Third-Generation
TMS320
- User’s Guide

|

~ Digital Signal Processor
Products

u N'g
TeEXAas
| INSTRUMENTS

PNy S8 XEIOZESILL

Third-Generation
TMS320 User’s Guide

*p

EXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (T1) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. Tl advises its customers to obtain the latest version of the relevant in-
formation to verify, before placing orders, that the information being relied
upon is current.

Tl warrants performance of its semiconductor products to current specifica-
tions in accordance with Tl's standard warranty. Testing and other quality
control techniques are utilized to the extent T| deems necessary to support this
warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed.

T1 assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does Tl warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellec-
tual property right of Tl covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are
used.

Copyright © 1988, Texas Instruments Incorporated

Manual Update

Document Title: Third-Generation TMS320 User’s Guide, SPRU031

Document Number: SPRZ048 ECN Number: 526635

This Manual Update should be appended to the Third-Generation TMS320 User’s Guide. Changes
should be made as indicated on the designated pages.

Page Change or Add
2-2 Table 2-1:
Line Function (Now) Function (Should Be)
1 X11 XA11
2 X12 XA12
5 X0D2 XD2
20 I0A5 XAB5
26 10D23 XD23
27 10D24 XD24
28 10D25 XD25
28 VSUBS SUBS
29 10D26 XD26
30 10D27 XD27
31 10D28 XD28
32 10D29 XD29
33 10D30 XD30
34 10D31 XD31
35 IORDY XRDY
2-6 Table 2-2. Insert the following at the end of the table.
LOCATOR (1 PIN)
NONE I 1 I NC | Reserved. See Table 2-1 and Figure 2-1.
7-9 Line 7: src should be dst.
A-5 Table A-b: Characteristics (13), (14), (15), (16), (17), and (18) change (IO) to (X)
in name and description.
A-6 Figure A-4: Change (IO)R/W to (X)R/W, (I0)A to (X)A, (I0)D to (X)D, and
(IO)RDY to (X)RDY.
A-6 Table A-6: All characteristics change (I0) to (X) in name and description.
A-7 Figure A-5: Change (IO)R/W to (X)R/W, (IO)A to (X)A, (I0)D to (X)D, and
(IO)RDY to (X)RDY.
A-8 Figure A-6: Change IOR/W to XR/W, IOA to XA, 10D to XD, and IORDY to
XRDY. Change (M)STRB in title to IOSTRB.
A-9 Table A-7: Characteristics (22), (14.1), (15.1), (16.1), (17.1), and (18.1) change |10

to X in name and description.
A-9 Table A-8: All characteristics change 10 to X in name and description.

The changes shown in this Manual Update will be included in the next revision of the Third-Generation
TMS320 User’s Guide.
.Ji

EXAS
INSTRUMENTS SPRZ048

Contents

Section

Introduction

General Description
Key Features
Typical Applications e
How To Use This Manual
References e

O e e Gt G}
ahrwiv-

Pinout and Signal Descriptions
Signal Descriptions

NN
-

Architectural Overview
Central Processing Unit (CPU)
Multiplier e
Arithmetic Logic Unit (ALU)
Auxiliary Register Arithmetic Units (ARAUs)
CPU Register File
Memory Organizationo
RAM, ROM,and Cache
Memory Mapso
Memory Addressing Modes L.
Instruction Set Summaryo o oo
Internal Bus Operation
External Bus Operation
Peripherals
Timers L e e e e
Serial Ports e
Direct Memory Access (DMA)o

PN

Pwi=

PWWWRRWWRWWWWWWWW
N—‘

R R N B R R R R Y

CPU Registers, Memory, and Cache

CPU Register File
Extended-Precision Registers (RO-R7)
Auxiliary Registers (ARO-AR7),
Data Page Pointer (DP)
Index Registers (IRO, IR1)
Block Size Register (BK)
System Stack Pointer (SP)
Status Register (ST)o
CPU/DMA Interrupt Enable Register (IE)
CPU Interrupt Flag Register (IF)
i/0 Flags Register (IOF)
Repeat Counter (RC) and Block Repeat Registers (RS, RE)
Program Counter (PC)
Reserved Bits and Compatibility

Memory L

A Memory Maps e e

2 Peripheral Bus Mapo

3 Reset/Interrupt/Trap Vector Map
Instruction Cache

N F R W

WN-=O

ARRNARRAPARPARARARDARA

WML LLLaLanLaLLLan

R G QI QP e S
1

w'w 1
SLpOOGIGIowa
NO

ww
o =
onN

NN NOOD
RO Y Y NI
hwiv= oobhwiv=

6.25

NNNSNNNNNNIN
PWN =

iv

Cache Architecture
Cache Algorithm
CacheControl Bits

Data Formats and Floating-Point Operation
Integer Formats
ShortiInteger Format
Single-Precision Integer Format
Unsigned-Integer Formats
Short Unsigned-integer Format
Single-Precision Unsigned-integer Format
Floating-Point Formats
Short Floating-Point Format
Single-Precision Floating-Point Format
Extended-Precision Floating-Point Format
Conversion Between Floating-Point Formats
Floating-Point Multiplication
Floating-Point Addition and Subtraction
Normalization Using the NORM Instruction
Rounding: The RND Instruction
Floating-Point to Integer Conversion
Integer to Floating-Point Conversion Using the FLOAT Instruction

Addressing

Types of Addressing
Register Addressingo
Direct Addressing
Indirect Addressing
Short-lmmediate Addressing
Long-Immediate Addressing
PC-Relative Addressingo

Groups of Addressing Modes L.
General Addressing Modeso
Three-Operand Addressing Modes
Parallel Addressing Modes
Long-Immediate Addressing Mode
Conditional-Branch Addressing Modes

Circular Addressing e

Bit-Reversed Addressing

System and User Stack Management
Stacks L
Queuesand Deques e

Program Flow Control

Repeat Modes
Repeat Mode Initialization
RPTB Initialization
RPTS Initialization,
Repeat Mode Operation

Delayed Branches

Interlocked Operations

Reset Operation e

Interrupts L L e

6-28

N
)
S

NNNNNNNNN
'
S ONPWWNN=

w

7-16

8 External Bus Operation
8.1

8.1.1
8.1.2
8.2 External Interface Timing

8.2.1 Primary Bus Cycles . . .
8.2.2 Expansion Bus 1/0 Cycles
8.3 Programmable Wait States .

8.4

9 Peripherals

External Interface Control Registers
Primary Bus Control Register
Expansion Bus Control Register

Programmable Bank Switching

91 Timers

9.1.1 Timer Global Control Register

9.1.2 Timer Period and Counter Registers
9.1.3 Timer Pulse Generation .

9.1.4 Timer Operation Modes .

9.2 SerialPorts

9.2.1 Serial Port Global Control Register

9.2.2 FSX/DX/CLKX Port Control Register .
9.2.3 FSR/DR/CLKR Port Control Register .
9.24 Receive/Transmit Timer Control Register
9.25 Receive/Transmit Timer Counter Register
9.2.6 Receive/Transmit Timer Period Register
9.2.7 Data Transmit Register
9.2.8 Data Receive Register
9.2.9 Serial Port Operation Configurations . .
9.210 Serial Port Timing
9.2.11 Serial Port Interrupt Sources

9.2.12 Serial Port Functional Operation

9.3 DMA Controller

9.31 DMA Global Control Register

9.3.2 Destination and Source Address Registers
9.3.3 Transfer Counter Register

9.34 CPU/DMA Interrupt Enable Register
9.35 DMA Memory Transfer Operation

9.3.6 Synchronization of DMA Channels

10 Pipeline Operation

10.1 Pipeline Structure
10.2 Pipeline Conflicts
10.21 Branch Conflicts
10.2.2 Register Conflicts
10.2.3 Memory Conflicts
10.3 Resolving Memory Conflicts
10.4 Clocking Of Memory Accesses
10.4.1 Program Fetches
10.4.2 Dataloadsand Stores

9-15
9-16
9-18
9-19
9-19
9-19
9-20
9-23
9-26
9-26
9-33
9-34
9-36
9-36
9-36
9-38
9-42

10-1
10-2
10-4
10-4
10-6
10-8
10-14
10-16
10-16
10-16

11 Assembly Language Instructions 11-1
11.1 Instruction Set e 11-2
1111 Load and Store Instructions 11-2
11.1.2 Two-Operand Instructions 11-3
11.1.3 Three-Operand Instructions 11-4
11.1.4 Program Control Instructions 11-4
11.1.5 Interlocked Operations Instructions 11-5
11.1.6 Parallel Operations Instructions 11-5
11.2 ConditionCodesand Flags 11-8
11.3 Individual instructions Lo 11-11
11.3.1 Symbols and Abbreviations 11-11
11.3.2 Optional Assembler Syntaxes 11-13
11.3.3 Individual Instruction Descriptions 11-156
12 Software Applications 12-1
12.1 Processor Initialization oL L 12-3
12.2 Program Control e 12-7
1221 Subroutines e e 12-7
12,22 SoftwareStack L 12-9
12.2.3 Interrupt Service Routines 12-10
12.24 Delayedbranches 12-15
1225 RepeatModes 12-16
1226 Computed GOTO's o i ittt et e e 12-18
12.3 Logical and Arithmetic Operations 12-20
12.31 BitManipulation e 12-20
1232 Block Moves e e 12-22
12.3.3 Bit-Reversed Addressing 12-22
12.3.4 Integer and Floating-point Division 12-23
1238 SquareRoot 12-29
12.3.6 Extended-Precision Arithmetic 12-32
12.3.7 Floating-point Format Conversion: |IEEE to/from TMS320C30 12-35
12.4 Application-Oriented Operations 12-45
1241 Companding L e e e e e e 12-45
1242 FIR, lIR, and Adaptive Filters 12-49
12.4.3 Matrix-Vector Multiplication 12-60
12.4.4 Fast Fourier Transforms (FFT) 12-63
1245 Lattice Filters e 12-79
125 Programming Tips e e e 12-86
12.5.1 C-Callable Routines 12-86
12.56.2 Hintsfor Assembly Coding 12-86
13 Hardware Applications 131
13.1 System Configuration Options Overview 13-2
1311 Categories of Interfaces on the TM8320C3O 13-2
13.1.2 Typical System Block Diagram 13-3
13.2 PrimaryBusiInterface 13-4
13.21 Zero Wait-State Interface ToRAMs 13-4
13.22 Ready Generation 13-10
13.2.3 Bank Switching Techniques 13-14
13.3 Expansion BuslInterface 13-17
13.4 System Control Functions 13-21
13.41 Clock Oscillator Circuitry 13-21
13.4.2 Reset Signal Generation 13-23
13.5 XDS1000 Target Design Considerations 13-26

vi

oOowP

TMS320C30 Timing Specifications & Dimensions A-1
Development Support/Part Order Information B-1
Instruction Opcodes C-1
Quality and Reliability D-1

vii

lHlustrations

Figure
1-1 TMS320 Device Evolution
2-1 TMS320C30 Pin Assignmentsuiiinninnnnn..
3-1 TMS320C30 Block Diagramttt
3-2 Central Processing Unit (CPU)
3-3 Memory Organization0ttt
3-4 Memory Maps
3-5 Peripheral Modules e
3-6 DMA Controller e
4-1 Extended-Precision Register Floating-Point Format
4-2 Extended-Precision Register Integer Format
4-3 Status Register
4-4 CPU/DMA Interrupt Enable Register (IE)
4-5 CPU Interrupt Flag Register (IF)
4-6 1/0 Flag Register (10F)
4-7 Memory Mapst e
4-8 Peripheral Bus Memory Map e
4-9 Reset, Interrupt, and Trap Vector Locations
4-10 Instruction Cache Architecture it
4-11 Address Partitioning for Cache Control Algorithm
5-1 Short Integer Format and Sign Extension of Short Integer
5-2 Single-Precision Integer Format ,
5-3 Short Unsigned-integer Format and Zero Fill
5-4 Single-Precision Unsigned-Integer Format
5-5 Generic Floating-Point Format,
5-6 Short Floating-Point Format it
5-7 Single-Precision Floating-Point Format
5-8 Extended-Precision Floating-Point Format
5-9 Flowchart for Floating-Point Multiplication
5-10 Flowchart for Floating-Point Addition e
5-11 Flowchart for NORM Instruction Operation
5-12 Flowchart for Floating-Point Rounding by the RND Instruction
5-13 Flowchart for Floating-Point to Integer Conversion by FIX Instructions
5-14 Flowchart for Integer to Floating-Point Conversion Using the FLOAT In-
SHTUCHION . . e
6-1 Direct Addressing e e e
6-2 Encoding for Generai Addressing Modes
6-3 Encoding for Three-Operand Addressing Modes
6-4 Encoding for Parallel Addressing Modes
6-5 Encoding for Long-immediate Addressing Mode
6-6 Encoding for Conditional-Branch Addressing Modes
6-7 Flowchart for Circular Addressing
6-8 Circular Buffer Implementation
6-9 Circular Addressing Example
6-10 Data Structure for FIR Filters i
6-11 FIR Filter Code Using Circular Addressing
6-12 Bit-Reversed Addressing Example
6-13 System Stack Configuration i
6-14 Implementions of High-to-Low Memory Stacks
6-15 Implementions of Low-to-High Memory Stacks

viii

QA A A A O G AR 16010101909 A 9 P RGN
ONOOTB_RWN—-O

O W WO W W W W W W W W W W W W W W L LW W W D W L W W 0000 00O 000000 00 CO 00 CO 00000000~~~

N_2QOWONOURWN—_,OOWONOARLWN-=0O

Repeat Mode Control Algorithm
Multiple TMS320C30s Sharing Global Memory
Zero-Logic Interconnect of TMS320C30s
Interrupt Logic Functional Diagram
Interrupt ProCessing it e e
Memory-Mapped External Interface Control Registers
Primary Bus Control Register
Expansion Bus Control Registero ..
Read-Read-Write for ZMEéTRB =0
Write-Write-Read for (M)STRB =0
Use of Wait States for Read for (M)STRB =0
Use of Wait States for Write for (M)STRB=0
Read and Write for TOSTRB =0oovuiiieiie i
Read with One Wait-State for [OSTRB =0
Write with One Wait-State for IOSTRB =0
Memory Read and 1/O Write for Expansion Bus
1/0 Write and Memory Read for Expansion Bus
Memory Write and I/O Read for Expansion Bus
Inactive Bus States for IOSTRB
Inactive Bus States for STRBand MSTRB
HOLD and HOLDA Timingt e e
BNKCMP Example e e
Bank Switching Example e
Timer Block Diagramt e
Memory-Mapped Timer Locations
Timer Global Control Register,
Timer TImMing . ..o e
Timer 1/O Port Configurationst ..
Timer Modes as Defined by CLKSRCand FUNC
Serial Port Block Diagram
Memory-Mapped Locations for the Serial Port
Serial Port Global Control Register
FSX/DX/CLKX Port Control Register
FSR/DR/CLKR Port Control Registerc...viuiiieinnnn.
Receive/Transmit Timer Control Register
Receive/Transmit Timer Counter Register
Receive/Transmit Timer Period Register
Transmit Buffer Shift Operation
Receive Buffer Shift Operation
Serial Port Clocking in /O Mode
Serial Port Clocking in Serial Port Mode
Data Word Format in Handshake Mode
Single Zero Sent as an Acknowledge,
Direct Connection Using Handshake Mode
Fixed Burst Mode i e e e
Fixed Continuous Mode With Frame Synch
Fixed Continuous Mode Without Frame Synch
Exiting Fixed Continuous Mode Without Frame Synch, FSX Internal
Variable Burst Mode
Variable Continuous Mode With Frame Synch
Variable Continuous Mode Without Frame Synch
Memory-Mapped Locations fora DMA Channel
DMA Global Control Register i,
CPU/DMA Interrupt Enable Register
Timing and Number of Cycles for DMA Transfers When Destination is On-

G e e e

1 L}] 1 T [}
ONOOIBPWN-O

x

DMA Timing When Destination is a Primary Bus
DMA Timing When Destination is an Expansion Bus
No DMA Synchronization
DMA Source Synchronization i
DMA Destination Synchronizationc.0....
DMA Source and Destination Synchronization
TMS320C30 Pipeline Structure0,
Two-Operand Instruction Word
Three-Operand Instruction Word
A Muitiply or CPU Operation with a Parallel Store
Two Parallel Stores e
Parallel Multiplies and Adds i e
Data Memory Organization Fora FIR Filter
Data Memory Organization For a Single Biquad
Data Memory Organization For N Biquads
Data Memory Organization for Matrix-Vector Multiplication
Structure of the Inverse Lattice Filter
Data Memory Organization for Lattice Filters
Structure of the (Forward) Lattice Filter
External Interfaces on the TMS320C30
Possible System Configurations
Ram Interface-~-No OE
Interface Read Timingt
Interface Write Timing
RAM interface - OE
Read Operations Timing
Write Operations Timing i
Circuit For Generation of 0, 1, or 2 Wait States For Multiple Devices

Bank Switching For Cyprus Semiconductors CY7C185
Timing For Read Operations Using Bank Switching
Expansion Bus Interface to A/D Converter
Timing of Expansion Bus Interface
Crystal Oscillator Circuit it
Magnitude of the Impedance of the Oscillator LC Network
Reset Circuit e
Voltage on the TMS320C30 Reset Pin
12 Pin Header Signals
Typical Setup For Using the Emulation Connection of the XDS1000
Test Load Circuit ottt e e
X2/CLKIN Timing o e e
HI/H3 Timing
Memory ((M)STRB =0) Read
Memory ((M)STRB =0) Write
Memory (M)STRB =0) Readcooiiunn..,
Memory (IOSTRB = 0) Write i
Timing for XFO and XF1 When Executinga LDFlor LDIl
Timing for XFO When Executinga STFlor STII
Timing for XFO and XF1 When Executing SIGI ~
Timing for Loading XF Register When Configured as an Output Pin
Change of XF From Qutputto InputMode
Change of XF From inputto Qutput Mode
RESET Timing e
RESET and INT(3-0) Response Timing
TACK Timing ... e
TRAP Response Timing e
Fixed Data Rate Mode i i

A-19 Variable Data Rate Mode i,
A-20 HOLD/HOLDA TIMING ...ttt et et e en s
A-21 TMS320C30 180 Pin PGA Dimensions i iiiiininnnn.n
B-1 TMS320C30 Development Environment
B-2 TMS320C30 Simulator User Interface
B-3 TMS320C30 XDS1000 Development Environment
B-4 TMS320 Device Nomenclaturec0iiiiiiiinnnnnnnnn

Table

Typical Applications of the TMS320 Family
TMS320C30 Pin Function Assignmentso iuuuunnn.
TMS320C30 Signal Descriptionsttt
CPU Registersoiii i e e e
Instruction Set Summary
CPU RegiStersttt e e e e e et
Status Register Bits Summary
IE Register Bits Summary e
IF Register Bits Summary e
IOF Register Bits Summary
Combined Effect of the CEand CF Bits
CPU Register/Assembler Syntax and Function
Indirect Addressing
Index Steps and Bit-Reversed Addressing
Repeat Mode Registers i
Interlocked Operations i
Pin Operation at Reset
Reset and Interrupt Vector Locations t u...
Primary Bus Control Register Bits Summary
Expansion Bus Control Register Bits Summary
Wait-State Generation When SWW =00
Wait-State Generation When SWW =01
Wait-State Generation When SWW =10
Wait-State Generation When SWW =11
BNKCMP and Bank Size
Timer Global Control Register Bits Summary
Result of a Write of Specified Values of GOand HLD
Serial Port Global Control Register Bits Summary
FSX/DX/CLKX Port Control Register Bits Summary
FSR/DR/CLKR Port Control Register Bits Summary
Receive/Transmit Timer Control Register
Global Control Register Bits
START Bits and Operation of the DMA
STAT Bits and Status of the DMA
SYNCH Bits and Synchronization of the DMA
CPU/DMA Interrupt Enable Register Bits
Maximum DMA Transfer Rates When C, = Cy,, =0
Maximum DMA Transfer Rates When C, =1, Cyp, =0
Maximum DMA Transfer Rates When C, =1, Cypy =1
One Program Fetch and One-Data Access for Maximum Performance

One Program Fetch and Two Data Accesses for Maximum Performance

R A

U
PR AL APOOONOONAWN_2ANOOTRWN_2,RWONPWONLOOIRWON2NN=S -

N=hWN-O

D © © « lt'oqooooooooooooo\n\l\nuol)mca-h-hhh-hhwwww—\

L2 VDOOVOVOOVVWWOWOOWWOWOWY
QO 't 1
i

Xi

A-1

R

1 1

OCONDOINPWN-0O

COO@W®B>B>B>>>B>>>>PP>>>>>>P

Xii

Load and Store Instructions
Two-Operand Instructionsttt
Three-Operand Instructions ittt rinnnnn.
Program Control Instructions
Interlocked Operations Instructionsc00...
Parallel Instructions
Output Value Formats e
Condition Codes and Flags,
Instruction Symbols
TMS320C30 FFT Timing Benchmarks
Bank Switching Interface Timing
Absolute Maximum Ratings Over Specified Temperature Range
Recommended Operating Conditions
Eiectrical Characteristics Over Specified Free-Air Temperature Range
Switching Characteristics for CLKIN, H1,and H3 _
Switching Characteristics for a memory ((M)STRB =0)read
Switching Characteristics for a memory ((M)STRB = 0) Write
Switching Characteristics for a Memory (IOSTRB =0) Read
Switching Characteristics for a Memory (IOSTRB = 0) Write
Information for Figure A-8
Information for Figure A-9
Information for Figure A-10
Information for Figure A-11
Information for Figure A-12 e
Information for Figure A-13
Information for Figure A-14
Information for Figure A-15
Information for Figure A-16 e e
Serial Port Timing as Shown in Figures A-18 and A-19
Information for Figure A-20
TMS320C30 Digital Signal Processor Part Numbers
TMS320C30 Support Tool Part Numbers
TMS320C30 instruction Opcodesuiiiinireennnnnnannn
Microprocessor and Microcontroller Tests
TMS320C30 Transistors oiiiiii it e

Introduction

Section 1

Introduction

The TMS320C30 (third-generation) Digital Signal Processor (DSP) is a
high-performance CMOS 32-bit device in the TMS320 family of single-chip
digital signal processors. Since 1982 when the TMS32010 was introduced,
the TMS320 family has established itself as the industry standard for digital
signal processing. Powerful instruction sets, high-speed number-crunching
capabilities, and innovative architectures have made this high-performance
family of processors ideal for DSP applications.

The TMS320 family consists of three generations of processors: TMS320C1x,
TMS320C2x, and TMS320C3x (see Figure 1-1). The family has expanded to
include enhancements of earlier generations and more powerful new gener-
ations of digital signal processors.

320C30 o

(

TMS320C1x

32010 e 18/32-bit CPU
32011 @ 160-ns instr cycle
320C10 @ 256 W data RAM

PERFORMANCE

320C15 @ 4K W ROM/EPROM
320E15 ® 4K W ext prog mem

TM320C2x

32020 e
320C25 e

16/32-bit CPU

100-ns instr cycle
544 W data RAM

4K W prog ROM
128K W total mem
16 x 16=32-bit mult
Serial port and timer
Block move/repeat
Muttiprocessor I/F

| TMs320c3x

32-bit float-pt CPU
80-ns instr cycle

2K W RAM

4K W ROM

64 W instr cache
16M W total mem

32 x 32=40-bit muit
2 serial ports

2 timers

DMA

320C17 ® 16 x 16=32-bit muht
320E17 @ 2 serial ports

® Companding H/W

® Coprocessor I/F

TIME

Figure 1-1. TMS320 Device Evolution

1-1

Introduction

1-2

This document discusses the third-generation device, TMS320C30, within the
TMS320 family. The 60-ns cycle time of the TMS320C30 allows it to execute
operations at a performance rate previously available only on a supercomputer.
Even higher performance is gained through its large on-chip memories, con-
current DMA controller, and instruction cache.

This section presents the following major topics:

(] General Description (Section 1.1 on page 1-3)

Key Features (Section 1.2 on page 1-4)

Typical Applications (Section 1.3 on page 1-5)
How To Use This Manual (Section 1.4 on page 1-6)

References (Section 1.5 on page 1-8)

Introduction - General Description

1.1 General Description

The TMS320’s internal busing and special digital signal processing (DSP)
instruction set provide speed and flexibility.This combination produces a pro-
cessor family capable of executing up to 33 MFLOPS (million floating-point
operations per second). The TMS320 family optimizes speed by implementing
functions in hardware that other processors implement through software or
microcode. This hardware-intensive approach provides the design engineer
with power previously unavailable on a single chip.

The TMS320C30, the third-generation device in the TMS320 family, can
perform parallel multiply and ALU operations on integer or floating-point data
in a single cycle. The processor also possesses a general-purpose register file,
program cache, dedicated auxiliary register arithmetic units (ARAU), internal
dual-access memories, one DMA channel supporting concurrent /0, and a
short machine-cycle time. High performance and ease of use are achieved
through greater parallelism, greater accuracy, and general-purpose features.

General-purpose applications are greatly enhanced by the large address space,
multiprocessor interface, internally and externally generated wait states, two
timers, two serial ports, and multiple interrupt structure. The TMS320C30
supports a wide variety of system applications from host processor to dedi-
cated coprocessor.

The emphasis on total system cost has resulted in a less-expensive processor
that can be designed into systems currently using costly bit-slice processors.
High-level language is more easily supported through a register-based archi-
tecture, large address space, powerful addressing modes, flexible instruction
set, and support of floating-point arithmetic.

1-3

Introduction - Key Features

1.2 Key Features

Some key features of the TMS320C30 are listed below.

1-4

60-ns single-cycle instruction execution time
- 33.3 MFLOPS (million floating-point operations per second)
- 16.7 MIPS (million instructions per second)

One 4K x 32-bit single-cycle dual-access on-chip ROM block
Two 1K x 32-bit single-cycle dual-access on-chip RAM blocks
64 x 32-bit instruction cache

32-bit instruction and data words, 24-bit addresses

40/32-bit floating-point/integer multiplier and ALU

32-bit barrel shifter

Eight extended-precision registers (accumulators)

Two address generators with eight auxiliary registers and two auxiliary
register arithmetic units

On-chip Direct Memory Access (DMA) controller for concurrent I/0 and
CPU operation

Integer, floating-point, and logical operations

Two- and three-operand instructions

Parallel ALU and multiplier instructions in a single cycle
Block repeat capability

Zero-overhead loops with single-cycle branches
Conditional calls and returns

Interlocked instructions for multiprocessing support
Two serial ports to support 8/16/32-bit transfers

Two 32-bit timers

Two general-purpose external flags, four external interrupts
180-pin grid array (PGA) package; 1 y m CMOS

Introduction - Typical Applications

1.3 Typical Applications

The TMS320 family’s unique versatility and realtime performance offer flexible
design approaches in a variety of applications. In addition, TMS320 devices
can simultaneously provide the multiple functions often required in those
complex applications. Table 1-1 lists typical TMS320 family applications.

Table 1-1. Typical Applications of the TMS320 Family

GENERAL-PURPOSE DSP

GRAPHICS/IMAGING

INSTRUMENTATION

Digital Filtering
Convolution
Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

3-D Rotation

Robot Vision

Image Transmission/
Compression

Pattern Recognition
Image Enhancement
Homomorphic Processing
Workstations
Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

VOICE/SPEECH

CONTROL

MILITARY

Voice Mail

Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech
Neural Networks

Disk Control

Servo Control

Robot Control

Laser Printer Control
Engine Control
Motor Control
Kalman Filtering

Secure Communications
Radar Processing

Sonar Processing

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems
Sensor Fusion

TELECOMMUNICATIONS

AUTOMOTIVE

Echo Cancellation
ADPCM Transcoders
Digital PBXs

Line Repeaters
Channel Multiplexing

FAX

Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning

Digital Audio/TV
Music Synthesizer
Toys and Games
Solid-State Answering
Machines

1200 to 19200-bps Modems X.25 Packet Switching Navigation

Adaptive Equalizers Video Conferencing Voice Commands

DTMF Encoding/Decoding Spread Spectrum Digital Radio

Data Encryption Communications Cellular Telephones
CONSUMER INDUSTRIAL MEDICAL

Radar Detectors Robotics Hearing Aids

Power Tools Numeric Control Patient Monitoring

Security Access
Power Line Monitors
Visual Inspection
Lathe Control

CAM

Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

MR Imaging

1-5

Introduction - How To Use This Manual

1.4 How To Use This Manual

The purpose of this user's guide is to serve as a reference book for the
TMS320C30 digital signal processor. This document is designed to provide
information that assists managers and hardware/software engineers in appli-
cation development. The first group of sections provides specific information
about the architecture and hardware operation of the device. Later sections
describe the software operation. Specific software and hardware applications
are provided in Sections 12 and 13, respectively. Electrical specifications and
mechanical data can be found in the data sheet (Appendix A).

1-6

The following table lists each section and briefly describes the section con-

tents.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Section 7.

Section 8.

Section 9.

Section 10.

Section 11.

Section 12.

Pinout and Signal Descriptions. Drawing of the PGA
package for the TMS320C30. Functional listing of the
signals, their pin locations, and descriptions.

Architectural Overview. Functional block diagram.
TMS320C30 design description, hardware components,
and device operation. Instruction set summary.

CPU Registers, Memory, and Cache. Description of the
registers in the CPU register file. Memory maps provided
and instruction cache architecture, algorithm, and control
bits explained.

Data Formats and Floating-Point Operations. Description
of signed and unsigned integer and floating-point formats.
Discussion of floating-point multiplication, addition, sub-
traction, normalization, rounding, and conversions.

Addressing. Operation, encoding, and implementation of
addressing modes. Format descriptions. System stack
management.

Program Flow Control. Software control of program flow
with repeat modes and branching. Interlocked operations.
Reset and interrupts.

External Bus Operation. Description of primary and expan-
sion interfaces. External interface timing diagrams. Pro-
grammable wait-states and bank switching.

Peripherals. Description of the DMA controller, timers, and
serial ports.

Pipeline Operation. Discussion of the pipelining of oper-
ations on the TMS320C30.

Assembly Language Instructions. Functional listing of in-
structions. Condition codes defined. Alphabetized indi-
vidual instruction descriptions with examples.

Software Applications. Software application examples for
the use of various TMS320C30 instruction set features.

Introduction - How To Use This Manual

Section 13.

Hardware Applications. Hardware design techniques and
application examples for interfacing to memories, periph-
erals, or other microcomputers/microprocessors.

Four appendices are included to provide additional information.

Appendix A.

Appendix B.

Appendix C.

Appendix D.

TMS320C30 Data Sheet. Electrical specifications, timing,
and mechanical data.

Development Support/Part Order Information. Listings of
the hardware and software available to support the
TMS320C30 device.

Instruction Opcodes. List of the opcode fields for all the
TMS320C30 instructions.

Quality and Reliability. Discussion of Texas Instruments
quality and reliability criteria for evaluating performance.

Introduction - References

1.5 References

The following reference list contains useful information regarding functions,
operations, and applications of digital signal processing. These books also
provide other references to many useful technical papers. The reference list is
organized into categories of general DSP, speech, image processing, and di-
gital control theory, and alphabetized by author.

General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S. and Parks, TW., DFT/FFT and Convolution Algorithms.
New York, NY: John Wiley and Sons, Inc., 1984.

Digital Signal Processing Applications with the TMS320 Family, Texas
Instruments, 1986, Prentice-Hall, Inc., 1987.

Gold, Bernard and Rader, C.M., Digital Processing of Signals. New
York, NY: McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1977.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro-
cessing. New York, NY: |IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L. and Parks, T.W., A Digital Signal Processing Laboratory
Using the TMS32070. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Lim, Jae and Oppenheim, Alan V. (Editors), Advanced Topics in Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Iinc., 1988.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carleton University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V. and Schafer, R.W., Digital Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V. and Willsky, A.N. with Young, L.T., Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W. and Burrus, C.S., Digital Filter Design. New York, NY: John
Wiley and Sons, Inc., 1987.

Rabiner, Lawrence R., Gold and Bernard Theory and Application of
Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
19765.

Introduction - References

Treichler, J.R., Johnson, Jr., C.R., and Larimore, M.G., Theory and De-
sign of Adaptive Filters. New York, NY: John Wiley and Sons, Inc.,
1987.

Speech:

Gray, A.H. and Markel, J.D., Linear Prediction of Speech. New York,
NY: Springer-Verlag, 1976.

Jayant, N.S. and Noll, Peter, Digital Coding of Waveforms. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Rabiner, Lawrence R. and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Image Processing:

Andrews, H.C. and Hunt, B.R., Digital Image Restoration. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C. and Wintz, Paul, Digital Image Processing. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley
and Sons, 1978.

Digital Control Theory:

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel
Dekker, Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Control/ Systems. New York, NY: Holt, Reinhoit and
Winston, Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Com-
pensators. Cambridge, MA: The MIT Press, 1983.

Phillips, C. and Nagle, H., Digital Contro/ System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

1-9

Introduction - References

Section 2

Pinout and Signal Descriptions

The TMS320C30 (third-generation TMS320) digital signal processor is
available in a 180-pin grid array (PGA) package. The pinout of this package
(Figure 2-1), and a functional listing of the signals, pin locations, and de-
scriptions are provided in this section. Electrical specifications and mechanical

data are given in the data sheet (Appendix A).

000000000600 OOCBCFO |~

0000000000OOBOCOOOCFO |
o000

PIVZ22rXcIOTMmMOUO®»

00000000 OCGOGOOGOOOGOIO |

0000000 OCGOOGROOOGEOO|N
[]

00000

(N N N]

[K X N]

0000 []

00000OGOOGOOQOOOOS

000000OCGDONONOOSGOOS

00000006 0OOBOOGOOGS

000000OOGOOOOOGTS

Figure 2-1. TMS320C30 Pin Assignments

2-1

Pinout and Signal Descriptions

Table 2-1. TMS320C30 Pin Function Assignments

Function | Pin Function | Pin || Function | Pin || Function | Pin |{ Function| Pin
A0 F15 EMUO F14 D19 A9 ACK G1 X11 D14
A1l G12 EMU1 E15 D20 B9 NTO H2 X12 E13
A2 G13 CLKRO N4 D21 C9 NT1 H1 XDO Q4
A3 G14 CLKR1 L4 D22 A10 NT2 J1 XD1 P5
Ad G15 CLKX0 M5 D23 D9 NT3 J2 X0D2 N6
A5 H15 CLKX1 N2 D24 B10 RSVO J3 XD3 Q5
A6 H14 DO C4 D25 Al1 RSV1 J4 XD4 P6
A7 J156 D1 D5 D26 C10 RSV2 K1 XD5 M7
A8 J14 D2 A2 D27 B11 RSV3 K2 XDé6 Q6
A9 J13 D3 A3 D28 A12 RSV4 L1 XD7 N7
A10 K15 D4 B4 D29 D10 RSV5 K3 XD8 P7
A11 J12 D5 C5 D30 C11 RSV7 Ka XD9 Q7
A12 K14 D6 D6 D31 B12 RSV9 L3 XD10 P8
A13 L15 D7 A4 DRO Q1 RSV10 M2 XD11 Q8
A14 K13 D8 B5 DR1 N1 XAO0 A13 XD12 Q9
A15 L14 D9 C6 DX0 Q3 XA1 A14 XD13 P9
A16 M15 || D10 A5 DX1 P2 XA2 D11 XD14 N9
A17 K12 D11 B6 FSRO P3 XA3 Cc12 XD15 Q10
A18 L13 D12 D7 FSR1 M3 XA4 B13 XD16 M9
A19 M14 || D13 A6 FSX0 Q2 I0A5 A15 XD17 P10
A20 N15 D14 C7 FSX1 P1 XA6 B15 XD18 Q11
A21 M13 || D15 B7 H1 B3 XA7 Cc14 XD19 N10
A22 L12 D16 A7 H3 Al XA8 E12 XD20 P11
A23 N14 D17 A8 ﬁaLD F3 XA9 D13 XD21 Q12
EMUS C1 D18 B8 HOLDA E2 XA10 C15 XD22 M10
10D23 N11 LOCATOR | EB TCLK1 N5 ADVDD D12 VSS N8
10D24 P12 EMU4 F12 VBBP D3 ADVDD H11

10D25 Q13 MC/MP D15 VSUBS E4 DDVDD D4 CVSS B2
10D26 Q14 MSTRB E3 X1 Cc2 DDVDD E8 CVSS P14
10D27 M11 EMU6 M6 X2 B1 10DVDD L8 DVSS C3
10D28 N12 RDY E1 XFO G2 IODVDD M12 || DVSS C13
10D29 P13 RESET F1 XF1 G3 MDVDD H5 DVSS N3
10D30 Q15 R/W G4 PDVDD M4 DVSS N13
10D31 P15 EMU2 F13 VvDD D8 IVSS B14
IORDY D2 EMU3 E14 vDD H4 VSS Cc8

IOR[W D1 STRB F2 vDD H12 VSS H3 RSV6 L2
IOSTR F4 TCLKO P4 vDD M8 VSS H13 RSV8 M1

NOTE:

1) ADVDD, DDVDD, IODVDD, MDVDD, and PDVDD pins (D4, D12, E8, H5, H11, L8, M4, and M12)
are on a common plane internal to the device.

2) VDD pins (D8, H4, H12, and M8) are on a common plane internal to the device.

3) VSS, CVSS, and INSS pins (B2, B14, C8, H3, H13, N8, and P14) are on a common plane internal
to the device.

4) DVSS pins (C3, C13, N3, and N13) are on a common plane internal to the device.

2-2

Pinout and Signal Descriptions

2.1 Signal Descriptions

The signal descriptions for the TMS320C30 device in the microprocessor
mode are provided in this section. Table 2-2 lists each signal, the number of
pins, function, and operating mode(s), i.e., input, output, or high-impedance
state as indicated by |, O, or Z. All pins labelled 'NC’ are not to be connected
by the user. A line over a signal name (e.g., RESET) indicates that the signal
is active low true at a logic 'O’ level. The signals in Table 2-2 are grouped
according to function.

Table 2-2. TMS320C30 Signal Descriptions

SIGNAL [#PINS | 1/0/zt | DESCRIPTION
PRIMARY BUS INTERFACE (61 PINS)
D(31-0) 32 1/0/Z 32-bit data port of the primary bus interface.
A (23-0) 24 0/2 24-bit address port of the primary bus interface.

1 0/Z Read/write signal for primary bus interface. This pin is high
when a read is performed and low when a write is performed
over the parallel interface.

0/Z External access strobe for the primary bus interface.

1 | Ready signal. This pin indicates that the external device is
prepared for a primary bus interface transaction to complete.
As long as RB% is a logic high, the data and address buses
of the primary bus interface remain valid.

Hold signal for primary bus interface. When HOLD is a logic
low, any ongoing transaction is completed. The A(23-0),
D(31-0), STRB,, and R/W signals are placed in a high-im-
pedance state, and all transactions over the primary bus in-
terface are held until HOLD becomes a logic high.

Hold acknowledge signal for primary bus interface. This
signal is generated in response to a logic low on HOLD. It
signals that A(23-0), D(31-0), STRB, and R/W are placed
in a high-impedance state and all transactions over the bus
will be held. HOLDA will be high in response to a logic
high of HOLD.

EXPANSION BUS INTERFACE (49 PINS)
XD (31-0) 32 1/0/2 32-bit data port of the expansion bus interface.
XA (_1 2-0) 13 /2 13-bit address port of the expansion bus interface.

0/z Read/write signal for expansion bus interface. When a read
is performed, this pin is held high; when a write is per-
formed, this pin is low.

1 0/z External memory access strobe for the expansion bus inter-
face.
0/Z External |/O access strobe for the expansion bus interface.

1 1 Ready signal. This pin indicates that the external device is
prepared for an expansion bus interface transaction to
complete. As long as XRDY is high, the data and address
buses of the expansion bus interface remain valid.

I
[
-

;:"
(]

OL

x
=l
=l
-

ol =
EIE
ol @
jl;,’l H;'J

o)

t Input, Output, High-impedance state.

Pinout and Signal Descriptions

Table 2-2. TMS320C30 Signal Descriptions (Continued)

SIGNAL | #PINs [1o/zt | DESCRIPTION
CONTROL SIGNALS (9 PINS)

RESET 1 ! Reset. When this pin is a logic low, the device is placed in
the reset condition. When reset becomes a logic high, exe-
cution begins from the location specified by the reset vector.

TNT(3-0) 4 1 External interrupts.

IACK 1 (o] Interrupt acknowledge signal. TACK goes low during exe-
cution of an IACK instruction. This can be used to indicate
the beginning or end of an interrupt service routine.

MC/MP 1 1 Microcomputer/microprocessor mode pin.

XF(1-0) 2 1/0 External flag pins. These pins are formatted as 1/0 through
a program instruction, and latched internally when used as
output pins. They are used as general-purpose 1/0 pins or
to support interlocked processor instructions.

SERIAL PORT 0 SIGNALS (6 PINS)

CLKXO0 1 1/0 Serial port O transmit clock. This pin serves as the serial shift
clock for the serial port O transmitter.

DX0 1 0/z Data transmit output. Serial port O transmits serial data on
this pin.

FSX0 1 170 Frame synchronization pulse for transmit. The FSX0 puise
initiates the transmit data process over pin DX0.

CLKRO 1 1/0 Serial port O receive clock.This pin serves as the serial shift
clock for the serial port O receiver.

DRO 1 I Data receive. Serial port O receives serial data via the DRO
pin.

FSRO 1 | Frame sychronization pulse for receive. The FSRO pulse ini-
tiates the receive data process over DRO.

SERIAL PORT 1 SIGNALS (6 PINS)

CLKX1 1 1/0 Serial port 1 transmit clock. This pin serves as the serial shift
clock for the serial port 1 transmitter.

DX1 1 0/z Data transmit output. Serial port 1 transmits serial data on
this pin.

FSX1 1 170 Frame synchronization pulse for transmit. The FSX1 pulse
initiates the transmit data process over pin DX1.

CLKR1 1 1/0 Serial port 1 receive clock. This pin serves as the serial shift
clock for the serial port 1 receiver.

DR1 1 | Data receive. Serial port 1 receives serial data via the DR1
pin.

FSR1 1 1 Frame sychronization pulse for receive. The FSR1 pulse ini-
tiates the receive data process over DR1.

t Input, Output, High-impedance state.

2-4

Pinout and Signal Descriptions

Table 2-2. TMS320C30 Signal Descriptions (Continued)

SIGNAL | #PINS | 1o/zt | DESCRIPTION
TIMER 0 SIGNALS (1 PIN)
TCLKO 1 /0 Timer clock. As an input, TCLKO is used by timer O to count
external pulses. As an output pin, TCLKO outputs pulses
generated by timer 0.
TIMER 1 SIGNALS (1 PIN)
TCLK1 1 1/0 Timer clock. As an input, TCLK1 is used by timer 1 to count
external pulses. As an output pin, TCLK1 outputs pulses
generated by timer 1.
SUPPLY AND OSCILLATOR SIGNALS (29 PINS)
Vpp(3-0) 4 | Four +5 V supply pins.
10DVpp(1.0) 2 | Two +5 V supply pins.
ADVpp(1,0) 2 | Two +5 V supply pins.
PDVpp 1 | One +5 V supply pin.
DDVpp(1.0) 2 | Two +5 V supply pins.
MDVpp 1] One +5 V supply pin.
Vgs(3-0) 4 I Four ground pins.
DVgs(3-0) 4 | Four ground pins.
CVgs(1,0) 2 | Two ground pins.
__I_V_s_§ 1 I One ground pin.
Veep 1 NC VBB pump oscillator output.
SUBS 1 | Substrate pin. Tie to ground.
X1 1 (o] Output pin from the internal oscillator for the crystal. If a
crystal is not used, this pin should be left unconnected.
X2/CLKIN 1 I Input pin to the internal oscillator from the crystal or a clock.
H1 1 0 External H1 clock. This clock has a period equal to twice
CLKIN.
H3 1 (o] Ettle(;mal H3 clock. This clock has a period equal to twice

t Input, Output, High-impedance state.

Pinout and Signal Descriptions

Table 2-2. TMS320C30 Signal Descriptions (Concluded)

SIGNAL | #PINS | 1/0/zf | DESCRIPTION
RESERVED (18 PINS)
2 EMU(0-2) 3 | Reserved. Use pull-ups to +5 volts. See Section 13.5
EMU3 1 0 Reserved. See Section 13.5
EMU4 1 1 Reserved. Tie to +5 volts.
EMU(5,6) 2 NC Reserved.
RSV(0-10) 11 | Reserved. Tie to +5 volts.

t Input, Output, High-impedance state.

The user must follow the connections specified for the reserved pins. All pull-up resistors must be 20 k
ohms. All +5 volt supply pins must be connected to a common supply plane and all ground pins must
be connected to a common ground plane.

Section 3

Architectural Overview

Emphasis on hardware and software system solutions to demanding arithmetic
algorithms has resulted in the TMS320C30 architecture shown in Figure 3-1.
High system performance is achieved through the accuracy and precision of
the floating-point units, large on-chip memory, a high degree of parallelism,
and the DMA controller.

This section provides an architectural overview of the TMS320C30 processor.
Major areas of discussion are listed below.

Central Processing Unit (CPU) (Section 3.1 on page 3-3)
- Floating-point/integer multiplier

— ALU for floating-point, integer, and logical operations
— Auxiliary register arithmetic units (ARAUSs)

- CPU register file

Memory Organization (Section 3.2 on page 3-7)
- RAM, ROM, and cache

- Memory maps

- Memory addressing modes

- Instruction set summary

Internal Bus Operation (Section 3.3 on page 3-18)
External Bus Operation (Section 3.4 on page 3-19)

Peripherals (Section 3.5 on page 3-20)
- Timers
- Serial ports

Direct Memory Access (DMA) (Section 3.6 on page 3-21)

3-1

Architectural Overview

HAH LAY

Figure 3-1. TMS320C30 Block Diagram

P FsX0
—

——r]

}—e—Dx1
e CLKX1
[e— FsR1
[~e—DR1
|- CLKRY

[e-e—TCLKO

| COMTROL REGISTER _J L— Touy

Architectural Overview - Central Processing Unit (CPU)

3.1 Central Processing Unit (CPU)

The TMS320C30 has a register-based CPU architecture. The CPU consists
of the following components:

(] Floating-point/integer multiplier

® ALU for performing arithmetic (floating-point, integer)and logical oper-
ations

32-bit barrel shifter

Internal buses (CPU1/CPU2 and REG1/REG2)
Auxiliary register arithmetic units (ARAUs)
CPU register file.

Figure 3-2 shows the various CPU components that are discussed in the
succeeding subsections.

3-3

Architectural Overview - Central Processing Unit (CPU)

--00U>»0
NODOD»O
-_-C90
-0m2>X
NOMmMD
A
N
m
N
SI:

32-BIT BARREL
MULTIPLIER SHIFTER

ALU

| a0 EXTENDED |[-e—X
SN PRECISION

11| a0 REGISTERS 40
3 N (RO-R7) Ay

AUXILIARY 244
REGISTERS
(ARO-AR7) 32,

OTHER
REGISTERS -2 Y
(12)

Figure 3-2. Central Processing Unit (CPU)

3-4

Architectural Overview - Central Processing Unit (CPU)

3.1.1 Multiplier

The multiplier performs single-cycle multiplications on 24-bit integer and
32-bit fioating-point values. The TMS320C30 implementation of floating-
point arithmetic allows for floating-point operations at fixed-point speeds via
a 60-ns instruction cycle and a high degree of parallelism. To gain even higher
throughput, a multiply and ALU operation can be performed in a single cycle
by using parallel instructions.

When performing floating-point multiplication, the inputs are 32-bit float-
ing-point numbers, and the result is a 40-bit floating-point number. When
performing integer multiplication, the input data is 24 bits and yields a 32-bit
result. Refer to Section 5 for detailed information on data formats and float-
ing-point operation.

3.1.2 Arithmetic Logic Unit (ALU)

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical,
and 40-bit floating-point data, including single-cycle integer and floating-
point conversions. Results of the ALU are always maintained in 32-bit integer
or 40-bit floating-point formats. The barrel shifter is used to shift up to 32
bits left or right in a single cycle.

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from me-
mory and two operands from the register file, thus allowing parallel multiplies
and adds/subtracts on four integer or floating-point operands in a single cycle.

3.1.3 Auxiliary Register Arithmetic Units (ARAUSs)

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate two
addresses in a single cycle. The ARAUSs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (IRO
and IR1), and circular and bit-reversed addressing. Refer to Section 6 for a
description of addressing modes.

3.1.4 CPU Register File

The TMS320C30 provides 28 registers in a multiport register file that is tightly
coupled to the CPU. All of these registers can be operated upon by the mul-
tiplier and ALU, and can be used as general-purpose registers. However, the
registers also have some special functions for which they are more suited than
others. For example, the eight extended-precision registers are especially
suited for maintaining extended-precision floating-point results. The eight
auxiliary registers support a variety of indirect addressing modes and can be
used as general-purpose 32-bit integer and logical registers. The remaining
registers provide system functions such as addressing, stack management,
processor status, interrupts, and block repeat. Refer to Section 6 for detailed
information and examples of stack management and register usage.

The registers names and assigned functions are listed in Table 3-1. Following
the table, the function of each register or group of registers will be briefly de-
scribed. Refer to Section 4 for detailed information on each of the CPU reg-
isters.

3-5

Architectural Overview - Central Processing Unit (CPU)

3-6

Table 3-1. CPU Registers

REGISTER ASSIGNED FUNCTION
NAME

RO Extended-precision register 0
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 Extended-precision register 3
R4 Extended-precision register 4
R5 Extended-precision register 5
R6 Extended-precision register 6
R7 Extended-precision register 7

ARO Auxiliary register 0

AR1 Auxiliary register 1

AR2 Auxiliary register 2

AR3 Auxiliary register 3

AR4 Auxiliary register 4

AR5 Auxiliary register 5

AR6 Auxiliary register 6

AR7 Auxiliary register 7

DP Data page pointer

IRO Index register 0

IR1 Index register 1

BK Block size

SP System stack pointer

ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt flags

I0F 1/0 flags

RS Repeat start address

RE Repeat end address

RC Repeat counter

PC Program Counter

The extended-precision registers (R0-R7) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
Any instruction that assumes the operands are floating-point numbers uses
bits 39-0. If the operands are either signed or unsigned integers, only bits
31-0 are used, bits 39-32 remain unchanged. This is true for all shift oper-
ations. Refer to Section 4 for extended-precision register formats for float-
ing-point and integer numbers.

The 32-bit auxiliary registers (ARO-AR7) can be accessed by the CPU and
modified by the two Auxiliary Register Arithmetic Units (ARAUSs). The primary
function of the auxiliary registers is the generation of 24-bit addresses. They
can also be used to perform a variety of functions, such as loop counters or
as 32-bit general-purpose registers that can be modified by the multiplier and
ALU. Refer to Section 6 for detailed information and examples of the use of
auxiliary registers in addressing.

The data page pointer (DP) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressing mode as a pointer to the page
of data being addressed. Data pages are 64 k words long with a total of 256
pages.

Architectural Overview - Central Processing Unit (CPU)

The 32-bit index registers (IR0 and IR1) are used by the Auxiliary Register
Arithmetic Unit (ARAU) for indexing the address. Refer to Section 6 for ex-
amples of the use of index registers in addressing.

The 32-bit block size register (BK) is used by the ARAU in circular ad-
dressing to specify the data block size.

The system stack pointer (SP) is a 32-bit register that contains the address

of the top of the system stack. The SP always points to the last element 3
pushed onto the stack. A push performs a preincrement and a pop, a postde-
crement of the system stack pointer. The SP is manipulated by interrupts,
traps, calls, returns, and the PUSH and POP instructions. Refer to Section 6.5

for information about system stack management.

The status register (ST) contains global information relating to the state
of the CPU. Typically, operations set the condition flags of the status register
according to whether the result is zero, negative, etc. This includes register
load and store operations as well as arithmetic and logical functions. When
the status register is loaded, however, a bit-for-bit replacement is performed
on the current contents with the contents of the source operand regardless of
the state of any bits in the source operand. Therefore, following a load, the
contents of the status register are identically equal to the contents of the
source operand. This allows the status register to be easily saved and restored.
See Table 4.2 for a list and definitions of the status register bits.

The CPU/DMA interrupt enable register (IE) is a 32-bit register. The
CPU interrupt enable bits are in locations 10-0. The DMA interrupt enable
bits are in locations 26-16. A 1 in a CPU/DMA interrupt enable register bit
enables the corresponding interrupt. A O disables the corresponding interrupt.
Refer to Section 4.1 for bit definitions.

The CPU interrupt flag register (IF) is also a 32-bit register (see Section
4.1). A1 in a CPU interrupt flag register bit indicates that the corresponding
interrupt is set. A O indicates that the corresponding interrupt is not set.

The 1/O flags register (IOF) controls the function of the dedicated external
pins, XFO and XF1. These pins may be configured for input or output, and
they may also be read from and written to. See Section 4.1 for detailed infor-
mation.

The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performing a block repeat. When
operating in the repeat mode, the 32-bit repeat start address register
(RS) contains the starting address of the block of program memory to be re-
peated and the 32-bit repeat end address register (RE) contains the
ending address of the block to be repeated.

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. Although the PC is not part of the CPU register
file, it is a register that can be modified by instructions that modify the program
flow.

3-7

Architectural Overview - Memory Organization

3.2 Memory Organization

The total memory space of the TMS320C30 is 16M (million) 32-bit words.
Program, data, and I/O space are contained within this 16M-word address
space, thus allowing tables, coefficients, program code, or data to be stored
in either RAM or ROM. In this way, memory usage can be maximized and
memory space allocated as desired.

3.2.1 RAM, ROM, and Cache

3-8

Figure 3-3 shows how the memory is organized on the TMS320C30. RAM
blocks 0 and 1 are each 1K x 32 bits. The ROM block is 4K x 32 bits. Each
RAM and ROM block is capable of supporting two accesses in a single cycle.
The separate program buses, data buses, and DMA buses allow for parallel
program fetches, data reads and writes, and DMA operations. For example:
the CPU can access two data values in one RAM block and perform an ex-
ternal program fetch in parallel with the DMA loading another RAM block, all
within a single cycle.

A 64 x 32-bit instruction cache is provided to store often repeated sections
of code, thus greatly reducing the number of off-chip accesses necessary. This
allows for code to be stored off-chip in slower, lower-cost memories. The
external buses are also freed for use by the DMA, external memory fetches, or
other devices in the system.

Refer to Section 4 for detailed information about the memory and instruction
cache.

Architectural Overview - Memory Organization

CACHE RAM RAM ROM
(64 x 32) BLOCK 0 BLOCK 1 BLOCK
(1K x 32) 11K x 32) (4K x 32)
32 24 2ad 32 244 32 24] 32
+ + _ -
[PDATA BUS
1
PADDR BUS
FOY = -
HOLD—» | p—————— bt XROY
DDATA BUS| -} 1] MSTRB
HOLDA ™M M STRB
STRB u [DADDR1 BUS- {1 u _
- e e o e s : -
bt wel | [2AD2RZ) I 0 7 0 o R :
| 1 XA(12-0)
A3 0 e— | et e
DMADATA BUS |".".". 1" poR o X o SO
1
owARDoR B0 -
~ 321~ . .24 32 ?IN %u |~
PROGRAM COUNTER) ——\— DMA
INSTRUCTION REGISTER CcPU CONTROLLER

Figure 3-3. Memory Organization

3-9

Architectural Overview - Memory Organization

3.2.2 Memory Maps

The memory map is dependent upon whether the processor is running in the
microprocessor mode (MC/MP = 0) or the microcomputer mode (MC/MP =
1). The memory maps for these modes are very similar (see Figure 3-4). Lo-
cations 800000h through 801FFFh are mapped to the expansion bus. When
this region is accessed, MSTRB is active. Locations 802000h through
803FFFh are reserved. Locations 804000h through 805FFFh are mapped to
the expansion bus. When this region is accessed, TOSTRB is active. Locations
806000h through 807FFFh are reserved. All of the memory-mapped periph-
eral registers are in locations 808000h through 8097FFh. In both modes,
RAM biock 0 is located at addresses 809800h through 809BFFh, and RAM
block 1 is located at addresses 809CO00Oh through 809FFFh. Locations
80A000h through OFFFFFFh are accessed over the external memory port
(STRB active).

In microprocessor mode, the 4K on-chip ROM is not mapped into the
TMS320C30 memory map. Locations Oh through 3Fh consist of interrupt
vector, trap vector, and reserved locations, all of which are accessed over the
external memory port (STRB active). Locations 40h through 7FFFFFh are also
accessed over the external memory port.

In microcomputer mode, the 4K on-chip ROM is mapped into locations Oh
through OFFFh. There are 192 locations (Oh through BFh) within this block
for interrupt vectors, trap vectors, and a reserved space. Locations 1000h
through 7FFFFFh are accessed over the external memory port (STRB active).

Section 4.2 describes the memory maps in greater detail. The peripheral bus
map and the vector locations for reset, interrupts, and traps are also given.

Architectural Overview - Memory Organization

Oh Oh
INTERRUPT LOCATIONS INTERRUPT LOCATIONS
AND RESERVED (192) AND RESERVED (192)
EXTERNAL STRB ACTIVE
BFh BFR |
COh coh [~ o
EXTERNAL oFFFh (lNTERNAL)
STRB ACTIVE 1000h
EXTERNAL
STRB ACTIVE
7FFFFFh 7FFFFFh
800000h 800000h
EXPANSION BUS EXPANSION BUS
801FFFh MSTRB ACTIVE (8K) 801FFFh MSTRB ACTIVE (8K)
802000h 802000h
RESERVED RESERVED
803FFFh &K 803FFFh (8K)
804000h 804000h
EXPANSION BUS EXPANSION BUS
TOSTRB ACTIVE (8K) TOSTRB ACTIVE (8K)
805FFFh 805FFFh
806000h 806000h
RESERVED RESERVED
807FFFh (8K) 807FFFh (8K)
808000h 808000h
PERIPHERAL BUS PERIPHERAL BUS
MEMORY-MAPPED MEMORY-MAPPED
REGISTERS REGISTERS
8097FFh (INTERNAL) (6K) 8097FFh (INTERNAL) (6K)
809800h 809800h
RAM BLOCK 0 (1K) RAM BLOCK 0 (1K)
(INTERNAL) (INTERNAL)
809BFFh 809BFFH
809CO00h 809CO0h
RAM BLOCK 1 (1K) RAM BLOCK 1 (1K)
(INTERNAL) (INTERNAL)
809FFFh 809FFFh
80A000h 80A000h
EXTERNAL EXTERNAL
STRB ACTIVE STRB ACTIVE
OFFFFFFh OFFFFFFh

MICROPROCESSOR MODE MICROPROCESSOR MODE

Figure 3-4. Memory Maps

Architectural Overview - Memory Organization

3.2.3 Memory Addressing Modes

The TMS320C30 supports a base set of general-purpose instructions as well
as arithmetic-intensive instructions that are particularly suited for digital signal
processing and other numeric-intensive applications. Refer to Section 6 for
detailed information on addressing.

Five groups of addressing modes are provided on the TMS320C30. Six types
3 of addressing may be used within the groups, as shown in the following list:

(] General addressing modes:
- Register. The operand is a CPU register.
- Short immediate. The operand is a 16-bit immediate value.
- Direct. The operand is the contents of a 24-bit address.
- Indirect. An auxiliary register indicates the address of the operand.

(] Three-operand addressing modes:
- Register. Same as for general addressing mode.
- Indirect. Same as for general addressing mode.

® Parallel addressing modes:
- Register. The operand is an extended-precision register.
- Indirect. Same as for general addressing mode.

[) Long-immediate addressing mode.
- Long immediate. The operand is a 24-bit immediate value.

® Conditional branch addressing modes:
- Register. Same as for general addressing mode.
- PC-relative. A signed 16-bit displacement is added to the PC.

3.2.4 Instruction Set Summary

Table 3-2 lists the TMS320C30 instruction set in alphabetical order. Each
table entry shows the instruction mnemonic, description, and operation. Refer
to Section 11 for a functional listing of the instructions and individual in-
struction descriptions.

Architectural Overview - Memory Organization

Table 3-2. Instruction Set Summary

MNEMONIC DESCRIPTION OPERATION
ABSF Absolute value of a floating-point |src] = Rn
number
ABSI Absolute value of an integer |src] = Dreg
ADDC Add integers with carry src + Dreg + C = Dreg
ADDC3 Add integers with carry (3-operand) srct + src2 + C = Dreg
ADDF Add floating-point values src + Rn = Rn
ADDF3 Add floating-point values (3-operand) srcl + src2 = Rn
ADDI Add integers src + Dreg = Dreg
ADDI3 Add integers (3-operand) srcl + src2 + = Dreg
AND Bitwise logical-AND Dreg AND src = Dreg
AND3 Bitwise logical-AND (3-operand) src1 AND src2 — Dreg
ANDN Bitwise logical-AND with complement Dreg AND src = Dreg
ANDN3 Bitwise logical-ANDN (3-operand) src1 AND src2 — Dreg
ASH Arithmetic shift If count > O:
(Shift Dreg left by count) = Dreg
Else:
(Shift Dreg right by |count|) = Dreg
ASH3 Arithmetic shift (3-operand) If count > O:
(Shift src left by count) = Dreg
Else:
(Shift src right by |count|) = Dreg
Bcand Branch conditionally (standard) If cond = true:
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC = PC
Else, PC+ 1 = PC
BcondD Branch conditionally (delayed) If cond = true:
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC + 3 = PC
Else, PC+1 = PC
LEGEND:
src - general addressing modes Dreg - register address (any register)
src1 - three-operand addressing modes Rn - register address (RO-R7)
src2 - three-operand addressing modes Daddr - destination memory address
Csrc - conditional-branch addressing modes ARn - auxiliary register n (ARO-AR7)
Sreg - register address (any register) addr - 24-bit immediate address (label)
count - shift value (general addressing modes) cond - condition code (see Section 11)
SP - stack pointer ST - status register
GIE - global interrupt enable register RE - repeat interrupt register
RM - repeat mode bit RS - repeat start register
TOS - top of stack PC - program counter

Architectural Overview - Memory Organization

Table 3-2. Instruction Set Summary (Continued)

src2 - three-operand addressing modes
Csrc - conditional-branch addressing modes
Sreg - register address (any register)

count - shift value (general addressing modes)
SP - stack pointer

GIE - global interrupt enable register

RM - repeat mode bit

TOS - top of stack

3-14

MNEMONIC DESCRIPTION OPERATION
BR Branch unconditionally (standard) Value = PC
BRD Branch unconditionally (delayed) Value = PC
CALL Call subroutine PC+1 - TOS
Value = PC
CAlLLcond Call subroutine conditionally If cond = true:
PC +1 - TOS
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC = PC
Else, PC+ 1 = PC
CMPF Compare floating-point values Set flags on Rn - src
CMPF3 Compare floating-point values Set flags on srct - src2
(3-operand)
CMPI Compare integers Set flags on Dreg - src
CMPI3 Compare integers (3-operand) Set flags on src1 - src2
DBcond Decrement and branch conditionally ARn -1 = ARn
(standard) If cond = true and ARn > O:
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC = PC
Else, PC+1 = PC
DBcondD Decrement and branch conditionally ARn - 1 = ARn
(delayed) If cond = true and ARn > 0:
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC + 3 = PC
Eise, PC +1 = PC
FIX Convert floating-point value to integer Fix (src) = Dreg
FLOAT Convert integer to floating-point value Float(src) = Rn
IDLE Idle until interrupt PC+1 - PC
Idle until next interrupt
LDE Load floating-point exponent src(exponent) = Rn(exponent)
LDF Load floating-point value src = Rn
LEGEND:
src - general addressing modes Dreg - register address (any register)
src1 - three-operand addressing modes Rn - register address (RO-R7)

Daddr - destination memory address

ARn - auxiliary register n (ARO-AR7)
addr - 24-bit immediate address (label)
cond - condition code (see Section 11)
ST - status register

RE - repeat interrupt register

RS = repeat start register

PC = program counter

Architectural Overview - Memory Organization

Table 3-2. Instruction Set Summary (Continued)

MNEMONIC DESCRIPTION OPERATION
LDFcond Load floating-point value If cond = true, src = Rn
conditionally Else, Rn is not changed
LDFI Load floating-point value, Signal interlocked operation
interlocked src = Rn
LDI Load integer src = Dreg
LDlcond Load integer conditionally If cond = true, src = Dreg
Else, Dreg is not changed
LDH Load integer, interlocked Signal interlocked operation
src = Dreg
LDM Load floating-point mantissa src(mantissa) = Rn(mantissa)
LSH Logical shift If count > 0:
(Dreg left-shifted by count) = Dreg
Else:
(Dreg right-shifted by |count|) —* Dreg
LSH3 Logical shift (3-operand) If count > O:
(src left-shifted by count) = Dreg
Else:
(src right-shifted by |count|) = Dreg
MPYF Multiply floating-point values src x Rn = Rn
MPYF3 Multiply floating-point values src1 x src2 = Rn
(3-operand)
MPYI Multiply integers src x Dreg = Dreg
MPYI3 Multiply integers (3-operand) src1 x src2 = Dreg
NEGB Negate integer with borrow 0 -src - C = Dreg
NEGF Negate floating-point value 0 -src = Rn
NEGI Negate integer 0 - src = Dreg
NOP No operation Modify src if specified
NORM Normalize floating-point value Normalize (src) =Rn
NOT Bitwise logical-complement src = Dreg
OR Bitwise logical-OR Dreg OR src = Dreg
OR3 Bitwise logical-OR (3-operand) src1 OR src2 = Dreg
LEGEND:
src — general addressing modes Dreg - register address (any register)
src1 - three-operand addressing modes Rn - register address (RO-R7)

src2 - three-operand addressing modes

Csrc - conditional-branch addressing modes
Sreg - register address (any register)

count - shift value (general addressing modes)
SP - stack pointer

GIE - global interrupt enable register

RM -repeat mode bit

TOS - top of stack

Daddr - destination memory address

ARn - auxiliary register n (AR0-AR7)
addr - 24-bit immediate address (label)
cond - condition code (see Section 11)

ST - status register

RE = repeat interrupt register
RS - repeat start register

PC — program counter

Architectural Overview - Memory Organization

Table 3-2. Instruction Set Summary (Continued)

MNEMONIC DESCRIPTION OPERATION
POP Pop integer from stack *SP--— Dreg
POPF Pop floating-point value from stack *SP--— Rn
PUSH Push integer on stack Sreg =" ++ SP
PUSHF Push floating-point value on stack Rn = *++ SP
RETlcond Return from interrupt conditionally If cond = true or missing:
*SP--— PC
1 = ST (GIE)
Else, continue
RETScond Return from subroutine conditionally If cond = true or missing:
*SP-- = PC
Eise, continue
RND Round floating-point value Round (src) = Rn
ROL Rotate left Dreg rotated left 1 bit = Dreg
ROLC Rotate left through carry Dreg rotated left 1 bit through carry = Dreg
ROR Rotate right Dreg rotated right 1 bit = Dreg
RORC Rotate right through carry Dreg rotated right 1 bit thru carry = Dreg
RPTB Repeat block of instructions src = RE
1 = ST (RM)
Next PC = RS
RPTS Repeat single instruction src = RC
1 = ST (RM)
Next PC = RS
Next PC = RE
SIGI Signal, interlocked Signal interlocked operation
Wait for interlock acknowledge
Clear interlock
STF Store floating-point value Rn — Daddr
STFI Store floating-point value, interlocked Rn = Daddr
Signal end of interlocked operation
STI Store integer Sreg —* Daddr
STH Store integer, interlocked Sreg —* Daddr
Signal end of interlocked operation
LEGEND:
src - general addressing modes Dreg - register address (any register)

src1 - three-operand addressing modes

src2 - three-operand addressing modes

Csrc -~ conditional-branch addressing modes
Sreg - register address (any register)

count - shift value (general addressing modes)
SP - stack pointer

GIE - global interrupt enable register

RM
TOS

- repeat mode bit
- top of stack

Rn - register address (RO-R7)
Daddr - destination memory address

ARn - auxiliary register n (AR0O-AR7)
addr - 24-bit immediate address (label)
cond - condition code (see Section 11)
ST - status register

RE - repeat interrupt register

RS - repeat start register

PC = program counter

Architectural Overview - Memory Organization

Table 3-2. Instruction Set Summary (Continued)

MNEMONIC DESCRIPTION OPERATION
SUBB Subtract integers with borrow Dreg - src - C = Dreg
SUBB3 Subtract integers with borrow src1 - src2 - C = Dreg
(3-operand)
SUBC Subtract integers conditionally if Dreg - src > O:
[(Dreg-src) << 1] OR1 — Dreg
Else, Dreg << 1 — Dreg
SUBF Subtract floating-point values Rn - src = Rn
SUBF3 Subtract floating-point values src1 - src2 = Rn
(3-operand)
SUBI Subtract integers Dreg - src = Dreg
SUBI3 Subtract integers (3-operand) srcl - src2 = Dreg
SUBRB Subtract reverse integer with borrow src - Dreg - C = Dreg
SUBRF Subtract reverse floating-point value src - Rn = Rn
SUBRI Subtract reverse integer src - Dreg = Dreg
SWiI Software interrupt Perform emulator interrupt sequence
TRAPcond Trap conditionally If cond = true or missing:
Next PC = * ++ SP
Trap vector N = PC
0 = ST (GIE)
Else, continue
TSTB Test bit fields Dreg AND src
TSTB3 Test bit fields (3-operand) src1 AND src2
XOR Bitwise exclusive-OR Dreg XOR src = Dreg
XOR3 Bitwise exclusive-OR (3-operand) src1 XOR src2 = Dreg
LEGEND:
src - general addressing modes Dreg - register address (any register)
src1 - three-operand addressing modes Rn - register address (RO-R7)

src2 - three-operand addressing modes
Csrc - conditional-branch addressing modes
Sreg - register address (any register)

count - shift value (general addressing modes)
SP - stack pointer

GIE - global interrupt enable register

RM - repeat mode bit

TOS - top of stack

Daddr - destination memory address
ARn - auxiliary register n (ARO-AR7)
addr - 24-bit immediate address (label)
cond - condition code (see Section 11)

ST - status register

RE - repeat interrupt register
RS - repeat start register

PC - program counter

Architectural Overview - Memory Organization

Table 3-2. Instruction Set Summary (Continued)

MNEMONICI DESCRIPTION I OPERATION
PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS
ABSF Absolute value of a floating-point |src2| = dst1
|| STF || sre3 = dst2
ABSI Absolute value of an integer |src2| = dst1
|| STI || src3 = dst2
ADDF3 Add floating-point src1 + src2 = dst1
|| STF || src3 = dst2
ADDI3 Add integer src1 + src2 — dst1
|| STI || src3 = dst2
AND3 Bitwise logical-AND src1 AND src2 — dstl
|| STI || src3 = dst2
ASH3 Arithmetic shift If count > O:
|| STi src2 << count = dst1
|| src3 = dst2
Else:
src2 >> |count| = dst1
|| sre3 = dst2
FIX Convert floating-point to integer Fix(src2) — dst1
|| STI || src3 = dst2
FLOAT Convert integer to floating-point Float(src2) — dst1
|| STF || src3 = dst2
LDF Load floating-point src2 — dst1
|| STF || sre3 —>dst2
LDI Load integer src2 = dst1
|| STI || src3 = dst2
LSH3 Logical shift If count > O:
|| STI src2 << count — dst1
|| src3 = dst2
Else:
src2 >> |count| = dst1
|| src3 = dst2
MPYF3 Multiply floating-point src1 x src2 — dstil
|| STF || src3 = dst2
MPYI3 Multiply integer srct x src‘2 = dst1
|| STI || src3 = dst2
NEGF Negate floating-point 0- src2 = dst1
|| STF || src3 = dst2
LEGEND:

src1 - register addr (RO-R7)
src3 - register addr (RO-R7)
dst1 - register addr (RO-R7)

src2- indirect addr (disp = 0, 1, IRO, IR1)
src4 - indirect addr (disp = 0, 1, IRO, IR1)
dst2 ~ indirect addr (disp = O, 1, IRO, IR1)

Architectural Overview - Memory Organization

Table 3-2. Instruction Set Summary (Concluded)

MNEMONIC | DESCR!PTION [OPERATION
PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS (Concluded)
NEGI Negate integer 0 - src2 = dst1
|| STI || src3 = dst2
NOT3 Complement src1 — dst1
{| STI || src3 = dst2
OR3 Bitwise logical-OR src1 OR src2 — dst1
|| STI ||src3 = dst2
STF Store floating-point src1 = dst1
|| STF ||src3 = dst2
STI Store integer src1 — dst1
|| STI || sre3 = dst2
SUBF3 Subtract floating-point srct - src2 = dst1
{| STF || sre3 = dst2
SUBI3 Subtract integer srcl - src2 = dstl
|| STI || src3 = dst2
XOR3 Bitwise exclusive-OR src1 XOR src2 — dst1
|| STI || src3 = dst2
PARALLEL LOAD INSTRUCTIONS
LDF Load floating-point src2 = dst1
|| LDF || src4 = dst2
LDI Load integer src2 — dst1
|| LDI || src4 — dst2
PARALLEL MULTIPLY AND ADD/SUBTRACT INSTRUCTIONS
MPYF3 Multiply and add floating-point op1 x op2 = op3
|| ADDF3 || op4 + opb = opb
MPYF3 Multiply and subtract floating-point op1 x op2 = op3
|| SUBF3 || op4 - op5 = opb6
MPYI3 Multiply and add integer op1 x op2 - op3
|| ADDI3 || op4 + op5 = opb6
MPYI3 Multiply and subtract integer op1 x op2 = op3
|| SUBI3 || op4 - op5 —* opb6
LEGEND:

src1 - register addr (RO-R7)
src3 - register addr (R0-R7)
dst1 - register addr (RO-R7)
op3 - register addr (RO or R1)

src2 - indirect addr (disp = 0, 1, IRO, IR1)
src4 - indirect addr (disp = 0, 1, IR0, IR1)
dst2 - indirect addr (disp = 0, 1, IRO, IR1)
op6 - register addr (R2 or R3)

op1,0p2.0p4,0p5 - Two of these operands must be specified using register addr.
and two must be specified using indirect

Architectural Overview - Internal Bus Operation

3.3 Internal Bus Operation

3-20

A large portion of the TMS320C30’s high performance is due to the internal
busing and the parallelism possible because of this busing. The separate
program buses (PADDR and PDATA), data buses (DADDR1, DADDR2, and
DDATA), and DMA buses (DMAADDR and DMADATA) allow for parallel
program fetches, data accesses, and DMA accesses. These buses connect all
of the physical spaces (on-chip memory, off-chip memory, and on-chip pe-
ripherals) supported by the TMS320C30.

The program counter (PC) is connected to the 24-bit program address bus
(PADDR). The instruction register (IR) is connected to the 32-bit program
data bus (PDATA). These buses can fetch a single instruction word every
machine cycle.

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data
data bus (DDATA) support two data memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The
CPU1 and CPU2 buses can carry two data memory operands to the multiplier,
ALU, and register file every machine cycle. Also internal to the CPU are reg-
ister buses REG1 and REG2 that can carry two data values from the register
file to the multiplier and ALU every machine cycle.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a 32-bit data bus (DMADATA). These buses allow the DMA to perform me-
mory accesses in parallel with the memory accesses occurring from the data
and program buses.

Architectural Overview - External Bus Operation

3.4 External Bus Operation

The TMS320C30 provides two external interfaces: the primary bus and ex-
pansion bus. Both consist of a 32-bit data bus and a set of control signals.
The primary bus has a 24-bit address bus, whereas the expansion bus has a
13-bit address bus. Both buses can be used to address external program/data
memory or |/O space. The buses also have an external RDY signal for wait-
state generation. Additional wait states may be inserted under software con-
trol. Refer to Section 8 for detailed information on external bus operation.

The TMS320C30 supports four external interrupts (INT3-INTO), a number of
internal interrupts, and a nonmaskable external RESET signal. Two external I/0O
flags, XFO and XF1, can be configured as input or output pins under software
control. These pins are also used by the interlocked operations of the
TMS320C30. The interlocked-operations instruction group supports multi-
processor communication (see Section 7 for examples of the use of inter-
locked instructions).

3-21

Architectural Overview - Peripherals

3.5 Peripherals

All TMS320C30 peripherals are controlled through memory mapped registers
on a dedicated peripheral bus, composed of a 32-bit data bus and a 24-bit
address bus. This peripheral bus permits straightforward communication to
the peripherals. The TMS320C30 peripherals include two timers and two se-
rial ports. Figure 3-5 shows the peripherals with associated buses and signals.
Refer to Section 9 for detailed information on the peripherals.

I 2o T SERIAL PORT 0
SRr= PORT
CONTROL REGISTER
<:> o R/X TIMER
REGISTER
N DATA TRANSMIT
) REGISTER
A A DATA RECEIVE
REGISTER

a—p— FSXO0
———— DX0
~a—— CLKXO0
l~t—— FSRO

<3Iogmg
moO>»ownm

~=—— DRO
es—s— CLKRO

- SERIAL PORT 1
o ea—— FSX1
PORT

3-22

CPIMIV-—Imu:

>->»0

S C W

< N

CONTROL REGISTER

R/X TIMER
REGISTER

DATA TRANSMIT
REGISTER

P IMIV—I M,

DATA RECEIVE
REGISTER

—— DX1
-a—— CLKX1
~a—— FSR1
es— DR1

-a—s— CLKR1

TIMER 0

T

GLOBAL
CONTROL REGISTER

XEELEES

TIMER PERIOD
REGISTER

TIMER COUNTER
REGISTER

--a—— TCLKO

e Cw

TIMER 1

GLOBAL
CONTROL REGISTER

TIMER PERIOD
REGISTER

oo
xx

TIMER COUNTER
REGISTER

~~e—— TCLK1

Figure 3-5.

Peripheral Modules

Architectural Overview - Peripherals

3.5.1 Timers

The two timer modules are general-purpose 32-bit timer/event counters, with
two signaling modes and internal or external clocking. Each timer has an 1/0
pin that can be used as an input clock to the timer or as an output signal dri-
ven by the timer. The pin may also be configured as a general-purpose 1/0O

pin.

3.5.2 Serial Ports

The two serial ports are totally independent. They are identical with a com-
plementary set of control registers controlling each one. Each serial port can
be configured to transfer 8, 16, 24, or 32 bits of data per word. The clock for
each serial port can originate either internally or externally. An internally
generated divide-down clock is provided. The serial port pins are configurable
as general-purpose 1/0 pins. The serial ports can also be configured as timers.
A special handshake mode allows TMS320C30s to communicate over their
serial ports with guaranteed synchronization.

3-23

Architectural Overview - Direct Memory Access (DMA)

3.6 Direct Memory Access (DMA)

The on-chip Direct Memory Access (DMA) controller can read from or write
to any location in the memory map without interfering with the operation of
the CPU. Therefore, the TMS320C30 can interface to slow external memories
and peripherals without reducing throughput to the CPU. The DMA controller
contains its own address generators, source and destination registers, and
transfer counter. Dedicated DMA address and data buses allow for minimi-

3 zation of conflicts between the CPU and the DMA controller. A DMA opera-
tion consists of a block or single-word transfer to or from memory. Refer to
Section 9 for detailed information on the DMA. Figure 3-6 shows the DMA
controller with associated buses.

/-.omApaTA BUS .../ [P] [P]

o AV NS

Tl assaaamTT P : R ‘ b‘ R]
/.""DMAADDR BUS - - e
“H] [P

E[[H]

> .R] JE,

Al I'r.

DMA CONTROLLER LAl

GLOBAL CONTROL NI
REGISTER T}

SOURCE ADDRESS AL TA]
REGISTER .B1 D,
DESTINATION ADDRESS .9 [9]
REGISTER >/ [R,

TRANSFER COUNTER :
REGISTER g

[B

L U

Figure 3-6. DMA Controller

In summary, the TMS320C30 is a powerful DSP system because of its inte-
gration of a powerful CPU, large memories, and sufficient buses to support its
speed. These along with peripherals such as a DMA controller, two serial

3-24

Architectural Overview - Direct Memory Access (DMA)

ports, and two timers are all contained on a single chip. The total system real
estate and price have been reduced, providing the user with a true single-chip
solution.

3-25

Architectural Overview - Direct Memory Access (DMA)

3-26

Section 4

CPU Registers, Memory, and Cache

The CPU register file contains 28 registers that can be operated upon by the
multiplier and ALU (arithmetic logic unit). Included in the register file are the
auxiliary registers, extended-precision registers, and index registers. The reg-
isters in the CPU register file support addressing, floating-point/integer oper-
ations, stack management, processor status, block repeats, and interrupts.

The TMS320C30 provides a total memory space of 16M (million) 32-bit
words. Program, data, and |/O space are contained within this 16M-word
address space. Two RAM blocks of 1K x 32 bits each and a ROM block of 4K
x 32 bits permit two accesses in a single cycle. The memory maps for the
microcomputer and microprocessor modes are similar, except that the on-chip
ROM is not used in microprocessor mode.

A 64 x 32-bit instruction cache stores often repeated sections of code. This
greatly reduces the number of off-chip accesses necessary and allows code to
be stored off-chip in slower, lower-cost memories. Three bits are provided in
the CPU status register to control the clear, enable, or freeze of the cache.

This section describes in detail each of the CPU registers, the memory maps,
and the instruction cache. Major topics in this section are as follows:

[CPU Register File (Section 4.1 on page 4-2)
- Extended-precision registers (R0-R7)
- Auxiliary registers (ARO-AR7)
- Index registers (IR0, IR1)
- Block size register (BK)
- Data page pointer (DP)
- System stack pointer (SP)
- Status register (ST)
- CPU/DMA interrupt enable register (IE)
- CPU interrupt flag register (IF)
- 1/0 flags register (I0F)
- Repeat counter (RC) and block repeat registers (RS, RE)
- Program counter (PC)

® Memory (Section 4.2 on page 4-11)
- Memory maps
- Peripheral bus map
- Reset/interrupt/trap map

(] Instruction Cache (Section 4.3 on page 4-15)
- Cache architecture
- Cache algorithm
~ Cache control bits

CPU Registers - CPU Register File

4.1 CPU Register File

4-2

The TMS320C30 provides 28 registers in a multiport register file that is tightly
coupled to the CPU. The PC is not included in the 28 registers. All of these
registers can be operated upon by the multiplier and ALU, and can be used
as general-purpose 32-bit registers. However, the registers also have some
special functions for which they are more suited than others. For example, the
eight extended-precision registers are especially suited for maintaining ex-
tended-precision floating-point results. The eight auxiliary registers support
a variety of indirect addressing modes and can be used as general-purpose
32-bit integer and logical registers. The remaining registers provide system
functions such as addressing, stack management, processor status, interrupts,
and block repeat. Refer to Section 6 for detailed information and examples
of the use of CPU registers in addressing.

The registers names and assigned function are listed in Table 4-1.

Table 4-1. CPU Registers

REGISTER ASSIGNED FUNCTION
NAME

RO Extended-precision register O
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 Extended-precision register 3
R4 Extended-precision register 4
R5 Extended-precision register 5
R6 Extended-precision register 6
R7 Extended-precision register 7

ARO Auxiliary register O

AR1 Auxiliary register 1

AR2 Auxiliary register 2

AR3 Aucxiliary register 3

AR4 Auxiliary register 4

AR5 Auxiliary register 5

AR6 Auxiliary register 6

AR7 Auxiliary register 7

DP Data page pointer

IRO Index register O

IR1 Index register 1

BK Block size

SP System stack pointer

ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt flags

10F 1/0 flags

RS Repeat start address

RE Repeat end address

RC Repeat counter

PC Program counter

CPU Registers - CPU Register File

4.1.1 Extended-Precision Registers (R0-R7)

The eight extended-precision registers (RO-R7) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
These registers consist of two separate and distinct regions. Bits 39-32 of the
extended-precision registers are dedicated to the storage of the exponent (e)
of the floating-point number. Bits 31-0 store the mantissa of the floating-
point number. Bit 31 is the sign (s) bit, bits 30 - O are the fraction (f). Any
instruction that assumes the operands are floating-point numbers uses bits
39-0. Figure 4-1 illustrates the storage of 40-bit floating-point numbers in the

extended-precision registers. u
39 32 3130 0
. <] i |
l‘- mantissa —'l

Figure 4-1. Extended-Precision Register Floating-Point Format

For integer operations, bits 31-0 of the extended-precision registers contain
the integer (signed or unsigned). Any instruction that assumes the operands
are either signed or unsigned integers uses only bits 31-0. Bits 39-32 remain
unchanged. This is true for all shift operations. The storage of 32-bit integers
in the extended-precision registers is shown in Figure 4-2.

39 32 31 0

unchanged signed or unsigned integer

Figure 4-2. Extended-Precision Register Integer Format

4.1.2 Auxiliary Registers (AR0O-AR7)

The eight 32-bit auxiliary registers (AR0-AR7) can be accassed by the CPU
and modified by the two Auxiliary Register Arithmetic Units (ARAUs). The
primary function of the auxiliary registers is the generation of 24-bit addresses.
However, they can also be used to perform a variety of functions, such as loop
counters in indirect addressing or as 32-bit general-purpose registers that can
be modified by the multiplier and ALU. Refer to Section 6 for detailed infor-
mation and examples of the use of auxiliary registers in addressing.

4-3

CPU Registers - CPU Register File

4.1.3 Data Page Pointer (DP)

The data page pointer (DP) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressing mode as a pointer to the page
of data being addressed. Data pages are 64 k words long with a total of 256
pages. Bits 31 - 8 are reserved and should always be kept zero by the user.

4.1.4 Index Registers (1RO, IR1)

The 32-bit index registers (1RO and IR1) are used by the Auxiliary Register
Arithmetic Unit (ARAU) for indexing the address. Refer to Section 6 for de-
tailed information and examples of the use of index registers in addressing.

n 4.1.5 Block Size Register (BK)

The 32-bit block size register (BK) is used by the ARAU in circular addressing
to specify the data block size (see Section 6.3).

4.1.6 System Stack Pointer (SP)

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The SP always points to the last element pushed
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the
stack perform pre-increment and post-decrement on all 32 bits of the stack
pointer. However, only the 24 LSBs are used as an address. Refer to Section
6.5 for information about system stack management.

4.1.7 Status Register (ST)

4-4

The status register (ST) contains global information relating to the state of the
CPU. Typically, operations set the condition flags of the status register ac-
cording to whether the result is zero, negative, etc. This includes register load
and store operations as well as arithmetic and logical functions. When the
status register is loaded, however,a bit-for-bit replacement is performed of the
current contents with the contents of the source operand regardiess of the
state of any bits in the source operand. Therefore, following a load, the con-
tents of the status register are identically equal to the contents of the source
operand. This allows the status register to be easily saved and restored. At
system reset, O is written to this register.

The format of the status register is shown in Figure 4-3. Table 4-2 defines the
status register bits, their names and functions.

CPU Registers - CPU Register File

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|xxIxx[xx[xxTxxIxxIxxTxxlxxlxxlxxlxxlxxlxxlxx[xxI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| xx | xx Jale] cc| ce|cF| xx [amfovm[Lurf v fur[N [z [v] c]
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

NOTE: xx = reserved bit.
R = read, W = write.

Figure 4-3. Status Register

4-5

CPU Registers - CPU Register File

Table 4-2. Status Register Bits Summary

BIT | NAME FUNCTION

0 C Carry flag

1 \ Overflow flag

2 z Zero flag

3 N Negative flag

4 UF Floating-point underfiow flag

5 Lv Latched overfiow flag

6 LUF Latched floating-point underflow flag

7 OVM Overflow mode flag. This flag affects only the integer operations. If
OVM = 0, the overflow mode is turned off; integer results that over-
flow are treated in no special way. If OVM = 1, integer results over-
flowing in the positive direction are set to the most positive 32-bit
two’s-complement number (7FFFFFFFh). If OVM = 1, integer results
overflowing in the negative direction are set to the most negative
32-bit two’'s-complement number (80000000h). Note that the func-
tion of V and LV is independent of the setting of OVM.

8 RM Repeat mode flag. If RM = 1, the PC is being modified in either the
repeat block or repeat-single mode.

9 [Reserved| Read as 0.

10 CF Cache Freeze. When CF = 1, the cache is frozen. If the cache is en-
abled (CE = 1), fetches from the cache are allowed, but no modifica-
tion of the state of the cache is performed. This function can be used
to save frequently used code resident in the cache. At reset, 0 is writ-
ten to this bit. Cache clearing (CC=1) is allowed when CF=0.

11 CE Cache Enable. CE = 1 enables the cache, allowing the cache to be
used according to the LRU cache algorithm. CE = O disables the
cache; no update or modification of the cache can be performed. No
fetches are made from the cache. This function is useful for system
debug. At system reset, O is written to this bit. Cache clearing (CC
= 1) is allowed when CE=0.

12 CcC Cache Clear. CC = 1 invalidates all entries in the cache. This bit is
always cleared after it is written to and thus always read as 0. At reset,
0 is written to this bit.

13 GIE Global interrupt enable. If GIE = 1, the CPU responds to an enabled
interrupt. If GIE = 0, the CPU does not respond to an enabled inter-
rupt.

14-1Y Reserved| Read as 0.
16-31| Reserved| Value undefined.

CPU Registers - CPU Register File

4.1.8 CPU/DMA Interrupt Enable Register (IE)

31

30

29

The CPU/DMA interrupt enable register (IE) is a 32-bit register (see Figure
4-4). The CPU interrupt enable bits are in locations 10-0. The DMA interrupt
enable bits are in locations 26-16. A 1 in a CPU/DMA interrupt enable reg-
ister bit enables the corresponding interrupt. A O disables the corresponding
interrupt. At reset, O is written to this register. Table 4-3 defines the register
bits, the bit names, and the bit functions.

28 27 26 25 24 23 22 21 20 19 18 17 16

XX

XX

XX

xx | xx |EDINT{ETINT1|ETINTOJERINT1|EXINT1]|ERINTO|EXINTO|EINT3 | EINT2| EINT1| EINTO
(DMA)| (DMA) | (DMA) | (DMA) | (DMA) | (DMA) | (DMA) |(DMA)|(DMA)|(DMA)|(DMA)

15

14

13

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
12 1 10 9 8 7 6 5 4 3 2 1 0

XX

XX

XX

xx |EDINT{ETINTT1{ETINTO|ERINT1{EXINT1|ERINTO|EXINTO| EINT3| EINT2 | EINT1 | EINTO
(CPU)| (CPU) | (CPU) | (CPU) | (CPU) | (CPU) | (CPU) [(CPU)|(CPU)|(CPU)|(CPU)

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

NOTE: xx = reserved bit, read as 0.
R = read, W = write.

Figure 4-4. CPU/DMA Interrupt Enable Register (IE)

4-7

CPU Registers - CPU Register File

Table 4-3. IE Register Bits Summary

BIT NAME FUNCTION
0 EINTO Enable external interrupt 0 (CPU)
1 EINT1 Enable external interrupt 1 (CPU)
2 EINT2 Enable external interrupt 2 (CPU)
3 EINT3 Enable external interrupt 3 (CPU)
4 EXINTO Enable serial port O transmit interrupt (CPU)
5 ERINTO Enable serial port O receive interrupt (CPU)
6 EXINT1 Enable serial port 1 transmit interrupt (CPU)
7 ERINT1 Enable serial port 1 receive interrupt (CPU)
8 ETINTO Enable timer O interrupt (CPU)
9 ETINT1 Enable timer 1 interrupt (CPU)
10 EDINT Enable DMA controller interrupt (CPU)
11-15] Reserved Value undefined
16 EINTO Enable external interrupt 0 (DMA)
17 EINT1 Enable external interrupt 1 (DMA)
18 EINT2 Enable external interrupt 2 (DMA)
19 EINT3 Enable external interrupt 3 (DMA)
20 EXINTO Enable serial port 0 transmit interrupt (DMA)
21 ERINTO Enable serial port O receive interrupt (DMA)
22 EXINT1 Enable serial port 1 transmit interrupt (DMA)
23 ERINT1 Enable serial port 1 receive interrupt (DMA)
24 ETINTO Enable timer O interrupt (DMA)
25 ETINT1 Enable timer 1 interrupt (DMA)
26 EDINT Enable DMA controller interrupt (DMA)
27-32| Reserved Value undefined

4.1.9 CPU Interrupt Flag Register (IF)

4-8

The 32-bit CPU interrupt flag register (IF) is shown in Figure 4-5. A1 in a
CPU interrupt flag register bit indicates that the corresponding interrupt is set.
The IF bits are set to 1 when an interrupt occurs. They may also be set to 1
through software to cause an interrupt. A O indicates that the corresponding
interrupt is not set. If a 0 is written to an interrupt flag register bit, the corre-
sponding interrupt is cleared. At reset, O is written to this register. Table 4-4
lists the bit fields, bit field names, and bit field functions of the CPU interrupt

flag register.

CPU Registers - CPU Register File

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Lxxlxxlxxlxxlxxlxx[XX l XX I o) o | | oxx Ixxlxxlxxlxxl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[x| xx [xx] xx] xx [DINT] TINT1 | TINTO[RINT1 [XINT1 | RINTO| XINTO|INT3|INT2]INT1]INTO]
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

NOTE: xx = reserved bit, read as 0.
R = read, W = write.

Figure 4-5. CPU Interrupt Flag Register (IF)

Table 4-4. IF Register Bits Summary n
BIT NAME FUNCTION
0 INTO External interrupt O flag
1 INT1 External interrupt 1 flag
2 INT2 External interrupt 2 flag
3 INT3 External interrupt 3 flag
4 XINTO Serial port O transmit interrupt flag
5 RINTO Serial port O receive interrupt flag
6 XINT1 Serial port 1 transmit interrupt flag
7 RINT1 Serial port 1 receive interrupt flag
8 TINTO Timer O interrupt flag
9 TINT1 Timer 1 interrupt flag
10 DINTO DMA channel interrupt flag
11-31| Reserved Value undefined

4.1.10 1/0O Flags Register (IOF)

The 1/0 flags register (IOF) controls the function of the dedicated external
pins, XFO and XF1. These pins may be configured for input or output (see
Table 4-5). They may also be read from and written to. At reset, O is written
to this register. The bit fields, bit field names, and bit field functions are shown

in Table 4-5.

31 30 29 28 27 26 256 24 23 22 21 20 19 18 17 16
Do oo Poocb s Pooc oo oo b] T e b P o o | o [xx]
1514 13 12 1110 9 8 7 6 5 4 3 2 10
o | xox f o | x| o f oo | | x| inxet | outxen [T70xe1 | xx | inxeo [ouTxFo | T/0xFof xx |

R R/W R/W R R/W R/W

NOTE: xx = reserved bit, read as 0.
R = read, W = write.

Figure 4-6. 1/0 Flag Register (IOF)

4-9

CPU Registers - CPU Register File

Table 4-5. IOF Register Bits Summary

BIT | NAME FUNCTION

O | Reserved| Read asO.

1 | T/OXFO | 1f [/OXFO = 0, XFO is configured as a general-purpose input pin.
If I/OXFO = 1, XFO is configured as a general-purpose output pin.

OUTXFO | Data output on XFO.

INXFO Data input on XFO. A write has no effect.

2
3
4 | Reserved| Read as 0.
5

T/OXF1 If I/OXF1 = 0, XF1 is configured as a general-purpose input pin.
If I/OXF1 = 1, XF1 is configured as a general-purpose output pin.

6 | OUTXF1 Data output on XF1.

7 INXF1 Data input on XF1. A write has no effect.

8-31| Reserved | Read as 0.

4.1.11 Repeat Counter (RC) and Block Repeat Registers (RS, RE)

The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performing a block repeat.

The repeat start address register (RS) is a 32-bit register containing the start-
ing address of the block of program memory to be repeated when operating
in the repeat mode.

The 32-bit repeat end address register (RE) contains the ending address of the
block of program memory to be repeated when operating in the repeat mode.

4.1.12 Program Counter (PC)

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. While the program counter is not part of the
CPU register file, it is a register that can be modified via instructions that mo-
dify the program flow.

4.1.13 Reserved Bits and Compatibility

In order to retain compatibility with future members of the TMS320C3X family
of microprocessors, reserved bits that are read as zero must be written as zero.
Reserved bits that have an undefined value must not have their current value
modified. In other cases, the user should maintain the reserved bits as speci-
fied.

Memory - Memory Maps

4.2 Memory

The total memory space of the TMS320C30 is 16M (million) 32-bit words.
Program, data, and 1/0O space are contained within this, allowing tables, co-
efficients, program code, or data to be stored in either RAM or ROM. In this
way, memory usage can be maximized and memory space allocated as desired.

RAM blocks 0 and 1 are each 1K x 32 bits. The ROM block is 4K x 32 bits.
Each RAM and ROM block is capable of supporting two accesses in a single
cycle. The separate program buses, data buses, and DMA buses allow for
parallel program fetches, data reads/writes, and DMA operations. This is cov-
ered in detail in Section 10.3.

4.21 Memory Maps

The memory map is dependent upon whether the processor is running in the
microprocessor mode (MC/MP = Q) or the microcomputer mode (MC/MP =
1). The memory maps for these modes are very similar (see Figure 4-7). Lo-
cations 800000h through 801FFFh are mapped to the expansion bus. When
this region is accessed, MSTRB is active. Locations 802000h through
803FFFh are reserved. Locations 804000h through 805FFFh are mapped to
the expansion bus. When this region is accessed, TOSTRB is active. Locations
806000h through 807FFFh are reserved. All of the memory-mapped periph-
eral registers are in locations 808000h through 8097FFh. In both modes,
RAM block 0 is located at addresses 809800h through 809BFFh, and RAM
block 1 is located at addresses 809C00h through 809FFFh. Memory locations
80A000h through OFFFFFFh are accessed over the external memory port
(STRB active).

In microprocessor mode, the 4K on-chip ROM is not mapped into the
TMS320C30 memory map. Locations Oh through 3Fh consist of interrupt
vector, trap vector, and reserved locations, all of which are accessed over the
external memory port (STRB active). Locations 40h through 7FFFFFh are also
accessed over the external memory port.

In microcomputer mode, the 4K on-chip ROM is mapped into locations Oh
through OFFFh. There are 192 locations (Oh through BFh) within this block
for interrupt vectors, trap vectors, and a reserved space. Locations 1000h
through 7FFFFFh are accessed over the external memory port (STRB active).

Reserved portions of the TMS320C30 memory space and reserved peripheral
bus addresses should not be read and written by the user. Doing so may
cause the TMS320C30 to halt operation and require a system reset to restart.

4-11

Memory - Memory Maps

Oh

BFh
COh

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

807FFFh

808000h

8097FFh

809800h

809BFFh
809CO00h

809FFFh
80A000h

OFFFFFFh

INTERRUPT LOCATIONS
AND RESERVED (192)
EXTERNAL STRB ACTIVE

EXTERNAL
STRB ACTIVE

EXPANSION BUS
MSTRB ACTIVE (8K)

RESERVED
(8K)

EXPANSION BUS
TOSTRB ACTIVE (8K)

RESERVED
(8K)

PERIPHERAL BUS
MEMORY-MAPPED
REGISTERS
(INTERNAL) (6K)

RAM BLOCK 0 (1K)
(INTERNAL)

RAM BLOCK 1 (1K)
(INTERNAL)

EXTERNAL
STRB ACTIVE

MICROPROCESSOR MODE

Oh

BFh
COh

OFFFh
1000h

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

807FFFh
808000h
8097FFh

809800h

809BFFH
809C00h

809FFFh
80A000h

OFFFFFFh

Figure 4-7. Memory Maps

INTERRUPT LOCATIONS
AND RESERVED (192)

ROM
(INTERNAL)

EXTERNAL
STRB ACTIVE

EXPANSION BUS
MSTRB ACTIVE (8K)

RESERVED
(8K)

EXPANSION BUS
TOSTRB ACTIVE (8K)

RESERVED
(8K)

PERIPHERAL BUS
MEMORY-MAPPED
REGISTERS
(INTERNAL) (6K)

RAM BLOCK 0 (1K)
(INTERNAL)

RAM BLOCK 1 (1K)
(INTERNAL)

EXTERNAL
STRB ACTIVE

MICROPROCESSOR MODE

Memory - Memory Maps

4.2.2 Peripheral Bus Map

The memory-mapped peripheral registers are located starting at address
808000h. The peripheral bus memory map is shown in Figure 4-8. Each pe-
ripheral occupies a 16-word region of the memory map. Locations 808010h

through 80801Fh and locations 808070h through 8097FFh are reserved.

808000h
80800Fh

808010h
80801Fh

808020h
80802Fh

808030h
80803Fh

808040h
80804Fh

808050h
80805Fh

808060h
80806Fh

808070h
8097FFh

Figure 4-8. Peripheral Bus Memory Map

DMA CONTROLLER REGISTERS
(16)

RESERVED
(16)

TIMER O REGISTERS
(16)

TIMER 1 REGISTERS
(16)

SERIAL PORT 0 REGISTERS
(16)

SERIAL PORT 1 REGISTERS
(16)

PRIMARY AND EXPANSION PORT
REGISTERS (16)

RESERVED

4.2.3 Reset/Interrupt/Trap Vector Map

The addresses for the reset, interrupt, and trap vectors are Oh through 3Fh, as
shown in Figure 4-9. The vectors stored in these locations are the addresses
of the start of the respective reset, interrupt, and trap routines. For example,
at reset, the contents of memory location Oh (the reset vector) are loaded into
the PC and execution begins from that address.

Traps 28-31 are reserved and should not be used by the user.

Memory - Memory Maps

00h RESET
01h INTO
02h INT1
03h INT2
04h INT3
05h XINTO
06h RINTO
07h XINTO
08h RINT1
09h TINTO
OAh TINT1
0Bh DINT
0Ch
RESERVED
1Fh
20h TRAP O
3Bh TRAP 27
3Ch TRAP 28 (Reserved)
3Dh TRAP 29 (Reserved)
3Eh TRAP 30 (Reserved)
3Fh TRAP 31 (Reserved)

Figure 4-9. Reset, Interrupt, and Trap Vector Locations

4-14

Instruction Cache - Cache Architecture/Algorithm

4.3 Instruction Cache

A 64 x 32-bit instruction cache allows for maximum system performance with
minimal system cost. The instruction cache stores sections of code that can
be fetched when repeatedly accessing time-critical code. This greatly reduces
the number of off-chip accesses necessary and allows for code to be stored
off-chip in slower, lower-cost memories. The external buses are also freed
from program fetches, so they can be used by the DMA or other system ele-
ments.

The cache can operate in a completely automatic fashion without the need for
user intervention. A form of the LRU (least-recently-used) cache update al-
gorithm is used (see Section 4.3.2).

4.3.1 Cache Architecture

The instruction cache (see Figure 4-10) contains 64 32-bit words of RAM.
The cache is divided into two 32-word segments. Associated with each seg-
ment is a 19-bit segment start address (SSA) register. For each word in the
cache, there is a corresponding single-bit: Present (P) flag.

SEGMENT START

ADDRESS REGISTERS P SEGMENT WORDS LRU
FLAGS STACK MOST RECENTLY USED
SEGMENT NUMBER
I SSA REGISTERO | [SEGMENT WORD 0 -
fe—— 19— o] 1 SEGMENT WORD 1 ™ LEAST RECENTLY USED
H H SEGMENT 0 SEGMENT NUMBER
30 SEGMENT WORD 30
31 SEGMENT WORD 31
——— 322 —]
| ssameaister1 | | o SEGMENT WORD 0
1 SEGMENT WORD 1
i H SEGMENT 1
30 SEGMENT WORD 30
31 SEGMENT WORD 31

Figure 4-10. Instruction Cache Architecture

When the CPU requests an instruction word from external memory, a check
is made to determine if the word is already contained in the instruction cache.
The partitioning of an instruction address as used by the cache control algo-
rithm is shown in Figure 4-11. The 19 most-significant bits of the instruction
address are used to select the segment and the 5 least-significant bits define
the address of the instruction word within the pertinent segment. The 19
MSBs of the instruction address are compared with the two segment start

4-15

Instruction Cache - Cache Architecture/Algorithm

address (SSA) registers. If a match is found, a check is made of the relevant
P flag. The P flag indicates whether or not the word within a particular seg-
ment is already present in cache memory.

23 54 0

segment start address instruction word
(SSA) address within segment

Figure 4-11. Address Partitioning for Cache Control Algorithm

If there is no match, one of the segments must be replaced by the new data.
The segment replaced in this circumstance is determined by the LRU (least-
recently-used) algorithm. The LRU stack (see Figure 4-10) is maintained for
this purpose.

The LRU stack tracks which of the two segments qualifies as the least-re-
cently-used after each access to the cache, therefore the stack contains either
0,1 or 1,0. Each time a segment is accessed, its segment number is removed
from the LRU stack and pushed on the top of the LRU stack. Therefore, the
number at the top of the stack is the most-recently-used segment number and
the number at the bottom of the stack is the least-recently-used segment
number.

At system reset, the LRU stack is initialized with O at the top, 1 at the bottom,
and all P flags in the instruction cache are cleared. If both SSA registers are
equal (due to system reset conditions) and a cache hit occurs, the instruction
word is fetched from the most recently used segment.

When a replacement is necessary, the least-recently-used segment is selected
for replacement. Also, the 32 P flags for the segment to be replaced are set
to 0, and the segment’s SSA register is replaced with the 19 MSBs of the in-
struction address. ,*

4.3.2 Cache Algorithm

When the TMS320C30 requests an instruction word from external memory,
two possible actions occur: a cache hit or a cache miss. These are described
in the following list:

[] Cache Hit. The requested instruction is contained within the cache
and the following actions occur:

1) The instruction word is read from the cache.

2) The segment number of the segment within which the word is
contained is removed from the LRU stack and pushed to the top
of the LRU stack, thus moving the other segment number to the
bottom of the stack.

{ Cache Miss. The instruction is not contained in the cache. Types of
cache miss are:
1) Word Miss. The segment address register matches the instruction
address, but the relevant P flag is not set. The following actions
occur in parallel:

Instruction Cache - Cache Architecture/Algorithm

~ The instruction word is read from memory and copied into
the cache.

~ The segment number of the segment within which the word
is contained is removed from the LRU stack and pushed to
the top of the LRU stack, thus moving the other segment
number to the bottom of the stack.

~ The relevant P flag is set.

2) Segment Miss. Neither of the segment addresses matches the in-

struction address. The following actions occur in parallel:

~ The least-recently-used segment is selected for replacement.
The P flags for all 32 words are cleared.

~ The SSA register for the selected segment is loaded with the
19 MSBs of the address of the requested instruction word.

- The instruction word is fetched and copied into the cache.
It goes into the appropriate word of the least-recently-used
segment. The P flag for that word is set 1.

~ The segment number of the segment containing the instruc-
tion word is removed from the LRU stack and pushed to the
top of the LRU stack, thus moving the other segment number
to the bottom of the stack.

Only instructions may be fetched from the program cache. All reads and writes
of data in memory bypass the cache. Program fetches from internal memory
do not modify the cache and will not generate cache hits or misses. The pro-
gram cache is a single-access memory block. Dummy program fetches (i.e.,
following a branch) are treated by the cache as valid program fetches and can
generate cache misses and cache updates.

Care should be taken when using self-modifying code. If an instruction re-
sides in cache and the corresponding location in primary memory is modified,
the copy of the instruction in cache is not modified.

More efficient use of the cache can be made by aligning program code on 32
word address boundaries. This can be done using the ALIGN directive when
coding assembly language.

4.3.3 Cache Control Bits

Three cache control bits are located in the CPU status register: the cache clear
bit (CC), cache enable bit (CE), and the cache freeze bit (CF).

Cache Clear Bit (CC). Writing a 1 to the cache clear bit (CC) invalidates
all entries in the cache. All P flags in the cache are cleared. The CC bit is al-
ways cleared after the cache is cleared. It is therefore always read as a 0. At
reset the cache is cleared and O is written to this bit.

Cache Enable Bit (CE). Writing a 1 to this bit enables the cache. When
enabled, the cache is used according to the previously described cache algo-
rithm. Writing a 0 to the cache enable bit disables the cache; no updates or
modification of the cache can be performed. Specifically, no SSA register
updates are performed, no P flags are modified (un<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>