The
Connection Machine
System

*Lisp Dictionary

Version 5.2
February 1990

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, February 1990

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-1, CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
VaX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

Sun and Sun-4 are trademarks of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

CommonLoops is a trademark of Xerox Corporation.

Copyright © 1990 by Thinking 'Machines Corporation. All rights reserved.

‘Thinking Machines Corporation

245 First Street

‘Cambridge, Massachusetts 02142-1214
(617) 876-1111

Contents

Prefaceoouiiiiiiii e e e e e e xiii
CUStOMET SUPPOIT « v vttt ittt ittt etteintsiaeesnsnesannnesenncens xvii

Part I *Lisp Overview

Chapter 1 *Lisp Functions and Macroscocovvivnnenn. 3
1.1 BasicPvar Operationsceeeviiiueniieiinnneereeeersnnnns 3
1.1.1 Pvar AIlOCationcouiiiinuererninnnnnnneneeeenns 3

1.1.2 Pvar Data Type Declaration and Conversion 4

1.1.3 Pvar Referencing and Modification 4

1.144 PvarInformationccoviiiiiiiiinnnnnnnnnnnnens 5

1.2 *Lisp Function Definitionccoiiiiiiiiiiiiiiniieennnnnn. 5
1.3 Processor SElECtiON . ..o.vvveeiinn it iiiiiiinreeesnnnnnans 6
1.4 Operationson Simple Pvarscoiiiiiiiiiiiiiiiiiiiiinnen 6
1.4.1 Boolean Logical Operatorscceeveuiieniennneneans 6

1.4.2 Numeric Pvar Operationsccoviviinineneeeennn. 7

1.4.3 Character Pvar Operationsccoeueiiiiiiiernnnnnes 9

1.5 Operations on Aggregate Pvarsccciviiiiiinnneenninennns 10
1.5.1 Array Pvar Operationscoveveieereennnnnnnenassss 10

1.5.2 Structure Pvar Operationscccevviviiiiinnnnnnnns 12

1.6 Processor Addressing Operationscovveiiiiieiiineeinnecnn. 12
1.6.1 Processor Enumeration, Ranking, and Sorting 12

1.6.2 Send/NEWS Address Operatorscoovvuunneenns 13

1.6.3 Address Object Operatorsovveeveerreneennnnneess 13

1.7 Inter- and Intra-Processor Communication Operations 14
1.7.1 Inter-Pvar Communication Operatorsoouveen. 14

1.7.2 NEWS Communication Operatorscoovueevnnn.s 14

1.7.3 Front-End Array to Pvar Communication Operators 14

1.7.4 Scan and Spread Operatorsoovvviiineienuineennnn 15

1.7.5 Segment Set Scanning Operatorsoeevvueeeennnss 15

1.7.6 Global Communication Operatorsccveeeeeennn.. 15

*Lisp Dictionary

1.8 VP Set Operationsoiiiiiiueiiiiiiniiiiiieiiineeinnnenns 16
1.8.1 VP Set Definition Operatorscocovieeviiiiieennn 16

1.8.2 VP Set Geometry Functionsoooviiviiiiiinnnn. 16

1.8.3 Flexible VP Set Allocation Operatorsccooevvevnnnn. 16

1.8.4 VP Set Deallocation Operatorscooviiveeevnnn. 17

1.8.5 Current VP Set Operators .o.o.ovvviiiiiiiniiieionenenannns 17

1.8.6 VP Set Operatorso.ocvvuiviiueiinineeinneennnnenns 17

1.9 General Information Operationscoviviiiiiiiiiiinnnens 17
1.10 Entertainment Operationscovuiiiiiiiiiiiiiiiiiieeaneeenns 18
1.11 Connection Machine Initialization Functions 18
Chapter 2 *Lisp Global Variables oot 19
2.1Predefined PVarscoviiniiiii ittt e e 19
2.2 Configuration Variablescooviiiiiiiiiiiiiiiiiiiiiiiiiinn 19
2.3 Initialization List Variablesoiiiiiiiiiiiiiiiiiiiiiiines, 21
2.4 Configuration LImitsovuuiiiiiiiiiiiiii ittt iiiiiiiieeans 22
241 ArraySize LImitSocvvviniiiiiiiiniiiii i, 22

2.4.2 Character Attribute Size Limitscooiinie. 22

2.5 Error Checkingvviiiiiiiiii ittt ittt ieieeinaaaes 24
2.6 *Lisp Compiler Code-Walkeroviiiiiiiiiiiiiiininieeeeenn. 25
2.7 Pretty-Printing Defaultsoooviiiiiii it 25
Chapter 3 *Lisp Glossary e e e e e 29
3.1 Connection Machine Terminologycoviiiiiiiiiiiiienn... 29
T 1 B - T ¢ T e 29

3,12 PrOCESSOIS «uvvuvvrnnnnininnnnnenneenesnennonsssnsnnnnnnns 30

313 Fields vovnniiiiiiiii i i e 30

3.1.4 Connection Machine Memorycccooiviiiine. 31

3.2 *Lisp Terminologyvvviiiiiit ittt 31
3.2.1 Parallel Variables (Pvars)covetevineenaneenaneeann 31

3.2.2 Processor AAdressingcoviieieeininiinnieeeeeannn. 33

3.2.3 Virtual Processor Sets.......cooieiiiiiiiiiiiiiiiiiiiian, 34

324 TImportant VP Sets......coiiiiiiiiiiiiiiiiiiiiiinnnnnnn. 35

3.3 Background Terminologycovviiiiiiii i i 36

Contents it

Chapter 4 *Lisp Type Declarationc.coiiiiiiiiiat. 37
4.1 PVar T PeS vttt i i i 37

4.2 Using Type Declarationsoviviiiiiiiniiinniieninnenennnns 39

42.1 *LispCodeWalkerccoviiiiniiiiiiiiininiinannn.. 40

4.2.2 *Lisp Declaration Operatorsoveevinuiinnernnaeenn. 40

4.2.3 Basic Rules of Type Declarationcoovviuvan.. 43

43 General Pvars......ccoviiiiiiiiiiiiiiiiiiiiiiiii e 49

4.4 Mutable Pvarscoviiiiiiiiiiiiiiiiiiiiiiiiii i 50

4.5 Mutable General Pvarsooiiiiiiiiiiiiiiiiiiiiiiaian, 50

4.6 Rules of *Lisp Type Declaration and Coercionccovvvvuenn.. 52

Part II *Lisp Dictionary

absll . e e e [Function].... 61
BCOS!l L e e [Function].... 63
acosSh!l ... e [Function].... 65
add-initialization i [Function].... 67
address—nth i e [Function].... 71
address-nth!! [Function].... 73
address—plust i e [Function].... 75
address-plus!! e [Function].... 77
address-plus-nth o il [Function].... 79
address-plus-nth!! i [Function].... 81
address—rankl e [Function].... 83
address—rank!! e e [Function].... 85
alias!] ... [Macro].... 87
B 1 [Macro].... 93
allocate!! e i e [Macro].... 97
allocate-processors~for-vp-set i, [Function]... 101
allocate-vp-set-processorscoiiiiiiiiiiiiiiiinn, [Function] ... 101
allocated-pvar-pcoiiiiiiiii i i i ittt e [Function] ... 105
alpha-char-p!! e [Function] ... 107
alphanumericp!! [Function] ... 109
amapll . e i e [Function] ... 111
B 11 T [*Defun]... 113
andll e [Macro]... 117
B < < [Macro}... 121
arefll L e [Function] ... 123
T4 ¢ Y e [Function] ... 127
*array-=dimension i [*Defun]... 129
array-dimension!! o [Function] ... 131

*array-dimensions ...ttt i i e [*Defun]... 133

iv *Lisp Dictionary

array-dimensions!! o i e [Function] ... 135
*array-element—type ...ttt [Function] ... 137
array-in-bounds-p!! [Function] ... 139
FAPTAY=TANK ...ttt et et e e e [*Defun]... 141
array-rankl! ... e e [Function]... 143
array-row-major-index!!ol [Function] ... 145
AITAY—F0—PVAL ...ttt ittt tiannseteteronanseesasneesnenns [*Defun]... 147
array-to-pvar-grid e [*Defun]... 151
*array-total-sizecoi il [*Defun]... 155
array-total-size!! [Function] ... 157
ashll .. [Function] ... 159
aSIN L e e e [Function] ... 161
asinh!! ...l e e [Function]... 163
atan!l L e [Function] ... 165
atanh!! ... e [Function] ... 167
=T [Function]... 169
bit-and!! ... e [Function]... 171
bit—andc1!! ... e [Function] ... 173
bit-andc2!! ... e e [Function] ... 175
bit—eqVll .. e [Function] ... 177
3 G T o [Function] ... 179
bit-nand!! ... [Function]... 181
<11 O 3T T o [Function] ... 183
bit=NOt!l .. e e et [Function]... 185
bit—orctll ..o e e e [Function]... 187
bit=0rC2!l ..o e [Function] ... 189
bit=XOr e [Function]... 191
bBoolel ... e e e [Function] ... 193
booleanp!! ... e [Function] ... 195
both-case-p!! [Function]... 197
<Y (= O [Function] ... 199
byte-position!! [Function] ... 201
byte-size!! ... e [Function] ... 203
= - [Macro] ... 205
[LT [Macro] ... 209
celling!ll ... e e [Function] ... 211
char=ll . e e [Function]... 213
Char/=ll o i e e [Function] ... 215
o] T T [Function] ... 217
chars !l e e e [Function] ... 219
char<=!!ttt i eiieeie s e s o [Function] ... 221
Char>= !l L e e [Function] ... 223
character!! e e [Function]... 225
characterp!! ... e [Function] ... 227
char-bit!! e [Function] ... 229

char-bits!! o e [Function]...

231

Contents

char—code!l ... e e [Function] ... 233
char-downcase!!oiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaa, [Function] ... 235
char-equalll i [Function]... 237
char-flipcase!!ttt [Function] ... 239
char=font!! oo i [Function] ... 241
char-greaterp!! i [Function]... 243
char=int!! e [Function] ... 245
char-lessp!!o i e [Function]... 247
char-not-equalll i [Function]... 249
char-not-greaterp!! i [Function]... 251
char-not-lessp!! ... e e [Function]... 253
char—upcase!! e [Function] ... 255
ISl e [Function] ... 257
code-char!l i e [Function] ... 259
[1= {7 PR [Function] ... 261
*eold-boot oo e [Macro] ... 267
compare!l ... e e [Function]... 273
complex!! ... e e [Function] ... 275
complexpll .. e e [Function] ... 277
B« T T [Macro]... 279
cond!l L. e e [Function] ... 283
conjugatel! ... e e [Function] ... 287
COPY-SBQ! ! .\t [Function] ... 289
LT O [Function] ... 291
L7 - 3 T [Function] ... 293
couNt!l L e [Function]... 295
count=if!! ... L [Function] ... 299
count-if-not!! e [Function] ... 301
create—geometryt e i i [Function] ... 303
create-segment-set!!l [Function] ... 307
create-vp-set e [Function] ... 311
Cross—-product e [Function] ... 315
cross-product!! [Function] ... 317
cube-from-grid-address i il [Function] ... 319
cube-from-grid-address!!ol [Function]... 321
cube-from-vp-grid-addresso [Function] ... 325
cube-from-vp-grid-address!!ol [Function] ... 327
*deallocate [Function]... 331
*deallocate-*defvars ool [Function] ... 333
deallocate-def-vp-sets o il [Function] ... 335
deallocate-processors—for-vp-setciiiiiiiinn. [Function]... 337
deallocate-vp-set-processorsoiiiiiiiiiiiiiiiia, [Function] ... 337
deallocate-vp-set [Function] ... 341
rHECT L e e [Macro] ... 343
*defsetf ... [Macro} ... 345

*defstructo [Macro] .

.. 347

vi *Lisp Dictionary

Hefun ..o e e e [Macro] ... 355
defvar ... e [Macro] ... 363
def-vp=seto e e e [Macro]... 369
delete-initialization i, [Function]... 375
deposit-byte!! e [Function]... 377
deposit-field!! i [Function] ... 379
describe~pvar....... ...l e e e [Function] ... 381
describe-vp-set i [Function]... 383
digit=charll e [Function] ... 387
digit-char-p!! [Function] ... 389
dimension-address-length ol [Function]... 391
dimension=sizeottt e [Function] ... 393
do-for-selected-processors..............ooiiiiiiiiiiiiiiiii i, [Macro}... 395
dot-product e [Function] ... 397
dot-product!! e [Function] ... 399
dpbl e [Function] ... 401
dsf-cross-product!! [*Defun]... 403
dsf-vector-normall! i [*Defun]... 405
B =1 - [Macro]... 409
LT o7 T 1 [Macro]... 413
enumerate!! e [Function] ... 415
=T | O [Function] ... 419
1= S [Function] ... 421
equalpl!l ... e [Function] ... 423
BVENP!l e [Function] ... 425
BVRIYll L e e e, [Function] ... 427
1=« 1 [Function] ... 429
XD L e [Function] ... 431
feelling!! ..o e e [Function] ... 433
1o T T o PN [Function] ... 435
R {1 | [*Defun]... 437
412 V= 1 [Function] ... 439
find=ifll . e e e [Function] ... 443
find-if-not!! [Function] ... 447
float!! oo [Function] ... 451
float-epsilon!! [Function] ... 453
float-sign!! [Function] ... 455
floatp!! .o e [Function] ... 457
Y- 2 e [Function] ... 459
front—end!! ... e [Function]... 461
L0 LY 1o B 1 A . [Function] ... 463
fround!! .. e [Function] ... 465
ftruncate!! [Function] ... 467
*uncall ..o [Macro] ... 469
Lo T« [Function} ... 471

graphic—char-p!! i i i et e, [Function] . ..

473

gridoooa (Function] . 47
gnd’! [Function] ... 477
e fromcubadarass [Function] ... 479
e fromcubo-addrasaty [Function]... 481
O from oo e baomamosy [Function] ... 483
e from v oubeaddrasatl | [Function] ... 487
T rommtoer, peraddressil o [Function] ... 489
O TEIRIVEIL s [Function] ... 493
*ﬁ ... [Function] ... 495
SO [Macro] ... 497
magsant [Macro] ... 501
MAGPAMIL o [Function] ... 505
HRGE [Macro} ... 507
int-Char”.“““““““:: [Function] ... 509
oo oo [Function]... 513
e maraymeodetl [Function]... 515
ooy [[*Defun]... 517
o ooy [Function] ... 519
oyt oraetl [Function]... 521
e [Function] ... 523
pSartll e [Function] ... 525
ol [Function] ... 527
o [Function]... 529
oaetomogativentioay [Function] ... 531
e oy [Function]... 533
oy SHETIOBL [Function] ... 535
SRGIRIL v [Function] ... 537
|et“._“_“_“”“,_,: .. [Macro] ... 539
oo [Macro] ... 545
gy b [Function]... 549
*hsp .. [*Defun]... 551
oot i e [Function] ... 553
loadobytattPTOCOBRONE [Function] ... 555
oaprBYtell [Function] ... 557
Mopany [Function] ... 559
g Y [Macro}... 561
gand [Function] ... 565
oy | [*Defun]... 567
ety [Function]... 569
gty | [Function]... 571
oo [Function] ... 573
oy [Function}... 575
T [Function]... 577
ol [Function]... 579
iyt .. [*Defun]... 581
...................................... [Function] ... 583

viii *Lisp Dictionary

lognand!! ... et s [Function]... 585
oY T T T o [Function] ... 587
lognot!l .. e e e [Function] ... 589
logorct!l ... i e [Function]... 591
logorC2!l .. e e e [Function]... 593
logtest!] ... e [Function] ... 595
b =« o T e [*Defun]... 597
Lo o)T [Function]... 599
lower-case-pll e [Function] ... 601
make-array!l! ... i e [Function]... 603
make—char!l it e e [Function]... 605
bl 12T < T [Function]... 607
mask-=field!! e [Function]... 609
2 [*Defun]... 611
MaAX! L e e [Function]... 613
B 41 U [*Defun]... 615
011 [Function]... 617
MINUSP! L e e e [Function]... 619
2T T | e [Function]... 621
most-negative-float!! i [Function] ... 623
most-positive-float!!l [Function]... 625
negative~float-epsilon!! il [Function]... 627
B 1= [*Defun]... 629
L= T [Macro]... 635
news=border!! e [Macro]... 641
*news—direction i it e [*Defun]... 645
news-direction!! [Macro]... 649
next-power—of-two->= il [Function] ... 653
NOR L e i e e [Function]... 655
notany!l ... e [Function]... 657
NOtEVEIY ! L e e e [Function] ... 659
B =TT [*Defun]... 661
nsubstitute!! e [Function]... 663
nsubstitute-if!! [Function] ... 667
nsubstitute-if-not!!o [Function]... 671
01U 1 [Function]... 675
numberpll .. e [Function]... 677
<< 1 T« T [Function]... 679
off-grid-border-p!! i [Function]... 681
off-grid-border-relative-direction-p!! [Function]... 685
off-grid-border-relative-p!!o il [Function]... 687
off-vp-grid-border-p!! [Function]... 691
R [*Defun]... 695
L= 0 O [Macro]... 697
Phasell ... e [Function] ... 701

PIUSPI e [Function]. ..

703

Contents

position!! [Function] ... 705
position=ifl! [Function]... 709
position-if-not!! [Function] ... 713
POWEIr=Of—tWO=P ... et e e [Function] ... 717
] o « A [Macro]... 719
o o + 1 R [Macro] ... 725
ppp-address—object i i e [Function]... 727
o] o < T o -7 AP [Macro]... 729
o oo | - T« T [Macro]... 731
o] oY o B3 4 11 N [Function]... 733
T [Macro] ... 737
Prefll . e e e e [Macro]... 741
Pretty—print=pvar ... i i i e e [Macro] ... 751
pretty-print-pvar-in-currently-selected-set [Macro]... 755
FPrOCESSOIWISEovviiiiiiitriirrsteeressensnsnnnesennnannannes [*Defun]... 757
b <+ T - 5 [Macro}... 759
Bl < T PN [Macro]... 763
pvar-exponent-length i il i [Function]... 773
pvar-length e [Function]... 775
pvar=location e [Function]... 777
pvar-mantissa-length i iiiiiiiiiiiiiiiii i [Function]... 779
PVAI=NAMIBttt ittt ittt etitetentsaatessesannanennnns [Function]... 781
PVAID ot ittieeenseessaetsonsssnssasnsossssssassaasssens [Function]... 783
pvar-plist ... e e e [Function]... 785
PVAr=f0=aITaYttiininnetreiinneeeeesnanaeesnsescesssannnns [*Defun]... 787
pvar—to-array-grid ittt i i it e [*Defun]... 791
PVAr=dYP@ .. i i i et it [Function]... 795
PVAI=VP=88E ittt it [Function]... 797
randomll L. e e e [Function]... 799
11113 [Function]... 801
=T 1 1o T o [Function]... 807
reducel!l ... e e [Function]... 809
reduce-and-spread!! il [Function]... 813
=T 2 [Function]... 817
reVerSell L. e e [Function]... 819
B =T~ 2 5 [Function] ... 821
rot!! ... ettt [Function]... 823
roUNd!l L e [Function] ... 825
row-major-arefl! [Function] ... 827
row-major-sideways—aref!! ..ot [Function]... 829
Shitll e [Function]... 833
scale-float!! i [Function] ... 835
SCaAN!l L e e [Function] ... 837
segment-set-end-address [Function]... 845
segment-set-end-address!! ...l [Function] ... 847
segment-set-end-bits il [Function]... 849

segment-set-end-bits!!l [Function] ... 851
segment-set-processor-not-in-any-segment [Function] ... 853
segment-set-processor-not-in-any-segment!! [Function] ... 855
segment-set-scan!!............ o i [Function] ... 857
segment-set-start-addressol [Function] ... 861
segment-set-start-address!! ...l [Function] ... 863
segment-set-start~bitsl [Function]... 865
segment-set-start-bits!! ool [Function] ... 867
selfll o et e [Function] ... 869
self-address!! i [Function] ... 871
self-address-grid!! [Function] ... 873
7= [Macro] ... 877
B = [Function] ... 881
set-char=bitl! [Function]... 885
Set=VP=Set i i e [Function] ... 887
set-vp-set-geometry ...ttt [Function] ... 889
sf-cross-product!! il [Function] ... 891
sf-v+-constant!! i [Function] ... 893
sf-v-—constant!! i [Function]... 895
sf-v*—constant!! e [Function] ... 897
sf-vi—constant!! [Function]... 899
sf=vabs!l e [Function] ... 901
sf-vabs-squared!!ol [Function] ... 903
sf-vector-normal!! e [Function] ... 905
sideways-aref!! et [Function] ... 909
*SIdOWAYS=AITAY . ..ttt viii ittt e i e [Function] ... 913
SidewaysS—array=pPc.oiiiiiietiiiiiiiiiiiiiiiii e [Function]... 915
signUM L e [Function]... 917
SINIl L e [Function]... 919
SIN L e e e [Function]... 921
*SlICOWISE . .. i e e e [*Defun]... 923
£ T 4T [Function] ... 925
L] 3 [Function]... 927
spread!! ... e i i e e e [Function] ... 933
=T [Function]... 937
standard-char-p!! i [Function] ... 939
string—char—p!ll ittt [Function] ... 941
structurep!!iiiiiiiiiiiiiieeeee e ... [Function] ... 943
subseq!!l ... e [Function] ... 945
substitute!! [Function] ... 947
substitute-if!! iiiiiiiiiiieiiiee ey [Function] ... 951
substitute~if-not!! [Function] ... 955
T o2 TG [*Defun}... 959
taken-as!! ... i e e [Function] ... 961
-1 T P [Function]... 965

tanhll e [Function]. ..

967

Contents

b (- Y= - TP [Macro} ... 969
truncate!l! ... e [Function]... 971
typed-vector!! e [Function]... 973
187/ == <1 [Function]... 975
*undefsetf ... e [Function] ... 977
un*defun ... [Function] ... 979
UNIESS ..ottt i e et e et [Function] ... 981
UNProClaim ... e [Function] ... 985
FUNIFBCE ... i e [Macro] ... 987
UPPer—Case—P!! ... i i i ittt e [Function]... 989
veeiling ... i e e [Function]... 991
vector!l L e [Function] ... 993
vector-normal i e [Function] ... 995
1721 = T« T [Function]... 997
vp-set-deallocated-p i [Function]... 999
vp-set-dimensions o i i [Function].. 1001
vp-set-rank i e [Function] .. 1003
vp-set-total-size il i [Function].. 1005
vp=set-vp-ratio [Function] .. 1007
VIOUND ..ottt ittt e i i s [Function].. 1009
VBCAle ... i i e i i e [Function].. 1011
vscale!l [Function] .. 1013
vscale-to-unit-vector i [Function] .. 1015
vscale-to-unit-vector!!l [Function].. 1017
*vset—components i i i i i [*Defun].. 1019
viruncate e [Function] .. 1021
1 T [Function].. 1023
L2 [Function].. 1025
ve=constant [Function] .. 1027
Vm e et [Function] .. 1029
V=l e e e [Function] .. 1031
V=—constant e e [Function] .. 1033
1 [Function] .. 1035
LY [Function}.. 1037
VF=CONStant ... e e [Function] .. 1039
vi—eonstant e [Function] .. 1041
1 T2 [Function] .. 1043
Vabs! ! L e i e [Function].. 1045
vabs-squared e [Function] .. 1047
vabs-squared!! [Function] .. 1049
*warm-boot ... [Macro] .. 1051
FWhen ... e [Macro] .. 1055
with-css-savedt e [Macro].. 1059
with-processors-allocated-for-vp-set A [Macro] .. 1063
FWIth-VP=Set ... e [Macro].. 1067

b (< T [Macro] . .

1071

*Lisp Dictionary

(L Ceeeees [Function]..
ZOropP!! ... i i i it ciiiii e e e e s e ... [Function] . .

=

n ..
B 3 A

1-1!
e

oo

ceeceee

......

D A N

seecses e co e
sessecene veeee
css e seecs e se e

Crreereeanaes veveseseoon... [Function]..
Cereeees tieterisisesisasss... [Function]..
Cetietisieiiiereiiseease. ... [Function]..
........ veessieeienneeeon. .. [Function]..
ettt e [Function] . .
e R «+.e..... [Function]..
e, e [Function] ..
.............. veevsveveno... [Function]..
............. ceveseecenn.... [Function]..
RN ceeeen e .+... [Function] ..
e Ceeaaes vveeo.... [Function]..
...... cieiessietsaseass..... [Function]..

ceeeeeean e «++..... [Function]..

1073
1075
1077
1081
1083
1085
1087
1089
1091
1093
1095
1097
1099
1103
1105

Preface

Objectives of This Manual

The *Lisp Dictionary is a complete reference source for the essential constructs of the *Lisp
language. It is intended to provide quick access to the definitions of all *Lisp functions, macros,
and global variables. It is not intended to explain the conceptual basics of programming in *Lisp,
although a glossary of important and frequently used terms is included.

Intended Audience

This reference dictionary is intended for readers with a working knowledge of Common Lisp, as
described in Common Lisp: The Language, and a general understanding of the Connection
Machine system. The Connection Machine Front-End Subsystems manual provides useful
background information on the Connection Machine system.

Revision Information

This dictionary is new as of CM System Software Version 5.2. It serves as a supplement to, but
not a replacement for, the existing *Lisp documentation.

The following *Lisp functions are documented for the first time in this dictionary:

abs!! bit!! byte!! byte-size!! byte-position!!
*case case!! cis!! conjugate!! cosh!!
deallocate-def-vp-sets *decf *defsetf deposit-field!!
dpb!! *ecase ecase!! exp!! imagpart!!
*incf Idb!! Idb-test!! *light loap

*Jogxor logxor!! phase!! ppp-css pvar-name
pvar-plist realpart!! sbit!! sinh!! tanh!!
*undefsetf un*defun unproclaim vp-set-deallocated-p *xor

The following *Lisp functions are obsolete, and are not listed in this dictionary.

dsf-v+!! dsf-v+-constant!! dsf-v-1! dsf-v—--constant!!
dsf-v*!! dsf-v*-constant!! dsf-v/-constant!! dsf-vscale!!
*pset~grid *pset-grid-relative pref-grid scan-grid!!
sf-dot-product!! sf-v+!! sf-v-!! sf-v*!!

sf-vscale!! *sf-vset-components

xiii

*Lisp Dictionary

Organization of This Manual

The *Lisp Dictionary is divided into two parts. Part I, “*Lisp Overview,” provides an overview of
the functions, macros, and important global variables of the *Lisp language, along with a glossa-
ry of essential terminology and a chapter on *Lisp data types and type declaration. Part IT, “*Lisp
Dictionary,” is a complete dictionary of all functions and macros in the *Lisp language.

PartI. *Lisp Overview
Part I consists of the following chapters:

Chapter 1. *Lisp Functions and Macros
The names of all functions and macros in *Lisp are listed, grouped by purpose.

Chapter 2. *Lisp Global Variables
All important global variables in *Lisp are listed and described.

Chapter 3. *Lisp Glossary
Essential terms and concepts used in the dictionary and in other
documentation are listed and described.

Chapter 4. *Lisp Type Declaration
All *Lisp data types are described, along with information about using
declarations and about data type coercion in *Lisp. ‘

Part II. *Lisp Dictionary
Part IT is a complete dictionary of the *Lisp language, containing entries for all *Lisp
functions and macros.

Related Documents

88 The *Lisp Reference Manual Version 5.0.
This reference manual describes the essential concepts of the *Lisp language.

8 Supplement to the *Lisp Reference Manual Version 5.0.
This supplement expands and updates The *Lisp Reference Manual.

88 Paris Reference Manual Version 5.0.
Paris (for parallel instruction set) is the Connection Machine system’s instruction set.
The *Lisp language calls Paris to perform its operations. This volume is a reference
dictionary for Paris.

8 Connection Machine Front-End Subsystems.
This volume describes the various front-end computers used with the Connection Ma-
chine system.

Preface XV

8 Common Lisp: The Language, by Guy L. Steele Jr. (Burlington, Mass.: Digital Press,
1984).
This book defines the de facto industry standard Common Lisp.

The Connection Machine, by W. Daniel Hillis (Cambridge, Mass.: MIT Press, 1985).
This book explains the design issues and philosophies that led to the construction of the
Connection Machine computer.

Notation Conventions

Symbol names and code examples in running text appear in bold, as in *cold-boot. Code exam-
ples set off from the main text appear in a typewriter style typeface, as follows:

(pref a 23)

Names that stand for pieces of code (metavariables) appear in italics, as in pvar-expression. In
function or macro definitions, argument names appear in italics. Keywords and argument list
symbols (&optional, &rest, etc.) appear in bold:

pref pvar-expression send-address &key :vp-set

Argument names typically indicate the data type(s) accepted for that argument; for example,
argument names containing the term pvar must be parallel variables. The name integer-pvar re-
stricts an argument to a parallel variable with integer values. Functions typically signal an error
when given arguments of an improper type.

The table below summarizes these notation conventions:

Convention Meaning

boldface Symbol names, keywords, and code examples in text.
italics Metavariables and argument names.

typewriter Code examples set off from text.

=> Evaluates to.

==> Expands into (macros, for example).

<= Are equivalent (produce the same result).

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

Internet

Electronic Mail: customer-support@think.com
Usenet

Electronic Mail: ames!think!customer-support
Telephone: (617) 876-1111

For Symbolics users only:

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc-
curs, simply press Ctrl-M to create a report. In the mail window that appears, the To: field
should be addressed as follows:

To: customer-support@think.com

Please supplement the automatic report with any further pertinent information.

xvii

Part I
*Lisp Overview

Chapter 1

*Lisp Functions and Macros

This chapter provides an overview of the functions and macros of *Lisp, organized in
categories of functionally related operations. Only the names of functions are shown;
consult the corresponding entry in the dictionary for argument lists and descriptions.

1.1 Basic Pvar Operations

*Lisp includes basic operations to allocate, access, modify, and deallocate pvars.

1.1.1 Pvar Allocation
These operations allocate/deallocate permanent pvars:

*deallocate-—'defyars *defvar

These operations allocate/deallocate global pvars:

allocate!! *deallocate

These operations allocate local pvars for the duration of a body of code:

*let *let*

4 *Lisp Dictionary

This operation returns a temporary pvar with the same value in each processor:

These operations return a temporary pvar of a specific data type:

array!! : front-end!! ; make-array!!
typed-vector!! vector!!

1.1.2 Pvar Data Type Declaration and Conversion

These forms are used to declare/undeclare the data type of a pvar:

*locally *proclaim unproclaim

These operations are used to convert pvars from one data type to another:

coerce!! taken-as!!

1.1.3 Pvar Referencing and Modification

This operation is used to reference the values of a pvar:

pref

These operations are used to modify the values of a pvar:

*set *setf

These operations are used to define *setf methods for user-defined functions:

*defsetf *undefsetf

This operation is used in passing aggregate pvar elements to user-defined functions, to
prevent copies of those elements from being made:

1.1.4 Pvar Information

These predicate operations test the data type of a pvar:

booleanp!! characterp!! complexp!!
floatp!! front-end-p!! integerp!!
numberp!! string-char-p!!- structurep!!
typep!!

These operations return general information about a pvar:

allocated-pvar-p describe-pvar pvar-exponent-length
pvar-mantissa-length pvar-name pvarp
pvar-plist pvar-type pvar-vp-set

These operations return Paris-level information about a pvar:

pvar-length Returns Paris field length of a pvar, in bits.
pvar-location Returns Paris field-id of a pvar.

These operations are used to print the values contained in a pvar:

PPP ppp!!

ppp-address-object ppp-css

pppdbg ppp-struct

pretty-print-pvar _pretty-print-pvar-in-currently-selected-set

1.2 *Lisp Function Definition

These Common Lisp operations are used to define, call, and trace *Lisp functions:

apply defun funcall
trace untrace

These *Lisp operations are used to define, call, and trace user-defined *Lisp functions
that must reset the *Lisp stack (see the definition of *defun for more information):

*apply *defun o *funcall
*trace un*defun *untrace

6 : k *Lisp Dictionary

1.3 Processor Selection

These forms conditionally bind the currently selected set of processors during the
evaluation of their body forms or clauses:

*all *case case!!

*cond cond!! .. “*ecase .
ecase!! *if if!!

*unless ‘ *when : with-css-saved

This form iterates over the currently selected set of processors:

do-for-selected-processors

These forms return a list of the send addresses of all active processors:

list-of-active-processors loap

1.4 Operations on Simple Pvars

*Lisp includes specialized operations for simple (boolean, numeric, or character)
pvars. '

1.4.1 Boolean Logical Operators

These operations perform logical operations on boolean pvars:

and!! not!! or!! xor!!

1.4.2 Numeric Pvar Operations

*Lisp includes operations that perform mathematical tests and operations on numeric

pvars.

1.4.2.1 Numeric Predicates

evenp!! minusp!!
oddp!! plusp!!

1.4.2.2 Relational Operators

=!! <!
=11 <=!!
eq!! eql!!

1.4.2.3 Math Operators

+11 -

1411 1=
compare!! *decf
floor!! ged!!
leml! log!!
mod!! random!!
signum!! sqrt!!

1.4.2.4 Trigonometric Functions

acos!! asin!!
acosh!! asinh!!
cos!! sin!!

cosh!! sinh!!

1l

abs!!
exp!!
*incf
max!!
rem!!
truncate!!

null!!

zerop!!

>

>=!!

equalp!!
nt
ceiling!!
expt!!
isqrt!!
min!!
round!!

atan!!

atanh!!

tan!!

tanh!!

8 *Lisp Dictionary

1.4.2.5 Floating-Point Pvar Operators

fceiling!! ffloor!! float!!
float-sign!! fround!! ftruncate!!
scale-float!!

1.4.2.6 Floating-Point Pvar Information Functions

float-epsilon!! least-positive-float!! least-negative-float!!
most-positive-float!! most-negative-float!! negative-float-epsilon!!

1.4.2.7 Complex Pvar Operators

abs!! cis!! complex!!
conjugate!! imagpart!! phase!!
realpart!!

1.4.2.8 Bitwise Integer Operators

ash!! byte!!

byte-position!! byte-size!!

deposit-byte!! deposit-field!!

dpb!! gray-code~-from-integer!!
integer-from-gray-code!! integer-length!!
integer-reverse!! load-byte!!

ldb!! Idb-test!!

mask-field!! rot!!

1.4.2.9 Bitwise Logical Operators

boole!! logand!! logandc1!!
logandc2!! lotbitp!! logcount!!
logeqv!! logior!! lognand!!
lognor!! lognot!! logorci!!

logore2!! logtest!! logxor!!

: *Lisp Functions and Macro

1.4.3 Character Pvar Operations

*Lisp includes operations that construct, test, and compare character pvars.

1.4.3.1 Character Pvar Operators

character!! char-downcase!!
char-int!! char-upcase!!
digit-char!! int-char!!

1.4.3.2 Character Pvar Attribute Opeiators

char-bit!!
char-font!!

char-bits!!
initialize-character

1.4.3.3 Character Pvar Predicates

alpha-char-p!!
characterp!!
lower-case-p!!
upper-case-p!!

alphanumericp!!
digit-char-p!!
standard-char-p!!

1.4.3.4 Character Pvar Comparisons

char=!! char<!!
char/=!! char<=!!
char-equal!! char-greaterp!!

char-not-equal!! char-not-greaterp!!

char-flipcase!!
code-char!!
make-char!!

char-code!!
set-char-bit!!

both-case-p!!
graphic-char-p!!
string-char-p!!

char>!!

char>=!!
char-lessp!!
char-not-lessp!!

*Lisp Dictionary

1.5 Operations on Aggregate Pvars

*Lisp includes specialized operations for aggregate (array, structure, or front-end)
pvars.

1.5.1 Array Pvar Operations

*Lisp includes operations to create, modify, and test multidimensional array pvars.
Also included are specialized operations for one-dimensional array pvars (vectors).

1.5.1.1 Basic Array Pvar Operations
These operations return a temporary array pvar:

array!! make-array!!

These operations obtain information about an array pvar:

*array-dimension array-dimension!!
*array-dimensions array-dimensions!!
*array-element-type array-in-bounds-p!!
*array-rank array-rank!!
*array-total-size array-total-size!!
array-row-major-index!! sideways-array-p

These operations access elements of array pvars:

aref!! row-major-aref!!
row-major-sideways-aref!! sideways-aref!!

These operations map a function over a set of array pvars:

amap!! *map

Chapter 1: *Lisp Functions and Macros 11

These are specialized operations for bit-array pvars:

bit!! bit-and!! bit-andc1!! bit-andc2!!
bit-eqv!! bit-ior!! bit-nand!! bit-nor!!
bit-not!! bit-orc1!! bit-orc2!! bit-xor!!
sbit!!

These operations convert arrays to and from a sideways (slicewise) orientation:

*processorwise *sideways-array *slicewise

1.5.1.2 Vector Pvar Operations
These operations return a temporary vector pvar:

typed-vector!! vector!!

These are specialized operations for vector (one-dimensional array) pvars:

cross-product!! dot-product!! v+!!
v-!! v*!! vabs!!
vabs-squared!! vscale!! vscale-to-unit-vector!!

*vset-components

These are specialized operations for single-float vector pvars:

sf-cross-product!! sf-v+-constant!! sf-v--constant!!
sf-v*-constant!! sf-v/~constant!! sf-vabs!!
sf-vabs-squared!! sf-vector-normal!! sf-vscale-to-unit-vector!!
dsf-cross-product!! dsf-vector-normal!!

dsf-vscale-to-unit-vector!!

These are serial (front-end) equivalents to the parallel vector operators:

\dot-product cross-product v+
v+-constant v--constant v-

v* v*constant v/-constant
vabs vabs-squared veeiling
vector-normal vfloor vround

vscale vscale-to-unit-vector vtruncate

12 *Lisp Dictionary

These are specialized operations for sequence pvars:

copy-seq!! count!! count-if!!
count-if-not!! every!! *ill

find!! find-if!! find-if-not!!
length!! notany!! notevery!!
*nreverse nsubstitute!! nsubstitute-if!!
nsubstitute-if-not!! position!! position-if!!
position-if-not!! reduce!! reverse!!
some!! subseq!! substitute!!
substitute-if!! substitute-if-not!!

Note that in *Lisp, sequence pvars are defined as one-dimensional array (vector)
pvars.

1.5.2 Structure Pvar Operations

This operation defines a parallel structure type and defines functions that create and
access instances of that parallel structure type:

*defstruct

1.6 Processor Addressing Operations

*Lisp includes operators that provide processor addressing information.

1.6.1 Processor Enumeration, Ranking, and Sorting
This operator enumerates the currently active processors:

enumerate!!

These operators rank and sort values in the currently active processors:

rank!! sort!!

1.6.2 Send/NEWS Address Operators

These operators provide access to the send and grid addresses of processors:

cube-from-grid-address cube-from-grid-address!!
cube-from-vp-grid-address cube-from-vp-grid-address!!
grid-from-cube-address grid-from-cube-address!!
grid-from-vp-cube-address grid-from-vp-cube-address!!
self-address!! self-address-grid!!

These operations are tests for off-grid processor addresses:

off-grid-border-p!! off-grid-border-relative-direction-p!!
off-grid-border-relative~p!! off-vp-~grid-border-p!!

1.6.3 Address Object Operators

These operators create and manipulate address objects:

address-nth address-nth!!
address-plus-nth address—-plus-nth!!
address-rank address-rank!!
grid grid!!

grid-relative!! self!!

14 *Lisp Dictionary

1.7 Inter- and Intra-Processor Communication Operations

*Lisp provides operations that transfer values between pvars, exchange values be-
tween different processors, execute scans and reductions across processors, and per-
form global tests.

1.7.1 Inter-Pvar Communication Operators
These operators transfer values between pvars using global routing:

pref!! *pset

1.7.2 NEWS Communication Operators

These operators transfer values between pvars using NEWS communication:

*news news!! news-border!!
*news-direction news-direction!!

1.7.3 Front-End Array to Pvar Communication Operators

These operators transfer values between arrays on the front end and pvars on the
Connection Machine:

array-to-pvar array-to-pvar-grid
pvar-to-array pvar-to-array-grid

Chapter 1: *Lisp Functions and Macros 15

1.7.4 Scan and Spread Operators

These operators perform scans and reductions, and spread values across processors:

reduce-and-spread!! scan!!
spread!!

1.7.5 Segment Set Scanning Operators

These operators create and manipulate segment set objects, and perform segmented
scans:

create-segment-set!! segment-set-scan!!
segment-set-end-bits segment-set-end-bits!!
segment-set-end-address segment-set-end-address!!
segment-set-start-bits segment-set-start-bits!!
segment-set-start-address segment-set-start-address!!

segment-set-processor-not-in-any-segment
segment-set-processor-not-in-any-segment!!

1.7.6 Global Communication Operators

These operators perform a global test or function, returning a single front-end value:

*and *integer-length *logand
*logior *logxor *max
*min *or *sum

*xor

16 *Lisp Dictionary

1.8 VP Set Operations

These operations define, allocate, and deallocate fixed-size and flexible VP sets.

1.8.1 VP Set Definition Operators
This operation is used to define permanent VP sets, both fixed-size and flexible:

def-vp-set

These operations are used to define and allocate temporary, fixed-size VP sets:

create-vp-set let-vp-set

These operations are math utilities that are useful in defining the size of VP sets:

next-power-of-two->= power-of-two-p

1.8.2 VP Set Geometry Functions

This operation creates geometry objects used in defining VP sets:

create-geometry

1.8.3 Flexible VP Set Allocation Operators

These operations are used to modify the geometry of a flexible VP set:

allocate~vp-set-processors allocate-processors-for-vp-set
deallocate-vp-set-processors deallocate-processors-for-vp-set
set-vp-set-geometry with-processors-allocated-for-vp-set

Chapter 1: *Lisp Functions and Macros

1.8.4 VP Set Deallocation Operators

These operations are used to deallocate VP sets:

deallocate-def-vp-sets deallocate-vp-set

1.8.5 Current VP Set Operators

These operations are used to select the current VP set:

set-vp-set *with-vp-set

These operators provide information about the dimensions of the current VP set:

dimension-size dimension-address-length

1.8.6 VP Set Operators

These operations are used to obtain information about a VP set:

describe-vp-set vp-set-deallocated-p
vp-set-dimensions vp-set-rank
vp-set-total-size vp-set-vp-ratio

1.9 General Information Operations

This operator provides a limited help function for *Lisp symbols:

help

This operator displays the current levels of Connection Machine heap and stack

memory use:

*room

18 *Lisp Dictionary

1.10 Entertainment Operations

This operator provides access to the front-panel LED’s:

*light

1.11 Connection Machine Initialization Functions

These operators reinitialize the Connection Machine system:
*cold-boot *warm-boot

These operators add and remove forms from the cold- and warm-boot initialization
lists:

add-initialization delete-initialization

This operator toggles between the *lisp and user packages in the *Lisp interpreter and
in the *Lisp simulator.

*lisp

Chapter 2
*Lisp Global Variables

2.1 Predefined Pvars

These are permanent pvars that are predefined by *Lisp as parallel equivalents for the
Common Lisp constants t and nil. It is an error to use either t!! or nil!! as the destina-
tion for *set, *pset, or any other form that modifies its argument.

This is a predefined pvar with the value nil in each processor:

nill! [Constant]

This is a predefined pvar with the value t in each processor:

t [Constant]

2.2 Configuration Variables

*Lisp provides a number of configuration-dependent variables with values that are set
by operators such as *cold-boot, set-vp-set, and *with-vp-set. A program that de-
pends only on these configuration variables will run on a Connection Machine system
in any grid configuration and at any VP ratio.

It is an error to access these variables before *cold-boot has been called for the first
time. Also, the user must not modify the values of any of these configuration variables.

19

current-cm-configuration [Variable]

The value of this variable is a list of integers. The nth element of the list is the size of
the nth dimension in the current machine configuration.

current-grid-address-lengths [Variable]

The value of this variable is a list of integers. The nth element of the list defines the
number of bits necessary to hold a grid (NEWS) address coordinate for the nth dimen-
sion of the current VP set.

current-send-address-length [Variable]

The value of this variable is the number of bits needed to hold the send address of a
single processor in the current VP set. The variable *log-number-of-processors-
limit* is an obsolete equivalent.

current-vp-set [Variable]

This variable is always bound to the current VP set. Its value changes whenever the
current VP set changes. It is bound by default to the *default-vp-set*. The operators
set-vp-set and *with-vp-set can be used to change the current VP set.

default-vp-set [Variable]

The value of this variable is the default VP set, the VP set that is current when no other
VP set is current. If no initial dimensions are specified, the first time *cold-boot is
called, *default-vp-set* is bound to a two-dimensional VP set with a VP ratio of one.

log-number-of-processors-limit [Variable)

This obsolete variable is equivalent to the variable *current-send-address-length*. It
provides the base 2 logarithm of the number of processors attached.

minimum-size-for-vp-set [Variable]

The value of this variable is the minimum number of virtual processors with which a
VP set may be defined. In the current implementation, this is also the number of
physical processors that is currently attached. The product of the dimensions of any
VP set must be greater than or equal to the value of this variable.

number-of-dimensions [Variable]

This variable is always bound to the number of dimensions in the current VP set. Its
value changes whenever the current VP set changes.

number-of-processors-limit [Variable)

This variable is always bound to the number of virtual processors in the current VP set.
Its value changes whenever the current VP set changes.

2.3 Initialization List Variables

These variables each contain a set of forms that are executed automatically before and
after each execution of *cold-boot and *warm-boot. The *Lisp functions
add-initialization and delete-initialization are used to add and remove forms from
these lists.

*after-*cold-boot-initializations* [Variable]

The forms in this list are executed immediately following any call to *cold-boot.

*after-*warm-boot-initializations* [Variable]

The forms in this list are executed immediately following any call to *warm-boot.

*before-*cold-boot-initializations* [Variable]

The forms in this list are executed immediately prior to any call to *cold-boot.

*before-*warm-boot-initializations* [Variable)

The forms in this list are executed immediately prior to any call to *warm-boot.

22 *Lisp Dictionary

2.4 Configuration Limits

These constants and variables determine the size limits for specific *Lisp data types.
Other than as documented here, they should not be modified in any way.

2.4.1 Array Size Limits

These constants are implementation-dependent limits on the dimension length, rank,
and total size of array pvars. They should not be modified in any way.

*array-dimension-limit [Constant]

This is the upper exclusive bound on the extent of a single array pvar dimension. Each
dimension specified for an array pvar must be less than *array-dimension-limit. The
value of *array-dimension-limit is guaranteed to be greater than or equal to 1024.

*array-rank-limit [Constant]

This is the upper exclusive bound on the number of dimensions a pvar array can have.
The number of dimensions specified for a *Lisp array pvar must be less than
*array-rank-limit. The value of *array-rank-limit is guaranteed to be greater than or
equal to 8.

*array-total-size-limit [Constant]

This is the upper exclusive bound on the product of all the dimensions specified for an
array pvar. The total number of elements a parallel array can have must be less than

*array-total-size-limit. The value of *array-total-size-limit is guaranteed to be greater
than or equal to 1024.

2.4.2 Character Attribute Size Limits

These variables represent user-specified limits on the length and value of the code,
bits, and font attributes of character pvars. These variables may be set to values other
than the defaults by calling the *Lisp function initialize-character. The value of these
variables should not be modified by the user in any other way.

Note that if the initialize-character function is used, it must be called immediately
prior to calling *cold-boot, because the values of the attribute variables below are used
in initializing *Lisp and the Connection Machine system.

*char-bits-length [Variable]

This defines the length in bits of the bits subfield of a pvar character. The default is
4 bits.

*char-bits-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character bits attrib-
ute. The default is 16.

*char-code-length [Variable]

This defines the length in bits of the code subfield of a pvar character. The default is
8 bits. Pvars of type (pvar string-char) have only a code field and are the same length as
*char-code-length.

*char-code-limit [Variable]
This is the upper exclusive bound restricting the value of the pvar character code at-
tribute. The default is 256.

*char-font-length [Variable]
This defines the length in bits of the font subfield of a pvar character. The default is
4 bits.

*char-font-limit [Variable)

This is the upper exclusive bound restricting the value of the pvar character font attrib-
ute. The default is 16.

*character-length [Variable)

This defines the total length in bits of a pvar of type pvar character. The default is
16 bits. '

24 *Lisp Dictionary

*character-limit [Variable]

This is the upper exclusive bound restricting the integer value contained by a pvar of
type character.

2.5 Error Checking

These variables control the error-checking measures taken by the *Lisp interpreter
and compiler in evaluating and compiling code. These variables may be freely modi-
fied by the user to contain any of the specified legal values.

interpreter-safety [Variable]

This variable determines the amount of run-time error checking performed by the
*Lisp interpreter. The value of *interpreter-safety* must be an integer between 0 and
3, inclusive. The effect of each setting is given below.

Most run-time error checking disabled.

1 Minimal run-time error checking; for any error signaled, an error message is
not emitted until the next time a value is read from the CM.
2 Reserved for future expansion, do not use.
3 maximum run-time error checking; error messages emitted immediately.
safety [Variable)

This variable determines the amount of error-checking code generated by the *Lisp
compiler. The value of *safety* must be an integer between 0 and 3, inclusive. The
effect of each setting is given below.

Low safety. Error conditions are prevented from being signalled.

1 Error conditions are signalled, but notification of an error does not occur
at the time the error takes place.
2 Identical to a *safety* level of 3 or 1, depending on the value (t or nil) of the

variable *immediate-error-if-location*, modifiable at run time.
3 High safety. Errors signalled immediately, with detailed error messages.

immediate-error-if-location [Variable]

Determines the action taken at run-time by code compiled with a *safety* value of 2. If
the value of this variable is t, such code behaves as if compiled with a *safety* value of
3. If the value of this variable is nil, such code behaves as if compiled with a *safety*
value of 1.

warning-level [Variable)

This variable controls the type of warnings generated by the *Lisp compiler. The value
of *warning-level* must be one of the symbols :high, :normal, or :none. The effect of
each setting is given below.

thigh Detailed warnings emitted whenever a section of code is not compiled.
:normal Warnings generated only for invalid arguments and type mismatches.
‘none Prevents generation of any warnings.

2.6 *Lisp Compiler Code-Walker

slc: *use-code-walker* [Variable]

This boolean variable controls whether the code-walker portion of the *Lisp compiler
is active. For more information about the code-walker, see the *Lisp Release Notes
Version 5.2. For more information about compiling *Lisp code, see the *Lisp Compiler
Guide Version 5.2

2.7 Pretty-Printing Defaults

These variables provide global defaults for the keyword arguments of all of the pvar
pretty printing operations. Some functions do not include keywords that correspond to
all these global variables; consult the dictionary definition of each printing function for
a list of the keyword defaults used.

26 - *Lisp Dictionary

ppp-default-mode . [Variable]

This variable provides the default for the :mode keyword argument. Its initial value is
:cube. Its other legal value is :grid.

ppp-default-format [Variable]

This variable provides the default value for the :format keyword argument. Its initial
value is the string “’s .

ppp-default-per-line [Variable)

This variable provides the default value for the :per-line keyword argument. Its initial
value is nil.

ppp-default-start [Variable]

This variable provides the default value for the :start keyword argument. Its initial
value is zero.

ppp-default-end [Variable)

This variable provides the default value for the :end keyword argument. Whenever the
current VP set changes and whenever *cold-boot is called, *ppp-default-end* is reset
to the current value of *number-of-processors-limit*.

ppp-default-titie [Variable]

This variable provides the default value for the :title keyword argument. Its initial val-
ue is nil, indicating that no title should be printed.

ppp-default-ordering [Variable]

This variable provides the default value for the :ordering keyword argument. Its initial
value is nil, indicating that no special grid dimension ordering is required.

: *Lisp Global Variables 27

[Variable]

ppp~-default-processor-list

This variable provides the default value for the :processor-list keyword argument. Its
initial value is nil, indicating that all processors between :start and :end should be dis-

played.

h

Chapter 3

*Lisp Glossary

This chapter contains a glossary of special terms and concepts used in descriptions of
the *Lisp language.

3.1 Connection Machine Terminology

These are terms directly relating to the Connection Machine and its relationship to the
*Lisp language.

3.1.1 Machines

Connection The Connection Machine (CM) consists of a large number of pro-

Machine cessors that operate on data in parallel, linked together by an inter-
nal communications network and controlled by an external front-
end computer.

front end The external computer system that transmits instructions and data
to the processors of the CM and receives data returned by the pro-
cessors as a result of their operations is called the front end.

29

*Lisp Dictionary

3.1.2 Processors

processors

physical
processors

virtual
processors

active
processors

currently
selected set

3.1.3 Fields

field

allocation/
deallocation

The conceptual entities that operate on data in parallel within the
CM are called processors. Each processor has an associated local
memory, within which data is stored and manipulated. Each pro-
cessor is also connected to all other processors by an internal com-
munications network. The term “processors” can be used to refer
to the physical processors of the CM, but it is most commonly used
to refer to the virfual processors simulated by the machine. This is
the convention observed in this document.

The single-bit processing units within the CM that operate on data
in parallel are called the physical processors of the machine. Each
physical processor simulates the actions of one or more virfual
processors.

The conceptual processing entities simulated by the physical pro-
cessors of the CM are called virtual processors. This simulation is
transparent to the user. No matter how many virtual processors are
simulated, each has its own associated memory and operates inde-
pendently of the others.

Each processor maintains an internal flag that determines whether
it is active, that is, whether or not it executes the instructions it re-
ceives. Only the active processors of the CM execute any given op-
eration.

The set of all currently active CM processors is called the currently
selected set. The currently selected set is changed by using *Lisp
special forms such as *all, *when, *if, *cond, and *case.

Data is stored on the CM in fields. A field consists of a contiguous
set of bits at the same location in the memory of each processor.

A field is created by allocating, or reserving, the same number of
bits in the memory of each processor. When a field is no longer
needed, it can be deallocated, freeing the memory for use in other
fields.

Chapter 3: *Lisp Glossary

value of a field

The value of a field in any given processor is simply the value con-
tained in the set of bits allocated for the field in that processor’s
memory.

3.1.4 Connection Machine Memory

heap/stack

cold boot

warm boot

Fields are allocated in two areas of memory on the CM known as
the heap and the stack. Fields allocated on the heap are permanent,
and persist until the user explicitly deallocates them. Fields allo-
cated on the stack are temporary, and are automatically deallo-
cated whenever the stack is cleared.

The Connection Machine operation that resets the internal state of
the machine and clears its memory is called a cold boot. All Con-
nection Machine fields are deallocated during a cold boot.

The Connection Machine operation that resets the internal state of
the machine and clears the stack, but does not clear the heap, is
called a warm boot. Fields allocated on the stack are deallocated
during a warm boot.

3.2 *Lisp Terminology

These are terms relating to the data structures and operations of the *Lisp language.

3.2.1 Parallel Variables (Pvars)

parallel variable The *Lisp data structure that represents a collection of values

stored one-per-processor on the CM is called a parallel variable, or
pvar. A pvar consists of a field allocated on the CM and a front-end
data structure that contains the location, length in bits, and data
type of that field.

value of a pvar

corresponding
value

scalar value

pvar contents

*Lisp Dictionary

In any given processor, the value of a pvar is simply the value of its
associated field in that processor.

Given two pvars, A and B, for the value of A in any processor there
is a corresponding value of B located in the memory of the same
processor. Operations on pvars typically act by combining the cor-
responding values of two or more pvars.

A front-end data type, such as an integer, a character, or a struc-
ture object, is called a scalar value.

The contents of a pvar is the entire set of scalar values stored in the
field of that pvar.

3.2.1.1 Pvar Classes

There are two main classes of pvars, heap pvars and stack pvars, corresponding to the
two types of Connection Machine memory.

heap pvars

permanent pvars

global pvars

stack pvars

local pvars

‘temporary pvars

Heap pvars are relatively permanent, long-term storage locations
for data, with global scope and dynamic extent. Heap pvars are di-
vided into permanent pvars and global pvars.

Permanent pvars are created by the *defvar macro. They are
named global pvars and are automatically reallocated whenever
the CM is cold-booted, unless explicitly deallocated by the user.

Global pvars are created by the allocate!! function. They are iden-
tical to permanent pvars, with the exception that global pvars are
not reallocated when the CM is cold booted.

Stack pvars are temporary storage locations for data, with lexical
scope and dynamic extent. They are automatically deallocated
whenever the stack is cleared. Stack pvars are divided into local
pvars and temporary pvars.

Local pvars are created by the *let and *let* macros. They are allo-
cated on the stack as local variables for the duration of a body of
code.

Temporary pvars are returned by most functions and macros in
*Lisp. They are temporary storage locations intended to contain
values only until those values are copied to pvars of one of the

above classes. It is an error to attempt to modify any temporary
pvar value.

Heap and stack pvars are divided into three conceptual classes based on the data types
of their values: simple pvars, aggregate pvars, and general pvars. Simple and general
pvars may also be declared as mutable pvars.

simple pvars

aggregate pvars

general pvars

mutable pvars

Simple pvars contain either boolean, numeric, or character values.

Aggregate pvars contain either arrays, structure objects, or point-
ers to front-end data structures.

General pvars can contain values of differing data types, with the
exception that general pvars may not contain aggregate data ob-
jects such as arrays or structures. General pvars are not as efficient
as simple or aggregate pvars, because type-checking overhead is
required by their use and because code containing general pvars
cannot be compiled.

Mutable pvars are simple or general pvars that have been declared
to contain values of unspecified bit sizes. *Lisp code containing
simple mutable pvars cannot be compiled as efficiently as code
containing simple pvars of fixed size.

3.2.2 Processor Addressing

The value of a pvar in any processor may be accessed and modified. To do this, it is
necessary to specify a processor’s address within the CM. There are two basic schemes
in *Lisp for assigning addresses to processors: send addressing and grid addressing.

configuration

send
address

An abstract arrangement of processors that groups them in an
n-dimensional array, such as a line, a plane, or a cube, is called a
configuration. The number of dimensions in a configuration is the
rank of that configuration. The geometry of the current VP set de-
termines the current configuration. Note: the terms grid, machine
configuration, and NEWS grid are sometimes used synonymously
with configuration.

Each processor has a unique send address, roughly corresponding
to the location of the processor within the hardware. Send ad-
dresses range between zero and one less than the total number of

grid address

address object

*Lisp Dictionary

processors. (In previous versions of *Lisp, this was referred to as
the cube address of the processor.)

Alist of coordinate integers that specify a processor’s positionin a
given configuration is called that processor’s grid address. The
number of coordinates in a grid address must be equal to the rank
of the configuration. For example, the grid address of a processor
in a two-dimensional configuration is a list of two integers.

An address object is a data structure that can be used as a send ad-
dress but that specifies a given processor’s grid address. Address
objects are more flexible than grid addresses because they auto-
matically translate grid addresses between different processor
configurations. This flexibility is obtained at the cost of efficiency,
however; address objects are less efficient than other forms of pro-
cessor addressing.

3.2.3 Virtual Processor Sets

geometry

geometry object

virtual
processor set

VP set object

VP ratio

A geometry is a description of the size and shape of a particular
configuration of virtual processors. It can be either a list of integers
or a geometry object.

A geometry object is a front-end data structure that contains a spe-
cified geometry. It is used to define the size and shape of virtual
processor sets.

A virtual processor set, or VP set, is an arrangement of virtual pro-
cessors in a specified n-dimensional geometry. A VP set can have
pvars associated with it, and values may be transferred between
pvars associated with different VP sets. Only one VP set, known as
the current VP set, may be active at any given time.

A front-end data structure defining the geometry and associated
pvars of a virtual processor set is called a VP set object.

The number of virtual processors simulated by each physical pro-
cessor on the CM for a given VP set is referred to as the virtual pro-
cessor ratio, or VP ratio, of the VP set.

3.2.3.1 Classes of VP Sets

There are two main classes of VP sets, permanent and temporary. Permanent VP sets
are further divided into fixed-size and flexible VP sets.

permanent
VP set

fixed-size
VP set

flexible

VP set

temporary VP
sets

defined/
instantiated

A permanent VP set is defined using the def-vp-set operator. Per-
manent VP sets are automatically reallocated whenever the CM is
cold booted, unless the user explicitly deallocates them.

A fixed-size VP set has a specific geometry that does not change.
Once a fixed-size VP set has been defined, it may be used immedi-
ately.

A flexible VP set is initially defined with no geometry information.
Before a flexible VP set can be used, it must be instantiated, that is,
provided with a temporary geometry definition. The operator
allocate-processors-for-vp-set is used to instantiate flexible VP
sets.

A temporary VP set is defined using either the create-vp-set or the
let-vp-set operator. They are deallocated during a cold boot, as
are their associated pvars. Temporary VP sets are always of fixed
size.

A permanent VP set is defined by the def-vp-set operator. A tem-
porary VP set is defined either by the create-vp-set or the let-vp-
set operator. Fixed-size VP sets may be used immediately, but flex-
ible VP sets must be instantiated, or provided with a temporary ge-
ometry definition, before they can be used.

3.2.4 Important VP Sets

current VP set

current
configuration

At any one time, there is one active VP set; it is called the current VP
set. Only pvars associated with the current VP set are directly ac-
cessible. Unless otherwise specified, all newly declared pvars are
associated with the current VP set. The variable *current-vp-set*
is always bound to the current VP set.

The rank and size of the current VP set, i.e., the size and shape of
the set of processors currently in use, is often referred to as the cur-
rent configuration of the machine.

.36

default VP set

*Lisp Dictionary

When the CM is cold booted for the first time, a default VP set is
created. Until some other VP set is created and selected, the de-
fault VP set remains the current VP set and determines the current
configuration of the CM. The variable *default-vp-set* is always
bound to the default VP set.

3.3 Background Terminology

The naming convention for *Lisp operators, along with other useful background infor-
mation, is described here.

"

parallel
equivalent of

The names of functions and macros that return pvars generally end
with !! (pronounced bang-bang). This suffix is meant to look like
two parallel lines, emphasizing the parallel nature of the returned
value(s). It is recommended that user-defined functions follow this
convention as it improves readability and helps to indicate which
functions return a temporary pvar result that must be copied intoa
permanent storage location. A few *Lisp macros with names that
do not end in !!, such as *when, *all and *let, may also return a
pvar, depending on their arguments.

*Lisp functions that have side effects involving either the accessing
or modification of pvars, but that do not return a pvar result, gener-
ally have names beginning with * (pronounced star). The *Lisp (star
lisp) language gets its name from this convention.

This phrase is used to describe the correspondence between a
*Lisp function and a Common Lisp function that performs a simi-
lar operation. For example, mod!! is the parallel equivalent of
Common Lisp’s mod. This means that mod!! performs the same
calculation as mod, but that mod!! takes parallel variables as argu-
ments and performs the mod operation in each active processor.

Chapter 4

*Lisp Type Declaration

This chapter describes the different types of parallel variables, or pvars, available in
*Lisp, discusses type declaration and the rules of type coercion, and explains how to
use type declarations in *Lisp.

4.1 Pvar Types

A pvar is defined by the kind of values that can be stored in it. The following pvar types
are supported in *Lisp:

general front-end boolean
signed-byte unsigned-byte defined-float
complex character string-char
array structure

For most pvar types, *Lisp provides several equivalent forms that may be used in
declarations. For instance, for almost any valid pvar type specifier (pvar x), x-pvar is
also a valid type specifier.

Each pvar type is listed below with equivalent type forms. Each pair of forms
separated by <=> is equivalent and may be used interchangeably within *proclaim,
declare, and the forms, as well as with the operators coerce!! and taken-as!!.

general

(pvar t) <=> general-pvar

front-end

(pvar front-end) <=> front-end-pvar

37

boolean

*Lisp Dictionary

(pvar boolean) <=> boolean-pvar

signed-byte

(pvar (signed-byte width)) <=>
<=>

unsigned-byte

(pvar (unsigned-byte width)) <=>
<=>

defined-float

(signed-byte-pvar widrth)
(signed-pvar width)

(unsigned-byte-pvar width)
(field-pvar width)

(pvar (defined-float significand exponent))

(pvar (defined-float * *))
(pvar (defined-float 15 8))

(pvar (defined-float 23 8))

=> float-pvar

<=> (pvar short-float)
=> short-float-pvar

= (pvar single-float)
= single-float-pvar

(pvar (defined-float 52 11)) <=> (pvar double-float)

(pvar (defined-float 74 21))

complex

= double-float-pvar

<=> (pvar long-float)
= long-float-pvar

(pvar (complex (defined-float significand exponent)))

(pvar (complex (defined-float * *))) <=> complex-pvar

(pvar (complex (defined-float 15 8)))
<=> (pvar (complex short-float))
<=> short-complex-pvar

(pvar (complex (defined-float 23 8)))
<=> (pvar (complex single-float))
<=> single-complex-pvar

(pvar (complex (defined-float 52 11)))
<=> (pvar (complex double-float))
<=> double-complex-pvar

(pvar (complex (defined-float 74 21)))
<=> (pvar (complex long-float))
<=> long-complex-pvar

Chapter 4: *Lisp Type Declaration

character

(pvar character) <=> character-pvar

string-char

(pvar string-char) <=> string-char-pvar

array
(pvar (array element-type dimensions))
<=> (array-pvar element-type dimensions)
(pvar (vector element-type length))
<=> (vector-pvar element-type length)
structure

(pvar Sfructure-name) <=> Sstructure—-name-pvar
where structure-name is a parallel structure type that has been defined by
the *Lisp *defstruct operator.

*Lisp also allows mutable pvar types, including general mutable pvars. These pvar
types and the general pvar type are described in separate sections later in this chapter.

4.2 Using Type Declarations

Type declarations are useful for two reasons. First, interpreted code executes faster if
type declarations are provided for all allocated pvars. Second, the *Lisp compiler will
only compile *Lisp code that references pvars that are declared to be of a definite type.
(For this reason, code that uses general or mutable pvars generally will not compile.)

This section provides a basic guide to the methods and use of type declaration in *Lisp.
It includes a description of the operators used for type declaration, along with a set of
guidelines for the use of type declarations in user code. For more information about
type declaration, and further examples, refer to the *Lisp Compiler Guide, Version 5.2.

Remember that a type declaration represents a promise to the compiler that only
values of the declared type will be assigned to a variable or produced by a form that is
declared to be of that type. Type declarations do not cause type coercion; it is an error
for a program to violate a type declaration, and the results of an incorrectly declared
expression are not defined. Also, if a type declaration is changed, all compiled code
that depends on that declaration must be recompiled.

*Lisp Dictionary

4.2.1 *Lisp Code Walker

As of Version 5.2, the *Lisp compiler includes a code walker that permits *Lisp code to
compile more completely. The code walker is an extension of the *Lisp compiler that
“walks” through all the individual forms of a piece of *Lisp code. It records all
declarations it encounters and compiles each *Lisp form it finds.

The code walker can be enabled and disabled by the user. It is disabled by default. To
enable the code walker, set the variable slc::*use-code-walker* to t, or call the
function compiler-options and select the code walker option.

The *Lisp compiler has these additional capabilities when the code walker is enabled:

it *Lisp declarations are recognized in all locations where Common Lisp allows
declaration forms. In particular, the *Lisp compiler recognizes declarations
within defun, let, and let* forms without the need to use the *locally construct.

i All properly declared *Lisp forms compile, not only those within the scope of a
*Lisp macro operator such as *set.

Prior to the addition of the code walker, it was necessary to use the *locally operator to
provide type declarations for some sections of code. Although use of the code walker
makes this operator generally obsolete, *locally may be useful in rare circumstances,
for example to provide declarations for code that is to be compiled with the code walk-
er disabled.

See the Dictionary entry on *locally for more information and for examples of its use.
Refer to Section 4.1, “*Lisp Code Walker,” in *Lisp Release Notes, Version 5.2, for a
discussion of the code walker and its effects on the compilation of *Lisp code.

Important: The examples and rules given in the following sections all assume that the
code walker is enabled.

4.2.2 *Lisp Declaration Operators

Three operators are used for type declaration in *Lisp: the Common Lisp declaration
operators declare and the, and the *Lisp declaration operator *proclaim. A general
description of the use of each of these operators appears below.

Important: The following examples assume that the *Lisp code walker is enabled.

The *proclaim operator is used in the following ways:

i To declare the data type of a permanent pvar defined by *defvar, as in

(*proclaim “ (type (pvar single-float) my-pvar))
(*defvar my-pvar (random!! (!! 1.0)))

which declares the permanent pvar my-pvar to be of type (pvar single-float).

iz To declare the pvar data type returned by a user-defined *Lisp function, as in

(*proclaim
“ (ftype
(function (pvar pvar) (field-pvar 16))
my-pvar-function))

which declares that the pvar returned by the function my-pvar-function is of
type (field-pvar 16).

i To declare the data type of scalar variables and user-defined functions that are
used in a pvar expression (any expression that returns a pvar as its value), as in
the following examples:

(*proclaim
(type (unsigned-byte 8) *my-limit*))
(*defvar *my-limit* 20)
(*set data-pvar
(+!! (random!! (!! *my-limit*))
(random!! (!! *my-limit*))))

the global variable *my-limit* used in the two calls to !! is declared to be of
type (unsigned-byte 8).

An example of a function declaration is given by the expressions

(*proclaim “ (function die-roll () fixnum))
(defun die-roll () (+ (random 6) (random 6) 2))
(*set dice-pvar (!! (die-roll)))

in which the user-defined function die-roll is declared to return a fixnum result.

Important: Do not use *proclaim to declare the returned values of Common
Lisp functions. Instead, use the Common Lisp the operator as shown in the
section on the below.

The Common Lisp declare operator is used in the following ways:

it To declare the pvar data type of local pvars created by *let or *let*, as in

(*let ((pvar-1 (random!! (!! 1.0)))
(pvar-2 (random!! (!! 10)))
(declare (type single-float-pvar pvar-1))
(declare (type (field-pvar 8) pvar-1))
(pvar-computation pvar-1 pvar-2))

it To declare the data types of arguments to functions defined by defun or
*defun. For example,

(*defun pvar-computation (pvar-1 pvar-2)
(declare (type single-float-pvar pvar-1l))
(declare (type (field-pvar 8) pvar-2))
(combine-pvars pvar-1l pvar-2))

To declare the data types of scalar local and looping variables, as in

(let ((limit (+ 2 (random 8))))
(declare (type fixnum limit))
(*let ((sum-pvar (!! 0)))
(do ((i 0 (+1i 2)))
((>= 1 limit) sum-pvar)
(declare (type fixnum 1i))
(*set sum-pvar
(+!! sum-pvar (random!! (!! i))
(random!! (!! limit)))))))

The Common Lisp the operator is used to declare the data type of an expression in
situations not covered by either of the above two operators.

To declare the data type returned by a Common Lisp expression, as in

(*set data-pvar
(!! (the (unsigned-byte 32)
(+ normal-limit extra-limit))))

Chapter 4: *Lisp Type Declaration 43

To make “on the spot” declarations where a single inline declaration is
preferable to a more global, widespread declaration. For example,

(*set data-pvar
(log!! (the double-float-pvar figures-pvar)))
(*set (the (pvar unsigned-byte 16) data-pvar)
(the (pvar (unsigned-byte *))
(if store-three-pvar-p (!! 3) (!! 0))))

Note that it is no less efficient to use *proclaim or declare in place of the wherever this

is possible, i.e., in declaring the data types of pvars and the data types returned by
user-defined *Lisp functions. Readability and maintainability of code can often be
improved by doing so.

4.2.3 Basic Rules of Type Declaration

The following is a set of basic guidelines for the declaration of *Lisp data objects.
These rules describe the data objects that must be declared in order to permit code to
compile, and describe how these objects should be declared. These rules also describe
which data objects should not be declared.

Declaring Pvars

i

Declare with *proclaim the data type of permanent pvars defined by *defvar.

Declare with declare or the the data type of global pvars created by allocate!!
wherever these pvars are used.

Declare with declare the data type of local pvars defined by *let and *let*.

Don’t declare the pvar data type of temporary pvars returned by !!.

Declaring Pvar Functions

i

Declare with declare the arguments of a user-defined *Lisp function (i.e., a
function defined by either defun or *defun).

Declare with *proclaim the returned value of a user-defined *Lisp function.

Don’t declare the pvar data type returned by any predefined *Lisp operator.

44 *Lisp Dictionary

Declaring Scalar Expressions

i Declare with *proclaim the data type of any scalar global variable that is used
in a pvar expression.

i1 Declare with declare the data type of any scalar local variable thatis used ina
pvar expression (i.e., a variable defined by let, let*, or the do family of looping
operators).

i Declare with the the data type of any scalar expression other than a variable
(i.e., a call to a Common Lisp function) that is used in a pvar expression.

it Don’t declare the data type of scalar constants used in pvar expressions.

Important: These rules assume that the *Lisp code walker is enabled. For a
description of the code walker, see Section 1.2.1, above.

The next three sections provide examples for each of these rules.

4.2.3.1 Declaring Pvars

n Declare with *proclaim the data type of permanent pvars defined by *defvar.
For example, the expressions

(*proclaim “ (type (pvar (unsigned-byte 8)) permanent-pvar))
(*defvar permanent-pvar (random!! (!! 255)))

(*proclaim ‘ (type boolean-pvar y-or-n-p-pvar))
(*defvar y-or-n-p-pvar (zerop!! (random!! (!! 2))))

declare permanent-pvar to be of type (pvar (unsigned-byte 8)), and
y-or-n-p-pvar to be of type boolean-pvar.

i Declare with declare or the the data type of global pvars created by allocate!!
wherever these pvars are used. For example, in

(setq allocated-pvar
(allocate!! (!! 0.0) nil “single-float-pvar))
(*set (the single-float-pvar allocated-pvar)
(random!! (!! 10.0)))
(dotimes (i 3)
(*incf data-pvar
(the single-float-pvar allocated-pvar))))

Chapter 4: *Lisp Type Declaration

the the operator is used to declare allocated-pvar to be of type
single-float-pvar.

Another example is

(defvar float-pvars nil)

(dotimes (i 10)
(push (allocate!! (!'! 0.C) nil “single-float-pvar)
float-pvars))

(defun randomize-nth-pvar (n)
(*set (the single-float-pvar (nth n float-pvars))
(random!! (!! 1.0))))

in which the is used to declare whichever allocated pvar is selected from the
float-pvars list to be of type single-float-pvar.

n Declare with declare the data type of local pvars defined by *let and *let*.

For example,

(*let ((local-pvar (random!! (!! 32))))
(declare (type (unsigned-byte-pvar 8) local-pvar))
(*!! (+!! local-pvar local-pvar) (!! 2)))

(*let* ((float-pvar (random!! (!! 5.0)))
(integer-pvar (floor!! float-pvar)))
(declare (type short-float-pvar float-pvar))
(declare (type (field-pvar 6) integer-pvar))
(abs!! (-!! float-pvar integer-pvar)))

2 Don’t declare the pvar data type of temporary pvars returned by !!.

For example, the following declarations are unnecessary:

;;; These declarations are unnecessary.

(the (unsigned-byte-pvar 5) (!! 3))

(the character-pvar (!! #\C))

(the (array-pvar single-float (3)) (!! #(1.0 2.0 3.0)))

4.2.3.2 Declaring Pvar Functions

Declare with declare the arguments of a user-defined *Lisp function (i.e., a
function defined by either defun or *defun).

For example, in

(*defun global-range (argument-pvar)
(declare (type (field-pvar 256) argument-pvar))
(- (*max argument-pvar) (*min argument-pvar)))

the argument-pvar to global-range is declared to be of type (field-pvar 256),
and in

(defun zero-pvar-when (test-pvar float-pvar)
(declare (type boolean-pvar test-pvar))
(declare (type double-float-pvar float-pvar))
(if!! test-pvar flodt—pvar (!'! 0.0)))

the test-pvar argument is declared to be of type boolean-pvar, and the
float-pvar argument of type double-float-pvar.

Declare with *proclaim the returned value of a user-defined *Lisp function.

For example, in

(*proclaim
 (function surface-area!! (pvar pvar)
(pvar single-float)))

the function surface-area!! is declared to return a pvar argument of type
(pvar single-float) while in

(*proclaim
(ftype (function (pvar) boolean) interesting-float-p))

the function interesting-float-p is declared to return a single argument of type
boolean.

2t Don’t declare the pvar data type returned by any predefined *Lisp operator.

For example, the following declarations are unnecessary:

;1; These declarations are unnecessary.

(*proclaim “ (function evenp!! (t t) (pvar boolean)))
(*proclaim “ (ftype (function (t) boolean-pvar) evenp!!))
(*set data-pvar (the single-float-pvar (log!! (!! 3))))

4.2.3.3 Declaring Scalar Expressions

i Declare with *proclaim the data type of any scalar global variable that is used
in a pvar expression.

For example, in

(*proclaim “ (type single-float global-variable))
(defvar global-variable 50)
(*set data-pvar (log!! (!! global-variable)))

the global-variable used to initialize data-pvar is declared to be of type
single~float while in

(*proclaim “ (type character special-char))

(defvar special-char #\Return)

(*if (char=!! char-pvar (!! special-char))
(handle-special-char char-pvar)
(handle-normal-char char-pvar))

the variable special-char is declared to be of type character. Note that the
*proclaim operator must be used instead of Common Lisp’s proclaim. Other-
wise, the *Lisp compiler will not have access to these declarations.

Declare with declare the data type of any scalar local variable that is used in a
pvar expression (i.e., a variable defined by let, let*, or the do family of looping
operators). For example, in

(do ((i 1 (*1i2)))
((> i 256) data-pvar)
(declare (type fixnum 1i))
(*incf (data-pvar (!! i))))

the iteration variable i is declared to be of type fixnum.

*Lisp Dictionary

Another example is the expression

(let ((maximum-limit 10)
(minimum-limit 2.5))
(declare (type fixnum maximum-limit))
(declare (type single-float minimum-limit))
(*set condition-pvar
(cond!!
((>!'! highest-reading-pvar (!! maximum-limit))
(front-end-pvar!! “TOO-HIGH))
((<!! lowest-reading-pvar (!! minimum-limit))
(front-end-pvar!! “TOO-LOW))
(t!! (front-end-pvar “WITHIN-LIMITS)))))

in which the local variables maximum-limit and minimum-limit are declared
to be of type fixnum and type single-float, respectively.

Important: Because the iteration variable defined by a call to dotimes is always
of type fixnum, it is unnecessary to use declare to declare the type of this vari-
able. For example,

;3 The declaration in this dotimes call is unnecessary.
(dotimes (i 50) (*incf data-pvar (!! (the fixnum i))))

2 Declare with the the data type of any scalar expression other than a variable
(i.e., a call to a Common Lisp function) that is used in a pvar expression.

For example, in

(*proclaim ‘ (type fixnum sum elements))
(*set data-pvar (!! (the short-float (/ sum elements))))

the expression (/ sum elements) is declared to be of type short-float, and in

(*proclaim “ (type fixnum total))
(*set data-pvar (+!! (!! (the fixnum (+ total 4)))
(!! (the fixnum (- total 4)))))

the expressions (+ total 4) and (- total 4) are declared to be of type fixnum.

Note that all variables used in these scalar expressions must also be declared,
as shown in this example.

Chapter 4: *Lisp Type Declaration 49

2 Don’t declare the data type of scalar constants used in pvar expressions.

For example, the following declarations are unnecessary.

;33 The declarations in these forms are unnecessary.
(*set pi-pvar (!! (the short-float 3.14159)))
(*set space-char-pvar (!! (the character #\Space)))
(*set array-pvar (!! (the (array fixnum (5))

#(1 2 3 4 5))))

4.3 General Pvars

This section describes in more detail the general pvar data type.

(pvar t)

A pvar that is declared explicitly as (pvar t) is a general pvar. Before a general pvar is
initialized, it is referred to as void.

General pvars are allowed to contain, in different processors at the same time, data
belonging to any pvar type except the array or structure types.

Whenever a general pvar is used, *Lisp checks to see which data types it contains.
Then, each data type the general pvar contains is checked to verify that it satisfies the
domain requirements of the operation being performed. All this run-time checking
takes time. General pvars therefore offer almost complete generality with a corre-
spondingly severe reduction in run time efficiency.

When data of a particular type is stored in a general pvar, *Lisp ensures that the pa-
rameters for that type are identical across all the values of that type. If an attempt is
made to store pvars of the same type but with divergent parameters into a general pvar,
*Lisp will coerce each pvar into a single type with identical parameters.

For example, when source values of type (defined-float 52 8) are stored in a general
pvar containing values of type (defined-float 23 11), the source values are copied and
they and all the original values in the destination are coerced into type
(defined-float 52 11).

General pvars can receive data from any pvar that is not of type array or structure.
When data of a particular pvar type is stored in a general pvar, *Lisp applies rules of
type coercion specific to that pvar type.

50 *Lisp Dictionary

Within a *set form, a general pvar destination is always expanded as necessary to hold
whatever size data is provided by the source. If the source is a general pvar, *set
executes as though it were called once for each type of data contained in the source
general pvar. Thus, given a general pvar source containing boolean, signed-byte, and
complex data, the *set operation effectively performs the following sequence. First,
only the processors containing boolean data are activated. Next, the boolean data is
copied to a boolean pvar. Finally, *set is called with the general destination pvar and
the boolean source pvar. This process is repeated for the signed-byte and complex
data types.

If a *set with a general pvar destination does nof have a general pvar source, the *set
operation depends on the type of the source pvar, as described under each pvar typein
Section 4.6, “Rules of *Lisp Type Declaration and Coercion,” below.

4.4 Mutable Pvars

Pvars may be declared to be mutable, which allows them to contain data of varying size
and type. To declare a pvar as mutable, specify the symbol * in place of one or more
parameters in the type specification of the pvar. For example,

(*let (mutable-signed-pvar)
(declare (type (signed-pvar *) mutable-signed-pvar))
L)
(*proclaim “ (type (pvar (defined-float * *))

mutable-float-pvar))
(*defvar mutable-float-pvar)

4.5 Mutable General Pvars

Pvars that are not declared to be of a specific type default to a type known as mutable
general. Before a mutable general pvar is initialized, it is said to be void.

This is the form used within declarations to explicitly declare a mutable general pvar:

(pvar *)

For example, the following forms proclaim random-mutable-pvar to be a mutable gen-
eral pvar and then allocate the pvar random-mutable-pvar.

(*proclaim “ (type (pvar *) random-mutable-pvar))
(*defvar random-mutable-pvar)

If a mutable general pvar is void and a pvar of any specific data type is *setintoit, then
the mutable general pvar will assume the characteristics of that type, but will retain its
status as a mutable general pvar. Once a mutable general pvar has contained data of
two or more distinct types, however, it loses its mutable quality and becomes an
ordinary general pvar. For example, if a pvar declared to be of type (pvar *) has both
integers and characters stored in it, it becomes a pvar of type (pvar t).

For the purpose of this definition, the following groups of pvar types are considered as
distinct with respect to their effect on a mutable general pvar:

boolean

signed-byte and unsigned-byte
character and string-char
defined-float

complex

The signed-byte pvar type is considered a super type that subsumes the
unsigned-byte pvar type. Similarly, the character pvar type is considered to subsume
the string-char pvar type. Thus, during a session, a mutable general pvar may hold
both string-char and character data and still retain its status as a mutable general
pvar. Similarly, if a mutable general pvar of type unsigned-byte has signed-byte data
stored in it, it changes into a mutable general pvar of type signed-byte.

This is significant because if a mutable general pvar has held only one distinct type of
data, no tests are performed on the types it contains. Thus, the run-time execution
speed of code using mutable general pvars that have held only one distinct type of data
is much faster than the execution speed of the same code using general pvars.

Given these distinctions in type membership, so long as no data of a different type is
*set into a mutable general pvar, the mutable general pvar will behave exactly as
though it was a mutable pvar of the same type as the data last stored it.

Aggregate (array and structure) pvars are a special case. Aggregate pvars may only be
*set into a mutable general pvar if the mutable general pvar is void. In this case, the
mutable general pvar ceases to be a mutable general pvar and becomes an aggregate
pvar of the same type and size as the source pvar.

4.6 Rules of *Lisp Type Declaration and Coercion

This section defines the *Lisp rules of type declaration and coercion. For each *Lisp
pvar type listed below, the following questions are answered:

i Can pvars of this type be declared mutable?

B What types of data can be stored into a pvar of this type?

What type coercions take place if the data is not of the same type as the pvar?
i What happens when data of this type is stored in a general pvar?

In each case, the latter two questions are answered by explaining the type coercions
that occur when *set is used to copy a pvar of one type into a pvar of another type.
Coercions performed by other *Lisp operators (such as coerce!!) behave similarly.

Note that when *set is used to copy values from a source pvar into a destination pvar,
the source pvar is copied and then type converted if necessary. The (possibly
converted) copy of the source pvar is then stored in the destination pvar. No coercion
takes place on the original copy of the source pvar.

(pvar boolean) boolean-pvar

Boolean pvars have no parameters associated with them and are therefore never
mutable.

When boolean values are stored in a general pvar, no type conversion is performed.
Within *set forms, boolean destination pvars can receive data of type boolean only.

A general pvar can be *set into a boolean pvar if and only if all the active data in the
general pvar is boolean.

(pvar front-end)

Front-end pvars have no parameters associated with them and are therefore never mu-
table.

When front-end values are stored in a general pvar, no type conversion is performed.
Within *set forms, front-end destination pvars can receive data of type front-end only.

A general pvar can be*set into a front-end pvar if and only if all the active data in the
general pvar is of type front-end.

(pvar string-char) string-char-pvar

Pvars of type string-char have no parameters associated with them and therefore can
never be declared as mutable.

When data of type string-char is put into a general pvar, it is first converted to type
character.

Within *set forms, string-char destination pvars can receive data of type string-char
or type character only. If the source pvar is of the character data type, then the
expression (*and (string—-char-p!! source)) must return t.

A general pvar can be *set into a string-char pvar if and only if all active data in the
general pvar is of type string-char. That is, (*set destination source) is valid if
destination is a string-char pvar and if (*and (string-char-p!! source)) returns t for the
general pvar source.

(pvar character) character-pvar

Character pvars have no parameters associated with them and therefore can never be
declared as mutable.

When character data is put into a general pvar, no type conversion is performed.

Within *set forms, character destination pvars can receive source data of type
string~char or of type character only.

A general pvar can be *set into a character pvar if and only if all the active data in the
general pvar is of type string-char or of type character.

(pvar (unsigned-byte length)) (field-pvar length)
Pvars of type unsigned-byte are also known as field pvars. They have one parameter
associated with them, a length in bits. This length may be specified as any positive
integer, or as *. Pvars declared as (pvar (unsigned-byte *)) or (field-pvar *) are
mutable. For instance,

(declare (type (field-pvar 16)) ubsixteen)
declares an unsigned-byte pvar of exactly 16 bits per processor. On the other hand,

(declare (type (field-pvar *)) ub-mut)

declares a mutable unsigned-byte pvar.

*Lisp Dictionary

Pvars declared as (pvar (unsigned-byte *)) are initially allocated 1 bit per processor.
They can, however, contain unsigned values of any length.

When data of type unsigned-byte is put into a general pvar, it is first converted to an
equivalent quantity of type signed-byte.

Within *set forms, destination pvars of type unsigned-byte can receive source data of
type unsigned-byte or of type signed-byte only. If the source data is of type
signed-byte, then all the data values must be non-negative; the source data is coerced
to type unsigned-byte before storage is effected. If the destination is of type
(unsigned-byte *), then data of any number of bits is allowed. Otherwise, it must be
possible to represent every active datum in the source using the number of bits
specified for the destination’s length.

A general pvar can be *setinto a pvar of type unsigned-byte if and only if all the active
data in the general pvar satisfies all the constraints detailed in the preceding
paragraph.

(pvar (signed-byte length)) (signed-pvar length)

Pvars of type signed-byte have one parameter associated with them, a length in bits.
This length may be specified as any positive integer greater than 1, or as *. Pvars
declared as (pvar (signed-byte *)) are mutable. For instance,

(*proclaim “ (type (pvar (signed-byte *)) s-mut))

proclaims a mutable signed-byte pvar. Mutable signed-byte pvars are initially
allocated 2 bits per processor. They can, however, contain signed values of any length.

If source data of type signed-byte is moved into a general pvar, and if the source data
length is larger than the length of the signed-byte data already contained in the desti-
nation, the signed-byte data already contained in the general pvar destination is sign-
extended to accommodate the increased size.

Within *set forms, signed-byte pvars can receive source data of type unsigned-byte or
of type signed-byte only. If the source data is of type unsigned-byte, it is coerced into
type signed-byte before *set storage takes place. If the destination is of type
(signed-byte *), then source data of any bit length is allowed. Otherwise, it must be
possible to represent every active datum in the source using the same number of bits as
the signed-byte destination.

A general pvar can be *set into a signed-byte pvar if and only if all the active data in
the general pvar satisfies all the constraints detailed in the preceding paragraph.

Chapter 4: *Lisp Type Declaration SS

(pvar (defined-float significand exponent))

Pvars of type defined-float have two parameters associated with them: each defines
the number of bits allocated per processor to store a portion of a floating-point
number. The first parameter specifies the significand length; the second parameter
specifies the exponent length.

The significand length may be any positive integer greater than or equal to 1 and less
than em:*maximum-significand-length*. The exponent length may be any positive
integer greater than or equal to 2 and less than cm:*maximum-exponent-length*.

Mutable defined-float pvars are declared using * instead of a value for both sig-
nificand length and exponent length. For example:

(declare (type (pvar (defined-float * *))) mut-float)

It is illegal to specify only one of these parameters as *. Mutable floating-point pvars
are initially allocated 23 bits for the significand and 8 for the exponent, in each
processor —with the sign bit, the total length is 32 bits.

When defined-float data is put into a general pvar, floating-point numbers with one
representation may be coerced into floating-point numbers of another representation.
If defined-float data with significand length SL and exponent length EL is copied intoa
general pvar containing defined-float data with significand length GSL and exponent
length GEL, both the copied source and all floating-point values originally in the
destination are coerced into a representation with (max SL GSL) significand length
and (max EL GEL) exponent length. If there was originally no floating-point data in the
general destination pvar, this has no effect; GSL and GEL are both zero in this case. If,
however, floating-point data of a different representation resides in the destination
pvar, such coercion may have repercussions with respect to overflow, underflow,
precision, and accuracy.

The above rule of floating-point coercion for data stored in general pvars also applies
to data stored in mutable defined-float pvars, i.e., pvars that are declared to be of the
type (pvar (defined-float * *)).

Within *set forms, defined-float pvars can receive source data of type unsigned-byte,
type signed-byte, or type defined-float only. If the source data is of type
unsigned-byte or type signed-byte, a copy of it is converted to type defined-float
using the *Lisp float!! operation. This implies that, even if the destination is a mutable
defined-float pvar, it is an error to attempt to store unsigned-byte or signed-byte
source data in that destination unless the source data can be represented in the same

56 - *Lisp Dictionary

floating-point format as is the destination pvar data. If this error is made, an overflow
error may be signaled depending on the interpreter or compiler safety level in use.

If the *set source data is of the same floating-point format as that of the destination, a
simple data copy is done.

If the *set source data is of a floating-point format larger than the destination in either
significand length or exponent length, and if the destination is not a mutable defined-
float pvar, then it is an error.

If the *set destination is a mutable defined-float pvar, then a copy of both the source
and the destination data are converted to a floating-point representation defined by
the maximum of their significand and exponent lengths. After this conversion, a simple
data copy is done.

A general pvar can be *set into a defined-float pvar if and only if all the active data in
the general pvar satisfies the constraints in the preceding paragraphs.

(pvar (complex (defined-float significand exponent)))
*Lisp supports complex pvars with real and imaginary parts of type defined-float only.

The restrictions on complex pvar parameters are identical to the restrictions on
defined-float pvar parameters. The real and imaginary parts are always of exactly the
same type. Mutable complex pvars are declared with a * instead of with an integer
value for each parameter. For example,

(*proclaim “ (type (pvar (complex (defined-float * *))) cplx-mut))

declares a mutable complex pvar capable of storing variably sized complex numbers.

Since complex pvars can contain only defined-float components, the coercion rules for
putting complex data into a general pvar are identical to those for defined-float data.
Note however that complex data is completely independent of defined-float data with
respect to coercion: the existence of either type of datain a general pvar does not affect
the representation of the other type.

The rule of complex coercion for data stored in general pvars also applies to data
stored in mutable complex pvars.

Within *set forms, complex pvars can receive source data of type unsigned-byte,
signed-byte, defined-float, or complex only. If the *set source data is of type
unsigned-byte, signed-byte, or defined-float, it is coerced into the floating-point for-
mat determined by the complex destination, following the same rules as for pvars of

57

type defined-float. The source data is then converted to complex data of the same
floating-point format as the destination, with 0.0 as its imaginary part. Finally, a simple
data copy is done.

General pvars can be *set into complex pvars if and only if all the active data satisfies
the constraints in the preceding paragraph.

(pvar (array element-type dimensions))
Array pvars may not be declared mutable.

Array pvars may not be stored in general pvars. There is one exception: an array pvar
may be stored in a void mutable general pvar. A void mutable general pvar is a pvar of
type (pvar *) that has never had any data stored in it. When an array pvar is stored ina
void mutable general pvar, that mutable general pvar becomes an array pvar with the
same type and size as the array pvar which has been stored in it.

Within *set forms, array pvars can receive source data from other arrays pvars of the
same shape. Effectively, *set is called on each element of the destination and source.
The normal rules of type coercion with respect to the destination apply to *set opera-
tions acting on arrays.

(pvar struct—name)

A pvar of type struct-name may be declared only after struct-name has been defined
with *defstruct.

Structure pvars may not be declared mutable.

Structure pvars may not be stored in general pvars. There is one exception: a structure
pvar may be stored in a void mutable general pvar. A void mutable general pvar is a
pvar of type (pvar *) that has never had any data stored in it. When a structure pvar is
stored in a void mutable general p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>