The
Connection Machine
System

Generic Display Interface
Reference Manual for Paris

=g

Version 2.0
November 1991

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, November 1991

ke 2k sk 2k e o 2k o e 2k ok sk ke 2k 3k ok oe o 3k 3k ok ke o sk ok ok ok ok o ok ok ke ok 3k ok 3k 3k 3k ok 3k ke sk 3k ke sk ok e 3k 3k 3 3k ok ok ok sk ke sk ok e ok sk ok sk ok e sk sk ke ok ok ke ok ok ok 3k ok ok

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

3k ske ok ok ok 3k 2k ok ok ok ok ok ok ke 2k ok ok ok ok o sk 2k ke ok ok 3k ok ok ok ok ok 2k 3k 3k 3k ke sk ke 2k ok 2k 3k 3k sk ok ok ok sk ok 3k ok ok 3k ok ok ok 3k 3k ok 3k ok 3k 3k 3k 3k ok 3k ok 2k ok ok 3k 3k 3k ok sk ok ok ok

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM, CM-1, CM-2, CM-200, and DataVault are trademarks of Thinking Machines Corporation.
c*®isa registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.

C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinking Machines Corporation.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents

About This Manual ittt i i ix
CUSIOMET SUPPOTE . o ettt ettt ettt et et eie e eaneeeanaeeennaeeennnns xi
Chapter 1 Introduction to the Generic Display Interface 1
1.1 The CM Visualization Librariest .. 1

1.1.1 TheImage Buffercciiiiiiiiiiiiiinnnenn.. 2

L12 *Renderooiiieiiii i e e 3

1.1.3 The Image FileInterface, 3

1.2 The Generic Display Interface i, 4

1.3 Using the Generic Display Routinesccoivveennnn.. 5
Chapter 2 Workstation and Display Routines 7
2.1 OVEIVIBW e vttt it ittt et e e 8

2.1.1 Selecting a Generic Display Workstation and Display 8

2.1.2 Setting Workstation and Display Defaults 9

2.1.3 The Selection Menucciiiiiiiiiiiiiiinann, 10

2.1.4 Using the Generic Displaycoviviiinnnenn... 11

The Image Buffer, 11

Displaying the Image Buffer 11

Framebuffer-Ordered Geometries 12

2.1.5 Using the Generic Workstationccovvuue.... 12

2.1.6 Low-Level ACCESS .\ vuvvie it i i iaennennnn 13

2.2 Workstation Routinesccoiiiiniiiiineinnnneeennnnnnnn 14

CMSR make window_typel 16

CMSR_select workstation menu 19

CMSR_create workstation menu 23
CMSR_create_display workstation.................... 27
CMSR_select_workstation 28
CMSR_deselect workstation 28
CMSR_selected workstation 30

CMSR workstation typel 30
CMSR_workstation displayoiunle, 32

CMSR_set workstation default 33

Version 2.0, November 1991

iii

iv Generic Display Interface Reference Manual for Paris

CMSR_get workstation default 33
CMSR_deallocate workstation......................... 35
2.3 DisplayRoutines @i, 37
CMSR_select display menucounne. 39
CMSR create display menucvvnnennn 43
CMSR_set display default 46
CMSR get display default 46
CMSR_select displaycoiiiniiniinnnenennn 48
CMSR deselect displaycovviiiiiniiennnn.. 48
CMSR selected displayoiiiiiiiiinnnn, 50
CMSR deallocate displaycoviinnnnn, 51
CMSR_set display offset, 53
24 Display /O ROULNEScvviiriiie et iiiiiieeiiieeeennenennnns 55
CMSR write to displaycoviiiiinae, 56
CMSR write to display 1oills, 58
CMSR write array to display......................... 61
CMSR write array to display 1 63
CMSR clear displayc.ccvveiiiinniiinnianinnnnns 67
CMSR_randomize display..............coviuiiiiennnn... 68
CMSR fill display...........coiiiiiiiiiiiiniinnninnnn, 69
CMSR fe display rectangle 70
CMSR read from display...................cooviinnnnnn 72
CMSR read from display 1e. 74
CMSR_read array from display 77
CMSR read array from display 1 79
2.5 Color Map Utilities . . .o vt iee e iee e eiie e iie e ine e reaennennnss 82
CMSR_display write color 84
CMSR display write color map 86
CMSR_set display color Mapcovvvvnnnnnn. 88
CMSR create color map named....................ounn. 90
CMSR_display read €Olor Map...:.......ccoveeeivennnnn 92
CMSR display read color_red......................... 94
CMSR display read color green 94
CMSR_display read color blue 94
CMSR_set direct color default 96
CMSR_get direct color_default 96
CMSR_set pseudo_color _default 99
CMSR_get pseudo_color_default 99
CMSR_set gray scale default......................... 102
CMSR_get gray scale default......................... 102
CMSR_display has_color Mapcccveevvennnn... 104

Version 2.0, November 1991

Contents v

CMSR _display color map size......................... 106
CMSR display color_is_rgbcoiel, 108
2.6 Display Information Routinesc.ovvtiinnernnnnnennnn. 110
CMSR display type.............iiiiiiiiiiiniiinn, 111
CMSR display is colorcceiiiiiinennnn.., 113
CMSR_display bits per pixel......................... 115
CMSR display bits of blue 117
CMSR_display bits of green.......................... 117
CMSR _display bits of redl 117
CMSR display read colorcoviiiiinnnnnn 119
CMSR display widthl 120
CMSR display heightl 120
CMSR display x offsetl 122
CMSR display y offsetl 122
CMSR:GENERIC-DISPLAY=P.........ccittitinennnnennnnnnns 124
2.7 X Window System Routinescc.coiveiiineennnnennnnnn. 125
CMSR_create_x workstation 127
CMSR _create_x displayooviiiiiinnnnnnnn 129
CMSR_create_init x display.......................... 131
CMSR create x color Mapoovvnevennnn.. 134
CMSR_create x color map mamed 136
CMSR set x display g€ccovvviiiiiniiiinnnnnnn 138
CMSR_x workstation display 140
CMSR_x workstation_screen 140
CMSR_x_workstation fontl 142
CMSR x display display..........coivvviieiineininnnn, 143
CMSR_x_display drawable0. 145
CMSR x _display GC.......ccviiiiiiiniinnnnnnnniaiinnnnn 147
CMSR x visual from classcevvnnnn.. 149
CMSR_set x window_title, 151
CMSR get x window_title 151
CMSR_set x resource namesc.0.n 153
CMSR_get x resource Namec.ce0nen 153
CMSR _read std x resourcesoiuuunn 155
CMSR set x app defaults dir......................... 156
CMSR get x app defaults dir......................... 156
CMSR_get_x resource Classc..vvninnnnn 158
CMSR get_x resource string.......................... 159
CMSR get_x resource_integer......................... 159

Version 2.0, November 1991

vi ; Generic Display Interface Reference Manual for Paris

2.8 CMPFB ROULINESuvtttittie et eteneeenteneeneenneneennns 161
CMSR _create_cmfb displayooinuiinnn, 162
CMSR create_init cmfb display 164
CMSR_set_cmfb_display buffer id........ e 166
CMSR _cmfb_display buffer id......................... 166
CMSR_cmfb display display id 168
Chapter 3 Generic Text Routines 169
31 OVEIVIEW . oottt ittt et e e 169
3.1.1 Displaying and Drawing Textccovrvnneeeennnn 169
3.1.2 Setting Text Parametersooveeereeennneennnnnenn 171
Setting the Text Font.............cciiiiinnienennnn. 171
Setting Text ColOrsovvvierinneninneennnnnnnns 171
Text Drawing Modescoviiiinneeeennnnn.. 172
3.1.3 Positioning Textvvriiirnnreneererenennannanannns 172

Using CMSR_font_linespace and
CMSR _text width 173
Using the Extents of a String 174
Logical Text EXIeNtso.ovuernrneneninnenenanns. 174
Actual Text Extentscooiiiennni e, 175
Font Text Extentscooviiiiviiiiinnnnnn... 177
3.2 Generic Text Operationsvveeeeeenrurrnrnnereeeennnnnnnnns 178
CMSR display text................ciiiiiiiiiiiiiiin., 179
CMSR _display text centered.......................... 179
CMSR display outline text 182
CMSR draw_text il 184
CMSR_draw_text centeredl 184
CMSR draw_outline text.....................l 187
CMSR set fontl 189
CMSR font mame il 189
CMSR_set text draw mode, 192
CMSR text draw modeccoiiiiiiiin., 192
CMSR _set text colorsiiiiaal, 194
CMSR_text foreground colorue. 196
CMSR_text background coloro.unn. 196
CMSR _font linespacecoiiiiiiiiiiiiiiann, 198
CMSR text widthol 199
CMSR_text actual extents 201

Version 2.0, November 1991

CMSR_text_logical extents 204

CMSR font extentsol 207

CMSR bottom extentl 209
CMSR top extent i 211

CMSR right extent...............l 214

CMSR left extentl 217
Chapter 4 Mouse Interface Routines 221
41 OVeIVIEW ..ttt ittt i i e e 221
4.1.1 Selecting a Generic Display Workstation and Display 221

4.1.2 High-Level Mouse Routinesccovvvvunn.nn. 222

4.1.3 Low-Level Mouse Routinesooou... 223

414 CursorRoutinesoociiiiiiiiiiiiii ... 223

4.2 Point and Area Selection Routinesl 225
CMSR _get mouse pointiiiiia 226

CMSR get mouse lineciiiiiiiinniinne, 229

CMSR get mouse rectangleoi.... 229

CMSR mouse_pan_and ZOOMcoeviennnnnnnns 233

43 MousePointsottt e 235
CMSR _allocate _mouse pointc.von... 236

CMSR _deallocate mouse_point......................... 236
CMSR_set mouse point location 238

CMSR mouse_point Xoiiiiiiiiiiiiiiiiiia 240

CMSR mouse point yiiiiiiiii, 240

CMSR mouse_point pressedl 242

CMSR _mouse_point_released 242

CMSR mouse point buttons 244

CMSR mouse_point_timestamp 247

4.4 Grabbing ROULINESovtrtiititiiiieiiineneeeerennnnannaeenns 249
CMSR grab mOUSecciiiiiiiiinieininiinnnnnennnn 250

CMSR release MOUS@eeviuunenneeinnnnnnns 250

CMSR mouse _grabbed pl 252

4.5 Low-Level Mouse Routinescoooiiiiiiiiiian.. 253
CMSR _current mouse point0, 254

CMSR current mouse deltacovu.... 256
CMSR_track MOUSecotiieiininiennnienannannnns 259

4.6 CursorRoutinesoiiiiiiiiiiiiiiiieiieeineenns 261
CMSR MOVE@ CULSOLiveiinrrnraarssonnnansrennnnnnnns 262
CMSR_set_cursor_visibility.......................... 264

Version 2.0, November 1991

viii Generic Display Interface Reference Manual for Paris
S

CMSR_set_mouse motion_threshold.................... 266
CMSR_mouse motion threshold......................... 266
CMSR_set_mouse_motion_multiple Ceereereieeaa 268

CMSR_mouse _motion multiple.......................... 268

CMSR_set cursor bitmap.......................cooiln 270

CMSR set cursor namedoiviiiiiiniannn 272

CMSR_closest cursor_size 274

4.7 Cursor Informationo i 275

CMSR cursor_width.................coiiiiiiiii, 276

CMSR _cursor_heightol 276

CMSR cursor_hot Xcooiiiiiiiiiiiia., 278

CMSR cursor hot ¥coiiiiiiiiiineiininnnnnnn, 278

CMSR CUISOX_Xvvvrvninureennunnoenannnncennnnasannns 280

CMSR CULSOX_Yuvvinnnnrinnnnnneenanenenennsnnnnnnns 280

CMSR cursor _visible p..............coiiiiiiiiiin.., 282

Alphabetical Index Of ROUHNESuvueeteneerennnnnnnnnnnnneneeeeesennnns 283
Keyword Index of ROULNES .. .vvvteiieteeerurnnninneeeeenennnunnenanenenns 287

Version 2.0, November 1991

About This Ma»nual

Objectives of This Manual

This manual provides detailed reference information about the Paris interface to the Generic Display
Interface. Separate manuals are available for the C* and CM Fortran interfaces.

Intended Audience

This manual is intended for programmers using the Generic Display Interface Version 2.0. The
reader is assumed to be familiar with basic Paris programming.

Revision Information
This manual documents the Generic Display Interface, Version 2.0.

This manual replaces the Generic Display Interface Reference Manual, Version 5.2.

Organization of This Manual

The manual is divided into four chapters:

Chapter 1 Introductioxi to the Generic Display Interface
Provides an overview of the Generic Display library and basic information about
how to include the Generic Display routines in your program.

Chapter 2 Workstation and Display Routines
Introduces and provides detailed descriptions of the Generic Display routines that
create and control the Generic Display workstation and display.

Chapter 3 Generic Text Routines
Introduces and provides detailed descriptions of the Generic Display text routines.

Chapter 4 Mouse Interface Routines

Introduces and provides detailed descriptions of the Generic Display mouse inter-
face routines.

Version 2.0, November 1991 ix

Generic Display Interface Reference Manual for Paris

5

Related Documents

This manual is one of three that make up the Connection Machine Visualization Programming
documentation set. The other two are:

" *Render Reference Manual for Paris

" Image File Interface Reference Manual for Paris

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter C/Paris, Fortran/Paris, and Lisp/Paris language elements, such as oper-
ators, keywords, and function names, when they appear embedded in
text or in syntax lines. Also UNIX and CM System Software com-
mands, command options, and file names.

italics Argument or parameter names and placeholders, when they appear em-
bedded in text or syntax lines.

typewriter Code examples and code fragments.

% bold typewriter In interactive examples, user input is shown in bold typewriter
typewriter and system output is shown in regular typewriter font.

X Version 2.0, November 1991

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

If your site has an Applications Engineer or a local site coordinator, please contact that person direct-
ly for support. Otherwise, please contact Thinking Machines’ home office customer support staff:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 021421264

Internet

Electronic Mail: customer—support@think.com
uucp

Electronic Mail: ames!think!customer—support
Telephone: (617) 234-4000

(617) 876-1111

For Symbolics Users Only

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil-
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To: customer—support@think.com

Please supplement the automatic report with any further pertinent information.

xi

Chapter 1

Introduction to the
Generic Display Interface

The Generic Display Interface is a library of routines that provides a single simple interface
through which your application can

= create and initialize Generic Display workstations and displays by having the user
select them from a menu (the display provides a display space for images from CM
memory; the workstation provides resources to support text and cursor routines)

® transfer image data from CM memory to different types of displays without
specialized routines

= query and modify the characteristics of the physical displays from the Generic
Display Interface, including the display color maps

= display text strings to any selected generic display

= display, track, and interact with a cursor on the generic display with your work-
station mouse

The Generic Display Interface simplifies image display and interaction and allows you to
write device-independent applications that can be moved to different displays at run time
without changing your application.

1.1 The CM Visualization Libraries

The Generic Display Interface is one of three libraries that support visualization program-
ming on the CM. The other two libraries are *Render and the Image File Interface.

Version 2.0, November 1991 1

* Generic Display Reference Manual for Paris '

As illustrated in Figure 1, these three libraries provide the basic tools for building visualiza-
tion applications on the CM. With *Render you can process the data produced by your
application to create an image in an image buffer in CM memory. With the Generic Display
Interface you can create and control a display space and write the image buffer to it. Final-
ly, the Image File Interface enables you to store images for future display or processing,
or to transfer the image to other graphics environments.

Generic —
Display Display
Interface

Ap%lfta; N *Render

Image Buffer
in CM Memory In;_;ge

Interface

Figure 1. Basic data flow in Connection Machine visualization.

1.1.1 The Image Buffer

The image buffer is a CM field or variable used to collect and store pixel values for display.
It is a 2D Paris VP set allocated in the size and shape of the image to be displayed. Each
virtual processor in the image buffer VP set contains a color value and, if 3D, a z coordinate
for the pixel at the corresponding (x,) location on the display.

*Render and the Generic Display Interface allow you to operate on the image buffer like
a virtual display space by specifying locations in screen coordinates. The visualization

2 Version 2.0, November 1991

Chapter 1. Introduction to the Generic Display Interface

libraries assume the right-handed screen coordinate system shown in Figure 2. The origin
(0,0) is at the upper left corner of the image, positive x increases to the right, positive y
increases toward the bottom of the screen, and positive z increases into the screen. The
coordinate values are specified in terms of pixels.

+z /Ainto screen)

(0,0)

+y

Figure 2. The image buffer coordinate system.

1.1.2 *Render

*Render helps you create and manipulate an image in an image buffer in Connection
Machine memory. *Render provides drawing routines that draw points, lines, arrays, and
spheres into the image buffer by writing color values into the appropriate elements of the
image buffer.

*Render also contains a large collection of graphic math utilities to perform standard
graphics math functions on vectors or matrices stored in scalar data structures on the front-
end computer or in parallel variables on the CM. For example, functions are provided to
create transformation matrices and to perform vector and matrix multiplication.

1.1.3 The Image File Interface

The Image File Interface supports the transfer of images to files in TIFF (Tagged Image File
Format), a standard specification for image data files. TIFF is supported by many other

Version 2.0, November 1991 3

Generic Display Reference Manual for Parzs
G

s

graphics software packages, so you can easily move CM images stored with the Image File
Interface to other graphics environments for editing or display. The TIFF format also pro-
vides for compression of the image data in the file and stores information about the image
that can be used when reading the file back into the Connection Machine system or into
some other TIFF reader.

The Image File Interface transfers images between files and an image buffer on the CM,
a scalar array on the front-end computer, or even directly to or from a Generic Display
Interface display.

1.2 The Generic Display Interface

The Generic Display Interface is made up of the following major components:

®» Workstation Routines

These routines allow you to create, initialize, and select any X11 server as a generic
workstation by choosing the server from a menu. The workstation is used to pro-
vide support for the Generic Display text and cursor facilities.

These routines are described in Chapter 2 of this manual.

= Display Routines

These routines allow you to establish any X11 window or a CM framebuffer as a
generic display, using a menu similar to that for the workstation routines. Routines
are also provided that allow you to transfer images to the selected display, and to
change the set-up of the display.

These routines are also described in Chapter 2.

= Text Routines
These routines allow you to display text on the selected display using two built-in

fonts or any X11 font available on the generic workstation. Also included are sup-

port routines that allow you to control the text color and drawing mode, and to
position text effectively.

These routines are described in Chapter 3.

4 Version 2.0, November 1991

Chapter 1. Introduction to the Generic Display Interface

= Mouse Routines

The mouse routines allow you to display a cursor on the selected generic display
and control it with your workstation mouse. A full set of support routines are pro-
vided that allow you to control the behavior and appearance of the display cursor.

1.3 Using the Generic Display Routines

To use the Generic Display routines you must include the appropriate header file in your
program and link with the supporting libraries when compiling.

C/Paris. For C/Paris programs you must include the header file display.h as follows:
#include <cm/display.h>
and you must link with the following libraries when compiling:

cc prog.c -lcmsr -1X11 -lparis -1lm

Fortran/Paris. For Fortran/Paris programs you must include the header file display-
fort.h as follows:

INCLUDE ' /usr/include/cm/display-fort.h’
and you must use the following links to compile:

£77 prog.f -lcmsr -1X11 -lparisfort -lparis -1lm

Lisp/Paris. For Lisp programs you must use a band in which the graphics package has been
loaded. If necessary, you can load it by entering:

(lcmw:load-optional-system ’graphics)

Version 2.0, November 1991 5

Chapter 2

Workstation and Display Routines

This chapter documents the Generic Display Interface routines that are used to create,
select, and control generic displays and workstations. With the workstation and display
routines described in this chapter you can

= establish and manage an X11 server or a CM framebuffer as a Generic Display
display

= establish and manage any X11 server as a Generic Display workstation (the
selected workstation’s resources support the Generic Display text and mouse capa-
bilities)

® transfer images from CM memory to the selected display

A generic display can be either an X11 server’s display or a CM framebuffer and its
attached monitor. The generic display provides the display space for images transferred
from the CM system and for the generic workstation’s text and cursor display.

A generic workstation is an X11 server and a generic display. If the generic display is an
X11 display, the generic workstation and display are one and the same. The generic work-
station supplies text fonts and mouse and cursor support for the Generic Display Interface.

If your application does not use text display or mouse interaction, you can establish a
generic display without any generic workstation. A generic workstation, on the other hand,
always includes a generic display; many of the Generic Display workstation routines
implicitly operate on its associated display as well.

The Generic Display Interface allows you to select the physical devices you will use as
your workstation and display from within your program at run time. Other Generic Display
routines that write to, query, or control the workstation and display automatically operate
on this currently selected workstation or display. This mechanism allows you to write your
program without being tied to specific physical devices. For example, you could use your
local workstation to develop and debug your visualization in black and white and then,

Version 2.0, November 1991 7

Generic Display Reference Manual for Paris

without changing your program, display the image on a color workstation or a CM
framebuffer for final editing or presentation.

The next section of this chapter gives an overview of the basic use of the Generic Display
Interface.

Later sections provide more detailed information on the many routines that allow you to
control the generic workstation and display, and integrate them with other X or CM
framebuffer applications.

The last section of this chapter provides an alphabetical reference to all the Generic Display
workstation and display routines.

The Generic Display text display routines are documented in Chapter 3 of this manual; the
cursor and mouse routines are documented in Chapter 4.

2.1 Overview

This overview describes the easiest way to get started using the Generic Display work-
station and display. However, the Generic Display also includes lower-level routines that
allow you more direct control over the selection and configuration of workstations and dis-
plays. See the later sections of this chapter, which detail all the routines, for more
information.

211 Selecting a Generic Display Workstation and Display

A single Generic Display routine, CMSR_select_workstation menu, allows you to
create both a generic display and a workstation. CMSR_select_display_ menu creates
only a generic display. '

You can specify the display and workstation in one of three ways:

= Choose Generic Display defaults with CMSR_set_display default or CMSR_
set_workstation_default.

= Use the environment variables CM_DISPLAY or CM_WORKSTATION.

8 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines

b
&

* Choose a display and workstation from menus displayed by CMSR_
select_workstation_menu or a display from menus displayed by CMSR _
select_display menu.

2.1.2 Setting Workstation and Display Defaults

If you know you will always want to use the same workstation and/or display for your
graphics work, you can save time by setting default values with global or environmental
variables.

If the default display variable set with CMSR_set_display default or the CM_
DISPLAY environment variable is set, CMSR_select_display menu and CMSR_
select_workstation_menu establish the X11 server or CM framebuffer named there as
the current display.

Similarly, if a CM framebuffer is selected as the display and a workstation default has been
set with CMSR_set_workstation_default or in the CM_WORKSTATION environment
variable, CMSR_select_workstation_menu establishes the X11 server named as the
current workstation.

The string used as the display default or as the CM_DISPLAY environment variable can be
any of the following:

= the name of an X11 server (such as LEANDER: 0)
= the string CMFB to identify the default framebuffer

= the string CMFB8 to identify the default framebuffer and set it to 8-bits-per-pixel
mode

® the string CMFB24 to identify the default framebuffer and set it to 24-bits-per-pixel
mode

= the string CMFB: followed immediately by the location string to identify a particu-
lar framebuffer display

= the string CMFBS8 : followed immediately by the location string to identify a partic-
ular framebuffer and set it to 8-bits-per-pixel mode

= the string CMFB24: followed immediately by the location string to identify a
particular framebuffer and set it to 24-bits-per-pixel mode

Version 2.0, November 1991 ! 9

The string used as the workstation default or the CM_ WORKSTATION environment variable
must be the name of an X11 server.

2.1.3 The Selection Menu

If no Generic Display default or environment variable is set, CMSR_select_work-
station_menu and CMSR_select_display menu offer the user a menu of the avail-
able displays. For example, the display menu might look like this:

Available Display Menu
The X display ‘local-workstation:0’
Any X window display
CM Framebuffer: Computer Center
CM Framebuffer: Graphics Lab

N X O

Choose a display (either ‘D', ‘X’, or a number):

If you enter ‘X’, the menu prompts you for the name of an X window display:

Enter the name of an X window display
(Example: ‘Leander:0’) ==>

If you select an X11 server, CMSR_select_display menu initializes it and selects it as
the current generic display and then returns; CMSR_select workstation_menu initial-
izes and selects the X11 server as both the current display and the current workstation, and
then returns.

If you select a CM framebuffer, CMSR_select_display menu initializes it and selects
it as the current generic display and then returns. But CMSR_select_workstation_
menu, after initializing and selecting the framebuffer as the current display, continues with
a similar process to create a Generic Display workstation.

First, CMSR_select_workstation_menu checks to see whether a workstation default
has been set with CMSR_set_workstation_default. If no default is set, it checks the
CM_WORKSTATION environment variable. Finally, if neither of these is set, it presents a
workstation menu. Like the display, the workstation specified or chosen is then initialized
and selected as the current Generic Display workstation.

The selected display and workstation are then used for all further interactions with the other
Generic Display routines. The current display provides the display space for the Generic
Display image transfer routines. The current workstation serves as both the font host for

10 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines

the Generic Display text display and the mouse host for the Generic Display cursor facili-
ties.

2.1.4 Using the Generic Display

Once a display is established as the current display, only one other routine, CMSR_write_
to_display, is needed to transfer an image from an image buffer in CM memory.

The Image Buffer

The source of the image to be transferred to the selected display is an image buffer in CM
memory. An image buffer is a VP set in CM memory with a two-dimensional geometry.

The length of the axes of the image buffer VP set correspond to the resolution of the image
to be displayed, 1 virtual processor to each pixel. Axis 0 of the geometry maps to the
screen’s x (horizontal) axis, and axis 1 of the geometry maps to the screen’s y (vertical)
axis. The x coordinate increases to the right, and the y coordinate increases downward.

The length of the image buffer field containing the color data to be transferred to the dis-
play should be the same as the depth of the display. If the field length is longer, the
high-order bits are lost. If the field length is shorter than the depth of the window, an error
is signaled.

Displaying the Image Buffer

When you call CMSR_write_to_display, the origin of the image buffer field (0,0) is
displayed at the upper left corner of the display and the color value in each virtual processor
is assigned to the corresponding pixel of the generic display screen.

If the image is smaller than the display, the portions of the display to the right and below
the dimensions of the image are left unchanged.

If the image is larger than the display, portions of the image that extend to the right and
below the display space are clipped.

Version 2.0, November 1991 11

ris
b e

Framebuffer-Ordered Geometries

The transfer of fields of color data between the image buffer and the selected display using
the Generic Display Interface operations CMSR_write_to_display, CMSR write to_
display 1, CMSR read_ from display, and CMSR_read from display 1 can be
optimized by using image buffers created with framebuffer ordering.

The routine CMFB_create_cmfb_geometry allocates and returns a 2D geometry of a
specified width and height. Width specifies the length of axis 0 of the geometry and maps
to the screen’s x (horizontal) axis. Height specifies the length of axis 1 and maps to the
screen’s y (vertical) axis. Both axes are created with framebuffer ordering.

Framebuffer-ordered geometries are intended to be used only as image buffers. While
image transfers to the CM framebuffer are faster, Paris NEWS communication functions
operate much more slowly on a framebuffer-ordered VP set. The NEWS function must per-
form a send to reorder a framebuffer-ordered geometry before the NEWS operation can be
completed.

If you do not use NEWS functions in the image buffer, it is recommended that you use a
framebuffer-ordered geometry as an image buffer. The Generic Display Interface /O func-
tions accept a NEWS-ordered geometry as an image buffer, but display performance is
slowed significantly. These operations must perform a send to “shuffle” the field into
framebuffer order before transferring it to the CM framebuffer. /O performance to an X
Window System or Symbolics display is unaffected by the choice of ordering.

2.1.5 Using the Generic Workstation

The currently selected generic workstation and its associated display are automatically
used by the other Generic Display routines.

For example, CMSR_get_mouse_point displays a cursor on the currently selected dis-
play that is controlled by the physical mouse connected to the currently selected
workstation. Similarly, CMSR_display_text writes text to the current display in any of
the X11 text fonts available on the current workstation.

The text routines are described in Chapter 3 of this manual; the mouse routines are
described in Chapter 4.

12 Version 2.0, November 1991

Chapter 2. Workstation

S

and Display Routines

RRERERE

2.1.6 Low-Level Access

The Generic Display Interface controls the X Window System servers selected as the
generic display or workstation with calls to X1ib. No widgets are used. When the generic
display is a CM framebuffer, the interface uses calls to the CMFB Display Operations.

Normally you do not need to access this level of the interface at all. But if you wish to
integrate your Generic Display application with an existing X11 application, or need to
drive the framebuffer directly, the Generic Display provides routines that allow you to
access the lower level of the interface.

X11 routines are described in Section 2.7; the CMFB routines are discussed in Section 2.8.

Version 2.0, November 1991 13

Generic Display Reference Manual for Paris

2.2 Workstation Routines

This section describes the Generic Display routines that allow you to select and control an
X Window System host as a Generic Display workstation. The currently selected work-
station supplies the resources to support the Generic Display text drawing routines and
cursor interaction routines.

NOTE: A Generic Display workstation always includes a generic display. Routines that
operate on the workstation also operate on the display associated with it. However, routines
that operate on the display do not operate on the workstation. Therefore be careful to use
only the workstation or only the display routines throughout a Generic Display application.
Intermixing workstation and display routines can lead to unintended results.

For example, if CMSR_select_display is used to change a workstation’s display from
one X11 server to another, Generic Display text routines do not display correctly because
the workstation resources are no longer associated with the current display. To change the
display in this situation you must use CMSR_select_workstation to change both the
workstation and the display.

The routines described here are:

CMSR make window_typPeciiiiiiiiiiiiiiiii i 16
Creates a Generic Display window type for a specified visual class and depth
that may be used as an argument to the Generic Display routines that create a

generic display.

CMSR_select workstation menul 19
Creates, initializes, and selects as current a Generic Display workstation
and display.

CMSR_create workstation menu i 23

Creates, but does not select, a Generic Display display and workstation.

CMSR_create display workstationoooiill 27
Creates and initializes a Generic Display workstation for an existing display.

CMSR_select_workstationo il 28
Selects an existing workstation and its display as current for the Generic
Display system.

CMSR_deselect workstation................... ... il 28

Deselects the current Generic Display workstation and its display.

CMSR_selected workstation..................l 30
Returns identifier of currently selected Generic Display workstation.

14 Version 2.0, November 1991

CMSR _workstation type, 30
Returns workstation type of currently selected Generic Display workstation.

CMSR_workstation displayc i 32
Returns the identifier of the display for the current Generic Display
workstation.

CMSR_set workstation _defaultl 33

Sets the default Generic Display workstation name.

CMSR_get workstation defaultl 33
Returns the default Generic Display workstation name.

CMSR deallocate workstation il 35
Deallocates resources of a Generic Display workstation and its display.

Version 2.0, November 1991 15

CMSR_make_window_type Generic Display Reference Manual for

CMSR_make_window_type

Creates Generic Display window type data structure for a specified visual class and depth.

SYNTAX
C Syntax

#finclude <cm/display.h>
int
CMSR _make window_type
(visual_class, depth, class_required p, depth_required p)

int visual class;

int depth;

int class_required p;
int depth_required p;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR MAKE WINDOW TYPE
& (visual_class, depth, class_required_p, depth_required_p)

INTEGER visual class
INTEGER depth

LOGICAL class _required p
LOGICAL depth_required p

Lisp Syntax

CMSR:make-window-type (&key visual-class depth
class-required-p depth—required—p)

16 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_make_window_type

ARGUMENTS

visual_class

depth

class_required p

depth_required p

Version 2.0, November 1991

The X Window System visual class to be specified in the returned
window type. Valid values are:

= PseudoColor
= StaticColor

® DirectColor
®= TrueColor

= GrayScale

= StaticGray

An integer specifying the number of bits of color information to
be maintained by the display for each pixel. This depth argument
is the same as the desired bits per pixel argument in other
Generic Display routines.

A predicate indicating whether the visual class is desired or
required.

If class_required p is true (.TRUE. in Fortran, non-NULL in C,
non-nil in Lisp), the window type returned instructs the routine
creating the Generic Display display to accept only displays with
exactly the specified visual class.

If class_required_p is false ((FALSE. in Fortran, NULL in C, nil in
Lisp), the window type returned instructs the routine creating the
Generic Display display to initialize the display to the supported
visual class closest to the visual class argument.

A predicate indicating whether depth is desired or required.

If depth_required p is true (.TRUE. in Fortran, non-NULL in C,
non-nil in Lisp), the window type returned instructs the routine
creating the Generic Display display that it can only accept
displays with exactly the specified depth.

If class_required p is false ((FALSE. in Fortran, NULL in C, nil in
Lisp), the window type returned instructs the routine creating the
Generic Display display that it can initialize the display to the
supported depth closest to the depth argument.

17

B

CMSR_make_window_type Generic Display Reference Manual for Pari.

DESCRIPTION

CMSR_make window_type returns a Generic Display window type that may be used
as an argument to the following Generic Display routines:

CMSR_select workstation _menu
CMSR_create-workstation-menu
CMSR_select display menu

CMSR create-display-menu

The window type argument is an opaque data structure (i.e., not accessible to the user)
carrying information on both the visual class and depth of the window to be requested.
The depth of a window is the number of bits per pixel of color information, or color
planes, supported by the window. The visual class specifies how the color information
is to be interpreted. The meaning of the visual classes is as follows:

PseudoColor
The pixel bits are interpreted as a single value and used as an index to an entry
in a writable color map of RGB color values.

StaticColor
The pixel bits are interpreted in the same way as PseudoColor, but the color
map is predefined and cannot be changed.

DirectColor
The pixel bits are decomposed into separate red, green, and blue values that are
used to index separate, writable, red, green, and blue color maps.

TrueColor
The pixel bits are interpreted in the same way as DirectColor but the color
maps are predefined and cannot be changed.

GrayScale
The pixel bits are interpreted as a single value and used as an index to an entry
in a writable color map of grayscale intensities.

StaticGray
The pixel bits are interpreted in the same way as GrayScale, but the color map
is predefined and cannot be changed.

18

Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_select_workstation_menu

CMSR_select_workstation_menu

Creates, initializes, and selects as current a Generic Display workstation and display.

SYNTAX
C Syntax

#include <cm/display.h>
void

CMSR_select workstation_menu
(window_type, desired_width, desired_height)

int window_type ;
unsigned int desired width;
unsigned int desired_height;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_SELECT_WORKSTATION MENU
& (window_type, desired_width, desired_height)

INTEGER window_type
INTEGER desired width
INTEGER desired_height

Lisp Syntax

CMSR: select-workstation-menu
(&optional window-type desired—width desired—height)

ARGUMENTS

window_type Can be either an integer specifying the depth of the display to be
opened or the return value of CMSR_make window_type.

The depth (also called the desired_bits_per pixel) is the number
of bits of color information maintained by the display for each

Version 2.0, November 1991 19

CMSR _select_workstation_menu Generic Display Reference Manual for Paris

pixel. The number of bits that can actually be supported is
determined by the display hardware. The Generic Display
matches the depth as closely as possible. Call CMSR_display
bits_per pixel to learn the actual depth of the initialized
display.

CMSR_make_window_type returns a Generic Display window
type based on depth and visual class arguments supplied to it.
The visual _class argument is one of the X Window System’s
visual classes: GrayScale, StaticGray, PseudoColor, StaticColor,
DirectColor, or TrueColor. See the description of CMSR_make_
window_type in this manual for more information.

desired_width The width, in pixels, of the display window you wish to create.
The width of the display is the x, or horizontal, dimension of the
display. The Generic Display matches desired_width as closely as
possible on the selected display. Call CMSR_display_width to
determine the actual width of the created display.

If desired_width is specified as NULL or 0 in C, 0 in Fortran, or
not specified in Lisp, the width of the display defaults to 256.

desired_height The height, in pixels, of the display window you wish to create.
The height of the display is the y, or vertical, dimension of the
window. The Generic Display matches desired _height as closely
as possible on the selected display. Call CMSR_display width
to determine the actual width of the initialized display.

DESCRIPTION

20

CMSR_select_workstation_menu creates and selects both a current workstation
and its associated display. You can immediately operate on the workstation and display
with other Generic Display routines.

NOTE: Generic Display routines that operate on the workstation also operate on the
display associated with it. However, routines that operate on the display do not operate
on the workstation. Therefore, be careful to use only the workstation or only the dis-
play routines throughout a Generic Display application. Intermixing workstation and
display routines can lead to unintended results.

For example, if CMSR_select_display is used to change a workstation’s display
from one X11 server to another, Generic Display text routines do not display correctly
because the workstation resources are no longer associated with the current display. To

Version 2.0, November 1991

~

Chapter

N

on_menu

CMSR_select_workstati
R

change the display in this situation you must use CMSR_select_workstation to
change both the workstation and the display.

The current display is the display space for the Generic Display routines that read and
write images. It can be either an X11 window or a CM framebuffer.

The current workstation provides X11 resources and the physical mouse to support the
Generic Display system’s text and mouse routines. It must be an X11 server. For exam-
ple, the Generic Display text routines can use the current workstation’s X11 fonts to
draw text onto the Generic Display display. Similarly, the Generic Display mouse rou-
tines use the current workstation’s resources to handle cursor tracking and interaction.

You can specify the display and workstation to use by any of the following:

= setting Generic Display defaults with CMSR_set_display_default or
CMSR_set_workstation_default

® setting the environment variables CM_DISPLAY or CM_WORKSTATION

® choosing a display and workstation from menus displayed by CMSR_
select_workstation_menu

CMSR_select_workstation_menu first attempts to create the display by checking
the default display variable set with CMSR_set_display default. If no default is
set, it checks the CM_DISPLAY environment variable. Finally, if neither of these is set,
it presents the user with a menu of the available displays.

If the selected display is an X11 server, CMSR_select_workstation_menu initial-
izes it as closely as possible to the specified window_type, width, and depth arguments
and selects it as the current display. If another display is currently selected, that display
is deselected. CMSR_select workstation_menu also automatically initializes and
selects this server as the current workstation, and then returns.

If the selected display is a CM framebuffer, CMSR_select_workstation_menu ini-
tializes the framebuffer and selects it as the current display. The display color mode is
set as closely as possible to window_type, and the display height and width is set
to the height and width of the framebuffer’s attached monitor. (For framebuffers,
desired_width, and desired_height are not used; the display space is always the entire
monitor screen.) Then, because a CM framebuffer cannot be used as a workstation,
CMSR_select workstation_menu continues with a similar process to create a
Generic Display workstation.

First, it checks to see whether a workstation default has been set with CMSR_set_
workstation_default. Then, if no default is set, it checks the CM_WORKSTATION
environment variable. And, finally, if neither of these is set, it presents a workstation

Version 2.0, November 1991 21

CMSR_select_workstation_menu Generic Display Reference Manual for Paris

S T

s

menu. The workstation specified or chosen is then initialized and selected as the cur-
rent Generic Display workstation.

The string used as the display default or as the CM_DISPLAY environment variable can
be any of the following:

the name of an X11 server (such as LEANDER: 0)
the string CMFB to identify the default framebuffer

the string CMFB8 to identify the default framebuffer and set it to 8-bits-per-
pixel mode

the string CMFB24 to identify the default framebuffer and set it to
24-bits-per-pixel mode

the string CMFB: followed immediately by the location string to identify a par-
ticular framebuffer display

the string CMFB8: followed immediately by the location string to identify a
particular framebuffer and set it to 8-bits-per-pixel mode

the string CMFB24 : followed immediately by the location string to identify a
particular framebuffer and set it to 24-bits-per-pixel mode

The string used as the workstation default or the CM_WORKSTATION environment vari-
able must be the name of an X11 server.

ERRORS

An error is signaled if the selected display or workstation is changed while the Generic
Display mouse is grabbed.

22

Version 2.0, November 1991

CMSR_create_workstation_menu

CMSR_create_workstation_menu

Creates, but does not select, a Generic Display display and workstation.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR workstation_t
CMSR create_workstation_menu
(window_type, desired_width, desired_height)

int window_type ;
unsigned int desired width;
unsigned int desired height;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_CREATE WORKSTATION MENU
& (window_type, desired_width, desired_height)

INTEGER window_type
INTEGER desired_width
INTEGER desired_height

Lisp Syntax

CMSR:create-workstation-menu
(&optional window_type, desired width, desired_height)

ARGUMENTS

window_type Can be either an integer specifying the depth of the display to be
opened or the return value of CMSR_make window_type.

The depth (also called the desired bits_per_pixel) is the number
of bits of color information maintained by the display for each

Version 2.0, November 1991 23

[s

CMSR_create_workstation_menu Generic Display Reference Manual for Paris

desired_width

desired_height

DESCRIPTION

24

pixel. The number of bits that can actually be supported is
determined by the display hardware. The Generic Display
matches the depth as closely as possible. Call CMSR_display
bits_per_pixel to learn the actual depth of the initialized
display.

CMSR_make_window_type returns a Generic Display window
type based on depth and visual_class arguments supplied to it.
The visual_class argument is one of the X Window System visual
classes: GrayScale, StaticGray, PseudoColor, StaticColor, Direct-
Color, or TrueColor. See the description of CMSR_make_
window_type in this manual for more information.

The width, in pixels, of the display window you wish to create.
The width of the display is the x, or horizontal, dimension of the
display. The Generic Display matches desired_width as closely as
possible on the physical display. Call CMSR_display_ width to
determine the actual width of the initialized display.

If desired_width is specified as NULL (0 in C, 0 in Fortran, or not
specified in Lisp), the width of the display defaults to 256.

The height, in pixels, of the display window you wish to create.
The height of the display is the y, or vertical, dimension of the
display. The Generic Display matches desired_height as closely as
possible on the physical display. Call CMSR_display width to
determine the actual width of the initialized display.

CMSR_create_workstation_menu creates both a Generic Display display and a
Generic Display workstation, and then returns a CMSR_workstation_t data struc-
ture identifying the workstation and its associated display. To use the workstation and
display with other Generic Display routines, you must first select them by calling
CMSR_select_workstation.

NOTE: Generic Display routines that operate on the workstation also operate on the
display associated with it. However, routines that operate on the display do not operate
on the workstation. Therefore, be careful to use workstation and display routines con-
sistently throughout a Generic Display application. Intermixing workstation and
display routines can lead to unintended results.

Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_create_workstation_menu

For example, if you attempt to change a workstation’s display from one X11 server to
another by calling CMSR_select_display, Generic Display text routines do not dis-
play correctly because the workstation resources are no longer associated with the
current display. To change the display in this situation you must use CMSR_select_
workstation to change both the workstation and the display.

You can specify which display and workstation to use in one of three ways:

* Choose Generic Display defaults with CMSR_set_display_default or
CMSR _set workstation default.

* Use the environment variable CM_DISPLAY or CM_WORKSTATION.

* Choose a display and workstation from menus displayed by CMSR_select__
workstation_menu or a display from menus displayed by CMSR_select_
display menu.

CMSR_create_workstation_menu first attempts to create the display by checking
the default display variable set with CMSR_set_display_ default. If no default is
set, it checks the CM_DISPLAY environment variable. Finally, if neither of these is set,
it presents a menu of the available displays.

If the display named in a variable or selected from the menu is an X11 server,
CMSR_create_workstation_menu establishes the server as both a display and a
workstation, and then returns. The display is initialized as closely as possible to the
window_type, desired_width, and desired_height specified in your call to CMSR_
create workstation_ menu.

If the display named in a variable or selected from the menu is a CM framebuffer,
CMSR_create workstation menu initializes the framebuffer as a display, match-
ing the specified window_type as closely as possible and setting the display height and
width to the height and width of the framebuffer’s attached monitor. (For framebuffers,
desired_width and desired_height have no meaning.) Then, because a CM framebuffer
cannot be used as a workstation, CMSR_create_workstation_menu continues with
a similar process to create a Generic Display workstation.

First, it checks to see whether a workstation default has been set with CMSR_set_
workstation_default. Then, if no default is set, it checks the CM_WORKSTATION
environment variable. Finally, if neither of these is set, it presents a workstation menu.
The workstation specified or chosen is then initialized as a Generic Display work-
station.

The string used as the display default or as the CM_DISPLAY environment variable can
be any of the following:

Version 2.0, November 1991 25

CMSR_create_workstation_menu Generic Display Reference Manual fo

r Pa

&

® the name of an X11 server (such as LEANDER: 0)
= the string CMFB to identify the default framebuffer

= the string CMFBS8 to identify the default framebuffer and set it to 8-bits-per-
pixel mode

= the string CMFB24 to identify the default framebuffer and set it to
24-bits-per-pixel mode

= the string CMFB: followed immediately by the location string to identify a par-
ticular framebuffer display

= the string CMFB8: followed immediately by the location string to identify a
particular framebuffer and set it to 8-bits-per-pixel mode

= the string CMFB24 : followed immediately by the location string to identify a
particular framebuffer and set it to 24-bits-per-pixel mode

The string used as the workstation default or the CM_WORKSTATION environment vari-
able must be the name of an X11 server.

26 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_create_display_workstation
e T S

CMSR_create_display_workstation

Creates and initializes a Generic Display workstation for an existing display.

SYNTAX
C Syntax
#include <cm/display.h>

CMSR _workstation_t
CMSR create_display workstation (generic_display)

CMSR display_t generic_display;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR CREATE DISPLAY WORKSTATION
& (generic_display)

INTEGER generic_display

Lisp Syntax

CMSR:create-display-workstation (&optional generic—display)

ARGUMENTS

generic_display A CMSR_display_t data structure identifying a previously
created Generic Display display.

The generic_display identifier for the currently selected display
can be returned with CMSR_selected_display.

DESCRIPTION

CMSR _create_display workstation creates a workstation associated with a pre-
viously created Generic Display display and returns a CMSR_workstation_t
structure identifying it. If generic_display is NULL, the specified display defaults to the
currently selected generic display.

Version 2.0, November 1991 27

CMSR_select_workstation

CMSR_deselect_workstation Generic Display Refe

CMSR_select_workstation
CMSR_deselect_workstation

Selects (deselects) an existing workstation and its display as current for the Generic
Display system.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_select_workstation (workstation)

CMSR_workstation_t workstation;

void
CMSR_deselect workstation ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SELECT WORKSTATION (workstation)

INTEGER workstation

SUBROUTINE CMSR DESELECT WORKSTATION ()

Lisp Syntax

CMSR:select-workstation (workstation)

CMSR:deselect-workstation ()

28 Version 2.0, November 1991

CMSR_select_workstation
CMSR_deselect_workstation

Chapter 2. Workstatio
e

ARGUMENTS
workstation A CMSR workstation_t data structure identifying a Generic

Display workstation and its associated display.
The workstation identifier is created and returned by CMSR_
create_workstation_menu or CMSR create_display
workstation. You can get the identifier of the currently selected
workstation by calling CMSR: selected workstation.

DESCRIPTION

CMSR_select_workstation selects the specified workstation and its associated dis-
play as the current workstation and display. The workstation and display must be
selected before other Generic Display routines can operate on them.

CMSR_deselect_workstation deselects the selected workstation and its associated
display.

Version 2.0, November 1991 ' 29

CMSR_selected_workstation
CMSR_workstation_type

CMSR_selected_workstation
CMSR_workstation_type

Returns identifier (workstation type) of currently selected Generic Display workstation.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR_workstation_t
CMSR_selected workstation ()

CMSR_workstation type t
CMSR workstation_type ()

Fortran Syntax
INCLUDE '’ /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR_SELECTED_WORKSTATION ()

INTEGER FUNCTION CMSR_WORKSTATION TYPE ()

Lisp Syntax

CMSR: selected-workstation ()
CMSR:workstation-type ()

ARGUMENTS

None.

DESCRIPTION

CMSR_selected workstation returns the CMSR_workstation_t data structure
identifying the currently selected workstation. This identifier can be used as an argu-

ment to other Generic Display routines that control or return information about the
current workstation.

30 Version 2.0, November 1991

CMSR_selected_workstation
Chapter 2. Workstation and Display Routines CMSR_workstation_type

CMSR_workstation_type returns the type of the currently selected workstation. In
Release 2.0 of the Generic Display system, the workstation type can only be :x-
workstation in Lisp or CMSR_x workstation in C or Fortran.

Version 2.0, November 1991 31

CMSR workstation dlsplay Generic Dzsplay Reference Manual for Pans

CMSR_workstation_display

Returns the identifier of the display for the current Generic Display workstation.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR display t
CMSR _workstation_display ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR WORKSTATION DISPLAY ()

Lisp Syntax

CMSR:workstation-display ()

ARGUMENTS

None.

DESCRIPTION

CMSR_workstation_display returns the display identifier of the generic display
associated with the currently selected workstation.

32 Version 2.0, November 1991

CMSR_set_workstation_default
CMSR_get_workstation_defauit

CMSR_set_workstation_default
CMSR_get_workstation_default

Sets (returns) the default Generic Display workstation name.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set workstation_default (string)

char *string;

char *
CMSR_get workstation_default ()

Fortran Syntax
INCLUDE '’ /usr/include/cm/display-fort.h’
SUBROUTINE CMSR _SET_ WORKSTATION DEFAULT (string)
CHARACTER* (*) string

CHARACTER* (*) FUNCTION CMSR GET WORKSTATION DEFAULT ()

Lisp Syntax
CMSR:set-workstation-default (string)

CMSR:get-workstation-default ()

ARGUMENTS

string A character string naming the workstation host to use for the

Generic Display workstation. Currently, this name must be the
name of an X11 server.

Version 2.0, November 1991 33

CMSR_set_workstation_default
CMSR_get_workstation_default

Generic Display Reference Manual for Paris
i

RS R &

DESCRIPTION

CMSR_set_workstation_default sets the Generic Display default workstation
name to name. When the default workstation name is set, CMSR_select_work-
station_menu or CMSR_create_workstation_menu automatically uses this
default to create the Generic Display workstation, bypassing both the workstation envi-
ronment variable and the workstation menu.

CMSR_get workstation_default rcturns a string containing the default work-
station name currently set.

34 Version 2.0, November 1991

CMSR_deallocate_workstation

CMSR_deallocate_workstation

Deallocates resources of a Generic Display workstation and its display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_deallocate_workstation (workstation)

CMSR workstation _t workstation

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR DEALLOCATE WORKSTATION (workstation)

Lisp Syntax

CMSR:deallocate-workstation (&optional workstation)

ARGUMENTS

workstation A CMSR_workstation_t data structure identifying a Generic
Display workstation and its associated display.

The workstation identifier is created and returned by
CMSR_create_workstation_menu or CMSR_create_
display workstation. You can get the identifier of the
currently selected workstation by calling CMSR_selected_
workstation.

Version 2.0, November 1991 35

CMSR_deallocate_workstation Generic Display Reference Manual for Paris
s — - S

DESCRIPTION

CMSR_deallocate_workstation deallocates the specified workstation and its
associated display, freeing up all memory associated with them. If the workstation is
the currently selected workstation, the workstation and display are also deselected.

If you specify NULL in C or 0 in Fortran for the workstation argument, then the cur-
rently selected workstation is deallocated.

36 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines

2.3 Display Routines

This section describes the Generic Display routines that allow you to select and control an
X11 server or CM framebuffer as a generic display. The currently selected display provides
the display space for the Generic Display image display, text drawing, and cursor inter-
action routines.

NOTE: A Generic Display workstation always includes a generic display. Routines that
operate on the workstation also operate on the display associated with it. However, routines
that operate on the display do not operate on the workstation. Therefore, be careful to use
only the workstation or only the display routines throughout a Generic Display application.
Intermixing workstation and display routines can lead to unintended results.

For example, if CMSR_select_display is used to change a workstation’s display from
one X11 server to another, Generic Display text routines do not display correctly because
the workstation resources are no longer associated with the current display. To change the
display in this situation you must use CMSR_select_workstation to change both the
workstation and the display.

This section describes the Generic Display routines that operate on the current display:

CMSR_select display MeNUc.civitiiiiiinnrnnnneneenneenenns 39
Presents a menu of available displays. Initializes the display chosen by the user
and selects it as the current Generic Display.

CMSR_create_display menuc.ciiiiiiininniniiiennnnnennnns 43
Presents a menu of available displays. Initializes, but does not make current,
the display chosen by the user.

CMSR_set display defaulto, 46
Sets the default display to be created by the Generic Display Interface.

CMSR get display defaultcoiiiiiiiiiiiiiiiinee.., 46
Returns the default display currently set.

CMSR _select displaycoiiiiiiiiiiiiiiiiiiiiiiiiiiiineanannsn 48
Makes the specified display the current Generic Display Interface display.

CMSR_deselect displaycoiiiiiiiiiiiniiiiiiiieneiine... 48
Deselects the current display.

CMSR_selected displaycciiiiiiiiiiiiiiiiiiiiiiiiiinnnnn.. 50
Returns the Generic Display structure corresponding to the currently
selected display.

CMSR _deallocate displaycoiiiiiiiiiiiirinneenninnenenn, 51

Deallocates the specified display and frees associated resources.

Version 2.0, November 1991 37

Generic Display Reference Manual for Paris
b i S

CMSR_set display offsetol 53
Sets the upper left location on the selected display at which to begin
image transfers.

38 Version 2.0, November 1991

CMSR_select_display_menu

CMSR_select_display_menu

Presents a menu of available displays. Initializes and selects as current the display chosen
by the user.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_select display menu
(window_type, desired width, desired_height) ;

int window_type ;
unsigned int desired width;
unsigned int desired height;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SELECT DISPLAY_ MENU
& (window_type, desired width, desired_height)

INTEGER window_type
INTEGER desired_width
INTEGER desired height

Lisp Syntax

CMSR:select-display-menu (&optional
window-type desired-width desired—height)

ARGUMENTS

window_type Can be either an integer specifying the depth of the display to be
opened or the result of calling CMSR_make_window_type.

The depth (also called the desired_bits_per_pixel) is the number
of bits of color information maintained by the display for each
pixel. The number of bits that can actually be supported is

Version 2.0, November 1991 39

desired_width

desired_height

DESCRIPTION

40

CMSR_select_display_menu Generic Display Reference Manual for Paris

determined by the display hardware. The Generic Display
matches the depth as closely as possible. Call CMSR_display
bits_per_pixel to learn the actual depth of the initialized
display.

CMSR_make_window_type creates a Generic Display window
type based on depth and visual_class arguments supplied to it.
The visual_class argument is one of the X Window System visual
classes: GrayScale, StaticGray, PseudoColor, StaticColor, Direct-
Color, or TrueColor. See the description of CMSR_make__
window_type in this manual for more information.

The desired width, in pixels, of the display window to be created.
The Generic Display Interface system attempts to match the
desired_width as closely as possible. If desired_width is not
specified or is specified as NULL or 0, the width of the display
defaults to 256. Call CMSR_display width to determine the
actual width of the initialized display.

If the display is a framebuffer, desired width has no effect. The
width of a framebuffer display is always equal to the maximum
width allowed by the attached monitor type.

The desired height, in pixels, of the display window to be created.
The Generic Display Interface system attempts to match the
desired_height as closely as possible. If desired_height is not
specified or is specified as NULL or 0, the height of the display
defaults to 256. Call CMSR_display height to determine the
actual height of the initialized display.

If the display is a framebuffer, desired_height has no effect. The
height of a framebuffer display is always equal to the maximum
height allowed by the attached monitor type.

CMSR_select_display_menu creates a Generic Display display and selects it as the
current display. You can immediately operate on the display with other Generic
Display routines. The current display is the display space for the Generic Display rou-
tines that read and write images. It can be either an X11 window or a CM framebuffer.

Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_select_display_menu

You can specify the display you wish CMSR_select_display_menu to create and
select by any of the following:

= setting a Generic Display default with CMSR_set_display default
" setting the environment variable CM_DISPLAY

* choosing a display from the menu displayed by CMSR_select_display
menu

CMSR_select_display menu, first attempts to create the display by checking the

default display variable set with CMSR_set_display_default. Ifno default is set, it

checks the CM_DISPLAY environment variable. Finally, if neither of these is set, it pre-
- sents the user with a menu of the available displays.

If the selected display is an X11 server, CMSR_select_ display menu initializes it as
closely as possible to the specified window_type, width, and depth arguments and
selects it as the current display.

If the selected display is a CM framebuffer, CMSR_create_display_ menu initializes
the framebuffer and selects it as the current display. The display color mode is set as
closely as possible to window_type, and the display height and width is set to the height
and width of the framebuffer’s attached monitor. For framebuffers, desired_width, and
desired_height are not used; the display space is always the entire monitor screen.

If another display is currently selected when CMSR_select_display_menu is
called, that other display is deselected.

The string used as the display default or as the CM_DISPLAY environment variable can
be any of the following:

= the name of an X11 server (such as LEANDER: 0)
= the string CMFB to identify the default framebuffer

= the string CMFB8 to identify the default framebuffer and set it to 8-bits-per-
pixel mode

= the string CMFB24 to identify the default framebuffer and set it to 24-bits-
per-pixel mode

= the string CMFB: followed immediately by the location string to identify a par-
ticular framebuffer display

= the string CMFB8: followed immediately by the location string to identify a
particular framebuffer and set it to 8-bits-per-pixel mode

Version 2.0, November 1991 41

CMSR_select_display_menu Generic Display Reference Manual for Paris

SEEC i

= the string CMFB24 : followed immediately by the location string to identify a
particular framebuffer and set it to 24-bits-per-pixel mode

The string used as the workstation default or the CM_WORKSTATION environment vari-
able must be the name of an X11 server.

42 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_create_display_menu

CMSR_create_display_menu

Presents a menu of available displays. Initializes, but does not make current, the display
chosen by the user.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR display t
CMSR create_display menu
(window_type, desired_width, desired_height) ;

int window_type;
unsigned int width;
unsigned int height;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR CREATE_ DISPLAY MENU
& (window_type, desired_width, desired_height)

INTEGER window_type
INTEGER width
INTEGER height

Lisp Syntax

CMSR:create-display-menu (&optional window-type
desired-width desired—height)

ARGUMENTS

window_type Can be either an integer specifying the depth of the display to be
opened or the result of calling CMSR_make_window_type.

The depth (also called the desired_bits_per_pixel) is the number
of bits of color information maintained by the display for each

Version 2.0, November 1991 43

CMSR_create_display_menu

desired_width

desired_height

DESCRIPTION

Generic Display Reference Manual for Paris

sassssicd

pixel. The number of bits that can actually be supported is
determined by the display hardware. The Generic Display
matches the depth as closely as possible. Call CMSR_display_
bits_per pixel to learn the actual depth of the initialized
display.

CMSR_make window_type creates a Generic Display window
type based on depth and visual_class arguments supplied to it.
The visual_class argument is one of the X Window System visual
classes: GrayScale, StaticGray, PseudoColor, StaticColor,
DirectColor, or TrueColor. See the description of CMSR_make _
window_type in this manual for more information.

The width, in pixels, of the display window you wish to create.
The width of the display is the x, or horizontal, dimension of the
display. The Generic Display matches desired_width as closely as
possible on the selected display. Call CMSR_display width to
determine the actual width of the created display.

If desired_width is specified as NULL (0 in C, 0 in Fortran, or not
specified in Lisp), the width of the display defaults to 256.

The height, in pixels, of the display window you wish to create.
The height of the display is the y, or vertical, dimension of the
display. The Generic Display matches desired_height as closely as
possible on the selected display. Call CMSR_display_ width to
determine the actual width of the initialized display.

CMSR_create_display menu creates a Generic Display display, initializes it, and
returns a CMSR_display_t data structure identifying the display. Before using the
display, you must select it as the current display by calling CMSR_select_display.

You can specify the displayvto be created by CMSR_create_display by any of the

following:

= setting a Generic Display default with CMSR_set_display_ default

= setting the environment variables CM_DISPLAY

= choosing a display from the menu displayed by CMSR_create_display

menu

Version 2.0, November 1991

CMSR_create_display_menu

CMSR _create_display menu first attempts to create the display by checking the
default display variable set with CMSR_set_display_default. If no default is set, it
checks the CM_DISPLAY environment variable. Finally, if neither of these is set, it pre-
sents the user with a menu of the available displays.

If the display named in a variable or selected from the menu is an X11 server,
CMSR_create_display menu initializes it as closely as possible to the window_
type, desired_width, and desired _height specified.

If the display named in a variable or selected from the menu is a CM framebuffer,
CMSR_create_display_menu initializes the framebuffer as a display by setting the
color mode as closely as possible to window_type and by setting the display height and
width to the height and width of the framebuffer’s attached monitor. For framebuffers,
desired_width, and desired_height are not used; the display space is always the entire
monitor screen.

For more details on the use of this menu, see Chapter 1, “Introduction to the Generic
Display Interface.”

The string used as the display default or as the CM_DISPLAY environment variable can
be any of the following:

= the name of an X11 server (such as LEANDER: 0)
= the string CMFB to identify the default framebuffer

= the string CMFB8 to identify the default framebuffer and set it to 8-bits-per-
pixel mode

= the string CMFB24 to identify the default framebuffer and set it to
24-bits-per-pixel mode

= the string CMFB: followed immediately by the location string to identify a par-
ticular framebuffer display

s the string CMFBS8: followed immediately by the location string to identify a
particular framebuffer and set it to 8-bits-per-pixel mode

= the string CMFB24: followed immediately by the location string to identify a
particular framebuffer and set it to 24-bits-per-pixel mode.

Version 2.0, November 1991 45

CMSR_set_display_defauit

CMSR_get_display_default Generic Display Reference Manual for Paris
e

CMSR_set_display_default
CMSR_get_display_default

Sets (returns) the default display to be created by the Generic Display Interface.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set display default (string)

char *string;

char *
CMSR_get_display default ()

Fortran Syntax
INCLUDE ' /usr/include/ecm/display-fort.h’
SUBROUTINE CMSR SET DISPLAY DEFAULT (string)

CHARACTER* (*) string

CHARACTER* (*) FUNCTION CMSR_GET_DISPLAY_DEFAULT ()

Lisp Syntax

CMSR:set-display~-default (string)
CMSR:get-display-default ()

ARGUMENTS

string A character string specifying the default Generic Display to be
created. This string can be any of the following:

= the name of an X11 server (such as LEANDER: 0)

46 Version 2.0, November 1991

CMSR_set_display_default
CMSR_get_display_default

= the string CMFB to identify the default framebuffer

= the string CMFBS8 to identify the default framebuffer and
set it to 8-bits-per-pixel mode

= the string CMFB24 to identify the default framebuffer and
set it to 24-bits-per-pixel mode

= the string cMFB: followed immediately by a location
string to identify a particular framebuffer display

= the string CMFBS8: followed immediately by the location
string to identify a particular framebuffer and set it to
8-bits-per-pixel mode

= the string CMFB24 : followed immediately by the location
string to identify a particular framebuffer and set it to
24-bits-per-pixel mode

DESCRIPTION

CMSR_set_display_ default sets the Generic Display default display variable to
string. If set, this variable is used by the following routines to create a Generic Display:

" CMSR_select display menu
" CMSR create_display menu
" CMSR select_workstation menu

" CMSR create_workstation_menu

When called, these routines first attempt to create the display by checking the default
display variable set with CMSR_set_display_default. If no default is set, they
check the CM_DISPLAY environment variable. Finally, if neither of these is set, they
present a menu of the available displays.

CMSR_get_display_default returns the string to which the Generic Display
default variable is currently set.

Version 2.0, November 1991 47

CMSR_select_display

CMSR_deselect_display
e

Generic Display Reference Manual for Paris

CMSR_select_display
CMSR_deselect_display

Selects (deselects) the specified display as the current Generic Display Interface display.

SYNTAX
C Syntax
#include <cm/display.h>

void
CMSR_select_display (display)

CMSR_display t display;

#include <cm/display.h>

void
CMSR deselect display ()

Fortran Syntax

INCLUDE ’/usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SELECT DISPLAY (display)
INTEGER display

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_DESELECT DISPLAY ()

Lisp Syntax

CMSR:select~display (display)
CMSR:deselect-display ()

ARGUMENTS
display The CM generic display interface structure that is to be selected.
The display specified must have been previously created and
initialized.

48 Version 2.0, November 1991

CMSR_select_display
CMSR_deselect_displ

DESCRIPTION

CMSR_select_display makes the specified display the currently selected display. If
another display is currently selected when CMSR_select_display is called, that dis-
play is automatically deselected.

The currently selected display is the display operated on by the other CMSR display
operations including the Display I/O Operations and the Information Operations.

CMSR_deselect display deselects the currently selected display. No display /O
routine may be performed until another display is selected. If no display is selected,
this routine does nothing.

ERRORS
An error is signaled if display has not been allocated or is NULL.

Version 2.0, November 1991 49

CMSR_selected_display Generic Display Reference Manual for Paris
g i

CMSR_selected_display

Returns the Generic Display structure of the currently selected display.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR_display t
CMSR _selected display ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR SELECTED_DISPLAY ()

Lisp Syntax
CMSR:selected-display ()

ARGUMENTS

None.

- DESCRIPTION

CMSR_selected_display returns the generic display structure corresponding to the
selected display. This returns NULL if no display is selected.

50 Version 2.0, November 1991

CMSR_deallocate_displa

.~>‘56§

s

CMSR_deallocate_display

Deallocates the specified display and frees associated resources.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_deallocate_display (display)

CMSR _display_t display;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR DEALLOCATE DISPLAY (display)

INTEGER display

Lisp Syntax

CMSR:deallocate-display (&optional display)

ARGUMENTS
display - The CM generic display interface structure that is to be
deallocated.
DESCRIPTION

CMSR_deallocate_display deallocates the CM generic display structure specified
by display and frees the resources associated with it. If the specified display was also
the currently selected display, it is first deselected.

Version 2.0, November 1991 51

CMSR_deallocate_display Generic Display Reference Manual for Paris

RS R

If display is a framebuffer interface, the CM display is detached. If the display is an X
window interface, the window is destroyed. If display is passed in as NULL or omitted
in Lisp, the current display is deallocated.

The CM generic display structure may be created by CMSR_create_display_menu,
CMSR_create_init cmfb display, or CMSR create cmfb_display.

52 Version 2.0, November 1991

2. Workstation and Display Routines CMSR_set_display_offset

Chapter
SR S

CMSR_set_display_offset

Sets the upper left location on the selected display at which to begin image transfers.

SYNTAX
C Syntax

#include <em/display.h>

void
CMSR_set_display offset (x_offset, y_offset)

int x_offset, y_offset;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SET DISPLAY OFFSET (x_offset, y_offset)

INTEGER Xx_offset, y_offset

Lisp Syntax

CMSR:set-display-offset (x—offset y—offset)

ARGUMENTS

x_offset, y_offset The starting offset, in pixels, from the upper left corner of the
display window.

DESCRIPTION

CMSR_set_display_offset sets the offsets in the x and y dimensions of the display
window to be used for image transfers. The image is offset x_offset pixels in the x
dimension and y offset pixels in the y dimension from the upper left comer of the
display window.

Version 2.0, November 1991 53

CMSR_set_display_offset Generic Dtsplay Reference Manual for Paris
s O =

The x (horizontal) dimension of the display corresponds to axis 0 of the image buffer
in CM memory. The y (vertical) dimension of the display corresponds to axis 1 of the
image buffer. The origin (0,0) of the display is at the upper left corner. x values increase
to the right, and y values increase toward the bottom of the display. When an offset is
applied to the image data, the pixel value at location (x, y) in the image data field is
transferred to location (x + x_offset, y + y_offset) in the display window.

SEE ALSO
CMSR _display x offset
CMSR_display y_ offset

54 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines

2.4 Display I/O Routines

This section describes the Generic Display routines that transfer image data to or from the
currently selected generic display:

CMSR write to displayiiiiiiiiiiiiiiiiii i 56
Writes the image data in the specified CM field to the currently selected
Generic Display Interface display.

CMSR write to display 1 ittt 58
Writes the image data from the specified portion of the specified field to the
current display.

CMSR write array to displaycoiiiiiiiiiiiiiiinan, 61
Copies a front-end array to the currently selected generic display.

CMSR write array to display 1coiiiiiiiiiiiiinna... 63
Copies a specified portion of a front-end array to the current Generic Display.
CMSR clear displaycoiiiiiiiiiiiiieenneiiiaiiiiiiieeeanaennn 67

Clears the selected display.

CMSR _randomize displayoiiiiiiiiiiiininnnieaeanninnnnns 68
Fills the current display with random data.

CMSR _fill displaycciiiiiiiiiieninieiiiiiiiieeeeeeenanannnns 69
Fills the display with the value given in value.

CMSR _fe display rectangleciiiiiiiiiiiiiineenanna, 70
Fills a rectangle on the display with the specified color.

CMSR read from displayc.ociiiiiiiiiiiiieaniiineeaiinn... 72
Reads the image data from the current display into the specified field of
CM memory.

CMSR read from display 1................ P 74

Reads the image data from the current display beginning at the specified
offset to the specified location in the CM field.

CMSR read array from displayoiiiiiia., 77
Reads image data from the current display into a front-end array.

CMSR read array from display 1...................coiiiiiiiiinin... 79
Reads image data from a subrectangle of the current display into a front-end
array.

Version 2.0, November 1991 55

CMSR_write_to_display

8 R i

CMSR_write_to_display

Writes the image data in the specified CM field to the currently selected Generic Display
Interface display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR write to_display (field)

CM_field id t field;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR WRITE_TO_DISPLAY (field)

INTEGER field

Lisp Syntax

CMSR:write-to~display (field)

ARGUMENTS
field The CM Paris field to be transferred to the current display.

DESCRIPTION

CMSR write to_display writes field from CM memory to the currently selected
display.

The geometry in which field has been defined must be two-dimensional. Axis 0 of the
geometry maps to the screen’s x (horizontal) axis and axis 1 of the geometry maps to
the screen’s y (vertical) axis. The pixel value stored at NEWS location (0,0) in the field

56 Version 2.0, November 1991

is displayed in the upper left corner of the screen, offset by the generic display’s x and y
offset values, if any. The x coordinate values increase to the right and the y coordinate
values increase towards the bottom of the display.

Each virtual processor in the field VP set, both active and inactive, draws a single pixel
on the screen in raster order; thus, the total number of values (pixels) transferred is
equal to the total number of virtual processors in the VP set. If the field is larger than the
display, the portion to the right and bottom of the display is clipped.

The length of the field must be at least that which CMSR_display bits per pixel
returns. If the length of the field is shorter than the bits-per-pixel supported by the dis-
play, an error is signaled. If the length of the field is longer than the bits-per-pixel, the
field’s high-order bits are not used.

ERRORS

An error is signaled if the length of the field to be transferred is shorter than the
bits-per-pixel supported by the display.

SEE ALSO

CMSR write to_display 1
CMSR_set display offset

Version 2.0, November 1991 57

CMSR_write_to_display_1 Generic Display Reference Manual for Paris

S—————— i]

CMSR_write_to_display_1

Writes the image data from the specified portion of the specified field to the current display.

SYNTAX
C Syntax
#include <cm/display.h>
 void
CMSR write to_display 1
(field, field x_offset, field_y offset, field_width, field height)
cM_field id t field;

int field x_offset;

int field y offset;

int field_width ;

int field_height;
Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR WRITE_TO DISPLAY 1
& (field field x_offset field y offset field width
& field_height)

INTEGER field

INTEGER field x_offset
INTEGER field y offset
INTEGER field width
INTEGER field height

Lisp Syntax

CMSR:write-to-display-1 (field field—-x—offset field—y—offset
field—width field—height)

58 A Version 2.0, November 1991

CMSR_write_to_display_1

ARGUMENTS
field The CM Paris field to be transferred to the current display.
field x_offset The starting virtual processor along axis 0 within field from which
to begin transferring the field. Axis 0 of the field geometry
corresponds to the screen’s x (horizontal) dimension. The offset is
the number of processor positions from location (0,0).
field y_offset The starting virtual processor along axis 1 within field from which
to begin transferring the field. Axis 1 of the field geometry
corresponds to the screen’s y (vertical) dimension. The offset is
the number of processor positions from location (0,0).
field_width The number of virtual processors in the horizontal axis of the field
(axis 0) to be transferred.
field_height The number of virtual processors in the vertical axis of the field
(axis 1) to be transferred.
DESCRIPTION

CMSR write to_display 1 writes a specified subarray of the field to a specified
display location.

The geometry in which field has been defined must be two-dimensional. Axis 0 of the
geometry maps to the screen’s x (horizontal) axis and axis 1 of the geometry maps to
the screen’s y (vertical) axis. The origin (0,0) of the screen display is at the upper left
corner. The x coordinate values increase to the right, and the y coordinate values in-
crease towards the bottom of the display.

The upper left corner of the subarray of the field VP set to be transferred is specified by
the NEWS location (field_x_offset, field y offsef). The lower right corner of the sub-
array is ((field_x_offset + field—width — 1), (field_y_offset + field-height — 1)).

The pixel value stored at (field_x_offset, field y_offset) in the field is displayed at the
display pixel located at the upper left corner of the screen, offset by the Generic
Display’s x and y offset values, if any. (The screen offset values are set with
CMSR_set_display offset.) Each virtual processor in the field VP set subarray
draws a single pixel on the screen in raster order. If the field is larger than the display,
the portion to the right and bottom is clipped.

The length of the field must be at least that which CMSR_display bits_per pixel
returns. If the length of the field is shorter than the bits-per-pixel supported by the

Version 2.0, November 1991 59

CMSR_write_to_display_1 Generic Display Reference Manual for Paris

display, an error is signaled. If the length of the field is longer than the bits-per-pixel,
the field’s high-order bits are not used.

ERRORS

An error is signaled if the length of the field to be transferred is shorter than the
bits-per-pixel supported by the display.

SEE ALSO
CMSR write to_display
CMSR_set display offset

60 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_write_array_to_digp!g

fe S S

CMSR_write_array_to_display

Copies a front-end array to the currently selected generic display.

SYNTAX
C Syntax

#include <cm/display.h>

void

CMSR _write_array to_display (array, array_width, array_height)

char *array
int array_width, array_height

Fortran Syntax
INCLUDE ’ /usr/include/cm/display-fort.h’

SUBROUTINE CMSR WRITE_ARRAY TO DISPLAY
& (array, array_width, array_height,)
CHAR* (*) array
INTEGER array_width
INTEGER array_height

Lisp Syntax

CMSR:write-array-to-display (array)

ARGUMENTS
array A 2D array on the front-end computer to be copied to the display.
array_width The number of elements along the faster-varying dimension of the

front-end array. For Fortran this is the first index; for C this is the
second index. This is the axis that is mapped to the x, or
horizontal, axis on the display.

Version 2.0, November 1991 61

CMSR_write_array_to_display Generic Display Reference Manual for Paris

array_height The number of elements along the slower varying dimension of
the front-end array. For Fortran this is the second index; for C this
is the first index. This axis is mapped to the y, or vertical, axis on
the display.

DESCRIPTION

CMSR _write array to_display copies the front-end array, array, to the current
Generic Display.

The array must be a 2D array but can be any front-end data type that provides an appro-
priate number of bits for the depth of the display. It is assumed that the number of bits
in each element of the array is the next power of two higher than the number of bits-
per-pixel in the display. If the length of an array element is not equal to the next power
of two higher than the display’s bits-per-pixel, the results are unpredictable.

Beginning at the first element of the array, an array_width by array_height rectangle
of color values is rendered directly onto the display, overwriting whatever pixel values
are being displayed. The transfer begins in the display at the point defined by the
Generic Display offsets.

If the array is larger than the display space, the portion of the array beyond the display
boundaries to the right and bottom are clipped.

It the array is smaller than the display space, the portion of the display beyond the array
width and height is left unchanged.

SEE ALSO

CMSR write array to_display 1

62

Version 2.0, November 1991

apter 2. Workstation and Display Routines

CMSR_write_array_to_display_1

CMSR_write_array_to_display_1

Copies a specified portion of a front-end array to the current Generic Display.

SYNTAX
C Syntax

#include <cm/display.h>

void

CMSR write array to display 1
(array, array width, array height, array element size,
xoffset, yoffset, width, height, x_varies fastest p, combiner)

char *array;

int array width, array_height;
int array element size;

int xoffset, yoffset;

int width, height;

int x_varies_fastest p;
CMSR_combiner_t combiner;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’

SUBROUTINE CMSR WRITE_ARRAY_ TO DISPLAY 1

& (array, array width, array_height, array_element_size,
& xoffset, yoffset, width, height, x_varies_fastest p, combiner)
CHARACTERY* (*) array;
INTEGER array_width, array_height;
INTEGER array_element_size;
INTEGER xoffset, yoffset;
INTEGER width, height;
INTEGER X_varies_fastest p;
INTEGER combiner ;

Version 2.0, November 1991

63

CMSR_write_array_to_display_1
e

Lisp Syntax

Generic Display Reference Manual for Paris

CMSR:write-array-to-display-1 (array, &key array—element-size

xoffset, yoffset, width, height,
(x_varies—fastest-p t) , combiner)

ARGUMENTS

64

array

array_width

array_height

A 2D array on the front-end computer to be copied to the display.

The number of elements along the faster-varying dimension of the
front-end array. For Fortran this is the first index; for C this is the
second index.

The number of elements along the slower-varying dimension of
the front-end array. For Fortran this is the second index; for C this
is the first index.

array_element_size The length, in bits, of an array element in array. In Lisp, this

xoffset, yoffset

width

height

X_varies_fastest_p

defaults to the actual size of an array element.

The location in array at which to begin copying data. The xoffset
is the number of elements along the width (i.e., the faster-varying)
dimension of the array. The yoffset is the number of elements
along the height (i.e., the slower-varying) dimension. In Lisp, this
defaults to (0,0).

The number of array elements to be transferred along the
horizontal (i.e., the faster-varying) dimension of the array. In Lisp,
this defaults to array_width.

The number of array elements to be transferred along the vertical
(i.e., the slower-varying) dimension of the array. In Lisp, this
defaults to array_height.

If x_varies_fastest_p is true (.TRUE. in Fortran, non-NULL in C,
non-nil in Lisp), the front-end array is mapped directly onto the
display, aligning the faster-varying axis of the array to the
horizontal axis of the display. This produces the correct results for
Fortran arrays and for C arrays that are referenced [y][x].

If x_varies_fastest p is false (FALSE. in Fortran, NULL in C, nil
in Lisp), the front-end array is transposed as it is transferred to the
display; the faster- varying axis of the array is mapped onto the

Version 2.0, November 1991

CMSR_write_array_to_display_1

Chapter 2. Workstation and Display Routines

vertical axis of the display. This produces correct results for C
arrays that are referenced [x][y].

combiner A symbol defining the method used to combine the color values
being written from the array into the display with the values
already in the display. Valid values are listed in the table below.

Fortran Lisp
C Values Values Keywords
CMSR_default CMSR_default :DEFAULT
CMSR_overwrite CMSR_overwrite :OVERWRITE
CMSR logior CMSR logior :LOGIOR
CMSR logand CMSR_logand : LOGAND
CMSR_logxor CMSR_logxor : LOGXOR
CMSR u_add CMSR u_add :U-ADD
CMSR_s_add CMSR_s_add :S-ADD
CMSR _u_min CMSR_u min :U-MIN
CMSR_s_min CMSR_s min : S-MIN
CMSR_u_max CMSR_u_max :U-MAX
CMSR_s max CMSR_s_max :S-MAX
DESCRIPTION

CMSR write array to_display_1 copies a specified subarray of array from the
front end to the current Generic Display. The array must be a 2D array, but it can be any
front-end data type that provides an appropriate number of bits for the depth of the
display.

The three parameters array_width, array_height, and array_element_size define array.
The arguments array_width and array_height are the total number of elements in each
dimension of the array. The array_element_size argument specifies the length in bits of
each element of the array. If the length of the array element is smaller than the number
of bits-per-pixel, an error is signaled. If the array element is larger than the bits-per-
pixel, only the lower-order bits of the array element, up to the depth of the display, are
used.

The arguments xoffset, yoffset, width, and height define the subarray within array that
is to be transferred. xoffset and yoffset define the location in array at which the transfer
should begin, and width and height are the number of array elements to be transferred

Version 2.0, November 1991 65

CMSR_write_array_to_display_1 Generic Display Reference Manual for Paris

in each direction. So, the portion of array to be transferred is the subarray from (xoffset,
yoffset) at the upper left corner to ((xoffset + width), (yoffset + height)) at the lower
right corner. Each element of the subarray is transferred to the corresponding pixel of
the display beginning at the point defined by any Generic Display offsets that may be
set for the current display.

Each array element value is combined with the pixel value previously stored at the
corresponding display location according to the value of combiner; the default value is
to overwrite. Valid values for this parameter are:

" DEFAULT Overwrite

= OVERWRITE Replace existing pixel value with incoming value from array.

" LOGIOR Combine using bitwise logical inclusive OR.

" LOGAND | Combine using bitwise logical AND.

" LOGXOR Combine using bitwise logical exclusive OR.

= U-ADD Combine using unsigned integer addition.

* S-ADD Combine using signed integer addition.

= U-MIN Save smaller of the values using unsigned integer minimum.
= S-MIN Save smaller of the values using signed integer minimum.

" U-MAX Save larger of the values using unsigned integer maximum.
= S-MAX Save larger of the values using signed integer maximum.

If the subarray is larger than the display space, the portion of the array beyond the dis-
play boundaries to the right and bottom are clipped.

It the subarray is smaller than the display space, the portion of the display space beyond
the array width and height, to the right and bottom, is left unchanged.

SEE ALSO

CMSR write array to_display

66

Version 2.0, November 1991

'Chapter 2. Workstation and Display Routines CMSR_clear_display

CMSR_clear_display

Clears the selected display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_clear_display ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-~fort.h’
SUBROUTINE CMSR_CLEAR DISPLAY ()

Lisp Syntax
CMSR:clear-display ()

ARGUMENTS

None.

DESCRIPTION

CMSR_clear_display clears the currently selected display.
If the selected display is an X window, the display is filled with the background color.

If the selected display is a CM framebuffer or a Symbolics display, the framebuffer
memory is filled with zeros.

SEE ALSO

CMSR_randomize display

Version 2.0, November 1991 67

CMSR_randomize_display

Generic Display Reference Manual for Paris
S S

SRS

R

CMSR_randomize_display

Fills the current display with random data.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_randomize display ()

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_RANDOMIZE DISPLAY ()

Lisp Syntax
CMSR:randomize-display ()

ARGUMENTS

None.

DESCRIPTION

CMSR_randomize_display fills the entire display with random bits. This is useful
for determining whether the display is responsive.

SEE ALSO

CMSR_clear_ display.

68 o Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_fill_display _

CMSR_fill_display

Fills the display with the value given in value.

SYNTAX
C Syntax

#include <cm/display.h>
void
CMSR_fill display (value)

int value;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR FILL DISPLAY (value)
INTEGER value

Lisp Syntax

CMSR:fill-display (value)

ARGUMENTS
value The color value with which to fill the display. This value is an
index into the color map of the currently selected display.
DESCRIPTION

CMSR_fill display fills the entire display with the value given in value.

SEE ALSO

CMSR_clear_display

Version 2.0, November 1991 69

CMSR_fe_display_rectangle Generic Display Reference Manual for Paris

CMSR_fe_display_rectangle

Fills a rectangle on the display with the specified color.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_fe_display_rectangle (x,), width, height, color)
int x;
int y;
int width;
int height;
unsigned int color;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR FE_DISPLAY RECTANGLE (x, y, width, height, color)

INTEGER X;
INTEGER y;
INTEGER width;
INTEGER height;
INTEGER color;

Lisp Syntax

CMSR: fe-display-rectangle (x, y, width, height, color)

ARGUMENTS
Xy The position on the display at which to begin drawing the
rectangle. The position is measured in pixels from the upper left
corner of the display. x is the horizontal distance to the right. y is
the vertical distance down.
70 Version 2.0, November 1991

width, height The dimensions in pixels of the rectangle to be drawn. width is the
horizontal distance of the rectangle from (x, y). height is the
vertical distance of the rectangle from (x, y).

color An integer specifying the color in which the rectangle is to be
drawn. color is an index into the color map of the currently
selected Generic Display.

DESCRIPTION

CMSR_fe display_rectangle draws a filled rectangle of the specified width and
height at the specified (x, y) position in the specified color. The rectangle fills the dis-
play from (x, y) at the upper left corner to ((x + width), (y + height) at the lower right.

The rectangle is drawn directly on the display surface, not into a field. Like CMSR _
display_text, any writing to the display (as with CMSR_write_to_display)
overwrites the rectangle.

SEE ALSO

CMSR_fe_draw_rectangle

CMSR clear_ display

Version 2.0, November 1991 71

CMSR_read_from_display Generic Display Reference Manual for Paris

S

5

CMSR_read_from_display

Reads the image data from the current display into the specified field of CM memory.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_read_from display (field)

CM field id t field;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR _READ FROM DISPLAY (field)

INTEGER field

Lisp Syntax

CMSR:read-from-display (field)

ARGUMENTS
field The Paris field in CM memory to which the display image data is
to be sent.
DESCRIPTION

CMSR_read from display reads the image data from the current display into the
specified field of CM memory.

The geometry in which field has been defined must be two-dimensional. The x (hori-
zontal) dimension of the display maps to axis 0 of the field geometry, and the y
(vertical) dimension of the display maps to axis 1 of the geometry. The x coordinate

72 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines

CMSR_read_from_display

values increase to the right and the y coordinate values increase towards the bottom of
the display. The length of the field must be at least that which CMSR_display_

bits_per pixel returns.

A pixel value is read from the display for each virtual processor in the field VP set. If
the field dimensions are larger than the display’s, the portion of the field outside the
display boundaries is left unchanged.

SEE ALSO

CMSR read from display 1

Version 2.0, November 1991 73

CMSR_read_from_display_1

ot

CMSR_read_from_display_1

Reads the image data from the current display, beginning at the specified offset to the speci-
fied location in the CM field.

SYNTAX
C Syntax

#include <cm/display.h>

void

CMSR read from display 1

(field, field_x_offset, field y_offset, field width, field_height)

CM_field id t field;

int
int
int
int

Fortran Syntax

field x_offset;
field y offset;
field_width;
field_height;

INCLUDE ’/usr/include/cm/display-fort.h’

SUBROUTINE CMSR READ FROM DISPLAY 1

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

Lisp Syntax

(field, ﬁeld_x_oﬁiv—et, field y offset, field width, field_height)

field

field x_offset
field y offset
field_width
field_height

CMSR:read-from-display-1 (field field-x—offset field—y—offset

field—width field-height)

74

Version 2.0, November 1991

ARGUMENTS

field The Paris field in CM memory to which the display image data is
to be sent. field must be in the current VP set.

field x_offset The starting virtual processor along axis 0 of the field at which to
begin loading the image data. Axis 0 of the field geometry
corresponds to the screen’s x (horizontal) dimension. The offset is
the number of processor positions to the right from location (0,0).

field y offset The starting virtual processor along axis 1 of the field at which to
begin loading the image data. Axis 1 of the field geometry
corresponds to the screen’s y (vertical) dimension. The offset is
the number of processor positions down from location (0,0).

field_width The number of virtual processors in the horizontal axis of the field
(axis 0) to which image data is to be transferred.

field_height The number of virtual processors in the vertical axis of the field
(axis 1) to which image data is to be transferred.

DESCRIPTION

CMSR_read_from_display_1 reads a portion of the display image data into a
specified subarray of field in CM memory.

The geometry in which field has been defined must be two-dimensional. The x (hori-
zontal) dimension of the display maps to axis 0 of the field geometry, and the y
(vertical) dimension of the display maps to axis 1 of the geometry. The x coordinate
values increase to the right, and the y coordinate values increase towards the bottom of
the display. The length of the field must be at least that which CMSR_display_
bits_per pixel returns.

Beginning at the location specified by the Generic Display Interface x and y offsets, if
any, a pixel value is read from the display in raster order for each virtual processor in
the specified subarray of the field VP set. The upper left corner of the subarray of the
field VP set is specified by the NEWS location (field x_offset, field y_offset). The low-
er right comer of the subarray is ((field_x_offset + field width — 1), (field_y_offset +
field_height —1)). If the field is not as large as the display, the portion of the field out-
side the display boundaries is left unchanged.

Version 2.0, November 1991 75

CMSR _read_from_display_1 Generic Display Reference Manual for Paris
e

R

SEE ALSO
CMSR_read from display
CMSR_set display offset

76 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_read_array_from_display
R

CMSR_read_array_from_display

Reads image data from the current display into a front-end array.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR read array from display (array, array_width, array_height)

char *array
int array width, array_height

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_READ_ARRAY FROM DISPLAY
& array, array_width, array_height,)

CHAR* (*) array
INTEGER array width, array_height

Lisp Syntax

CMSR: read-array-from—display (array)

ARGUMENTS

array A 2D front-end array into which the data from the display is to be
read.

array_width, array_height
' The dimensions of the array. The array_width must end up on a
byte boundary, that is,
(array_width * array_element size) % 8 = 0.

Version 2.0, November 1991 77

CMSR_read_array_from_display Generic Display Reference Manual for Paris

DESCRIPTION

CMSR_read array from display reads pixel values from the currently selected
generic display into the corresponding elements of array on the front-end computer.
The read begins at the upper left corner of the display defined by any Generic Display
offsets that might be set. If the array is not large enough to hold the entire display, the
portions of the display image beyond the array dimensions to the right and bottom
(+x, +y) are clipped.

The array must be a 2D array but can be any front-end data type that provides an appro-
priate number of bits for the depth of the display. It is assumed that the number of bits
in each element of the array is the next power of two higher than the number of bits-
per-pixel in the display. If the length of an array element is not equal to the next power
of two higher than the display’s bits-per-pixel, the results are unpredictable.

78

Version 2.0, November 1991

CMSR_read_array_from_display_1

Reads image data from a subrectangle of the current display into a front-end array.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_read array from display 1
(array, array_width, array height, array element size,
xoffset, yoffset, width, height, x_varies_fastest p, combiner)

char *array;

unsigned int array_width, array height;
unsigned int array_element size

int xoffset, yoffset;

int width, height;

int x_varies_fastest p;

CMSR _combiner t combiner;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_READ ARRAY FROM DISPLAY 1
& (array, array width, array _height, array element size,
& xoffset, yoffset, width, height, x varies_fastest p, combiner)

CHAR* (*) array

INTEGER array width, array height
INTEGER array_element size
INTEGER xoffset, yoffset

INTEGER width, height

LOGICAL Xx_varies_fastest p
INTEGER combiner

Version 2.0, November 1991 : 79

CMSR_read_array_from_display_1 Generic Display Reference Manual for Paris
e s 3 i e :

Lisp Syntax

222 RS R

CMSR:read-array-from-display 1

(array, array-width, array-height,
&key array—element-size, xoffset, yoffset,
width, height, x—varies—fastest-p, combiner)

ARGUMENTS

80

array

A 2D front-end array into which the data from the display is to be
read.

array_width, array_height

The dimensions of the array. The array_width must end up on a
byte boundary, that is, (array_width * array_element_size) % 8 =
0.

array_element_size The depth of the front-end array elements in bits. This value must

xoffset, yoffset

width, height

X_varies_fastest p

combiner

be a power of two between 1 and 128.

The offset into the array at which to begin writing the data from
the display.

The dimensions of the subrectangle in the display that is to be
transferred.

Indicates whether the first or second array index varies fastest in
array.

If x_varies_fastest _p is true (.TRUE. in Fortran, non-NULL in C,
non-nil in Lisp), the horizontal (x) axis of the display is mapped
directly to the faster-varying axis of the array. This produces the
correct results for Fortran arrays and for C arrays that are
referenced [y][x].

If x_varies_fastest p is false (FALSE. in Fortran, NULL in C, nil
in Lisp), the display data is transposed as it is transferred into the
array; the vertical (y) axis of the display is mapped to the
faster-varying axis of the array. This produces correct results for
C arrays that are referenced [x][y].

A symbol defining the method used to combine the color values
being written from the display into the array with the values
already in the array. Valid values are listed in the table below.

Version 2.0, November 1991

Chapter 2. Workstation and Display Routines
o

CMSR_read_array_from_display_1

Fortran Lisp
C Values Values Keywords
CMSR_default CMSR_default :DEFAULT
CMSR overwrite CMSR_overwrite :OVERWRITE
CMSR logior CMSR_logior :LOGIOR
CMSR logand CMSR_logand : LOGAND
CMSR_logxor CMSR_logxor : LOGXOR
CMSR u_add CMSR_u_add :U-ADD
CMSR s add CMSR_s add :S-ADD
CMSR u min CMSR_u min :U-MIN
CMSR s min CMSR_s min :S-MIN
CMSR u_max CMSR_u_max :U-MAX
CMSR s max CMSR_s max :S-MAX

DESCRIPTION

CMSR read array from display_1 copies a subarray of the current generic dis-
play to array on the front-end computer. The array must be a 2D array, but it can be any
front-end data type that provides an appropriate number of bits for the depth of the
display.

The three parameters array_width, array_height, and array_element_size define array.
The arguments array_width and array_height are the total number of elements in each
dimension of the array. The array_element_size argument specifies the length in bits of
each element of the array. If the number of bits-per-pixel is smaller than the length of
the array element, an error is signaled. If bits-per-pixel is larger than the array element,
only the lower-order bits of the array element, up to array_element_size, are used.

The arguments xoffset and yoffset specify the location in the array at which to begin
reading in the data from the display. The subarray of the display to be read is defined by
any Generic Display offsets and the arguments width and height. So, the portion of the
display to be read is from (generic_display x_offset, generic_display y offset) at the
upper left corer to ((generic_display x_offset + width), (generic_display y offset +
height)) at the lower right. If the array is not large enough to hold the entire display
subarray, the portions of the display image beyond the array dimensions to the right
and bottom (+x, +y) are clipped.

Version 2.0, November 1991 81

2.5 Color Map Utilities

Generic Display Reference Manual for Paris

This section describes the Generic Display routines that write to, read from, or return infor-

mation about the generic display’s color map:

CMSR display write Colorc.iiiiiiiiiiiiiiiiiiieennennnns
Writes a single color entry into the current display’s color map.

CMSR display write €Olor mMapooviiiiiiinnennnnennennnn,
Writes a sequence of color values into entries on the color map of the
currently selected display.

CMSR _set display COlOr MAPcoivieiieieennnnnnnnanenennnnn
Writes a standard color map (density, grayscale, random, or rainbow) to
the currently selected display.

CMSR create color map namedooiiiiiiiiiniiiannn,
Loads color map arrays with standard Generic Display color maps.

CMSR display read COlOX MAPoiitiieeenninnennnnnnnnnnnnnns
Returns the color values of the current display’s color map.

CMSR display read color redciiiiiiiiiiiiiiniiinnnan,
Returns the value of the red component of the specified color map entry.

CMSR display read color greenoviiiiiiinnnnnnnnnn
Returns the value of the green component of the specified color map entry.

CMSR display read color bluecoiiiiiiiiiiiiiniinnnnn,
Returns the value of the blue component of the specified color map entry.

CMSR_set direct color default,
Sets the default standard color map for direct color displays.

CMSR get direct color defaultt
Returns the default color map name for direct color displays.

CMSR_set pseudo_color default oo,
Sets the default color map for pseudo color (8-bit) displays.

CMSR get pseudo_color defaultl
Returns the default color map name for pseudo color displays.

CMSR_set gray scale default,
Sets the default color map for pseudo color (8-bit) displays.

CMSR_get gray scale defaultcoiiiiiiiainnnn,
Returns the default color map name for pseudo color displays.

82 Version 2.0, November 1991

CMSR display has_COlOX MaAPc.ceivveinnennnneninnnneannennns 104
Queries whether currently selected display supports a writable color map.

CMSR_display color map Sizeoiiiiiiiiiiaiiinnn, 106
Returns the number of elements in color map.

CMSR display color is rgb............. 108
Queries whether the currently selected display’s pixel values contain separate
red, green, and blue components.

Version 2.0, November 1991 83

CMSR_display_write_color Generic Display Reference Manual for Paris
e S R

CMSR_display_write_color

Writes a single color entry into the current display’s color map.

SYNTAX
C Syntax

#include <cm/display.h>

void .
CMSR_display write_color (index, red, green, blue)

int index ;
double red, green, blue;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR DISPLAY WRITE COLOR (index, red, green, blue)

INTEGER [index
DOUBLE PRECISION red, green, blue

Lisp Syntax

CMSR:display-write-color (index, red, green, blue)

ARGUMENTS

index The entry in the color map to which the red, green, and blue color
values are to be written.

red, green, blue The color values to be written to the corresponding color buffer of
the color map. Values may range from 0.0 (off) to 1.0 (full
intensity).

84 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_display_write_ ¢°|°l'
S e i

DESCRIPTION

CMSR_display write_color writes a color value to the entry in the color map of
the currently selected display specified by index. The color values red, green, and blue
are written to the corresponding color buffer at the specified entry.

ERRORS

An error is signaled if the currently selected display doesn’t support color maps.
(CMSR_display has_color_map returns NULL if the currently selected display
does not support color maps.)

SEE ALSO
CMSR_display write_ color_ map
CMSR_set display color_map
CMSR set direct color_default
CMSR_set pseudo color_ default

Version 2.0, November 1991 85

display_write_color_map Generic Display Reference Manual for Paris
3 e

CMSR

s

5
S

CMSR_display_write_color_map

Writes a sequence of color values into entries on the color map of the currently selected
display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR display write_color_map
(red_map, green_map, blue_map, size)

float *red_map, *green_map, *blue_map;
int size;

Fortran Syntax
INCLUDE '’ /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_DISPLAY WRITE_COLOR MAP
& (red_map green_map blue_map size)

REAL red_map (*), green_map (*), blue_map (*)
INTEGER size

Lisp Syntax

CMSR:display-write-color-map (red-map green—map blue-map
&optional size)

ARGUMENTS

red_map, green_map, blue_map
Arrays containing the color values to be installed in the currently
selected display’s color map. The entries in the arrays must be in
the range 0.0 (off) to 1.0 (full intensity).

86 Version 2.0, November 1991

size The number of entries in the arrays.

In Lisp only, size defaults to the size of the first array.

DESCRIPTION

CMSR_display write color_map writes the color values specified in red_map
green_map, and blue_map into the corresponding color buffer of the color map for the
currently selected display.

ERRORS
An error is signaled if

® size is longer than the size of the display’s color map (CMSR_display
color_map_size returns the size of the currently selected display)

= the display does not support color maps (CMSR_display has_color_map
returns NULL if the currently selected display does not support color maps)

SEE ALSO
CMSR display write color
CMSR_set_display color_map
CMSR_set_direct color default
CMSR_set pseudo_color_ default

Version 2.0, November 1991 87

CMSR_Set_diSplay_00|0l' map Generic Display Reference Manual for Paris

[s e e e S

CMSR_set_display_color_map

Writes a standard color map (density, grayscale, random, or rainbow) to the currently
selected display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set_display color_map (color_map_name)

char *color_map_name;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_SET DISPLAY COLOR MAP (color_map_name)

CHARACTER* (*) color_map_name (*)

Lisp Syntax

CMSR: set-display-color-map (color-map—name)

ARGUMENTS
color_map _name The name of the standard color map to be installed. Valid values
are:
= density ® random
= greyscale or grayscale ® rainbow

Capitalization in the color map name is ignored.

88 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines

CMSR_set_display_color_map
SR

DESCRIPTION

CMSR_set_display_color_map installs a standard color map in the currently
selected display. This routine is not ordinarily useful if colors are specified as RGB
values.

Density is the default map. It is a scale running from dark blue to cyan to yellow to red
over the length of the color map.

Greyscale or grayscale loads the color map with a linear sequence of gray shades from
black in the first index, to white at the last.

Random randomizes the entire red, green, and blue color maps.

Rainbow puts a sinusoidal distribution of colors in the color table. The first index is set
to black. The remaining positions on the color table range smoothly from red to green
to blue and back to red. The intensity is constant throughout, only the hue changes.

This routine does nothing if the selected display does not have a color map.

SEE ALSO

CMSR_set direct color_default
CMSR_set_ pseudo_color_default
CMSR display write_ color

CMSR display write color_map

Version 2.0, November 1991 89

CMSR_create_color_map_named

Loads color map arrays with standard Generic Display color maps.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_create_color_map named
(name, red_array, green_array, blue_array, red_size, green_size, blue_size)

char “*name;
float *red_array, *green_array, *blue_array;
int red size, green size, blue_size;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR _CREATE COLOR MAP NAMED

& (name, red_array, green_array, blue_array, red_size, green_size, blue_size)
CHARACTER* (*) name
REAL* (*) red_array, green_array, blue_array
INTEGER red_size, green_size, blue size

Lisp Syntax

CMSR:create—-color-map-named
(name red-array green—array blue-array
s&optional red-size green-size blue—size)

ARGUMENTS

name The name of one of the standard Generic Display color maps.
Valid values are:

= density = random

= greyscale or grayscale = rainbow

The names are not case-sensitive, that is, capitalization is ignored.

90 Version 2.0, November 1991

CMSR_create_color_map_named

s
SR i

hapter 2. Workstation and Display Routines

red_array, green_array, blue_array
Arrays of single floats of length red_size, green_size, or blue_size,
respectively. (Values can be loaded into the arrays with CMSR _
create_color_map named.

red_size, green_size, blue_size
The respective length of red_array, green_array, and blue_array.

DESCRIPTION

CMSR_create_color_map_named fills in the user-supplied arrays with the standard
Generic Display color map named by name:

= Density is the default map. It is a scale running from dark blue to cyan to yel-
low to red over the length of the color map.

® Greyscale or grayscale loads the color map with a linear sequence of gray
shades from black in the first index to white at the last.

® Random randomizes the entire red, green, and blue color maps.

® Rainbow puts a sinusoidal distribution of colors in the color table. The first
index is set to black. The remaining positions on the color table range smooth-
ly from red to green to blue and back to red. The intensity is constant
throughout; only the hue changes.

The color values in the arrays are single floats between 0.0 (off) and 1.0 (full intensity).
The arrays may be different sizes (for example, in the case of an 8-bit true-color display
with 2 bits of red, 3 bits of green, and 3 bits of blue).

The filled arrays can be written to a display color map, for example, with CMSR _
display write_ color_map.

Version 2.0, November 1991 91

CMSR display read_color_map Generic Display Reference Manual for Paris
e

CMSR_display_read_color_map

Returns the color values of the current display’s color map.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR display read color_map
(red_map, green_map, blue_map, size)

£float *red_map, *green_map, *blue_map;
int sizes

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR DISPLAY READ COLOR MAP
& (red_map green_map blue_map size)

REAL red_map (*), green_map (*), blue_map (*)
INTEGER size

Lisp Syntax

CMSR:display-read-color-map (red—map green—-map blue—map
&optional size)

ARGUMENTS

red_map, green_map, blue_map
These arguments return the red, green, and blue color values,
respectively, for each entry in the color map.

size The number of entries in the arrays. In Lisp only, size defaults to
the length of the first array.

92 Version 2.0, November 1991

CMSR_display_read_color_map

Chapter 2. Workstati
DESCRIPTION

CMSR_display read_color_map reads the color components for each entry of the
color map of the currently selected display into the arrays red_map, green_map, and
blue_map. The color values may range from 0.0 (off) to 1.0 (full intensity). The size
argument specifies the length of the arrays.

ERRORS
An error is signaled if

= size is longer than the length of the color map (CMSR_display color_
map_size returns the size of the color map for the currently selected display)

= the currently selected display does not support color maps

SEE ALSO

CMSR_display_ read color_blue
CMSR_display read color_green
CMSR_display read color_red
CMSR_get direct color_default
CMSR_get pseudo_color_default

Version 2.0, November 1991 93

CMSR_display_read_color_red
CMSR_display_read_color_green

CMSR _display_read_color_blue Generic Display Reference Manual for Paris
= S R R

CMSR _display_read_color_red
CMSR_display_read_color_green
CMSR_display_read_color_blue

Returns the value of the named color component from a specified color map entry.

SYNTAX
C Syntax

#include <cm/display.h>

double
CMSR _display read color_red (index)

double
CMSR_display read color_green (index)

double
CMSR _display read color_blue (index)

int index;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’
DOUBLE PRECISION FUNCTION CMSR DISPLAY READ COLOR RED (index)
DOUBLE PRECISION FUNCTION CMSR DISPLAY READ COLOR_GREEN (index)
DOUBLE PRECISION FUNCTION CMSR DISPLAY READ COLOR _BLUE (index)
INTEGER index

Lisp Syntax
CMSR:display-read-color-red (index)
CMSR:display-read-color-green (index)
CMSR:display-read-color-blue (index)

94 Version 2.0, November 1991

CMSR_display_read_color_red
CMSR_display_read_color_green
'Chapter 2. Workstation and Display Routines CMSR_display_read_color_blue

ARGUMENTS
index The entry in the color map of the currently selected display from
which the color component is to be returned.
DESCRIPTION

CMSR_display_read color_red, CMSR display_ read color_green, and
CMSR_display_ read color_blue return the value of the color component speci-
fied in their name from the color map entry specified by index. The value may range
from 0.0 (off) to 1.0 (full intensity).

ERRORS

An error is signaled if the display does not support color maps. CMSR_display
has_color_map returns NULL if the current display does not support color maps.

SEE ALSO

CMSR_display read color_ map

Version 2.0, November 1991 95

CMSR_set_direct_color_default
CMSR_get_direct_color_default Generic Display Reference Manual for Paris
g = i

CMSR_set_direct_color_default
CMSR_get_direct_color_default

Sets (returns) the default standard color map for direct color displays.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set_direct_color_default (color_map_name)

char *color_map_name;

char *
CMSR get direct color_default ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_SET DIRECT COLOR DEFAULT (color_map_name)

CHARACTER® (*) color_map_name (*)
CHARACTER* (*) FUNCTION CMSR_GET_DIRECT_ COLOR DEFAULT ()

Lisp Syntax

CMSR:set-direct-color-default (color-map—name)

CMSR:get-direct-color-default ()

96 Version 2.0, November 1991

CMSR_set_direct_color_defauit

Chapter 2. Workstation and Display Routines CMSR_get_direct_color_default
e

R

ARGUMENTS

color_map name The name of the color map to be installed as the default for direct
color displays. Valid values are:

= density ® random

» greyscale or grayscale ® rainbow

Capitalization of the color map name is ignored.

DESCRIPTION

CMSR_set_direct_color_default sets the default color map name for direct col-
or displays (including X Window System DirectColor displays and 24-bit CM
framebuffers).

NOTE: The direct color default is checked by the system only when the display is
created. In order to set the direct color default, CMSR_set_direct_color_default
must be called before the routine used to create the display, for example, CMSR _
select_display menu, CMSR select workstation_menu, or CMSR create_
x_workstation.

CMSR _get_direct_color_default returns the default color map name for direct
color displays. In C and Lisp, CMSR_get_direct_color_default returns a pointer
to a character string containing the default color map name. In Fortran, the return pa-
rameter color_defaults is used to return the color map name.

The default color map is used to initialize a display’s color map when it is created. The
initial direct color default is the grayscale color map. The default value may be
changed with CMSR_set_direct_color_default.

Greyscale or grayscale loads the color map with a linear sequence of gray shades from
black in the first index to white at the last.

Density is a scale from dark blue to cyan to yellow to red.
Random randomizes the entire red, green, and blue color maps.

Rainbow puts a sinusoidal distribution of colors in the color table. The first index is set
to black. The remaining positions on the color table range smoothly from red to green
to blue and back to red. The intensity is constant throughout, only the hue changes.

Version 2.0, November 1991 97

CMSR_set_direct_color_default

c Generic Display Reference Manual for Paris

SEE ALSO

CMSR_set pseudo_color_default
CMSR_get pseudo_color_default

98 Version 2.0, November 1991

CMSR_set_pseudo_color_default
Chapter 2. Workstation and Display Routines CMSR_get_pseudo_color_default

CMSR_set_pseudo_color_default
CMSR_get_pseudo_color_default

Sets (returns) the default color map for pseudo-color (8-bit) displays.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set_pseudo_color_default (color_map_name)

char *color_map_name;

char *
CMSR_get_pseudo_color_default ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SET_PSEUDO_COLOR DEFAULT (color_map_name)

CHARACTER* (*) color_map_name (*)

CMSR_GET_PSEUDO_COLOR_DEFAULT (color_map_name)

CHARACTER* (*) color_map_name (*)

Lisp Syntax
CMSR: set-pseudo-color-default (color-map-name)

CMSR:get-pseudo-color—-default ()

Version 2.0, November 1991 99

CMSR_set_pseudo_color_default

CMSR_get_pseudo_color_default Generic Display Reference Manual for Pans
E e -

ARGUMENTS

color_map_name The name of the color map to be installed as the default for pseudo
color displays. Valid values are:

® density * random

= greyscale or grayscale ® rainbow

Capitalization of the color map name is ignored.

DESCRIPTION

CMSR_set_pseudo_color_default sets the default color map name for pseudo-
color displays (including X Window System PseudoColor displays and 8-bit CM
framebuffers).

NOTE: The pseudo color default is checked by the system only when the display is
created. In order to set the direct color default, CMSR_set_direct_color_default
must be called before the routine used to create the display, for example, CMSR _
select display menu,CMSR select workstation menu, or CMSR create_
x_workstation.

CMSR_get_pseudo_color_default returns the default color map name for
pseudocolor displays (including X Window PseudoColor displays and 8-bit CM frame-
buffers). In C and Lisp, CMSR_get_direct_color_default returns a pointer to a
character string containing the default color map name. In Fortran, the return parame-
ter color_defaults is used to return the color map name.

The default color map is used to initialize a display’s color map when it is created. The
initial pseudo-color default is the density color map. The default value may be changed
with CMSR_set_pseudo_color_default.

Density is a scale from dark blue to cyan to yellow to red.

Greyscale or grayscale loads the color map with a linear sequence of gray shades from
black in the first index to white at the last.

Random randomizes the entire red, green, and blue color maps.

Rainbow puts a sinusoidal distribution of colors in the color table. The first index is set
to black. The remaining positions on the color table range smoothly from red to green
to blue and back to red. The intensity is constant throughout, only the hue changes.

100 Version 2.0, November 1991

CMSR_set_pseudo_color_default
CMSR_get_pseudo_color_default

Chapter 2. Workstation and Display Routines

SEE ALSO

CMSR_set_direct_color_default
CMSR get_direct_color_default

Version 2.0, November 1991 101

CMSR_set_gray_scale_default

CMSR_get_gray_scale_default

A

Generic Display Reference Manual for Paris
S S S

CMSR_set_gray_scale_default
CMSR_get_gray_scale_default

Sets (returns) the default color map for grayscale displays.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set_gray scale_default (color_map_name)

char *color_map_name;

char *
CMSR_get_gray scale default ()

Fortran Syntax
INCLUDE ' /usr/include/cm/display~-fort.h’

SUBROUTINE CMSR_SET GRAY SCALE_DEFAULT (color_map_name)

CHARACTER* (*) color_map_name (*)

CHARACTER* (*) FUNCTION CMSR_GET_GRAY_ SCALE DEFAULT ()
Lisp Syntax

CMSR:set-gray-scale-default (color-map-name)

CMSR:get—-gray-scale-default ()

102 Version 2.0, November 1991

CMSR_set_gray_scale_default
Chapter 2. Workstation and Display Routines CMSR_get_gray_scale_default

ARGUMENTS

color-map-name The name of the color map to be installed as the default for
grayscale displays. Valid values are:

= greyscale or grayscale

= random

Capitalization of the color map name is ignored.

DESCRIPTION

CMSR_set_gray scale default sets the default color map name for grayscale
displays (this includes X Window System GrayScale displays and 8-bit CM framebuf-
fers using a grayscale color map).

CMSR get_gray scale default returns the current default color map name for
grayscale displays. The default color map is used to initialize a display’s color map
when it is created.

Greyscale or grayscale loads the color map with a linear sequence of gray shades from
black in the first index to white at the last.

Random randomizes the entire color map.

SEE ALSO
CMSR_set_direct_color_default
CMSR_get direct_color_default
CMSR_get pseudo_color_default

Version 2.0, November 1991 103

CMSR_display_has_color_map Generic Dzsplay Reference Manual for Paris
e

CMSR_display_has_color_map

Returns true if the currently selected display has a writable color map.

SYNTAX
C Syntax

#include <cm/display.h>
int

CMSR display has color map ()

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’

LOGICAL FUNCTION CMSR DISPLAY HAS COLOR MAP ()

Lisp Syntax

CMSR:display-has-color-map ()

ARGUMENTS

None.

DESCRIPTION
CMSR_display has_color_map returns true (.TRUE. in Fortran, non-NULL in C,
non-nil in Lisp) if the currently selected display has a writable color map.
For the following display types, CMSR_display has_color_map returns:
® CM Framebuffer 8-bit True
® CM Framebuffer 24-bit True

= X11 PseudoColor True
= X 11DirectColor True
® X GrayScale True

104 : Version 2.0, November 1991

Chapter 2. Workstanon and Dzsplay Routines CMSR_display_has_color_map
S i S

= X StaticGray False

= X StaticColor False

®= X TrueColor False
SEE ALSO

CMSR_display color_map size
CMSR_display color_is_rgb
CMSR get_ direct_color_default
CMSR_get_ pseudo_color_default

Version 2.0, November 1991 105

CMSR_display_color_map_size Generic Display Reference Manual for Paris

CMSR_display_color_map_size

Returns the number of entries in the color map for the current generic display.

SYNTAX
C Syntax

#include <cm/display.h>
int

CMSR_display color_map_size ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR DISPLAY COLOR MAP SIZE ()

Lisp Syntax

CMSR:display-color-map-size ()

ARGUMENTS

None.

DESCRIPTION

CMSR_display color_map_size returns the number of entries in the color map for
the currently selected display.

This value is not the number of color components per entry, but the number of loca-
tions in the color map. For example, an 8-bit map ordinarily supports 256 entries.

106 ' Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_display_color_map_size

SEE ALSO
CMSR _display has_color_map
CMSR_display_color_is_rgb
CMSR get direct_color_default

CMSR_get pseudo_color_default

Version 2.0, November 1991 107

CMSR_display_color_is_r b Generic Display Reference Manual for Paris
e

CMSR_display_color_is_rgb

Returns true if the currently selected display’s pixel values contain separate red, green, and
blue components.

SYNTAX
C Syntax

#include <cm/display.h>
int

CMSR_display color_is rgb ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

LOGICAL FUNCTION CMSR DISPLAY COLOR IS _RGB ()

Lisp Syntax

CMSR:display-color-is-rgb ()

ARGUMENTS

None.

DESCRIPTION

CMSR_display_ color_is_rgb returns true ((TRUE. in Fortran, non-NULL in C,
non-nil in Lisp) if the pixel values of the currently selected display are decomposed
into separate red, green, and blue components.

For the following display types, CMSR_display_color_is_rgb retumns:
®* CM Framebuffer 8-bit False
= CM Framebuffer 24-bit True
= X DirectColor True

108 ' Version 2.0, November 1991

Chapter 2. Workvtatzon and Dzsplay Routines

S

X TrueColor
X PseudoColor
X StaticColor
X GrayScale
X StaticGray

SEE ALSO

CMSR _display has_color_map

True

False
False
False

False

CMSR_display color_map size
CMSR_get direct_color_default

CMSR _get pseudo_color_default

CMSR_display_color_is_rgb

Version 2.0, November 1991

109

Generic Display Reference Man

25

ual for Paris

22585 R

S

5

2.6 Display Information Routines

This section describes the Generic Display routines that return information about the con-
figuration of the current generic display:

CMSR display tyPecoiiiiiiiiiiiiiiiiiiiii it i 111
Returns the type (x-display, cmfb, or symbolics) of the currently
selected display.

CMSR display is _COlorttt 113

Queries whether the current display is color or monochrome (i.e., grayscale).

CMSR display bits per pixel i, 115
Returns the number of bits per pixel set for the currently selected display.

CMSR _display bits of blue............ccoiiiiiiiiiiiiiiiiiiinaa.., 117
Returns the number of bits per pixel set for the blue color component on the
currently selected display.

CMSR display bits of greenciiiiiiiiiiiiiiiin., 117
Returns the number of bits per pixel set for the green color component on
the currently selected display.

CMSR display bits of red, 117
Returns the number of bits per pixel set for the red color component on the
currently selected display.

CMSR display read COLOXotiiiiiiiniiiiiiinnenaaaeenaennns 119
Reads a color entry from the color map of the current GrayScale generic
display.

CMSR display width e 120
Returns the width, in pixels, of the currently selected display.

CMSR display heightl i 120
Returns the height, in pixels, of the currently selected display.

CMSR display x offset i 122
Returns the current starting x location at which to begin an image transfer to the
current display.

CMSR display y offsetl 122
Returns the current starting y location at which to begin an image transfer to the
current display.

CMSR : GENERIC-DISPLAY-P [LispOnly]ovvirirnenenerninennn. 124

Tests whether a display is a generic display.

110 Version 2.0, November 1991

CMSR_display_type

Returns the type of the currently selected display.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR display type t
CMSR_display type ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR DISPLAY TYPE ()

Lisp Syntax

CMSR:display-type ()

ARGUMENTS

None.

DESCRIPTION

CMSR_display type returns the type of the currently selected display. The return
values for each type of supported display are as follows:

Display Fortran Lisp

Type C Values Values Keywords
X11 CMSR_x_display CMSR_X DISPLAY :x~-display
CM

framebuffer CMSR_cmfb_display CMSR_CMFB_DISPLAY :cmfb-display
Symbolics Lispms only:
— —— :symbolics-display
—_— _— : symbolics—-frame

Version 2.0, November 1991 111

CMSR_display_type Generzc Dzsplay Reference Manual for Paris
RN SR R S

S

SEE ALSO

CMSR _display bits per pixel
CMSR display width
CMSR_display height

CMSR display x offset
CMSR_display y offset

112 Version 2.0, November 1991

CMSR_display_is_color

Returns true if the current display is color.

CMSR_display_is_color

SYNTAX
C Syntax

#include <cm/display.h>
int
CMSR display is color ()

Fortran Syntax
INCLUDE '’ /usr/include/cm/display-fort.h’
LOGICAL FUNCTION CMSR__DISPLAY_IS__COLOR ()

Lisp Syntax

CMSR:display-is-color ()

ARGUMENTS

None.

DESCRIPTION

CMSR_display_is_color returns true (.TRUE. in Fortran, non-NULL in C, non-nil
in Lisp) if the currently selected generic display is a color display, or false (FALSE. in
Fortran, NULL in C, nil in Lisp) if the display is a monochrome (i.e., grayscale) display.

Version 2.0, November 1991

113

CMSR_display_is_color Generic Display Reference Manual for Paris
R S e

SEE ALSO
CMSR display has color_map
CMSR_display color_is_rgb
CMSR display bits_per pixel

114 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_display_bits_per_pixel '

CMSR_display_bits_per_pixel

Returns the number of bits per pixel set for the currently selected display.

SYNTAX
C Syntax

#include <cm/display.h>

int
CMSR display bits per pixel ()

Fortran Syntax

INCLUDE ’ /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR DISPLAY BITS PER PIXEL ()

Lisp Syntax

CMSR:display-bits-per-pixel ()

ARGUMENTS

None.

DESCRIPTION

CMSR_display bits per pixel returns the number of bits of color information
maintained per pixel on the currently selected display.

This number is also sometimes called the depth of the display.

Version 2.0, November 1991 115

CMSR_display_bits_per_pixel Generic Display Reference Manual for Paris
: S

SEE ALSO
CMSR display width
CMSR_display height
CMSR_display type
CMSR _display x offset
CMSR display y offset

116 Version 2.0, November 1991

CMSR_display_bits_of_blue
CMSR_display_bits_of_green
Chapter 2. Workstation and Display Routines CMSR _display_bits_of_red

CMSR_display_bits_of blue
CMSR _display_bits_of green
CMSR_display_bits_of red

Returns the number of bits per pixel set for the specified color on the currently selected
display.

SYNTAX
C Syntax

#include <cm/display.h>

int
CMSR display bits_of blue ()

int
CMSR_display bits_of green ()

int
CMSR display bits_of red ()

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR DISPLAY BITS OF BLUE ()
INTEGER FUNCTION CMSR DISPLAY BITS OF GREEN ()

INTEGER FUNCTION CMSR DISPLAY BITS_OF RED ()

Lisp Syntax
CMSR:display-bits—of-blue ()
CMSR:display-bits—-of-green ()

CMSR:display-bits—of-red ()

Version 2.0, November 1991 117

CMSR_display_bits_of_blue
CMSR_display_bits_of _green
CMSR_display_bits_of_red Generic Display Reference Manual for Paris

ARGUMENTS

None.

DESCRIPTION

For true color or direct color displays, CMSR_display bits_of_blue, CMSR
display bits_of_ green, and CMSR _display bits_of_ red return the number
of bits per pixel supported by the currently selected display for the respective RGB
components. The length of the image buffer field allocated for images to be displayed
to this display should equal the sum of these three numbers.

If the display is not a true color or direct color display, these routines return zero.

For CM framebuffers in 24-bit mode, each primary has 8 bits. For X displays, the num-
ber of bits is dependent on the display. Colors are specified in a CM field with red as the
least significant bits, then green, and finally blue in the most significant (highest
memory address) bits. The number of actual bits per color in the CM field must match
the return values of these functions, or the colors will not be displayed correctly.

SEE ALSO

CMSR display width
CMSR display height
CMSR_display_ type
CMSR display x offset
CMSR display y offset

118

Version 2.0, November 1991

CMSR_display_read_color

Chapter 2. Workstation and Display Routi

CMSR _display_read_color

Reads a color entry from the color map of the current grayscale generic display.

SYNTAX
C Syntax

#include <cm/display.h>

double
CMSR_display read_color (index)

int index;

Fortran Syntax

INCLUDE ’/usr/include/cm/display-fort.h’

REAL FUNCTION CMSR_DISPLAY READ COLOR (index)

Lisp Syntax

CMSR:display-read-color (index)

ARGUMENTS

index An integer specifying the entry in the color map to be read.

DESCRIPTION

CMSR_display_ read_color returns the value of the entry index in the color map of
the current grayscale generic display.

This routine works only with displays that are X GrayScale visuals. Grayscale displays
use a single, usually 8-bit, color map to store a range of gray intensities. A Generic
Display is a grayscale display if CMSR_display_is_color returns false and
CMSR_display has_color_map returns true.

Version 2.0, November 1991 119

CMSR_display_width

CMSR_display_height Generic Display Reference Manual for Paris

CMSR_display_width
CMSR_display_height

S & R

Returns the width (height), in pixels, of the currently selected display.

SYNTAX
C Syntax

#include <cm/display.h>
int

CMSR_display width ()

int
CMSR display height ()

Fortran Syntax

INCLUDE ’/usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR DISPLAY WIDTH ()

INTEGER FUNCTION CMSR DISPLAY HEIGHT ()

Lisp Syntax

CMSR:display-width ()

CMSR:display height ()

ARGUMENTS

None.

120

Version 2.0, November 1991

CMSR_display_width
CMSR_display_height

Chapter 2. Workstation and Display Routines

DESCRIPTION

CMSR_display_ width returns the width, in pixels, of the currently selected display.
The width of the display corresponds to the x (horizontal) dimension of the screen.

CMSR_display_ height returns the height, in pixels, of the currently selected display
window. The height of the display corresponds to the y (vertical) dimension of the
screen.

SEE ALSO
CMSR display bits per pixel
CMSR_display type
CMSR display x offset
CMSR _display y offset

Version 2.0, November 1991 121

CMSR_display_x_offset
CMSR_display_y_offset Generic Display Reference Manual for Paris

CMSR _display_x_offset
CMSR _display_y offset

Returns the current starting x () location at which to begin image transfer to the current
display.

SYNTAX
C Syntax

#include <cm/display.h>
int

CMSR display x offset ()

int
CMSR _display y offset ()

Fortran Syntax

INCLUDE ’/usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR _DISPLAY X OFFSET ()

INTEGER FUNCTION CMSR DISPLAY Y OFFSET ()

Lisp Syntax
CMSR:display-y-offset ()

CMSR:display-x-offset ()

ARGUMENTS

None.

122 Version 2.0, November 1991

CMSR_display_x_offset
CMSR_display_y_offset

Chapter 2. Workstation and Display Routines

DESCRIPTION
CMSR display_x_offset returns the current x offset used for display I/O.

CMSR display_y offset returns the current y offset used for display I/O.

CMSR_set_display_offset sets the offsets in the x and y dimensions of the display
window to be used for image transfers. The image is offset x_offSet pixels in the x
dimension and y offset pixels in the y dimension from the upper left corner of the
display window.

SEE ALSO

CMSR_set display offset

Version 2.0, November 1991 123

CMSR:GENERIC-DISPLAY-P Generic Display Reference Manual for Paris
]

CMSR:GENERIC-DISPLAY-P

[NOTE: Lisp only.] Tests whether a display is a generic display.

SYNTAX
Lisp Syntax

CMSR:GENERIC-DISPLAY-P (display)

ARGUMENTS
display The display to be tested.

DESCRIPTION

CMSR: GENERIC-DISPLAY-P returns T if display is a generic display, nil otherwise.

SEE ALSO

CMSR_display type

124 Version 2.0, November 1991

2.7 X Window System Routines

Ordinarily, you will not need to use these routines. The Generic Display Interface manages
the interface to the X Window System system. However, if you are integrating your
Generic Display application with an existing X Window System application or user inter-
face, the following routines give you direct access to, and information on, the X Window
System resources used by the Generic Display Interface.

CMSR_create_x workstation................ol 127
Initializes an X11 server as a generic workstation for an existing generic display.

CMSR create x displayoiiiiiiiiiiiiiiiiiiiiiii 129
Initializes and returns a Generic Display identifier for an existing X11 window.

CMSR_create_init x display, 131
Opens a display window and returns a Generic Display display identifier
for an existing X11 display.

CMSR create X COLOL MaPcoiiieiiiiiiiiinnnnnnnenanaennnnnns 134
Allocates and returns an X11 color map filled with the specified color arrays.

CMSR create_x color map named e e 136
Allocates and returns an X11 color map set to a standard generic display
color map. '

CMSR_set x display gc e e e 138

Sets graphics context for currently selected X11 display.

CMSR _x workstation displaycciiiiiiiiiiiiiiiinn, 140
Returns a pointer to the Xlib Display structure identifying the currently
selected Generic Display workstation.

CMSR_x workstation_screen................... i i, 140
Returns a pointer to the Xlib Screen structure identifying the screen being
used by the currently selected Generic Display workstation.

CMSR_x workstation font P PP 142
Returns the current X11 font set for the current Generic Display workstation.

CMSR x display displayccoiiiiiiiiiiiiiiiiiiiiinnnann, 143
Returns a pointer to the current X11 Display structure.

CMSR _x display drawablettt 145
Returns the drawable used for /O with the current X11 display.

CMSR X display gCttt 147
Returns the graphics context used for /O with the current X11 display.

Version 2.0, November 1991 125

Generic Display Reference Manual for Paris

126

CMSR x visual from classcoiiiiiiiinniiiiiiiniinine.n, 149
Returns the visual structure supported by screen closest to the specified
class and depth.

CMSR _set x window_titlel 151
Sets title to be used for the X11 window created by Generic Display.

CMSR get_x window_titlel 151
Returns current title to be used for Generic Display X11 window.

CMSR_set X resourcCe MamMesSccivenvunnennencreeniannnns 153
Sets the application name and class to be used by the Generic Display system
when reading resources.

CMSR_get X resourcCe MAamMecoeverrrnunnnnnneenennnnnnns 153

Returns the current Generic Display default X resource name as a
character string.

CMSR read std x resourcescoiiiiiiiiinetininannn. 155
Initializes a resource database for an X11 generic display.

CMSR_set x app_defaults dirl 156
Sets the directory to be used as the X11 application defaults directory.

CMSR _get x app defaults dirl 156
Returns the pathname of the X11 application defaults directory.

CMSR get X resourCe ClasSsScievvevininnnnennnnnneonnnnnn. 158
Returns the current Generic Display default X resource class.

CMSR get x resource stringo, 159
Returns, as a character string, the current value of the specified X11 resource.

CMSR get_x resource integer ciiiiiiiiii.., 159
Returns, as an integer, the current value of the specified X11 resource.

Version 2.0, November 1991

CMSR_create_x_workstation

CMSR_create_x_workstation

Initializes an X11 server as a generic workstation for an existing generic display.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR workstation_t
CMSR_create_x workstation (x_display, screen, generic_display)

Display *x_display ;
Screen *screen;
CMSR _display_t generic_display;

Fortran Syntax

INCLUDE ’/usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR CREATE_X WORKSTATION
& (x_display, screen, generic_display)

INTEGER x_display
INTEGER screen
INTEGER generic_display

Lisp Syntax

CMSR:create—x-workstation
(x—display soptional screen &optional generic—display)

ARGUMENTS
x_display A pointer to an Xlib Display structure identifying the X11 server
to use as the Generic Display workstation.
screen A pointer to an Xlib Screen structure identifying which screen in

x_display is to be used for the Generic Display workstation I/O.

Version 2.0, November 1991 127

CMSR_create_x_workstation Generic Display Reference Manual for Paris

Note that this is not necessarily the screen to be used as the
Generic Display display space.

generic_display The Generic Display display for which the Generic Display
workstation is to be created.

DESCRIPTION

CMSR_create_x_workstation initializes the X11 server identified with the Display
x_display as a Generic Display workstation associated with the specified generic_
display, and returns a Generic Display workstation identifier. If screen is set, it is used
for user interaction with the workstation. If screen is NULL, x_display’s default screen
is used.

If generic_display is NULL, the currently selected display is used. If generic_display is
an X11 display, it must be the same display as x_display.

128 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_create_x_display

P

CMSR_create_x_display

Initializes and returns a Generic Display identifier for an existing X11 window.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR display_t
CMSR_create_x display (x_display, window, gc)

Display *x_display;
Drawable window;
GC gc;

Fortran Syntax
INCLUDE '’ /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR _CREATE_X DISPLAY (x_display, window, gc)

INTEGER x_display
INTEGER window
INTEGER gc

Lisp Syntax

CMSR:create-x-display (x—display window &optional gc)

ARGUMENTS
x_display A pointer to an X Window System Display structure. This display
structure must be created by calling the Xlib routine XOpen-
Display (or xlib:open—display in Lisp).
window An X Window System Drawable identifying the destination

window for CM image data transferred to this display.

Version 2.0, November 1991 129

CMSR_create_x_display Generic Display Reference Manual for Paris

gc An X Window System GC data structure specifying the graphics
context to be applied to the X window.

DESCRIPTION

Given an X window previously created and mapped, CMSR_create_x_display
creates and returns a Generic Display display structure initialized to the desired X dis-
play and window.

If the gc argument is supplied, CMSR_create_x_display uses the defined graphics
context to clear the window. If gc is NULL, a default GC is created that clears the win-
dow to color 0.

NOTE: The programmer must properly create and map the X11 window before calling
CMSR create x display.

SEE ALSO
CMSR create_cmfb display
CMSR:create-symbolics-display

130 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_create_init_x_display

CMSR_create_init_x_display

Opens a display window and returns a Generic Display display identifier for an existing

X11 display.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR display t
CMSR_create_init x display

Display
int

int
Visual

Fortran Syntax

INCLUDE

INTEGER

INTEGER
INTEGER
INTEGER
INTEGER

Lisp Syntax

(x_display, default width, default height, visual)

*x_display ;
default width ;
default_height;

*visual ;

’ fusr/include/cm/display-fort.h’

FUNCTION CMSR _CREATE INIT X DISPLAY
(x_display, default width, default height, visual)

x_display
default_width
default_height
visual

CMSR:create-init-x-display (x-display &optional

default-width default-height visual)

Version 2.0, November 1991 131

ARGUMENTS

x_display A pointer to an X11 display structure. This display structure must
be created by calling the Xlib function XOpenDisplay (or
xlib:open-display in Lisp).

default width The suggested width, in pixels, of the X window to be opened.
default_height The suggested height, in pixels, of the X window to be opened.

visual In C, a pointer to an X11 Visual structure. In Lisp, visual is the
visual-id, not the Visual information structure.

If visual is NULL, the display defaults to the screen’s root visual.

DESCRIPTION

132

Given x_display, an X11 display structure, CMSR_create_init_x_ display creates
and maps a window on the default screen and returns a Generic Display display struc-
ture initialized to the desired X display and visual. An X11 display structure is created
by calling the Xlib function XOpenDisplay (xlib:open—display in Lisp).

The default width and default height parameters are used as size suggestions to the
X11 window manager. However, since the user may select a different size, the program-
mer must call CMSR_display widthand CMSR_display_ height to determine the
actual size of the display window.

The visual argument may optionally be used to reference an X11 Visual structure. This
allows you to control the screen’s depth and color map characteristics from the Generic
Display Interface. In Lisp, visual is the visual-id, not the Visual information structure.

When the Generic Display display structure is deallocated, the window is destroyed.

This interface uses the X11 resource manager to set up default values. The interface has
a resource class of “CM _Display”. The resource name is stored in the variable
CMSR_x_resource name (CMSR:*X-RESOURCE-NAME* in Lisp), which defaults
to “em_display”.

Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMS R_Create_i"it_x..disP'ayu .

The resource manager defaults are as follows:

Class Name Description
Foreground foreground The foreground color of the GC to use.
Background background The background color of the GC to use.
borderWidth BorderWidth The width of the border around the window.
title Title The title used for the window. Defaults to the
contents of CMSR_x_default_title
(CMSR: *X-DEFAULT-TITLE* in Lisp), which
defaults to “cM Display”.
borderColor BorderColor The border color.
geometry Geometry The geometry with which to set up the window.

The length of the image buffer field to be transferred must be the same as the depth of
the window. If the field length is longer, the high-order bits are lost. If the field length is
shorter than the depth of the window, an error is signaled.

ERRORS

The Lisp version signals an error if x-display is not an X Display.

SEE ALSO
CMSR create init_cmfb display
CMSR:create-init-symbolics-display
CMSR:create-init-symbolics—-display-frame

Version 2.0, November 1991 133

CMSR_create_x_color_map Generic Display Reference Manual for Paris

CMSR_create_x_color_map

Allocates and returns an X11 color map filled with the specified color arrays.

SYNTAX
C Syntax

#include <cm/display.h>

colormap
CMSR create_x color_ map
(x_display, visual, red_array, green_array, blue_array, size, cmap)

Display *x display;

Visual *visual;

float *red_array, *green_array, *blue array;
int size;

Colormap cmap;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR CREATE X COLOR MAP
& (x_display, visual, red_array, green_array, blue_array, size, cmap)

INTEGER x_display

INTEGER visual

REAL red_array (*), green_array(*), blue array(*)
INTEGER size

INTEGER cmap

Lisp Syntax

CMSR:create-x-color-map (x—display visual
red—array green—array blue—array size
&optional cmap)

134 ' Version 2.0, November 1991

CMSR_create_x_color_map

ARGUMENTS
x_display An X11 Display structure identifying the display for which the
color map is to be created.
visual An X11 Visual structure identifying the visual for which the color

map is to be created.

red_array, green_array, blue_array
Arrays of single floats containing the color values to be loaded

into cmap.

size The length of the longest of red_array, green_array, and
blue_array.

cmap An X11 color map structure to be filled with color values from

red_array, green_array, and blue_array.

DESCRIPTION

CMSR_create_x_color_map returns an X color map on the specified x_display and
visual, filled in with the specified arrays, red_array, green_array, and blue_array.

The color values in the arrays are single floats between 0.0 (off) and 1.0 (full intensity).
The size argument specifies the length of the longest array. It may be shorter than the
length of the display color map. The arrays may be different sizes; for example, an
8-bit true color display can use 2 bits of red, 3 bits of green, and 3 bits of blue.

If the cmap color map is not passed in, CMSR_create x color_map always allo-
cates a color map for the specified x_display and visual. However, the color map is
filled only if the visual supports writable color maps.

Version 2.0, November 1991 ‘ 135

CMSR_create_x_color_map_named

Allocates and returns an X11 color map set to a standard Generic Display color map.

SYNTAX
C Syntax

#include <cm/display.h>

Colormap
CMSR_create_x color_map named (x_display, visual, name, cmap)

Display *x_display;
Visual *visual;
char *name;
Colormap cmap;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR_CREATE_X_ COLOR MAP_ NAMED

& (x_display, visual, name, cmap)
INTEGER x_display
INTEGER visual
CHARACTER* (*) name
INTEGER cmap
Lisp Syntax

CMSR:create-x—-color-map-named (x—display visual name
&optional cmap)

ARGUMENTS

x_display An X11 Display structure identifying the display for which the
color map is to be created.

136 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_create_x_color_map_named

visual A X11 Visual structure identifying the visual for which the color
map is to be created.
name The name of one of the standard Generic Display color maps.
Valid values are:
* density ®* random
= greyscale or grayscale ® rainbow

Capitalization in the names is ignored.

cmap An X11 color map structure to be filled with color values from
red_array, green_array, and blue_array. If NULL or zero is
passed in this argument, the color map structure will be allocated.

DESCRIPTION

CMSR create_x color_map named returns an X color map on the specified x_
display and visual, filled in with the standard Generic Display color map specified by
name:

= Density is the default map. It is a scale running from dark blue to cyan to yel-
low to red over the length of the color map.

® Greyscale or grayscale loads the color map with a linear sequence of gray
shades from black in the first index to white at the last.

= Random randomizes the entire red, green, and blue color maps.

® Rainbow puts a sinusoidal distribution of colors in the color table. The first
index is set to black. The remaining positions on the color table range smooth-
ly from red to green to blue and back to red. The intensity is constant
throughout, only the hue changes.

If NULL in C or zero in Fortran is passed in cmap, CMSR_create_x_color_map
always allocates a color map for the specified x_display and visual. However, the color
map is filled only if the visual supports writable color maps.

Version 2.0, November 1991 137

CMSR_set_x_display_gc

Sets graphics context for currently selected X11 display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set x display gc (gc)

GC gc;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SET_X DISPLAY GC (gc)

INTEGER gc

Lisp Syntax

CMSR:set-x-display-gc (gc)

ARGUMENTS
gc An X11 graphics context object.

DESCRIPTION

If the current display is an X11 type display, CMSR_set x display_gc sets the
graphics context to be used for output to the display.

ERRORS

An error is signaled if the current generic display is not an X11 display.

138 Version 2.0, November 1991

CMSR_set_x_display_gc

SEE ALSO

CMSR x display gc
CMSR x display display
CMSR_x display drawable

Version 2.0, November 1991 139

CMSR_x_workstation_display

CMSR_x_workstation_screen Generic Display Reference Manual for Paris
S : o

e

i

CMSR_x_workstation_display
CMSR_x_workstation_screen

Returns a pointer to the Xlib Display (Xlib Screen) structure identifying the currently
selected Generic Display workstation.

SYNTAX
C Syntax

#include <cm/display.h>

Display *
CMSR x workstation_display ()

Screen *
CMSR_x_ workstation_screen ()

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR__X_WORKSTATION__DISPIAY ()

INTEGER FUNCTION CMSR X WORKSTATION SCREEN ()

Lisp Syntax
CMSR:x-workstation-display ()

CMSR:x-workstation—-screen ()

ARGUMENTS

None.

140 ‘ Version 2.0, November 1991

CMSR_x_workstation_display
Workstation and Display Routines CMSR_x_workstation_screen

Chapter 2

S

DESCRIPTION

CMSR_x workstation_display returns a pointer to the X Window System Display
data structure associated with the current Generic Display workstation. If there is no
Generic Display workstation currently selected, CMSR_x workstation_display
returns NULL.

CMSR_x_workstation_screen returns a pointer to the X Window System Screen
data structure associated with the current Generic Display workstation. If there is no
Generic Display workstation currently selected, CMSR_x_workstation screen
returns NULL.

Version 2.0, November 1991 141

CMSR_x_workstation_font

CMSR_x_workstation_font

Returns the current X11 font set for the current Generic Display workstation.

SYNTAX
C Syntax

#include <cm/display.h>

XFontStruct *
CMSR_x workstation_font ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR X WORKSTATION_ FONT ()

Lisp Syntax

CMSR:x-workstation-font ()

ARGUMENTS

None.

DESCRIPTION

CMSR_x_workstation_font returns an XFontStruct data structure identifying the
X11 font set for the current Generic Display workstation.

142 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_x_display_display

CMSR_x_display_display

Returns a pointer to the current X11 Display structure.

SYNTAX
C Syntax

#include <cm/display.h>

Display *
CMSR _x display display ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR_X DISPLAY DISPLAY ()

Lisp Syntax
CMSR:x-display-display ()

ARGUMENTS

None.

DESCRIPTION

If the current display is an X11 type display, CMSR_x_display display returns a
pointer to the X11 display structure.

ERRORS

It is an error to call this routine if the current display is not an X11 display.

Version 2.0, November 1991 143

CMSR_x dlsplay display Generic Display Reference Manual for Paris

SEE ALSO
CMSR_x display drawable
CMSR_x display gc

144 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_x_display_drawable

CMSR_x_display_drawable

Returns the Drawable used for /O with the current X11 display.

SYNTAX
C Syntax

#include <cm/display.h>

Drawable
CMSR x display drawable ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR X DISPLAY DRAWABLE ()

Lisp Syntax

CMSR:x-display-drawable ()

ARGUMENTS

None.

DESCRIPTION

If the current display is an X11 type display, CMSR_x_display_drawable returns the
drawable used for I/O with the display. If the current display is not an X11 display, an
error is signaled.

ERRORS

It is an error to call this routine if the current display is not an X11 display.

Version 2.0, November 1991 145

CMSR_x_display_drawable

Generic Display Reference Manual for Paris

SEE ALSO
CMSR_x display display
CMSR_x display gc

146 Version 2.0, November 1991

CMSR_x_display_gc

CMSR_x_display_gc

Returns the graphics context used for /O with the current X11 display.

SYNTAX
C Syntax

#include <cm/display.h>

GC
CMSR _x_display gc ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR_X_DISPLAY GC ()

Lisp Syntax
CMSR:x-display—-gc ()

ARGUMENTS

None.

DESCRIPTION

If the current display is an X11 display, CMSR_x_display_gc returns the graphics
context used for I/O with the display.

ERRORS

It is an error to call this routine if the current display is not an X11 display.

Version 2.0, November 1991 147

CMSR_x_display_gc Generic D

isplay Reference Manual for Paris
S ; :

i R

SEE ALSO
CMSR x display display
CMSR _x display drawable

148 Version 2.0, November 1991

Workstation and Display Routin

CMSR_x_visual_from_class

CMSR_x_visual_from_class

Returns the Visual structure supported by screen closest to the specified class and depth.

SYNTAX
C Syntax

#include

Visual *

<em/display.h>

CMSR x_visual_from class (x_display, screen, class, depth)

Display
Screen
int

int

Fortran Syntax

INCLUDE

INTEGER

INTEGER
INTEGER
INTEGER
INTEGER

Lisp Syntax

*x_display ;
*screen ;
class;
depth ;

' fusr/include/cm/display-fort.h’

FUNCTION CMSR X VISUAL FROM CLASS
(x_display, screen, class, depth)

x_display
screen
class
depth

CMSR:x-visual-from-class (x—display

&optional screen (visual-class -1) depth)

ARGUMENTS
x_display

An X11 Display data structure specifying the display for which the
visual is to be determined.

Version 2.0, November 1991 149

screen An X11 Screen data structure specifying the screen on x_display
for which the visual is to be determined.

class The desired visual class (PseudoColor, StaticColor, DirectColor,
TrueColor, GrayScale, or StaticGray) for the visual to be returned.

depth The desired image depth (bits per pixel) for the visual to be
returned.

DESCRIPTION

CMSR x visual_ from class returns the “best” visual on the specified screen. Best
is defined as the closest match to the desired class and depth supported by the specified
screen. If screen is NULL, the visual returned is the best match for all the screens on the
display.

150 Version 2.0, November 1991

CMSR_set_x_window_title
CMSR_get_x_window_title

CMSR_set_x_window_title
CMSR_get_x_window_title

Sets (returns) the title to be used for X11 window created by Generic Display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set_x window_title (string)

char ‘*string;

char *
CMSR _get x window_title ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display~fort.h’
SUBROUTINE CMSR_SET X WINDOW_TITLE (string)

CHARACTER* (*) string
CHARACTER* (*) FUNCTION CMSR GET X WINDOW TITLE ()
Lisp Syntax

CMSR:set~x-window-title (string)

CMSR:get-x-window-title ()

ARGUMENTS

string The string to be used as the title for Generic Display X11 windows
created by the application.

Version 2.0, November 1991 151

CMSR_set_x_window_title

CMSR_get_x_window_title Generic Display Reference Manual for Paris
R O

DESCRIPTION

CMSR_set x window_title sets the character string to be used to label the X11
window opened by the Generic Display. The default title is “CM Display.”

CMSR_get x window_title returns the current title string set for Generic Display
X11 windows.

152

Version 2.0, November 1991

CMSR_set_x_resource_names
CMSR_get_x_resource_name

CMSR_set_x_resource_names
CMSR_get_x_resource_name

Sets (returns) the application name and class to be used by the Generic Display system
when reading resources.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set x resource_names (app_name, app_class)

char *app name;

char *app class;

char *
CMSR get x resource_name ()

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SET X RESOURCE_NAMES (app_name, app_class)
CHARACTER* (*) app_name

CHARACTER* (*) app class
CHARACTER* (*) CMSR_GET X RESOURCE NAME ()
Lisp Syntax

CMSR:set-x-resource-names (app-name app—class)

CMSR:get—-x—-resource-name ()

Version 2.0, November 1991 153

CMSR_set_x_resource_names

CMSR_get_x_resource_name Generic Display Reference Manual for Paris
e S S S
ARGUMENTS

app_name The application name of the resource data base to be used by your
program. By convention in X11 programs this is often arg[0]. The
default is cm_display.

app_class The application class of the resource data base to be used by your
program. By convention in X11 programs this is often the same as
the application name but with initial capital letters. The default is
CM Display.

DESCRIPTION

CMSR_set_x_resource_names sets the app_name and app_class to be used by the
Generic Display system when reading resources.

CMSR_get_x_resource_name returns the current Generic Display default X
resource name as a character string.

The Generic Display Interface uses the X11 resource manager to set up default values.
The default application resource class is CM_Display. The default application
resource name is em_display and it is stored in the variable CMSR_x_resource_
name (CMSR:*X-RESOURCE~NAME* in Lisp).

154

Version 2.0, November 1991

Chapter 2. Workstation and Display Routines CMSR_read_std_x_resources
s

CMSR_read_std_x_resources

Initializes a resource database for an X11 generic display.

SYNTAX
C Syntax

#include <cm/display.h>
void
CMSR_read std_x_ resources (x_display)

Display *x_display;

Fortran Syntax
INCLUDE '’ /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_READ_STD_X_RESOURCES (x_display)
INTEGER x_display

Lisp Syntax

CMSR: read-std-x-resources (x—display)

ARGUMENTS
x_display An X11 Display structure identifying the display from which the
resources are to be read.
DESCRIPTION

CMSR_read_std x resources scans the X11 application defaults directory to ini-
tialize the resource database for the X11 generic display x_display. This routine creates
a private database for the display and saves the application name and class to use as a
base for reading later resources.

CMSR_set x_ app_defaults_dir sets the directory to be used as the X11 applica-
tion defaults directory. By default this is /usr/1ib/X11/app-defaults/.

Version 2.0, November 1991 155

CMSR_set_x_app_defaults_dir

CMSR_get_x_app_defaults_dir Generic Display Reference Manual for Paris
T —— e

CMSR_set_x__app_de'fauIts_dir
CMSR_get_x_app_defaults_dir

Sets (returns) the directory/pathname to be used as the X11 application defaults directory.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set x app_defaults_dir (string)

char ‘*string;

char *
CMSR_get_x app defaults_dir ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SET_X APP_DEFAULTS DIR (string)

CHARACTER* (*) string
CHARACTER* (*) FUNCTION CMSR _GET X APP DEFAULTS_DIR ()
Lisp Syntax

CMSR: set-x-app—-defaults-dir (string)

CMSR:get-x—-app—-defaults-dir ()

ARGUMENTS

string A character string specifying the path name of the X11 application
defaults directory.

156 Version 2.0, November 1991

CMSR_set_x_app_defaults_dir
Chapter 2. Workstatzon and Dmplay Routines CMSR_get_x_app_defaults_dir

[SRR

DESCRIPTION

CMSR_set_x_app_defaults_dir sets the directory to be used as the X11 applica-
tion defaults directory. This directory is scanned by CMSR_read_std_x_resources
to initialize the resource database for an X11 generic display. By default this is /usr
/1ib/X11/app-defaults/.

CMSR_get x app_defaults_dir returns a character string containing the path-
name of the current X11 application defaults directory.

Version 2.0, November 1991 157

CMSR_get_x_resource_class Generic Display Reference Manual for Paris

CMSR_get_x_resource_class

Returns the current Generic Display default X resource class.

SYNTAX
C Syntax

#include <cm/display.h>

char *
CMSR get_x_resource class ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

CHARACTER* (*) CMSR_GET_X RESOURCE CLASS ()

Lisp Syntax

CMSR:get-x-resource-class ()

ARGUMENTS

None.

DESCRIPTION

CMSR_get_x_resource_class returns the current Generic Display default X
resource class as a string. This class may be used to access the resource database for a
Generic Display X11 display.

The default class is CM_Display.

158 Version 2.0, November 1991

CMSR_get_x_resource_string

Chapter 2. Workstation and Display Routines CMSR_get_x_resource_integer
Ee R =

CMSR_get_x_resource_string
CMSR_get_x_resource_integer

Returns, as a character string (integer), the current value of the resource specified by name
and class.

SYNTAX
C Syntax

#include <cm/display.h>

char *
CMSR_get_x_ resource_string (name, class, default value)

int
CMSR_get x resource_integer (name, class, default value)

char ‘*name;
char *class;
char *default value;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’

CHARACTERY* (*) FUNCTION CMSR_GET_X RESOURCE_STRING
& (name, class, default value)

INTEGER FUNCTION CMSR_GET__X_RESOURCE_INTEGER
& (name, class, default value)

CHARACTER* (*) name
CHARACTER* (*) class
CHARACTER* (*) default _value

Lisp Syntax

CMSR:get-x-resource-string (name class default)

CMSR:get-x-resource-integer (name class default)

Version 2.0, November 1991 159

CMSR_get_x_resource_string
CMSR_get_x_resource_integer Generic Display Reference Manual for Paris

ARGUMENTS
name The application name of the resource to be queried.
class The application class of the resource to be queried.
default_value The default value of the resource specified by name and class.
DESCRIPTION

CMSR_get_x resource_string returns the specified X resource as a string from
the private resource database for the current Generic Display X11 display. This data-
base is created by CMSR_read std_x_resources.

CMSR_get x resource integer returns the specified X resource as an integer
from the private resource database for the current Generic Display X11 display. This
database is created by CMSR_read std _x_resources.

If the resource requested by app _name and app _class is not set, the default value for
that resource is returned. :

160 Version 2.0, November 1991

Ch

#

i R

apter 2. Workstation and Display Routines

2.8 CMFB Routines

As with the X11 routines in the previous section, you will not usually need to use these
CMFB routines. The Generic Display Interface manages the interface to the CM framebuf-
fer. However, the following routines give you direct access to, and information on, the CM
framebuffer being used as the current generic display:

CMSR create cmfb displayiiiiiiiiiiiiiiiiiiiiaaanan, 162
Returns a Generic Display display identifier for an existing CM
framebuffer display.

CMSR_create_init emfb displayooiiiiia, 164
Attaches and initializes the specified framebuffer and returns a Generic
Display ID.

CMSR_set_cmfb_display buffer idl 166
Sets the color buffer ID for a CM framebuffer display.

CMSR_cmfb_display buffer idl 166
Returns the color buffer ID for a CM framebuffer display.

CMSR_cmfb_display display id oo, 168
Returns the CMFB display ID of the CM framebuffer associated with the
current generic display.

Version 2.0, November 1991 161

Generic Display Reference Manual for Paris

CMSR_create_cmfb_display

Returns a Generic Display display identifier for an existing CM framebuffer display.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR display_t
CMSR_create cmfb_display (display_id, buffer_id)

CMFB_display_id_t display id;
CMFB buffer id t buffer_id;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR CREATE CMFB_DISPLAY
(display_id, buffer_id)

INTEGER display id
INTEGER buffer id

Lisp Syntax

CMSR:create-cmfb-display (display—id soptional
(buffer—id :current))

ARGUMENTS
display_id A CM framebuffer display identifier for the framebuffer that is to
be attached.
buffer—id A keyword or named constant specifying the color buffer, or

group of buffers, to which to write the color data. Valid values for
buffer_id are:

162 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines

CMSR_create_cmfb_display

Cc Fortran Lisp # of Bits

Values Values Keywords Transferred
CMFB_red CMFB_red :red 8
CMFB_green CMFB_green :green 8
CMFB_blue CMFB_blue :blue 8
CMFB_overlay CMFB_overlay :overlay 8
CMFB_rgb CMFB_rgb :xgb 24
CMFB_all CMFB_all :all 32
CMFB_current CMFB_current :current 8,24, 0r32*
NULL 0 nil 8,24, 0r 32 *

* The number of bits transferred depends on the image resolution of the current display.

DESCRIPTION

CMSR create_cmfb_display returns a CM generic display structure initialized to
the specified CM framebuffer display and buffer.

NOTE: The programmer must properly create and initialize the CM framebuffer dis-
play specified by display_id before calling CMSR_create_cmfb_display.

The buffer_id argument sets the current buffer for the display. Image data transferred to
this display is written to buffer_id color buffer or buffers.

ERRORS

It is an error to call CMSR_create_cmfb_display if the display_id is not an initial-
ized CM framebuffer display.

SEE ALSO
CMSR_create_init_cmfb_display
CMSR_create_init_x display
CMSR_create_x_display

Version 2.0, November 1991 163

CMSR_create_init_cmfb_display Generic Display Reference Manual for Paris

CMSR_create_init_cmfb_display

Attaches and initializes the specified framebuffer and returns a Generic Display ID.

SYNTAX
C Syntax

#include <cm/display.h>

CMSR _display t
CMSR_create_init_cmfb_display (display_location bits_per_pixel)

char *display location;
int bits_per pixel;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR_CREATE_INIT_ CMFB_DISPLAY

& (display location, bits_per_pixel)
CHARACTER* (*) display location
INTEGER bits_per_pixel

Lisp Syntax

CMSR:create-init-cmfb-display (&optional display-location
(bits—per—pixel 8))

ARGUMENTS

display location A string naming the framebuffer that is to be attached. If NULL,
the default display is used.

bits_per pixel The number of bits of color data to be supported for each pixel in
the display.

164 Version 2.0, November 1991

Chapter 2. Workstation and Display Routines

CMSR_create_init_cmfb_display

R

DESCRIPTION

CMSR_create_init_cmfb_display attaches and initializes the CM framebuffer
named by display_location. A CM generic display structure identifying the framebuf-
fer is returned.

The display_location argument is passed on to CMFB_attach_display and may be
NULL to indicate you want to attach to the default framebuffer. The bits_per pixel
argument is passed onto CMFB_initialize display.

ERRORS

If the framebuffer cannot be attached, an error is signaled in Lisp. In C, NULL is
returned and the variable CMFB_errno holds the failure reason. The defined error
codes for CMFB_attach_display are as follows:

CMFB_errno Description
0 Display was successfully attached.
~1 No framebuffers were available.
(Only if location_string is NULL.)
-2 location_string was not found in the configuration file.
-3 Could not reach the framebuffer over the /O bus

(may indicate a hardware problem).

SEE ALSO
CMSR create init_x display
CMSR:create init symbolics_display
CMSR:create_init_symbolics_display frame
CMSR_create_cmfb_display
CMSR_create_x display
CMSR:create_symbolics display

Version 2.0, November 1991 165

CMSR_set_cmfb_display_buffer_id
CMSR_cmfb_display_buffer_id

Generic Display Reference Manual for Paris

CMSR_set_cmfb_display_buffer_id
CMSR_cmfb_display_buffer_id

Sets (returns) the color buffer ID for a CM framebuffer display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_set_cmfb_display buffer id (buffer_id)

CMFB buffer_id_t buffer_id;

CMFB_buffer id t
CMSR_cmfb_display buffer id ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SET CMFB_DISPLAY BUFFER_ID (buffer_id)
CMFB buffer id t buffer id;

INTEGER FUNCTION CMSR CMFB DISPLAY BUFFER ID ()

Lisp Syntax
CMSR:set-cmfb-display-buffer-id ()

CMSR:cmfb-display-buffer-id ()

166 : Version 2.0, November 1991

ARGUMENTS
buffer_id

DESCRIPTION

Chapter 2. Workstation and Display Routines CMSR_cmfb_display_buffer_id

CMSR_set_cmfb_display_buffer_id

A keyword or named constant specifying the color buffer that is
to become the current buffer for a CM framebuffer Generic
Display. Valid values for buffer_id are:

C Fortran Lisp
Values Values Keywords
CMFB_green CMFB_green :green
CMFB_blue CMFB_blue :blue

If the current display is a CM framebuffer display in 8-bit-per-pixel mode, CMSR _
set_cmfb_display buffer_ id sets the “current buffer” for the framebuffer to
buffer_id. The current buffer is the color buffer in framebuffer display memory, either
green or blue, currently selected for display. When the display system is in 8-bit-per-
pixel mode, the current buffer is used as the index into all three color lookup tables.

CMSR_cmfb_display buffer_id returns the buffer_id identifying the color buffer
currently selected for /O with the display. It is an error to call this routine with a dis-
play that is not a CM framebuffer display.

ERRORS

An error is signaled if CMSR_cmfb_display buffer_idis called with a display that
is not a CM framebuffer.

SEE ALSO

CMSR_cmfb_display display id

Version 2.0, November 1991

167

Generic Display Reference Manual for Paris

CMSR_cmfb_display_display_id

[G

CMSR_cmfb_display_display_id

Returns the CMFB display ID of the CM framebuffer associated with the current generic
display.

SYNTAX
C Syntax
#finclude <cm/display.h>

CMFB_display_id t
CMSR_cmfb_display_display id ()

Fortran Syntax
INCLUDE '’ /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR CMFB DISPLAY DISPLAY ID ()

Lisp Syntax
CMSR: cmfb-display-display-id ()

ARGUMENTS

None.

DESCRIPTION

If the current display is a CM framebuffer display, CMSR_cmfb_display_
display_idreturns the display ID identifying the currently selected framebuffer dis-
play. It is an error to call this routine with a display that is not a CM framebuffer.

ERRORS

It is an error to call this routine if the current display is not a CM framebuffer display.

SEE ALSO
CMSR_cmfb_display buffer id

168 ' Version 2.0, November 1991

Chapter 3

Generic Text Routines

The Generic Text routines write text strings to the current Generic Display (either an X11
window or the CM framebuffer), or write text directly into an image buffer in CM memory.
These routines are designed to allow you to add labels to your images, or, in conjunction
with the Generic Mouse and Generic Display workstation routines, to create interactive
displays.

This overview outlines the Generic Text system. For more detail, see the descriptions of the
individual routines that follow.

3.1 Overview

3.1.1 Displaying and Drawing Text

Three Generic Text display routines write text directly into the current Generic Display:
" CMSR display_text (string, x, y)
" CMSR display text centered (string, x, y)
® CMSR display_outline_text (string, X, y)

Three analogous drawing routines write text into an image buffer field in CM memory:
" CMSR _draw_text (string, x, y, field, depth)
" CMSR draw_outline_text (string, x, y, field, depth)
" CMSR _draw_text_centered (string, x, y, field, depth)

Version 2.0, November 1991 169

Generic Display Reference Manual for Paris
e i

These routines write the specified string of text to the location (x, y) specified in screen or
image buffer coordinates. Remember that all the Generic Display and *Render routines
assume a coordinate system with the origin (0,0) in the upper left corner, and in which x
increases to the right, and y increases downwards.

CMSR_display text, CMSR_display outline_ text, CMSR draw_text, and
CMSR _draw_outline_text position the left edge of the string baseline at (x, y):

String Origin B n
(pixel (x, y))

Baseline

CMSR_display text centered and CMSR draw_text centered position the cen-
ter of the string baseline at (x, y):

Baseline

AN

String Origin
(pixel (x,y))

The programmer is responsible for positioning the text so that the string is visible; charac-
ters (or portions of characters) that extend beyond the boundaries of the display or image
buffer are clipped. Routines included with Generic Text allow you to determine the extent
of a string so that it may be positioned exactly. See Section 3.1.3 below for more informa-
tion on positioning text strings.

The string is rendered using the current value of three Generic Text parameters: text font,
text colors, and text drawing mode. Defaults are provided so that you may begin using the
text routines immediately:

= The default font is a 16-point label font, Think_ Label, supplied by the Generic
Text system. (This font does not depend on an X server, that is, it is available even
when no generic workstation is selected.)

® The default background color is color 0, and the default foreground color is the
highest color in the current color map.

170 Version 2.0, November 1991

Chapter 3. Generic Text Routines

= The default text drawing mode is used to render the text in the foreground color
only.

The next section gives more information on setting these parameters.

CMSR_display_text, CMSR_draw_text, CMSR_display_text_centered and
CMSR_draw_text_ centered draw the specified string in the current text foreground col-
or. CMSR_display outline_text, and CMSR_draw_outline_text write the text in
the current text foreground color with a one-pixel border in the current text background
color.

3.1.2 Setting Text Parameters

Setting the Text Font

The text font determines the size and style of the characters displayed. You can set the
current text font with CMSR_set_font (font_name). You can get the name of the font cur-
rently set with the information routine CMSR_font_name(). The font name can always be
one of two Generic Text fonts, Think Label or Think Title. If a Generic Display
workstation is currently selected, the font name can also be any of the the fonts supported
by that workstation specified in the X11R4 font name format.

Think Label and Think_Title are built into the Generic Text system and can be used
with any Generic Display. Think Label, the default, is a 16-point constant-width serif
font, and Think_Title is the same character set in a 24-point size.

If a Generic Display workstation is currently selected, you can also select any fonts avail-
able on the workstation by specifying the font name in the X11R4 format. You can list the
fonts available on your workstation with the X11 shell command x1sfonts. In addition,
. an X11 interactive font selection tool, xfontsel, provides you with menus of the choices
available for each font parameter and displays the font character set as you make your
choices. See the description of CMSR_set_font for more information on specifying X11
fonts, and see your X Window System documentation for a complete explanation.

Setting Text Colors

The Generic Text system defines two text colors, foreground and background. You can set
the colors with CMSR_set_text_colors (foreground, background) and query the current
color settings with CMSR_text_foreground_color() and CMSR_text_back-
ground_colox().

Version 2.0, November 1991 171

Generic Display Reference Manual for Paris
S =

The colors are specified as indices into the color map of the currently selected Generic
Display. The defaults are color 0 for the background, and the highest possible color on the
color map for the foreground.

The use of the background and foreground colors depends on the text drawing mode, as
explained below.

Text Drawing Modes

The text drawing mode determines how the text colors will be used to draw the characters.
You can set the mode with CMSR_set_text_draw_mode (mode), and return the current
mode with CMSR_text_draw_mode(). The mode may be foreground only, fore-
ground and background, or foreground xor’d into the display:

® The foreground only mode, CMSR_text_£g_only (1 in Fortran), draws the char-
acters in the foreground text color over the existing display background. This is the
default.

® Foreground and background mode, CMSR_text_£g_bg (2 in Fortran), draws the
characters in the text foreground color and creates a rectangle in the text back-
ground color bounding the text string. The effect is to set the text string off from
the display background by surrounding it with a box in the text background color.

= The foreground xor mode, CMSR_text_xor (3 in Fortran), draws the characters
into the display in XOR mode using the foreground color. This means that any bit
plane in the display corresponding to a 1 in the text foreground color is inverted.
The effect is that the text pixel values directly change the color of the display pix-
els. This is useful for drawing and undrawing text; in foreground-xor mode, a
second call to a text draw or display routine with the same string and coordinates
erases the text displayed with the first call.

3.1.3 Positioning Text

As mentioned above, the Generic Text display and drawing routines specify the location
of the origin of the string in display or image buffer coordinates. You should usually posi-
tion the text so that the entire string is visible. Any portion of the string that falls beyond
the boundary of the display or image buffer is clipped.

If you have ample space in your image to display the text, there are two Generic Text rou-
tines, CMSR_font_linespace and CMSR_text_width, that make it easy to position

172 Version 2.0, November 1991

.'C'ha ter 3. Generic Text Routines

o i S S

successive strings of text. If you must position text more precisely, either because of limited
space or because you want to locate the string at a precise point in the image, you can use
the more detailed methods for determining the logical, font, and actual extents of a string
described below.

Using CMSR_font_linespace and CMSR_text_width

CMSR_font_linespace() returns the number of pixels that should ordinarily be used to
space between lines in the current font. CMSR_text_width(string) returns the length in
pixels of the specified string. This length includes the horizontal spacing to the left of the
first, and to the right of the last, characters in the string. These dimensions are illustrated
below.

String 1 Origin ! ;
(pixel (x, »)))
: Baseline
T S g
on ')
linespace E n E
\ E Baseline

String 2 Origin text width
(pixel (x + linespace, y))

To add a second line of text below one positioned at (x, y), locate the second at
(x, (» + (cMSR_font_linespace()))).

Similarly, to determine that a string created by CMSR_display_text or CMSR_draw_
text at (x, y) will not run off the right edge of the screen, check to see that (x +
CMSR_text_width(string)) is within the display or image buffer boundaries. If you are
using centered text created with CMSR_display_text_centered or CMSR_draw_
text_centered, you can determine the left edge of the string by finding (x —
(CMSR_text_width(string)/2)), and the right edge of the string by finding (x +
(CMSR_text_width(string)/2)). ‘

Version 2.0, November 1991 173

Generic Display Reference Manual for Paris

The text width is also useful for adding strings of text horizontally. If you wish to butt a
line of text up against the right end of a string created with CMSR_display_ text or
CMSR_draw_text at (x,), locate the second string at ((x + CMSR_text_width

(string)), y).

Using the Extents of a String

If you must squeeze text into a limited space or locate a string precisely in relation to an
object in your image, you may need more precise measurements. Generic Text provides
three different ways to measure a string’s extents that are useful in different circumstances.

A string’s extents are measured in four directions —left, right, bottom, and top— from the
left edge of the string’s baseline. Generic Text provides three different routines to return
different measurements of a string’s extents:

" CMSR_text logical_extents(string, extents_array)
" CMSR_text_actual_extents(string, extents_array)

" CMSR_font_extents(string, extents_array)

You can then read specific values out of the extents array by passing it to the appropriate
accessor routine:

® CMSR_left_extent(exfents_array)
® CMSR_right_extent(extents_array)
® CMSR _bottom_extent(extents_array)

" CMSR_top_extent(extents_array)

Each of these different text metrics is explained briefly below. See the descriptions of the
individual routines in this reference manual for more details.

Logical Text Extents

CMSR_text_logical extents returns a string’s logical extents. The logical extents are
the dimensions defined by the font for the characters, including vertical space for line spac-
ing and horizontal space (kerning) for character spacing:

174 Version 2.0, November 1991

Chapter 3. Generic Text Routines

| Baseline

bottonf -I

. o G left=0
String Origin . -
(pixel (x,y)) . right

-—--- -

These dimensions allow you to safely position adjacent strings without explicitly manipu-
lating spacing. For example, if you are positioning text near the top of the screen, you can
locate the baseline of the string at y + top extent and be assured that most characters will
fit with an appropriate margin. A string’s right logical extent is the same as the distance
returned by CMSR_text_width.

Note, however, that parts of some characters may extend beyond the logical extent of the
string. For example, the slant of an italic font often extends characters into the bounding
box of previous and succeeding characters, and accented capital letters often extend slight-
ly above the top extent. In practice, this is usually a concern only when specifying the
origin of a line near the edge of the display space or of another object. In these cases, be
sure to leave additional margin for the text so that characters that extend beyond the logical
bounding box will not be clipped or obscured.

Actual Text Extents

CMSR_text_actual_ extents returns a string’s actual extents. The actual extents of a
string are the dimensions of the text “ink” bounding box measured in pixels from the left
edge of the string baseline. These dimensions allow you to determine the extent of the char-
acters themselves in this particular string, not including any additional spacing. In contrast
to the right logical extent, for example, which includes character spacing to the right of the
last character in the string, the right actual extent measures only to the last pixel illuminated
by the right-most character.

Version 2.0, November 1991 175

Baseline

'
--fa- X
o '
'
]

String Origin .

(pixel (x,)

The actual extents are useful when you need to squeeze text into a limited space or place
it at an exact point in the display. For example, the left extent is the number of pixels you
can move the string origin to the left before obscuring the character. To place the edge of
the left-most character itself, rather than the left edge of the string baseline, at a specific
point (x, y) locate the string at (x, (y — left—extent)).

Note that the actual extents are specific to each string. The logical top extent, for example,
will be the same for every string in the same font, but the actual top extent is determined
by the height of the tallest character above the baseline in this string. When using actual
extents, you must control the spacing for each string you display.

NOTE

The actual extent is not computed for the Generic Display fonts
Think_Label and Think_Title. When using these fonts
CMSR_text_actual_extents returns the logical extent of the
string and a warning will be generated:

Warning: Built-in fonts not tested for actual
extents.

176 Version 2.0, November 1991

Chapter 3. Generic Text Routines

Font Text Extents

CMSR_font_extents returns the maximum actual (ink) extent of the largest charac-
ter in the font for each dimension. For example, left is the number of pixels from the
character origin to the left edge of the widest character in the font; bottom is the num-
ber of pixels from the baseline to the bottom to the character that extends furthest
below the baseline.

All measurements are in pixels from the left edge of the baseline:

top
I A | Baseline
bottom 5
) . ;
Character , left E
Origin . right :

You can use these extents to determine spacing that can accommodate the largest characters
in the font, not just the largest in the specified string. This allows you to position text more
tightly than the logical extents allow, but also, unlike the actual extents, to establish a con-
sistent spacing that will accommodate any characters in the font. For example, the top font
extent determines the minimum number of pixels above the baseline needed to fit the tallest
character in the font without any interline spacing.

Version 2.0, November 1991 177

3.2 Generic Text Operations

This section contains the descriptions of the individual routines that make up the Generic
Text system:

Text Display Routines

CMSR display text i 179
CMSR display text centeredl 179
CMSR _display outline text................ ... i 182
CMSR draw_text ..ottt 184
CMSR draw_text centered i 184
CMSR draw_outline textl 187

Text Parameter Routines

CMSR set _font i 189
CMSR _font mame ...ttt 189
CMSR_set_text draw mode il 192
CMSR text draw modeccoiiiiiiiiiiiiiiieniinenenennnn. 192
CMSR set text colors............. ...l 194
CMSR_text foreground colorc..iiiiiiiiiiia., 196
CMSR_text background color, 196
CMSR_font 1linespacec.coeviiiininnieeninneiiinnnnnannn,s 198
CMSR text width.......... ... i 199
CMSR_text actual extentsooiaiLl 201
CMSR_text logical extents......................l 204
CMSR_font extents, 207
CMSR bottom extent il 209
CMSR top extentt 211
CMSR right extentl 214
CMSR left extent.......... ...t 217

178 Version 2.0, November 1991

CMSR_display_text
CMSR_display_text_centered

CMSR _display_text
CMSR_display_text_centered

Writes a string of text to the currently selected display.

SYNTAX
C Syntax

#include <cm/display.h>
void
CMSR display text (string, x,)):

char *string;
int x,y;

void
CMSR_display_text centered (string, x, y) ;

char *string;
int x,y;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR DISPLAY TEXT (string, x, y)

CHARACTERY* (*) string
INTEGER X, ¥

SUBROUTINE CMSR_DISPLAY_TEXT CENTERED (string, X, y)

CHARACTERY* (*) string
INTEGER X,y

Lisp Syntax

CMSR:display-text (string, x, y)
CMSR:display-text—-centered (string, x, y)

Version 2.0, November 1991 179

CMSR_display_text

CMSR dlsplay text_ centered Generic Display Reference Manual for Pans
T 5 :

ARGUMENTS

string The string to be written to the display.

X,y The display space coordinates at which to begin drawing string.
DESCRIPTION

CMSR_display_ text and CMSR display_ text centered write the string of text
to the currently selected display at the screen coordinates specified by (x, y) using the
current text font and color.

For CMSR_display_text, the coordinates (x, y) mark the left edge of the text string
baseline. The string begins at the /bearing of the left-most character.

String Origin
(pixel (x,)

Baseline

k3

Ibearing

For CMSR_display_ text centered, the coordinates (x, y) mark the center of the
string’s baseline. The baseline begins at the lbearing of the left-most character. Note
that the center point of the text may not be at the center of the baseline.

................................

Baseline

""" it i
v String Origin
+Ibearing mixel (x, »))

For both routines, the baseline marks the bottom of the character bodies; any character
descenders extend below the baseline. Any portions of the string that extend beyond
the edges of the display are clipped. Any newlines or other control characters in the
string will be printed using whatever character occupies that position in the current
font. Control characters are not interpreted in any way.

180 Version 2.0, November 1991

CMSR_display_text
CMSR_display_text_centered

If the current display is an X11 window, CMSR_display text and CMSR display
text_centered render the text string directly into the display using X11 calls.

If the current display is a CM framebuffer display, CMSR_display_ text and CMSR_
display_ text centered read the image from the display into a temporary field in
CM memory, combine the text array with the image, and write the image back to the
display. Another routine, CMSR_draw_text is provided to draw text directly into an
image buffer field in CM memory.

NOTE: Text is not preserved during display updates. New image data written to the
display by CMSR_write_to_display will overwrite the text.

SEE ALSO

CMSR_draw_text (string, x, y, field, depth)
CMSR_draw_text_centered (string, x, , field, depth)

Version 2.0, November 1991 181

CMSR_display_outline_text Generic Display Reference Manual for Paris

S S ek e e

CMSR_display_outline_text

Writes a string of outlined text to the currently selected display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR _display outline_text (string x, y);

char *string;
int x,y;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_DISPLAY OUTLINE TEXT (string, X, y)

CHARACTER* (*) string
INTEGER X,y

Lisp Syntax

CMSR:display-outline-text (string, x, y)

ARGUMENTS

string The string to be written to the display.

X,y The display space coordinates at which to begin drawing string.
DESCRIPTION

CMSR_display_text writes the string of text to the currently selected display at the
screen coordinates specified by (x, y) using the current text font. The string is written in

182 Version 2.0, November 1991

CMSR _display_outline_text

the current text foreground color surrounded by a one-pixel border in the current text
background color.

The coordinates (x, y) mark the left edge of the text string baseline. The string begins at
the lbearing of the left-most character.

String Origin
(pixel (x, y))

Baseline

The baseline marks the bottom of the character bodies; any character descenders ex-
tend below the baseline. Any portions of the string that extend beyond the edges of the
display are clipped. Any newlines or other control characters in the string will be
printed using whatever character occupies that position in the current font. Control
characters are not interpreted in any way.

If the current display is an X11 window, CMSR_display_outline_text renders the
text string directly into the display using X11 calls.

If the current display is a CM framebuffer display, CMSR_display outline_text
reads the image from the display into a temporary field in CM memory, combines the
text array with the image, and writes the image back to the display. Another routine,
CMSR_draw_outline_text is provided to draw outlined text directly into an image
buffer field in CM memory.

NOTE: Text is not preserved during display updates. New image data written to the
display by CMSR_write_to_display will overwrite the text.

SEE ALSO

CMSR_draw_text (string, x, y, field, depth)
CMSR_draw_text_centered (string, x, y, field, depth)

Version 2.0, November 1991 183

CMSR_draw_text

CMSR_draw_text_centered Generic Dzsplay Reference Manual for Parzs
S S %

CMSR_draw_text
CMSR_draw_text_centered

Draws a string of text into an image buffer or other 2D field in CM memory.

SYNTAX
C Syntax

#include <cm/display.h>
void
CMSR_draw_text (string, x, y, field, depth) ;
char *string;
int X, y:
CM field id t field;
unsigned int depth;

void
CMSR_draw_text centered (string, x, y, field, depth) ;
char *string;
int x,y;
CM_field id t field;
int depth;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’
SUBROUTINE CMSR DRAW_TEXT (string, x, y, field, depth)

CHARACTERY* (*) string
INTEGER X,y
INTEGER field
INTEGER depth

SUBROUTINE CMSR _DRAW_TEXT_ CENTERED (string, x, y, field, depth)

CHARACTER* (*) string(*)
INTEGER Xx

INTEGER

INTEGER field
INTEGER depth

184 Version 2.0, November 1991

CMSR_draw_text
CMSR_draw_text_centered

Lisp Syntax

CMSR:draw-text (string, X,), field, depth)
CMSR:draw-text-centered (string, x, y, field, depth)

ARGUMENTS
string The characters to be drawn into field.
X,y The image-buffer coordinates at which to begin drawing string.
field The 2D Paris field in CM memory into which to write the string.
The field must be part of a 2D geometry.
depth The length of the field (in bits).
DESCRIPTION

CMSR_draw_text and CMSR_draw_text_centered write a string of text into the
specified field in CM memory at the image buffer coordinates specified by (x, y) using
the current text font and color.

For CMSR_draw_text, the coordinates (x, y) mark the left edge of the baseline. The
string begins at the Ibearing of the left-most character.

String Origin
(pixel (x,)

Baseline

' Ibearing

For CMSR_draw_text_centered, the coordinates (x, y) mark the center of the
string’s baseline. The baseline begins at the /bearing of the left-most character; note
that the center point of the text may not be at the center of the baseline.

Version 2.0, November 1991 185

CMSR_draw_text
CMSR_draw_text_centered Generic Display Reference Manual for Paris

S

S

Baseline

""" ",_;-"""""""""’\"'."".'.'"‘ cto
o String Origin
' (pixel (x,))

For both routines, the baseline marks the bottom of the character bodies; any character
descenders extend below the baseline. Any portions of the string that extend beyond
the dimensions of the image buffer geometry are clipped. Any newlines or other con-
trol characters in the string will be printed using whatever character occupies that
position in the current font. Control characters are not interpreted in any way.

If the current generic display is an X11 window, CMSR_draw_text or
CMSR_draw_text centered will be slower than CMSR_display_text, since the
text bitmap must be sent to the CM, and then the entire display bitmap sent to the dis-
play device. However, if the image buffer field is to be displayed several times, it is
best to draw the text directly into the field, and then repeatedly write the display to the
X window with CMSR write_ to_display.

NOTE: Text drawn to the image buffer is not preserved during image updates. New
image data written to the image buffer will overwrite the text drawn by
CMSR_draw_text.

SEE ALSO

CMSR_display_text (string, x, y)
CMSR_display_text_centered (string, x, y)

186

Version 2.0, November 1991

L

Chapter 3. Generic Text Routines CMSR_draw_outline_text

CMSR_draw_outline_text

Draws a string of text into an image buffer or other 2D field in CM memory.

SYNTAX
C Syntax
#include <cm/display.h>

void
CMSR_draw_outline text (string, x, y, field, depth) ;

char ‘*string;
int x, y:
CM field id t field;
unsigned int depth;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR DRAW OUTLINE_TEXT (string, X,), field, depth)

CHARACTER* (*) string
INTEGER X,y
INTEGER field
INTEGER depth

Lisp Syntax

CMSR:draw-outline-text (string, x,), field, depth)

ARGUMENTS
string The characters to be drawn into field.
x,y The image-buffer coordinates at which to begin drawing string.
field The 2D Paris field in CM memory into which to write the string.
The field must be part of a 2D geometry.
depth The length of the field (in bits).

Version 2.0, November 1991 187

Generic Display Reference Manual for Paris

DESCRIPTION

CMSR_draw_outline_ text writes a string of text into the specified field in CM
memory at the image buffer coordinates specified by (x, y). The string is drawn in the
current font and the current text foreground color surrounded by a one-pixel border in
the current text background color.

The coordinates (x, y) mark the left edge of the baseline. The string begins at the lbear-
ing of the left-most character.

String Origin
(pixel (x, y))

Baseline

The baseline marks the bottom of the character bodies; any character descenders ex-
tend below the baseline. Any portions of the string that extend beyond the dimensions
of the image buffer geometry are clipped. Any newlines or other control characters in
the string will be printed using whatever character occupies that position in the current
font. Control characters are not interpreted in any way.

If the current generic display is an X11 window, CMSR_draw_outline_text will be
slower than CMSR_display_outline_text, since the text bitmap must be sent to
the CM, and then the entire display bitmap sent to the display device. However, if the
image buffer field is to be displayed several times, it is best to draw the text directly
into the field, and then repeatedly write the display to the X window with CMSR _
write_to_display.

NOTE: Text drawn to the image buffer is not preserved during image updates. New
image data written to the image buffer will overwrite the text drawn by CMSR_
draw_text.

SEE ALSO

CMSR_display_text (string, x, y)
CMSR_display_ text centered (string, x, y)

188

Version 2.0, November 1991

CMSR_set_font
Chapter 3. Generic Text Routines CMSR_font_name

CMSR_set_font
CMSR_font_name

Sets (returns) the current font for the current generic workstation.

SYNTAX
C Syntax
#include <cm/display.h>
int
CMSR_set_font (font_name)

char * font name;

char *
CMSR_font name ()

Fortran Syntax

INCLUDE ’/usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR_SET FONT (font_name)
CHARACTERY* (*) font_name (*)

CHARACTER* (*) FUNCTION CMSR FONT NAME ()

Lisp Syntax

CMSR:set-font (font—name)
CMSR: font—-name ()

ARGUMENTS

font_name The name of the font to be set as the current font; may be any of
the following:

" Think Label
A 16-point label font, the default. This font is equivalent
to the X11R4 font:

Version 2.0, November 1991 189

CMSR_set_font

2

R

CMSR_font_name Generic Display Reference Manual for Paris

—sony—fixed-medium-r-normal—
16-150-75-75——80-is08859-1

" Think Title
A 24-point title font. This font is equivalent to the X11R4
font:
—sony—fixed-medium-r-normal—
24-230-75-75-c—120-is08859-1

® An X11R4 font name in the same format as the sony fonts
given above.

The specific X11 fonts available to you depends on the fonts
supported by the currently selected Generic Display workstation.
Think Label and Think_Title are always available.

DESCRIPTION

190

CMSR_set_font sets the current font to be used by CMSR_draw_text, CMSR_
display text, CMSR _draw_text_centered, and CMSR_display_text_
centered.

CMSR_font_name returns the name of the current Generic Text font. Currently the
font name is Think_label, Think Title, or one of the X11R4 font names.

Two constant-width fonts, Think_Label and Think Title, are provided by the
Generic Text software. These fonts are always available and work even when no
Generic Display workstation is selected.

If a Generic Display workstation is currently selected, you may also select any of the
X11 fonts available on it by specifying the X11R4 font name. If no workstation is
selected, or the specified font is not found on the current workstation,
CMSR_set_font returns 0 and the font is unchanged. If the font is set successfully,
CMSR_set_font returns a non-zero value.

NOTE: The X11 fonts are a property of the currently selected workstation. If the current
workstation changes, the font also changes to the current font defined on the new work-
station.

The X11 font names are a string of up to 15 parameters. Examples are given in the
description of Think Label and Think_Title in the Arguments section above. You
can list the fonts available on your workstation with the X11 shell command
x1sfonts. The X Window System also provides an interactive font selection tool,

Version 2.0, November 1991

CMSR_set_font
CMSR_font_name

xfontsel, which can be run from an X11 window. This tool provides you with menus
of the choices available for each font parameter and displays the font character set as
you make your choices. For more information on the X11 fonts, see your X11 documen-
tation.

ERRORS

If an error occurs, CMSR_set_font returns 0 and the font is unchanged.

Version 2.0, November 1991 191

CMSR_set_text draw_mode
CMSR_text_draw_mode

Generic Display Reference Manual for Paris

CMSR_set_text_draw_mode
CMSR_text_draw_mode

Sets (returns) the current text drawing mode for the current generic workstation.

SYNTAX
C Syntax

#include <cm/display.h>
void

CMSR_set_text draw_mode (mode) ;
CMSR_text draw_mode t *mode;

CMSR text draw_mode t
CMSR_text draw_mode ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SET TEXT DRAW_MODE (mode)
INTEGER mode (*)

INTEGER FUNCTION CMSR TEXT DRAW MODE ()

Lisp Syntax

CMSR: set-text-draw-mode (mode)
CMSR: text-draw-mode (mode)

ARGUMENTS
mode Valid values are as follows:
" CMSR_text fg only
The default mode. Bits that are set in the font are written
into the destination with the text foreground color set by
CMSR_set_text colors. Bits that are clear in the font
192

Version 2.0, November 1991

Chapter 3. Generic Text Routines

DESCRIPTION

CMSR_set_text_draw_mode
CMSR_text_draw_mode

(background bits) are unmodified in the destination. The
effect is that the text appears over the existing display
background.

CMSR_text fg bg

Foreground bits in the font are written in the foreground
color set by CMSR_set_text_colors, and background
bits in the font are written in the background color set by
CMSR_set_text colors. This creates a rectangle in
the text background color around the text string, which is
displayed in the text foreground color.

CMSR_text xor

The foreground bits in the font are drawn into the destina-
tion foreground color in XOR mode. This means that any
bit planes which are 1 in the font are inverted in the dis-
play. The effect is that the text itself changes the color of
whatever was underneath it. This is useful for drawing
and undrawing text, since if the same text is drawn twice
with the same mode and color it will disappear.

CMSR_set_text_draw_mode sets the current text drawing mode for the current dis-
play. Text written to the display by CMSR_display_text, CMSR_display_
text_centered, CMSR_draw_text, and CMSR_draw_text centered will be
drawn using the method specified by mode.

CMSR_text draw_mode returns the current text drawing mode of the current display.

The value returned will be one of the following:

" CMSR_text fg_only (1 in Fortran)

= CMSR_text_fg_bg (2 in Fortran)

® CMSR_text xor (3 in Fortran)

The meaning of these drawing modes is explained the the Arguments section above.

NOTE: The text drawing mode is a property of the current generic workstation. If you
change the current workstation, the text draw mode also changes to the current text
draw mode of the new workstation.

Version 2.0, November 1991

193

CMSR_set_text_colors Generic Display Reference Manual for Paris

CMSR_set_text_colors

Sets the current foreground and background colors for text drawing.

SYNTAX
C Syntax

#include <cm/display.h>
void

CMSR_set_text_colors (foreground, background)
unsigned int foreground, background

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_SET TEXT COLORS (foreground, background)
INTEGER foreground, background

Lisp Syntax

CMSR:set-text-colors (foreground, background)

ARGUMENTS

foreground, background
The color map indices of the foreground and background colors
to be used to draw text. The defaults are color 0 for the
background, and the highest possible color in the current color
map for the foreground.

Note that the color values specified here are not RGB values but
indices into the display’s color map. The colors actually displayed
depend on the colors currently set at these indices in the current
display’s color map.

194 Version 2.0, November 1991

Chapter 3. Generic Text Routines CMSR_set_text_colors

DESCRIPTION

CMSR_set_text_colors sets the current foreground and background colors for text
drawing. The current text drawing mode, set with CMSR_set_text_draw_mode,
determines how these colors are used to display the text.

NOTE: The text colors are a property of the current generic workstation. If you change
the selected workstation, the text colors also change to the current text colors of the
new workstation.

SEE ALSO

CMSR_text_foreground colox()
CMSR_text_background colox()

Version 2.0, November 1991 195

CMSR_text_foreground_color

CMSR _text_foreground_color
CMSR_text_background_color

Returns the current text foreground (background) color for the current display.

SYNTAX
C Syntax

#include <cm/display.h>
unsigned int

CMSR_text_foreground color ();

unsigned int
CMSR_text background color ();

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR TEXT FOREGROUND_COLOR ()

INTEGER FUNCTION CMSR TEXT BACKGROUND_COLOR ()

Lisp Syntax

CMSR: text-foreground-color ()

CMSR: text-background-color ()

ARGUMENTS

None.

196 Version 2.0, November 1991

CMSR_text_foreground_color
CMSR_text_background_color

DESCRIPTION

CMSR_text_foreground color returns the index of the color map element for cur-
rent Generic Text foreground color.

CMSR_text background_color returns the index of the color map element for the
current Generic Text background color.

The current foreground and background colors for text drawing are set with
CMSR_set_text_colors. The use of these colors in rendering text is controlled by
CMSR set_text draw_mode.

NOTE: The Generic Text colors are a property of the current generic workstation. If
you change the selected workstation, the text colors also change to the current text col-
ors of the new workstation. Note also that these values are indices into the current
display’s color map, not RGB values. The colors actually displayed depend on the col-
ors set at these indices in the current color map for the display.

Version 2.0, November 1991 197

CMSR_font_linespace Generic Display Reference Manual for Paris

CMSR_font_linespace

Returns the standard interline spacing defined for the current font.

SYNTAX
C Syntax

#include <cm/display.h>
int

CMSR_font_linespace ();

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR FONT LINESPACE ()

Lisp Syntax

CMSR:font-linespace ()

ARGUMENTS

None.

DESCRIPTION

CMSR_font_linespace returns the number of pixels that should be used to space
between lines of text in the current font according to the font definition. The distance is
measured from baseline to baseline (see the figure below).

For example, to position two lines with proper vertical spacing, draw the first at (x, y)
and the second at (x, (y + font_linespace)).

198 Version 2.0, November 1991

Chapter 3. Generic Text Routines CMSR_text_width

CMSR_text_width

Returns the horizontal length, in pixels, of a specified string in the current font.

SYNTAX
C Syntax

#include <cm/display.h>

int
CMSR_text width (string);

char *string;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR _TEXT WIDTH (string)

Lisp Syntax

CMSR: text-width (string)

ARGUMENTS

string The string for which the width is to be determined.

DESCRIPTION

CMSR_text width returns the width, in pixels, of the specified string in the current
font. This length includes the horizontal spacing to the left of the first, and to the right
of the last, characters in the string, as illustrated below.

Version 2.0, November 1991 199

CMSR_text_width Generic Display Reference Manual for Paris

S SR

Baseline

text width

To determine that a string created by CMSR_display text or CMSR draw_text
at (x, y) will not run off the right edge of the screen, check to see that (y +
CMSR_text_width(string)) is within the display or image buffer boundaries. If you
are using centered text created with CMSR_display_text_centered or
CMSR_draw_text centered, you can determine the left edge of the string by find-
ing (v — (CMSR_text_width(string)/2)), and the right edge of the string by finding (y
+ (CMSR_text_width(string)/2)).

The text width is also useful for adding strings of text horizontally. If you wish to butt a
line of text up against the right end of a string created with CMSR_display_ text or
CMSR_draw_text at (x,), locate the second string at (x + CMSR_text_width
(string), y).

200

Version 2.0, November 1991

CMSR _text_actual_extents

Returns the text “ink” bounding box of a specified string in the current font.

SYNTAX
C Syntax

#include <cm/display.h>

int *
CMSR_text_actual extents (string, extents_array)

char ‘*string;
int extents_array[4];

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_TEXT EXTENTS (string, extents_array)

CHARACTER* (*) string(*)
INTEGER extents _array (4)

Lisp Syntax

CMSR:draw-text—-extents (string, &optional extents—array)

ARGUMENTS
string The string for which the extents are to be determined.
extents_array The left, right, bottom, and top extents of the text bounding box

of string.

To read these values, pass extents_array to the appropriate
accessor routine:

" CMSR left extent

" CMSR_right_extent

Version 2.0, November 1991 201

CMSR_text_actual_extents Generic Display Reference Manual for Paris
e T

" CMSR bottom extent
® CMSR_top_extent

DESCRIPTION

CMSR_text actual_extents returns the extents of the text “ink” bounding box,
referenced to the left edge of the baseline. The “ink” bounding box defines the actual
extents of the characters not including any character or line spacing. In a graphics dis-
play this means the furthest pixel from the text origin that is turned on (foreground).
The actual character extents are useful when you need to position a text string exactly,
for example, to place a label in an image, or to adjust to a limited space by reducing the
standard interline spacing.

S

NOTE

The actual extent is not computed for the Generic Display fonts
Think_ Label and Think_Title. When using these fonts
CMSR_text_ actual_extents returns the logical extent of the
string and a warning will be generated:

Warning: Built-in fonts not tested for actual
extents.

All measurements are in pixels from the left edge of the baseline:

top
. Baseline
botton_:_{__ .-
o :
String Origin 11 .

(pixel (x,y)) ' right :

202 ‘ Version 2.0, November 1991

Chapter 3. Generic Text Routines CMSR_text_actual_extents

Values are returned in four directions

= Leftis the distance, in pixels, from the left edge of the baseline to the left edge
of the first character. This measurement is the same as the lbearing of the
left-most character.

® Right is the distance, in pixels, from the left edge of the baseline to the right
edge of the right-most character in the string.

= Bottom is the number of pixels from the baseline to the bottom of the character
that extends furthest below the line. This corresponds to the maximum descent
of the enclosed character string.

® Top is the number of pixels from the baseline to the top of the character that
extends furthest above the line. This corresponds to the maximum ascent of the
enclosed character string.

SEE ALSO

CMSR_text logical_extents(string, extents_array)

CMSR_font_extents(extents_array)

Version 2.0, November 1991 203

CMSR text _logical_extents Generic Display Reference Manual for Pans
S S s

CMSR_text_logical_extents

Returns the logical text bounding box of a specified string in the current font.

SYNTAX
C Syntax

#include <cm/display.h>

int *
CMSR_text logical_ extents (siring, extents_array) ;

char *string;
int extents_array[4];

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR _TEXT EXTENTS (string, extents_array)

CHARACTER* (*) string(*)
INTEGER extents_array (4)

Lisp Syntax

CMSR:draw-text-extents (string, &optional extents—array)

ARGUMENTS
string The string for which the extents are to be determined.
extents_array The left, right, bottom, and top extents of the logical text bounding

box of string.

To read these values, pass extents_array to the appropriate
accessor routine:

® CMSR_left extent

" CMSR_right_extent

204 Version 2.0, November 1991

ogical_extents
S i

® CMSR bottom extent

* CMSR_top_extent

DESCRIPTION

CMSR_text actual_ extents returns the extents of the text logical bounding box,
referenced to the left edge of the baseline. The logical text bounding box defines the
extents of the string including the full character width and the font ascent and descent.
Use these extents to position pieces of text next to one another. For example, the right
extent can be used to determine the baseline x coordinate for the next piece of text to
the right.

All measurements are in pixels from the left edge of the baseline:

R |__Baseline

Vleft=0
String Origin '
(pixel (x,»)) ' right

\J

Values are returned in four directions

= Left: Since the left edge of the logical bounding box is positioned at the left
edge of the string’s baseline, the logical left extent is always 0.

® Right is the distance, in pixels, from the left edge of the baseline to the right
edge of the width of the right-most character in the string. Unlike the actual
extent, this distance includes the character spacing.

= Bottom is the logical extent of the font below the baseline in pixels. This dis-
tance is the vertical space defined for the font to allow for character descenders
and line spacing between strings.

= Top is the logical extent of the font above the baseline in pixels. This distance
is the vertical space defined for the font to allow for height of the characters
and line spacing between strings. Note that this is the distance set for the cur-
rent font and is independent of the particular string specified.

Version 2.0, November 1991 ’ 205

CMSR_text_|

ogical_extents Generic Display Reference Manual for Paris
T s ; -

sras

S

SEE ALSO

CMSR_font_extents(extents_array)

CMSR_text_ actual_extents(string, extents_array)

206 Version 2.0, November 1991

Chapter 3. Generic Text Routines CMSR_font_extents

CMSR_font_extents

Returns the maximum character extents in the current font.

SYNTAX
C Syntax

#include <cm/display.h>

int *
CMSR font_extents (extents_array) ;

int extents_array[4];

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_FONT EXTENTS (extents_array)

INTEGER extents_array (4)

Lisp Syntax

CMSR: font-extents (&optional exfents—array)

ARGUMENTS

extents_array The maximum left, right, bottom, and top extents for any
character in the current font.

To read these values, pass extents_array to the appropriate
accessor routine:

" CMSR_left extent
® CMSR right extent
® CMSR bottom extent

® CMSR_top_extent

Version 2.0, November 1991 207

CMSR_font_extents Generic Display Reference Manual for Paris

DESCRIPTION

CMSR_font_extents returns the maximum actual (ink) extent of any character in the
font. Use these extents to determine spacing that can accommodate the largest charac-
ters in the font, not just the largest in the specified string.

All measurements are in pixels from the left edge of the baseline:

top
I A |___ Baseline
bottom ;
AR .
Character , left E
Origin right !

Values are returned in four directions

= Left is the distance, in pixels, from the left edge of the baseline to the left edge
of the character in the current font that extends furthest to the left. This mea-
surement is the same as the /bearing of the widest character in the font.

= Right is the distance, in pixels, from the left edge of the baseline to the right
edge of the character in the current font that extends furthest to the right. This
measurement is the same as the rbearing of the widest character in the font.

= Bottom is the number of pixels from the baseline to the bottom of the character
in the current font that extends furthest below the line. This corresponds to the
maximum descent of any character in the current font.

= Top is the number of pixels from the baseline to the top of the character in the
current font that extends furthest above the line. This corresponds to the maxi-
mum ascent of any character in the current font.

SEE ALSO

CMSR_text_actual extents
CMSR_text_ logical extents

208 Version 2.0, November 1991

Chapter 3. Generic Text Routines CMSR_bottom_extent

CMSR_bottom_extent

Returns the text bottom extent from extents _array.

SYNTAX
C Syntax

#include <cm/display.h>

int
CMSR_bottom_extent (exfents_array)

int extents_array[4] ;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR_BOTTOM EXTENT (exfents_array)

INTEGER extents_array (4)

Lisp Syntax

CMSR:bottom-extent (extents—array)

ARGUMENTS
extents_array A structure containing the left, right, bottom, and top extents of
string. This structure is created for a string by one of the following
routines:

® CMSR_text actual_ extents
® CMSR_text logical_extents

" CMSR font extents

Version 2.0, November 1991 209

CMSR_bottom_extent Generic Display Reference Manual for Paris
e S : ;

DESCRIPTION

CMSR_bottom_extent accepts an extents_array structure created by CMSR_
text_actual_extents, CMSR_ text_logical_extents, or CMSR font_
extents and returns the text bottom extent. These routines determine the top, bottom,
right, and left extents for a specified string in the current font and load them into the
extents_array. The meaning of the bottom extent depends on which of these extent
routines created the extents_array passed to CMSR_bottom_extent.

Actual Extent

If the extents_array was created by CMSR_text_actual_extents, CMSR_
bottom_extent returns the number of pixels from the string’s baseline to the bottom
of the character in the string that extends furthest below the line. This corresponds to
the maximum actual character descent of the string passed to CMSR_text_actual _
extents.

Font Extent

If the extents_array was created by CMSR_font_extents, CMSR_bottom extent
returns the number of pixels from the text baseline to the bottom of the character in the
current font that extends furthest below the line. This corresponds to the maximum
actual descent of any character in the current font.

Logical Extent

If the extents_array was created by CMSR_text_logical_ extents, CMSR_
bottom_extent returns the number of pixels required below the text baseline for the
longest descender in the font plus the interline spacing.

This value is independent of the specific string passed to CMSR_text logical _
extents.

SEE ALSO

CMSR_left_extent(extents_array)
CMSR_right_extent(extents_array)
CMSR_top_extent(extents_array)

210 Version 2.0, November 1991

Chapter 3. Generic Text Routines CMSR_top_extent

CMSR_top_extent

Returns the text top extent from an extents_array.

SYNTAX
C Syntax

#include <cm/display.h>

int
CMSR_top_extent (extents_array) ;

int extents_array[4];

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR TOP_EXTENT (exfents_array)

INTEGER extents_array(4)

Lisp Syntax

CMSR: top—-extent (exfents—array)

ARGUMENTS
extents_array A structure containing the left, right, bottom, and top extents of
string. This structure is created for a string by one of the following
routines:

" CMSR text actual extents
" CMSR_text logical extents

® CMSR_font extents

Version 2.0, November 1991 211

CMSR t0p extent Generic Display Reference Manual for Paris

e e S

DESCRIPTION

CMSR_top_extent accepts an extents_array structure created by CMSR_text_
actual_extents, CMSR_text logical_extents, or CMSR_font extents and
returns the text top extent. These routines determine the top, bottom, right, and left
extents for a specified string in the current font and load them into the extents_array.
The meaning of the top extent depends on which of these extent routines created the
extents_array passed to CMSR_bottom_extent.

Actual Extent

If the extents_array was created by CMSR_text actual extents, CMSR top_
extent returns the number of pixels from the string’s baseline to the top of the charac-
ter in the string that extends furthest above the line. This corresponds to the maximum
actual character ascent of the string passed to CMSR_text_actual extents.

Font Extent

If the extents_array was created by CMSR_font_extents, CMSR_top_extent
returns the number of pixels from the text baseline to the top of the character in the
current font that extends furthest above the line. This corresponds to the maximum
actual ascent of any character in the current font.

maximum
character

ascent in font top font extent

Baseline

Logical Extent

If the extents_array was created by CMSR_text_logical_extents, CMSR_
top_extent returns the number of pixels required above the text baseline for the
highest character ascent in the font plus the interline spacing.

212 Version 2.0, November 1991

Chapter 3. Generic Text Routines CMSR_top_extent
= e

i i

.................

maximum
character
ascent in font

top font extent

Baseline

This value is independent of the specific string passed to CMSR_text_logical
extents.

SEE ALSO

CMSR_left_extent(extents_array)
CMSR_right_extent(extents_array)
CMSR_bottom_extent(extents_array)

Version 2.0, November 1991 213

CMSR _right_extent Generic Display Reference Manual for Paris
S

CMSR_right_extent

Returns the text right extent from an extents_array.

SYNTAX
C Syntax

#include <cm/display.h>

int
CMSR right_extent (exfents_array) ;

int extents_array[4]:

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR RIGHT EXTENT (extents_array)

INTEGER extents_array (4)

Lisp Syntax

CMSR:right-extent (extents—array)

ARGUMENTS
extents_array A structure containing the left, right, bottom, and top extents of
string. This structure is created for a string by one of the following
routines:

" CMSR_text actual_extents
® CMSR_text logical_ extents

" CMSR font_extents

214 Version 2.0, November 1991

Chapter 3. Generic Text Routines CMSR_right_extent

DESCRIPTION

CMSR_right_extent accepts an extents_array structure created by CMSR_text
actual_extents, CMSR_text logical_extents, or CMSR_font_ extents and
returns the text right extent. These routines determine the top, bottom, right, and left
extents for a specified string in the current font and load them into the extents_array.
The meaning of the right extent depends on which of these extent routines created the
extents_array passed to CMSR_bottom_extent.

Actual Extent

If the extents_array was created by CMSR_text_actual_extents, CMSR_
right_extent returns the number of pixels from the left edge of the string’s baseline
to the right edge of the right-most character in the string. This does not include any
horizontal spacing beyond the last character in the string.

String Origin | |
(pixel (x, y))
\' Baseline
! right actual extent ,
Font Extent

If the extents_array was created by CMSR_font_extents, CMSR_right_extent
returns the distance, in pixels, from the character origin to the right edge of the charac-
ter in the current font that extends furthest to the right. This measurement is the same as
the rbearing of the widest character in the font.

Baseline

Character -~ ' .
Origin , right

Version 2.0, November 1991 215

CMSR_right_extent Generic Display Reference Manual for Paris
P - S

Logical Extent

If the extents_array was created by CMSR_text_logical_extents,CMSR right
extent returns the number of pixels from the left edge of the string’s baseline to the
right edge of the string bounding box. This is the distance to the right edge of the
right-most character in the string plus the character’s horizontal spacing.

String Origin
(pixel (x, y))

Baseline

)
[}
-
)
L

- - -

right logical extent

SEE ALSO

CMSR_left_extent(extents_array)
CMSR bottom extent(extents_array)
CMSR_top_extent(extents_array)

216 Version 2.0, November 1991

Chapter 3. Generic Text Routines CMSR_left_extent

CMSR_left_extent

Returns the text left extent from an extents_array.

SYNTAX
C Syntax

#include <cm/display.h>

int
CMSR_left extent (extents array) ;

int extents_array[4]:;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR_LEFT EXTENT (extents_array)

INTEGER extents_array(4)

Lisp Syntax

CMSR:left-extent (extents—array)

ARGUMENTS
extents_array A structure containing the left, right, bottom, and top extents of
string. This structure is created for a string by one of the following
routines:

" CMSR text actual_extents
" CMSR_text logical extents

" CMSR_font_extents

Version 2.0, November 1991 217

CMSR_left_extent Generic Display Reference Manual for Paris

i

DESCRIPTION

CMSR_left_extent accepts an extents_array structure created by CMSR_text
actual_extents, CMSR_text logical extents, or CMSR_font extents and
returns the text left extent. These routines determine the top, bottom, right, and left
extents for a specified string in the current font and load them into the extents_array.
The meaning of the left extent depends on which of these extent routines created the
extents_array passed to CMSR_bottom extent.

Actual Extent

If the extents_array was created by CMSR_text_actual_extents, CMSR_
left_extent returns the number of pixels from the left edge of the string’s baseline
to the left edge of the left-most character in the string. This measurement is the same as
the lbearing of the left-most character, that is, the number of pixels allocated for the left
spacing of this character in the current font.

String Origin h
(pixel (x,»)) \ ' '
Baseline n
V-
left actual extent

Font Extent

If the extents_array was created by CMSR_font_extents, CMSR_left extent
returns the number of pixels from the left edge of the character origin to the left edge of
the character in the current font that extends furthest to the left. This measurement is
the same as the lbearing of the widest character in the font.

(]
(]
L
]
] .
Baseline

Character -~ | E
Origin b
v left

218 Version 2.0, November 1991

CMSR_left_extent

Chapter 3. Generic Text Routines

Logical Extent

If the extents_array was created by CMSR_text logical_extents, CMSR left
extent always returns 0. Since the character origin of the left-most character of the
string determines the left edge of the string’s baseline, the logical left extent is

always 0.

String Origin h

(pixel (x, y))\ ' ‘
Baseline —
Character / E .
Origin '

f left logical extent =0
SEE ALSO

CMSR_right_extent(extents_array)
CMSR_bottom_extent(extents_array)
CMSR_top_extent(extents_array)

Version 2.0, November 1991 219

Chapter 4

Mouse Interface Routines

The Generic Display mouse interface is a mouse interaction system that is independent of
the display type and the mouse host system type. It is based on the Generic Display Inter-
face for the display operations and the X Window System mouse functions for the mouse
interaction.

Two levels of interface are provided: a high-level interface, which provides automatic
mouse tracking and higher-level selection routines; and a low-level interface, which allows
the application complete control over the cursor and the mouse state.

4.1 Overview

4.1.1 Selecting a Generic Display Workstation and Display

Before using the mouse interface routines described in this section, you must create and
select a Generic Display workstation and display. The easiest way to do this is by calling
CMSR_select_workstation_menu. For detailed information on this and the other
Generic Display workstation and display routines, see Chapter 2 of this manual.

The generic display can be either an X11 window or a CM framebuffer. The currently
selected display is the display space for the Generic Display routines that read and write
images.

The Generic Display workstation must be an X11 server. If you select an X11 server as the
display, it will also be used as the workstation. The currently selected workstation provides
X11 resources and the physical mouse to support the Generic Display system’s text and
mouse routines. The Generic Display mouse routines use the current workstation’s
resources to handle cursor tracking and interaction.

Version 2.0, November 1991 221

Generic Display Reference Manual for Paris

s
& R

4.1.2 High-Level Mouse Routines

Three Generic Display routines supply the basic functionality of the mouse interface at a
high level: ‘

" CMSR_get _mouse_ point
" CMSR _get mouse_line

" CMSR get_mouse_rectangle

Each of these routines automatically grabs the workstation mouse and tracks the mouse
with a cursor on the currently selected display. When a button event is triggered on the
mouse, these routines return a Generic Display CMSR_mouse_point_t data structure con-
taining information on the cursor location at the time of the event and the button that caused
it, and then release the workstation mouse.

NOTE: You must allocate the point data structure by calling CMSR_allocate_mouse_
point.

When the workstation mouse is grabbed by one of these routines, the X11 cursor on the
workstation screen disappears and a Generic Display Interface cursor appears on the cur-
rently selected display. This cursor is now controlled by the workstation mouse and mouse
events are related to the current generic display. The user can use the mouse to move the
cursor on the display and signal input by pressing and releasing the mouse buttons.

Note that if the current generic display is an X11 window

= the cursor is confined to that window until the Generic Display Interface releases
the mouse.

® an error is generated if the window is iconified when you attempt to grab the
mouse.

CMSR_get_mouse_point returns the location of the cursor when the user presses a
mouse button and identifies the button. CMSR_get_mouse_1line allows the user to define
two points, the start and end points of a line, and returns the button information. Similarly,
CMSR_get_mouse_rectangle allows the user to define a rectangle, and returns the but-
ton information. During their operations CMSR_get_mouse_line and CMSR_get__
mouse_rectangle draw rubber band lines that follow the cursor to help the user position
the line or rectangle in the display.

Your application can then read the coordinate and button information in the CMSR _
mouse_point_t data structure with a set of accessor routines:

" CMSR mouse point_x

222 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines

" CMSR mouse_ point_y
" CMSR mouse_point buttons
" CMSR mouse point pressed

" CMSR_mouse_point released

Routines are also provided that allow you to allocate, deallocate, and set the initial cursor
position in a mouse structure:

" CMSR allocate_mouse point
" CMSR deallocate mouse_point

" CMSR_set mouse point_location

4.1.3 Low-Level Mouse Routines
A set of lower-level mouse interaction routines is also provided to give you greater control
over the interaction between the mouse and display cursor:

" CMSR _grab mouse

" CMSR release mouse

" CMSR _current mouse_point

" CMSR_current mouse delta

® CMSR_track mouse

Should your application require it, these routines allow you to explicitly manage grabbing,
tracking, and releasing the mouse. For example, these routines make it possible for your
application to respond to a series of button or motion events without releasing the mouse
after each one.

4.1.4 Cursor Routines
Finally, a set of routines is provided to define the appearance and behavior of the generic
display cursor and to return information about it:

" CMSR move_cursor

" CMSR_set cursor_visibility

" CMSR_set mouse_motion_threshold

Version 2.0, November 1991 ‘ 223

Generic Display Reference Manual for Paris

" CMSR_set_mouse motion multiple
® CMSR_set cursor bitmap

® CMSR_set cursor_ named

® CMSR _closest_cursor_size

® CMSR cursor_width

® CMSR cursor_height

® CMSR_cursor_hot x

" CMSR cursor_hot y

" CMSR_cursor_ x

®* CMSR cursor_y

The rest of this chapter contains detailed descriptions of these routines.

224 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines

4.2 Point and Area Selection Routines

These routines are the highest-level interface to the Generic Display mouse support. For
most applications you will need only these routines:

CMSR get mouse point, 226
Returns location of generic display cursor when button is pressed.

CMSR get mouse_lineiiiiiiiiiiiiiiiinianeeeannnan, 229
Returns points defining a line set by user with Generic Display cursor.

CMSR get mouse rectanglettt 229
Returns points defining a rectangle set by user with Generic Display cursor.

CMSR mouse pan_and ZOOMcouveuiuirneeeseronnnnnnnnnnnens 233
Uses mouse to interactively pan and zoom CM framebuffer Generic Display.

Version 2.0, November 1991 225

CMSR_get_mouse_point Generic Display Reference Manual for Paris

CMSR_get_mouse_point

Returns location of generic display cursor when button is pressed.

SYNTAX

C Syntax

#include <cm/cmsr.h>

CMSR mouse point_t
CMSR_get_mouse_point (point) ;

CMSR_mouse_point_t point;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR_GET_ MOUSE_POINT (point)

INTEGER point

Lisp Syntax

CMSR:get-mouse-point (&optional point)

ARGUMENTS

point A CMSR _mouse_point_t structure representing the state of the
mouse It includes both the mouse’s location and which buttons
were pressed.

NOTE: You must allocate point by calling CMSR_allocate_
mouse_ point.

In Fortran, point is returned as a integer. This integer may be
passed to the Generic Display routines, described below, that
access point information.

226 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines CMSR_get_mouse_point

DESCRIPTION

CMSR_get _mouse_point grabs the currently selected workstation’s mouse (if it is
not already grabbed) and causes the mouse to track a cursor on the currently selected
display until a button is pressed. When a button is pressed CMSR_get_mouse_point
returns a CMSR_mouse_point_t data structure containing the location of the display
cursor and the button that was pressed.

The application can access the information in point through the Generic Display mouse
point routines:

® CMSR mouse_point x

" CMSR _mouse point_y

" CMSR mouse_ point_buttons

" CMSR mouse point pressed

" CMSR mouse point released

® CMSR mouse_point timestamp
When the workstation mouse is grabbed, the cursor disappears from the currently se-

lected Generic Display workstation and appears on the currently selected generic
display.

If the workstation and display are an X11 server, the cursor is confined to the generic
display window on the workstation screen until a button is pressed. The coordinates
returned in point are the physical location of the cursor relative to that window, not to
the screen as a whole. The coordinates do not reflect any Generic Display image offsets
that may be set.

If the display is a CM framebuffer, the cursor is removed from the workstation screen
and displayed on the framebuffer monitor until a button is pressed. The coordinates
returned in point are the physical location of the cursor relative to the monitor screen
and do not reflect any Generic Display image offsets that may be set.

CMSR_get_mouse_point returns the button pressed in point as one of the X11 button
constants Buttonl through Button5.

You may read the button returned with CMSR_mouse_point_pressed.

CMSR_get mouse_point works whether or not the mouse has been explicitly
grabbed with CMSR_grab_mouse.

Version 2.0, November 1991 227

CMSR_get_mouse_point Generic Display Reference Manual for Paris
S T —

ERRORS

This routine signals an error if there is no selected workstation or selected display, or if
you change the selected workstation or display while the cursor is grabbed.

If the display is an X11 window and the window is iconified when CMSR get_
mouse_point attempts to grab the mouse, the following error message is generated:

Warning: Unexpected grab status: 3. Pointer not grabbed.

228 Version 2.0, November 1991

CMSR_get_mouse_line
Chapter 4. Mouse Interface Routines CMSR_get_mouse_rectangle

CMSR_get_mouse_line
CMSR_get_mouse_rectangle

Returns points defining a line (rectangle) set by user with Generic Display cursor.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void
CMSR_get_mouse_line (p!/, p2, anchorp);

CMSR_mouse_point t pl, p2;
int anchorp ;

void
CMSR_get mouse_rectangle (pl, p2, anchorp);

CMSR _mouse point_t pl, p2;
int anchorp ;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_GET_MOUSE_LINE (pl, p2, anchorp)

INTEGER pl, p2
LOGICAL anchorp

SUBROUTINE CMSR_GET_MOUSE_RECTANGLE (pl, p2, anchorp)

INTEGER pl, p2
LOGICAL anchorp

Lisp Syntax

CMSR:get-mouse-line (pl, p2, &optional anchorp)
CMSR:get-mouse-rectangle (p!, p2, &optional anchorp)

Version 2.0, November 1991 229

CMSR_get_mouse_line

CMSR_get_mouse_rectangle
e

ARGUMENTS

pl A CMSR_mouse_point_t structure containing the coordinates of
the start point of the line or rectangle and the state of the mouse
buttons when the point was defined.

NOTE: You must allocate p/ by calling CMSR_allocate_
mouse_point. In Fortran, the point structure is returned as a
integer. This integer may be passed to the Generic Display
routines, described below, that access point information.

p2 A CMSR_mouse_point_t structure containing the coordinates of
the end point of the line or rectangle and the state of the mouse
buttons when the point was defined.

NOTE: You must allocate p2 by calling CMSR_allocate_
mouse_point. In Fortran, the point structure is returned as a
integer. This integer may be passed to the Generic Display
routines, described below, that access point information.

anchorp A predicate specifying how the anchor point of the line or
rectangle is to be defined.

If anchorp is zero (nil in lisp), the start point is the cursor location
when a mouse button is first pressed after the routine is called, and
the end point is the cursor location when the button is released.

If anchorp is nonzero (non-nil in lisp), the start point is defined by
the current contents of p/ when the routine is called, and the end
point is the location of the cursor at the first button press.

DESCRIPTION

CMSR_get_mouse_line and CMSR_get mouse_rectangle return two points
defining a line or rectangle, respectively, which have been set by the user with the Ge-
neric Display cursor.

Both routines work whether or not the mouse has been explicitly grabbed by calling
CMSR grab mouse.

CMSR_get_mouse_line grabs the currently selected workstation’s mouse (if it is not
already grabbed) and causes the mouse to track a cursor on the currently selected dis-
play until a line is defined. A rubber-band line is drawn to help you place the points and
is undrawn when the routines return.

230 Version 2.0, November 1991

CMSR_get_mouse_line
Chapter 4. Mouse Interface Routines CMSR_get_mouse_rectangle

If anchorp is set, the start point of the line is defined by the contents of p/ when the
routine is called, and a rubber-band line is drawn between this point and the position of
the cursor until a button is pressed. When a button is pressed, CMSR_get_mouse_
line returns the anchor point in p/, and returns the last cursor location and the button
that was pressed in p2.

You can use CMSR_set_mouse_point_location to set p/ to an initial value.

If anchorp is not set, the start point of the line is not defined until the first button press
after the routine is called. When a button is pressed the current position of the cursor
becomes the start point of the line, and a rubber-band line is then drawn between this
point and the changing position of the cursor until a button is released. When a button
is released, CMSR_get_mouse_line returns the start point and the button that was
pressed in pl, and the last cursor location and the button that was released in p2.

Similarly, CMSR_get_mouse_rectangle grabs the currently selected workstation’s
mouse (if it is not already grabbed) and causes the mouse to track a cursor on the cur-
rently selected display until a rectangle is defined.

If anchorp is set, the start point of the rectangle is defined by the contents of p/ when
the routine is called and rubber-band lines are drawn defining a rectangle between this
point and the position of the cursor until a button is pressed. When a button is pressed,
CMSR_get_mouse_rectangle returns the anchor point in pJ, and returns the last
cursor location and the button that was pressed in p2.

If anchorp is not set, the start point of the rectangle is not defined until the first button
press after the routine is called. When a button is pressed the current position of the
cursor becomes the start point of the rectangle, and rubber-band lines defining a rectan-
gle are then drawn between this point and the changing position of the cursor until a
button is released. When a button is released, CMSR_get_mouse_rectangle returns
the start point and the button that was pressed in pJ, and the last cursor location and the
button that was released in p2.

IfCMSR_get _mouse_line or CMSR_get mouse_rectangle is interrupted in Lisp,
the mouse is automatically ungrabbed for the duration of the interrupt, and any rubber-
band lines are undrawn.

The application can access the information in p/ and p2 through the Generic Display
mouse point routines:

® CMSR_mouse_point_x
® CMSR _mouse_point_y

® CMSR mouse_ point buttons

Version 2.0, November 1991 231

CMSR_get_mouse_line

CMSR_get_mouse_rectangle Generic Display Reference Manual for Paris

®* CMSR mouse_point pressed '
® CMSR mouse point_released

® CMSR _mouse point_timestamp

When the workstation mouse is grabbed, the cursor disappears from the workstation
screen and appears on the currently selected generic display. If the workstation and
display are an X11 server, the cursor is confined to the generic display window on the
workstation screen until the routine returns. If the display is a CM framebuffer, the cur-
sor is removed from the workstation screen and displayed on the framebuffer monitor
until the routine returns.

The coordinates returned in p/ and p2 are the physical location of the cursor relative to
the display window or framebuffer monitor screen. These coordinates do not reflect
any Generic Display image offsets that may be set.

The button pressed or released is returned in pI or p2 as one of the X11 button con-
stants Buttonl through Button5.

ERRORS

This routine signals an error if there is no selected workstation or selected display, or if
you change the selected workstation or display while the cursor is grabbed.

If the display is an X11 window and the window is iconified when CMSR _get
mouse_line or CMSR_get_mouse_ rectangle attempts to grab the mouse, the fol-
lowing error message is generated:

Warning: Unexpected grab status: 3. Pointer not grabbed.

232

Version 2.0, November 1991

Chapter 4. Mouse Interface R CMSR_mouse_pan_and_zoom

CMSR_mouse_pan_and_zoom

Uses mouse to interactively pan and zoom CM framebuffer Generic Display.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR_mouse_pan_and_zoom () ;

Fortran Syntax

INCLUDE include ’/usr/include/cm/display-fort.h’
SUBROUTINE CMSR_MOUSE_PAN_AND_ ZOOM ()

Lisp Syntax

CMSR:mouse-pan—and-zoom ()

ARGUMENTS

None.

DESCRIPTION

CMSR_mouse_pan_and zoom allows the user to interactively pan and zoom a CM
framebuffer. The currently selected Generic Display workstation must have a CM
framebuffer as its selected display.

When CMSR_mouse_pan_and_zoom is called, the routine grabs the mouse and esta-
blishes the following operations:

® Ifno mouse buttons are pressed, moving the mouse left, right, up, or down will
pan over the image on the framebuffer in the same direction.

® If you press the left mouse button, moving the mouse away from you will in-
crease the framebuffer zoom, enlarging the image; moving the mouse towards
you will decrease the framebuffer zoom.

Version 2.0, November 1991 233

CMSR_mouse_pan_and_zoom Generic Display Reference Manual for Paris
o s i : T

= If you press the middle mouse button, the framebuffer returns to the state it
was in before CMSR_mouse_pan_and_zoom was called.

= If you press the right mouse button, the routine returns, leaving the framebuf-
fer with the current pan and zoom settings.

ERRORS

If you call CMSR_mouse_pan_and_zoom when the currently selected display is not a
CM framebuffer, it will print an error message and exit.

If the display is an X11 window and the window is iconified when CMSR_mouse_
pan_and_zoom attempts to grab the mouse, the following error message is generated:

Warning: Unexpected grab status: 3. Pointer not grabbed.

234 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines

4.3 Mouse Points

These routines allocate, deallocate, and return information from a Generic Display mouse
point data structure. The mouse point data structure is used to return information about
mouse events to the the Generic Display Interface. You can use this information to make
your application respond to events on the current generic display.

CMSR allocate mouse point.....................o 236
Allocates CMSR_mouse_point_t data structure.

CMSR_deallocate mouse pointl 236
Deallocates CMSR_mouse_point_t data structure.

CMSR_set mouse_point locationl 238
Sets the mouse point coordinates in the specified point data structure.

CMSR mouse Point_Xottt i 240
Returns the current x coordinate from the specified mouse point data structure.

CMSR mouse_point y ... i i 240
Returns the current y coordinate from the specified mouse point data structure.

CMSR mouse_point _pressedl 242
Returns the button constant for the last button pressed.

CMSR mouse_point released....................cciiiiiiiiiiiinnnn, 242
Returns the button constant for the last button released.

CMSR mouse_point buttonsol 244
Returns all active buttons and modifiers from the specified point data structure.

CMSR mouse point _timestampl 247
Returns the X Window System’s timestamp for the last mouse event in the point
data structure.

Version 2.0, November 1991 235

CMSR_allocate_mouse_point
CMSR _deallocate_mouse_point Generic Display Reference Manual for Paris

CMSR_allocate_mouse_point
CMSR_deallocate_mouse_point

Allocates (deallocates) CMSR _mouse_point_t data structure.

SYNTAX
C Syntax

#include <cm/cmsr.h>

CMSR mouse point t

CMSR allocate mouse point ();
void

CMSR_deallocate _mouse_point (point) ;
CMSR _mouse_point t point;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR_ALLOGATE MOUSE_POINT ()
SUBROUTINE CMSR DEALLOCATE MOUSE POINT (point)
INTEGER point

Lisp Syntax
CMSR:allocate-mouse-point ()

CMSR:deallocate-mouse-point (point)

ARGUMENTS

point A CMSR_mouse_point_t structure representing the state of the
mouse. It includes both the mouse’s location and the buttons that
were pressed.

236 Version 2.0, November 1991

CMSR_allocate_mouse_point
Chapter 4. Mouse Interface Routines CMSR_deallocate_mouse_point

DESCRIPTION

CMSR_allocate_mouse_point returns a CMSR _mouse_point_t point structure.
This structure contains mouse point coordinates, mouse button event information, and
a timestamp.

CMSR_deallocate_mouse_point frees all memory associated with the mouse point
structure.

The mouse point structure is used to return information about the Generic Display cur-
sor by:

® CMSR get mouse_point

" CMSR _get mouse_line

® CMSR get_mouse_ rectangle
" CMSR_current mouse point
® CMSR _current mouse delta

® CMSR_track mouse

You can read information from a CMSR_mouse_point_t structure with the Generic
Display mouse point routines:

® CMSR mouse_point x

® CMSR mouse_point y

" CMSR _mouse point_buttons
® CMSR mouse_point pressed
" CMSR mouse_point released

® CMSR mouse_point_ timestamp

Version 2.0, November 1991 237

CMSR_set_mouse_point_location Generic Display Refere
Fe e

e

CMSR_set_mouse_point_location

Sets the mouse point coordinates in the specified point data structure.

SYNTAX
C Syntax

#include <cm/cmsr.h>
void
CMSR_set mouse point location (point, x, y)
CMSR_mouse_point_t point;
int x;
int y;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR SET MOUSE_POINT LOCATION (point, x, y)

INTEGER point
INTEGER X
INTEGER y

Lisp Syntax

CMSR: set-mouse-point-location (point x y)

ARGUMENTS

238

point A CMSR mouse_point_t structure representing the state of the
mouse. It includes both the mouse’s location and the buttons that
were pressed.

NOTE: You must allocate point by calling CMSR_allocate
mouse_point.

xy The coordinates of the mouse location to be set in the point
structure; x and y are referenced to the physical display window
or CM framebuffer screen, and ignore any Generic Display image
offset that may be set.

Version 2.0, November 1991

CMSR_set_mouse_point_location

Chapter 4. Mouse Interface Routines
e

DESCRIPTION

CMSR_set _mouse_point_location sets the mouse point coordinates in the point
structure.

CMSR_set _mouse_point_location does not change the location of the cursor
directly; these coordinates take effect only when another routine references the point
structure.

Version 2.0, November 1991 239

CMSR_mouse_point_x
CMSR_mouse_point_y Generic Display Reference Manual for Pa

ris
S

S

CMSR_mouse_point_x
CMSR_mouse_point_y

Returns the current mouse point x (y) coordinate from the specified point data structure.

SYNTAX
C Syntax
#include <cm/cmsr.h>
int
CMSR _mouse_point_x (point)
CMSR_mouse_point_t point;
int
CMSR _mouse point_y (point)
CMSR_mouse_point_t point;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR MOUSE POINT X (point)
INTEGER point

INTEGER FUNCTION CMSR MOUSE POINT Y (point)
INTEGER point

Lisp Syntax

CMSR:mouse-point-x (point)
CMSR:mouse-point-y (point)

240 Version 2.0, November 1991

CMSR_mouse_point_x
Chapter 4. Mouse Interface Routines CMSR_mouse_point_y

ARGUMENTS
point A CMSR_mouse_point_t structure representing the state of the
mouse. Upon return from one of the routines listed below, it
contains both the mouse’s location and the buttons that were
pressed.
DESCRIPTION

CMSR_mouse_point_x returns the current mouse point x coordinate from point.
CMSR_mouse_point_y returns the current mouse point y coordinate from point.

The mouse point structure describing the state of a mouse is returned by one of the
following routines:

" CMSR_get_mouse point

* CMSR _get_mouse line

" CMSR_get mouse_ rectangle
® CMSR_current mouse point
® CMSR_current mouse delta

" CMSR_track mouse

The coordinates, x and y, are the current cursor location when the routine that returned
point was called, not the current location when CMSR_mouse_point_x or
CMSR _mouse_point_y is called. The coordinates are relative to the physical generic
display window or CM framebuffer monitor screen, and ignore any Generic Display
image offset that may be set.

Version 2.0, November 1991 241

CMSR_mouse_point_pressed
CMSR_mouse_point_released

lay

CMSR_mouse_point_pressed
CMSR_mouse_point_released

Returns the button constant from the specified point data structure for the last button
pressed (released).

SYNTAX
C Syntax

#include <cm/cmsr.h>
int

CMSR_mouse_point pressed (point)
CMSR _mouse point_t point;
int

CMSR_mouse_point_released (poini)
CMSR_mouse_point t point;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR MOUSE POINT PRESSED (point)
INTEGER point

INTEGER FUNCTION CMSR MOUSE POINT RELEASED (point)
INTEGER point

Lisp Syntax

CMSR:mouse~point-pressed (point)

CMSR:mouse-point-released (point)

242 Version 2.0, November 1991

CMSR_mouse_point_pressed
Chapter 4. Mouse Interface Routines CMSR_mouse_point_released

HE

ARGUMENTS
point A CMSR_mouse_point_t structure representing the state of the
mouse. Upon return from one of the routines listed below, it
contains both the mouse’s location and the buttons that were
pressed.
DESCRIPTION

CMSR_mouse_point_pressed and CMSR_mouse_point_released return the
current button constant stored in the pressed or released field, respectively, of the point
structure. If no constant is registered, these routines return NULL.

The mouse point structure describing the state of a mouse is returned by one of the
following routines:

" CMSR _get mouse_point

. ‘CMSR_get_mouse_line

® CMSR _get mouse_rectangle

® CMSR_current mouse point

" CMSR current mouse delta

® CMSR_track mouse
The structure contains a constant identifying the button that caused the latest event

when the routine that returned point was called, not the latest event when
CMSR_mouse_point_pressed or CMSR_mouse_point_released is called.

The button that caused the latest event appears in pressed or released, depending on its
state.The constant is one of the X11 button constants Buttonl through Button5. In
Lisp, the constants are :button-1 through :button-5.

For example, calling CMSR_mouse_point_released with the point structure
returned by CMSR_get_mouse_rectangle, returns the button constant representing
the button that ended the operation, that is, the last button to go up, terminating the
drag.

Version 2.0, November 1991 243

CMSR_mouse_point_buttons Generic Display Reference Manual for Paris
e — ; e

CMSR_mouse_point_buttons

Returns all the active buttons and modifiers from the specified point data structure.

SYNTAX
C Syntax

#include <cm/cmsr.h>
int

CMSR _mouse point_buttons (point)
CMSR_mouse_point_t point;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR MOUSE POINT BUTTONS (point)
INTEGER point

Lisp Syntax

CMSR:mouse-point-buttons (point)

ARGUMENTS
point A CMSR _mouse_point_t structure representing the state of the
mouse. It includes both the mouse’s location and which buttons
were pressed.
DESCRIPTION

CMSR_mouse_point_buttons returns an integer which has some bits set according
to what modifiers (ShiftMask, ControlMask, Mod1Mask, etc.) and mouse buttons
(ButtonlMask through Button5Mask) were active when the the function that re-
turned the point structure was called.

The mouse point structure describing the state of a mouse is returned by one of the
following routines:

244 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines CMSR_mouse_point_buttons
T i

® CMSR_get mouse_point

® CMSR_get mouse_line

® CMSR_get_mouse_ rectangle

" CMSR_current_mouse_point

® CMSR _current mouse delta

® CMSR_track mouse
The significant event varies depending on the function. For example, CMSR get
mouse_point sets the buttons according to the state when the button that activated the
point selection was pressed. CMSR_get mouse_line and CMSR_get_mouse_

rectangle set the buttons of the two mouse point structures (p and p2) to be the
states of the buttons and modifiers at the beginning of the drag and at the end.

In C, the integer returned by CMSR_mouse_point_buttons is a bit-wise or of Buz-
tonlMask through Button5Mask, and ShiftMask and ControlMask and LockMask and
ModIMask through Mod5Mask.

In Lisp, the masks are computed using (x1ib:make-state-mask &rest keys),
where key is one of :button—I through :button—5 or :shift or :lock or :control or :mod—1
through :mod-35.

To use these from Fortran, bitwise or the returned integer with the constants as defined
in display-cmf.h:

integer ShiftMask
parameter (ShiftMask=1)

integer LockMask
parameter (LockMask=2)

integer ControlMask
parameter (ControlMask=4)

integer ModlMask
parameter (Mod1lMask=8)

integer Mod2Mask
parameter (Mod2Mask=16)

integer Mod3Mask
parameter (Mod3Mask=32)

integer Mod4Mask
parameter (Mod4Mask=64)

Version 2.0, November 1991 245

CMSR_mouse_point_buttons Generic Display Reference Manual for Paris

S e

integer Mod5Mask
parameter (Mod5Mask=128)

integer ButtonlMask
parameter (ButtonlMask=256)

integer Button2Mask
parameter (Button2Mask=512)

integer Button3Mask
parameter (Button3Mask=1024)

integer ButtondMask
parameter (Button4Mask=2048)

integer ButtonSMask
parameter (Button5Mask=4096)

integer Buttonl
parameter (Buttonl=1l)

integer Button2
parameter (Button2=2)

integer Button3
parameter (Button3=3)

integer Button4
parameter (Buttond4=4)

integer Buttonb
parameter (Button5=5)

i

246

Version 2.0, November 1991

CMSR_mouse_point_timestamp

CMSR_mouse_point_timestamp

Returns the timestamp for the last mouse event in the specified point data structure

SYNTAX
C Syntax

#include <cm/cmsr.h>
int

CMSR _mouse point_timestamp (point)
CMSR_mouse_point_t point;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR_MOUSE_POINT_TIMESTAMP (point)
INTEGER point

Lisp Syntax

CMSR:mouse-point-timestamp (point)

ARGUMENTS
point A CMSR_mouse_point_t structure representing the state of the
mouse upon return from one of the routines listed below.
DESCRIPTION

CMSR _mouse_point_timestamp returns the X Window System’s timestamp for the
last mouse event recorded in the point structure.

The mouse point structure describing the state of a mouse is returned by one of the
following routines:

" CMSR get mouse point

" CMSR_get mouse line

Version 2.0, November 1991 247

CMSR_mouse_point_timestamp Generic Display Reference Manual for Paris

" CMSR_get mouse_rectangle
" CMSR_current mouse point
" CMSR _current mouse_delta
® CMSR_track_mouse
The timestamp in point reflects the time of the last mouse event when the routine that

returned point was called, not the time of the last event when CMSR_mouse_point_
timestamp is called.

248 Version 2.0, November 1991

4.4 Grabbing Routines

These routines explicitly grab and release control of the mouse associated with the current
generic workstation. When the mouse is grabbed, the mouse tracks a cursor on the current
generic display and returns events associated with it. Releasing the mouse returns control
to the physical workstation supporting the X11 server.

The cursor is automatically grabbed by the high-level routines CMSR_get_mouse_point,
CMSR_get_mouse_line, CMSR_get mouse_rectangle, and CMSR_mouse_pan_and
_zoom. When using these routines you do not need to manage grabbing or releasing the
mouse.

You must explicitly grab the mouse before using the low-level routines CMSR_current_
mouse_point, CMSR_current_mouse_delta, and CMSR_track_mouse.

The grabbing routines described in this section are:

CMSR grab MOUSEcuttit ittt entnteaineeeeiineeennnnns 250
Grabs physical mouse of Generic Display workstation for display window.

CMSR _release MOUSE@oovvniunrrneeeeinnnnnnnoroneneessonns 250
Releases physical mouse of Generic Display workstation.

CMSR mouse grabbed p.............ooiiiiiiii i 252
Returns the current status of the mouse interface.

Version 2.0, November 1991 249

CMSR_grab_mouse

CMSR_release_mouse Generic Display Reference Manual for Paris
8 = S s =

CMSR_grab_mouse
CMSR_release_mouse

Grabs (releases) the physical mouse of Generic Display workstation for display window.

SYNTAX
C Syntax

#include <cm/cmsr.h>
void

CMSR grab mouse ()
void

CMSR_release mouse ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR GRAB MOUSE ()
SUBROUTINE CMSR RELEASE MOUSE ()

Lisp Syntax

CMSR:grab-mouse ()

CMSR:release-mouse ()

ARGUMENTS

None.

DESCRIPTION

CMSR_grab_mouse causes the physical mouse associated with currently selected
Generic Display workstation to control a cursor on the currently selected generic dis-
play. When CMSR_grab_mouse is called, the cursor disappears from the currently
selected Generic Display workstation screen and appears on the currently selected
generic display at the current display cursor location. The selected display window
becomes the source window for mouse button or motion events and you can poll the
events with the Generic Display mouse point routines described in Section 4.3.

250 Version 2.0, November 1991

CMSR_grab_mouse
Chapter 4. Mouse Interface Routines CMSR _release_mouse

CMSR_release_mouse returns control of the mouse to the workstation server. The
cursor disappears from the display and reappears on the workstation, and control of the
workstation cursor returns to the mouse.

CMSR_grab_mouse must be called before using the low-level Generic Display mouse
routines CMSR_current_mouse_point, CMSR_current_mouse_delta, or CMSR _
track_mouse.

However, the high-level mouse routines, CMSR_get_mouse_point, CMSR_get_
mouse_line, and CMSR_get_mouse_rectangle, grab the mouse automatically
while performing their operations on the display. These routines work whether or not
the mouse is grabbed explicitly with CMSR_grab_mouse.

If the current display is a CM framebuffer when CMSR_grab_mouse is called, the cur-
sor is removed from the current workstation screen and displayed on the framebuffer
monitor until the mouse is released. While the mouse is grabbed, the application must
control the display cursor by updating the cursor in relation to the workstation mouse
with CMSR_current_mouse_point, CMSR_current_mouse_delta, or CMSR_
track_mouse, or by explicitly positioning the display cursor with CMSR_move_
cursor. The application must maintain this control until CMSR_release_mouse is
called.

If the display is an X11 window when CMSR_grab_mouse is called, the cursor is con-
fined to the generic display window until the mouse is released. The display cursor will
automatically track the workstation mouse as usual; the application does not need to
control the cursor position as on the CM framebuffer. However, since no harm is ever
done by calling CMSR_current_mouse_point, it is recommended that it always be
called in the application’s inner loop regardless of display type.

Note to Lisp users: If CMSR: grab-mouse is interrupted in Lisp, the mouse is auto-
matically ungrabbed for the duration of the interrupt.

ERRORS

It is an error to change the selected display or workstation while the mouse is grabbed.

If the display is an X11 window and the window is iconified when you call
CMSR_grab_mouse, the following error message is generated:

Warning: Unexpected grab status: 3. Pointer not grabbed.

Version 2.0, November 1991 251

CMSR_mouse_grabbed_p Generic Display Reference Manual for Paris
e S ;

s =2

CMSR_mouse_grabbed_p

Returns the current status of the mouse interface.

SYNTAX
C Syntax

#include <cm/cmsr.h>
int
CMSR_mouse_grabbed p ()

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’
LOGICAL FUNCTION CMSR MOUSE_GRABBED P ()

Lisp Syntax
CMSR:mouse-grabbed-p ()

ARGUMENTS

None.

DESCRIPTION

CMSR_mouse_grabbed_p returns the current status of the mouse interface.

If the currently selected workstation’s mouse is grabbed, CMSR_mouse_grabbed p
returns true ((-TRUE. in Fortran, non-NULL in C, non-nil in Lisp). If the mouse is not
grabbed, CMSR_mouse_grabbed_p returns false (.FALSE. in Fortran, NULL in C, nil
in Lisp). If there is no workstation selected, CMSR_mouse_grabbed_p always returns
false.

The mouse is grabbed explicitly by CMSR_grab_mouse and internally by CMSR _
get_mouse_point,CMSR_get mouse_line,andCMSR _get mouse_rectangle
during their operations.

252 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines

4.5 Low-Level Mouse Routines

These low-level mouse routines are called by the high-level routines to return information
about the location of the mouse cursor. Ordinarily, you will not need to use them. However,
if you want more explicit control of the mouse, you can use these routines to poll and track
the mouse.

You must call CMSR_grab_mouse to explicitly grab the mouse before calling these rou-
tines.

CMSR_current mouse pointiiiiiiiiiie, 254
Updates generic display cursor and returns the current mouse coordinates and
button state.

CMSR_current mouse deltaottt 256

Updates generic display cursor and returns the mouse button state and the change
in mouse coordinates since last update.

CMSR_track MOUS@..........iiiuiiiiiiiiiieiinieeeineeennnaeeennnns 259
Updates the Generic Display cursor and returns the current mouse points without

removing button events from the event queue.

Version 2.0, November 1991 253

CMSR_current_mouse_point Generic Display Reference Manual for Paris

CMSR_current_mouse_point

Updates generic display cursor and returns the mouse button state and the change in mouse
coordinates since last update.

SYNTAX
C Syntax

#include <cm/cmsr.h>
CMSR_mouse_point t
CMSR_current mouse_point (point, wait_p, compress motion_p)
CMSR _mouse _point_t point;
int wait_p, compress_motion_p;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR CURRENT MOUSE POINT

& (point, wait_p, compress_motion_p)
INTEGER point
LOGICAL wait p, compress_motion_p

Lisp Syntax

CMSR:current—-mouse—point
(&optional point, (wait_p t), compress—motion—p)

ARGUMENTS

point A CMSR_mouse_point_t structure representing the state of the
mouse. It includes both the mouse’s location and the buttons that
were pressed.

The mouse point structure is allocated by calling CMSR_
allocate_mouse_point. In Fortran, point is returned as a
integer. This integer may be passed to the Generic Display
routines, described below, that access point information.

254 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines CMSR_current_mouse_point

wait_p A predicate specifying whether the routine should immediately
return the current position and state of the mouse or wait until the
next motion or button event.

compress_motion_p
A predicate specifying whether the routine should return the
current position or the position at the first button event.

DESCRIPTION

CMSR_current mouse_point updates the display cursor position and returns, in the
passed structure, the current x and y coordinates of the mouse, along with its buttons.

NOTE: This routine works only when the mouse has been explicitly grabbed by calling
CMSR_grab_mouse.

You can access the coordinate information in point through the Generic Display mouse
point routines CMSR_mouse_point_x and CMSR_mouse_point_y.

If wait_p is true (. TRUE.in Fortran, non-NULL in C, non-nil in Lisp), then the routine
waits until a mouse event (motion or button) occurs before returning. If wait_p is false
(.FALSE. in Fortran, NULL in C, nil in Lisp), then the current state of the mouse is
returned.

If compress_motion_p is true (. TRUE.in Fortran, non-NULL in C), the routine records a
motion event only when the cursor starts or stops moving. If compress_motion_p is
false (FALSE. in Fortran, NULL in C), the routine records motion events continuously
as the cursor is moved. Setting compress_motion_p to false is useful when it is impor-
tant for the application not to lose any button presses.

If the routine returns because of a button press while compress_motion_p is false, the
coordinates in the point structure will be the coordinates of the button press on the
display.

If wait_p and compress_motion_p are both false, then the position at the earliest
queued button press (if any) is returned, rather than reading to the end of the queue.
This happens only if it is supported by the hardware.

ERRORS

It is an error to change the selected display or workstation while the mouse is grabbed.

Version 2.0, November 1991 255

CMSR_current_mouse_delta Generic Display Reference Manual for Paris

CMSR_current_mouse_delta

Updates generic display cursor and returns the mouse button state and the change in mouse
coordinates since last update.

SYNTAX
C Syntax

#include <cm/cmsr.h>
CMSR mouse point t
CMSR_current_mouse_delta (point, wait_p, compress_motion_p)
CMSR mouse point_t point;
int wait_ p, compress_motion_p;

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR_CURRENT MOUSE DELTA

& (point, wait p, compress_motion_p)
INTEGER point
LOGICAL wait p, compress_motion_p

Lisp Syntax

CMSR: current-mouse—-delta
‘ (soptional point, (wait-p t), compress—motion—p)

ARGUMENTS

point A CMSR_mouse_point_t structure representing the state of the
mouse. It includes both the mouse’s location and the buttons that
were pressed.

The mouse point structure is allocated by calling CMSR_
allocate_mouse_point. In Fortran, point is returned as a
integer. This integer may be passed to the Generic Display
routines, described below, that access point information.

256 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines CMSR_current_mouse_delta

wait_p A predicate specifying whether the routine should immediately
return the current position and state of the mouse or wait until the
next motion or button event.

compress_motion_p
A predicate specifying whether the routine should return the
current position or the position at the first button event.

DESCRIPTION

CMSR_current_mouse_delta updates the display cursor and returns, in the passed
structure, the delta x and y coordinates of the mouse since the last call to CMSR_
current_mouse_delta or CMSR _current_mouse_point, along with the current
mouse button state.

NOTE: This routine works only when the mouse has been explicitly grabbed by calling
CMSR_grab mouse.

You can read information from the mouse point structure with the Generic Display
mouse point routines:

® CMSR mouse_point x

® CMSR mouse point y

® CMSR mouse_point buttons

® CMSR mouse_point pressed

" CMSR mouse point released

If wait_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), then the current state of
the mouse is returned. If wait p is true (TRUE.in Fortran, non-NULL in C, non-nil in
Lisp), then the routine waits until a mouse event (motion or button) occurs before re-
turning.

If compress_motion_p is true (TRUE.in Fortran, non-NULL in C), the routine records a
motion event only when the cursor starts or stops moving. If compress_motion_p is
false ((FALSE. in Fortran, NULL in C), the routine records motion events continuously
as the cursor is moved. Setting compress_motion_p to false is useful when it is impor-
tant for the application not to lose any button presses.

If the routine returns because of a button press (compress_motion_p = false), the coor-
dinates in the point will be the coordinates of the button press on the display.

Version 2.0, November 1991 257

CMSR_current_mouse_delta Generic Display Reference Manual for Paris

If wait_p and compress_motion_p are both false, then the position at the earliest
queued button press (if any) is returned, rather than reading to the end of the queue.
This happens only if it is supported by the hardware.

ERRORS

It is an error to change the selected display or workstation while the mouse is grabbed.

258 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines CMSR_track_mouse

CMSR_track_mouse

Updates the Generic Display cursor and returns the current mouse points without removing
button events from the event queue.

SYNTAX
C Syntax

#include <cm/cmsr.h>
CMSR_mouse_point t
CMSR track_mouse (point)

CMSR_mouse _point_t point;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR_TRACK MOUSE (point)
INTEGER point

Lisp Syntax

CMSR: track-mouse (&optional point)

ARGUMENTS

point A CMSR_mouse_point_t structure representing the state of the
mouse. It includes both the mouse’s location and the buttons that
were pressed.

The mouse point structure is allocated by calling CMSR_
allocate_mouse_point. In Fortran, point is returned as a
integer. This integer may be passed to the Generic Display
routines, described below, that access point information.

Version 2.0, November 1991 259

CMSR_track_mouse Generic Display Reference Manual for Paris

R e

DESCRIPTION

CMSR_track_mouse updates the mouse pointer on the display and returns its current
coordinates, just like CMSR_current mouse_point or CMSR_current_mouse_
delta. However it never removes any button events from the queue; if a button is
pressed or released, that event will be skipped and will remain on the event queue to be
read later by CMSR_current_mouse_point or CMSR_current mouse_delta or
one of the higher-level point and area selection routines or mouse point routines. This
is useful if the application wants the mouse to track properly while it is computing, but
it doesn’t want to handle buttons until it is finished.

NOTE: This routine works only when the mouse has been explicitly grabbed by calling
CMSR_grab_mouse.

You can read information from the mouse point structure with the Generic Display
mouse point routines:

® CMSR mouse_ point_x
® CMSR mouse point y
® CMSR _mouse_point buttons
" CMSR mouse point_ pressed

" CMSR _mouse_point_released

260

Version 2.0, November 1991

Chapter 4. Mouse Interface Routines

4.6 Cursor Routines

These routines control the appearance and behavior of the Generic Display Interface cur-
sor. This cursor appears when the workstation mouse is grabbed explicitly by
CMSR_grab_mouse or internally by CMSR_get_mouse_point, CMSR_get_mouse_
line, and CMSR_get_mouse_ rectangle during their operations.

NOTE: The cursor is a property of the currently selected generic workstation. If you change
the selected workstation, the cursor attributes change to the current setting for the new
workstation.

CMSR MOVE CULSOL ..\t tttttetiinesannaeaiaeeeannnnnaenannnennns 262
Moves the generic display cursor to specified display coordinates.

CMSR_set cursor visibilityl 264
Makes the mouse cursor visible or invisible.

CMSR_set mouse_motion threshold, 266
Sets the distance, in pixels, above which the cursor movement is accelerated rela-
tive to the physical mouse movement.

CMSR_mouse_motion_threshold il 266
Returns the current motion threshold set for the generic display mouse.

CMSR_set mouse motion multiple................................. 268
Sets the acceleration factor to be applied to movement of the Generic Display
Cursor.

CMSR_mouse_motion multiple, 268

Returns the current acceleration factor.

CMSR_set cursor_bitmap i 270
Sets the appearance of the generic display cursor to the specified bitmap.

CMSR_set cursor namedcoivieiininiannnnneeeiainnenns 272
Sets the generic display cursor to a predefined shape.

CMSR closest_cursor_size, 274
Returns the cursor size supported by the workstation hardware closest to the spe-
cified size.

Version 2.0, November 1991 261

Generic Display Reference Manual for Paris

CMSR_move_cursor

. Moves the generic display cursor to specified display coordinates.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR move_cursor (x, y)

int x;
int y;

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_MOVE_CURSOR (x,)

INTEGER X
INTEGER y

Lisp Syntax

CMSR:move—-cursor (x,)

ARGUMENTS

262

X,y

The x and y coordinates of the point to which the cursor is to
move.

The coordinates are in pixels relative to the current display
window or, if the current display is a CM framebuffer, to the
framebuffer monitor screen. Any Generic Display image offsets
that may be set are not applied to these coordinates.

Version 2.0, November 1991

DESCRIPTION

CMSR_move_cursor immediately moves the display cursor to the specified point on
the display, as though the user had moved the mouse there.

CMSR_move_cursor only works when the mouse is grabbed. If the mouse is not
grabbed, this routine merely updates the current cursor position in the Generic Display
software; the visible display cursor is not affected. When the mouse is subsequently
grabbed, by CMSR_grab_mouse or one of the high-level mouse operations
CMSR get mouse_point, CMSR get mouse_line, or CMSR_get mouse_
rectangle, the cursor moves to the location specified.

Version 2.0, November 1991 263

CMSR_set_cursor_visibility Paris

CMSR_set_cursor_visibility

Makes the mouse cursor visible or invisible.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void
CMSR_set cursor_ visibility (visiblep)

int visiblep;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR_SET CURSOR _VISIBILITY (visiblep)

LOGICAL visiblep;

Lisp Syntax

CMSR:set-cursor-visibility (visiblep)

ARGUMENTS

visiblep : A predicate specifying whether or not the cursor is to be visible.

DESCRIPTION
CMSR_set_cursor_visibility causes the mouse cursor to become visible or

invisible.

If visiblep is zero, the cursor becomes invisible, but the state of the mouse is not
changed. This makes it possible to make the cursor invisible while keeping the mouse
grabbed.

264 Version 2.0, November 1991

Interface Routines CMSR_set_cursor_visibility

Setting visiblep to 1 causes the mouse cursor to become visible again after it was hid-
den. The cursor state is restored to whatever it was before the mouse was hidden, unless
one of the CMSR_set_cursor routines is called during the hidden time.

NOTE: You do not need to explicitly manage cursor visibility with CMSR_set__
cursor_visibility during normal use of the Generic Display mouse routines. The
cursor automatically disappears from the workstation and appears on the display when
the mouse is grabbed by CMSR_grab_mouse or one of the high-level mouse opera-
tions—CMSR_get_mouse_point, CMSR_get_mouse_line, or CMSR_get_
mouse_rectangle. The cursor is also automatically returned to the workstation
when the mouse is released.

Version 2.0, November 1991 265

CMSR_set_mouse_motion_threshold
CMSR_mouse_motion_threshold Generic Display Reference Manual for Paris

CMSR_set_mouse_motion_threshold
CMSR_mouse_motion_threshold

Sets (returns) the current motion threshold set for the generic display mouse.

SYNTAX
C Syntax

#include <cm/cmsr.h>
void

CMSR_set_mouse_motion_threshold (threshold)
int threshold;

int
CMSR mouse_motion_threshold ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR SET MOUSE MOTION THRESHOLD (threshold)
INTEGER threshold

INTEGER FUNCTION CMSR MOUSE MOTION THRESHOLD ()

Lisp Syntax

CMSR: set-mouse-motion-threshold (threshold)
CMSR:mouse-motion-threshold ()

ARGUMENTS

threshold The number of display screen pixels beyond which the cursor
movement is to be accelerated.

266 Version 2.0, November 1991

CMSR_set_mouse_motion_threshold
Chapter 4. Mouse Interface Routines CMSR_mouse_motion_threshold

DESCRIPTION

CMSR_set_mouse motion_threshold sets the motion threshold, in pixels, above
which the cursor’s motion is accelerated.

When the mouse is moved further than threshold pixels, the cursor movements on the
display are multiplied by the acceleration value set by CSR_set_mouse_motion_

multiple.

This mouse motion allows you to move the cursor precisely over small distances, but to
move large distances across the screen quickly.

CMSR_mouse_motion_threshold returns the current threshold.

Version 2.0, November 1991 267

CMSR_set_mouse_motion_multiple
CMSR_mouse_motion_multiple

S

CMSR_set_mouse_motion_multiple
CMSR_mouse_motion_multiple

Sets (returns) the acceleration factor for movement of the Generic Display cursor.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void
CMSR_set_mouse_motion_multiple (acceleration)

double acceleration;

double
CMSR _mouse motion multiple ()

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

void
CMSR_SET MOUSE_MOTION MULTIPLE (acceleration)

DOUBLE PRECISION acceleration

DOUBLE PRECISION FUNCTION MOUSE MOTION MULTIPLE ()

Lisp Syntax

CMSR: set-mouse-motion-multiple (acceleration)

CMSR:mouse-motion-multiple ()

ARGUMENTS

acceleration The amount to accelerate the cursor’s motion. The motion
acceleration multiplies the x and y components of the physical
mouse movement before applying them to the cursor motion on
the display screen.

268 Version 2.0, November 1991

CMSR_set_mouse_motion_multiple
Chapter 4. Mouse Interface Routines CMSR_mouse_motion_multiple

DESCRIPTION

CMSR_set_mouse_motion_multiple sets the acceleration factor to be applied to
movements of the Generic Display workstation mouse.

When the mouse is moved further than the threshold value set by CMSR_set_
mouse_motion_threshold, the cursor movements on the display are multiplied by
acceleration.

This mouse motion allows you to move the cursor precisely over small distances, but to
move large distances across the screen quickly.

CMSR_mouse_motion_multiple returns the acceleration multiple currently set.

Version 2.0, November 1991 k 269

CMSR

LR

set_cursor_bitmap Generic Display Reference Manual for Paris

CMSR_set_cursor_bitmap

Sets the appearance of the generic display cursor to the specified bitmap.

SYNTAX
C Syntax
#include <cm/cmsr.h>
void
CMSR_set cursor_bitmap
(bitmap, mask, width, height, hot x, hot y)

unsigned char *bitmap, *mask;
unsigned int width, height;
int hot x, hot y;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’

SUBROUTINE CMSR_SET_ CURSOR_BITMAP

& (bitmap, mask, width, height, hot_x, hot_y)
CHARACTER* (*) bitmap, mask;
INTEGER width, height;
INTEGER hot x, hot y;

Lisp Syntax

CMSR:set~cursor-bitmap (bitmap, mask,
skey width, height, (hot—x 0), (hot—y 0))

ARGUMENTS

bitmap An array of unsigned characters. Each bit corresponds to a pixel
in the cursor shape going from left to right and top to bottom
(row-major order). The most significant bit of each character is
the left-most pixel. Pixels corresponding to bits that are 1 in the
bitmap are white, and pixels corresponding to 0 bits are black.

270 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines CMSR _set_cursor_bitmap

mask

width, height

hot _x, hot_y

DESCRIPTION

An array of unsigned characters. Each bit corresponds to a pixel
in the cursor bitmap going from left to right and top to bottom
(row-major order). The most significant bit of each character is
the left-most pixel.

The mask is used to determine which parts of the cursor bitmap
will be displayed. Pixels in the bitmap corresponding to bits that
are 1 in the mask are displayed, and bitmap pixels corresponding
to 0 bits in the mask are transparent, that is, they have no effect on
the display.

The width and height, in pixels, of the cursor.

The coordinates of the cursor’s “hotspot.” The coordinates are
specified relative to the upper left corner of the bitmap.

The cursor’s hotspot is the active pixel in the cursor, which is
reported as the location of the cursor.

CMSR_set_cursor_bitmap sets the display cursor shape to the specified bitmap.

The routine signals an error if the cursor shape defined by width and height is not sup-
ported by the display hardware. You may determine whether a cursor size is supported
by calling CMSR_closest_cursor_size. Cursors that are 16 X 16 pixels are always

supported.

In Lisp, unspecified
down in the bitmap

width and height default to the total number of pixels across and
array.

NOTE: The cursor is a property of the display, so if the display changes, the cursor will
be changed to the default cursor for that display.

ERRORS

An error is signaled

SEE ALSO

if the cursor shape is not supported by the display hardware.

CMSR_set_cursor_ named (name)

Version 2.0, November 1991

271

CMSR_set_cursor_named Generic Display Reference Manual for Paris
P S i

CMSR_set_cursor_named

Sets generic display cursor to a predefined shape.

SYNTAX
C Syntax

#include <cm/cmsr.h>
void
CMSR_set_cursor_ named (name)

char *name;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
SUBROUTINE CMSR SET CURSOR NAMED (name)
CHARACTER* (*) name

Lisp Syntax

CMSR:set—-cursor—-named (name)

ARGUMENTS
name The name of the predefined shape to which the cursor is to be set.
name is not sensitive to case.
DESCRIPTION

CMSR_set_cursor_named sets the display cursor to the desired predefined cursor
shape.

The available shapes are:
" none an invisible cursor

®* arrow a pointer cursor

272 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines CMSR_set_cursor_named

" cross a cross
®* small-cross a smaller cross shape
* bullet a small round dot

" x an x-shaped cursor

All cursor shapes are black with a white border, device color map permitting.

ERRORS

The routine signals an error if name is not the name of a defined cursor.

SEE ALSO

CMSR_set_cursor_bitmap

Version 2.0, November 1991 273

CMSR_closest_cursor_size Generic Dzsplay Reference Manual for Paris
e

CMSR_closest_cursor_size

Returns the cursor size supported by the workstation hardware closest to the specified size.

SYNTAX
C Syntax

#include <cm/cmsr.h>
void
CMSR_closest_cursor_size (size)

int size[2]:

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

void
CMSR_CLOSEST_CURSOR_SIZE (size)

INTEGER size(2)

Lisp Syntax

CMSR: set-cursor-named (size)

ARGUMENTS
size An integer array containing the width and height, in pixels, of the
desired cursor shape.
DESCRIPTION

CMSR_closest_cursor_size retumns, in size, the hardware-supported cursor size
closest to the values passed in in the array size.

A size of 16x16 is always supported.

274 Version 2.0, November 1991

Chapter 4. Mouse Interface Routines

4.7 Cursor Information

The following routines return information about the Generic Display cursor:

CMSR cursor width i 276
Returns the width of the current cursor, in pixels.

CMSR cursor_heightl 276
Returns the height of the current cursor, in pixels.

CMSR cursor_hot X ...ttt 278
Returns the x coordinate of the hotspot (selection point) of the current cursor.

CMSR cursor_hot ¥ ..ottt i 278
Returns the y coordinate of the hotspot (selection point) of the current cursor.

CMSR _CUISOL_ X ..\tvtttttteneneenannannnsoeeseanaaansnnnannsnnnnnns 280
Returns the x coordinate of the currently recorded cursor position.

CMSR _CUISOL_ Y t\ittitietetteeeeennnnittteseeansanananniannnnnsnnns 280
eturns the y coordinate of the currently recorded cursor position.

CMSR cursor_visible Pciiiiiiiiiiiiiiiiiii i 282
Indicates whether the generic display’s cursor is currently visible or not.

Version 2.0, November 1991 275

CMSR_cursor_width

CMSR_cursor_height Generic Display Referenc
e S

CMSR_cursor_width
CMSR_cursor_height

Returns the width (height), in pixels, of the current Generic Display cursor.

SYNTAX
C Syntax
#include <cm/cmsr.h>
int
CMSR_cursor_width () ;
int
CMSR_cursor_height () ;

Fortran Syntax

INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR CURSOR WIDTH ()
INTEGER FUNCTION CMSR CURSOR_HEIGHT ()

Lisp Syntax

CMSR:cursor-width ()
CMSR:cursor-height ()

ARGUMENTS

None.

DESCRIPTION

CMSR_cursor_width returns the width of the current cursor, in pixels.

CMSR_cursor_height returns the height of the current cursor, in pixels.

276 Version 2.0, November 1991

CMSR_cursor_width
Chapter 4. Mouse Interface Routines CMSR_cursor_height

e

SEE ALSO

CMSR closest_cursor_size

Version 2.0, November 1991 277

CMSR_cursor_hot_x
CMSR_cursor_hot_y Generic Display Reference Manual for Paris

et

CMSR_cursor_hot_x
CMSR_cursor_hot_y

Returns the x (y) coordinate of the hotspot (selection point) of the current cursor.

SYNTAX
C Syntax

#include <cm/cmsr.h>

int
CMSR_cursor_hot_x ()
int

CMSR_cursor_hot_y ()

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’

INTEGER FUNCTION CMSR_CURSOR_HOT X ()

INTEGER FUNCTION CMSR CURSOR_HOT Y ()

Lisp Syntax

CMSR: cursor-hot-x ()

CMSR: cursor-hot-y

ARGUMENTS

None.

DESCRIPTION

CMSR_cursor_hot_x returns the x coordinate of the hotspot (selection point) of the
current cursor.

278 Version 2.0, November 1991

CMSR_cursor_hot_x
CMSR_cursor_hot_y

CMSR_cursor_hot_y returns the y coordinate of the hotspot (selection point) of the
current cursor.

The cursor’s hotspot is the active pixel in the cursor, which is reported as the location
of the cursor. The coordinates are in pixels relative to the upper left corner of the cursor
bitmap.

Version 2.0, November 1991 279

CMSR_cursor_x]
CMSR_cursor_y Generic Display Reference Manual for Paris

CMSR_cursor_x
CMSR_cursor_y

Returns the x (y) coordinate of the currently recorded cursor position.

SYNTAX
C Syntax

#include <cm/cmsr.h>

int
CMSR_cursor_x ()
int

CMSR cursor_y ()

Fortran Syntax
INCLUDE ' /usr/include/cm/display-fort.h’
INTEGER FUNCTION CMSR CURSOR X ()

INTEGER FUNCTION CMSR CURSOR Y ()

Lisp Syntax

CMSR:cursor-x ()

CMSR:cursor-y ()

ARGUMENTS

None.

DESCRIPTION

CMSR_cursor_x returns the x coordinate of the current cursor position recorded.

CMSR_cursor_y returns the y coordinate of the current cursor position recorded.

280 Version 2.0, November 1991

CMSR_cursor_x
Chapter 4. Mouse Interface Routines CMSR_cursor_y

NOTE: CMSR_cursor_x and CMSR_cursor_y do not return the current location of
the cursor on the display screen, but the current cursor position recorded in the Generic
Display software. That is, these routines do not track the mouse. To get an updated
cursor location, call CMSR_get_mouse_point.

Version 2.0, November 1991 281

CMSR_cursor_visible_p Generic Display Reference Manu

al for Paris
B S i . :

CMSR_cursor_visible p

Indicates whether the generic display’s cursor is currently visible or not.

SYNTAX
C Syntax

#include <cm/cmsr.h>
int

CMSR_cursor_visible p ()

Fortran Syntax

INCLUDE '’ /usr/include/cm/display-fort.h’

LOGICAL FUNCTION FSR CURSOR VISIBLE P ()

Lisp Syntax

CMSR:cursor-visible-p ()

ARGUMENTS

None.

DESCRIPTION

CMSR_cursor_visible_p returns the visibility status of the current cursor.

If the cursor is visible, CMSR_cursor_visible_ p returns true (TRUE.in Fortran,
non-NULL in C, non-nil in Lisp). If the cursor is not visible, CMSR_cursor_
visible p returns false (FALSE. in Fortran, NULL in C, nil in Lisp).

If the cursor is not grabbed, i.e., there is no current cursor, CMSR_cursor_
visible p always returns false.

282 Version 2.0, November 1991

Alphabetical Index of Routines

This index lists all the Generic Display Interface routines alphabetically.

CMSR_a

CMSR_allocate mouse point, 236

CMSR_b

CMSR bottom extent, 209

CMSR_c

CMSR_clear_ display, 67

CMSR closest_cursor_size, 274
CMSR_cmfb_display buffer_id, 166
CMSR_cmfb_display display id, 168
CMSR _create_cmfb_display, 162

- CMSR_create_color_map_named, 90
CMSR create_display menu, 43
CMSR_create display workstation, 27
CMSR_create_init_cmfb_display, 164
CMSR create_init x display, 131
CMSR_create_workstation_menu, 23
CMSR_create_x_color_map, 134
CMSR_create x_ color_map_named, 136
CMSR_create_x_display, 129

CMSR create x workstation, 127
CMSR_current_mouse_delta, 256
CMSR_current_mouse_point, 254
CMSR_cursor_height, 276
CMSR_cursor_hot_x, 278
CMSR_cursor_hot_y, 278
CMSR_cursor_visible p, 282
CMSR_cursor_width, 276
CMSR_cursor_x, 280

CMSR_cursor_y, 280

Version 2.0, November 1991

283

CMSR_d

CMSR_deallocate display, 5l
CMSR_deallocate_mouse_point, 236
CMSR_deallocate_wcrkstation, 35
CMSR_deselect_display, 48
CMSR_deselect_workstation, 28
CMSR_display_bits_of_blue, 117
CMSR_display bits of green, 117
CMSR_display bits of red, 117
CMSR_display bits per_ pixel, 115
CMSR_display color_is_rgb, 108
CMSR_display color_map_size, 106
CMSR_display_has_color_map, 104
CMSR_display height, 120
CMSR_display is_color, 113
CMSR_display outline text, 182
CMSR_display read color, 119
CMSR_display_read color_blue, 94
CMSR_display read color_green, 94
CMSR_display_read color_map, 92
CMSR_display_read color_red, %4
CMSR_display_text, 179
CMSR_display_text centered, 179
CMSR _display_type, 111
CMSR_display_ width, 120
CMSR_display write_color, 84
CMSR_display_write_color_map, 86
CMSR_display_x offset, 122
CMSR_display_y_offset, 122
CMSR_draw_outline_text, 187
CMSR_draw_text, 184
CMSR_draw_text centered, 184

Generic Display Interface Reference Manual for Paris

CMSR_f

CMSR_fe_display_ rectangle, 70
CMSR_£ill_display, 69
CMSR_font_extents, 207
CMSR_font_linespace, 198
CMSR_font_name, 189

CMSR_g

CMSR: GENERIC-DISPLAY-P, 124
CMSR_get direct_color_default, 96
CMSR_get display default, 46
CMSR_get_gray_scale_default, 102
CMSR_get _mouse_line, 229

CMSR_get mouse_point, 226 ‘
CMSR_get mouse_rectangle, 229
CMSR_get pseudo_color_default, 99
CMSR_get workstation_default, 33
CMSR_get x_app_defaults_dir, 156
CMSR _get x resource class, 158
CMSR_get x_resource integer, 159
CMSR_get_x_resource_name, 153
CMSR_get x resource_string, 159
CMSR get x window_title, 151
CMSR_grab_mouse, 250

CMSR |

CMSR_left extent,217

CMSR_m

CMSR_make_window_type, 16
CMSR_mouse_grabbed p, 252
CMSR_mouse_motion_multiple, 268
CMSR_mouse_motion_threshold, 266
CMSR_mouse_pan_and_zoom, 233
CMSR _mouse_point_buttons, 244
CMSR _mouse_point_pressed, 242
CMSR mouse_point_released, 242
CMSR_mouse_point_timestamp, 247
CMSR_mouse_point_x, 240
CMSR_mouse_point_y, 240

284

CMSR_move_cursor, 262

CMSR_r

CMSR_randomize_display, 68
CMSR_read_array from display, 77
CMSR_read _array_ from display 1,79
CMSR_read_from display, 72

CMSR read from display 1,74

CMSR read std x resources, 155
CMSR_release_mouse, 250
CMSR_right_extent, 214

CMSR_s

CMSR_select_display, 48
CMSR_select_display menu, 39
CMSR_selected display, 50
CMSR_selected_workstation, 30
CMSR_select workstation, 28
CMSR_select workstation menu, 19
CMSR_set_cmfb_display buffer id, 166
CMSR_set_cursor_bitmap, 270
CMSR_set_cursor_named, 272
CMSR_set_cursor_visibility, 264
CMSR_set_direct_color_default, 96
CMSR_set display color_map, 88
CMSR_set_display default, 46
CMSR_set display offset, 53
CMSR_set_font, 189
CMSR_set_gray scale_ default, 102
CMSR_set_mouse_motion_multiple, 268
CMSR_set_mouse_motion_threshold, 266
CMSR_set_mouse_point_location, 238
CMSR_set_pseudo_color_default, 99
CMSR_set_text_colors, 194
CMSR_set_text draw_mode, 192
CMSR_set_workstation_default, 33
CMSR_set x_app_defaults_dir, 156
CMSR_set_x display_gc, 138
CMSR_set_x resource_names, 153
CMSR_set_x window_title, 151

Version 2.0, November 1991

Index

CMSR_t

CMSR_text_actual_extents, 201
CMSR_text_background color, 196
CMSR_text_draw_mode, 192
CMSR_text_foreground color, 196
CMSR_text logical extents, 204
CMSR_text_width, 199
CMSR_top_extent, 211
CMSR_track_mouse, 259

CMSR_w

CMSR_workstation_display, 32
CMSR_workstation_type, 30
CMSR_write_array to_display, 61
CMSR write array to_display 1,63
CMSR write_ to_display, 56

CMSR write to_display 1,358

CMSR_x

CMSR_x_display_display, 143
CMSR_x_display drawable, 145
CMSR_x_display gc, 147

CMSR_x visual_ from class, 149
CMSR_x_workstation_display, 140
CMSR_x workstation_ font, 142
CMSR_x workstation_screen, 140

Version 2.0, November 1991 285

Keyword Index of Routines

This index lists the Generic Display Interface routines sorted by the key words that appear in their

names.

actual
CMSR_text_actual_extents, 201

allocate

CMSR allocate mouse point, 236
CMSR_deallocate display, 51
CMSR_deallocate mouse point, 236
CMSR_deallocate_workstation, 35

app_defaults

CMSR _get x_app_defaults_dir, 156
CMSR_set x_app defaults dir, 156

array

CMSR_read array from display, 77
CMSR_read array from display 1,79
CMSR write_ array to_display, 61
CMSR_write_array to_display 1, 63

background
CMSR_text background_color, 196

bitmap
CMSR_set_cursor_bitmap, 270

bits

CMSR _display bits_of blue, 117
CMSR display bits of_ green, 117

Version 2.0, November 1991

287

CMSR_display bits of red, 117
CMSR_display bits per_ pixel, 115

blue
CMSR_display bits_of blue, 117
CMSR_display read color_blue, 94

buffer_id
CMSR_cmfb_display buffer id, 166
CMSR_set_cmfb_display buffer id,
166

buttons
CMSR_mouse_point_buttons, 244

centered

CMSR_display text_centered, 179
CMSR_draw_text centered, 184

class

CMSR_get x resource_class, 158
CMSR_x_visual_from class, 149

clear
CMSR_clear_display, 67

Generic Display Interface Reference Manual for Paris

closest

CMSR_closest_cursor_size, 274

cmfb

CMSR_cmfb_display buffer_ id, 166

CMSR_cmfb_display display id, 168

CMSR create_cmfb_display, 162

CMSR create_init_cmfb_display, 164

CMSR_set_cmfb_display buffer id,
166

color

CMSR create_color_map named, 90
CMSR create x_color_map, 134
CMSR_create x_color_map named, 136
CMSR_display_color_is_rgb, 108
CMSR display color_map_size, 106
CMSR_display_has_color_map, 104
CMSR_display_is_color, 113

CMSR display_ read color, 119

CMSR display read color_blue, 94
CMSR display read color_green, 94
CMSR _display read_color_map, 92
CMSR _display read color_red, 94
CMSR_display_ write_color, 84

CMSR _display write_color_map, 86
CMSR_get direct_color_default, 96
CMSR_get pseudo_color_default, 99
CMSR set direct color_default, 96
CMSR_set_display_ color_map, 88
CMSR_set pseudo_color_default, 99
CMSR_set_ text colors, 194
CMSR_text background color, 196
CMSR_text_foreground_color, 196

color_map

CMSR create_color_map named, 90
CMSR create_x_color_map, 134

CMSR create_x_color_map named, 136
CMSR display color_map_size, 106
CMSR_display has_color_map, 104
CMSR_display read color_map, 92

288

CMSR_display write colcr_map, 86
CMSR_set_display color_map, 88

create

CMSR create_cmfb display, 162

CMSR_create_color_map_named, 90

CMSR create display_menu, 43

CMSR create_ display workstation,
27

CMSR_create_init_cmfb_display, 164

CMSR_create_init_x_display, 131
CMSR_create_workstation_menu, 23
CMSR _create x color_map, 134
CMSR_create x color_map_named, 136

CMSR_create_x display, 129
CMSR_create_x_workstation, 127

current

CMSR_current mouse_delta, 256
CMSR_current _mouse_point, 254

cursor

CMSR _closest cursor_size, 274
CMSR_cursor_height, 276
CMSR_cursor_hot_x, 278
CMSR_cursor_hot_y, 278
CMSR_cursor_visible_p, 282
CMSR_cursor_width, 276
CMSR_cursor_x, 280
CMSR_cursor_y, 280
CMSR_move_cursor, 262
CMSR_set_cursor_bitmap, 270
CMSR_set_cursor_named, 272
CMSR_set_cursor_visibility, 264

deallocate

CMSR_deallocate_display, 51
CMSR_deallocate mouse_point, 236
CMSR_deallocate workstation, 35

Version 2.0, November 1991

Keyword Index

default

CMSR_get_direct color_default, 96
CMSR_get_display_default, 46

CMSR get gray scale_default, 102
CMSR_get pseudo_color_default, 99
CMSR _get workstation default, 33
CMSR get_x app defaults_dir, 156
CMSR_set_direct_color_default, 96
CMSR_set_display_ default, 46
CMSR_set_gray scale_default, 102
CMSR_set_pseudo_color_default, 99
CMSR set_workstation default, 33
CMSR_set_x app defaults_dir, 156

delta
CMSR_current_mouse_delta, 256

deselect

CMSR_deselect_display, 48
CMSR _deselect workstation, 28

direct_color

CMSR_get_direct color_default, 96
CMSR_set_direct_ color_default, 96

display
CMSR_clear_display, 67
CMSR_cmfb_display buffer_id, 166
CMSR _cmfb_display display id, 168
CMSR create_cmfb_display, 162
CMSR create_display menu, 43
CMSR create_display workstation,

27

CMSR_create_init_cmfb_display, 164

CMSR create init x display, 131
CMSR create x display, 129
CMSR_deallocate_display, 51
CMSR_deselect_display, 48
CMSR_display bits_of blue, 117
CMSR_display bits_of_ green, 117
CMSR_display bits_of red, 117

Version 2.0, November 1991

CMSR_display bits per pixel, 115
CMSR_display_color_is rgb, 108
CMSR_display color_map_size, 106
CMSR_display_has_color_map, 104
CMSR_display height, 120
CMSR_display_ is color, 113

CMSR _display outline text, 182
CMSR_display read color, 119
CMSR_display read color_blue, 94
CMSR display read color_green, 94
CMSR_display read color_map, 92
CMSR_display_read color_red, 94
CMSR _display_ text, 179
CMSR_display_text centered, 179
CMSR _display_type, 111
CMSR_display width, 120
CMSR_display write_color, 84
CMSR_display write color_map, 86
CMSR_display x offset, 122

CMSR display y_offset, 122
CMSR_fe display_rectangle, 70
CMSR_fill display, 69
CMSR_get_display default, 46
CMSR_randomize_display, 68
CMSR_read array_ from_display, 77
CMSR_read array from display 1,79

CMSR_read from display, 72
CMSR_read from display 1,74
CMSR_select_display, 48
CMSR_select_display menu, 39
CMSR_selected display, 50
CMSR_set_cmfb_display buffer id,
166
CMSR_set_display_color_map, 88
CMSR_set_display_default, 46
CMSR_set_display offset, 53
CMSR_set_x display gc, 138
CMSR_workstation_display, 32
CMSR write_array_to_display, 61
CMSR write_array_to_display 1, 63
CMSR _write_to_display, 56
CMSR write_to_display 1,58
CMSR_x display_display, 143

289

Generic Display Interface Reference Manual for Paris

display (continued)
CMSR x_display_drawable, 145
CMSR_x_display gc, 147
CMSR_x_workstation_display, 140

display_id
CMSR_cmfb_display display_id, 168

draw

CMSR_draw_outline_text, 187
CMSR_draw_text, 184
CMSR_draw_text_centered, 184
CMSR_set_text_draw_mode, 192
CMSR_text_draw_mode, 192
CMSR_x display_drawable, 145

extent

CMSR bottom_extent, 209
CMSR_font_extents, 207

CMSR left extent, 217

CMSR right extent,214
CMSR_text_actual_extents, 201
CMSR_text_logical_extents, 204
CMSR_top_extent, 211

fe_
CMSR_fe_display_ rectangle, 70

fill
CMSR_fill display, 69

font

CMSR_font_extents, 207
CMSR_font_linespace, 198
CMSR_font_name, 189
CMSR_set_font, 189
CMSR_x_workstation_font, 142

foreground
CMSR_text_foreground color, 196

290

gc
CMSR_set_x display_gc, 138
CMSR_x_display_ gc, 147

get
CMSR_get_direct_color_default, 96
CMSR_get display default, 46
CMSR_get _gray scale_default, 102
CMSR_get_mouse_line, 229
CMSR_get _mouse_point, 226
CMSR_get_mouse_rectangle, 229
CMSR_get_pseudo_color_default, 99
CMSR_get_workstation_ default, 33
CMSR_get x_app_defaults_dir, 156
CMSR_get_x resource_class, 158
CMSR_get x_resource_integer, 159
CMSR_get_x_resource_name, 153
CMSR_get x_resource_string, 159
CMSR_get x_window_title, 151

grab

CMSR_grab_mouse, 250
CMSR_mouse_grabbed_p, 252

gray_scale

CMSR_get gray scale_default, 102
CMSR_set_gray scale_default, 102

green
CMSR display bits of green, 117
CMSR_display_ read color_ green, 94

has
CMSR_display_has_color_map, 104

height

CMSR_cursor_height, 276
CMSR_display height, 120

Version 2.0, November 1991

Keyword Index

hot_x
CMSR_cursor_hot_x, 278

hot_y
CMSR_cursor_hot_y, 278

init
CMSR create_init_cmfb display, 164

CMSR_create_init_x_display, 131

line
CMSR display outline_text, 182
CMSR draw_outline text, 187
CMSR_font_linespace, 198
CMSR_get_mouse_line, 229

linespace
CMSR_font_linespace, 198

logical
CMSR_text logical_extents, 204

menu
CMSR create display menu, 43
CMSR create_workstation menu, 23
CMSR_select_display menu, 39
CMSR_select workstation menu, 19

mode

CMSR_set_text draw_mode, 192
CMSR_text_draw_mode, 192

motion

CMSR mouse_motion multiple, 268

CMSR_mouse_motion_threshold, 266

CMSR_set_mouse_motion multiple,
268

CMSR_set mouse motion_ threshold,
266

Version 2.0, November 1991

mouse

CMSR_allocate_mouse_point, 236
CMSR_current_mouse_delta, 256
CMSR_current_mouse_point, 254
CMSR_deallocate mouse point, 236
CMSR_get_mouse_line, 229
CMSR_get _mouse_point, 226
CMSR_get_mouse_rectangle, 229
CMSR_grab_mouse, 250
CMSR_mouse_grabbed p, 252
CMSR_mouse_motion multiple, 268
CMSR_mouse_motion_threshold, 266
CMSR mouse_pan_and_zoom, 233
CMSR_mouse_point_buttons, 244
CMSR_mouse_point_pressed, 242
CMSR_mouse_point_released, 242
CMSR_mouse_point_timestamp, 247
CMSR_mouse_point_x, 240
CMSR_mouse_point_y, 240
CMSR_release_mouse, 250
CMSR_set_mouse _motion multiple,
268
CMSR_set_mouse_motion_threshold,
266
CMSR_set _mouse_point_location, 238

CMSR_track_mouse, 259

mouse_delta

CMSR_current_mouse_delta, 256

mouse_point

CMSR_allocate mouse point, 236
CMSR_current_mouse_point, 254
CMSR_deallocate_mouse_point, 236
CMSR_get_mouse_point, 226

CMSR _mouse_point_buttons, 244
CMSR mouse_point_pressed, 242
CMSR_mouse_point_released, 242
CMSR_mouse_point_timestamp, 247
CMSR_mouse_point_x, 240

CMSR _mouse_point_y, 240
CMSR_set_mouse point_location, 238

291

Generic Display Interface Reference Manual for Paris

move

CMSR_move_cursor, 262

multiple

. CMSR mouse_motion_multiple, 268
CMSR_set_mouse_motion multiple,

268

CMSR_create color_map_named, 90
CMSR create_x color_map_named, 136

CMSR_font_name, 189
CMSR_get_x_resource_ name, 153
CMSR_set_cursor_named, 272
CMSR_set x resource names, 153

named

CMSR_create_color_map_named, 90
CMSR_create_x color_map named, 136

CMSR_set_cursor_named, 272

offset
CMSR_display x offset, 122
CMSR_display y offset, 122
CMSR_set_display_ offset, 53

outline
CMSR_display outline_text, 182

CMSR draw outline_ text, 187

pan_and_zoom
CMSR mouse_pan_and -zoom, 233

pixel
CMSR_display bits_per pixel, 115

292

point
CMSR_allocate mouse_point, 236
CMSR_current_mouse_ point, 254
CMSR_deallocate_mouse_point, 236
CMSR_get _mouse_point, 226
CMSR_mouse_point_buttons, 244
CMSR_mouse_point_pressed, 242
CMSR_mouse_point_released, 242
CMSR_mouse_point_timestamp, 247
CMSR_mouse_point_x, 240
CMSR_mouse_point_y, 240
CMSR_set_mouse_point_location, 238

pressed
CMSR_mouse_point_pressed, 242

pseudo_color

CMSR_get pseudo_color_ default, 99
CMSR_set_pseudo_color_default, 99

randomize
CMSR_randomize display, 68

read

CMSR_display_read color, 119

CMSR display read color_blue, 94
CMSR _display read color_green, 94
CMSR_display read color_map, 92
CMSR_display read color_red, 94
CMSR_read array from display, 77
CMSR_read_array from display 1,79

CMSR_read from display, 72

CMSR_read from display 1,74
CMSR_read std _x resources, 155

Version 2.0, November 1991

Keyword Index

rectangle
CMSR fe_display rectangle, 70
CMSR_get_mouse_rectangle, 229

red
CMSR_display bits of red, 117
CMSR display read color_red, 94
CMSR _display text_centered, 179
CMSR_draw_text_centered, 184

release

CMSR_mouse_point_released, 242
CMSR_release_mouse, 250

resource
CMSR_get x resource_class, 158
CMSR_get x resource_integer, 159
CMSR_get_x_ resource_name, 153
CMSR_get_x resource_string, 159
CMSR _read std x resources, 155
CMSR_set_x resource_names, 153

rgb
CMSR_display color_is_rgb, 108

screen
CMSR_x_workstation_screen, 140

select
CMSR_deselect display, 48
CMSR deselect workstation, 28
CMSR_select_display, 48
CMSR_select_display_menu, 39
CMSR_selected_display, 50
CMSR_selected workstation, 30
CMSR_select_workstation, 28
CMSR_select_workstation_menu, 19

selected
CMSR_selected display, 50

Version 2.0, November 1991

CMSR_selected workstation, 30

set

CMSR _set_cmfb display buffer id,
166
CMSR_set_cursor_bitmap, 270
CMSR_set_cursor_named, 272
CMSR_set_cursor_visibility, 264
CMSR_set_direct color_default, 96
CMSR_set_display color_map, 88
CMSR_set_display default, 46
CMSR set_display offset, 53
CMSR_set_font, 189
CMSR_set_gray_scale_default, 102
CMSR_set_mouse motion_multiple,
268
CMSR_set_mouse motion_threshold,
266
CMSR_set_mouse_point_location, 238

CMSR_set_pseudo_color_default, 99
CMSR_set_text_colors, 194
CMSR_set_text_draw_mode, 192
CMSR_set_workstation_default, 33
CMSR_set_x_app_defaults_dir, 156
CMSR_set_x_display_gc, 138
CMSR_set_x resource_names, 153
CMSR set x window_title, 151

size

CMSR closest_cursor_size, 274
CMSR display color map size, 106

string

CMSR get x resource string, 159

text

CMSR_display outline text, 182
CMSR_display_text, 179
CMSR_display_text centered, 179
CMSR_draw_outline_text, 187
CMSR_draw_text, 184

293

Generic Display Interface Reference Manual for Paris

text (continued) visual

CMSR draw_text_centered, 184
CMSR_set_text_colors, 194
CMSR_set_text draw_mode, 192 width
CMSR_text_actual_extents, 201
CMSR text background color, 196
CMSR_text draw_mode, 192
CMSR_text_ foreground color, 196
CMSR_text logical_extents, 204

CMSR_x_visual_from class, 149

CMSR_cursor_width, 276
CMSR_display_ width, 120
CMSR_text width, 199

CMSR_text_width, 199 window
CMSR_get x window_title, 151
threshold CMSR_make_window_type, 16

CMSR set indow title, 151
CMSR_mouse_motion_threshold, 266 _Set_x_window _title

CMSR_set_mouse motion_threshold,
266 workstation

timestamp
CMSR _mouse_point_timestamp, 247

title

CMSR_get x window_title, 151
CMSR _set x window_title, 151

track
CMSR_track_mouse, 259

type
CMSR display_type, 111
CMSR _make window_type, 16
CMSR_workstation_type, 30

visibility
CMSR_set_cursor_visibility, 264

visible
CMSR_cursor_visible_p, 282

294

CMSR_create_display workstation,
27
CMSR_create workstation menu, 23
CMSR_create_ x_workstation, 127
CMSR_deallocate_workstation, 35
CMSR deselect_ workstation, 28
CMSR_get workstation_default, 33
CMSR_selected workstation, 30
CMSR_select_workstation, 28
CMSR_select workstation_menu, 19
CMSR_set_workstation_default, 33
CMSR_workstation_display, 32
CMSR_workstation_type, 30
CMSR_x_workstation_display, 140
CMSR_x_workstation_font, 142
CMSR_x_workstation_screen, 140

write

CMSR_display write color, 84
CMSR_display_write_color_map, 86
CMSR_write array to_display, 61
CMSR write_array to_display 1, 63
CMSR write_to_display, 56
CMSR_write_to_display 1,58

Version 2.0, November 1991

Keyword Index

X zoom
CMSR_create_init_x display, 131 CMSR _mouse_pan_and_zoom, 233
CMSR_create_x_color_map, 134
CMSR_create_x_color_map named, 136
CMSR create_x display, 129
CMSR_create_x workstation, 127
CMSR_cursor_hot_x, 278
CMSR_cursor_x, 280
CMSR_display x offset, 122
CMSR _get x app_defaults dir, 156
CMSR_get_x resource_class, 158
CMSR _get_x resource_integer, 159
CMSR_get x resource_name, 153
CMSR get x resource_string, 159
CMSR _get x window_title, 151
CMSR_mouse_point_x, 240
CMSR_read std x resources, 155
CMSR_set x_app_defaults dir, 156
CMSR_set_x_display gc, 138
CMSR_set_x_ resource names, 153
CMSR_set x window_title, 151
CMSR_x_display display, 143
CMSR_x_display_ drawable, 145
CMSR_x_display_gc, 147
CMSR_x visual_ from class, 149
CMSR_x workstation_display, 140
CMSR_x_workstation_font, 142
CMSR_x_workstation_screen, 140

x_display
CMSR _create_init x display, 131
CMSR_create x_display, 129
CMSR_set_x_display gc, 138
CMSR x display display, 143
CMSR_x_display drawable, 145
CMSR x display gc, 147

CMSR_cursor_hot_y, 278
CMSR_cursor_y, 280
CMSR_display y offset, 122
CMSR _mouse_point_y, 240

Version 2.0, November 1991 295

