of a line are matched. For example, the following
search pattern only finds "text" when it occurs as the first word on a line:

(text/

To search for a caret that appears as text you must precede it with a
backslash (\).

Matching the End of a Line

When a dollar sign ($) is placed at the end of a pattern, only patterns
found at the end of a line are matched. For example, the following search
pattern only finds "text" when it occurs as the last word on a line:

/text$/

To search for a dollar sign that appears as text you must precede it with a
backslash (\).

Matching Any Single Character

When used in a search pattern, the period (.) matches any single character
except the newline character. For example, to find all words that end with
"ed", use the following pattern:

/.ed /

Note the space between the d and the backslash.

To search for a period in the text, you must precede it with a backslash (\).

Matching a Range of Characters

A set of characters enclosed in square brackets matches any single char­
acter in the range designated. For example, the search pattern:

/[a-z]/

vi: A Text Editor 2-43

Editing Tasks

finds any lowercase letter. The search pattern:

/[aA]pple/

finds all occurrences of "apple" and "Apple".

To search for a bracket that appears as text, you must precede it with a
backslash (\).

Matching Exceptions

A caret 0 at the beginning of string matches every character except those
specified in string. For example the search pattern:

finds anything but a lowercase letter or a newline.

Matching the Special Characters

To place a caret, hyphen or square bracket in a search pattern, precede it
with a backslash. To search for a caret, for example, enter:

If you need to search for many patterns that contain special characters,
you can reset the magic option. To do this, enter:

:set nomagic

This removes the special meaning from the characters ., \, $, [and]. You
can include them in search and replace commands without a preceding
backslash. Note that the special meaning cannot be removed from the
special characters star (*) and caret 0; these must always be preceded by
a backslash in searches.

To restore magic, enter:

:set magic

For more information about setting options, see the "Setting Up Your
Environment" section.

2-44 XENIX User's Guide

Editing Tasks

Undoing a Command: u

Any editing command can be reversed with the Undo (u) command. The
Undo command works on both screen-oriented and line-oriented com­
mands. For example, if you have deleted a line and then decide you wish
to keep it, press u and the line will reappear.

Use the following line as an example:

[Tlext contains lines.

Place the cursor over the "c" in "contains", then delete the word with the
dw command. Your screen should look like this:

Text [llines.

Press u to undo the dw command. contains reappears:

Text [clontains lines.

vi: A Text Editor 2-45

Editing Tasks

If you press u again, "contains" is deleted again:

Text [ljines.

It is important to remember that u only undoes the last command. For
example, if you make a global search and replace, then delete a few char­
acters with the x command, pressing u will undo the deletions but not the
global search and replace.

Repeating a Command: .

Any screen-oriented vi command can be repeated with the Repeat (.)
command. For example, if you have deleted two words by entering:

2dw

you may repeat this command as many times as you wish by pressing the
period key (.). Cursor movement does not affect the Repeat command, so
you may repeat a command as many times and in as many places in a file
as you wish.

The Repeat command only repeats the last vi command. Careful planning
can save time and effort. For example, if you want to replace a word that
occurs several times in a file (and for some reason you do not wish to use
a global command), use the cw command instead of deleting the word
with the dw command, then inserting new text with the i command. By
using the cw command you can repeat the replacement with the dot (.)
command. If you delete the word, then insert new text, dot only repeats
the replacement.

2-46 XENIX User's Guide

Editing Tasks

Leaving the Editor

There are several ways to exit the editor and save any changes you may
have made to the file. One way is to enter:

:x

and press (Return). This command replaces the old copy of the file with
the new one you have just edited, quits the editor, and returns you to the
XENIX shell. Similarly, if you enter:

zz

the same thing happens, except the old copy file is written out only if you
have made any changes. Note that the ZZ command is not preceded by a
colon, and is not echoed on the screen.

To leave the editor without saving any changes you have made to the file,
enter:

:q!

The exclamation point tells vi to quit unconditionally. If you leave out the
exclamation point:

:q

vi will not let you quit. You will see the error message:

No write since last change (:quit! overrides)

This message tells you to use :q! if you really want to leave the editor
without saving your file.

vi: A Text Editor 2-47

Editing Tasks

Saving a File Without Leaving the Editor

There are many occasions when you must save a file without leaving the
editor, such as when starting a new shell, or moving to another file.
Before you can perform these tasks you must first save the current file
with the Write (:w) command:

:w

You do not need to enter the name of the file; vi remembers the name you
used when you invoked the editor. If you invoked vi without a filename,
you may name the file by entering:

:w filename

where filename is the name of the new file.

Editing a Series of Files

Entering and leaving vi for each new file takes time, particularly on a
heavily used system, or when you are editing large files. If you have
many files to edit in one session, you can invoke vi with more than one
filename, and thus edit more than one file without leaving the editor, as
in:

vi filel file2 file3 file4 fileS file6

But entering many filenames is tedious, and you may make a mistake. If
you mistype a filename, you must either backspace over to mistake and
reenter the line, or kill the whole line and reenter it. It is more convenient
to invoke vi using the special characters as abbreviations.

To invoke vi on the above files without typing each name, enter:

vi file*

2-48 XENIX User's Guide

Editing Tasks

This invokes vi on all files that begin with the letters "file". You can plan
your filenames to save time in later editing. For example, if you are writ­
ing a document that consists of many files, it would be wise to give each
file the same filename extension, such as ".s". Then you can invoke vi on
the entire document:

vi *.s

You can also invoke vi on a selected range of files:

vi [3-5]*.s

or

vi [a-h]*

To invoke vi on all files that are five letters long, and have any extension:

vi 11111.*

For more information on using special characters, see "Naming Conven­
tions" in the "Basic Concepts" chapter of the XENIX Tutorial.

When you invoke vi with more than one filename, you will see the fol­
lowing message when the first file is displayed on the screen:

x files to edit

After you have finished editing a file, save it with the Write (:w) com­
mand, then go to the next file with the Next (:n) command:

:n

The next file appears, ready to edit. It is not necessary to specify a
filename; the files are invoked in alphabetical (or numerical, if the
filenames begin with numbers) order.

If you forget what files you are editing, enter:

:args

vi: A Text Editor 2-49

Editing Tasks

The list of files appears on the status line. The current file is enclosed in
square brackets.

To edit a file out of order, such asfile4 after file2, enter:

:e file4

instead of using the (:n) command. If you enter:

:n

after you finish editingfile4, you will go back tofile3.

If you wish to start again from the beginning of the list, enter:

:rew

To discard the changes you made and start again at the beginning, enter:

:rew!

Editing a New File Without Leaving the Editor

You can start editing another file anywhere on a XENIX system without
leaving vi. This saves time when you wish to edit several files in one ses­
sion that are in different directories, or even in the same directory. For
example, if you have finished editing lusrljoelmemo and you wish to edit
lusrlmarylletter, first save the file memo with the Write (:w) command
then enter:

:e /usr/mary!letter

lusr/marylletter appears on your screen just as though you had left vi.

2-50 XENIX User's Guide

Editing Tasks

Note

You must write out your file with the Write (:w) command to save
the changes you have made. If you try to edit a second file without
writing out the first file, the message "No write since last change
(:e! overrides)" appears. If you use :e! all your changes to the first
file are discarded.

If you want to switch back and forth between two files, vi remembers the
name of the last file edited. Using the above example, if you wish to go
back and edit the file lusrljoelmemo after you have finished with
lusr/mary/letter, enter:

:e#

The cursor is positioned in the same location it was when you first saved
/usr/joe/memo.

Leaving the Editor Temporarily: Shell Escapes

You can execute any XENIX command from within vi using the shell
Escape (!) command. For example. if you wish to find out the date and
time, enter:

:!date

The exclamation point sends the remainder of the line to the shell to be
executed, and the date and time appear on the vi status line. You can use
the ! to perform any XENIX command. To send mail to joe without leav­
ing the editor, enter:

:!mailjoe

Type your message and send it. (For more information about the XENIX
mail system, see the "mail" chapter.) After you send it, the message

[Press return to continue]

appears. Press (Return) to continue editing.

vi: A Text Editor 2-51

Editing Tasks

If you want to perform several XENIX commands before returning to the
editor, you can invoke a new shell:

:!sh

The XENIX prompt appears. You may execute as many commands as you
like. Press (Ctrl)d to terminate the new shell and return to your file.

If you have not written out your file before a shell escape, you will see
the message:

[No write since last change]

It is a good idea to save your file with the Write (:w) command before
executing an escape, just in case something goes wrong. However, once
you become an experienced vi user, you may wish to turn off this mes­
sage. To turn off the "No write" message, reset the warn option, as fol­
lows:

:setnowarn

For more information about setting options in vi, see the section "Setting
Up Your Environment."

Performing a Series of Line-Oriented Commands:
Q

If you have several line-oriented commands to perform, you can place
yourself temporarily in Line-oriented mode by entering:

Q

while you are in Command mode. A colon prompt appears on the status
line.

Commands executed in this mode cannot be undone with the u command,
nor do they appear on the screen until you re-enter Normal vi mode. To
re-enter Normal vi mode, enter:

vi

2-52 XENIX User's Guide

Editing Tasks

Finding Out What File You're In

If you forget what file you are editing, press (Ctrl)g while you are in Com­
mand mode. A line similar to the following appears appears on the status
line:

"memo" [Modified] line 12 of 100 --12%--

From left to right, the following information is displayed:

• The name of the file

• Whether or not the file has been modified

• The line number the cursor is on

• How many lines there are in the file

• Your location in the file (expressed as a percentage)

This command is also useful when you need to know the line number of
the current line for a line-oriented command.

The same information can be obtained by entering:

: file

or

:f

Finding Out What Line You're On

To find out what line of the file you are on, enter:

:nu

and press (Return). This command displays the current line number and
the text of the line.

To display line numbers for the entire file, see the section "Displaying
Line Numbers: number."

vi: A Text Editor 2-53

Solving Common Problems

Solving Common Problems
The following is a list of common problems that you may encounter when
using vi, along with the probable solution.

• I don't know which mode [' min.

Press (Esc) until the bell rings. When the bell rings you are in
Command mode.

• I can't get out of a subshell.

Press (Ctrl)d to exit any subshell. If you have created more than
one subshell (not a good idea, usually), keep pressing (Ctrl)d until
you see the message:

[Press return to continue]

• I made an inadvertent deletion (or insertion).

Press u to undo the last Delete or Insert command.

• There are extra characters on my screen.

Press (Ctrl)l to redraw the screen.

• When I type, nothing happens.

2-54

vi has crashed and you are now in the shell with your terminal
characteristics set incorrectly. To reset the keyboard, slowly enter:

stty sane

then press (Ctrl)j or LINEFEED. Pressing (Ctrl)j instead of (Return)
is important here, since it is quite possible that the (Return) key
will not work as a newline character. To make sure that other ter­
minal characteristics have not been altered, log off, turn your ter­
minal off, turn your terminal back on, and then log back in. This
should guarantee that your terminal's characteristics are back to
normal. This procedure may vary somewhat depending on the ter­
minal.

XENlX User's Guide

Solving Common Problems

• The system crashed while I was editing.

Normally, vi will inform you (by sending you mail) that your file
has been saved before a crash. The file can be recovered by enter­
ing:

vi -r filename

If vi was unable to save the file before the crash, it is irretrievably
lost.

• I keep getting a colon on the status line when I press (Return)

You are in line-oriented Command mode. Enter:

vi

to return to normal vi Command mode.

• I get the error message "Unknown terminal type [Using open
mode}" when I invoke vi.

Your terminal type is not set correctly. To leave Open mode, press
(Esc), then enter:

:wq

and press (Return). Tum to the section "Setting the Terminal'JYpe"
for information on how to set your terminal type correctly.

vi: A Text Editor 2-55

Setting Up Your Environment

Setting Up Your Environment
There are a number of options that can be set that affect your terminal
type, how files and error messages are displayed on your screen, and how
searches are performed. These options can be set with the set command
while you are editing, they can be defined with die EXINIT environment
variable (see the environ(M) manual page), or they can be placed in the vi
.exrc startup file (see "Customizing Your Environment: The .exrc File").

You can also define mappings and abbreviations to reduce repetitive tasks
with the map and abbr commands while you are editing, with EXINIT, or
in the .exrc file.

The following sections describe how to set some commonly used options
and how to create mappings and abbreviations. There is a complete list
of options in vi(C) in the XENIX Reference.

Setting the Terminal Type

Before you can use vi, you must set the terminal type, if this has not
already been done for you, by defining the TERM variable in your .profile
or .login file. The TERM variable is a number that tells the operating sys­
tem what type of terminal you are using. To determine this number you
must find out what type of terminal you are using. Then look up this type
in terminals(M) in the XENIX Reference. If you cannot find your terminal
type or its number, consult your System Administrator.

For these examples, we will suppose that you are using an lIP 2621 termi­
nal. For the lIP 2621, the TERM variable is "2621". How you define this
variable depends on which shell you are using. You can usually deter­
mine which shell you are using by examining the prompt character. The
Bourne shell prompts with a dollar sign ($); the C-shell prompts with a
percent sign (%).

Setting the TERM Variable: The Bourne or Korn Shell

To set your terminal type to 2621 place the following commands in the
file .profile:

2-56

TERM=2621
export TERM

XENIX User's Guide

Setting Up Your Environment

Setting the TERM Variable: The C Shell

To set your terminal type to 2621 for the C shell, place the following
command in the file .login:

setenv TERM 2621

Setting Options: The set Command

The set command is used to display option settings and to set options.

Listing the Available Options

To get a list of the options available to you and how they are set, enter:

:set all

Your display should look similar to this:

noautoindent open noslowopen
autoprint nooptimize tabstop=8
noautowrite paragraphs=IPLPPPQPP LIbp taglength=O
nobeautify noprompt ttytype=h19
directory=/tmp noreadonly term=h19
noerrorbells redraw noterse
hardtabs=8 report=5 warn
noignorecase scroll=4 window=8
nolisp sections=NHSHH HU wrapscan
nolist shell=/bin/sh wrapmargin=O
magic shiftwidth=8 nowriteany
nonumber noshowmatch

This chapter discusses only the most commonly used options. For infor­
mation about the options not covered in this chapter, see vi(C) in the
XENIX Reference.

vi: A Text Editor 2-57

Setting Up Your Environment

Setting an Option

To set an option, use the set command. For example, to set the ignore­
case option so that case is not ignored in searches, enter:

set noignorecase

Displaying Tabs and End-of-Line: list

The list option causes the "hidden" characters and end-of-line to be dis­
played. The default setting is nolist. To display these characters, enter:

:set list

Your screen is redrawn. The dollar sign ($) represents end-of-line and
(Ctrl)i CI) represents the tab character.

Ignoring Case in Search Commands: ignorecase

By default, case is significant in search commands. To disregard case in
searches, enter:

:set ignorecase

To change this option, enter:

:set noignorecase

Displaying Line Numbers: number

It is often useful to know the line numbers of a file. To display these num­
bers, enter:

:set number

This redraws your screen. Numbers appear to the left of the text.

2-58 XENIX User's Guide

Setting Up Your Environment

Printing the Number of Lines Changed: report

The report option tells you 'the number of lines modified by a line­
oriented command. For example,

:set report=1

reports the number of lines modified, if more than one line is changed.
The default setting is:

report=5

which reports the number of lines changed when more than five lines are
modified.

Changing the Terminal Type:term

If you are logged in on a terminal that is a different type than the one you
normally use, you can check the terminal type setting by entering:

:set term

Press (Return). See the section "Setting the Terminal Type" for more in­
formation about TERM variables.

Shortening Error Messages: terse

After you become experienced with vi, you may want to shorten your
error messages. To change from the default noterse, enter:

:set terse

As an example of the effect of terse, when terse is set the message:

No write since last change, quit! overrides

becomes:

No write

vi: A Text Editor 2-59

Setting Up Your Environment

Thrning Off Warnings: warn

Mter you become experienced with vi, you may want to turn off the error
message that appears if you have not written out your file before a Shell
Escape (:!) command. To tum these messages off, enter:

:setnowam

Permitting Special Characters in Searches:
nomagic

The nomagic option allows the inclusion of the special characters (. \ $ [
]) in search patterns without a preceding backslash. This option does not
affect caret CA

) or star (*); they must be preceded by a backslash in
searches regardless of magic. To set nomagic, enter:

:set nomagic

Limiting Searches: wrapscan

By default, searches in vi "wrap" around the file until they return to the
place they started. To save time you may want to disable this feature. Use
the following command:

:set nowrapscan

When this option is set, forward searches go only to the end of the file,
and backward searches stop at the beginning.

Thrning on Messages: mesg

If someone sends you a message with the write command while you are
in vi the text of the message will appear on your screen. To remove the
message from your display you must press (etrl)l. When you invoke vi,
write permission to your screen is automatically turned off, preventing
write messages from appearing. If you wish to receive write messages
while in vi, reset this option as follows:

:set mesg

2-60 XENIX User's Guide

Setting Up Your Environment

Mapping Keys

The map command maps any character or escape sequence to a command
sequence. For example, with the following command defined, when you
enter the pound sign (#) in Command mode, vi adds a semicolon to the
end of the current line.

(Ctrl)[represents the ESC key you must enter to exit from Insert mode.
When you create a mapping, use {Ctrl)v to escape control characters.

Here is a more complex example:

{Ctrl)p key is mapped to two commands; it writes the file, then executes a
shell escape to run the spell checker on the current file (represented by the
percent sign). The {Ctrl)m represents the (Return) you must enter to exe­
cute each command.

Be careful not to map keys that are already defined within vi, such as
{Ctrl)r, which is defined by default to redraw the screen.

You can remove a mapping with the unmap command.

Abbreviating Strings

The abbr command allows you to avoid typing a frequently used word or
phrase by mapping a short string to a longer string. For example, with the
following command defined, when you enter "Usa" in Insert mode, vi
expands the string to "United States of America".

:abbr Usa United States of America

When you create an abbreviation, it helps to use mixed case (as in "Usa")
so that you can still enter "USA" if you need to without it expanding.

You can remove an abbreviation with the unabbreviate command.

vi: A Text Editor 2-61

Setting Up Your Environment

Customizing Your Environment: The .exrc File

Each time vi is invoked, it reads commands from the file named .exrc in
your home directory . This file sets your preferred options so that they do
not need to be set each time you invoke vi. A sample .exrc file follows:

set number
set ignore case
set nowarn
set report=l
map -W ! }fmt-M
abbr xenix \s-lXENIX\s+l

Each time you invoke vi with the above settings, your file is displayed
with line numbers, case is ignored in searches, warnings before shell
escape commands are turned off, and any command that modifies more
than one line will display a message indicating how many lines were
changed. In addition, the (Ctrl)w key is defined to escape to the shell to
run a formatting command on the current paragraph, and the string
"xenix" is defined to expand to a string containing troff(CT) commands
that print small capital letters.

2-62 XENIX User's Guide

Summary of Commands

Summary of Commands
The following tables contain all the basic commands discussed in this
chapter.

Entering vi

Typing this: Does this:

vi file Starts at line 1

vi +n file Starts at line n

vi + file Starts at last line

vi +/pattem file Starts at pattern

vi -r file Recovers file after a sys­
tem crash

vi: A Text Editor 2-63

Summary of Commands

Cursor Movement

Pressing this key:

h
I
(Space)

w
b

k
j
(Return)

)
(

}
{

(Ctrl)w

(Ctrl)u

(Ctrl)d

(Ctrl)f

(Ctrl)b

2-64

Does this:

Moves 1 space left
Moves 1 space right
Moves 1 space right

Moves 1 word right
Moves 1 word left

Moves lline up
Moves lline down
Moves lline down

Moves to end of sentence
Moves to beginning of sentence

Moves to beginning of paragraph
Moves to end of paragraph

Moves to first character of inser­
tion

Scrolls up 1/2 screen

Scrolls down 1/2 screen

Scrolls down one screen

Scrolls up one screen

XENIX User's Guide

Summary of Commands

Inserting Text

Pressing Starts insertion:

i Before the cursor

I Before first character on the line

a Mter the cursor

A Mter last character on the line

0 On next line down

0 On the line above

r On current character, replaces
one character only

R On current character, replaces
until (Esc)

Delete Commands

Command Function

dw Deletes a word

dO Deletes to beginning of line

d$ Deletes to end of line

3dw Deletes 3 words

dd Deletes the current line

5dd Deletes 5 lines

x Deletes a character

vi: A Text Editor 2-65

Summary of Commands

Change Commands

Command Function

cw Changes 1 word

3cw Changes 3 words

cc Changes current line

5cc Changes 5 lines

Search Commands

Command Function Example

land Finds the next and, stand, grand
occurrence of and

?and Finds the previous and, stand, grand
occurrence of and

rThe Finds next line The, Then, There
that starts with

I[bB]oxl

n

2-66

The

Finds the next
occurrence of box
or Box

Repeats the most
recent search, in
the same direction

XENIX User's Guide

Search and Replace Commands

Command

:s/pear/peach/g

: 1 ,$s/file/directory

:g/one/sl/lIg

Result

All pears become
peach on the
current line

Replaces file with
directory from
line 1 to the end.

Replaces every
occurrence of one
with 1.

Pattern Matching: Special Characters

This character: Matches:

$

[]

vi: A Text Editor

Beginning of a line

Endofa line

Any single character

A range of characters

Summary of Commands

Example

filename becomes
directoryname

one becomes 1,
oneself becomes
1 self, someone
becomes somel

2-67

Summary of Commands

Leaving vi

Command Result

:w Writes out the file

:x Writes out the file, quits
vi

:q I Quits vi without saving
changes

:!command Executes command

:!sh Forks a new shell

! I command Executes command and
places output on current
line

:e file Edits file (save current
file with :w first)

2-68 XENIX User's Guide

Summary of Commands

Options

This option: Does this:

all Lists all options

term Sets teIminal type

ignorecase Ignores case in searches

list Displays tab and end-of-line characters

number Displays line numbers

report Prints number of lines changed by a line­
oriented command

terse Shortens error messages

warn Thrns off "no write" warning before escape

nomagic Allows inclusion of special characters in search
patterns without a preceding backslash

nowrapscan Prevents searches from wrapping around the
end or beginning of a file.

mesg PeImits display of messages sent to your teImi­
nal with the write command

vi: A Text Editor 2-69

Chapter 3

mail

Introduction 3-1

Demonstration 3-2
Composing and Sending a Message 3-2
Reading mail 3-3
Leaving mail 3-5

Basic Concepts 3-6
Mailboxes 3-6
Messages 3-6
Modes 3-7
Message-Lists 3-9
Headers 3-10
Command Syntax 3-10

Using mail 3-12
Entering and Exiting mail 3-12
Sending mail 3-12
Sending Mail to Remote Sites 3-13
Reading mail 3-15
Disposing of mail 3-15
Composing mail 3-16
Forwarding mail 3-16
Replying to mail 3-17
Specifying Messages 3-17
Creating Mailing Lists 3-18
Setting Options 3-18

Commands 3-19
Getting Help: help and? 3-19
Reading mail: p, +, -, and restart 3-19
Finding Out the Number of the Current Message: = 3-21
Displaying the First Five Lines: t 3-21
Displaying Headers: h 3-21
Deleting Messages: d and dp 3-22
Undeleting Messages: u 3-23
Leaving mail: q and x 3-23
Saving Your mail: s 3-23

Saving Your mail: w 3-24
Saving Your mail: mb 3-24
Saving Your mail: ho 3-24
Printing Your mail on the Lineprinter: I 3-25
Sending mail: m 3-25
Replying to mail: rand R 3-25
Forwarding mail: f and F 3-25
Creating mailing Lists: a 3-26
Setting and Unsetting Options: se and uns 3-26
Editing a Message: e and v 3-27
Executing Shell Commands: sh and' 3-27
Finding the Number of Characters in a Message: si 3-28
Changing the Working Directory: cd 3-28
Reading Commands From a File: so 3-28

Leaving Compose Mode Temporarily 3-29
Getting Help: -? 3-29
Printing the Message: -p 3-29
Editing the Message: -e and -v 3-29
Editing Headers: -t, -c, 0, -s, ~ and n 3-30
Adding a File to the Message: -r and -d 3-31
Enclosing Another Message: -m and ~ 3-32
Saving the Message in a File: -w 3-32
Leaving mail Temporarily: -, and -, 3-32
Escaping to mail Command Mode: -: 3-33
Placing a Tilde at the Beginning of a Line: - 3-34

Setting Up Your Environment: The .mailrc File 3-35
The Subject Prompt: asksubject 3-35
The CC Prompt: askcc 3-36
Printing the Next Message: autoprint 3-36
Listing Messages in Chronological Order 3-36
Using the Period to Send a Message: dot 3-36
Sending mail While in mail: execmail 3-37
Including Yourself in a Group: metoo 3-37
Saving Aborted Messages: save 3-37
Printing the Version Header: quiet 3-37
Choosing an Editor: The EDITOR String 3-37
Choosing an Editor: The VISUAL String 3-38
Choosing a Shell: The SHELL String 3-38
Changing the Escape Character: The escape String 3-38
Setting Page Size: The page String 3-38
Saving Outgoing mail: The record String 3-39
Keeping mail in the System mailbox: autombox 3-39
Changing the top Value: The toplines String 3-39
Sending mail Over Telephone Lines: ignore 3-39

Using Advanced Features 3-40
Command Line Options 3-40
Using mail as a Reminder Service 3-41
Handling Large Amounts of mail 3-42
Maintenance and Administration 3-42

Quick Reference 3-44
Command Summary 3-44
Compose Escape Summary 3-49
Option Summary 3-51

Introduction

Introduction
The XENIX mail system is a versatile communication facility that allows
XENIX users to compose, send, receive, forward, and reply to mail. Users
can also create distribution groups and send copies of messages to multi­
pIe users. These functions are integrated into XENIX so that all users can
quickly and easily communicate with each other.

This chapter is organized to satisfy the needs of both the beginning and
advanced user. The first sections discuss basic concepts, tasks, and com­
mands. Later sections discuss advanced topics and provide quick refer­
ence to the mail program's many functions. The major sections in this
chapter are:

mail

Demonstration

Basic Concepts

Using mail

Commands

Shows new users how to get started.

Discusses the fundamental ideas and
tenninology used in mail.

Shows how to perfonn common mailing
procedures such as composing, sending,
forwarding, and replying to mail.

Discusses each mail command.

Leaving Compose Mode Temporarily
Discusses and gives examples of each
command available when composing a
message. These commands are called
"compose escapes."

Setting Up Your Environment

Using Advanced Features

Quick Reference

Discusses the user's mail startup file and
options that may be set to customize
functions.

Discusses advanced features such as
using mail as a reminder service and
handling a large volume of mail.

Summarizes all commands, compose
escapes, and options.

3-1

Demonstration

Demonstration
The mail command lets you perfonn two distinct functions: sending mail
and disposing of mail. In this demonstration, we will show you how to
send mail to yourself, read a message, delete it, and exit the mail pro­
gram.

Composing and Sending a Message

To begin, enter:

mail self

where self is your user name. Next, enter the following lines. Press
RETURN at the end of each line.

This is a message sent to myself.
I compose a message by entering lines of text.
Press Ctrl-d on a newline to end the message.

As you enter the message you can use "compose escapes" to perfonn spe­
cial functions. To get a list of the available compose escapes, enter:

on a new line. To specify a subject, use the -s escape. For example,
enter:

-s Sample subject

To specify a list of people to receive carbon copies use the -c escape. For
example, enter:

To view the message as it will appear when you send it, enter:

3-2 XENIX User's Guide

Demonstration

This will display the following:

Message contains:
To: self
Subject: Sample subject
Cc: abel

This is a message sent to myself.
I compose a message by entering lines of text.
Press Ctrl-d on a newline to end the message.

Finally, press Ctrl-d by itself on a line, to end the message and send it to
those that you have mentioned in the To: and the Cc: fields. You will
exit from the mail program and return to the XENIX shell. Once you have
sent mail, there is no way to undo the act, so be careful.

Reading mail

Your message should have arrived in your system mailbox. To read it,
enter:

mail

mail then displays a sign-on message and a list of message headers that
look something like this:

Mail version 3.0 August 30, 1985. Type? for help.
1 message:

1 self Fri Aug 31 12:26 7/188 "Sample subject"

When there is more than one message in your mailbox, the most recent
message is displayed at the top of the list. The message at the top of the
list has the highest number. The messages are numbered in ascending
order from least recent to most recent. The message header includes who
sent the message, when it was sent, the number of lines and characters,

mail 3-3

Demonstration

and the subject of the message. The underscore prompt prompts you to
enter a mail command. Now enter:

?

to get help on all the available mail commands. Next, enter:

p

to see the message that you sent to yourself. mail displays the following:

From self Fri Aug 20 12:26:52 1985
To: self
Subject: Sample subject

This is a message sent to myself.
I compose a message by entering lines of text.
Press Ctrl-d on a newline to end the message.

The message you sent to yourself now contains information about the
sender of the message-a line telling who sent the message and when it
was sent. The next line tells who the message was sent to. A subject and
carbon copy (Cc:) field can be specified by the sender. If they are present,
they too are displayed when you read the message.

Note that you can configure your environment so that you are notified
whenever new mail is sent to you. To do so, you would have to set the
MAIL shell variable if you are using the Bourne shell or the mail shell
variable if you are using the C-shell. For more information, see "The
Shell" chapter of the XENlX User's Guide and csh(C) in the XENlX Refer­
ence.

3-4 XENIX User's Guide

Demonstration

Leaving mail

If this message has no real use, you can delete it by entering:

d

To get out of mail, enter:

q

mail then displays the message

o messages held in lusrlspool/mail/self

and returns you to the XENIX shell.

This ends the demonstration. For more detailed information, see the dis­
cussions in the following sections.

mail 3-5

Basic Concepts

Basic Concepts
It is much easier to use mail if you understand the basic concepts that
underlie it. The concepts discussed in this section are:

• Mailboxes

• Messages

• Modes

• Command syntax

Mailboxes

It is useful to think of the mail system as modeled after a typical postal
system. What is normally called a post office is called the "system mail­
box" in this chapter. The system mailbox contains a file for each user in
the directory lusrlspool/mail. Your own personal or "user mailbox" is the
file named mbox in your home directory. mail sent to you is put in your
system mailbox; you may choose to save mail in your user mailbox after
you have read it. Note that the user mailbox differs from a real mailbox in
several respects:

1. You decide whether mail is to be placed in the user mailbox; it is
not automatically placed there.

2. The user mailbox is not the place where mail is initially routed­
that place is the system mailbox in the directory lusrlspoollmail.

3. mail is not picked up from your user mailbox.

Messages

In mail, the message is the basic unit of exchange between users. Mes­
sages consist of two parts: a heading and a body. The heading contains
the following fields:

To:

3-6

This field is mandatory. It contains one or more valid
user names to which you may send mail.

XENIX User's Guide

Subject:

Cc:

Bcc:

Basic Concepts

This optional field contains text describing the message.

The carbon copy field contains one or more valid names
of those who are to receive copies of a message. Mes­
sage recipients see these names in the received message.
This field can be empty.

The blind carbon copy field contains the one or more
valid names of people who are to receive copies of a
message. Recipients do not see these names in the
received messages. This field can be empty.

Return-receipt-to:
The return receipt to: field contains the valid name or
names of those who are to receive an automatic ac­
knowledgement of the message. This field can be
empty.

The body of a message is text exclusive of the heading. The body can be
empty.

Modes

Often, the biggest hurdle to using mail is understanding what modes of
operation are available. This section discusses each mode.

When you invoke mail you are using the shell. If you want to mail a letter
without entering mail command mode, you can do so by entering:

mail john < letter

Here, the file letter is sent to the user john.

Note

Be very careful when mailing a file with the input redirection sym­
bol «). If you accidentally enter the output redirection symbol (»,
you will overwrite the file, destroying its contents.

mail 3-7

Basic Concepts

You can enter a message from your shell by entering:

mail john

Next, enter the text of your message as follows:

This is the text of the message.

Press RETURN to start a new line, then Ctd-d to send the message.

Messages such as the one above are created in compose mode. When
entering text in compose mode, there are several special keys associated
with line editing functions: these are the same special characters that are
available to you when executing normal XENIX commands. For example,
you can kill the line you are editing by entering Ctrl-u, normally the kill
character. To backspace, press the BACKSPACE Key or Ctrl-h.

From compose mode, you can issue commands called compose escapes.
These are also called tilde escapes because the command letters are pre­
ceded by a tilde (J. When you execute these commands you are tem­
porarily leaving or escaping from compose mode; hence the name. Note
that once you have pressed RETURN to end a line, you cannot change
that line from within compose mode. You must enter edit mode in order
to change that line.

The most common way of using mail is just to enter:

mail

If you have mail waiting.this command will automatically place you in
command mode. m this mode, you are prompted by an underscore for
commands that permit you to manage your mail. If you have no mail
waiting, you see the message no messages and are returned to the XENIX
prompt.

You can enter edit mode from either compose mode or command mode.
m edit mode, you edit the body of a message using the full capabilities of
an editor. To enter edit mode from command mode, use either the e or
edit command to enter ed, or the v or visual command to enter vi. (Vi
may not be available on your system.) To enter edit mode from compose
mode, use the compose escapes -e and -v, respectively.

3-8 XENIX User's Guide

Basic Concepts

Message-Lists

Many mail commands take a list of messages as an argument. A
message-list is a list of message numbers, ranges, and names, separated
by spaces or tabs. Message numbers may be either decimal numbers,
which directly specify messages, or one of the special characters A, ., or
$, which specify the first, current, or last undeleted message, respec­
tively. Here, relevant means not deleted.

A range of messages is two message numbers separated by a dash. To
display the first four messages on the screen, enter:

P 1-4

To display all the messages from the current message to the last message,
enter:

p .-$

A name is a user name. Messages can be displayed by specifying the
name of the sender. For example, to display each message sent to you by
john, enter:

pjohn

As a shorthand notation, you can specify star (*) to get all undeleted mes­
sages. For example, to display all messages except those that have been
deleted, enter:

p*

To delete all messages, enter:

d*

To restore all messages, enter:

u*

All three of these commands are described later in detail in the section
"Commands."

mail 3-9

Basic Concepts

Headers

When you enter mail, a list of message headers is displayed. A header is
a single line of text containing descriptive information about a message.
(Note that we use the word heading to describe the first part of a message,
and header to describe mail's one-line description of a message.) The in­
formation includes:

• The number of the message

• The sender

• The date sent

• The number of characters and lines

• The subject (if the message contains a Subject: field)

Message headers are displayed in windows with the headers command.
A header window contains no more than 18 headers. If there are fewer
than 18 messages in the mailbox, all are displayed in one header window.
If there are more than 18 messages, then the list is divided into an
appropriate number of windows. You can move forward one window at a
time with the command:

headers +

and move backward one window at a time with the command:

headers -

commands.

Command Syntax

Each mail command has its own syntax. Some take no arguments, some
take only one, and others take several arguments. The more flexible com­
mands, such as print, accept combinations of message-lists and user
names. For these commands, mail first gathers all message numbers and
ranges, then finds all messages from any specified user names. The full
message-list is the intersection of these two sets of messages. Thus, the
message-list "4-15 miller" matches all messages between 4 and 15 that
are from miller.

3-10 XENIX User's Guide

Basic Concepts

Each mail command is entered on a line by itself, and any arguments fol­
low the command word. The command need not be entered in its
entirety-the first command that matches the entered prefix is used. For
example, you can enter "p" instead of "print" for the print command and
"h" instead of "headers" for the headers command.

After the command itself is entered, one or more spaces should be entered
to separate the command from its arguments. If a mail command does
not take arguments, any arguments you give are ignored and no error
occurs. For commands that take message-lists as arguments, if no
message-list is given, the last message printed is used. If it does not
satisfy the requirements of the command, the search proceeds forward. If
there are no messages ahead of the current message, the search proceeds
backwards, and if there are no valid messages at all, mail displays:

I No applioable ~"ag"

mail 3-11

Using mail

Using mail
This section describes how to perform some basic tasks when using mail.
More detailed discussions of each of these commands are presented in
later sections.

Entering and Exiting mail

To begin a session with mail, enter:

mail

The headers for each received message are then displayed one screenful
at a time. To display the next screenful of headers (if any), enter:

h+

To end the mail session, use the quit (q) command. All messages remain
in the system mailbox unless they have been deleted with the delete (d)
command, saved with the save or write command, or held in your user
mailbox with the mbox command. Deleted messages are discarded. The
-f command line option causes mail to read in the contents of mbox.
Optionally, a filename may be given as an argument to -f, so that the
specified file is read instead. When you quit, mail writes all messages
back to this file.

If you send mail over a noisy phone line, you will notice that many of the
bad characters turn out to be RUBOUT or DEL character. These charac­
ters cause mail to abort messages. To deal with this annoyance, you can
invoke mail with the -i option which causes these bad characters to be
ignored.

Sending mail

To send a message, invoke mail with the names of the people and groups
you want to receive the message. Next, enter your message. When you
are finished, press Ctrl-d at the beginning of a line. The message is auto­
matically sent to the specified people. While entering the text of your
message, you can escape to an editor or perfomi other useful functions
with compose escapes. The section "Composing mail," describes some
features of mail available to help you when composing messages.

3-12 XENIX User's Guide

Using mail

If you have a file that contains a written message, you can send it to sam,
bob, and john by entering:

mail sam bob john < letter

where letter is the name of the file you are sending.

Note

Be very careful when mailing a file with the input redirection sym­
bol «). If you accidentally enter the output redirection symbol (»,
you will overwrite the file, destroying its contents.

If mail cannot be delivered to a specified address, you will either be
notified immediately, in which case a copy of the undeliverable message
is appended to the file dead. letter, or you will be notified via return mail,
in which case a copy is included in the return mail message.

Sending Mail to Remote Sites

You can send mail to users on remote computer sites that are networked
to your own site. The network can either be a Micnet network or a UUCP
network. Ask your system administrator if you are not sure which net­
work the site you want to mail to uses.

If the site you want to send mail to is a Micnet site, you would enter the
following command to mail to a user on that site:

mail site-name:user

Note that the site name is followed by a colon (:).

For example, to send mail to stevem on the Micnet computer named obie,
you would enter the following command:

mail obie:stevem

After entering this command, you would continue with mail just as if you
were sending mail to a local user.

mail 3-13

Using mail

You can also send mail to users on remote UUCP sites. To find out which
UUCP sites your computer communicates with, enter the following com­
mand at the XENIX prompt:

uuname

A list of site names is displayed.

To send mail to a user on a UUCP site, enter the following command:

mail site-name!user

The site name must be followed by an exclamation mark (!). You can
have several site names on a command line. Be sure to follow each one
with an exclamation mark.

For example, to send mail to user markt on site bowie, you would enter
the following command:

mail bowie!markt

You would then proceed to use mail just as if you were mailing a local
user.

As another example, suppose your site talked to UUCP site bowie and
that bowie talked toUUCP site bradley. You could send mail to user
cindy on bradley by entering the following command:

mail bowie!bradley!cindy

Note

If you are using the C-shell, you must "escape" exclamation marks
with the backslash (\). A C-shell user would enter the above com­
mand as follows:

mail bowie\!bradley\!cindy

For more information on communicating with remote sites, see the
"Communicating with Other Sites" chapter in this guide.

3-14 XENIX User's Guide

Using mail

Reading mail

To read messages sent to you, enter:

mail

mail then checks your mail out of the system mailbox and prints out a
one-line header of each message, one screenful at a time. Enter "h+" to
view the next screenful. The most recent message is initially the first
message (numbered highest, because messages are numbered chronologi­
cally) and may be printed using the print command. You can move for­
ward one message by pressing RETURN or entering "+". To move for­
ward n messages use "+n". You can move backwards one message with
the "-" command or move backwards n messages and print with "-n".
You can also move to any arbitrary message and print it by entering its
number.

If new messages arrive while you are in mail, the following message
appears:

New mail has arrived--type 'restart' to read.

Enter:

restart

and the headers of the new messages are displayed.

Disposing of mail

Mter examining a message you can delete it with the delete (d) com­
mand, reply to it with the reply (r) command, forward it with the for­
ward (f) command, or skip to the next message by pressing RETURN.
Deletion causes the mail program to forget about the message. This is not
irreversible; the message can be undeleted with the undelete(u) com­
mand by entering:

unumber

mail 3-15

Using mail

Composing mail

To compose mail, you must enter compose mode. Do this from XENIX
command level by entering:

mail john

where john is the name of a user to whom you want to send mail. From
mail command mode, you can enter compose mode with the mail, reply,
or Reply commands. Once in compose mode, the text that you enter is
appended one line at a time to the body of the message you are sending.
Normal line editing functions are available when entering text, including
Ctrl-u to kill a line and Backspace to back up one character. Note that
when you enter two interrupts in a row (i.e., pressing INTERRUPT twice),
your composition is aborted.

While you are composing a message, mail treats lines beginning with the
tilde character (-) in a special way. This character introduces commands
called compose escapes. For example, entering:

by itself on a line places a copy of the most recently printed message
inside the message you are composing. The copy is shifted right one
tabstop.

Other escapes set up heading fields, add and delete recipients to the mes­
sage, allow you to escape to an editor, let you revise the message body, or
run XENIX commands. To get a list of the available compose escapes
when in compose mode, enter:

See also "Leaving Compose Mode Temporarily," later in this chapter.

Forwarding mail

To forward a message, use the forward (f) command. For example,
enter:

f john

to forward the current message to john. John will receive a copy of the
current message, along with a new header indicating that it came from
you. The copy is shifted right one tabstop.

3-16 XENIX User's Guide

Using mail

The Forward (F) command works just like its lowercase counterpart,
except that the forwarded message is not shifted right one tabstop.

Replying to mail

You can use the reply command to set up a response to a message, auto­
matically addressing a reply to the person who sent the original message.
You can enter text and send the message by pressing Ctrl-d on a line by
itself. The Reply command works just like its lowercase counterpart,
except that the message is sent to others named in the original message's
To: and Cc: fields.

Specifying Messages

Commands such as print and delete can be given a message-list argu­
ment to apply to several messages at once. Thus "delete 2 3" deletes
messages 2 and 3, while "delete 1-5" deletes messages 1 through 5. A
star (*) addresses all messages, and a dollar sign ($) addresses the last
(highest numbered) message. The top (t) command displays the first five
lines of a message; hence, you can enter:

top *

to display the first five lines of every message. Message-lists can contain
combinations of lists, ranges, and names. For example, the following
command displays all messages from tom or bob and numbered 2, 4, 10,
11, or 12:

p tom bob 2 4 10-12

mail 3-17

Using mail

Creating Mailing Lists

You can create personal mailing lists so that, for example, you can send
mail to cohorts and have it go to a group of people. Such lists are defined
by placing an alias line like:

alias cohorts bill bob barry

in the file .maitre in your home directory. The current list of such aliases
can be displayed with the alias (a) mail command. Personal aliases are
expanded in mail sent to others so that they will be able to Reply to each
individual recipient. For example, the To: field in a message sent to
cohorts will read:

To: bill bob barry

and not:

To: cohorts

Normally, system-wide aliases are available to all users. These are
installed by whoever is in charge of your system. For more information,
see the section "Using Advanced Features," later in this chapter.

Setting Options

mail has several options that you can set from mail command mode or in
the file .maUrc in your home directory. For example, "set askcc" enables
the askcc switch and causes prompting for additions to the Cc: field
when you finish composing a message. These and other options are dis­
cussed in the section "Setting Up Your Environment: The .mailrc File."

3-18 XENIX User's Guide

Commands

Commands
This section describes each of the commands available to you in mail
command mode. The examples in this section assume you have invoked
mail and that you have several messages you want to dispose of. Note
that in general, mail commands can be invoked with either the name of
the command or a one- or two-character mnemonic abbreviation. ill the
text of the command descriptions below, this mnemonic abbreviation is
enclosed in parentheses after the name of the command. All commands
are printed in boldface, except in the examples.

Getting Help: help and?

The help (?) command displays a brief summary of all mail commands,
so if you ever get stuck when you are in mail command mode, enter:

?

or:

help

Reading mail: p, +, ., and restart

To look at a specific message, use the print (p) command. For example,
pretend you have a header-list that looks like this:

3 john Wed Sep 21 09:21 26/782 "Notice"
2 sam Tue Sep 20 22:55 6/83 "Meeting"
1 tom Mon Sep 19 01:23 6/84 "Invite"

Reading from the left, each header contains the message number, who
sent it, the day, date, and time it was sent, the number of lines and charac­
ters in the message, and its subject.

mail 3-19

Commands

To examine the second message, enter:

p2

This might cause mail to respond with:

Message 2:
From sam Tue June 20 22:55 1985
Subject: Meeting

Meeting everyone, please do not forget!

To look at message 3, enter:

or to look at message 1, enter:

+

The commands + and - execute relative to the last message referred to,
which in our example was 2. For large numbers of messages, you can skip
forward and backward by the number of messages specified as an argu­
ment to + and -. For example, entering:

+3

skips forward three messages. If you enter:

p*

then all messages are displayed, since the star (*) matches all messages.

Pressing RETURN displays the next message in the header-list. You can
always go to a message and print it by giving its message number or one
of the special characters, caret n, dot (.), or dollar sign ($). In the exam­
ple where message 2 is the current message, to display the current mes­
sage, enter:

To display message 1, enter:

3-20 XENIX User's Guide

Commands

To display message 3, enter:

$

When new mail arrives while you are in mail, the message "New mail
has arrived-type 'restart' to read." If you wish to read the new mes­
sages, enter:

restart

The headers of the new messages appear.

Finding Out the Number of the Current Message:

The number (=) command displays the message number of the current
message. It takes no arguments.

Displaying the First Five Lines : t

The top (t) command takes a message-list and displays the first five lines
of each addressed message. For example:

top 2-12

displays the first five lines of each of the messages 2 through 12. Note
that the number of lines displayed by top can be set with the toplines
option.

Displaying Headers: h

The headers (h) command displays header windows or lists of headers.
A header window contains no more than 18 headers. With no argument,
the headers command displays a header window in which the current
message header is displayed at the center of the window.

To examine the next set of 18 headers, enter:

h+

mail 3-21

Commands

To examine the previous set, enter:

h-

Both plus and minus take an optional numeric argument that indicates the
number of header windows to move forward or backward before printing.
If a message-list is given, then the headers command displays the header
line for each message in the list, disregarding all windowing. For exam­
ple:

h joe

displays all the message headers from joe. The following are some
characteristics of the header-list:

• Deleted messages do not appear in the listing.

• Messages saved with the save command are flagged with a star (*).

• Messages to be saved in your user mailbox are flagged with an
"M".

• If the autombox option is set, messages held with the hold com­
mand are flagged with an "H".

Deleting Messages: d and dp

Unless you indicate otherwise, each message you receive is automatically
saved in the system mailbox when you quit mail. Often, however, you do
not want to save messages you have received. To delete messages, use
the delete (d) command. For example:

delete 1

prevents mail from retaining message 1 in the system mailbox. The mes­
sage will disappear altogether, along with its number.

The dp command deletes the current message and displays the next mes­
sage. It is useful for quickly reading and disposing of mail. Using dp is
the same as using the d command with the auto print option set. See also
the undelete command, below.

3-22 XENIX User's Guide

Commands

Un deleting Messages: u

The undelete (u) command causes a message that has been previously
deleted with d or dp to reappear as if it had never been deleted. For
example, to undelete message 3, enter:

u3

You cannot undelete messages from previous mail sessions; they are per­
manently deleted.

Leaving mail: q and x

When you have read all your messages, you can leave mail with the quit
(q) command. All messages are held in your system mailbox, except the
following:

• Deleted messages, which are discarded irretrievably.

• Messages marked with the mbox command, which are saved in
mbox in your home directory (that is, your user mailbox).

• Messages saved with the save and write commands are deleted
from the system mailbox. Forwarded messages are not deleted.

Note that if the autombox option is set, messages that you have read are
automatically saved in your user mailbox. If you wish to leave mail
quickly without altering either your system or user mailbox, you can use
the exit (x) command. This returns you to the shell without changing
anything: no messages are deleted or saved. Files that you invoke with
the mail -f switch are unaffected as well.

Saving Your mail: s

The save (s) command lets you save messages to files other than mbox.
By using save, you can organize your mail by putting messages in
appropriate files. The save command writes out each message to the file
given as the last argument on the command line. For example, the fol­
lowing command appends messages 1-5 to the file letters:

s 1-5 letters

The file letters is created if it does not already exist. Saved messages are
not automatically retained in the system mailbox when you quit, nor are

mail 3-23

Commands

they selected by the print command described above, unless explicitly
requested. Each saved message is marked with a star (*).

Save writes out the entire message, including the To:, Subject:, and Cc:
fields. In comparison, the write command, discussed below, writes out
only the bodies of the specified messages.

Saving Your mail: w

The write (w) command writes out the body of each message to the file
given as the last argument on the command line. Each written message is
marked with a star (*). The syntax is similar to that of the save command.
For example,

w 3-17 john elliot book

writes out the bodies of all messages from john and elliot in the number
range 3-17. They are concatenated to the end of the file named book.

Saving Your mail: mb

The mbox (mb) command marks each message specified in a message­
list, so that all are saved in the user mailbox when a quit command is exe­
cuted. Message headers are marked with an "M" to show that they are to
be saved in mbox.

Saving Your mail: ho

The hold (ho) command takes a message-list and marks each message so
that it is saved in your system mailbox instead of deleted or saved in
mbox when you quit. Saving of files in the system mailbox happens by
default, so use hold only when you have also set the autombox option.

3-24 XENIX User's Guide

Commands

Printing Your mail on the Lineprinter: I

The Ipr (I) command paginates and prints out messages to the lineprint­
er. It takes a message-list as its argument, then paginates and prints out
each message. For example:

I doug

prints out each message from the user doug on the lineprinter.

Sending mail: m

To send mail to a user, use the mail (m)command.This sends mail in
the manner described for the reply command, except that you supply a
list of recipients either as an argument or by entering them in the To:
field. All compose escapes work in mail. Note that the mail command is
in most ways identical to entering mail users at the XENIX command
level.

Replying to mail: rand R

Often, you want to deal with a message by responding to its author right
away. The reply (r) command is useful for this purpose: it takes a
message-list and sends mail to the author of each message. The original
message's subject field is copied as the reply's subject. Each message is
created in compose mode; thus all compose escapes work in reply, and
messages are terminated by pressing Ctd-d.

The Reply (R) command works just like its lowercase counterpart,
except that copies of the reply are also sent to everyone shown in the ori­
ginal message's To: and Cc: fields.

Forwarding mail: f and F

To forward a copy of a message, use the forward (f) command. This
causes a copy of the current message to be sent to the specified users.
The message is marked as saved, and then deleted from the system mail­
box when you exit mail. For example, to forward the current message to
someone whose login name is john, enter:

f john

mail 3-25

Commands

John will receive the forwarded message, along with a heading showing
that you are the one who forwarded it. The forwarded message is
indented one tab stop inside the new message. An optional message num­
ber can also be given. For example:

f 2 john bill

forwards message 2 to john and bill.

The Forward (F) command is identical to the lowercase forward com­
mand, except that the forwarded message is not indented.

Creating mailing Lists: a

The alias (a) command links a group of names with the single name
given by the first argument, thus creating a mailing list. For example, you
could enter:

alias beatles john paul george ringo

so that whenever you used the name beatles in a destination address (as in
"mail beatles "), it would be expanded so that you are really referring to
the four names aliased to beatles. With no arguments, alias displays all
currently-defined aliases. With one argument, it prints out the users
defined by the given alias.

You will probably want to define aliases in the startup file, .maUre, so that
you do not have to redefine them each time you invoke mail. See the sec­
tion "Setting Up Your Environment: The .mailrc File," for more informa­
tion.

Setting and Unsetting Options: se and uns

mail switch and string options can be set with the mail commands set and
unset. A switch option is either on or off (set or unset). String options are
strings of characters that are assigned values with the syntax
option=string. Multiple options may be specified on a line. It is most
useful to place set and unset commands in the file .maUre in your home
directory, where they become your own personal default options when
you invoke mail. For example, you might have a set command that
looked like this:

set dot metoo toplines=10 SHELL=/usr/bin/sh

3-26 XENIX User's Guide

Commands

The options dot and metoo are switch options; toplines and SHELL are
string options.

The command

set?

displays a list of the available options. See the section "Setting Up Your
Environment," for descriptions of these options.

Editing a Message: e and v

Invoke the edit command to edit individual messages while using the text
editor. The edit command takes a message list and processes each mes­
sage in turn by writing it to a temporary file. The editor, ed, is then auto­
matically invoked so that you can edit the temporary file. When you
finish editing the message, write the message out, then quit the editor.
mail reads the message back into the message buffer and removes the
temporary file.

It is often useful to be able to invoke either a line or visual editor, depend­
ing on the type of terminal you are using. To invoke vi, you can use the
visual (v) command. The operation of the visual command is otherwise
identical to that of the edit command.

Executing Shell Commands: sh and!

To execute a shell command without leaving mail, precede the command
with an exclamation point. For example:

!date

displays the current date without leaving mail. To enter a new shell,
enter:

sh

To exit from this new shell and return to mail command mode, press
Ctd-d.

mail 3-27

Commands

Finding the Number of Characters in a Message:
si

The size (si) command displays the number of characters in each mes­
sage in a message-list. For example, the command: "si 1-4" might dis­
play:

14: 234
3: 1000
2: 23
1: 456

Changing the Working Directory: cd

The cd command changes the working directory to the name of the direc­
tory you give it as an argument. If no argument is given, the directory is
changed to your home directory. This command works just like the nor­
mal XENIX cd command. (Note that exiting mail returns you to the
directory from which you entered mail; thus the mail cd command works
only within mail.) You may want to place a cd command in your .mailrc
file so that you always begin executing mail from within the same direc­
tory.

Reading Commands From a File: so

The source (so) command reads in mail commands from named file.
Normally, these commands are alias, set, and unset commands.

3-28 XENIX User's Guide

Leaving Compose Mode Temporarily

Leaving Compose Mode Temporarily
While composing a message to be sent to others, it is often useful to print
a message, invoke the text editor on a partial message, execute a shell
command, or perform some other function. mail provides these capabili­
ties through compose escapes (sometimes called tilde escapes) which
consist of a tilde n at the beginning of a line, followed by a single char­
acter that specifies the function to be performed. These escapes are avail­
able only when you are composing a new message. They have no meaning
when you are in mail command mode. The available compose escapes
are described below.

Getting Help: -?

The help escape is the first compose escape you should know because it
tells you about all the others. For example, if you enter:

a brief summary of the available compose escapes is displayed on your
screen. Note that 11 prompts for heading fields and and does not give
help.

Printing the Message: -p

To print the current text of a message you are composing, enter:

This prints a line of dashes and the heading and body of the message so
far.

Editing the Message: -e and-v

If you are dissatisfied with a message as it stands, you can edit the mes­
sage by invoking the editor, ed, with the editor escape, -e. This causes
the message to be copied into a temporary file so that you can edit it.
Similarly, the -v escape causes the message to be copied into a temporary

mail 3-29

Leaving Compose Mode Temporarily

file so that you can edit it with the vi editor. Mter modifying the message
to your satisfaction, write it out and quit the editor. mail responds: r I ountinoe ,

after which you may continue composing your message.

Editing Headers: ~t, ~c, ~b, ~s, ~R and ~h

To add additional names to the list of message recipients, enter the
escape:

-t name! name2 ...

You can name as many additional recipients as you wish. Note that users
originally on the recipient list will still receive the message: you cannot
remove anyone from the recipient list with ~t. To remove a recipient, use
the ~h command, which is discussed later in this section.

You can replace or add a subject field by using the ~ s escape:

-s line-oj-text

This replaces any previous subject with line-oj-text. The subject, if
given, appears near the top of the message, prefixed with the heading Sub­
ject:. You can see what the message looks like by using -p, which dis­
plays all heading fields along with the body of the text.

You may occasionally prefer to list certain people as recipients of carbon
copies of a message rather than direct recipients. The escape:

-c name! name2 ...

adds the named people to the Cc: list. The escape:

-cc name! name2 ...

performs an identical function. Similarly, the escape:

o name! name2 ...

3-30 XENIX User's Guide

Leaving Compose Mode Temporarily

adds the named people to the Bcc: (Blind carbon copy) list. The people
on this list receive a copy of the message, but are not mentioned any­
where in the message you send. Remember that you can always execute a
-p escape to see what the message looks like.

The escape:

adds or changes the person or persons named in the return-receipt-to:
field.

The recipients of the message are given in the To: field; the subject is
given in the Subject: field, carbon copy recipients are given in the Cc:
field and the return receipt recipient in the Return-receipt-to: field. If you
wish to edit these in ways impossible with the -t, -s, -c, and '"R escapes,
you can use:

where h stands for "heading." The escape ~h displays To: followed by the
current list of recipients and leaves the cursor at the end of the line. If you
enter ordinary characters, they are appended to the end of the current list
of recipients. You can also use the normal XENIXcommand line editing
characters to edit these fields, so you can erase existing heading text by
backspacing over it.

When you press RETURN, mail advances to the Subject: field, where the
same rules apply. Another RETURN brings you to the Cc: field, another
brings you to the Bcc: field, and yet another to the Return-receipt-to:
field. Each of these fields can be edited in the same way. Finally, another
RETURN leaves you appending text to the end of your message body. As
always, you can use -p to print the current text of the heading fields along
with the body of the message.

Adding a File to the Message: ~r and -d

It is often useful to be able to include the contents of some file in your
message. The escape:

-r filename

is provided for this purpose, and causes the named file to be appended to
your current message. mail complains if the file does not exist or cannot
be read. If the read is successful, mail displays the number of lines and
characters appended to your message.

mail 3-31

Leaving Compose Mode Temporarily

As a special case of-r, the escape:

reads in the file dead. letter in your home directory. This is often useful
because mail copies the text of your message buffer to dead. letter when­
ever you abort the creation of a message. You can abort the message by
entering two consecutive interrupts or by entering a -q escape.

Enclosing Another Message: -m and-M

IT you are sending mail from within mail's command mode, you can insert
a message, that was previously sent to you, into the message that you are
currently composing. For example, you might enter:

This reads message 4 into the message you are composing, shifted right
one tab stop. The escape:

"M4

performs the same function, but with no right shift. You can name any
nondeleted message or list of messages.

Saving the Message in a File: -w

To save the current text of a message body in a file, use:

-w filename

mail writes out the message body to the specified file, then displays the
number of lines and characters written to the file. The -w escape does not
write the message heading to the file.

Leaving mail Temporarily: -! and -I
To temporarily escape to the shell, use the escape:

-!command

3-32 XENIX User's Guide

Leaving Compose Mode Temporarily

This executes command and returns you to mail compose mode without
altering your message. If you wish to filter the body of your message
through a shell command, use:

-I command

This pipes your message through the command and uses the output as the
new text of your message. If the command produces no output, mail
assumes that something is wrong. It retains the old version of your mes­
sage, and displays: r (continuo I

Escaping to mail Command Mode: -:

To temporarily escape to mail command mode, use either of the escapes:

-:mail-command

-_mail-command

You can then execute any mail command that you want. Note that this
escape will not work in most cases if you enter compose mode from the
XENIX shell. It depends on the command used (set and unset will work),
but most commands that involve message lists are not allowed. You will
receive the message:

May not execute cmd while composing

mail 3-33

Leaving Compose Mode Temporarily

Placing a Tilde at the Beginning of a Line: --

If you wish to send a message that contains a line beginning with a tilde,
you must enter it twice. For example, entering:

-nus line begins with a tilde.

appends:

lhis line begins with a tilde.

to your message. The escape character can be changed to a different char­
acter with the escape option. (For information on how to set options, see
the section "Setting Up Your Environment: The .mailrc File.") If the
escape character is not a tilde, then this discussion applies to that charac­
ter and not the tilde.

3-34 XENIX User's Guide

Setting Up Your Environment: The .mailrc File

Setting Up Your Environment: The
.mailrc File
Whenever mail is invoked, it first reads the file lusrlliblmaillmaitre then
the file .maitre in the user's home directory. System-wide aliases are
defined in lusrlliblmaillmailre. Personal aliases and set options are
defined in .mailre. The following is a sample .mailre file:

* number sign introduces ccmnents

* personal aliases office and cohorts are defined below

alias office bill steve karen
alias cohorts john mary bob beth mike

* set dot lets messages be tenninated by period on new line

* set askcc says to prompt for Cc: list after composing message

set dot askcc

* od changes directory to different current directory

od

The Subject Prompt: asksubject

The asksubject switch causes prompting for the subject of each message
before you enter compose mode. If you respond to the prompt with a
RETURN, then no subject field is sent.

mail 3-35

Setting Up Your Environment: The .mailrc File

The CC Prompt: askcc

The askcc switch causes prompting for additional carbon copy recipients
when you finish composing a message. Responding with a RETURN sig­
nals your satisfaction with the current list. Pressing INTERRUPT dis­
plays:

(continue) r ill'e~
so that you can return to editing your message.

Printing the Next Message: autoprint

The autoprint switch causes the delete command to behave like dp.
After deleting a message, the next message in the list is automatically
printed. Printing also occurs automatically after execution of an undelete
command.

Listing Messages in Chronological Order

The ehron switch causes messages to be listed in chronological order. By
default, messages are listed with the most recent first. Set ehron when
you want to read a series of messages in the order they were received.

The mehron switch, like ehron, displays messages in chronological order,
but lists them in the opposite order, that is, highest-numbered, or most
recent, first. This is useful if you keep a large number of messages in your
mailbox and you wish to list the headers of the most recently received
mail first but read the messages themselves in chronological order.

Using the Period to Send a Message: dot

The dot switch lets you use a period (.) as an end-of-transmission charac­
ter, as well as Ctrl-d. This option is available for those who are used to
this convention when editing with the editor, ed.

3-36 XENIX User's Guide

Setting Up Your Environment: The .mailrc File

Sending mail While in mail: execmail

It is often desirable to reply to a piece of mail, or send mail while reading
your mail file. This process is speeded up by the use of the execmail
option. It causes the underbar prompt to return before mail is finished
being sent. This frees the user to continue while mail performs mailing
functions in the background.

Including Yourself in a Group: metoo

Usually, when a group is expanded that contains the name of the sender,
the sender is removed from the expansion. Setting the metoo option
causes the sender to be included in the group.

Saving Aborted Messages: save

The nosave switch prevents aborted messages from being appended to the
file dead. letter in your home directory; messages are saved by default.
You can abort messages when you are in compose mode by entering two
interrupts or a -q compose escape.

Printing the Version Header: quiet

The quiet switch suppresses the printing of the version header when mail
is first invoked.

Choosing an Editor: The EDITOR String

The EDITOR string contains the patbname of the text editor to use in the
edit command and -e escape. If not defined, then the default editor is
used. For example:

set EDITOR=/bin/ed

mail 3-37

Setting Up Your Environment: The .mailre File

Choosing an Editor: The VISUAL String

The VISUAL string contains the pathname of the text editor used in the
visual command and -v escape. For example:

set VISUAL=/bin/vi

By default, vi is the editor used.

Choosing a Shell: The SHELL String

The SHEU string contains the name of the shell to use in the ! command
and the -! escape. A default shell is used if this option is not defined. For
example:

set SHELL=/bin/sh

Changing the Escape Character: The escape
String

The escape string defines the character to use in place of the tilde n to
denote compose escapes. For example:

set escape=*

With this setting, the asterisk becomes the new compose escape charac­
ter.

Setting Page Size: The page String

The page string causes messages to be displayed in pages of size n lines.
You are prompted with a question mark between pages. Pressing
RETURN causes the next page of the current message to. be displayed. By
default this paging feature is turned off.

3-38 XENIX User's Guide

Setting Up Your Environment: The .mailrc File

Saving Outgoing mail: The record String

The record string sets the patbname of the file used to record all outgoing
mail. If not defined, then outgoing mail is not copied and saved. For
example:

set record=/usr/john!recordfile

With this setting, all outgoing mail is automatically appended to the file
I usrl john/ record/tie.

Keeping mail in the System mailbox: autombox

The autombox switch determines whether messages remain in the system
mailbox when you exit mail. If you set autombox, the examined messages
are automatically placed in the mbox file in your home directory (your
user mailbox). They are removed from the system mailbox when you
quit.

Changing the top Value: The toplines String

The toplines string sets the number of lines of a message to be displayed
with the top command. By default, this value is five. For example:

set toplines=lO

With this setting, ten lines of each message are displayed when the top
command is used.

Sending mail Over Telephone Lines: ignore

The ignore switch causes interrupt signals from your terminal to be
ignored and echoed as at-signs (@). This switch is normally used only
when communicating with mail over telephone lines.

mail 3-39

Using Advanced Features

Using Advanced Features
This section discusses advanced features of mail useful to those with
some existing familiarity with the XENIX mail system.

Command Line Options

One very useful command line option to mail is the -s "subject" switch.
You can specify a subject on the command line with this switch. For
example, you could send a file named letter with the subject line, "Impor­
tant Meeting at 12:00", by entering the following:

mail -s "Important Meeting at 12:00" john bob mike <letter

To include other header fields in your message, you can use the following
options:

-b user Adds the blind carbon copy field to the message header.

-c user Adds the carbon copy field to the message header.

-r user Adds the return-receipt to: field to the message header.

None of the above options may be specified more than once on a mail
command line. If multiple arguments are required for an option, the
entire argument set must be enclosed in quotes, as in:

mail -r "meeting" -b singleuser -c "x y z" user user2

mail also allows you to edit files of messages by using the -f switch on the
command line. For example:

mail -f filename

causes mail to edit filename and the command:

mail-f

causes mail to read mbox in your home directory. All the mail commands
except hold are available to edit the messages. When you enter the quit
command, mail writes the updated file back.

3-40 XENIX User's Guide

Using Advanced Features

If you send mail over a noisy phone line, you may notice that bad charac­
ters are transmitted. These are characters that abort messages: RUB OUT
and DEL. You can invoke mail with the -i switch to ignore these bad
characters.

When you enter the mail program (as opposed to sending a message from
command level), two command line options are available:

-R Makes the mail session read-only, preventing alteration of
the mail being read.

-u user Reads in user's mail instead of your own.

Using mail as a Reminder Service

Besides sending and receiving mail, you can use mail as a reminder ser­
vice. Several XENIX commands have this idea built in to them. For
example, the XENIX lp command's -m switch causes mail to be sent to
the user after files have been printed on the lineprinter. XENIX automati­
cally examines the file named calendar in each user's home directory and
looks for lines containing either today or tomorrow's date. These lines are
sent by mail as a reminder of important events.

If you program in the shell command language, you can use mail to signal
the completion of a job. For example, you might place the following two
lines in a shell procedure:

biglongjob
echo "biglongjob done" I mail self

You can also create a logfile that you want to mail to yourself. For exam­
pIe, you might have a shell procedure that looks like this:

dosomething >logfile
mail self <log file

For information about writing shell procedures, see "The Shell" chapter
in this Guide.

mail 3-41

Using Advanced Features

Handling Large Amounts of mail

Eventually, you will face the problem of dealing with an accumulation of
messages in your user mailbox. There are a number of strategies that you
can employ to solve this problem concerning space in your mailbox file.
Keep in mind the dictum:

When in doubt, throw it out.

This means that you should only save important mail in your user mail­
box. If your mailbox file becomes large, you must periodically examine
its contents to decide whether messages are still relevant. To save space,
consider summarizing very long messages.

The previously mentioned measures are not always helpful enough in
organizing the many messages that you are likely to receive. Another
effective approach is to save mail in files organized by sender, by topic, or
by a combination of the two. Create these files in a separate mail direc­
tory; you can access these mailbox files with the mail -ffilename switch.
However, be forewarned-this approach to organizing mail quickly eats
up disk space.

Maintenance and Administration

The following is a list of the programs and files that make up the XENIX
mail system:

/usr/bin/mail

/usr/lib/mail/mailrc

/usr/spool/mail/*

/usr/name/dead.letter

3-42

/usr/name/mbox

/usr/name/.mailrc

/usr/lib/mail/mailhelp.cmd

/usr/lib/mail/mailhelp.esc

/usr/lib/mail/mailhelp.set

mail program

mail system initialization file

System mailbox files

File where undeliverable mail
is deposited

User mailbox

User mail initialization file

mail command help file

mail compose escape help file

mail option help file

XENIX User's Guide

lusrllib/mail/aliases

lusrllib/mail/aliases.hash

/usr/lib/mail/faliases

lusrllib/mail/maliases

lusrllib/mail/maliases.hash

Using Advanced Features

System-wide aliases

System-wide alias database

Forwarding aliases

Machine aliases

Optional machine aliases data­
base

A system-wide distribution list is kept in I usrl libl mail laliases. A system
administrator is usually in charge of this list. These aliases are kept in a
vastly different syntax from .mailre, and are expanded when mail is sent.
You will normally need special permission to change system-wide
aliases.

mail 3-43

Quick Reference

Quick Reference
The following sections provide quick reference to the available com­
mands, compose escapes, and options.

Command Summary

Given below are the name and syntax for each command, the abbreviated
form (in brackets), and a short description. Many commands have
optional arguments; most can be executed without any arguments at all.
In particular, commands that take a message-list argument will default to
the current message if no message-list is given. In the following descrip­
tions, boldface denotes the name of a command, compose escape or
option. Italics are used for arguments to commands or compose escapes.
The vertical bar indicates selection and is used to separate the arguments
from which you may select. All other text should be read literally.

RETURN

+n

-n

$

=

?

!shell-cmd

3-44

Displays the next message.

[+] With no n argument, it displays the next
message. If given a numeric argument n,
goes to the nth message and displays it.

[-] With no n argument, goes to the previ­
ous message and displays it. If given a
numeric argument n, goes to the nth previ­
ous message and displays it.

Displays the first message.

Displays the last message.

Displays the message number of the current
message.

Displays the summary of mail commands in
/ usr/ lib/mail! mailhelp.cmd.

Executes the shell command that follows.
No space is needed after the exclamation
point.

XENIX User's Guide

mail

Alias users

alias name users

cd directory

delete mesg-list

dp mesg-list

echo path

edit mesg-list

exit[!]

tile

Quick Reference

Displays system-wide aliases for users. At
least one user must be specified.

[a] Aliases users to name. With no name
arguments, displays all currently defined
aliases. With one argument, displays the
users aliased by the given name argument.

[c] Changes the user's working directory to
the specified directory. If no directory is
given, then changes to the user's home
directory.

[d] Deletes each message in the given
message-list.

Deletes the current message and displays
the next message.

Expands shell metacharacters.

[e] Takes the given message-list and points
the text editor at each message in tum. On
return to command mode, the edited mes­
sage is read back in. See also the visual
command.

[x] Immediately returns to the shell without
modifying the system mailbox, the user
mailbox, or a file specified with the -f
switch.

[ti] Displays the name of the mailbox file.

forward mesg-num user-list
[f] Takes a user-list argument and for­
wards the current message to each name.
The message sent to each is indented and
shows that the sender has passed it on. The
mesg-num argument is optional, and is
used to forward the numbered message
instead of the default message.

Forward mesg-num user-list
[F] Same as forward except that the mes­
sage is not indented.

3-45

Quick Reference

3-46

headers +n I -n I mesg-list

help

hold mesg-list

list

Ipr mesg-list

mail [user-list]

mbox mesg-list

[h] With no argument, lists the current
range of headers, which is an I8-message
group. If a plus (+) argument is given, then
the next I8-message group is displayed, and
if a minus (-) argument is given, the previ­
ous I8-message group is displayed. Both
plus and minus accept an optional numeric
argument indicating the number of header­
windows to move forward or backward. If a
message-list is given, then the message­
header for each message in the list is dis­
played.

Same as ? above. Prints the summary of
mail commands in
/usr/lib/mail/mailhelp.cmd.

[ho] Takes a message-list and marks each
message to be saved in the user's system
mailbox instead of in mbox.

Prints list of mail commands.

[I] Prints each of the messages in the
required message-list on the lineprinter.
Messages are piped through pr before being
printed.

[m] Takes an optional user-list argument
and sends mail to each name after entering
compose mode.

[mb] Marks messages given in the
message-list argument to be saved in the
user mailbox when a quit is executed. Mes­
sage headers contain an initial letter "M" to
show that they are to be saved.

move mesg-list mesg-num
Places the messages specified in mesg-list
after the message specified in mesg-num. If
mesg-num is 0, mesg-list moves to the top of
the mailbox.

XENIX User's Guide

print mesg-list

quit

reply mesg-list

Reply mesg-list

restart

save mesg-list filename

set

set option-list

shell

size mesg-list

mail

Quick Reference

[p] Takes a message-list and displays each
message on the user's terminal.

[q] Terminates the mail session, retaining
all nondeleted, unsaved messages in the sys­
tem mailbox. If the autombox option is set,
then examined messages are saved in the
user mailbox, deleted messages are dis­
carded, and all messages marked with the
hold command are retained in the system
mailbox.

If you are executing a quit while editing a
mailbox file with the -f flag, the mailbox file
is rewritten and the user returns to the shell.

[r] Takes a message·1;"t and sends mail to
each message author just like the mail com­
mand.

[R] Sends a reply to users named in the To:
and Cc: fields, as well as the original
sender.

Reads in mail that arrives during the current
mail session.

[s] Takes an optional message-list and a
filename and appends each message in turn
to
the end of the file. The default message is
the current message.

[se] Displays a list of available options.

[se] With no arguments, displays all vari­
able values. Otherwise, sets option. Argu­
ments are of the form option=value, if the
option is a string option or just option, if the
option is a switch. Multiple options may be
set on one line.

[sh] Invokes an interactive version of the
shell.

[si] Takes a message-list and displays the
size in characters of each message.

3-47

Quick Reference

source file

string string mesg-list

top

undelete mesg-list

unset options

visual mesg-list

whois

[so] Reads and executes mail commands
from the named file.

Searches for string in mesg-list. If no mesg­
list is specified, all undeleted messages are
searched. Ignores case in search.

[t] Takes a message-list and displays the top
five lines. The number of lines displayed is
set by the variable toplines.

[u] Takes a message-list and marks each
one as not being deleted. Each message in
the list must previously have been deleted.

[uns] Takes a list of option names and dis­
cards their remembered values; this is the
opposite of set.

[v] Takes a message-list and invokes the vi
editor on each one.

Looks up a list of target mail recipients and
prints the real names or descriptions of each
recipient. If the first character of the first
argument is alphabetic, the arguments are
looked up without change. Otherwise, the
arguments are assumed to be a message list,
in the format specified in the mail XENlX
User's Guide. For each message in the list,
the "From" person is extracted from the
header and added to list of users to be
searched.

write mesg-list filename

3-48

[w] Writes the message bodies of messages
given by the message-list to the file given
by filename.

XENIX User's Guide

Quick Reference

Compose Escape Summary

Compose escapes are used when composing messages to perform special
functions. They are only recognized at the beginning of lines. The escape
character can be set with the escape string option.(See the section "The
escape String.") Abbreviations for each escape are in brackets.

Here is a summary of the compose escapes:

mail

--string Inserts the string of text in the message prefaced
by a single tilde C).

Prints out help for compose escapes on terminal.

Same as Ctrl-d on a new line.

-!command Executes a shell command, then returns to com­
pose mode.

-!command Pipes the message body through the command as
a filter. Replaces the message body with the out­
put of the filter. If the command gives no output
or terminates abnormally, retains the original
message body.

- mail-command Executes a mail command, then returns to com­
pose mode.

-:mail-command Executes a mail command, then returns to com­
pose mode.

-alias [-a] Displays a list of private aliases.

-alias aliasname raJ Displays the names included in private
aliasname.

-alias aliasname users

-Alias

raJ Adds users to private aliasname list.

[-A] Performs aliasing by first examining private
aliases and then system-wide aliases using all
three global alias files. Only the final result is
printed (non-local mail recipients will have the
complete delivery path printed). The user list is
taken from header fields.

3-49

Quick Reference

~ Alias users

~bcc name ...

~cc name ...

~dead

~editor

~headers

~message mesg-list

~Message mesg-list

~Print

~quit

~read filename

~Return name

~shell

3-50

[~A] Perfonns aliasing by first examining private
aliases and then system-wide aliases using all
three global alias files. Only the final result is
printed (non-local mail recipients will have the
complete delivery path printed). At least one
user must be specified.

[~b] Adds the given names to the Bee: field.

[~c] Adds the given name to the cc: field.

rd] Reads the file dead. letter from your home
directory into the message.

[~e] Invokes the line editor on the message being
sent. Exiting the editor returns the user to com­
pose mode.

[~h] Edits the message heading fields by printing
each one in turn and allowing the user to modify
each field.

rm] Reads the named messages into the mes­
sage being sent, shifted right one tab. If no mes­
sages are specified, reads the current message.

rM] Same as -message except with no right
shift.

[~p] Prints the message buffer prefaced by the
message heading.

[~P] Prints the real names or descriptions (in
parentheses) after each recipient.

r q] Aborts the message being sent, copying the
message to dead. letter in your home directory if
the save option is set.

[~r] Reads the named file into the message.

[~R] Adds the given names to the Return­
receipt-to: field.

rsh] Invokes a shell.

XENIX User's Guide

Quick Reference

-subject string [-s] Causes the named string to become the
current subject field.

-to name ••• nl Adds the given names to the To: field.

-visual [-v] Invokes the vi editor to edit the message
buffer. Exiting the editor 'returns the user to com­
pose mode.

-write filename [-w] Writes the message body to the named file.

Option Summary

Options are controlled with the set and unset commands. An option is
either a switch or a string. A switch is either on or off, while a string
option has a value that is a patbname, a number, or a single character.
Options are summarized below.

askcc

asksubject

autombox

autoprint

chron

dot

mail

Causes prompting for additional carbon copy reci­
pients at the end of each message. Pressing RETURN
retains the current list.

Causes prompting for the subject of each message
you send. The subject is a line of text terminated by
a RETURN.

Usually messages are retained in the system mailbox
when the user quits. However, if this option is set,
examined messages are automatically appended to
the user mailbox.

Causes the delete command to behave like dp.
Thus, after deleting (or undeleting) a message, the
next one is printed automatically.

Causes messages to be listed in chronological order.

Causes a single period on a newline to act as the
EOT character. The normal end-of-transmission
character, Ctrl-d, still works.

3-51

Quick Reference

EDITOR= Pathname of the text editor to use in the edit com­
mand and -e escape. If not defined, then a default
editor is used.

escape=char If defined, sets char as the character to use in place
of the tilde n to denote compose escapes.

ignore Causes interrupt signals from your tenninal to be
ignored and echoed as at-signs (@).

mchron Causes messages to be listed in numerical order
(most recently received first), but displayed in chro­
nological order.

metoo Nonnally, before sending, the name of the sender is
removed from alias expansions. If metoo is set, then
the name of the sender is not removed.

nosave Prevents saving of the message buffer in the file
dead. letter in the home directory, after two consecu­
tive interrupts or a -q escape.

page=n Specifies the number of lines (n) to be printed in a
"page" of text when displaying messages.

quiet Suppresses the printing of the version when mail is
first invoked.

record= Sets the pathname of the file used to record all out­
going mail. If not defined, then outgoing mail is not
copied.

SHELL= Pathname of the shell to use in the ! command and
the -, escape. A default shell is used if this option is
not defined.

toplines= Sets the number of lines of a message to be printed
with the top command. Default is five lines.

verify Causes each target mail recipient to be verified.
This option pennits errors made while composing
messages to be corrected or ignored.

VISUAL= Pathname of the text editor to use in the visual com­
mand and -v escape. The default is for the vi editor.

3-52 XENIX User's Guide

Chapter 4

Communicating with
Other Sites

Introduction 4-1

Using Micnet 4-2
Transferring Files with rcp 4-2
Executing Commands with remote 4-4
Transferring Files with mail 4-5

UsingUUCP 4-6
Transferring Files with uucp 4-6
Transferring Files with uuto 4-11
Executing Commands with uux 4-13

Logging in to Remote Systems 4-15
Using ct 4-15
Using cu 4-17

Introduction

Introduction
XENIX systems include a series of utilities that allow you to communi­
cate with other computer sites. The particular utilities you use depend on
how your computer is connected to the other site,· what tasks you want to
accomplish on the other site, and what operating system is running on the
other site.

If the site is in close proximity to your computer, in the same room, for
example, then it is likely that the two computers are connected by a sim­
ple serial line. If the site is a XENIX site, use the Micnet commands dis­
cussed in "Using Micnet" below to transfer files between the two sites
and to execute commands on the remote site. If the site is a XENIX site,
use the UUCP commands discussed in "Using UUCP" below.

If, on the other hand, the site you want to communicate with is on another
floor, or across the country, your computer is connected to it by telephone
lines. If the site is a XENIX or UNIX site, use the UUCP commands dis­
cussed in "Using UUCP" below to transfer files between the two sites and
execute commands on the remote site. If the site is not a XENIX or UNIX
site, use the commands discussed in "Using cu" below.

Neither the UUCP commands nor the Micnet commands allow you to
have an interactive session with the remote site. If you want to have an
interactive session, use the commands discussed in "Using cu" below.

This chapter assumes that your UUCP and/or Micnet networks are config­
ured already. If this is not true, refer to "Building a Remote Network
with UUCP" and "Building a Local Network with Micnet" in the XENIX
System Administrator's Guide for more information.

Communicating with Other Sites 4-1

Using Micnet

Using Micnet
A Micnet network is a network of two or more computers connected by
serial communication lines. A serial communication line is a cable with
RS-232 connectors on each end.

The computers in a Micnet network use three commands to "talk" to one
another. These are rep, remote and mail. The rep command is used to
transfer files between machines in the network. The remote command is
used to execute XENIX commands on a remote Micnet machine. The
mail command is used to communicate with users on a remote computer.
Each of these commands is discussed in the following sections.

Transferring Files with rep

The rep command is used to transfer copies of both text and binary files
between machines connected in a Micnet network. Its syntax is similar to
that of the ep command:

rep [options] [src _computer:]src ...file [dest _computer:]dest ...file

These arguments mean the following:

sre file

dest file

dest _computer

The name of the file that you want to copy.

The name of the computer on which src Jtle
is located.

The name of the copied file on the receiving
computer. Usually, src Jtle and destJtle are
the same.

The name of the computer on which
dest Jtle is located.

You must have read permission on the source file and read and execute
permissions on the directory that contains the source file in order to copy
it with rcp. In addition, you must have write permission on the directory
on the computer that is to receive the source file.

As an example, suppose you have three computers named machine}, ma­
chine2 and machine3 connected in a Micnet network. Suppose also that
you want to send a copy of a file named trans file in the /usr/markt

4-2 XENIX User's Guide

Using Mienet

directory on machinel to the Itmp directory on machine3. To do so, enter
the following command:

rep maehinel:/usr/marktltransfile maehine3:/tmp/trans file

If you are in the directory that contains the source file, specify the
filename only. You do not have to specify the full machine and path­
name. Using the example above, enter the following command from
lusrlmarkt on machinel to copy trans/tie to Itmp on machine3:

rep transfile maehine3:/tmp/trans file

In addition to using rep to send copies of files to remote computers, you
can use rep to retrieve copies of files from remote computers. Using the
example above, suppose that machine3 is your local computer and that
you want to get a copy of lusrlmarktltransfile from machinel. To do so,
enter the following command:

rep maehine1:/usr/marktltransfile Itmp/transfile

This command would place a copy of lusrlmarktltransfile on machinel in
the Itmp directory on machine3.

Because files are not sent immediately, an rep transfer may take a few
minutes. Files are copied to a spool directory and sent when the appropri­
ate daemons "awaken." (A daemon is a program that periodically runs in
the background.) In the case of rep, the daemon that transfers files is the
daemon.mn daemon.

rep Options

Two options are available for use with rep. These are -m and -u [ma­
chine:]user. The -m option causes mail to be sent to the user who entered
the rep command, reporting on the success or failure of the transfer. If
you want mail to report to another user, use -u [machine:]user. This
causes mail to report to user on machine.

Communicating with Other Sites 4-3

Using Mienet

The following command, issued from lusrlmarkt on machine}, sends a
copy of lusrlmarktltransfile on machine} to the Itmp directory on ma­
chine3. Since the -m option is specified, mail will be sent reporting on
the success or failure of the command:

rep -m transfile maehine3:/tmp/transfile

For more information on the rep command, see rep(C).

Executing Commands with remote

The remote command allows execution of commands across serial lines.
The syntax of the remote command is:

remote [options] site_name command [arguments]

If the remote command produces output, that output is mailed to your sys­
tem mailbox. Otherwise, remote sends mail only if the remote command
fails to execute.

As an example, suppose that you are working on machine} and that you
want to list the contents of the Itmp directory on machine2. To do so,
enter the following command:

remote maehine2 Is /tmp

Since the Is command produces output, the output is mailed to you. In
this case, your mail contains a listing of the contents of Itmp on machine2.

remote Options

TWo very useful options to the remote command are the -m and -ffile
options. The -m option sends mail to you reporting on the success or
failure of the command execution. Suppose, for example, that you want
to remove Itest from Itmplmarkt on machine2. To do so, enter the follow­
ing command:

remote -m maehine2 rm /tmp/marktltest

After this command is executed, you receive mail reporting on the suc­
cess or failure of the rm command.

4-4 XENIX User's Guide

Using Micnet

The -ffile option allows you to specify a file on the local computer that
contains the input for the command that is to be executed on the remote
computer. As an example, suppose that you have a file named chapter 1
on your local computer that you want to print on machine2' s default print­
er. To do so, enter the following command:

remote -m -f chapter! machine2 Ip

Because the -m option is specified, you are informed by mail of the suc­
cess or failure of the remote command.

Note

The system administrator can specify which commands are allowed
to execute remotely over serial lines on which computers. The
commands that are allowed to execute remotely on a XENIX system
are listed in the computer's letc!dejaultlmicnet file. Any XENIX
command can execute remotely if the computer's
letc!dejaultlmicnet file contains the statement executeall on a line
by itself.

Transferring Files with mail

The mail command can be used to transfer files between computers in a
Micnet network. However, there are several drawbacks to using mail for
this purpose:

• You must transfer the file to a user on the remote system, rather
than to a directory.

• You can only use mail to transfer small files. Large files are ran­
domly truncated by mail.

• You cannot transfer binary files with mail.

On the other hand, mail is very useful for sending small files to several
users at once on a remote system. For information on using mail, see
"mail" in this guide.

Communicating with Other Sites 4-5

II

UsingUUCP

UsingUUCP
UUCP is a series of programs that provide networking capabilities for
XENIX systems. While UUCP commands can be used over serial lines,
they are usually used on computers connected by telephone lines.

The UUCP programs allow you to transfer files between remote computers
and to execute commands on remote computers. Since the computers
may be connected by telephone lines, UUCP transfers can take place over
thousands of miles. A UUCP site in New York City can transfer a file to
or execute a command on a connected UUCP site in San Francisco, or
Jakarta, or anywhere in the world. The following sections explain how to
use these UUCP programs.

Transferring Files with uucp

Both the nucp and uuto commands can be used to transfer copies of
binary and text files between remote UUCP sites. There are advantages
and disadvantages to each. The uucp command gives you great flexibil­
ity in specifying where on the remote system the transferred file is to be
placed. However, uucp syntax can be rather long and complicated. The
uuto command, on the other hand, is easy to use. But uuto restricts
where you can place the file on the remote system. In addition, retrieving
a file sent with uuto is slightly more complicated than retrieving a file
sent with uucp.

The uucp command is discussed in this section. The uuto command is
discussed in the following section.

Before You Begin

Before you can copy files to remote sites with uucp, you must verify that:

• Your local site is a "dial out" site.

• Your local site "knows" how to call the remote site.

• The files that you want to send have read permission set for others.

• The directory that contains the file that you want to send has read
and execute permissions set for others.

4-6 XENIX User's Guide

UsingUUCP

• Your computer has write permission in the directory on the remote
site to which you want to copy the file.

Each of these is discussed below.

Some UUCP sites are "dial-in" sites, some are "dial-out" sites, and some
are both. Verify that your site is a dial-out site. If it is not, your computer
might have the capability to be on the receiving end of a UUCP connec­
tion, but not on the calling end.

You must be sure that your computer "talks" to the site with which you
want to communicate. The uuname command gives you this informa­
tion. Entering uuname with no options lists the UUCP sites your com­
puter talks to directly. Entering uuname with the -I option causes the
name of your computer to be displayed.

Note that you may be able to communicate with a site that does not show
up in a uuname listing. This is possible because UUCP sites are often
"chained together." So if you know that a site you want to transfer files to
communicates with a site that your system communicates with, you can
send files to the first site through the second. An example is provided
below under "Indirect Transfers."

In order to copy a file to a remote UUCP site, the file must have read per­
mission set for others and the directory that contains the file must have
read and execute permissions set for others. Use the 1 command to exam­
ine the file's permissions and the 1 -d command to examine the
directory's permissions. If the permissions are not correct, enter the fol­
lowing commands to set the correct permissions:

chmod OH filename
chmod OHX directory

Finally, you must verify that your computer has write permission on the
directory on the remote site to which you want to transfer files. Each
remote UUCP site has a /usrllib/uucp/Permissions file. This file specifies
the directories on that site from which your computer can read and to
which your computer can write. You can only send a file to a directory on
a remote site if your computer has write permissions on that directory, as
specified on the remote site's /usrllib/uucp/Permissions file.

By default, most UUCP sites permit calling-in computers to write to their
/usr/spoolluucppub/ic directory. Since there is no way to find out which
directories your computer can write to on the remote site, short of con­
tacting somebody at the site, the safest thing to do when making a UUCP
transfer is to write to /usrlspoolJuucppub/ic. The procedure for doing this
is outlined below.

Communicating with Other Sites 4-7

UsingUUCP

Usinguucp

The syntax of the uucp command is similar to the syntax of cp:

uucp [options] src_computer!srcJtle dest_computer!destJile

These arguments mean the following:

src file

dest file

dest _computer

The name of the file that you want to copy.

The name of the computer on which src ...file
is located.

The name of the copied file on the receiving
computer. Usually, src Jile and dest Jile are
the same.

The name of the computer on which
dest yle is located.

There are several different ways to specify the location on the remote ma­
chine to which you want to transfer the file. The simplest is the
-Idest Jile specification. This is also the safest specification, because
-ldestJile is expanded to lusrlspool!uucppublicldestJile, thereby assur-
ing that the transfer will succeed.

For example, to send lusrlmarktltransfile on machine] to
lusrlspoolluucppubUc on machine2, enter the following command:

uucp lusr/marktltransfile machine2! -Itransfile

This command creates the file lusrlspoolluucppubUcltransfile on ma­
chine2.

If lusrlmarkt is your current directory, you can copy trans file to machine2
with the following command:

uucp transfile machine2! -Itransfile

The uucp command works much like the rcp command. Files are not
copied and sent immediately. Instead, copies are placed in a spool direc­
tory and sent once the appropriate daemon awakens. In the case of the
UUCP programs, the daemon is the uucico daemon. Depending on how
your system is configured, a uucp transfer might take place within
minutes, or it might take hours.

4-8 XENIX User's Guide

UsingUUCP

Note

Because the exclamation mark has special meaning to the C-shell,
you must "escape" with a backslash (\) any exclamation marks that
appear in a uuep command, if you are using the C-shell. For a C­
shell user, the command above is specified as:

uuep transfUe maehine2\! -ltransfUe

Another form of the command allows you to specify the full patbname of
the copied file on the remote computer. This is for sending the file to a
specific directory on the remote system. However, you must be sure that
your computer has write permission on this directory, otherwise the
transfer will fail.

As an example, suppose that you want to send transftle in lusr/markt on
machine] to the lusrlcindy directory machine2. To do so, enter the follow­
ing command:

uuep lusr/marktltransfile maehine2!/usr/cindy/transfUe

Note that, like the rep command, the uuep command can be used to
retrieve files from a remote site, in addition to copying files to a remote
site. Using the example above, if your local computer is machine2 and
you want to send a copy of lusrlmarktltransftle on machine] to the
lusrlcindy directory on machine2, enter the following command:

uuep maehinel!/usr/marktltransfile lusr/cindy/transfile

You can also use -user to specify a location on the remote computer. The
-user argument is expanded to the patbname of the home directory of the
person on the remote computer whose login is user. For example, if
lusr/cindy is the home directory of a user whose login is cindy on ma­
chine2, enter the following command from the /usr/markt directory on
machine] to copy lusrlmarktltransftle to lusrlcindy:

uuep transfUe maehine2!-cindy/transfUe

The receiving computer expands -cindy to the full patbname of cindy's
home directory, creating lusrlcindyltransftle. Again, your computer must
have write permission in cindy's home directory in order for this transfer
to succeed.

Communicating with Other Sites 4-9

UsingUUCP

Indirect Transfers

You might be able to send files to a UUCP site not listed in a uuname list­
ing. As an example, suppose that your local computer is connected to a
UUCP site named machine2. Suppose also that machine2 is connected to
a UUCP site named machine3. You can send Itmpltransfile on your local
computer to lusrlspoolluucppub/ic on machine3. Do so by specifying the
full UUCP address relative to your local computer:

uucp Itmp/transfile machine2!machine3! -/transfile

Note that each site name in the command line is followed by an exclama­
tion mark. By placing several site names in a uucp command line, you
can greatly extend the range of systems to which you can copy files with
uucp. This is also true for the uuto and uux commands discussed below.

uucp Options

Several options are available for the uucp command. Some of the most
useful are the -m and -n user options.

The -m option sends you mail reporting on the success or failure of the
file transfer. The -n user option notifies the user on the machine to whom
the files are sent of the file transfer.

Other options are available for use with uucp. Refer to uucp(C) for a
complete list of these options.

Checking the Status with uustat

You can use the uustat command to check on the status of files you
copied with uucp. To check on the status of all your uucp jobs, enter the
following command:

uustat

Your output looks like the following:

1234 markt machine2 2/19-10:29 2/19-10:40 JOB IS QUEUED

4-10 XENIX User's Guide

UsingUUCP

Reading from left to right, the elements of this message are:

1234

markt

machine2

2/19-10:29

2/19-10:40

Job Status

This is the job number assigned to this uucp
transfer.

This is the user who requested the transfer.

This is the site name of the recipient's com­
puter.

This is the date and time the job was queued in
the spool directory.

This is the date and time of the uustat request.

This message tells you the status of the job. In
this case, JOB IS QUEUED tells you that the job
is in the spool directory waiting to be sent.
When the transfer is completed, uustat displays
the message: COPY FINISHED, JOB DELETED

Several options are available for use with uustat. Refer to uustat(C) for
more information.

Transferring Files with uuto

The uuto command allows you to copy files to the public directory of a
UUCP site to which your system is connected. The public directory on
most XENIX and UNIX systems is lusrlspoolluucppublic. The syntax of
uuto is:

uuto [options] sourceJile destination_computerflogin

The login argument is the login of the user to whom you are sending files.

Before you can send a file with uuto, you must verify that:

• The file has read permission set for others.

• The directory that contains the file has read and execute permis­
sions set for others.

Communicating with Other Sites 4-11

UsingUUCP

If the permissions are not correct, enter the following commands to set
the correct permissions:

chmod O+f filename
chmod O+fX directory

Files sent with uuto are placed in the directory:

lusrlspoolluucppuh/ic/receivelloginl source_computer

ill this example, login is the login of the user to whom you are sending
files and source_computer is the site name of your system.

As an example, suppose that you want to send a copy of trans file in Itmp
on your computer, machine], to a user whose login is cindy on machine2.
To do so, enter the following command:

uuto /tmp/transfile machine2!cindy

This command copies trans file to the following directory:

usrlspoolluucppuh/ic/ receivel cindylmachine]

When the file transfer is complete, the recipient is notified by mail that
the file has arrived. If the -m option is used on the uuto command line,
the sender is notified by mail of the success or failure of the transfer.

Like uucp, files transferred with uuto are not transferred immediately
after the command is entered. illstead, they are placed in a spool direc­
tory and sent when the uucico daemon awakens.

Retrieving Files with uupick

ill order to retrieve a file sent by uuto, you must use the uupick com­
mand. To execute uupick, enter the following command:

uupick

The uupick program searches the public directory for any files sent to
you. If it finds any, it responds with the following prompt:

(from source_computer: file filename?

4-12 XENIX User's Guide

UsingUUCP

The source Jomputer is the name of the sender's computer and filename
is the name of the file transferred. In the example above, if the uuto
transfer to cindy on machine2 is successful, cindy sees the following
uupick prompt:

~ from machinel: file trans file ?

Several options are available for responding to the uupick prompt. Two
of the most useful are m [dir] and d. The m [dir] option tells uupick to
move the file to directory dir. Once in dir, you can manipulate the file as
you would any other file on your system. In the example above, cindy
could enter the following in response to the uupick prompt:

m SHOME

This causes trans file to be moved from the public directory to cindy's
home directory. If no directory is specified after m, the file is moved to
the recipient's current directory.

Entering d at the uupick prompt causes the file to be deleted from the
public directory. You can quit uupick by entering q. Note other uupick
options are available. Refer to uupick(C) for a complete list of these.

Executing Commands with uux

The uux command is used to execute commands on remote UUCP sites
and on files gathered from remote UUCP sites. For security reasons, the
commands available for remote execution on a computer are often very
limited. A computer's /usrllib/uucp/Permissions file lists the commands
that can be executed remotely on that computer. If you attempt to exe­
cute a command not listed in this file, you will receive mail indicating
that the command cannot be executed on the computer in question.

The syntax of uux is:

uux [options] command-line

The command-line argument looks like any other XENIX command line,
with the exception that commands and filenames may be prefixed with
site-name!.

Communicating with Other Sites 4-13

UsingUUCP

The following is an example of how to execute a command on a remote
system. The command causes Itmplprintfile on machine2 to be sent to
machine2' s default printer:

uux machine2!1p machine2!/tmp/printfile

Note that prefixing a site name to a command causes the command to be
executed on that site.

The following is an example of how to execute a command on a local sys­
tem on files gathered with uux from remote systems. Suppose that your
local computer is connected to both machine2 and machine3. Suppose
also that you want to compare the contents of Itmplchptl on machine2
with Itmplchptl on machine3. To do so, enter the following command:

uux "ditf machine2!/tmp/chptl machine3!1tmp/chptl > ditf.file"

This command will compare the contents of the files on machine2 and
machine3 and place the output in diff.file in the current directory on the
local computer. Since there is no site name prefixed to the ditf command,
the command is executed locally.

Note that, in the example above, the uux command line is placed in quo­
tation marks. This is because it contains the redirect symbol (». In gen­
eral, place the uux command line in quotation marks whenever the com­
mand line contains special shell characters such as <, >, I , and so forth.

4-14 XENIX User's Guide

Logging in to Remote Systems

Logging in to Remote Systems
The ct command connects your system to a remote terminal with a
modem attached. The Cll command connects your system to a remote sys­
tem. The remote system can be attached via phone lines or via a simple
serial line. These commands differ from the Micnet commands and the
UUCP commands discussed above in that your session with the remote
system is interactive. The remote system "sees" you as just another user
on the system. Both ct and Cll are discussed below.

Using ct

The ct command connects a local computer to a remote terminal
equipped with a modem and allows a user on that terminal to log in to the
computer. To do this, the command dials the phone number of the remote
modem. The remote modem must be able to answer the call automatical­
ly. When ct detects that the call has been answered, it issues a getty (log­
in) process for the remote terminal and allows a user on the terminal to
log in on the computer.

This command is especially useful when issued from the opposite end,
that is, from the remote terminal itself. If you are using a remote terminal
and you want to avoid long distance charges, you can use ct to have the
computer place a call to your terminal. To do so, simply call the com­
puter, log in, and issue the ct command. The computer will hang up the
line and call your terminal back.

If ct cannot find an available dialer, it tells you that all dialers are busy
and asks if it should wait until one becomes available. If you answer yes,
it asks how long (in minutes) it should wait. If you answer no, ct quits.

The syntax of ct is:

ct [options] te/no

The argument telno is the telephone number of the remote terminal.

Communicating with Other Sites 4-15

Logging in to Remote Systems

As an example, suppose that you have a terminal with a modem attached
at home and that you want to log in to the computer at work from this ter­
minal. To avoid long distance charges, first call your work computer and
log in. Then issue the ct command to make the computer hang up and
call your terminal back. If your phone number is 932-3497, the ct com­
mand is:

ct -s1200 9323497

The -s option tells ct to call the modem at 1200 baud. If no device is
available on the computer at work, you see the following message after
executing ct:

The one 1200 baud dialer is busy
Do you want to wait for dialer? (y for yes) :

If you type n (no), the ct command exits. If you type y (yes), ct prompts
you to specify how long ct should wait:

(Time, in minutes?

If a dialer is available when you enter the ct command, you see the fol­
lowing message:

(Allocated dialer at 1200 baud

This means that a dialer has been found. You are then asked if you want
the line connecting your remote terminal to the computer to be dropped:

Proceed to hang-up? (y to hang-up, otherwise exit) :

Since you want to avoid long-distance charges by having the computer
call you, answer y (yes). You are then logged off and ct calls your remote
terminal back.

As another example, suppose that you are logged in on a computer
through a local terminal and that you want to connect a remote terminal

4-16 XENIX User's Guide

Logging in to Remote Systems

to the computer. The phone number of the modem on the remote terminal
is 932-3497. To connect the terminal, enter the following command:

nohup ct -h -s1200 9323497 &

The -h option tells ct not to disconnect the local terminal (the terminal on
which the command was issued) from the computer. Mter the command
is executed, a login prompt is displayed on the remote terminal. The user
can then log in and work on the computer just as on a local terminal.

Several options are available for et. Refer to ct(C) for a complete list of
these options.

Using cu

The eu command connects your local computer to a remote computer and
allows you to be logged in on both computers simultaneously. The
remote computer does not have to be a XENIX system.

If the remote computer is a XENIX system, eu allows you to move back
and forth between the two computers, transferring files and executing
commands on both. Note that eu only allows you to transfer text files.
You cannot transfer binary files with cu. To transfer binary files to a
remote XENIX system, use either rep or uuep.

The syntax of the cu command is:

eu [options] target

The target argument can take one of three forms:

phone number This is the number of the remote computer
to which you want to connect. You can
embed equal signs, which represent second­
ary dial tones, and dashes, which represent
four-second delays, in the phone number. A
sample phone number might be
4084551222--341. This number contains an
area code and number, two dashes for an
eight second delay and an extension.

Communicating with Other Sites 4-17

Logging in to Remote Systems

system-name

-I line

-I line dir

This is the name of a system that is listed in
the /usrllib/uucp/Systems file. The ell com­
mand obtains the telephone number and the
baud rate of system-name from this file.
The -s, -n, and -I options should not be used
with system-name. To see the list of com­
puters in the Systems file, enter: llllname.

This is the device name of the serial line
connected to the remote computer. It has
the form ttyXX, where XX is the number of a
serial line.

Connects directly with serial line instead of
making a phone connection.

Several options are available for use with the ell command. Refer to
Cll(C) for a complete list of these options.

Once the connection is made, if the remote computer is a XENIX system,
you are presented with a login prompt. Log in as you would if you were
connected locally. When you finish working on the remote computer, log
off as you would if you were connected locally. Then terminate the ell
connection by entering a tilde followed by a period (-.). You are still
logged in on the local computer.

As an example, suppose that you want to log in to a remote XENIX com­
puter via the phone lines. Suppose also that the remote computer's num­
ber is 847-7867. To connect to the remote computer, enter the following
command:

cu -s1200 8477867

The -s1200 option causes cu to use a 1200 baud dialer. If the -s option is
not specified, cu uses the first available dialer at the speed specified in the
Devices file.

4-18 XENIX User's Guide

Logging in to Remote Systems

When the remote XENIX system answers the call, eu notifies you that the
connection has been made by displaying the following message:

(Connected

Next, you are prompted for your login:

(login:

Enter your login and password. Once you enter this information, you can
use this computer as if you were logged in locally. When you are
finished, logout and then enter:

This terminates the eu session.

eu Command Strings

Several "Command Strings" are available with eu that allow your local
computer to communicate with a remote XENIX system. Two of the most
useful are take and put.

The take command allows you to copy files from the remote computer to
the local computer. Suppose, for example, that you want to copy a file
named proposal in the current directory of the remote computer to your
home directory on the local computer. To do so, enter the following com­
mand:

- % take proposal $home/proposal

Note that you have to prefix a tilde and a percent sign (-%) to the take
command, and that the tilde must be placed at the start of a line. For this
reason, it is a good idea to press (Return) before using take.

The put command allows you to do the opposite of take. It copies files
from the local computer to the remote computer. Suppose, for example,
that you want to copy a file named minutes from your home directory on
the local computer to the Itmp directory of the remote computer. Suppose

Communicating with Other Sites 4-19

Logging in to Remote Systems

also that you want the file to be called minutes.9-18 on the remote com­
puter. To do so, enter the following command:

-%put $home/minutes Itmp/minutes.9-18

Like the take command, you have to prefix a tilde and a percent sign
(-%) to the put command, with the tilde coming at the beginning of a
line. Note also that take and put copy only text files, and only to XENIX
systems. They do not copy binary files.

Note

The cu command cannot detect or correct transmission errors. After
a file transfer, you can check for loss of data by running the sum
command on both the file that was sent and the file that was
received. This command reports the total number of bytes in each
file. If the totals match, your transfer was probably successful. See
the sum(C) manual page for details.

Other command strings are available for use with cu. For a complete list
of these, see cu(C).

4-20 XENIX User's Guide

Chapter 5

The Shell

Introduction 5-1

Basic Concepts 5-2
How Shells Are Created 5-2
Commands 5-2
How the Shell Finds Commands 5-3
Generation of Argument Lists 5-3
Quoting Mechanisms 5-4
Standard Input and Output 5-6
Diagnostic and Other Outputs 5-7
Command Lines and Pipelines 5-7
Command Substitution 5-9

Shell Variables 5··11
Positional Parameters 5-11
User-Defined Variables 5-12
Predefined Special Variables 5-16

The Shell State 5-18
Changing Directories 5-18
The .profile File 5-19
Execution Flags 5-19

A Command's Environment 5-20

Invoking the Shell 5-22

Passing Arguments to Shell Procedures 5-23

Controlling the Flow of Control 5-26
Using the if Statement 5-28
Using the case Statement 5-29
Conditional Looping: while and until 5-30
LoopingOveraList: for 5-31
Loop Control: break and continue 5-32
End-of-File and exit 5-33
Command Grouping: Parentheses and Braces 5-33
Defining Functions 5-35

Input/Output Redirection and Control Commands 5-36
Transfer Between Files: The Dot (.) Command 5-36
Interrupt Handling: trap 5-36

Special Shell Commands 5-40

Creation and Organization of Shell Procedures 5-44

More About Execution Flags 5-46

Supporting Commands and Features 5-47
Conditional Evaluation: test 5-47
Echoing Arguments 5-49
Expression Evaluation: expr 5-49
True and False 5-50
In-Line Input Documents 5-50
Input / Output Redirection Using File Descriptors 5-51
Conditional Substitution 5-52
Invocation Flags 5-54

Effective and Efficient Shell Programming 5-55
Number of Processes Generated 5-55
Number of Data Bytes Accessed 5-57
Shortening Directory Searches 5-58
Directory-Search Order and the PATH Variable 5-58
Good Ways to Set Up Directories 5-59

Shell Procedure Examples 5-60

Shell Grammar 5-68

Introduction

Introduction
When users log into a XENIX system, they communicate with one of ser­
veral interpreters. This chapter discusses the shell command interpreter,
sh. This interpreter is a XENIX program that supports a very powerful
command language. Each invocation of this interpreter is called a shell;
and each shell has one function: to read and execute commands from its
standard input.

Because the shell gives the user a high-level language in which to com­
municate with the operating system, you can perfonn tasks unheard of in
less sophisticated operating systems. Commands that would nonnally
have to be written in a traditional programming language can be written
with just a few lines in a shell procedure. In other operating systems,
commands are executed in strict sequence. With the shell, commands can
be:

• Combined to fonn new commands

• Passed positional parameters

• Added or renamed by the user

• Executed within loops or executed conditionally

• Created for local execution without fear of name conflict with
other user commands

• Executed in the background without interrupting a session at a ter­
minal

Furthennore, commands can "redirect" command input from one source
to another and redirect command output to a file, tenninal, printer, or to
another command. This provides flexibility in tailoring a task for a par­
ticular purpose.

The Shell 5-1

Basic Concepts

Basic Concepts
The shell itself (that is, the program that reads your commands when you
log in or that is invoked with the sh command) is a program written in the
C language; it is not part of the operating system proper, but an ordinary
user program.

How Shells Are Created

On a XENIX system, a process is an executing entity complete with
instructions, data, input, and output. All processes have lives of their own,
and may even start (or "fork") new processes. Thus, at any given moment
several processes may be executing, some of which are "children" of
other processes.

Users log into the operating system and are assigned a "shell" from
which they execute. This shell is a personal copy of the shell command
interpreter that is reading commands from the keyboard: in this context,
the shell is simply another process.

In the XENIX multitasking environment, files may be created in one phase
and then sent off to be processed in the "background." This allows the
user to continue working while programs are running.

Commands

The most common way of using the shell is by entering simple commands
at your keyboard. A simple command is any sequence of arguments
separated by spaces or tabs. The first argument (numbered zero) specifies
the name of the command to be executed. Any remaining arguments,
with a few exceptions, are passed as arguments to that command. For
example, the following command line might be entered to request print­
ing of the files allan, barry, and calvin:

lpr allan barry calvin

If the first argument of a command names a file that is executable (as
indicated by an appropriate set of permission bits associated with that
file) and is actually a compiled program, the shell, as parent, creates a
child process that immediately executes that program. If the file is
marked as being executable, but is not a compiled program, it is assumed

5-2 XENIX User's Guide

Basic Concepts

to be a shell procedure, that is, a file of ordinary text containing shell
command lines. In this case, the shell spawns another instance of itself (a
subshell) to read the file and execute the commands inside it.

From the user's viewpoint, compiled programs and shell procedures are
invoked in exactly the same way. The shell determines which implemen­
tation has been used, rather than requiring the user to do so. This pro­
vides uniformity of invocation.

How the Shell Finds Commands

The shell normally searches for commands in three distinct locations in
the file system. The shell attempts to use the command name as given; if
this fails, it prepends the string /bin to the name. If the latter is unsuc­
cessful, it prepends /usr/bin to the command name. The effect is to
search, in order, the current directory, then the directory /bin, and finally,
lusr/bin. For example, the pr and man commands are actually the files
/bin/pr and /usr/bin/man, respectively. A more complex pathname may
be given, either to locate a file relative to the user's current directory, or
to access a command with an absolute pathname. If a given command
name includes a slash (I) (for example, /binlsort dir/cmd), the prepending •
is not performed. Instead, a single attempt is made to execute the com-
mand as named.

This mechanism gives the user a convenient way to execute public com­
mands and commands in or near the current directory, as well as the abil­
ity to execute any accessible command, regardless of its location in the
file structure. Because the current directory is usually searched first, any­
one can possess a private version of a public command without affecting
other users. Similarly, the creation of a new public command does not
affect a user who already has a private command with the same name.
The particular sequence of directories searched may be changed by reset­
ting the shell PATH variable. (Shell variables are discussed later in this
chapter.)

Generation of Argument Lists

The arguments to commands are very often filenames. Sometimes, these
filenames have similar, but not identical, names. To take advantage of
this similarity in names, the shell lets the user specify patterns that match
the filenames in a directory. If a pattern is matched by one or more
filenames in a directory, then those filenames are automatically generated
by the shell as arguments to the command.

The Shell 5-3

Basic Concepts

Most characters in such a pattern match themselves, but there are also
XENIX special characters that may be included in a pattern. These spe­
cial characters are: the star (*), which matches any string, including the
null string; the question mark (?), which matches anyone character; and
any sequence of characters enclosed within brackets ([and]), which
matches anyone of the enclosed characters. Inside brackets, a pair of
characters separated by a dash (-) matches any character within the range
of that pair. Thus [a-de] is equivalent to [abcde].

Examples of metacharacter usage:

Metacharacter

*
temp
[a-f]*
*.c
lusr/binl?

Meaning

Matches all names in the current directory
Matches all names containing "temp"

Matches all single-character names in /usr/bin

This pattern-matching capability saves typing and, more importantly,
makes it possible to organize information in large collections of files that
are named in a structured fashion, using common characters or extensions
to identify related files.

Pattern matching has some restrictions. If the first character of a filename
is a period (.), it can be matched only by an argument that literally begins
with a period. If a pattern does not match any filenames, then the pattern
itself is the result of the match.

Note that directory names should not contain any of the following charac­
ters:

* ? []

If these characters are used, then infinite recursion may occur during pat­
tern matching attempts.

Quoting Mechanisms

Several characters, including <,>, * ,? , [and], have special meanings to the
shell. To remove the special meaning of these characters requires some
form of quoting. This is done by using single quotation marks n or dou­
ble quotation marks (") to surround a string. A backslash (\) before a sin­
gle character provides this function. (Back quotation marks (') are used
only for command substitution in the shell and do not hide the special
meanings of any characters.)

5-4 XENIX User's Guide

Basic Concepts

All characters within single quotation marks are taken literally. Thus:

echostuff='echo $? $*; Is * I wc'

results in the string:

echo $? $*; Is * I wc

being assigned to the variable echostuff, but it does not result in any other
commands being executed.

Within double quotation marks, the special meaning of certain characters
does persist, while all other characters are taken literally. The characters
that retain their special meaning are the dollar sign ($), the backslash (\),
the back quotation mark ('), and the double quotation mark (") itself.
Thus, within double quotation marks, variables are expanded and com­
mand substitution takes place (both topics are discussed in later sections).
However, any commands in a command substitution are unaffected by
double quotation marks, so that characters such as star (*) retain their spe­
cial meaning.

To hide the special meaning of the dollar sign ($) and single and double
quotation marks within double quotation marks, precede these characters
with a backslash (\). Outside of double quotation marks, preceding a
character with a backslash is equivalent to placing single quotation marks
around that character. A backslash (\) followed by a newline causes that
newline to be ignored. The backslash-newline pair is therefore useful in
allowing continuation of long command lines.

Some examples of quoting are displayed below:

Input Shell interprets as:
, , ' The back quotation mark (')
"It ' The double quotation mark (")
" echo one" the one word '" echo one' "
"\" " The double quotation mark (")
"'echo one'" the one word "one"
ff'ff illegal (expects another ')
one two the two words "one" & "two"
"one two" the one word "one two"
'one two

,
the one word "one two"

,
one * two' the one word "one * two"

"one * two" the one word "one * two"
,
echo one' the one word "one"

The Shell 5-5

Basic Concepts

Standard Input and Output

In general, most commands do not know or care whether their input or
output is coming from or going to a terminal or a file. Thus, a command
can be used conveniently either at a terminal or in a pipeline. A few com­
mands vary their actions depending on the nature of their input or output,
either for efficiency, or to avoid useless actions (such as attempting ran­
dom access I/O on a terminal or a pipe).

When a command begins execution, it usually expects that three files are
already open: a "standard input" ,a "standard output" , and a "diagnostic
output" (also called "standard error"). A number called afile descriptor
is associated with each of these files. By convention, file descriptor 0 is
associated with the standard input, file descriptor 1 with the standard out­
put, and file descriptor 2 with the diagnostic output. A child process nor­
mally inherits these files from its parent; all three files are initially con­
nected to the terminal (0 to the keyboard, 1 and 2 to the terminal screen).
The shell permits the files to be redirected elsewhere before control is
passed to an invoked command.

An argument to the shell of the form "<file" or ">file" opens the specified
file as the standard input or output (in the case of output, destroying the
previous contents of file, if any). An argument of the form "»file"
directs the standard output to the end of file, thus providing a way to
append data to the file without destroying its existing contents. In either
of the two output cases, the shell creates file if it does not already exist.
Thus:

> output

alone on a line creates a zero-length file. The following appends to file
log the list of users who are currently logged on:

who » log

Such redirection arguments are only subject to variable and command
substitution; neither blank interpretation nor pattern matching of
filenames occurs after these substitutions. This means that:

echo 'this is a test' > *.gal

produces a one-line file named *.gal. Similarly, an error message is pro­
duced by the following command, unless you have a file with the name
"?":

cat < ?

5-6 XENIX User's Guide

Basic Concepts

Special characters are not expanded in redirection arguments because
redirection arguments are scanned by the shell before pattern recognition
and expansion takes place.

Diagnostic and Other Outputs

Diagnostic output from XENIX commands is normally directed to the file
associated with file descriptor 2. (There is often a need for an error output
file that is different from standard output so that error messages do not get
lost down pipelines.) You can redirect this error output to a file by
immediately prepending the number of the file descriptor (2 in this case)
to either output redirection symbol (> or »). The following line appends
error messages from the cc command to the file named ERRORS:

cc testfile.c 2» ERRORS

Note that the file descriptor number must be prepended to the redirection
symbol without any intervening spaces or tabs; otherwise, the number
will be passed as an argument to the command.

This method may be generalized to allow redirection of output associated
with any of the first ten file descriptors (numbered 0-9). For instance, if
cmd puts output on file descriptor 9, then the following line will direct
that output to the file sa:vedata:

cmd 9> savedata

A command often generates standard output and error output, and might
even have some other output, perhaps a data file. In this case, one can
redirect independently all the different outputs. Suppose, for example,
that cmd directs its standard output to file descriptor 1, its error output to
file descriptor 2, and builds a data file on file descriptor 9. The following
would direct each of these three outputs to a different file:

cmd >standard 2> error 9> data

Command Lines and Pipelines

A sequence of commands separated by the vertical bar (I) makes up a
pipeline. In a pipeline consisting of more than one command, each com­
mand is run as a separate process connected to its neighbors by pipes, that
is, the output of each command (except the last one) becomes the input of
the next command in line.

The Shell 5-7

Basic Concepts

Afilter is a command that reads its standard input, transforms it in some
way, then writes it as its standard output. A pipeline normally consists of
a series of filters. Although the processes in a pipeline are permitted to
execute in parallel, each program needs to read the output of its predeces­
sor. Many commands operate on individual lines of text, reading a line,
processing it, writing it out, and looping back for more input. Some must
read large amounts of data before producing output; sort is an example of
the extreme case that requires all input to be read before any output is
produced. The following is an example of a typical pipeline:

nroff -mm text I coli lpr

nrolf is a text formatter available in the UNIX Text Processing System
whose output may contain reverse line motions, col converts these
motions to a form that can be printed on a terminal lacking reverse­
motion capability, and Ipr does the actual printing. The flag -mm indi­
cates one of the commonly used formatting options, and text is the name
of the file to be formatted.

The following examples illustrate the variety of effects that can be
obtained by combining a few commands in the ways described above. It
may be helpful to try these at a terminal:

• who
Prints the list of logged-in users on the terminal screen.

• who »Iog
Appends the list oflogged-in users to the end of file log.

• who I we -I
Prints the number of logged-in users. (The argument to we is pro­
nounced "minus ell".)

• who I pr
Prints a paginated list of logged-in users.

• who I sort
Prints an alphabetized list of logged-in users.

• who I grep bob
Prints the list of logged-in users whose login names contain the
string bob.

• who I grep bob I sort I pr
Prints an alphabetized, paginated list of logged-in users whose log­
in names contain the string bob.

5-8 XENIX User's Guide

Basic Concepts

• {date; who I wc -I; } »Iog
Appends (to file log) the current date followed by the count of
logged-in users. Be sure to place a space after the left brace and a
semicolon before the right brace.

• who I sed -e 's/ .*/ /' I sort I uniq -d
Prints only the login names of all users who are logged in more
than once. Note the use of sed as a filter to remove characters
trailing the login name from each line. (The ".*" in the sed com­
mand is preceded by a space.)

The who command does not by itself provide options to yield all these
results-they are obtained by combining who with other commands.
Note that who just serves as the data source in these examples. As an
exercise, replace "who I " with "</etc/passwd" in the above examples to
see how a file can be used as a data source in the same way. Notice that
redirection arguments may appear anywhere on the command line, even
at the start. This means that:

< infile >outfile sort I pr

is the same as:

sort < infile I pr > outfile

Command Substitution

Any command line can be placed within back quotation marks (' ... ') so
that the output of the command replaces the quoted command line itself.
This concept is known as command substitution. The command or com­
mands enclosed between back quotation marks are first executed by the
shell and then their output replaces the whole expression, back quotation
marks and all. This feature is often used to assign to shell variables.
(Shell variables are described in the next section.)

The Shell 5-9

•

Basic Concepts

For example:

today= 'date'

assigns the string representing the current date to the variable "today"; for
example "The Nov 2616:01:09 EST 1985". The following command saves
the numberoflogged-in users in the shell variable users:

users= 'who I wc -1'

Any command that writes to the standard output can be enclosed in back quo­
tation marks. Back quotation marks may be nested, but the inside sets must
be escaped with backslashes (\). Forexample:

logmsg='echo Your login directory is \'pwd\"

will display the line "your login directory is name of login directory". Shell
variables can also be given values indirectly by using the read and line com­
mands. The read command takes a line from the standard input (usually your
terminal) and assigns consecutive words on that line to any variables named.

For example:

read first init last

takes an input line of the form:

G. A. Snyder

and has the same effect as entering:

first=G. init=A. last=Snyder

The read command assigns any excess "words" to the last variable.

The line command reads a line of input from the standard input and then
echoes it to the standard output.

5-10 XENIX User's Guide

Shell Variables

Shell Variables
The shell has several mechanisms for creating variables. A variable is a
name representing a string value. Certain variables are referred to as
positional parameters; these are the variables that are normally set only
on the command line. Other shell variables are simply names to which
the user or the shell itself may assign string values.

Positional Parameters

When a shell procedure is invoked, the shell implicitly creates positional
parameters. The name of the shell procedure itself in position zero on the
command line is assigned to the positional parameter $0. The first com­
mand argument is called $1, and so on. The shift command may be used
to access arguments in positions numbered higher than nine. For exam­
ple, the following shell script might be used to cycle through command
line switches and then process all succeeding files:

while test -n "$1"

done

do case $1 in
-a) A=aoption ; shift ;;
-b) B=boption ; shift ;;
-c) C=coption ; shift ;;

-*) echo "bad option" ; exit 1 ;;
*) process rest of files
esac

One can explicitly force values into these positional parameters by using
the set command. For example:

set abc def ghi

assigns the string "abc" to the first positional parameter, $1, the string
"def" to $2, and the string "ghi" to $3. Note that $0 may not be assigned
a value in this way-it always refers to the name of the shell procedure;
or in the login shell, to the name of the shell.

The Shell 5-11

Shell Variables

User-Defined Variables

The shell also recognizes alphanumeric variables to which string values
may be assigned. A simple assignment has the syntax:

name=string

Thereafter, $name will yield the value string. A name is a sequence of
letters, digits, and underscores that begins with a letter or an underscore.
No spaces surround the equal sign (=) in an assignment statement. Note
that positional parameters may not appear on the left side of an assign­
ment statement; they can only be set as described in the previous section.

More than one assignment may appear in an assignment statement, but
beware: the shell peiforms the assignments from right to left. Thus, the
following command line results in the variable "A" acquiring the value
"abc":

A=$B B=abc

The following are examples of simple assignments. Double quotation
marks around the right-hand side allow spaces, tabs, semicolons, and
newlines to be included in a string, while also allowing variable substitu­
tion (also known as "parameter substitution") to occur. This means that
references to positional parameters and other variable names that are
prefixed by a dollar sign ($) are replaced by the corresponding values, if
any. Single quotation marks inhibit variable substitution:

MAIL=/usr/mail/gas
echovar="echo $1 $2 $3 $4"
stars=*****
asterisks='$stars'

In the above example, the variable echovar has as its value the string con­
sisting of the values of the first four positional parameters, separated by
spaces, plus the string "echo". No quotation marks are needed around the
string of asterisks being assigned to stars because pattern matching
(expansion of star, the question mark, and brackets) does not apply in this
context. Note that the value of $asterisks is the literal string "$stars", not
the string "*****", because the single quotation marks inhibit substitu­
tion.

5-12 XENIX User's Guide

Shell Variables

In assignments, spaces are not re-interpreted after variable substitution, so
that the following example results in $first and $second having the same
value:

first='a string with embedded spaces
second=$first

In accessing the values of variables, you may enclose the variable name
in braces { ... } to delimit the variable name from any following string. In
particular, if the character immediately following the name is a letter,
digit, or underscore, then the braces are required. For example, examine
the following input:

a='This is a string'
echo "$ {a} ent test of variables."

Here, the echo command prints:

~ This is a stringent test of variables.

If no braces were used, the shell would substitute a null value for "$aent" •
and print:

~ test of variables.

The following variables are maintained by the shell. Some of them are
set by the shell, and all of them can be reset by the user:

HOME

IPS

The Shell

Initialized by the login program to the name of the
user's login directory, that is, the directory that
becomes the current directory upon completion of
a login; cd without arguments switches to the
$HOME directory. Using this variable helps keep
full patbnames out of shell procedures. This is of
great benefit when patbnames are changed, either
to balance disk loads or to reflect administrative
changes.

The variable that specifies which characters are
internal field separators. These are the characters
the shell uses during blank interpretation. (If you
want to parse some delimiter-separated data
easily, you can set IPS to include that delimiter.)

5-13

Shell Variables

The shell initially sets IPS to include the blank,
tab, and newline characters.

MAIL The pathname of a file where your mail is depo­
sited. If MAIL is set, then the shell checks to see
if anything has been added to the file it names and
announces the arrival of new mail each time you
return to command level (e.g., by leaving the edi­
tor). MAIL is not set automatically; if desired, it
should be set (and optionally "exported") in the
user's .profile. (The export command and .profile
file are discussed later in this chapter.) (The pres­
ence of mail in the standard mail file is also
announced at login, regardless of whether MAIL
is set.)

MAILCHECK This parameter specifies how often (in seconds)
the shell will check for the arrival of mail in
the files specified by the MAILPATH or MAIL
parameters. The default value is 600 seconds (10
minutes). If set to 0, the shell will check before
each prompt.

MAILPATH A colon (:) separated list of file names. If this
parameter is set, the shell informs the user of the
arrival of mail in any of the specified files. Each
file name can be followed by % and a message
that will be printed when the modification time
changes. The default message is you have mail.

SHACCT If this parameter is set to the name of a file writ­
able by the user, the shell will write an accounting
record in the file for each shell procedure exe­
cuted. Accounting routines such as
acctcom(ADM) and accton(ADM) can be used to
analyze the data collected.

SHELL When the shell is invoked, it scans the environ­
ment for this name. If it is found and there is an
'r' in the file name part of its value, the shell
becomes a restricted shell.

PATH The variable that specifies the search path used by
the shell in finding commands. Its value is an
ordered list of directory pathnames separated by
colons. The shell initializes PATH to the list
:/bin:/usr/bin where a null argument appears in
front of the first colon. A null anywhere in the

5-14 XENIX User's Guide

CDPATH

PSI

PS2

The Shell

Shell Variables

path list represents the current directory. On some
systems, a search of the current directory is not
the default and the PATH variable is initialized
instead to /bin:/usr/bin. If you wish to search your
current directory last, rather than first, use:

PATH=/bin:/usr/bin:

Below, the two colons together represent a colon
followed by a null, followed by a colon, thus nam­
ing the current directory. You could possess a per­
sonal directory of commands (say, $HOME/bin)
and cause it to be searched before the other three
directories by using:

PATH=$HOME/bin::/bin:/usr/bin

PATH is normally set in your .profile file.

This variable defines the search path for the direc­
tory containing argo Alternative directory names
are separated by a colon (:). The default path is
<null> (specifying the current directory). The
current directory is specified by a null path name,
which can appear immediately after the equal sign
or between the colon delimiters anywhere else in
the path list. If arg begins with a / then the search
path is not used. Otherwise, each directory in the
path is searched for argo

The variable that specifies what string is to be
used as the primary prompt string. If the shell is
interactive, it prompts with the value of PS 1 when
it expects input. The default value of PS 1 is "$ "
(a dollar sign ($) followed by a blank).

The variable that specifies the secondary prompt
string. If the shell expects more input when it
encounters a newline in its input, it prompts with
the value of PS2. The default value for this vari­
able is "> "(a greater-than symbol followed by a
space).

5-15

•

Shell Variables

In general, you should be sure to export all of the above variables so that
their values are passed to all shells created from your login. Use export
at the end of your .profile file. An example of an export statement fol­
lows:

export HOME IFS MAIL PATH PSl PS2

Predefined Special Variables

Several variables have special meanings; the following are set only by
the shell:

5-16

$# Records the number of arguments passed to the shell, not
counting the name of the shell procedure itself. For
instance, $# yields the number of the highest set posi­
tional parameter. Thus:

sh cmd abc

automatically sets $# to 3. One of its primary uses is in
checking for the presence of the required number of argu­
ments:

if test $# -It 2
then

echo 'two or more args required'; exit
fi

$? Contains the exit status of the last command executed
(also referred to as "return c()de", "exit code", or
"value"). Its value is a decimal string. Most XENIX
commands return zero to indicate successful completion.
The shell itself returns the current value of $? as its exit
status.

$$ The process number of the current process. Because pro­
cess numbers are unique among all existing processes,
this string is often used to generate unique names for tem­
porary files. The operating system provides no mecha­
nism for the automatic creation and deletion of temporary
files; a file exists until it is explicitly removed. Tem­
porary files are generally undesirable objects; the XENIX
pipe mechanism is far superior for many applications.
However, the need for uniquely-named temporary files
does occasionally occur.

XENIX User's Guide

Shell Variables

The following example illustrates the recommended prac­
tice of creating temporary files; note that the directories
lusr and lusrltmp are cleared out if the system is rebooted.

use current process id
to form unique temp file
temp=/usr/tmp/$$
ls > $temp
commands here, some of which use $temp
rm -f $ternp
clean up at end

$! The process number of the last process run in the back­
ground (using the ampersand (&». This is a string con­
taining from one to five digits.

$- A string consisting of names of execution flags currently
turned on in the shell. For example, $- might have the
value "xv" if you are tracing your output.

The Shell 5-17

II

The Shell State

The Shell State
The state of a given instance of the shell includes the values of positional
parameters, user-defined variables, environment variables, modes of exe­
cution, and the current working directory.

The state of a shell may be altered in various ways. These include chang­
ing the working directory with the cd command, setting several flags, and
by reading commands from the special file, .profile, in your login direc­
tory.

Changing Directories

The cd command changes the current directory to the one specified as its
argument. This can and ,should be used to change to a convenient place in
the directory structure. Note that cd is often placed within parentheses to
cause a subshell to chabge to a different directory and execute some com­
mands without affecting the original shell.

For example, the first sequence below copies the file fetc/passwd to
fusrfyoufpasswd; the second example first changes directory to fete and
then copies the file:

cp fetcfpasswd /usrfyou/passwd
(cd fetc; cp passwd /usr/youfpasswd)

Note the use of parentheses. Both command lines have the same effect.

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched), spelling
correction is applied to each component of directory, in a search for the
"correct" name. The shell then asks whether or not to try and change
directory to the corrected directory name; an answer of n means "no", and
anything else is taken as "yes."

5-18 XENIX User's Guide

The Shell State

The .profile File

The file named .profile is read each time you log in. It is normally used to
execute special one-time-only commands and to set and export variables
to all later shells. Only after commands are read and executed from
.profile, does the shell read commands from the standard input-usually
the terminal.

If you wish to reset the environment after making a change to the .profile
file, enter

.profile

This command eliminates the need to log out and then log in again to exe­
cute .profile.

Execution Flags
The set command lets you alter the behavior of the shell by setting certain
shell flags. In particular, the -x and -v flags may be useful when invoking
the shell as a command from the terminal. The flags -x and -v may be set
by entering:

set -xv

The same flags may be turned offby entering:

set +xv

These two flags have the following meaning:

-v Input lines are printed as they are read by the shell. This
flag is particularly useful for isolating syntax errors. The
commands on each input line are executed after that input
line is printed.

-x Commands and their arguments are printed as they are
executed. (Shell control commands, such as for, while,
etc., are not printed, however.) Note that -x causes a
trace of only those commands that are actually executed,
whereas -v prints each line of input until a syntax error is
detected.

The set command is also used to set these and other flags within shell pro­
cedures.

The Shell 5-19

II

A Command's Environment

A Command's Environment
All variables and their associated values that are known to a command at
the beginning of its execution make up its environment. This environ­
ment includes variables that the command inherits from its parent process
and variables specified as keyword parameters on the command line that
invokes the command.

The variables that a shell passes to its child processes are those that have
been named as arguments to the export command. The export command
places the named variables in the environments of both the shell and all
its future child processes.

Keyword parameters are variable-value pairs that appear in the form of
assignments, normally before the procedure name on a command line.
Such variables are placed in the environment of the procedure being
invoked. For example:

keycommand
echo $a $b

This is a simple procedure that echoes the values of two variables. If it is
invoked as:

a=keyl b=key2 keycomrnand

then the resulting output is:

keyl key2

Keyword parameters are not counted as arguments to the procedure and
do not affect $#.

A procedure may access the value of any variable in its environment.
However, if changes are made to the value of a variable, these changes
are hot reflected in the environment; they are local to· the procedure in
question. In order for these changes to be placed in the environment that
the procedure passes to its child processes, the variable must be named as
an argument to the export command within that procedure. To obtain a
list of variables that have been made exportable from the current shell,
enter:

export

5-20 XENIX User's Guide

A Command's Environment

You will also get a list of variables that have been made readonly. To get
a list of name-value pairs in the current environment, enter either:

printenv

or

env

The Shell 5-21

•

Invoking the Shell

Invoking the Shell
The shell is a command and may be invoked in the same way as any other
command:

sh proc [arg ...]

sh -v proc [arg ...]

proc [arg ...]

5-22

A new instance of the shell is explic­
itly invoked to read proc. Arguments,
if any, can be manipulated.

This is equivalent to putting "set -v"
at the beginning of proc. It can be
used in the same way for the -x, -e, -0,

and -n flags.

If proc is an executable file, and is not
a compiled executable program, the
effect is similar to that of:

shproc args

An advantage of this form is that vari­
abIes that have been exported in the
shell will still be exported from proc
when this form is used (because the
shell only forks to read commands
from proc). Thus any changes made
within proc to the values of exported
variables will be passed on to subse­
quent commands invoked from proc.

XENIXUser's Guide

Passing Arguments to Shell Procedures

Passing Arguments to Shell
Procedures
When a command line is scanned, any character sequence of the form $n
is replaced by the nth argument to the shell, counting the name of the
shell procedure itself as $0. This notation permits direct reference to the
procedure name and to as many as nine positional parameters. Additional
arguments can be processed using the shift command or by using a for
loop.

The shift command shifts arguments to the left; i.e., the value of $1 is
thrown away, $2 replaces $1, $3 replaces $2, and so on. The highest­
numbered positional parameter becomes unset ($0 is never shifted). For
example, in the shell procedure ripple below, echo writes its arguments to
the standard output.

ripple command
while test $# != 0
do

done

echo $1 $2 $3 $4 $5 $6 $7 $8 $9
shift

Lines that begin with a number sign (#) are comments. The looping com­
mand, while, is discussed in "Conditional Looping: while and until" in
this chapter. If the procedure were invoked with:

ripple abc

it would print:

I a b, b c
c

The Shell 5-23

Passing Arguments to Shell Procedures

The special shell variable "star" ($*) causes substitution of all positional
parameters except $0. Thus, the echo line in the ripple example above
could be written more compactly as:

echo $*

These two echo commands are not equivalent: the first prints at most
nine positional parameters; the second prints all of the current positional
parameters. The shell star variable ($*) is more concise and less error­
prone. One obvious application is in passing an arbitrary number of argu­
ments to a command. For example:

we $*

counts the words of each of the files named on the command line.

It is important to understand the sequence of actions used by the shell in
scanning command lines and substituting arguments. The shell first reads
input up to a newline or semicolon, and then parses that much of the
input. Variables are replaced by their values and then command substitu­
tion (via back quotation marks) is attempted. I/O redirection arguments
are detected, acted upon, and deleted from the command line. Next, the
shell scans the resulting command line for internal field separators, that
is, for any characters specified by IPS to break the command line into dis­
tinct arguments; explicit null arguments (specified by "" or ") are
retained, while implicit null arguments resulting from evaluation of vari­
abIes that are null or not set are removed. Then filename generation
occurs with all metacharacters being expanded. The resulting command
line is then executed by the shell.

Sometimes, command lines are built inside a shell procedure. In this
case, it is sometimes useful to have the shell rescan the command line
after all the initial substitutions and expansions have been performed.
The special command eval is available for this purpose. eval takes a
command line as its argument and simply rescans the line, performing
any variable or command substitutions that are specified. Consider the
following (simplified) situation:

5-24

command=who
output=' I we -1'
eva1 $command $output

XENIX User's Guide

Passing Arguments to Shell Procedures

This segment of code results in the execution of the command line:

who I we -1

Uses of eval can be nested so that a command line can be evaluated
several times.

The Shell 5-25

Controlling the Flow of Control

Controlling the Flow of Control
The shell provides several commands that implement a variety of control
structures useful in controlling the flow of control in shell procedures.
Before describing these structures, a few terms need to be defined.

A simple command is any single irreducible command specified by the
name of an executable file. I/O redirection arguments can appear in a
simple command line and are passed to the shell, not to the command.

A command is a simple command or any of the shell control commands
described below. A pipeline is a sequence of one or more commands
separated by vertical bars (I). In a pipeline, the standard output of each
command but the last is connected (by a pipe) to the standard input of the
next command. Each command in a pipeline is run separately; the shell
waits for the last command to finish. The exit status of a pipeline is the
exit status of last process in the pipeline.

A command list is a sequence of one or more pipelines separated by a
semicolon (;), an ampersand (&), an "and-if" symbol (&&), or an "or-if"
(II) symbol, and optionally terminated by a semicolon or an ampersand.
A semicolon causes sequential execution of the previous pipeline. This
means that the shell waits for the pipeline to finish before reading the next
pipeline. On the other hand, the ampersand (&) causes asynchronous
background execution of the preceding pipeline. Thus, both sequential
and background execution are allowed. A background pipeline continues
execution until it terminates voluntarily, or until its processes are killed.

Other uses of the ampersand include off-line printing, background compi­
lation, and generation of jobs to be sent to other computers. For example,
if you enter:

nohup cc prog.c&

You may continue working while the C compiler runs in the background.
A command line ending with an ampersand is immune to interrupts or
quits that you might generate by typing INTERRUPT or QUIT. However,
(Ctrl)d will abort the command if you are operating over a dial-up line or
have stty hupcl. In this case, it is wise to make the command immune to
hang-ups (Le., logouts) as well. The nohup command is used for this pur­
pose. In the above example without nohup, if you log out from a dial-up
line while cc is still executing, cc will be killed and your output will
disappear.

5-26 XENIX User's Guide

Controlling the Flow of Control

The ampersand operator should be used with restraint, especially on
heavily-loaded systems. Other users will not consider you a good citizen
if you start up a large number of background processes without a compel­
ling reason for doing so.

The and-if and or-if (&& and II) operators cause conditional execution of
pipelines. Both of these are of equal precedence when evaluating com­
mand lines (but both are lower than the ampersand (&) and the vertical
bar (I ». In the command line:

cmdl II cmd2

the first command, cmdl, is executed and its exit status examined. Only
if cmdl fails (Le., has a nonzero exit status) is cmd2 executed. Thus, this
is a more terse notation for:

if cmdl
test $? != 0

then
cmd2

fi

The and-if operator (&&) yields a complementary test. For example, in
the following command line:

cmdl && cmd2

the second command is executed only if the first succeeds (and has a zero
exit status). In the sequence below, each command is executed in order
until one fails:

cmdl && cmd2 && cmd3 && ... && cmdn

A simple command in a pipeline may be replaced by a command list
enclosed in either parentheses or braces. The output of all the commands so
enclosed is combined into one stream that becomes the input to the next com­
mand in the pipeline. The following line formats and prints two separate
documents:

{ nroff -mm textl; nroff -mm text2; } I lpr

Note that a space is needed after the left brace and that a semicolon should
appear before the right brace.

The Shell 5-27

Controlling the Flow of Control

Using the if Statement

The shell provides structured conditional capability with the if command.
The simplest if command has the following form:

if command-list
then command-list
6

The command list following the if is executed and if the last command in the
list has a zero exit status, then the command list that follows then is exe­
cuted. The word 6 indicates the end of the if command.

To cause an alternative set of commands to be executed when there is a
nonzero exit status, an else clause can be given with the following structure:

if command-list
then command-list
else command-list
6

Multiple tests can be achieved in an if command by using the elif clause,
although the case statement may be better for large numbers of tests. For
example:

if test -f "$1"
is $1 a file?
then pr $1
elif test -d "$1"
else, is $1 a directory?
then (cd $1; pr *)
else echo $1 is neither a file nor a directory
fi

The above example is executed as follows: if the value of the first positional
parameter is a filename (-f), then print that file; if not, then check to see if it is
the name of a directory (-d). If so, change to that directory (cd) and print all
the files there (pr *). Otherwise, echo the error message.

The if command may be nested (but be sure to end each one with a 6). The
new lines in the above examples of if may be replaced by semicolons.

The exit status of the if command is the exit status of the last command exe­
cuted in any then clause or else clause. If no such command was executed, if
returns a zero exit status.

5-28 XENIX User's Guide

Controlling the Flow of Control

Note that an alternate notation for the test command uses brackets to
enclose the expression being tested. For example, the previous example
might have been written as follows:

if [-f "$1"
is $1 a file?
then pr $1
elif [-d "$1"
else, is $1 a directory?

(cd $1; pr *) then
else
fi

echo $1 is neither a file nor a directory

Note that a space after the left bracket and one before the right bracket are
essential in this form of the syntax.

Using the case Statement

A multiple test conditional is provided by the case command. The basic
format of the case statement is:

case string in
pattern) command-list ;;

pattern) command-list ;;
esae

The shell tries to match string against each pattern in turn, using the same
pattern-matching conventions as in filename generation. If a match is found,
the command list following the matched pattern is executed; the double
semicolon (;;) serves as a break out of the case and is required after each com­
mand list except the last. Note that only one pattern is ever matched, and that
matches are attempted in order, so that if a star (*) is the first pattern in a case,
no other patterns are looked at.

The Shell 5-29

II

Controlling the Flow of Control

More than one pattern may be associated with a given command list by
specifying alternate patterns separated by vertical bars (I).

case $i in
*.c) cc $i

; ;
*.h *.sh)

: do nothing
; ;

*) echo "$i of unknown type"
; ;

esac

In the above example, no action is taken for the second set of patterns
because the null, colon (:) command is specified. The star (*) is used as a
default pattern, because it matches any word.

The exit status of case is the exit status of the last command executed in the
case command. If no commands are executed, then case has a zero exit
status.

Conditional Looping: while and until

A while command has the general fonn:

while command-list
do

command-list
done

The commands in the first command-list are executed, and if the exit status of
the last command in that list is zero, then the commands in the second
command-list are executed. This sequence is repeated as long as the exit
status of the first command-list is zero. A loop can be executed as long as the
first command-list returns a nonzero exit status by replacing while with
until.

Any newline in the above example may be replaced by a semicolon. The exit
status of a while (or until) command is the exit status of the last command
executed in the second command-list. If no such command is executed,
while (or until) has a zero exit status.

5-30 XENIX User's Guide

Controlling the Flow of Control

Looping Over a List: for

Often, one wishes to perform some set of operations for each file in a set
of files, or execute some command once for each of several arguments.
The for command can be used to accomplish this. The for command has
the format:

for variable in word-list
do

command-list
done

Here word-list is a list of strings separated by blanks. The commands in the
command-list are executed once for each word in the word-list. Variable
takes on as its value each word from the word list, in turn. The word list is
fixed after it is evaluated the first time. For example, the following for loop
causes each of the C source files xec.c, cmd.c, and word.c in the current direc­
tory to be compared with a file of the same name in the directory
/usr/src/cmd/sh:

for CFILE in xec cmd word
do diff $CFlLE.c /usr/src/cmd/sh/$CFILE.c
done

Note that the first occurrence of CFILE immediately after the word for has no
preceding dollar sign, since the name of the variable is wanted and not its
value.

You can omit the "in word-list" part of a for command; this causes the
current set of positional parameters to be used in place of word-list. This is
useful when writing a command that performs the same set of commands for
each of an unknown number of arguments.

As an example, create a file named echo2 that contains the following shell
script:

for word
do echo $word$word
done

Give echo2 execute status:

chmod +x ech02

The Shell 5-31

Controlling the Flow of Control

Now type the following command:

ech02 rna pa bo fi yo no so ta

The output from this command is:

mama
papa
bobo
fiii
yoyo
nono
soso
tata

Loop Control: break and continue

The break command can be used to terminate execution of a while or a
for loop. The continue command immediately starts the execution of the
next iteration of the loop. These commands are effective only when they
appear between do and done.

The break command terminates execution of the smallest (Le., inner­
most) enclosing loop, causing execution to resume after the nearest fol­
lowing unmatched done. Exit from n levels is obtained by break n.

5-32 XENIX User's Guide

Controlling the Flow of Control

The continue command causes execution to resume at the nearest enclos­
ing for, while, or until statement, i.e., the one that begins the innermost
loop containing the continue. You can also specify an argument n to con­
tinue and execution will resume at the nth enclosing loop:

This procedure is interactive.
"Break" and "continue" commands are used
to allow the user to control data entry.
while true #loop forever
do echo "Please enter data"

read response

done

case "$response" in
"done") break

no more data

"") # just a carriage return,
keep on going
continue
i ;

*) # process the data here

esac

End -of-File and exit

When the shell reaches the end-of-file in a shell procedure, it terminates
execution, returning to its parent the exit status of the last command exe­
cuted prior to the end-of-file. The top level shell is terminated by typing a
(Ctrl)d (which logs the user out of the system).

The exit command simulates an end-of-file, setting the exit status to the
value of its argument, if any. Thus, a procedure can be terminated nor­
mally by placing "exit 0" at the end of the file.

Command Grouping: Parentheses and Braces

There are two methods for grouping commands in the shell: parentheses
and braces. Parentheses cause the shell to create a subshell that reads the
enclosed commands. Both the right and left parentheses are recognized

The Shell 5-33

Controlling the Flow of Control

wherever they appear in a command line-they can appear as literal
parentheses only when enclosed in quotation marks. For example, if you
enter:

garble(stuff)

the shell prints an error message. Quoted lines, such as:

garble" ("stuft") "
"garble(stuff)"

are interpreted correctly. Other quoting mechanisms are discussed in
"Quoting Mechanisms" in this chapter.

This capability of creating a subshell by grouping commands is useful
when performing operations without affecting the values of variables in
the current shell, or when temporarily changing the working directory and
executing commands in the new directory without having to return to the
current directory.

The current environment is passed to the subshell and variables that are
exported in the current shell are also exported in the subshell. Thus:

CURRENTDIR= 'pwd'; cd /usr/docs/otherdir;
nohup nroff doc.n > doc.out&; cd $CURRENTDIR

and

(cd /usr/docs/otherdir; nohup nroff doc.n > doc.out&)

accomplish the same result: /usr/docs/otherdir/doc.n is processed by nroff
and the output is saved in /usr/docs/otherdir/doc.out. (Note that nrotfis a
text processing command.) However, the second example automatically
puts you back in your original working directory. In the second example
above, blanks or new lines surrounding the parentheses are allowed but not
necessary. When entering a command line at your terminal, the shell will
prompt with the value of the shell variable PS2 if an end parenthesis is
expected.

Braces ({ and }) may also be used to group commands together. Both the left
and the right brace are recognized only if they appear as the first (unquoted)
word of a command. The opening brace may be followed by a newline (in
which case the shell prompts for more input). Unlike parentheses, no sub­
shell is created for braces: the enclosed commands are simply read by the
shell. The braces are convenient when you wish to use the (sequential) out­
put of several commands as input to one command.

5-34 XENIX User's Guide

Controlling the Flow of Control

The exit status of a set of commands grouped by either parentheses or braces
is the exit status of the last enclosed executed command.

Defining Functions

The shell includes a function definition capability. Functions are like
shell scripts or procedures except that they reside in memory and so are
executed by the shell process, not by a separate process. The basic form
is:

name () { list; }

list can include any of the commands previously discussed. Functions
can be defined in one section of a shell script to be called as many times
as needed, making them easier to write and maintain. Here is an example
of a function called "getyn":

Prompt for yes or no answer - returns non-zero for no
getyn() {

while echo "$* (yin)? \C" >& 2
do read yn rest

done

case $yn in
[yYl) return 0
[nNJ) return 1
*) echo "Please answer y or n" >&2
esac

; ;
;;

In this example, the function appends a "(yin)?" to the output and accepts
"Y", "y", "n" or "N" as input, returning a 0 or 1. If the input is anything
else, the function prompts the user for the corrept input. (Echo should
never fail, so the while-loop is effectively infinite.)

Functions are used just like other commands; an invocation of getyn
might be:

getyn "Do you wish to continue" II exit

However, unlike other commands, the shell positional parameters $1, $2,
... , are set to the arguments of the function. Since an exit in a function will
terminate the shell procedure, the return command should be used to
return a value back to the procedure.

The Shell 5-35

Controlling the Flow of Control

Input/Output Redirection and Control Commands

The shell normally does not fork and create a new shell when it recog­
nizes the control commands (other than parentheses) described above.
However, each command in a pipeline is run as a separate process in
order to direct input to or output from each command. Also, when
redirection of input or output is specified explicitly to a control command,
a separate process is spawned to execute that command. Thus, when if,
while, until, case, and for are used in a pipeline consisting of more than
one command, the shell forks and a subshell runs the control command.
This has two implications:

1. Any changes made to variables within the control command are
not effective once that control command finishes (this is similar to
the effect of using parentheses to group commands).

2. Control commands run slightly slower when redirected, because of
the additional overhead of creating a shell for the control com­
mand.

Transfer Between Files: The Dot (.) Command

A command line of the form:

. proc

causes the shell to read commands from proc without spawning a new
process. Changes made to variables in proc are in effect after the dot
command finishes. This is a good way to gather a number of shell vari­
able initializations into one file. A common use of this command is to
reinitialize the top level shell by reading the .profile file with:

. .profile

Interrupt Handling: trap

Shell procedures can use the trap command to disable a signal (cause it
to be ignored), or redefine its action. The form of the trap command is:

trap arg signal-list

5-36 XENIX User's Guide

Controlling the Flow of Control

Here arg is a string to be interpreted as a command list and signal-list
consists of one or more signal numbers as described in signal (S) in the
Programmer's Reference. The most important of these signals follow:

Number Signal
o
1
2
3
9
11
15

Exit from the shell
HANGUP
INTERRUPT character (DELETE or RUB OUT)
QUIT «Ctrl)\)
KILL (cannot be caught or ignored)
Segmentation violation (cannot be caught or ignored)
Software termination signal

The commands in arg are scanned at least once, when the shell first
encounters the trap command. Because of this, it is usually wise to use sin­
gle rather than double quotation marks to surround these commands. The
former inhibit immediate command and variable substitution. This becomes
important, for instance, when one wishes to remove temporary files and the
names of those files have not yet been determined when the trap command is
first read by the shell. The following procedure will print the name of the II
current directory in the user information as to how much of the job was done:

trap 'echo Directory was 'pwd' when interrupted' 2 3 15
for i in /bin /usr/bin /usr/gas/bin
do

cd $i
commands to be executed in directory $i here

done

Beware that the same procedure with double rather than single quotation
marks does something different. The following prints the name of the direc­
tory from which the procedure was first executed:

trap "echo Directory was 'pwd' when interrupted" 2 3 15

A signal 11 can never be trapped, because the shell itself needs to catch it to
deal with memory allocation. Zero is interpreted by the trap command as a
signal generated by exiting from a shell. This occurs either with an exit com­
mand, or by "falling through" to the end of a procedure. If arg is not
specified, then the action taken uponreceipt of any of the signals in the signal
list is reset to the default system action. If arg is an explicit null string (" or
""), then the signals in the signal list are ignored by the shell.

The Shell 5-37

Controlling the Flow of Control

The trap command is most frequently used to make sure that temporary files
are removed upon termination of a procedure. The preceding example
would be written more typically as follows:

temp=$HOME/temp/$$
trap 'rm -f $temp; exit' 0 1 2 3 15
Is > $temp

commands that use $temp here

In this example, whenever signal 1 (hangup), 2 (interrupt), 3 (quit), or 15(ter­
minate) is received by the shell procedure, or whenever the shell procedure is
about to exit, the commands enclosed between the single quotation marks
are executed. The exit command must be included, or else the shell contin­
ues reading commands where it left offwhen the signal was received.

Sometimes the shell continues reading commands after executing trap com­
mands. The following procedure takes each directory in the current direc­
tory, changes to that directory, prompts with its name, and executes com­
mands typed at the terminal until an end-of-file «Ctrl)d) or an interrupt is
received. An end-of-file causes the read command to return a nonzero exit
status, and thus the while loop terminates and the next directory cycle is ini­
tiated. An interrupt is ignored while executing the requested commands, but
causes termination of the procedure when it is waiting for input:

d='pwd'
for i in *
do if test -d $d/$i

then cd $d/$i

fi
done

while echo "$i:"
trap exit 2
read x

do trap: 2

done

ignore interrupts
eval $x

Several traps may be in effect at the same time: if multiple signals are
received simultaneously, they are serviced in numerically ascending order.
To determine which traps are currently set, enter:

trap

It is important to understand some things about the way in which the shell
. implements the trap command. When a signal (other than 11) is received by

the shell, it is passed on to whatever child processes are currently executing.

5-38 XENIX User's Guide

Controlling the Flow of Control

When these (synchronous) processes tenninate, nonnally or abnonnally,
the shell polls any traps that happen to be set and executes the appropriate
trap commands. This process is straightforward, except in the case of traps
set at the command (outennost, or login) level. In this case, it is possible that
no child process is running, so before the shell polls the traps, it waits for the
tennination of the first process spawned after the signal was received.

When a signal is redefined in a shell script, this does not redefine the signal
for programs invoked by that script; the signal is merely passed along. A dis­
abled signal is not passed.

For internal commands, the shell nonnally polls traps on completion of the
command. An exception to this rule is made for the read command, for
which traps are serviced immediately, so that read can be interrupted while
waiting for input.

Shell Script Example

The following is a good shell script for handling signals.

Set signal handlers for shell script

trap "echo \" \nSignal caught
trap "echo \" \nSignal caught
trap "echo \" \nSignal caught

SIGHUP DlR drrp \n \" " 1
SIGINl' interupt DEL key \n \"" 2
SIG';;PlTCtrl \\ \n \"irInCOreiexit 0" 3

N:Jt:e: If you cd to a different directo:ry you rray want to
reset the trap for SIG';;PlT so it will f:ind the "core" file.
To cb this you w:JUld p.rt the sane line below the cd cx::rrmand.
in the shell script.

trap "echo \" \nSignal caught SIGJ:'ER'.1 software termination\n \"" 15

echo " GJing into locp\n"
while true
cb

cd /tnp
trap "echo \" \nSignal caught SIG';;PlT Ctrl\\ \n \"irIn coreiexit 0 " 3
If
cd /usr
trap "echo \" \nSignal caught SIG';;PlT Ctrl\\ \n \"irIn core;exit 0 " 3
If
sleep 1

echo " Leaving the locp \n"
exit 0

The Shell 5-39

Special Shell Commands

Special Shell Commands
There are several special commands that are internal to the shell, some of
which have already been mentioned. The shell does not fork to execute
these commands, so no additional processes are spawned. These com­
mands should be used whenever possible, because they are, in general,
faster and more efficient than other XENIX commands.

Several of the special commands have already been described because
they affect the flow of control. They are dot (.), break, continue, exit,
and trap. The set command is also a special command. Descriptions of
the remaining special commands are given here:

cd arg

exec arg ...

5-40

The null command. This command does
nothing and can be used to insert com­
ments in shell procedures. Its exit status
is zero (true). Its utility as a comment
character has larg~ly been supplanted by
the number sign (#) which can be used to
insert comments to the end-of-line.
Beware: any arguments to the null com­
mand are parsed for syntactic correct­
ness; when in doubt, quote such argu­
ments. Parameter substitution takes
place, just as in other commands.

Make arg the current directory. If arg is
not a valid directory, or the user is not
authorized to access it, a nonzero exit
status is returned. Specifying cd with no
arg is equivalent to entering
"cd $HOME" which takes you to your
home directory.

If arg is a command, then the shell exe­
cutes the command without forking and
returning to the current shell. This is
effectively a "goto" and no new process
is created. Input and output redirection
arguments are allowed on the command
line. If only input and output redirection
arguments appear, then the input and out­
put of the shell itself are modified accord­
ingly.

XENIX User's Guide

hash [-r] name

newgrp arg ...

pwd

read var ...

readonly var . ..

return n

The Shell

Special Shell Commands

For each name, the location in the search
path of the command specified by name is
determined and remembered by the shell.
The -r option causes the shell to forget all
remembered locations. If no arguments
are given, information about remembered
commands is presented. Hits is the num­
ber of times a command has been invoked
by the shell process. Cost is a measure of
the work required to locate a command in
the search path. There are certain situa­
tions which require that the stored loca­
tion of a command be recalculated. Com­
mands for which this will be done are
indicated by an asterisk (*) adjacent to
the hits information. Cost will be incre­
mented when the recalculation is done.

The newgrp command is executed,
replacing the shell. Newgrp in tum cre­
ates a new shell. Beware: only environ­
ment variables will be known in the shell
created by the newgrp command. Any
variables that were exported will no
longer be marked as such.

Print the current working directory. See
pwd(C) for usage and description.

One line (up to a newline) is read from
the standard input and the first word is
assigned to the first variable, the second
word to the second variable, and so on.
All words left over are assigned to the
last variable. The exit status of read is
zero unless an end-of-file is read.

The specified variables are made
read only so that no subsequent assign­
ments may be made to them. If no argu­
ments are given, a list of all readonly and
of all exported variables is given.

Causes a function to exit with the return
value specified by n. If n is omitted, the
return status is that of the last command
executed.

5-41

Special Shell Commands

times

type name

ulimit [-f] n

umasknnn

unset name

5-42

The accumulated user and system times
for processes run from the current shell
are printed.

For each name, indicate how it would be
interpreted if used as a command name.

This imposes a size limit of n blocks on
files written. The -f flag imposes a size
limit of n blocks on files written by child
processes (files of any size may be read).
With no argument, the current limit is
printed. If no option is given and a num­
ber is specified, -f is assumed.

The user file creation mask is set to nnn.
If nnn is omitted, then the current value
of the mask is printed. This bit-mask is
used to set the default permissions when
creating files. For example, an octal
umask of 137 corresponds to the follow­
ing bit -mask and permission settings for a
newly created file:

user group other
Octal 1 3 7
bit-mask 001 011 111
permissions rw- r- - ---

See umask(C) in the XENlX Reference
for information on the value of nnn.

For each name, remove the corresponding
variable or function. The variables
PATH, PSI, PS2, MAILCHECK and IPS
cannot be unset.

XENIX User's Guide

wait n

The Shell

Special Shell Commands

The shell waits for all currently active
child processes to tenninate. If n is
specified, the shell waits for the specified
process to tenninate. The exit status of
wait is always zero if n is not given; oth­
erwise it is the exit status of child n.

5-43

II

Creation and Organization of Shell Procedures

Creation and Organization of Shell
Procedures
A shell procedure can be created in two simple steps. The first is building
an ordinary text file. The second is changing the mode of the file to make
it executable, thus permitting it to be invoked by:

proc args

rather than

sh proc args

The second step may be omitted for a procedure to be used once or twice
and then discarded, but is recommended for frequently-used ones. For
example, create a file named mailall with the following contents:

LETTER=$l
shift
for i in $*
do mail $i < $LETTER
done

Next enter:

chmod +x mailall

The new command might then be invoked from within the current direc­
tory by entering:

mailall letter joe bob

Here letter is the name of the file containing the message you want to
send, and joe and bob are people you want to send the message to. Note
that shell procedures must always be at least readable, so that the shell
itself can read commands from the file.

If mailall were thus created in a directory whose name appears in the
user's PATH variable, the user could change working directories and still
invoke the mailall command.

5-44 XENIX User's Guide

Creation and Organization of Shell Procedures

Shell procedures are often used by users running the csh. However, if the
first character of the procedure is a # (comment character), the sh assumes
the procedure is a csh script, and invokes Ibinlcsh to execute it. Always
start sh procedures with some other character if csh users are to run the
procedure at any time. This invokes the standard shell Ibinlsh.

Shell procedures may be created dynamically. A procedure may generate
a file of commands, invoke another instance of the shell to execute that
file, and then remove it. An alternate approach is that of using the dot
command (.) to make the current shell read commands from the new file,
allowing use of existing shell variables and avoiding the spawning of an
additional process for another shell.

Many users prefer writing shell procedures to writing programs in C or
other traditional languages. This is true for several reasons:

1. A shell procedure is easy to create and maintain because it is only
a file of ordinary text.

2. A shell procedure has no corresponding object program that must
be generated and maintained.

3. A shell procedure is easy to create quickly, use a few times, and •
then remove.

4. Because shell procedures are usually short in length, written in a
high-level programming language, and kept only in their source­
language form, they are generally easy to find, understand, and
modify.

By convention, directories that contain only commands and shell pro­
cedures are named bin. This name is derived from the word "binary", and
is used because compiled and executable programs are often called
"binaries" to distinguish them from program source files. Most groups of
users sharing common interests have one or more bin directories set up to
hold common procedures. Some users have their PATH variable list
several such directories. Although you can have a number of such direc­
tories, it is unwise to go overboard: it may become difficult to keep track
of your environment and efficiency may suffer.

The Shell 5-45

More About Execution Flags

More About Execution Flags
There are several execution flags available in the shell that can be useful
in shell procedures:

-e

-u

-t

-n

-k

5-46

This flag causes the shell to exit immediately if any com­
mand that it executes exits with a nonzero exit status.
This flag is useful for shell procedures composed of sim­
ple command lines; it is not intended for use in conjunc­
tion with other conditional constructs.

This flag causes unset variables to be considered errors
when substituting variable values. This flag can be used
to effect a global check on variables, rather than using
conditional substitution to check each variable.

This flag causes the shell to exit after reading and execut­
ing the commands on the remainder of the current input
line. This flag is typically used by C programs which call
the shell to execute a single command.

This is a "don't execute" flag. On occasion, one may
want to check a procedure for syntax errors, but not exe­
cute the commands in the procedure. Using "set -nv" at
the beginning of a file will accomplish this.

This flag causes all arguments of the form
variable =value to be treated as keyword parameters.
When this flag is not set, only such arguments that appear
before the command name are treated as keyword param­
eters.

XENIX User's Guide

Supporting Commands and Features

Supporting Commands and Features
Shell procedures can make use of any XENIX command. The commands
described in this section are either used especially frequently in shell pro­
cedures, or are explicitly designed for such use.

Conditional Evaluation: test

The test command evaluates the expression specified by its arguments
and, if the expression is true, test returns a zero exit status. Otherwise, a
nonzero (false) exit status is returned. test also returns a nonzero exit
status if it has no arguments. Often it is convenient to use the test com­
mand as the first command in the command list following an if or a while.
Shell variables used in test expressions should be enclosed in double quo­
tation marks if there is any chance of their being null or not set.

The square brackets may be used as an alias to test, so that:

[expression]

has the same effect as:

test expression

Note that the spaces before and after the expression in brackets are essen­
tial.

The following is a partial list of the options that can be used to construct a
conditional expression:

-r file

-w file

-x file

-s file

The Shell

True if the named file exists and is readable by the
user.

True if the named file exists and is writable by the
user.

True if the named file exists and is executable by
the user.

True if the named file exists and has a size greater
than zero.

5-47

Supporting Commands and Features

-d file

-f file

-z sl

-n sl

-t fildes

sl =s2

sl !=s2

sl

nl -eq n2

True if the named file is a directory.

True if the named file is an ordinary file.

True if the length of string sl is zero.

True if the length of the string sl is nonzero.

True if the open file whose file descriptor number
is fildes is associated with a terminal device. If
fildes is not specified, file descriptor 1 is used by
default.

True if strings sl and s2 are identical.

True if strings sl and s2 are not identical.

True if sl is not the null string.

True if the integers nl and n2 are algebraically
equal; other algebraic comparisons are indicated
by -ne (not equal), -gt (greater than), -ge (greater
than or equal to), -It (less than), and -Ie (less than
or equal to).

These may be combined with the following operators:

-a

-0

(expr)

Unary negation operator.

Binary logical AND operator.

Binary logical OR operator; it has lower pre­
cedence than the logical AND operator (-a).

Parentheses for grouping; they must be escaped to
remove their significance to the shell. In the
absence of parentheses, evaluation proceeds from
left to right.

Note that all options, operators, filenames, etc. are separate arguments to
test.

5-48 XENIX User's Guide

Supporting Commands and Features

Echoing Arguments

The echo command has the following syntax:

echo [options] [args]

echo copies its arguments to the standard output, each followed by a sin­
gle space, except for the last argument, which is normally followed by a
newline. You can use it to prompt the user for input, to issue diagnostics
in shell procedures, or to add a few lines to an output stream in the middle
of a pipeline. Another use is to verify the argument list generation pro­
cess before issuing a command that does something drastic.

You can replace the Is command with

echo *
because the latter is faster and prints fewer lines of output.

The -n option to echo removes the newline from the end of the echoed
line. Thus, the following two commands prompt for input and then allow
entering on the same line as the prompt:

echo -n 'enter name:
read name

The echo command also recognizes several escape sequences described
in echo (C) in the XENIX Reference.

Expression Evaluation: expr

The expr command provides arithmetic and logical operations on
integers and some pattern-matching facilities on its arguments. It evalu­
ates a single expression and writes the result on the standard output; expr
can be used inside grave accents to set a variable. Some typical examples
follow:

increment $A
A=' expr $a + l'
put third through last characters of
$1 into substring
substring=' expr "$1" : ' .. \ (. *\)' ,
obtain length of $1
c='expr"$l": '.*

The Shell 5-49

Supporting Commands and Features

The most common uses of expr are in counting iterations of a loop and in
using its pattern-matching capability to pick apart strings.

True and False

The true and false commands perform the functions of exiting with zero
and nonzero exit status, respectively. The true and false commands are
often used to implement unconditional loops. For example, you might
enter:

while true
do echo forever
done

This will echo "forever" on the screen until an INTERRUPT is entered.

In-Line Input Documents

Upon seeing a command line of the form:

command « eo/string

where eo/string is any arbitrary string, the shell will take the subsequent
lines as the standard input of command until a line is read consisting only
of eo/string. (By appending a minus (-) to the input redirection symbol
«<), leading tabs are deleted from each line of the input document before
the shell passes the line to command.)

The shell creates a temporary file containing the input document and per­
forms variable and command substitution on its contents before passing it
to the command. Pattern matching on filenames is performed on the argu­
ments of command lines in command substitutions. In order to prohibit
all substitutions, you may quote any character of eo/string:

command «\eofstring

5-50 XENIX User's Guide

Supporting Commands and Features

The in-line input document feature is especially useful for small amounts
of input data, where it is more convenient to place the data in the shell
procedure than to keep it in a separate file. For instance, you could enter:

cat «- xx

xx

This message will be printed on the
terminal with leading tabs removed.

This in-line input document feature is most useful in shell procedures.
Note that in-line input documents may not appear within grave accents.

Input/ Output Redirection Using File Descriptors

We mentioned above that a command occasionally directs output to some
file associated with a file descriptor other than 1 or 2. In languages such
as C, one can associate output with any file descriptor by using the write
(S) system call (see the Programmer's Reference). The shell provides its
own mechanism for creating an output file associated with a particular
file descriptor. By entering:

fdl >& fd2

where fdl and fd2 are valid file descriptors, one can direct output that
would normally be associated with file descriptor fdl to the file associ­
ated with fd2. The default value for fdl and fd2 is 1. If, at run time, no
file is associated with fd2, then the redirection is void. The most common
use of this mechanism is that of directing standard error output to the
same file as standard output. This is accomplished by entering:

command 2>&1

If you wanted to redirect both standard output and standard error output to
the same file, you would enter:

command l>file 2>&1

The order here is significant: first, file descriptor 1 is associated with file;
then file descriptor 2 is associated with the same file as is currently asso­
ciated with file descriptor 1. If the order of the redirections were
reversed, standard error output would go to the terminal, and standard
output would go to file, because at the time of the error output redirection,
file descriptor 1 still would have been associated with the terminal.

The Shell 5-51

•

Supporting Commands and Features

This mechanism can also be generalized to the redirection of standard
input. You could enter:

fda <& fdb

to cause both file descriptors fda and fdb to be associated with the same
input file. If fda or fdb is not specified, file descriptor 0 is assumed. Such
input redirection is useful for a command that uses two or more input
sources.

Conditional Substitution

Normally, the shell replaces occurrences of $variable by the string value
assigned to variable, if any. However, there exists a special notation to
allow conditional substitution, dependent upon whether the variable is set
or not null. By definition, a variable is set if it has ever been assigned a
value. The value of a variable can be the null string, which may be
assigned to a variable in anyone of the following ways:

A=
bed=" "
efg="
set" ""

The first three examples assign null to each of the corresponding shell
variables. The last example sets the first and second positional parame­
ters to null. The following conditional expressions depend upon whether
a variable is set and not null. Note that the meaning of braces in these
expressions differs from their meaning when used in grouping shell com­
mands. Parameter as used below refers to either a digit or a variable
name.

${ variable :-string}

${ variable :=string }

5-52

If variable is set and is nonnull, then
substitute the value $variable in place
of this expression. Otherwise, replace
the expression with string. Note that
the value of variable is not changed by
the evaluation of this expression.

If variable is set and is nonnull, then
substitute the value $variable in place
of this expression. Otherwise, set vari­
able to string, and then substitute the
value $variable in place of this expres-

XENIX User's Guide

$ { variable :? string}

${ variable :+string }

Supporting Commands and Features

sion. Positional parameters may not be
assigned values in this fashion.

IT variable is set and is nonnull, then
substitute the value of variable for the
expression. Otherwise, print a message
of the form

variable: string

and exit from the current shell. (IT the
shell is the login shell, it is not exited.)
IT string is omitted in this form, then the
message

variable: parameter null or not set

is printed instead.

IT variable is set and is nonnull, then
substitute string for this expression.
Otherwise, substitute the null string.
Note that the value of variable is not
altered by the evaluation of this expres­
sion.

These expressions may also be used without the ¥olon. In this variation,
the shell does not check whether the variable is null or not; it only checks
whether the variable has ever been set.

The two examples below illustrate the use of this facility:

1. This example performs an explicit assignment to the PATH vari­
able:

PATH=${PATH:-':/bin:/usr/bin'}

This says, if PATH has ever been set and is not null, then it keeps
its current value; otherwise, set it to the string" :/bin:/usr/bin".

2. This example automatically assigns the HOME variable a value:

cd ${HOME:='/usr/gas'}

If HOME is set, and is not null, then change directory to it. Other­
wise set HOME to the given value and change directory to it.

The Shell 5-53

Supporting Commands and Features

Invocation Flags

There are five flags that may be specified on the command line when
invoking the shell. These flags may not be turned on with the set com­
mand:

-i

-s

-c

-t

-r

5-54

If this flag is specified, or if the shell's input and output
are both attached to a tenninal, the shell is interactive. In
such a shell, INTERRUPT (signal 2) is caught and
ignored, and TERMINATE (signal 15) and QUIT (signal
3) are ignored.

If this flag is specified or if no input/output redirection
arguments are given, the shell reads commands from stan­
dard input. Shell output is written to file descriptor 2. All
remaining arguments specify the positional parameters.

When this flag is turned on, the shell reads commands
from the first string following the flag. Remaining argu­
ments are ignored.

When this flag is on, a single command is read and exe­
cuted, then the shell exits. This flag is not useful interac­
tively, but is intended for use with C programs.

If this flag is present the shell is a restricted shell (see rsh
(C».

XENIX User's Guide

Effective and Efficient Shell Programming

Effective and Efficient Shell
Programming
This section outlines strategies for writing efficient shell procedures, ones
that do not waste resources in·accomplishing their purposes. The primary
reason for choosing a shell procedure to perform a specific function is to
achieve a desired result at a minimum human cost. Emphasis should
always be placed on simplicity, clarity, and readability, but efficiency can
also be gained through awareness of a few design strategies. In many
cases, an effective redesign of an existing procedure improves its
efficiency by reducing its size, and often increases its comprehensibility.
In any case, you should not worry about optimizing shell procedures
unless they are intolerably slow or are known to consume an inordinate
amount of a system's resources.

The same kind of iteration cycle should be applied to shell procedures as
to other programs: write code, measure it, and optimize only the few
important parts. The user should become familiar with the time com­
mand, which can be used to measure both entire procedures and parts
thereof. Its use is strongly recommended; human intuition is notoriously
unreliable when used to estimate timings of programs, even when the
style of programming is a familiar one. Each timing test should be run
several times, because the results are easily disturbed by variations in sys­
tem load.

Number of Processes Generated

When large numbers of short commands are executed, the actual execu­
tion time of the commands may well be dominated by the overhead of
creating processes. The procedures that incur significant amounts of such
overhead are those that perform much looping, and those that generate
command sequences to be interpreted by another shell.

The Shell 5-55

Effective and Efficient Shell Programming

If you are worried about efficiency, it is important to know which com­
mands are currently built into the shell, and which are not. Here is the
alphabetical list of those that are built in:

break case cd continue echo
eval exec exit export for
if read readonly return set
shift test times trap umask
until wait while
{}

Parentheses, (), are built into the shell, but commands enclosed within
them are executed as a child process, i.e., the shell does a fork, but no
exec. Any command not in the above list requires both fork and exec.

The user should always have at least a vague idea of the number of pro­
cesses generated by a shell procedure. In the bulk of observed pro­
cedures, the number of processes created (not necessarily simultaneously)
can be described by:

processes = (k*n) + c

where k and c are constants, and n may be the number of procedure argu­
ments, the number of lines in some input file, the number of entries in
some directory, or some other obvious quantity. Efficiency improvements
are most commonly gained by reducing the value of k, sometimes to zero.

Any procedure whose complexity measure includes n ~2 terms or higher
powers of n is likely to be intolerably expensive.

5-56 XENIX User's Guide

Effective and Efficient Shell Programming

As an example, here is an analysis of a procedure named split, whose text
is given below:

split
trap 'rm temp$$; trap 0; exit' 0 1 2 3 15
start1=0 start2=0
b=' [A-Za-z] ,
cat> temp$$

read stdin into temp file
save original lengths of $1, $2

if test -s "$1"
then start1='wc -1 < $1'
fi
if test -s "$2"
then start2='wc -1 < $2'
fi
grep "$b" temp$$ » $1

lines with letters onto $1
grep -v "$b" temp$$ I grep '[0-9]' » $2

lines without letters onto $2
total=" 'wc-l< temp$$' "
end1=" 'wc-l<$l' "
end2=" 'wc-l<$2' "
lost=" 'expr $total - \($end1 - $start1\) \
- \($end2 - $start2\)' "
echo "$total read, $lost thrown away"

For each iteration of the loop, there is one expr plus either an echo or
another expr. One additional echo is executed at the end. If n is the
number of lines of input, the number of processes is 2 * n + 1.

Some types of procedures should not be written using the shell. For
example, if one or more processes are generated for each character in
some file, it is a good indication that the procedure should be rewritten in
C. Shell procedures should not be used to scan or build files a character
at a time.

Number of Data Bytes Accessed

It is worthwhile to consider any action that reduces the number of bytes
read or written. This may be important for those procedures whose time
is spent passing data around among a few processes, rather than in creat­
ing large numbers of short processes. Some filters shrink their output,
others usually increase it. It always pays to put the shrinkers first when

The Shell 5-57

Effective and Efficient Shell Programming

the order is irrelevant. For instance, the second of the following examples
is likely to be faster because the input to sort will be much smaller:

sort file I grep pattern
grep pattern file I sort

Shortening Directory Searches

Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames.
Judicious use of cd, the change directory command, can help shorten long
pathnames and thus reduce the number of directory searches needed. As
an exercise, try the following commands:

Is -1 /usr/bin/* >/dev/null
cd /usr/bin; Is -1 * >/dev/null

The second command will run faster because of the fewer directory
searches.

Directory-Search Order and the PATH Variable

The PATH variable is a convenient mechanism for allowing organization
and sharing of procedures. However, it must be used in a sensible
fashion, or the result may be a great increase in system overhead.

The process of finding a command involves reading every directory
included in every pathname that precedes the needed pathname in the
current PATH variable. As an example, consider the effect of invoking
nroff (Le., lusrlbinlnrofJ) when the value of PATH is ":/bin:/usr/bin".
The sequence of directories read is:

/
/bin
/
/usr
/usr/bin

This is a total of six directories. A long path list assigned to PATH can
increase this number significantly.

5-58 XENIX User's Guide

Effective and Efficient SheD Programming

The vast majority of command executions are of commands found in /bin
and, to a somewhat lesser extent, in /usr/bin. Careless PATH setup may
lead to a great deal of unnecessary searching. The following four exam­
ples are ordered from worst to best with respect to the efficiency of com­
mand searches:

:/usr/john/bin:/usr/localbin:/bin:/ usr/bin
:/bin:/usr/john/bin:/usr/localbin:/usr/bin
:/bin:/usr/bin:/usr/john/bin:/usr/localbin
/bin: :/usr/bin:/usr/john/bin:/usr/localbin

The first one above should be avoided. The others are acceptable and the
choice among them is dictated by the rate of change in the set of com­
mands kept in /bin and /usr/bin.

A procedure that is expensive because it invokes many short-lived com­
mands may often be speeded up by setting the PATH variable inside the
procedure so that the fewest possible directories are searched in an
optimum order. .

Good Ways to Set Up Directories

It is wise to avoid directories that are larger than necessary. You should
be aware of several special sizes. A directory that contains entries for up
to 30 files (plus the required. and ••) fits in a single disk block and can be
searched very efficiently. One that has up to 286 entries is still a small
directory; anything larger is usually a disaster when used as a working
directory. It is especially important to keep login directories small,
preferably one block at most. Note that, as a rule, directories never
shrink. This is very important to understand, because if your directory
ever exceeds either the 30 or 286 thresholds, searches will be inefficient;
furthermore, even if you delete files so that the number of files is less than
either threshold, the system will still continue to treat the directory
inefficiently.

The Shell 5-59

Shell Procedure Examples

Shell Procedure Examples
The power of the XENIX shell command language is most readily seen by
examining how many labor-saving XENIX utilities can be combined to
perform powerful and useful commands with very little programming
effort. This section gives examples of procedures that do just that. By
studying these examples, you will gain insight into the techniques and
shortcuts that can be used in programming shell procedures (also called
"scripts"). Note the use of the null command (:) to begin each shell pro­
cedure and the use of the number sign (#) to introduce comments.

It is intended that the following steps be carried out for each procedure:

1. Place the procedure in a file with the indicated name.

2. Give the file execute permission with the chmod command.

3. Move the file to a directory in which commands are kept, such as
your own bin directory.

4. Make sure that the path of the bin directory is specified in the
PATH variable found in .profile.

5. Execute the named command.

BINUNIQ

Is Ibin lusr/bin I sort I uniq -d

This procedure determines which files are in both Ibin and lusrlbin. It is
done because files in Ibin will "override" those in lusrlbin during most
searches and duplicates need to be weeded out. If the lusrlbin file is
obsolete, then space is being wasted; if the Ibin file is outdated by a corre­
sponding entry in lusrlbin then the wrong version is being run and, again,
space is being wasted. This is also a good demonstration of "sort I uniq"
to find matches and duplications.

5-60 XENIX User's Guide

Shell Procedure Examples

COPYPAIRS

Usage: copypairs filel file2
Copies file1 to file2, file3 to file4,
while test "$2" !=
do

done

cp $1 $2
shift i shift

if test "$1" !=
then echo "$0: odd number of arguments" >&2

fi

This procedure illustrates the use of a while loop to process a list of posi­
tional parameters that are somehow related to one another. Here a while
loop is much better than a for loop. because you can adjust the positional
parameters with the shift command to handle related arguments.

COPYTO

Usage: copyto dir file .•.
Copies argument files to "dir",
making sure that at least
two arguments exist, that "dir" is a directory,
and that each additional argument
is a readable file.
if test $# -It 2

then echo "$0: usage: copyto directory file ... ">&2
elif test ! -d $1

then echo "$0: $1 is not a directory";>&2
else dir=$1i shift

for eachfile
do cp $eachfile $dir
done

fi

The Shell 5-61

Shell Procedure Examples

This procedure uses an if command with several parts to screen out
improper usage. The for loop at the end of the procedure loops over all of
the arguments to copyto but the first; the original $1 is shifted off.

DISTINCT 1

Usage: distinctl
Reads standard input and reports list of
alphanumeric strings that differ only in case,
giving lowercase form of each.
tr -cs 'A-Za-zO-9' '\012' I sort -u I \
tr 'A-Z' 'a-z' I sort I uniq -d

This procedure is an example of the kind of process that is created by the
left-to-right construction of a long pipeline. Note the use of the backslash
at the end of the first line as the line continuation character. It may not be
immediately obvious how this command works. You may wish to consult
tr(C), sort(C), and uniq(C) in the XENIX Reference if you are completely
unfamiliar with these commands. The tr command translates all charac­
ters except letters and digits into newline characters, and then squeezes
out repeated newline characters. This leaves each string (in this case, any
contiguous sequence of letters and digits) on a separate line. The sort
command sorts the lines and emits only one line from any sequence of
one or more repeated lines. The next tr converts everything to lowercase,
so that identifiers differing only in case become identical. The output is
sorted again to bring such duplicates together. The "uniq -d" prints
(once) only those lines that occur more than once, yielding the desired
list.

The process of building such a pipeline relies on the fact that pipes and
files can usually be interchanged. The first line below is equivalent to the
last two lines, assuming that sufficient disk space is available:

cmdi I cmd2 I cmd3

cmdi > tempI; < tempI cmd2 > temp2; < temp2 cmd3
rm temp[123]

Starting with a file of test data on the standard input and working from
left to right, each command is executed taking its input from the previous
file and putting its output in the next file. The final output is then exam­
ined to make sure that it contains the expected result. The goal is to cre­
ate a series of transformations that will convert the input to the desired
output.

5-62 XENIX User's Guide

Shell Procedure Examples

Although pipelines can give a concise notation for complex processes,
you should exercise some restraint, since such practice often yields
incomprehensible code.

DRAFT

Usage: draft file(s)
Print manual pages for Diablo printer.
for i in $*

do nroff -man $i I lpr
done

Users often write this kind of procedure for convenience in dealing with
commands that require the use of distinct flags that cannot be given
default values that are reasonable for all (or even most) users.

EDFIND

Usage: edfind file arg
Finds the last occurrence in "file" of a line
whose beginning matches "arg", then prints
3 lines (the one before, the line itself,
and the one after)
ed - $1 « -EOF

EOF

?~$2?

-,+p
q

This illustrates the practice of using ed in-line input scripts into which the
shell can substitute the values of variables.

The Shell 5-63

Shell Procedure Examples

EDLAST

Usage: edlast file
Prints the last line of file,
then deletes that line.
ed - $1 «-\!

$p
$d
w
q

echo done

This procedure illustrates taking input from within the file itself up to the
exclamation point (!). Variable substitution is prohibited within the
input text because of the backslash.

FSPLIT

Usage: fsplit filel file2
Reads standard input and divides it into 3 parts
by appending any line containing at least one letter
to filel, appending any line containing digits but
no letters to file2, and by throwing the rest away.
count=O gone=O
while read next
do

done

count="'expr $count + 1'"
case "$next" in
* [A-Za-zJ *)

echo "$next" »$1;;
[0-9J)

echo "$next" »$2;;
*)

gone="'expr $gone + 1'"
esac

echo "$count lines read, $gone thrown away"

Each iteration of the loop reads a line from the input and analyzes it. The
loop terminates only when read encounters an end-of-file. Note the use
of the expr command.

Do not use the shell to read a line at a time unless you must because it can
be an extremely slow process.

5-64 XENIX User's Guide

Shell PrQCedure Examples

LISTFIELDS

grep $* I tr ft_" "\012"

This procedure lists lines containing any desired entry that is given to it
as an argument. It places any field that begins with a colon on a newline.
Thus, if given the following input:

joe newman: 13509 NE 78th St: Redmond, Wa 98062

list fields will produce this:

joe newman
13509 NE 78th St
Redmond, Wa 98062

Note the use of the tr command to transpose colons to linefeeds.

MKFILES

Usage: mkfiles pref [quantity]
Makes "quantity" files, named pref1, pref2, ...
Default is 5 as determined on following line.
quantity=${2-5}
i=1
while test "$i" -le "$quantity"
do

> 1i
i="'expr $i + 1'"

done

The mkfiles procedure uses output redirection to create zero-length files.
The expr command is used for counting iterations of the while loop.

The Shell 5-65

Shell Procedure Examples

NULL

Usage: null files * Create each of the named files as an empty file.
for eachfile
do

>$eachfile
done

This procedure uses the fact that output redirection creates the (empty)
output file if a file does not already exist.

PHONE

Usage: phone initials * Prints the phone numbers of the
people with the given initials.
echo 'initsext home'
grep "$1" «END

END

jfk 1234 999-2345
lbj 2234 583-2245
hst 3342 988-1010
jqa 4567 555-1234

This procedure is an example of using an in-line input script to maintain a
small database.

5-66 XENIX User's Guide

Shell Procedure Examples

TEXTFILE

if test "$1" = "-s"
then
Return condition code

shift
if test -z "'$0 $*'" # check return value
then

exit 1
else

exit a
fi

fi

if test $# -It 1
then echo" $0: Usage: $0 [-s 1 file

exit a
fi

file $* I fgrep , text' I sed 'sf: .*//'

" 1>&2

To detennine which files in a directory contain only textual infonnation,
text file filters argument lists to other commands. For example, the follow­
ing command line will print all the text files in the current directory:

pr 'textfile *' I lpr

This procedure also uses an -s flag which silently tests whether any of the
files in the argument list is a text file.

WRITEMAIL

Usage: writemail message user
If user is logged in,
writes message to terminal;
otherwise, mails it to user.
echo "$1" I { write "$2" II mail "$2" ;}

This procedure illustrates the use of command grouping. The message
specified by $1 is piped to both the write command and, if write fails, to
the mail command.

The Shell 5-67

Shell Grammar

Shell Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part esac
if command-list then command-list else-part fi

pipeline: command
pipeline I command

andor: pipeline
andor && pipeline
andor II pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file
< file

5-68

« word
» file
digit> file
digit < file
digit » file

XENIX User's Guide

Shell Grammar

file: word
& digit
&-

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list

empty:

word:

name:

digit:

empty

a sequence of nonblank characters

a sequence of letters, digits, or underscores
starting with a letter

0123456789

Metacharacters and Reserved Words

1. Syntactic

I Pipe symbol
&& And-if symbol
II Or-if symbol

Command separator
;; Case delimiter
& Background commands
() Command grouping
< Input redirection
« Input from a here document
> Output creation
» Output append
Comment to end of line

The Shell 5-69

•

Shell Grammar

2. Patterns

*
?
[...]

3. Substitution

Match any character(s) including none
Match any single character
Match any of enclosed characters

${ ••• } Substitute shell variable
Substitute command output

4. Quoting

\

" "

Quote next character as literal with no special meaning
Quote enclosed characters excepting the back quota­
tionmarksC)
Quote enclosed characters excepting: $' \"

5. Reserved words

if esac
then for
else while
elif until
fi do
case done
in {}

5-70 XENIX User's Guide

Chapter 6

The C-Shell

Introduction 6-1

Invoking the C-shell 6-2

Using Shell Variables 6-4

Using the C-Shell History List 6-7

Using Aliases 6-10

Redirecting Input and Output 6-12

Creating Background and Foreground Jobs 6-13

Using Built-In Commands 6-14

Creating Command Scripts 6-17

Using the argv Variable 6-18

Substituting Shell Variables 6-19

Using Expressions 6-21

Using the C-Shell: A Sample Script 6-22

Using Other Control Structures 6-25

Supplying Input to Commands 6-26

Catching Interrupts 6-27

Using Other Features 6-28

Starting a Loop at a Terminal 6-29

Using Braces with Arguments 6-31

Substituting Commands 6-32

Special Characters 6-33

Introduction

Introduction
The C-shell program, csh, is a command language interpreter. The C­
shell, like the standard XENIX shell sh, is an interface between you and
the XENIX commands and programs. It translates command lines entered
at a terminal into corresponding system actions, gives you access to infor­
mation, such as. your login name, home directory, and mailbox, and lets
you construct shell procedures for automating system tasks.

This appendix explains how to use the C-shell. It also explains the syntax
and function of C-shell commands and features, and shows how to use
these features to create shell procedures. The C-shell is fully described in
csh (C) in the XENIX Reference.

The C-Shell 6-1

Invoking the C-shell

Invoking the C-shell
You can invoke the C-shell from another shell by using the csh command.
To invoke the C-shell, enter:

csh

at the standard shell's command line. You can also direct the system to
invoke the C-shell for you when you log in. If you have given the C-shell as
your login shell in your letclpasswd file entry, the system automatically
starts the shell when you log in.

After the system starts the C-shell, the shell searches your home directory for
the command files .cshrc and .login. If the shell finds the files, it executes the
commands contained in them, then displays the C-shell prompt.

The .cshrc file typically contains the commands you wish to execute each
time you start a C-shell, and the .login file contains the commands you wish
to execute after logging in to the system. For example, the following is the
contents of a typical .login file:

set ignoreeof
set mail=(/usr/spool/mail/bill)
set time=15
set history=lO
mail

This file contains several set commands. The set command is executed
directly by the C-shell; there is no corresponding XENIX program for this
command. Set sets the C-shell variable "ignoreeof" which shields the C­
shell from logging out ifCtrl-d is hit. Instead ofCtrl-d, the logout command
is used to log out of the system. By setting the "mail" variable, the C-shell is
notified that it is to watch for incoming mail and notify you if new mail
arrives.

Next the C-shell variable "time" is set to 15 causing the C-shell to automati­
cally print out statistics lines for commands that execute for at least 15
seconds of CPU time. The variable "history" is set to 10 indicating that the
C-shell will remember the last 10 commands typed in its history list,
(described later).

Finally, the XENIXmail program is invoked.

6-2 XENIX User's Guide

Invoking the C-shell

When the C-shell finishes processing the .login file, it begins reading com­
mands from the terminal, prompting for each with:

%

When you log out (by giving the logout command) the C-shell prints:

logout

and executes commands from the file .logout if it exists in your home direc­
tory. After that, the C-shell terminates and logs you off the system.

The C-Shell 6-3

Using Shell Variables

Using Shell Variables
The C-shell maintains a set of variables. For example, in the above dis­
cussion, the variables "history" and "time" had the values 10 and 15.
Each C-shell variable has as its value an array of zero or more strings.
C-shell variables may be assigned values by the set command, which has
several forms, the most useful of which is:

set name = value

C-shell variables may be used to store values that are to be used later in com­
mands through a substitution mechanism. The C-shell variables most com­
monly referenced are, however, those that the C-shell itself refers to. By
changing the values of these variables you can directly affect the behavior of
theC-shell.

One of the most important variables is "path". This variable contains a list of
directory names. When you enter a command name at your terminal, the C­
shell examines each named directory in tum, until it finds an executable file
whose name corresponds to the name you entered. The set command with no
arguments displays the values of all variables currently defined in the C­
shell.

The following example file shows typical default values:

argv ()
home /usr /bill
path (. /bin /usr/bin)
prompt %
shell /bin/ csh
status 0

This output indicates that the variable "path" begins with the current direc­
tory indicated by dot (.), then /bin, and /usr/bin. Your own local commands
may be in the current directory. Normal XENIX commands reside in /bin and
lusr/bin.

Sometimes a number of locally developed programs reside in the directory
lusrllocal. If you want all C-shells that you invoke to have access to these
new programs, place the command:

set path=(. /bin lusr/bin /usr/local)

6-4 XENIX User's Guide

Using Shell Variables

in the .cshrc file in your home directory. Try doing this, then logging out and
back in. Enter:

set

to see that the value assigned to "path" has changed.

You should be aware that when you log in the C-shell examines each direc­
tory that you insert into your path and determines which commands are con­
tained there, except for the current directory which the C-shell treats spe­
cially. This means that if commands are added to a directory in your search
path after you have started the C-shell, they will not necessarily be found. If
you wish to use a command which has been added after you have logged in,
you should give the command:

rehash

to the C-shell. rehash causes the shell to recompute its internal table of com­
mand locations, so that it will find the newly added command. Since the C­
shell has to look in the current directory on each command anyway, placing it
at the end of the path specification usually works best and reduces overhead.

Other useful built in variables are "home" which shows your home direc­
tory, and "ignoreeof" which can be set in your .login file to tell the C-shell
not to exit when it receives an end-of-file from a terminal. The variable
"ignoreeof" is one of several variables whose value the C-shell does not care
about; the C-shell is only concerned with whether these variables are set or
unset. Thus, to set "ignoreeof" you simply enter:

set ignoreeof

and to unset it enter:

unset ignoreeof

Some other useful built-in C-shell variables are "noclobber" and "mail".

The syntax:

>filename

which redirects the standard output of a command just as in the regular shell,
overwrites and destroys the previous contents of the named file. In this way,

The C-Shell 6-5

Using Shell Variables

you may accidentally overwrite a file which is valuable. If you prefer that the
C-shell not overwrite files in this way you can:

set noclobber

in your . log in file. Then entering:

date> now

causes an error message if the file now already exists. You can enter:

date >! now

if you really want to overwrite the contents of now. The ">! " is a special syn­
tax indicating that overwriting or "clobbering" the file is ok. (The space
between the ex.clamation point (!) and the word "now" is critical here, as
"!now" would be an invocation of the history mechanism, described below,
and have a totally different effect.)

6-6 XENIX User's Guide

Using the C-Shell History List

U sing the C-Shell History List
The C-shell can maintain a history list into which it places the text of pre­
vious commands. It is possible to use a notation that reuses commands, or
words from commands, in forming new commands. This mechanism can
be used to repeat previous commands or to correct minor typing mistakes
in commands.

The following figure gives a sample session involving typical usage of the
history mechanism of the C-shell. Boldface indicates user input:

The C-Shell 6-7

Using the C-Shell History List

% eat bug.e
main ()
(

printf ("hello) ;

% ee !$
cc bug.c
bug.c(4) :error 1: newline in constant
% ed!$
ed bug.c
28
3s/); /"&/p

w
29
q

printf("hello");

% !e
cc bug.c
% a.out
hello% !e
ed bug.c
29
3s/10/10\ \n/p

printf ("hello\n") ;
w
31
q
% !e -0 bug
cc bug.c -0 bug
% size a.out bug
a.out: 5124 + 614 + 1254 = 6692 = Oxlb50
bug: 5124 + 616 + 1252 = 6692 = Oxlb50
% 1s -1 !*
Is -1 a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x 1 bill
% bug
hello
% pr bug.e I 1pt

7648 Dec 19 09:41 a.out
7650 Dec 19 09:42 bug

Ipt: Command not found.
% "lpt"lpr
pr bug.c I Ipr
%

Figure 6-1 Sample History Session

In this example, we have a very simple C program that has a bug or two in
the file bug.c, which we cat out on our tenninal. We then try to run the C
compiler on it, referring to the file again as "!$", meaning the last argu­
ment to the previous command. Here the exclamation mark (!) is the his­
tory mechanism invocation metacharacter, and the dollar sign ($) stands
for the last argument, by analogy to the dollar sign in the editor which
stands for the end-of-line.

6-8 XENIX User's Guide

Using the C-Shell History List

The C-shell echoed the command, as it would have been typed without
use of the history mechanism, and then executed the command. The com­
pilation yielded error diagnostics, so we now edit the file we were trying
to compile, fix the bug, and run the C compiler again, this time referring
to this command simply as "!c", which repeats the last command that
started with the letter "c".

If there were other commands beginning with the letter "c" executed
recently, we could have said "!cc" or even "!cc:p" which prints the last
command starting with "cc" without executing it, so that you can check
to see whether you really want to execute a given command.

After this recompilation, we ran the resulting a.out file, and then noting
that there still was a bug, ran the editor again. After fixing the program we
ran the C compiler again, but tacked onto the command an extra "-0 bug"
telling the compiler to place the resultant binary in the file bug rather than
a.out. In general, the history mechanisms may be used anywhere in the
formation of new commands, and other characters may be placed before
and after the substituted commands.

We then ran the size command to see how large the binary program
images we have created were, and then we ran an "Is -1" command with
the same argument list, denoting the argument list:

!*

Finally, we ran the program bug to see that its output is indeed correct.

To make a listing of the program, we ran the pr command on the file
bug.c. In order to print the listing at a lineprinter we piped the output to
Ipr, but misspelled it as "lpt". To correct this we used a C-shell substi­
tute, placing the old text and new text between caret n characters. This is
similar to the substitute command in the editor. Finally, we repeated the
same command with:

!!

and sent its output to the lineprinter.

There are other mechanisms available for repeating commands. The his­
tory command prints out a numbered list of previous commands. You can
then refer to these commands by number. There is a way to refer to a pre­
vious command by searching for a string which appeared in it, and there
are other, less useful, ways to select arguments to include in a new com­
mand. A complete description of all these mechanisms is given in csh(C)
the XENIX Reference.

The C-Shell 6-9

Using Aliases

Using Aliases
The C-shell has an alias mechanism that can be used to make transforma­
tions on commands immediately after they are input. This mechanism
can be used to simplify the commands you enter, to supply default argu­
ments to commands, or to perform transformations on commands and
their arguments. The alias facility is similar to a macro facility. Some of
the features obtained by aliasing can be obtained also using C-shell com­
mand files, but these take place in another instance of the C-shell and
cannot directly affect the current C-shell's environment or involve com­
mands such as cd which must be done in the current C-shell.

For example, suppose there is a new version of the mail program on the
system called newmail that you wish to use instead of the standard mail
program mail. If you place the C-shell command

alias mail newmail

in your .cshrc file, the C-shell will transform an input line of the form:

mail bill

into a calion newmail. Suppose you wish the command Is to always show
sizes of files, that is, to always use the -s option. In this case, you can use the
alias command to do:

alias Is Is -s

or even:

alias dir Is -s

creating a new command named dir. If we then enter:

dir "bill

the C-shell translates this to:

Is -s /usr/bill

Note that the tilde n is a special C-shell symbol that represents the user's
home directory.

Thus the alias command can be used to provide short names for commands,
to provide default arguments, and to define new short commands in terms of

6-10 XENIX User's Guide

Using Aliases

other commands. It is also possible to define aliases that contain multiple
commands or pipelines, showing where the arguments to the original
command are to be substituted using the facilities of the history mechanism.

Thus the definition:

alias cd 'cd \!* ; Is '

specifies an Is command after each cd command. We enclosed the entire
alias definition in single quotation marks (,) to prevent most substitutions
from occurring and to prevent the semicolon (;) from being recognized as a
metacharacter. The exclamation mark (!) is escaped with a backslash (\) to
prevent it from being interpreted when the alias command is entered. The
''\!*'' here substitutes the entire argument list to the prealiasing cd com­
mand; no error is given if there are no arguments. The semicolon separating
commands is used here to indicate that one command is to be done and then
the next. Similarly the following example defines a command that looks up
its first argument in the password file.

alias whois 'grep \!A /etc/passwd'

The C-shell currently reads the .cshrc file each time it starts up. If you place a
large number of aliases there, C-shells will tend to start slowly. You should
try to limit the number of aliases you have to a reasonable number (10 or 15 is
reasonable). Too many aliases causes delays and makes the system seem
sluggish when you execute commands from within an editor or other pro­
grams.

The C-Shell 6-11

Redirecting Input and Output

Redirecting Input and Output
In addition to the standard output, commands also have a diagnostic out­
put that is nonnally directed to the tenninal even when the standard out­
put is redirected to a file or a pipe. It is occasionally useful to direct the
diagnostic output along with the standard output. For instance, if you
want to redirect the output of a long running command into a file and wish
to have a record of any error diagnostic it produces you can enter:

command > & file

The "> &" here tells the C-shell to route both the diagnostic output and the
standard output into file. Similarly you can give the command:

command 1& lpr

to route both standard and diagnostic output through the pipe to the lineprint­
er. The fonn:

command >&! file

is used when "noclobber" is set andfile already exists. Finally, use the fonn:

command » file

to append output to the end of an existing file. If "noclobber" is set, then an
error results iffile does not exist, otherwise the C-shell creates file. The fonn:

command »! file

lets you append to a file even if it does not exist and "noclobber" is set.

6-12 XENIX User's Guide

Creating Background and Foreground Jobs

Creating Background and Foreground
Jobs
When one or more commands are entered together as a pipeline or as a
sequence of commands separated by semicolons, a single job is created
by the C-shell consisting of these commands together as a unit. Single
commands without pipes or semicolons create the simplest jobs. Usually,
every line entered to the C-shell creates a job. Each of the following lines
creates a job:

sort < data
Is -s I sort -n I head -5
mail harold

If the ampersand metacharacter (&) is entered at the end of the commands,
then the job is started as a background job. This means that the C-shell does
not wait for the job to finish, but instead, immediately prompts for another
command. The job runs in the background at the same time that normal jobs,
called foreground jobs, continue to be read and executed by the C-shell.
Thus:

du > usage &

runs the du program, which reports on the disk usage of your working direc­
tory, puts the output into the file usage and returns immediately with a
prompt for the next command without waiting for du to finish. The du pro­
gram continues executing in the background until it finishes, even though
you can enter and execute more commands in the mean time. Background
jobs are unaffected by any signals from the keyboard such as the INTER·
RUPT or QUIT signals.

The kill command terminates a background job immediately. Normally, this
is done by specifying the process number of the job you want killed. Process
numbers can be found with the ps command.

The C-Shell 6-13

Using Built-In Commands

Using Built-In Commands
This section explains how to use some of the built-in C-shell commands.

The alias command described above is used to assign new aliases and to
display existing aliases. If given no arguments, alias prints the list of
current aliases. It may also be given one argument, such as to show the
current alias for a given string of characters. For example:

alias Is

prints the current alias for the string "Is".

The history command displays the contents of the history list. The num­
bers given with the history events can be used to reference previous
events that are difficult to reference contextually. There is also a C-shell
variable named "prompt". By placing an exclamation point (!) in its
value the C-shell will substitute the number of the current command in
the history list. You can use this number to refer to a command in a his­
tory substitution. For example, you could enter:

set prompt= \! % '

Note that the exclamation mark (!) had to be escaped here even within back
quotes.

The logout command is used to terminate a login C-shell that has
"ignoreeof" set.

The rehash command causes the C-shell to recompute a table of command
locations. This is necessary if you add a command to a directory in the
current C-shell's search path and want the C-shell to find it, since otherwise
the hashing algorithm may tell the C-shell that the command wasn't in that
directory when the hash table was computed.

The repeat command is used to repeat a command several times. Thus to
make 5 copies of the file one in the file five you could enter:

repeat 5 cat one » five

6-14 XENIX User's Guide

Using Built-In Commands

The setenv command can be used to set variables in the environment. Thus:

setenv TERM adm3a

sets the value of the environment variable "TERM" to "adm3a". The pro­
gram env exists to print out the environment. For example, its output might
look like this:

HOME=/usr/bill
SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adrn3a
USER=bill

The source command is used to force the current C-shell to read commands
from a file. Thus:

source .cshrc

can be used after editing in a change to the .cshrc file that you wish to take
effect before the next time you login.

The same holds true when using the source command with the .login file.
The time command is used to cause a command to be timed no matter how
much CPU time it takes. Thus:

time cp /etc/termcap /usr/bill/termcap

displays:

~ O.Ou 0.4s 0:02 21%

Similarly:

time wc /etc/termcap /usr/bill/termcap

displays:

2071 5849 92890 /etc/termcap
2071 5849 92890 /u8r/bill/termcap
4142 11698 185780 total

1.3u 0.78 0:04 47%

The C-Shell 6-15

Using Built-In Commands

This indicates that the ep command used a negligible amount of user time
(u) and about 4/10ths of a second of system time (s); the elapsed time was 2
seconds (0:02). The word count command we used 1.3 seconds of user time
and 0.7 seconds of system time in 4 seconds of elapsed time. The percentage
"47%" indicates that over the period when it was active the we command
used an average of 47 percent of the available CPU cycles of the machine.

The unalias and unset commands are used to remove aliases and variable
definitions from the C-shell.

6-16 XENIX User's Guide

Creating Command Scripts

Creating Command Scripts
It is possible to place commands in files and to cause C-shells to be
invoked to read and execute commands from these files, which are called
C-shell scripts. This section describes the C-shell features that are useful
when creating C-shell scripts.

The C-Shell 6-17

Using the argv Variable

Using the argv Variable
A csh command script may be interpreted by saying:

csh script argument ...

where script is the name of the file containing a group of C-shell commands
and argument is a sequence of command arguments. The C-shell places
these arguments in the variable "argv" and then begins to read commands
from script. These parameters are then available through the same mecha­
nisms that are used to reference any other C-shell variables.

If you make the file script executable by doing:

chmod 755 script

or:

chmod +x script

and then place a C-shell comment at the beginning of the C-shell script (i.e.,
begin the file with a number sign (#» then Ibinlcsh will automatically be
invoked to execute script when you enter:

script

If the file does not begin with a number sign (#) then the standard shell I binI sh
will be used to execute it.

6-18 XENIX User's Guide

Substituting Shell Variables

Substituting Shell Variables
After each input line is broken into words and history substitutions are
done on it, the input line is parsed into distinct commands. Before each
command is executed a mechanism known as variable substitution is per­
formed on these words. Keyed by the dollar sign ($), this substitution
replaces the names of variables by their values. Thus:

echo $argv

when placed in a command script would cause the current value of the
variable "argv" to be echoed to the output of the C-shell script. It is an
error for "argv" to be unset at this point.

A number of notations are provided for accessing components and
attributes of variables. The notation:

$?name

expands to 1 if name is set or to 0 if name is not set. It is the fundamental
mechanism used for checking whether particular variables have been
assigned values. All other forms of reference to undefined variables
cause errors.

The notation:

$#name

expands to the number of elements in the variable "name". To illustrate,
examine the following terminal session (input is in boldface):

% set argv=(a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
o
% echo $argv
Undefined variable: argv.
%

The C-Shell 6-19

Substituting Shell Variables

It is also possible to access the components of a variable that has several
values. Thus:

$argv[l]

gives the first component of "argv" or in the example above "a". Simi­
larly:

$argv[$#argv]

would give "c". Other notations useful in C-shell scripts are:

$n

where n is an integer. This is shorthand for:

$argv[n]

the n'th parameter and:

$*

which is a shorthand for:

$argv

The form:

$$

expands to the process number of the current C-shell. Since this process
number is unique in the system, it is often used in the generation of
unique temporary filenames.

One minor difference between "$n" and "$argv[n]" should be noted
here. The form: "$argv[n]" will yield an error if n is not in the range
l-$#argv while "$n" will never yield an out-of-range subscript error.
This is for compatibility with the way older shells handle parameters.

Another important point is that it is never an error to give a subrange of
the form: "n-"; if there are less than "n" components of the given vari­
able then no words are substituted. A range of the form: "m-n" likewise
returns an empty vector without giving an error when "m" exceeds the
number of elements of the given variable, provided the subscript "n" is in
range.

6-20 XENIX User's Guide

Using Expressions

Using Expressions
To construct useful C-shell scripts, the C-shell must be able to evaluate
expressions based on the values of variables. In fact, all the arithmetic
operations of the C language are available in the C-shell with the same
precedence that they have in C. In particular, the operations "==" and
"!=" compare strings and the operators "&&" and "II" implement the
logical AND and OR operations.

The C-shell also allows file inquiries of the form:

-? filename

where question mark (?) is replaced by a number of single characters. For
example, the expression primitive:

-e filename

tells whether filename exists. Other primitives test for read, write and exe­
cute access to the file, whether it is a directory, or if it has nonzero length.

It is possible to test whether a command terminates normally, by using a
primitive of the form:

{ command}

which returns 1 if the command exits normally with exit status 0, or 0 if the
command terminates abnormally or with exit status nonzero. If more
detailed information about the execution status of a command is required, it
can be executed and the "status" variable examined in the next command.
Since" $status" is set by every command, its value is always changing.

For the full list of expression components, see csh(C) in the XENIX Refer­
ence.

The C-Shell 6-21

Using the C-Shell: A Sample Script

Using the C-Shell: A Sample Script
A sample C-shell script follows that uses the expression mechanism of
the C-shell and some of its control structures:

if
if Ccpyc o::pies those C programs in the specifie::l. list
if to the directory - /backup if they differ fran the files
if already in -/backup
if
set noglcb
foreach i ($argv)

end

if ($i != * .c) cx::nt.inue if not a .c file so cb nothing

if (! -r -/backup/$i:t) then

endif

ech::> $i:t not in l:ackup ••• not cp\' e::l.
cx::nt.inue

cnp -s $i - /backup/$i:t if to set $status

if ($status != 0) then

endif

ech::> new l:ackup of $i
cp $i -/backup/$i:t

This script uses the foreach command, which iteratively executes the
group of commands between the foreach and the matching end state­
ments for each value of the variable "i". I f you want to look more
closely at what happens during execution of a foreach loop, you can use
the debug command break to stop execution at any point and the debug
command continue to resume execution. The value of the iteration vari­
able (i in this case) will stay at whatever it was when the last foreach
loop was completed.

The "noglob" variable is set to prevent filename expansion of the
members of "argv". This is a good idea, in general, if the arguments to a
C-shell script are filenames which have already been expanded or if the
arguments may contain filename expansion metacharacters. It is also
possible to quote each use of a "$" variable expansion, but this is harder
and less reliable.

6-22 XENIX User's Guide

Using the C-Shell: A Sample Script

The other control construct is a statement of the form:

if (expression) then
command

endif

The placement of the keywords in this statement is not flexible due to the
current implementation of the C-shell. The following two formats are not
acceptable to the C-shell:

and:

if (expression) # Won't work!
then

command

endif

if (expression) then command endif # Won't work

The C-shell does have another form of the if statement:

if (expression) command

which can be written:

if (expression) \
command

Here we have escaped the newline forthe sake of appearance. The command
must not involve " I ", "&" or "; " and must not be another control command.
The second form requires the final backslash (\) to immediately precede the
end-of-line.

The C-Shell 6-23

Using the C-Shell: A Sample Script

The more general if statements above also admit a sequence of else-if pairs
followed by a single else and an endif, for example:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in C-shell scripts is the colon (:)
modifier. We can use the modifier :r here to extract the root of a filename or
:e to extract the extension. Thus if the variable "i" has the value Imntlfoo .bar
then

echo $i $i:r $i:e

produces:

/mnt/foo.bar /mnt/foo bar

This example shows how the :r modifier strips off the trailing" .bar" and the
:e modifier leaves only the "bar". Other modifiers take off the last com­
ponent of a patbname leaving the head :h or all but the last component of a
patbname leaving the tail :t. These modifiers are fully described in the
csh(C) page in the XENIX Reference. It is also possible to use the command
substitution mechanism to perform modifications on strings to then reenter
the C-shell environment. Since each usage of this mechanism involves the
creation of a new process, it is much more expensive to use than the colon (:)
modification mechanism. It is also important to note that the current imple­
mentation of the C-shelllimits the number of colon modifiers on a "$" sub­
stitution to 1. Thus:

% echo $i $i:h:t

produces:

/a/b/c /a/b:t

and does not do what you might expect.

Finally, we note that the number sign character (#) lexically introduces a C­
shell comment in C-shell scripts (but not from the terminal). All subsequent
characters on the input line after a number sign are discarded by the C-shell.
This character can be quoted using" ,,, or "\" to place it in an argument word.

6-24 XENIX User's Guide

Using Other Control Structures

Using Other Control Structures
The C-shell also has control structures while and switch similar to those
of C. These take the fonns:

and:

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh(C). C programmers should note
that we use breaksw to exit from a switch while break exits a while or
foreach loop. A common mistake to make in C-shell scripts is to use
break rather than breaksw in switches.

Finally, the C-shell allows a goto statement, with labels looking like they
do in C:

loop:

The C-Shell

commands
goto loop

6-25

Supplying Input to Commands

Supplying Input to Commands
Commands run from C-shell scripts receive by default the standard input
of the C-shell which is running the script. It allows C-shell scripts to
fully participate in pipelines, but mandates extra notation for commands
that are to take inline data.

Thus we need a metanotation for supplying inline data to commands in
C-shell scripts. For example, consider this script which runs the editor to
delete leading blanks from the lines in each argument file:

* deb lank -- remove leading blanks
foreach i ($argv)
ed - $i « ' EOF'
l,$sr[]*//
w
q
'EOF'
end

The notation:

« 'EOF'

means that the standard input for the ed command is to come from the
text in the C-shell script file up to the next line consisting of exactly EOF.
The fact that the EOF is enclosed in single quotation marks ('), i.e., it is
quoted, causes the C-shell to not perform variable substitution on the
intervening lines. In general, if any part of the word following the "«"
which the C-shell uses to terminate the text to be given to the command is
quoted then these substitutions will not be performed. In this case since
we used the form "1,$" in our editor script we needed to insure that this
dollar sign was not variable substituted. We could also have insured this
by preceding the dollar sign ($) with a backslash (\), i.e.:

l,\$sr[]*//

Quoting the EOF terminator is a more reliable way of achieving the same
thing.

6-26 XENIX User's Guide

Catching Interrupts

Catching Interrupts
If our C-shell script creates temporary files, we may wish to catch interr­
uptions of the C-shell script so that we can clean up these files. We can
then do:

onintr label

where label is a label in our program. If an interrupt is received the C­
shell will do a "goto label" and we can remove the temporary files, then
do an exit command (which is built in to the C-shell) to exit from the C­
shell script. If we wish to exit with nonzero status we can write:

exit (1)

to exit with status 1.

The C-Shell 6-27

Using Other Features

Using Other Features
There are other features of the C-shell useful to writers of C-shell pro­
cedures. The verbose and echo options and the related -v and -x com­
mand line options can be used to help trace the actions of the C-shell.
The -n option causes the C-shell only to read commands and not to exe­
cute them and may sometimes be of use.

One other thing to note is that the C-shell will not execute C-shell scripts
that do not begin with the number sign character (#), that is C-shell
scripts that do not begin with a comment.

There is also another quotation mechanism using the double quotation
mark ("), which allows only some of the expansion mechanisms we have
so far discussed to occur on the quoted string and serves to make this
string into a single word as the single quote (') does.

6-28 XENIX User's Guide

Starting a Loop at a Terminal

Starting a Loop at a Terminal
It is occasionally useful to use the foreach control structure at the termi­
nal to aid in performing a number of similar commands. For instance, if
there were three shells in use on a particular system, Ibinlsh, Ibinlnsh, and
Ibinlcsh, you could count the number of persons using each shell by using
the following commands:

grep -c csh$ /etc/passwd
grep -c nsh$ /etc/passwd
grep -c -v /sh$ /etc/passwd

Because these commands are very similar we can use foreach to simplify
them:

$ foreach i (' sh$' , csh$' '-v sh$')
? qrep -c $i /etc/passwd
? end

Note here that the C-shell prompts for input with "? " when reading the
body of the loop. This occurs only when the foreach command is entered
interactively.

Also useful with loops are variables that contain lists of filenames or
other words. For example, examine the following terminal session:

% set a=(' ls')
% echo $a
csh.n csh.rm
% ls
csh.n
csh.rm
% echo $#a
2

The set command here gave the variable "a" a list of all the filenames in
the current directory as value. We can then iterate over these names to
perform any chosen function.

The C-Shell 6-29

Starting a Loop at a Terminal

The output of a command within back quotation marks (') is converted
by the C-shell to a list of words. You can also place the quoted string
within double quotation marks (") to take each (nonempty) line as a com­
ponent of the variable. This prevents the lines from being split into words
at blanks and tabs. A modifier :x exists which can be used later to expand
each component of the variable into another variable by splitting the ori­
ginal variable into separate words at embedded blanks and tabs.

6-30 XENIX User's Guide

Using Braces with Arguments

Using Braces with Arguments
Another fonn of filename expansion involves the characters, "{" and "}".
These characters specify that the contained strings, separated by commas
(,) are to be consecutively substituted into the containing characters and
the results expanded left to right. Thus:

A { str 1 ,str2, ... strn } B

expands to:

Astr 1B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be
applied recursively (i.e., nested). The results of each expanded string are
sorted separately, left to right order being preserved. The resulting
filenames are not required to exist if no other expansion mechanisms are
used. This means that this mechanism can be used to generate arguments
which are not filenames, but which have common parts.

A typical use of this would be:

mkdir -/{hdrs,retrofit,csh}

to make subdirectories hdrs, retrofit and csh in your home directory. This
mechanism is most useful when the common prefix is longer than in this
example:

chown root lusr/demo/ {file 1 ,file2, ... }

The C-Shell 6-31

Substituting Commands

Substituting Commands
A command enclosed in accent symbols (') is replaced, just before
filenames are expanded, by the output from that command. Thus, it is
possible to do:

set pwd='pwd'

to save the current directory in the variable "pwd" or to do:

vi 'grep -1 TRACE *.c'

to run the editor vi supplying as arguments those files whose names end in
which have the string "TRACE" in them. Command expansion also
occurs in input redirected with "«" and within quotation marks (It).
Refer to csh(C) in the XENIX Reference for more information.

6-32 XENIX User's Guide

Special Characters

Special Characters
The following table lists the csh and XENIX special characters. A num­
ber of these characters also have special meaning in expressions. See the
csh manual section for a complete list.

Syntactic metacharacters

Separates commands to be executed sequentially

Separates commands in a pipeline

() Brackets expressions and variable valu~s

& Follows commands to be executed without waiting for com­
pletion

Filename metacharacters

/ Separates components of a file's patbname

Separates root parts of a filename from extensions

? Expansion character matching any single character

* Expansion character matching any sequence of characters

[] Expansion sequence matching any single character from a set
of characters

Used at the beginning of a filename to indicate home direc­
tories

{} Used to specify groups of arguments with common parts

Quotation metacharacters

\ Prevents meta-meaning of following single character

Prevents meta-meaning of a group of characters

" Like " but allows variable and command expansion

The C-Shell 6-33

Special Characters

Input/output metacharacters

< Indicates redirected input

> Indicates redirected output

Expansion/Substitution Metacharacters

$ Indicates variable substitution

Indicates history substitution

Precedes substitution modifiers

Used in special forms of history substitution

Indicates command substitution

Other Metacharacters

6-34

Begins scratch filenames; indicates C-shell comments

Prefixes option (flag) arguments to commands

XENIX User's Guide

Chapter 7

The Korn Shell

Introduction 7-1

Starting ksh 7-2

Using the ksh Built-in Editors 7-3
. Using the vi Built-In Editor Modes 7-4
Editing in Input Mode 7-4
Editing in Control Mode 7-5

Accessing Commands in the History File 7-8
Displaying Commands in the History File 7-8
Reexecuting Previous Commands 7-9
Editing Previous Commands 7-9

Customizing the ksh Environment 7-10
Modifying the .profile File 7-10

Executing a File on Logout 7-12
Modifying the .kshrc File 7-12

Defining Aliases 7-12
Setting ksh Options 7-13

Modifying the ksh History File 7-14

Manipulating Commands Wider Than the Screen 7-16

Using Expanded cd Capabilities 7-17

Introduction

Introduction
The KornShell, ksh(C), is an interactive command-language interpreter
and programming language that reads and executes commands from
either the terminal or a file. The ksh combines the best features of the
two common XENIX System shells, the standard Bourne shell, sh(C), and
the C shell, csh(C). The ksh provides both compatibility with sh and the
command history and substitution features of csh. In addition, ksh
includes command-line editing, and enhanced command-history func­
tionality.

The Korn Shell 7-1

Starting ksh

Starting ksh
If you are currently running sh or csh, you can start ksh by entering ksh at
the command line. When you run ksh as a program from your original
login shell, you cannot automatically access the command-line editing
feature.

To use ksh as your default login shell, ask the system administrator to
change your login-shell specifier in the Jete/passwd file to ksh. When the
system administrator specifies ksh as the login shell when creating a new
user, the sysadmsh(ADM) utility creates two files in the user's home
directory: .profile and .kshrc.

When you log in using ksb as your login shell, the shell reads commands
from the system profile file, Jete/profile, and then from .profile in the
current directory or $HOME/.profile, if either file exists. Next, the shell
reads commands from the ksb environment file, $HOME/.kshrc, if it
exists. If there is no .sh _history file (the history file where ksb stores
commands that you enter at the keyboard) in the your home directory, ksb
creates one.

For more information on these files and how to modify your ksb environ­
ment, see the section later in this chapter, "Customizing the ksh Environ­
ment."

7-2 XENIX User's Guide

Using the ksh Built-in Editors

Using the ksh Built-in Editors
Using csh or sh, the only way to fix errors on the command line is to
backspace or retype the entire line. With ksh, you can edit the command
line using the familiar commands that you use to edit files. The ksh pro­
vides both vi-like and emacs-like built-in editor interfaces for editing the
command line.

At login time, ksh reads the .kshrc environment file and turns on the vi­
like editor. You can turn off the ksh editor functionality completely or
turn off vi and tum on emacs for the current session or for each login ses­
sion.

To tum off vi for the current login session only, enter the following at the
command line:

set +0 vi

To tum on emacs for the current login session, enter the following at the
command line:

set -0 emacs

To tum on or off either the vi or emacs editors automatically when you
log in, add the appropriate command to the .profile or environment file
(.kshrc by default).

You can also use the EDITOR and VISUAL environment variables to set
the editor to any patbname that ends in vi. For example, to turn on the vi
editor automatically when you log in, add the following line to your
.kshrc file:

EDITOR =/usrlbin/vi

Note

The VISUAL variable overrides the EDITOR variable.

This chapter includes infonnation on the built-in vi-like editor. For infor­
mation about using the emacs-like editor, see your emacs documentation.

The Kom Shell 7-3

Using the ksh Built-in Editors

Using the vi Built-In Editor Modes

Like the vi text editor, ksh's built-in vi editor has two modes: input mode
and control mode. ill input mode, ksh inserts the characters that you type
at the keyboard in an editing buffer. ill control mode, ksh interprets the
characters that you enter at the keyboard as editing commands.

When you log in using ksh as your login shell, you are in input mode au­
tomatically. (This differs from the vi text editor; you are initially in con­
trol mode and you must press a or i to begin entering text.) To enter con­
trol mode from input mode, press (Esc). If you press (Esc) while in control
mode, the terminal beeps.

Editing in Input Mode

While entering commands in input mode, you can edit the command line
using editing commands from the following table:

7-4

Command
Input Mode Editing Commands

Description

{Ctrl)h or (Bksp)
(Return) or {Ctrl)m
{Ctrl)v

moves back one character
executes the current line
escapes the character that follows
(for entering control characters)

XENIX User's Guide

Using the ksh Built-in Editors

Editing in Control Mode

At any time before you press (Return) to execute the command, you can
press (Esc) to enter control mode. In control mode, you can move around
the command line as if you were in vi, editing a file.

The following table shows the vi commands for moving the cursor on the
command line in control mode:

Moving the Cursor

Key Description

h moves left one character
I moves right one character
b moves left one word
B moves left one word, skipping punctuation
w moves right one word
W moves right one word, skipping punctuation
e moves to the last character of the next word
E moves to the last character of the next word, skip­

ping punctuation
o moves to the beginning of the current line
$ moves to the end of the current line

moves to the first character on the current line that
is not a (Space) or (Tab)

fx moves right to the next occurrence of x
Fx moves left to the preceding occurrence of x
tx moves right to the character before the next

occurrence of x
Tx moves left to the character following the preced­

ing occurrence of x
repeats the last character search f, F, t, or T.
reverses the last character search f, F, t, or T.

The Korn Shell 7-5

Using the ksh Built-in Editors

The following table gives the commands for entering input mode from
control mode, and for changing and deleting text:

7-6

Adding, Changing, and Deleting Text

Key Description

a enters input mode after the character under
the cursor

A enters input mode after the last character on
the line
enters input mode before the character
under the cursor

I enters input mode before the first character
on the line
appends the last word of the previous ksh
command to the current line and then enters
input mode.

rz replaces the character under the cursor with
z

Rtext replaces characters with text beginning at
the cursor

emotion changes the characters from cursor position,
using the vi motion command

x
X

For example:
cw changes word below cursor
cl changes character below cursor and then

adds text
c$ changes from the current character to the

end of line
cc deletes the entire line and returns to input

mode (same as c$)
deletes the character under the cursor
deletes the character to the left of the cursor

dw Deletes the word under cursor
dmotion deletes characters, starting at the cursor, up

to and including the other end of motion
D deletes from the cursor to the end of line
d$ same as D

(Continued on the next page.)

XENIX User's Guide

Using the ksh Built-in Editors

Adding, Changing, and Deleting Text (Continued)

Key Description

dd deletes the entire line
ymotion yanks the current character using vi motion

command
Y yanks from cursor to end of line
y$ same as Y
yy yanks the entire line into the buffer
p puts previously yanked (or deleted) words to

the right of the cursor
P puts previously yanked (or deleted) words to

the left of the cursor

The following table shows the control mode commands for executing and
redrawing the current line, repeating commands, and undoing
modifications on the command line:

Miscellaneous Control Mode Commands

Command

(Return) or (Ctrl)m
(Ctrl)1

u
U

The Korn Shell

Description

executes the current line
redraws the current line
changes the case of the character under the
cursor
repeats the most recent vi command
undoes the previous vi command
undoes all modifications on the current line

7-7

•

Accessing Commands in the History File

Accessing Commands in the History
File
Using the vi built-in editor, you can access previously entered commands
that are stored in your ksh history file (.sh_history by default). Once you
retrieve a command, you can modify it and execute it again.

Displaying Commands in the History File

To display the list of the commands that are stored in the history file,
enter history. The history command is a predefined alias that uses the
ksh built-in command, fc (fix command), to access the history file. For
more information about fe, see ksh(C).

The history alias displays the last 16 (or fewer, if there are fewer than 16
commands in the file) commands in the history file. You can specify how
many and which commands that you want history to display. Note that
the commands must be accessible in the history file for history to display
them. The following list gives examples of how to use the history alias:

history -4 displays the previous four commands
only.

history 20 displays all commands from the history
file, starting with 20.

history 12 24 displays only commands 12 through 24.

7-8 XENIX User's Guide

Accessing Commands in the History File

Reexecuting Previous Commands

The ksh also includes r, another predefined alias that uses the fc built-in
command. The r alias allows you to reexecute commands from the his­
tory file. This alias functions similarly to the! command in csh. The fol­
lowing list shows some common uses of the r alias:

Alias Description

r reexecutes the last command entered
r command reexecutes the last command entered
r x reexecutes the last command beginning with x
r # reexecutes command number #

Note that r simply reexecutes commands from the history list; r does not
allow you to modify commands before you execute them.

Editing Previous Commands

You can use vi commands to search for and retrieve commands from the
history file. Once you locate a command, you can edit and reexecute it
using the vi commands described in the section "Editing in Control
Mode" earlier in this chapter.

To move through the history file, first press (Esc) to enter control mode.
Then, use the vi commands in the following table to move up and down in
the history file:

Command

k
j
/string

?string

G

n
N

The Korn Shell

Moving in the History File
Description

moves up (previous) one command in the history file
moves down (next) one command in history file
searches left and up (back) through the history file
for the next command containing string
searches right and down (forward) through the his­
tory file for the next command containing string
goes back to the oldest accessible command in the
history file
repeats the last / or ? search command
repeats the last / or ? command, searching backward

7-9

Customizing the ksh Environment

Customizing the ksh Environment
The ksh uses two files located in your home directory, .profile and .kshrc,
to set up your environment. Use the .profile file to set variables and
options for your login shell and other programs that you run from the ksh.
The .kshrc file is the ksh-specific environment file; use it to define aliases
and set ksh command-line options.

Modifying the .profile File

Whenever you log in using ksh as your login shell, ksh executes the
.profile file, automatically executing commands and setting exported
environment variables. Commands and environment variables in .profile
must be in the same format as they are when you enter them from the key­
board.
To assign values to ksh environment variables, use this format:

7-10

EDITOR = Ibin/vi
export EDITOR

XENIX User's Guide

Customizing the ksh Environment

The following table shows some of the more common environment vari­
abIes:

Environment Variables
Variable Description

COLUMNS specifies the number of columns that ksh
uses to display the command line

EDITOR sets either the vi-like or emacs-like editor
to use when editing the command line

ENV sets the environment file (.kshrc by
default)

mSTFlLE sets an alternate history file (.sh _history
by default)

mSTSIZE sets the maximum number of commands
that are stored in the history file (128 by
default)

HOME specifies the default argument used by the
cd(C) command

MAILCHECK specifies the interval in seconds that ksh
checks for new mail (600 seconds by
default)

PATH specifies the pathnames that ksh searches
when executing commands

PSI specifies the primary prompt to display
when the interactive option is on ($ by
default); ksh replaces an exclamation
point (!) with the command number (to
print a! in the prompt, enter !!)

TERM specifies the type of terminal that you are
using

VISUAL sets the editor to use when editing com­
mand lines (overrides the value of EDI­
TOR)

The Korn Shell 7 -11

Customizing the ksh Environment

For example, to set up your prompt to include the machine name and
command number, add the following following lines to your .profile:

PSt=,! fscott'
export PSt

For a complete list of environment variables used by ksh, see ksh(C).

Executing a File on Logout

You can use the trap 0 command in your .profile file to instruct ksh to
execute a file, for example, .logout, when you exit the shell. To do this,
enter the following in .profile:

trap $HOME/.logout 0

The .logout file must be executable.

Modifying the .kshrc File

The kshrc file contains definitions for aliases and functions and default
option settings for ksh. You should specify any commands and
definitions that only ksh recognizes in this file rather than in .profile.

Defining Aliases

An alias is an abbreviated name for a command. Use the following for­
mat to define an alias:

alias shortname =' commandname'

where shortname is the abbreviated name for commandname. For exam­
ple, to define Is as an alias for Ie -F, use the following command:

alias Is='lc -F'

You can define aliases for the current ksh session by entering alias at the
command line. To specify that an alias definition. remain in effect across
login sessions, add the alias command to your .kshrc (or other ksh
environment file).

7-12 XENIX User's Guide

Customizing the ksh Environment

You can display the complete list of your aliases by entering alias at the
prompt. To display a particular alias definition, enter alias followed by
the alias name. For example, if you enter alias Is, ksh displays:

Is=1c -F

To unset a particular alias (in either the .kshrc file or at the command
line), enter unalias followed by the alias name.

When you run scripts that do not invoke another ksh, regular aliases do
not remain defined. However, you can export these alias definitions by
defining them in your environment file using this format:

alias -x Is='1c -F'

The ksh automatically predefines several aliases. These aliases are com­
piled into the shell, but you can unset or redefine them. (We do not
recommend redefining preset aliases.) The two most common preset
aliases are history (for displaying the contents of the .sh_ history file) and
r (for reexecuting previously entered commands). For more information
about preset aliases, see the section "Accessing Commands in the History
File" in this chapter and ksh(C).

Setting ksh Options

You can set ksh command-line options in your environment file. Use the
following format:

set -0 option

The Kom Shell 7-13

Customizing the ksh Environment

To unset an option, use a plus (+) character in place of minus (-).
The following table lists some useful ksh options:

set Options
Option Description

a1lexport exports all subsequent variables automati­
cally (same as -a)

bgnice runs all background jobs at a lower prior­
ity (set by default)

emacs uses the emacs-like built-in editor for
command-line editing

ignoreeof prevents ksh from exiting on end-of-file,
(Ctrl)d; (when ignoreeof is set, you must
enter exit to terminate the shell)

verbose prints shell input lines as they are read
vi uses the vi-like built-in editor for

command-line editing

For a complete list of set options and descriptions, see ksh(C).

Modifying the ksh History File

The ksh stores the commands that you enter at the keyboard in the
.sh _history file in your home directory by default. You can specify a
different history file using the HISTFll...E environment variable in your
.profile file.

For example, to use the file .history instead of .sh history, add the follow-
ing lines to your .profile: -

HISTFILE= -I.history
export HISTFILE

You can specify the maximum number of previously entered commands
that you can retrieve from the history file with the HISTSIZE environment
variable. If HISTSIZE is not set, ksh stores 128 commands by default.
There is no limit to the number of commands that the ksh can store.

7-14 XENIX User's Guide

Customizing the ksh Environment

Note

If HISTSIZE is very large, ksh may be very slow at startup time.

The ksh does not delete the history file when you exit; the shell appends
and stores commands across login sessions. When you log in, ksh deletes
any commands in your history file that are older than the last number of
commands specified by HISTSIZE.

The Korn Shell 7-15

Manipulating Commands Wider Than the Screen

Manipulating Commands Wider
Than the Screen
The ksh allows you to enter commands of up to 256 characters from the
terminal. You can define the maximum width of the command-line dis­
play (80 columns by default) using the COLUMNS variable. (See the sec­
tion "Customizing the ksh Environment" in this chapter for more infor­
mation about setting environment variables.)

If you edit a command that is wider than the command-line display minus
two columns, ksh automatically scrolls the command line horizontally to
the left or right of your screen. In the last column on the right side of the
screen, ksh displays one of the following characters to show that the line
is scrolling:

<

>

*

scrolls to the right (text to the left is not
displayed)
scrolls to the left (text to the right is not
displayed)
text both to the right and to the left is not
displayed

For example, if COLUMNS is not set (the width of the command-line dis­
play is the default of 80 columns) and your command line is greater than
78 characters wide, ksh scrolls the command line left to display the end
of the line. To the right of the command line, ksh displays the > charac­
ter.

Horizontal scrolling does not work when you initially enter a command.

7-16 XENIX User's Guide

Using Expanded cd Capabilities

Using Expanded cd Capabilities
The ksh includes expanded functionality for the cd(C) command. You
can instruct ksh to search through a specified list of directories when you
enter pathnames that do not begin with the slash (/) character. To do this,
set the CDPATH variable in your .profile file. (See the section "Customiz­
ing the ksh Environment" for more information about setting environ­
ment variables.)

The ksh provides an option to cd that allows you to return quickly to your
previous working directory. For example, if you are in the lusrlspoollmai/
directory and you enter:

cd lusr/bin

you can return to your previous directory, lusrlspoollmail, by entering
cd -. From this directory, you can enter cd - again to return to the
lusrlspoollmail directory.

The ksh provides a means for changing to a directory with a patbname
that is slightly different from your current working directory. To do this,
use the following format:

cd old new

where old is the part of the patbname that you want to change and new is
what you want to change it to. For example, if you are in lusrlspool/mail
and you want to change to lusrlbinlmail, enter:

cd spool bin

The Korn Shell 7-17

ChapterS

The Visual Shell

What is the Visual Shell? 8-1

Getting Started with the Visual Shell 8-2
Entering the Visual Shell 8-2
Getting lIelp 8-2
Leaving the Visual Shell 8-3

The Visual Shell Screen 8-4
Status Line 8-4
Message Line 8-4
Main Menu 8-4
Command Option Menu 8-5
Program Output 8-5
View Window 8-6

Visual Shell Reference 8-8
Visual Shell Default Menu 8-8
Options 8-10
Print 8-11
Quit 8-12
Run 8-12
View 8-12
Window 8-12
Pipes 8-13
Count 8-13
Get 8-13
lIead 8-14
More 8-14
Run 8-14
Sort 8-14
Tail 8-15

What is the Visual Shell?

What is the Visual Shell?
The visual shell, vsh, is a menu-driven XENIX shell. This chapter
describes the use and behavior of the vsh. This chapter assumes that the
reader is familiar with some general XENIX concepts, specifically the
structure of XENIX filesystems and the nature ofaXENIX "command".
No familiarity with any other shell, however, is assumed. If you are a
first-time user of the visual shell, please completely read the narrative
sections of this chapter.

A "shell" is a program which passes a command to an operating system,
and displays the result of running the command. The XENIX shells can
also create "pipelines" for passing the output of one command to another
command or "redirect" the output into a file.

The other XENIX shells available are the Bourne shell, the C-shell, and
the Korn shell. These shells are called "command-line oriented" shells.
This means that the user enters commands one line at a time. They are
full computer languages which require study and some programming
knowledge to use effectively. These command-line shells are powerful
and efficient.

The vsh is a "menu-oriented" shell. In a menu-oriented shell, the user is
given the available commands, or some of the available commands. The
user can run the command, by selecting from the menu.

The visual shell is a good shell for users who may not want to master a
programming language right away just to use XENIX or a specific XENIX
application. All visual shell users should additionally become familiar
with some command-line shell usage.

Users familiar with command-line shells are in for a pleasant surprise if
they try the visual shell. Experienced users will appreciate the efficiency
and versatility of the visual shell. The distinction is very much akin to
the difference between a line-oriented text editor and a full-screen editor.

A menu shell can be used effectively with very little study. On the other
hand, a menu shell can also restrict the user from using the operating sys­
tem in creative, possibly more efficient ways. The Microsoft visual shell
strikes a balance in this regard. The visual shell is designed to do all of
the things that the command-line shells can do.

The Visual Shell 8-1

Getting Started with the Visual Shell

Getting Started with the Visual Shell
This section describes how to enter, obtain help about, and leave the
visual shell. This section also describes what you see on the screen while
running the visual shell and how the menus work.

Note the following convention for specifying keystrokes. (Ctrl) refers to
the Ctrl key. (Ctrl}c means pressing the Ctrl and "c" keys at the same
time. Note the irrelevance of case in entering Menu Selection characters.
For instance, press either Q or q to run the "Quit" command from the
main menu.

Entering the Visual Shell

Log in to XENIX. If you are not sure how to log in, consult the XENIX
System Administrator's Guide or have someone knowledgeable about
XENIX help you. When you have a shell prompt (typically "$" or "%"),
the operating system is waiting for a command. Enter the command:

vsh

and press (Return).

Getting Help

If at anytime you are not sure what to do, either run the "'Help'" Menu
Selection or press the question mark (?), which is the "help key." Refer
to the reference section of this chapter for information about the Help
command.

8-2 XENIX User's Guide

Getting Started with the Visual Shell

Leaving the Visual Shell

To exit the visual shell select the Quit command from the main menu.
The simplest way to do this is to simply press q or Q. fu response to the
prompt "'TYPe Y to confirm", enter y or Y. If you don't want to exit the
visual shell yet (perhaps you pressed "q" by mistake), enter any other
character but "y" or "Y". If you have invoked the visual shell from
another shell, as described above, you will need to log out from XENIX by
entering (Ctrl)d or logout and pressing (Return). If the visual shell is your
default shell, you will automatically be logged out.

The Visual Shell 8-3

The Visual Shell Screen

The Visual Shell Screen

Status Line

The bottom line on the screen is called the "status line". The status line
displays the name of the current working directory, notifies you if you
have mail, and gives the date, time and the name of the operating system.

Message Line

The line above the "status line" is called the "message line". The mes­
sage line displays special output from XENIX commands, such as error
reports.

Main Menu

The next section of the screen above the message line is the "Main
menu". The Main menu displays a selection of useful XENIX commands.

The currently selected menu command is highlighted on the screen. To
select any command, press the (Space). The next highlighted command is
selected. The (Bksp) key will move to the previous command. Move
through the menu until you have found the command you want. To run
the currently selected command, press (Return).

You can also enter the first letter of a command to select that command.
If you enter the first letter of the command, you do not need to press
(Return).

If you enter a letter which does not correspond to a menu selection, the
message:

Not a valid option

is displayed. Try another option.

8-4 XENIX User's Guide

The Visual Shell Screen

Command Option Menu

When you have selected a command, the main menu is replaced with a
command option menu. The command option menu gives the options
available with the specific command. You must fill in the options with
appropriate responses.

If you wish to return to the main menu without running the command,
press (Ctrl)c (cancel). If you want to run the command with the selected
options press (Return).

The following keystrokes allow editing of option responses.

(Ctrl)i (Ctrl)a, or (Tab), Move to next field in options menu.

(Ctrl)y or (Del) Delete character under cursor.

(Ctrl)n Move cursor to character to right of
current position in current option
field.

(Ctrl)b Move cursor to character to left of
current position in current option
field.

(Ctrl)p Move cursor to word in current
field to right of the current word.

(Ctrl)o Move cursor to word in current
field to left of the current word.

Program Output

While running a command, commands given and output (unless
redirected) are displayed above the menu and below the view window.
The output scrolls up: moves from bottom to top. Lines scrolling off the •

-. top of the output window disappear.

Visual shell command lines are listed with each argument preceded by
the number in the argument list enclosed in parentheses. The command is
named in the output window by the menu command. Hence, if you run
the command lbinlIs with the argument -R, the output window will dis­
play the command line as follows:

Run (1) /bin/ls (2) -R (3)

The Visual Shell 8-5

The Visual Shell Screen

To change the command line format to reflect the actual XENIX command
line generated by the visual shell, use the Options Output menu com­
mand.

View Window

A menu of currently accessible files and directories can be displayed at
the top of the screen in alphabetical order, left to right, top to bottom.
Note that this display is the same as that obtained using the view com­
mand. This will be referred to as the "view window" in this chapter. If
the directory list is larger than the current window size, you may scroll
through using the key commands given below. To reset the window size,
use the "Window" Main menu command.

The currently selected item is highlighted in the view window. Use the
arrow keys and other key commands given at the end of this section to
move the highlight around the window.

If a directory is being listed, subdirectories are shown enclosed in square
brackets. To view a subdirectory, press = while the directory is
highlighted. To return to the previous directory after viewing a subdirec­
tory, press -. The parent directory of the current directory is shown as
"[.. J." The current directory is shown as "[.J." Executable files are pre­
ceded by an asterisk. The last modification date of the currently selected
item is given at the right margin of the last line of the window. The name
of the item in view in the current window is given in the upper right-hand
comer of the window.

The view window may also display contents of files. Highlight a file, and
press =. You may scroll through the file using the key commands given
below. While viewing a file, the highlighted area covers one line.

If you press "=" while an executable file is highlighted, that file will be
run.

If the visual shell requires a file or directory name, the currently selected
View Window item can be automatically entered in the relevant option
field by pressing any directional movement key following selection of the
command. This method saves keystrokes and reduces the chance of mak­
ing a mistake while entering a command. On the other hand, if you wish
to enter a file or directory in an option field, enter in the name after select­
ing the command.

8-6 XENIX User's Guide

The Visual Shell Screen

Use these keystrokes to select files from the view window:

Table 8.1

Window Motion Keys

(Ctrl)q Move to start (first item alphabetically) of view window.

(Ctrl)z Move to end (last item alphabetically) of view window.

(Ctrl)r (Ctrl)e Scroll view window up.

(Ctrl)r (Ctrl)s Scroll view window down.

= View indicated item, either file or directory. IT no view
window is present, the current working directory is
displayed.

Return window display to parent directory of currently
listed directory. IT viewing a file, exit from viewing that
file. Last view window is returned to.

Table 8.2

Directional Movement Keys

ARROW UP or (Ctrl)e Move highlight up in view window.

ARROW DOWN or (Ctrl)x Move highlight down in view window.

ARROW LEFf or (Ctrl)s Move highlight left in view window.

ARROW RIGHT or (Ctrl)d Move highlight right in view window.

Movement beyond the left or right margin will proceed to the next item
on the previous or next line unless at the edge of the view window.
Movement beyond the top or bottom edge of the current window will
scroll the view window up or down if there are more items in that direc­
tion in the view window.

Note that there are two ways to move the highlight around. Either use the
keypad arrow keys or the cluster of four keys on the far left of the key­
board "e", "x", "s", and "d" shifted with (Ctrl).

While viewing a file, the directional movement keys for up and left move
the highlight up, and the keys for down and right move the highlighted
line down.

The Visual Shell 8-7

Visual Shell Reference

Visual Shell Reference
The following is a reference of useful visual shell commands.

Visual Shell Default Menu

This section describes the default visual shell menu commands and
options. The menu options are displayed at the bottom of the screen
above the status line.

To invoke a command, move the highlight forward through the main
menu using the space bar or the tab key, or backwards using the back­
space key. Or simply press the first letter of the command.

Most commands require entering options. Move the cursor to the field
using the (Space), (Tab) key or (Bksp) key, and enter your response. To
edit the options, refer to the key commands listed above in the section in
this chapter labeled "Command Option Menu". To select an item from a
View Window listing for insertion in a field, refer to the section in this
chapter labeled "View Window".

Note that some options have "switches" with predefined (default) selec­
tions. The currently selected switch setting is highlighted. The default is
the parenthesized setting. For instance, in the switch:

Recursive: (yes) no

the default is "recursive." To change a switch, select the field and press
the (Space) or (Bksp).

Copy

The Copy command can copy files and directories. To copy a file, select
"File" from the options, to copy a directory, select "Directory". A sub­
menu then appears. Enter the file or directory you wish copied in the
from: field. Enter the file or directory you wish copied to the to: field.
Note that if the item in the to: field already exists, it is overwritten, so be
careful.

The Copy Directory sub-menu has a switch "recursive". If this switch is
set to "yes," all sub-directories and their contents below the specified
directory will be copied.

8-8 XENIX User's Guide

Visual Shell Reference

Delete

The Delete command can remove files and directories. In the DELETE
name: field, enter the name of the file or directory you want to remove.
Note that once the file or directory is deleted, the contents are per­
manently removed unless you have another copy, so be careful.

Edit

The Edit command invokes the full-screen editor vi. The current direc­
tory is displayed in the output window. Enter in the option field EDIT
filename: the name of the file you wish to edit using vi.

To learn vi, refer to "vi: a Text Editor" in the XENIXXENIX User's Guide,
and the vi(C) manual page in the XENIX Reference. A vi reference card is
also available.

Help

The Help command (also available by pressing? at any time), can give
online help regarding many aspects of visual shell use. The view window
displays the help file. Use the menu to select the topic you need help
with. For instance, move the highlight to "Keyboard" using the (Space)
and press (Return) to view the help file starting at the "Keyboard" section.
The "Next" and "Previous" fields in the menu will scroll through the the
help file, from the present location, one screen at a time. Your work will
remain undisturbed. To return from Help, press (Ctrl)c or select the
"Resume" menu option.

Mail

The Mail command enters the XENIX mail system. There are two
options: "Send" and "Read" For more information about mail, refer to
the section of the XENIX Users Guide titled "mail", or refer to the
mail(C) manual page.

Name

The Name command renames an existing file or directory. There are two
fields, From: and To:. Enter the name of the file or directory you want to
rename in From: and the new name in To:.

The Visual Shell 8-9

Visual Shell Reference

Options

The Options Main Menu Selection provides four sub-menus. These sub­
menus run commands which are used infrequently, or which have irrevo­
cable results.

Directory Option

The Directory command has two sub-menus, Make and Usage.

Make Directory Option:

This command creates a new directory named what you enter in the
name: field.

Usage Directory Option:

Counts the number of disk blocks in the directories specified in the name:
field. The fonnat is the same as the XENIX command duo Refer to the
manual page du(C).

FileSystem Option

FileSystem has five sub-menus: Create, FilesCheck, SpaceFree, Mount
and Unmount.

Create FileSystem Option:

Create FileSystem makes a XENIX filesystem. The Create command per­
forms radical system maintenance and may have irrevocable effects. Care
is advised when using Create FileSystem.

The functionality is the same as mkfs(ADM). Consult the mkfs(ADM)
manual page before running Create FileSystem. Create FileSystem
prompts you for device, block size, gap number and block number. Refer
to the "Managing Filesystems", chapter in the XENIX System
Administrator's Guide, for information on creating file systems.

FilesCheck FileSystem Option:

FilesCheck checks the consistency ofaXENIX filesystem and attempts
repair if damage is detected. The FilesCheck command performs radical
system maintenance and may have irrevocable effects. Care is advised
when using FilesCheck.

8-10 XENIX User's Guide

Visual Shell Reference

The functionality is the same as fsck(ADM). Consult the fsck(ADM)
manual page before running FilesCheck. FilesCheck prompts you for the
device to check.

Output Option:

The Output Option command has one switch, commands like: VShell
XENIX". The default is VShell. IF VShell is set, the vsh form of com­
mands given appear in the upward scrolling output window. If XENIX is
specified, the XENIX command line which vsh generated is shown
instead.

Permissions Option

The Permissions Option command allows changing the access permis­
sions on files and directories. The functionality is the same as the
chmod(C) command. Consult the chmod manual page if you do not
understand the concept of XENIX permissions.

In the name: field enter the name of the file or directory you wish to alter
the permissions on. You may only alter the permissions on files and
directories you own. There are four switches, who:, read:, write:, and
execute:.

The who: switch has four settings, All, Me, Group and Others. All is the
default. All refers to yourself, those with the same group id as yourself
and others. Me refers to yourself. Group refers to all others with your
group id. Others refers to those outside your group.

The read:, write:, and execute: switches have two settings, "yes" and
"no". The default is "yes" for Me, and "no" for Group and Others. This
grants the given type of permission to those specified in the who: switch.
No takes away the given type of permission from those specified in the
who: switch.

Print

The Print command puts a file or files in the queue for your printer. In the
filename: option field, enter the file or files you want to print.

The Visual Shell 8-11

II

Visual Shell Reference

Quit

The Quit command exits the visual shell. The only option is Enter Y to
confirm:. Enter Y or y if you really want to quit. Any other key cancels
the quit.

Run

The Run command executes a program or shell script. The name: option
takes the name of an executable file. In the parameters: option field
enter flags to pass to the executable file. The output: option can specify a
file to redirect output to, or another program to send the output to. Enter I
(a vertical bar) in the output field to use the pipe menu.

It is also possible to run an executable file by highlighting the name of the
file in the View Window and pressing =.

View

The View command allows you to inspect without altering the contents of
files and directories. View is also available at any time for an item
highlighted in the View Window by pressing =. See the section above
labeled "View Window" for the details of using View.

To alter the height and characteristics of the View Window, use the
"Window" menu option. See the section below labeled "Window."

If you have invoked View from the menu, enter the name of the file or
directory you wish to view in the VIEW name: field, or select from a
directory view window.

To return from any View action to the previously displayed View Win­
dow, press the minus key (-).

If you View a non-executable binary file, non-ascii characters are dis­
played as the character '@'.

Window

The Window command alters the height and redraw characteristics of the
visual shell View Window.

8-12 XENIX User's Guide

Visual Shell Reference

The

WINDOW redraw: Yes (No)

switch turns redraw of the view window on or off after running a com­
mand.

The height in lines: field changes the number of lines displayed in the
view window. The minimum window height is lline. The default win­
dow height is Slines. The maximum window height is lSlines.

Pipes

XENIX allows output from one program to be passed to another program
or to be put in a file. This is called "piping" or "pipelining. " If the output
is placed in a file it is said to be "redirected." Piping is supported in the
visual shell through the pipe menu.

The Pipe menu is invoked by entering a vertical bar "I" character in any
option field named output:. For instance, the Run main menu and the
Pipe menu itself have an output: field. The available Pipe menu com­
mands are Count, Get, Head, More, Run, Sort and Tail. Each Pipe menu
sub-command also has an output: field, which· allows construction of
pipelines of arbitrary length.

Count

Count counts words, lines and characters in the input pipe. The default is
all of the above. There is a switch for each type of item to count. The
Count Pipe Menu option corresponds to the XENIX command wc. Con­
sult the manual page wc(C) for an explanation.

Get

Get looks for patterns in the input pipe. The pattern is specified in the
GET lines containing field. The pattern may be verbatim, or you may
specify a "regular expression" to look for. Regular expressions may con­
tain 'wildcard' characters which represent sets of strings. Consult the
manual page grep(C), for the available wildcard characters.

The first Get switch is Unmatched Yes (No). If you specify No (the
default), all lines containing the given pattern will be output. If you
specify Yes, all lines not containing the given pattern are output.

The Visual Shell 8-13

•

Visual Shell Reference

The second Get switch is ignore case: which suppresses the case while
looking for the regular expression. The default is off.

The third Get switch is line numbers:, which reports the line in the input
stream which the regular expression was matched on. The default is on.

Head

Head prints a specified number of lines of the input stream starting from
the first line. The lines: field may be set to specify the number of lines at
the head of the input stream to print. The default is 5 lines.

The Head Pipe Menu option corresponds to the XENIX command head.
Consult the manual page head(C) for an explanation.

More

More allows viewing an input stream one screen at a time. The More
Pipe Menu option invokes the XENIX command more. Consult the manu­
al page more(C) for an explanation.

Run

The Run Pipe Menu option allows the specification of any command not
in the Pipe menu. The functionality is the same as the visual shell Main
Menu Option "Run".

Sort

The XENIX sort utility can be invoked through the Sort Pipe menu option.
The input stream is sorted.

The first Sort switch is order: < >. Select "<", the default, to sort in
ascending order. Select ">" to sort in descending order.

The second Sort switch suppresses the case of characters in the sort. The
default is off.

The third Sort switch sorts the input stream assuming an initial numeric
field is in the input stream. If this switch is off, initial numbers are sorted
in ascii order, which means that a line beginning with "10" will be output
before the line beginning with "2." The default is off.

8-14 XENIX User's Guide

Visual Shell Reference

The fourth Sort switch sorts the input stream in alphabetical order, rather
than ascii order.

The Sort Pipe Menu option corresponds to the XEN1X command sort.
Consult the manual page sort(C) for an explanation.

Tail

Tail prints a specified number of lines of the input stream up to the end of
the stream. The lines: field may be set to specify the number of lines to
print. The default is 15 lines.

The Tail Pipe Menu option corresponds to the XEN1X command tail.
Consult the manual page tail(C) for an explanation.

The Visual Shell 8-15

Index

Special
Characters

o command. See vi
> (greater-than sign), scrolling in ksh

7-16
< (less-than sign), scrolling in ksh 7-16
* (asterisk), scrolling in ksh 7-16
() command. See Braces command

({))
: command. See Colon (:), command
. command. See Dot (.), command
. command. See Dot (.), command
/ command. See vi, slash (f)
$# variable, argument recording 5 -16
$! variable, background process number

5-17
$? variable, command exit status 5-16
$- variable, execution flags 5-17
$$ variable, process number 5-16

A

a command, alias 3-18
A command, append at end ofline 2-23
a command

appending text 2-23
mail 3-18, 3-26, 3-45
vi use. See vi

-a operator 5-48
abbr command 2-61
Alias, C-shell 6-10
alias command, ksh 7-12
alias line 3-18
Aliases

defining in ksh 7-12
exporting to other shells 7-13
preset 7-13
unsetting 7-13

allexport option, ksh command line 7-14
Ampersand (&)

See also And-if operator (&&)
background process 5-26, 5-69
command list 5-26

Ampersand (&) (continued)
INTERRUPT and QUIT immunity

5-26
jobs to other computers 5-26
off-line printing 5-26
use restraint 5-27

And-if operator (&&)
command list 5-26
described 5-27
designated 5-69

Append
See also Insert
output append symbol. See Output
vi procedure 2-23

Argument
filename 5-3
list, creating 5-3
mail commands 3-10
number checking, $# variable 5-16
processing 5-23
redirection argument, location 5-9
shell, argument passing 5-23
substitution sequence 5-24
test command argument 5-48

Arithmetic, expr command effuct 5-49
askcc option. See mail
asksubject option. See mail
Asterisk (*)

directory name, not used in 5-4
mail

character matching 3-9
message saved, header notation 3-

22,3-24
metacharacter 5-4, 5-70
pattern matching 5-4
scrolling in ksh 7-16
special shell variable 5-24

At sign (@), mail 3-39, 3-52
autombox option. See mail
autoprint option. See mail

B

b command. See vi
-b option, mail 3-40
Background

I-I

Index

Background (continued)
job

C-shell use. See C-shell
process

$! variable 5-17
ampersand (&) operator 5-26, 5-69
dial-up line

Ctrl-d effuct 5-26
nohup command 5-26

INTERRUPT immunity 5-26
QUIT immunity 5-26
use restraint 5-27

Backslash (\)
C-shell use. See C-shell
line continuation notation 5-62
metacharacter escape 5-4
quoting 5-70

BACKSPACE key
mail 3-8, 3-16

Dec escape. See mail
bgnice option, ksh command line 7-14
/bin directory

command search 5-3
contents 5-45
name derivation 5-45
/usr/bin, files duplicated in 5-60

Binary logical
and operator 5-48
or operator 5-48

BlNUNIQ shell procedure 5-60
BKSP, vi cursor movement 2-19
Bourne shell

TERM variable 2-56
terminal type 2-56

Braces ({ })
command ({ }) 5-55
command grouping 5-33
pipeline use, enclosing a command

list 5-27
variable

conditional substitution 5-52
enclosure 5-13

Brackets ([])
directory name, not used in 5-4
metacharacter 5-4, 5-70
pattern matching 5-4
test command, used in lieu of 5-47

break command
for command contro15-32
loop control 5-32
shell built-in command 5-55
special shell command 5-40
while command control 5-32

Buffur, See vi

1-2

c

Clanguage, shell language 5-2
-c option

mail 3-40
shell, invoking 5-54

Calendar reminder seIVice 3-41
Calling a remote terminal

See ct command
Caret H

mail, first message specification 3-20,
3-44

mail, first message, symbol 3-9
case command

description and use 5-29
exit status 5-30
redirection 5-36
shell built-in command 5-55

Case delimiter symbol (;;) 5-69
Case-part 5-69
-cc escape. See mail
cd - command, expanded ksh

capabilities 7-17
cd command

directory change 5-18
mail 3-28, 3-45
parentheses use 5-18
searches 5-58

CDPATH environment variable, setting
7-17

CDPATH variable 5-15
chron option. See mail
Colon (:)

command 5-40
mail

command escape 3-33
network mail 3-13

PATH variable use 5-14
shell built-in command 5-55
variable conditional substitution 5-53
vi use. See vi

Colon command. See Colon (:),
command

COLUMNS environment variable,
setting ksh command-line display
7-11,7-16

Command
defined 5-26
enclosure in parentheses « », effuct

5-56
environment 5-20
execution 5-2

time 5-55

Command (continued)
exit status. See Exit status
grammar 5-68
grouping

exi t status 5 -35
parentheses « » use 5-69
procedure 5-33
WRlTEMAIL shell procedure 5-67

keyword parameter 5-20
line. See Command line
list. See Command list
mail commands summary 3-44
mode. See vi
multiple commands 5-9
output substitution symbol 5-70
private command name 5-3
public command name 5-3
search

PATH variable 5-14
process 5-58

separation symbol (;) 5-69
shell, built-in commands 5-55
simple command

defined 5-2, 5-26
grammar 5-68

slash (f) beginning, effuct 5-3
special shell commands

described 5-40
See Shell

substitution
back quotation mark (') 5-4
double quotation mark U 5-5
procedure 5-9
redirection argument 5-6

vi commands. See vi
Command line

display 7-16
maximum width 7-16

editing
input mode 7-4
with ksh vi mode 7-4

execution 5-24
options

See also specific option
designated 5-54

options, setting in ksh 7-13
pipeline, use in 5-27
resean 5-24
scanning sequence 5-24
substitution 5-9

Command list
case command, execution 5-29
defined 5-26
for command, execution 5-31

Index

Command list (continued)
grammar 5-68

Command mode. See vi
Communication. See mail
Compose escape, See mail.xx 0

for command control 5-32
shell built-in command 5-55
special shell command 5-40
until command control 5-33
while command control 5-32

Control command
See also specific control command
redirection 5-36

Control mode
command-line editing with ksh 7-4
ksh, editing commands 7-5, 7-7
ksh, moving in the history file 7-9

Copy
command 2-26
files

local site. See rcp
remote site. See uucp

text 2-26
COPYPAIRS shell procedure 5-61
COPYTO shell procedure 5-61
csh command, C-shell, invoking 6-2
C-shell

& symbol
redirecting 6-12

1& symbol
redirecting 6-12

alias command
listing 6-14
multiple command use 6-11
number limits 6-11
pipelines 6-11
quoting 6-11
removing 6-16
use 6-10, 6-14

ampersand (&)
background job symbol 6-13
background job use 6-33
boolean AND operation (&&) 6-21
if statement, not used in 6-23
redirection symbol 6-12

appending
noclobber variable effuct 6-12
redirection symbol 6-12

argument
expansion 6-31
group specification 6-33

argv variable
filename expansion, preventing

6-22

1-3

Index

C-shell (continued)
argv variable (continued)

script contents 6-18
arithmetic operations 6-21
asterisk (*)

character matching 6-33
script notation 6-20

background job
procedure 6-13
symbol (&) 6-13
terminating 6-13

backslash (\)
filename, separating parts 6-33
if statement use 6-23
metacharacter

canceling 6-33
escape 6-11

separating parts of filenames 6-33
boolean AND operation 6-21
boolean OR operation 6-21
braces ({ })

argument
expansion 6-31
grouping 6-33

brackets ([])
character matching 6-33

break command
foreach statement exit 6-25
loop break 6-22
while statement exit 6-25

breaksw command
switch exit 6-25

c command
reuse 6-7

caret H
history substitution use 6-34

character matching 6-33
colon (:)

script modifier 6-24
substitution modifier use 6-34

command

1-4

See also specific command
break command 6-22
continue command

loop use 6-22
default argument 6-10
du command 6-13
execution status 6-21
expanding 6-32
file. See C-shell, script
foreach command 6-29

exit 6-25
script use 6-22

history

C-shell (continued)
command (continued)

See also C-shell, history
use 6-14

history list 6-7
input supply 6-26
location

determining 6-14
recomputing 6-5

logout command 6-2, 6-14
multiple commands 6-13
prompt symbol (%) 6-3
quoting 6-30
read only option 6-28
reading from file 6-15
rehash command 6-5
repeating 6-14

mechanisms 6-9
replacing 6-32
separating 6-33

symbol (;) 6-11
set command 6-4
similarity, foreach command 6-29
simplifying 6-10
source

command reading 6-15
substituting

string modification 6-24
symbol 6-34

termination testing 6-21
timing 6-15
transformation 6-10
unalias command 6-16
unset command 6-16

command prompt-symbol (%) 6-3
commands, multiple

alias use 6-11
single job 6-13

comment
metacharacter 6-34
script use 6-18
symbol 6-24

continue command
loop use 6-22

.cshrc file
alias placement 6-10
use 6-2

diagnostic output
directing 6-12
redirecting 6-12

directory
examination 6-5
listing 6-4

disk usage 6-13

C-shell (continued)
dollar sign ($)

last argument symbol 6-8
process number expansion 6-20
variable substitution

symbol 6-19
use 6-34

du command 6-13
:e modifier 6-24
echo option 6-28
else-if statement 6-24
environment

printing 6-15
setting 6-15

equal sign (=)
string comparison use (==), (=-)

6-21
exclamation point (!)

history mechanism use 6-8, 6-14,
6-34

noclobber, overriding 6-6
string comparison use (!=), (!)

6-21
execute primitive 6-21
existence primitive 6-21
expansion

control 6-28
metacharacters designated 6-34

expression
enclosing 6-33
evaluation 6-21
primitives 6-21

extension, extracting 6-24
file

appending 6-12
command content 6-17
enquiries 6-21
overwriting

preventing 6-6
procedure 6-6

filename
expansion 6-31
expansion, preventing 6-22
home directory indicator 6-33
metacharacters designated 6-33
root extraction 6-24
scratch filename metacharacter

6-34
foreach command 6-29

exit 6-25
script use 6-22

goto
label

script cleanup 6-27

Index

C-shell (continued)
goto (continued)

statement 6-25
greater-than sign 0

redirection symbol 6-12, 6-34
history

command 6-9
use 6-14

list 6-7
command substitution 6-14
contents display 6-14

mechanism
alias, use in 6-11
invoking 6-8
use 6-9

substitution symbol 6-34
variable 6-2

home variable 6-5
if statement 6-23
ignoreeof variable 6-2, 6-5
input

execution procedure 6-19
metacharacters designated 6-34
variable substitution 6-19

INTERRUPT key
background job, effect 6-13

invoking 6-2
kill command

background job tennination 6-13
less-than sign «)

redirection symbol 6-34
script inline data supply «<) 6-26

logging out
logout command 6-2, 6-14
procedure 6-3
shield 6-2

.login file, use 6-2
logout command

use 6-2, 6-14
.logout file, use 6-3
loop

break 6-22
input prompt 6-29
variable use 6-29

mail
invoking 6-2
variable 6-5

new mail notification 6-2
metacharacter

canceling 6-33
expansion metacharacter 6-34
filename metacharacter 6-33
input metacharacter 6-34
output metacharacter 6-34

1-5

Index

C-shell (continued)
metacharacter (continued)

quotation metacharacter 6-33
substitution metacharacter 6-34
syntactic metacharacter 6-33

metasyntax
exclamation point (!) 6-6

minus sign (-)
option prefix 6-34

modifiers 6-24
nkey

out-of-range subscript errors,
absence 6-20

script notation 6-20
-n option 6-28
new program, access 6-4
noclobber variable 6-5

appending procedure 6-12
redirection symbols 6-12

noglob variable
filename expansion, preventing

6-22
number sign (#)

C-shell comment
symbol 6-18
use 6-24

C-shell comment symbol 6-28
C-shell comment use 6-34
scratch filename use 6-34

onintr label
script cleanup 6-27

option
metacharacter 6-34

output
diagnostic 6-12
metacharacters designated 6-34
redirecting 6-12

parentheses (0)
enclosing an expression 6-33

path variable 6-4
pathname

component separation 6-33
percentage sign (%)

command prompt symbol 6-3
pipe symbol (I)

boolean OR operation (II) 6-21
command separator 6-33
if statement, not used in 6-23
redirection symbol 6-12

pipeline
alias, use in 6-11

primitives 6-21
printenv

environment printing 6-15

1-6

C-shell (continued)
process number

expansion notation 6-20
listing 6-13

prompt variable 6-14
pscommand

process number listing 6-13
question mark (?)

character matching 6-33
loop input prompt 6-29

QUIT signal
background job, effuct on 6-13

quotation mark
back (')

command use 6-30
substitutions 6-34

double (")
expansion control 6-28

doubleU
metacharacter escape 6-33
string quoting 6-30

single (')
alias definition 6-11
metacharacter escape 6-33
quoted string, effuct 6-28
script inline data quoting 6-26

quotation metacharacters designated
6-33

:r modifier 6-24
read primitive 6-21
redirecting

diagnostic output 6-12
output 6-12
symbols designated 6-34

rehash command 6-5
command locations, recomputing

6-14
repeat command 6-14
root part of filename

separating from extensions 6-33
script

clean up 6-27
colon (:) modifier 6-24
command input 6-26
comment required 6-28
described 6-17
example 6-22
execution 6-18
exit 6-27
inline data supply 6-26
interpretation 6-18
interruption catching 6-27
metanotation for inline data 6-26
modifiers 6-24

C-shell (continued)
script (continued)

notations 6-20
range 6-20
variable substitution 6-19

semicolon (;)
command separator 6-11, 6-33
if statement, not used in 6-23

set command
variable listing 6-4
variable value assignment 6-4

setenv command
environment setting 6-15

slash (f)
separating components of

pathname 6-33
source command

reading a command 6-15
status variable 6-21
string

comparing 6-21
modifying 6-24
quoting 6-30

substitution metacharacters
designated 6-34

switch statement
exit 6-25
form 6-25

syntactic metacharacters designated
6-33

TERM variable 2-57
terminal type, setting 2-57
then statement 6-23
tilde (-)

home directory indicator 6-33
time

command timing 6-15
variable 6-2

unalias command
alias, removing 6-16

unset command 6-16
unsetting procedure 6-5
-v command line option 6-28
variable

See also specific variable
component access 6-19

notations 6-19
definition

removing 6-16
environment variable setting 6-15
expansion 6-19, 6-30
listing 6-4
loop use 6-29
setting procedure 6-5

Index

C-shell (continued)
variable (continued)

substitution 6-19
metacharacter 6-34

use 6-4
value assignment 6-4

check 6-19
verbose option 6-28
while statement

exit 6-25
form 6-25

write primitive 6-21
-x command line option 6-28

C-shell with UUCP commands 4-9
ct command 4-15

-h option 4-17
how it works 4-15
-s option 4-16
sample command 4-16
syntax of 4-15
using 4-15
when to use 4-15

Ctrl-d
mail

message sending 3-3, 3-12
reply message, terminating 3-17,

3-25
shell exit 3-27, 5-33
vi, scroll 2-22

Ctrl-f, vi, scroll 2-22
Ctrl-g, vi, file status information 2-11
Ctrl-h, mail 3-8
Ctrl-u

mail, line kill 3-8, 3-16
vi, scroll 2-22

Ctrl-v 2-61
cucommand

calling
XENIX sites 4-17

command line 4-17
dialing phone numbers with 4-17
error checking 4-20
interactive sessions with 4-17
limitations on 4-17
logging in with 4-19
put command 4-19
sample command 4-18
serial lines with 4-18
syntax of 4-17
system names with 4-18
take command 4-19
terminating a remote session 4-18
transfer files 4-19
using 4-17, 4-18

1-7

Index

current file (%) 2-61
Current line, See vi
Cursor movement, vi. See vi

D

D command. See vi
d$ command. See vi
dO command. See vi
dd command. See vi
-dead escape. See mail
Delete

commands 2-65
vi procedure. See vi, deleting text

Delete butfur. See vi
Diagnostic output. See Output
Dial-up line. See Background process
Digit grammar 5-69
Directory

C-shell
listing 6-4
use. See C-shell

name, metacharacters in 5-4
search

optimum order 5-58
PATH variable 5-58
sequence change 5-3
size etfuct 5-59
time consumed in 5-58

size consideration 5-59
DISTINCTI shell procedure 5-62
Dollar sign ($)

mail, final message, symbol 3-9, 3-21,
3-44

positional parameter prefix 5-11, 5-12
PSI variable default value 5-15
variable prefix 5-12
vi use. See vi

Dot(.)
command

description and use 5-36
shell built-in command 5-55
shell procedure alternate 5-45
special shell command 5-40

mail, current message specification
3-20

mail, current message, symbol 3-9
option. See mail
vi use. See vi

Dot command. See Dot (.), command
dp command. See mllll
DRAFf shell procedure 5-63

1-8

dw command. See vi

E

ecommand
mail 3-8, 3-45
mailR 3-27

-e option, shell procedure 5-46
echo command

ed

description and use 5-49
mail 3-45
-n option etfuct 5-49
shell built-in command 5-55
syntax 5-49

in-line input scripts 5-63
mail system. See mail

EDFIND shell procedure 5-63
Editor, See vi, described
EDITOR environment variable, setting

ksh editor 7-3, 7-11
-editor escape. See mail
Editor, ksh built-in modes 7-3
EDITOR string, mail 3-37, 3-52
EDLAST shell procedure 5-64
elif clause, if command 5-28
else clause, if command 5-28
Else-part grammar 5-69
emacs command, command-line editing

inksh 7-3
emacs option, ksh command line 7-14
Empty grammar 5-69
ENV environment variable, setting ksh

environment file 7-11
Environment variables, modifying

.profile file 7-10
Equal sign (=)

mail, message number printing 3-21,
3-44

variable
conditional substitution 5-52
string value assignment 5-12

Error output, redirecting 5-51
ESC key 2-61
Escape string, mail 3-38, 3-52
etc/defaultlmicnet 4-5
/etc/profile file, ksh 7-2
eval command

command line rescan 5-24
shell built-in command 5-55

Exclamation point (!)
C-shell use. See C-shell

Exclamation point (!) (continued)
mail

network mail 3-14
shell command, executing 3-27,3-

32,3-44
unary negation operator 5-48
vi use. See vi

exec command 5-40, 5-55
Execute

commands
over Micnet. See remote
remote machines. See uux

command
EXINIT environment variable 2-56
Exit

code 5-16
command. See exit command
status

$? variable 5-16
case command 5-30
cd arg command 5-40
colon command (:) 5-40
command grouping 5-35
false command 5-50
if command 5-28
read command 5-41
true command 5-50
until command 5-30
wait command 5-43
while command 5-30

exit command
shell built-in command 5-55
shell exit 5-33
special shell command 5-40

export command
shell built-in command 5-55
variable

example 5-16
listing 5 -21
setting 5-20

expr command 5-49

F

fcommand
mail 3-15, 3-16, 3-25, 3-45

F command, mail 3-17, 3-26, 3-45
-foption, mail 3-12, 3-40
false command 5-50
fc command, ksh 7-8
fi command

if command end 5-28

Index

fi command (continued)
mail 3-45

File
creating

MKFlLES shell procedure 5-65
with vi 2-2

descriptor
redirection 5-7, 5-51
use 5-6

grammar 5-69
mail system files. See mail
pipe interchange 5-62
shell procedure, creating 5-44
textual contents, determining 5-67
variable file, creating 5-36

Filename, argument 5-3
Filter

described 5-8
order consideration 5-57

Flag. See Option
for command

break command effect 5-32
continue command effect 5-32
description and use 5-31
redirection 5-36
shell built-in command 5-55

for loop, argument processing 5-23
fork command 5-56
FSPLIT shell procedure 5-64
Function, defined 5-35

G

G command 2-5
vi use. See vi

Global
substitution

See vi, search and replace
vi 2-40

variable check 5-46
goto command 2-5
Greater-than sign (», scrolling in ksh

7-16
Greater-than sign 0

PS2 variable default value 5-15
redirection symbol 5-69

1-9

Index

H

hcommand
mail 3-11, 3-21, 3-46

H command, vi use. See vi
vi use. See vi

H flag, mail 3-22
hash command

described 5-41
special shell command 5-41

headers command. See mail
'1leaders escape. See mail

help key, vsh 8-2
HISTFILE environment variable, setting

ksh history file 7-11, 7-14
history alias, ksh 7-8, 7-13
history command

C-sheIl6-9
History file

accessing and displaying commands
7-8

ksh, reexecuting and editing
commands 7-9

.kshrc 7-2
HISTSIZE environment variable

default 7-14
setting ksh history size 7-11

ho command. See mail
HOME environment variable, ksh 7-11
HOME variable

conditional substitution 5-53
described 5-13

I

-i option
mail 3-12, 3-39,3-41,3-52
shell, invoking 5-54

if command
COPYTO shell procedure 5-62
description and use 5-28
exit status 5-28
fi command required 5-28
multiple testing procedure 5-28
nesting 5-28
redirection 5-36
shell built-in command 5-55
test command 5-47

IPS variable 5-13
ignore option. See mail

1-10

ignorecase option 2-40
ignoreeof option, ksh command line

7-14
Indirect file transfers over phone lines

4-10
In-line input document. See Input
Input

grammar 5-68
in-line input

document 5-50
EDFIND shell procedure 5-63

standard
input file 5-6

Input mode, command-line editing with
ksh 7-4, 7-6

Insert
See also Append
vi procedure 2-24

Insert mode. See vi
Internal field separator

shell scanning sequence 5-24
specified by IFS variable 5-13

Interrupt
handling methods 5-36
key. See INTERRUPT key

INTERRUPT key
background process immunity 5-26
mail

askcc switch 3-36
cancel 3-16,3-37

Invocation flag. See Option
Item grammar 5-68

J

j command, cursor movement
vi use. See vi

J command, joining lines

K

k command, vi use. See vi.xx 0
Keyword parameter

described 5-20
-k option effuct 5-46

kill command, C-shell use. See C-shell
KomShell, See ksh
ksh

ksh (continued)
alias command 7-12
aliases, defining and exporting 7-12
built-in editors, using 7-3
CDPATH environment variable 7-17
COLUMNS environment variable

7-16
command-line options, setting 7-13
common environment variables 7-11
control mode, moving in the history

file 7-9
described 7-1
editing commands

control mode 7-5, 7-7
input mode 7-4, 7-6

EDITOR environment variable,
setting 7-3

editor modes, using 7-4
environment, customizing 7-10
environment file, .kshrc 7-2
executing a logout file 7-12
expanded cd command 7-17
fc command 7-8
features 7-1
HISTFILE environment variable 7-14
history alias 7-8
history file

accessing commands 7-8
editing commands 7-9
modifying 7-14
reexecuting commands 7-9
.sh_history 7-2

HISTSIZE environment variable 7-14
.kshrc file

described 7-2
modifying 7-12

long commands, manipulating 7-16
preset aliases 7-13
.profi1e file

described 7-2
modifying 7-10

prompt, setting 7-12
r alias 7-9
starting 7 -2
trap command 7-12
unalias command 7-13
VISUAL environment variable,

setting 7-3
.kshrc file

ksh environment, customizing 7-10
modifying 7-12

Index

L

1 command
mail 3-25, 3-46

L command, vi use. See vi
vi use. See vi

(Esc key, vi use. See vi
Less-than sign «), redirection symbol

5-69
Less-than sign «), scrolling in ksh 7-16
line command, shell variable value

assignment 5-10
linenumber option. See vi
Line-oriented commands 2-11
list command

mail 3-46
list option. See vi
LISTFIELDS shell procedure 5-65
Logging out, shell termination 5-33
Login directory

defined 5-13
Login shell, changing default 7-2
logout command, C-shell use 6-2
Logout file, executing with ksh 7-12
Looping

break command 5-32
continue command 5-32
control 5-32
expr command 5-50
false command 5-50
for command 5-31
iteration counting procedure 5-50
time consumed in 5-55
true command 5-50
unconditional loop implementation

5-50
until command 5-30
while command 5-30
while loop 5-61

lp command, mail, -m option 3-41
lprcommand

mail
message printing 3-25, 3-46

Is command, echo *, used in lieu of
5-49

M

mcommand
mail 3-25, 3-46

M flag,mail 3-22

1-11

Index

-m option, mail 3-41
magic option. See vi
mail

- - tilde quote escape (") 3-34
-: command escape 3-33
? command, help 3-19
-? help escape 3-29
-! shell escape 3-32
-I shell escape CI) 3-33
a command. Seemail.alias
accumulation of 3-42
alias

a command 3-18, 3-26, 3-45
Alias, displays system-wide aliases

3-45
display 3-18
personal 3-18, 3-35
R command 3-18
system-wide 3-35

askcc option 3-18, 3-36, 3-51
asksubject option 3-35, 3-51
asterisk (*)

character matching 3-9
message saved, header notation 3-

22,3-24
at sign (@), ignore switch echo 3-39,

3-52
autombox option

description and use 3-39, 3-51
etrect 3-23
H flag 3-22
ho command 3-24

autoprint option 3-36, 3-51
o escape 3-30
-b option 3-40
BACKSPACE key 3-8, 3-16
Dec escape 3-50
Bcc field 3-31
blind carbon copy field

described 3-7
editing 3-31
escape 3-50

box. See Mailbox
-c escape 3-30
-c option 3-40
carbon copy field

additions prompt 3-18
blind field 3-7
described 3-7
display 3-4
editing 3-31
escape

-c escape 3-30
-cc escape 3-50

1-12

mail (continued)
carbon copy field (continued)

option
askcc option 3-36

R command etrect 3-17
caret H, first message, symbol 3-9,

3-20,3-44
-cc escape 3-50
cc field 3-31
cd command 3-28, 3-45
chron option 3-36, 3-51
colon (:)

escape 3-33
network mail 3-13

command
See also specific command
described 3-19
escape C) 3-33, 3-49
invoking 3-19
line, options 3-40
mode

description and use 3-8
help command 3-19
options 3-18

summary 3-44
syntax 3-10

command line, options 3-40
compose

escape
See also specific escape
edit mode 3-8
heading escape 3-30
listing 3-2, 3-16
m command 3-25
reply 3-25
summary 3-49
symbol (!) 3-49
symbol CI) 3-49
tilde (-) component 3-8, 3-16

mode. See mail, compose mode
compose mode

description and use 3-8
edit mode, entering 3-8
entering from

command mode 3-16
shell 3-16

exit 3-8
concepts 3-6
C-shell

new mail notification 6-2
Ctrl-d

message reply 3-17, 3-25
message sending 3-12

Ctrl-h, backspace 3-8

mail (continued)
Ctrl-u, line kill 3-8, 3-16
d command 3-5, 3-9, 3-15, 3-22, 3-45
-d escape 3-31,3-32,3-50
-dead escape 3-31,3-50
dead.letter file

escape 3-32
nosave switch effect 3-37
undelivered message receipt 3-13

deleting 3-45
distribution list, creating 3-18
dollar sign ($)

final message, symbol 3-9, 3-21,
3-44

dot (.), current message symbol 3-9,
3-20

dot option 3-36, 3-51
dp command 3-22, 3-45
e command 3-27, 3-45
-e escape 3-29, 3-50
echo command 3-45
editor escapes 3-29
EDITOR string 3-37, 3-52
entry 3-12
equal sign (=)

message number printing 3-21,
3-44

escape
command mode 3-33
compose CI) 3-49
editing 3-29
headers 3-30, 3-31
help 3-29
printing 3-29
shell 3-33
string 3-38, 3-52
tilde escapes 3-8
write 3-32

exclamation point (!)
network mail 3-14
shell command, executing 3-27,3-

32,3-44
execmail 3-37
exit

q command 3-5, 3-12, 3-23, 3-47
x command 3-23, 3-45

fcommand 3-15, 3-16
F command 3-17
f command 3-25
F command 3-26, 3-45
f command 3-45
-f option 3-12, 3-40
fi command 3-45
file switch 3-40

Index

mail (continued)
files, designated 3-42
forwarding

messages not deleted 3-23
procedure 3-25, 3-26

h command 3-11, 3-21, 3-46
nescape 3-31,3-50
H flag, message saving 3-22
header

characteristics 3-22
command 3-21
compose escape 3-30
composition 3-6
defined 3-10
display 3-3,3-10,3-12
listing 3-46
windows 3-10, 3-21

neaders escape 3-31,3-50
help

command (?) 3-4, 3-19
escape n) 3-16, 3-29, 3-49

hocommand
described 3-24
H flag 3-22
message saving 3-46

hold command 3-24
-i option 3-12, 3-39, 3-41, 3-52
ignore switch. See mail, -i option
INTERRUPfkey 3-16

cancel3-37
recipient list 3-36

introduction 3-1
1 command 3-25, 3-46
line kill 3-8, 3-16
list command 3-46
Ipcommand

-m option 3-41
lprcommand

message printing 3-25, 3-46
m command 3-25, 3-46
-M escape 3-32
-m escape 3-32
M flag, message saving 3-22
-m option 3-41
mail command

command mode entry 3-8, 3-12
compose mode entry 3-16
help 3-4
message reading 3-3, 3-15
message sending 3-2, 3-46

mail escapes 3-32
mailbox. See Mailbox
.mailrc file

alias contents 3-26

I-13

Index

mail (continued)
.mailre file (continued)

distribution list, creating 3-18
example 3-35
options setting 3-18
set command 3-26
unset command 3-26

mb command 3-24, 3-46
mbox command 3-24
mchron option 3-52
message

advancing 3-15,3-44
body 3-7
cancel 3-16,3-37
composition 3-6
delete, undoing 3-23
deleting 3-5, 3-9, 3-15, 3-22, 3-23,

3-45
described 3-6
editing 3-16,3-27,3-40.3-45
file, including a 3-31
forwarding 3-15
header 3-10
ignore phone noise 3-12
inserting into new message 3-32
list. See mail, message-list
listing 3-3
number

command 3-21, 3-44
message printing 3-15
printing 3-21, 3-44
types 3-9

printing 3-23
range described 3-9
reading 3-3, 3-12, 3-15

into file 3-12
reply 3-15
saving 3-24
sending 3-3
size 3-28, 3-47
specification 3-9, 3-17
undelete command 3-15

"'Message escape 3-50
-message escape 3-50
message-list

argument, multiple messages 3-17
composition 3-9
described 3-10

metacharacters 3-9,3-20
metoo option 3-37, 3-52
minus sign (-), message advance 3-44
network mail 3-14
noisy phone line 3-12
nosave option 3-37, 3-52

1-14

mail (continued)
number command 3-9
options

See also specific option
command line options 3-40
setting 3-18
summary 3-51
switch option, setting 3-26

organizing 3-42
pcommand

message printing 3-4, 3-9, 3-19,
3-47

syntax 3-10
-p escape 3-29
page option 3-38
period (.), dot use 3-19
phone line noise 3-12
plus sign (+). message advance 3-44
-print escape 3-50
printing

lineprinter, Ipr command 3-25
Ipr command 3-29
p command 3-47
-p escape 3-29
procedure 3-9, 3-15
top five lines 3-17

programs designated 3-42
qcommand

cancel 3-37
exit 3-5. 3-12, 3-23, 3-47

question mark (1)
command summary printing 3-44
compose escape help 3-16
help command 3-19

quiet option 3-37, 3-52
-quit escape 3-50
Rcommand

alias effect 3-18
compose mode entry 3-16

rcommand
compose mode entry 3-16
message reply 3-15

Rcommand
message reply 3-17

rcommand
message reply 3-17

Rcommand
message reply 3-25

rcommand
message reply 3-25

Rcommand
message reply 3-47

rcommand
message reply 3-47

mail (continued)
-rescape 3-31,3-50
-R option 3-40
-r option 3-40
-read escape 3-31,3-50
read escape

-d escape 3-31
-r escape 3-31

recipient list, adding a name 3-30
record string 3-39, 3-52
reminder selVice 3-41
Reply command 3-17
reply command 3-25
return receipt request field 3-7
scommand

flag 3-22
message saving 3-23, 3-47
saving 3-22
system mailbox, deleting a

message 3-23
-s escape 3-30,3-51
-s option 3-40
saving

asterisk (*) notation 3-24
automatic 3-22
command 3-23
flag 3-22
ho command 3-46
M flag 3-22
message display 3-5
s command 3-23, 3-47
system mailbox 3-12
w command 3-24, 3-48

se command 3-47
sending

cancellation impossible 3-3
multiple recipients 3-13
networlc mail 3-13, 3-14
procedure 3-12
remote sites

Micnet 3-13
UUCP3-14

to self 3-2
session abort 3-15
set command

description and use 3-26, 3-47
option control 3-51

set options defined 3-35
sh command 3-27, 3-47
shell

commands 3-27
escapesC!), CI) 3-32

SHELL string 3-38, 3-52
si command 3-28, 3-47

Index

mail (continued)
so command 3-28, 3-48
source command 3-28
special characters. See

Metacharacter, mail
startup file 3-35
string option

setting 3-26
summary 3-51

subject
asksubject option 3-36
escape 3-30
field 3-4, 3-7

-subject escape 3-51
switch 3-51
system

composition 3-42
mailbox, holding messages 3-12

tcommand
message top printing 3-17, 3-21,

3-48
toplines option 3-21

-tescape 3-30, 3-51
tilde

compose escapes 3-8
quote escape C -:> 3-34, 3-49

-to escape 3-51
to field

mandatory 3-6
R command effuct 3-17

top command 3-17
toplines

option 3-52
string 3-39

u command 3-9, 3-15, 3-23, 3-48
-u option 3-40
undeleting. See mail, u command
unset command

description and use 3-26, 3-48
option control 3-51

v command 3-8, 3-27,3-48
-v escape 3-29,3-51

MAIL, variable. See MAIL variable
Mail, variable. See MAIL variable

vertical bar (I) escape 3-33
vi

entering from compose mode 3-8
-visual escape 3-51
VISUAL string 3-38, 3-52
wcommand

message write out 3-24, 3-48
system mailbox, deleting a

message 3-23
-w escape 3-32,3-51

1-15

Index

Mail, variable. See MAIL variable
(continued)

-write escape 3-32,3-51
write out. See mail, w command
x command

exit 3-23, 3-45
session abort 3-15

mail command 3-2,4-2,4-5
advantages of using 4-5
disadvantages of using 4-5
transferring files with 4-5

MAIL variable 5-14
Mailbox

cleaning out 3-42
command 3-24
reading in 3-12
system mailbox 3-6
user mailbox

filename 3-6
message saving notation 3-22

MAILCHECK environment variable,
ksh 7-11

MAILCHECK variable 5-14
MAILPATH variable 5-14
map command 2-61
mb command. See mail
mbox command. See mail
mbox file. See Mailbox
mchron option. xx 1
mesg option. See vi
'"Message escape 3-50
-message escape. See mail
Metacharacter

asterisk (*) 5-70
brackets ([D 5-70
directory name, not used in 5-4
escape 5-4
list 5-69
mail 3-9, 3-20
question mark (?) 5-70
redirection restriction 5-7

metoo option. See mail
Micnet network 4-2
Minus sign (-)

mail, message advance 3-44
redirection effect 5-50
variable conditional substitution 5-52

Mistakes, correcting 2-24
MKFILES shell procedure 5-65
Multiple way branch 5-29

1-16

N

n command. See vi
-n option

echo command 5-49
shell procedure 5-46

Name grammar 5-69
newgrp command

described 5-41
special shell command 5-41

next command. See vi 2-49
nohup command 5-26
nosave option. See mail
Notational conventions 1-3
nu command. See vi 2-26
Null command. See Colon (:), command
NULL shell procedure 5-66
Number sign (#), comment symbol 5-69

o

-0 operator 5-48
Option

See also specific option
DRAFf shell procedure 5-63
invocation flags 5-54
mail options. See mail
tracing, $- variable 5-17
vi options. See vi

Or-if operator (II)
command list 5-26
described 5-27
designated 5-69

Output
append symbol () 5-6, 5-69
creation symbol 0 5-69
diagnostic output file 5-6
error redirection 5-51
grammar 5-68
standard

error file 5-6
output file 5-6

p

pcommand
mail

message printing 3-4,3-9,3-19,

p command (continued)
mail (continued)

3-47
syntax 3-10

page option. See mail
Parentheses «))

command grouping 5-33, 5-56, 5-69
pipeline use, command list 5-27
test command operator 5-48

PATH environment variable, setting ksh
search path 7-11

PATH variable
conditional substitution 5-53
C-shell use. See C-shell
described 5-14
directory search

eftect 5-58
sequence change 5-3

Pattern
grammar 5-69
metacharacter 5-70

Pattern matching facility
case command 5-29
expr command argument eftect 5-49
limitations 5-4
metacharacter. See Metacharacter
redirection restriction 5-6
shell function 5-3
variable assignment, not applicable

5-12
percent sign, current file 2-61
Period (.)

See also Dot (.)
pattern matching facility, restrictions

5-4
vi use. See vi

PHONE shell procedure 5-66
PID

$$ variable 5-16
$! variable 5-17

Pipe
compose escape. See mail
file interchange 5-62
symbol (I) 5-69

Pipeline
command list 5-27
C-shell use. See C-shell
defined 5-26
described 5-7
DISTINCT 1 shell procedure 5-62
filter 5-8
grammar 5-68
notation 5-7
procedure 5-7

Index

Plus sign (+)
mail, message advance 3-15,3-44
variable, conditional substitution 5-53

Positional parameter
assignment statement positioning

5-12
described 5-11
direct access 5-23
null value assignment 5-52
number yield, $# variable 5-16
parameter substitution 5-12
positioning 5-12
prefix ($) 5-12
setting 5-11

Print, mail. See mail
-print escape. See mail
Process

defined 5-2
number. See PID

.profile file
description and use 5-19
ksh, described 7-2
ksh environment, customizing 7-10
PATH variable setting 5-15
variable export 5-16

Prompt, setting in ksh 7-12
ps command, C-shell use. See C-shell
PSI environment variable, setting

primary ksh prompt 7-11
PSI variable 5-15
PS2 variable 5-15

Q

qcommand
mail

cancel 3-37
exit 3-5, 3-12, 3-23, 3-47

q!. See vi
Question mark (?)

directory name, not used in 5-4
mail

command summary printing 3-44
compose escape listing 3-16, 3-29
compose escapes, listing 3-2
help command 3-4, 3-19

metacharacter 5-4, 5-70
pattern matching

See Question mark (?),
metacharacter

variable conditional substitution 5-53
quiet option. See mail

1-17

Index

-quit escape. See mail
QUIT key, background process

immunity 5-26
Quotation mm

back (')
command substitution 5-4, 5-10
quoting 5-70

double (")
metacharacter escape 5-4

double U
quoting 5-70
test command 5-47
variable 5-12

single (')
C-shell use. See C-shell
metacharacter escape 5-4
trap command 5-37
variable substitution, inhibiting

5-12
Quoting

See also Quotation mark
backslash (\) use 5-70
metacharacter escape 5-4

R

r alias, ksh 7-9, 7-13
r command, mail use. See mail
R command. See mail
-R option, mail 3-40
-r option, mail 3-40
rcp command 4-2

daemon.mn 4-3
how it works 4-3
-m option 4-3
sample command 4-3
syntax of 4-2
-u option 4-3

read command
exit status 5-41
See vi
shell built-in command 5-55
special shell command 5-41

-read escape. See mail
readonly command

described 5-41
shell built-in command 5-55
special shell command 5-41

Record string. See mail
Redirection

argument location 5-9
case command 5-36

1-18

Redirection (continued)
cd arg command 5-40
control command 5-36
diagnostic output 5-7
file descriptor 5-51
for command 5-36
if command 5-36
minus sign (-) effect 5-50
pattern matching,use restriction 5-6
simple command line, appearance

5-26
special character, use restriction 5-7
symbols

«),05-69
until command 5-36
while command 5-36

rehash command, C-shell use. See C­
shell

Reminder service
mail 3-41

remote command 4-2, 4-4
-f option 4-4
-m option 4-4
restricting remote execution 4-5
sample command 4-4
syntax of 4-4

Repeat command, vi 2-46
reply command 3-17
Report option. See vi
Reserved word, list 5-70
Retrieving files sent with uuto

See uupick command
Return code 5-16
return command, shell built-in

command 5-55

s

scommand
mail 3-22, 3-23, 3-47

-s option
mail, subject specification 3-40
shell, invoking 5-54

Screen-oriented commands See vi
Scripts, See Shell. xx 0

horizontally 7-16
in ksh 7-16

se command. See set command
Search, vi procedure. See vi.xx 0

case command break 5-29
case delimiter symbol 5-69
command list 5-26

Search, vi procedure. See vi.xx 0
(continued)

command separator symbol 5-69
C-shell use. See C-shell

Sending files over seriallines.xx 1
Serial line

commands for 4-1
telecommunication

See cu command
set all. See vi
set command

C-shell
variable value assignment 6-4

mail
description and use 3-26, 3-47
option control 3-51

name-value pair listing 5-21
positional parameters, setting 5-11
shell built-in command 5-55
shell flag, setting 5-19
special shell command 5-40

shcommand
See also Shell
described 5-1
mail 3-27, 3-44, 3-47
shell, invoking 5-22

SHACcr variable 5-14
Shell

argument passing 5-23
command

See also specific command
executing while in vi 2-14
search procedure 5-3

compose escape. See mail
conditional capability 5-28
creating

procedure 5-2
described 5-2
-e option 5-46
entering from mail mode 3-27
escape

mail procedure. See mail
execution

flag. See Shell, optio
sequence 5-24
tenninating 5-33

exit
-e option 5-46
mail mode return 3-27
procedure 5-33
-t option 5-46

function 5-1
grammar 5-68
in-line input document handling 5-50

Index

Shell (continued)
interactive 5-54
interruption procedure 5-36
invoking

option 5-54
procedure 5-22

-k option 5-46
ksh 7-1
mail

invoking 3-7
shell commands 3-27

-n option 5-46
option

See also specific option
description and use 5-46
setting 5-19

pattern matching facility. See Pattern
matching facility

positional parameter. See Positional
parameter

procedure
See also specific shell procedure
advantages over C programs 5-45
byte access, reducing 5-57
creating 5-44
described 5-3
directory 5-45
efficiency analysis 5-56
examples 5-60
filter, order consideration 5-57
option 5-46
scripts, examples of 5-60
time command 5-55
writing strategies 5-55

redirection ability 5-6
scripts 5-60
special command

See also specific special command
described 5-40
listed 5-40

special shell variable 5-24
state 5-18

SHELL
string 3-38, 3-52

Shell
string. See SHELL, string
-t option 5-46
-u option 5-46
-v option 5-19

SHELL, variable 5-14
variable. See Variable
-x option 5-19

.sh_history file
default ksh history file 7-2

1-19

Index

.sh_history file (continued)
ksh 7-14

shift command
argument processing 5-23
shell built-in command 5-55

si command. See mail
Simple command. See Command
Slash (f)

command, suppress prepending 5-3
search command. See vi

so command. See mail
Special character

See also Metacharacter
ed use. See ed
pattern matching facility 5-4

Standard
error file. See Output
error output 5-51
input file. See Input
output file. See Output

String
option. See mail
searching for. See vi, searching
variable 5-12

-subject escape. See mail
Subshell, directory change 5-18
Switch. See Option
System, mailbox. See Mailbox.xx 0

mail 3-17, 3-21, 3-48

T

-t option, shell procedure 5-46
Telecommunication

interactive session 4-15, 4-17
over serial lines 4-17
remote terminal

See ct command
See ct command
See cu command
See uucp
See uux command

Temporary file
trap command 5-38
use 5-16

TERM environment variable, setting
ksh terminal type 7-11

term option. See vi
terse option. See vi
test command

argument 5-48
brackets ([]) used in lieu of 5-47

1-20

test command (continued)
description and use 5-47
operators 5-48
options 5-47
shell built-in command 5-55

TEXTFILE shell procedure 5-67
then clause 5-28
Tilde escape. See mail, compose, escape
time command 5-55
-to escape. See mail
Top command. See t command
Toplines

option. See mail
string. See mail

Transferring files
local site. See rcp
Micnet

See mail
See rcp

phone lines
See cu command
Seeuucp
See uuto command

remote site. See uucp
trap command

description and use 5-36
multiple traps 5-38
shell's implementation method 5-38
special shell command 5-40
temporary file, removing 5-38

trap command, ksh 7-12
true command 5-50
type command

description 5-42
special shell command 5-42

u
ucommand

mail 3-9, 3-23, 3-48
See vi

-u option
mail 3-40
shell procedure 5-46

ulimit command
description 5-42
special shell command 5-42

umask command
described 5-42
shell built-in command 5-55
special shell command 5-42

unalias command, ksh 7-13

Undo command, See vi
unset command. See mail
until command

continue command effuct 5-33
description and use 5-30
exit status 5 -30
redirection 5-36
shell built-in command 5-55

User, mailbox. See Mailbox
/usr/bin directory

/bin, files duplicated in 5-60
command search 5-3

uucp
abbreviated pathnames 4-9
advantages of 4-6

UUCP, commands 4-6
C-shell considerations 4-9
dial out site 4-7
directory permissions 4-7
disadvantages of 4-6
file permissions 4-7
how it works 4-8
indirect transfers 4-7, 4-10
listing remote UUCP systems 4-7
-m option 4-10
-n option 4-10

UUCP, networks 4-6
options 4-10
pathnames 4-9

UUCP, programs 4-6
sample command 4-8, 4-9
simplest form of 4-8
status of 4-10
syntax of 4-8
transferring files with 4-6

UUCP
uucp command 4-6
uuto command 4-6
uux command 4-6
when to use 4-1

uuname command 4-7
listing remote UUCP systems 4-7

uupick command 4-12
-d option 4-13
how it works 4-12
-m option 4-13
options 4-13
quitting 4-13
retrieving files with 4-12
sample command 4-13

uustat command 4-10
uuto command 4-11

advantages of 4-6
disadvantages of 4-6

Index

uuto command 4-11 (continued)
how it works 4-12
public directory 4-12
retrieving files with uupick 4-12
sample command 4-12
syntax of 4-11
/usr/spool/uucppublic 4-12

uux command 4-13
local site 4-14
quotation marks 4-14
quoting the command line 4-14
remote sites 4-14
restricting commands 4-13
sample command 4-14
security considerations 4-13
syntax of 4-13
using 4-13

v
v command

mail 3-8, 3-27, 3-48
-v option, printing an input line 5-19
Value, $? variable 5-16
Variable

$# variable 5-16
$$ variable 5-16
$? variable 5-16
$! variable 5-17
$- variable 5-17
assignment

line command 5-10
string value 5-12

command environment, composition
5-20

conditional substitution 5-52
described 5-11
double quotation marks L~ 5-12
enclosure 5-13
execution sequence 5-12
expansion 5-5
export 5-16
expr command 5-49
file, creating 5-36
global check 5-46
HOME. See HOME variable
IFS. See IFS variable
keyword parameter 5-20
list 5-13
listing procedure 5-21
MAIL. See MAIL variable
MAILCHECK. See MAILCHECK

1-21

Index

Variable (continued)
variable

MAILPATH. See MAILPATH
variable

name defined 5-12
null value assignment procedure 5-52
PATH. See PATH variable
positional parameter. See Positional

parameter
prefix ($) 5-12
PSI. See PSI variable
PS2. See PS2 variable
set variable defined 5-52
SHACCf. See SHACCf variable
shell, list of variables 5-13
SHELL. See SHELL, variable
special variable 5-16
string value assignment 5-12
substitution

double quotation marks L~ 5-12
notation 5-70
redirection argument 5-6
single quotation marks (' ') 5-12
space interpretation 5-13
-u option e.t:rect 5-46

test command 5-47
verbose option, ksh command line 7-14
Vertical bar (I)

vi

mail escape 3-33
or-if operator symbol (II) 5-26
pipeline notation 5-7

. command 2-4
o command

cursor movement 2-6
abbr command 2-61
appending text

A command 2-23
a command 2-23

args command 2-49
b command, cursor movement 2-6
Bourne shell

prompt 2-56
breaking lines 2-29
bu.t:rers

delete 2-37
naming 2-26
selecting 2-26

C command 2-34
C shell

prompt 2-56
canceling changes 2-47
caret (A), pattern matching 2-42, 2-44
cc command 2-34

1-22

vi (continued)
co (copy) command 2-26
colon (:)

line-oriented command, use 2-11
status line prompt 2-11

command
See also specific command
line-oriented 2-11
repeating, using dot (.) 2-6
screen-oriented 2-11

/command
searching 2-10

Command mode
cursor movement 2-5
entering 2-3

control characters, inserting 2-29
copying lines 2-26
correcting mistakes 2-24
crash, recovery from 2-54
C-shell

TERM variable 2-57
terminal type, setting 2-57

Ctrl-b
scrolling 2-6

Ctrl-d
scrolling 2-6
subshell exit 2-54

Ctrl-f
scrolling 2-6

Ctrl-g
file status information 2-11, 2-53

Ctr1-j
inserting 2-29

Clrl-l
screen redraw 2-54

Ctrl-q
inserting 2-29

Ctrl-r
screen redraw 2-54

Ctrl-s
inserting 2-29

Ctrl-u
deleting an insert 2-31
scrolling 2-6

Ctrl-v
use 2-29, 2-61

current file (%) 2-61
current line

deleting 2-6, 2-30
designated 2-3
line containing cursor 2-4
number, finding out 2-26

cursor movement
$ key 2-21

vi (continued)
cursor movement (continued)

+ key 2-21
B command 2-20
b command 2-20
backward 2-21
BKSP2-19
character 2-19
Ctrl-n 2-21
Ctrl-p 2-21
down 2-5, 2-19
E command 2-20
e command 2-20
end of file 2-5
F command 2-19
f command 2-19
file

end 2-5
forward 2-21
h command 2-19
H command 2-22
j 2-21
j command 2-19
k command 2-19, 2-21
keys 2-5
I command 2-19
L command 2-22
left 2-5, 2-19, 2-20
line 2-21

beginning 2-6
end 2-6
number 2-5

LINEFEED key 2-21
lower left screen 2-5
(Return

key 2-21
M command 2-22
number of specific line 2-5
pattern search 2-10
right 2-5, 2-19, 2-20
screen 2-22
scrolling 2-6, 2-22
SPACE 2-19
Tcommand 2-19
t command 2-19
up 2-5, 2-19
upper left screen 2-5
W command 2-20
w command 2-20
word 2-20

backward 2-6
forward 2-6

cw command 2-33
D command 2-6

Index

vi (continued)
d$ command 2-6
dO command 2-6
date, finding out 2-14
dd command 2-6, 2-30
delete buffer

use 2-37
deleting text

by character 2-29
by line 2-30
byword 2-30
D2-30
dd command 2-6, 2-30
deleting an insert 2-31
dw command 2-30
methods 2-6
repeating a delete 2-46
undoing a delete 2-5,2-45
X command 2-29
x command 2-29

demonstration 2-2
described 2-1
dollar sign ($)

cursor movement 2-6
pattern matching 2-43
use in line address 2-31

dot(.)
command 2-6
use in line address 2-31

dw command 2-6
editing several files

changing the order 2-50
end-of-line

displaying 2-58
entering vi

filename specified 2-18
line speci fied 2-18
procedure 2-2
several filenames 2-48
word specified 2-18

error messages
brevity 2-59
turning off2-52

ESC key 2-61
Escape key, Insert mode exit 2-3,

2-54
exclamation point (!)

shell escape 2-14
EXINIT environment variable 2-56
exiting

:q! 2-16
saving changes to file 2-13, 2-47
temporarily 2-14, 2-51
without saving changes 2-47

1-23

Index

vi (continued)
exiting (continued)

:x command 2-16, 2-47
z:z command 2-47

.exrc file 2-62
file

creating 2-2
exit without saving, :q! 2-16
saving 2-16
status infonnation display 2-10
status infonnation procedure 2-11

filename
finding out 2-53
planning 2-49

Gcommand
cursor movement 2-5

global substitution
command syntax 2-41

goto command 2-5
Hcommand

cursor movement 2-5
hcommand

cursor movement 2-5
i command

inserting text 2-3
ignorecase option 2-40, 2-58
Insert command 2-3, 2-23
Insert mode

entering 2-3
exiting 2-3

inserting text
beginning ofline 2-23
commands 2-23
control characters 2-29
from another file 2-14
from other files 2-14,2-24,2-25
I command 2-23
i command 2-23
Insert mode 2-3
repeating an insert 2-24, 2-46
See vi, appending text
undoing an insert 2-5, 2-45, 2-54

invoking 2-2, 2-18, 2-48
J command 2-29
j command

cursor movement 2-5
joining lines 2-29
kcommand

cursor movement 2-5
Lcommand

cursor movement 2-5
I command

cursor movement 2-5
leaving

1-24

vi (continued)
leaving (continued)

See vi, exiting
See vi, quitting

line addressing
dollar sign 2-31
dot (.) 2-31
procedure 2-30

line numbers, displaying
linenumber option 2-15, 2-58
:nu command 2-26
nu command 2-26, 2-53

line-oriented commands
:args 2-49
colon (:) use 2-11
deleting text 2-30
:e 2-25
:e#2-25
:e 2-50
:e# 2-51
entering 2-11
:f2-53
:file 2-53
mode 2-52
moving text 2-35
:n 2-49
nu 2-26, 2-53
:q2-47
:r 2-24
:rew 2-50
:s 2-34
status line, display 2-10
:w2-25
:wq2-47

list option 2-58
.login file

tenninal type, setting 2-57
magic option 2-44, 2-60
mail, entering vi from compose mode

3-8
map command 2-61
marking lines 2-25
mesg option 2-60
mistakes, correcting 2-24
mode

Command mode 2-54
detennining 2-54
Insert mode 2-54

moving text 2-35
n command 2-10, 2-40
new line, opening 2-24
next command 2-49
number option 2-58
opening a new line 2-24

vi (continued)
options

displaying 2-57
ignorecase 2-40
ignorecase option 2-58
linenumber option 2-26
list 2-16
list option 2-58
magic option 2-44, 2-60
mesg option 2-60
number option 2-35, 2-58
report option 2-59
setting 2-56, 2-58
term option 2-59
terse option 2-59
warn option 2-52, 2-60
wrapscan option 2-40, 2-60

overstrike commands 2-31
pattern matching

beginning ofline 2-42
caret H 2-44
character range 2-43
end ofline 2-43
exceptions 2-44
special characters 2-44
square brackets ([]) 2-43

percent sign, current file 2-61
period (.)

See also vi, dot (.)
pattern matching 2-43

problem solving 2-54
.profile file

terminal type 2-56
putting 2-26
:q! 2-16
Q command 2-52
quitting 2-14, 2-16, 2-47, 2-51, 2-54

See also vi, exiting
r command 2-14, 2-31, 2-32
read command 2-14
redrawing the screen 2-54
Repeat command 2-46
repeating a command 2-46
replacing

line 2-34
word 2-33, 2-34

report option 2-59
rew command 2-50
S command 2-33
s command 2-33
saving a file 2-48
screen, redrawing 2-54
screen-oriented commands 2-11
scrolling

Index

vi (continued)
scrolling (continued)

backward 2-6
down 2-6, 2-22
forward 2-6
up 2-6, 2-22

search and replace
c option 2-42
choosing replacement 2-42
command syntax 2-41
global 2-41

warning 2-46
p option 2-42
printing replacement 2-42
word 2-41

searching
See also vi, search and replace
backward 2-39
caret H use 2-42, 2-44
case significance 2-40,2-58
dollar sign ($) 2-43
forward 2-10, 2-39
next command 2-40
period (.) 2-43
procedure 2-10
repetition 2-10
slash (f) 2-10
special characters 2-39,2-60
square brackets ([]) 2-43
status line, display 2-10
wrap 2-10, 2-40, 2-60

session, canceling 2-16
set all, option list 2-16
set command 2-16, 2-56, 2-57
setting options 2-16, 2-56, 2-58
shell

command, executing 2-14
escape 2-51

slash (f)
search command delimiter 2-10

special characters
matching 2-44
searching for 2-39, 2-60
vi filenames 2-48

status line
line-oriented command entry 2-11
location 2-10
prompt, colon (:) use 2-11

string
pattern matching 2-43
searching for 2-10

subshell
exiting 2-54

substitute commands 2-33

1-25

Index

vi (continued)
switching files 2-50
system crash

file recovery 2-55
tabs

displaying 2-58
TERM variable 2-56

Bourne or Korn shell 2-56
tenncap 2-56
tenninal type, setting

Bourne shell 2-56
C-shell 2-57
instructions 2-59

terse option 2-59
time, finding out 2-14
u command 2-4, 2-45, 2-54
Undo command 2-4
w command, cursor movement 2-6
warn option 2-52, 2-60
warnings, turning off2-6O
word, deleting 2-6
wrapscan option 2-40, 2-60
write messages 2-60
writing out a file

:wq command 2-47, 2-48
x command 2-6
:x command 2-16, 2-47
yanking lines 2-25, 2-28
z:z command 2-47

vi command, command-line editing in
ksh 7-3, 7-4

vi option, ksh command line 7-14
vi, used in mail

compose escape, -v 3-51
editing 3-27
entry from command mode 3-8
VISUAL string 3-52

visual command. See mail
VISUAL environment variable, setting

ksheditor7-3,7-11
-visual escape. See mail
Visual Shell

See also vsh
described 8-1

VISUAL string. See mail
vsh

1, help key 8-2
cancel key 8-5
command option menu 8-5
command output 8-11

shell output 8-11
vshell output 8-11

command piping 8-13
copy file or directory option 8-8

1-26

vsh (continued)
count option 8-13
create file system 8-10
Ctrl-C

cancel key 8-5
cursor motion keys 8-5
delete file or directory option 8-9
described 8-1
edit a file 8-9
editing options keys 8-5
entering

shell 8-2
exit 8-12
file systems

check file system 8-10
get option 8-13
grep 8-13
head option 8-13, 8-14
help key 8-2
help menu 8-9
invoking

commands 8-8
shell 8-2

keystrokes 8-2
leaving 8-3, 8-12
list files 8-12
mail option 8-9
Main menu 8-4
menu selection 8-4
message line 8-4
more option 8-14
move cursor 8-5
name option 8-9
options menu 8-10

file systems 8-10
list files 8-10
make directory 8-10

pattern recognition 8-13
pennissions option 8-11
pipe options 8-13
print

a file 8-11
option 8-11

quit 8-12
key 8-3

rename file option 8-9
run

option 8-12
shell command 8-12

scroll through file 8-14
send file to printer 8 -11
set file pennissions 8-11
shell command 8-12
sort option 8-13, 8-14

vsh (continued)
status line 8-4
tail option 8-13, 8-15
view file 8-12
view option 8-12
view window

motion keys 8-7
moving cursor 8-6

window
adjustment 8-12
option 8-12

window motion keys 8-7
word, line, character counts 8-13

w

wcommand
mail

message
saving 3-24
write out 3-48

system mailbox, deleting a
message 3-23

vi use. See vi
wait command

described 5-43
shell built-in command 5-55
special shell command 5-43

warn option. See vi
while command

break command effect 5-32
continue command effuct 5-32
description and use 5-30
exit status 5-30
loop 5-61
redirection 5-36
shell built-in command 5-55
test command 5-47

Word, grammar 5-69
wrapscan option. See vi
-write escape. See mail
WRITEMAIL shell procedure 5-67

x

x command
mail

exit 3-23, 3-45
session abort 3-15

x command (continued)
vi use. See vi

Index

-x option, printing a command 5-19
XENIX command, directory residence,

C-shell 6-4

z

z command, vi scroll 2-22
ZZ command 2-47

1-27

II~II~IIII~~IIIII~III~I~II~I~I~I ~I~~II~IIIIIII
AZ01203P000

64361

IIIIIIIIIIIIIIIIIIIII~I~I~I 1111
BJ012 1

11111111111111111111111111111111 1111111111111

AU01204P001

