TEXAS INSTRUMENTS

Improving Man’s Effectiveness Through Electronics

Model 960 Computer

Assembly Language
Programmer’s Reference Manual

MANUAL NO. 942779-9701
ORIGINAL ISSUE 1 SEPTEMBER 1975
REVISED 1 APRIL 1977
INCLUDES
CHANGE1..... 2 APRIL 1977
CHANGE2..... 16 MAY 1979

=

Digital Systems Division

© Texas Instruments 1975, 1977, 1979
All Rights Reserved

The information and/or drawings set -forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the cuter margins of
the page.

Model 960 Computer Assembly Language Programmer’s Reference Manual (942779-9701)

Original Issuec00vunn.. 1 September 1975

Revised and Reissued 1 March 1976

Revised and Reissued 1 August 1976 (ECN 406941)

Revised and Reissued 1 April 1977 (ECN 419551)
Change 1.......... ... 2 April 1977 (ECN 419551)
Change 2.cciviiiinnnnnn 15 May 1979 (ECN 449628)

Total number of pages in this publication is 218 consisting of the following:

N CHISSE Ner CHSSE ReE o
Cover 2 Appendix ADiv 0
Effective Pages 2 Al-A4 0
fi-vi........ . 0., 0 AppendixBDiv 0
Vi .o 2 B-1-B-16 0
Vil L. 0 AppendixCDiv 0
1530 S 2 Cl-C14 0
| S B 0 Appendix DDiv 0
2-1-222. .00l 0 D1-D4............. 0
3-1-346............. 0 Appendix EDiv 0
41-48.............. 0 E1-E2............. 0
51-56. . .coiviin. .. 0 Appendix FDiv 0
57-58. .. i 1 F-1-F22 0
59-512. ... 0 Appendix GDiv 0
61-66.............. 0 G1-G2............. 0
67 i e 2 Appendix HDiv 0
68-6-10............. 0 H1-H2............. 0
7-1-720 00t 0 Alphabetical Index Div. . . .0
73-74.o 1 Index-1 - Index4. 0
T5-T6. v, 0 User’s Response 2
77-78B. ... 2 Business Reply 2
79-710.ot 2 CoverBlank 0

TA1-722. .0 ii i 0 Cover

[
i@ 942779-9701

This manual incorporates programming reference data tor the Texas Instruments models Y60A
and 960B computers. Some of this information was previously found in the Model Y604
Computer Programmer’s Reference Manual, manual number 958360-9701. The detailed informa-
tion about the Symbolic Assembly Language (SAL) used on the 960 series was formerly found
in the Model 960 Computer Assembly Language Programmer’s Guide, manual number
942769-9701. This manual supersedes both previous manuals.

PREFACE

This manual consists of seven sections and eight appendixes. A brief description ot each element
follows.

Section I General Information—This section contains general information about the equipment
and the software that is available to be used with it.

Section II Hardware Features—This section contains information about the Model 960A and
960B hardware and their features.

Section Il Machine Instructions—This section contains information about the machine
instructions for the 960 series computers including format, operation code, mnemonic, operands,
and the types of addressing used with each.

Section IV Language Requirements—This section provides a format of source statements and a
description of the fields and symbols used.

- Section V _Assembler Directives—This section contains information about the directives that are
available for use with the SAL assembler and how to use them.

Section VI Programming Techniques—This section contains programming techniques to be used
by new users of the equipment. Also included is information about common subroutines and
program modules.

Section VII SAL Inputs and Outputs—This section contains information about assembler
input/output formats, etc. It also contains information about the loading and executing of the
assembler.

Appendix A SAL Character Set—This appendix specifies the Hollerith and ASCII codes of the
character set. The decimal and hexadecimal equivalent of each ASCII code is provided.

Appendix B General Tables—This appendix contains arithmetic, conversion, powers, and common
mathematical constants tables and paper-tape ASCII character arrangement.

Appendix C Instruction Tables—This appendix contains tabular material about the source formits
and operation codes for the 960 series machine instructions.

Appendix D Instruction Execution Timing—This appendix contains execution times for the
machine instructions for the series 960 computers.

Appendix E Assembler Directive Table—This appendix contains a list of the assembler directives
for the series 960 computer Symbolic Assembler Language and their formats.

iii Digital Systems Division

942779-9701

Appendix F Sampie Programs—This appendix coniains three sampie programs that are written in
and assembled by SAL.

Appendix G Instruction Index—This index provides references (by paragraph number) to the
machine instructions in Section III. Mnemonics are ordered alphabetically.

Appendix H - An example of Job Control statements for creating an SWIC File to assemble a
prograimn under PAM/D.

iv Digital Systems Division

942779-9701

TABLE OF CONTENTS
Paragraph Title Page

SECTION I. GENERAL INFORMATION

1.1 General 1-1
Equipment Capabilities 0T 1-1
1.3 Symbolic Assembly Language GAL) I-2
SECTION II. HARDWARE FEATURES
2.1 General S e e e e e 2-1
2.1.1 Speciﬁcations..................................2-2
22 SystemOrganization............................‘...2-3
22.1 Data Format L O |
222 Memory L 24
223 Dedicated Memory Locations 7777 24
224 Protected Memory T 24
225 Active Register File oo 24
226 Processing Modest 2-5
227 Program Status Block e 2-5
228 Status Register 2-6
229 Priority Interrupt System 2.7
2.2.10 Communications Register Unit CrRY) ... A 1
2.2.11 Direct Memory Access Channel (DMAC) . .. 2-13
2.2.12 Standard Front Panel 0T 2-14
22.13 Memory Initialization T N 1
22.14 OptionalROMLoader.............................‘2-3()
SECTION Ill. MACHINE INSTRUCTIONS
3.1 Gemeral 3-1
32 Addressing Modes "3
3.2.1 Direct Operand 7 e 3-1
3.22 Indirect and Indexed Operands R e
323 [mmediate Addressing 0o 3-3
324 Base Register Relative Addressing 34
325 Alternate Mode Registers 0o 3-5
3.2.6 Combinations of Addressing Modes XX
33 General Format Description ' " "7t 3-6
33.1 Pre-Indexing and PostIndexing 77777 3-7
332 Effective Operands and Addresses 77 00 37
333 OperandSymbolDeﬁm'tions...........................3-7
34 Format Group I - General Instructions """ ° 3-8
34.1 FormatI-A...................................3-8
342 Format IB 321+3-22
343 Format I.Cy 3-26
344 FormatI-D...................................3-32
345 Fomat LE 3-33
346 FormatI.F R T X

v Digital Systems Division

} 9427799701

Paragraph Title Page
3.5 Format Group Il - Memory Base Relative Instructions 3-34
3501 Format H-A e e e e e e e e e e e e e e e e e e 3.35
3.5.2 Format H-B o o e e e e e e e e e e e e e e 337
353 Format 110 . . . e e e e e e e e e e e e e e e 3-38
20 Format Group lI - Flag and CRU Data Manipulation Instructions 3-39
361 Format 1A o oo e e e e e e e 340
3.6.2 Format [II-B- o e e e e e e e e e e e e e e e e .. 341
363 Format IHI<C o o e e e e e e e e e e e e e e 342
364 Format D PSP 343
3.0.3 Format HI-E o o o e e e e e e e e e e e e e e 344
3.606 Format HE-F o . e e e e e e e e e e e e e e e e e e 345
SECTION IV. LANGUAGE REQUIREMENTS
11 Source Statement Format e e e e e e e e e e e e e e e e 4-1
4.1.1 Character St e 4-1
412 Label Field o e e e e e e e e e e e 4-1
413 Operation Field o e 43
414 Operand Fieldo L. .43
415 Comment Field e e e e e e e e e 4-3
42 EXPressions oo e e e e e e e e e e 4-3
4.2.1 Definition o e 4-3
422 Arithmetic Operators and Order of Evaluation 44
4.3 CONSEANES © © o o v e 44
+.3. Decimal Integer Constants oL a e e e 44
432 Hexadecimal Integer Constants Lo 44
433 Character Constants« &« v v v e e e e e e e e e e e e e e e e e 4-5
44 Symbols L e e e e 4-5
4.5 TErMS .« . o e 4-6
4.6 Hexadecimal Integer Stringso Lo oo oo 4-6
4.7 Character Strings00 e e e e e e e 4-7
48 Relocatability o Lo e e e e e e e e e 4.7
481 Relucatability of Terms in Source Statements 4-7
SECTION V. ASSEMBLER DIRECTIVES
S Directives that Identify Program Segments 5-1
s Procedure Segment (PSEG)o 52
5.1.2 Data Segment (DSEG)o 5-2
5.1.3 Flag Segment (FSEG) o oo 5-2
5.4 CRU Symbolic Address Segment (BSEG) 5.2
5.2 Directives that Control Registers and Program Segments 5-3
5.2 Altermnate Mode Registers (MODE)o 53
5.22 Segment Termination (END)o 5-3
53 Directives that Generate Linkage Data 54
531 Detine Entry Point Symbols (DEF) - 54
532 Identify Externul References (REF)o 54

vi Digital Systems Division

942779-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
54 Directives that Assign Names, Values and Labels
54.1 NameFlagBitAddress(FLAG)..........................5-(»
542 Name CRU Bit Address (CON) 5-6
543 Assign Value to Symbol (EQU) e57
544 Format a Source Language Extension (FRM) 5-8
5.5 Directives that Reserve or Place Data in Memory 59
5.5.1 Reserve Memory (RES) R T T Y)
552 Place Data in Memory (DATA) T S o 1)
5.6 Directives that Control Assembler Qutput N 1
5.6.1 Page Eject (PAGE) T T Y 1
56.2 Program Identification (TITL) T W |
506.3 Unlist Directive (UNL) S-11
564 List Directive (LIS) 5-11

6.1 General 6-1
6.2 Saving Registers 6-1
6.3 Move Operations 6-2
64 ZeroingMemory 6-2
6.5 Shifting Data 6-2
6.6 CRURead Example~ 7 6-3
6.7 Labeling Control Blocks 6-3
6.8 Comparison Code 7 6-5
6.9 - “MVC” Loop and General Iterations "'~ 6-S
6.10 SALI/OOutput 6-6
6.11 Pre-Indexing and Post-Indexing Description 6-6
6.12 Common Subroutines 6-7
6.13 Progam Modules 69
6.13.1 Extemal Reference Directive 6-9
6.13.2 Extemal Definitions Directive 6-9
6.13.3 Linking Program Modules 69

7.1 Gemeral 7-1
7.1.1 Source Listing Format 7-1
7.1.2 Input Format 7-3
7.2 Loading and Executing SALM and SALD 7-8A
7.2.1 Loading Under PSM 79
722 Loading Under PAM _ """~ 7-10
7.23 Loading Under PAM/D 0 7-10
724 Executing Under PSM, PAM, and PAM/D 7-12
7.3 Assembler Restrictions 77 7-12
7.4 Object Output Format~~~ " 7-14
74.1 Output Records 7-14
742 Object Record Formats S e e 7-17

Change 2 vii Digital Systems Division

9427799701

APPENDIXES
Appendix Titde Page
A SAL Character SEt . . . o o v v v e e e e e e e e e e e e e e e e e A-l
B General Tables o o o e e e e e e e e e e e e e e e e e e B-1
¢ Instruction Tables e e e e e e e e e e e e e e e C-1
D Instruction Execution Timing « o« o o« v o 0o oo e s e e e e D-1
E Assembler Directive Table o oo oo e e e E-1
F Sample Programs L ..o e F-1
G Instruction INAeX . . . o« « « v o e e e e e e e e e e e G-1
H SWICHB0087 . . - « o o e e e e e e e e e e e e e e e e H-1
LIST OF ILLUSTRATIONS

Figure Tide Page
21 TI 960 Computer Block Diagram o e e 2-1
2.2 Typical Linkage to Interrupt ROULINE . .« v v v e e e e e e e e e e e e e e 29
23 Typical CRU Configuration o o o oo v oo e e e 2-11
24 CRU Expansion Addressing « « o o o oo v 2-12
2.5 Typical DMAC /O Configuration e e e e e e e 2-14
26 960 Series Computer Standard Front Panel e e e e e e e e e 2-15
2.7 Switch Binary Valueso e e e e 2-17
RE Datd SWItCRES . . .« v v v v e e e e e e e e e e e e e e e 2-18
3-1 Typical Example of Machine Instruction, Index Register,

and Memory Word Contents o e o e e e e e 34
4.1 Source Statement Formato ..o o 4.2
7-1 SAL Object File Format o v o v oo 7-15
7-2 Hexadecimal Data Punched on Object Paper Tape 7-15
7-3 Coded Object Data Word oo . o o v vt e 7-16
74 Program and Program Segment Identification Record Format 7-17
7-5 Linkage Data Record Format o oL 7-19
7-6 Text Record Format « o o« v o oo 7-20
7-7 Assembly End Record Formato e e 7-21
78 End-of-File Record Formal« « o v o 7-22

viii Digital Systems Division

942779-9701
LIST OF TABLES
Table Title Page
2-1 Optional Memory Protect Limits S0
22 Register File ST T N 0
23 Instructions Affecting Status Register Comparison Bits 2-8
24 Front Panel Indicators 77700 2-16
25 Hexadecimal-to-Binary Equivalents L X
26 Starting Address - Contents of ROM Loader "~ 2-21
3-1 Addressing Modes 32
32 Format I-A Instructions 70t 3.9
7-1 Pass 1 Error Messages 74
7-2 Pass 2 Emor Codes T 7-5
7-3 Pass 2 Error Messages oo 7-5
74 Assembler Input Options 7T 7-6
7-5 Assembler Input Options, Pass 1 or Pass2 "7 7-8A
7-6 Binary Internal Code to Binary Card Code Conversion 7-16
Change 2 ix/x Digital Systems Division

o
{@ 942779-9701

SECTION 1
GENERAL INFORMATION

1.1 GENERAL
This section contains general information about the Texas Instruments Inc. 960 series computer -

hardware and the Symbolic Assembly Language (SAL).

1.2 EQUIPMENT CAPABILITIES

The 960A and 960B computers are an advanced implementation of the TI960 computer. The
unique internal design allows easy and efficient application to a wide variety of industrial control
and data acquisition functions. Operational software is prepared in the language normally used to
describe process control functions. These functions may be discrete or continuous operations.
Some typical applications are tool operation, fabrication and automatic assembly material
handling, environmental control, and data acquisition. The computers can be programmed to
perform inspections and issue status reports. Critical data can be displayed instantly to an on-site
operator for evaluation, or it can be relayed to a central computer facility where accurate
management decisions can be made.

Real-time process control requires a computer with fast efficient context switching, manipulation
of bits and bit-fields, and exchange of data between the computers and external devices. The
TI960 series computers solve a great many automation problems with the following features:

® Dual Mode Operation. The dual-mode feature permits fast context switching. While
running in one mode with one set of registers and execution counter, control can be
“switched to a second mode with identical capabilities. This not only provides a new
programming environment, but frequently avoids the need to save the status of the old
~environment. Mode switching can be accomplished under interrupt or programmed
instruction control.

® Real-Time Clocks. Many process control functions are time critical. The computer’s
optional 1-millisecond resolution interval timers allow timing of many tight, time
critical functions. These optional timers are desirable where process functions must
occur at specific instants or must occur after a specific time delay.

® Versatile Direct Data Input/Output. The Communications Register Unit (CRU)
provides a simple, program-controlled interface with low-speed and medium-speed
devices. Interface modules plug into ports which are connector slots in a CRU
backpanel. CRU backpanels are in standard internal expansion or external expansion
configurations. The CRU direct I/O system may be expanded to a total capacity of
4096 input signal lines and 4096 output signal lines.

The CPU backpanel provides the four standard CRU ports. An optional internal
expansion backpanel provides for an additional 12 CRU modules to be mounted within
the CPU chassis. External CRU expansion racks with positions for 16 modules may be
added to expand the total input/output capacity of the 960 CRU to 4096 input and
output lines.

1-1 Digital Systems Division

[o]
(_P@p 9427799701

A mlnte, AV ODILIT . .
A Vdrietly O Lnv modules are avat

Data Modules
16 input/16 output lines (TTL levels)
16 input/16 output lines (EIA levels)
32 Input lines
32 Output lines
Analog-to-Digital modules
Digital-to-Analog modules
Interrupt modules
16 optionally coupled lines
8 maskable interrupt lines (TTL)
Relay Contractor module
Serial Interfaces
EIA level—asynchronous
Current loop—asynchronous
EIA level—synchronous
Universal solder and wirewrap boards for custom interface

1.3 SYMBOLIC ASSEMBLY LANGUAGE (SAL)

The SAL Assembler is a two-pass assembier with two versions, SALD and SALM, that run on the
960 series computers. A source program can be input to SALD or SALM from punched cards, paper
tape. magnetic tape (on a standard width, 800 BPI reel or in a cassette), or disc and an object for-
mat version of the program can be produced. The object can be loaded in a 960 series computer and
is the executable version of the program. The object can be loaded in a 960 series computer and is
the executable version of the program. The object can also be linked with other object modules into
a larger executable program.

The first pass reads the source program, builds and lists a complete symbol table, and generates
the identification and linkage data records of the object program. If bulk storage (magnetic tape
or disc for example) is available, SAL copies the input source file to bulk storage during the first
puss and reads the input for the second pass from bulk storage. Bulk storage is either assumed or
specifiable through an input option, depending on which monitor (i.e., executive system) is being
used. Thus, only one reading of the original source input is necessary. During pass 2, the
assembler uses the symbol table of pass 1 to complete the assembly of the source statements.

The output of pass 2 is the text records and the end record of the object file and the assembly
listing.

SAL generates relocatable code. It allows external references, address arithmetic, and operation
code definition.

1-2 Digital Systems Division

(o]
e@ 942779-9701

SECTION 11
HARDWARE FEATURES

2.1 GENERAL
The 960 series computer block diagram (figure 2-1) shows the basic internal functional
relationship of the hardware. -

® The standard semiconductor (MOS) memory of the 960 series has a storage capacity
ranging from 4096 (8192 for 960B) to 65,536 words. Space is provided within the 960
enclosure for 32,768 (65,536 for 960B) words of semiconductor memory.

® The Central Processing Unit (CPU) can address the memory, perform arithmetic and
logic functions, and sequence and control the exchange of information between
memory and other elements of the computer. The CPU features an arithmetic unit and
a read-only memory (ROM) controller.

® The Communication Register Unit (CRU) controls the exchange of information
between the computer and external devices.

® The Direct Memory Access Channel (DMAC) interfaces the computer with high-speed
automatic computer peripherals, such as disc storage units, high-speed line printers, and
magnetic-tape units. By using a separate controller for each device, concurrent

. operation of high-speed peripherals is achieved.

® The Front Panel (Control Console) allows the contents of memory or internal registers
to be displayed or changed as necessary.

“I
|
|
I
I
I
I
I
I
|
I
I
|
I
|
I
|
I
l
|
I

_1

WORDS (DATA)
DIRECT —
MEMORY

ACCESS
CHANNEL A f\
DATA AND
0 AR'I’:"‘_TET'C INSTRUCTIONS ACTIVE

HIGH~SPEED
PERIPHERALS

l |

' I

I I

l WORDS I

| (CONTROL) \ /|l MEmory |

| I

: I

EXTERNAL COMMUNICATION | gyrs READ-ONLY |
DEVICES REGISTER

nine B LSl |

I |

(A)13I856 L————_——__——_———————__J

Figure 2-1. TI 960 Computer Block Diagram

2-1 Digital Systems Division

o]
@ 942779-9701

2.1.1 SPECIFICATIONS.

® Organization

Parallel Operation

Single and double address logic

Direct addressing of entire memory

Indirect addressing with pre-indexing or post-indexing
32-bit instruction word

16-bit data word

16 active hardware registers (16 bit) for arithmetic, index, or mask operations,
and base addressing

Supervisor and worker execution mode architecture
Memory protect feature for variable amounts of memory
Three levels of priority interrupts

® Pertormance

4-MHz system clock rate
750-nanosecond memory cycle time
500-nanosecond memory access time
Hardware multiply/divide option
Execution times:
Load: 3.3 microseconds
Store: 3.6 microseconds
Add: 3.6 microseconds
Set CRU bit: 2.8 microseconds
Load register in CRU: 4.2 — 8.2 microseconds (1-16 bits)

L Memory

Semiconductor memory using 4096 X 1-bit dynamic MOS arrays; (1024 X 1 bit
dynamic for 960A).

Internal storage for up to 65,536 (32,768 for 960A) words of MOS memory in
standard increments ot 8196 (4096 for 960A)
Power tailure protection.

° Input/Output System

Direct Memory Access Channel (expandable to 8) with 16-bit parallel transter, |
million words per second burst rate, and parity checking interface.

Communications Register Unit with up to 4096 I/O ports and 4 million bits per
second burst rate.

2-2 Digital Systems Division

[«]
q!@ 9427799701

® Instruction Set—78 instructions
9-bit and field manipulating instructions
36 register-memory instructions
5 powertul memory-memory instructions
28 flexible program control instructions

® Physical Characteristics

Dimension (rack-mount configuration)
Height—12.25 inches
Width—19 inches
Depth—24 inches
Weight—75 pounds
Power Requirements: 115 V +10%, 47—63 Hz
Power Consumption: 420 Watts, average

® QOperating conditions:

Temperature (@ sea level)
0°C to 50°C
32°F to 122°F
Humidity 10%-95%
Altitude 0—10,000 feet

2.2 SYSTEM ORGANIZATION
The system organization is discussed in the following paragraphs.

2.2.1 DATA FORMAT. The basic ele

ment of data is a 16-bit word. Bit positions are numbered
from O through 15.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A machine instruction occupies two words of memory in which the bit positions are numbered 0
through 31.
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WORD 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 130 3
WORD 2
2-3

Digital Systems Division

942779-9701

A tixed-point integer occupies one word in memory, represented in binary form with the sign bit

in position 0. A positive sign is indicated by a zero. Negative intcgers are represented in 2

two's<omplement form. Thus, the range of integers representable in a word of memory is from
2'5 through 2' — 1 or from —32,768 through 32,767.

2.2.2 MEMORY. The basic unit of memory is a 16-bit word plus a parity bit (960A) or error
correction bits (960B). The CPU can directly address all 65,536 words of memory. An optional
battery assembly maintains the contents of the semiconductor memory in the event main power
is interrupted.

One 750-nanosecond memory cycle is used every 32 microseconds (63 microseconds for 960A)
to refresh semiconductor memory. This performance reduction should be accounted for in
time-critical instruction sequences.

223 DEDICATED MEMORY LOCATIONS. Certain memory locations have been reserved and
are assigned to interrupt and I/O status information. These locations and their corresponding
functions are listed below:

Memory Address Function
9091 Internal Interrupt
9293 Direct Memory Access Channel Interrupt
9495 Communication Register Unit Interrupt
96 Direct Memory Access Channel Status
9899 Status, Device Controller O
9A-9B . Status, Device Controller 1
9CYD Status, Device Controller 2
9E9F Status, Device Controller 3
AO-Al Status, Device Controller 4
A2-A3 Status, Device Controller 5
A4-AS Status, Device Controller 6
A6-A7 Status, Device Controller 7

2.2.4 PROTECTED MEMORY. Locations 0-7F are protected memory locations reserved for
bootstrap programs. The memory protect area can be expanded as an option (see table 2-1).
Writing in protected locations can be accomplished through the use of the MPO (Memory Protect
Override) switch on the operator’s console (front panel). When MPO is on, protected memory can
be written in through console switches or by software.

2.2.5 ACTIVE REGISTER FILE. A file of 16 active registers are implemented in the computer.
These hardware registers do not actually reside in memory, but a special feature allows them to
be addressed as memory locations 80 through 8F (the corresponding locations in actual memory
are not used). Normally, eight of these registers are available to Supervisor Mode programs and
the other eight are available to Worker Mode programs. All 16 registers are available in either
mode using alternate mode addressing. The 106 registers and the special function assigned to each
are listed in table 2-2. The register file provides 16 words of high-speed scratchpad memory. A
significant .increase in performance results when an instruction operand resides in the register file
and particularly when an instruction resides in the register file.

24 Digital Systems Division

942779-9701

Table 2-1. Optional Memory Protect Limits 2.2.6 PROCESSING MODES. Programs are
executed in one of two modes. Instructions.
Memory Address (hexadecimal) excluding in either mode, have independent access to i
memory locations 80 - A7 general file of eight registers. Programs of
either mode can provide arithmetic, logical.
0-FF and control functions typical of general
0-1FF purpose computers. Programs designed for
0-3FF bit or bitfield processing can also be
0-7FF executed in either mode. These instructions
0-FFF can address any bit in memory or any bit or
0-1FFF bit-field in the Communications Register
0-3FFF Unit.
g.;[;l;i In the Supervisor Mode, the CPU is execut-

ing instructions via the Program Counter
(PC) and utilizing the Supervisor Mode register file for register referencing instructions. In the
Worker Mode, instructions are executed via the Event Counter (EC) and utilize the Worker Mode
register file for register referencing instructions. Any instruction can be executed in either mode.
Mode changing is under program and interrupt control.

2.2.7 PROGRAM STATUS BLOCK. The control conditions for program execution in the CPU
are defined by the PC (Program Counter) or EC (Event Counter) and the status register.
Instruction addressing is controlled by the PC when the computer is in the Supervisor Mode and
by the EC when in the Worker Mode. At the completion of each instruction, depending upon

Table 2-2. Register File

Functional use by Functional Use by
Register Supervisor Worker Arithmetic Bit and Field
Number Address, ¢ Address, Instructions Manipulating Instructions
0 80 88 General Arithmetic Reg. General Register
Index Register 0
I 81 89 General Arithmetic Reg. General Register
Index Register |
2 82 8A General Arithmetic Reg. Generual Register
Index Register 2
3 83 8B General Arithmetic Reg. General Register
Index Register 3
4 84 8C General Arithmetic Reg. Data Base Address
Index Register 4
5 85 8D General Arithmetic Reg. Procedure Base Address
Index Register S
6 86 8E General Arithmetic Reg. Base of Software Flag Arcas
Index Register 6
7 87 8F General Arithmetic Reg. Base of CRU Address

Index Register 7

2-5 Digital Systems Division

942779-9701

notmintisno

the mode currently executing, the PC or EC is incremented by two. Program control instructions
can modity the PC or EC in other ways. The PC or EC always contains the address of the next
instruction to be executed. The PC or EC are implemented by live registers that can be addressed
by special instructions.

-

2.2.8 STATUS REGISTER. The status register is used to hold the condition of the computer
and instruction results at any time and to enable or disable interrupts. A functional chart of the
status bits follows:

1 2 3 4 5 6 7'8 9 10 12 13 14 15
mlolm|lerlulmli]i|o]e c
tlr]l elriclvimlt}o]a cs o| RESERVED
Ml - Mode Indicator

1 RAT H : a2

It MI is O, execution is in the Supervisor Mode; if MI is I, execution is in the
Worker Mode.

Ol Overflow Indicator
Ol is set to | if the results of an arithmetic operation (a signed two’s complement
integer) cannot be contained in 16 bits (32 bits for double-precision instruction)
without truncation. In left shift instructions, it is set if the sign bit (0) is changed
at any time during the shift. If no overflow occurs in an instruction that can
produce overtlow, then Ol is set to 0.

MP - Memory Parity Indicator
It MP is 1, a parity error has occurred on a 960A or a multiple bit error has
occurred on a 960B. (Only single bit errors can be eliminated by error
correction.)

PF - Power Failure Indicator
If PF is 1, a power failure is indicated.

UC - Undefined Code
If UC is 1, an undefined operation code has been detected.

MV Memory Violation
It MV is |, an attempt has been made to alter protected memory.

IM - Index Mode
If IM is O, pre-indexing is performed; if it is a 1, post-indexing is done.

11 - Internal Interrupt Mask
It IT is O, the internal interrupt is enabled.

DI DMAC Interrupt Mask
It DI is 0, the DMAC interrupt is enabled.

2-6 Digital Systems Division

942779-9701

CI — CRU Interrupt Mask
If CI is 0, the CRU interrupt is enabled.

CB - Comparison Bits
Bits 10-12 serve as comparison indicators. They are set as follows for the compare
register algebraic and compare register logical instructions (CR, CRA. CRL, and

CRLA):
ST10 ST11 STI12
(R>EO 1 0 0
(R) =EO 0 1 0
(R) <EO 0 0 |

where

R = effective register contents
EO = effective operand (or effective address for CRA and CRLA)

In addition, these status bits indicate the results of an arithmetic comparison of the etfective
operand of certain instructions with zero. The instructions affected are listed in table 2-3.

For the divide instructions the remainder is tested. For the multiply and all double length
instructions the most significant half of the result is tested. For all the other instructions named,
the final result placed in a register or stored in memory is tested. The comparison status bits are
set as follows:

ST10 ST11 STi12

Effective operand > 0 1 0 0

Effective operand = 0 0 1 0

Effective operand < 0 0 0 1
CO - Carry Out Indicator

Indicates a carry out of bit position 0 (sign bit) for A, AA, S, SA. SAT and AMI
instructions. The bit is set to one when a carry occurs and is reset otherwise.

2.29 PRIORITY INTERRUPT SYSTEM. The computers feature a priority interrupt system
that provides added program control of I/O operations, provides immediate response to abnormal
conditions, and allows immediate recognition of special external conditions.

The in.terrupt system gives the programmer flexible control of external devices. Three interrupt
priority levels are implemented as follows: first priority, internal interrupts; second priority, CRU
interrupts; third priority, DMAC interrupts.

Two consecutive, fixed memory locations are associated with each interrupt. When an interrupt
is taken, the instruction in the respective interrupt location is executed. Control is then returned

puter to the state it was in immediately prior to the interrupt (see figure 2-2). Saving and restoring
general registers used in interrupt subroutines is the responsibility of the programmer.

2-7 Digital Systems Division

942779-9701

Table 2-3. Instructions Affecting Status Register Comparison Bits

Instruction Result Tested
LLA Final value loaded into the Register
ST Final Value Stored into Memory
AAA Sum placed in the Register
SSA Difference placed in the Register
LOT.LOTA Tally placed in the Register
N.NA Result of ‘AND’ placed in the Register
OR.ORA Result of ‘OR’ placed in the Register
XORXORA Result of ‘XOR’ placed in the Register
SAT Result after adding Tally placed in the Register
MLAMLAX Result placed in Memory after the Shift
MRA MRAX Result placed in Memory after the Shift
MRR.MRRX Result placed in Memory after the Shift
ARB Result placed in Register after the Addition
AMI ' Result placed in Memory after the Addition
MOV Value moved
STPS Value stored in Memory from the data switches
STCR Value stored in Memory from the CRU
M MA Most significant half of product placed in Memory
DDA Remainder
DAD,DS Most significant half of result placed in Memory
DLADLAX Most significant half of result placed in Memory
DRA DRAX Most significant half of result placed in Memory
DRL.DRLX Most significant half of result placed in Memory
DRR.DRRX Most significant half of result placed in Memory
CR,CRA See section 2.2-8
CRL,CRLA

2.2.9.1 Internal Interrupt. An internal interrupt provides immediate attention to any of the
following conditions:

Memory Parity Error. This interrupt condition protects the user against a possible data
transmission error or misread instruction. When this interrupt occurs, bit 2 (MP) of the
Status Register is set to 1.

Change of Power System Status. This interrupt signal tells the computer that power
has just been restored or that power loss is imminent. The power loss condition sets
bit 3 (PF) of the status register to 1. The computer operates for 1.0 millisecond after
power loss is sensed. When power is restored, the status register is set to CO,4.

2-8 Digital Systems Division

942779-9701

® Undefined Code Execution. An attempted execution of an undefined operation code
results in an internal interrupt and bit four (UC) of the status register being set to 1.

® Memory Violation. An attempt to alter protected memory with memory protect on
(enabled) results in an internal interrupt and sets bit S (MV) of the Status register to
1.

When an internal interrupt occurs, the three interrupt mask bits of the status register are
automatically set to 1, assuring that complete corrective response can be made for the condition
by disabling any subsequent internal interrupts, CRU interrupts, or DMAC interrupts. The
internal interrupt causes the CPU to execute the instruction in memory location 90,, where a
Store Status Block, Transfer and Branch in Supervisor Mode (SXBS) instruction normally resides.
The status register saved by this instruction shows the status of the interrupt mask bits just prior to
the interrupt, that is, before the interrupt mask bits are set to 1 by the interrupt. The stored con-
tents of the Status Register also show the condition(s) causing the interrupt. This allows determina-
tion of the cause(s) of the interrupt by examining bits 2, 3, 4, or § of the stored contents of the
Status Register. The contents of the PC or the EC are also captured. The internal interrupt is re-
enabled by setting bit 7 (II) of the status register to 0.

2.29.2 Communications Register Unit Interrupt. The Communications Register Unit interrupt
occurs when a CRU interrupt line goes to 1. Most CRU modules can activate the CRU interrupt
line. The particular module requesting program attention is identified by scanning the interrupt
bit associated with each module. When the interrupt occurs, bits 8 and 9 (DI and CI) of the
status register are automatically set to ones, disabling other CRU interrupts and the DMAC
interrupt. The CRU interrupt causes an execution of the instruction in memory location 94, .

BRANCH TO
INTERRUPT
ROUTINE

CONTROL TRANSFERRED
TO INTERRUPT

@ INTERRUPT OCCURS LOCATION
PC OR EC
STATUS
02 REGISTER
ROGRA
—— e wrenmuer | (2
SUBROUTINE EXECUTE
ADDRESS INTERRUPT
STORE STATUS ROUT IR

—8» AND BRANCH
‘> INSTRUCTION ‘L

{

LOAD STATUS

/

BLOCK
/ INSTRUCTION
CONTINUE ’
EXECUTION OF RETURN CONTROL
PROGRAM TO PROGRAM
(A)131857

Figure 2-2. Typical Linkage to Interrupt Routine

29 Digital Systems Division

942779-9701

2.2.9.3 Direct Memory Access Channel Interrupt. The Direct Memory Access Channel (DMAC)
interrupt is taken when any device connected to a channel port has its interrupt enabled and
changes its status storage memory location. The DMAC interrupt causes an execution of the
instruction in memory location to 92,, where a Store Status Block, Transfer and Branch in Super-
visor Mode (SXBS) instruction normally is located. To identify the particular device causing the in-
terrupt, a special memory location reserved for DMAC status can be examined. When a DMAC inter-
rupt is taken, bit 8 (DI) of the Status Register is set to logic 1, disabling DMAC interrupts.

When interrupt lines from device controllers to the DMAC are turned on, they set bits in the
DMAC interrupt Status Register to indicate the source of the interrupt. One or more bits set in
the DMAC interrupt Status Register causes the DMAC interrupt line from the DMAC to the CPU
to turn on. If the CPU has the DMAC interrupt masked, further interrupts from other device
controllers only cause more bits to be set in the DMAC interrupt Status Register. The device
controllers keep their interrupt lines logic | until they receive the interrupt recognized (reset)
signal.

As the CPU traps to the DMAC interrupt trap location (92,), it turns the interrupt recognized
signal to the DMAC on. If interrupis are enabled, the DMAC responds with status storage at

Oz o
96,, and interrupt recognized to each controller that has set an interrupt bit in the DMAC

Status Register. Figure 2-2 shows a typical interrupt routine linkage.

DMAC and device controllers status words are then stored in dedicated memory. After status
words are stored the DMAC trap is executed and control is transferred to the proper interrupt
service routine.

The DMAC interrupt is masked upon trapping to the trap location so that the interrupt routine
is protected. Masking of individual controller interrupts is controlled by a bit in the device

initialization list.

2.2.10 COMMUNICATIONS REGISTER UNIT (CRU). The Communications Register Unit
provides the computer user a wide variety of Input/Output (I/O) operations for testing,
monitoring, and controlling discrete events as well as processing operator messages and
management reports. :

To meet these varied requirements the computer is capable of I/O functions ranging from a
single bit to a 16-bit word. This I/O field width flexibility is a unique feature of the CRU.

2.2.10.1 CRU Input/Output Devices. The CRU is capable of I/O with the following standard
medium or slow-speed devices. A typical CRU configuration is shown in figure 2-3.

Card Reader—up to 400 cards per minute

Tl Model 733 ASR Electronic Data Terminal (30 cps), TI Model 743 KSR (30 cps) or Tele-
type Model ASR-33 (10 cps)

TI Model 912 Video Display Terminal
Data Set up to 9600 baud

Paper Tape Reader up to 300 frames per second

Paper Tape Punch up to 75 frames per second

Line Printer—up to 330 characters per second

2-10 Digital Systems Division

[+]
@ 9427799701

—] 960 CRU

ﬁ ASR 733
OR TTY
UP TO 16

CRU SLOTS

IN 960 ‘—H

II{ CARD READER
CONTROLLED
) PROCESS
DATA SETS AND
OTHER
SPECIAL

DEVICES
"PAPER TAPE
READER/PUNCH

CRU EXPANDE
16 CRU

-1 SLOTS IN

EACH)

ﬁnﬁ

UP TO
256 SLOTS

(A)131858A

Figure 2-3. Typical CRU Conlfiguration

In addition, the CRU presents an interface which can accommodate practically any specialized
application-oriented device.

All CRU 1/O operations are based on the set/reset state of individual 1/O lines. Special bit
oriented machine instructions are implemented in the computer instruction set to operate the
CRU interfaces.

Mnemonic Operation

LDCR Load CRU Register (1-16 bits) from memory
STCR Store CRU Register (1-16 bits) in memory

SETB Set CRU Output Bit

TSBX “Test Input Bit and Set Output Bit or Switch Mode
XBNE Switch Mode if Bit not Equal

BBNE Branch if Bit not Equal

The CRU can be expanded to a total of 4096 1/O lines. Figure 2<4 shows an example of this.
Each 1/O line can be addressed independently or up to 16 lines can be addressed at the same
time as a register. The external function of each group of 16 lines is determined by the type of

2-11 Digital Systems Division

942779-9701

ADDRESS
0—FF

ADDRESS
100 —1FF

ADDRESS
200 —2FF

ADDRESS
300—3FF

ADDRESS
400 —4FF

ADDRESS
500—5FF

ADDRESS
600—6FF

ADDRESS
700—7FF

ADDRESS
800—8FF

ADDRESS
AOO—AFF

ADDRESS
800—BFF

ADDRESS
C00—CEF

ADDRESS
DOO—OFF

ADDRESS
EOO0O—EFF

ADDRESS
FOO—FFF

B8ASIC CRU EXPANDED CRU .
(4 CRU MODULES) (UP TO 256 CRU MODULES)
BASIC CABLES
CRU ADDRESS FOO—FOF cRrU Eég:gg:gﬂ
SLOT FO (EQO—EOF) EXPANDER FOR 16 MODULES
CRU ADDRESS F10—F IF
g SLOT F1 (E10—E1F) ‘
0
IS CRU ADDRESS F20—F 2F
g SLOT F2 (E20—E2F)
CRU ADDRESS F30—F 3F
x SLOT F3 (E30—E3F) N
U ADORESS F40 —F 4F
SLLOT F4 (E40—EA4F) CRU CARD CABLES
SLOT FO
CRU ADORESS FS50—F5SF
SLOT FS {ES0—ES5F)
CRU ADDRESS F60 —R6F
SLOT F6 (E60—EG6F)
CRU ADDRESS F70—F7F
SLOT F7 (E70—E7F)
| W—
E CRU ADDRESS F80—FB8F
o0 SLOT F8 (EBO—ES8F)
CRU CARD CABLES
i SLOT F1
§ CRU ADDRESS F90 —F9F
u SLOT F9 (E90—E9F)
-
z -
o CRU ADDRESS FAQ —FAF
g SLOT FA (EAQ-—EAF)
z
g CRU ADDRESS FBO—FBF -
X SLOT FB (EBO—EBF)
w
CRU ADDRESS FCO —FGCF \
SLOT FC (ECO—ECF)
CRU ADDRESS FDO—FDF CRU CARD ABLE
SLOT FD (EDO—EDF) SLOT F2 pCASLES
CRU ADDRESS FEQ—FEF
SLOT FE (EEQO—EEF)
gth FF ADDRESS EFO—-EFF '
(EFO—EFF)
NOTE: ADDRESSES IN PARENTHESES APPLY
ONLY TO 32-LINE CRU MODULES, \ EXPANSION
CHASSIS
FOR 16 MODULES

(A)131859

Figure 24. CRU Expansion Addressing

2-12

Digital Systems Division

o
@ 942779-9701

interface circuit board used. A group of 16 lines can act as a 16-bit data bus, an interval timer,
external interrupts, or as address lines and input data for a multiplexer-A/D converter circuit
board. Many other functions such as stepping motor control, teletypewriter interfiace, modem
interface, D/A conversion, and pulse generation can be performed easily with the CRU Digital
I/O interface. Detailed programming information for standard interface modules is found in
Model 960 Computer Communications Register Unit Manual, manual number 9663 13-9701.

2.2.10.2 CRU Description. The CRU port of the basic 960 series computers consists of a CRU
Interface/Expander card and four card connectors for CRU modules. A connection from a CRU
module to an external device is made by a top-edge connector on the CRU module. The CRU
Interface/Expander card provides CRU module select signals for the four basic modules plus 12
internal expansion modules. Select signals for both 16 and 32 line CRU modules are generated.

CRU modules installed in the four basic locations are addressed at FOO, F10, F20, and F30 for
16-line modules. The addresses are given in hexadecimal notation. When 32-line modules are
used, the starting addresses of the two 16-line groups on a card are separated by 100,, . Thus.
the addresses for 32-ine modules installed in the four basic locations are EOO-F00, E10-F10.
E20-F20, and E30-F30, respectively. External racks connected to the Interface/Expander card
are addressed as 0, 100, 200, and 300. Expander cards installed in the first three module
connectors address racks 400 through 700, 800 through B0O, and COO through F0O0, respectively.

2.2.11 DIRECT MEMORY ACCESS CHANNEL (DMAC). The computer provides high-speed
Input/Output through the Direct Memory Access Channel. A single DMAC port is included in
the basic DMAC for I/0O through one peripheral controller. A Direct Memory Access Port
Expander (DMAPE) can be added to the DMAC allowing up to eight high-speed 1/O peripheral
devices.

The DMAC is activated under program control and, once started, performs the designated 1/0
task independently of the program. An interrupt can be generated when the I/O task is complete
and the status of the task is automatically stored in memory.

DMAC is capable of I/O through the following standard optional devices. (See figure 2-5). |
1. Magnetic-Tape Transports (3 per controller)
2. Magnetic Disc (up to 4 DS31 or DS44 Moving-Head Discs)
3. Line Printer

All DMAC I/0O is accomplished through the single command Activate Direct Memory Access
Channel (ADAC) which is described in Section 1V,

2.2.11.1 DMAC Data Handling. When transferring data between memory and a single high-speed
device the maximum transfer rate is 10% words per second. When memory access is requested by
more than one device (however, none requiring successive memory cycles), four system clock
cycles must elapse between servicing of the first device and the granting of access to the second.
Maximum data transfer rate under this condition is 8 X 10° words per second. The DMAC
services access requests from multiple devices on a priority basis. Priority for data transfers from
the devices is selectable by the user. However, an interrupt from any device has priority over
access requests for data transfer. The DMAC has priority over the CPU when both require
memory access at the same time.

2-13 Digital Systems Division

942779-9701

DMAC IN 960

DIRECT
MEMORY
ACCESS
CHANNEL
EXPANDER

UP TO FOUR DS31
PORT 0 DISC CONTROLLER OR DS44
DISC DRIVES

PORT 1 r—
L
PORT 2 TAPE CONTROLLER].——D UP TO THREE
A A -
PORT 3 '[
—@ MAGNETIC TAPE

PORT 4
PORT 5 g——————

TRANSPORTS
PORT 6

PORT 7 ‘_%PRINTER CONTROLLE+_—- LINE PRINTER

NOTE: COMBINATIONS OF DMAC PERIPHERALS MAY BE
ADDED OR SUBSTITUTED

(A)131860A

Figure 2-5. Typical DMAC I/O Configuration

2.2.12 STANDARD FRONT PANEL. Figure 2-6 shows the control and display panel for the
960 series of computers. All controls and indicators and their respective functions are described
in the following paragraphs and table 24.

2.2.12.1 Panel LOCK/UNLOCK. The Panel LOCK/UNLOCK switch must be in the UNLOCK
position for complete front panel use.

In the LOCK position, all front panel controls are disabled except the DATA switches.

In the UNLOCK position, all tront panel switches are operational.

2-14 Digital Systems Division

3] S

uoIsIAIg swesAs 1enbig

POWER

PANEL
LOCK UNLOCK
\ /

DATA

OOOOQOOOO@OOOOOO

PP00000 000000006

RESET POWER MPO _ 1A 18 PC EC ST MA MD MDI MODE SIE CLOCK START

O|O O

LDAD ON ENTER RUN] ON Ogg
© #.C..OQQQQQQ ©
RES DISPLAY DISPLAY T F STEP START

(A)128916

Figure 2-6. 960 Series Computer Standard Front Panel

@

10L6-6LLTP6

942779-9701

Table 24. Front Panel Indicators

Indicator Name State Meaning
DATA On The value of the associated bit is a logic one.
(16 lights at
top)
Off The value of the associated bit is a logic zero.

In the RUN or SIE mode, the PC or EC
address is continually displayed in the DATA

lights.
POWER On System ac power is on.
Off Power off.
POWER LOSS On Memory power lost and ac power subse-

quently restored.

Off The RESET switch has been moved to the
down position since last memory power loss.

MPO On The memory protect override is on and data
may be stored in protected memory locations.

Off Data cannot be stored in the protected
memory locations.

MODE On RUN and START have been selected, and the
computer is executing instructions.

Oft The computer is not in the RUN mode.

2.2.12.2 Data Switches. The sixteen data switches are two-position toggle switches that are used
tfor data entry. Each switch is placed in the up position for a logic one, or down for a logic zero.

The switches are arranged in groups of four by lines on the front panel. Each group of four bits
corresponds to a hexadecimal digit. For example, when a group of four bits is 1010, this is
interpreted as A ¢ . Also, when all 16 switches are down, the display is interpreted as 0000, .
To set a hexadecimal value with the DATA switches, the binary equivalent of each hexadecimal
digit determines the positions of the switches. Refer to table 2-5 for the binary equivalents of
hexadecimal numbers.

Each switch in a 4-place switch group carries the binary value shown in figure 2-7. Refer to
tfigure 2-8 for an example of setting a hexadecimal value in memory with the DATA switches.

2-16 Digital Systems Division

o
Q@ 9427799701

Table 2-5. Hexadecimal-to-Binary Equivalents

Hex Binary Hex Binary Hex Binary Hex Binary

0 0000 4 0100 8 1000 ¢ 1100

l 0001 5]| 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111
(8) (4) (2) (1) DECIMAL VALUE

20

@00

BINARY VALUE

(A)128607

Figure 2-7. Switch Binary Values

2.2.12.3 1A and IB Switches. The IA and IB switches are used to display instruction register
data on the DATA indicators. The switches have a normal center position, a momentary up
position, and a momentary down position. When pressed to the DISPLAY (down) position, the
content of that instruction register is displayed. The up position of the switch is nonfunctional.
The display function is only active while the computer is in the HALT mode.

2.2.124 PC, EC, ST, MA, MD Display and Enter Switches. These switches control the following
data DISPLAY and ENTER functions, respectively: Program Counter (PC): Event Counter (EC):
Status Register (ST); Memory Address register (MA); and Memory Data (MD). Each switch has a
normal center position, a momentary up position, and a momentary down position. When any of
these switches is pressed to the ENTER (up) position, the current setting of the 16 DATA
switches is loaded into the associated register or memory location. The entered value is displayed
by the DATA indicators. Memory Data (MD) is entered into the address specified by the
contents of the Memory Address (MA) regsiter. If the switch is set to the DISPLAY (down)
position, the contents of the associated register or memory location is displayed. All switches in
this group function only when the computer is in the HALT mode.

2.2.12.5 MDI Switch. The Memory Data and Increment Address (MDI) switch functions like the
MD switch described in the preceding paragraph for entering or displaying memory data except
that each time the MDI switch is actuated to either ENTER or DISPLAY, the Memory Address
Register is incremented to the next consecutive address. New data is entered in the register

before incrementing takes place. The switch is used for loading or displaying consecutive memory
locations.

2-17 Digital Systems Division

8I-¢

uorsing swelsAs repbig

HEXADECIMAL
NUMBER

© ©6 0 /0 ©
4 s 6 7 8 o9

10

000000

1"

|le © 0 ©

12

13 14 15

QOO

4—-—""”

DECIMAL
VALUE

HEXADECIMAL
NUMBER

(A)128606

© 00 0|ooo0oo0|jocooo0o0|ooo o

1 8

Figure 2-8. Data Switches

é@@@@@@@@@@é@

8

13 14 15

@@@

-
-—

*t—

DATA INDICATORS

LOGIC 1

LOGIC O

DATA INDICATORS

LOGIC 1

LOGIC O

e

10L6°6LLTY6

[o]
@ 942779-9701

2.2.12.6 RESET Switch. The system RESET switch is used to reset all system registers except
the instruction registers' (IA and IB). This switch has a normal center position and a momentary
down position. When the switch is pushed to the RESET (down) position. the program counter.,
status register, memory address register and display register are cleared. This function can occur
only if the computer is in the HALT mode. The LOAD position ol this switch is used to load
the contents of the optional ROM bootstrap loader into the computer memory. When the switch
is pushed to the LOAD (up) position, the 256-word bootstrap program is loaded into memory
starting at address zero plus the contents of the MA register.

2.2.12.7 MODE Switch. The MODE control switch is a two-position toggle switch. To start
program execution, the MODE .switch is placed in the RUN (up) position and the START switch
is actuated (placed in the momentary down position). The RUN mode is entered and the RUN
indicator is lighted when the START switch is actuated. When the MODE switch is placed in the
HALT position, the system halts when the instruction in progress is completed.

2.2.12.8 SIE Switch. The SIE (Single-Instruction Execution) is a two-position toggle switch that
allows single instruction execution. To execute a single instruction, the MODE switch is placed in
the HALT position, the SIE switch is set to ON, and the START switch is actuated. An
instruction is executed each time the START switch is activated. '

2.2.129 CLOCK Switch. The CLOCK switch is a three-position toggle switch with a normal
center position (OFF), an up position (ON) and momentary down position (STEP). For normal
system operation, this switch is in the ON (up) position and the system clock is tree running.
When the CLOCK switch is placed in the OFF (center) position, the arithmetic-unit clock is
stopped. Each time the CLOCK switch is pushed to the momentary STEP (down) position, a
single system-clock pulse is generated for the arithmetic unit. The operation of this switch is
normally bypassed by a jumper wire on the console printed circuit board. Normal shipments are
made with the switch disabled.

The clock switch is also used to initialize the memory correction feature on the 960B computer.
Each time the clock switch is pushed to the momentary STEP position (down), the error
indicator latches are reset.

2.2.12.10 START Switch. The START switch is a two-position toggle switch with a normal
center position and a momentary down position. If the system is in the HALT mode and this
switch is pushed to the START (down) position, one of the following will happen:

® It the SIE switch is in the ON position, single instructions are executed.

® [f the SIE switch is in the OFF position. the system will remain in the HALT mode.

When the mode control is in the RUN position and the START switch is depressed. the RUN
mode is entered.

2.2.13 Memory Initialization. When power is first turned on, and the battery is either dis-
connected or turned off, memory needs to be initialized. To do this, enter the following values
into memory:

Address (hexadecimal) Value (hexadecimal)
0080 4881 ST 16X
0081 0090 ~
0082 4c81~ AA 4,1
o083 0001 ~
0084 7082 5 6, LBES
008s 0080

2-19 Digital Systems Division

o
@ 9427799701 A

Then set the PC to 80, . set the status register to 01CO,, ; turn the Memory Protect Override
(MPO) switch on; and select RUN and START. This should put the computer in the RUN mode
and, after execution (less than a second) each memory location should contain the address of
that location.

2.2.14 Optional ROM Loader. The optional ROM (hardware primitive loader option) loader
tor the Model 960 computers is a small printed circuit board. It reduces to a minimum the
manual operation require to ‘“‘cold start” or ‘“‘warm start” the computer system. Five different
programs totaling 256 words can be stored in memory beginning with any memory location. The
Programs are:

® (Card media primitive loader

® Puper tape primitive loader—High Speed Paper Tape Reader

® Paper tape/cassette primitive loader—Full Duplex ASR-33/733 ASR

® Warm start initialization for PAM/D (ALPHA)—Fixed Head Disc

® Warm start initialization for PAM/D (ALPHAM)—Moving Head Disc

The first three programs would otherwise have to be loaded by hand. In their respective media,
they load a relocating bootstrap loader into protected memory. The last two programs are
otherwise read into memory by the resident bootstrap loader. Their purpose is to bring the disc
resident monitor, PAM/D, into memory. Since there are two different discs available for use with
the computer, there must be two such programs. The steps required to load and execute any of
these programs is:

1. Set MA to the desired load address for all five programs and ST to 01CO,,.
2. Set MPO to ON.
3. Move RESET to LOAD
" 4. Set PC and memory location 0085, to the starting address for the desired program as
shown in table 2-6. The location 85, does not have to be set for ALPHA or

ALPHAM.

5. (Primitives only) set locations 0086, to.O and 0087,, to the CRU address of the
input device.

6. Set ST to 01CO,, , turn MODE to RUN, and push START.
7. Turn MPO to OFF.
It it is desired to load ALPHAM into protected memory, set MA to O and turn MPO on at

step 1. In order to load ALPHA into protected memory, set MA to FFB0O,, and turn MPO on at
step 1.

2-20 Digital Systems Division

942779-9701

Table 2-6. Starting Address—Contents of ROM Loader

Program Starting Address
ALPHAM (contents of MA)
ALPHA (contents of MA) +50
Card Primitive (contents of MA) +AQ
H.S.R. Primitive (contents of MA) +C0
ASR 33/733 ASR Primitive* (contents of MA) +EQ

*The ROM assembly boards (226861-0001), revision * and A, contain the
ASR-33 primitive loader. Revision B and later contain the ASR-33/733
ASR teletypewriter or cassette primitive loader.

2-21/2-22 Digital Systems Division

[«]
q@ 942779-9701

SECTION 1N
MACHINE INSTRUCTIONS

3.1 GENERAL
Each machine instruction is divided into distinct fields of one or more bits each. The formats for

these instruction fields are classified into three basic groups. Most of the instructions have the
same fundamental format and belong to format group I. The other two groups include instruc-
tions that require manipulation of data bits and words and are dependent on base registers.

This section describes the formats within each group and lists the relevant machine instructions
for each format. Each instruction requires 32 bits in two consecutive memory word locations.
The instruction bit locations are designated bit 0 (most significant) to bit 31 (least significant).

. The label field, comment field and sequence number can appear in the statement but are not
required. In the typical source statements shown for each format, these fields are indicated by
<label>, <comments>, and <seq>. In addition, the “at” symbol (@), number symbol (#), and
<rq>, which appear in the operand field of some source statements, are optional. The asterisk
(*) and <xr> may or may not be optional, depending on the instruction. They appear in the

format, entries that are permitted but not required are enclosed in brackets ([1). User-supplied
items are enclosed in angle brackets (< >).

In this section the machine instruction descriptions are in order of their internal hardware
formats, they are found listed by available functions (arithmetic, shifting, etc..) in Appendix C
along with a brief description of the necessary operands.

Elements of source statements may be relocatable; that is, they may be placed in available
memory locations depending on the loading address (load bias).

3.2.1 DIRECT OPERAND. Each machine instruction has one or two fields that contain g
memory address location. A direct operand, the most general type of operand. is located at the
memory address specified by the address field of an instruction.

The following assembly language source Statement, an example of a direct operand, loads register
number 2 with the contents of address N:

L 2N

L is the mnemonic for the Load Register instruction. N is the address operand, and is a direct
operand.

3-1 Digital Systems Division

942779-9701

Table 3-1. Addressing Modes

Applicable
Example of Source Instruction
Addressing Mode Statement Operands Format Group
Direct Operand 2N I
Indirect Operand 2,*N I
Indexed Operand 2N3 i
Indirect Indexed Operand 2,*N.3 1
Immediate Addressing 2N 1
Base Register Relative 2,@N,5 LIl
Addressing
Alternate Mode Registers #2,N LIII

3.2.2 INDIRECT AND INDEXED OPERANDS. Operand addresses in machine instructions may
be modified by means of indirect addressing and indexing. These modifications are discussed in
the following paragraphs.

3.2.2.1 Indirect Operand. If the memory location specified by the address field of the
instruction contains another address (the operand address) instead of an operand, the instruction
has an indirect operand. A one-bit field in the machine instruction word specifies whether
indirect addressing is to be done. An asterisk (*) preceding the address operand indicates indirect
addressing in a source statement, as in this example, which loads register 2 with the value whose
address is found in the location specified by N:

L 2,*N

3.2.2.2 Indexed Operand. Indexing is a means of using an index number to represent a memory
address, where the memory address is the sum of a base number and an index number. An index
register contains the index number. The contents of the address field in the machine instruction
is the base number. In a source statement, the address operand is the base number or a symbol
that represents the base number.

Some machine instructions include an index bit that indicates whether indexing is to be
performed. If an indirect operand is indexed (paragraph 3.2.2.3), the Index Mode bit in the
status register specifies the order in which the indexing and indirect addressing are carried out.

An indexed operand is represented by a register number (0 through 7) or symbol positioned
after the address operand, as in the following source statement:

L 2N3

In this example, register 3 is the index register. Register 2 will be loaded with the value found in
the address specified by N plus the contents of register 3.

3-2 Digital Systems Division

o
{@ 942779-9701

3.2.2.3 Indirect Indexed Operand. If an operand is both indirect and indexed, the indexing may
be performed either before or after the indirect addressing. The Index Mode, bit in the status
register specifies either pre-indexing or post-indexing and is discussed later.

In indirect addressing, the address field of a machine instruction contains @ memory address (the
instruction operand address). The memory location specified by the instruction operand address
contains another memory address (the referenced address). If pre-indexing is specified, the
instruction operand address is indexed before accessing the referenced address. If post-indexing is
specified. the referenced address is indexed.

An example of the source statement for an indirect indexed operand:
L 2,*N_3
N is an indirect address and register 3 is the index register.

The source statement example given above can be used to explain pre-indexing and post-
indexing. Figure 3-1 shows a machine instruction, index register, and selected memory locations.
The addresses and operands are hexadecimal numbers. The first word of the machine instruction
contains the operation code for L (Load Register instruction). Register 3 is the index register, and
register 2 is to be loaded. The second word is the N field, which contains the value 0150 16 (instruc-
tion operand address), the value of N.

The first and second words of the machine instruction are placed in the internal CPU instruction
decoding registers, 1A and({ IB; At the start of both pre- and post-indexing, the IB register
contains the value N. In pré-indexing, the indexing is done before the indirect addressing. The
contents of the index register, 0004, is added to the contents of the IB register, 0150, and the
result, 0154, is placed in the IB register. (The register contents, memory addresses, and memory
word contents in this discussion are hexadecimal numbers.) The contents of memory address 154
is now placed in the IB register, so that the register contains 03C7. This number is in tumn a
memory address (the effective address), which contains the desired data. This data, 026F, is
placed in register 2.

The first step in post-indexing is indirect addressing, so that the contents of memory address 150
replaces the address 0150 in the IB register. The IB register contents therefore becomes 03Ds.
This number is indexed by the index register contents, 0004, giving the result 03D9. This
number is the effective address of the desired data. The data, 4284, is placed in register 2. Note
that this number is different from the data placed in register 2 when pre-indexing is specified.

3.2.3 IMMEDIATE ADDRESSING. When immediate addressing is used, the machine instruction
operates on the effective address in the address field as if it were an operand. The instruction
modifies the numeric value of the instruction operand address in the same manner as the
effective address calculated in the example in paragraph 3.2.2.3. .
In a source statement, immediate addressing is accomplished by using a different mnemonic for
the operation. The immediate counterpart of the Load Register (L) instruction, for example,
would be Load Register with Address (LA). The source statement that parallels the example in
paragraph 3.2.1 is therefore:

LA 2N

Register 2 would be loaded with the value (address) of N.

3-3 Digital Systems Division

942779-9701

REGISTER 3

MACHINE INSTRUCTION (INDEX REGISTER)
4732 0150 0004
MEMORY
ADDRESS 03A2 0A42
ADDRESS 0150 03D5

ADDRESS 0151 03EB ADDRESS 0383
ADDRESS 0152 0383 ADDRESS 03C7

ADDRESS 0153 03A2

ADDRESS 03D5 1360

ADDRESS 03D9

ADDRESS 03EB l 3087

ADDRESS 0154 03C7

Figure 3-1. Typical Example of Machine Instruction, Index Register, and Memory Word Contents

3.2.4 BASE REGISTER RELATIVE ADDRESSING. In base register relative addressing, one or
more registers are designated as base registers. Depending on the instruction, the base registers
may be chosen by the programmer, or may be predetermined by the CPU and implied in the
instruction. Certain instructions make use of one or two of these base registers. The sum of the
contents of the base register and the address in the instruction is the absolute address of the
operand. The contents of the instruction address is called the relative address.

The base register numbers are defined in the CPU as follows:

Register No. Function
4 Data base register
5 Procedure base register
6 Flag base register
7 Communication Register Unit (CRU) base register

SAL is structured so that a user can construct programs from four basic types of program
segments. These segment types are procedure segment (PSEG), data segment (DSEG), flag
segment (FSEG), and Communication Register Unit (CRU) symbolic address segment (BSEG).
The segment types are described in Section V. In some of the machine instructions (format
groups 11 and III) automatic base registers are used for specified purposes, typically with one of
the program segment types. For example, when a software flag instruction is used to reference a

34 Digital Systems Division

[o)
q@ 942779-9701

software flag in the software flag segment, the value of the symbol is biased with (i.e., added
with) the contents of the Software Flag base register during execution of the instruction. This

A relative address is indicated in source statements by an *“‘at” symbol (@) preceding the address
operand. The following statement is an example:

L 2@N,5

In this statement, the address N is a relative address and register 5 is used as a base register. [t is
the programmer’s duty to load the base registers as required by the application.

In format group III machine instructions, the “‘at”’ symbol is usually not necessary and is considered
illegal syntax. The address operand is automatically handled as a relative address by the assembler.
With format group II, the base register must be specified explicitly or implicitly. Assignment is ex-
plicit if the user specifies the base register in the instruction. Implicit assignment results when the
assembler defaults assignment to the base register of the segment in which the symbol is defined.

For example:

LABEL DSEG

TV RES 64
END

P PSEG

TVRO EQU TV+I0
AMI (TVRO4),2

The value calculated for TVRO in the AMI instruction is relative to register S, not register 4. At exe-
cution time, the value 2 is added to the effective address calculated incorrectly by TVRO (relative

to register S) plus the contents of register 4,

In format groups II and III, the offset value calculated in the machine instruction is relative to the
segment in which the symbol is defined, regardless of the base register specified in the source
statement.

3.2.5 ALTERNATE MODE REGISTERS. FEither the supervisor or the worker mode is the active
mode for the execution of an Instruction. Normally the instruction uses the general register of

in the execution of the instruction, as in the following source statement example:
L #2N3

This statement loads inactive register 2 from the address calculated by N plus the contents of
active register 3. An alternate mode register can not be used for indexing.

3.2.6_ COMBINATIONS OF ADDRESSING MODES. The address modification attributes
described in the preceding paragraphs may be used in combination, as shown in this example:

L #2,*e@Ng4
AUTEI R Mo (R6TETR
N, B PEELHN Y of 7ew ACTIE MojE.
35 Digital Systems Division

AT fon LTIy | TIMERLT , f 0 of e 1))

942779-9701

This statement loads register 2 of the inactive mode with the relative address operand, N. The
operand is both indirect and indexed, with register 4 of the active mode used as an index
register. Register 4 is also the buse register for relative addressing.

The same register can be used as both a general register and an index register as shown in the
following example:

L 2N.2

This statement fetches the operand at the memory address specified by N plus the contents of
register number 2 and then loads this operand into register 2.

3.3 GENERAL FORMAT DESCRIPTION
Machine instructions are implemented in three basic formats, each of which has some subsets.
Each instruction requires two consecutive memory locations. The basic formats are defined as:

0 1L 2 34 5 67 8 91011121314 15 1617 18 1920 21 22 23 24 25 26 27 28 29 30 31
1 L 1] 1 T L 1 L] 1 T L) v L | T L] L L} T 1] L L § T T
op xi* | k Xr # I n
GROUPI ' ' N)
0 1 2 3 4 5 6 7 8 9 1011 1213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
T 1 1 L T L L2 T T 14 T T § 1 1 8 T 1 T L | 1 T 1 ¥ 1] | 1] i
op m mp np n
GROUP I ' ' ' ' '

01 2 3 4 56 7 8 9 1011121314151617

L] L T T Ll Ll L T T i T 1 ¥ T

18 19 20 21 22 23 24 25 26 27 28 29 30 31

¥ T ! L]

L]
op m b v, # n

GROUPII ’ ’ i ’

A description of each of the fields is:
op The basic operation code field of an instruction.
The bit of the instruction used to specify indirect addressing.
x The bit of the instruction used to specify that indexing is to be done.
k Immediate operand indicator.
xr The field of the instruction used to specify an index register.
The ficld of the instruction used to specify alternate mode registers.

r The field of the instruction that specifies a general register in the register file or a
count.

3-6 Digirxl Systems Division

o
%@ 942779-9701

n The field of an instruction used as an address field.
m The field of an instruction used as an address field in two address instructions.

my, The field of an instruction used to specify a base register to be used with the M
address field. ‘

n, The field of an instruction used to specify a base register to be used with the N
address field.

v, A bit used as an immediate value in flag and bit instructions.

b The field used to specify a flag address within a memory word or the number of bits
in a communication register.

In addition to the above some of the subformats might contain one of the following additional
fields:

b Output bit data
q Additional device address data
rq Relative address control bit

The x and * fields, used to specify address modification, have the following meanings:

Index bit - specifies indexing

l——lndirect bit - specifies indirect

x *

0 0 Direct operand

0 1 Indirect operand

1 0 Indexed operand

1 1 Indirect, indexed operand

3.3.1 PRE-INDEXING AND POST-INDEXING. Address modifications, as specified by the x and
* fields, are performed using the xr and the n fields. If indirect addressing and indexing are both
specified, the indexing is done before the indirect addressing if bit 6 (im) of the status register is
zero (pre-indexing). If it is a one, the indexing is done after the indirect addressing (post-
indexing). Any of the eight registers of each Mode Register File can be used as an index file.

The usual conventions in the Operating System and user programs utilize pre-indexing rather
than post-indexing. See section 6-11 for a more detailed discussion.

3.3.2 EFFECTIVE OPERANDS AND ADDRESSES. In the machine instructions descriptions
that follow the word ‘‘effective operand (or address)” should be taken to mean the operand or
address that results from any indirect, indexed (pre-index or post-index), base-relative or other
mode of addressing, after the required adjustment has been accomplished in the process of
decoding the instruction for hardware execution.

37 Digital Systems Division

(o]
@ 942779-9701

3.3.3 OPERAND SYMBOL DEFINITIONS. In the following paragraphs the operand symbols

are defined as:
* Indirect addressing
Alternate mode addressing
(« Base register relative addressing
RQ Relative address control bit
3.4 FORMAT GROUP I-GENERAL INSTRUCTIONS

Ihis tormat group includes six subsets, designated I-A through I-F. Each of the six formats is
described in a separate paragraph. Format group I instructions are structured as:

01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T TTT T 15t T T T

s 1k X7 # i n

-
Sp x

3.4.1 FORMAT I-A. Format [-A is a general format structure that accommodates a large
number Qf instructions with common field requirements. Table 3-2 lists these instructions.

A typical source statement for this format is: typical source statement for this format is:
[<label>] <oper> [#]<gr>,[*][@]<address>[,<xr>] [<comments>] [<seq>]

In this statement. <oper>, <gr>, and <address> are required. The other entries are permitted,
but not required. <oper> stands for an instruction mnemonic. The number symbol (#), asterisk
(*). and *“at” symbol (@) are memory addressing attributes. <gr> represents the general register,
and <seq> the sequence number of the source line.

The machine instruction format is identical to that shown for format group I.

A given source statement results in a 32-bit string of binary digits in the corresponding machine
instruction. To sce how this occurs, consider the following source statement:

LA 2,15 LOAD EFFECTIVE ADDRESS

LA is the mnemonic for the Load Register with Address instruction, which has the operation
code 4480 0000,, . The first six bits of the operation code, which correspond to the first
hexadecimal digit, and the first two bits of the second digit are placed in the OP field of the
instruction. Therefore, the OP field contains 010001,. Note that bits not designating the
machine operation are included as zeros in the operation code.

The LA instruction loads the effective address (15) into register 2. In the machine instruction,
the R field contains 2 (010,), and the N field contains 15 (1111,). The N field is right-justified
with leading zeros.

38 Digital Systems Division

° .
{@ 942779-9701

Mnemonic

A
AA
BL
*BL
CR
CRA
CRL
CRLA

D

DA
DAD
DLAX

DRAX
DRLX

DRRX
DS

L

LA
LOT
LOTA

MA
MLAX

MRAX

MRRX

NA
OR
ORA

SA
SAT
ST
XOR
XORA

Table 3-2. Format I-A Instructions

Instruction Name

Add to Register

Add Address to Register

Branch and Link

Branch Indirect and Link

Compare Register with Memory

Compare Register with Effective Address

Compare Register wtih Memory (Logical)

Compare Register with Effective Address
(Logical)

Divide

Divide Immediate

Double Add

Shift Memory Double Left Arithmetic, Count
in Register r

Shift Memory Double Right Arithmetic,
Count in Register r

Shift Memory Double Right Logical, Count
in Register r

Double Right Rotate, Count in Register r

Double Subtract :

Load Register

Load Register with Address

Load Ones Tally

Load Ones Tally of Address

Multiply

Multiply Immediate

Shift Memory Left Airthmetic, Count in
Register r

Shift Memory Right Arithmetic, Count in
Register r

Rotate Memory Right Logical, Count in
Register r’

Logical AND

Logical AND with Address

Logical OR

Logical OR with Address

Subtract from Register

Subtract Address from Register

Shift and Add Tally of Leading Zeros

Store Register

Exclusive OR

Exclusive OR with Address

Hexadecimal
Operation
Code
4C00 0000
4C80 0000
7480 0000
7400 0000
C000 0000
C080 0000
C400 0000
C480 0000
D000 0000
D080 0000
E800 0000
C880 0000
D480 0000
D880 0000
DC80 0000
EC00 0000
4480 0000
5400 0000
5480 0000
CCo0 0000
CC80 0000
6080 0000
6480 0000
6880 0000
5800 0000
5880 0000
5C00 0000
5C80 0000
5000 0000
5080 0000
6C00 0000
4880 0000
4000 0000
4080 0000

Digital Systems Division

942779-9701 A,AA BL*BL

The x, *, xr, and # fields are all set to zero. Because LA is an immediate operand, the k field
contains 1. The entire machine instruction in object format is:

0 1 2 3 456 7 8 9 10 111213 14 15 16171819 2021 22 23 24 25 26 2728 29 30 31
T Y LANEED e | T 1 LI | 1 LA L LU L
0100 01 olofi| ooo Jo| o0 0000 0000 0000 1111

I 3 ol [l
(4482000F ,,) ' ' i

The following paragraphs contain the description of the format I-A instructions and coding
information.

34.1.1 A (ADD to Register). Overflow: Yes

Operand: [#]<r>,[*] [@] <n>[,<xr>] Carry: Yes
Mode Switching: No
Comparison Indication: Yes

01 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 2930 31
T T T 1 T T ¥ 14 T 1§ 1 L§ . L T T T | 1 T
010011 x |* jo xr # t

A n
$ I
T

The effective operand is added to the contents of register r and the result is placed in register .

3.4.1.2 AA (Add Effective Address to Register).

Overflow: Yes
Operand: [#]<r>[*] [@] <n>[,<xr>]

Carry: Yes
Mode Switching: No
Comparison Indication: Yes

01 2 3 45 67 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

v T T L ¥ L] T L] 1 L T L) T) T L) Ll 1 ' L]

010011 x|= |1 Xr # n

29 30 31
L]] L]

The effective address is added to the contents of register r and the result is placed in register r.

34.1.3 BL (Branch and Link to Subroutine).

Overflow: No
Operand : | #1 <> * | @] <n>[,<xr>]

Carry: No
Mode Switching: No
Comparison Indication: No

01 2 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| S S S B § T 1 ™ 1T Tl

011101 x|*i1l Xr # r n
1
14

The nonupdated contents of either the PC or the EC, depending on the mode of execution, are
placed in register r. The effective address is loaded into either the PC or the EC.

3-10 Digital. Systems Division

o
@ 9427799701 CR,CRACRL

3.4.14 *BL (Indirect Branch and Link to Subroutine). Overflow: No

Operand: [#]<r>,[*] [@] <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: No

01 23 456 7 8 9101112131415161718]9202122232425262728293031
=T T T T 1 LANILEN B DL AL B (N H B S S S s s s sy o

011101 x1*10 Xr # r

LJ)) A\

The nonupdated contents of either the PC or the EC, depending on execution mode, are placed
in register r. The effective operand is loaded into either the PC or the EC.

3.4.1.5 CR (Compare Register With Memory). Overflow: No
Operand: [#] <r>,[*] [@] <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

0 1 23 456 738910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27_28 29 30 31
LI B BN B | L] | L T T
110000. x|* |0 xr # 4

LS

n
s

L

The value of effective register r is compared arithmetically. with the effective operand and the
appropriate compare status bit will be set accordingly.

ST10 ST11 ST12

(R) > EO 1 0 0

(R) = EO 0 1 0

(R) < EO 0 0 1
34.1.6 CRA (Compare Register With Effective Address). Overflow: No
Operand: [#]<r>,[*] [@] <n>[,<xr>] Carry: No

Mode Switching: No
Comparison Indication: Yes

01 2 34 5

110000 x| *|1 Xxr |# r

6 7 8 910111213 14 15 1617 18 1920 21 22 23 24 25 26 27 28 29 30 31
1) L] ¥ T L) L Ll L L] L) L] L s ¥ L] 1 L] L ¥

n

The value of effective register r is compared arithmetically with the effective address and the
appropriate compare status bit will be set accordingly.

STi0 ST11 ST12

(R) > EA 1 0 0
(R) = EA 0 1 0
(R) < EA 0 0 1

3-11 Digitél Systems Division

o
{@ 942779-9701 CRLA,D

3.4.1.7 CRL (Compare Register With Memory (Logical).) Overflow: No

Operand: [#] <> [*] [@] <n>[,<xr>] Carrv: No
Mode Switching: No
Comparison Indication: Yes

01 2 3 4 5 6 7 8 9 10111213 14151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T L T T L B T L} 1 L] 1 4 T 1 | ¥ 1 L] T L] L]

110001 xi*lo Xr # 4

The contents of effective register r is compared logically (as unsigned 16-Bit Intergers) with the
effective operand and the appropriate compare status bit will be set accordingly.

ST10 ST11 ST12

(R) > EO 1 0 0
(R) = EO 0 1 0
(R) < EO 0 0 1
3.4.1.8 CRLA (Compare Register With Effective Address (Logical).)
Operand: [#1<r>,[*] [@] <n>[,<xr>] Overflow: No
Carry: No

Mode Switching: No
Comparison Indication: Yes

01 2 3 4 56 7 8 9 1011121314 151617 181920
T F T

22 23 24 25 26 27 28 29
Ll L] RJ T ¥) 1 R SR | L] ¥ L] L4 §] T A

T

30 31
L

L] L4

|
110001 xl* 1 xt | # r I n

The contents of effective register r is compared logically (as unsigned 16-Bit Integers) with the
effective address and the appropriate compare status bit will be set accordingly.

ST10 ST11 ST12

(R) > EA 1 0 0

(R) = EA 0 1 0

(R) < EA 0 0 1
3.4.1.9 D(Divide). Overflow: Yes
Operand: [#]1<r>,[*] [@] <n>[,<xr>] Carry: No

Mode Switching: No
Comparison Indication: Yes

01 2 3 4 5 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T T T T T 1 T i ¥ L] 1 i LI LA ' ¥ 1 LR 1 i

110100 x}*]0 XI # r n

The concatenated contents of effective registers r and r+! is divided by the effective operand.
The quotient is placed in register r+1 and the remainder is placed in register r. The quotient if
multiplied by the divisor and added to the remainder will result in the original dividend.
Overflow will be set if the quotient, a signed two’s-<complement integer, cannot be contained
without truncation in a 16-bit word or if the divisor is zero.

3-12 Digital Systems Division

942779-9701 DA.DAD

This is an optional instruction.
' CAUTION

When supervisor mode register mode register 7 is specified. the
registers used are supervisor mode register 7 and worker mode
register 0. When worker mode register 7 is specificd, worker mode
register 7 and the contents of memory location 90,6 are used.

3.4.1.10 DA (Divide By Effective Address). Overflow: Yes

Operand: [#]<r>,[*] [@]<n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

Ol2345678910111213]4151617
¥

T Y L | 1 T 1 ¥ T

18 19 2021 22 23 24
T 1

Ll LB

25 26 2728 29 30 31
T T T

T L]]

110100 x{*l1 Xr # r n

'Y " 3
T

-

The concatenation of effective registers r and r+l is divided by the effective address. The
quotient is placed in register r+] and the remainder is placed in register r. The quotient if
multiplied by the divisor and added to the remainder will result in the original dividend.
Overflow will be set if the quotient, a signed two's-<complement integer, cannot be contained
without truncation in a 16-bit word or if the divisor is zero.

This is an optional instruction.
CAUTION

When supervisor mode register mode register 7 is specified, the
registers used are supervisor mode register 7 and worker mode
register 0. When worker mode register 7 is specified, worker mode
register 7 and the contents of memory location 90 are used.

3.4.1.11 DAD (Double Add). Overtlow: Yes

Operand: [#]<r>,[*] [@] <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

01 23 456 7 8 9lOll1213141516171819202122 23 24 25 26 27 28 29 30 31

¥ T T T T T T 1 T T 7 T T T ¥ v T 1 1 i ¥ T

111010 x{*lo0 Xr # r n

The concatenated contents of the effective address and the effective address plus one are added
to the concatenated contents of effective registers r and r+1. The overflow indicator (OI) may be
set by this instruction. The most significant half of the result is placed in effective register r and
the least significant half in effective register r+1.

This is an optional instruction.

3-13 Digital Systems Division

[}
{@ 942779-9701 DLAX,DRAX,DRLX

CAUTION

When supervisor mode register mode register 7 is specified, the
registers used are supervisor mode register 7 and worker mode
register 0. When worker mode register 7 is specified, worker mode
register 7 and the contents of memory location 90 are used.

3.4.1.12 DLAX (Shift Memory Double Left Arithmetic, Count in Register R).

Operand: [#]<r>,[*] [@]<n>[,<xr>] Overflow: Yes
Carry: No
Mode Switching: No
Comparison Indication: Yes

01 23 45 67 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Ll

L T ¥ T T i T I] 1] T 1 ¥ ¥ ¥ J | 4 1 J 1 R Ll

110010 x{*]1 Xr # I n

The concatenated contents of the effective address and the effective address plus one are shifted
left and stored in the effective address and the effective address plus one. If the sign bit is
changed during the shifting, the overflow indicator is set. Zeros fill vacated Bit positions.

The shift count is taken as the least significant 5 bits of register r; therefore, one to 32 place
shifts can be performed. If a shift count of zero is specified a 32 place shift is performed.

This is an optional instruction.

3.4.1.13 DRAX (Shift Memory Double Right Arithmetic, Count In Register R).
Operand: [#]<r>,[*] [@]<n>|,<xr>] Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: Yes

01 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
T T T LI LR ¢ T 1T T 1 | L LI R | L

110101 x{*11 Xr # r n

o
y

The concatenated contents of the effective address and the effective address plus one are shifted
right and stored in the effective address, and the effective address plus one. The sign is
propagated during the shift.

The shift count is taken as the least significant 5 bits of register r; therefore, one to 32 place
shifts can be performed. If a shift count of zero is specified, a 32 place shift is performed.

This is an optional instruction.

3-14 Digiral Systems Division

@ 942779-9701 DRRX.DS

3.4.1.14 DRLX (Shift Memory Double Right Logical, Count In Register R).

Operand: [#]<r>,[*][@]<n>[,<xr>] Overflow: No
Carry: No
Mode Switching: No
Comparison Indication: Yes

01 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031
LI B B man T T rrrryrT T T T T T T

110110 x|*}1 Xr # r n

N
T

-
e

The concatenated contents of the effective address and the eftective address plus one are shifted
right and stored in the effective address and the effective address plus one.

The shift count is taken as the least significant S bits of register r: therefore, one to 32 shifts can
be performed. If a shift count of zero is specified a 32 place shift is performed.

This is an optional instruction.

3.4.1.15 DRRX (Double Right Rotate, Count In Register R). Overflow: No
Operand: [#] <r>,[*] [@]<n>[,<xr>] Carry; No
' Mode Switching: No
Comparison Indication: Yes

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 1v 20 21 22 23 24 25 26 27.28 29130 31
LI L I I | |] | B | L L B | 1 T LB
110111 x{*]1 xr # r

l
Y

n

The concatenated contents of the effective address and the effective address plus one are shifted
right the number of places specified in bits 11-15 of register r. The result is stored in the
effective address and effective address plus one. Bit fifteen of the least significant half replaces
bit zero of the most significant half. One to thirty-two place shifts can be performed. If a shift
count of zero is specified a thirty-two place shift is performed.

This is an optional instruction.

3.4.1.16 DS (Double Subtract). Overflow: Yes

Operand: [#] <r>,[*] (@]<n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

0 1 2 345 67 38 9 10 11 12 13 14 15 1617 181920212223242526272829303]
LIS | L NS B T LANE ML A L

I) J T L L L 4

111011 x|*|j o Xr # r n

The concatenated contents of the effective address and the effective address plus onc are
subtracted from the concatenated contents of effective registers r and r+]. The overflow

3-15 Digital Systems Division

{@ 942779-9701 L.LA,LOT,.LOTA

indicator (Ol) may be set by this instruction. The most significant half of the result is placed in
effective register r and the least significant half in effective register r+l.

This is an optional instruction.
CAUTION

When supervisor mode register mode register 7 is specified, the
registers used are supervisor mode register 7 and worker mode
register 0. When worker mode register 7 is specified, worker mode
register 7 and the contents of memory location 90 are used.

3.4.1.17 L (Load Register). Overflow: No
Operand: [#]1<r>,[*] (@] <n>[,<xr>] Carry: No
: Mode Switching: No
Comparison Indication: Yes

o1 2 3‘4 s 6 7/8 9 1011‘1213141516171819202122232425262728293031

1 T ¥ T ¥ T L L4 ¥ 1§ 1 8 L] 1]] 1 L L] L} T I

OXOOPI x{*}0 Xr # r n

T

The effective operand is loaded into the specified register.

3.4.1.18 LA (Load Register With Effective Address). Overflow: No
Operand: [#] <>, [*] [@]<n>[.<xr>] .Carry: No
Mode Switching: No
' Comparison Indication: Yes

01 2 3[4 56 7(89 10111213141511617

18 19 20 21 22 23 24 25 26 27 28 29 30 31
L] L i T 1 T L) T L] i 1 Ls L] T T T L 4

L L]) 1

T

010001 k |* |1 xt | # t n
| L 3 1

The effective address is loaded into the specified register.

3.4.1.19 LOT (Load Ones Tally) Overflow: No

Operand: [#]<r>,[*] [@] <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

01 2 3 4 5 6 7 8 9 1011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

™1 T 1 T .7 T T | S A N I L N L L L L L L L e

010101 x}{ *| 0 34 # I n

3 L
Ll - I

The binary ones in the effective operand are counted and the result is placed in the specified
register.

3-16 Digital Systems Division

@ 9427799701 MMA

3.4.1.20 LOTA (Load Ones Tally of Effective Address). Overflow: No

Operand: [#]<r>,[*][@]<n>[,<xr>] : Carry: No
Mode Switching: No
Comparison Indication: Yes

0 1 2 3 45 6 7 8 9 10111213 14 15 16171819 20 21 22 2324 2526 2728 29 30 31
LI

| SN S smsen sums | L 1 T 1 LONNNE BNANL R SRR I SN RN GUNNEY SN B | ¥

010101 x-1* 11 xr # r n

> T T T

The binary ones in the effective address are counted and the result is placed in the specified
register.

3.4.1.21 M(Multiply) Overflow: No

Operand: [#]1<r>,[*] [@]<n>[,<xr>] Carry: No

Mode Switching: No
Comparison Indication: Yes

.

012345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31

LANN SN BN N LIS | T 1 T T rreTTT

llOOil x|*10 xr |# r n

e I
T

The value in effective register r is multiplied by the effective operand. The produce is placed in
effective registers r and r+1. The most significant part of the product is in register r and least
significant is in register r+1. Overflow cannot occur.

This is an optional instruction.
CAUTION

When supervisor mode register mode register 7 is specified, the
registers used are supervisor mode register 7 and worker mode
register 0. When worker mode register 7 is specified, worker mode
register 7 and the contents of memory location 90 are used.

3.4.1.22 MA (Multiply By Effective Address) Overflow: No
Operand: [#]<r>,[*] [@] <n>[,<xr>] Carry: No
MUY IMMeUTATE Mode Sw_'vitching‘: No
Comparison Indication: Yes
01 2 3 45 67 8 9 1011 1213141516171819202122232425262728293031
] v ¥ T L § 1 1 [1] T H L | L T L3 L] 1§ 1 1 L T L) L} v
110011 x{*]1 xr # r n

1 4 k\ v 4
The value in effective register r is multiplied by the effective address. The product is placed in
effective registers r and r+1. The most significant part of the product is in register r and least

significant is in register r+1. Overflow cannot occur.

This is an optional instruction.

3-17 Digital Systems Division

o]
{@; 942779.9701 MLAX MRAX MRRX

CAUTION

When supervisor mode register mode register 7 is specified, the
registers used are supervisor mode register 7 and worker mode
register 0. When worker mode register 7 is specified, worker mode
register 7 and the contents of memory location 90 are used.

3.4.1.23 MLAX (Shift Memory Left Arithmetic, Count in Register R).

Operand: [#]<r>[*] [@]<n>[,<xr>] Overflow: No
Carry: No
Mode Switching: No
Comparison Indication: Yes

01 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

=TT T | B SENn SN SN S N BRN N S S SRR NANEL RN B BN BN
011000 x| *}1 xr {#| r

The effective operand is shifted left the number of piaces specified by the contents of bits 12-15
of register r. The shifted operand is stored in the effective address. If the sign bit is changed
during shifting, the overflow indicator is set. Zeros fill vacated bit positions. If a shift count of

zero is specified, 16 places are shifted.

34.1.24 MRAX (Shift Memory Right Arithmetic, Count in Register R).

Operand: [#]1<r>,[*] [@]<n>[,<xr>] Overflow: No
Carry: No
Mode Switching: No
Comparison Indication: Yes

01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L L i 1 i 1 i { 1 1 L) I i 1 1 1 [] 1 i k) i i
011001 xj*]1 Xxr | # r

b
Y

The effective operand is shifted right the number of places specified by the contents of bits
12-15 of register r. The shifted operand is stored in the effective address. The sign bit is
propagated during the shift. If a shift count of zero is specified, 16 places are shifted.

34.1.25 MRRX (Memory Rotate Right, Count In Register R).

Operand: [#]<r>,[*] (@] <n>[,<xr>] Overflow: No
Carry: No
Mode Switching: No
Comparison Indication: Yes

0 1 23 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27. 28 2930 31i
1T ¥ 1 LIS LI lllTIlIllllrllT

011010 x| *1 Xr # T n

The etfective op'eragag_;lﬁlifted right the number of places- sﬁgc—iﬁed by the contents of bits
12-15 of register r. Bits shifted out of bit position 15 are entered in bit position 0. The shifted

operand is stored in the effective address. If a shift count of zero is specified, 16 places are
shifted.

3-18 Digital Systems Division

N.NA,OR.,ORA

=]
@ 9427799701

3.4.1.26 N (Logical And).
Operand: [#] <r>,[*] [@] <n>[,<xr>]

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: Yes

01 2 345

6 7

8 910111213

14
T

15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31
L4 T ¥ T T L4 T v v L] T L]) T L]

T

T

L4

0

Xr

010110

#

r

The contents of register r are logically ANDed bit-by-bit with
are placed in register r.

3.4.1.27 NA (Logical And With Effective Address).
Operand: [#] <t>,[*] [@] <n>[,<xr>]

01 23 456 7 8 9101112131415 16 17 18 19 20 2

It
T

the effective operand. The results

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: Yes

122 23 24 25 26 27 28 29 30 31

L4 L4 T

010110

L) L T]) LA L) L 4 L L)

Xr # r

T rrtTTT™

The contents of register r are logically ‘ANDed bit-by-bit with
are placed in register r.

3.4.1.28 OR (Logical OR).
Operand: [#]<r>,[*] [@] <n>[,<xr>]

0 1 23 4 56 7 8 9 10111213 14 15 16 17 18 19 20 2
L] L] L] L] 1 4 T

the effective address. The results

Overflow: No .

Carry: No

Mode Switching: No
Comparison Indication: Yes

122 23 24 25 26 27 28 29 30 3]
1 T L] ¥ L) 4 v H

T | S S Y

010111

X 0 Xr # r

T

The contents of register r are logically ORed bit
placed in register r.

3.4.1.29 ORA (Logical OR With Effective Address).
Operand: [#]<r>[*] [@] <n>[,<xr>]

0

1

2 3456738 9101112 13 14 15 16 17 18 19 20 2

i
T

-by-bit with the effective operand. The result is

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: Yes

010111

¥ L ' 1) ¥ L] ¥

x|1*]1 xr # b4

122 23 24 25 26 27 28 29 30 31

3-19

Digital Systems Division

S.SA SAT

o
(@ 942779-9701

The contents of register r are logically ORed bit-by-bit with the effective address. The results are

placed in register r. -

3.4.1.30 S (Subtract From Register).
Operand: [#]1<r> [*] [@] <n>[,<xr>]

01 2 3 4 5 6 7 8 9 10 111213 14 15

Overflow: Yes
Carry: Yes

. Mode Switching: No
Comparison Indication: Yes

16 17 18 19 2021 22 23 24 2526 2728 30 31

T T T T T 1 § 1 T 13

*

0 X1 # T

29
T

| L A G A L L DL L L L) LR

n

010100

The effective operand is subtracted from the
register r.

3.4.1.31
Operand: [#]<r>,[*] [@] <n>[,<xr>]

012 3 45 6 7 8 9 101112131415

SA (Subtract Effective Address From Register).

contents of register r. The result is placed in

Overflow: Yes

Carry: Yes

Mode Switching: No
Comparison Indication: Yes

16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31

T T L} 1 Ll ¥ § Ll ¥

Xr #

010100

The eftective address is subtracted from the contents of register r. The result is placed in register

r.

3.4.1.32 SAT (Shift And Add Tally).
Operand: [#] <r>[*] {@]<n>[,<xr>]

Overflow: No
Carry: Yes
Mode Switching: No

com PALIS0y Fuss Ss7 -» Comparison Indication: Yes

o123 S 6 718 9 1011(12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28

4
T 1 i 1§ 1 L] ¥

T T

011011

Xr #

29 30 31
llllIlrlllllllv

T

The effective operand is shifted left until bit O is logic 1. If the effective operand is 0, 16 places
are shifted. The count of the number of positions shifted is added to register r. The shifted
effective operand is stored in the effective address with bit position O forced to logic 0.

NOTE

It bit O is initially logic 1, no shifting is done. However, bit
position 0O is still forced to a logic 0.

3-20

Digital Systems Division

[o]
‘[@ 942779-9701 ST.XOR . XORA

3.4.1.33 ST (Store Register) Overflow: No
Operand: [#] <t>[*] [@) <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

01 2 3 456 7 8 910111213141516171819202122232425262728293031
LN Sun S e L T T T T T T T

OIOQHO x|*|1 xr | # r n

The contents of the specified register are stored in the memory location specified by the
effective address.

3.4.1.34 XOR (Exclusive OR). Overflow: No
Operand: [#] <r>,[*] [@] <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

01 23 456 7 8 9lOll12131415161718'19202122232425262728293031

Ll L) T I L 1] T L R T 1 L 1 ¥ | {] |] || 1 1 4 L T

010000 x|*]0 Xr # r n

The contents of register r are logically exclusive-ORed bit-by-bit with the effective operand. The
result is placed in register r. Where bits in register r are equal to bits in the effective operand
zeros are placed in register r. Otherwise ones are placed in registerr.

3.4.1.35 XORA (Exclusive OR With Effective Address). Overflow: No
Operand: [#] <r>,[*] [@] <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

0 1 23 45 6 7 8 9IOll12131415161718192021222324252627.2829303]
LI B B LI | UL L L L L L L L DL e ¢

010000 x{* |1 Xr # I n

The contents of register r are logically exclusive-ORed bitwise with the effective address. The
result is placed in register r. Where bits in register r are equal to corresponding bits in the
effective address zeros are placed in register r. Otherwise ones are placed in register r.

3.4.2 FORMAT I-B. Format I-B instructions include the memory shift instructions. These
instructions are listed in table 3-3. A typical source statement in this format has the following
form:

[<label>] <oper> <count>, [*] [@]<address>[,<xr> [<comment>] [<seq>]

3-21 Digital Systems Division

942779-9701 BC

Tabhle 3-3. Format I-B Instructions

Hexadecimal
Operation
Mnemonic Instruction Name Code

BC Branch on Condition E080 0000
*BC Branch on Condition Indirect E000 0000
DLA Shift Memory Double Left Arithmetic C800 0000
DRA Shift Memory Double Right Arithmetic D400 0000
DRL Shift Memory Double Right Logical D800 0000
DRR Double Right Rotate DCO0 0000
MLA Shift Memory Left Arithmetic 6000 0000
MRA Shift Memory Right Arithmetic 6400 0000
MRR Rotate Memory Right Logical 6800 0000

<oper> is the instruction mnemonic. <count> represents the shift count. In machine instruction
format. the shift count is contained in a 4-bit variable field, r. The machine instruction format
18-

0 1L 2 34 5 67 8 91011121314

T T v T T T T T T

15 1617 18 1920 21 22 23 24 25 26 27 28 29 30 31
¥ T v ¥ i L] L] ¥ : 1) 4 1] ¥ L

1

op x| =}k Xr T . n

>

The following paragraphs contain the descriptions of the format I-B instructions and coding
information.

3.4.2.1 BC (Branch On Condition). Overflow: No

Operand: <> [*] [@]<n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: No

01 2 3 45 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T T | S | SENEE SIS GuEEY SEENS SN SR SN RENEE DU NRENE RENNE SENN SRR SN {

111000 x| *t1 Xr I n

The r field specities a bit in the status register to be examined. If the status bit selected by the r
field is logic |, PC or EC is loaded with the effective address. If not, the next instruction is
executed.

¢ = 0000 Selects Status Register Bit O

0111 Selects Status Register Bit 7

-
"

i

1111 Seiects Status Register Bit 15

-
1]

3-22 Digital Systems Division

o
@ 942779-9701 *BC,DLA

3.4.2.2 *BC (Indirect Branch On Condition). Overflow: No

Operand: <r>,[*] [@] <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: No

01 2 3 4 56 7 8 9 1011121314151617 18 19

¥ LS T T L3 T T ¥ L] ¥ T ¥

20 21 22 23 24 25 26 27

T ¥

28 29 30 31

v T L

¥ 14

111000 x |* {0 xr r n

" 3
T L

The r field specifies a bit in the status register to be examined. Il the status register bit selected
by the r field is logicl, PC or EC is loaded with the effective operand. If not, the next
instruction is executed.

...
i

0000 Selects Status Register Bit 0

_.
1]

0111 Selects Status Register Bit 7

1111 Selects Status Register Bit 15

,
1]

3.4.2.3 DLA (Shift Memory Double Left Arithmetic). Overflow: Yes

Operand: <r>,[*] [@] <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

01 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P p——— TTT 7T o

110010 x{*!o0 Xr r n

T

The concatenated contents of the effective address and the effective address plus one are shifted
left r places and stored in the effective address and the effective address plus one. If r =0, 16
places are shifted. If the sign bit is changed during the shifting, the overflow indicator is set.
Zeros fill vacated bit positions.

NOTE

One to 16 place shifts may be specified by this instruction.

3-23 Digital Systems Division

DRA.DRL.DRR

O
@ 942779-9701

This is an optional instruction.

3.4.2.4 DRA (Shift Memory Double Right Arithmetic).

Operand: <r>[*] @ [<n>[.<xr>]

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: Yes

0! 2 3 4 5 6 7 8 9 10 111213 14 15 16171819 2021 22 2324 2526 2728 29 30 31
T Y T T T T T T T T T LS] T T LI L] 1 L T
110101 x|1*|0 X1 r . n ,

The concatenated contents of the effective address and the effective address plus one are shifted
r places and stored in the etfective address and the effective address plus one. The sign bit is

propagated during the shift. It r = 0. 16 places are shifted.

NOTE

One to 16 place shitts may be specified by this instruction.

This is an optional instruction.

3.4.2.5 DRL (Shift Memory Double Right Logical).

Operand: <r>[*][@]<n>[.<xr>]

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: Yes

01 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 2930 31

T ¥ T T T T 1

110110 xX{*10 X1

L)

T

r

T

n
¥

<+

The concatenated contents of the effective address and the effective address plus one are shifted
right r places and stored in the effective address and the effective address plus one. Zeros fill the

vacated bit positions.

NOTE

One to 16 place shifts may by specified by this instruction.

This is an optional instruction.

3.4.2.6 DRR (Double Right Rotate).
Operand : <r>[*] [@] <n>[,<xr>]

01 2 3 45

6 7 8 9 10111213 14 15 16 17 18 19 20 21 22

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: Yes

23 24 25 26 27 28 29 30 31

L L 4 L i ¥ 1 i

110111 x{* |0 X1

]

r

Ll

1

T

T

LI LA

n

N
v y—

3-24

Digital Systems Division

[e]
(@ 9427799701 MLA.MRA MRR

The concatenated contents of the effective address and the effective address plus one are shifted
right r places and stored in the effective address and the effective address plus one. I r = 0
sixteen places are shifted. Bit fifteen of the least significant halt replaces bit zero of the most
signiticant half.

NOTE
One to 16 place shifts may be specified by this instruction.
This is an optional instruction.
3.4.2.7 MLA (Shift Memory Left Arithmetic). Overflow: Yes
Operand: <r>[*][@]<n>[,<xr>] Carry: No

Mode Switching: No
Comparison Indication: Yes

012 3 456 78 910111213141516171819202122232425262728293031

r 1T ... T T T T S T TTTTTTT™

011000 xt*{o0 xr r] . .n

The effective operand is shifted left r places and stored in the effective address. r = 0 indicates
shift of 16 places.

If the sign bit is changed during the shifting, the overflow indicator is set. Zeros fill vacated bit

positions. :
3.4.2.8 MRA (Shift Memory Right Arithmetic). Overflow: No
Operand:<r>{*] [@] <n>[,<xr>] Carry: No

Mode Switching: No
Comparison Indication: Yes

01 23 456 7 8 910111213141516171819202122232425262728293031

T T T lll!lll'llllll[llll]

011001 x|*io0 Xr r n

The effective operand is shifted right r places and stored in the effective address. The sign bit is
propagated during the shift.

Sixteen places are shifted if r = 0.

3.4.29 MRR (Memory Rotate Right). : Overflow: No

Operand: <r>,[*] [@] <n>[,<xr>] Carry: No
Mode Switching: No
Comparison Indication: Yes

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627.28293031
T T 7 lfllllfllllllllllll

011010 x|*{o]| x '

. 2

3-25 Digital Systems Division

9427799701

The effective operand is shifted right r places. The bits shifted out of bit position 15 are placed
in bit position 0. The result is stored in the effective address. If a shift count of zero is specified,

16 places are shifted.

3.4.3 FORMAT I<C. Format I-C instructions include combinations of status block storage, mode
transters. and branches. The Load Status Block and the No Operation instructions are also part
ol this set. Table 34 contains a list of the instructions. A typical source statement has the

format:

| <dabel>] <oper> [*] @] <address>[,<xr>][,<rq>] [<comments>] [<seq>]

<rq> is the relative address control bit. If the rq bit in the machine instruction is evaluated as
logic |. general register 5 biases the address. The machine instruction format is:

01 2 34 5 67 8 910111213 14

15 1617 18 1920

21 22 23 24 2§

26 27 28 29 30 31
¥ ¥ v T

T] v T v

op x|*

L] 1] v L]

RS L

op xr |rq op n
Table 3-4. Format I-C Instructions
Hexadecimal
Operation
Mnemonic Instruction Name Code
B Unconditional Branch 7082 0000
*B Unconditional Branch Indirect 7002 0000
LDS Load Status Block 7C00 0000
NOP No Operation 7007 0000
SS Store Status Block 7886 0000
SSB Store Status Block and Branch 7882 0000
SXBS Store Status Block, Transfer and Branch in 7880 0000
Supervisor Mode
SXBW Store Status Block, Transfer and Branch in 7881 0000
Worker Mode
SXS Store Status Block and Transfer to Super- 7884 0000
visor Mode
SXW Store Status Block and Transfer to 7885 0000
Worker Mode
XS Transfer to Supervisor Mode 7004 0000
XSB Transfer to Supervisor Mode and Branch 7080 0000
*XSB Transfer to Supervisor Mode and Branch 7000 0000
Indirect
Xw Transfer to Worker Mode 7005 0000
XWB Transfer to Worker Mode and Branch 7081 0000
*XWB Transter to Worker Mode and Branch Indirect 7001 0000

3-26

Digital Systems Division

B.,*B

. |
(@ 9427799701

Bit 12 is the rq field. The OP field is extended to include bits 8 and 13 through IS5 in addition
to bits O through 5. As an example of a specific instruction. consider:

SXBS *127

The operation code for SXBS is 7880 0000,s . Bits O through S contain the binary digits
corresponding to the first hexadecimal digit and the first two bits of the second digit, or
011110,. Bit 8 is equal to 1. Bits 13 through 15 contain the three least significant bits of the
fourth hexadecimal digit, in this case three binary zeros.

The x, ia and xr fields are equal to 0, 1 and O respectively. The n field contains 127, which in
binary is 1111111,. The n field is right-justified with leading zeros. Therefore, the machine
instruction in object format is:

01234567891011121314151617181920212223242526272829303]
T L] T L4 L v § T L L] 1 3 [4 1] L 4 ¥ L) 1 § T 1 § L] T 1 1 T
0111 10 oj111 000 0 000 0000 0000 0111 1111
' (7980007F,,) ') '

The following paragraphs contain the descriptions of the format I-C instructions and coding
information. The instruction descriptions reflect the order in which events occur. For instructions
which store the current mode location counter (PC or EC), the location counter will already be
updated by two. For instructions which change modes, the previous mode location counter will
have been updated by two.

3.4.3.1 B (Unconditional Branch).
Operand:[*] [@] <n>[,<xr>][,<rq>]

Overtlow: No

Carry: No

Mode Switching: No
Comparison Indication: No

0 1 2 3 4 56 7 8 9 10111213 141516 17 18 19

L} L] L] L) T L4 Ll

20 21 22 23 24 25 26 27 28 29 30 31
T T T v T v l 1

Ll L]

011100 x|*}1 q|0 j1}]0 n

e
'

The effective address is loaded into either the PC or the EC depending on the execution mode.

If rq = 1, the effective address plus the contents of the execution mode register 5 is loaded into
either the PC or EC.

3.4.3.2 *B (Unconditional Branch Indirect).
Operand: [*] [@] <n>[,<xr>] [,<rq>]

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: No

01 23 456 78 9lOll1213141516171819202122232425262728293031

L] v T L T

011100 X

0

lrlllllfltlllUl
xtln;OlO n

3-27

Digital Systems Division

942779-9701 LDS NOP,SS

The eltective operand is loaded into either the PC or EC depending on the execution mode. If rq
= |. the effective operand plus the contents of execution mode register 5 is loaded into the pPC
or the EC.

Overflow: Yes

Carry: Yes

Mode Switching: Yes
Comparison Indication: Yes

3.4.3.3 LDS (Load Status Block).
Operand: [*] [@]<n>[,<xr>] [,<rq>]

29 30 31

01 2 3 4 S 6 7 8 9 10111213 14 15 16171819 2021 22 2324 25 26 2728
| I S N |

Pt ™7t 1 1. 5717 ¥ 11

011111 x]1*10 Xr rqlojofo n

The eftective operand is placed in the PC or EC, based on the execution mode. Then the
contents of the effective address plus one are placed in the status register. The operation is
performed with the PC if execution is in the supervisor mode and with the EC if execution is in
worker mode. If rg = 1, the contents of register 5 are added to the effective operand before it is
placed in the PC or the EC.

PROGRAMMING NOTE
Care must be taken when changing modes with the LDS

instruction since the active mode location counter (PC or EC) is
loaded before the new status is loaded.

3.4.3.4 NOP (No Operation).
Operand: Not used

0 1

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: No

2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31

T T T 1 1 T T i T i

not used 0

011100

¥

T

{

L

not used

LI f i 1 1 LU L J

L
> y

T -r

The PC or the EC, depending on the mode of execution, is incremented by two.

3.4.3.5 SS (Store Status Block).
Operand: [*] [@] <n>[,<xr>][,<rq>]

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: No

T L4 l 1 ¥

011110 x1* |1 XT rq

T

14

T

T

01 2 3 45 67 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
T T

T

30 31
LA T T I T T

3 -

v T

3-28

Digital Systems Divisian

9427799701 SSB.SXBS.SXBW

The PC or the EC (depending upon the execution mode) is stored at the effective address. The
status register is stored at the next address.

It rq = 1. the contents of register 5 are subtracted from the PC or EC before it is stored.

Overtlow: No

Carry: No

Mode Switching: No
Comparison Indication: No

3.4.3.6 SSB (Store Status Block and Branch).
Operand: [*] [@] <n>[,<xr>] [.<rq>]

0

1

2

3 456 7 8 910111213141516171819202122232425262728293031

L}

™

011110 x{*|1 xr mpqloj1]o

. N . e
T v ' d

The PC or EC (depending upon the execution mode) is stored at the effective address. The status
register is stored at the next address. The PC or EC is loaded with the contents ot the effective
address plus 2. If rq = 1, the contents of register 5 are subtracted from the PC or EC before it is
stored and the contents of register S are added to the contents of the etfective address plus 2
betore it is placed in the PC or EC.

3.4.3.7 SXBS (Store Status Block, Transfer And Branch In Supervisor).

Operand:[*] [@] <n>[,<xr>] [,<rq>] Overflow: No
Carry: No
Mode Switching: Yes
Comparison Indication: No

0t 23 456 7 8 910111213]41516171819202122232425262728293031

1 i i T ¥ T LA L] T LI T J T T LI

011110 x{* |1 1q |0 |0 jO n

I Il Iy
T T v v

Xr

The PC is stored at the effective address and the status register is stored at the next address. A
transfer to supervisor mode is forced and the PC is loaded with the contents of the cffective
address plus 2. If rq = 1, the contents of supervisor mode register 5 are subtracted from the PC
before it is stored. The contents of the same register are added to the contents of the. effective
address plus 2 before it is loaded into the PC.

3.4.3.8 SXBW (Store Status Block, Transfer And Branch In Worker Mode).
Operand: [*] [@]<n>[,<xr>] [,<rg>] Overflow: No
Carry: No

Mode Switching: Yes
Comparison Indication: No

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31
LA S A B L S B B | | L L L AR S SR S ¢
o1t110 x1* 11 Xr rq {0 Jo |1 n
$ il 1 1
3-29 Digital Systems Division

942779-9701 SXS,SXW XS

The EC is stored at the effective address and the status register is stored at the next address. A
transfer to worker mode is forced and the EC is loaded with the contents of the effective
address plus 2. If rq = 1, the contents of worker mode register 5 are subtracted from the EC

before it is stored and the contents of the same register are added to the contents of the
etfective addiess plus 2 before it is loaded into the EC.

3.4.3.9 SXS (Store Status Block, Transfer to Supervisor Mode). Overflow: No

Operand: [*] [« | <n>[<xr>] [.<rq>] Carry: No
Mode Switching: Yes
Comparison Indication: No

0L 2 34 5 67 8 910111213 14 151617 18 1920

L L v 1 T T 1 ¥

21 22 23 24 25 26 27 28 29 30 31
T T T L T T L]] T 14

o 3 "
T L T

011110 xt*l1 xr rq{1]0 {0 n

The PC is stored at the effective address. The status register is stored at the next address and a
cfor ipervisor mode is forced. If rq = 1, the contents of supervisor register S are

$ ey oo
tidinticd (U DSUupCividur davus cel. 1t I = &, LA LUIILLALLS

subtracted from the PC before it is stored.

3.4.3.10 SXW (Store Status Block, Transfer to Worker Mode). Overflow: No

Operand: [*] @] <n>[<xr>1].<rq>] Carry: No
Mode Switching: Yes
Comparison Indication: No

01 2 3 4 S5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T L T 'l 1 ¥ i ¥ L] 1 1 § T ¥ 1] 1] T 4 ¥ 1] 1] 1 1

011110 x]*}]1 XI rq|1}]0j1 n

+

The EC is stored at the effective address. The status register is stored at the next address and a
transfer to worker mode is forced. It rq = 1, the contents of worker mode register 5 are
subtracted from the EC betore it is stored.

3.4.3.11 XS (Transfer To Supervisor Mode). Overflow: No

Operand: Not used Carry: No
Mode Switching: Yes
Comparison Indication: No

28 29

01 2 3 4 56 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 30 31
T T L T T v T T LI Ld L L] 1 4 LS SRS 1 L 1 1

L4 T

011100 not used 1lolo not used

i ! 4 il i
¥ A T L) 1

A transfer to supervisor mode is forced.

3-30 Digital Systems Division

942779-9701

XSB.*XSB.XW.XWB

3.4.3.12 XSB (Transfer To Supervisor Mode And Branch).
Operund: [*] [@] <n>[,<xr>] [,<rq>]

0 1

23 456 17 8 9lOll121314151617181920212223

Overflow: No

Carry: No

Mode Switching: Yes
Comparison Indication: No

24 25 26 27 28 29 30 3

1 g L4 T T T T T 4 1 §

011100 0 0

xp*j1 Xr 0

Iq

! ¥ 4 LB]

A transfer to supervisor mode is forced and the PC is loaded with the etfective address. It rq =
I. the contents of supervisor mode reigster 5 are added to the effective address before il is

placed in the PC.

3.4.3.13 *XSB (Transfer To Supervisor Mode And Branch Indirect). Overflow: No

Operand: [*] [@] <n>[,<xr>][,<rq>]

012345678910111213141516

171819 20
LI

Carry: No
Mode Switching: Yes
Comparison Indication: No

21 22 2324 2526 2728 29 30 3]
T T LB T

T 13 T T T T ¥ ¥

011100 0 0o

"

x\|* Xr q

I ¥ P | I J

n

&
'

A transfer to supervisor mode is forced, and the PC is loaded with the effective operand. It rq =
I. the contents of supervisor mode register 5 are added to the effective operand betore it is

placed in the PC.

3.4.3.14 XW (Transfer To Worker Mode).
Operand: Not used

01 23 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Overflow: No

Carry: No

Mode Switching: Yes
Comparison Indication: No

20 21 22 23 24 25 26 27 28 2930 31

LEDNN SNRNNS SRR Sy 5 LINNE NN G S e | B |

011100

not used 1

1

¥ T L H i i I 1 I Ll

not used

A transfer to worker mode is forced.

3.4.3.15 XWB (Transfer To Worker Mode and Branch).
Operand: [*] [@] <n>[<xr>] [,<rqg>]

Overtlow: No

Carry: No

Mode Switching: Yes
Comparison Indication: No

0

1

2 3 45 67 8 9 10 11 12 13 14 15 16 17

19 20

L T L i

011100

T

X

]

1

L { T

Xr

q

18

21 22 23
| B S | T

24 25 26 27 28 29 30 3]
| D N S L

n

T

T T

3-31

Digital Systems Division

942779-9701 *XWB.ARB

A
u it

A transfer to worker mode is forced, and the EC is loaded with the effective address. It rq
the contents ol worker mode register 5 are added to the effective address betore it is place
the LC.

)

3.4.3.16 *XWB (Transfer To Worker Mode And Branch Indirect). Overflow: No

Operand: [*] [«]1<n>[. <xr>] [.<rq>] Carry: No
Mode Switching: Yes
Comparison Indication: No

01 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T T 4 T T L R v 1 T i 1§ 1 13 L) i L] 1 l L

011100 xf* o X1 rqf0 0 |1 n

A transfer to worker mode is forced. The EC is loaded with the effective operand. If rq = 1, the
contents of worker mode register S are added to the effective operand before it is placed in the
L-C.

344 FORMAT I-D. Format I-D consists of only one instruction, the ARB (Add to Register
and Branch on No Sign Change) instruction, with a typical source statement of:

[<label>] ARB <addnd>,[@]<address><xr>.[<rq>] [<comments>] [<seq>]
The addend. <addnd>. is contained in the r field of the machine instruction. The n field
contains the address. The rq field is bit 8 in this format. The first six bits of the ARB operation

code. which is 0C00 00004 . are in bit positions 0 through S of the instruction. Bits 6 and 7 are
unused. The machine instruction format is:

01 2 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

| S S S B BN BN | | O R R B A D AL L DL L L L L L
not
0000 11 used |rq XT r . n \
3.4.4.1 ARB (Add To Register And Branch). Overflow: No
Operand : <r> [w' | <n> <xr>{ ,<rq>] Carry: No
o KorE Mode Switching: No
““:{{/f . Comparison Indication: Yes

v
0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27. 28 2930 31

L I LI v IR LA T 1 11 ¢ P T 1T 1
not .
00001 l‘ used |19 Xr r . n .

The 4-bit, two's~complement value in the r field is added to the index register specified in the xr
field. The result is placed in the index register. If the sign of the index register changes, the next
instruction in sequence is executed. If the sign does not change, the next instruction is executed
at the address specified by n.

If rq = . the effective address is the value from the n field plus the contents of execution mode
register S,

3-32 Digital Systems Division

[e]
@ 942779-9701 ADAC.STPS

PROGRAMMING NOTE

Occasionally stand-alone programs can use the ARB instruction to
decrement a counter for timing purposes. The instruction
execution time is 4.000 microseconds only when the RQ feature is
invoked. Therefore the following provides a 15-millisecond delay:

LA 2,-3750 Counter
ARB 1,@$.2.1 Delay here -

(Register 5 is assumed to be set to the beginning of the PSEG in
which the code is contained.)

3.4.5 FORMAT I-E. Format I-E is the format for the Activate Direct Memory Access Channel
(ADAC) instruction. A typical source statement is:

[<labe>] ADAC <devadd>,<listad>,[<q>] [<comments>] [<seq>]

<devadd> is the device address on the Direct Memory Access Channel, and <listad> is the
input/output command list address. The a field of the machine instruction contains <devadd>
and the n field contains <istad>, q, which corresponds to <g>, is an optional field that may
contain additional device address data. The machine instruction format is:

0 1 2 345 67 g 9 10 11 12 13 14 15 1617 181920212223242526272829303]
L § LA | LA | L4 LR | LI S f LN § LR L LA | T

L L4 L] 1] T g

not

used 1 a

OFTINAC DerIG ' CoMawid LZST ADDRESS
r)g\b AP L ADDL .

The first six bits of the ma&%’e instruction correspond to the operation code for the ADAC

instruction, 2400 0000, .

0010 01

3.4.5.1 ADAC (Activate Direct Access Channel). Overflow: No
Operand:<a>, <n>[,<g>] Carry: No
Mode Switching: No
Comparison Indication: No -

Ol2345678910111213141516171819202122232423262728293031
T L 1 T T T T T T T T ¥ L { L4 ¥ T T L{ T T LI v ¥ T 4

. not

001001 used q a n

3.46 FORMAT I-F. The Store Panel Switches (STPS) instruction is the only Format I[-F
instruction. A typical source statement for STPS is:

[abel>] STPS [*1@]<n>[,<xr>] [<comments>] [<seq>]

3-33 Digital Systems Division

[s]
%@ 942779-9701

The front panel data switch setting is stored in the effective address. Bits 12 through 15 of the

machine instruction are unused. Bit 8 is a logical 1. The machine instruction format is:

01 2 3 4 $6 7 8 9 10111213 14 1516 17 18 19 20 21 22
T LA §

v Ls T T L] L4 1 T 1 v L 4 LI |

23 24 25

v ¥ L)

26 27 28 29 30 31

1 T

1110 01 x |* {1 X1 unused

3
4

b L
* v

The operation code for STPS is E480 0000, .

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: Yes

3.5 FORMAT GROUP II-MEMORY BASE RELATIVE INSTRUCTIONS

Format Group Il instructions have two operands. This format has three subsets and are described
in the following paragraphs. The general format for this group is:

0 1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

v v T T T T Ll L) L{ 1 T i v 4 ¥ ¥] 1 L

op m mb nb n

N 3 3
* T d

The two address fields 'are designated m and n. The contents of the fields are:
op Basic operation code of the instruction
m m address field
mb Base register to be used with the m address field
nb Base register to be used with the n address field
n n address field
In cach case, the basic operund format is:
(<disp>,<gr>)

which is evaluated as the displacement (<disp>) plus the contents of the general register (<gr>).
It <disp> is relocatable, the assembler automatically uses its 'segment relative address. The
segment relative address is also used if <disp> is a relocatable external reference. The user may

specify the operand in either of these two ways:

(<disp>,<gr>) { Explicit)

<disp> (Implicit)

3-34 Digital Systems Division

o
{@ 942779-9701

If the implicit form is chosen, it must be a defined location in 4 procedure segment or data
segment within the program. SAL assembles the implicit form as (<disp>4) or (<disp>,5)
depending on whether <disp> is defined in a data or procedure segment, where register 4 is the
data base register, and register S is the procedure base register.

The user should make sure that the appropriate base register or registers being used contain the
assumed values.

3.5.1 FORMAT II-A. Format II-A is used for instructions that move or compare words within
memory. The Format II-A instructions are listed in table 3-5.

Table 3-5. Format II-A Instructions

Hexadecimal
Operation
Mnemonic Instruction Name Code
M Compare Memory to Memory 1000 0000
CML Compare Memory to Limits in Memory 1800 0000
MOV Move Memory Word 1400 0000

The typical source statement has two forms, explicit and implicit, and the user may choose
cither one:

[<label>] <oper> [@] (<disp>,<gr1>), (@] (<disp2>,<gr2>) [<comments>] [<seq>] (Explicit)

{<label>} <oper> [@] <displ1>, [@] <disp2> [<comments>] [<seq>] (Implicit)

In the implicit form, no external references may appear. Both operands need not be expressed in
the same form, as shown in these examples:

MOV (displ ,4), disp2
CM - (displ,3), (disp2,7)
CML disp1,disp2

The machine instruction format is identical to that shown for format group II. The m field
contains either <dispI> or the relative address of <from>, and the n field either <disp2> or the
relative address of <to>, depending on the source statement option chosen. mb and nb are
explicitly defined base registers when they contain <grl> and <gr2>, but are determined by the

3-35 Digital Systems Division

942779-9701 CM.CML

The following paragraphs contain the descriptions of the format II-A instructions and coding
information.

3.5.1.1 CM (Compare Memory With Memory) Overflow: No

Operand: Option 1, Explicit base Carry: No
[@](<m><mb>),[@] (<n>,<nb>) register definition. Mode Switching: No
[@]<this>,[@] <with> Option 2, Base register Comparison Indication: No

determined by segment
class in which symbol
is defined.

0 1 23 45 6 7 8 9 10111213 14 15 16171819 2021 22 2324 2526 2728 29 30 31

1 5T rT..1 T 1 17 1 ¢ " ¢v 1T 1§ 1§ "}§F 17 R LEDE DL R LR L L

000100 m mp np n

3 N
v T

The contents of the memory location addressed by m plus the contents of the register specified
by my are compared arithmetically with the contents of the memory location addressed by n
plus the contents of the register specified by ny.

It the tirst operand is less than the second, the next instruction in sequence is executed.

If the tirst operand is greater than the second, one instruction is skipped.

Two instructions are skipped if the operands are equal.

3.5.1.2 CML (Compare Memory With High and Low Limits in Memory)

Operand: Option 1, Explicit base Overflow: No
[@](<m>,<mb>),[@](<n>,<nb>) register definition. Carry: No
[@ | <namem>, [« | <limits> Option 2, Base register Mode Switching: No

determined by segment Comparison Indication: No
class in which symbol is
defined.

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

o 171 1.7 ¥ 7 1 T 71 L T LINNED SN N AN DR DRRRE R S

000110 m mp b n

+ '

The first operand, address by m plus the contents of the register specified by my, is compared
with a lower and upper limit. The lower limit is addressed by n plus the contents of the register
specified by ny. The upper limit must occupy the next memory location after the lower limit.

It the first operand is arithmetically less than the lower limit, the next instruction in sequence is
executed.

If the first operand is arithmetically greater than the upper limit, one instruction is skipped.

3-36 Digital Systems Division

MOV

o
@ 942779-9701

It the first operand is within the limits or equal to a limit, two instructions are skipped.

Overflow: No

Carry: No

Mode Switching: No
Comparison Indication: Yes

3.5.1.3 MOV (Move Memory to Memory).

Operand: Option 1, Explicit base
[@](<m>,<mb>),[@](<n>,<nb>) register definition.
[@]<namem>,[@] <namen> Option 2, Base register

determined by seginent
class in which symbol is

defined.
01 2 3 45 6.78910111213141516171819202122232425262728293031
v L LR T 1 [T T LI T L 1 4 L T ¥ L ¥ L | [§ T 1 T T T L
000101 m mp) . n

The contents of the register specified by my are added to m to obtain the effective address of
operand 1. Likewise the contents of the register specified by n, are added to n to obtain the
effective address of operand 2.

Operand 2 is replaced by operand 1.

Execution in the supervisor mode uses supervisor mode registers for m, and ny, . worker mode
uses worker mode registers.

3.5.2 FORMAT II-B. Format II-B instruction is the Branch Relative and Link (BRRL). The
typical source statement for this instruction has two formats:

{<lébel>] BRRL <link>, [@](<disp>,<gr>) [<comments>] [<seq>](Explicit)
[[abel>] BRRL <ink>, [@]<there> (Implicit)
In the implicit form, external references can not appear in the branch address.

The operation code for the BRRL instruction is 2800 0000, . The first six bits of this code are
001010,, the contents of the OP field in the machine instruction format. The r field contains
<Jink>, the nb field <gr> if the first source statement option is used, and the N field either
<disp> or the relative address of <there>. If the implicit form is used, the operand base in the
nb field is determined by the segment class in which the label is defined. The machine
instruction format has the format:

0

1

2 3 456 7 8 91011121314151617181920212223

24 25 26 27 28 29 30 3]

T

1

0010 10 .

unused

LIRS S B M S

I

T

nb

3-37

Digital Systems Division

(@ 942779-9701 BRRL.AMI

BRRL (Branch Relative To Register Overflow: No
and Link to Subroutine). Carry: No
Operand: <r>,[(a/](<n>,<nb>) Option 1, Explicit base Mode Svyitchingz Ng
<r> [@]<namen> register definition. Comparison Indication: No

Option 2, Base register
determined by segment
class in which symbol is
defined.

01 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
-—r—-r-r-r-rrrT—r1TTr 1]] i rTrrTd

001010 unused r ny n

ng

The contents of the register specified by the n, field are subtracted from the PC or EC,
depending on the mode of execution, and the result is stored in the register specified by the r
field. The contents of the register specified by the n, field are added to the value of the n field.
This result is placed in the PC or the EC depending on the execution mode.

3.5.3 FORMAT II-C. The tormat 1I-C instructions are AMI (Add to Memory Immediate)
CMI (Compare Memory Immediate) and can have either of the following two formats:

[<label>] AMI (@) (<disp>,<gr>),<value> [<comments>] [<seq>] (Explicit)
[<label>] AMI (@] <locat>,<value> [<comments>] [<seq>] (Implicit)

It the implicit form is chosen, no external references would be used in the memory address. In
the machine instruction format, the m field contains <disp> or the relative address of <locat>
and the 13-bit signed value field contains <value>. mb contains <gr>, the explicitly defined base
register, it the first source statement option is used. If the second option is used, the base

register is determined by the segment class in which the symbol <locat> is defined. The machine
instruction format is:

0 1 2 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27. 28 2930 31
LR 111 1T 17T 17T U 1 |) LI T + ¢ VvV T 1T T 1T 1

op i . m mb }3-bit value

The Format 1I-C instructions are described in the following paragraphs.

3.5.3.1 AMI (Add to Memory Immediate). Overflow: Yes

Mnemonic: AMI Carry: Yes
Operand: (@] (<m>,<mb>),<value> Option 1, Explicit base Mode Switching: No
[@] <namem>,<value> register definition. Comparison Indication: Yes

Option 2. Base register
determined by segment
class in which symbol is
defined.

v 1 23 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Y T T 14 T T T T J T T T T T T 2 4 4 T 1 T ¥ T T L])] 1

001000 m

mp 13-bit value

+

3-38 Digital Systems Division

. ,
ﬁ@ 942779-9701 : CMI

The 13-bit two’s<complement value is added to the memory location addressed by m plus the
contents of the register specified by my,. The result is placed in the same memory location.

The sign of the 13-bit value is extended before addition is performed.

3.5.3.2 CMI (Compare Memory Immediate). Overflow: No
Operand: {@](<m>,<mb>),<value> Option 1, Explicit base Carry: No
[@]<namem> <value> register definition Mode Switching: No
Option 2, Base register Comparison Indication: No

determined by segment
class in which symbol
is defined.

01234567891011121314

L) v L L] ¥ L L T L) L) T ¥

1516171819202122232425262728293031
L] L § ¥ 1 4 L S T L4 L] L3 v 1

| § L

000111 m

my 13-bit signed value

The contents of the memory location addressed by m plus the contents of the register specified
by m,, are compared arithmetically to the 13-bit two’s-complement value in the instruction. The
sign bit of the 13-bit value is extended to bit zero before the comparison is made.

If the memory operand is less than the immediate value the next instruction in sequence is
executed.

One instruction is skipped if the memory operand is greater than the immediate value.
Two instructions are skipped if the memory operand is equal to the immediate value.

3.6 FORMAT GROUP III-FLAG AND CRU DATA MANIPULATION INSTRUCTIONS

Format Group III instructions allow flag or CRU bit or CRU field manipulation. The general
format for this instruction group is.

01 23456 78 910111213141516171819202122232425262728293031

lslllrlltlllll LEEE B LN L A SN S
op m b V.ml n

The contents of the fields are:
op Basic operation code of the instruction
m m address field
b Flag address within a memory word or the number of bits in a communication register
vl Immediate value in flag and bit instructions

am Bit that specifies whether alternate mode registers are used

n n address field

3-39 Digital Systems Division

[o]
%:@P 942779-9701 SETF

Register 6, the tlag base register, must point to a flag work area for flag instructions, and

register 7. the CRU basé register, must contain the CRU base address.

3.6.1 FORMAT III-A. Format III-A is used with two software flag instructions: Switch Mode if
Flag Not Equal (XFNE, operation code 8000 0000,) and Set Flag (SETF, operation code 8800
0000,). The typical source statement can have one of two formats:

[<label>| <oper> [#]<ﬂagn>,<f>[<comments>] [<seq>] (Implicit)
| <abel>] <oper> [#](<word>,<bit>),<t>[<comments>] [<seq>] (Explicit)

The two source statement options represent different ways of defining the flag word and bit
addresses. To specify the flag bit, the implicit form uses a software flag name that has been
defined by the FLAG assembly directive in a flag segment. This flag name identifies both the
word and bit addresses of the flag. In the explicit form, the flag word and the bit addresses are
each defined separately. They may be non-relocatable symbols or constants that specifically
identify the word and bit addresses by number.

In the implicit example, <flagn> represents the flag name. This name causes the correct entries
to be placed in the M and B fields of the machine instruction. In the second exampie, the M
field contains <word> and the B field contains <bit>. The value bit (V1) is used to make a
comparison with the flag bit in memory. This bit corresponds to <f> in the source statement
operand list. The machine instruction format is:

-3

01 23 4 5 6 7 8 9 10111213 14 15 16171819 20 21 22 23 24 2526 27
T 1 1

28 29 30 31
T T T T T 1 ¥ 1 1)] 1 1 T 1 ¥ ¥ T L] | T 1 t
op) m b vy Lm unus‘ed

T

The following paragraphs contain the descriptions of the format I1I-A instructions and coding
information.

3.6.1.1 SETF (Set Flag) Overflow: No
Operand: [#](<m>,),<vI> Explicit Definition Carry: No
[#]<namet><vi> Definition by Name Mode Switching: No

Comparison Indication: Yes

012345678910111213141516l71819202122232425262728293031
T T T T 7 T 1 1 1 T] T 1 4 T | SR IL L L 1 1 1§ T L]
1

100010 m b 4 unused

T U T T T Y

The contents of the software Flag Base Register (6) are added to m to obtain the effective
address. Bit b of the effective operand is set equal to vl.

If the # attribute is used, bit 21 is logic 1 and the alternate mode Software Flag Base Register
(6) is used to culculate the effective address. It bit 21 is logic 0 the execution mode register
is used.

340 Digital Systems Division

[o]
@ 942779-9701 XFNE

3.6.1.2 XFNE (Switch Modes If Flag Not Equal). Overflow: No
Operand: [#](<m>,) <vl> Explicit Definition Carry: No
[#)<namef> <vl> Definition by Name Mode Switching: Yes

Comparison Indication: No

01 2345 67 89 lOll1213141516171819202122232425262728293031
T 1 T

v) T T 1 LI 1] L T L T T T T I 1 LI | 1 T 1 4 L

100000 m b v, |# unused

L

The value vl is compared with bit b of the memory location addressed by m plus the contents
ol the Software Flag Base Register (6). If the comparison tails a mode change is forced.

It the # attribute is used, bit 21 is logic 1 and the alternate mode Software Flag Base Register
(6) is used to calculate the effective address. If bit 21 is logic 0, the execution mode register is
used.

When XFNE causes a mode change the EC or PC that addressed the instruction is not changed.

3.6.2 FORMAT III-B. The Branch If Flag Not Equal (BFNE) instruction is the Format 1{I-B
instruction and a typical source statement can be either of two formats:

[abel>] BFNE [#]<flagn> <f> <there> [<comments>] [<seq>] [Implicit]
1
[<abel>] BFNE [#](<word> <bit>),<f> <there> [<comments>] [<seq>] (Explicit)

The relative flag word address (<word>) appears in the m field. The bit address within the word
appears in the b field. <flagn> in the first source statement option is a symbol that causes the
flag word and bit addresses to be placed in the m and b field respectively. The n field contains
the relative branch address (<there> in the source statement). If the branch is taken. it uses
register 5 as a base register. The first source statement option uses the flag name designated in
the flag segment of the assembly and the second option explicitly defines the flag bit address.
The symbol <word> in the sublist of the explicit form must be nonrelocatable. Constants can
also be used in place of symbols in this sublist. The value bit, vl. is used to make a comparison
with the flag bit in memory. vl corresponds to <f> in the source statement operand list.

The BFNE operation code is 8400 0000,¢ . The first six bits of this code, 100001, , appear in
bit positions O through S of the machine instruction and have the format.

012 3 456 7 8 910111213141516171819202122232425262728293031

l"l'l[lll’lll[[rr | L L A O

1000 01 m b v, |am n

The following paragraph contains the description of the format III-B instruction and coding
information.

341 Digital Systems Division

[a]
@ 942779-9701 BFNE SETB

3.6.2.1 BFNE (Branch If Flag Is Not Equal). Overflow: No
Operand: [#](<m>)<vi><n> Explicit Definiiion Carry: No
[#] <namet>,<v1> <namen>Definition by Name Mode Switching: No

Comparison Indication: No

01 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1 T 1.7 SEE B SR IR SRR SN S N B T 1 T | NS SR NRNAS NN N SR BRE SR {
100001l m b v, |# n

The value vl is compared with bit b of the memory location addressed by m plus the contents
of the Software Flag Base Register (6). If the comparison fails, the PC or EC, depending on
execution mode, is loaded with n plus the contents of the Procedure Base Register.

[f the # attribute is used, bit 21 is logic | and the alternate mode Software Flag Base Register
(6) is used to calculate the etfective address. If bit 21 is logic 0, the execution mode register is
used.

3.6.3 FORMAT III-C. There are two Format III-C instructions: Set CRU OQutput Bit (SETB,
operation code 3400 0000,,) and Switch Mode On Bit Not Equal (XBNE, operation code 3800
0000,). The two forms for the typical source statement are:

[<abel>] <oper> [#]<bitout>, [<comments>] [<seq>] (Implicit)
[<iabel>] <oper> [#]<bitin>, [<comments>] [<seq>] (Explicit)

The m field of the machine instruction contains the relative CRU bit address (<bitout> and
<bitin> in the source statement). The value bit, vl (which corresponds to in the source
statement operand list) is used to set the addressed CRU bit or make a comparison with it.
<bitout> must have been defined in a CRU segment by a CON directive as specific CRU lines.
<hitin> is a constant between O and 1023. Bits 16 through 19 are not used. The machine
instruction format is:

0 1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27. 28 29 30 31

1 117101 17 ¢V 10 107V 17T © 7T §F U ¥ 1 S A L DL AL L L
o ‘ m unused vmel unused

The following paragraphs contain the descriptions of the format III-C instructions and their
coding information.

3.6.3.1 SETB (Set CRU Output Bit) Qverflow: No
Operand: [#]<m>,<v1> Explicit Definition Carry: No
(#] <namem> <vl> Definition by Name Mode Switching: No

Comparison Indication: No

0 1L 2 34 S5 67 8 910111213 14
ey —

L4 T LI T T LS

15 1617 18 1920 21 22 23 24 25 26 27 28 29 30 31
T T L4 L L4 L3 1] L] L)

T Ll

v T

001101 m unused v, I# unused

3
g

342 Digital Systems Division

o
@ 942779-9701 XBNE.BBNE

The value in the vl field is used to set the CRU output bit addressed by m plus the contents of
the CRU Base Register (7).

The execution mode base register is used unless the # attribute has been invoked: then, bit 21 is
logic 1, and the alternate mode base register is used to calculate the CRU bit address.

3.6.3.2 XBNE (Switch Modes If Bit Not Equal). Overflow: No
Operand: [#]<m>,<v1> Explicit Definition Carry: No
(#] <namem>,<v1> Definition by Name Mode Switching: Yes

Comparison Indication: No

01 23 456 78 9lOll1213141516171819202122232425262728293031

T L] v 7 4 L) T T L T T L § { T L] T ¥ T T) L] T L} 1 | J T

001110 m unused |y 4 unused

The value vl is compared with the CRU input line address by m plus the contents of the CRU
Base Register (7). If the comparison fails a mode change is forced.

The execution mode base register is used unless the # attribute has been invoked: then, bit 21 is
logic 1, and the alternate mode CRU Base Register is used to calculate the CRU address.

When XBNE causes a mode change, the PC or EC that addressed the instruction is not changed.

3.6.4 FORMAT III-D. There is only one Format III-D instruction the Branch On Bit Not Equal
(BBNE) instruction. A typical source statement using BBNE is:

[<label>] BBNE [#] <bitin> <there> [<comments>] [<seq>]

The operation code for BBNE is 3000 0000, , and the first six bits of the code, 001100, .
constitute the OP field in the object format. The m field <bitin> in the source statement
example) plus the contents of register 7 (or alternate mode register 7 if alternate mode is
specified) is the CRU bit address. vl is the immediate value operand corresponding to in
the source statement operand list. n is the procedure relative branch address. Bits 16 through 19
are not used. The machine instruction format is:

01 2 3 4 56 718 9 10111213141516171819202122232425262728293031
T LN, L S | B B | LA | i

v L L] Ll ¥ T ¥ ¥ ¥ ¥ L] 1 ¥ |

0011 00 m unused v, Ln n

The following paragraph contains the description of the format III-D instruction and its coding

information.
3.6.4.1 BBNE (Branch If Bit Not Equal). Overflow: No
Operand: [#]<m> <vI><n> Explicit Definition Carry: No
[#] <namem> <v]>, Definition by Name Mode Switching: No
<namen>

Comparison Indication: No
Ol2345678910111213141516171819202122232425262728293031
L] ¥ T T v L] L] T T i T T T 1 4 T] 1 i 1 T 4 4 14 f 1)

001100 K m unused v, # n

4 o 1
> ’ T $

343 Digital Systems Division

o
{@ 942779-9701 TSBX

The value vl is compared with the CRU input line addressed by m plus the contents of the CRU
Base Register (7). It the comparison fails. the PC or EC is loaded with n plus the contents of the
Procedure Base Register (5).

The execution mode base registers are used unless the # attribute has been invoked; then, bit 21
is a 1, and the alternate mode CRU Base Register (2) is used in the CRU address calculation.
The branch uddress is always calculated using the current mode Procedure Base Register (5).

3.6.5 FORMAT III-E. There is only one Format III-E instruction, the Test Input Bit and Switch
Mode or Set Output Bit (TSBX) instruction, with a typical source statement:

<label> TSBX [#]<bitin>,,<bitout>,<ob> [<comments>] [<seq>]

The labels <bitin> and <bitout> must have been defined as CRU lines in a CRU symbolic
address segment or must be constants between 0 and 1023. <bitin> plus the contents of
register 7 (or alternate mode register 7 if alternate mode is specified) is the CRU bit address
under test, , in the source statement, is the input bit value to be tested, and corresponds to
vl in the machine instruction format. <ob> is the output bit value to be set, and <bitout> plus
the contents of register 7 (or alternate mode register 7 if alternate mode is specified) is the
output bit address. The m and n fields contain <bitin> and <bitout> respectively. The machine
instruction format is:

0 1 2 3 456 7 8 9 10111213 14 15 16171819 2021 22 23 24 25 26 2728 29 30 31

T 1 7. 1.7 LI L L D A O § LR | LR B L L R L]

0011 11 m unused job|v, jam n

The contents of the OP tield, 001111, corresponds to the first six bits of the TSBX operation
code, 3C00 0000 .

The following paragraph contains the description of the format III-D instruction and its coding
information.

3.6.5.1 TSBX (Test Input Bit and Set Output Bit or Switch Modes).

Operand: [#]<m> <v1>,<n> Explicit Definition Overflow: No
[#]<namem> <vI>, Definition by Name Carry: No
<namen>, Mode Switching: Yes

Comparison Indication: No

0 1 2 3 4 5 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

¥ L3 LR] T L T] L4 [1 T L] L] T L} L | i || 1 1 { i i

001111 m unused | b fv, |# n

The CRU input line addressed by m plus the contents of the CRU Base Register (7) is compared
to vl If the test fails, @ mode change is forced: otherwise, the value of bit b is output to the
CRU output line addressed by n plus the contents of the CRU Base Register (7).

344 Digital Systems Division

. X
{l@ 942779-9701 LDCR

The execution mode base register is used unless the # attribute has been invoked: then, bit 21 is
logic I and the alternate mode CRU Base Register (7) is used to calculate the CRU addresses.
Also, when bit 21 is logic 1, mode switching is inhibited.

When TSBX causes a mode change the PC or EC which addressed (he instruction is not changed.

3.6.6 FORMAT III-F. The format III-F instructions are two instructions that transler data
between the CRU register and memory. They are Load Communication Register (LDCR.
operation code 0800 0000,) and Store Communication Register (STCR, operation code 2C00
0000,¢). (See paragraph 6-6 for illustration of data transfer from CPU to CRU.) The typical
source statement can have either of the two formats:

[label>] <oper> [#] (line>,<f1>),<memory>[<comments>] [<seq>] (Explicit)
[<label>] <oper> [#] <crfld>,<memory>[<comments>] [<seq>] (Implicit)

Symbols used to implicitly reference CRU registers must be defined using the CON directive. The
m field in the machine instruction format contains the CRU starting line address. The b tield
contains the number of bits in a field except that a 16-bit field is indicated by 0. In the first
source statement option, <line> plus the contents of register 7 (or alternate mode register 7 if
alternate mode is specified) is the CRU starting line address and <ft1> is the number of bits in
the field. <crfld> is a symbol that causes the correct values of the starting line address and the
number of field bits to be placed in the m and b fields if the implicit form is chosen. n is the
relative address of the data (<memory> in the source statement). The memory location is tound
by adding n with the contents of general register 4. The machine instruction format is:

012345678910111213141516171819202122232425262728293031
T L i T T 1 4 1 ¥ ¥ L) 4 L L] T [§ T T L 1 i T L4 L T T ¥
op m b am n
+ $ + 4 t=
T » v

unused

The following paragraphs contain the descriptions of the Format III-F instructions and their
coding information.

3.6.6.1 LDCR (Load Communication Register). Overtlow: No
Operand: [#](<m>,),<n> Explicit Definition Carry: No
[#]<namem> <namem> Definition by Name Mode Switching: No

Comparison Indication: No

012 3 456 7 8 910111213141516171819202122232425262728293031
llill[r|ltlII||ll L L L A I |

000010 m b # n

1 i I
L T M '3 T

7
unused

3-45 Digital Systems Division

9427799701 STCR

The right-justified bit tield in the memory location addressed by n plus the contents of the Data
Base Register (4) is output to consecutive CRU output lines starting at CRU address m plus th

contents of the CRU Base Register (7). The CRU bit addressed by m plus the contents of the
CRU Base Register is loaded with the least significant bit of the memory word. The contents of
the b field defines the width of the communication register and controls the number of bits sent
to the CRU.

= 0001 register width = 1

= 0010 register width = 2
b = Pt register width = 15
b = 0000 register width = 16

It the # attribute is used. bit 21 is a 1, and the alternate mode registers are used to calculate the

elfective address and the CRU address. See section 6.6 for an example of how data flows between
memorv and CRU.

......... Y

3.6.6.2 STCR (Store Communications Register). Overflow: No
Operand: [#](<m>,),<n> Explicit Definition Carry: No
{#]<namem>, Definition by Name Mode Switching: No
<namen> Comparison Indication: Yes
01 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1 1 1 71 | R L L L L L L L L | IS N T U N N SR |
001011 m b # n
’
unused

Sequential CRU input lines are read and stored as right-justified bit fields in memory location n
plus the contents of the Data Base Register (4). The CRU input line addressed by m plus the
contents of the CRU Base Register (7) is stored as the least significant bit of the field. The b
field of the instruction word defines the number of bits read and stored in memory. (See
LDCR.) The memory word bit positions to the left of the data stored are forced to agree with
the most significant input bit position.

[V the # attribute is used. bit 21 is logic 1, and the alternate mode registers are used to calculate

the effective address and the CRU address. See section 6.6 for an example of how data flows
between memory and CRU.

346 Digital Systems Division

[o]
{@ 942779-9701

SECTION 1V
LANGUAGE REQUIREMENTS

4.1 SOURCE STATEMENT FORMAT

Assembly language source program statements can contain assembler directives, machine
instructions, user-defined operation codes, blank records, or comments. A statement other than
comment or blank statement can contain up to four fields: a label field, an operation field, an
operand field, and a comment field. These fields are separated by one or more blanks and.
except for the comment field, cannot contain embedded blanks.

Examples of source statement formats are shown in figure 4-1.

The first 60 characters that are read from a source record constitute a symbolic input line. If the
'*X (extend printer width) option is used, the input record size is 20 characters less than output
printing width. (Options are described in Section VII). This option can decrease input record size
to as few as 40 characters or increase input record size to as many as 116 characters. In any
case, up to 60 characters are always scanned even if only 40 are printed.

Comment records consist of a single field with an asterisk (*) in the first character position.
Each remaining character can be any ASCII character, including a blank. Comment statements
appear in the source listing but do not affect the assembly.

Blank records consist of an input record with the first 30 columns containing blanks. The
remaining columns are processed as a comment. Blank statements do not affect the assembly.

Null statements are ignored by SAL. A null statement is a zero-length record. If input statements
are being entered on a data terminal keyboard, for example, a null statement may be generated
by typing only a carriage return (a record-delimiting character).
4.1.1 CHARACTER SET. The SAL assembler recognizes these ASCII characters:

® (apital letters of the alphabet

® Arabic numerals

® Space character

® 23 punctuation marks, signs and symbolic characters
Appendix A contains a list of the characters, their ASCII codes and their Hollerith codes.
4.1.2 LABEL FIELD. Labels, also called names, are used to symbolically reference instructions.
values or data. The label field starts in the first character position and extends to the first blank.
A label can contain up to six alphanumeric characters, however, the first character must be

alphabetic. A label is optional for machine instructions and some assembler directives. |f the
label is omitted, a blank must appear in the first character position.

4-1 Digital Systems Division

v

uoysiaig sweysAs 1831610

T1 960/980 ASSEMBLY CODING FORM

LABEL OPER OPERAND COMMENTS
' .) " 13 14 21 2326 30 33 “© [T}

18

*] cloiNlvIEINITITIOINJAILL [S|O|U[R|CIE] |S|{T|A]|T|E|MIEINJT] |F|O[R[M]A|T

10L6°6LLCY6

S|T|AR(T L [A 3, [x]'[2]5]" L{O]A{D| |G| |R] |3
A 50,13 AIDID| |G} |R}| |5
XS RIEITIU[RIN] |T]O] [C|A|LIL|I|N|G| {P[R|O

PROGRAM ED 8Y | CHARGE

(A)128935

Figure 4-1. Source Statement Formats

942779-9701

4.1.3 OPERATION FIELD. The operation field follows the blank that terminates the label
field, or starts with the first non-blank character if there is no label field. It contains an
assembler directive (Section V) or a machine instruction (Section 1V) that defines the operation.
It is terminated by one or more blanks. The first character of the operation field must occur at
or before character position 19 (but not before position 2). The maximum length of the
operation field is four characters.

4.1.4 OPERAND FIELD. The operand field consists of a list of expressions or sublists,
separated by commas. It starts after the blank or blanks that terminate the operation field, and
at or before character position 21 (but not before position 4). It is followed by one or more
blanks, and can not extend past character position 60 of the source record. The operand field
can contain one or more expressions, terms or constants, depending on the requirements for the
operation field.

An example of an operand field follows:
EXPRSI ,EXPRS2,(EXPRS3,EXPRS4)

In this example, (EXPRS3,EXPRS4) is a sublist. Parentheses are required to delimit a sublist.

The field can contain any ASCII character, including blanks. The content f the field appear in
the source portion of the assembly listing, but do not affect the assembly process.
4.2 EXPRESSIONS

Expressions are used in the operand fields of assembler directives and machine instructions.

4.2.1 DEFINITION. An expression is a constant or symbol, or a series of constants and/or symbols
separated by arithmetic operators. In other words, an expression is a chain of terms {paragraph 4.5)
and operations. The first constant or symbol of an expression can be preceded by a plus sign (urary
plus) or a minus sign (unary minus). A unary sign identifies a number as positive or negative and is
not an operator. The expression cannot contain embedded blanks. Only one symbol in an expre-
sion can be subsequently defined in the program, but that symbol must not be part of an operand
in a multiplication or division operation within the expression. An expression that contains a relo-
catable symbol or constant immediately following a multiplication or division operator is an illegal
expression. Also, when the result of evaluating an expression up to a multiplication or division
operator is relocatable, the expression is illegal. An expression in which N4 minus N_ is not equal
to zero or one, where N is the number of relocatable symbols or constants added to the expression
and N_ is the number of relocatable symbols or constants subtracted from the expression. is an il-
legal expression.

ipstn{ctions. If used, it results in an expression error. The use of a referenced symbol in an expres-
sion is ‘vahd in format type I instructions only when the referenced symbol appears first in the
expression.

4-3 Digital Systems Division

o]
{@ 942779-9701

The following are examples of valid expressions:

BLULE+]
GREEN+4
2*16+RED
BLUEHeGREEN

The following are examples of invalid expressions (assuming all symbols are relocatable):

BLUE+GREEN+4 Invalid because N, is not equal to N_ or N_ + 1.

4+BLUE/0 Invalid because of the division of a relocatable expression.

4*GREEN Invalid because a reiocatable term follows a multiplication
operator.

4.2.2 ARITHMETIC OPERATORS AND ORDER OF EVALUATION. The following arithmetic
operators can appear in expressions:

e + for addition

L] -- for subtraction

e * for multiplication

e |/ for division
In evaluating an expression, the assembler first negates any constant or symbol preceded by a
unary minus, then performs the arithmetic operations from left to right. The assembler does not

assign precedence to the operations other than unary plus or minus.

For example, the expression 5+6*2 would be evaluated as (5+6)*2=22, not as 5+(6*2)=17. The
expression 5+1/2 would be evaluated as 3 rather than 5.

4.3 CONSTANTS

Constants are used in expressions, and can be one of three types: decimal integer constants,
hexadecimal integer constants and character constants.

43.1 DECIMAL INTEGER CONSTANTS. A decimal integer constant is written as a numeric
integer with decimal digits. When a decimal integer constant represents data, its range of values is
from -32,768 to +32,767.
The following are valid decimal constants:

2000

-32767

15

4.3.2 HEXADECIMAL INTEGER CONSTANTS. A hexadecimal integer constant is written as a
number with up to tour hexadecimal digits enclosed in single quotation marks and preceded by

the letter X. The hexadecimal digits are the decimal numerals O through 9 and the letters A
through F.

44 Digitai. Systems: Division:-

o
{@ 9427799701

The following are valid hexadecimal constants:
X'87
xc
X'46BF’

A hexadecimal number of up to eight digits may be written as a hexadecimal integer string
(paragraph 4.6).

4.3.3 CHARACTER CONSTANTS. A character constant is written as a string of one or two
characters enclosed within single quotation marks and preceded by the letter C. If a single
quotation mark is required within a character constant, it must be represented by two single
quotation marks. Eight-bit ASCII codes represent the characters internally, with the first bit in
the code for each character equal to zero. A character constant consisting only of two single
quotation marks is invalid. If a single character constant is used, the ASCII code is in the most
significant eight bits, and a blank (X’20’) is placed in the least significant eight bits.

The following are valid character constants:

Constant Value (ASCID)
C’AB’ 4142,
cc 4320,
N 4E20,,
D 2744

44 SYMBOLS

Symbols are used in the label field and the operand field. The first character of a symbol must
be alphabetic, and the others can be any alphanumeric character. None of these characters can
be a blank. A symbol cannot consist of more than six characters. A symbol is valid only during
the assembly in which it is defined.

To access a symbol external to the assembly, the symbol must be referenced externally. To make
a symbol accessible by another assembly, the symbol must be defined externally. (Refer to the
descriptions of the DEF and REF directives in Section VII.) A symbol is automatically defined
externally unless it is defined in the procedure segment. Fxternal references are resolved at link
edit time.

A symbol used in the label field is associated with a specific location in the program and must
not be used as a label in another statement. The mnemonic operation codes and the names of
assembler directives are valid user-defined symbols when placed in the label field. A symbol in
the label field can be equated to a valid expression in the operand field by use of the EQU
directive.

Any symbol used in the operand field must appear elsewhere in the label field of a statement or
in the operand field of a REF directive, with one exception. The exception is the dollar sign
character (3) used in expressions to represent the current location within the program.

4-5 Digital Systems Division

[e]
%"%@ 942779-9701

The tollowing are examples of valid symbols:
START
Al
OPER
$

The following are examples of invalid symbols:

>842

4.5 TERMS

Terms are used in the operand fields of some machine instructions and assembler directives. A
term is u decimal or hexadecimal constant, a character string of one or two characters, or a
symbol.

" The tollowing are examples of valid terms:

12 . (decimal constant)
xc (he){adecimal constant)
WR2 (symbol)

CA’ (character constant)

4.6 HEXADECIMAL INTEGER STRINGS

A hexadecimal integer string is written as a sequence of up to eight hexadecimal digits enclosed
in single quotation marks and preceded by the letter X. Up to four hexadecimal digits represent
one 16-bit word of data; otherwise, two words of data are represented. All values are
right-justified with leading zeros.

The following are valid hexadecimal integer strings:

Number
String of Words Memory Image
X'12FA’ One 12FA
X2 One 0002
X’00002° Two 0000 0002
X456 ABC Two 0045 6ABC

4-6 Digital Systems Division

o
{@ 9427799701

4.7 CHARACTER STRINGS
A character string is written as a sequence of characters enclosed in single quotation murks and
preceded by the letter C. To represent a single quotation mark in the character string within the
delimiting ~marks, two consecutive single quotation marks are used. The characters are
represented internally as 8-bit ASCI] characters.
The following are valid character strings:

C’SAMPLE PROGRAM’

C’PLAN “C” (This string produces the ASCII code for PLAN ‘C)

C‘OPERATOR MESSAGE * PRESS START SWITCH’
4.8 RELOCATABILITY ,
SAL produces relocatable object code. This object code can be placed in any available memory
locations. Relocatable address information must be incremented by the program’s loading address
(load bias) at load time so that it can be executed in the specific memory locations in which the
program is placed. This is the function of the system’s relocating loader. Relocatability allows
one program to occupy one of many possible locations by merely changing the load bias.

4.8.1 RELOCATABILITY OF TERMS IN SOURCE STATEMENTS. A term in a source
statement is either a constant or a symbol. The relocatability of expressions and terms within the

relocatable when it contains one or more relocatable symbols and
N,=N_+1

All valid expressions that do not meet these criteria are absolute.

(absolute) expressions:
$+5 Valid; relocatable
256<@$ Valid; non-relocatable
LEA-6 Valid; relocatable if LEA is relocatable
LEA/6 Invalid if LEA is relocatable; otherwise, non-relocatable
A-B Invalid if B is relocatable, but A s not; relocatable if A is
relocatable, but B is not; absolute if A and B are both absolute

or both relocatable.

6*LEA Invalid if LEA is relocatable; otherwise, non-relocatable

4-7 Digital Systems Division

942779-9701

Any symbol that appears in the label field of a source statement other than a FLAG, CON or

et 1t st 4 s lila Tha cumhal in tha lahael field af an EOIT directive is relocatable if
£QU direciive is reiocatani€. 1€ 3YMoTi i Uil @O0 UGG U i DAL SiRntiivs 25 2o ie

the expression in the operand field is relocatable.

4-8 Digitat Systems Division

o]
@ 942779-9701

SECTION V
ASSEMBLER DIRECTIVES

5.1 DIRECTIVES THAT IDENTIFY PROGRAM SEGMENTS
Under SAL, the programmer can construct his programs as stand-alone units or collections of
one or more modules of basic segment types. The four segment types are:

® Procedure segment—normally the main body of the program. It contains computer
instructions and is the action portion of a program.

® Data segment—used to provide storage, I/O buffers, and constants for use by procedure
segments.

® Flag segment—allows the programmer to address memory symbolically, bit-by-bit.

® Communication Register Unit (CRU) symbolic address segment—simplifies assignment
and use of symbolic addresses for references to bit signal lines in the CRU, both by
register field and by individual bit. '

The assembler directives that identify each of these segment types are described in paragraphs
5.1.1 through 5.1.4.

A segment identifier directive is typically used:
LABEL PSEG

PSEG is the procedure segment identifier directive. The LABEL entry is passed to the link editor
as an external definition and is sent to the link editor in the segment object identification
record. A label is required for all four segment identifier directives.

In order to identify symbols within a segment as belonging to that particular segment class, the
assembler sets an identification bit and constructs a table of the symbols and segments.

The automatic use of specific base registers in format group III machine instructions (refer to
Section IV) makes segmentation convenient and efficient. For example, when referring to a
software flag in the flag segment (FSEG) with a software flag instruction, the value of the
symbol representing the software flag is automatically added with the contents of the Software
Flag base register (register 6) to calculate the effective address during execution of the
instruction. This becomes the bit address of the software flag. So, as the assembler is building an
instruction that uses relative addressing, the displacement of the symbol relative to the origin of
the segment in which it was defined is placed in the instruction rather than the program relative
address of the symbol (which is the same as the program relative value if it occurs in the first
segment of the program). Format group II instructions allow base registers to be specified in the
instruction. For format group I and 11 instructions, the segment relative value of the symbol can be
specified with the use of the relative attribute, the “at” symbol (@). Use of the “at” symboi in for-
mat group III instructions causes a syntax error. The relative attribute may also be used with the
DATA assembler directive, as in this example:

DATA @SYMBOL

5-1 Digital Systems Division

@ 9427799701

This directive causes a data word to be initialized with the value of the displacement of SYMBOL
relative to the origin of ihe segment in which it is defined. If the relative attribute is not used in the
example, the data word is initialized with the relocatable address of SYMBOL rather than its seg-
ment relative value. The following example further illustrates use of the *““at’” symbol:

LA 1,@TEMP4

If the symbol TEMP is defined in a data segment, the “at” symbol effectively converts format
group | instructions to the base-displacement addressing mode used in format group Il instructions.

Tasks in a segmented program might be handled in the following manner. Three independent
process tasks are executed simultaneously under program and monitor control. Each process task
is uniquely assigned to one data segment. The addresses of the task process information inputs
and outputs are defined by the CRU symbolic address segment, used by all three tasks. (See
sumple program no. 3 in Appendix F.)

5.1.1 PROCEDURE SEGMENT (PSEG). The PSEG assembler directive identifies the procedure
segment. PSEG does not require a comment field entry, but requires a label field entry
(automatically defined externally). The operand field is omitted, and characters that appear after
the operation field are handled as a comment. Any directive can be used within the procedure
segment type except FLAG and CON.

51.2 DATA SEGMENT (DSEG). The DSEG assembler directive identifies the data segment.
Proper use of a DATA statement within this segment allows storage to be reserved and
initialized. DSEG does not require a comment field entry, but requires a label field entry. The
operand field is omitted, and characters that appear after the operation field are handled as a
comment. The DSEG label and all symbols defined within this segment are passed to the link
editor as external definitions. Any directive can be used within the data segment type except
FLAG. CON or DEF.

5.1.3 FLAG SEGMENT (FSEG). The FSEG assembler directive identifies the flag segment. This
segment does not ordinarily reserve storage, but allows symbolic addresses to be assigned to a
particular flag or memory bit. The programmer has the option of reserving storage by including a
RES or DATA directive. FSEG does not require a comment field entry, but requires a label field
entry. The operand field is omitted, and characters that appear after the operation field are
handled as a comment. The label and all symbols defined within this segment are passed to the
link editor as external definitions. These directives can be used within the flag segment type:
END: FLAG; EQU; RES; DATA: PAGE; TITL; LIS; UNL.

514 CRU SYMBOLIC ADDRESS SEGMENT (BSEG). The BSEG assembler directive identifies
the Communication Register Unit (CRU) symbolic address segment. This segment does not
reserve storage, but allows symbolic addresses to be assigned to a particular CRU bit or group of
bits. BSEG requires an operand (which is an absolute bit address) and a label. The BSEG
operand value becomes the CRU base address for all symbolic CRU addresses defined within the
segment. This base address is subtracted from all CRU addresses (by SAL) supplied by CON
directives. The BSEG label and all symbols defined within this segment are passed to the link
editor as external definitions. These directives can be used within the CRU symbolic address
segment: END: CON: EQU: PAGE: TITL; LIS: UNL.

5-2 Digital Systems Division

o
i’-@) 942779-9701

5.2 DIRECTIVES THAT CONTROL REGISTERS AND PROGRAM SEGMENTS.
The following paragraphs discuss the Alternate Mode Registers and the Segment Termination
assembler directives.

5.2.1 ALTERNATE MODE REGISTERS (MODE). The general torm of the MODF directive is:

MODE

This statement notifies SAL to permit reference to alternate mode (i.e., inactive mode) registers
using the alternate mode attribute, indicated by a number symbol (#). Note that any use of the
number symbol, when SAL is not provided with a currently active MODE directive, causes an
assembly error. Label and operand field entries are ignored. The MODE directive is terminated
by an END directive.

5.2.2 SEGMENT TERMINATION (END). The general format of the END directive is:
END [OPERAND]

This directive terminates a segment and revokes an active MODE statement. A non-blank
non-external entry in the operand field is passed to the loader identified as a transfer vector.
When more than one END directive is found only the last one is used. Entries in the label field
are ignored. The system bootstrap or Programming Support Monitor (PSM) alternate loader
exectues an LDS (Load Status Block) instruction on the memory location specified by the END
directive operand. Note that an END directive causes a page eject. The following two examples
illustrate the use of the END directive.’

Example 1:
P1 PSEG
MODE
PROC LA 7,0
L #3,NUMBER
START DATA PROC, X'8000’
END START
Example 2:
P2 PSEG
END
FS1 FSEG

5-3 Digital Systems Division

Q
@ 942779-9701

In the first example, the label START is the address of a status block that is loaded to start the
program. The START labei in the operand of the END directive tells the loader where to
transfer control. The MODE directive enables the use of alternate mode register 3. The END
directive terminates the PSEG and the MODE directives.

in the second example, the END directive terminates the procedure segment. A comment or 4
PAGE. TITL. or segment identifier directive must immediately follow END, except when it is
used to mark the conclusion of a program. In that case, END must be followed by an end-of-file
record (/*). Anything else atter an END directive does not reserve space. The operand of an
END directive must be a relocatable value and cannot be an external reference. (Refer to Model
960 Computer Programming Support Monitor, manual no. 9553809701, for more detail about
END vectors.)

5.3 DIRECTIVES THAT GENERATE LINKAGE DATA

The following paragraphs discuss the Define Entry Point Symbols (DEF) and the Identify
External References (REF) assembler directives. The program linking assembler directives DEF
and REF allow independently assembled programs to be symbolically linked into one larger
executable program. Symbolic linkages between programs are created by means of symbols
defined in one program and used as operands in another program. Such symbols are termed
linkage symbols. A linkage symbol is called a defined entry point symboi in the program in
which it is defined: it is called a referenced external symbol in the program in which it is used as
an operand.

53.1 DEFINE ENTRY POINT SYMBOLS (DEF). The general form of the DEF directive is:
DEF OPERAND, ,OPERAND,,... ,OPERAND,

Every linkage symbol must be properly identified in the source program. A linkage symbol used
as an entry point must be identified in the defining program by the DEF directive. DEF is used
in PSEG only. DEF directive statements can be placed anywhere in the program as long as they
are within the program segments in which their use is allowed. Not more than 256 linkage
symbols can be used. '

The symbols (separated by commas) in the operand field must be defined elsewhere in the
program and can be used as an entry point by other programs. A symbol that is used as an
operand in a DEF directive and is not defined in the program is flagged in the listing as an error.

In the tollowing sequence, SQRT is identified as an entry point symbol:

PROGA RES 2
DEF SQRT
SQRT ST 0,SAVE

5.3.2 IDENTIFY EXTERNAL REFERENCES (REF). The general form of the REF directive is:
REF OPERAND, ,OPERAND,, ... ,OPERAND,

This statement identifies symbols appearing in the operand list as external references. These
externally referenced symbols are passed to the link editor with appropriate data for processing.

54 Digital Syatems: Rivision

o
{@ 942779.9701

REF can be used only in procedure and data program segments.
The external symbols (separated by commas) in the first operand field must be defined in
another program and identified in that program as an entry point symbol. For example, il
MTPLY is an entry point symbol in another program, the using program identifies it as an
external symbol.

REF MTPLY

To link to a program named SINE, the following coding could be used.

PROGA RES 2
REF SINE
ADSINE SsB SINE

The following two examples show a method of gaining access to the value of a label in another
program segment.

Example 1:
MAIN PSEG
REF SINE
ADSINE BL 1,SINE
END
Example 2:
SuB PSEG
RES 10
DEF SINE
SINE ST 1,SAVE
L 1,SAVE
B 2,1 RETURN
END

Line 2 of the first example indicates that the label SINE appears in a different segment which is

. to be assembled separately. Line 3, in the second example, declares the label SINE to be
externally defined so that the first example segment can have access to the value of the label.
SINE, when the two segments are linked together.

5-5 Digital Systems Division

[e]
@ 942779-9701

5.4 DIRECTIVES THAT ASSIGN NAMES, VALUES AND LABELS

Value to Symbol, and Format a Source Language Extension assembler directives.

54.1 NAME FLAG BIT ADDRESS (FLAG). The general form of the FLAG directive is:
FLAG OPERAND, ,OPERAND,, ... ,OPERAND,

This directive allows naming the flag bit addresses in a flag segment (FSEG).

Flag addresses are assigned sequentially to the previous symbols appearing in the operand list.
The flag base register must be set to the address of the first word to be used for flags. The
Current Flag Counter is started at bit 0 and is maintained modulo 16.

Modulo 16 means with respect to a modulus of 16. A modulus is an integer (x, for example)
whose relationship to two other integers (y and z, for example) is such that y-z divided by x is a
whole number. In other words, if counting modulo 16, count from O to 15, then go back to 0.
The number O follows 15 in endless sequence. For example, the number 7 is equal to 23 modulo 16
and is also equal to 55 modulo 16.

Fach time the counter passes through zero, the Flag Word Address Counter is incremented by
one, thus addressing the next word. For example:

XLABEL FSEG
FLAG F1, F2, F3, 1, F4, F5,3, F6
FLAG 2, F7, F8, 3, F9

o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15
WORD 1 F1 F2 F3 F4a FS F6 F7 F8

o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15
WORD 2 F9

Terms encountered in the operand list are added to the current location counter to advance the
flag address accordingly. A constant or a symbol representing a constant appearing in the operand
list specifies the number of flags to be skipped.

The FLAG directive can be used only in the flag segment. FLAG directives do not allocate
memory and are used as a convenient method for generating flag addresses.

54.2 NAME CRU BIT ADDRESS (CON). The general form of the CON directive is:

LABEL CON OPERANDMODIFIER

5-6 Digital Systems Division

@ 9427799701

" This directive is used in the 'C_IQ.U—syﬁaaafc add;é§s—s,é-ghﬂ1_eﬁt to name the address of a CRU bit or
the address of a series of CRU bits. The modifier is optional and has a default value of 1. The
following example illustrates the use of CON:

COMM BSEG 0

TAPE1 CON 18

TAPE2 CON 19,3

TAPE3 CON 20

TREG CON 18
END

Line 2 of the example assigns the name TAPEIl to bit location 18,, of the CRU symbolic
address program segment. Line 5 assigns a different name, TREG. to the same location. Line 3
assigns a name to bits 19, 20, and 21. These three bits may be referenced as a communication
register. Line 4 assigns a label to bit 20. This bit is contained within the TAPE2 register, but may
also be addressed as TAPE3. A sequence of bits defined as a communication register with the CON
directive (TAPE2 in the examples) may be addressed as a register by the LDCR and STCR instruc-

tions.

A second example gives the identical bit addresses as the first:

COMM BSEG 400

TAPE1 CON 418

TAPE2 CON 4193

TAPE3 CON 420

TREG CON 418
END

The bit ‘addresses are the same because the difference between the BSEG operand and the CON
operand determines the CRU bit address. This displacement value is limited by the number ot
bits in the instruction address field to a minimum of 0 and a maximum of 1023. Addressing the
CRU requires the use of base register 7.

Note that the CON directive does not initialize any bits. CON is used only in a CRU symbolic
address segment (BSEG).

5.4.3 ASSIGN VALUE TO SYMBOL (EQU). The general form of the EQU directive is:

LABEL EQU OPERAND
The EQU assignment directive assigns the value and attributes of the expression in the operand tield
to the symbol appearing in the label field. Among other uses, this statement can be used to assign a

name to a register.

The expression in the operand field can be relocatable or absolute, and the symbol is defincd ac-
cordingly. Any symbols in the expression must not be external.

The expression may contain symbols whose values are determined later in the assembly. Lxamples
of valid and invalid uses of forward referenced symbols in EQU statements follow:

A EQU B+2

B EQU 3

5-7 Digital Systems Division

[+]
@ 942779-9701

A and B arc labels of legal EQU statements and the above results in the values 5 and 3 being as-

C EQU D
D EQU E+2

E EQU 1

In the above example, D is assigned the value 3 and E the value 1. However, C is the label of an in-
valid EQU statement and will result in an undefined symbol error.

F FEQU 4
G EQU H+3

H EQU F

The above 3 EQU statements are valid. The values 4, 7, and 4 are assigned to the symbols F, G and
H respectively. The label of a forward referenced EQU may not be externally defined. This usage
generates an ILLEGAL DEF error.

The EQU directive is the usual way of equating symbols to register numbers, input/output unit
numbers, immediate data, actual addresses, and other arbitrary values. The following example
shows a series of EQU directives:

REGX EQuU 2 REGISTER X (RFGX) IS GIVEN THE
VALUE 2.

10125 EQU 125 INPUT/QUTPUT DATA

TEST EQU X'3F' IMMEDIATE DATA. TEST IS GIVEN THE
VALUE OF 3F (HEX).

TIMER EQU 80 ACTUAL ADDRESS. TIMER IS EQUATED
TO DECIMAL 80.

LP1 EQU $ LP1 IS ASSIGNED THE PRESENT LOCA-

TION COUNTER VALUE.
To reduce programming time, symbols can be equaled to frequently used compound expressions
and then symbols used as operands in place of the expressions. The following example illustrates
this use ot EQU:

FIELD EQU ALPHA-BETA+GAMMA

PILED s detined as ALPHA-BETA+GAMMA and can be used in place of it. Note, however. that
ALPHA, BETA, and GAMMA must not be external references.

Change 1 58 Digital Systems Division

o
@ 942779-9701

5.44 FORMAT A SOURCE LANGUAGE EXTENSION (FRM). The general form of the FRM
directive is:

LABL FRM OPERAND,.OPERAND...... OPERAND,,

FRM assigns the label as an operation code. The label symbol cannot exceed four characters in
length. The expression values in the operand field are positive integers and their sum must be 16
or 32. When the label is used as an operation code, the n fields are evaluated, truncated without
reference to sign to the length specified by the corresponding OPERAND, and placed beginning
in the same relative bit location as the FRM directive list. New instructions and data structures
can be designed using the FRM directive. An FRM defined operation mnemonic overrides any
SAL machine instruction or directive mnemonic. The label assigned to an FRM directive may
not be an existing directive mnemonic or instruction mnemonic.

An instruction defined by a format statement must not precede the FRM statement. It it docs, a
pass | error occurs although the statement is correctly assembled.

Field widths in bits are listed in the operand field, as shown in these examples:
XLAB FRM 4,2,10,5,5,6 Format declaration
WORD XLAB 4,1,103,26,9,15 Format reference

In memory, the above example reference would appear in two words as:

o) 3 4 5 6 15 16 20 21 25 26 31

0100 o1 0001100111 11010 01001 oot111

MEMORY

The option is available to include a two-entry, parenthetic sublist in the FRM operand, such as:

XLAB FRM 6,3,7(X'FF’,X0)
XLAB 154,23

Should this option be exercised, a logical AND is performed between the first sublist entry and
the final version of the formatted word (or double word) and logical OR performed between the
second sublist entry and the formatted word (or double word). When the sublist is used, the
number of binary bits (in the example, 16) required to represent each number of the sublist
must not exceed the number of bits specified by the field width operands. Should the sublist
number require fewer than the specified number of bits, the number is right-justified in a field
with leading zeros. In memory, the formatted word above would appear as:

0000 0000 0001 ot1t1

MEMORY

Digital Systems Division

(ﬂl’@ 942779-9701

The number of bits specified in the operand list must equal either 16 or 32. Furthermore, when
the 32-bit format is used, a field cannot be defined that extends across the internai word
boundary. An entry in the label field is required. After XLAB has been defined, it is referenced

by entering its label symbol in the operation code field. For example:

XLAB FRM 448

ALPHA XLAB 126,21

BRAVO XLAB 13,5,20

TEST FRM 8.8,16(X'SFFEFFFF’ X'09F)
BAKER TEST 22,4466

CAT TEST -20,3+18,32760

5.5 DIRECTIVES THAT RESERVE OR PLACE DATA IN MEMORY
The following paragraphs discuss the Reserve Memory and Place Data in Memory assembler
directives.

5.5.1 RESERVE MEMORY (RES). The general form of the RES directive is:
LABEL RES OPERAND

This statement is used to reserve word locations in memory. The term in the operand field entry
is added algebraically to the contents of the current location counter. An entry in the label field
is optional. An example of RES:

XLABEL RES 10

In this example, the operand 10 specifies that ten consecutive words will be reserved in memory.
The label XLABEL is the address of the first word reserved. Subsequent words in this reserved
area can be addressed using XLABEL and indexed by the proper integer (1 to 9). Use of a
relocatable expression, external reference, or forward-defined symbol (which means that the
symbol has not been defined previous to this statement) in the operand field is an error.

/

5.5.2 PLACE DATA IN MEMORY (DATA). The general form of the DATA directive is:
LABEL DATA OPERAND,,OPERAND,... ,OPERAND,

This directive is used to place specific values in memory. Values specified in the operand list are
entered in adjacent memory locations. Three types of data are permitted: hexadecimal integer
strings, ASCII character strings, and valid expressions. A decimal integer list might appear as:

DATA 529,-3,65
A hexadecimal list might appear as:
DATA X'ABCO',X'A’,X'SF10’,X'12345'

Note that for hexadecimal numbers, each entry is preceded by X and is enclosed by apostrophes.
Decimal numbers cannot require more than 16 binary bits for internal representation and
hexadecimal numbers more than 32. If a number (such as X’A’) requires fewer than 16 bits, the
number is right-justified internally and the remainder of the field is filled with leading zeros. In
both decimal and hexadecimal, the number’s value (V) must fall within the range -2'5 <V <
215_| . For two-word hexadecimal entries, the range must be 231 <V <231,

5-10 Dighal Systems Division

@ 942779-9701

An example of an ASCII list follows:
DATA C'TEXAS INSTRUMENTS',C'SAMPLE'

Note that the data is enclosed in apostrophes and is preceded by C.

The first constant, TEXAS INSTRUMENTS, requires nine storage words since one memory word
can store two ASCII characters. There are 17 characters in the constant including the space
between words. SAL left-justifies ASCII characters and fills the right half of the last word with u
blank if an odd number of characters is specified. Two consecutive apostrophes must be used to
represent an apostrophe character within an ASCII list. The DATA directive can be used in the

procedure, data, and flag segments.

The following two constructions are allowed in SAL, where MDAT is a relocatable address and
@MDAT is a segment relative address.

DATA MDAT
DATA @MDAT

5.6 DIRECTIVES THAT CONTROL ASSEMBLER OUTPUT
The following paragraphs discuss the Page Eject and Program Identitication assembler directives.

5.6.1 PAGE EJECT (PAGE). The general form of the PAGE directive is:

PAGE

This directive causes the listing output device to be advanced to the top-of-form position. The
directive itself, PAGE, is printed before the page is ejected.

5.6.2 PROGRAM IDENTIFICATION (TITL). The general torm of the TITL directive is:

TITL OPERAND

This directive is used to specify the ASCII characters to be used in program identification. Thesce
characters.are printed on the first line of each page of the list generated by the assembler. The
heading occurs at assembly time, and not at run time. The following example illustrates how
TITL is used:

TITL T1 960 MONITOR SYSTEM

TITL causes the operand to be stored in a title buffer; the title is printed at the top of a new
page or after a page eject. If another TITL directive with a different title as its operand is
encountered, the new title is printed at the top of subsequent pages. However, the first title is
used in the symbol and segment table listing.

5.6.3 UNLIST DIRECTIVE (UNL). This directive disc continues a list output in progress on
LUNO 6 until a LIST directive is encountered. Lines with errors are listed when a UNL is in cltect.
This directive does not override any input option.

5.6.4 LIST DIRECTIVE (LIS). This directive cancels a previous UNLIST directive and resumes
the interrupted list output on LUNO 6. This directive does not override any input option.

5-11/5-12 Digital Systems Division

o]
@ 942779-9701

SECTION VI

PROGRAMMING TECHNIQUES

6.1 GENERAL
This section is intended primarily for the user new to 960 assembly language programming. The

purpose of this section is to show some commonly used SAL techniques. Consider the following
introductory remarks.

® Annotate programs thoroughly. Use more comments with assembly language than when
working with a higher-level language. A line of comments per instruction should be
considered minimum and sometimes even this is not sufficient.

® Use all available formatting aids, e.g., the TITL option and the fact that the SAL
assemblers pass blank cards can be used to delineate logical groupings.

® Do not use free-form coding. By starting operations and operands in the same field
each time on every card, program listings are easier to debug and more readable.

6.2 SAVING REGISTERS
Since the 960 instruction set does not have multiple load and save instructions, saving registers

upon entry to a routine and the restoration at the end of the routine the iteration has to be
done explicitly.

Example:
SUBR ST 0,.SAV0+1
ST 1,SAV1+1
ST 2,5AV2+1
ST 7,SAV7+1
(body of routine)
{return sequence)
SAVO LA 0.%-$ Store area in second
SAV1 LA 1.$-$ word of instruction
SAV2 LA 2,$-$
SAV7 LA 7,%-%

NOTE

$-8 assembles as a zero and is conventionally used to designate u
location to be modified.

6-1 Digital Systems Division

(o]
%@ 9427799701

6.3 MOVE OPERATIONS

The 960 instruction set includes a memory-to-memory move instruction. This provides the user
with a faster. easier method of moving data from one location in memory to another. Instead of
using load and store instructions thus:

L 1,HERE
ST 1,THERE

one instruction is all that is needed:
MOV HERE,THERE
NOTE

HERE and THERE must be within 1024 words of the beginning of
the segment in which they are each defined (however, they can be
separate segments) and the appropriate base registers must point to
the top of the respective segments.

6.4 ZEROING MEMORY
Memory words can be cleared by shifting left to zero all bits, to save a line of source code and a
word of storage:

MLA 0,WORD 16 bit shift
instead of:
MOV ZERO,WORD
ZERO DATA 0

However. it should be noted that, for time-critical applications, the latter is faster by
approximately 3 microseconds.

6.5 SHIFTING DATA
The 960 shift instructions all shift memory, not registers. However, to shlft worker register O left
4 bits, the following example could be used.

Example:
MLA 4 WRO
WRO EQU X'88’
instead of
ST 0,HERE
MLA 4 HERE
L O,HERE

6-2 Digital Systems Division

[e]
@ 942779-9701

6.6 CRU LOAD AND STORE EXAMPLE

Although the CRU instructions are described in section IV. the function is sufficiently peculiar

to warrant illustration here.

Consider the example:

LA 7.XF70°
LA 4,X'88°
STCR (0,0),0

F70 is address of module on CRU
data to be stored in worker register O

The STCR instruction causes one word of data to be read from CRU lines ‘F70’ to ‘F7F to the
(scratchpad) word in memory location 88,, . However, if line ‘F70" is a one, and ‘F71" to ‘F7I"
are zeros, the scratch pad contains the bit pattern ‘0001 and if CRU line ‘F7F is a one and
‘F70° to ‘F7E’ are zeros then the scratch pad word contains ‘8000’. This happens because the
CRU is physically organized from right to left, unlike main memory. The LDCR instruction is the
inverse of the STCR Instruction. In the example below, data flows in the opposite direction.
Memory bit 15 transfers to CRU bit F70, and memory bit O transters to CRU bit F7F.

15

LoC 88, ¢

U CRU F70
L X X]
®
o
]
CRU F78
B
®
o
CRU F7F

(A)131861A

6.7 LABELING CONTROL BLOCKS

The FLAG directive is used to label a template for a control block and can only be used in an
FSEG (Flag Segment). Very often it is desired to intersperse bits (flags), groups ot bits

(unlabeled), and words in a block of data (control block

example by mixing FLAG and EQU directives in an FSEG.

). This is illustrated in the following

6-3

Digital Systems Division

942779-9701

Consider the tollowing data configuration:

O€EviO-womrD | DERR oa!0 OEFER | DSPLY | OAFTR JONOPYY x X CRTY 10
o

o 1 2 3 4 1" 12 15

ORETRY-WOROD
1 oTo ONAK |DPRTY | OLRC X X x X x x RETRY COUNT FOR TASK 10

DTASK'WOR(Z) TASK 1D

OfLAY-WOROD
3 POLLS TO COUNT

OE VAOR— WORD
4

0513
0514
0515
8516
8517
9518
0519
05249
8521
9522
0523
0524
0525
08526
0527
9528
0529
8539
9531
0532
0533
0534
0535
8536
8537
0538
8539
0549

LINE NUMBER

210C
a0¢e
8aoo0
geog1t
goe2
oeal
oge4
8nes

goes
gogt

go1o
po11
0a12
o913

8014
8002
20923

eoo4

eee6
pate
810C

Sample Control Block Layout

DCBSEG FSEG

DEVID EQuU
FLAG
FLAG
FLAG
FLAG
FLAG
FLAG
* BITS
FLAG
DRETRY EQU
» BITS
FLAG
FLAG
FLAG
FLAG
* BITS
FLAG
DTASK EQU
DELAY EQU
»
DEVADR EQU
* BITS
» BITS
1] BITS
DCBWK EQU
DCBLN EQGQU
END

pCB (DEVICE CONTROL BLOCK)

2
DERR
pDBID
DEFER
DSPLY
OAFTR
DNOPTY
8=15
10

1

2-3
DTYO0
DNAK
DPRTY
DLRC
!2.15
12

2

3

4
g=7
8=-15
16314

16

CRT 1/0 ERROR

TASK BID

TASK DEFERS EXECUTION
TASK REQUIRES OUTPUT
POST TASK AFTER QUTPUT

.DO -NOT GENERATE PARITY OR LRC

CRY 1D

1/0 ERROR FLAGS

DEVICE TIME OUT

OUTPUT ERROR

INPUT PARITY ERRNR

INPUT LRC ERROR

RETRY COUNT FOR TASK 1/0

TASK ID

POLLS TO COUNT BEFORE EXECUTING
DEFERRED TASK

DEVICE SYMBOLIC ADDRESS IN ASCII

LINE NO, (A=)
DEVICE In (2@=18)
1@ WORD WORK AREA

64

Digital Systems Division

[]
{_@; 942779-9701

In this example the FSEG is used to create a template for a 5-word block of data. The single
bits can be referenced directly in Flag instructions. The entire words can be referred to. The
groups of bits can only be referred to as words with the unused bits masked off.

As an example of the use of this template in referring to entire words, consider a S-word block
in memory labeled DCB. It is desired to load word 3 (DELAY) into register 1:

LA 2,DCB Set base register 2 to beginning of block
L 1,DELAY,2 Load register 1

Other words can be referred to in the same manner. It should be noted that an EQU directive in
an FSEG is the same as in any other segment. In this case the EQUs are in the FSEG for clarity
in defining the template.

6.8 COMPARISON CODE
It should be noted that for comparison tests (2-way) against an immediate value the structure of
the CRA instruction is more useful than the CMI instruction.

Example:
L 1,VALUE
CRA 1,X20'
BC EQ,BLANK
CRA 1,X41’
BC EQ,LETTER
Instead of:
(o7]] VALUE, X'20’
B NEXT
B NEXT
B BLANK
NEXT CMmI VALUE,X'41’
B AGAIN
B AGAIN
B LETTER
AGAIN EQU $

6.9 “MVC” LOOP AND GENERAL ITERATIONS
Long strings of data (ASCII characters) can be moved from location to location within memory
through the use of the following type of code.

Example:
LA 1,HERE Load pointing registers
LA 2,THERE
LA 3,-100 Move 200 characters
MOVE MoV {0,1),(0,2)
AA 1.1 Augment pointer
AA 21
ARB 1,MOVE,3 Step and test index register

Very obviously, other types of iterated loops could be implemented similarly through the use of
the ARB instruction.

6-5 Digital Systems Division

[o]
J@ 942779-9701

6.10 SAL 1/O0 OUTPUT

1/O operations are typicaliy operating System dependent Since this manual is designed to be
used with 960 systems under the operating control of PSM, PAM, or PAM/D, it is not the place
for much discussion of 1/0O. However, a fairly typical example of console output (under PSM,
PAM or PAM/D) is included in the following example.

I xample:
DATASP DSEG
MSAG DATA C'MESSAGE’
MSAGWC EQU $-MSAG
MSGPRB DATA DATASP PAM EXAMPLE
DATA MSAG
DATA 0
DATA MSAGWC
DATA X'00’
END
PROC PSEG
LA 3,0MSGPRB
SXBS *SvC
SsvC EQU X7F

END

6.11 PRE-INDEXING AND POST-INDEXING DESCRIPTION

The *B instruction (*BC and *BL also) always uses the pre-indexing mode, regardless of the
contents of status register bit 6. This is helpful in programs where the post-indexing mode is
generally desired (status register bit 6 set), but the pre-indexing mode is wanted for some branch
instructions.

The example below contains a table addressed by POINTR and contains a data word followed by
4 branch vector. The instructions given compare each value in the table (beginning with the end
of the table and working up) with the contents of VALUE. If the words compare, a branch is
taken to the address given in the word following the value. The comparison instruction uses the
indexing mode defined by the status register, but the branch will always be pre-indexed. For the
example the status register is assumed to contain 8200,, (post-indexing and worker mode).

6-6 Digital Systems Division

942779-9701

EQ EQU 1
LA 1,END-2-POINTR Compute table size
L 2,VALUE Value to be compared

COmMP CRL 2,”POINTR,1 Compare with next value
*BC EQ,POINTR+1,1 Branch to address given
ARB -2,COMP,1 Decrement index and retry

value not found

POINTR DATA VALUE1,ENTRY1 For post-indexing, the
DATA VALUE2,ENTRY2 contents of POINTR,
DATA VALUES,ENTRY3 VALUET1 is used as the

address by which register
1 indexes to get the actual
value for comparison,
Branch table

DATA VALUEN,ENTRYn
" END EQU $

ENTRY1 EQU $ ROUTINE #1 entry pnt.

6.12 COMMON SUBROUTINES

The following subroutines use the same set of general registers that the calling subroutine uses.
The BL instruction branches to a common subroutine and stores the address of the BL
instruction in the linking register designated by the r field of the machine instruction. The
subroutine can return control to the calling routine following the BL instruction by executing
the statement:

B 2R

where the r register contains the address of the BL instructions upon the time of entry to this
subroutine. The SSB instruction branches to a common subroutine and stores the address of SSB
instruction +2 at the effective address, stores the status at effective address +1, and branches to
the address specitied by the effective address +1. One advantage of the SSB over the BL
instruction is that registers are not affected. The return call to the calling routine at the
instruction after SSB is an LDS instruction. A disadvantage, however, is that reentrant code can
not contain an SSB instruction. A common subroutine can use other branch instructions as
appropriate to transfer control to other points in the calling routine or in other subroutines.

Change 2 ' 6-7 Digital Systems Division

9427799701

The following examples assume that program and subroutines are assembled separately and link
edited. When assembly at the same time the REF statements are not required. An example of
the BL instruction is:

Calling Program
P

R3

NUMBER

PSEG

REF SQRT
EQU 3

ST 0,NUMBER
BL R3,SQRT
DATA 0

*SUBROUTINE RETURNS HERE

RETURN
SAVE3

END

PSEG

EQU 3

ST R3,SAVE3
LA R3,SAVE3
EQU $-1

B 2,3 RETURN
END

An example of the SSB instruction is:

Calling Program

P

PSEG
REF SQRT
sSSB SQRT

*SUBROUTINE RETURNS HERE

END

Digital Systems Divigion

o
{@P 942779-9701

Subroutine

SQRT PSEG
DATA 0,0,8+1

LDS SQRT RETURN
END

6.13 PROGRAM MODULES 4

Since the assembler includes directives that generate the information required to link program
modules, it is not necessary to assemble an entire program during the same assembly. The link
editor links modules into one large program module satisfying all external symbol references if
the conditions described in the following paragraphs are met. These paragraphs define the linking
information that must be included in all program modules.

A program module can contain one or more program segments. A long program can be divided
into separately assembled modules to avoid a long assembly or to reduce the size of the symbol
table.

6.13.1 EXTERNAL REFERENCE DIRECTIVE. Each symbol defined in some other program
module (in a separate assembly) must be placed in the operand field of an REF directive in the
program module that requires the symbol.

6.13.2 EXTERNAL DEFINITION DIRECTIVE. Each symbol detined in a program module and
required by another program module must be placed in the operand field of a DEF directive.
The label of a PSEG directive and all symbols of data, flag, or CRU symbolic address segment
are automatically defined as external. Therefore, placing any of these symbols in a DEF symbol
string is an invalid procedure and causes an error condition.

6.13.3 LINKING PROGRAM MODULES. When program segments are linked. the link editor
builds a list of symbols from the externally defined symbols (either by the DEF directive or
automatically) during pass 1. Each program segment bias (the starting address of the segment
relative to the start of the program) is incremented by the segment lengths of the previous
segments. Each relocatable external symbol definition is incremented by its defining segment
bias. During pass 2, the reference data (a symbol string in a REF directive) is resolved and new
text data is generated. The output is then one larger loadable, linkable (only it linked with
LNK960 and specifying certain symbols to remain external), and executable progrum module.

6-9/6-10 Digital Systems Division

[}
@ 942779-9701

SECTION VIl
SAL INPUTS AND OUTPUTS

7.1 GENERAL

This section discusses the assembler input data required and output data produced. Included is
an explanation of the formats for the source listing, user’s data input, and object output. Also
included are a list of error codes and a list of input options.

7.1.1 SOURCE LISTING FORMAT. The SAL assembler prints a source listing that shows the
symbol table, source statements and the resulting object code. Appendix F includes such a listing
example. The symbol table headings are:

FLAG The symbol is defined as a Flag

REF “REFed” in program

REL Relocatable

DEF Define in program (not necessarily DEFed)
EXT Externally defined (REFed or DEFed)
MUL Multiply defined

ILL llegal

USED Referenced in program

Each page of the source listing can have a title line at the top of the page (when supplied by
TITL directive). Any title supplied by a TITL directive is printed in this line, and a page number
is printed to the right of the title area. The printer skips a line below the title line and prints a
line for each source statement listed. The line for each source statement contains a source record
number, a location counter value, object code assembled, and the source statement image.

7.1.1.1 Listing Fields. The listing line for a machine instruction source statement is shown in
the following example:

0018 0156 14039416 MOV DATA1,DATA2

The source record number, 0018 in the example, is the first field in a source listing line and is a
4-digit decimal number. Source records are numbered in the order in which they are entered.

The next field on a line of the listing contains the hexadecimal location counter value, 0156 in
the example. Not all directives affect the location counter, and those that do not affect the
location counter leave this field blank. The EQU directive places the value corresponding to the
label in the location code field.

7-1 Digital Systems Division

@ 942779-9701

The third tield contains the hexadecimal representation of the object code generated by the
yssembler. 14039416 in this exampie. All machine instructions and the DATA directive use this
field tor object code.

The tourth field contains the first 60 characters of source statement as supplied to the assembler.
The number of source statement characters read and printed may be altered by the Extend
Printing Width option (X): see the list of options in paragraph 7.1.2.2. Spacing in this field is
determined by the spacing in the source statement. The four fields of source statements are

aligned in the listing only when they are aligned in the same character positions in the source
statements.

The object code corresponds to the operands in the order in which they appear in the source
statement. The DATA directive prints a line of code for each entry that takes one or two words
of data. For example:

0005 0010 0003 DATA A,1,X’'138F',C'ABCDE
0011 0001
0012 138F
0013 41424344
0015 4520

The first line in the example contains the source record number (0005 decimal), location counter
(0010 hexadecimal), value of the symbol A, and the first 60 characters of the input record
image. The second line contains the second entry (operand) value (0001) and the third contains
the third entry value (138F hexadecimal). The fourth entry takes up more than two words of
data; therefore, more than one data line is printed. The hexadecimal value (41424344) of the
fourth line is the hexadecimal ASCII code object value of the characters ABCD. The next line is
the hexadecimal ASCII code value of the character E and a blank fill (4520).

71.1.2 Model 33 ASR Teletypewriter. When object code is punched on the 33 ASR
teletypewriter, the object code is printed as it is punched. Since the listing is being printed on
the same device. lines of object code are printed between the lines of the source listing. Also, the
33 ASR prints 72-character columns to a line although SAL assumes 80. To avoid the
inconvenience caused by these incompatibilities, the following actions are suggested:

1. Always generate the source tape starting with an !*Xb0072 record. This changes the
printed line width to 79 columns and the input record size to 52 characters.

9

Assign logical unit number (LUNO) 4 to a keyboard/printer device, not to the dummy.
Options can be easily changed.

3. Type !'*RX for the option input at the start of execution of pass 1. This allows
reexecution of pass 2. During execution of pass 1, the symbol and segment table are
printed with the object listing interspersed between the symbol and segment tables. ID
and linkage data is punched during pass 1; it is not repunched during each execution of
pass 2. This data is not used by the loader, but is used by the linking editor.

4. Type '*L for the option input at the start of pass 2. A listing is printed along with
any source errors but object data is not punched. The assembler then asks if
reexecution of pass 2 is desired. The user requests re-execution if an output of object
data is desired.

7-2 Digital Syaters ‘Division

]
@ 942779-9701

5. Type !*P for the option input to the second execution of pass 2. SAL then punches
out object without an assembly listing. Pass 2 object is executable but not linkable.
Re-execution of pass 2 may continue for as many copies of listings or text data as
desired.

7.1.1.3 Error Messages. During pass 1, the assembler prints an error message on a separate line
of the listing when it detects an error. The errcr message is printed out on the listing device. The
total number of pass 1 errors is printed at the end of pass 1. When the assembler is accepting
data, it prints messages such as:

SEGMENT TABLE EXCEEDED BY AAAAAA » (AAAAAA is a symbol)
*** ILLEGAL FRM *** BBBB (BBBB is a mnemonic)

Table 7-1 contains a list of the pass 1 error messages.

During pass 2, the assembler prints a 1-character error code on the source line of the listing in
front of the location counter number when it detects an error. An example of this type of error
code is:

0005 S0010 14000000 MOV (A,B,C),D

The letter S immediately in front of the number 0010 is the error code. The total number of
errors from pass 1 and pass 2 is printed upon termination of pass 2. (Refer to the !*S option in
paragraph 7.1.2.2 for information about suppressing the listing of error summaries.) Because
some errors are pass 1, some are pass 2, and some are both pass | and pass 2, two errors per
statement may be printed on the assembly listing. The pass 2 error codes and messages are listed
in tables 7-2 and 7-3. The total error summary printed at the end of the assembly is the sum of both
pass | and pass 2 errors.

An End-of-File object record is punched at the end of assembly regardless of Error Override option
(EO), unless List Only option is specified.

7.1.2 INPUT FORMAT. The input format for source statements is constrained to four fields. A
description of each of these fields and the limitations on the character column positions they can
occupy is found in Section III.

The width of the listing is constrained to the printer width specified by an option or the
80-column default. Because the assembler uses the first 20 columns of a printout line for the
record number, error code, assembly program counter number, and object, the remainder of the
columns are used for the input record image. The input record size is therefore limited to the
printer width minus 20 characters (or 60 characters as the default width). Up to sixty characters
of input record are scanned by the assembler.

7.1.2.1 Logical Unit Numbers. The specific peripherals to be used for input and output are
assigned by means of logical unit numbers (LUNOs). The LUNOs are assigned as follows:

LUNO : Description
4 Secondary option input
5 Source Input
6 Listing Output
7 Object Output
10 Sequential scratch file; dummy

7-3 Digital Systems Division

o]
{@ 942779-9701

Table 7-1. Pass 1 Error Messages

Messages Explanation
SYMBOL TABLE EXCEEDED BY AAAAAA Symbol table entry caused overflow; assembly aborts.
AAAAAA is the symbol that caused the overflow.
SEGMENT TABLE EXCEEDED BY AAAAAA Segment table entry caused overflow; assembly aborts.
** [LLEGAL INSTRUCTION ** BBBB Assembler did not recognize mnemonic. BBBB is the
mnemonic.
MISSING END Assembler recognized a new segment, and the previous

segment is missing an end card.

+++ | LEGAL FRM *** BBBB Format was not 16 or 32 bits in width, or a jabei was
used that is already a standard SAL label.

INSTRUCTION BETWEEN SEGMENTS Instruction was not within a segment. The assembler
aborts after detecting 25 consecutive instructions between
segments.

MULTIPLE SYMBOL AAAAAA Symbol was defined more than once.

ILLEGAL LABEL AAAAAA Label had invalid syntax.

I ILLEGAL DEF AAAAAA Forward referenced label used in DEF directive.
READ ERROR An input read error occurred. Ready the last record read
TYPE R TO RETRY for another input if possible and type the letter R on the

keyboard to retry. Any other legal character response ter-
minates the assembler. May also occur in pass 2.

XXXX PASS ONE ERRORS A total of XXXX (decimal) errors were found during
pass 1. This message is printed upon termination of pass 1.
ASSEMBLER ABORTED — INVALID OPTION The assembler received an invalid option. May also occur in
pass 2.
ASSEMBLER ABORTED — NOT IN The assembler was not loaded into the background parti-
BACKGROUND tion of PAM/D memory.’
ASSEMBLER ABORTED ‘ The assembler encountered an undefined LUNO, a memory

parity error or an illegal instruction.

LUNO 10 is typically assigned to a dummy device under the Programming Support Monitor (PSM)
or the Process Automation Monitor (PAM) and to a rewindable device under the Process Automa-
tion Monitor/Disc (PAM/D), unless the CI option (paragraph 7.1.2.2) is used. PSM, PAM and
PAM/D are the monitors (i.e., executive systems) under which the assembler runs.

7.1.2.2 Options. The SAL assembler accepts certain options specified from the option input device
(LUNO 4) and/or within the source input (LUNO 5). The format of an option record is:

1*ab

where the combination ab can be one of the options shown in table 7-4, which lists the options
and their functions. An invalid option causes the assembler to abort.

Change 1 74 Digital Systems Division

9427799701

If an option record is not input, the options LP are set by default. An option record is recognized
anywhere in the input file by pass 1 and/or pass 2.

Table 7-2. Pass 2 Error Codes

Error Code Type of Error
A Address error — wrong symbol type used in instruction
D Symbols defined more than once
E Expression error
L Illegal label
M Illegal attempt to specify alternate mode registers
N Illegal mnemonic
0} Undefined operand
P lllegal procedure
S Syntax error
T Truncation error — value calculated was truncated to fit in
operand field or overflow occurred
U Undefined symbol
w Warning
Table 7-3. Pass 2 Error Messages
Message Explanation
READ ERROR An input read error occurred.
TYPE R TO RETRY Ready the last record read for
another input if it is not running
under PAM/D or the CI option,
and type the letter R on the
keyboard to retry. Any other legai
character response terminates
the assembler.
UNDEF/FWDREF SYM AAAAAA A symbol was not defined in the

XXX ERRORS : LENGTH = YYYY

The secondary option input device
pass 1 and an option at the start of

assembly or a symbol used as an
operand of an assembler directive
(except EQU) was encountered
before the symbol was defined.

A total of XXXX (decimal) errors
from pass 1 and pass 2 were found.
YYYY (hexadecimal) is the length
of the created object module. This
message is printed upon termination
of pass 2.

(LUNO 4) allows the user to enter an option at the start of
pass 2 without having to modify the input source tile (LUNO 5).

If LUNO 4 is assigned to a keyboard/printer device, the following message is printed at the start of

pass 1 and 2:

OPTION?

Type one option record followed by a carria

record input. After all desired options have

ge return. The above message follows every option
been input, type a carriage return in response to the

message. If LUNO 4 option input is not desired, type a carriage return in response to the first

“OPTION?".

7-5 Digital Systems Division

942779-9701

Option ab

L

BP

EP

NM

X6DDDD

EA

EO

RX

Table 7-4. Assembler Input Options

Pass 1 Function

List symbol and segment table
only.

Punch the 1D and LD records
only.

No printed or punched output.

List symbol and segment table,
and punch ID and LD records.?

List symbol and segment table,
and punch ID and LD records.?

List symbol and segment table,
and punch ID and LD records.

List pass 1 errors and punch
the ID and LD records.

List pass 1 errors only.

Old bit addressing. (M field in
instructions must be divided by
16).

(Not applicable)

Extend printing width on
listing device.

Abort after listing symbol
and segment tables if errors.

Do not stop punching ID and
LD records on assembly error.’

{Not applicable)

Suppress listing of sym-
bol and segment tables.

Pass 2 Function

List line number, error code,
APC, object, and card image
only.!"?

Punch text, end-of-record,
end-of-file records only.?

List line number, error code,
APC, and object only. Does not
print card image.'”?

List line number, error code,
APC, object, and card image and
punch text records.’»%*

List line number, error code, APC,
object, and punch text, end-of-
record, end-of-file records.'

List line number, error code, APC,
object, and card image, and punch
text, end-of-module, end-of-files.
Suppress text records of all data
segments. 58

List line number, error code,
APC, object and card image
where errors have occurred, and
punch pass 1 object records.’

List line numbers, error code,

APC, object and card image
where error has occurred.!

Old bit addressing.

Suppress listing of total error
summary .

Extend printing width on
listing device. Qutside the range
60 < DDDD < 136, this option
is ignored.

Abort on the first occurrence of
an error.

Do not stop punching text on
an assembly error.

Allows reexecution of pass 2.
The option of the previous pass
is a default ?

(Not applicable)

7-6

Digitat Systems Division

942779-9701
Table 7-4. Assembler Input Options (Continued)
Option ab Pass 1 Function Pass 2 Function
Cl Changes input LUNO of pass 2. If PAM/D, the input is rewind-
If PSM or PAM, LUNO 5 source able from LUNO S (a cassette
input is copied to device assigned is not considered a rewindable
to LUNO 10. (see table 7-5). device and must be readied by
user). If PSM or PAM, LUNO 10
is input (see table 7-5).
SP Process the data, flag, and (Same as pass 1 function).®
CRU symbolic address segments
only.
LL Print undefined forward (Not applicable).®
references.
NOTES

APC means the memory address relative to the start of assembly, i.e.,
Assembly Program Counter.

L, P and LP are the only interchangeable options between passes.

B is used if the input is assigned to a teletypewriter keyboard and the
source is read from paper tape by turning the reader on. In this case,
the teletypewriter prints as it reads.)

If no options are specified on the option record or no option record is
found, the option LP sets.

This option is desirable for assembling re-entrant procedures and tasks.
The total error summary is always printed unless !*S is used.

Punching of text always terminates on the first occurrence of an error
unless !*EQO is used.

® Must be before first DSEG.

The error count will always indicate zero errors. This does not mean that no
errors were detected. The error count is used by the compiler as a flag to
ignore the object output, so the user should verify all undefined forward
references.

If LUNO 4 is assigned to other than a keyboard/printer device, the option input from LUNO 4 is
terminated by an /* (End-of-File) record.

If the assembler is running under PSM or PAM, LUNO 4 is assigned to keyboard. und the '*(C]
option (Change Input option) is not specified, then the following message is printed at the start
of pass 2 telling the user to ready the input file for pass 2:

READY INPUT
While the assembler is printing the symbol table, segment table and error summary, the user can

ready the input file for pass 2 and, if LUNO 4 is assigned to the dummy, the assembler starts
pass 2 without pausing to ask for an option or to tell the user to ready the input tile.

Change 2 7-7

\ ~ Digital Systems Division

0o
{@ 942779.9701

Table 7-5. Assembler Input Options, Pass 1 or Pass 2
Standard CI Option
PSM/PAM PAM/D PSM/PAM PAM/D

Pass 1 Input on Input on Input on Input on
LUNO 5 LUNO 5 LUNO 5 LUNO 5

Output on Output on Output on
LUNO 10 LUNO 10 LUNO 10

Pass 2 Rewind Rewind Rewind
LUNO 10 LUNO 10 LUNO 5
Input on [nput on Input on Input on

LUNO 5 LUNO 10 LUNO 10 LUNO 35

7.2 LOADING AND EXECUTING SALM AND SALD

The assembler runs under one of three monitors, or executive systems. The monitors are PSM,
PAM und PAM/D. SALD runs under PAM/D control in a 960 series computer with a memory
size of at least 16K. It is the overlay version of the assembler and requires about 9.5K of back-
ground to run (assuming 100 symbols and 8 segments). SALM operates under PSM, PAM, or
PAM/D control. It is the non-overlay version of the assembler and requires about 12K of memory,
including a symbol table, to run. Under PAM/D. SAL must be a background task since it uses mem-
ory between itself and the end of the background for the symbol table area. Relative location 18
(12)¢) under PSM or PAM contains the symbol table size (number of words). SAL uses a predeter-
mined symbol table size of 558 words, for 100 symbols and 8 segments. SAL may be memory
patched (relative location 124) after loading to alter the symbol table area to the desired size. If
the relative location 12,4 is changed to zero, all memory between SALM and the monitor is used
for the symbol and segment table areas. The symbol table starts at the lower address memory and
the segment table at higher address memory. The two tables work toward each other. The area
needed for the symbol and segment table is zeroed at the start of execution. The symbol table
size must be at least S words per symbol and 7 words per segment plus 2.

The peripheral devices to be used for inputs and outputs are selected by assigning logical unit
numbers (LUNO’s, described in paragraph 7.1.2.1).

At the start of execution, if insufficient memory is available for a symbol and segment table
entry, SAL prints:

UNABLE TO ALLOCATE SUFFICIENT TABLE AREA
ASSEMBLY CANCELLED

The first input/output call of pass | and 2 (after LUNO 10 is rewound) is to LUNO 4. This
message is printed or displayed:

OPTION?

Change 2 7-8A/7-8B Digital Systems Division

942779-9701

If a single 33 ASR teletypewriter is used for source input, listing output and object output, then
pass 2 must be executed twice using the RX option to obtain both the object and the hsting. Seiect-
ing the LP option (Default option) results in spurious object data on the listing device. Normally the
L option is selected first so that errors can be corrected and the program reassembled before any
text object is punched using the P option. (Refer to paragraph 7.1.1.2 for a discussion of special
considerations in the use of the 33 ASR teletypewriter.)

Change 2 7-8 Digital Systems Division

o
Q@ 942779-9701

The user responds by supplying the code for the option desired (paragraph 7.1.2.2). Under
PAM/D. all other inputs are from LUNO 5 for pass | and its image from the sequential scratch
file, LUNO 10 (recorded during the execution of pass 1) for pass 2. Under PSM or PAM. all
other inputs are from LUNO S for both pass | and pass 2. The "*CI option can be used to alter
these inputs. Because the assembler ignores zero-length records, LUNO 4 may be assigned to a
dummy device. In that way, assemblies are done without pausing for option inputs.

SAL object output is terminated upon the first occurrence of an assembly error (unless otherwisc
specified by means of the EO option). Under PAM/D the Skip On Condition Set monitor flag is sct
when an error occurs.

The following six conditions cause the assembler to abort.

1. A symbol or segment table entry caused an overflow.

2. When listing output is assigned to a data terminal, an ESC entered during table dum ps ter-
minates pass 1 and initiates pass 2. Entered during pass 2, the ESC terminates the Assem-
bler.

3. Aninvalid option was input.

4. Twenty-five consecutive instructions between segments were input.

5. The assembler was not loaded in background (PAM/D).

6. An undefined LUNO, memory parity error, or internal interrupt occurred during the
execution of the assembler.

In the first two cases, the total error summary is printed (if the option allows it) and the assembly
terminates.

7.2.1 LOADING UNDER PSM. This paragraph gives the procedure for loading the non-overlay
version of SAL (SALM) under PSM control. It is assumed that PSM has already been loaded and
that the user has read the Model 960 Computer Programming Support Monitor, manual number
955380-9701.

1. Define all LUNOs necessary for SALM by using WDFIO (type D on console if WDFIO
is monitor resident (it is in PSMALL)). Be sure that the LUNO for the alternate loader
(LUNO 1) is assigned to the object input device if the alternate loader is monilor
resident (in PSMALL it is).

2. Ready SALM object in the object input device.

3. Type the letter L on the console keyboard. PSM will now load SALM.

4. If a symbol table size other than 100 symbols and 8 segments is desired, specify the
symbol table size by patching to the desired size memory location 16 (10,4) of SALM
for versions preceding and including V4L2 and relative location 18 (12,¢) for versions
after V4L2.

5. Ready the source input in the input device for pass 1.

6. Start execution by typing an X on the console keyboard.

The procedure for executing SALM is given in paragraph 7.2.4.

Change 2 : 79 Digital Systems Division

o
@ 942779-9701

An example tollows:

D
orP? DFIO 0001 0001 LUNO | to cassette (PSM alternate loader)
oP? DFIO 0004 0000 Option input to console
oP? DFIO 0005 0001 Source input to cassette
oe? DFIO 0006 0000 Listing to console
op? DFIO 0007 0001 Object to cassette
op? DFIO 0010 .0002 Scratch file to dummy
oP? A oeor t Exit WDFIO
LX Load and execute SALM

.2.2 LOADING UNDER PAM. This paragraph describes the job control records needed to load
SALM beginning at memory location 0100,, under PAM control. This job stream allows

sequential loading and execution of SALM. The loading procedure for the non-overlay version of
SAL is:

1. Load SALM into memory.

2. If memory between SALM and PAM for the symbol table is desired, patch the relative
memory location as follows:

For SALM version V4L2 or earlier, place a zero in memory location 16 (10,¢).

3. Install and enable SALM as follows:

For SALM versions later than V4L2, place a zero in memory location 18 (12).
4. Ready all input/output devices.
5. Execute SALM. The execution procedure is given in paragraph 7.2.4.

As an example, assume that LUNO’s are assigned, with LUNO 10 assigned to the dummy, and
that the '*CI option is not being used. The job control statements are:

$SLDTS**0100" *0009 Load Task 09, SALM, at location 100
/-l

[SALM object]

/'

$SPACH™*

0112:50000

/l

$SINST**0009" *00EQ Instail task 09 with priority EO
$SABLE"® *0009 Able task 09

$SEXCT" 0009 Execute Task 09

In the example, 0112:b0000 is a patch to tell SALM to use the memory between SALM end and
the beginning of PAM for the symbol and segment table area.

7.2.3 LOADING UNDER PAM/D

Memory tor both the symbol table and the segment table is allocated from the background
memory remaiming alter the assembler is loaded in memory.

Change 2 7-10 Digital Bystens Division

942779-9701

Pass 2 of SALD is filed as record one of overlay file 16y, . It is read immediately after pass 1 has
completed execution.

The loading procedure for the overlay version of SAL is:

I. Load SALD pass | as a disc-resident task with a priority that makes it a background
task.

[39]

Load SALD pass 2 as overlay file 16, record |.

3. Make sure all the logical unit numbers are assigned to the appropriate devices. all
appropriate devices readied, and assign background. The assembler is now ready ftor
execution.

The procedure for executing SALD is given in paragraph 7.2 4.
The following example assumes that all LUNO’s are assigned and background released:

$SLDDT"*0009* *00EQ Load Task 9, SALD, with EQ priority
/’

[SALD pass 1 object]

/.

$SABLE**0009 Able Task 9

$SLDOV**0016**0001 Load overlay file 16 record 01

/I

[SALDOV pass 2 object]

/Q

$SDFBG**3000**0050* *00D0 Define background as 3000 words or 12K
S$SEXCT**0009 Execute task 9, SALD

$SRLBG™**

The loading procedure for the non-overlay version of SAL is:
1. Load SALM as a disc-resident background task.

2. Assign logical unit numbers to devices, ready devices. and define background. SALM is
now ready for execution.

The procedure for executing SALM is given in paragraph 7.2.4. .

An example follows:

$SLDDT " *0009* *00E0 Load Task 9, SALM, with EQ priority
/’l

[SALM object]

/'

SSABLE**0009 Able Task 9

$SDF10™*0004 * *0002 Assign option to dummy.

$$DFI0 " *0005**0001 Assign input to cassettes.
$SOFI0**0006**0011 Assign listing to DMAC line printer.
$SDF10**0007 **0001 Assign object output to cassette.

7-11 Digital Systems Division

0
q@ 9427799701

$$DFSF**0010° *3000° "3FFF " *0001 Assign scratch to disc
$SDFRF**3100° *0050" *00DA Define background.
$SEXCT " *0009 Execute Task 9, SALM
$SRLBG™" Release background.

7.2.4 EXECUTING UNDER PSM, PAM AND PAM/D
Reuady the source input before execution.

The procedure for executing both SALM and SALD is:
. 1f LUNO 4 was assigned to a keyboard/printer terminal, SAL will print:
OPTION?

Respond by typing in one of the options listed in table 74 or by typing a carriage
return.

). The assembler starts pass 1 by reading from the input device. The symbol and segment
tables and the pass | error summary are printed, and the ID and LD records are

: ahla tha inmn + n h
v

S . P Y

et A Y te . £ A oureale a 1
created. During the printing of the symbol table, the input can

(PSM/PAM without CI option).

readied for pass 2

3. At the start of pass 2 and with LUNO 4 assigned to a keyboard/printer, the assembler
prints:

READY INPUT (if C! option was not specified or not running under PAM/D)

OPTION?
NOTE

When running under PSM or PAM and inputting source from cassette,
paper tape or magnetic tape, assign LUNO 4 to a keyboard/printer
device. Failure to make this assignment allows SAL to begin proces-
sing pass 2 before the operator can manually rewind the source media.

Prepare the source input for pass 2 and enter options or a carriage return.

4. SAL continues with pass 2 execution by reading in the source and giving a listing, text
object data and total error summary (if options allow).

5. It reexecution of pass 2 was specified by an option, steps 3 and 4 will be repeated.

7.3 ASSEMBLER RESTRICTIONS
Several restrictions affect the use of the SAL assembler:

1. Under PAM/D, the symbol and segment tables are built in a memory available in back-
ground. To be able to run an assembly of 100 symbols and 8 segments, a background of
2700,, for the overlay version of 3100,, for the nonoverlay version is necessary. For
calculating a larger symbol table, a symbol table entry takes 5 words and a segment
table entry takes 7 words.

7-12 Digital Systems Division

(]
(@ 9427799701

2. The FORM table is fixed at 180 words. An FRM entry uses (W - 1)/4 + 8 words.
where W is the number of field widths. For example.

N FRM 1,b,8,1

takes 8 words of memory, and
NN FRM 1,1,3.8,3

takes 9 words of memory.

3. There are restrictions on the source input format and the listing format. These are
described in Section VII and paragraph 7.1.3.2.

The input format is constrained to:

Character Length Starting Column Number

Field Name Max Min Max Min
LABEL 6 1 1 1
OPERATION 4 1 19 2
OPERAND 56 1 21 4
COMMENT 0)

A blank must separate a label from the operation, the operation from the operund, and
the operand from the comment. The maximums for cornment field are not specified
above because it is dynamic with the printer width.

The listing width is constrained to the printer width specified by an option or 80
columns by default. Since the assembler uses the first 20 columns of printout for
record number, error code, APC (Assembly Program Counter) and object. the rest of
the columns are used for the input record image. Therefore, the input record size is
limited to printer width size minus 20 characters or 60 characters as default. The input
record size or 60 characters, whichever is less, is scanned by the assembler during the
processing of each input record.

4. Following are the restrictions on the directives:
a. PSEG, DSEG, FSEG, BSEG, EQU, CON and FRM must‘ have a label.
b. A FLAG directive is used within an FSEG only.
¢. REF, MODE aid FRM are used within a PSEG or DSEG only.
d. DEF is used within a PSEG only.
e. DATA and RES are used within an FSEG, PSEG or DSEG only.

f. A CON directive is used within a BSEG only.

7-13 Digital Systems Division

[}
@ 942779-9701

74 OBJECT OUTPUT FORMAT. SAL outputs object records in the order shown in figure 7-1.

A briet descripiion of each record follows.

e The pass | records created are the identification record and the linkage data records
for each program segment in succession, beginning with the first segment that appears
and ending with the last segment that appears. The program segment’s linkage data
consists of external references and external definitions.

e The text records for all segments, an end record, and an end-of-file record are output
in that order during pass 2.

7.4.1 OUTPUT RECORDS. Binary output records on paper tape are separated by an x-off
(special control character) and four null characters. Successive text records are punched as
required until the end of the segment is reached. A segment end record follows the last text

record. It can obtain a transfer location (end vector) when it is specified on the last end record
in the assembly.

All data on the object paper tape is punched two frames per 16-bit word. Figure 7-2 shows a
punched binary paper tape and the memory contents corresponding to the punched hexadecimal
data.

On cassette binary output records, each 16-bit data word is encoded as three 7-bit ASCIH
characters in a packed format. Bit 7 of each character is always set to logic 1 to provide better
discrimination between data characters and the x-off (DC3) character (hexadecimal character
code 13). Bit 6 in the first character of a 3-character coded object word is also always a logic 1
to aid in differentiation of object and source records. Bit S of the first character is the odd
parity for all three 7-bit characters. The first four most significant bits of the object word fill
bits 4 to | in the first character. The next six significant bits are packed in the second character.
The six least significant bits are in the third character.

A coded object data word is shown in tigure 7-3 as a sequence of three characters.
Both the cassette boot loaders and device service routine check for parity errors upon input.

Binary (object) records on cassette are ended by an x-off and at least one rub-out (DEL)
character (hexadecimal character code 7F). The last record in an object file is followed by up to
85 rub-out characters to ensure purging the hardware cassette record buffer. Any number of
rub-out charucters are considered as an acceptable file separator or leader. Binary data is always
recorded and played back on or from cassette with the Model 733 ASR keyboard/printer off.

On cards each column represents one 8-bit character that is decoded according to the list in

table 7-6. For example, the binary card punch pattern for the character represented by CA¢ is
12-11-8-2.

All binary formats have several common features. The binary record is indicated by a 17, code
in the first character. A 2-bit record indicator code is defined for the four different types of
binary records in the following table:

Binary Code Record Type
00 Identification (ID) record
11 Linkage Data (LD) or External Symbol record
10 Text record
01 End record

7-14 Dig#al Systemns Division

942779-9701

ID 1

LD 1 (REFS AND DEFS)

1D 2

LD 2 (REFS AND DEFS)

W

T

IDN

LD N (REFS AND DEFS)

ALL TEXT RECORDS

END RECORD

END—OF-FILE RECORD

ID N — IDENTIFICATION RECORD FOR N
LD N — LINKAGE DATA RECORD For NTH

REFS — EXTERNAL REFERENCES
DEFS — EXTERNAL DEFINITIONS

NOTE?
(A)128936

T PROGRAM SEGMENT
PROGRAM SEGMENT

1D AND LD RECORDS ARE CREATED DURING PASS 1 « TEXT,
END-OF-FILE AND END RECORDS ARE CREATED DURING PASS 2,

Figure 7-1. SAL Object File Format

BINARY TAPE

(A)128937

Figure 7-2. Hexadecimal Data Punched on Object Paper Tape

1] 2
17 _IOO
' Bn
2F 80
BRD|
S0 41
9 -ﬂ -i.l
S3 S3
o]
31

7-15

Digital Systems Division

942779-9701

1 ["@— 1ST CHARACTER

1 j=@— 2ND CHARACTER

1 ["—3RD CHARACTER

8T ™
1 2 3 4 s 6 7
83 | s2 |81 [Bo | P | 1
89 | B8 | 87 | 86 [B85 | B4
sis{s14 | B1a|B12]|811 | 810
NOTE:

(A)128938A

Figure 7-3. Coded Object Data Word

Table 7-6. Binary Internal Code to Binary Card Code Conversion

Most
Significant
Digit

—TOgOmWY» VXIS Bn AW -O

P IS THE ODD—PARITY BIT FOR THE 21—-BIT SEQUENCE.

BO IS THE FIRST (MOST SIGNIFICANT) BIT O E
DTS whE SR () F THE OBJECT

Rows
12-11-0-9

Blank

9
0
09
11

119
110

1109

12

129
120

1209

12-11

12-119
12-11-0
12-110-9

Least
Significant
Digit

THAOOmP OO NHWN—~O

Rows
1 through 8

Blank

0N h W -

8-1
8-2
83
84
8-5
8-6

7-16

Digital Systems Division

942779-9701

The redundancy character is the sum modulo 256 of all bits equal to one contained within the
record excluding the redundancy character itself. The segment sequence number is increased by
one for every new segment defined within any assembly containing multiple segments.

7.4.2 OBJECT RECORD FORMATS. Several of the records in the SAL object file have specific
formats. The contents of these object records are included in this discussion: program or
program segment identification record: linkage data (external symbol) record: text record:
assembly end record; and end-of-file record.

I. The program or program segment identification (ID) record format is shown in figure
74. If the symbol in the Segment Name field has less than six characters, it is
left-justified with trailing blanks. The two fields labeled R are reserved tor future use.

BINARY RECORD 1D RECORD
INDICATOR . 17 R~ 19 oF Noicssen
RC L R e—>__1 RESERVED FOR
o R / FUTURE USE
REDUNDANCY
CHARACTER (NOTE 1) R .

SEGMENT NAME (SYM BOL.)

ADDRESS OF FIRST
SEGMENT ORIGIN “*+——MEMORY WORD OF
SEGMENT

SEGMENT LENGTH (NOTE 3)

EXTERNAL

REFERENCE CoUNT —*] EXT REF CNT R Ll r]s|e

TIME OF DAY (NOTE a)

COMMENT FIELD (NOTE 5)

SEGMENT SEQUENCE
NUMBER (NOTE 2) —* SSN R

SEQUENCE FIELD

NOTES:

THE REDUNCANCY CHARACTER IS THE SUM OF ALL BITS EQUAL TO ONE COMN-
TJAINED WITHIN THE RECORD EXCLUDING THE REDUNDANCY CHARAGTER lc':l LELF,
THE SEGMENT SEQUENCE NUMBER IS INCREASED BY ONE FOR © ,ERY NEW
SEGMENT DEFINED WITHIN ANY ASSEMBLY CONTAINING MUL 'PLE SEGMITNT: |,
THE SEGMENT LENGTH IS THE VALUE OF THE SEGMGcNT RELATIVE PROGRAM
LOCATION COUNTER WHEN THE SEGMENT IS TERMINATED,

THE NINE-WORD TIME OF DAY IS IN THE FOLLOWING ASCII-CODED BINAR™

FORMAT. .)

__HRIMN:MNTHDY BvEAR B
WHERE HR IS THE HOUR ; MN 15 THE MINUTE , MRTH IS THE MONTH . AND DY IS

. THE DAY OF THE MONTH' THE TIME OF DAY IS PROCESSED UNDER PAM/D ONLY,

5. sttlggggﬁucwn COMMENT IS INSERTED IN WORDS 19-35 OF THE 1D RECORD

H W N -
e .

(A)1289398B

Figure 7-4. Program and Program Segment Identification Record F ormat

7-17 Digital Systems Division

942779-9701
If the L bit equals O, the program or program segment is processed by SAL: if equal to
1, the program or program segment is processed by LRL960 or LNK960. The four bits
labeled ¢, r, s and t have the following significance:
=0 Program segment has been linked.
=1 Linking is required. The text contains unsatisfied references.

r=0 Program segment is absolute.
r=1 Program segment is relocatable.
st=00 Procedure segment
st=01 Data segment
st=10 Flag segment
st=11 CRU symbolic address segment
Figure 7-S shows the format for the linkage data (LD) record, also called the external
symbol record. Fields labeled R are reserved. The first three bits of the SYMBOL I
field have the following significance:
tb=0 Neither flag nor bit address.
tb=1 Either flag or bit address. The fb bit is set if the symbol is
defined in a FLAG directive operand or is a CON directive
statement label.

Xr= The symbol is an external definition accompanied by a value.

xr=1 The symbol is an external reference accompanied by a
dictionary index.

v= The symbol is assigned a relocatable value.

v=l The symbol is assigned a self-defining or relative value.
The symbol is not relocatable.

The text record format is illustrated in figure 7-6. A bit in the second word of this
record indicates whether the program is absolute (r=0) or relocatable (r=1). The R field
is reserved.

The relocation map is contained in two words, RM | and RM 2. These words consist
of bits (TW1, TW2, etc.) that specify the relocatability of the corresponding text
words. Each map bit is set to O if the corresponding text word is not relocatable and |
if the word is relocatable.

7-18 Digital Systems Division

9427799701

LINKAGE DATA
RECORD INDICATOR

RESERVED FOR
FUTURE USE

- T
17 1)
R L'y
’
RC L R c
SYMBoL \ EXTERNAL
1 2 3 4 SYMBOL
COUNT
SYMBOL
s 6 7 8
fo pxr | v R ~ symsoL (NOTE 1) =
— —
VALUE OR DICT INDEX (NOTE 2)
— SyMBOL (NOTE 1) -
— —
VALUE OR DICT INDEX (NOTE 2,
SEGMENT SSN RESERVED
SEQUENCE —¥
NUMBER
~ SEQUENCE FIELD —_
— —
NOTES
1. A SYMBOL OF LESS THAN SIx CHARACTERS IS FILLED WITH TRAIL ING
BLANKS .

2, *VALllJE” IS THE VALUE ASSIGNED TO AN EXTERNALLY DEFINED SYMBOL ,
THE YDICTIONARY INDEX* 1S AN INTEGER IN THE RANGE 1-255 THAT 1S
ASSIGNED TO AN EXTERNAL REFERENCE IN THE SEQUENCE IN WHICH IT s
DECLARED IN THE PROGRAM,

(A)128940a

Figure 7.5. Linkage Data Record F ormat

7-19 Digital Systems Division

942779-9701

RESERVED FOR
FUTURE USE

| |
BINARY RECORD — 17 R 1 10— TExT RECORD
INDICATOR] INDICATOR
REDUNCANCY —% RC I'— rjo c S~
CHARACTER 'crgx'Nr WORD
UNT
TEXT WORD —"] LOAD RELOCATION CONSTANT
ADDRESS
T[T T
reLocaTion map — | W% Y RM1
=
RM?2 W
n

NOTES

1. TEXT WORD TO BE
PUT IN MEMORY
8Y LOAD FUNCTION,

2. ADDRESS RELATIVE
TO ASSEMBLY
ORIGIN .,

3, A MASK IS COMPOSED
OF TWO HEXADECIMAL
DIGITS,

4, LINKAGE DATA
RECORD CNUNT.

tAr128941

TEXT WORD t (NOTE 1)

TEXT WORD 2

TEXT WORD 3

RELATIVE LOAD ADDRESS (NOTE 2)

MASK (NOTE 3) DICT INDEX

RELATIVE LOAD ADDRESS (NOTE 2)

MASK (NOTE 3) DICT INDEX

SSN LDRC (NOTE 4)

= SEQUENCE FIELD

Figure 7-6. Text Record Format

7-20

Digital Systems Division

942779-9701

Three fields are used for specifying the linkage information for an external symbol
reference. These fields are Relative Load Address. Mask. and Dictionary Index. The
Mask field consists of two hexadecimal digits, designated M(1) and M(2). M(1) is the
starting bit position of a field. M(2) is the width of the field. with 0 used to represent
a width of 16 bits. For example, if the Mask field contains A4, the tield starts at bi
10 (A1,=10,,) and is 4 bits wide. Certain Mask field values are used to identity
special cases, as follows:

Mask Field Value Meaning
FB Flag reference (4-bit field)
FC Relative address required in format group [and II
instructions (13-bit field))
FD CRU register definition (10-bit field)
FE CRU bit reference (4-bit field)
FF Flag reference (10-bit field)

4. The assembly end record format is shown in figure 7-7. The fields labeled R uare
reserved. The B bit indicates that a branch vector does not follow if it is equal to 0,
and that a branch vector does follow if it is equal to 1.

Figure 7-8 is a diagram of the end-of-file record format.

RESERVED FOR
FUTURE USE

ERARY END RECORD
RECORD ——» 17
INDICATOR R 0 1 INDICATOR
REDUNDANCY 1
CHARACTER — + RC L R 8

RELATIVE ENTRY VECTOR

SEGMENT >
SEQUENCE SSN R
NUMBER ESERVED
- SEQUENCE FIELD -~
e

(A)128942A

Figure 7-7. Assembly End Record Format

7-21 Digital Systems Division

Q
é@ 942779-9701

(A)128943

21

4c

ANY

g_\—-ANY\-

Figure 7-8. End-of-File Record Format

7-22

Digital Systems Division

-]
{E@ 9427799701

APPENDIX A
SAL CHARACTER SET

Digital Systems Division

o
{@ 942779-9701

APPENDIX A
SAL CHARACTER SET

The ASCII characters are listed in table A-l1. The table includes the ASCIl code for each

character, represented as a hexadecimal value and as a decimal value. The table also shows the
corresponding Hollerith code.

A-1 Digital Systems Division

Q
{@ 942779-9701

Table A-1. Character Set

USASCII
Hexadecimal Decimal Hollerith

Value Value Function Code
00 0 Null 12-0-1-89
4] 1 Start Heading 12-19
02 2 Start Text 12-29
03 3 End Text 12-3-9
04 4 End Transmission 79

05 S Enquiry 0-5-8-9
06 6 Acknowledge 0-6-89
07 7 Beil 0-7-89
08 8 Backspace 11-6-9
09 9 Horizontal Tab 12-59
0A 10 Line Feed 0-59
OB 11 Vertical Tab 12-3-89
oC 12 Form Feed 12-4-8-9
0D 13 Carriage Return 12-5-8-9
OE 14 Shift Out 12-6-8-9
OF 15 Shift In 12-7-89
10 16 Data Link Escape 12-11-1-89
11 17 Device Control 1 11-19
12 18 Device Control 2 11-29
13 19 Device Control 3 11-39
14 20 Device Control 4 4-89

15 21 Negative Acknowledge 5-89

16 22 Synchronous Idle 29

17 23 End Transmission Block 0-6-9

18 24 Cancel 11-89
19 25 End Medium 11-1-89
1A 26 Substitute 7-8-9

IB 27 Escape 0-79
1C 28 File Separator 114-89
1D 29 Group Separator 11-5-89
1E 30 Record Separator 11-6-8-9
IF 31 Unit Separator 11-7-89
20 32 Space Blank
21 33 ! 118-2 (or 128-7)!
22 34 ” 87

23 35 # 83

24 36 $ 11-8-3
25 37 % 0-84
26 38 & 12

27 39 ’ 85

28 40 (12-8-5
29 4]) 11-8-5
2A 42 * 11-84
2B 43 + 12-8-6
2C 44 , 0-8-3
oD 45 - 11

2E 46 . 12-8-3
2F 47 / 0-1

A-2 Digital Systems Division

]
R@ 942779-9701

Table A-1. Character Set (Continued)

USASCH
Hexadecimal Decimal Hollerith
Value Value Function Code

30 48 0 0
31 49 1 l
32 50 2 2
33 51 3 3
34 52 4 4
35 53 5 S
36 54 6 6
37 S5 7 7
38 56 8 8
39 57 9 9
3A 58 : 8-2
3B 59 ; 11-8-6
3C 60 < 12-84
3D 61 = 8-6
3E 62 > 0-8-6
3F 63 ? 0-8-7
40 64 @ 84 -
4] 65 A 12-1
4?2 66 B 12-2
43 67 C 12-3
44 68 D 124
45 69 E 12-5
46 70 F 12-6
47 71 G 12-7
48 72 H 12-8
49 73 I 129
4A 74 J 11-1
4B 75 K 11-2
4C 76 L 11-3
4D 77 M 114
4E 78 N 11-5
4F 79 0} 11-6
50 80 P 11-7
51 81 Q 11-8
52 82 R 11-9
53 83 S 0-2
54 84 T 0-3
55 85 U 04
56 86 v 0-5
57 87 w 0-6
58 88 X 0-7
59 89 Y 0-8
SA 90 V4 0-9
5B 91 [1228
5C 92 \ 0-8-2
5D 93] 1
SE 94 A 11-7-8
SF 95 - 0-5-8

A-3 Digital Systems Division

942779-9701

USASCII
Hexadecimal
Value

60
7B
7C
7D
7E
7F

Table A-1. Character Set (Continued)

Decimal
Value Function
96 N

123 !

124 H

125 }

126 ~

127 DEL

Hollerith
Code

|. During card input, the computer interprets Hollerith codes 11-8-2 and
12-3-7 as an ASCII code of 21,4 to produce an exclamation point
input (!). Card input for a close-bracket character (]) is not possible.

A4

Digital Systems Division

]
@ 942779-9701

APPENDIX B

GENERAL TABLES

Digital Systems Division

- O

"umcnu>owqa\m&u~

9427799701

02
03

05
06

08

0A
0B

oD
OE
OF

10

'nmcnw»oonﬂo«u-&un

05

07
08

0A
0B

oD
OE
OF
10
1
12

06

8

OF
12
15

18
1B
1E
21

24

5 &

05
06
07
08
09
0A
0B

oD
OE
OF
10
11
12
13

06
07
08
09
0A

oD
OE
OF
10
11
12
13
14

0A
OF
14
19
1E
23
28
2D
32
37

41
46
4B

Table B-1. Hexadecimal Arithmetic
ADDITION TABLE

6 7 8 9
07 08 09 oA
08 09 O0A OB
09 0A 0B oC
0A 0B 0C 0D
0B 0C 0D OE
oC OD OE OF
oD OE OF 10
OE OF 10 11
OF 10 11 12
10 11 12 13
11 12 13 14
12 13 14 15
13 14 15 16
14 15 16 17
15 16 17 18
MULTIPLICATION TABLE
6 7 8 9
oc OE 10 12
12 15 18 1B
18 1IC 20 24
1E 23 28 2D
24 2A 30 36
2A 31 38 3F
30 38 40 48
36 3F 48 51
k's 46 50 SA
42 4D 58 63
43 54 60 6C
4E 5B 68 75
54 62 70 7E
5A 69 78 87

A
14
1E
28
32
3C
46
50
SA
64
6E

78

82
8C
96

0B

oD
OE
OF
10
11
12
13
14
15
16
17
18
19

16
21
2c
37
42
4D
58
63
6E
79

8F
9A

18
24

48
54
60

78
84

9C
A8

0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B

D
1A
27

34

41

4E
5B
68
75

82
8F
9C
A9
B6
c3

OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1c

E
1c
2A
38
46
54
62
70
7E
8C
9A
A8
B6
c4
D2

OF
10
11
12
13
14
15
16
17
18
19
1A

1C
1D

C3
D2
El

10
11

12
13
14
15
16
17
18
19

1A
1B
1C
1D
1E

B-1

Digital Systems Division

9427799701

n 167"
0 0.10000 00000 00000 00000 x 10
1 0.62500 00000 00000 00000 x 10!
256 2 0.39062 50000 00000 00000 x 10~ 2
4 096 3 0.24414 06250 00000 00000 x 1073
65 536 4 0.15258 78906 25000 00000 x 104
5
6
7
8
9

-

16

1 048 576 095367 43164 06250 00000 x 10~

16 777 216 0.59604 64477 53906 25000 x 1077
268 435 456 0.37252 90298 46191 40625 x 10738
4 294 967 296 0.23283 06436 53869 62891 x 10°°

68 719 476 736 0.14551 91522 83668 51807 x 1010
1 099 511 627 776 10 0.90949 47017 72928 23792 x 10° 12
17 592 186 044 416 11 0.56843 41886 08080 14870 x 10~13
281 474 976 510. 656 12 0.35527 13678 80050 09294 x 10~ 14
4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10~13
72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10~ '6
1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10-18
Table B-3. Table of Powers of 10,
10" n 107"
1 0 1.0000 0000 0000 0000
A 1 0.1999 9999 9999 999A

64 2 0.286F5 C28F 5C28 F5C3 x 16~1
3E8 3 0.4189 374B C6A7 EF9E x 162
2710 4 0.68DB 8BAC 710C B296 x 163
1 86A0 5 0.A7C5 AC47 1B47 8423 x 164
"F 4240 6 0.10C6 F7A0 BSED 8D37 x 16~*
98 9680 7 0.1AD7 F29A BCAF 4858 x 16~
SF5 E100 8 0.2AF3 1DC4 6118 73BF x 16~°
3B9A CA00 9 0.44B8 2FA0 9BSA 52CC x 16~/
2 540B E400 10 0.6DF3 7F67 SEF6 EADF x 16
17 4876 E800 11 0.AFEB FFOB CB24 AAFF x 167
E8 D4AS 1000 12 0.1197 9981 2DEA 1119 x 1679
918 4E72 A000 13 0.1C25 C268 4976 81C2 x 16-10
SAF3 107A 4000 14 0.2D09 370D 4257 3604 «x 16~11
3 8D7E A4C6 8000 15 0480E BE7B 9D58 566D x 1612
23 86F2 6FC1 0000 16 0.734A CASF 6226 FOAE x 16713
163 4578 SDSA 0000 17 0.B877 AA32 36A4 B449 x 16714
DEO B6B3 A764 0000 18 0.1272 5DD1 D243 ABAl x 16~ 14
8ACT 2304 89ES 0000 19 0.1D83 C94F B6D2 AC35 x 16715

B-2 Digital Systems Division

942779-9701

N &N -

33
67
134

268
536
1 073
2 147

65
131
262
524

048
097
194
3s8

554
108
217

435
870
741
483

216
432
864
728

456

‘912

824
648

Table B-4. Table of Powers of Two

LN~

Noun s

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
3

2—n

1.0
0.5
0.25
0.125

0.062
0.031
0.015
0.007

0.003
0.001
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000

000
000
000

000
000
000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001

000

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

25

125
562
781

390
695
847
923

461
230
615
307

625
312
656
828

914
957
478
739

5
25
125

062 5

031 25
515 625
257 812 5

B-3

Digital Systems Division

9427799701

Table B-5. Hexadecimal—Decimal Integer
Conversion Table

The table appearing on the following pages provides a means for direct conversion of decimal integers in the
range of 0 to 4095 and for hexadecimal integers in the range of 0 to FFF,

To convert numbers above those ranges, add table values to the figures below:

Hexadecimal Decimal Hexadecimal Decimal
01 000 4 096 20 000 131 072
02 000 8192 30 000 196 608
03 000 12 288 40 000 262 144
04 000 16 384 50 000 327 680
05 000 20 480 60 000 393 216
06 000 24 576 70 000 458 752
07 000 28 672 80 000 524 288
08 000 32768 90 000 589 824
09 000 36 864 A0 000 655 360
0A 000 40 960 BO 000 720 896
0B 000 45 056 CO0 000 786 432
0C 000 49 152 DO 000 851 968
0D 000 53 248 EO0 000 917 504
OE 000 57 344 FO0 000 983 040
OF 000 61 440 100 000 1 048 576
10 000 65 536 200 000 2097 152
11 000 69 632 300 000 3145728
12 000 73728 400 000 4 194 304
13000 77 824 500 000 5 242 880
14 000 81920 600 000 6 291 456
15 000 86 016 700 000 7 340 032
16 000 90112 800 000 8 388 608
17 000 94 208 900 000 9437 184
18 000 98 304 A00 000 10 485 760
19 000 102 400 B0O 000 11 534 336
1A 000 106 496 C00 000 12582912
1B 000 110592 D00 000 13 631 488
1C 000 114 688 E00 000 14 680 064
1D 000 118 784 F00 000 15 728 640
1E 000 122 880 1000 000 16 777 216
1F 000 126 976 2 000 000 33554 432

B-4 Digitat Systems Division

9427799701

1

Table B-5. Hexadecimal—Decimal Integer Conversion Table (Cont.)

0 2 3 4 5 6 7 8 9 A B C D E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
040 0064 0065 0066 0067 0068 0069 0070 6071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0A0 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0BO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
0Co 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0DO0 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255
100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
140 0320 0321 0322 0323. 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1BO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1Co 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1EO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1F0 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
200 0512 0513 0514 0515 0516 0517 0518 0519 0529 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 . 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B0 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C0 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D0 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E0 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

B-S Digital Systems Division

942779-9701

Table B-5 Hexadecimal—Decimal Integer Conversion Table (Cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927

3A0 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3Co 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D0 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007

3F0 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
400 1024 1025 0126 0127 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 . 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1291 1293 1294 1295
510 1296 1297 1298 1299 1399 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1329 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1367 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1429 1421 1422 1423
590 1324 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

5A0 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
3B0 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C0 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D0 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E0 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
SFO0 1520 1521 1522 1523 1524 1515 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

B-6 Digital Systems Division

9427799701

Table B-S. Hexadecimal—Decimal Integer Conversion Table (Cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1592 1594 1595 1596 1597 1598 1599
640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A0 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B0 - 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 17231 1724 1725 1726 1727
6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D0 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F0 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 8102 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1818 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1909 1902 1903
770 1904. 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A0 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B0 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999-
7D0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E0Q 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B0 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
-8EQ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
3F0 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
B-7 Digital Systems Division

942779-9701

Table B-5. Hexadecimal—Decimal Integer Conversion Table (Cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 3496 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
980 2432 2433 2434 24351 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A0 2464 2465 2466 2467 2468 2469 2479 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B0 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9Co 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

9FQ 2544 2545 254¢ 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2555

A00 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2626 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633.2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO0 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
Abo 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2765 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO0 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2805 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
BS0 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90O 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

B-8 , Digital Systems Divisian

€oa
Clo
c20
Cc30

C40
Ccso
(o.11)
c70

C80
<90
CAOQ
CBO

CCo
CDO
CEO
CFo

DOo
Dio
D20
D30

D40
D50
D60
D70

D30
D90
DAO
DBO

DCo
DDo
DEO
DFO0

E00
E10
E20
E30

E40
E50
E60
E70

E80
E90
EAO0
EBO

942779-9701

Table B-S. Hexadecimal—Decimal Integer Conversion Table (Cont.)

0 1 2 3

3072 3073 3074 3075
3088 3089 3090 3091
3104 3105 3106 3107
3120 3121 3122 3123

3136 3137 3138 3139
3152 3153 3154 3155
3168 3169 3170 3171
3184 3185 3186 3187

3200 3201 3202 3203
3216 3217 3218 3219
3232 3233 3234 3235
3248 3249 3250 3251

3264 3265 3266 3267
3280 3281 3282 3283
3296 3297 3298 3299
3312 3313 3314 3315

3328 3329 3330 3331
3344 3345 3346 3347
3360 3361 3362 3363
3376 3377 3378 3379

3392 3393 3394 3395
3408 3409 3410 3411
3424 3425 3426 3427
3440 3441 3442 3443

3456 3457 3458 3459
3472 3473 3474 3475
3488 3489 3490 3491
3504 3505 3506 3507

3520 3521 3522 3523
3536 3537 3538 3539
3552 3553 3554 3555
3568 3569 3570 3571

3584 3585 3586 3587
3600 3601 3602 3603
3616 3617 3618 3619
3632 3633 3634 3635

3648 3649 3650 3651
3664 3665 3666 3667
3680 3681 3682 3683
3696 3697 3698 3699

3712 3713 3714 3715
3728 3729 3730 3731
3744 3745 3746 3747
3760 3761 3762 3763

4 5 6 7

3076 3077 3078 3079
3092 3093 3094 3095
3108 3109 3110 3111
3124 3125 3126 3127

3140 3141 3142 3143
3156 3157 3158 3159
3172 3173 3174 3175
3188 3189 3190 3191

3204 3205 3206 3207
3220 3221 3222 3223
3236 3237 3238 3239
3252 3253 3254 3255

3268 3269 3270 3271
3284 3285 3286 3287
3300 3301 3302 3303
3316 3317 3318 3319

3332 3333 3334 3335
3348 3349 3350 3351
3364 3365 3366 3367
3380 3381 3382 3383

3396 3397 3398 3399
3412 3413 3414 3415
3428 3429 3430 3431
3444 3445 3446 3447

3460 3461 3462 3463
3476 3477 3478 3479
3492 3493 3494 3495
3508 3509 3510 3511

3524 3525 3526 3527
3540 3541 3542 3543
3556 3557 3558 3559
3572 3573 3574 3575

3588 3589 3590 3591
3604 3605 3606 3607
3620 3621 3622 3623
3636 3637 3638 3639

3652 3653 3654 3655
3668 3669 3670 3671
3684 3685 3686 3687
3700 3701 3702 3703

3716 3717 3718 3719
3732 3733 3734 3735
3748 3749 3750 3751
3764 3765 3766 3767

8 9 A B

3080 3081 3082 3083
3096 3097 3098 3099
3112 3113 3114 3115
3128 3129 3130 3131

3144 3145 3146 3147
3160 3161 3162 3163
3176 3177 3178 3179
3192 3193 3194 3195

3208 3209 3210 3211
3224 3225 3226 3227
3240 3241 3242 3243
3256 3257 3258 3259

3272 3273 3274 3275
3288 3289 3290 3291
3304 3305 3306 3307
3320 3321 3322 3323

3336 3337 3338 3339
3352 3353 3354 3355
3368 3369 3370 3371
3384 3385 3386 3387

3400 3401 3402 3403
3416 3417 3418 3419
3432 3433 3434 3435
3448 3449 3450 3451

3464 3465 3466 3467
3480 3481 3482 3483
3496 3497 3498 3499
3512 3513 3514 3515

3528 3529 3530 3531
3544 3545 3546 3547
3560 3561 3562 3563
3576 3577 3578 3579

3592 3593 3594 3595
3608 3609 3610 3611
3624 3625 3626 3627
3640 3641 3642 3643

3656 3657 3658 3659
3672 3673 3674 3675
3688 3689 3690 3691
3704 3705 3706 3707

3720 3721 3722 3723
3736 3737 3738 3739
3752 3753 3754 3755
3768 3769 3770 3771

C D E F

3084 3085 3086 3087
3100 3101 3102 3103
3116 3117 3118 3119
3132 3133 3134 3135

3148 3149 3150 3151
3164 3165 3166 3167
3180 3181 3182 3183
3196 3197 3194 3199

3212 3213 5214 3215
3228 3229 3230 3231
3244 3245 3246 3247
3260 3261 3262 3263

3276 3277 3278 3279
3292 3293 3294 329s
3308 3309 3310 3311
3324 3325 3326 3327

3340 3341 3342 1343
3356 3357 3358 1359
3372 3373 1374 3375
3386 338Y 3390 3391

3404 3405 3406 3407
3420 3421 3422 3423
3436 3437 3438 3439
3452 3453 3454 3457,

3468 3469 3470 347
3484 3485 3486 3487
3500 3501 3502 3503
3516 3517 3518 3519

3532 3533 3534 3535
3548 3549 3550 3551
3564 3565 3566 3567
3580 3581 3582 3583

3596 3597 3598 3599
3612 3613 3614 3615
3628 3629 3630 3631
3644 3645 3646 3647

3660 3661 3662 3663
3676 3677 3678 3679
3692 3693 3694 3695
3708 3709 3710 3711

3724 3725 3726 3727
3740 3741 3742 3743
3756 3757 3758 3759
3772 3773 3774 3775

B-9

Digital Systems Division

ECO
EDO
EEOQ
EFO

Foo
F10
F20
F30

F10
F50
F60
F70

F80
F90
Fao
FBO

FCo
FDO
FEO
FFO

942779-9701

Table B-5. Hexadecimal—Decimal Integer Conversion Table (Cont.)

0 1 2 3

3776 3777 3778 3779
3792 3793 3794 3795
3808 3809 3810 3811
3824 3825 3826 3827

3840 3841 3842 3843
3856 3857 3858 3859
3872 3873 3874 3875
3888 3889 3890 3891

3904 3905 3906 3907
3920 3921 3922 3923
3936 3937 3938 3939
3952 3953 3954 3955

3968 3969 3970 3971
3984 3985 3986 3987
+000 4001 4002 4003
4016 4017 4018 4019

4032 4033 4034 4035
4048 4049 4050 4051
4064 4065 4066 4067
4080 4081 4082 4083

4 5 6 7

3780 3781 3782 3783
3796 3797 3798 3799
3812 3813 3814 3815
3828 3829 3830 3831

3844 3845 3846 3847
3860 3861 3862 3863
3876 3877 3878 3879
3892 3893 3894 3895

3908 3909 3910 3911
3924 3925 3926 3927
3940 3941 3942 3943
3956 3957 3958 3959

3972 3973 3974 3975
3988 3989 3990 3991
4004 4005 4006 4007
4020 4021 4022 4023

4036 4037 4038 4039
4052 4053 4054 4055
4068 4069 4070 4071
4084 4085 4086 4087

8 9 A B

3784 3785 3786 3787
3800 3801 3802 3803
3816 3817 3818 3819

. 3832 3833 3834 3835

3848 3849 3850 3851
3864 3865 3866 3867
3880 3881 3882 3883
3896 3897 3898 3899

3912 3913 3914 3915
3928 3929 3930 3931
3944 3945 3946 3947
3960 3961 3962 3963

3976 3977 3978 3979
3992 3993 3994 3995

4008 4009 4010 4011
4024 4025 4026 4027

4040 4041 4042 4043

4056 4057 4058 4059
4072 4073 4074 4075
4088 4089 4090 4091

Cc D E F

3788 3789 3790 3791
3804 3805 3806 3807
3820 3821 3822 3823
3836 3837 3838 3839

3852 3853 3854 3855
3868 3869 3870 3871
3884 3885 3886 3887
3900 3901 3902 3903

3916 3917 3918 3919
3932 3933 3934 3935
3948 3949 3950 3951
3964 3965 3966 3967

3980 3981 3982 3983

3996 3997 3998 3999

4012 4013 4014 4015
4028 4029 4030 4031

4044 4045 4046 4047
4060 4061 4062 4063
4076 4077 4078 4079
4092 4093 4094 4095

B-10

Digital Systems Division

9427799701

Table B-6. Hexadecimal—Decimal Fraction Conversion Table

Hexadecimal Decimat Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal
.00 00 00 00 .00000 00000 .40 00 00 00 .25000 00000 .80 00 00 00 .50000 00000 .CO 00 00 00 .75000 (OOUOD
.01 000000 .00390 62500 .41 00 00 00 .25390 62500 .81 00 00 00 50390 62500 .C1 00 00 00 .75390 62500
02 000000 .00781 25000 .42 00 00 00 .25781 25000 82 00 00 00 .50781 25000 .C2 00 00 00 .75781 25000
03 000000 .01171 87500 43 00 00 00 .26171 87500 .83 00 00 00 51171 87500 .C3 00 00 00 .76171 87500
.04 000000 .01562 S0000 .44 00 00 00 .26562 50000 .84 00 00 00 51562 50000 .C4 00 00 00 .76562 50000
05 000000 .01953 12500 45 00 00 00 .26953 12500 .85 00 00 00 51953 12500 .CS 00 00 00 .76953 12500
06 000000 .02343 75000 .46 00 00 00 .27343 75000 .86 00 00 00 52343 75000 .C6 00 00 00 .77343 75000
.07 000000 .02734 37500 .47 00 00 00 .27734 37500 .87 00 00 00 .52734 37500 .C7 00 00 00 .77734 37500
08 000000 .03125 00000 .48 00 00 00 .28125 00000 .88 00 00 00 53125 00000 .C8 00 00 00 .78125 00000
.09 000000 .03515 62500 49 00 00 00 .28515 62500 .89 00 00 00 53515 62500 .C9 00 00 00 .78515 62500
-0A 00 00 00 .03906 25000 .4A 00 00 00 .23906 25000 .8A 00 00 00 .53906 25000 .CA 00 00 00 .78906 25000
0B 000000 .04296 87500 4B 00 00 00 .29296 87500 8B 00 00 00 54296 87500 .CB 00 00 00 .79296 87500
0C 0000 00 .04687 50000 .4C 00 00 00 .29687 50000 .8C 00 00 00 54687 50000 .CC 00 00 00 .79687 50000
0D 000000 .05078 12500 4D 00 00 00 .30078 12500 .8D 00 00 00 55078 12500 .CD 00 00 00 .80078 12500
.0E 0000 00 .05468 75000 .4E 00 00 00 .30468 75000 8E 00 00 00 55468 75000 .CE 00 00 00 .80468 75000
.OF 000000 .05859 37500 4F 00 00 00 .30859 37500 .8F 00 00 00 .55859 37500 .CF 00 00 00 .80859 37500
.10 00 00 00 .06250 00000 .50 00 00 00 .31250 00000 .90 00 00 00 56250 00000 .DO 00 00 00 .81250 00000
11 0000 00 .06640 62500 .51 00 00 00 .31640 62500 .91 00 00 00 56640 62500 .D1 00 00 00 .81640 62500
.12 0000 00 .07031 25000 52 00 00 00 .32031 25000 .92 00 00 00 57031 25000 .D2 00 00 00 .82031 25000
.13 000000 .07421 87500 53 00 00 00 .32421 87500 .93 00 00 00 57421 87500 .D3 00 00 00 82421 87500
.14 000000 .07812 50000 .54 00 00 00 .32812 50000 .94 00 00 00 57812 50000 .D4 00 00 00 .82812 50000
.15 000000 .08203 12500 .55 00 00 00 .33203 12500 .95 00 00 00 58203 12500 .DS 00 00 00 .83203 12500
.16 00 0000 .08593 75000 .56 00 00 00 .33593 75000 .96 00 00 00 58593 75000 .D6 00 00 00 .83593 75000
17 000000 .08984 37500 .57 00 00 00 .33984 37500 .97 00 00 00 58984 37500 .D7 00 00 00 .83984 37500
.18 00 00 00 .09375 00000 .58 00 00 00 .34375 00000 .98 00 00 00 59375 00000 .D8 00 00 00 .84375 00000
.19 000000 .09765 62500 .59 00 00 00 .34765 62500 .99 00 00 00 59765 62500 D9 00 00 00 .84765 62500
-1A 00 00 00 .10156 25000° .SA 00 00 00 .35156 25000 .9A 00 00 00 60156 25000 .DA0O 00 00 .85156 25000
.1B 00 00 00 .10546 87500 .5B 00 00 00 .35546 87500 .9B 00 00 .60546 87500 .DBOO 00 00 .85546 87500
-1C 00 00 00 .10937 50000 .5C 00 00 00 .35937 50000 .9C 00 00 .60937 50000 .DC OO0 00 00 .85937 50000
1D 00 00 00 .11328 12500 .5D 00 00 00 .36328 12500 9D 00 00 .61328 12500 .DDOO 00 00 .86328 12500
JAE 000000 .11718 75000 .SE 00 00 00 36718 75000 .9E 00 00 .61718 75000 .DEO0O 00 00 .86718 75000
AF 00 00 00 .12109 37500 .SF 00 00 00 .37109 37500 .9F 0000 .62109 37500 DF 00 00 00 87109 37500
.20 00 00 00 .12500 00000 .60 00 00 00 .37500 00000 .AD 00 00 .62500 00000 .EO 00 00 00 .87500 00000
.21 00 00 00 .12890 62500 .61 00 00 00 .37890 62500 .Al 00 00 .62890 62500 _E1 00 00 00 .87890 62500
.22 00 00 00 .13281 25000 .62 00 00 00 .38281 25000 .A2 00 00 .63281 25000 .E2 00 00 00 .88281 25000
.23 00 00 00 .13671 87500 .63 00 00 00 .38671 87500 .A3 00 00 .63671 87500 .E3 00 00 00 .38671 87500
.24 00 00 00 .14062 50000 .64 00 00 00 .39062 50000 .A4 00 00 .64062 50000 .E4 00 00 00 .89062 50000
.25 000000 .14453 12500 .65 00 00 00 .39453 12500 .AS 00 00 .64453 12500 .ES 00 0000 .89453 12500
.26 00 00 00 .14843 75000 .66 00 00 00 .39843 75000 .A6 00 00 .64843 75000 .E6 00 00 00 .89843 75000
27 00 0000 .15234 37500 .67 00 00 00 .40234 37500 .A7 00 00 .65234 37500 .E7 00 00 00 .90234 37500
.28 000000 .15625 00000 .68 0O 00 00 .40625 00000 .A8 00 00 .65625 00000 .E8 00 00 00 .90625 00000
.29 000000 .16015 62500 .69 00 00 00 41015 62500 .A9 00 00 .66015 62500 .E9 00 00 00 91015 62500
2A 00 00 00 .16406 25000 .6A 00 00 00 41406 25000 .AA 00 00 .66406 25000 .EA Q0 00 00 91406 25000
2B 000000 .16796 87500 .6B 00 00 00 41796 87500 .AB 00 00 66796 87500 .EB 00 00 00 91796 87500
2C 000000 .17187 50000 .6C 00 00 00 .42187 50000 .AC 00 00 .67187 S000G .EC 00 00 00 92187 50000
2D 000000 .17578 12500 .6D 00 00 00 42578 12500 .AD 00 00 .67578 12500 .ED 00 00 00 92578 12500
.2E 00 00 00 .17968 75000 .6E 00 00 00 42968 75000 .AE 00 00 .67968 75000 _EE 00 00 00 92968 75000
2F 0000 00 .18359 37500 .6F 00 00 00 43359 37500 .AF 00 00 .68359 37500 .EF 00 00 00 93359 37500
.30 0000 00 .18750 00000 .70 00 00 00 .43750 00000 .BO 00 00 .68750 00000 .FO 00 00 00 93750 00000
31 000000 .19140 62500 .71 00 00 00 .44140 62500 .Bl1 00 00 .69140 62500 _F1 00 00 00 94140 62500
.32 000000 .19531 25000 .72 00 00 00 .44531 25000 .B2 00 00 69531 25000 .F2 00 00 00 94531 25000
33 000000 .19921 87500 .73 00 00 00 44921 87500 .B3 00 00 .69921 87500 .F3 00 00 00 94921 87500
34 000000 .20312 50000 .74 00 00 00 45312 50000 .B4 00 00 .70312 50000 _F4 00 00 00 95312 50000
.35 000000 .20703 12500 .75 00 00 00 45703 12500 .BS 00 00 .70703 12500 .FS 00 00 00 95703 12500
.36 0000 00 .21093 75000 .76 00 00 00 46093 75000 .B6 00 00 .71093 75000 _F6 00 00 00 96093 75000
37 000000 .21484 37500 .77 00 00 00 46484 37500 _B7 00 00 .71484 37500 .F7 00 00 00 96484 37500
.38 000000 .21875 00000 .78 00 00 00 46875 00000 .BS 00 00 .71875 00000 .F8 00 00 00 96875 00000 -
.39 000000 .22265 62500 .79 00 00 00 .47265 62500 .B9 00 00 .72265 62500 .F9 00 00 00 97265 62500
A 000000 .22656 25000 .7A 00 00 00 47656 25000 .BA 00 00 .72656 25000 .FA 00 00 00 97656 25000
3B 0000 00 .23046 87500 .7B 00 00 00 .48046 87500 .BB 00 00 .73046 87500 .FB 00 00 00 98046 87500
3C 0000 00 .23437 50000 .7C 00 00 00 .48437 50000 .BC 00 00 .73437 50000 .FC 00 00 00 98437 50000
-3D 0000 00 .23828 12500 .7D 00 00 00 .48828 12500 .BD 00 00 .73828 12500 .FD 00 00 00 98828 12500
3E 0000 00 .24218 75000 .7E 00 00 00 49218 75000 .BE 00 00 .74218 75000 .FE 00 00 00 99218 75000
3F 000000 .24609 37500 .7F 00 00 00 49609 37500 .BF 00 00 .74609 37500 .FF 00 00 00 99609 37500
B-11 Digital Systems Division

942779-9701

Table B-6. Hexadecimal—Decimal Fraction Conversion Table (Cont.)

Heaadecimal Decimal Hexadecimal Decimal Decimal Hexadecimal Decimal

00 00 00 00 .00000 00000 .00 40 00 00 .00097 65625 .00 80 00 00 .00195 31250 .00 CO 00 00 .00292 96875
.00 vl 00 00 00001 52587 .00 41 00 00 .00099 18212 .00 81 00 00 00196 83837 .00 Cl 00 00 00294 49462
.00 02 0000 .00003 05175 .00 42 00 00 .00100 70800 .00 82 00 00 00198 36425 .00 C2 00 00 00296 02050
.00 03 00 00 00004 57763 .00 43 00 00 .00102 23388 .00 83 00 00 .00199 89013 .00 C3 00 00 100297 54638
.00 04 00 00 .00006 10351 .00 44 00 00 .00103 75976 .00 84 00 00 .00201 41601 .00 C4 00 00 .00299 07226
.00 05 0000 .00007 62939 .00 45 00 00 .00105 28564 .00 85 00 00 .00202 94189 .00 C5 00 00 .00300 59814
00 06 00 00 .00009 15527 .00 46 00 00 .00106 81152 .00 86 00 00 .00204 46777 .00 C6 00 00 .00302 12402
.00 07 00 00 00010 68115 .00 47 00 00 .00108 33740 .00 87 00 00 .00205 99365 .00 C7 00 00 .00303 64990
.00 08 00 00 00012 20703 .00 48 00 00 .00109 86328 .00 88 00 00 .00207 51953 .00 C8 00 00 .00305 17578
00 09 00 00 .00013 73291 .00 49 00 00 00111 38916 .00 89 00 00 .00209 04541 .00 C9 00 00 00306 70166
00 0A 00 00 00015 25878 .00 4A 00 00 .00112 91503 .00 8A 00 00 100210 57128 .00 CA 00 00 .00308 22753
00 0B 00 00 .00016 78466 .00 4B 00 00 .00114 44091 .00 8B 00 00 .00212 09716 .00 CB 00 00 00309 75341
.00 0C 00 00 .00018 31054 .00 4C 00 00 .00115 96679 .00 8C 00 00 .00213 62304 .00 CC 00 00 .00311 27929
00 O 00 00 .00019 83642 .00 4D 00 00 .00117 49267 .00 8D 00 00 00215 14892 .00 CD 00 00 .00312 80517
.00 OE 00 00 00021 36230 .00 4E 00 00 .00119 01855 .00 8E 00 00 .00216 67480 .00 CE 00 00 .00314 33105
.00 0 00 00 .00022 88818 .00 4F 00 00 00120 54443 .00 8F -00 00 .00218 20068 .00 CF 00 00 .00315 85693
.00 10 00 00 .00024 41406 .00 50 00 0O .00122 07031 .00 90 00 00 .00219 72656 .00 DO 00 00 .00317 38281
00 11 00 00 00025 93994 .00 51 00 00 .00123 59619 .00 91 00 00 .00221 25244 .00 D1 00 00 .00318 90869
00 12 00 00 .00027 46582 .00 52 00 00 00125 12207 .00 92 00 00 .00222 77832 .00 D2 00 00 .00320 43457
00 12 00 00 100028 99169 .00 53 00 00 .00126 64794 .00 93 00 00 .00224 30419 .00 D3 00 00 00321 56044
.00 14 00 00 .00030 51757 .00 54 00 00 .00128 17382 .00 94 00 00 00225 83007 .00 D4 00 00 .00323 48632
.00 15 00 00 .00032 04345 .00 55 00 00 .00129 69970 .00 95 00 00 .00227 35595 .00 D5 00 00 .00325 01220
.00 16 0V 00 .00033 56933 .00 56 00 00 .00131 22558 .00 96 00 00 .00228 88183 .00 D6 00 00 .00326 53808
.00 17 00 00 .00035 09521 .00 57 00 00 00132 75146 .00 97 00 00 .00230 40771 .00 D7 00 00 .00328 06396
.00 18 00 00 .00036 62109 .00 58 00 00 .00134 27734 .00 98 00 00 .00231 93359 .00 D8 00 00 .00329 58984
0019 00 00 .00038 14697 .00 59 00 00 .00135 80322 .00 99 00 00 .00233 45947 .00 D9 00 00 00331 11572
00 1A 00 00 .00039 67285 .00 SA 00 00 .00137 32910 .00 9A 00 00 .00234 98535 .00 DA 00 00 .00332 64160
00 1B 00 00 .00041 19873 .00 SB 00 00 .00138 85498 .00 9B 00 00 .00236 51123 .00 DB 00 00 .00334 16748
00 1C 00 00 .00042 72460 .00 5C 00 00 .00140 38085 .00 9C 00 00 .00238 03710 .00 DC 00 00 .00335 69335
00 1D 00 00 .00044 25048 .00 5D 00 00 .00141 90673 .00 9D 00 00 .00239 56298 .00 DD 00 00 00337 21923
.00 1E 00 00 00045 77636 .00 SE 00 00 .00143 43261 .00 9E 00 00 .00241 08886 .00 DE 00 00 .00338 74511
.00 1F 00 00 00047 30224 .00 SF 00 00 .00144 95849 .00 9F 00 00 .00242 61474 .00 DF 00 00 .00340 27099
.00 20 00 00 .00048 82812 .00 60 00 00 00146 48437 .00 A0 00 00 .00244 14062 .00 EO 00 00 .00341 79687
00 21 00 00 00050 35400 .00 61 00 00 00148 01025 .00 A1 00 00 .00245 66650 .00 E1 00 00 00343 32275
00 22 00 00 00051 87988 .00 62 00 00 .00149 53613 .00 A2 00 00 .00247 19238 .00 E2 00 00 .00344 84863
00 23 00 00 .00053 40576 .00 63 00 00 .00151 06201 .00 A3 00 00 .00248 71826 .00 E3 00 00 00346 37451
00 24 00 00 00054 93164 .00 64 00 00 .00152 58789 .00 A4 00 00 00250 24414 .00 E4 00 00 .00347 90039
00 25 00 00 .00056 45751 .00 65 00 00 00154 11376 .00 AS 00 00 00251 77001 .00 ES 00 00 .00349 42626
00 26 00 00 00057 98339 .00 66 00 00 .00155 63964 .00 A6 00 00 .00253 29589 .00 E6 00 00 .00350 95214
.00 27 00 00 .00059 50927 .00 67 00 00 00157 16552 .00 A7 00 00 .00254 82177 .00 E7 00 00 .00352 47802
.00 28 00 00 .00061 03515 .00 68 00 00 .00158 69140 .00 A8 00 00 .00256 34765 .00 E8 00 00 .00354 00390
.00 29 00 00 .00062 56103 .00 69 00 00 00160 21728 .00 A9 00 00 .00257 87353 .00 E9 00 00 .00355 52978
.00 2A 00 00 .00064 08691 .00 6A 00 00 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 00 00 .00357 05566
.00 2B 00 00 .00065 61279 .00 6B 00 00 00163 26904 .00 AB 00 00 .00260 92529 .00 EB 00 00 .00358 58154
.00 2C 00 00 .00067 13867 .00 6C 00 00 .00164 79492 .00 AC 00 00 .00262 45117 .00 EC 00 00 00360 10742
00 2D 00 00 .00068 66455 .00 6D 00 00 .00166 32080 .00 AD 00 00 .00263 97705 .00 ED 00 00 .00361 63330
.00 2E 00 00 .00070 19042 .00 6E 00 00 .00167 84667 .00 AE 00 00 .00265 50292 .00 EE 00 00 .00363 15917
.00 21 00 00 .00071 71630 .00 6F 00 00 00169 37255 .00 AF 00 00 .00267 02880 .00 EF 00 00 00364 68505
.00 30 00 00 .00073 24218 .00 70 00 00 .00170 89843 .00 BO 00 00 00268 55468 .00 FO 00 00 00366 21093
.00 31 00 00 00074 76806 .00 71 00 00 100172 42421 .00 B1 00 00 .00270 0806 .00 F1 00 00 .00367 73681
.00 32 00 00 .00076 29394 .00 72 00 00 00173 95019 .00 B2 00 00 .00271 60644 .00 F2 00 00 .00369 26269
.00 33 00 00 .00077 81982 .00 73 00 00 .00175 47607 .00 B3 00 00 .00273 13232 .00 F3 00 00 .00370 78857
.00 34 00 00 00079 34570 .00 74 00 00 .00177 00195 .00 B4 00 00 .00274 65820 .00 F4 00 00 00372 31445
.00 35 0000 .00080 87158 .00 75 00 00 .00178 52783 .00 BS 00 00 .00276 18408 .00 F5 00 00 00373 84033
.00 36 00 00 00082 39746 .00 76 00 00 .00180 05371 .00 B6 00 00 .00277 70996 .00 F6 00 00 .00375 36621
.00 37 00 00 00083 92333 .00 77 00 00 .00181 57958 .00 B7 00 00 .00279 23583 .00 F7 00 00 .00376 89208
00 38 00 00 .00085 44921 .00 78 00 00 .00183 10546 .00 B8 00 00 .00280 76171 .00 F8 00 00 00378 41796
.00 39 00 00 .00086 97509 .00 79 00 00 .00184 63134 .00 B9 00 00 .00282 28759 .00 F9 00 00 00379 94384
.00 3A 00 00 .00088 50097 .00 7A 00 00 00186 15722 .00 BA 00 00 .00283 81347 .00 FA 00 00 00381 46972
00 38 00 00 00090 02685 .00 7B 00 00 00187 68310 .00 BB 00 00 .00285 33935 .00 FB 00 00 .00382 99560
.00 3C 00 00 .00091 55273 .00 7C 00 00 .00189 20898 .00 BC 00 00 .00286 86523 .00 FC 00 00 .00384 52148
.00 3D 00 00 00093 07861 .00 7D 00 00 .00190 73486 .00 BD 00 00 .00288 39111 .00 FD 00 00 00386 0473

00 3E 00 00 00094 60449 .00 7E 00 00 .00192 26074 .00 BE 00 00 .00289 91699 .00 FE 00 00 00387 5732

00 3F 00 00 00096 13037 00 7F 00 00 .00193 78662 .00 BF 00 00 00291 44287 .00 FF 00 00 .00389 09912

B-12 Digital Systenrs Division

9427799701

Table B-6. Hexadecimal—Decimal F raction Conversion Table (Cont.)

3=

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 00 00 .00000 00000 .00 00 40 00 .00000 38146 .00 00 80 00 -00000 76293 .00 00 CO 00 .00V01 14440
. 00 .00000 00596 00 .00000 38743 .00 00 81 00 -00000 76889 .00 00 C1 00 .0V001 15036
. 00 .00000 01192 .00 00 00 .00000 39339 .00 00 82 00 -00000 77486 .00 U0 C2 VO .00001 15633
. 00 .00000 01788 .00 00 43 00 .00000 39935 .00 00 83 00 00000 78082 .00 00 C3 00 .00001 16229
000004 00 .00000 02384 .00 00 44 00 .00000 40531 .00 00 84 00 .00000 78678 .00 00 C4 00 .00001 16825
.00 00 05 00 .00000 02980 .00 00 45 00 .00000 41127 .00 00 85 00 .00000 79274 .00 00 C5 00 .00001 17421
.000006 00 .00000 03576 .00 00 46 00 .00000 41723 .00 00 86 00 .00000 79870 .00 00 C6 00 00001 18017
00 00 07 00 .00000 04172 .00 00 47 00 .00000 42319 .00 00 87 00 .00000 80466 .00 00 C7 00 .00001 18613
.00 00 08 00 .00000 04768 .00 00 48 00 .00000 42915 .00 00 88 00 -00000 81062 .00 00 C8 00 .00001 19209
000009 00 .00000 05364 .00 00 49 00 .00000 43511 .00 00 89 00 -00000 81658 .00 00 C9 00 .00001 19805
.00 00 0A 00 .00000 05960 .00 00 4A 00 .00000 44107 .00 00 8A 00 00000 82254 .00 00 CA U0 .00UOT 20401
00 00 0B 00 .00000 06556 .00 00 4B 00 .00000 44703 .00 00 8B 00 00000 82850 .00 00 CB U0 00001 20997
.00 00 0C 00 .00000 07152 .00 00 4C 00 .00000 45299 .00 00 8C 00 -00000 83446 .00 00 CC 00 GO0OI 21593
000000 00 .00000 07748 .00 00 4D 00 .00000 45895 .00 00 8D 00 .00000 84042 .00 00 CD 00 .00001 22189
.00 00 OE 00 .00000 08344 .00 00 4E 00 .00000 46491 .00 00 8E 00 .00000 84638 .00 00 CE 00 .00001 22785
.00 00 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00 00 8F 00 -00000 85234 .00 OC CF U0 .COO0T 23381
00 00 10 00 .00000 09536 .00 00 SO 00 .00000 47683 .00 00 90 00 .00000 85830 .00 00 DO QO 00001 23977
.00 00 11 00 .00000 10132 .00 00 51 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 DI 0N 00001 24573
.00 00 12 00 .00000 10728 .00 0052 00 .00000 48375 .00 00 92 00 -00000 87022 .00 00 D200 .009%)1 25169
.00 00 13 00 .00000 11324 .00 00 53 00 .00000 49471 .00 00 93 00 .00000 87618 .00 00 D3 00 .000¢] 25765
.00 00 14 00 .00000 11920 .00 00 54 00 .00000 50067 .00 00 94 00 00000 88214 .00 00 D4 00 .00001 2636t
000015 00 .00000 12516 .00 00 55 00 .00000 50663 .00 00 95 00 .00000 88810 .00 00 DS 00 .00001 20957
.00 00 16 00 .00000 13113 .00 0056 00 .00000 51259 .00 0O 96 00 .00000 89406 .00 00 D6 00 00001 27553
.00 00 17 00 .00000 13709 .00 00 57 00 .00000 51856 .00 00 97 00 .00000 90003 .00 00 D7 Q0 00001 2814y
0000 18 00 00000 14305 .00 00 58 00 .00000 52452 .00 DO 98 00 .00000 90599 .00 00 D8 00 .00001 28746
.00 00 00 .00000 14901 .00 00 59 00 .00000 53048 .00 00 99 00 00000 91195 .00 00 DY U0 .0000] 9342
.00 00 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 00 9A 00 00000 91791 .00 00 DAOU .0U0O! 19938
00 00 00 .00000 16093 .00 00 SB 00 -00000 54240 .00 00 9B 00 .00000 92387 .00 00 DBOO .0N001 30534
.00 00 00 .00000 16689 .00 00 5C 00 .00000 54836 .00 00 9C 00 .00000 92983 .00 00 DCOOD .0H0G] 31 130
)0 00 00 .00000 17285 .00 00 5D 00 .00C00 55432 .00 00 9D 00 .00000 93579 .00 00 DI'O0 .00OOL 11726

0 00 00 .00000 17881 .00 00 SE 00 .00000 56028 .00 00 9E 00 -00000 94175 .00 00 DEQO 00001 32322

0 00 I 00 .00000 18477 .00 00 SF 00 .00000 56624 .00 00 9F 00 00000 94771 .00 00 DFOV .0000] 12918
00 00 20 00 .00000 19073 .00 00 60 00 .00000 57220 .00 00 A0 00 .00000 95367 .00 00 EO 00 0000} 13514
000021 00 .00000 19669 .00 00 61 00 .00000 57816 .00 00 Al 00 .00000 95963 .00 00 E1 00 00001 34110
.00 00 22 00 .00000 20265 .00 00 62 00 .00000 58412 .00 00 A2 00 -00000 96559 .00 00 E2 00 00001 34706
.00 00 23 00 .00000 20861 .00 00 63 00 .00000 59008 .00 00 A3 00 .00000 97155 .00 00 E3 00 .00001 35302
.00 0024 00 .00000 21457 .00 00 64 00 .00000 59604 .00 00 A4 00 00000 97751 .00 00 E4 00 .00001 315898
.00 00 25 00 .00000 22053 .00 00 65 00 .00000 60200 .00 00 AS 00 -00000 98347 .00 00 ES 00 .00001 36494
.00 00 26 00 .00000 22649 000066 00 .00000 60796 .00 00 A6 00 .00000 98943 .00 QO E6 00 .00001 37090
00 00 27 00 .00000 23245 00 00 67 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .00001 37686
.00 00 28 00 .00000 23841 .00 00 68 00 .00000 61988 .00 00 A8 00 -00001 00135 .00 00 E8 00 .00001 18282
.00 0029 00 .00000 24437 .00 00 69 00 .00000 62584 .00 00 A9 00 00001 00731 .00 00 E9 00 .00001 38878
.00 00 2A 00 .00000 25033 .00 00 6A 00 .00000 63180 00 00 AA 00° .00001 01327 .00 Q0 EA00 .00001 39474
.00 00 2B 00 .00000 25629 .00 00 6B 00 .00000 63776 .00 00 AB 00 -0000! 01923 .00 00 EB OO .00001 40070
00 00 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .00 00 AC 00 .00001 02519 .00 QU EC00 .0000! 41666
.00 00 2D 00 .00000 26822 .00 00 6D 00 .00000 64969 00 00 AD 00 .00001 03116 .00 00 EDOO0 .00001 41263
.00 00 2E 00 .00000 27418 00 00 6E 00 .00000 65565 .00 00 AE 00 .00001 03712 .00 00 EE00 .00001 41859
.00 00 2F 00 .00000 28014 .00 00 6F 00 .00000 61661 .00 00 AF 00 .00001 04308 .00 00 EF 00 00061 22455
.00 00 30 00 .00000 28610 000070 00 .00000 66757 .00 00 BO 00 .00001 04904 00 00 FO 00 .00001 43051
.00 00 31 00 .00000 29206 000071 00 .00000 67353 .00 00 B1 00 .00001 05500 .00 00 F1 00 00001 43647
.00 00 32 00 .00000 29802 000072 00 .00000 67949 .00 00 B2 00 .00001 06096 .00 00 F2 00 .0000] 44243
.00 00 33 00 .00000 30398 000073 00 .00000 68545 .00 00 B3 00 -00001 06692 .00 00 F3 00 .00001 44839
.00 00 34 00 .00000 30994 000074 00 .00000 69141 .00 00 B4 00 .00001 07228 .00 00 F4 00 .00001 45435
00 0035 00 .00000 31590 000075 00 .00000 69737 .00 00 BS 00 -00001 07884 .00 00 FS 00 .00001 46031
.00 00 36 00 .00000 32186 .00 0076 00 .00000 70333 00 00 B6 00 -00001 08480 .00 00 F6 00 .00001 46627
.00 00 37 00 .00000 32782 .00 00 77 00 -.00000 70929 .00 00 B7 00 -00001 09076 .00 00 F7 00 00001 47223
.00 00 38 00 .00000 33378 000078 00 .00000 71525 00 00 B8 00 .00001 09672 .00 00 F8 00 .00001 47819
.00 00 39 00 .00000 33974 000079 00 .00000 75121 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 48415
.00 00 3A 00 .00000 34570 00 00 7A 00 .00000 72717 .00 00 BA 00 00001 10864 .00 00 FA 00 .00001 49011
00 00 3B 00 .00000 35166 .00 00 7B 00 .00000 73313 .00 00 BB 00 00001 11460 .00 00 FB 00 .00001 49607
.00 00 3C 00 .00000 35762 0000 7C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .00001 50203
.00 00 3D 00 .00000 36358 00 00 7D 00 .00000 74505 .00 00 BD 00 00001 12652 .00 00 ED 00 .00001 50799
00 00 3E 00 .00000 36954 0000 7E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395
00 00 3F 00 00000 37550 00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991

B-13

Digital Systems Division

_g%zﬁ} 9427799701

abie B-6.. Hexadecimai—Decimai Fraction Conversion Tabie (Cont.)

Hexaded unal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

00 00 00 00 .00000 00000 .00 00 0L 40 .00000 00149 .00 00 00 80 .00000 00298 .00 00 00 CO .00000 00447
00 6H VU 0l .00000 00002 .00 00 0N 41 .00000 00151 .00 00 00 81 .00000 00300 .00 00 00 C1 .00000 00449
000 06 02 L0000 00004 00 00 00 42 .00000 00153 .00 00 00 82 .00000 00302 .00 00 00 C2 .0000V 00451
DU 99 00 03 06600 00006 .00 00 VO 43 .00000 00155 .00 00 00 83 .00000 00305 .00 00 00 C3 .0UC0V 00454
00 06 00 04 000% 00009 00 00 00 44 .00000 00158 .00 0C 00 84 .00000 00307 .00 00 00 C4 00000 00456
00 oG 00 us 00009 00011 LU 00 0U 45 00000 00160 .00 00 00 85 00000 00309 .00 00 00 C5 .00000 00158
wd M O De Ho0us 00013 .00 00 06 46 .00000 00162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 Q0461
00 Ge g 07 vuGHy 00016 .00 NG 00 47 00000 00165 .00 00 00 87 .00000 00314 .00 00 00 C7 .00000 00463
(LUNV IR T 00w 00018 .o QU 00 48 .00000 00167 .00 00 00 88 .00000 00316 .00 00 00 C8 .00000 00465
0O DY D050 00020 .00 00 00 49 .00000 00169 .00 00 00 89 .00000 00318 .00 Q0 00 C9 .00000 00467
00 L0 00 DA 00000 00023 .00 00 OO 4A .00000 00172 .00 00 00 8A .00000 00321 .00 00 00 CA .00000 00470
00 60 00 e .00000 00025 060 00 00 4B .00000 00174 .00 00 00 8B .00000 00323 .00 00 00 CB .00000 00472
00 e 99 0C .0000u 00027 c0 ve 00 4C .00000 00176 .00 00 00 8C .00000 00325 .00 00 00 CC .00000 00474
G0 G 00 oD .00000 00030 00 00 0C 4D .00000 00179 .00 00 00 8D .00000 00328 .00 00 00 CD .00000 00477
00 00 06 oL .00000 00032 00 00 0V 4E .00000 00181 .00 00 00 8E .00000 00330 .00 00 00 CE .00000 00479
00 uH 00 CF .00000 00034 00 00 00 4F .00000 00183 .00 00 00 8F .00000 00332 .00 00 Q0 CF .00000 00481
00 o Y 10 .00000 00037 .00 00 00 S50 .00000 00186 .00 00 00 90 .00000 00335 .00 00 00 DO .00000 00484
00 00 00 11 .00000 00039 .00 00 00 51 .00000 00188 .00 00 00 91 .00000 00337 .00 00 00 D1 .00000 00486
00 00 0V 12 .00000 00041 .00 00 00 52 .00000 00190 .00 00 00 92 .00000 00339 .00 00 00 D2 .00000 00488
00 0000 13 .00000 00044 .00 00 00 53 .00000 00193 .00 00 00 93 .00000 00342 .00 00 00 D3 .00000 00491
00 00 00 14 .00000 00046 .00 00 00 54 .00000 00195 .00 00 00 94 .00000 00344 .00 00 00 D4 .00000 00493
00 00 90 1S .00000 00048 .00 00 00 S5 .00000 00197 .00 00 00 95 .00000 00346 .00 00 00 D5 .00000 00495
00 0V DO 16 .00000 00051 .00 00 00 356 .00000 00200 .00 00 00 96 .00000 00349 .00 00 00 D6 .00000 00498
.00 00 VO 17 .00000 00053 .00 00 00 57 .00000 00202 .00 00 00 97 .00000 00351 .00 00 00 D7 .00000 00500
.00 00 0O 18 .00000 00055 .00 00 00 58 .00000 00204 .00 00 00 98 .00000 00353 .00 00 00 D8 .00000 00502
00 00 00 19 .00000 00058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 00356 .00 00 00 D9 .00000 00505
00 00 00 1A .00000 00060 .00 00 00 S5A .00000 00209 .00 00 00 9A .00000 00358 .00 00 00 DA .00000 00507
.00 00 00 1B .00000 00062 .00 00 00 SB .00000 00211 .00 00 00 9B .00000 00360 .00 00 00 DB .00000 00509
.00 00 00 1IC .00000 00065 .00 00 00 5C .00000 00214 .00 00 00 9C .00000 00363 .00 00 00 DC .00000 00512
.00 00 00 1D .00000 00067 .00 00 00 SD .LOO0O 00216 .00 00 OO 9D .00000 00365 .00 00 00 DD .00000 00514
.00 00 00 LE - .00000 00069 .00 00 00 SE .00000 00218 .00 00 00 9E .00000 00367 .00 00 00 DE .00000 00516
.00 00 00 1F .00000 00072 .00 00 00 SF .00000 00221 .00 00 00 9F .00000 00370 .00 00 00 DF .00000 00519
.00 00 00 2 .00000 00074 .00 00 00 60 .00000 00223 .00 00 00 A0 .00000 00372 .00 00 00 EO .00000 00521
.00 060 00 21 .00000 00076 .00 00 00 61 .00000 00225 .00 00 00 Al .00000 00374 .00 00 00 E1 .00000 00523
.00 00 00 22 .00000 00079 .00 00 00 62 .00000 00228 .00 00 00 A2 .00000 00377 .00 00 00 E2 ..00000 00526
.00 00 00 23 .00000 00081 .00 00 00 63 .00000 00230 .00 00 00 A3 .00000 00379 .00 00 00 E3 .00000 00528
.00 00 00 24 .00000 00083 .00 00 00 64 .00000 00232 .00 00 00 A4 .00000 00381 .00 00 00 E4 .00000 00530
.00 00 00 25 .00000 00086 .00 00 00 65 .00000 00235 .00 00 00 AS .00000 00384 .00 00 00 E5 .00000 00533
.00 00 00 26 .00000 00088 .00 00 00 66 .00000 00237 .00 00 00 A6 .00000 00386 .00 00 00 E6 .00000 00535
.00 00 00 27 .00000 00090 .00 00 00 67 .00000 00239 .00 00 00 A7 .00000 00388 .00 00 00 E7 .00000 00537
.00 00 00 28 .00000 00093 .00 00 00 68 .00000 00242 .00 00 00 A8 .00000 00391 .00 00 00 E8 .00000 00540
.00 00 00 29 .00000 00095 .00 00 00 69 .00000 00244 .00 00 00 A9 .00000 00393 .00 00 00 E9 .00000 00542
.00 00 00 2 .0000C 00097 .00 00 00 6A .00000 00246 .00 00 00 AA .00000 00395 .00 00 00 EA .00000 00544
.00 00 00 2B .00000 00100 .00 00 00 6B .00000 00249 .00 00 00 AB .00000 00398 .00 00 00 EB .00000 00547
.00 00 00 2C .00000 00102 .00 00 00 6C .00000 00251 .00 00 00 AC .00000 00400 .00 00 0O EC .00000 00549
.00 00 00 2D .00000 00104 .00 00 00 6D .00000 00253 .00 00 00 AD .00000 00402 .00 00 00 ED .00000 00551
.00 00 00 2E .00000 00107 .00 00 00 6E .00000 00256 .00 00 00 AE .00000 00405 .00 00 00 EE .00000 00554
.00 00 00 2F .00000 00109 .00 00 00 6F .00000 00258 .00 00 00 AF .00000 00407 .00 00 00 EF .00006 00556
.00 00 00 30 .00000 00111 .00 00 00 70 .00000 00260 .00 00 00 BO .00000 00409 .00 00 00 FO .00000 00558
.00 00 00 31 00000 00114 .00 00 00 71 .00000 00263 .00 00 00 Bl .00000 00412 .00 00 00 F1 .00000 00561
.00 00 00 32 .00000 00116 .00 00 00 72 .00000 00265 .00 00 00 B2 .00000 00414 .00 00 00 F2 .00000 00563
.00 00 00 33 .00000 00118 .00 00 00 73 .00000 00267 .00 00 00 B3 .00000 00416 .00 00 00 F3 .00000 00565
.00 00 00 34 .00000 00121 .00 00 00 74 .00000 00270 .00 00 00 B4 .00000 00419 .00 00 00 F4 .00000 00568
.00 00 00 35 .00000 00123 .00 00 00 75 00000 00272 .00 00 00 BS .00000 00421 .00 00 00 F5 .00000 00570
.00 00 00 36 .00000 00125 .00 00 00 76 .00000 00274 .00 00 00 B6 .00000 00423 .00 00 00 F6 .00000 00572
.00 00 00 37 .00000 00128 .00 00 00 77 .00000 00277 .00 00 00 B7 .00000 00426 .00 00 00 F7 .00000 00575
.00 00 00 38 .00000 00130 .00 00 00 78 .00000 00279 .00 00 00 B8 .00000 00428 .00 00 00 F8 .00000 00577
.00 00 00 139 .00000 00132 .00 00 00 79 .00000 00281 .00 00 00 B9 .00000 00430 .00 00 00 F9 .00000 00579
.00 00 00 3A .00000 00135 .00 00 00 7A .00000 00284 .00 00 00 BA .00000 00433 .00 00 00 FA .00000 00582
.00 00 00 3B .00000 00137 .00 0000 7B .00000 00286 .00 00 00 BB .00000 00435 .00 00 00 FB .00C00 00584
.00 00 00 3C .00000 00139 .00 00 00 7C .00000 00288 .00 00 00 BC .G0000 00437 .00 00 00 FC .00000 00586
.00 00 00 3D .00000 00142 .00 00 00 7D .00000 00291 .00 00 00 BD .00000 CO440 .00 00 00 FD .00000 00589
.00 00 00 3E .00000 00144 .00 00 00 7E .00000 00293 .00 00 00 BE .00000 00442 .00 00 00 FE .00000 00591
.00 00 00 13F .00000 00146 .00 00 00 7F .00000 00295 .00 00 00 BF .00000 00444 .00 00 00 FF .00000 00593

B-14

Digital Systems Division

9427799701

Constant

Irw

In2

N 1)

In10

Decimal Value
3.14159 26535
0.31830 98861
1.77245 38509
1.14472 98858
2.71828 18284
0.36787 94411
1.64872 12707
0.43429 44819
1.44269 50408
0.57721 56649
~0.54953 93129
1.41421 35623
0.69314 71805
0.30102 99956
3.16227 76601
2.30258 40929

89793
83790

" 05516

49400
59045
71442
00128
03252
88963
01533
81645
73095
59945
63981
68379
94046

Table B-7. Common Mathematical Constants

Hexadecimal Value

3.243F
0.517C
1.C5BF
1.250D
2.B7E1
0.5E2D
1.A612
0.6F2D
1.7154
0.93C4
—~0.8CAE
1.6A09
0.B172
0.4D10
3.298B
2.4D76

6A89
C1B7
891C
048F
5163
58D9
98E2
EC55
7653
67E4
9BC1
E668
17F8
4D42
075C
3777

B-15

Digital Systems Division

[e]
%—%ﬂ 942779-9701 —

sl 7l sl stalgialals
@ sP '\ o NULL
A 1 o ° SOM
17|
& 0] EOA
c # o YK) EOM
S D S R
o $ ole EOT
£ % Ole o WRU
F & OCle| e RU
[| el
G ! Olele] e BELL
H) [Rle) FEo
[| .
! (@e|o ° H. TAB
J %* [J e} ® LINE FEED
K + e|O o e V. TAB
_— — -
L . - { RN) FORM
—— — -'_
M - x | BEeRN J J RETURN
Sm— r—— -<
N . o IR 2N BN] SO
—_— e -z
o) / i e|O|e|0| @ st
]] - LS
P o :] (@) DCgo
Q 1 o ° o} ™ X—ON READER ON
S — — -
R 2 a ° o ° TAPE lAux-ou PUNCH ON
a— — ma— T
S 3 Q o o 1K) X=OFF READER OFF
— —— s —g
T a g) ole TAPE lAUX-OFF PUNCH OFF
1 — |} —
U 5 ® ole ° ERROR
v 6 Y OClel|e SYNC
w 7 ® Ole|le|e® LEM
— ——
X 8 L BN R ¥e] So
Y e L BN JNe] Sy
z . e|le|o ° S2
{ . eje@|O ole S3
- |
ACK < [BN EEeIN J Sa
ALT MODE] - eolelOle ® 55
ESC N > 3K BE2N AN) Se
SR
RUB OUT | — ? eje|o|elele Sy
(DITTO)
o (DITTO)
—
L J (DITTO)
rad R A IK (DITTO)

(A)131862A

Figure B-1. Character Arrangement (USASCII) for Paper Tape

B-16 Digital Systems Division

[e]
@ 9427799701

APPENDIX C

INSTRUCTION TABLES

Digital Systems Division

942779-9701

APPENDIX C
INSTRUCTION TABLES
The source formats and the operation codes for the machine instructions are summarized in the
Il tables in this appendix. Refer to Section III for more detailed descriptions of cach of the

machine instructions.

Each table lists a group of instructions as follows:

Table No. Title
C-1 Load and Store Instructions
C-2 Arithmetic Instructions
C3 Compare Instructions
C4 Logical Instructions
C-5 Shift Instructions
C-6 Load-Store Status and Store Panel Instructions
C-7 Branch Instructions
C-8 Mode Switching Instructions
C9 Software Flag Instructions
C-10 CRU Instructions
C-11 Direct Memory Address Instruction

The three symbols that appear in the source statement operands (#,* @) are addressing mode
attributes, described in Section IV. The elements of the source statement operands in these tables
have the following meanings: '

a Device or controller address

b Memory word flag address or number of communication register
bits

limits Symbol name, with implicit base register definition

m First memory address field in two-address instructions

mb Base register used with the M address field

C-1 Digital Systems Division

942779-9701

n Memory address field in one-address instructions, or second
address field in two-address instructions

namef,’ Symbol names, with implicit base register

namem, definition

namen

nb Base register used with the N address field

q Information related to a specific device or controller

r General register in the register file, or shift count

rq Bit that specifies adding (or subtracting) the ‘contents of

the procedure base register to (or from) the effective
operand or a counter

this Symbol name, with implicit base register definition
vl Immediate value in flag and bit instructions

value 13-bit signed immediate value

with Symbol name, with implicit base register definition
Xr Index register number

In the Operand column in each table, the following conventions apply:
e Angle brackets (< >) enclose items supplied by the user
e Brackets ([]) enclose optional items

The format number tield in the following tables can be used as a key to reference the complete
description of the instructions in Section III.

C-2 Digital Systems Division

€0

uorsiaIg swejsAs reybig

Table C-1. Load and Store Instructions

Operation

Format

Instruction Name Mnemonic Operand Code Number Remarks
Load Ones Tally LOT [#]<r>, [*)[@)<n>[< xr>] 5400 0000 I-A (Note 1)
Load Ones Tally of Address LOTA [#]<r>, [*][@]<n>[,<xr>] 5480 0000 I-A (Note 1)
Load Register L [#]<r>,[*][@]<n>[,<xr>] 4400 0000 I-A (Note 1)
Load Register with Address LA [#]<r>,[*][@])<n >[,<xrs) 4480 0000 1-A (Note 1)
Move Memory Word MOV [@] km>,<mb>), [@] «n>,<nb>) 1400 0000 II-A (Notes 1, 2)
[@] <namem>,[@)<namen> :
Store Register ST [#]<r>, [*][@)<n>[,<xr>] 4880 0000 I-A (Note 1)

Note 1: All load and store instructions cause a compare status bit to be set.
Note 2: The source statement operand has two forms,

explicit and implicit.

10L6°6LLTY6

1 a8

uoIsIA|g SwelsAs 1eybiq

Table C-2. Arithmetic Instructions

Instruction Name Mnemonic Operand Opzratlon I-:ormat Remarks
ode Number
Add Address to Register AA [#]<r>, [*l[@)<n>[,< xr>] 4C80 0000 1-A (Note 1)
Add to Memory Immediate AMI [@] km>,<mb>), <value> 2000 0000 II-C (Notes 1, 2)
[@] <namem>, <value>
Add to Register A [#l<r., [*][@]<n>[,<xr>] 4C00 0000 I-A (Note 1)
Divide D [#)<r>, [*][@]<n>[,<xr>] D000 0000 1-A (Notes 1, 3)
Divide Immediate DA [#])<es, [*])[@])<n>[,<xr>] D080 0000 I-A (Notes 1, 3)
Double Add DAD [#]1<r>, [*])[@)<n>[,<xr>] EB800 0000 I-A (Notes 1, 3)
Double Subtract DS [#]1<r>, [*][@])<n>],<xr>] EC00 0000 1-A (Notes 1, 3)
Multiply M [#])<r>, [*][@)<n>[,<xr>] CC00 0000 I-A (Notes 1, 3
Multiply Immediate MA [#]<r>, [*])[@]<n>[,<xr>] CC80 0000 I-A (Notes 1, 3)
Subtract Address from SA [#]<r>, [*][@]<n>[,<xr>] 5080 0000 I-A (Note 1)
Register
Subtract from Register S [#]<r> [*])[@]<n>[,<xr>] 5000 0000 I-A (Note 1)

Note 1: All arithmetic instructions cause a compare status bit to be set.
Note 2: The source statement operand has two forms, explicit and implicit.

Note 3: Optional instruction (Arithmetic Option board)

10L6°6LLTP6 @%\'P
o

(90

uorsiaIg swelsAg reybig

Table C-3. Compare Instructions

Instruction Name Mnemonic Operand Operation Format Remarks
Code Number
Compare Memory Immediate | CMI [@] «km><mb>), <value> 1C00 0000 1I-C (Note 1)
[@] <namems>, <value>

Compare Memory to Limits CML [@] km>,<mbs), [@] kn>,<nb>) 1800 0000 II-A (Note 1)
in Memory [@] <namem>,[@] <limits>

Compare Memory to . CM [@] «m><mb>),[@] kn>,<nb>) 1000 0000 II-A (Note 1)
Memory [@] <this>,[@] <with>

Compare Register with CRA [#]<r>,[*][@]<n>[,< xr) C080 0000 I-A (Note 2)
Effective Address

Compare Register with CRLA [#]<r>,[*][@]<n>[,< xr>] C480 0000 I-A (Note 2)
Effective Address (Logical)

Compare Register with CR [#]<r>, [*][@])<n>[< xr >] C000 0000 I-A (Note 2)
Memory

Compare Register with CRL [#]<r> [*][@])<n>[.< xr>] C400 0000 I-A (Note 2)

Memory (Logical)

Note 1:
Note 2;

The source statement operand has two forms,
This instruction causes a compare status bit to be set.

explicit and implicit.

10L6-6LLTY6

Table C-4. Logical Instructions

Instruction Name Mnemonic Operand OPZI;:{:O“ §§;‘::: Remarks
Exclusive OR XOR [#)<r>, [*][@]<n>[,<xr >] 4000 0000 I-A (Note 1)
Exclusive OR with Address XORA [#)<r> [*][@)<n>[,<xr>] 4080 0000 I-A (Note 1)
Logical AND N [#]<r>, [*][@])<n>[,<xr>] 5800 0000 I-A (Note 1)
Logical AND with Address NA [#]<r> [*][@]<n>[,<xr>] 5880 0000 I-A (Note 1)
Logical OR OR [#]<r> [*¥j[@])<n>[,< xr>] 5C00 0000 I-A (Note 1)

ORA [#]<r> [*)[@])<n>[,< xr>] 5C80 0000 I-A {Note 1)

Logical OR with Address

uoIgiag swaishg 1eubia

Note 1: All logical instructions cause a compare status bit to be set.

10L6°6LLTY6

LD

vorsing swesAs feubiq

Table C-5. Shift Instructions

Arithmetic, Count in
Register R

. . « Operation Format
Instruction Name Mnemonic Operand Code Number Remarks

Double Right Rotate DRR <r>, [*])[@)<n>[,< xr>] DCo00 0000 I-B (Notes 1, 2)

Double Right Rotate, Count DRRX [#)<r>, [*)[@)<n>[, < xr >] DC80 0000 I1-A (Notes 1, 2)
in Register R

Rotate Memory Right Logical | MRR <r>, [*)[@]<n>[,<xr>] 6800 0000 I-B (Note 2)

Rotate Memory Right Logical,| MRRX [#]<r>.[*][@]<n>[.<xr>] 6880 0000 1-A (Note 2)
Count in Register R

Shift and Add Tally of Leading| SAT [#]<r>, [*][@)<n>[,<xr>) 6C00 0000 1-A (Note 2)
Zeros

Shift Memory Double Left DLA <r>, [*)[@]<n>{, <xr>] C800 0000 I-B (Notes 1, 2)
Arithmetic

Shift Memory Double Left DLAX [#]<r>, [*][@]<n>[,< xr>] C880 0000 I-A (Notes 1, 2)
Arithmetic, Count in
Register R

Shift Memory Double Right DRA <r>, [*][@]<n>[, <xr>] D400 0000 I-B (Notes 1, 2)

| Arithmetic

Shift Memory Double Right DRAX [#]<r>, [*)[@]<n>[,< xr>) D480 0000 I-A (Notes 1, 2)
Arithmetic, Count in
Register R

Shift Memory Double Right DRL <r>, [*][@)<n>{, <xr>] D806 0000 I-B (Notes 1, 2)
Logical

Shift Memory Double Right DRLX [#1<r>, [*][@])<n>[, <xr>] D880 0000 I-A (Notes 1, 2)
Logical, Count in Register R

Shift Memory Left Arithmetic| MLA <r>, [*][@]<n>[,< xr>] 6000 0000 1-B (Note 2)

Shift Memory Left Arithmetic,] MLAX [#]<r>, [*][@]<n>[, < xr>] 6080 0000 I-A (Note 2)
Count in Register R

Shift Memory Right MRA <r>, [¥][@]<n,<xr>] 6400 0000 I-B (Note 2)
Arithmetic

Shift Memory Right MRAX [# 1<r>, [*][@])<n>[< xr>] 6480 0000 I-A (Note 2)

Note 1: Optional instruction (Arithmetic Option board).
Note 2: All shift instructions cause a compare status bit to be set.

10L6°6LLTY6

8D

Table C-6. Load-Store Status and Store Panel Instructions

Instruction Name Mnemonic Operand Operation Format Remarks
Code Number

lL.oad Status Block LDS3 [*N@]<n>[, <xr>][, <rg>] 7C00 0000 I-C (Notes 1, 2)

Store Panel Switches STPS [¥)[@]<n>[, <xr>] E480 0000 I-F (Note 2)

Store Status Block SS [*][@]<n>[,<xr>][, <rq>] 7886 0000 1-C (Note 1)

Store Status Block and SSB [¥)[@])<n>[, <xr>][, <rq>] 7882 0000 I-C (Note 1)
Branch

Store Status Block and SXS [*][@]<n, <xr>][,<rg>] 7884 0000 I-C (Note 1)
Transfer to Supervisor
Mode

Store Status Block and SXW- [*][@]<n>],<xr>][, <rq>] 7885 0000 1-C (Note 1)
Transfer to Worker Mode @

Store Status Block, Transfer | SXBS [*][@])<n>[,<xr>][,<rq>] 7880 0000 1-C (Note 1)
and Branch in Supervisor
Mode

Store Status Block, Transfer | SXBW [*][@ }<n>, <xr>][, <rq>] 7881 0000 I-C (Note 1)

and Branch in Worker Mode

Note 1:

vors)ag sweisAs reybiag

rq without indexing may be specified. Example: LDS
Note 2: This instruction causes a compare status register bit to be set.

[*[@]<n>, ,<rq>

n

10L6-6LLEY6

6

vorsialg sweysAs reyb)g

Table C-7. Branch Instructions

Operation

Format

Instruction Name Mnemonic Operand Code Number Remarks
Add to Register and Branch ARB <r>,[@])<n>,< xr>[,<rq>] 0C00 0000 I-D (Note 1)
on No.Sign Change
Branch and Link BL [#]<r>, [*)[@)<ny, <xr>] 7480 0000 I-A
Branch Indirect and Link *BL [#])< r>, [*][@]<n>[,<xr>] 7400 0000 I-A
Branch on Condition BC <r>, [*)[@]<n>[,<xr>] E080 0000 I-B (Note 3)
Branch on Condition Indirect | *BC <r> [*][@]<n>[,<xr>] E000 0000 I-B (Note 3)
Branch Relative and Link BRRL <r>, [@] n>,<nb>) 2800 0000 II-B (Note 4)
<r>[@] <namen>
No Operation NOP 7007 0000 I-C
Unconditional Branch B [*[@]<n>[.,<xr>][, <rq>] 7082 0000 I-C (Note 2)
Unconditional Branch *B [*][@]<n>[,<xr>][, <rqg>] 7002 0000 1-C (Note 2)

Indirect

Note 1: This instruction causes a compare status register bit to be set.
Note 2: rq without indexing may be specified by a null xr field.

Note 3: This instruction causes a status register bit to be examined.

Note 4: The source statement operand has two forms,

Example:

explicit and implicit.

B

<n>, ,<rq>

10L6°6LLTY6

01D

voysia|g sueisAs jeibig

Table C-8. Mode Switching Instructions

Operation

Format

Instruction Name Mnemonic Operand Code Number Remarks

Transfer to Supervisor Mode | XS 7004 0000 I-C

Transfer to Supervisor Mode | XSB [*)[@)<n>[< xr>][, <rq>] 7080 0000 I-C (Note 1)
and Branch

Transfer to Supervisor Mode | *XSB [*][@]<n>[,<xr>][, <rq>] 7000 0000 1-C (Note 1)
and Branch Indirect

Transfer to Worker Mode Xw 7005 0000 1-C

Transfer to Worker Mode XWB [*}[@)<n>[,<xr>][,<rq>] 7081 0000 I-C (Note 1)
and Branch

Transfer to Worker Mode *XWB [*][@)<n>[,<xr>][, <rq>] 7001 0000 I-C (Note 1)

and Branch Indirect

Note 1: rq without indexing may be specified by a null xr field, Example: XSB <n>,,<rqg>

10L6-6LLTY6

11D

uorsialg sweysAs jeybig

Table C-9. Software Flag Instructions

Equal

[#]J<namef>, <vi>

Instruction Name Mnemonic Operand Operation Format Remarks
Code Number
Branch If Flag Not Equal BFNE [#](cm>,), <vl>,<n> 8400 0000 III-B (Note 1)
[# J<namef>, <vl>,< namen>
Set Flag SETF [#]cm>,), <vl> 8800 0000 1II-A (Note 1)
[#]<namef>, <vl>
Switch Mode If Flag Not XFNE [# 1cm>,), <vi> 8000 0000 III-A (Note 1)

Note 1: The source statement operand has two forms, explicit and implicit.

10L6-6LLTY6

(458

Table C-10. CRU Instructions

Mode or Set Output Bit

[#]<namem>,<v1><namen>,

Instruction Name Mnemonic Operand Operation Format Remarks
Code Number

Branch On Bit Not Equal BBNE [#]<m>,<vl>,<n> 3000 0000 II1-D (Note 1)
[#]<namem >, <v1>,< namen>

Load Communiction Register | LDCR [#]cm>,),<n> 0800 0000 II-F (Note 1)
[#]<namem >, <namen>

Set CRU Output Bit SETB [#]<m>,< v1> 3400 0000 I1I-C (Note 1)
[#]<namem>, <v1>

Store Communication STCR [#]km>,),<n> 2C00 0000 1I-F (Notes 1, 2)

Register [#]<namem>,< namen>

Switch Mode On Bit Not Equal] XBNE [#)km>, <v]> 3800 0000 II1.C (Note 1)
[#]<namem>,<v1>

Test Input Bit and Switch TSBX [#]<m>,<v1>,<n> 3C00 0000 I1I-E {Note 1)

10L6°6LLTY6

uoIsIAg swelshs eubig

Note 1: The source statement operand has two forms, explicit and implicit.
Note 2: This instruction causes a compare status bit to be set.

P1-2/€1-D

uorsiaig swejsAs reybig

Table C-11. Direct Memory Address Instruction

Instruction Name Mnemonic Oiaerand Operation Format Remarks
Code Number
Activate Direct Memory ADAC <a>,<n>{,< q>] 2400 0000 I-E

Access Channel

10L6-6LLZY6

[o]
q@ 9427799701

APPENDIX D

INSTRUCTION EXECUTION TIMING

Digital Systems Division

o]
@ 942779.9701

APPENDIX D

INSTRUCTION EXECUTION TIMING

The instruction execution times contained in the following tables are equally valid for the 960A
or the 960B. However, since the 960B memory refresh cycle occurs twice as frequently (750
nanoseconds every 32 microseconds for the 960B as opposed to 750 nanoseconds every (4

microseconds for the 960A) therefore, allowances must be made for this difference in time
critical real-time functions.

D-1 Digital Systems Division

942779-9701

Address Modification
Standard Indirect
instructions None Indirect Indexed Indexed Notes

A 3.583 4.333 4.167 4917

AA 2833 3.583 3.417 4.167

ADAC 4.000 - - -

ARB 3.167 - 4.000 - -

B 2.833-3.417 3.583-4.167 3.417-4.000 4.167 -4.750

BC 3.00 - 3.25 3.75 - 4.00 3.583-3.833 4.333-4.583

Bl 2.750 2.500 3.333 4.083

BRRL 3.333 - - -

CR 3.583 4.333 4,167 4917

CRA 2.833 3.583 3.417 4.167

CRL 3.583 4,333 4.167 4917

CRLA 2.833 3.750 3.583 4.333

L 3.333 4.083 3.917 4.667

LA 2.583 3.333 3.167 3917

LS 4.07 -5.83 4.75-5.33 4.58 -5.16 5.33-5.91

LOT 7.750 8.500 8.333 9.083

LOTA 7.000 7.750 7.583 8.333

MLA 3.75 4.500 3.333 5.083 + Shift count/4
MLAX 3.583 4.333 4.167 4917 + Shift count/4
MRA 3.75 4.500 3.333 5.083 + Shift count/4
MRAX 3.583 4,333 4.167 4917 + Shift count/4
MRR 3.75 4.500 3.333 5.083 + Shift count/4
MRRX 3.583 4.333 4.167 4917 + Shift count/4
N 3.583 4.333 4,167 4917

NA 2.833 3.583 3.417 4.167

NOP 2.25 - - -

OR 3.583 4.333 4.167 4917

ORA 2.833 3.503 3417 4.167

S 3.583 4.333 4.167 4917

SA 2.833 3.583 3417 4.167

SAT 5.33 - 9083 6.083-9.833 5.917-9.667 6.667 - 10.417

SS 4.25-4.833 6.083-9833 4.83-3.417 5.583 - 6.167

SSB 5.25 - 6.417 6.00 - 7.167 5.833-7.000 6.583-6.167

ST 3.583 4.333 4.167 4917

STPS 3.00 3.750 3.583 4.333

SXBS 5,500 - 6.667 6.25 - 7.417 6.083 -8.750 6.833 - 8.000

SXBW 5.500 - 6.667 6.25 - 7.417 6.083 -5.667 6.833-8.000

SXS 4.50-5.167 5.25 - 5.833 5.083-5.667 5.833-6.417

SXW 4.50 - 5.167 5.250-5.833 5.083-5.667 5.833-6.417

XOR 3.583 4.333 4.167 4917

XORA 2.833 3.583 3.417 4.167

XS 2.500 - - -

XS$B 2.75 - 3.333 3.5 -4.083 3.333-3917 4.083-4.667

Xw 2.50 - - -

XwB 2.75-3.333 3.5 -4.083 3.333-3917 4.083 - 4.667

*B 3,583 -4.167 4.333-4917 4.167 -4.750 4.917-5.500

*BC 3.75 - 4.00 4.500-4.750 4.333-4.583 5.083-5.333

*BL 3.5 4.25 4.083 4.833

*XSB 3.500 - 4.083 4.25 -4.833 4,083 -4.667 4833

“XWB 3.500 - 4,083 4,25 -4.833 4.083-4.667 4.833-5.417

n-2 Digital Systems Division

942779-9701
Standard Execution
Instructions Time—Microseconds Notes
AMI 4,333
CM 4917 - 5.417
CMI 3.833-4.333
CML 5.917 - 6.667
MOV 4.667
Standard Execution
Instructions Time—Microseconds Notes
BBNE 3.083- 3.167
BFNE 4.083-4.167
LDCR 4.167 + Number of bits/4
SETB 2.833
SETF 4.333
STCR 7.917 + 250 nanoseconds for each external bit address
TSBX 3.083 - 3.417
XBNE 3.083-3.33
XFNE 4.083
Address Modification
Optional Indirect
Instructions None Indirect Indexed Indexed Notes
D 10.417 -10.917 11.167 - 11.667 11.000 - 11.500 11.750 - 12.250
DA 4.667 - 10.167 10.417 - 10.917 10.250 - 10.750 11.000 - 11.500
DAD 6.167 6.917 6.750 7.500
DLA 6.25 7.000 6.833 7.333 + Shift count/4
DLAX 5.833 6.583 6.417 7.167 + Shift count/4
DRA 6.25 7.000 6.833 7.333 + Shift count/4
DRAX 5.833 6.583 6.417 7.167 + Shift count/4
DRL 6.25 7.000 6.833 7.333 + Shift count/4
DRLX 5.833 6.583 6.417 7.167 + Shift count/4
DRR 6.25 7.000 6.833 7.333 + Shift count/4
DRRX 5.833 6.583 6.417 7.167 + Shift count/4
DS 6.167 6917 6.750 7.500
M 8.583 9.333 9.166 9.916
MA 7.833 8.583 8.416 9.166
TYPICAL EXECUTION TIMES Wl’l'H OPTIONAL CORE MEMORY TIME IN MICROSECONDS
Address Modification
Standard Indirect
Instruction Noge Indirect Indexed Indexed Notes
A 4.33 5.33 4.92 5.92
B 3.00 - 3.59 4.00 - 4.56 3.58 -4.17 4.58 -5.17
SETB 3.33
LDCR 492 + Number of bits/4
MOV 5.67

D-3/D4

Digital Systems Division

[+]
@ 942779-9701

APPENDIX E

ASSEMBLER DIRECTIVE TABLE

Digital Systems Division

[o]
Q@ 942779-9701

APPENDIX E
ASSEMBLER DIRECTIVE TABLE
The assembler directives for the Symbolic Assembly Language are listed in table E-1. All
directives can include a comment field following the operand field. Those directives that do not
require an operand field can have a comment field following the operator tield. Those dircctives

that have optional operand fields (for example END) can have comment fields which must begin
after column 22 if the operand field is not used.

The following symbols and conventions are used in defining the syntax of assembler directives:
® Angle brackets (<>) enclose items supplied by the user
® Brackets ([]) enclose optional items
® Anellipsis (...) indicates that the preceding item can be repeated.
The following words are used in defining the items used in assembler directives:
® symbol—-defined in paragraph 4.4
® label-a symbol used in the label field

® string—a character string defined in paragraph 4.7. of a length detined for cach
directive

® expr—an expression, defined in paragraph 4.2.1

® const—a constant, defined in paragraph 4.3

E-1 Digital Systems Division

(o)
{@) 942779-9701

Table E-1. Assembler Directives

Directive Syntax Note
Procedure Segment <label> PSEG
Data Segment <label> DSEG
Flag Segment <label> FSEG
CRU Symbolic Address
Segment <label> BSEG <expr>
Alternate Mode Registers MODE 1
Segment Termination END [< symbol>] 2
Define Entry Point DEF <symbol> 3
Symbols [,< symbol>]...
Identify External REF <symboli> 1
References [,< symbol>]...
Name Flag Bit Address FLAG <symbol> 4
[,<symbol>]. ..
Name CRU bit Address <label> CON <expr> 5
[,< expr>]
Assign Value to Symbol <label> EQU <expr>
Format a Source Language <label> FRM <expr> 6
Extension [,<expr>]...
Reserve Memory [<label>] RES <expr> 7
Place Data in Memory [<label>] DATA <string> 7
[,< string>]...
Page Eject PAGE
Program Identification TITL <string>
Discontinue List Output UNL
Resume List Output LIS
NOTES

1. Used in procedure and data segments only.

. The operand of an END directive must be a relocatable value and
cannot be an external reference.

Used in a procedure segment only.

Used in a flag segment only.

Used in a CRU symbolic address segment only.

. The expressions in the operand field must have a sum of 16 or 32.
Not used in a CRU symbolic address segment.

(3%

o n B W

E-2 Digital Systems Division

o
4@ 942779-9701

APPENDIX F
SAMPLE PROGRAMS

Digital Syst_ems Division

9427799701

#% ILLEGAL INSTRUCTICH <+ ADD

MISSING END

SALF60 VELZ

11:52: 08 JULYOL1, 1974

SYMEOL TABLE DUMP

0002 ENTRIES

PAGE 0001

SYMBOL VALUE 3SSN FLAG REF REL DEF EXT MUL ILL USED

0000 0001 F
PP 0000 0001 F

TALFAO V4LZ
11:52:08 JULYOL, 1974

ZESMENT -TAELE DUMP

F T
F T

T T F
T T F

0001 ENTRIES

SEGNAM BIAT LENGTH REFCNT SSN LINK ABS TYFE

0000 0000 Q0

0002 PASS ONE ERRORS

SALFE0 YaLz
11:52: 028 JuULYO1, 1974

D001 LOOOD
GOOZ POOOO
D003 S0000 14000000 PP
Q004 MOOOZ 44300000
D005 TOO04 ZO0O4000
0Q04& EQOOL 44320000
Q007 NOOOD3 00000000
G003 WOO0A 1COOSFFO
D00

Q00% ERRORS : LENGTH

00 0Ot

DIEG
DEF
MOV
LA
AMI
LA
ADD
cMI

= 000C

F F D

PP
(1,2,3),4
#2, 2

(0, 2), X"SF20~
2, C7ARC”

4,2

(0, 2), X“1FFO~

F
F

PAGE 0002

PAGE 0003

*LABEL ERROR
*FROCEDURE ERROR
*SYNTAX ERROR

*MODE ERROR
*TRUNCATION ERROR
#EXPRESSION ERROR
*MNEUMONIC ERROR
#*WARNING — SIGH CHANGE
*MISSING ENB CARD

Figure F-2. Sample Program No 1, Assembly Listing

F-3

Digital Systemns Division

o
(@ 942779-9701

F.3 SAMPLE PROGRAM NUMBER 2 (FIGURES F-3 THROUGH F-5)
This sample program (figures F-3 through F-5) illustrates a data segment, that contains a worker
task block, physical record blocks used in communicating to the supervisory program the desired

input/output, and working storage. It also illustrates a procedure segment using flag instructions
in the explicit form.

This task copies an input data set to an output data set. The input is initially assumed to be
ASCII. An input call is made using the INPRB physical record block which relates the input to
logical unit number 5. The flag base register (register 6) has been loaded with the address INPRB
at the start of execution by the supervisor from the worker task block. Bit one of the fifth word
of INPRB is the input/output error flag. If an error occurs on input, this task resets it and prints
a message asking to reread the last input. If the response is the character R, input continues;
otherwise. an exit occurs. If an error did not occur on input, the record is then written to the
output device assigned to logical unit number 10 defined in the OUTPRB physical record block.
If an EOF record was read, the input and output modes are switched (if ASCII then binary; if
binary then ASCII) and input continues. If an ASCII record is read with the first three
characters the letters END, then the task terminates; otherwise it continues.

F.4 SAMPLE PROGRAM NUMBER 3 (FIGURES F-6 THROUGH F-10)

The following sample program is an example of re-entrant programming. Re-entrant programming
on the 960 series computers can be accomplished by referencing all external-to-procedure
addresses by base relative addressing. For example:

LA 3,@DEGA4

references relative address DEG incremented by data base register 4. The driving program or
procedure (in this example) is attached to and drives two separate tasks at the same time under a
multitask environment of PAM or PAM/D. Three separate assemblies are done; one assembly to
generate the procedure and two assemblies to generate the two tasks that are later attached to
the procedure through job control Assume that the two tasks have a task ID and priority (rank)
of 80 for task! and 90 for task2.

The first assembly uses the !*D option that generates all linkage data and only the text data of
the procedure segment. The object module generated is the procedure (driver) that is, in turn,
attached to the two tasks. The two tasks are identical in that locations having the same
displacement relative to the segment base serve identical logic purposes.

The tasks read ASCII coded input records from the physical device assigned to them and write
the same records to the output device assigned to them. The second and third assemblies are the
same source file as the first assembly, but they use only the data section of the assembly. The
only difference between the two tasks is. the I/O LUNOs defined in the EQU statements. The
first task starts the procedure reading a record from its input logical unit then tests for an error
condition and proceedes to write this record out to the output logical unit. When it is waiting
for the output unit to finish, the procedure is re-entered and the second task is started. This
process continues until all records are read and written by both tasks. Figure F-6 is the flowchart
of the program. Figure F-7 is the procedure assembly listing. Figure F-8 is the task one assembly
listing. Figure F-9 is the task two assembly listing and figure F-10 is the method used to install
the tasks under the operating system.

F4 Digital Systems Division

9427799701

COFY

INFRE
OUTFRE
BUFF
ERRM=G
ERR
ERR1
INCHAR
CHAR

COFYF

CHEEQF

EXIT

/t

D3EG
DATA
DATA
DATA
DATA
RES
DATA
DATA
EQU
DATA
DATA
END
FSEG
LA
SXB3
EFNE
SETF
LA
SXB3
LA

SXB3

NA&
SA
ARE

L&

SXB3
EFNE
EFNE
SETF
ZETF

SETF
SETF
E

BFNE

XORA
ARE

Na&
XORA
ARE
LA
SXEBS
Bt
END

COFY ASCII AND BINARY FILES
COPYP, X“20007,0,0,0,0,0

COFY, COFYF, INFRB, O, X 80007, COPYP, 0, 0, O

COFY, BUFF, 30, O, X" 405~
COFPY, BUFF, 0, 20, X" 10~

40

COFY, ERR, O, ERR1-ERR*2, 0

X“0DOA’, C“INFUT RECORD ERROR,

$

COFY, ZHAR, 1, 0, X“ 400~
0

3, @INPRE

*127

(4, 1), 1, CHEEDF
(4,1),0

3, @ERRMZG
*127

3 INCHAR
*137

A, CHAR

A, X“FFOO~

A, X752007

-1, EXIT: A
COFYP

) @JUTPRE
*#127
(4,2), 1, CHKEND
(4,4),1,A3CI1]
(4,6),0

(2, 4),0
CorYF

(4,4),1

(2, &), 1

COFYP

(4, 4), 0, COFYP
A, BUFF

A, X' 454E "~

-1, ':':'PYPﬁ A

A, BUFF+1

A X'FFOO-

A, X 8800~

-1, COPYF. A

3, X71200
*127

8]

Figure F-3. Sample Program No. 2, Input Source File

ERANCH IF NO INFUT ERROR
RESET ERROR FLAG

FRINT ERROR M3G

SEE IF TO RETRY

WAS R TYFED™ NO,EXIT

YES, RETRY

OUTPUT RECORD

TYFE R TO RETRY~”

BRANCH IF NOT EOF

ERANCH IF INPUT WAS ASCII

SET INFUT TO ASCII

SET QUTPUT TO ASCII
G BACK TO INFUT

SET INFUT TO BINARY
SET OUTPUT TO EBINARY

CONT INUE

CONTINUE IF EBINARY

IS FIRST WORD =

IF NOT, CONTINUE

IS THIRD CHAR =

IF NOT, CONTINUE

EXIT

EN

D

F-5

Digital Systems Division

942779-9701

TALTAG VAL . _ PAGE 0001
11 5424 .MILYOLl, 1974

SYMEOL TABLE DUMP 0015 ENTRIES

SYMEOL VALUE SSN FLAG REF REL DEF EXT MuUL ILL UsSED

A 0000 QO0Z F F F T F F F T

AZCII 0022 000Z F F T T F F F T

SUFF NoO1A 0001 F F T T T F F T

ZHAR OOSF Q001 F F T T T F F T

CHKEND OQOZE 0002 F F T T F F F T

CHEEOF 0074 0002 F F T T F F F T

COPY 0000 0001 F F T T T F F T

COFYF Q060 000Z F F T T T F F T

ERR oba7 000y F OF T T T F F T

ERK1 00SA 0001 F F T T T F F T

ERRM=ZG 004z 0001 F F T T T F F T

EXIT GOTE 000Z F F T T F F F T

INCHAR O0SA 0001 F F T T T F F T

INFRE NO1O 0001 F F T T T F F T

OUTFRE 0015 0001 F F T T T F F T

TSALYAO VALZ PASGE ©OOO2
11.54: 24 JULYOL, 1974 '

SEGMENT TABLE DiiMF 0002 ENTRIES

SEGNAM EIAS LENGTH REFCNT 35N LINE ABS TYFE

CORY QOO0 Nasa 0000 Ot T F D

COFYF O0&O 0032 O0O00 02 F F P

0000 FASS ONE ERRORE

Figure F-4. Sample Program No. 2, Assembly Listing (Sheet 1 of 3)

F-6 Digital Systems Division

942779-9701

SALRLO
11:3

0001
0DQOZ

0003

0004

D006
0on7

000%

D009
0010

0011

v4L2

4: 24

0000
0000
0001
0002
0003
0004
000S
0006
0007
0008
0007
000A
000B
000C
Q00D
000E
000F
0010
0011
0012
00132
0014
0015
0016
0017
o018
0019
001A
0042
0ON43
0044
004%
00446
0047
0043
004A
004C
DQ4E
0050
0052
0054
0054
Q0S3
00SA
005A
00O5B
Q0SC
005D
00SE
QOSF

JuLYol,

00460
2000
0000
0000
00D0
0000
0000
0000
0060
0010
0000
2000
00460
0000
0000
0000
0000
001A
0050
0000
0405
0000
o014
0000
0050
0010

0000
0047
0000
0026
0000
oD0A
494E305%
34205245
434F5244
20455252
4F3522C20
343595045
20522054
4F 205245
34525920

0000
QOOSF
0001
0000
0400
0000

1974

COPY

INFRB

OUTPRB

BUFF
ERRMSG

ERR

ERR1
INCHAR

CHAR

PAGE 0003

DSEG COPY ASCII AND BINARY FILES
DATA COPYF, X 5000, 0,0,0,0,0

DATA COPY, COFYP, INPRE, 0, X~ 3000~, COPYP. 1, 0, O

DATA COPY, BUFF, 80, 0, X" 405"

DATA COPY, BUFF, 0, 30, X* 10~

RES 40
DATA COFY, ERR, O, ERR1-ERR#2, 0

DATA X ODOA-, C”INPUT RECORD ERROR,’ TYFE R TO RETRY"

ECU 3
DATA COPY, CHAR, 1, O, X* 400"

DATA O

Figure F-4. Sample Program No. 2, Assembly Listing (Sheet 2 of 3)

F-7 Digital Systems Division

9427799701

SALPLAO VAL2
11-54: 24 JLYOL,
0012 0060
SALTLO VALZ
11.54: 24 ILYOL,
0PI 00D
OG14 OOAD 34230010
G01S ODLZ TIRO00T7F
O01A 003 2404121A
D07 DDGA SE041000
DG12 00T 344230042
01T GOAA 70”0“07F
OO0 GOLT
DU | OOLE
: QO70
ODTZ2 "
0074,
0T 4
OO7=
DI7A
OO70C

Q040
DUNE: S
004z
N4
nOa4
O4T
Q044
47
0043

OOO0

OOTE &

DS 70220040
S404L000

OOZE
COIO
DOTZ
0074
O A
QO
QOen
QO
GOTE
COAO
OO0
QOAZ

ERRORSE

;44060
SR0OFALO00

. TORZO04L0

DG L3200

4300001A
40320454E
OCOFOOLD
4400001B
OFF OO
14400
ntnFunﬁn
Q4221200
7320007F

LENGTH

END

FSEG
LA
SXB3
EFNE
SETF
LA
SXEBES
LA
SXBS

LA
SXBS
EFNE
EFNE
SETF
SETF
E
ZETF
ZETF
B
EFNE
L
XORA
ARR
L

NA
X0ORA
ARE
LA
ZXBs
e
END

00AZ

2, @INPRE
#127
(4,1), 1, CHKEOF
(4,1),0
3, @ERRMZG
*127

32, INCHAR
*#127

A, CHAR

A, X"FFOOQ~
A, X752007

-1,EXIT.A

COFPYP

3, @QOUTFRB

*127

(4,2),1, CHKEND
(4, 6),1,ASCII
(4,46),9
(?,6),0
COPYP
(4,46), 1
(?,6), 1
COFYP
(4,6),
A, BUFF
A, X" 454E"
-1, COPYP, A
A, BUFF+1
A, X FFOO~
A, X 4400°
- 1 3 |:':|PYF'1 A
3 X718007
*127

0

» COFYP

PAGE 0004

PAGE 000S

BRANCH IF NO IMPUT ERROR
RESET ERROR FLAG
PRINT ERRUOR MSG

SEE IF T3 RETRY

WAS R TYPED? NO, EXIT
YES, RETRY
OUTPUT RECORD

BRANCH IF NOT EOF

BRANCH IF INPUT WAS ASCII
SET INPUT TO ASCII

SET OUTPUT TO wSCII

GO BACK TO INPUT

SET INPUT TO BINARY

SET OUTPUT TO BINARY
CONTINUE

CONTINUE IF BINAKY

15 FIRST WORD = EN
IF NOT., CONTINUE

IS THIRD CHAR = D
IF NOT, CONTINUE
EXIT

Figure F-4. Sample Program No. 2, Assembly Listing (Sheet 3 of 3)

Digital Systems Division

942779-9701

OBJECT DUMP

RECORD NUMBER

1700 7600
2131 3A43S
2C20 3137
0000 0000
D000 0000
RECORD
1703 AAOS
4342 4152
4552 %220
4552 524D
494E 35052
RECORD
1703 3001
0000 0000
2000 0000
Q000 0000
2000 0000
RECORD
1700 7700
2131 2435
2020 2139
0000 0000
D000 0000
RECORD
1703 2Do1
0000 0000
D000 D000
0000 QOO0
D000 0000
RECORD
1702 3CSA
- 0000 0000
8000 Q040
0000 0405
D000 0000
RECZORD
1702 %DSE
Q02L& 0000
S244 2045
2054 4F20
D000 Q400

434F
3131
3734
0000
0000

NLIMBER

0000
2020

2020

5347
4220

NUMBER

QON00
0000
0000
0000
0000

NUMBER

434F
3131
3734
0000
0000

NUMBER

0000
0000
0000
0000
0000

NUMEBER

0000
0000
0000
Q000
Q000

NUMBER

0042
ODOA
s252
5245

0000

0001.

SO57
3A35
2020
0000
0000

0002.

0000
Q0SF
0047
004z
0010

0003,

0000
0000
0000
0000
0000

0004,

S05%
3A3S
2020
0000
0000

000S.

[sIuInls}
G000
0000
0000
Q000

0004

21ica
0000
0000
001A
0000

0007,

COO0
4374E
4F5Z
9452
OQ00

2020
3424
0000
0000
0100

4255
434F
4552
474E
0100

4F35
0000
0000
0000
0100

3020
34234
0000
0000
0200

434F
0000
0000
0000
0200

C4600
0000
0000
2000
0100

QOCO
5055
ZC20
S920
Q100

0000
4ASS
0000
Q000
434F

85644
5059
5231
4343
434F

5430
0000
0000
0000
434F

0040
4ASS
0000
Q000
434F

5052
0000
Q000
Q00
434F

00&0
00&0
0000
0050
4324F

QOO0
5420
5459
[pInTals]
434F

0060
4CS?
0000
0000

3030

2020
2020
2020
41352
3030

5242
0000
0000
0000
3030

0042
a4cs?
0000
0Qoo
3030

5020
0000
Q000
QOO0
3030

3000
0010
Q01A
0010
3030

0047
5245
S045
QOSF

3030

000D
3031
(alalaly)
0000
3031

001A
0000
00%A
00%A
30322

001S
0000
Q000
0000

23033

0004
3031
0000
0000
3034

OQLQ
0000
Q000

Kalaluls)

3035

QOO0
0000
QOS50
0000
3036

QOO0
434F
2052
QQO1
2037

Figure F-5. Sample Program No. 2, Object Output Image (Sheet 1 of 2)

F-9

Digital Systems Division

942779-9701

RECOED
1702 ALSE
OO7F 2404
D07F 4423
FFOO S0O30
NOLS 7930

RECORD
1702 205
L322 2204
LS00 2309
GOLA 4030
FFOO 4030

RECORD
1702 ZB44
12Q0 7930
D000

£ gme gt
[RIRINIR]

D000

OEJECT DUMP

QOO0

RECORD
1701 1BGO
a000 OND0
D000 GOOO0
D000 0000
QOO0 000

MUMBER 0002

D0L0
131A
D0SA
S200

QOO7F
NUMBER

0O7E
AQOQ
L300
AS4E
4300

NUMEER

Q0w
QOO7F
QGO0
QOO0

QOO0

NUMEBER

OOAZ
0000
QOO0
0000
QOO0

0004
2204
75720
QCOF
QOO0

0041
2307
70252
QOCOF
GOOO

0010,

4000
OOO0
O0O00
YT T

UMD

OON0

0011

0000
QOO0
QOO0
0000
QOO0

4140
1000
QOT7F
O07E

0200

1140
LOO0
O0&O
O0LO

') "[l‘\(‘\
L0040

[alnThTs)
GOOO

QOO0
0000
Q00

4453
4433
4400
7032
434F

3404
7032
28404
4400
434F

OCOF
0000
Q000

e TaTTe)
(R LIRLN 10

434F

0000
0000
0000
Q000
434F

0010
0042
00OSF
0040
3020

28ZE
00&0
6000
001LR
3030

0O0LO
Q000
0000

e Yulole)
(B L0108 18]

3030

Q000
0000
0000
Q000
2O3TO

7750
7380
5830
4433
3032

2804
4400
5280
3037

44273
0000
0000
OO0

3130

0000
0000
0000
0000
3131

Figure F-5. Sample Program No. 2, Object Qutput Image (Sheet 2 of 2)

F-10

Digital Systems Division

9427799701

ENTER

READ
(Ascn)

ERROR

YES

MOVE

CHARACTER
NT WRITE
ASCII)

o

-

PRINT ERROR
MESSAGE

INPUT LUNO 81 INPUT LUNO 91
OUTPUT LUNO 82 OUTPUT LUNO 92

ATTACH 8S TO 80

ATTACH 85 TO 90
PROCEDURE
(85)

(A)131864

Figure F-6. ASCII Record Transfer Flowchart

F-11 Digital Systems Division

942779-9701

SALOSA V4aL? ASCII CNPY PRNCPOURE PAGP ARQY
111361031 AUG,05, 1978
SYMRJI. TABLE DUMF Q*1A ENTRIES
SYMRQL VALI'E SSN FLAG RFF RFL DEF FYT ML TIL USEN
ACOPY hwoae gre2 F F ¢ 4 T 4 F 4
ALFF we21 amng r F 4 T A 4 4 4 4
ENF CLD F 1.1 M T F 4 g T F F A
ld noye aepg F r Y T F F r 4
ERR ANLA APAQ F , ¢ T ’ | S {
FRRNRA woRy1 acay T F r 4 T r F 4
ERRPAR walr wagy r r T A r ’ 4
FLAGS ar24 waey r 4 T T L 4 r 4 r
INLUIN nog arny F F r A 4 [4 r 4
INPNY CLEE- T I X 4 F T T T 4 F T
MFSSG P40 oAy r F T T T 4 4 4
OUTLUN A082 aeay 4 F 4 4 T 4 F 4
ONTPRR WALY VP 4 4 T 4 4 r 4 4
READ POAR APRT r F \ 4 b g 14 F F) 4
TASKY woae aely F 3 T T 4 4 F r
TASKIN QRS2 QANMY r F L § L 4 T r r \{
dR]1TE Ao Aeee r 14 A 7 F 4 F F
wr8 WEAAP AR r (] \f 4 4 ’ r h
SALQOB® VAL? ASCTI COPY PRNCPDIRF
11136131 UG, 0%, 1078 . PAGF aon2
SFGMENT TaBLE DlMe A0A3 FNTRIES
SFGNAM RTAS LENGTH RFEFCNT SSN | INK ARS TYPF
TaSK] ARBe ApQce LT LY A { 14 n
ACOPY L L EE Aedad a2 F r p
FLARS no2s acac CLEL I T 4 4

@292 PASS ONE FRRPARS

Figure F-7. Procedure Assembly Listing (Sheet 1 of 5)

F-12 Digital Systems Division

9427799701

SALQGA VALY ASCTYI CNOPY PRNCFNIRF PAGF poay
113136131 AUG,P%, 1078
ame1 avne TASK] NSFG
LY} TITL ASCYY CNPY PRNCEDIINE
P LI R} * THIS IS A TASK TN RE ATTACHEN YO A PRNCENURE
"LIY] . AMD USEN FOR CNPYTING ASCITY RECOANDS FRNAM AN TNPUT
anes ¢ LUNA TO AN NUTPHT LHNA,
APVA .
ST.I'} * INPIHT LUNOS
'L 'L X INLIN FRU Xtaqe
ELLL) e ONTPUT | UNOT
ARLO aes? NUTLUN FQU X181
angt »
awni2 *
anyy . WNARKER TASK RLOCK1!
TV .
ARLS Avue roOn wTe NAYA B,0,0
A%a1 PARN
202 MAPN
A0L8 Arnd Para NATA 0,0,0,0,wTH REGTSTERS
fPRL PONA
A7aS REMQ
AVAL P2QAQ
@747 @22
A%17 APRA PAPA DATA B,0,0
2PN9 PaRAY
CI T LT
AGI” 2a2R B@MA PATA X'a%@e?,a ENTRY STATUS o PC
acaC ngoa
ARLe @rah PonQ NATA 8,0,0,0,0
ANAF meaq
ARAF RAMY
ArIP REMQ
2011 epop
anan *
1021 * PHYSICAL RECORD BLOCKS FOR T/N
an22 .
1adl ar12 paeoa INPRB DPAYTA WTR,BUFF,80,9
a%13 ;P21
214 0050
a%1Y 0aon
A024 RIS Mapy PATA INL!NeX'p4ao? SET FLARS FAR ASCTY]I RFAN
Wn2s aey? mroce OUTPRB NATA WTYB,RIFF,A3,0a
2A1A @24
2”19 *29%0
LLEW I T LT]
#0248 201R 0p82 NDATA OUTLUN FLAGS SFT PAR ASCYT] WRITE
A027 ante penra ERRPRR DATA WTH,MPS8S8G,33,33
291N pge9
001F 092}
. A91F 02y
AN2N ar2a ppee PATA @ ASCIT OUIT TN FONSOLF

Figure F-7, Procedure Assembly Listing (Sheet 2 of 5)

F-13 Digital Systems Division

942779-9701

SALOAR
1113

ARQ0
ARSK
a3
032
wedd

and 4
nys

AAJIA

Véi2 AST
.0

i i
6131 AUG .

-
T
]

P21

Wre0 492F4F20
APAR 4382524F
anan B22p2020
avaf 54415340
wAS1 2924
ARd2

ARrS4 20844372
ARSR 4D494EL1
P58 54455320
apo

. BUHFFERSY

.
ANFF RES an

MESSG NATA C'1/0 FRRNR » TASK

TASKIN PES 2
rAYaA C!

ENP

Figure F-7. Procedure Assembly Listing (Sheet 3 of 5)

TEQMINATFS!

PAGF QANAR4

4 CHAR FOR TASK 1IN

F-14

Digital Systems Division

9427799701

SALO6R
1133

4037
ANIA
Inde
aAnen
and
9ne?
anes
FYYY)
aAN4S
ANES
ANEY
anen
aAn4e9
A05a
aas1
ans2
sy
PTLLY]
ands
Tl 1]
aas?
anda
wadq
fada
b1
N6
anés
CLLY]
anes
4066
ané?
aAnés
anée
anla
a7
anr2
3073
AR) 4
FLYA]
78
L1} A4
Jnra
an’e
a0 8o
anéy
082
andy
CLIY]
anes

vaLr

6331

AR@R
LLL)4

ArRs
arpn

Araa
arafl

aoar
aeym
8012

LB
LISY.]
LLEY]

arta
anga
arte
LI Y
an2e
an22

024
A28
an2n
LLFY)

44A30012
798p0a7F

46Connig
84701014

14159012

44730017
7oRanmarr

46C6r018
LELLITINY
f4a020ern

R30a2ero
44a3raco

798an07F

RBoataea
464000y
S8rgnerr
44032082
798a087rP

4423001 C
798anre7F
79820016

Figure F-7. Procedure Assembly Listing (Sheet 4 of 5)

1978

AcCOPY

LR 2N BN BN B BN S BRI Y

Tee oo
B
>
k-

WRITE

ENP

PSFG

ORJECTIVES
ERRNARS?:

TPRMINATINNG

La
SXRS

LA
AFNE

s 1)

LA
SXRS

1A
RFNE
RENE

SETF
LA
SXRS

Fau
SETP
L

NA
La
SYRS

La
Sxns
R

FND

ASCII €NPY PRNCFNUIRE
AUG, A%,

PAGE oaos

THTS IS A FECENTRANT PROCEDUAE THAT
FYFCHTFS UNDFR PAM OR PAMD AND COPIFS
VARTABLE LFNGTH ASCTIY RECORNS FRAM AN
INPUT LUND TN AN OUTPUT (UNG,

AN EPRNA CANNITINN ON INPUT AR ONTPYUY
PRINTS 4 MFSSARE OV THF SYSTFM CANSM F
(L'NA B AND TERMINATES THF TASK WTITH AN
FNNeNF<PRORRAM CALL.,

THF TASK TFRMINATES NMAOMALLY AFTERP AN

FNR=NF=FILF 18 CNPTEN FRAM INPHTY Tn

NUTPIT,

3,0 INPRR
127

B,0INPRRe4, 4
EPRNA,N,ERR

INPRBe3,01ITPRASN

3,00UTPRA
o127

6,0NUTPARG S, 4
ERRNR,p,ERN
EOF,1,RPAN

EOF,n
J,Xt40m?
*127

s
ERROR, @

",19,4

R,XIPFY
3,X120001407ASKTD
0127

J,0FRNPRA
127
EOP

REGISTFRS 4 (DATA AASE) ANN 5 (PROCENIRE RASF) ARF
INITIALIZFD THRNIIGH THE WTR WHNEN THE APPRNPRTATF TASK
IS ATTACHED AND EYECUTEN,

" RFADN 2 REFORN

SPY FLAR maSP
ARANCH NN ERRNR

MAVE CWHAR CnunT

WRITE A RECNRN

SET FPLAG RASE
BRANCH AN ERRNR
FAL! THRU QN FOF

RESFT EnF FLAR

END OF PROGRAM

RESET FRANR FLAG

GET PROF/TASK ID FROM NTH
MASK AFF PRNC TN

CANVERT Tn ASCII aND

PUT TASK TD IN wmESSAGP

PRINTY FRRAN MESSAGE
60 TERMINATE PROGRAM

F-15

Digital Systems Division

942779-9701

$ALOSA VaL2 ASCII CAPYV PRNCFOURF PAGF RapA
11336131 AUG,N%, 197%

ANBA A”2A FLARS FSFG

aAne? *

SYI L * SFT UP FLAG NFFINITION PNR PRA wORNed PAR

CLLL) . ERROR BIT AND END=OF<FILE BIT,

ARDR .

T ITEE LI FLAG 1,ERRNMR,ENF

AnQ2 AA2A FND

@ANd ERRNRS § LEMGTH s 0@24

Figure F-7. Procedure Assembly Listing (Sheet 50of 5)

F-16 Digital Systems Division

942779-9701

SALAB® vaeL?

SYMROL VALI'E SSN PLAG RFF RFL DFF EYT Wil ILL USEN

123321108 AUG,0%, (0O7%

SYMAQ|. TABLE DIIMP

BUFF aP21 anmpy 4 F 4
ERRPRR uri{r aong ’ 4 T
INLUN argl anay r F F
INPRS wey2 wnmat r r {
MESSG wR40 wnoay 4 4 T
oUTLUN arB? aeay F r ’
NITPRA ae1y aony r F T
Talut CLL LY. Y] r F Y
TASKIN @APS82 aopy r (4 §
wrad UL LI T.T] r (4 4

SALOSA veL2

12132110 AUG,0%, 1978
SEGMENTY TABLE DlUNP anny
SEGNAM

TASKY ULL T I T %00 Ay

03aA PASS ONE ERRNARS

Figure F-8. Task One Assembly Listing (Sheet 1 of 3)

TASK 81 = ASCIY COPY RAUTINE

AP ENTRIES

I I [I R R AP
R I R P PP RPN
AR A R R R EERE B

TASK w1 « ASC!? coPy RAUTINE

PNTRTES

BIAS LENGTH REFCNT SSN Lrun ARS TYVYPP

F)]

LR B B B E R R R

f

PR R R ERPREPR

PAGF aeng

PAGF gaom2

F-17

Digital Systems Division

942779-9701

saLosa VéL? TASK M1 « ASCIY COPY RAUTINE PAGE RGAY
12132817 AUG,98%, 1978
aARKy Q@40 YaSxi DSFG
an02 TITL TASK 4t = ASCIT £OPY ROUTINE
2003 e« THYS 18 4 TASK TN AE ATYACHEN Y0 A PROCENURE
aneds . AND USEN FOR £NPYINR ASCIY RECONDS FRNAM AN TNPUY
LLLL * LIINA TO AN NUTRIT LUING,
gnes .
ARG? e INPUT LIINDS
ANQR 00814 INLUN FQU X181
ando e OMYPUT LUNOI
aala ane? QUTLUN EQU X182¢
At *
a2 *
anty . WORKER TASK BLOFKS
ania .
anis aepe PONG wrs CATA 9,0,0
anat PACD
a0@32 M@A0
ARi8 VAl soae RATA 0,0,0,8,WTD REGISTERS
aroa PAMO
a0aS P00
Va8 *A00
2007 4302
ARLT ANAR QAN NATA 0,0,0
avne PANQ
APAA PROR
AGL8 AAQAR RQQPA NATA X'80@0!,0 ENTRY STATUS ¢ EC
anat o0
Anio QA0ANn F3ap NATA 8,0,0,0,0
APAF 0@aoR
nRaF *AaQ0
AL NARY
ANy PA0Q
a020 *
021 . PuySIrAL RECO®D BLOCKS FOR t/0
Ing2 .
A023 AR12 ARG {NPRS DATA WYB,BIIFF, AQ,M
aryLy ro21
arL4 Q90
a01s coan@
an24 QAR1A8 NASY DATA INLINeX'@4dP! S2T FLAGS FOR ASCT1 REAN
An2% ary? AARa QUTPRA DATA WTB,BUFF,A3,0
ARLA PR21
amay9 *a%A@
gaiA *aed
An28 QPIR PAA2 PATA OUTLUN FLAGS SFY FOR ASCTI WRITE
an27 afric Pe0A ERAPRA NATA WTB,MESSG,33,3)
ARLD PA49
AM1E PQ21
anyr Q21
AR28 QAU2M RANOG NATA O ASCII NUT TO CONSOLE

Figure F-8. Task One Assembly Listing (Sheet 2 of 3)

F-18 Digital Systems Division

9427799701

SALesa vgL? TASK‘li e ASCIY FOPY RNUTINE PAGF 9094
12132119 AUG,@%, §07%

an29 *

393un * BHUFFERSS

a3t *

932 an21 BUFF RES 4»

A033 AC40 492F4F2n MESSG DNATA C'1/0 EORNR » TASK
AP4n 4552324r
AP4an 52202020
AM4F 54415348

AN51 2u20
a034 9082 TASKIP RES 2 4 CHAR FOR TASK ID
an3s APS4 29%445%2 NATA C' TENMINATES!

958 4D494ELY

aASA N4495320
A36 Pusa END
904% ERRNRS 1 LENGTN » aasSa

Figure F-8. Task One Assembly Listing (Sheet 3 of 3)

F-19 Digital Systems Division

942779-9701

SALQAPM VaL? TASK 42 e ASCIT COPY ROUTINE
12130142 AUG,9S, 19753
SYMROL TABLE DlmMP ARim ENTRIES
SYMROL VALUE SSN FLAG REF RFL OEF EXY CTLTI ¢
aufFr na2y drat 4 r | 4 T 4
ERRPRAR uaiC anat r r T T v
TINLUN en91 0ee F r r T v r
INPRB An12 A%QAY 4 4 T T T r
MESAG 2049 4R01 r F T 4 L 4 r
QUTLUN @r92 @eni r r r T 4 ’
QUTPRA QALY @ARey r 4 T T T r
TASKQ Q0P PAGY r r T T 4 r
TASKID @S2 aaay F r T T ¢ r
wT8 L LTI T r 4 { T 4 r
SALOGB® VaL? TASK 42 = ASCI! COPY RNUTINE
12338142 AUG,AS, 1078
SEGMENTY TARLE DUMP a0@1 ENTRIES
SEGNAM BTAS LENGTH REFCNT SSN LINK ARg TYPE
TASK?2 2098 yysy @ 899e Ay T F n

20am PASS ONE ERRNRS

Figure F-9. Task Two Assembly Listing (Sheet 1 of 3)

LL used
R ;
r
F T
r e
(I
P oY
r o’
P v
L
FoY

N
>
o
"
U]
L]
»

PAGE @se08?2

F-20

Digital Systems Division

Q
%@ 9427799701

SALOGR Va2
12138142

anvyL eren

'TT}]

anel

Q0ds

anes

ards

amd?

A098 00Dt

ande

anin 9002

204

ani2

aniy

ant4e

3045 aner pere
afral Pe0R
20p2 feon

anis acal cpde
orne PENQ
ras need
A0e6 ¢R0Q
09027 @ane

ani? ores 2990
areo rene
L Y.L LT]

anis oeal B8pa0
o0peC Prgep

ARI9 @980 MoRe
APQE remo
oPaF AQnMo
CLA T LT
ani1 egne

ao2e

an21

022

2023 9ni2 reng
a”13 P2t
0014 P@se
2713 0090

024 2P168 0491

7028 ant1Y reme
an1e P21
P19 MeSO
LIV I LT

3028 3218 0992

an27 anie FE0O
0230 fr04o
APLE 3021
ARLF 0221

IN28 an20 poen

TASK 42 « ASCIY COPY ROUTINE
AUG,08,

1078
TASXQ2 DSPFG

PAGE

TITL TASK #2 = ASCII COPY ROUTINE
o THIS IS A TASK TN BE ATTACHED TO A PROCEDURE
* AND USED FOR COPYING ASCIT RECORDS FROM AN TINPUT
.

LING TO AN QUTPUT LUND,

L

* INPUT LUNOS

INLUN EQ X194
» QUTPUY LUNOY
OUTLUN EQU X192¢

*
.

. WORKER TASK BLOCK?
)

wre DATA 0,0,0

NATA @,08,0,8,WT8

DATA @0,0,8

DATA X'8m0e?,

PATA 2,0,0,0,0

* PHYSICAL RECOPD BLOCKS FOR 1/n

*
INPRS

DATA INLUNeX'Q4BR!
QUTPRA NATA WTB,BUPF,R3,0

DATA OUTLUN

ERAPRA NATA WTB,MPS$8G,33,3)

RATA @

DATA WYB,BUFF, 00,0

REGISTENS

ENTRY STATUS + PP

L1 K]

SET FLAGS FNR ASCII RFAN

FLAGS SET POR ASCT! WRITE

ASCTY NUT TA eNNSALF

Figure F-9. Task Two Assembly Listing (Sheet 2 of 3)

F-21

Digital Systems Division

[¥
_@ 942779-9701

SALOSA vaL? TASK 42 = ASCIY COPY RPAUTINE page
12138242 ANG,B%, 107%
nwea2e .
ande * BUFFERSS
'T. Y *
wal32 an21 LU 4 4 RES 4@
233 @v4e0 92F4F2m MESSG NATA C'1/0 ERRNR e TASK !
AO4R 45528247
anah 52202020
APaF S4415348
An51 2920
Qa34 ans2 TASHIDN RES 2 4 CHAR POR TASK ID
anldy ArS4 20%44952 DATA C!' YERMINATES!
2°SA 40494E¢
an88 54455320
Ae38 JA5A FND
0NPA ERRNRS 1 LENGTH 8 AASA

ELDTZee01U0ee RS0
Y

EE ML TeeNSNe®BHS
FLRELEe®DDBD
LT e ilee 030
e
$EIMcToe R INee 00
FEARLE®® 3D
1I_LIFReel N0INee30SS

.
FEHTCHee 1 N3See OB

FE-TOHeSNIIESee NN

Figure F-9. Task Two Assembly Listing (Sheet 3 of 3)

LOAD TASK 80 AT LOCATION 100

INSTALL TASK 80 WITH PRIORITY OF 80
ABLE TASK 30
LOAD TASK 90 AT LOCATION €00

INSTALL TASK 90 WITH PRIORITY OF 90
ABLE TASK 90
LOAD PROCEDURE 85 AT LOCATION 1000

ATTACH PROCEDURE 85 TO TASK 80
ATTACH PROCEDURE 385 TO TASK 90

Figure F-10. Task Installation under PAM

nre4

F-22

Digital Systems Division

o
@ 942779-9701

APPENDIX G

INSTRUCTION INDEX

Digital Systems Division

[]
@ 9427799701

Mnemonic

A

AA
ADAC
AMI
ARB
B

BC
BBNE
BFNE
BL
BRRL
CM
CMI
CML
CR
CRA
CRL
CRLA

LDCR
LDS
LOT
LOTA
MLA
MLAX
MOV
MRA
MRAX
MRR
MRRX

Paragraph

34.1.1
34.12
345.1
3.5.3.1
344.1
34.3.1
34.2.1
3.64.1
3.6.2.1
34.13
35.2
3.5.1.1
3532
35.1.2
34.1.5
34.1.6
34.1.7
34.18
34.117
34.1.18
3.6.6.1
3433
34.1.19
3.4.1.20
34.2.7
34.1.23
35.13
3428
3.4.1.24
3429
34.1.25
34.1.26

Instruction Index

Optional Instructions

DAD
D

DA
DLA
DLAX
DRA
DRAX
DRL
DRLX
DRR
DRRX

MA
DS

34.1.11
34.19
34.1.10
3423
34.1.12
3424
34.1.13
3425
34.1.14
3426
34.1.15
34.1.21
34.1.22
3.4.1.16

Mnemonic

NA
NOP
OR
ORA
S

SA
SAT
SETB
SETF
SS
SSB
ST
STCR
STPS
SXBS
SXBW
SXS
SXW
TSBX
XBNE
XFNE
XOR
XORA
XS
XSB
Xw
XWB
*B
*BC
*BL
*XSB
*XWB

Paragraph

34.1.27
3434
3.4.1.28
3.4.1.29
3.4.1.30
34.1.3.1
34.1.32
3.6.3.1
3.6.1.1
3435
3436
34.1.33
3.6.6.2
34.6
34.3.7
34.3.8
3439
343.10
3.6.5.1
3.6.3.2
3.6.1.2
34.1.34
34.135
343.11
34.3.12
3.43.14
34.3.15
34.3.2
3422
3414
343.13
3.4.3.16

G-1/G-2

Digital Systems Division

APPENDIX H

JOB CONTROL STREAM FOR CREATING AN SWIC FILE
TO ASSEMBLE A PROGRAM UNDER PAM/D

Digital Systems Division

a2

942779-9701

Using the copy ASCII files task (ACOPYD), an SWIC file of the necessary Job Control statements
to assemble a program using SAL/D may be created. An example of this procedure follows:

APPENDIX H

JOB CONTROL STREAM FOR CREATING AN SWIC FILE
TO ASSEMBLE A PROGRAM UNDER PAM/D

1. $SRLIO**0005

2. $$DFIO**0005**0005 ACOPYD input LUNO to card reader
3. SSRLIO**0087

4. $SDFSF**0087**4000**407F**0001 Define SWIC file

5. $SRDFL**0087**0010 ACOPYD output to SWIC file

6. $SEXCT**000C Execute copy task

7. $$SOCS**0000 Set SOCS flag = 0

8. $SRLIO**0007

9. $SRLIO**0010
10. $SDFSF**0010**5000**SFFF**0002 Define scratch file

11.

$SDFSF**0007**6000**6FFF**0002

Define object output file

12. $SRLBG** Release background
13. $SDFBG**3000**0020**00D0 Define background
14. $SABLE**0009

15. $SEXCT**0009 Execute SAL/D assembler
16. $SRWND**0007 Rewind object file
17. SSRLBG**

18. $SSWIC**0087 Exit SWIC

19. $SRWND**0002

20. /*

21. SSRDFL**0010**0087

22. $SRWND**0087 Rewind SWIC file

Statements numbered 7 through 19 are the Job Control statements contained in SWIC file 87. The
other statements create the SWIC file.

H-1/H-2 Digital Systems Division

[e]
@ 942779-9701

ALPHABETICAL INDEX

Digital Systems Division

[]
i@ 942779-9701

ALPHABETICAL INDEX
INTRODUCTION

The following index lists key words and concepts from the subject material of the manual
together with the area(s) in the manual that supply major coverage of the listed concept. The
numbers along the right side of the listing reference the following manual areas:

® Sections - References to Sections of the manual appear as “‘Section x” with the symbol
X representing any numeric quantity.

e Appendixes - References to Appendixes of the manual appear as “Appendix y” with the
symbol y representing any capital letter.

e Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter; all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

e Tables - References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number:

Tx-yy

e Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number:

Fx-yy

® Other entries in the Index - References to other entries in the index are preceded by
the word ““See” followed by the referenced entry.

Index-1 Digital Systems Division

942779-9701

Active Mode 325
Addresses, Memory 2.2.12.2
Addressing. Indirect 3. 2.2.1
Addressing Modes 13,326
Arithmetic Instructions TC-2
Arithmetic Operations 422
Assembler:
Directives 5.1, Appendix E
Input Options 7.12.2, T74,T7-5
Restrictions 7.3
SALo 13
Basic Formats 33
Bits, Status 228
Block Diagram, Computer 2.1
Branch Instructions TC-7
Character Set Appendix A
Character Strings 47
Clock, Real-Time 1.2
Code, Relocatable 48,48.1
Comment Field 4.1.5
Common Subrouiines - 6.12
Compare Instructions TC-3
Comparison Tests 6.8
Computer:
Block Diagram 2.1
Controls and Indicators 2.2.12, F2-6,
F2-7, T24, T2-5
Hardware « . . . « .« o .. 2.1
Memory 222
CON Directives 542
Constants 43,43.1,432,433
Control Blocks 6.7
CPUMemory « .« « o .. 222
CRU:

" Addressing oo . F24
Configuration F2-3
Data Modules 1.2
Instructions- TC-10
Interrupt 2292
Modules 2.2.10.2

DATA Directives 552
Data:
Move e e e e 69
/O oo L2
Segment 512
DEF Directive 6.13.2
Detine Entry Point Directives 53.53.1
Direct Memory Access InstructionsTC-11
DMAC Interrupt 2293
Dual Mode Operation 1.2
Directives:
Assembler 5.1, Appendix E
070 O 542
DATA oo 552
DEF 6.132
Define Entry Point 53,531
END 522
EQU 543
External Definition 6.13.2
External Reference 53,532

FLAG« 54.1,6.7
FRMo 544
Mode o . e e 5.2.1
PAGE 5.6.1
REF v 6.13.1
RES 5.5.1
TITL o« oo 56.2
Effective Address 3.23
END Directive 52.2
EQU Directive 543
Error Messages .7.1.13,T7-1, T7-2, T7-3
Event Counter 22.7
Execution:
Program 227
PSM, PAM,PAM/D 724
Timing Instruction Appendix D
Expressions 42,42.1
External Reference Directives 5.3,53.2
Field:
Comment 4.1.5
Instruction 3.1
Label 4.1.2
Operand 414
Operation 413
FLAG Directive 54.1.6.7
Flag Segment 5.13
Formats, Basic 33
Format, Group I Instructions 34
A 34.1,34.1.1, T3-2
B 342,342.1,442,T33
I 343,343.1, T34
D e 344
IKE e 345
LF0 346
Format, Group Il Instructions 35
m-A 3.5.1,35.1.1, T35
HB 352
Inc 3.53,353.1
Format, Group III Instructions 3.6
3 36.1
H-B 36.2.362.1
mCc 36.3.3.63.1
m-pD 364,364.1
n-E 36.5,36.5.1
H-F 3.6.6,3.66.1
Format
Input 7.1.2
Machine Instruction 33
Object Record 742, F71.5
Qutput 7.4,74.1, F7-1, F7-2
Source Statement 4.1, F3-1
Text Record 742, F7-6
FRM Directive 544
Functions, Status Bits 2.2.8

Hardware Registers2.2.5,T22

Index Bit 33
Index Register F3-1
Indexing, Indirect N J
Indirect Addressing 3221

Index-2

Digital Systems Division

942779-9701

Indirect Bit 33 Logical Instructions TC4

Instructions: . LUNOs 7.1.2.1
Arithmetic TC-2
Branch, TC-7 Machine Instruction Formats | . . 33
Compare TC-3 Mathematical Tables Appendix B
CRU TC-10 Memory:

Direct Memory Access TC-11 Addresses 22122
Execution Timing, . . . Appendix D CPU 22>
Fields 3.1 Locations223,224 T2
Load and Store, TC-1 Parity Error Interrupt 229]
Load Store Status TC-6 Specifications 211
Logical TC4 Violation 2.29.1
Mode Switching TC-8 Word Contents, _ .. F3-1
Move 63 Messages, Error7.1.13. T7-1, T7-2, T7-3
Set 2.1.1 Mode:

Shift TC4 Addressing 1.3
Shifting 6.5 Progam _ 226
Software Flag TC9 Supervisor - ... 226
Status Register _ . T2-3 Switching Instructions TC-8
Tables Appendix C MODE Directive 52.1

Instruction Format: Move Operations 63
Growpl 34
. 34.1,34.1.1, T3- Object Record Formats ,742, F7-5
B 342,342.1,442,T33 Operand:
< 343,343.1, T34 Field 414
ID ... 344 Symbols 333
LE ... 345 Operation:

-F o 346 Dual Mode 1.2
Group Il 35 Field 4.13
N 35.1,35.1.1, 13- Options, Assembler Input . . 7.12.2. T74.T7.5
B . 352 Output Format 74,.74.1, F1-1. F12
uc 353,353.1.

GrowpIll 3.6 PAGE Directive 56.1
m-A ..o 36.1 Performance Specification 2.1
mB 362,36.2.1 Physical Characteristics 2.1.1
me ... 0. 363,363.1 Procedure Segment | . 5.1.1
mop 0000 364,364.1 Program:

ImE 36.5,36.5.1 Counter 227
HL-E oo o000 3.6.6,36.6.1 Execution 227

Input Format 7.12 Modes 226

Integer Stings 4.6 Modules 6.13

Internal Interrupt 229.1 Protected Memory Locations224, T2-1

Interrupt:

CRU 2292 Real-Time Clock 1.2
DMAC 2293 Register File 225 7122
Intemal 2291 Register, Index F3-1
Location 229 Relative Addressing 323
Memory Parity Error 22091 Relocatable Code 13,48,48.1
Routine F2-2 REF Directive 6.13.1

1/0: RES Directive 5.5.1
Divides 2.2.10.1 ROM Loader 22123, F26
DMAC 2.2.11
Operations | 2210 SAL:

Assembler 13

Label Field 4.1.2 Character Set Appendix A

Linking Program Modules | 6.133 Relocatable Code 13

Listing Fields - 7.1.1.1 SALD, ... 13,72

Load and Store Instructions TC-6 SALM . . L 1.3.7.2

Load Status Block Instruction F2-2 Save Register 6.2

Loader, ROM 22.123, T2-6 Segment:

Loading: Data 512
PAM 722 Flag, ... 5.1.3
PAMD 723 Procedure s|]
PSM 72.1 Symbolic Address 514

Index-3 Digital Systems Division

942779-9701

Shift Instructions 6.5, TC4 Symbolic Address Segment 514
Software Fiag instructions TC5 Symbolso 44
Source Statement 3.1,48.1
Operands 3.2, T3-1 Tables, Mathematical Appendix B
Source Listing Format 7.1.1, Appendix F TEMS . . . & o v e v e e e e e e e e e 45
Status Bits 228 Tests, Comparison 6.8
Status Register Instructions T2-3 Text Record Format 742, F76
Subroutines, Common 6.12 TITL Directive 56.2
Supervisor Mode 226
Supervisor Register Address T2-2- USASCII Set Appendix A
SWIC Appendix H :
Worker Register Address T2-2
Index4 Digital Systems Division

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: Model 960 Computer Assembly Language Programmer’s
Reference Manual (942779-9701)

Manual Date: 15 May 1979 Date of This Letter:

User’s Name: Telephone:

Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN US.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE

al
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP

ATTN: TECHNICAL PUBLICATIONS
P.0. Box 2809 M/S 2146
Austin, Texas 78769

FOLD

7

\&

TEXAS INSTRUMENTS

INCORPORATED
DIGITAL SYSTEMS GROUP

POST OFFICE BOX 2909

AUSTIN, TEXAS 78769

	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08a
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	A-00
	A-01
	A-02
	A-03
	A-04
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	D-00
	D-01
	D-02
	D-03
	E-00
	E-01
	E-02
	F-00
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	F-22
	G-00
	G-01
	H-00
	H-01
	Index-00
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB
	xBack

