_.THE EXPLORER™ SYST SOFI‘WARE MANUALS

Mastering E"xpiés}e’r‘ Techriical Summary. .. . o ’, 2243189-0001

the Explorer . Introduction to the Explorer: Sy e JR .. 2243190-0001
Environment < Exploter. Zmacs: Edltor Tutona ‘ e i '2243191-0001
 Explorer-Glossary-:. .. ;.. e '2243134-0001
Explorer ‘Networking,. Reference_ R L AR RETERRPPRY 2243206-0001
“Explorer:Diagnostics = .5 iia vy 25 i v ek 2533554-0001
-“Explarer:Master. Index to- Seftware Manualsv B e e 2243198-0001

Explorer System Software Installatlon Gmde e . 2243205-0001

s ey . 25498300001

Programming
With the Explorer] . i e e e e ... 2243201-0001
put/Outpu;. Reference.,; R e e T e ey . 2549281-0001
3 c5. Editor ‘Reference . .0 v . ouiiia.. 2243192-0001
“Explorer Tools and Utilities " ... vv.v.... G e 2549831-0001

~Explorer-

'indow - System: Referenc 2243200-0001

Explorer Options Explorer Natural Language Menu' System User’s Gulde ; 2243202-0001

* “Explorer.-Relationial Table- Management o o

System User’s: Guide ."....., e JR T 2243203-0001

_ Explorer. Grasper User’s. Guxde' A .-2243135-0001

Explorer- Prolog User's Guide . 5. vvvennnennn. PRI 2537248-0001

" Programming -in Prolog, by Clocksin and Mellish 2537157-0001
"Explorer‘Color ‘Graphics User's Guide. . 2537157-0001"

. Explorer TCP/IP User’s Guide :.....c...ovviiiiii. 2537150-0001

Explorer LX"‘ User § Gmde 2537225-0001

i 25372270001

R : 2546890-0001

Explorar DECnet Use;-;.s:Gmde 2537223-0001
Persenal’*Consultant Phis’ Expl 1 ¢-) P 2537259-0001 °

System Software Explorer: ys*em Software Des;gn Notes 2243208-0001

Internals . ‘Release:. Informatlon, Explcrer System Software 25'4»98’44-0001

Explorer and. NuBus af; trademarks of“_’l"exds-'lns‘truments Incorporated.
Explorer LX is a trademark -of 'I“ez'as)iixﬁtruments Incorporated.

NFS is a trademark of Sun Microéys‘téms, Inc.

DECnet is a trademark of Digital Equipment Corporation.

Personal Consultant is a tradema:k of Tgxas Instruments Incorporated.

o AL 0 5 T

. THE EXPLORER™ SYSTEM HARDWARE MANUALS

LUGG e 1
1 System Level

Explorer 7-Slot System Installation 2243140-0001
Publications Explorer System Field Maintenance 2243141-0001
LG Explorer System Field Maintenance Documentation Kit 2243222-0001
S) Explorer System Field Maintenance Supplement 2537183-0001
[T — Explorer System Field Maintenance Supplement
Documentation Kit.............o, 2549278-0001
e Explorer NuBus™ System Architecture
S General Descriptionc.covveiieinnnnne... 2537171-0001
System Enclosure Explorer 7-Slot System Enclosure General Description 2243143-0001
Equipment Explorer Memory General Description (8-megabytes) 2533592-0001
_Publications Explorer 32-Megabyte Memory General Description 2537185-0001
BO%-vaoee Explorer Processor General Description 2243144-0001
enm e 68020-Based Processor General Description 2537240-0001
Explorer II Processor and Auxiliary Processor
Options General Descriptioncc0ueuen.. 2537187-0001
Fhne Explorer System Interface General Description 2243145-0001
s Explorer NuBus Peripheral Interface
- General Description (NUPI board) 2243146-0001
**Display Terminal Explorer Display Unit General Description 2243151-0001
20° Publications CRT Data Display Service Manual, Panasonic
T code number FTD85055057Cccvvvreennn.. 2537139-0001
. Model 924 Video Display Terminal User’s Guide 2544365-0001
Lol =Ca .
FOT i
~-143-Megabyte Explorer Mass Storage Enclosure General Description 2243148-0001

Disk/Tape Enclosure
(- Eublications

B AN 74 T A

100075 2
TOCT-AT Al

SOGMAT B

Explorer Winchester Disk Formatter (ADAPTEC)
Supplement to Explorer Mass Storage Enclosure

General Descriptionccovitiivenennenenana, 2243149-0001
Explorer Winchester Disk Drive (Maxtor)

Supplement to Explorer Mass Storage Enclosure

General Descriptioncovitiiiinennennnnennnn 2243150-0001
Explorer Cartridge Tape Drive (Cipher)

Supplement to Explorer Mass Storage Enclosure

General Descriptionooitiitiiiiniennenn.. 2243166-0001
Explorer Cable Interconnect Board (2236120-0001)

Supplement to Explorer Mass Storage Enclosure

General Descriptioncociiieirniiinenen.n 2243177-0001
£ O} o
—me]143-Megabyte XT-1000 Service Manual, 5 1/4-inch Fixed Disk
Disk Drive Vendor Drive, Maxtor Corporation, part number 20005
Publications (5 1/4-inch Winchester disk drive, 112 megabytes) 2249999-0001

ACB-5500 Winchester Disk Controller User’s
Manual, Adaptec, Inc., (formatter for the
5 1/4-inch Winchester disk drive) - 2249933-0001

i/4-inch Tape Drive
Vendor Publications

Series 540 Cartridge Tape Drive Product Description,
Cipher Data Products, Inc., Bulletin Number -
01-311-0284-1K (1/4-inch tape drive)2249997-0001

MTO01 Tape Controller Technical Manual, TR
Emulex Corporation, part number MT0151001
(formatter for the 1/4-inch tape drive) 2243182-0001

T S A M

o 1

182-Megabyte
Disk/Tape Enclosure
MSU II Publications

Mass Storage Unit (MSU II) -
General DesCriptioncovviiiiiiiiiiinnnnennas 2537197-0001

182-Megabyte
Disk Drive Vendor
Publications

Control Data® WREN™ III Disk Drive OEM Manual, D,
part number 77738216, Magnetic Peripherals, Inc., L
a Control Data COMPANY s+ v evrennnnsrnenrsennsss 2546867-0001

% ¥ T

515-Megabyte Mass
Storage Subsystem
Publications

SMD/515-Megabyte Mass Storage Subsystem General
Description (includes SMD/SCSI controller
and 515-megabyte disk drive enclosure) 2537244-0001

515-Megabyte Disk
Drive Vendor
Publications

-~

515-Megabyte Disk Drive Documentation Master Kit

(Volumes 1, 2, and 3), Control Data Corporation 2246129-0002
Volume 1, General Description, Operation, Installation

and Checkout, and Part Data 2246125-0004
Volume 2, Theory, General Maintenance, Trouble

Analysis, Electrical Checks, and Repair Information 2246125-0005

Volume 3, Diagramscovitviiinninennvinnes 2246125-0006

1/2-Inch Tape Drive
Publications

MT3201 1/2-Inch Tape Drive
General Description

...............................

1/2-Inch Tape Drive
Vendor Publications

Cipher CacheTape® Documentation Manual Kit
(Volumes 1 and 2 With SCSI Addendum and,

Logic Diagram), Cipher Data products 2246130-0001
1/2-Inch Tape Drive Operation and Maintenance

(Volume 1), Cipher Data Products 2246126-0001
1/2-Inch Tape Drive Theory of Operation

(Volume 2), Cipher Data Products 2246126-00602
SCSI Addendum With Logic Diagram,

Cipher Data Productscoiiiiiiiinnvnn... 2246126-0003

LS

LERE
L

Control Data is a registered trademark of Control Data Corporation.
WREN is a trademark of Control Data Corporation.
CacheTape is a registered trademark of Cipher Data Products, Inc.

Printer Model 810 Printer Installation and Operation Manual 2311356-9701
Publications Omni 800™ Electronic Data Terminals Maintenance
Manual for Model 810 Printers 0994386-9701
Model 850 RO Printer User’'s Manual 2219890-0001
Model 850 RO Printer Maintenance Manual 2219896-0001
Model 850 XL Printer User’s Manual e 2243250-0001
Model 850 XL Printer Quick Reference Guide 2243249-0001
Model 855 Printer Operator’s Manual 2225911-0001
Model 855 Printer Technical Reference Manual 2232822-0001
Model 855 Printer Maintenance Manual 2225914-0001
Model 860 XL Printer User’'s Manual 2239401-0001
Model 860 XL Printer Maintenance Manual 2239427-0001
Model 860 XI Printer Quick Reference Guide 2239402-0001
Model 860/859 Printer Technical Reference Manual 2239407-0001
Model 865 Printer Operator’s Manual 2239405-0001
Model 865 Printer Maintenance Manual 2239428-0001
Model 880 Printer User’s Manual 2222627-0001
Model 880 Printer Maintenance Manual 2222628-0001
OmniLaser™ 2015 Page Printer Operator’s Manual 2539178-0001
OmniLaser 2015 Page Printer Technical Reference 2539179-0001
OmniLaser 2015 Page Printer Maintenance Manual 2539180-0001
OmniLaser 2108 Page Printer Operator’s Manual 2539348-0001
OmniLaser 2108 Page Printer Technical Reference 2539349-0001
OmniLaser 2108 Page Printer Maintenance Manual 2539350-0001
OmniLaser 2115 Page Printer Operator’s Manual 2539344-0001
OmniLaser 2115 Page Printer Technical Reference 2539345-0001
OmniLaser 2115 Page Printer Maintenance Manual 2539356-0001
Communications 990 Family Communications Systems Field Reference 2276579-9701
Publications EI990 Ethernet® Interface Installation and Operation 2234392-9701
Explorer NuBus Ethernet Controller
General Descriptioncovviiunnnennnnn... 2243161-0001
Communications Carrier Board and Options
General Descriptionc..couiiiiinnnnennnnnn. 2537242-0001

Omni 800 is a trademark of Texas Instruments Incorporated.
OmniLaser is a trademark of Texas Instruments Incorporated.
Ethernet is a registered trademark of Xerox Corporation.

CONTENTS

Section Title
About This Manual
1 Introduction
2 Symbols
3 Numbers
4 Characters
5 Packages
6 Lists and List Structure
7 Arrays
8 Strings
9 Sequences
10 Structures
11 Hash Tables
12 Type Specifiers
13 Declarations
i4 Control Structures
15 Loop Iteration Macro
16 Functions
17 Closures
18 Macros
19 Flavors
20 Error Handling
21 Compiler Operations

Lisp Reference

xi

‘Contents

€

-Section Title

22 The Disassembler

| 23' ‘ Maintaining Large Systems
24 Dates and Times

25 Storage Management

26 Stack Groups

27 Processes

28 Initializations

29 Locatives

Appendix A Zetalisp Compatibility

xii Lisp Reference

Contents

Paragraph Title Page

About This Manual

1 g oo 7 xxv
Common Lisp and the Explorer System, 5TV
Other Manualscuuveteeinuunnneneeerenunnnneeeeeennnns 7 xxv
A
1 Introduction e
1.1 How to Read This Manualccvvvnnuineeennnnnn.. &m 101
1.2 Notational Conventionscoevvienienrnirnenenenennnns -, 1-1
1.2.1 Syntax Line for Special Forms and Macros e 1-2
1.2.2 Example CONVENtONSvvtiiiennerinnennonnseannennns .13
1.2.3 Use Of TYPEfaces . .o vvvvevnnsenereneineeneeeenneenns e 1-3
1.3 LispModes.....ooitiiiiiiiininiii ittt . 1-4
1.3.1 Mode Implementationccoviiiiiii ittt = 1-4
1.3.2 Using the Two Modes on the Explorer System 1-5
1.3.3 Using the Two Modes From Zmacscoviv i, 1-5
2 Symbols
2.1 Symbol Definitionsccvt ittt iiiiniiiiinann, 2-1
2.2 Naming Symbols vii ittt it i i i e e 2-2
2.3 Special Characterso.uniitvnineenoneeanencnnenesns 2-2
2.4 RefErenCeSvoviitet it intnnrnenernreneneoneeneneens 2-3
2.4.1 Lo o - 2-3
2.4.2 243 o 1 2-4
2.5 Local Variablesoiiiiiiiniiiiiiiiniiinnnnnen. 2-6
2.6 Creating Symbolscciit it iiiiiniiiiiii i 2-7
2.7 Value Cellottt i ittt it e e 2-8
2.8 Function Definition Cell e, 2-9
2.9 Print Nameciuiiiuininnrinrnrnennrneenoenaonsanans 2-10
2.10 Package Cellciiniiiiii ittt ittt i 2-10
2.11 Property List Cell ittt ittt 2-10
2.12 Binding and Setting Variablescoiiiiiiiiiiiiiiaan, 2-12
2.13 Generalized Variablescciiiiiiiiiiiiiiiiiiii, 2-15
2.14 Logical Values and Symbol Predicates 2-24
3 Numbers
3.1 Number Definitionsccviimiiiiiiiiiiiininnenena.. 3-1
3.1.1 Rational Numberscoiuiiinirniteiniiennnrnnaens 3-1
3.1.2 Controlling Radices0iviiiieniiiiininien.. 3-2
3.1.3 Floating-Point NUMDBEIS oo v it crnrnrennenenns 3-3
3.14 Complex NUMDbETSo it iiiii it inineiinanannenes 3-4
3.1.5 Precision, Coercion, Contagion, and Canonicalization 3-5
Lisp Reference xiii

Contents

Paragraph Title Page
3.2 Number COnStantsueuveneunrneenenernrnennennas 3-6
3.3 Number Comparisons vvvvitrnr it ineie e, 3-6
3.4 Arithmetic..................... e e e 3-7
3.5 Exponential and Logarithmic Functionsc.ou.u... 3-10
3.6 Trigonometric and Related Functionscouun... 3-11
3.7 Standard Number Conversioncoveveuiunennnnnnn.. 3-14
3.8 Nontrivial Floating-Point Conversion 3-16
3.9 Number Component EXtractionc.ccvueuineenenn.. 3-16

3.10 Logical Operations on Numbersccoveuvennennn.n. 3-18
3.11 Byte Manipulation Functions0iiviniinennnn.., 3-23
3.12 Random NUMDETIScvttinienenenenenenenenenrnnnnnenns 3-25
3.13 Number Type FUnctionsccovvunverneunennnenn.. 3-25
-4 Characters
4.1 Character Definitionsc.cviiiiinenneninnrennnnnn. 4-1
4.2 Standard and Nonstandard Charactersc..... 4-3
4.3 Character AtIDULES . -\ v vt in it eiree e ieeneaennns 4-10
4.4 Character Construction and Attribute Retrieval 4-10
4.5 Character CONVErSION v v ttvetn et rrennnnenennennnn, 4-12
4.6 Character Control Bit Functionscoevvuienvunenn.., 4-13
4.7 Character Type FUNCHONSitiinninnininennennn 4-14
4.8 Character COMPATISONSt cvvvurrennennrnneneneunennnnnnn 4-15
5 Packages
5.1 Package Definitionscviiiiiiiiiiiin i 5-1
5.1.1 Overview of a Symbol Namespace 5-1
5.1.2 Consistency Rulesc.ciiiiniiineninnnvnvnnnnn, 5-3
5.1.3 Package Namescoiininniiniinnnnnennnnnnanns 5-4
5.1.4 Translating Strings to Symbols 5-5
5.1.5 Importing and Exporting Symbols 5-5
5.1.6 Name Conflicts and Shadowing 5-6
5.1.7 Major Built-In Packagesc.ciiiiiiiiininninn.. 5-7
5.2 Defining Packagesciiiiiiiiiiiiiii i, 5-8
5.3 Setting the Current Packagecovuiiuninennnnnnn.. 5-11
5.4 Interning Symbolsttt 5-12
5.5 Inheritance Between Packagesc.cciiun.., 5-14
5.6 Functions Associated With Shadowing and Name Conflicts 5-15
5.7 Scanning Symbols in a Packageciiiiiinnnn.. 5-16
5.8 Miscellaneous Package Support Functions 5-17
5.9 Final Notes on Packagescovvivenenenninnenennnnnnnns 5-19
5.9.1 Common Lisp Portability Notescovuivnenn. 5-19
59.2 Initialization of the Application Namespace 5-19
xiv

Lisp Reference

Contents

Paragraph

Title Page

6 Lists and List Structure
6.1 List Definitionsciiitiniii i, 6-1
6.2 Cdr-Codingcoiiiiii i 6-4
6.3 Functions Associated With Consescoiuvnn.. 6-6
6.4 Functions Associated With Lists 6-9
B.5 Stack LisStS ...ttt e e e e e 6-14
6.6 Altering List Structure i 6-15
6.7 List Functions With Keyword Arguments 6-18
6.7.1 Substitution Within a Listt 6-19
6.7.2 Lists @5 Sets «ovv i it ittt e e e e e 6-20
6.8 Association Listsiiiitiiiiii it 6-23
6.9 Property Listsouiuiuiniiiiii it 6-25
6.10 List Predicatescvtiutiitieitinneanneennenennnns .. 6-25
7 Arrays
7.1 Array Definitionsc.iitiinint it 7-1
7.1.1 B V=11 o 7-2
7.1.2 Internal Array Types . ..o iiiii it it i e it cii e 7-3
7.2 Array Creationc..iuiuiiit ittt tie e 7-4
7.3 Array Information e 7-7
7.4 Accessing and Setting AITaysciiiiiiiiiiaeaa., 7-9
7.5 Filling and Copying AITaysvvtirtinnntnnennrnnenennn 7-10
7.6 Bit-Vectors and Bit-Arraysci i, 7-12
7.7 Fill Pointers and Array Leaders 7-14
7.8 Modifying Array Characteristicsc.vivievunnnnnnn. 7-16
7.9 Array Predicates ii it i e e e e 7-18
7.10 Matrices and Systems of Linear Equations 7-19
.11 Planes ..o e e e 7-20
8 Strings
8.1 String Definitionsc.utviittittnienieennrnnnn. 8-1
8.2 Character Access in Stringsc.viiivrinnnnenrnnenen.. 8-2
8.3 String Equality i i e 8-2
8.4 Lexicographical Comparisoncouiiiinirnnenninnn.. 8-3
8.5 String Comparison Ignoring Casecoiiuennvn..n. 8-4
8.6 String Construction and Manipulation 8-5
8.6.1 Nondestructive Case Conversion Functions 8-6
8.6.2 Destructive Case Conversion Functions 8-7
8.7 Other String Operationsitiiirirerennnn... 8-7
8.8 String Searching e 8-9
8.9 String Type Functions i iiiiinn.n. 8-10
Lisp Reference XY

Contents

Paragraph Title Page
9 Sequences
9.1 Sequence Definitionsot 9-1
9.2 Arguments to Sequence Functions, 9-1
9.3 Elementary Sequence Functions 9-3
9.4 Concatenating, Mapping, and Reducing Sequences 9-4
9.5 Modifying Sequencesottt 9-6
9.6 Sequence Searchingiiiiuiniiiiininnnernnnenes 9-11
9.7 Sorting and Mergingouiuiitiniiininiinniiaaas 9-14
9.8 Sequence Predicates............... e e 9-17
10 Structures
10.1 IntroduCtioncvtttiinnueeennneeennueonennneenennnnas 10-1
10.2 The defstruct MacCro oo iii it iiii it ittt et saanenas 10-1
10.3 defstruct Featuresctiiiiirtrrirnnnnennnnnnnns 10-2
10.3.1 The COnStrUCtOr . . oottt inee s e anterennneonannneenenans 10-3
10.3.2 Data Typeottt iiiiiinneenenenaennninns 10-3
10.3.3 Type Predicateovviiriiiiinnninnennenenenens 10-3
10.3.4 AcCCessor FUNCHONSvviineinnennrnenaenneeenannns 10-3
10.3.5 Copy FUNCHON . ..o vttt ittt it et et it iini s 10-3
10.3.6 #S Reader MaCrOcciiiiiinininninnnneeenneannonnas 10-3
10.4 defstruct Optionsottt iii ittt iineannnannens 10-4
10.4.1 Common Lisp defstruct Options 10-4
10.4.2 Explorer Extension defstruct Options 10-9
10.5 Byte Fieldsccitiiiiniiiiin ittt 10-15
10.6 Named Structure Handlers, 10-16
10.7 Structure FUNCHONS oviiit et ieetenereneennenannnns 10-18
10.8 The sys:defstruct-description Structurec.... 10-19
11 Hash Tables
11.1 Hash Table Definitionsc... ittt 11-1
11.2 Hash Table FUnctionsouiiuiinurniernunenaesnn 11-1
12 Type Specifiers
12.1 Type Specifier Definitions i, 12-1
12.2 Using Type Specifier Listsocoiiiiiiiiiiiiiiinn, 12-1
12.3 Basic Type Specifiers i, 12-2
12.4 Type Specifiers That Combineciiiieiinan, 12-7
12.5 Type Specifier Symbols i, 12-8
12.6 Defining New Type Specifierso i, 12-8
12.7 Type Identification and Execution Control 12-9
12.8 Type Predicatesootiiiiiiriatieritenneninennas 12-10
12.9 Type CONVEISIONoviviinentsnrnronenannonnonnsnos 12-11
“xvi Lisp Reference

Contents

Paragraph Title Page
13 Declarations 3
13.1 Declaration Definitions i, 13-1
13.2 Declaration FOImMSttt nnannnns 13-2
13.3 Declaration Specifiersc.iiiiiiiiii i 13-4
13.4 Declarations for Returned Valuesccciuvnun... 13-9
13.5 Global Variables and Named Constants 13-9
14 Control Structures
14,1 Introductiono.tiiitiit ittt nneenneenns ~14-1
14.2 Conditionalsoviiiirire ittt it it e 14-1
14.3 Sequential Control Structurescvivriiienenrnan.. 14-6
14.4 TIterative Control Structurescvviiiuie e 14-8
14.4.1 Looping CONStIUCESt vttt it inieennrerneennnnnn 14-8
14.4.2 Mapping .o e e e e e e 14-10
14.4.3 Other Iterative Control Structuresccc.vuuv.n.. 14-12
14.5 Dynamic Nonlocal Exitsciiiiiiiinnnnnnnun.. 14-13
14.6 Equality Predicatescovtvtitntnninninnennan. 14-18
14.7 Logical Operatorsouviiininenenrnenenennnennnnn.s 14-20
15 Loop Iteration Macro
15.1 Introductionttt ittt i i 15-1
15.2 Extended Loop Iteration Facility Description 15-1
15.3 LoOp Clauses . ..vitvtttiteiteineenetanennoneenennennenss 15-3
15.3.1 Iteration-Driving Clausescivttnnnnnnnnennenn.. 15-4
15.3.2 Bindings ...t e e e e e 15-7
15.3.3 Loop Macro Entrance and Exit Forms 15-9
15.3.4 Loop Macro Body Clausescovvviivinnnnnnnnnan. i5-9
15.3.5 Accumulation Values i, 15-9
15.3.6 End-Tests o . vovi ittt ittt ettt et e e 15-11
15.3.7 Aggregated Boolean Testsoviieininnnennannn.. 15-12
15.3.8 Conditionalizing Clausescoviiviiinunennennn. 15-12
15.3.9 Miscellaneous Clausesiviiiinenennnnnnnnennnn. 15-14
15.4 Data Types and Destructuring in the Loop Facility 15-15
15.5 Loop Synonymsi.iiiiiiiii i i it e e 15-16
15.6 The Iteration Frameworkc.cc0iiniivvirvnnn.nn. 15-17
15.7 Tteration Pathsottt 15-18
15.7.1 Predefined Paths, 15-20
15.7.1.1 The Interned-Symbols Path 15-20
15.7.1.2 Sequence Iteration Path 15-20
15.7.2 Defining Paths ittt i 15-21
15.7.3 An Example Path Definition 0Lt 15-23
Lisp Reference xvii

Contents

Paragraph Title Page
16 Functions
16.1 Function Terms and CONceptsccvvvuinenniinennsn 16-1
16.1.1 Lambda EXpressionsciuiiiiiinaninennennnnns 16-1
16.1.2 Lambda-List Keywordso, 16-2
16.1.3 Function Specs i 16-7
16.2 Kinds of FUNCtions oot iit i ittt e e e 16-9
16.2.1 Interpreted Functionscouiiuiiirnnnenennnnns 16-10
16.2.2 Compiled Functionsttt 16-11
16.2.3 Other Kinds of FUNCHONS .. .ottt iii it i ittt e e eeeeens 16-11
16.3 Defining Functions0 ittt ininiieeinnenan.. 16-12
16.4 Other Function-Defining Forms 16-15
16.5 Passing and Receiving Multiple Values 16-16
16.6 Rules for Passing Multiple Values 16-18
16.7 Evaluation and Application Forms, 16-19
16.7.1 Explicit Evaluation o i i e 16-19
16.7.2 Explicit Application i i e 16-20
16.7.3 Evaluation, Inhibition, and the function Form 16-23
16.8 Functions That Manipulate Function Specs 16-24
16.9 Defining Local Functionscvvviiiiiinennnnenn.. 16-27
16.10 Special Formsttt i i e 16-28
16.11 How Programs Examine Functions 16-29
16.12 Encapsulationsoiiiiininininnneni .. 16-32
16.13 Function Predicatesccitiitiiiinenrnnnon., 16-37
17 Closures
17.1 Closure Definitionso, 17-1
17.1.1 Dynamic Closuresc.cciitiiiiinnnnennennennnn. 17-1
17.1.2 Lexical Closuresoiiiiiiinininenenrnnennnnn. 17-3
17.2 Functions That Manipulate Dynamic Closures 17-4
18 Macros
18.1 Macro Definitionsccitiiiiiiiii it 18-1
18.1.1 Advantages of Macroscviiir i 18-1
18.1.2 Macro Expansion i i e e 18-2
18.2 Defining Macrosovt vttt ittt ettt ittt 18-3
18.3 Constructing a Macro Expansionciiiuiinen... 18-8
18.3.1 Simple Macro Expansion Functions 18-8
18.3.2 Macro Expansion Using the Backquote 18-8
18.3.3 Muitiple and Out-of-Order Evaluation 18-10
18.3.4 Expansion Functions With Consing Side Effects 18-11
18.4 Local Macro Definitionso, 18-11
18.5 Displacing Macro Callsccoiitiiiiiniiiinnvnnnn.. 18-12
18.6 Functions to Expand Macroscccviiiniininnn.. 18-13

xviii Lisp Reference

Contents

Paragraph Title Page
19 Flavors
19.1 Flavor Terminologycoutiniiiiiiiiinininernnennn.s 19-1
19.2 Mixing FIavorsottt ittt 19-1
19.2.1 Ordering Component Flavorsccooiviinennn... 19-2
19.2.2 Instance Variables il 19-2
19.2.3 Primary Method i i i e . 19-2
19.2.4 Daemon Methods ittty 19-3
19.3 Flavor Familiescoiii ittt i e 19-4
19.4 Flavor FUNCHONSiiiiitintiiiiiiiiinnrnneaneenneenn 19-4
19.5 defflavor Optionsciiiiininnirnennnneeoneannens 19-13
19.6 Method Combination Typeccvuiiiinenrrnennenennnns 19-19
19.7 Method Type ..o iiii it it ittt ittt inien s 19-22
19.8 wanilla-flavor e 19-24
19.9 Property List Operationsccvvueiueninnennnnennnn, 19-25
19.10 Printing Flavor Instances Readably 19-27
19.11 Hash Table Operationsccuoviteeenenunnernrenenrnns 19-27
19.12 Wrappers and WhoOppersc.coiniiiitinenenenennnennnns 19-29
19.13 Implementation of Flavorscooiiiiiinn .. 19-31
19.13.1 Order of Definitioncoiiiiiiintninnnnennnnnn. 19-32
19.13.2 Changinga Flavoroiiiiiiiinii it i, 19-32
20 Error Handling
20.1 INtroducCtionieiiiiiiennenentrn i 20-1
20.2 Signaling Conditionsoiviit ittt i e e 20-2
20.3 Handling Conditionsc.ituiiinrinenenrnenanan. 20-9
20.3.1 Simple Condition Handlers oivuinan.., 20-9
20.3.2 More Complex Condition Handlers 20-10
20.3.3 General Condition Handlers iiuiin, 20-12
20.4 Proceedingci.iiiiiiii i i e i e e 20-14
20.4.1 Proceeding and Handlerscivivnen.... 20-15
20.4.2 Proceeding and the Debuggercooiiiniun., 20-16
20.4.3 How Signalers Provide Proceed Types 20-20
20.4.4 Nonlocal Proceed Typescoovveiniiiininnniiiennans. 20-21
20.5 Condition INStancesciieitiietntiiieaeierneaenns 20-24
20.5.1 Standard Condition Flavorscviiiiiiiieninen.n. 20-24
20.5.2 Basic Condition Operationscovvtvieenevereeenen. 20-28
20.5.3 Condition Methods Used by the Debugger 20-29
20.5.4 Creating Condition INStancesocvevivrurannnens 20-30
20.5.5 Signaling a Condition Instanceciivviernennnn. 20-33
21 Compiler Operations
21.1 Imtroductioneiiiii it i i e s 21-1
21.2 Invokingthe Compilercoviiiiiiiiiiiiii i, 21-1
21.3 Inputtothe Compileroviiiniiiiiiiiinninininenn. 21-5
21.4 Precompilation Considerationso i, 21-8
21.5 Compiling From Zmacsccciiiiiiiriiniiiiniiian.. 21-9
21.5.1 Compilinga Region ..ot i, 21-9
Lisp Reference xix

Contents

Paragraph Title Page
21.5.2 Compiling a Buffer, 21-10
21.5.3 Compilinga File 21-10

21.6 Using the Database Warningsc.couo..... 21-10
21.7 Controlling Compiler Warningsc.ouvvunenrrnnn.... 21-11
21.8 Compiler Source-Level Optimizers 21-13
21.9 Putting Data in Object Filesc.covivueenenn. .. 21-15
21.10 Analyzing Object Filescoiiiiinie .. 21-17
21.11 Recording Warningsc..cuuuurineinnneeennneennnn.. 21-17
22 The Disassembler
22.1 INtrodUCtion'oeuniiiete sttt 22-1
22.2 The disassemble Functionccoviineunnun.... 22-1
22.3 An Advanced Exampleiiiiiiiii i, 22-6
22.4 Macroinstruction Classescuvueirntennreeneennennn. 22-8
22.4.1 Main Operation Instructionsc..cviiunvnn... .. 22-9
22.4.2 Short Branch INstructionscoviuuiennnennenn.. 22-12
22.4.3 Immediate Operation Instructions 22-13
22.4.4 Call InStructions ottt ittt e, 22-14
22.4.5 Miscellaneous Operation Instructions 22-15
22.4.6 Auxiliary Operation Instructionsccovvnen.... 22-18
22.4.6.1 Simple Aux OpSttt i i 22-18
22.4.6.2 Complex Call ...ttt 22-19
22.4.6.3 Long Branchesc.0iiiiiinuiiinnnnnnnnnnn. 22-22
22.4.6.4 Aux Op With Count Field 22-22
22.4.7 Module Operationsc.ouuiiiiiuniinnnenennannn. 22-22
23 Maintaining Large Systems
23.1 INtroduCtionventint ittt i i e 23-1
23.2 Defininga System i 23-1
23.3 Transformationscoueuniunnennenneenninenneennenn, 23-5
23.3.1 Dependenciescoiiiiii it i 23-5
23.3.2 Conditionst e i e e 23-6
23.3.3 Most Used Transformationsc.couviiunn... 23-7
23.4 More About Transformationscovuvenennen... 23-9
23.5 Summary of Compiler Conditions and Dependencies 23-10
23.6 Adding New Options for defsystem 23-13
23.7 Making a Systemciiitt i e e e e 23-15
23.8 Adding New Keywords to make-system 23-17
23.9 Copying a Systemciiuiiiirtrtntn it 23-19
23.10 The Patch Facility00ttt 23-20
23.10.1 Patch Version Information 23-21
23.10.2 Patch Files and Patch Directoriescc.ooou.... 23-22
23.10.2.1 Local Patch Directory and Files 23-22
23.10.2.2 User-Named Patch Directory and Files 23-23
23.10.3 Loading Patches e e e 23-23
23.10.4 Making Patches i i i, 23-24
23.10.4.1 The Add Patch Commandc0vuunn.. 23-24

Lisp Reference

Contents

Paragraph Title Page
23.10.4.2 The Finish Patch Command, 23-24
23.10.4.3 The Start Patch Commandcciiiiinennrnenn. 23-25
23.10.4.4 The Resume Patch Command 23-25
23.10.4.5 The Cancel Patch Command 23-25

23.11 Savingto Diskiiin i e e e e e 23-25
23,12 SyStem STatlSttt titititt e 23-27
23.13 Common Lisp Modulesottt 23-27
23.14 Simple System Maintenanceocvveernnrnnneennnnns 23-28
24 Dates and Times
24.1 INtroductionc.iuiiniiineininennnaenneneanennns 24-1
24.2 Getting and Settingthe Timeo iiiiininnnn.. 24-2
24.3 Elapsed Timettt ittt e 24-2
24.4 Printing Datesand Timesottt ienrannnens 24-3
24.5 Reading Dates and Timescciiiiienennennennnnennss 24-5
24.6 Reading and Printing Time Intervals.......................... 24-6
24,7 Time CONVEISIONS ... oot i ittt it ieeennenenencnsons 24-7
24.8 Internal FUnCtionsc.oiiiiiiiiinineneennenennenn. 24-7
25 Storage Management
25.1 Storage Management Definitions 25-1
25.2 Virtual Memory Managementottt 25-1
25.3 Paging Functionsiiiiiiiininenenunnnnenen.. 25-2
25.4 Address Space and Swap Spaceciiiiiiiiiiei i, 25-4
25.5 Storage Allocation and Areasccuovuivmuennennnnann.. 25-5
25.6 Area Functions and Variablescoiviiiii., 25-6
25.7 Interesting ATEaSvviivntnienentonentenennennenennns 25-10
25.8 Short Term Objects ... vvvit e ittt et iiiiieer .. 25-11
25.9 Memory Management CompatibilityovoL.. 25-12
25.10 Errors Pertaining to AT€ES vt vii i i iiinneeaenennnns, 25-12
25.11 Garbage Collectionoii ittt it e et 25-13
25.111 Generational Garbagecoiiiiiiiiiiinnenann. 25-13
25.11.2 Temporal GCt it e ittt 25-14
25.11.3 General GC Functions and Variables 25-14
25.11.4 Automatic GC Functions and Variables 25-17
25.11.5 Load Band Trainingiiiuimninnnernnnenneennn. 25-18
25.11.6 TGC TUNING . .. vttt ettt it i it it e 25-20
25.12 RESOUICES .. ivvv v iiitteiniie e iiiaeesraneesonneeeeeannes 25-21
25.12.1 Defining ReSOUICeSc.iiiriininriniininnennnnnnn, 25-22
25.12.2 Accessing the Resource Data Structure 25-27
26 Stack Groups
26.1 Stack Group Definitions i i i i, 26-1
26.2 Resuming of Stack Groupscviiiiiiiiiiiiiian., 26-2
26.3 An Example Using Stack Groupscovviiiinn... 26-3
26.4 Stack Group Statesciiiuiiiiiiiiii i 26-5
Lisp Reference xxi

Contents

Paragraph Title Page
26.5 Stack Group FUNCtionscoovvieeennunnnnnnni.. 26-5
26.6 Analyzing Stack Framesc0oiiiuiiininn. 26-8
26.7 Internal Stack Frame Functionscouuouu.... 26-8
26.8 Input/Output in Stack Framescouuunueerun... 26-11
27 Processes
27.1 IntroduCtionouunettiine i 27-1
27.2 Creating @ PrOCESS vvuveutine et e, 27-2
27.3 Process FIavorsouunn ittt 27-4
27.4 Process Generic Operationso.ouuuuunnnnnnnnnnn. 27-5
27.5 Other Process FUNCHONScvvivinnnerunnennnnnnnnnn... 27-9
27.6 The Schedulercoiiiiiuiiiiiin i, 27-10
277 LOCKS t ittt e e e e 27-14
28 Initializations
28.1 Introductioniiiiiiiiii 28-1
28.2 Initialization Keywordsovviiiininnnnnnnnnnnn.. 28-1
28.3 Lisp Forms Associated With Initializations 28-4
28.4 Adding Initializations for Applications 28-5
29 Locatives
29.1 INtroductionuiiiitinii 29-1
29.2 Functions That Return Locatives 29-1
29.3 Functions That Operate on Locatives 29-2
29.4 Mixing Locatives With Listsccovvuvnnnnnnnn... 29-3
Appendix Title Page
A Zitalisp Compatibility
A.1 Zitalisp Definitionsc0iiiiiiii i, A-1
A.l.1 External Zetalisp Symbolsiiiinnnn.., A-1
A.l1.2 Internal/Incompatible Symbols A-18
A.2 Other Considerationsc.covuiineenennnnnnnenn.. A-22

Index

xxii Lisp Reference

Contents

Figure Title Page
Figures
2-1 Scopeand EXtentoovunieineieniiiaiininiian. 2-5
2-2 How Local Variables Operatec.oiiiieiiennenenn 2-6
6-1 Example of a CONS ...ttt 6-1
6-2 Example ofthe List (@b C)cviviinieneniiniiine, 6-1
6-3 Example of the Dotted List (@b . €) ...t 6-2
6-4 Example of the Association List ((:first . 1) (:second . 2)) 6-3
6-5 Example of the Property List (:first 1 :second 2) 6-4
22-1 Call-Info WOrd ... v ot i ettt e it e 22-19
Table Title Page
Tables

3-1 Field Characteristics for Floating-Point Types 3-4
3-2 CasesInvolving atano, 3-13
3-3 Values Returned by floor, ceiling, truncate, and round 3-16
3-4 Bitwise Logical Operations on Two Integers 3-20
3-5§ Bitwise Boole Operations on Two Integers 3-21
4-1 Explorer Character Setoiitiiiiiiiinnn. 4-4
7-1 Array Types and Array Element Types 7-4
7-2 Bitwise Logical Operations on Bit-Arrays 7-14
12-1 Common Lisp Symbolic Type Specifiers 12-8
12-2 Explorer Extension Symbolic Type Specifiers 12-8
21-1 When Evaluation Occurs With the Compiler 21-7
22-1 Main Operation InStructionsc.viieeeneneaenene. 22-9
22-2 Short Branch Instructionsccciuiiiviniannennn.s 22-13
22-3 Immediate Operation Instructions 22-14
22-4 Call InStructionst iii ittt 22-15
22-5 Miscellaneous Operation Instructionsot 22-15
22-6 Simple Auxiliary Operation Instructions 22-18
22-7 Long Branch Instructionsoiiiiiiiiiiinene.n.. 22-22
22-8 Module Operation Instructions i, 22-22
28-1 Initialization List Keywords o i, 28-2
28-2 Initialization Time of Execution Keywords 28-4

Lisp Reference

ABOUT THIS MANUAL

Purpose

The purpose of this manual is to provide reference information dealing with
the concepts and functional descriptions of the core Lisp language. Common
Lisp, as defined in Guy Steele Jr.’s Common LISP: The Language
(Burlington, MA: DEC Press, 1984), is the primary dialect of Lisp used in
the Explorer system. However, Explorer Lisp also includes a strong Zetalisp
heritage, as defined in the MIT Lisp Machine Manual, 6th edition (also
known as the Orange book).

Common Lisp

and the

Explorer System

Common Lisp is the newly evolving standard for the Lisp language. As the
definition of the language becomes more comprehensive, Texas Instruments
will continue to conform to the standard. At this time, however, there are two
major concerns. First, the present definition of Common Lisp does not cover
the full functionality of the current Explorer system. For example, Common
Lisp does not define a programming construct comparable to the Massachu-
setts Institute of Technology (MIT) flavor system. This omission is not an
oversight; a Common Lisp object-oriented programming system has simply
not yet been specified. Because the flavor system does not currently conflict
with any Common Lisp functionality, the definition of flavors is included as
an extension to the Explorer implementation of Lisp. In general, this same
line of reasoning was used for incorporating other Zetalisp functionality.

The second major concern is that some Zetalisp functions have been
redefined by Common Lisp while others have been made obsolete because a
better solution has been made available. To support those programs written in
Zetalisp, the Explorer aiso supports the Zetalisp dialect. This manuai, how-
ever, documents only Common Lisp functions and the extensions mentioned
previously. Zetalisp functions deemed obsolete or superseded appear in
Appendix A with a brief description or a reference to their Common Lisp
equivalents.

Other Manuals

While most Common Lisp functions and core extensions are documented in
this book, several other Explorer manuais document functions used in the
system. In particular, the Explorer Input/Output Reference manual is a com-
panion to this manual, documenting Common Lisp input/output (1/0) func-
tions as well as those that are Explorer extensions. The Introduction to the
Explorer System and Explorer Tools and Utilities manuals discuss in more
detail many of the basic concepts of the Lisp machine environment and the
Explorer system in particular. The Explorer Window System Reference
manual describes the complete functionality of the window system, and the
Explorer Networking Reference manual describes many functions that are
implementation dependent for the Explorer.

XXv

INTRODUCTION

How to
Read This Manual

1.1 Although you can read the main body of this book in any order, you
should read Section 1 first. It contains information that is useful and neces-
sary for a complete understanding of the reference material contained in the
rest of the manual.

Notational 1.2 The functional description of a Lisp form starts with a syntax line,
Conventions which includes the following:

1. The name of the particular form being described is the first object of the
syntax line. It is always in the boldface font.

2. All arguments of the form follow the name. They are in the italic font.
(When the declaration ignore is provided in the syntax line, a value must
be provided in the call form, but this value is never used.)

3. All lambda-list keywords—&optional, &rest, &key, and so on—are in the
medium font and always follow the required arguments.

4. All keyword arguments are preceded by a colon and appear in the
boidface font.

5. The form type indicator is used to identify the particular type of the form.
It is located in the far right-hand corner of the syntax line. The different
form types discussed in this manual are functions, special forms, macros,
variables, constants, flavors, methods, and type specifiers.

6. Some syntax lines include a status indicator just to the left of the form
type indicator. The status indicator specifies whether the form is Com-
mon Lisp (/c]) or an Explorer extension (no status indicator).

7. Descriptions of related forms are presented together and are discussed
within the same paragraphs. In this case, the syntax lines for the forms
are stacked (one on top of another).

The following are examples of different syntax lines.

yo-function arghmentA argumentB &optional argumentC [¢] Function

&key :keywordl :keyword2 :keyword3

This syntax line has two required arguments (argumentA and argument B), a
lambda-list keyword (&optional), an optional argument (argumentC),
another lambda-list keyword (&Kkey), and three optional keyword arguments
(:keyword1, :keyword2, and :keyword3). It is also too long to fit on one
line, thus the continuation line. Note also the status indicator (/c]) showing
that this function is standard Common Lisp.

Lisp Reference

[y
[]
(=Y

Introduction

related-functionl argl arg2 Function
related-function2 argl arg2 Function
related-function3 arg! arg2 Function
related-functiond argl arg2 Function

This is an example of four related functions; note the stacking of the syntax
lines to emphasize the relationship between the functions.

Syntax Line for 1.2.1 The syntax line for a special form or a macro is more complicated
Special Forms than the previously discussed syntax lines because special forms and macros

and Macros often have subforms instead of, or in addition to, arguments. To notate the
syntax line of special forms and macros, the following conventions have been
established:

B Brackets [] used within the syntax line of a macro or special form indi-
cate an optional subform or argument.

8 Braces { } used within the syntax line of a macro or special form simply
indicate a grouping of subforms.

® Braces followed by an asterisk (*) are used to indicate zero or more
repetitions of the subforms.

= Braces followed by a plus sign (+) indicate one or more repetitions of
the subforms.

W A vertical bar | can appear within a set of brackets or braces to indicate a
choice between either of the objects separated by the bar.

W The dot notation (.) indicates that the subform following the dot repre-
sents a list of subforms, not just a single subform. The dot can only
appear just prior to the last subform of the syntax line. It normally is used
to set off the body of a form.

The following are some examples of the syntax line of special forms and
macros.

a-special-form arg [form] Special Form
In this syntax line, there is one argument and one optional subform.

a-macro arg ({var|val}*) Macro
In this syntax line, there is one required argument and a subform list that can
contain zero or more subforms. Each subform of the list consists of either
var or val.

another-macro arg ({var|val}+) Macro
This syntax line is like the previous one, but the subform list must contain at
least one subform.

another-sp ({forml}+) [form2] Special Form

This syntax line has a required subform list but can also accept an additional
optional form.

1-2

Lisp Reference

Introduction

one-more-sp ({forml}+) . [form2] Special Form

Example Conventions

Use of Typefaces

This syntax line is like the previous syntax line, but the dot notation preced-
ing form2 means that it should be a list of forms rather than just a single form
(an atom here would create a dotted list).

1.2.2 The examples in this manual are to be interpreted as if they were
typed into the Lisp Listener and evaluated. When an evaluated object returns
a value, this return is indicated with the => characters. Similarly, macro
expansion is indicated with the ==> characters. For example:

(+12) =>38
(for i 1 5 (print (* i 1)))
==>(do ((1 1 (+ i 1)))

((>1i85))
(print (* i i)))

Equivalence is indicated with the <=> characters. For example, the following
forms are equivalent:

(form a) <=> (form b)

1.2.3 Three fonts are used in this manual to denote Lisp code:

B System-defined words and symbols are in boldface. System-defined
words and symbols include names of functions, variables, macros, fla-
vors, methods, keywords, and so on.

B Examples of programs and output are in a special monowidth font.

B Sample names are in italics. Names in italics are placeholders for any
value you choose to substitute. Thus, arguments in a description are in
italics. Italics are also used for emphasis and to introduce new terms.

For example, the following sentence contains the word setq in boldface

i Aafimad b tha guvatams.
because setq is defined by the system:

The purpose of the setq special form is to assign a value to a variable.

Within each example of actual Lisp code, all names are shown in the
monowidth font. For example:

(setq x 1y 2) => 2
(+ xy) =>38

The form (setq x 1 y 2) sets the variables x and y to integer values;
then, the form (+ x y) adds them together.

In this example, setq appears in the monowidth font because it is part of a
specific example.

Occasionally, in examples where you could substitute a specific value, the
boldface and italic fonts are used together.

Lisp Reference

-
[
w

Introduction

Lisp Modes

Mode Implementation

1.3 Two dialects of Lisp are supported on the Explorer system: Common
Lisp, which is the primary dialect, and Zetalisp. Because the two dialects
have some inherent incompatibilities, your Lisp process must execute in
either Common Lisp mode or Zetalisp mode—it cannot execute in both at the
same time. The main differences involve the way in which read, print, eval,
and compile work. It is possible for functions defined in one mode to call
functions defined in the other. The body of this manual assumes Common
Lisp mode; refer to Appendix A for the Zetalisp differences.

The difference between Zetalisp and Common Lisp mode centers around the
accessibility of two kinds of symbols: those that define functions considered
obsolete in a Common Lisp environment and those whose names have mean-
ings incompatible between the two modes.

All of the symbols associated with Zetalisp mode are supplied as part of a
Zetalisp-Compatibility system. In Release 3, this system is loaded and accessi-
ble. However, in subsequent releases, the Zetalisp-Compatibility system will
have to be loaded into the environment by the user. Although it will be avail-
able in source form as part of the Explorer product, its functionality will not
be extended.

1.3.1 All of the obsolete and incompatible symbols in Zetalisp mode are
defined in a package called ZLC. The ZLC package has an alias called
GLOBAL that is functionally compatible with the Zetalisp definition. The
USER package inherits access to all of the obsolete symbols regardless of the
mode you are using. The incompatible symbols are defined as internal in
ZLC, so they are not normally visible. When you switch to Zetalisp mode, a
flag is set, which tells the Lisp Reader to access the internal/incompatible
Zetalisp symbols instead of the ones defined in the LISP package. The evalu-
ator must also look at this flag because special variables are also handled
differently in Zetalisp mode. See Section 5, Packages, for complete details on
packages.

You can set the variable compiler:*warn-of-superseded-functions-p* to
true to cause the compiler to issue warnings about the use of functions in the
ZLC package.

The number of Common Lisp and Zetalisp symbols that conflict in this way is
very small. Thus, most of the Zetalisp primitives are available in both modes
and are referred to in this book as Explorer extensions to Common Lisp. In
the future, as the Common Lisp definition expands, conflicts that arise due to
these extentions will be resolved by isolating these Zetalisp symbols in
Zetalisp mode.

1-4

Lisp Reference

Introduction

Using the 1.3.2 The Explorer system normally runs in Common Lisp mode; however,

Two Modes on under certain circumstances, the mode is switched to Zetalisp. The function

the Explorer System lisp-mode returns the value :common-lisp or :zetalisp, depending on which
mode is currently in effect.

You can change modes with the function set-lisp-mode. However, if you only
want one form to be read in the alternate mode, you can use the reader
macros #!Z or #!C to read the form in Zetalisp mode or Common Lisp mode,
respectively. For example:

#!Z (member 2 “(1 2 8)) => (2 3)

#!C (member 2 ‘(1 2 3) :test #°equal) => (2 3)

Once the form has been read, the mode reverts back to whatever it was prior
to the reader macro. Note that this example demonstrates the use of two
different functions: the first of the preceding forms invokes the zlc:member
function, whereas the second form invokes the lisp:member function. How-
ever, this does not mean that a function is evaluated in an alternate mode if it
is not defined in that mode. For example, the form #!Z(find-symbol *EVAL")
finds the eval symbol in the LISP package where it is defined rather than in
the ZLC package.

lisp-mode Function
This function returns the keyword symbol indicating which mode is currently
in effect.

set-lisp-mode keyword &optional globally-p Function

This function switches the current Lisp mode to what is specified by the value
of keyword, which should be either :common-lisp or :zetalisp. If globally-p is
unspecified or is specified as nil, then the mode is switched only for the
environment in which it is executed. If globally-p is specified as true, then the
mode is switched for the global environment.

turn-common-lisp-on Function

This function sets the Lisp evaluation mode for the global environment to
Common Lisp; it does nothing if the mode is already Common Lisp.

turn-zetalisp-on Function

This function sets the Lisp evaluation mode for the global environment to
Zetalisp; it does nothing if the mode is already Zetalisp.

Using the Two 1.3.3 When you are editing Lisp code from the Zmacs editor, be sure to
Modes From Zmacs note the mode in which you are editing. In this context, mode refers to the
major editing mode of Zmacs for a particular buffer. The editing mode is
displayed in the mode line near the bottom of the window at the top of the
Zmacs minibuffer. Zmacs needs to know if the file you are editing is Com-
mon Lisp or Zetalisp because the interpretation of certain characters changes
the syntactic parsing of Lisp forms. If you press the BREAK key, the Listener
provided for you in the typeout window is in the same mode as that for the
buffer you were editing.

Lisp Reference

[
[
un

Introduction

When buffers are created for editing Lisp code, you should determine which
editing mode you want to use. Use the Zmacs extended commands Common
Lisp Mode or Zetalisp Mode to choose the appropriate mode. When you
execute either of these commands, you should answer ves to the prompt
asking if you want to insert the file attribute line as the first line of your
buffer. For example, when a buffer is using Common Lisp mode, the file
attribute line appears as follows:

- -*- Mode:Common-Lisp -*-

When a buffer is using Zetalisp mode, the file attribute line appears as
follows:

HHH ~*- Mode:Zetalisp -*-

NOTE: File attribute lines in older Zetalisp programs declare their mode to
be Lisp. Thus, for purposes of compatibility, the attribute Mode:Lisp is trans-
lated by the Explorer to mean Mode:Zetalisp unless it is accompanied by the
attribute syntax:Common-Lisp OF Readtable:Common-Lisp. (These attributes are
used by other MIT-derived Lisp machines and are equivalent to Mode: Common-
Lisp.)

1-6

Lisp Reference

SYMBOLS

Symbol Definitions

2.1 A symbol is a Lisp data object that defines a relationship between a print
name, a package, a property list, a function definition, and a value, each of
which is stored in its own cell.

The print name cell contains a string used to identify the symbol. Once a
print name is established for a symbol, you are not allowed to change it.

The package cell must contain a package object or the value nil. If this cell
refers to a package, the symbol is said to be owned by that package.

The property list cell allows you to associate supplemental attributes with a
symbol. Sometimes called plists, property lists are lists of alternating names
and values. Several functions are provided for manipulating property lists.
Initially, the property list cell for a symbol is nil.

The function definition cell contains a function object. When a symbol name
is evaluated in the context of a function call, this is the definition that is used.
If no function object has been assigned for the symbol, then an undefined
function error is generated.

The value cell is used to refer to a Lisp object. When the symbol is eval
as a special variable, this is the value that is returned. An unbound symbol is
one that has not been assigned a data value. Evaluating an unbound symbol

produces an error.

—

Symbols have two fairly distinct uses. An interned symbol is one that can be
referred to by its print name. The reference is made possible by the package
system. An internal symbol is present in a package and is defined to have a
unique print name among all other accessible symbols, including inherited
and imported symbols. When the Lisp Reader attempts to parse a symbol
name, it tries to match that name with one of the associated print names in
the current namespace. You can switch the namespace context by explicitly
supplying a package name to the Reader (which defines a different
namespace). When interned symbols are printed, the print name is used; the
print name is preceded by the package name if the symbol is not accessible in
the current namespace (see Section 5, Packages, for more details).

An uninterned symbol is one that is not in any package and, therefore, can-
not be referred to by its print name. Nevertheless, uninterned symbols are
still useful objects. References to them can be maintained in other ways, such
as in lists or arrays or by using them as data values to other interned symbols.
In some applications, these symbols should be inaccessible by name to avoid
known print name conflicts. When an uninterned symbol is printed, it is pre-
ceded by a #: prefix.

Lisp Reference

[
)
[y

Symbols

Naming Symbols

2.2 A symbol name can contain both alphabetic and numeric characters.
However, all symbol names must contain at least one nonnumeric character
that differentiates the symbol name from a number. For the purposes of sym-
bol names, the following ASCII characters are also considered to be
alphabetic:

+-*/@8% " & _<>-~ .=

Note that a period or several periods by themselves are not acceptable symbol
names.

Special Characters

2.3 Both uppercase and lowercase characters are acceptable in symbol
names; however, the Lisp Reader normally converts lowercase letters to
uppercase. You can force the Reader to accept lowercase letters and other
usually unacceptable characters by preceding them with a backslash (\). The
backslash is a signal to the Reader to parse the next character in a protected
manner. If the character is lowercase, it is not converted. If the character is
nonalphabetic, it is explicitly treated as alphabetic. A single backslash is not
included as part of the name. However, if you include two consecutive back-
slashes in a symbol name, the second backslash becomes part of the name.
You can also protect characters in a symbol name by enclosing them in verti-
cal bars (| |). When the Reader parses a token and detects either the back-
slash or a pair of vertical bars, it assumes that token must be a symbol name.
For example:

1+ ;a symbol

+1 ;a number

\+1 ;a symbol
ax”2+bx+c ;a symbol

TEST ;a symbol

Test ;a symbol EQ to TEST
Miles/Hour ;a symbol

1 ;a2 number

\1 ;a symbol

1] ;a symbol EQ to \1
A\ ;a symbol

ASY ;a symbol EQ to \\
\. ;a symbol

A\ . ;a symbol

INT ;a symbol EQ to \}

Besides the backslash and the vertical bar, the Lisp Reader treats several
other characters specially, such as the open parenthesis and the sharp-sign
(#). The special meanings of these characters are defined by the Explorer
system and are explained in the Explorer Input/Output Reference manual.
The following characters are special because, though they are normally
treated as alphabetic characters, you can use them for defining your own
Common Lisp Reader macros:

2001 {}

The double meaning of these characters can cause problems if one Common
Lisp system uses them to create symbols and another system defines them to
have some other special meaning for the Reader.

2-2

Lisp Reference

Symbols

The Explorer also includes many non-ASCII characters that can be used as
alphabetic characters in symbols. For a compilete list of the extra non-ASCII
characters, see Table 4-1. Note that these characters and their behavior are
not defined by the Common Lisp standard; therefore, programs that use
them are not likely to be portable to other Common Lisp systems.

References

Scope

2.4 In general, the term reference denotes a mapping of a name to some
other object. Typically, some kind of structure has been created to perform
this mapping. For instance, when you make a reference to a symbol name,
the object that is mapped to is the data value or, in some contexts, the func-
tion definition. In practice, mappings are made to objects other than data
values, and objects other than symbols can be used in references. Regardless
of who is making reference to what, the mechanics of making a particular
reference involves some fairly strict regulations. The terms scope and extent
can be used to describe these regulations.

2.4.1 A program in Common Lisp, as in any other programming language, is
written using names that refer to the variables, functions, and other entities
used by the program. Lisp generally uses symbol objects as names for other
entities. Some of the associations of names with what they represent are
defined in the global environment, while others are defined locally for use in
a limited region of the program. The portion of the source code within which
a particular name is defined to represent a particular entity is called the scope
of that definition.

For example, the following form creates a special variable and defines the
symbol count to be its name:

(defvar count)

This definition is said to have indefinite scope because the name is defined in
the global environment for use anywhere.

On the other hand, the following form defines a local variable (assuming that

it ic not declared snecial) that is namad index:
1t 158 not declared special) that 1s nameg index!:

(let (index) ...)

This definition is said to have lexical scope because the name is defined only
for the portion of the source program text that constitutes the body of the let
form. Local variables are also called lexical variables.

Lexical shadowing occurs when a local definition hides a previous definition.
For example, the following function demo contains two local variables that are
both named x; one is the argument of the demo function and the other is
defined by the let form:

(defun demo (x)
(print x)
(let ((x 99))
{print x) })}

Within the body of the let, the name x represents the variable defined by the
let. Normally, the scope of an argument name is the entire function body,
but in this case, because inner definitions take precedence over outer defini-
tions, the scope of the argument x is that portion of the function body outside
of the let body. For convenience, however, this manual usually simply

Lisp Reference

2.3
FA]

Symbols

Extent

indicates that a particular entity has lexical scope over a certain region, with
the unstated assumption that the scope could be affected by shadowing.

2.4.2 The term extent means the period of time for which a particular entity
exists during the execution of a program. For example, a let form establishes
a variable binding when the form is entered, and disestablishes the binding
when the let is exited. Thus, in the following example, the local variable x
exists from the time the let is entered until the time it is exited:

(defun f1 (a)
(let ((x (first a))
(f2 a)
(print x)))

(defun £f2 (b) ...)

Note that extent differs from scope in that the variable a continues to exist
during the execution of f2 even though f2 is outside the scope of x.

The term dynamic extent is used to describe entities that have explicit points
of creation and destruction. For example, a special variable is bound when a
let or other binding form is entered and is unbound when the form is exited.
The term dynamic scope is sometimes used to describe things such as special
variable bindings that have indefinite scope and dynamic extent.

In Common Lisp, however, most entities have what is called indefinite extent.
This means that the entity exists as long as there is a possibility of accessing it.
For example, local variables have indefinite extent—although they are usually
disestablished upon exit from the form that created them. Occasionally refer-
ences to these variables can still occur at a later time. For example:

(defun make-remover (item)
(function (lambda (sequence)
(remove item sequence))))

(setq nonzero (make-remover 0))
(funcall nonzero “(3 5 0 2 0 4)) => (3 5 2 4)

Here, the local variable item continues to be accessible by the lambda expres-
sion function even after control has returned from the make-remover func-
tion. The function object returned by make-remover is called a lexical closure
because it has associated with it (closes over) a lexical entity that it can
continue to access whenever it needs to. A further discussion of closures is
given in Section 17, Closures.

As a further example of these concepts, Figure 2-1 demonstrates four differ-
ent combinations of scope and extent. In the lexical scope and dynamic
extent example, two pointers are generated, both named x. The extent of
each reference is limited to the time of entry and exit of the corresponding
let statement. Note that during the evaluation of the inner 1let, x is bound to
2, temporarily superseding the previous reference whose value is 1. The scope
of the outer let’s reference to x does not include the textual confines of the
inner let. This is an example of lexical shadowing; the binding of x in the
inner let shadows the reference to x in the outer 1let.

The second combination shown in Figure 2-1, lexical scope and indefinite
extent, demonstrates a lexical closure created when the lambda form is con-
verted to a function. The closure that is returned from set -number retains the
reference to the value of x established in the lambda. The extent for this

(]
A~

Lisp Reference

Figure 2-1

Symbols

reference is the period of time during which this lexical closure exists.
Because x was defined as a parameter inside the defun, this particular refer-
ence to x cannot be used textually outside of set-number. Thus, the attempt
to setq the value of x to 1 does not alter the value of x within set-number,
which is called when remember is funcalled.

The third combination, indefinite scope and dynamic extent, demonstrates
that some variable x can appear anywhere in the text of the program, but the
extent of the reference to a data object is limited. Note that in Figure 2-1
tester is acceptable because the reference to x is proclaimed special. How-
ever, in this example, x has the vaiue of 1 only within the dynamic extent of
the let in the declarer function. If x had a different value at the Lisp top
level, then the binding of x within the let statement would be an example of
dynamic shadowing.

Scope and Extent

Lexical Scope and
Dynamic Extent

Lexical Scope and
Indefinite Extent

tet ((x 1))
st

(defun set-number (x)
(function

'aet’;ccx 2)) (ambda () x)))
X

- (:1:)% " (setq remember (set-number 0))

(funcall remember) => 0

{setgx 1) == 1

(funcall remember) => 0

Indefinite Scope and
Dynamic Extent

Indefinite Scope and
Indefinite Extent

(proclaim '’ (special x)) ;At the Lisp top level
(defun declarer () (defvar x 1)
let ((x1
(tester)))

(defun tester ()
x)

(declarer) => 1

The fourth combination shown in Figure 2-1, indefinite scope and indefinite
extent, illustrates that a reference can occur anywhere in the program and
that this reference is in effect anywhere in the program. The variable x is
declared at the top level should be: and, therefore, can be referred to any-
where at any time, subject only to any shadowing that may occur within a
form such as a let.

Although the examples in Figure 2-1 demonstrate the concepts of scope and
extent as applied specifically to symbols and variables, these concepts also
apply to references in general.

Lisp Reference

[
1
(V]

Symbols

Local Variables

Figure 2-2

2.5 Local variable bindings offer a quick and temporary means of referring
to data objects within a limited scope. Local variables are declared in several
kinds of Lisp forms, including lets and lambda expressions. When bindings
are made, a table of local variables is created. The value for the local variable
is kept in this table. Thus, if this variable is shadowing the scope of another
variable, the previous value is maintained, though it cannot be referred to.
For example, Figure 2-2 shows that when x is set to 1.0, a pointer to the data
object 1.0 is stored in the local variable. Notice that when the special vari-

able sys:y is set to 2.0, the value cell of that symbol points to the data object
2.0.

How Local Variables Operate

;; Example code
(proclaim ’(special sys:y))

(defun example ()
(let ((x nil))
(setf x 1.0)

(setf sys:y 2.0)

)

local variables working storage (data objects)

X > 1.0

packages

2.0

user symbols

X

. system symbols

y

Symbols

Creating Symbois

2.6 The creation of interned symbols is described in Section 5, Packages.
The following functions are used for creating uninterned symbols.

make-symbol print-name [c] Function
make-symbol print-name &optional permanent-p Function

This function creates an uninterned symbol whose print name is the string
print-name. The value and function definition cells remain unbound and the
property list remains empty.

The Explorer allows an optional second argument, permanent-p, which when
specified as true, indicates that the symbol should be in a permanent memory
area, and its print name is copied to the proper area. This feature is used by
intern but is unlikely to be needed elsewhere. If permanent-p is nil (the
default), the print name is placed in the default area. Consider the following
example:

(setf x (make-symbol "FOO")) => #:FOO
(set x 0) => 0O
{eval x) => O

X => #:F0O0

Note that in this example, the symbol x, when used as an argument to the set
and eval functions, is evaluated before these functions perform their respec-
tive operations. Thus, in the set form, a is evaluated, returning #:roo, which
is then set to 0. Similarly, in the eval form, x is evaluated, returning #:Foo,

PP |

which is then evaluated itself, returning 0 as the result of eval.

copy-symbol symbol! &optional copy-props-p [c] Function

This function returns a new uninterned symbol with the same print name as
symbol. 1f copy-props-p is non-nil, then the value of the value and function
definition of the new symbol is the same as those of symbol, and the property
list of the new symbol is a copy of symbol’s. If copy-props-p is nil, then the
new symbol’s function and value are void and its property list is empty. For
example:

(setf x (make-symbol "foo")) => foo
symeval x) => ERROR

Note that the symbol is not interned; it is simply created and returned.

gensym &optional x [c] Function

This function creates a print name, as well as a new symbol associated with
that print name. The gensym function returns the new, uninterned symbol.

The newly created print name contains a prefix (whose default is G), fol-
lowed by the decimal representation of a number. This number is incre-
mented by 1 for every call to gensym.

The x argument can specify either the original value of the counter contained
in the print name or a string that specifies the default prefix for the print
name. If it is an integer, the x argument must be nonnegative; otherwise, it is
used as a prefix to the gensym symbol name. This prefix is retained for all
subsequent calls to gensym until you change it. Once it has processed this

[
~3

Symbols

argument, gensym generates a symbol, just as it would without an argument.
For example:

(gensym) => #:G4879

(gensym "SYMBA-") => #:SYMBA-4880
(gensym 68) => #:SYMBA-0068
(gensym) => #:SYMBA-0087

(gensym "CHEETAH-") => #:CHEETAH-0068

The function gensym is usually used to create a symbol that should not nor-
mally be seen by the user and whose print name is unimportant, except to
allow easy visual distinction between two such symbols. The optional argu-
ment is rarely supplied. The name gensym comes from the term generate
symbol, and the symbols produced by it are often called gensyms.

If you want a symbol like that produced by gensym but also want to intern
that symbol, use gentemp.

gentemp &optional prefix package [c] Function

This function generates a symbol whose name begins with prefix (which is a
string or a symbol name) and interns that symbol in package (unlike gensym,
which produces an uninterned symbol). This function creates the symbol
name by concatenating prefix with a number, which is incremented each time
gentemp is called to ensure that each symbol name is unique. The default for
prefix is T, and the default for package is the current package. However,
unlike gensym, gentemp does not allow you to reset the internal counter.
Furthermore, the prefix for gentemp is used for only one function call,
unlike when you specify a string prefix for the argument to gensym.

Value Cell

2.7 The following functions are associated with the value cell for a symbol.

symbol-value symbol [c] Function

This function is the basic primitive for retrieving a symbol's value. The form
(symbol-value symbol) returns the current dynamic binding of symbol. Gen-
erally speaking, this is the function called by eval when it is given a symbol to
evaluate. An error is signaled if this function is applied to an unbound sym-
bol. This function can be used as a place form to setf (see paragraph 2.13,
Generalized Variables).

symeval-globally symbol Function

This function returns the value of the global binding of symbol even if that
symbol is shadowed by a local variable. An error is signaled if the symbol is
not bound globally.

makunbound symbol [c] Function
variable-makunbound symbol Special Form

The function makunbound removes the current dynamic binding of the
special variable named by the argument symbol. For example:

(setf a 5)

a=>25

(makunbound -‘a)

a => ERROR: unbound variable

The special form variable-makunbound performs the same operation, but it
does not evaluate its argument and it can be used on flavor instance variables
as well as on special variables.

2-8

Lisp Reference

Symbols

makunbound-globally symbol Function

This function causes the global binding of symbol to be become unbound.

set symbol-form value-form [c] Function

This function is the primitive used for assigning values to symbols. When the
argument symbol-form is evaluated, the value cell of the returned object of
symbol-form is assigned to the value of value-form. The argument value-form
is also evaluated, and its value is the returned object of the set function. This
function sets only current dynamic bindings; do not use set for changing the
values of local variables {use setf instead). For example:

[}
\"

et
>

if (eq a b) ‘¢ ‘d) ‘foo) => foo

a
b
(s
c 0o

x
> x
(
f

This form either sets ¢ to foo or sets d to foo, depending on the value of the
test (eq a b).

set-globally symbol-form value-form Function

This function is like the set function but sets the global binding of symbol-
form to value-form.

Function

Definition Cell

2.8 The following functions are associated with the function definition cell
for a symbol.

symbol-function symbol [c] Function

This function returns the current global function definition of symbol, that is,
the contents of its function definition cell. An error is signaled if this function
is applied to a symbol that does not have a function definition.

Note that the symbol-function function operates only on global functions.
Thus, it cannot access the values of local functions defined by flet or labels
(see paragraph 16.9, Defining Local Functions).

You can modify the global function definition for a symbol by using the mac-
ro setf (see paragraph 2.13, Generalized Variables) with a symbol-function
form as a generalized variable. Once you have made this modification, the
old function definition of the symbol is lost. You should use this type of modi-
fication only if the functional definition object is a function or a macro, not a
special form, because the compiler would still recognize the name of the ob-
ject as being a special form and would parse the code according to the re-
quirements for the previous definition.

fmakunbound symbol [c] Function

This function causes the symbol to have no function definition. For example:

(defun foo (x)
(+ x 3))
(foo 2) => 5

(fmakunbound ‘foo)
(foo 2) => ERROR: undefined function.

Lisp Reference

2-9

Symbols

Print Name

2.9 The following function is associated with the print name for a symbol.

symbol-name symbol [¢] Function

This function returns the print name of the argument symbol. For example:

(symbol-name “abc) => "ABC"
(symbol-name :abc) => "ABC"
(symbol-name ’sys:abc) => "ABC"

Package Cell

2.10 The following function is used to return information about the package
cell for a symbol.

symbol-package symbol . [c] Function

This function returns the contents of the package cell of the argument
symbol, which must be a symbol. You can use this function as a place form to
setf (see paragraph 2.13, Generalized Variables).

Property List Cell

2.11 The following functions are used to return information about the prop-
erty list cell for a symbol. For more information about property lists, see
Section 6, Lists and List Structure.

get symbol property-name &optional default [c] Function

This function returns the value paired with the name property-name from the
property list specified by symbol. The property-name argument must be eq to
a member of symbol’s property list. Otherwise, get returns default if speci-
fied, or nil if default is unspecified. The symbol argument can also be a list or
a locative whose cdr stores the properties; such a list or locative is sometimes
called a disembodied property list.

For example, suppose that the symbol sixers has the following property list:

(Charles Barkley Julius Erving Moses Malone
Maurice Cheeks Andrew Toney)

Note the following evaluations:

(get ‘Sixers ‘Charles) => Barkley
(get “Sixers “Andrew) => Toney

symbol-plist symbol [c] Function

This function returns the property list of symbol.

You cannot use the returned value of symbol-plist as an argument to get
because get expects a variable name, not a place. However, you can use the
result of symbol-plist with getf (see paragraph 16.9, Property Lists). Note
the following equivalence:

(get x y) <=> (getf (symbol-plist x) y)

Although you can perform a setf of symbol-plist, you should be very careful
when doing so because you could remove important system information.

2-10

Symbols

putprop symbol x property-name Function

This function gives symbol a property value of x whose property name is
property-name. 1f symbol already has a value for property-name, the new
value supersedes the old value. This function is obsolete; in Common Lisp,
use the following:

(setf (get symbol property-name) X)

defprop symbol x property-name Special Form

This form is almost the same as putprop, but it does not evaluate its argu-
ments. This feature makes it more convenient to type.

remprop symbol property-name [c] Function

This function removes the property pair named by property-name from the
property list named by symbol, returning a non-nil value. If property-name is
not eq to a member of the property list specified by symbol, remprop returns
nil. Consider the following example:

(symbol-plist “Sixers)
=> (Sedale Threatt Terry Catledge Charles Barkley
Julius Erving Moses Malone Maurice Cheeks Andrew Toney)

(remprop ‘Sixers ‘Andrew) => non-nil
(symbol-plist ‘Sixers)

=> (Sedale Threatt Terry Catledge Charles Barkley
Julius Erving Moses Malone Maurice Cheeks)

roperty-name-list Function

This function is like get, except that the second argument is a list of property
names. This function searches down plist (using eq as the test) for any of the
names in property-name-list until it finds the first property pair whose name is
contained in property-name-list.

The getl function returns the portion of the list plist beginning with the first
such property that it finds. If none of the property names on property-name-
list are on the property list, getl returns nil. Consider the following example:
(symbol-plist ‘Sixers)
=> (Sedale Threatt Terry Catledge Charles Barkley

Julius Erving Moses Malone Maurice Cheeks)

(getl “Sixers ’(Julius Moses))
=> (Julius Erving Moses Malone Maurice Cheeks)

When more than one of the names in property-name-list is present in plist,
the name returned by getl depends on the order of the properties and should
not be relied on.

Lisp Reference

[\
]

[

=

Symbolis

Binding and 2.12 The following functions and special forms are associated with binding
Setting Variables and setting variables.

setq {variable value}* [c] Special Form

This special form is used to set the value of one or more variables. The vari-
able arguments are not evaluated, and the value arguments are evaluated.
This special form operates as follows: the first value is evaluated, and the first
variable is set to the result of the evaluation; then the second value is evalu-
ated and the second variable is set to the result of this evaluation; and so on
until all the variable-value pairs are processed. The setq form returns the
value of the last variable assignment. If no arguments are passed to setq, no
assignments take place and nil is returned. For example:

(setq x (+ 3 2 1)
¥y (cons x nil)) => (8)

In this example, x is set to 8, y is set to (6), and the form returns (s). Note
that the assignments are performed in sequence, allowing the variable y to
use the new value of x.

See the setf macro in paragraph 2.13, Generalized Variables.

setq-globally {variable value}+ Macro

This macro is like setq but sets variable’s global value cell rather than the
current binding. The variable argument must be a special variable.

This macro is usually used in a login file to set a variable so that it affects all
processes, not just the current one.

psetq {variable value}* [c] Macro

This macro is like the setq special form, except that the variables are set in
parallel; first, all of the value forms are evaluated, and then the correspond-
ing variables are set to the resulting values. The returned value of the psetq
form is nil. For example:

(setq x 1)

(setq y 2)

(psetq x y ¥y X) => nil
X => 2

Yy =1

See the psetf macro in paragraph 2.13, Generalized Variables.

let ({var | (var [form])}*) {declaration}* { body-form}* [c] Special Form

This special form binds in parallel an arbitrary number of variables to the
values of corresponding forms. Any of these variables that previously existed
have their old values saved before taking on new values. The let special form
allows these variables to be manipulated within the body-forms using these
bindings. Once the execution of the let form is complete, the bindings are
disestablished and any variable that previously existed is bound to its previous
value.

The returned value of the let special form is the value of the last form of the
body-forms. If the body is empty, nil is returned.

$
-t
[8]

Lisp Reference

Symbols

var — The var argument is not evaluated. If var previously existed, its old
value is saved and var is set to the value of form. If var stands by itself, it
is set to nil.

form — The form argument is evaluated. Its returned value becomes the new
value of var. The default for this argument is nil.

declaration — The optional declaration argument specifies declarations in
effect locally within the let form.

body-form — The body-form argument forms are evaluated in sequence
within the context of the bindings of the variables.

Consider the following example:

(let ((a (+ 3 3))
(b “foo)
(e)
d)
)

Within the body of the preceding let form, a is bound to 6, b is bound to
the symbol foo, and ¢ and d are both bound to nil.

let* ({var | (var [form])}*) {declaration}* {body-form}* [c] Special Form

This special form is the same as let, except that the binding is sequential.
Each var is bound to the value of its form before the next form is evaluated.
This convention is useful when the computation of a form depends on the
value of a variable bound in an earlier form.

If there are no body forms, then let* returns nil.

If, you do not specify an initial value for some variable var in a let*, then it is
initialized to nil. However, you should leave such a variable un-initialized
only if you plan to later store a value in it (for example, with setf). If you
actually want var set to nil, then it is clearer to specify (var nil).

let-if predicate-form ({var | (var [form])}*) {body-form}* Special Form

Thics
This special form is a variant of let in which the binding of variables is condi-

tional. The variables must all be special variables. If predicate-form evaluates
to true, then all variables in the variable list are bound to local values. If
predicate-form is nil, then none of the variables in the variable list are
bound, and the value forms are not evaluated. The body-forms are evaluated
regardless of the results of predicate-form. The returned value is the value of
the last form in the body.

let-globally ({var | (var [form])}*) {body-form}* Macro
let-globally-if predicate-form ({var | (var {form])}*) {body-form}* Macro

This macro is similar to let, except that it does not bind the var variables.
Instead, it saves the old values of the variables and then sets the variables.
The let-globally macro then establishes an unwind-protect form to reset
them to their saved values (see paragraph 14.5, Dynamic Nonlocal Exits).
The critical difference is that when the current stack group calls another stack
group, the old values of the variables are not restored (see Section 26, Stack
Groups). Thus, let-globally makes the new values visible in all stack groups
and processes that do not bind the variables themselves, not just the current
stack group.

Lisp Reference

Symbols

The let-globally-if macro modifies and restores the variables only if the value
of predicate-form evaluates to true. The body-form is executed in any case.

progv symbols values {body-form}* [c] Special Form

This special form provides extra control over binding. It binds a list of vari-
ables dynamically to a list of values and then evaluates the body of the progv.
The lists of variables and values are computed quantities; this feature is what
makes progv different from let, prog, and do.

The progv form first evaluates symbols and values and then binds each sym-
bol to the corresponding value. If too few values are supplied, the remaining
symbols are bound to nil. If too many values are supplied, the excess values
are ignored.

After the symbols have been bound to the values, the body-forms are evalu-
ated, and finally the symbol bindings are undone. The result returned is the
value of the last form in the body. For example:

(setf vars “(a b ¢)
vals (1 2 3))
(progv vars vals
(+abec)) =>8

progw vars-vals-form {body-form}* Special Form

This special form is like a progv but differs in that the value of the vars-vals-
Jorm, which is evaluated, should be a list that looks like the first subform of a
let: ((var form)...). Each element of this list is then processed by binding var
to the value of form, just like let*. Finally, the forms of body are evaluated in
sequence, returning the value of the last form, and all bindings are undone.

This is a very unusual special form because of the way the evaluator is again
called on the result of evaluating vars-vals-form. Thus, progw is mainly use-
ful for implementing special forms and for functions that call the evaluator.

compiler-let ({var | (var [form])}*) {body-form}* [c] Special Form

When interpreting Lisp code, this special form behaves like let except that
each of the variables is implicitly declared special. When a compiler-let form
is compiled, no code is generated to set up the bindings. Instead, the bindings
are established within the compiler environment while the compiler generates
the object code for the body-forms.

The compiler-let function has two uses. First, it is used to notify the compiler
of certain situations that should be considered while generating object code
for body-forms. For example, the following shows the use of compiler-let
when generating a patch:

(compiler-let ((package (find-package "USER"))
(sys:lisp-mode :common-lisp)
(*readtable* sys:standard-readtable)
(sys:*reader-symbol-substitutions* nil))

(defun foo () ...) ;patch to redefine the function foo
)

2-14 Lisp Reference

Symbols

The second use of compiler-let is to establish environmental flags to commu-
nicate to macros how to process their expansions. This operation assumes
that the macro expansion depends upon some special variable to tell it how to
expand. For example:

(defmacro show-value {valus)
(if verbose-on-p “(format t "The value is -~A" ,value)
“(print ,value)))

Note that the show-value macro will expand to either the format form or the
print form, depending on what the value of the special variable varbose-on-p
is when the expansion takes place.

Consider the following form:

(compiler-let ((verbose-on-p t))
(show-value thing))

When interpreted, verbose-on-p is set to t and declared special so that show-
value will generate the macro expansion, which will be the format statement.
The interpreter then evaluates the expansion. During compilation, the
verbose-on-p is set to t, the show-value macro is expanded, and then the
compiler generates object code for that expansion. In short, the compiler-1let
and the macro call are optimized simply to the format form.

As an optimization in interpreted mode, this use of compiler-let makes it
possible to remember what a macro expanded to so that the next time the
code executes it need not be reexpanded. For more information on this
topic, read about the function sys:displaced in paragraph 18.5, Displacing
Macro Calis.

Generalized
Variables

2.13 In Common Lisp, a variable is an object that remembers one piece of
data. The primary operations on a variable are retrieving and changing that
piece of data. These operations are sometimes called the access and update
operations. The concept of variables named by symbols can be generalized as
any storage location that remembers one piece of data, no matter how that
location is named.

Each kind of generalized variable typically has three functions that implement
the access, update, and location operations. For example, car accesses the
car of a cons, rplaca updates the car, and car-location returns the location
of the car.

Rather than having to remember three separate functions for each kind of
generalized variable, you can think of the access function as a name for the
storage location. Thus, (aref x 105) is a name for the 105th element of the
array x. Rather than having to remember the update function associated with
each access function, you can adopt a uniform way of updating storage loca-
tions by using the setf macro. Similarly, the location of the generalized vari-
able can be obtained by using locf (see paragraph 29.2, Functions That
Return Locatives).

Lisp Reference

2-15

Symbols

The following are the forms associated with updating generalized variables.

setf {place form}* [c] Macro

This macro assigns the value produced by evaluating form to the location
specified by place. The place argument must be a variable or one of the
forms discussed in the argument description below. If more than one assign-
ment is specified, the assignments are processed sequentially. The returned
value is the value of the last assignment or nil if no arguments are provided.

The setf macro preserves the usual left-to-right order in which the various
subforms are evaluated.

Because setf returns the result of evaluating the last form, the form (setf
(car x) y) is not equivalent to the form (rplaca x y) because rplaca
returns the entire list x with y as its new car rather than the result of evaluat-
ing y. Thus, the equivalent of using rplaca to produce the same result and the
same returned value as (setf (car x) y) would be the following:

(let ((varl x) (var2 y))
(rplaca varl var2) var2)

The place argument is not evaluated but is used to determine how the value
of form is to be assigned. The place argument must be one of the following:

B A variable name which can be a lexical, dynamic, or instance variable.
B A function call using any of the following functions:

car caadar first array-leader

cdr cdadar second fill-pointer
caar caddar third fdefinition
cdar cdddar fourth sys:function-spec-get
cadr caaadr fifth documentation
cddr cdaadr sixth rest

caaar cadadr seventh restl

cdaar cddadr eighth rest2

cadar caaddr ninth rest3

cddar cdaddr tenth restd

caadr cadddr nth

cdadr cadddr elt

caddr nthedr symbol-plist

cdddr get symbol-value

caaaar getf symbol-function

cdaaar gethash

cadaar aref

cddaar svref

B A function call to an access operation produced by defstruct (see para-
graph 10.2, The defstruct Macro).

Lisp Reference

Symbols

B A function call using any of the following functions, provided that the

value of form is of the corresponding type for that function.

Function Required Type
char string-char
schar string-char

bit bit

sbit bit

subseq sequence

A function call using any of the following functions, provided that the
corresponding argument could serve as a place argument to setf. Also
listed is the particular function that is applied to perform the assignment
for setf.

Argument Function
Function Modified Applied
char-bit char set-char-bit
idb integer dpb
mask-field integer deposit-field

Consider the following example:

(setf x #\a) => #\a
(setf (char-bit x :HYPER) t) => t
(char-bit x :HYPER) => true

A the type declaration form in which the form argument for setf is set to
the declaration. For example:

(setf (the integer (cadr x)) (+ y 38))
This form is treated the same as the following:
(setf (cadr x) (the integer (+ y 3)))

An apply invocation in which the first argument is of the form (function
access-function) or is of the form #'access-function, where access-
function is recognized by setf as a place form. Note that the last argu-
ment appearing in access-function must also be the last argument in the
update form. The reason for this requirement is that apply can handle a
varying number of arguments, and therefore the update function must
also handle a varying number of arguments. The only way to deal with
this situation is to have the access and update functions expect their last
forms to be the same regardless of the actual number of arguments. For
example:

(setf (apply #’access-function argl arg2 ...arg-n last-arg)
new-value)

The preceding form must expand to the following:

(update-form iteml item2 ... item-m last-arg)

Lisp Reference

[]
L]

[y

3

Symbols

In this example, last-arg is the same in both forms, and new-value in
the first form is the same as one of the items in the second form.

In practice, only aref satisfies the previously described requirement if
aset is chosen as the update function. For example:

(setf (apply #°aref some-vector °(0)) 100)
The preceding form expands into the following:

(apply #‘aset 100 some-vector ’(0))

This form stores the value 100 in element 0 of some-vector. You can
define other access and update functions that work with apply by using
defsetf; however, these forms still must conform to the requirements
placed on the last argument.

A macro call such as the setf macro which expands the macro and ana-
lyzes the expansion code. If the macro call is not an acceptable place
form, the error condition sys:unknown-setf-reference is signaled.

A call to a function that was defined by the defsubst form and that
expands to an acceptable place form.

A values form. Each of the variable names that appear as arguments to
the values function is assigned a new value. In this case, setf operates
much the same way as multiple-value-setq, except that the variables can
be generalized variables. The second argument to the setf should be a
form that produces multiple values. If more values than variables are
specified, then the extra variables are ignored. If not enough values are
supplied, then the remaining variables are set to nil. For example:

(setf (values (aref quotient-array an-index)
(aref remainder-array an-index))

(floor 11 4))

In this example, the floor function produces two values: 2 and 3. There-
fore, the effect of the setf is the same as the following:

(setf (aref quotient-array an-index) 2)
(setf (aref remainder-array an-index) 3)

Any form that looks like an access to a flavor instance variable. In this
case, setf generates the appropriate update syntax. For example:

(setf (send foo :bar) new-value)

The preceding form is then expanded to the following:

(send foo :set-bar new-value)

Note that it is not possible for the compiler to know that the place argu-

ment is really a flavor instance access function. For the purposes of setf,
it is sufficient that it merely looks like one.

2-18

Lisp Reference

Symbols

B Any form for which there has been a defsetf or define-setf-method
declaration.

You can define new ways for setf to expand by using defsetf.

psetf {place value}* [¢] Macro

This macro is like setf, except that the assignments of values to places are
performed in parallel. All subforms are evaluated from left to right; after all
the subforms have been evaluated, values are assigned in an unpredictable
order. Thus, psetf may produce unexpected results if two or more place
arguments refer to the same memory location.

The returned value of psetf is always nil.

shiftf {place}+ value [c] Macro

This macro sets the first place to the value from the second piace, the second
place to the value from the third place, and so on (a shift left). The place
arguments can be anything allowable as a generalized variable for setf. The
argument value does not have to be a generalized variable acceptable to setf,
and its value is shifted to the last place. The original value of the first place is
returned. For example:

(setq x (list ‘a ‘b ‘c ‘d ‘e))=> {abc de)
(shiftf (second x) (third x) (fourth x) ‘z) => b
x=> (acdze)

(shiftf (second x) (cddr x) °q) => ¢
Xx=> (a (dze) . q

rotatef {place}* [c] Macro

This macro is like shiftf, but the value of the last place is set to the value
from the first place (a shift left circular). In other words, rotatef sets the first
place to the value from the second place, the second place to the value from
the third place, and so on until the last place. The last place then is set to the
value from the first place. The returned value is nil. For example:

(rotatef (second x) (third x) (fourth x))=> nil
z=>(acdbe)

(rotatef (first x) (second x)) => nil
x = (cadbe)

defsetf access-fn update-fn [doc-string] [e] Macro
defsetf access-fn lambda-list (store-variable) [c] Macro

{declaration | doc-string}* {body-form}*

This macro defines the translation for the setf operation on a generalized
variable specified by the argument (access-fn arg). The argument access-fn
must be a function or macro name. The update function supplied (or defined
via body-forms) performs the logical update and must also return the new
value to be consistent with the setf definition.

The simplest situation in which to use defsetf is when there is an update
function that does all the work of storing a value into the appropriate place
and has the proper calling conventions:

(defsetf function update-fn)

Lisp Reference

Symbols

The preceding form provides a translation that tells setf how to store into the
following generalized variable:

(function args...)
This storage is performed by invoking a form such as the following:
(update-fn args... new-value)

Note that new-value must be the last item in the list of arguments to update-

In.

The more general form of defsetf is used when there is no setting function
with exactly the right calling sequence. Thus, the body-forms tell setf how to
store a value into the generalized variable (function args...) by providing
something like a macro definition that expands into code and performs the
actual storing. The body-forms compute the code, and the last of the body-
Jorms returns a suitable expression.

The argument lambda-list should be a lambda list, which can have &optional
and &rest parameters. When you use the backquote facility (described in
Section 18, Macros), the body-forms should substitute (using the comma syn-
tax) the values of the parameters in this lambda list in order to refer to the
arguments in the setf calling form. Likewise, the body-forms should substitute
the variable store-variable in order to refer to the value being stored.

Consider the following example:

(defun access-nth (index list)
(nth index list))

(defun update-nth (list index new-value)
(rplaca (nthcdr index list) new-value))

(defsetf access-nth (index list) (new-value)
*(progn (update-nth ,list ,index ,new-value)
,new-value))

(setq sample-list “(a b ¢ d))

(access-nth 2 sample-list) => ¢

(setf (access-nth 2 sample-list) “z) => z
sample-list => (a b z d)

(macroexpand - (setf (access-nth 2 sample-list) ‘z))
=> (progn (update-nth sample-list 2 ‘z) ‘z)

In fact, the values bound to the lambda-list parameters and the store variable
are not the actual subforms of the setf calling form; instead, they are
gensyms. After the body-forms return, the corresponding expressions may be
substituted for the gensyms, or the gensyms may remain as local variables
with a suitable let provided to bind them. This procedure is how setf ensures
a correct order of evaluation.

2-20

Lisp Reference

Symbois

define-modify-macro name lambda-list function [doc-string] [c] Macro

This macro defines a macro that modifies its argument (such as incf).

name — The name argument is the name given to the macro being defined.

lambda-list — The lambda-list argument is a list of all arguments—except the
first—accepted by the new macro. The first argument to the new macro is
the equivalent of the place argument to setf. The lambda-list argument
accepts only the lambda-list keywords &optional and &rest (which pre-
vents the need for &key).

function — The function argument (sometimes called the combiner function)
is applied to the original place value, along with any values specified in
lambda-list, to produce the new value, which is stored back in the place
of the original value (as with setf).

doc-string — The doc-string argument is the documentation string describing
the new macro.

For example, the macro incf can be defined as follows:
(define-modify-macro incf (&optional (delta 1)) +)

If the incf macro had been defined in this way, the expansion would be as
follows:

(macroexpand ‘(incf x 38)) => (setq x (+ x 3))

define-setf-method access-fn lambda-list {declaration | docstring}* [c¢] Macro

{body-form}*
This macro defines the setf operation on a generalized variable accessed by
the function specified by the access-fn argument. This function provides

more power and generality than defsetf provides but is also more compli-
cated to use.

NOTE: The use of the term method in this description is generic and has no
relation to Explorer flavor methods.

The define-setf-method form receives its arguments almost like an analogous
defsetf. However, the values it receives are the actual subforms and the
actual form for the value, rather than gensyms that stand for them. The
parameters of lambda-list are bound to the actual subforms of the place argu-
ment in the setf calling form, and the full power of defmacro lambda lists
can be used to match against it.

The body-forms are once again evaluated, but define-setf-method does not
return an expression to do the storing. Instead, it returns five values that
contain sufficient information to enable anyone to examine and modify the
contents of the place. This information tells the caller which subforms of the
place need to be evaluated and how to use them to examine or set the value
of the place. (Generally, the lambda-list is arranged to make each parameter
receive one subform.) A temporary variable must be found or made (usually
with gensym) for each subform. Another temporary variable should be made
to correspond to the value to be stored. The following five returned values

Lisp Reference

2-21

Symbols

are everything that the macros used for manipulating generalized variables
(setf or something more complicated) need to know to decide what to do:

B A list of the temporary variables for the subforms of the place, usually
gensyms.

B A list of the subforms to which the temporary variables correspond. Usu-
ally, these variables are the evaluated lambda-list variables.

B A list of the temporary variables for the values to be stored, usually gen-
syms. Currently, there can only be one value stored; therefore, there is
always only one variable in this list.

B A form to do the storing. This form refers to some or all of the temporary
variables mentioned previously.

B A form to retrieve the value of the place. The setf form does not need to
perform this retrieval, but push and incf do. This form should refer only
to the temporary variables. To avoid causing this form to be evaluated, it
should not contain any piece of the place being stored in.

For an example use of define-setf-method, see the example for the related
function get-setf-method.

delete-setf-method access-fn [c] Function

This function removes the setf definition for access-fn. The access-fn argu-
ment must currently be defined as a setfable access form.

get-setf-method form [c] Function

This function invokes the setf method for form (which must be a list) and
returns the five values produced by the body of the define-setf-method for
the symbol that is the first element of form. The meanings of these five values
are given in the previous description of define-setf-method. If the setf defi-
nition of an access operation was defined with defsetf, you still get five val-
ues, which can be interpreted as outlined previously in the description of
define-setf-method. Thus, defsetf is an abbreviation for a suitable define-
setf-method.

There are two ways to use get-setf-method. One way is in a macro that, like
setf, incf, or push, wants to store into a place. The other way is in a define-
setf-method for something like 1db, which performs a setf operation by set-
ting one of its arguments. You append your new temporary variables and
temporary arguments to those returned from get-setf-method to produce the
combined lists that you return. Thus, the forms returned by the get-setf-
method are placed into the forms you return.

2-22

Lisp Reference

Symbols

An example of a macro that uses get-setf-method is pushnew. (The real
pushnew is more complicated than that shown in the following example
because it must handle the :test, :test-not, and :key arguments.) For
example:

(defmacrc pushnew (value placs)
(multiple-value-bind
(tempvars tempargs storevars storeform refform)
(get-setf-method place)
(sys:sublis-eval-once

(cons “(-val- . ,value) (pairlis tempvars tempargs))
*{(if (member -val- ,refform :test #°eq)
,refform

, (sublis (list (cons (car storevars)
“(cons -val- ,refform)))
storeform))
t)

In this example, if the value is already a member of the list (that is, the
,refform), then the list is simply returned. If the value is not a member, then
the sublis form changes every item in storeform that currently contains the
list to be the cons of the new item onto the list.

An example of a define-setf-method that uses gei-setf-method is that for
Idb:

(define-setf-method 1ldb (bytespec int)
(multiple-value-bind
(temps vals stores store-form access-form)
(get-setf-method int)
{let {(btemp (gensym))
(store (gensym))
(itemp (first stores)))
(values (cons btemp temps)
(cons bytespec vals)
(list store)
* (progn
, (sublis
(list (cons itemp
*(dpb ,store ,btemp
,access-form)))
store-form)
,store)
*(ldb ,btemp ,access-form)))))

This example primarily demonstrates that setf methods must be written in
such a way that they can interact successfully with other setf forms. You
never know how indirect or how abstract the place argument may be, but as
long as all programmers follow the style of the preceding example, the setf
methods should work properly. Specifically, the variable names and the value
lists must be Kept in sync, and the update (and access) forms must use these
variable names.

get-setf-method-multiple-value form [c] Function

This function is similar to get-setf-method but does not concern itself with
how many variables it stores. The get-setf-method-multiple-value function
returns the five values of the define-setf-method with form as an argument.
This argument must be a generalized variable meeting the requirements for
the place argument to setf. The get-setf-method-multiple-value function
should be used for storing multiple values in a generalized variable. Currently,
Common Lisp has no situations requiring such a function, but get-setf-
method-multiple-value has been defined to provide for future extensions.

Lisp Reference

2-23

Symbols

Logical Values and 2.14 The following constants represent logical values. The following
Symbol Predicates functions are predicates used to test symbols.

t [c] Constant
The value of this constant should not be changed; it represents the logical
value true.

nil [c] Constant

The value of this constant should not be changed; it represents the logical
value false. The nil constant also stands for the empty list and as such can be
written ().

symbolp object [c] Function
This predicate returns true if object is a symbol; otherwise, it returns nil.
Note the following equivalence:

(symbolp sign) <=> (typep sign “symbol)

nsymbolp object Function
This function returns nil if object is a symbol; otherwise, it returns true.

keywordp object [¢] Function

This predicate returns true if the argument is a symbol that is a keyword (in
other words, the symbol belongs to the KEYWORD package). Keywords are
treated like constants in that, when evaluated, they return themselves (see
constantp, paragraph 13.5, Global Variables and Named Constants). The
argument object can be any Lisp object.

boundp symbol [c] Function
variable-boundp symbol Special Form

The boundp predicate returns true if the value cell of symbol is not empty;
otherwise, it returns nil. For example:

(defvar x) ; Proclaim x special.
(setf x 1)

(and (boundp “x) x) => 1

(and (boundp ‘y) y) => nil

The variable-boundp special form is similar to boundp, but its argument is
not evaluated and can be a lexical variable or an instance variable as well as a
special variable.

The form (and (boundp ‘x) x) returns the value of x if it is defined. Since it
is defined, the form returns the non-nil value 1.

boundp-globally symbol Function
This function returns true if the global binding of symbol is bound.

Lisp Reference

NUMBERS

Number Definitions 3.1 The three general types of numbers are rational, floating-point, and

Rational Numbers

complex numbers. While each type possesses special qualities that make it
useful for certain kinds of processing, most numerical functions operate on
any of these types without any special notation.

Common Lisp allows some latitude in the implementation of numbers. Port-
able programs cannot assume that numbers are conventional data objects.
Thus, the eq function may not reliably operate on numbers. For example:

(let ((yabba num)
(dabba num))
(eq yabba dabba))

If num is a number, this expression may not necessarily return true. However,
the Explorer system implements numbers such that the preceding example
would return true if nun is of type fixnum or short-float. Thus, for portable
Common Lisp programs, use the numeric comparison functions (described
later in this section) when all the arguments are known to be numbers, and
use eql to test for identity when one of the arguments may not be a number.

3.1.1 The number type raiional is made up of two types of numbers: inte-
gers and ratios. Numbers of type integer are intended to behave as mathe-
matic integers. Theoretically, there is no limit on the size of an integer
number on the Explorer. The system automatically makes allowances to rep-
resent rational numbers of any size. However, the actual maximum integer
size is limited by your system’s virtual address space to represent this number,
and, of course, manipulating such large numbers reduces the quality of your
system’s performance. Integers are written as follows:

[sign] {digits}*

Integers can be represented internally as either fixnums or bignums. Fixnums
are a type of integer that is more efficient than arbitrarily large integers, but
their magnitude is limited. The constants most-negative-fixnum and most-
positive-fixnum define the range of fixnums. On the Explorer system, these
constants are equal to -22* and 224 -1, respectively. These limits are derived
from the size of a word on the Explorer and may vary with other Common
Lisp implementations. All integers that cannot be represented as fixnums are
bignums. Unless you explicitly test for this distinction, the difference be-
tween fixnums and bignums will be transparent to you and is apparent only
when efficiency of representation is important.

A ratio is a type of number whose value is the mathematical quotient of two
integers. A ratio consists of a signed integer called the numerator and a posi-
tive integer called the denominator. Rational numbers (that is, ratios) are
written as follows:

[sign] {numerator digits}*/{denominator digits}*

Lisp Reference

3-1

Numbers

Controlling Radices

In this format, the denominator digits cannot all be zero and no spaces are
permitted around the slash (/).

In a rational number’s canonical representation, all of the common factors
are removed from the numerator and denominator. If the denominator is 1,
the number is converted to an integer.

Computations involving rational numbers always produce rational numbers in
their ¢anonical form. Also, rational numbers are always printed in canonical
form.

3.1.2 When the Explorer system reads or writes a number, it uses the
default radices established by the variables *read-base* and *print-base*,
respectively. These variables are initially set to 10. but can be changed or
temporarily bound to another value. A period in a number is interpreted as a
decimal point so that the number is read in base 10 regardless of the value of
read-base.

NOTE: A trailing period denotes a decimal integer, not a floating-point
number as in some other languages.

You can override the default radix for reading by using the following
notation:

#ddRnnnnn

The digits between the # and the R specify the radix in which to read the
number nnnnn. The radix dd must be an unsigned decimal integer in the
range of 2 to 36 inclusive. The characters used to represent the digits nannn
must be limited to those appropriate for that base. For instance, numbers in
base 8 can use only the characters 0 through 7. Bases that require supple-
mental characters beyond the decimal set use letters of the alphabet, begin-
ning with a. These alphabetic characters can be in either uppercase or
lowercase. Note that in the case of ratios, the radix applies to the numerator
and denominator and the slash is allowed as part of the number specification.
For example:

#8R10/18 => 4/7

; The preceding is the same as the following:
8/14 => 47

The use of binary, octal, and hexadecimal numbers is so common that the
following special abbreviations are made available:

Radix Standard Abbreviation
Representation

binary #2Rnnnnn #Bnnnnn

octal #8Rnnnnn #Onnnnn

hexadecimal #16Rnnnnn #Xnnnnn

3-2

Lisp Reference

Floating-Point

Numbers

Numbers

Note that since the Reader maps lowercase characters to uppercase, you can
also use r, b, o, and x to specify radices.

3.1.3 Floating-point numbers represent mathematical real numbers. Com-
mon Lisp defines the type float as being made up of four kinds of floating-
point numbers: short-float, long-float, single-float, and double-float. Of
these types, short-float floating-point numbers are for optimum speed and
storage space, long-float floating-point numbers are for optimum precision,
and single-float and double-float floating-point numbers provide precisions
somewhere between the short-float and long-float formats.

On the Explorer system, floating-point numbers are represented in accor-
dance with IEEE standard 754 (although short-float is not officially part of
the standard, it is treated in a fashion that is a logical extension of IEEE
754). Note that the feature ieee-floating-point-format is present in the
features variable (which is described in the Explorer Input/Output
Reference manual).

These four types of floating-point numbers are not necessarily distinct,
though all must be included in any Common Lisp system. For instance, the
Explorer has three distinct implementations for floating-point numbers in
which the types double-float and long-float map to the same implementation
scheme. Other Common Lisp implementations may have more or fewer
implementation schemes and may map the float types to implementations in a
way different from the Explorer.

The notation for floating-point numbers is either decimal fraction or comput-
erized scientific notation. The syntax is defined as foliows:

[sign] {digit}*.{digit}* [float-type [sign] {digit}*]
or:
[sign] {digit}* [.{digit}*] float-type [sign] {digit}*

wnere:

sign is + or -
digitis 0, 1, 2, 3, 4, 5, 6,7, 8, or 9
float-type is E, S, F, D, or L

The letters S, F, D, L explicitly identify the floating-point types short-float,
single-float, double-float, and long-float, respectively. These characters
can be either uppercase or lowercase. When the float-type is e, E, or unspeci-
fied, then the variable *read-default-float-format* specifies the type of
floating-point number to be used. The initial value of this variable is single-
float. Floating-point numbers are always read in base ten. Although you can
syntactically specify another radix, this radix is overridden once the number
is found to be of type float.

If you supply a number that ends in a decimal point, such as 10., it is treated
as an integer and not as a floating-point number. If you want to express a
floating-point number, you must supply at least one fractional digit after the
decimal point, such as 10.0, or a float type specifier.

Lisp Reference

3-3

Numbers

Table 3-1

Complex Numbers

Regardless of how a number is expressed, the internal representation is usu-
ally a normalized version of that number. IEEE standard 754 allows for
denormalized numbers to implement gradual underflow (which the Explorer
system does not currently support). Specifically, the number (in binary) is
adjusted to isolate the most-significant n bits, where n is the size of the man-
tissa. For each bit, the number is adjusted right or left and the exponent is
incremented or decremented accordingly. If the exponent does not fit within
the stated field size for the intended floating-point type, an error is signaled.
If significant bits of the mantissa do not fit within the stated field size, then
the least-significant bits are used to round the number up or down. On the
Explorer system, the four floating-point types have the field characteristics
specified in Table 3-1.

Field Characteristics for Floating-Point Types

Data Type Exponent Range of Mantissa Decimal Digits
Size* Exponent Size* of Precision

short-float 8 1038 17 5

single-float 8 10%28 24 7

double-float 11 102308 53 16

long-float 11 102308 53 16

Note:

* The exponent and mantissa sizes are expressed in bits.

Currently, long-float is implemented as double-float on the Explorer.

3.1.4 The data type real consists of all numbers that do not have a complex
component, such as fixnums, bignums, floating-point numbers, and rational
numbers. Complex numbers, numbers of type complex, are composed of two
parts (a real part and an imaginary part) and are written in the following
format:

#C(real-part imaginary-part)

The real part and the imaginary part can be of any numeric type except
complex, but both parts must be of the same type. Specifically, both parts
must be rational or both parts must be of the same floating-point type. If the
two parts are not of the same type, then one of the numbers is converted
according to the rules of floating-point contagion. (Contagions are discussed
in the next numbered paragraph.)

The type specifier for a complex number is represented as a list in which the
first element is the type name complex and the second element is the type of
the component parts. For example:

(typep #c(1 2) °(complex rational)) => true
(typep #c(1.5 2.5) ‘(complex single-float)) => true

A canonical complex number whose components are rational can never have
a value of 0 for its imaginary part. If some computation should derive such a
number, the number is immediately converted to a rational number equal to

Lisp Reference

Precision, Coercion,
Contagion, and
Canonicalization

Numbers

the real part. However, complex numbers with floating-point components can
have an imaginary part of 0.0.

3.1.5 Precision can be regarded as potential accuracy. That is, for
floating-point numbers, the more bits allocated for retaining the fractional
part, the higher the probability of obtaining an accurate representation. How-
ever, inaccuracy is necessarily introduced because most mathematical real
numbers will overflow any practical boundaries that you establish. Given the
preceding definition for rational numbers, however, the virtual address space
is the only boundary that will overflow.

Numerical coercion is the process of converting a number of one type to a
number of another type. You can explicitly perform this conversion using
various support functions. Typically, you coerce a number to another type to
simplify or speed up a calculation. For example, you could coerce a floating-
point number to an integer inside a looping construct to speed up the con-
struct’s execution. Some precision might be lost in making this coercion, but
in some cases speed may be more important than precision.

Coercion is also implicitly invoked within the context of your program and
even in the run-time type of your symbols. This implicit conversion is called
contagion. Whenever a numerical operation requires that its arguments be of
the same type, the more specific type is converted to the more general type.
For instance, a rational number is converted to a floating-point number, a
short-precision float is converted to a longer-precision float, and floating-
point numbers are converted to complex numbers.

Generally speaking, the result of any numeric operation of similar types
(rational, floating-point, or complex) will return a value of a similar type that
allows for the highest degree of accuracy. Note that although the multiplica-
tion of two fixnums may produce a bignum, this product is still of type inte-
ger and the precision simply increases as necessary to retain accuracy. For
floating-point numbers, however, the precision type of the result is not in-
creased because it is assumed that this would not increase accuracy. For ex-
ample, multiplying two single-floats produces another single-float, not a

Some numeric values are automatically coerced into a less general yet equally
accurate type. The general term for this is canonicalization. As mentioned
previously, a canonical ratio with a denominator of 1 is converted to an inte-
ger, and a rational complex number with an imaginary part of 0 is converted
to a rational number. These particular conversions are made for efficiency,
although all types of numbers are not automatically converted to their sim-
plest possible type. For instance, numbers such as 14.0 are not converted into
14. because floating-point numbers are not assumed to be completely accu-
rate and can therefore never be converted back to rationals unless explicitly
requested by the user.

Lisp Reference

Numbers

Number Constants

values.

most-positive-fixnum
most-negative-fixnum
most-positive-short-float
most-negative-short-float
least-positive-short-float
least-negative-short-float
most-positive-single-float
least-positive-single-float
most-negative-single-float
least-negative-single-float
most-positive-double-float
least-positive-double-float
most-negative-double-float
least-negative-double-float
most-positive-long-float
least-positive-long-float
most-negative-long-float
least-negative-long-float

3.2 The following constants can be used to provide numeric boundary

[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant
[c] Constant

These constants specify the positive and negative numbers of the greatest and
least magnitude that can be represented by the type indicated.

short-float-epsilon [c] Constant
single-float-epsilon [c] Constant
double-float-epsilon [c] Constant
long-float-epsilon [c] Constant

These constants specify, for the various floating-point number formats, the
smallest positive number that can be added to a floating-point 1 to produce a
noticeable change from the value of 1. For example, if x equals 1.0s0, a
number smaller than short-float-epsilon added to x returns 1.0s0.

short-float-negative-epsilon [c] Constant
single-float-negative-epsilon [c] Constant
double-float-negative-epsilon [c] Constant
long-float-negative-epsilon [c] Constant

These constants specify, for the various floating-point number formats, the
smallest positive number that can be subtracted from a floating-point 1 to
produce a noticeable change from the value of 1.

Number

Comparisons

3.3 The following functions take one or more arguments, which all must be
numbers. For all of these functions (except max and min), if the sequence of

arguments satisfies the function’s specified test, then true is returned; other-
wise, nil is returned.

Only = and /= accept complex numbers (the other functions take only non-
complex arguments).

= number &rest more-numbers [c] Function

This is the numeric equal test; all arguments must be equal in value. If the
arguments are complex numbers, this function returns true for any two com-
plex numbers whose real parts are equal (according to =) and whose imagi-
nary parts are equal.

Lisp Reference

Numbers

/= number &rest more-numbers [c] Function

This is the numeric not equal test; no two arguments are equal in value. If the
arguments are complex numbers, this function returns true for any two com-
plex numbers whose real parts are not equal (according to /=) or whose
imaginary parts are not equal.

< number &rest more-numbers [c] Function

This function is the numeric less than test; all arguments (from left to right)
must be monotonically increasing in value.

> number &rest more-numbers [c] Function

This function is the numeric greater than test; all arguments must be
monotonically decreasing in value.

<= number &rest more-numbers [c] Function
This function is the numeric less than or equal test; all arguments must be
monotonically nondecreasing in value.

>= number &rest more-numbers [c] Function
This function is the greater than or equal test; all arguments must be
monotonically nonincreasing in value.

max number &rest more-numbers [c] Function

min number &rest more-numbers [c] Function
These functions require noncomplex numbers for arguments The max func-
tion returns the argument with the largest value. The min function returns the
argument with the smallest value. For example:

(max 58 58 57) => 59 (min 59 58 57) => 57

(max -22 -33 -3) => -3 (min -22 -33 -8) => -33

(max 0 -11) => O (min 0 -11) => -11

(max 4) => 4 (min 4) => 4

{max 14.302 14.301 15) => 15 (min 14.302 14.301 15) => 14.301
Arithmetic 3.4 The following functions perform the standard arithmetic operations. All

arguments must be numbers.

+ &rest numbers [c] Function
This function returns the sum of numbers. If no arguments are supplied, it
returns 0, the identity for addition.

- number &rest more-numbers [c] Function

This function can be used in two ways—either to negate number if more-
numbers are unspecified or to subtract each element of more-numbers from
number. For example:

(- 5) => -5

(- 10 3 2 1) => 4

; The preceding form is equivalent to the following.
(- (- (- 10 8) 2) 1) => 4

Lisp Reference 3-7

Numbers

* &rest numbers [c] Function

This function successively multiplies each number in numbers by the product
of the numbers preceding it. Thus, (*+ 1 2 5) returns 10. If numbers is
unspecified, this function returns 1, the identity for multiplication.

{ number &rest more-numbers [c] Function

This is the division and reciprocal operation. The Common Lisp function /
can be used in two ways. If more-numbers are unspecified, / returns the
reciprocal of number. Otherwise, number is divided by the first number in
more-numbers; then this quotient is divided by the next number in more-
numbers, and so on until all numbers in more-numbers are used.

A ratio is produced if the mathematical quotient of two integers is not an
exact integer. Consider the following examples:

(/ 6 2) =>3
(/5 2) => 5/
(/ §.0 2) =>
(/ 3) => 1/3
(/24 2 3) =>4

.5

In Common Lisp, use one of the functions floor, ceiling, truncate, or round
to divide one integer by another to produce an integer result. If rumber or
any element of more-numbers is a floating-point number, the rules of float-
ing-point contagion are used in producing the returned value. Note that this is
different in Zetalisp mode.

quotient number &rest numbers Function

1+ number

1- number

This function performs division but differs from the Common Lisp function /
in the following ways:

B If only one argument is supplied, it is returned unchanged.

B If both arguments are integers, an integer result is returned, with any
fractional part discarded.

Consider the following example:
(quotient 5 2) => 2

This function is supported for the sake of old programs; new programs should
use / or truncate, as appropriate.

[c¢] Function

This is the incrementor function. It returns a number equal to number+1. For
example:

(1+ x) <=> (+ x 1)

[c] Function

This function returns its argument decremented by 1. Note that this function
signifies number-1, not I-number. Note the following equivalence:

(1- x) <=> (- x 1)

Lisp Reference

Numbers

incf place &optional amount [c] Macro
decf place &optional amount [c] Macro

The incf macro increments the value at place by amount, which defaults to 1.
The incf form returns the new value of place after the addition. The decf
macro performs the same operation, but instead of incrementing, it decre-
ments. For example:

(setf thing 13) => 13
(incf thing) => 14
(decf thing 23) => -9
thing => -9

(decf thing -5) => -4
(decf thing) => -5
thing => -5

The form (incf place amount) is like (setf place (+ place amount)), but incf
evaluates place only once. Furthermore, incf may be more efficient than setf
for some place subforms.

conjugate number [c] Function

This function returns the complex conjugate of its argument. If the argument
is noncomplex, then this function simply returns the argument. For example:

(conjugate #C(1/2 -2/3)) => #C(1/2 2/3)
(conjugate #C(2.083 1.088)) => #C(2000.0s0 -1000.0s0)
(conjugate 1.5) => 1.5

mod number divisor [c] Function

This function returns the root of number modulo divisor. This is a number
between O and divisor, or possibly 0, whose difference from number is a
multiple of divisor. It is the same as the second returned value of the form
(floor number divisor). For example:

(mod 7 15) => 7
(mod -7 15) => 8
(mod -7 -15) => -7
(mod 7 -15) => -8
(mod 15 7) => 1

rem number divisor [c] Function

This function returns the remainder of number divided by divisor, which is
the same as the second returned value of the form (truncate number
divisor). Both number and divisor can be integers or floating-point numbers.
Consider the following example:

(rem 7 15) => 7
(rem -7 18) => -7
(rem -7 -15) => -7
(rem 7 -18) => 17
(rem 15 7) => 1

gcd &rest integers [c] Function

This function returns the greatest common divisor of its arguments, which
must be integers. With no arguments, gcd returns 0. If one argument is
passed, the absolute value of the integer is returned. For example:

(gcd 38 80) => 12
(gcd 45 54 -81) => 9
(ged 8) => 8

(ged -38) => 3

(ged) => 0

Lisp Reference

?)
O

Numbers

Icm integer &rest integers [c] Function

abs number

This function returns the least common multiple of the specified integers. At
least one argument must be provided, and if one or more arguments are
equal to 0, then the function returns 0. If only one argument is provided,
then the function returns its absolute value. The operation of this function
can be described as follows:

(lem x y) <=> (/ (abs (* x ¥)) (ged x y))
Consider the following example:

(lcm 1 2 8) => 8
(lem 1 2 3 4) => 12
(lem 1 2 3 4 5) => 60

[c] Function

This function returns the absolute value of number. If number is complex, a
real value equivalent to the following form (though not necessarily computed
in this way) is returned:

(sqrt (+ (expt (realpart number) 2) (expt (imagpart number) 2)))

Exponential and

3.5 The following functions perform exponential and logarithmic opera-

Logarithmic tions. Those functions dealing with the base of the natural logarithms convert
Functions all arguments to floating-point numbers and return a single-precision floating-
point number.
exp power [c] Function
This function raises e to the power of power, where e is the base of the
natural logarithms.
expt number power [c] Function
This function returns number raised to the power of power. The result is
rational (and possibly an integer) if number is rational and power is an inte-
ger. If power is an integer, a repeated-multiplication algorithm is used. If
power is 0, then the result is the number 1 in the type of whatever type
number is. It is an error, however, for number to be 0 when power is non-
integer 0. Consider the following equivalence:
(expt x y) <=> (exp (* y (log x)))
log number &optional base [c] Function
This function returns the logarithm of number in the base of base. If a base
argument is not provided, then the function defaults the base to ¢ (see exp),
the base of the natural logarithms. For example:
(log 27.0 3) => 3.0
(log 100.0 10) => 2.0
This function can return a complex value if number is not complex but is
negative.
3-10 Lisp Reference

sqrt number

isqrt integer

Numbers

[¢] Function

This function returns the square root of aumber. A mathematically unavoid-
able discontinuity occurs for negative real arguments, for which the value
returned is a positive real number multiplied by /, which is represented as the
imaginary part of a complex number. For example:

(sqrt 4) => 2.0

(sqrt -4) => #C(0.0 2.0)

(sqrt #C(-4 .0001)) => #C(2.5e-5 2.0) ; approximately
(sqrt #C(-4 -.0001)) => #C(2.5e-5 -2.0) ; approximately

[c] Function

This function is the integer square-root operation. The argument integer must
be a nonnegative integer; the result is the greatest integer less than or equal to
the exact square root of integer. For example:

(isqrt 18) => 4
(isqrt 17) => 4
(isqrt 228) => 15

Trigonometric and
Related Functions

3.6 The following functions perform trigonometric and transcendental
operations. Common Lisp requires that the arguments to the basic trigono-
metric functions (cos, sin, and tan) be specified in radians.

phase number [¢] Function

This function returns the phase angle of the complex number number in its
polar form. This is the angle in radians from the positive x axis to the ray
from the origin through number. The value is always in the interval -pi to pi.
For example:

(phase 4) => 0.0

(phase ~4) => 3.1415927 ; pi
(phase #C(-4 -.0001)) => 3.1415904 ; near -pi
(phase 0) => 0.0

signum number [c] Function

This function returns a number of the same type with unit magnitude and the
same sign as number. If number is 0, the returned value is 0.

If number is rational, the returned value is 0, 1, or -1. If number is a floating-
point number, the result is a floating-point number (0.0, 1.0, or -1.0) of the
same type. If number is a complex number, the result has the same phase
angle as number but is scaled to the unit circle. For example:

(signum 0) => 0

(signum 5/2) => 1

(signum #C(10 10))

=> #C(0.70710877 0.70710877) ; 45 degree angle
(signum #C(0.0 -1986.0)) => #C(0.0 -1.0)

w
O

[

p—

Numbers

sin radians
cos radians
tan radians
sind degrees
cosd degrees
tand degrees

cis radians

asin numbers
acos numbers

atan y &optional x

[¢] Function
[c] Function
[¢] Function
Function
Function
Function

The sin, cos, and tan functions return the sine, cosine, and tangent, respec-
tively, of the value specified by radians.

The functions sind, cosd, and tand also return the sine, cosine, and tangent
of the argument, but you must specify the argument in degrees.

[c] Function

This function returns the complex number of unit magnitude whose phase is
radians (which must be a real number). This is equal to the following:

(complex (cos radians) (sin radians))

[c] Function
[c] Function

These functions return the angle in radians whose sine (or cosine) is equal to
numbers. They can be defined as follows:

asin ~ilog (ix + /1 - x2)

acos -ilog (x + iy/1 - x?)
These functions can return a complex result if the absolute value of numbers
is greater than 1.

[c] Function

This function calculates the arc tangent of its arguments and returns the result
in radians. The atan function can be defined as follows:

-ilog ((1 + iy)/1T/(1 +y 2))

If only y is specified (which can be complex), the value is the angle, in radi-
ans, whose tangent is y. If the argument y is noncomplex, the result is also
noncomplex and ranges between -pi/2 and pi/2.

If x is also given, the arguments must be real, and the result is an angle whose
tangent is y/x. The signs of the two arguments are used to choose between two
angles that differ by pi and have the same tangent. The returned value is the
signed angle between the x axis and the line from the origin to the point (x, y)
and is always between -pi (exclusive) and pi (inclusive). This is also the
phase of (complex x/y). Table 3-2 shows various special cases of the result of
atan.

3-12

Lisp Reference

Numbers

Table 3-2

pi

sinh number
cosh number
tanh number
asinh number
acosh number
atanh number

Cases Involving atan

b y Result

>0 0 0

>0 >0 0< result <pi/2
0 >0 pi/2

<0 >0 pi/2< result <pi

<0 0 pi

<0 <0 -pi< result <-pi/2
0 <0 -pi/2

>0 <0 -pif2< result <0
0 0 Error

[c] Constant
This constant is equal to pi as a long floating-point number.

You can produce a value approximately equal to pi in another precision by
using a floating-point number num of this precision in the form (float pi
num). The same result can be achieved by specifying the type of precision in
the form (coerce pi float-type).

[c] Function
[c] Function
[c] Function

frl i
{¢] Function

{c] Function
[c] Function

These functions are the hyperbolic versions of sin, cos, tan, asin, acos, and
atan. When these functions are provided with an argument x, they can be
defined as follows:

sinh Hyperbolic sine: (ex-e*)/2

cosh Hyperbolic cosine: (e*+ ex)/2

tanh Hyperbolic tangent: (ex-ex)/{e*+ &%)

asinh Hyperbolic arc sine: log(x + /1 + x?)

acosh Hyperbolic arc cosine: log(x + (x+1) /(x = 1)/(x + 1))

atanh Hyperbolic arc tangent: log((1 + x) /1 -1/ x%)

The functions acosh and atanh can return complex values even if number is
a real value, if number is less than 1 for acosh, or if number’s absolute value
is greater than 1 for atanh.

Lisp Reference

Numbers

Standard Number 3.7 The following functions perform standard number conversions.
Conversion

float number &optional float [¢] Function

This function converts number to a floating-point number and returns it.

If float is specified, it must be a floating-point number, and the returned
value is in the same floating-point format as float. If number is a floating-
point number of a different format, then it is converted.

If float is omitted, the number is converted to a number of type single-float
unless it is already a floating-point number.

A complex number is converted to another complex number whose real and
imaginary parts are converted to the same floating-point format as float or, if
float is omitted, to a number of type single-float unless they were already
floating-point numbers. Note that this is an extension to the Common Lisp
definition. See also coerce, paragraph 12.9, Type Conversion.

short-float number Function
double-float number Function

These functions convert number into short-float or double-precision floating-
point numbers.

rational number [c] Function
rationalize number [¢] Function
rationalize number &optional precision Function

The function rational returns number as a rational number. If number is an
integer or a ratio, it is returned unchanged. If it is a floating-point number, it
is regarded as an exact fraction whose numerator is the mantissa and whose
denominator is a power of 2. For any other argument, an error is signaled.
For instance, using the function integer-decode-float, you can see that 0.75
has a numerator of 1610612736 and a denominator of 23!:

(/ 1610812736 (expt 2 31)) => 3/4

The function rationalize returns a rational approximation to number. If there
is only one argument and it is an integer or a ratio, it is returned unchanged.
If the argument is a floating-point number, a rational number is returned,
which, if converted to a floating-point number, would produce the original
argument. Of all such rational numbers, the one chosen has the smallest
numerator and denominator.

If there are two arguments to rationalize, the second one specifies how many
digits of the first argument should be considered significant. The argument
precision can be a positive integer (the number of bits to use), a negative
integer (the number of bits to drop at the end), or a floating-point number
(which, minus its exponent, is the number of bits to use).

Also, when two arguments are provided to rationalize and the first is
rational, the value is a simpler rational that is an approximation.

3-14

Lisp Reference

Numbers

complex real-part &optional imaginary-part [¢] Function

This function returns a complex number whose real part is real-part and
whose imaginary part is imaginary-part. If real-part is rational and imaginary-
part is 0 or omitted, the value is reai-part. If real-part is a floating-point
number and imaginary-part is 0 or omitted, a peculiar complex number is
created whose numeric value is actually real. Note that realp of this peculiar
complex number is nil even though the mathematical value is indeed real.

The value returned by complex can sometimes be a rational number rather
than a complex number because of the rule of canonicalization of complex
rationals.

ceiling number &optional divisor [c] Function
floor number &optional divisor [c] Function
truncate number &optional divisor [c] Function
round number &optional divisor [c] Function

With two arguments, the quotient of number divided by divisor is converted
to an integer and returned. When these functions are provided with only one
argument, the divisor argument defaults to 1. In this case, these functions
convert the number of the argument to an integer, unless it already is one, in
which case it is returned unchanged.

The function ceiling returns two values. The first value is the smallest integer
greater than or equal to the quotient of number divided by divisor. The sec-
ond returned value is the remainder, number minus divisor times the first
returned value.

The function floor returns two values; the first is the largest integer less than
or equal to the quotient of number divided by divisor. The second returned
value is the remainder, that is, number minus divisor times the first returned
value.

The function truncate is the same as floor if the arguments have the same
sign. When the arguments have different signs, truncate operates the same as
ceiling. The first returned value of truncate is the nearest integer, in the
direction of 0, to the quotient of number divided by divisor. The second
returned value of truncate is the remainder, that is, number minus divisor
times the first returned value.

The function round returns two values: the first value is the nearest integer to
the quotient of number divided by divisor. If the quotient is midway between
two integers, the even integer of the two is used. The second returned value is
the remainder, that is, number minus divisor times the first returned value.
The sign of this remainder cannot be predicted from the signs of the argu-
ments alone.

Table 3-3 shows the difference between these four functions when passed
only one argument, that is, when the divisor argument defaults to 1.

Refere

oa
e

Numbers

Table 3-3 Values Returned by floor, ceiling, truncate, and round
First Returned Value
Argument floor ceiling truncate round
2.6 2 3 2 3
2.5 2 3 2 2
2.4 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0
-0.3 -1 0 0 0
-0.7 -1 0 0 -1
-2.4 -3 -2 -2 -2
-2.5 -3 -2 -2 -2
-2.6 -3 -2 -2 -3
Nontrivial 3.8 The following functions convert numbers to floating-point format.
Floating-Point
Conversion
ffloor number &optional divisor [c] Function
fceiling number &optional divisor [c] Function
ftruncate number &optional divisor [c] Function
fround number &optional divisor [c] Function

These functions are like floor, ceiling, truncate, and round but return
floating-point numbers.

If number is a floating-point number, then the result is the same type of
floating-point number as number. For example:

(ffloor -7.875) => -8.0 0.125

Number Component 3.9 The following functions are used to extract components from nontrivial
Extraction numbers.

realpart number [c] Function
imagpart number [c] Function

The function realpart returns the real part of the complex number number.
If number is real, realpart simply returns number.

The function imagpart returns the imaginary part of the complex number
number. If number is a rational, imagpart returns 0; if number is a floating-
point number, imagpart returns a floating-point 0 of the same type as

number.
numerator number [c] Function
denominator number ~ [c] Function

The numerator function returns the numerator of the rational number
number. If number is an integer, the returned value equals number. If
number is not an integer or a ratio, an error is signaled.

3-16 Lisp Reference

Numbers

The denominator function returns the denominator of the rational number
number. If number is an integer, the value is 1. If number is not an integer or
ratio, an error is signaled.

The denominator function always returns a positive integer; the numerator
function returns both positive and negative integers. For example:

(numerator (/ 8 -3)) => -8
(denominator (/ 8 -3)) => 8

decode-float float [c] Function
integer-decode-float float [c] Function
scale-float float integer [c] Function
float-sign float &optional identity [c] Function
float-radix float [c] Function
float-digits float [c] Function
float-precision float [c] Function

These functions extract various numbers related to the argument floa¢, which
must be a floating-point number.

The function decode-float returns three values that describe the value of the
argument float. The first returned value is a positive floating-point number of
the same format having the same mantissa but with an exponent chosen to
make it between }4 (inclusive) and 1 (exclusive). The second returned value
is the exponent of float: the power of 2 by which the first value needs to be
scaled in order to return float. The third returned value expresses the sign of
float. 1t is a floating-point number that is of the same format as float and
whose value is either 1 or -1. For example:

(decode-float 38.2) => 0.596875 6 1.0

The function integer-decode-float is like decode-float, except that the first
returned value is scaled to make it an integer, and the second value (the
exponent) is adjusted to compensate for the scaling. For example:

(integer-decode-float 38.2) => 10013901 -18 1.0

The function scale-float multiplies float by 2 raised to the integer power.
example:

(scale-float (float 10013901) -18) => 38.2

The function float-sign returns a floating-point number whose sign matches
that of float and whose magnitude and format are those of y (which must be a
floating-point number). If identity is omitted, 1.0 is used as the magnitude
and the format of float is used. For example:

(float-sign -0.0) => -1.0

The function float-radix returns the radix used for the exponent in the for-
mat used for float. On the Explorer system, floating-point exponents are
always powers of 2, so float-radix ignores its argument and always returns 2.

The function float-digits returns the number of significant bits of the man-
tissa in whatever the floating-point format is for float. For the field character-
istics of floating-point numbers on the Explorer, see Table 3-1.

Lisp Reference

w
1
(oY
~1

Numbers

The function float-precision returns the number of radix digits in the man-
tissa of float. Since the radix is always 2 on the Explorer system, this function
returns the number of significant bits.

Logical Operations 3.10 The arguments to the following functions must be integers, which are
on Numbers treated as binary numbers in two’s complement notation. Note that the exam-

ples for the following functions use octal numbers as arguments and that the
returned value is octal. However, when you execute these examples on the
Explorer system, the displayed values depend on whatever *print-base* is
set to.

lognot integer [c] Function

This function returns the bitwise logical complement of integer. Note the fol-
lowing equivalence:

(lognot integer) <=> (logxor integer -1)
(logbitp j (lognot x)) <=> (not (logbitp j x))

Consider the following example:
(lognot #03458) => #0-3457 ; Equivalent to 7774321 octal.

logior &rest integers [¢] Function

This function returns the bitwise logical inclusive or of integers. If no argu-

ments are given, logior returns 0, which is the identity for this operation. For
example:

(logior #04002 #087) => #040867

logxor &rest integers [c] Function

This function returns the bitwise logical exclusive or of integers. If no argu-

ments are given, logxor returns 0, which is the identity for this operation. For
example:

(logxor #02531 #07777) => #05246

logand &rest integers : [c] Function

This function returns the bitwise logical and of integers. If no arguments are

given, logand returns -1, which is the identity for this operation. For
example:

(logand #03458 #0707) => #0408
(logand #03458 #0-100) => #03400

logeqv &rest integers [c] Function

This function returns the bitwise logical equivalence (also known as exclusive
nor) of integers. This function returns -1 if the two argument bits are equal.
This operation is associative. If no arguments are given, logeqv returns -1,
which is the identity for this operation. Consider the following example:

(logeqv #02531 #07707) => #0-5237 ; Equivalent to 7772541 octal.

Lisp Reference

Numbers

lognand integer! integer2 [c] Function

This function returns the bitwise logical nand of integer! and integer2. If
either integerl or integer2 is 0, lognand returns -1. Note the following
equivalence:

(lognand integerl integer2) <=> (lognot (logand integerl integer2))

lognor integerl integer2 [c] Function

This function returns the bitwise logical nor of integer! and integer2. If both
integer] and integer2 are 0, lognor returns ~1. Note the following equiva-
lence:

(lognor integerl integer2) <=> (lognot (logior integerl integer2))

logandcl integerl integer2 {c] Function

This function returns the bitwise logical and of integeri’s complement and
integer2. Note the following equivalence:

(logandcl integerl integer2) <=> (logand (lognot integeri) integer2)

logandc2 integerl integer2 [¢] Function

This function returns the bitwise logical and of integer! and the complement
of integer2. Note the following equivalence:

(logande2 integerl integer2) <=> (logand integerl (lognot integer2))

1 F I TR R S, JOE R . T,
10gOrcCl Inlegers iniegere {€] runcuon

This function returns the bitwise logical or of integer!’s complement and
integer2. Note the following equivalence:

(logorcl integerl integer2) <=> (logior (lognot integerl) integer2)

logorc2 integerl integer2 [c] Function

This function returns the bitwise logical or of integerl and the complement of
integer2. Note the following equivalence:

(logorc2 integerl integer2) <=> (logior integerl (lognot integer2))

Table 3-4 summarizes the ten bitwise logical operations that can be per-
formed on two integers.

w
'
(=
o

Lisp Reference

Numbers

Table 3-4 Bitwise Logical Operations on Two Integers

Function Logical
Name Operation
integerl 0 0 1 1
integer2 0 1 0 1
logand 0 0 0 1 And
logior 0 1 1 1 Inclusive or
logxor 0 1 1 0 Exclusive or
logeqv 1 0 0 1 Equivalence (exclusive nor)
lognand 1 1 1 0 Nand
lognor 1 0 0 0 Nor
logandcl 0 1 0 0 And complement of integer! with integer2
logandc2 0 0 1 0 And integer! with complement of integer2
logorcl 1 1 0 1 Or complement of integer! with integer2
logorc2 1 0 1 1 Or integer! with complement of integer2
boole op intgl intg2 [c] Function
boole op intgl &rest more-intg Function
boole-cir [c] Constant
boole-set [c] Constant
boole-1 [c] Constant
boole-2 [c] Constant
boole-c1 [c] Constant
boole-c2 [c] Constant
beole-and [c] Constant
boole-ior [c] Constant
boole-xor [c] Constant
boole-eqv [c] Constant
boole-nand [c] Constant
boole-nor [c] Constant
boole-andcl [c] Constant
boole-andc2 [c] Constant
boole-orcl [c] Constant
boole-orc2 [c] Constant
The boole function is the generalization of logand, logior, and logxor. This
function returns the resuit of performing the logical operation op (which can
be specified by one of the preceding constants) on intg! and intg2.
With two arguments, the result of boole is simply its second argument. At
least two arguments are required.
Table 3-5 summarizes the Boolean logical operations that can be performed
on two integers.
3-20 Lisp Reference

Numbers

Table 3-5 Bitwise Boolean Operations on Two Integers

Function Logical

Name Operation

intgl 0 0 1 1

intg2 0 1 0 1

boole-cir 0 0 0 0 Always 0

boole-set 1 1 1 1 Always 1

boole-1 0 0 1 1 Returns intgl

boole-2 0 1 0 1 Returns intg2

boole-cl 1 1 0 o0 Complement of intgl

boole-c2 1 0 1 0 Complement of intg2

boole-and 0 0 0 1 And

boole-ior 0 1 1 1 Inclusive or

boole-xor 0 1 1 0 Exclusive or

boole-eqv 1 0 0 1 Exclusive nor

boole-nand 1 1 1 0 Nand

boole-nor 1 0 0 0 Nor

boole-andcl 0 1 0 o And the complement of intg! with intg2

boole-andc2 0 0 1 0 And intgl with the complement of intg2

boole-orcl 1 1 0 1 Or the complement of intgl with intg2

boole-orc2 1 0 1 1 Or intgl with the complement of intg2
If boole has more than three arguments, it is associated left to right (where
bl-cnst is one of the boole constants previously listed) as follows:
(boole bl-cnst x y z) <=> (boole bl-cnst (boole bl-cnst x y) 2z)
The boole function can be useful when the logical operation is selected at run
time. Also note that the Common Lisp primitive boole accepts only three
arguments, whereas boole on the Explorer can accept more than three argu-
ments and, thus, is an extension.

logtest integerl integer2 [c] Function
This function is a predicate that returns true if any of the bits designated by
the 1-bits in integerl are 1-bits in integer2. Note the following equivalence:
(logtest integerl integer2) <=> (not (zerop (logand integerl integer2)))
logbitp index integer [c] Function

This function returns true if the bit index (in relation to the least significant
bit in integer) is a 1. Note the following equivalence:

(logbitp index integer) <=> (ldb-test (byte index 1) integer)
Consider the following example:

(logbitp 1 7) => t ; Or true
(logbitp 4 7) => nil ; Or false

Lisp Reference

3-21

Numbers

Ish integer count Function

This function logically shifts integer left by count bit positions or right by
count bit positions if count is negative. Unused positions are filled by 0-bits
that are shifted in (at either end). The arguments must be fixnums. Note that
fixnums are only 25 bits wide and that Ish does not perform a circular shift.
For example:

(lsh 4 1) => 8]

(lsh #014 -2) => 3

(1sh 1 25) => 0

(lIsh 1 24) => -18777218

ash integer count [c] Function

This function arithmetically shifts integer left by count bits if count is positive,
or right by —count bits if count is negative. Unused positions are filled by 0s
from the right and by copies of the sign bit from the left. Thus, unlike Ish, the
sign of the result is always the same as the sign of integer. If integer is a
fixnum or a bignum, this is a shifting operation. If integer is a floating-point
number, this function performs scaling (multiplication by a power of 2) rather
than actually shifting any bits.

(ash 1 1) => 2

(ash 1 10) => 1024

(ash 2 -1) => 1

(ash 2 -2) => 0

(ash 1 23) => 8388608 ; A fixnum.
(ash 1 24) => 83554432 ; A bignum.

Notice that Common Lisp specifies only ash for integer arguments, whereas
the Explorer system also allows the first argument to be a floating-point
number.

rot integer count Function

This function returns integer rotated to the left by count bit positions if count
is positive or 0, and rotated to the right if count is negative. On the Explorer
system, the rotation considers integer as a 25-bit number, and both argu-
ments must be fixnums. This function does not operate on bignums. This
function is best avoided because it is highly implementation-dependent.
Consider the following examples:

(rot 1 2) => 4

(rét 1 =2) => #040000000
(rot =1 7) => -1

(rot 15 25) => 15

logcount integer ' [¢] Function

This function returns the number of 1-bits in integer if this argument is posi-
tive or returns the number of 0-bits in integer if this argument is negative. (A
negative integer logically contains an infinite number of 1-bits because the
sign bit extends to the left as many places as necessary.) For example:

(logcount #015) => 3
(logcount #0-15) => 2
(logcount 13) => 3
(logcount -13) => 2
(logcount 30) => 4
(logcount -30) => 4

Lisp Reference

Numbers

integer-length integer [c] Function

This function returns the minimum number of bits (excluding the sign)
needed to represent integer in two’'s complement notation. For example:

(integer-length 0) => 0
(integer-length 7) => 3
(integer-length 8) => 4

(integer-length -7) => 3
(integer-length -8) => 8
(integer-length -8) => 4
haulong integer Function

This function returns the number of significant bits in the absolute value of
integer, which can be a fixnum or a bignum. The sign of integer is ignored.
The result is the least integer strictly greater than the base-2 logarithm of the
absolute value of integer. Note the following equivalence:

(haulong x) <=> (integer-length (abs x))

haipart integer n Function

This function returns the n highest bits of the absolute value of integer, or the
n lowest bits if n is negative. The integer argument can be a fixnum or a
bignum; its sign is ignored.

Byte Manipulation
Functions

3.11 The following functions manipulate bytes through the use of byte
specifiers. In the following descriptions, a byte is any bit string, not just those

with sioht hite A hufs cnacnifior doanntae 3 martinrtilar huta nacitian unthin an
Wit QIgatl OIs. A 0Yyle Speéelijier Qenlils a par oyie p willinl an

integer and a field width. Byte specifiers are normally created by the byte
function.

On the Explorer system, byte specifiers are integers whose lowest six bits
represent the size of the byte and whose higher bits (usually 6) represent the
position of the byte within the integer (beginning at 0 and counting from the
right in bits). Because of this arrangement, byte specifiers are easier to under-
stand when displayed in octal. The maximum size of a byte is 63 bits.

byte size position [c] Function
byte-size byie-spec [c] Function
byte-position byte-spec [c] Function

The byte function returns a byte specifier for the byte of size bits, positioned
to exclude the number of least significant bits specified by position. This byte
specifier can be passed as the first argument to ldb, dpb, and mask-field.
The byte-size function returns the size of the byte specified by byte-spec, and
the byte-position function returns the position of the byte specified by byte-
spec.

For the following example, suppose that you want to specify an eight-bit byte
that starts in bit position 24:

(byte 8 24) => 1544 = #03010
(byte-size 1544) => 8
(byte-position #03010) => 24

For these three functions, note the following equivalence:

(byte (byte-size byte-spec) (byte-position byte-spec)) <=> byte-spec

Lisp Reference

3-23

Numbers

Idb byte-spec integer [c] Function

This function (which stands for load byte) extracts a byte (specified by the
argument byte-spec) from the argument integer. The result is returned as a
positive integer. For example:

(1db (byte 8 3) #04587) => #0586

Note that 1db’s returned value is right-justifed; that is, there are no zeros to
the right of 56 as there are in the subsequent example for mask-field.

You can use setf with 1db to change a byte in the integer located at place if
the integer argument to ldb meets the requirements for setf. In effect, this
operation is analogous to invoking dpb with the returned value being stored
at place.

signed-ldb byte-spec integer [c] Function

This function is like 1db except that the top bit of the extracted byte is taken
to be a sign bit. -

Idb-test byte-spec integer [¢] Function

This function is a predicate that returns true if any of the bits designated by
byte-spec is a 1 in the argument integer; that is, ldb-test returns true if the
designated field specified by byte-spec is nonzero. Note the following
equivalence:

(ldb-test a-byte-spec n) <=> (not (zerop (1db a-byte-spec n)))

mask-field byte-spec integer [c] Function

This function is like the Idb function; however, the specified byte of integer is
positioned in the same byte-spec of the returned value. The returned value is
0 outside of that byte. The integer argument must be an integer. For
example:

(mask-field (byte 8 3) #04567) => #0560

You can use setf with mask-field to change a byte in the integer located at
place if the integer argument to mask-field meets the requirements for setf.
In effect, this operation is analogous to invoking deposit-field with the
returned value being stored at place.

dpb newbyte byte-spec integer [c] Function

This function (whose name stands for deposit byte) returns a number that is
composed by substituting the bits of newbyte for the byte-spec bits of integer,
which must be an integer. The newbyte argument is interpreted as being right-
justified, as if it were the result of Idb. If newbyte is a larger number than the
size of byte-spec, then the most-significant bits of newbyte are ignored. The
integer argument can be a fixnum or a bignum. For example:

(dpb #023 (byte 8 3) #04567) => #04237

deposit-field newbyte byte-spec integer [¢] Function

This function returns an integer that is composed by substituting the byte-spec
bits of newbyte for the byte-spec bits of integer, which must be an integer.
This function is similar to dpb, but newbyte is not taken to be right-justified.
For example:

(deposit-field #0230 (byte 8 3) #04587) => #04237

3-24

Lisp Reference

Numbers

Random Numbers 3.12 The following functions are associated with the Common Lisp pseudo
random number generator. The random-state arguments to these functions
refer to objects of type random-state which contain the state of the pseudo
random number generator between calls to random.

random number &optional random-state [c] Function
random &optional number random-state Function

This function returns a randomly generated number. If number is specified,
the random number is of the same type as number (floating if number is

floating, and fixed if number is an integer), is nonnegative, and is less than
number.

If number is omitted, the result is a randomly chosen fixnum, with all fixnums
being equally probable.

If random-state is specified, it is used and updated in generating the random
number. Otherwise, the default random state is used (and is created if it does
not already exist). The algorithm is executed inside a without-interrupts
form so that two processes can use the same random state without colliding.

random-state [c] Variable

This variable contains the default random state used by random.

When random is invoked, it causes a side effect on the value of this variable.
You can bind it to a different random generator state object and restore the
old state.

make-random-state &optional random-state [c] Function

This function creates and returns a new random state object. If random-state
is nil, the new random state is a copy of *random-state*. If random-state is
a random-state object, the new random-state object is a copy of this argu-
ment. If random-state is t, the new random state is actually initialized ran-
domly (based on the current time value).

NOTE: In the case of make-random-state, the value t has a specific mean-
ing; thus, substituting any non-nil value instead of t for random-state does
not produce the result described above.

random-state-p object [c] Function
This predicate returns true if object is a random-state object; otherwise, it
returns nil.
Number Type 3.13 The following functions either test numbers to determine if they are of
Functions a particular type or coerce an object into a number of a particular type.

Lisp Reference 3-25

Numbers

numberp object [c] Function

This predicate returns true if object is a number and otherwise returns nil.
For example:

(numberp -5) => true
(numberp 0.00000000001) => true
(numberp ‘a) => nil

integerp object [c] Function

This predicate returns true if object is an integer and otherwise returns nil.
For example:

(integerp 5) => true
(integerp 0.00000000001) => nil
(integerp ‘a) => nil

fixnump object Function

This function returns true if object is a fixnum.

bigp object Function
This function returns true if object is a bignum.

rationalp object [c] Function
This predicate returns true if object is a rational number (a ratio or an inte-
ger) and otherwise returns nil.

floatp object [¢] Function

This predicate returns true if object is a floating-point number and otherwise
returns nil. For example:

(floatp 5) => nil
(floatp 1.0s12) => true
(floatp ‘a) => nil

complexp object [c] Function

This predicate returns true if object is a complex number and otherwise
returns nil. For example:

(complexp 5) => nil
(complexp #c(5 2)) => true
(complexp (sqrt -4)) => true

realp object Function

This predicate returns true if object has a value of type real. Any fixnum,
bignum, floating-point number (of any size), or rational number satisfies this
predicate. Otherwise, realp returns nil. Note the following equivalence:

(realp x) <=> (and (numberp x) (not (complexp x)))

zerop number [¢] Function

This predicate returns true if number equals 0. The number argument must
be a number. Note the following equivalence:

(zerop x) <=> (= x 0)

3-26

Lisp Reference

plusp number

minusp number

oddp integer

evenp integer

Numbers

Consider the following example:

(zerop 5) => nil

(zerop 0) => true

(zerop 0.0) => true

(zerop #c¢ (0.0 0.0)) => true
(zerop ‘a) => ERROR

[c] Function
This predicate returns true if number is a number greater than 0. Otherwise,

s EYTINR 7 2 e anrmla H - . T
it returns nil. If number is \.unup{cx Or is not a number, i

plusp signals an
error. Note the following equivalence:
(plusp x) <=> (> x 0)
Consider the following examples:

(plusp 5) => true
(plusp 0) => nil
(plusp -2.583) => nil
(plusp “a) => ERROR

[c] Function

This predicate returns true if number is a number less than 0. Otherwise, it
returns nil. The form (minusp -0.0) is always false. If number is complex or
is not a number, minusp signals an error. Note the following equivalence:

(minusp x) <=> (< x 0)
Consider the foiilowing exampies:

(minusp 5) => nil
(minusp 0) => nil
(minusp -0.0) => nil
(minusp -2.5s3) => true
(minusp ‘a) => ERROR

[c] Function

This predicate returns trué if integer is odd and otherwise returns nil. The
integer argument must be an integer.

[c] Function

This predicate returns true if integer is even and otherwise returns nil. The
integer argument must be an integer.

Lisp Reference

3-27

CHARACTERS

Character
Definitions

4.1 The character data type has two primary subtypes: string-char and
standard-char, with standard-char being a subtype of string-char. This sec-
tion defines those functions that deal with standard-char objects, whereas
Section 8, Strings, deals with functions that handle string-char objects.

Common Lisp allows some latitude in the implementation of characters. One
of the side effects of this latitude, however, is that portable programs cannot
assume that characters are conventional data objects. One resulting anomaly
is that the eq function may not reliably operate on characters. For example:

(let ((x char)
(y char))
(eq x ¥))

If char is a character object, this expression may not return true. The imple-
mentation of characters on the Explorer system returns true for this case, but,
for portable Common Lisp programs, use the eql function to test for identity
of character objects.

An object of type character is defined as having three attributes:

B The code attribute is a number ranging from 0 to one less than the vaiue
of char-code-limit. On the Explorer, char-code-limit is set to 256.

B The font attribute is a number that indicates a particular font. This num-
ber ranges from 0 (the default) to one less than the value of char-font-
limit. On the Explorer system, char-font-limit is set to 256. The
mapping of a font attribute to a specific font is maintained by the window
system. See the Explorer Window System Reference manual for details.

B A bit attribute allows you to represent modified characters. Although you
can treat this attribute as a bit mask, it can also be used as a number
between 0 (the default) and one less than the value of char-bits-limit.
All alphabetic characters have a bit attribute of zero. On the Explorer, six
bit attributes correspond to the four character-modifying keys and the
mouse buttons. These bits are named Control, Meta, Super, Hyper,
Mouse, and Keypad. Mouse and Keypad are not part of the Common
Lisp definition.

To create a character object, you can use one of the support functions or use
a #\ prefix for a given character. This prefix indicates a character object
rather than a symbol and suppresses the lowercase to uppercase mapping that
is otherwise performed by the Lisp Reader. For example:

(defparameter vowels “({#\a #\A #\e #\E #\i #\I #o #\0 MNu #0U))

This example creates a variable named vowels, which consists of a list of the
vowel characters. The default font number is taken to be 0, and no bit attrib-
utes are set.

Lisp Reference

Characters

Nongraphics character objects are those that do not have a normal printed
representation or that have at least one bit attribute set. These characters can
be referred to by using the #\ prefix and the character name. For example,
#\tab identifies the tab character. Refer to Table 4-1 for the complete list of
character names. By convention, #\space is considered to be graphic.

You can specify a particular font for a character object by placing a font
number between the # and the \. For instance, #3\a identifies a lowercase
letter a in font number 3. Again, remember that on the Explorer this number
is used as an index into the font map maintained by the window in which the
character is displayed. Since the font map can vary from window to window,
the appearance of the character may also vary.

By convention, Common Lisp specifies that graphics characters in font 0 are
of constant width, which can be handy when you are printing out tables. On
the other hand, nongraphics characters in font 0 and all characters in other
fonts should be assumed to be of variable width (possibly 0).

Except for the mouse bit, characters with bit attributes set can be represented
using #\ and the name or initial of the bit attributes, each separated by a
dash. For example:

#\CTRL-META-4 <=> #\C-M-4
#\HYPER-SPACE <=> #\H-SPACE
#\SUPER-* <=> #\S-*
#\KEYPAD-SPACE <=> #\K-SPACE

If you want to name lowercase characters with control bits, you need to pro-
tect the lowercase letter from the Reader; the initial backslash only affects the
reading of of the control-bit name. For example, #\ctrl-\x is a character
with the control bit set and whose character code is equal to a lowercase x.
For example:

(= (char-code #\ctrl-\x)
(char-code #\x))
=> T

However, if, when you are typing a character or printing with the format
directive -c, any of the control bits are set, the logic of the SHIFT key is
reversed with regard to the character code. For example:

(format nil "-c* #\ctrl-\x)
=> "ctrl-sh-Xx" ; Identifies a shifted X.

(char= #M\ctrl-\x
(send *terminal-io* :tyi))
=> T ; If you press CTRL-SHIFT-x.

4-2

Lisp Reference

Characters

Mouse characters are represented as follows:

Character Objects Mouse Clicks

#\mouse-L-1 Click the left button once.
#\mouse-L-2 Click the left button twice.
#\mouse-L-38 Click the left button three times.
#\mouse-M-1 Click the middle button once.
#\mouse-M-2 Click the middle button twice.
#\mouse-M-3 Click the middle button three times.
#\mouse-R-1 Click the right button once.
#\mouse-R-2 Click the right button twice.
#\mouse-R-3 Click the right button three times.

Keypad buttons (that is, the block of keycaps at the lower righthand side of
the keyboard) generate character codes that are the same as the typewriter
keycaps, except that the keypad bit may or may not be set. Whether this bit is
set is a characteristic of the window in which the process is running. If you
want the bit set, you must specify :keypad-enable t as an option when you
create the window. Only the following characters can have the keypad bit set:

0123456789 =+ -, . #space #\tab #\return
Note that when the keypad bit is set for these characters, they become non-

graphic and do not print as simple characters. See the Explorer Window
System Reference manual for details.

Standard and
Nonstandard
Characters

4.2 Common Lisp programs that are intended to be portable should con-
tain only characters from the standard character set. The Common Lisp char-
acter set contains a space character (#\space), a newline character
(#\newline), and the following 94 characters:

?

!
e -

> =
oW
0O Q&%
0o R
o MR
Pb") .
m O~
[
- o*
YIS
woR -
[i =N]
<=
% ® 0o

» ©
[N
NN

v

~~e— A
J—
——— Y

»
L &1

The following characters are supported on the Explorer but are considered
only semistandard by Common Lisp:

#\backspace #\tab #\linefeed #\page #\return #\rubout

Common Lisp defines the #\newline character as being the only legal line
delimiting character. For the Explorer system, the #\return character is the
same as #\newline, and both correspond to the RETURN key.

The Explorer system supports the standard Common Lisp character set, the
International Standards Organization (ISO) character set, and additional
characters supported by most Lisp machines. Table 4-1 lists the complete
Explorer character set in sequential order; the decimal and octal codes repre-
sent the corresponding code attributes for each character. Note that the dis-
played representation for any character may vary with different fonts. The
printed characters listed in this table are from the cptfont font and should be
judged as the standard for other fonts.

Lisp Reference

4-3

Characters

Whenever the character name is not given in Table 4-1, the character object
can be referenced as #\character. Thus, the exclamation mark is named #\!.
Depending on the application, some keystrokes are interpreted as com-
mands. For example, to print the down arrow character, you press CTRL-Q
and the | key.

Table 4-1 Explorer Character Set

Decimal Octal Print Keystroke Character Name(s)

0 000 . SYMBOL-SHIFT-" #\center-dot

1* 001 1 1 #\down-arrow, #\hand-down

2 002 o SYMBOL-SHIFT-A #\alpha

3 003 B SYMBOL-SHIFT-B #\beta

4 004 A SYMBOL-Q #\and-sign

5 005 -~ SYMBOL-SHIFT-{ #\not-sign

6 006 € SYMBOL-SHIFT-E #\epsilon

7 007 T SYMBOL-SHIFT-P #\pi

8 010 A SYMBOL-SHIFT-L #\lambda

9 011 v SYMBOL-SHIFT-G #\gamma

10 012 S SYMBOL-SHIFT-D #\delta

11* 013 1 1 #\up-arrow, #\hand-up

12 014 b SYMBOL-SHIFT-: #\plus-minus

13 015 (4:) SYMBOL-SHIFT—< #\circle-plus

14 016 oo SYMBOL-I #\infinity

15 017 k' SYMBOL-P #\partial-delta

16 020 C SYMBOL-T #\left-horseshoe

17 021 D SYMBOL-Y #\right-horseshoe

18 022 N SYMBOL-E #\up-horseshoe

19 023 v SYMBOL-R #\down-horseshoe

20 024 v SYMBOL-U #universal-quantifier

21 025 3 SYMBOL-O #\existential-quantifier

22 026 D SYMBOL-SHIFT-> #\circle-x, #\circle-cross

23 027 =1 SYMBOL-L #\double-arrow

24* 030 — — #\left-arrow, #\hand-left

25* 031 — — #\right-arrow, #\hand-right

26 032 7 SYMBOL-C #\not-equal, #\not-equals

27* 033 < ESCAPE #\escape, #\esc, #\altmode,
#\alt

28 034 < SYMBOL-N #\less-or-equal

29 03s = SYMBOL-M #\greater-or-equal

30 036 = SYMBOL-B #\equivalence

31 037 v SYMBOL-W #\or-sign, #\or

32 040 SPACE #\space, #\sp

33 041 !

34 042 "

35 043 #

36 044 $

37 045 %

38 046 &

39 047 ’

*Characters marked with an asterisk can be entered as shown here only when preceded by the CTRL-Q
key sequence. Thus, to enter | you must press CTRL-Q |.

Lisp Reference

Characters

Table 4-1 Explorer Character Set (Continued)

Decimal Octal Print Keystroke Character Name(s)
40 050 (
41 051)
42 052 *
43 053 +
44 054 ;
45 055 -
46 056 .
47 057 /
48 060 0
49 061 1
50 062 2
51 063 3
52 064 4
53 065 5
54 066 6
55 067 7
56 070 8
57 071 9
58 072 :
59 073 ;
60 074 <
61 075 =
62 076 >
63 077 ?
64 100 @
65 101 A
66 102 B
67 103 C
68 104 D
69 105 E
70 106 F
71 107 G
72 110 H
73 111 I
74 112 J
75 113 K
76 114 L
77 115 M
78 116 N
79 117 (o)
80 120 P
81 121 Q
82 122 R
83 123 S
84 124 T
85 125 U
86 126 \"
87 127 w
88 130 X
89 131 Y
90 132 z
91 133 [
92 134 \

Lisp Reference 4-5

Characters

Table 4-1 Explorer Character Set (Continued)

Decimal Octal Print Keystroke Character Name(s)

93 135 1

94 136 "

95 137 _

96 140 >

97 141 a

98 142 b

99 143 c

100 144 d

101 145 e

102 146 f

103 147 g

104 150 h

105 151 i

106 152 j

107 153 k

108 154 1

109 155 m

110 156 n

111 157 o

112 160 P

113 161 q

114 162 r

115 163 s

116 164 t

117 165 u

118 166 v

119 167 w

120 170 x

121 171 y

122 172 z

123 173 {

124 174 |

125 175 }

126 176 -

127 177 S SYMBOL-SHIFT-? #\integral

128 200 L@ TI TN <no keystroke> #\null, #\null-character

129 201 EREGD) BREAK #\break, #\brk

130°* 202 CLEAR-INPUT #\clear-input, #\clear

131 203 &ao <no keystroke> #\call

132 204 CEED TERM #\term, #\terminal

133 205 <no keystroke> #\macro, #\back-next

134+ 206 e HELP #\help

135* 207 RUBOUT #\rubout

136 210 <no keystroke> #\overstrike,#\backspace,
#\bs

137 211 TAB #\tab

138 212 LINEFEED #\linefeed, #\line,

*Characters marked with an asterisk can be entered as

key sequence. Thus,

#\line-feed, #\If

shown here only when preceded by the CTRL-Q
to enter | you must press CTRL-Q |.

4-6

Lisp Keference

Characters

Table 4-1 Explorer Character Set (Continued)

Decimal Octal Print Keystroke Character Name(s)

139 213 <no keystroke> #\delete, #\vt

140* 214 GLEAR ¥ENEERy) CLEAR-SCREEN #\clear-screen,#\page,
#\form,#\ff, #\refresh

141 215 RETURN #\return,#\cr,#\newline

142 218 GuUCTE <no keystroke> #\guocte

143 217 <no keystroke> #\hold-output

144 220 <no keystroke> #\stop-output

145 221 ABORT #\abort

146* 222 ELEOMD RESUME #\resume

147* 223 STATUS #\status

148* 224 END #\end

149 225 = F1 #\f1, #A\function-1,
#\roman-J

150 226 G F2 #\f2, #\function-2,
#\roman-II

151 227 = F3 #\f3, #\function-3,
#\roman-III

152 230 ™ F4 #\f4, #\function-4,
#\roman-1V

153 231 <EED LEFT #\left

154 232 MIDDLE #\middle

155 233 {EED RIGHT #\right

156 234 CENTER CENTER #\center, #\center-arrow

157 235 SYSTEM #\system

158 236 NETWORK #\network

159 237 QO T UNDO #undo

160 240 #\no-break-space

161 241 i SYMBOL-1 #\inverted-exclamation
mark

162 242 ¢ SYMBOL-2 #\american-cent-sign

163 243 £ SYMBOL-3 #\british-pound-sign

164 244 = SYMBOL-4 #\currency-sign

165 245 ¥ SYMBOL-5 #\japanese-yen-sign

166 246 : SYMBOL-* #\broken-bar

167 247 § SYMBOL-6 #\section-symbol

168 250 . SYMBOL-' #\diaresis

169 251 © SYMBOL-7 #\copyright-sign

170 252 a SYMBOL-8 #\feminine-ordinal-
indicator

171 253 £ SYMBOL-, #\angle-quotation-left

172 254 -

173** 255 - SYMBOL-- #\soft-hyphen

174 256 ® SYMBOL-0 #\registered-trademark

175 257 - SYMBOL-- #\macron

176** 260 e SYMBOL-. #\degree-sign

177 261 s

178** 262 2 SYMBOL-2 #\superscript-2

*Characters marked with an asterisk can be entered as shown here only when preceded by the CTRL-Q
key sequence. Thus, to enter | you must press CTRL-Q |.
**This keystroke is defined with a number or symbol from the numeric keypad. You cannot use the
number or symbol on the typewriter keypad for this keystroke.

Lisp Reference

4-7

Characters

Table 4-1 Explorer Character Set (Continued)

Decimal Octal Print Keystroke Character Name(s)

179** 263 3 SYMBOL-3 #\superscript-3

180 264 ‘ SYMBOL-SHIFT- #\acute-accent
ESCAPE

181 265 W SYMBOL-SHIFT-M #\greek-mu,#\mu

182 266 1 SYMBOL-(#\paragraph-symbol

183 267 .

184 270 S SYMBOL-; #\cedilla

185** 271 1 SYMBOL-1 #\superscript-1

186 272 e SYMBOL-9 #\masculine-ordinal-indicator

187 273 > SYMBOL-. #\angle-quotation-right

188** 274 Y% SYMBOL-4 #\fraction-1/4

189** 275 % SYMBOL-5§ #\fraction-1/2

190** 276 % SYMBOL-6 #\fraction-3/4

191 277 é SYMBOL-/ #\inverted-question-mark

192 300 A SYMBOL-!

193 301 A SYMBOL-@

194 302 A SYMBOL-#

195 303 A SYMBOL-$§

196 304 A SYMBOL-%

197 305 A SYMBOL-"

198 306 . o SYMBOL-&

199 307 < SYMBOL-*

200 310 E SYMBOL-SHIFT-9

201 311 E SYMBOL-SHIFT-0

202 312 E SYMBOL-SHIFT--

203 313 E SYMBOL-+

204 314 1 SYMBOL-}

205** 315 1 SYMBOL-SHIFT-=

206** 316 T SYMBOL-SHIFT-+

207 317 T SYMBOL-SHIFT-Q

208 320 £3) SYMBOL-SHIFT-W

209 321 N SYMBOL-SHIFT-R

210 322 o SYMBOL-SHIFT-T

211 323 o SYMBOL-SHIFT-Y

212 324 o SYMBOL-SHIFT-U

213 325 o SYMBOL-SHIFT-I

214 326 o SYMBOL-SHIFT-O

215** 327 X SYMBOL-+ #\multiplication-sign

216 330 1) SYMBOL-[

217 331 U SYMBOL-]

218 332 o SYMBOL-SHIFT-\

219** 333 0 SYMBOL-SHIFT-7

220** 334 U SYMBOL-SHIFT-8

221** 335 Y SYMBOL-SHIFT--

**This keystroke is defined with a number or symbol from the numeric keypad. You cannot use the
number or symbol on the typewriter keypad for this keystroke.

4-8

Lisp Reference

Characters

Table 4-1 Explorer Character Set (Continued)

Decimal Octal Print Keystroke Character Name(s)
222 336 P SYMBOL-SHIFT-S
223%* 337 8 SYMBOL-8 #\eszet
224 340 a SYMBOL-SHIFT-F

225 341 a SYMBOL-SHIFT-H

226 342 a SYMBOL-SHIFT-J

227 343 a SYMBOL-SHIFT-K
228%* 344 P SYMBOL-SHIFT-4
229** 345 3 SYMBOL-SHIFT-5
230** 346 = SYMBOL-SHIFT-6

231 347 ¢ SYMBOL-SHIFT-Z

232 350 e SYMBOL-SHIFT-X

233 351 e SYMBOL-SHIFT-C

234 352 e SYMBOL-SHIFT-V

235 353 € SYMBOL-SHIFT-N
236** 354 1 SYMBOL-7

237+ 355 f SYMBOL-9

238** 356 T SYMBOL-SHIFT-1

239** 357 i SYMBOL-SHIFT-2
240%+ 360 8 SYMBOL-SHIFT-3
241** 361 1 SYMBOL-SHIFT-0
242%* 362 0 SYMBOL-SHIFT-.

243 363 o SYMBOL-A

244 364 o SYMBOL-D

245 365 o SYMBOL-F

246 366 5 SYMBOL-Z

247%* 367 = SYMBOL-= #\division-sign
248 370 ¢ SYMBOL-X

249 371 u SYMBOL-V

250%* 372 u SYMBOL-,

251** 373 2 SYMBOL-SHIFT-,
252** 374 u SYMBOL-SHIFT-<space>
253** 375 y SYMBOL-SHIFT-<tab>
254 376 P SYMBOL-S

255+ 377 y SYMBOL-SHIFT-9

**This keystroke is defined with a number or symbol from the numeric keypad. You cannot use the
number or symbol on the typewriter keypad for this keystroke.

Lisp Reference

Characters

Character 4.3 The following constants are associated with a character’s attributes.
Attributes
char-code-limit [c] Constant

The value of this constant is one more than the maximum code attribute of
any character. On the Explorer system, this value is currently 256.

char-font-limit [c] Constant
The value of this constant is one more than the maximum font attribute value
of any character. On the Explorer, this value is currently 256.

char-bits-limit [c] Constant

The value of this constant is one more than the maximum modifier bit
attribute value of any character. On the Explorer, currently, this value is 64.
Thus, there are six bit attributes: the Control, Meta, Super, Hyper, Mouse,
and Keypad bits.

Character 4.4 The following functions are used for constructing characters and
Construction and retrieving information about character attributes.
Attribute Retrieval

char-code char [c] Function

This function returns the code attribute value of char. This returned attribute
is a nonnegative integer less than char-code-limit. Constants have been
defined for the individual control bits; see paragraph 4.6, Character Control
Bit Functions. The char argument must be a character object. The code at-
tribute values for the Explorer character set are shown in Table 4-1. Consider
the following example:

(char-code #\b) => 98 ;98 decimal is 142 octal.

char-bits char [¢] Function

This function returns the bit attribute value of char. This returned attribute is
a nonnegative integer less than char-bits-limit. The char argument must be a
character object.

char-font char [c] Function

This function returns the font attribute value of char. This returned attribute
is a nonnegative integer less than char-font-limit. The char argument must
be a character object.

char-mouse-button char Function

This function returns 0, 1, or 2 if char is a left, middle, or right mouse button
character button, respectively.

char-mouse-clicks char Function

This function returns 0, 1, or 2 if char is a single, double, or triple mouse
click, respectively (that is, it returns the number of clicks minus 1). For
example:

(char-mouse-clicks #\mouse-m-2) => 1

4-10 Lisp Reference

Characters

code-char code &optional bits font [c] Function

This function returns a character object whose attributes are specified by the
arguments code, bits, and font, which must be nonnegative integers less than
the values of char-code-limit, char-bits-limit, and char-font-limit, respec-
tively. If the arguments do not comply with the code, bits, and font limita-
tions, then nil is returned. Any combination of these attributes is valid if the
arguments are valid individually, except for the keypad bit, whose code value
must correspond to one of the keypad buttons. For example:

{code-char #0141) => #\a

(code-char 32 char-control-bit) => #\c-SPACE

make-char char &optional bits font [c] Function

This function returns the character specified by char with the bit and font
attributes set by the bits and font arguments, which must be nonnegative
integers less than the values of char-bits-limit and char-font-limit, respec-
tively. If the bits and font arguments do not comply with the character
attribute limitations of the system, then nil is returned. This function differs
from code-char only in that the first argument for make-char is a character
object instead of an integer.

char-name char [c] Function

This function returns the standard name (or one of the standard names) for
the argument char (which must be a character object), or nil if there is none.
The name is returned as a string. For example:

(char-name #\space) => “SPACE~
As this example shows, any character denoted by a name (rather than by a

letter or a digit) is specified as #\character-name. (See paragraph 4.1, Char-
acter Definitions.)

If the char argument has nonzero modifier bits, the returned value is nil.
Compound names such as Control-X are not constructed by this function.

name-char name [c] Function

This function returns {as a character object) the character for which name is
a name, or returns nil if name is not a recognized character name. The name
argument is coerced to a string and compared to the known character names
using string-equal. Compound names such as Control-X are not recognized.
Consider the following example:

(name-char "SPACE") => #\space

The read function uses this function to process the #\ construct when a char-
acter name is encountered.

Lisp Reference

4-11

Characters

Character
Conversion

char-int char

4.5 The following functions are used for character conversion operations.

char-upcase char [c] Function

If the char argument is a lowercase alphabetic character, then this function
returns a character object whose character code attribute is mapped to the
corresponding uppercase alphabetic character. The bit and font attributes of
the argument stay the same.

If the char argument is not alphabetic, char-upcase returns char unchanged.
Note that a character with a nonzero bit attribute is not considered alpha-
betic. (See digit-char-p and graphic-char-p.)

char-downcase char [¢] Function

If the char argument is an uppercase alphabetic character, then this function
returns a character object whose character code attribute is mapped to the
corresponding lowercase alphabetic character. The bit and font attributes of
the argument stay the same.

If the char argument is not alphabetic, char-downcase returns char
unchanged. Note that a character with a nonzero bit attribute is not consid-
ered alphabetic. (See digit-char-p and graphic-char-p.)

digit-char magnitude &optional radix font [c] Function

This function returns a character object that is the digit with the specified
magnitude and in the specified radix and font. However, if there is no suit-
able character that has the magnitude specified by magnitude in the specified
radix (which defaults to 10), the returned value is nil. If the returned value is
alphabetic (that is, if magnitude is greater than 9), its returned character is
uppercase. For example:

(digit-char 5) => #\5
(digit-char 10) => nil
(digit-char 10 18) => #\A ; Not #\a.

The digit-char function does not have an argument for specifying the bit
attribute of the character to be returned because digits (which are graphics
characters) always have a bit attribute of 0. (See digit-char-p and graphic-
char-p.)

[c] Function

This function converts char, a character object, to the integer that represents
the same character. This function is the inverse of int-char and is used
mainly for hashing characters.

As an Explorer extension, this function can also be given a fixnum as an
argument, in which case the fixnum is returned.

If char has both a font attribute and a bit attribute of 0, then the value
returned by char-int is the same as that returned by char-code. If these
attributes are not 0, then they are added to the character’s code attribute
value after being shifted left past the most-significant bit of the code attribute
value. See the Explorer System Software Design Notes for more details on the
format of this number.

4-12

Lisp Reference

Characters

int-char integer [c] Function

This function converts integer, regarded as representing a character, to a
character object. If a character object is given as an argument, it is returned
unchanged. If integer does not correspond to a character object, then int-
char returns nil. This function is the inverse of char-int.

Character Control
Bit Functions

4.6 The following constants and functions are used for operations involving
the Control, Meta, Super, Hyper, Mouse, and Keypad bit attributes.

char-control-bit [c] Constant
char-meta-bit [c] Constant
char-super-bit [c] Constant
char-hyper-bit [c] Constant
char-mouse-bit Constant

char-keypad-

char-bit char

bit Constant

These constants have the values 1, 2, 4, 8, 16, and 32, respectively. They
give numerical meaning to the bit configuration within the bit attribute of a
character object. Thus, the following form evaluates to true if char is a char-
acter whose bit attribute has the Meta bit set.

(logtest char-meta-bit (char-bits char))

name [e] Function

This function returns true if char has its bit attribute set to the indicated
name. The valid values for name are :control, :meta, :super, :hyper,
:mouse, and :keypad. Any other value produces an error. For example:

(char-bit #\HYPER-Y :HYPER) => true

(char-bit #\HYPER-SUPER-Y :HYPER) => true

The setf macro can be used with char-bit, provided that the char argument is
a form acceptable to setf, to alter the bit attribute of the character stored in
the location specified by char. Note also that char-bit is an access function
that returns a Boolean value. This combination of setf and char-bit is similar
to performing a set-char-bit operation. For exampie:

(setq x #\a)

(char-bit x :control) => nil

(setf (char-bit x :control) t) => t
{(char-bit x :control) => true

(setf (char-bit x :control) nil) => nil
(char-bit x :control) => nil

set-char-bit char name set-flag [c] Function

This function returns a character that is equal to char and whose bit attribute
is set to the bit name specified by name if set-flag is non-nil. Otherwise, it
returns a character whose code attribute is equal to char but whose bit
attribute is not set. The name argument must be one of the following: :con-
trol, :meta, :super, :hyper, :mouse, or :keypad. For example:

(set-char-bit #\X :meta t) => #\META-X
(set-char-bit #\X :meta nil) => #\X
(set-char-bit #\META-X :meta t) => #\META-X
{set-char-bit #\META-X :meta nil) => #\X

For more information about mouse click characters, see the Explorer Window
System Reference manual.

Lisp Reference

4-13

Characters

Character Type 4.7 The following functions either test characters to determine if they are
Functions of a particular type or coerce an object into a character.
characterp object [¢] Function

This predicate returns true if object is a character and otherwise returns nil.
For example:

(characterp #\x) => true
(characterp #\7) => true
(characterp #\°) => true
(characterp °x) => nil
(characterp 7) => nil

standard-char-p char [¢] Function

This predicate returns true if char is a standard Common Lisp character of
type standard-char. This type includes 94 printing characters and the blank
characters #\space and #\newline (see paragraph 4.2, Standard and Non-
standard Characters), and it requires the bit and font attributes to be zero.

graphic-char-p char [c] Function

This predicate returns true if char is a graphic character, that is, one with a
printed shape. The character #\space is a graphics character; #\return,
#\end, and #\abort are not. A character whose bit attribute is nonzero is
never a graphics character.

Ordinary output to windows prints graphics characters using the current font.
Nongraphics characters are printed using lozenges unless they have special
formatting meanings (as #\return does). See Table 4-1.

string-char-p char [c] Function

This predicate returns true if char is a character that can be stored in a Com-
mon Lisp string, and otherwise returns nil. For any char, if (standard-char-p
char) returns true, then so does (string-char-p char). On the Explorer sys-
tem, string-char-p returns true for all characters with bit and font attributes
of zero.

alpha-char-p char [c] Function

This predicate returns true if char is a letter of the alphabet whose bit
attribute is 0. Otherwise, this predicate returns nil.

upper-case-p char [c] Function
This predicate returns true if char is an uppercase letter with a bit attribute
of 0.

lower-case-p char [c] Function
This predicate returns true if char is a lowercase letter with a bit attribute
of 0.

both-case-p char [c] Function

This predicate returns true if char is a character that has distinct uppercase
and lowercase forms. On the Explorer, it returns the same value as alpha-
char-p, except for the #\eszet character.

Lisp Reference

Characters

digit-char-p char &optional radix [c] Function

This predicate returns the magnitude of char if char is a digit available in the
specified radix. Otherwise, it returns nil. The radix argument defaults to 10.
If the bit attribute of char is nonzero, digit-char-p always returns nil. For
example:

(digit-char-p #\8 8) => nil

(digit-char-p #\8 9) => 8

(digit-char-p #\F 18.) => 15

(digit-char-p #\c-8 any-old-thing) ;Because the control bit is set,

=> nil ;the radix is insignificant.
alphanumericp char [c] Function

This predicate returns true if char has a bit attribute of 0 and if char returns
true either for alpha-char-p or digit-char-p (radix 10).

character object [c] Function

This function coerces object into a character and returns the character as a
character object.

Character
Comparisons

4.8 The following functions are character predicates that perform charac-
ter comparisons. They operate in a manner similar to the number comparison
functions. Note that Common Lisp specifies that all uppercase letters will
collate correctly, that all lowercase letters will collate correctly, and that digits
0-9 will collate correctly. However, it does not specify how a mixture of
uppercase and lowercase letters will collate. Thus, the letter A may be greater
than the ietter g, or the ietter a may be greater than the letter A.

char= char &rest more-characters [c] Function
char/= char &rest more-characters [c] Function
char< char &rest more-characters [c] Function
char> char &rest more-characters [c] Function
char<= char &rest more-characters [c] Function
char>= char &rest more-characters [c] Function

thae
u

maring srhavantan

Thaca ara tha fimatinne far saam
1086¢ are tne muncuons ior Vuilipaliilg viiaiaviel

s that ider the code,
font, and bit attribute in the comparison. On the Explorer system, the
numeric functions are called =, >, and so on.

Lisp Reference

4-15

Characters

The ordering of the characters is based on the integer value of the code
attribute of all characters. This order is shown in Table 4-1. Consider the

following example:

(char= #\b #\b) => true

(char= #\b #\x)) => nil

(char= #\b #\B) => nil

(char= #\b #\b #\b #\b) => true
(char= #\b #\b #\x #\b) => nil

(char/= #\b #\b) => nil

(char/= #\b #\B) => true

(char/= #\b #\b #\b #\b) => nil
(char/= #\b #\b #\x #\b) => nil
(char/= #\b #\z #\x #\¢) => true

(char< #\b #\x) => true

(char< #\b #\b) => nil

(char< #\b #\f #A\x #\y) => true
(char< #\b #\f #\f #x) => nil

(char<= #\b #\x) => true
(char<= #\b #\b) => true
(char<= #\b #\f #\x #\y) => true
(char<= #\b #\f #\f #\x) => true

(char> #\f #\e) => true

(char> #\e #\d #\c #b) => true
(char> #\e #\e #\d #\a) => nil
(char> #\Z #\b) => nil

(char>= #\f #\e) => true
(char>= #\e #\d #\c #\b) => true
(char>= #\e #\e #\d #\a) => true

You can also use the predicates eql and equal for comparing characters for
equality, but you should not use eq because its behavior for characters may

differ in various Common Lisp implementations.

char-equal character &rest more-characters
char-not-equal character &rest more-characters
char-lessp character &rest more-characters
char-not-lessp character &rest more-characters
char-greaterp character &rest more-characters
char-not-greaterp character &rest more-characters

[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function

These functions are for comparison of characters, ignoring the character’s
case as well as its font attribute. These functions are called by many of the
string functions. On the Explorer, the arguments can be integers or character

objects. For example:

(char-equal #\x #\x) => true
(char-equal #\X #\Xx) => true
(char-equal #\X #\META-X) => true

4-16

Lisp Reference

PACKAGES

Package Definitions 5.1 The package system is a facility in the Lisp environment that provides a

Overview of a
Symbol Namespace

mapping between print names and symbols. The chief purpose of the package
system is to provide a relatively isolated namespace, or set of accessible
symbols, for each separate application that is loaded. This arrangement is
necessary because it is possible that two applications will want to use the same
symbol name for different purposes. As a result, when the symbols of two
different applications are partitioned into packages, the complete Lisp envi-
ronment becomes more structured.

The package system is primarily made up of package objects, which provide
logical groupings of symbols, and relationships established between package
objects and the symbols they contain. Those symbols grouped into a particu-
lar package are said to be owned by that package. A symbol that is owned by
a particular package is said to be interned in that package. A symbol that is
not owned by any package, such as those generated by gensym, is said to be
uninterned.

In general, the term interned means that a particular Lisp object is uniquely
identifiable in some context. With regard to packages, the objects in question
are symbols and the context is a namespace. When a symbol is interned, it
becomes uniquely identifiable by the symbol name within a namespace
context.

Because there is no owning package for uninterned symbols, an uninterned
symbol cannot exist in any namespace; consequently, there is no way to map
a name reference to the symbol object using the package system. This section
deals mainly with interned symbols and how the package system establishes
the mappings of name to object.

Although the notion of symbols being grouped into packages is fairly straight-
forward, the nature of the relationships that can exist between packages and
the way in which they establish a namespace can be quite complex. The fol-
lowing paragraphs explain the mechanics of these relationships.

5.1.1 The data type package defines an object that defines its own name-
space. The Lisp system requires that one package be known as the current
package, and thus the namespace that it defines becomes the current
namespace environment. Using a syntactic package prefix (which is explained
later), you can explicitly refer to any symbol in the Lisp environment. Sym-
bols that do not have an explicit package prefix must be accessible in the
current namespace environment.

By definition, referring to a symboi without explicitly using a package qualifier
means that the symbol is in the current namespace and is accessible. Implic-
itly, if a symbol of that name is not found, one is created in the current
package and that symbol’s home package (the symbol-package cell) is set to
the current package.

Lisp Reference

5-1

Packages

When you define an application, you should make some symbols publicly
accessible, such as the main entry point or user-settable parameters. Other
symbols, whose purpose is meant to be unadvertised, should not be readily
accessible. This capability is provided by allowing each package to have two
distinct classes of symbols: internal and external. When symbols are created,
they are internal by default. They can be made external by using the export
function.

To access a symbol in another namespace, you must use a package qualifier.
If f1ag is an external symbol in the package uY-PKG, then the reference to this
symbol is my-pkg: flag. If flag were an internal symbol, then the more cum-
bersome double-colon syntax, my-pkg: : flag, must be used. If you find your-
self using numerous references to internal symbols, there is probably a design
problem in your program.

All of the symbols defined by Common Lisp are exported from the LISP
package. By default, all of the new symbols typed in the Lisp Listener are
interned as internal symbols in the USER package.

Symbols interned in the KEYWORD package are automatically exported, as
well as having their value bound to themselves. Note that, syntactically, the
printed or typed reference to a symbol in the KEYWORD package need not
specify the package name in the qualifier prefix because the empty string is a
nickname for the KEYWORD package. Also note that the symbol-value of a
keyword refers to the symbol itself.

(eq keyword:flag :flag) => true ; The KEYWORD package has a nickname

; of uu.
(eq “:flag :flag) => true ; Symbol-value of flag is 'flag.
(symbol-name :flag) => "FLAG" ; The colon is not part of the print name.

Usually, one application depends on another application or subsystem, and
therefore the symbols in one package are dependent on the symbols in the
other package. This relationship, in which one package uses the other pack-
age, allows code in one package to inherit the externally declared symbols of
the other package. An inherited symbol is treated as an internal symbol in the
inheriting package, but the external symbols of the other package are not
affected by this inheritance. An inherited symbol is treated as if it were an
internal symbol in the inheriting package. Gaining access to a symbol via
inheritance does not change the symbol’s status as an external symbol in the
used package, nor does it change the symbol’s home package. When a sym-
bol is inherited in a namespace it can be referred to without a package prefix.
The term non-external symbols includes these inherited symbols plus the
native internal symbols in the current package. In the most basic case, almost
all applications depend on the symbols defined in the LISP package. For
example, the USER package uses the LISP package. At run time, an applica-
tion can explicitly control on which package it depends.

Another way that a package can provide access to a symbol in a different
package is by importing that symbol. Each imported symbol must be explicitly
identified in a call to the import function (as opposed to inheriting all the
external symbols of a used package). A key difference between an imported
symbol and an inherited symbol is that imported symbols are actually added
as internal symbols to the package that imports them and are said to be pre-
sent in that package. This presence is significant because when the symbol
mapping takes place, it is resolved by finding the symbol in the current pack-
age, as opposed to finding an inherited symbol from a used package. Gaining
access to a symbol via importing does not change the symbol’s home package.

Lisp Reference

Consistency Rules

Packages

When a package uses the symbols in another package, it inherits only the
external symbols in the other package. This usage does not cause any new
symbols to be present in any package. Note that access of symbols is not
transitive across packages. For example:

1. Assume that symbol-x is an exported symbol of package-x.

2. If package-y uses package-x, then you can reference symbol-x from
package-y.

3. If package-z uses package-y, package-z cannot automatically access the
same symbol-x.

Importing, on the other hand, does support transitive access of symbols. For
example:

1. Assume that symbol-x is in package-x.

2. If package-y imports package-x:symbol-x, then you can reference
symbol-x from package-y.

3. If package-z imports package-y:symbol-x, then you can reference the
same symbol-x from package-y and package-z.

This scheme of referencing is considered safe because the user must explicitly
list those symbols to be imported.

Using these techniques, a package can configure a namespace that is suitable
for the intended application.

5.1.2 The definable interrelationships between one package and another
can become quite complex. The following three rules are the basic precepts
to which all functions that deal with packages must adhere. A clear under-
standing of these rules will help you learn how the package system works.

The following rules hoid true as long as the current package is not changed:

B Read-read consistency — Reading the same print name always maps to
the same (eq) symbol.

W Print-read consistency — An interned symbol always prints as a sequence
of characters such that when that sequence is read back in, it maps to the
same (eq) symbol.

B Print-print consistency — If two interned symbols are not eq, then their
printed representations are a different sequence of characters.

These rules ensure that your program will be able to generate reproducible
results.

It is not unusual that a program may need to change the current package and
thus potentially cause some anomalies. Once the new package is made cur-
rent, the consistency rules apply to references in that namespace. However,
during the transition between packages, one of the rules may be violated.
Changing back to the original package should resume the previous mapping.

Lisp Reference

5-3

Packages

Package Names

However, some functions can cause these rules to be violated more perma-
nently. These functions are mildly dangerous because they can alter the
name-to-symbol mapping for a particular namespace. Once this operation is
performed, it cannot be undone to return to the previous mappings, nor is
any trace Kept to to explain how the mappings were changed. The following
list contains the dangerous functions:

unintern unexport shadow
unuse-package shadowing-import

5.1.3 When a package is created, a primary name is specified along with an
optional list of nicknames. By convention, the primary name should be long
and self-explanatory, whereas the nicknames should be short mnemonics. In
practice, the short nicknames are used to save keystrokes whenever package
qualifiers are needed.

Packages are referred to in two different ways: as the package object itself
(when it is passed as an argument to a function) or as a package qualifier to a
symbol name. For functions that take package objects as arguments, the
package name can usually be passed instead of the package object itself. In
this case, the name can be specified as a string or a symbol. If the name is a
symbol, then the print name of the symbol is used. If a package name is
identified by using a string, the case of the characters is important, so you
should probably use uppercase characters.

When the Lisp Reader encounters a symbol that includes a package prefix
qualifier, it maps lowercase letters to uppercase just as it does for unqualified
symbol names. The Reader attempts to match the qualifier name to an exist-
ing package name in a case-sensitive manner. If lowercase letters become
part of a package (nick)name and references are made using this package
qualifier, then the lowercase letters must be protected. For instance, if there
is a symbol named FLAG in a package called "My-Pkg", then the reference
should be written in either of the following ways:

M\y-P\k\g:FLAG

|My-Pkg| : FLAG

Also note that the package name is parsed separately from the symbol name.
Thus, the following two symbol names are not the same:

(eq |My-Pkg|:FLAG |My-Pkg:FLAG|) => nil

The second argument to eq refers to a symbol in the current package whose
print name is "My-Pkg:FLAG".

5-4

Lisp Reference

Translating
Strings to Symbols

Importing and
Exporting Symbols

Packages

5.1.4 Lisp code is executed with one specific package designated as the
current package. Thus, the namespace that the current package defines is the
set of symbols that are accessible without package qualifications. Three
classes of symbols may be parsed by the Reader. If a symbol name is parsed
without a package qualifier, the Reader first checks to see if the named sym-
bol is accessible in the current namespace. The system first searches the cur-
rent package and then the used packages. Note that the order in which the
used packages are searched is not significant because no name conflicts can
occur. The avoidance of name conflicts is guaranteed by all the functions that
modify the namespace. If a corresponding symbol is found, then that symbol
is returned. If a corresponding symbol is not found, then a new symbol is
created and interned as an internal symbol in the current package.

If a package qualifier is used, the symbol’s name is looked up in the specified
package, not the current package. If the qualified name contains a single
colon, Common Lisp specifies that an external symbol with that name must
be accessible in the specified package. If a double colon is used, then the
effect is the same as if the current package were changed to the specified
package while the symbol mapping took place. If the package does not exist
or if no appropriate symbol can be found, an error is signaled.

On the Explorer system, the Lisp Reader’s handling of qualified symbol
names is extended. Qualified names are still first iooked up in the specified
package and then in any package used by the specified package. If the pack-
age does not exist, an error is signaled, but in this case, if no appropriate
symbol can be found, a new symbol is created and interned as an internal
symbol in the specified package.

If the Reader parses a #:<name> symbol, then the Reader makes an unin-
terned symbol whose print name is “<name>". Because the symbol is not
interned, the package cell is set to nil, indicating that the symbol does not
have a home package.

Symbols are printed in a way that maintains the consistency rules. Uninterned
symbols are printed as #:<name>. Interned symbols that are accessible in the
current package are printed without a package qualifier. If the symbols are
not accessible in the current namespace, then they are printed with one colon
if they are external in their home package or two colons if they are not exter-
nal in their home package.

5.1.5 If a symbol is to be imported, it must be present as an external symbol
in the package from which it is to be imported. By default, an imported sym-
bol is made present in the current package as an internal symbol. If the same
(eq) symbol is already present and external, then the symbol remains exter-
nal. If a different symbol with the same name was previously accessible in the
importing package, then a name conflict occurs.

If you want the imported symbol to shadow the currently accessible symbol,
you should use the shadowing-import function. When a symbol with the
same name is already interned in the importing package, then it is uninterned
and the new symbol is added as an internal symbol.

Lisp Reference

Packages

Name Conflicts
and Shadowing

A package can also gain access to a symbol in another package through use of
the use-package function. This function causes the current package to inherit
all of the external symbols of the package being used. These inherited sym-
bols are accessible in the inheriting package but are not present in the inherit-
ing package. There is no way to inherit internal symbols from another
package.

If a symbol is to be exported from a package, it must first be accessible. If the
symbol is already external, then exporting has no effect. If the symbol is
currently an internal symbol, its status is simply changed to external. If the
symbol is inherited and non-external, it is first imported to make it present
and is then made external. :

Note that a symbol can be present in several packages and that it can be
marked external or internal in each package independently. Thus, it is the
symbol’s presence in a particular package that is external or not, rather than
the symbol itself. The export function makes symbols external in whichever
package you specify; if the same symbols are present in any other package,
their status as external or internal in the other package is not affected.

5.1.6 When a namespace has its mapping scheme changed in some way, a
name conflict can occur. Specifically, a name conflict means that a symbol
name has at least two corresponding symbols (which are not eq) and that
there is no meaningful way to consistently choose one symbol over the others,
such as is provided with shadowing-import.

Functions that modify the namespace mapping of a symbol are required to
check for name conflicts before completing execution. When such a name
conflict is detected, an error is signaled. These conflicts can be resolved in
the error handler by selecting the appropriate symbol to which the name
should be mapped.

The use-package function checks each of the external symbols in the used
package for name conflicts with the accessible symbols in the current
namespace.

The import function checks to see that the symbol being added is not already
accessible. If it is, a name conflict results even if the accessible symbol was
originally made accessible by the shadowing-import function. This conflict
occurs because the name has been explicitly called out for two different
purposes.

The export function checks to see that the symbol being made external does
not conflict with symbols that are accessible in other namespaces that are to
inherit symbols from this package.

The unintern function checks to see if the symbol being removed is a shad-
owing symbol. If it is, then a further check is made to verify that there is no
conflict between inherited symbols from its various used packages.

A name conflict can be resolved by using shadowing-import, shadow,
unintern, or unexport on one of the conflicting symbols. If you abort from
the error handler during a name conflict, the original symbol remains
accessible.

Lisp Reference

Major
Built-In Packages

Packages

Shadowing must be done before programs are loaded into the package,
because if the programs are loaded without shadowing first, they contain
pointers to the undesired inherited symbol. Merely shadowing the symbol at
this point does not alter those pointers; only reloading the program and re-
building its data structures from scratch can do that. If it is necessary to refer
to a shadowed symbol, it can be done using a package prefix.

However, shadowing can be used to reject inheritance of any symbol. Shad-
owing is the primary means of resolving name conflicts in which an inherited
symbol matches a symbol directly present in an inheriting package. The
shadowing-import function is the primary means of resolving name conflicts
in which multiple symbols with the same name are available (due to inheri-
tance) in one package.

The conflict is resolved—always in advance—by placing the preferred choice
of symbol in the package directly (if it is not already present), and marking it
as a shadowing symbol. This can be done with the function shadow when the
preferred choice is already present or with shadowing-import when it is not.
(Actually, you can proceed from the error and specify a resolution, but this
works by shadowing and retrying. From the point of view of the retried opera-
tion, the resolution has been done in advance.)

5.1.7 The following major packages are built into the Explorer system:

B LISP — All the standard functions and variables of Common Lisp are
present as external symbols in this package.

m TICL — All Explorer extensions to the Common Lisp language and user
interface are present as external symbols in this package. Additionally,
functions and variables used in many program-development utilities
reside as external symbols in the TICL package. Implementation-
dependent extensions are for the most part relegated to the SYSTEM
package. However, this distinction is not rigidly maintained because cer-
tain useful extensions and utilities may be system-dependent in various
ways.

B SYSTEM — Symbols shared among various Explorer-specific system pro-
grams are included as external symbols in this package. Low-level,
system-dependent routines not typically mentioned in documentation are
included as internal symbols within this package.

B ZLC — All functions and variables that are obsolete for Common Lisp or
that are Explorer extensions to Common Lisp are present as external
symbols in this package. All Zetalisp-specific symbols that are incompat-
ible with their Common Lisp namesakes are present as internal symbols
in this package. When Zetalisp mode is turned on, the Lisp Reader and
evaluator access the incompatible Zetalisp symbols instead of the ones
defined in the LISP or TICL packages.

B GLOBAL — This package is provided to be a look-alike, as much as
possible, of the GLOBAL package in earlier versions of the Explorer
software. It exports all the ZLC symbols (including the incompatible and
internal ones) and all of the LISP and TICL symbols, except those that
conflict with the ZLC internal symbols.

Lisp Reference

5-7

Packages

B USER — The USER package is the default package for input typed by the
user. Initially, it contains no symbols. This package uses the LISP, TICL,
and ZLC packages.

B KEYWORD — This package contains as external symbols all the key-
words used by built-in or user-defined functions. Because the package-
printing prefix for the KEYWORD package in the empty string, printed
symbols representations that begin with a colon refer to symbols in this
package. All such symbols are treated as constants that refer to
themselves.

Nicknames are used to preserve compatibility with software prior to Release
3.0. The following nicknames are supported. ‘

Package Nicknames

LISP CLI, COMMON-LISP-INCOMPATIBLE
TICL EECL

SYSTEM SYS, SI, SYSTEM-INTERNALS

ZLC none

GLOBAL ZETALISP, ZL, ZETALISP-GLOBAL
KEYWORD “” (The empty string)

Defining Packages

5.2 The following macro and associated functions are used for defining
packages.

defpackage name &key :nicknames :size :use :prefix-name :export Macro

:import :shadow :shadowing-import :auto-export-p

This macro defines a package specified by name, which should be a string or
symbol. None of the arguments to defpackage are evaluated. The keyword
arguments are passed in a keyword association-list format, but eventually are
parsed and sent to make-package as normal keyword arguments.

If a package already exists with the name specified in name, it is modified
insofar as this is possible to correspond to the new definition.

The following are the possible options and their meanings:

(:nicknames {name-string}*) — A list of nicknames for the new package.
The nicknames should be specified as strings. If a package of the same
name already exists, an error is signaled.

(:size number-of-symbols) — The number of symbols that the new package is
initially made large enough to hold before a rehash is needed (interned
symbols are kept in hash tables).

(:use {package-name}*) — A list of packages or names for packages that the
new package should inherit from, or a single name or package. It defaults
to the LISP and TICL packages.

5-8

Lisp Reference

Packages

(:prefix-name package-name) — Specifies the name tc use for printing
package prefixes that refer to this package. It must be equal to either the
package name or one of the nicknames.

(:export args)

(:import args)

(:shadow args)

(:shadowing-import args) — If any of these arguments are non-nil, they are
passed to the function of the same name to operate on the package. Note
that some of these functions accept strings, and others accept symbols.
See the explanations of the individual functions for details.

NOTE: The only exception to this is the :export option, which accepts
strings. If the arguments were symbols instead of strings, the reader would
intern those arguments into the current package before defpackage
started. This would cause those symbols to be imported to the new pack-
age and then exported. Since this is probably not what you want, you
should always specify strings to the :export option.

Consider the following example:

(defpackage some-package
(:nicknames "SP")
(:export "BEGIN")
(:import another-package: help)
(:shadow "LOGIN" "LOGOUT"))

This form creates/alters SoME-PACKAGE, and interns four symbols:

B BEGIN — A newly created symbol that has the home package sp and is
marked as exported.

B help — An internal symbol in sp that has the home package ANOTHER-

DAV AAD
ravAnaL.

B LoGIN and LocouT — Internal symbols in sp which have the home package
sp. Presumably, these local symbols are masking the symbols of the same
name in the LISP package, which sp uses by default.

Note that when the :export, :import, :shadow, and :shadowing-import
functions are called, the new package has already been created and is set
as the current package while these functions are called. You could
accomplish the same thing by calling export, import, shadow, or
shadowing-import yourself.

:auto-export-p — If this option is non-nil, all symbols interned in the new
package are automatically exported.

For example, the EH system package could have been defined this way:

(defpackage sh
(:size 1200)
(:use "LISP" "TICL" "“SYSTEM")
(:nicknames "DBG" "DEBUGGER")
(:shadow "ARG"))

Lisp Reference

5-9

Packages

This form performs the following operations for the EH package:
B Creates 1200 symbol entries in the package

B Creates the nicknames DBG and DEBUGGER

B Uses the LIsP, TicL, and sysTEM packages
n

Contains a symbol named arg that is not the same as the arg in the LISP
package

It is usually best to put the package definition in a separate file, which should
be loaded into the USER package. (It cannot be loaded into the package it is
defining, and no other package has any reason to be preferred.) Often the
files to be loaded into the package belong to one system or to a few systems;
therefore, it is often convenient to put the system definitions in the same file.

A package can also be defined by the package attribute in a file’s attribute
line. Normally, this attribute specifies in which (existing) package to load,
compile, or edit the file. But suppose the attribute value is a list, as in the
following:

;-*-Package: (FOO :size 300); ...-%-

In this case, loading, compiling, or editing the file automatically creates the
Foo package with the specified options (exactly like the make-package
options). No defpackage is needed. It is wise to use this feature only when
the package is used for just a single file. For programs containing multiple
files, it is better to make a system for them and then put a defpackage near
the defsystem. (See Section 23, Maintaining Large Systems.)

make-package name &key :nicknames :use [c] Function
make-package name &key :nicknames :size :use :prefix-name Function

:export :shadow :import :shadowing-import :auto-export-p

This function creates and returns a new package with the name specified by
name, which can be a string or symbol. The functionality of the keywords is
the same as for defpackage, although, for make-package they are true key-
words; the defpackage arguments are actually in an association-list format.
Only :nicknames and :use are defined by Common Lisp. The other options
are Explorer extensions.

in-package name &key :nicknames :use [c] Function
in-package name &key :nicknames :size :use :prefix-name :export Function

:shadow :import :shadowing-import :auto-export-p

This function creates a package named by name, if it does not exist, with the
nicknames specified by :nicknames and the used packages specified by :use,
or it modifies an existing package named by name to have the specified nick-
names and used packages. Finally, the current package is set to this package.
This binding remains in effect until changed by the user or until the current
package reverts to its previous value at the completion of a load operation.
The name argument can be a string, symbol, or package object.

The keywords :nicknames and :use are defined by Common Lisp. All other
options are Explorer extensions that are passed to make-package if the pack-
age specified by name does not exist. Otherwise, the package specified by
name is modified insofar as possible to correspond to the extended keyword
options.

5-10

Lisp Reference

Packages

delete-package package Function

This function uninterns all the symbols in the package specified by package,
invokes unuse-package on ail the packages package is currently using, and
deletes package.

kill-package package Function

This function Kills the package specified or named by package. It is removed
from the list that is searched when package names are looked up.

Setting the
Current Package

package

5.3 The name of the current package is always displayed in the middle of
the status line with a colon following it. This package name describes the
process that the status line in general is describing, normally the process of
the selected window. No matter how the current package is changed, the
status line eventually shows this change (at one-second intervals). Thus, while
a file is being loaded, the status line displays that file’s package; the status
line displays the package of the selected buffer in the editor.

The following forms are used for setting the current package.

[c] Variable

The value of this variable is the current package. The intern function
searches this package if it is not given a second argument. Many other func-
tions for operating on packages also use this variable as the default.

NOTE: Do not set this variable to a value that is not a package object! It
must be set to a package at all times.

Each process or stack group can have its own setting for the current package
by binding *package* with let. The actual current package at any time is the
value bound by the process that is running. The bindings of another process
are irrelevant until the process runs.

When a file is loaded, *package* is bound to the package named in the file’s
attribute line (see paragraph 1.3.3, Using the Two Modes From Zmacs) when
the file has an attribute line. The Chaosnet program file has Package:CHAOS;
in the attribute line, and therefore its symbols are looked up in the CHAOS
package. An object file has an encoded representation of the attribute line
for the source file; this representation looks different from the actual attribute
line, but it serves the same purpose.

The current package is also relevant when you type Lisp expressions on the
keyboard; it controls the reading of the symbols that you type. Initially, it is
the USER package. You can select a different package using in-package, or
even by setting *package*. If you are working with the Chaosnet program, it
might be useful to type (in-package -CHA0S) so that your symbols are found
in the CHAOS package by default. The Lisp Listener loop binds *package*
so that in-package in one Lisp Listener does not affect others or any other
processes whatever.

Lisp Reference

5-11

Packages

The Zmacs editor records the correct package for each buffer; the package is
determined from the file’s attribute line. This package is used whenever
expressions are read from the buffer. So if you edit the definition of the
Chaosnet get-packet and recompile it, the new definition is read in the
CHAOS package. The current buffer’s package is also used for all expres-
sions or symbols typed by the user. Thus, if you press META-. and type
allocate-pbuf while looking at the Chaosnet program, you get the definition
of the allocate-pbuf function in the CHAOS package.

pkg-bind package {body}* Macro

With this macro, the forms of the body are evaluated sequentially with the
variable *package* bound to the package named by package. The argument
package can be a package object or a package name. For example:

(pkg-bind "ZWEI"
(some-zwei-function an-arg))

pkg-goto package &optional globally-p Function

This function sets *package* to package if package is suitable for this argu-
ment. The package argument can be specified as a package object or the
name of one. If globally-p is non-nil, then this function also calls pkg-goto-
globally.

pkg-goto-globally package Function

This function sets the global binding of *package* to package. An error is
signaled if package is not suitable.

The variable *package* also has a global binding, which is in effect in any
process or stack group that does not rebind the variable. New processes that
do bind *package* generally use the global binding to initialize their own
bindings, invoking (let ((*package* *package*)}...). Thus, it can be useful
to set the global binding. But you cannot do this with setf or in-package from
a Lisp Listener, or in a file, because doing so sets the local binding of
package instead. Therefore, you must use pkg-goto-globally.

Interning Symbols

5.4 The following forms are associated with interning symbols.

intern string &optional package [c] Function
intern string-or-symbol &optional package Function

This function searches package for a symbol whose print name is equal to
string (or string-or-symbol). If package is not specified, the current package
is searched instead. If such a symbol is found, it is returned as the first value
of intern. Otherwise, each package used by package (or the current package)
is searched for an external symbol with print name string (or string-or-
symbol) until either such a symbol is found or all used packages have been
searched. If the symbol is found, it is returned as the first value of intern. If
it is not found, a new symbol is created with print name string (or string-or-
symbol) and a home package of package (or the current package). In Com-
mon Lisp, the first argument to intern must be a string. On the Explorer
system, the first argument can also be a symbol, in which case the print name
of the symbol is used in the search.

5-12

Lisp Reference

Packages

The intern function also returns two additional values. The second value
indicates whether an existing symbol was found and how. This second value is
one of the following:

B :internal — A symbol was found directly present in package, and it was
internal in package.

B :external — A symbol was found directly present in pkg, and it was exter-
nal in package.

= :inherited — A symbol was found by inheritance from a package used by
package. You can deduce that the symbol is external in that package.

M nil — A new symbol was created.

On the Explorer system, a third value is returned by intern indicating in
which package the symbol found or created is present directly. This value is
different from package if and only if the second value is :inherited.

Note that intern is sensitive to case; that is, it considers two character strings
different even if they vary only by characters being uppercase or lowercase
(unlike most string comparisons elsewhere in the Explorer system). Symbols
are converted to uppercase when you type them because the Lisp Reader
converts the case of characters in symbols; the characters are converted to
uppercase before intern is ever called.

unintern symbol &optional package [c] Function

This function removes symboi from package and, if package is the home
package for symbol, sets the package cell to nil. The package argument
defaults to the current package. The symbol argument is also removed from
package’s shadowing-symbols list if it is present there. If symbol is not present
in package, no action is taken. The unintern function returns t if a symbol is
actually removed; otherwise, it returns nil.

If a shadowing symbol is removed, several distinct symbols with the same
name may become accessible in package. If this happens, an error is signaled.
On proceeding, you can either leave symbol in package or choose which con-
flicting symbol should remain accessible. The chosen symbol is then made
present in package as a shadowing symbol.

intern-local string-or-symbol &optional package Function

\

This function is like intern, but it ignores inheritance. If a symbol whose
name matches string-or-symbol is present directly in package, it is returned;
otherwise, string-or-symbol (if it is a symbol) or a new symbol (if string-or-
symbol is a string) is placed directly in package. The package argument
defaults to the current package.

The intern-local function returns second and third values with the same
meaning as those of intern. However, the second value can never be
:inherited, and the third value is always package.

Lisp Reference

5-13

Packages

find-symbol string &optional package [c] Function
find-symbol string-or-symbol &optional package Function

This function is like intern but never creates a new symbol or modifies
package. If no existing symbol is found; nil is returned for all three values. If
a symbol with the specified name is found in package, it is returned as the
first value of find-symbol. Two additional values with the same meaning as
those specified for intern are also returned. In Common Lisp, the first argu-
ment to find-symbol should be a string. On the Explorer system, the first
argument can also be a symbol, in which case the print name of the symbol is
used.

Inheritance
Between Packages

5.5 The following functions are used to set up and control package
inheritance.

import symbols &optional package [¢] Function

This function interns each member of symbols in package. The symbols argu-
ment can also be an individual symbol. The package argument defaults to the
current package. For each symbol in symbols, the following is done:

B If an identical (eq) symbol is present in package, nothing is done.

W If the symbol is accessible by inheritance in package, it is interned in
package.

B If the symbol is not accessible in package and there is no distinct symbol
of the same name already accessible in package, it is interned in package.

B Otherwise, a name conflict is detected, and an error is signaled. On pro-
ceeding, you can choose which conflicting symbol to make accessible. If
the symbol being imported is chosen, it is then made present in package
as a shadowing symbol.

use-package packages &optional in-package [c] Function

This function makes in-package inherit symbols from packages, which should
be a single package or a list of packages.

The use-package function can cause name conflicts in two ways. First, if any
of the packages has an external symbol whose name matches a symbol
directly present in in-package, an error is signaled. On proceeding, you can
either make a shadowing symbol out of the symbol already present in in-
package, or you can choose to unintern the conflicting symbol from in-
Ppackage. Resolving the conflict in the latter way is dangerous if the symbol to
be uninterned is an external symbol, because other packages may rely on its
presence in in-package.

In the second kind of name conflict, as with unintern and export, several
distinct symbols with the same name may become accessible in in-package. 1f
this happens, an error is signaled. On proceeding, you can choose which
conflicting symbol should remain accessible. The chosen symbol is then made
present in in-package as a shadowing symbol.

unuse-package packages &optional in-package [c] Function

This function makes in-package cease to inherit symbols from packages,
which should be a single package or a list of packages. No name conflicts are
possible because no new symbols are made accessible.

h
[}

oy

ES

Lisp Reference

Packages

package-use-list package [c] Function

This function returns the list of packages used by package.

package-used-by-list package [c] Function

This function returns the list of packages that use package.

export symbols &optional package [c] Function

This function makes symbols external in package. The symbols argument
should be a symbol or a list of symbols. If the symbols are not already present
in package, they are imported first. The package argument defaults to the
current package.

The export function can cause name conflicts in two ways. First, if the sym-
bol being exported matches a symbol already present in a package that would
inherit the newly exported symbol, an error is signaled. On proceeding, you
can either unintern the symbol present in the inheriting package or choose to
make it a shadowing symbol.

In the second kind of name conflict, as with unintern and use-package,
several distinct symbols with the same name may become accessible in an
inheriting package. If this happens, an error is signaled. On proceeding, you
can choose which conflicting symbol should remain accessible in the inherit-
ing package. The chosen symbol is then made present in that package as a
shadowing symbol.

unexport symbols &optional package [c] Function

This function makes symbois not external in package. No name conflicts are
possible because no new symbols are made accessible. However, an error is
signaled if any of the symbols are not directly present in package or if package
is used by other packages.

package-auto-export-p p.ackage Function
This function returns true if package automatically exports all symbols
inserted in it.

package-external-symbols package Function

This function returns a list of all the external symbols of package.

Functions 5.6 The following forms are associated with shadowing and name conflicts.
Associated With

Shadowing and

Name Conflicts

shadow names &optional package [c] Function

This function makes sure that shadowing symbols with the specified names
exist in package. The names argument is either a string or symbol or a list of
such. If symbols are supplied, their print names are used. Each name speci-
fied is handled independently as follows.

If there is a symbol of that name directly present in package, it is marked as a
shadowing symbol to avoid any problems with name conflicts. Otherwise, a
new symbol of that name is created and interned in package and is marked as
a shadowing symbol.

Lisp Reference 5-15

Packages

shadowing-import symbols &optional package [¢] Function

This function interns the specified symbols in package and marks them as
shadowing symbols. The symbols argument must be a list of symbols or a
single symbol; strings are not allowed.

Each symbol specified is placed directly into package, after uninterning any
symbol with the same name already interned in package.

The shadowing-import function is primarily useful for choosing one of sev-
eral conflicting external symbols that are present in packages to be used.

Once a package has a shadowing symbol named foo in it, any other poten-
tially conflicting external symbol named foo can come and go in the inherited
packages with no effect. It is, therefore, possible to use another package con-
taining another fo0o, or to export the foo in one of the used packages, without
causing an error.

package-shadowing-symbols package [c] Function

This function returns the list of shadowing symbols of package. Each of these
is a symbol present directly in package. When a symbol is present directly in
more than one package, it can be a shadowing symbol in one and not in
another.

Scanning Symbols
in a Package

5.7 The following forms are used for scanning symbols in a package. For
those forms that allow you to supply a result-form, note that the result-form
argument is a single form; an implicit progn is not generated. When the
result-form is evaluated, the binding of var is set to nil. If the result-form is
not supplied, the returned value is nil. You can use the return function to
exit a symbol-scanning macro.

- If the body-forms affect the accessibility of symbols in package (other than

the one currently bound to var), then the effects are unpredictable.

Also note that for each of the following forms, the value of package defaults
to the current package.

do-symbols (var [package [result-form]]) {declaration}* [c] Macro

{body-form}*

This macro executes the body-form once for each symbol that can be found
in package either directly or through inheritance. On each iteration, the vari-
able var is bound to the next such symbol, although the symbols are not
bound in any particular order. Finally, the result-form is executed, and its
values are returned. Since symbols can be present in more than one package,
the body-forms can be executed more than once for a given symbol.

do-local-symbols (var [package [result-formll) {declarations}* Macro

{body-form}*

This macro executes the body-form once for each symbol directly present in
package. Inherited symbols are not considered. On each iteration, the vari-
able var is bound to the next such symbol. Finally, the result-form is
executed, and its values are returned.

5-16

isp Reference

Packages

do-external-symbols (var [package [result-form]]) {declarations}* fc] Macro
{body-form}*

This macro executes the body-form once for each external symbol directly
present in package. Inherited symbols are not considered. On each iteration,
the variable var is bound to the next such symbol. Finally, the result-form is
executed, and its values are returned.

do-all-symbols (var [result-form]) {declarations}* {body-form}* [c] Macro

This macro executes the body-form once for each symbol present in any
package. On each iteration, the variable var is bound to the next such sym-
bol. Finally, the result-form is executed, and its values are returned.

Because a symbol can be directly present in more than one package, it is
possible for the same symbol to be processed more than once.

find-all-symbols string-or-symbol [c] Function

This function searches all packages in the system and returns a list of all the
symbols whose print names are string-or-symbol. Character case is significant
for string-or-symbol. If the value supplied for this argument is a symbol, the
symbol’s print name provides the string used for the search.

mapatoms function &optional package inherited-p Function

This function applies function to all of the symbols in package. The value of
Junction should be a function of one argument. If inherited-p is non-nil, then
the function is applied to all symbols accessible in package, including inher-
ited symbols.

mapatoms-all function &optional package Function

This function applies function to all of the symbols in package and all other
packages that use package. The function argument should be a function of
one argument. For example:

(mapatoms-all
#° (lambda (x)

{when (alphalsssp ‘z x)
(print x))))
Miscellaneous 5.8 The following are miscellaneous package support functions.
Package
Support Functions
package-name package [c] Function

This function returns the name of package (as a string).

package-nicknames package [c] Function
This function returns the list of nicknames (as strings) of package.

package-prefix-print-name package Function

This function returns the name to be used for printing package prefixes that
refer to package.

Lisp Reference 5-17

Packages

rename-package package new-name &optional new-nicknames [c] Function

This function makes new-name the name for package and makes new-
nicknames (a list of strings or symbols, possibly nil) its nicknames. An error is
signaled if the new name or any of the new nicknames is already in use for
another package.

find-package name [c] Function
find-package name-or-pkg Function

This function returns the package object whose name or one of whose nick-
names is name-or-pkg. If no such package exists, find-package returns nil.
In Common Lisp, the argument to find-package can be a string or a symbol.
If the argument is a string, it must match the name of an existing package in a
case-sensitive manner. If the argument is a symbol, the print name of the
symbol is used. On the Explorer system, name-or-pkg can also be a package
object.

pkg-find-package name &optional create-p use-local-names-package Function

This function finds or possibly creates a package named name. If a package
whose name matches name is found, that package object is returned. The
find-package function is used in the matching process. If no such package is
found, a package may be created, depending on the value of create-p and
possibly on how the user responds. The create-p argument must be one of the
following values:

® nil — An error is signaled if an existing package is not found.

B t — A package is created and returned.

W :find — If the package is not found, nil is returned.

W :ask — The user is asked whether to create a package. If the answer is
Yes, 2 package is created and returned. If the answer is No, nil is

returned.

If a package is created, it is done by calling make-package with name as the
only argument.
list-all-packages [c] Function

This function returns a list of all existing packages.

do-all-packages (var [result-form]) {declaration}* {body-form}* Macro

This macro executes body-form once for each package present in the system.
On each iteration, the variable var is bound to the next package. Finally, the
result-form is executed, and its value is returned.

lisp-package Variable
ticl-package Variable
zlc-package Variable
system-package Variable
keyword-package Variable
user-package Variable
sys:pkg-lisp-package Variable
sys:pkg-system-package Variable
sys:pkg-keyword-package Variable

The values of these variables are the packages LISP, TICL, ZLC, SYSTEM,
KEYWORD, and USER.

5-18

Lisp Reference

Packages

describe-package package Function

packagep object

This function prints ali availabie information about package, except for all the
symbols interned in it. The package argument can be a package or the name
of one.

In order to view all symbols interned in a package, use the following form:

(mapatoms #’print package)

[c] Function

This function returns true if object is a package.

Final Notes
on Packages

Common Lisp
Portability Notes

Initialization
of the Application
Namespace

5.9 The following information provides practical notes on how your
application should utilize the package system.

5.9.1 The compiler always attempts to generate code that matches the
effect of the source code. However, dealing with packages creates special
problems. Because of this, Common Lisp compilers have a special dispensa-
tion. At the very least, every Common Lisp implementation guarantees that
the proper object will be generated if the following forms appear only at the

top level:

make-package in-package shadow shadowing-import
export unexport use-package unuse-package
import

5.9.2 When you define an application, it is important to set up the
environment correctly. To avoid environment problems, you should include
the following forms, in this order, at the front of the application file:

1.
2.

7.
8.

Call to provide

Call to in-package
Call to shadow

Call to export

Calls to require
Calls to use-package
Calls to import

Application definitions

The provide and require functions (described in Section 23, Maintaining
Large Systems) are Common Lisp functions that control the loading of files.
(Also see Section 23 for a discussion of modules.) As a matter of style, each
source file should contain symbols for only one package. For large applica-
tions spread over many files, a separate file should contain the package defi-
nition and declarations for all of the shadowed and external symbols.
Loading this file first helps establish critical portions of the namespace for the
benefit of anyone wanting to use this package.

Lisp Reference

5-19

LISTS AND LIST STRUCTURE

List Definitions

Figure 6-1

Figure 6-2

6.1 The list data type is defined to be the union of the two data types cons
and null. The type cons is made up of data structures (also called conses)
that have two components: a car and a cdr (see Figure 6-1). The data type
null has only one object: nil, the empty list. Because nil i
elements, it is also equivalent to the notation ().

ia 12 i ~
i8 a ust witn no

Example of a Cons

car cdr

~ object

> object

In practice, a list defines a sequence of Lisp objects. A list sequence can be
nil or it can be a cons whose car is the first element in the sequence and
whose cdr contains the rest of the sequence. The car of the last cons cell
contains the last element in the list. Figure 6-2 shows the structure of the list
(abec).

Example of the List (a b ¢)

car cdr » car cdr > car cdr

a b c nil

A true list is a list whose last cons has a cdr of nil. Also, by definition, nil is
considered to be a true list. .

Lisp Reference

6-1

APIID UIIWE LsbDE DETULIKICE

Figure 6-3

A dotted list is a list in which the cdr of the last cons cell is not nil but is
instead linked to some other object. This is called a dotted list because it is
written with a dot (that is, a period) between the last two elements. You can
create a dotted list by simply placing a period, surrounded by spaces, between
the last two elements in a list. Figure 6-3 shows the dotted list (ab . c).

Example of the Dotted List (a b . ¢)

car cdr car cdr

Note that a single cons cell whose cdr is non-nil does not fit the preceding

- description of a list sequence. However, since such an object is of type cons,

it is still of type list. Consider the following examples:

{a b) ; A true list containing two elements
; constructed of two cons cells.

(a . b) ; A dotted list containing one element
; consisting of one cons cell whose car
; points to a and whose cdr points to b.

(a . (b)) ; This is equivalent to (a b).

The last example is syntactically legal but is not a real dotted list because the
cdr of the first cons is linked to another cons, and the cdr of the second (and
last) cons contains nil. Thus, this example is actually a true list. The true list
notation is used by all standard Lisp output routines whenever possible.

A tree is also a list, but this term is meant to include branches (other lists
pointed to by elements of the original list), sub-branches, and so on. More
precisely, a tree is composed of a cons and all other conses to which it is
linked directly or indirectly via a car or cdr. Those items in the tree that are
not conses are called the /eaves. The following list is a simple example of a
tree:

(a (b c) d)

This example is a true list with three elements, but it is also a tree with four
leaves. Lisp does not have restrictions on trees in regard to regular or bal-
anced branching. Lisp trees can even branch onto themselves; that is, the cdr
of one of the cons cells can point to another cons cell that preceded it in the
tree.

An association list (also called an a-list or alist) is a specially organized list
that provides keyed access to data. An association list is a true list whose
elements are cons cells. The car of each element is called the key and the cdr
is called the datum. Both the key and the datum can be any kind of Lisp

6-2

Lisp Reference

Figure 6-4

Lists and List Structure

object; however, the key is treated as an identifying label for the associated
datum. Figure 6-4 shows the following association list:

((:first . 1) (:second . 2))

Example of the Association List ((:first . 1) (:second . 2))

car cdr = car cdr
> car cdr - car cdr
Y Y Y Y Y
first 1 :second 2 nil

Several elements in an association list can have the same key; but the search-
ing functions always search from the front of the association list, so only the
first element with that key is found. For example, in the following association
list, a function looking for :key1 would always find (:key1 . x) rather than
(:keyl . y¥):

((:keyl . x) (:keyl . y) (:key2 . 2))

A property list (also called a plist) is another specially organized list that
provides keyed access to data. While property lists are similar in principle to
a-lists, the form of property lists and the support functions that operate on
them are different. Property lists are true lists whose elements are treated as
paired items: the first item is the identifying key called an indicator, and the
second item is a Lisp object called the value or property. Thus, there must be
an even number (including 0) of elements in a property list. Each indicator
should occur only once in the list. Figure 6-5 shows the following property
list:

(:first 1 :second 2)

. Lisp Reference

6-3

Lists and List Structure

Figure 6-5 Example of the Property List (:first 1 :second 2)

car

cdr

car cdr > car cdr car cdr

first

Y
1 :second 2 nil

One of the first uses of property lists was to keep track of associated informa-
tion for symbols. Through the use of property lists, each symbol would own a
unique set of tabular data. Because of this implied uniqueness of data, most
functions that change property lists do so in a destructive manner because it
was originally assumed that no other references to this list would exist. See
the discussion of altering data structures in paragraph 6.6, Altering List
Structure.

A circular list is a list in which the cdr of one of the cons cells points to
another cons cell that appears earlier in the list.

Note that true lists, dotted lists, trees, a-lists, plists, and circular lists are
merely descriptive terms and do not constitute data types themselves. Certain
functions, however, do specify that their arguments must be lists with these
respective attributes. Whenever the term Jist is used without qualification, it is
assumed to mean true lists.

Cdr-Coding

6.2 Cdr-coding is an internal storage technique used to store conses in the
Explorer system. You need not be concerned about cdr-coding unless you
require extra storage efficiency in your program.

Why is cdr-coding important to users? In fact, it is all transparent to you;
everything works the same way whether or not compact representation is
used, from the perspective of the semantics of the language. That is, the only
difference that cdr-coding makes is a difference of efficiency. The compact
representation is more efficient in most cases. However, if the conses are to
have rplacd executed on them, then invisible pointers will be created, extra
memory will be allocated, and the compact representation will degrade stor-
age efficiency rather than improve it. Also, accesses that go through invisible
pointers are somewhat slower because more memory references are needed.
Thus, if storage efficiency is of great concern, you should be careful about
which lists are stored in which representations.

The usual and obvious internal representation of a cons in any implementa-
tion of Lisp is as a pair of pointers, adjacent in memory. If the amount of
storage required to store a Lisp pointer is called a word, then conses normally
occupy two words. One word (conceptually, the first) holds the car, and the
other word holds the cdr. To access the car or cdr of a list, you simply refer

Lisp Reference

Lists and List Structure

to this memory location; to change the car or cdr, you simply store into this
memory location.

Very often, conses are used to store lists. If the above representation is used,
a list of n elements requires two times n words of memory: n to hold the
pointers to the elements of the list, and 2 to point to the next cons or nil. To
optimize this particular case of using conses, the Explorer system uses a stor-
age representation called cdr-coding to store lists. The basic goal is to allow a
list of n elements to be stored in only n locations, while allowing conses that
are not parts of lists to be stored in the usual way.

Every word of memory has an extra two-bit fieid called the cdr-code fieid.
This field can have one of three values: cdr-normal, cdr-next, or cdr-nil. In
the normal method of storing a cons described previously, the cdr-code of the
first word is cdr-normal. (The cdr-code of the second word is insignificant; it
is never looked at.) The cons is represented by a pointer to the first of the
two words. When a list of n elements is stored in the most compact way,
pointers to the n elements occupy n contiguous memory locations. The cdr-
codes of all these locations are cdr-next, except for the last location whose
cdr-code is cdr-nil. The list is represented as a pointer to the first of the n
words. .

Given this data structure, finding the car for a particular list is easy: you
simply read the contents of the location addressed by the pointer. Finding the
cdr is more complex. First, you must read the contents of the location
addressed by the pointer and inspect the cdr-code found there. If the code is
cdr-normal, then you add 1 to the pointer, read the location it addresses,
and return the contents of that location; that is, you read the second of the
two words. If the code is cdr-next, you add 1 to the pointer and simply
return that pointer without doing any more reading; that is, you return a
pointer to the next word in the n-word block. If the code is cdr-nil, you
simply return nil.

These rules work fine even if you mix the two kinds of storage representation
within the same list.

What about changing the structure? Like car, rplaca is very easy: you simply
store into the location addressed by the pointer. To use rplacd, you must
read the location addressed by the pointer and examine the cdr-code. If the
code is cdr-normal, you simply store into the location 1 greater than that
addressed by the pointer; that is, you store into the second of the two words.
But if the code is cdr-next or cdr-nil, the memory cell normally reserved for
storing the cdr of the cons does not exist because this is the cell that has been
optimized out.

However, this problem can be solved by the use of invisible pointers. An
invisible pointer is a special kind of pointer recognized by its data type
(Explorer pointers include a data type field as well as an address field). When
the Explorer system reads a word from memory and this word is an invisible
pointer, the system reads the word pointed to by the invisible pointer and
uses this word instead of the invisible pointer itself. Similarly, when the sys-
tem writes to a location, it first reads the location. If this location contains an
invisible pointer, the system writes to the location addressed by the invisible
pointer instead. (This is a somewhat simplified explanation; actually, there
are several kinds of invisible pointers that are interpreted in different ways at
different times and used for tasks other than cdr-coding.)

Lisp Reference

Lists and List Structure

The following explanation describes what rplacd does when the cdr-code is
cdr-next or cdr-nil; in this explanation, call the location addressed by the
first argument to rplacd Is¢. First, you allocate two contiguous words in the
same area that /sz points to. Then you store the old contents of Ist (the car of
the cons) and the second argument to rplacd (the new cdr of the cons) into
these two words. You set the cdr-code of the first of the two words to cdr-
normal. Then you write an invisible pointer, pointing at the first of the two
words, into location /st. (It does not matter what the cdr-code of this word is
because the invisible pointer data type is checked first.)

Whenever any operation is performed on the cons (via car, cdr, rplaca, or
rplacd), the initial reading of the word pointed to by the Lisp pointer that
represents the cons finds an invisible pointer in the addressed cell. When the
invisible pointer is seen, the address it contains is used in place of the original
object.

You should try to use the normal representation for those data structures that
will be subject to rplacd operations, including nconc and nreverse, and use
the compact representation for other structures. The functions cons, ncons,
and their area variants make conses in the normal representation. The func-
tions list, list*, list-in-area, make-list, and append use the compact repre-
sentation. The other list-creating functions, including read, currently make
normal lists, although this may be changed. Some functions, such as sort,
take special care to operate efficiently on compact lists (sort effectively treats
them as arrays). The nreverse function is rather slow on compact lists, cur-
rently, because it simple-mindedly uses rplacd, but this may be changed.

Copying a list and converting it into compact form can be achieved with

copy-list.
Functions 6.3 The following functions are used for manipulating conses. In these
Associated function descriptions, the term cons can refer to any kind of cons cell, which
With Conses includes non-nil lists.
car list [c] Function

This function returns the object in the car cell of list. The list argument must
be a cons or nil. Note that the car of nil is defined to be nil. For example:

(car “(x y z2)) => x

cdr list [c] Function

This function returns the object pointed to by the cdr cell of list. If list is a
list, this cdr cell may point to another cons cell. The argument list must be a
cons or nil. The cdr of nil is defined to be nil. For example:

(cdr “(x y 2)) => (y z)
(cdr “(x . y)) => ¥

6-6 Lisp Reference

caar list
cadr list
cdar list
cddr list
caaar list
caadr list
cadar list
caddr list
cdaar list
cdadr list
cddar list
cdddr list
caaaar list
caaadr list
caadar list
caaddr list
cadaar list
cadadr list
caddar list
cadddr list
cdaaar list
cdaadr list
cdadar list
cdaddr list
cddaar list
cddadr list
cdddar list
cddddr list

nthedr count list

Lists and List Structure

[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function’
[c] Function
[¢] Function
fc] Function
[c] Function
[c] Function
[c] Function
[c] Function
[¢] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[e] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function

These functions represent combinations of cars and cdrs. The names of these
functions begin with ¢ and end with r, and in between is a sequence of a and
d letters corresponding to a single car or cdr operation. For instance, note the

fallaunin

antivalant farme:-
iCulWiI ail.

lg quv AAL A\JR LALO.
(cddadr x) <=> (cdr (cdr (car (cdr x))))

For any list, you can use cadr to return the second element at the top level,
caddr to return the third, and cadddr to return the fourth. If, for example,
the second element of a list is itself a list, then you can use caadr to return
the first element of the sublist, cadadr to return the second element of the
sublist, and so on (see the corresponding functions first and second).

All of these functions are acceptable to setf as place forms.

[c] Function

This function returns the nth cdr of the list, where count is an integer greater
than or equal to 0. If count is 0, nthcdr returns the entire list; if count is
greater than the length of list, nil is returned.

This function is acceptable to setf as a place form.

Lisp Reference

Lists and List Structure

car-safe object Function
cdr-safe object Function
caar-safe object Function
cadr-safe object Function
cdar-safe object Function
cddr-safe object " Function
nth-safe count object Function
nthedr-safe count object Function

These functions return the same values as the corresponding non-safe
functions (that is, car, cdr, and so on), except that they return nil where the
corresponding non-safe function would produce an error. The nth-safe and
nthedr-safe functions include a count argument to specify which car or cdr is
to be returned. These functions are about as fast as the non-safe functions.
You could get the same result, though more slowly, by handling the
sys:wrong-type-argument-error condition. Consider the following
examples:

(car-safe “(a . b)) => a
(car-safe nil) => nil
(car-safe ‘a) => nil
(car-safe "yabba") => nil
(cadr-safe “(a . b)) => nil
(cadr 3) => ERROR
(cadr-safe 3) => nil

cons car-val cdr-val - [¢] Function

This function is a primitive function that returns a cons of its two arguments,
with car-val in the car cell and cdr-val in the cdr cell. The arguments can be
any Lisp object. For example:

(cons ‘a “b) => (a . b)
(cons “a (b c)) => (a b ¢)

The second line of code shows that cons can be thought of as a function that
produces a list with a new element on the front.

cons-in-area car-val cdr-val area Function

This function constructs a cons in a specific area. (Areas are an advanced
feature of storage management, as explained in Section 25, Storage Manage-
ment; if you are not concerned with functions that deal with areas, then you
can disregard them.) The first two arguments can be any Lisp object, but the
third must be the number of an area in which to construct the cons.

Lisp Reference

Lists and List Structure

Functions
Associated
With Lists

list-length list

nth count list

first list
second list
third list
fourth list
fifth list
sixth list
seventh list
eighth list
ninth lis¢
tenth list

6.4 The following functions are used for manipulating lists. In these func-
tion descriptions, when a function is said to be destructive, it means that
the function permanently changes the values of its arguments. A non-
destructive function merely makes copies of the values of its arguments and
uses these copies during its execution. When a nondestructive function
returns, the original values of its arguments are unchanged. However, this
does not mean that a copy of the original values was made.

[c] Function
This function returns either the length of the list or nil if the list is circular.
This function is used chiefly to determine if a list is circular. For example:

(list-length “()) => 0
(list-length - (ace ace jack 10 §)) => §
(list-length ’(tarzan (jane cheetah) boy)) => 3

(setq g-pig (list ‘x ‘y ‘z)) Let g-pig be the list (x y 2).

(setf (cdddr g-pig) g-pig) ; Let g-pig become a circular list.

(list-length g-pig) => nil
See also length in paragraph 9.3, Elementary Sequence Functions.

fc] Function

This function returns the nth (zero-based) element of list or nil if count is
greater than or equal to the length of list. This function can be used as the
place argument to setf. Consider the following examples:

(nth 0 “(a b c)) =>a
(nth 2 “(a b ¢)) =>¢
(nth 38 “(a b ¢)) => nil

Note that the order of the arguments for nth is the opposite of that for elt:
for nth, you specify the element index before the list in which the element is
to be found.

[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function
[c] Function

These functions take a list as an argument and return the appropriate element
of the list. The function first is identical to car; second is identical to cadr,
and so on. These names are provided because they make more sense when
you are thinking of the argument as a list rather than just as a cons. Note that
the numbering of list elements starts with 1 as opposed to starting with 0 as
the numbering of the function nth does. Note the following equivalences:

(fourth x) <=> (nth 3 x) <=> (cadddr x)

The setf macro can be used with each of these functions as place forms to
store a value into the indicated position of a list.

Lisp Reference

YN OT WIS AsEDb DT ULIKIE

rest list [¢] Function

This function does the same thing as cdr. It returns the rest of list after the
first element. It can be used as the place argument of setf.

last list [¢] Function

This function returns the last cons of list. This function returns nil if list is
nil. For example:

(setq Ist “(x ¥y 2))

(last 1lst) => (2z)

(rplacd (last 1lst) ‘(a b))
Ist => (x y z a b)

(last “(xy . 2)) => (y . 2)

A common way to return the last element from a list is with the following
form:

(car (last some-list))

list &rest objects [c¢] Function

This function constructs a list by using its arguments as the elements of the
list. For example:

(list “x 'y ‘2 “(12) 3) = (xy z (1 2) 3)
(list ’x) => (x)
(list) => nil

list* object &rest others [c] Function

This function constructs a list whose last two elements form a dotted pair,
unless the last element is itself a list. This function must be given at least one
argument, but if list* is given only one argument, it returns that argument
(unlike list, which returns a single argument as a list). For example:

(list* “w “x ‘y ‘z) => (wxy . z)

; The preceding produces the same result as the following expression.
(cons “w (cons ‘x (cons ‘y ‘z)))

; Note also the following special cases:
(list* ‘u “v ‘w "(x y 2)) => (WUvwxy z)
(list* ‘Z) <=> 2z

make-list size &key :initial-element [¢] Function
make-list size &key :initial-element :area Function

This function makes and returns a list containing the number of elements
specified by size, each of which is initialized to the value of :initial-element.
If no :initial-element is provided, each element in the list is initialized to nil.
The size argument must be a nonnegative integer.

The keyword :area is an Explorer extension to Common Lisp, and if this
keyword is specified, this function makes the list in the specified area. Con-
sider the following examples:

(make-list 8) => (nil nil nil nil nil nil)
(make-list 4 :initial-element ‘Xyz) => (Xyz Xyz Xyz xyz)

6-10 Lisp Reference

Lists and List Structure

list-in-area area &rest objects Function

This function is the same as list, except that it constructs a list in a specified
area. (Areas are discussed in paragraph 25.5, Storage and Allocation Areas.)

list*-in-area area &rest objects Function

This function is the same as list*, except that the list it constructs is made in
a specified area.

circular-list &rest objects Function

copy-list list

copylist* list

copy-tree tree

This function constructs a circular list with the elements specified by objects.
This function is the same as list, except that the constructed list is used as the
last cdr instead of nil. This function is particularly useful with mapcar, as
shown in the following example.

The following form returns a list whose elements are the sum of the corre-
sponding elements in each of the argument lists:

(setf foo “(1 2 3))
(mapcar #°+ foo ‘(5 5 5))

Now consider the following use of circular lists:

(mapcar #°+ foo (circular-list 5))

This form adds each element of foo to 5 without needing to know the length
of foo.

[c] Function

This function creates and returns a list that is equal (not eq) to list. Note that
individual elements of the new list are eq to the corresponding elements of
list. The list argument must be a cons or a list.

This function copies only the top level of list (for copying all levels of a list
structure, see copy-tree later in this section). If list is a dotted list, then the
copy is also a dotted list. The copy-list function actually creates a copy of the
argument list that has gone through a process of memory compaction. There-
fore, the copied list takes up less memory. This compaction process is called
cdr-coding, and several functions use this process for increased memory effi-

ciency (see paragraph 6.2, Cdr-Coding).

Function

This function is the same as copy-list, except that the last cons of the result-
ing list is never cdr-coded. This feature is advantageous if the list is later used
as the first argument to nconc, because altering the cdr of a cdr-coded cons is
less efficient.

[c] Function

This function copies complete tree structures. Any Lisp object can be used
for the tree argument. This function returns an equal copy of tree unless this
argument is not a cons, in which case copy-tree simply returns ¢ree itself. The
copy-tree function operates by recursively copying all the conses in tree, halt-
ing the recursion whenever it finds something that is not a cons. Note that all
leaves of the new tree are eq to the corresponding leaves of tree. The func-
tion copy-tree does not preserve list circularity and substructure sharing.

Lisp Reference

6-11

Lists and List Structure

This function uses cdr-coding for maximum memory efficiency.

append &rest objects [c¢] Function

This function returns a list that is the concatenation of its arguments. All of
the arguments to append, except the last one, must be lists; the original lists
are not destroyed. For example:

(append “(a bc) “(de f) nil “(g)) => (abc de f g)

The append function makes copies of the conses of all the lists it is given,
except for the last one. Therefore, the new list shares the conses of the last
argument to append, but all of the other conses are newly created. Only the
lists are copied, not the elements of the lists.

The last element in objects can be any Lisp object—it need not be a list.
The last argument becomes the end of the new list. For example:

(append “(abcd) “e) => (abcd. e

The definition of append minimizes storage utilization by turning all the argu-
ments that are copied into one cdr-coded list. :

revappend listi list2 4 , Function

This function first constructs a list where the element sequence of list] is
reversed and then concatenates this list with /ist2. Both list] and list2 should
be lists, and they are copied, not destroyed. For example:

(setq listl “(a b ¢))
(setq list2 “(d e £))
(revappend listl list2) => (c bade f)

Compare this function with nreconc.

push item place [c] Macro

This macro stores item onto the front of the list stored at place. The argu-
ment place must be a generalized variable acceptable to setf and must con-
tain a list. In other words, one new cons cell is allocated whose car is item
and whose cdr is the list stored at place. The new list is then stored back into
Place and returned. If the list stored at place is considered a stack, then push
pushes item onto the stack. For example:

(setq a “(1 2 (be) d))
(push 3 (third a)) => (3 b ¢)

;+ Now a is changed.
a=>(12(3bec)d

pushnew item place &key :test :test-not :key [c] Macro

This macro pushes item onto the list stored at place and returns the new list.
If item already belongs to the list, then the list is returned unchanged. The
argument item can refer to any Lisp object.

6-12

Lisp Reference

Lists and List Structure

The :test .and :test-not keywords are used to specify comparison tests. The
:key keyword is used to specify a function that preprocesses the items in the
list before the comparison is made. The style of these arguments is similar to
other generic sequence functions. The functionality of the :key argument is
slightly different for the pushnew function because this function is applied to
the item argument as well as each element in place. The form place must be a
generalized variable acceptable to setf and must contain a list.

If the list is considered a set, pushnew acts like the function adjoin. Consider
the following example:

;5 Set value of x to a list.
(setf x “(a b (c d) e))

;3 Push number 7 onto the front of sublist of x
;5 if it is not there.
(pushnew 7 (third x)) => (7 ¢ d)

;s x is now changed.
X =>(ab (7cd e

;; Push ¢ to front of sublist if it is not there.
(pushnew ‘¢ (third x)) => (7 ¢ d)

;3 ¢ already in sublist of x, so x remains unchanged.
x => (ab (7Tcd) e)

pop place [c] Macro

This macro returns the car of place. The cdr of the original value for place

becomes the new value of place. The value specified for place must be a
cons. For example: ‘

(setf top “(cola root-beer ginger-ale))
(pop top) => cola
top => (root-beer ginger-ale)

butlast l/ist &optional count [c] Function

This function returns a copy of list with the last count elements deleted. This
function is nondestructive; thus, list itself is not changed. The default for
count is 1. Because the elements of /ist are indexed starting with 0, if count is
specified and list has count or fewer elements, butlast returns nil. For
example:

(setf thud ‘(bonk crash ping pong))
(butlast thud) => (bonk crash ping)
thud => (bonk crash ping pong)

;3 Last is (3 4); return copy of all but (3 4).
(butlast ~((1 2) (3 4))) => ((1 2))

;3 count is equal to the number of elements in the list.
;5 Thus, butlast returns nil.
(butlast “(not-least) 1) => nil

;+ count is greater than the number of elements in the list.
i+ Thus, butlast returns nil.
(butlast nil 1) => nil

Lisp Reference 6-13

Lists and List Structure

firstn count list Function

This function returns a list of length count whose elements are the first count
elements of list. If list is fewer than count elements long, then the remaining
elements of the returned list are nil. For example:

;5 Return first two elements.
(firstn 2 “(a b ¢ d)) => (a b)

;5 Return no elements, that is, nil.
(firstn 0 “(a b ¢ d)) => nil

;3 Return first 6 elements.
(firstn 8 “(a b ¢ d)) => (a b ¢ d nil nil)

nleft count list &optional tail Function

1diff list tail

This function returns a list containing the last count elements of list. If count
is too large, the function returns list.

The form (nleft count list tail) returns a tail of list such that taking count
more cdrs would yield tail. When tail is nil, the nleft function is the same as
the two-argument case. If tail is not eq to any tail of list, nleft returns nil.
Consider the following example:

(setf x (1 2 3 4 5)
¥ (cdddr x)) => (4 5)

(nleft 2 x y) => (2 3 4 5)

[c¢] Function

This function (meaning list difference) returns a list containing all the ele-
ments of list positioned before tail. This function is not destructive. The test
eq is used to compare list and tail. The argument /ist must be a list, and tail
should be one of the conses that make up list. If tail is not a cons of list or if
tail is nil, then Idiff returns a copy of list. In any case, the list specified by list
is unchanged. For example:

(setf notes “(abcde)) => (abecde)
(setf high-notes “(cddr notes) => (¢ d e)

;; Find the difference between notes and high-notes.
(1diff notes high-notes) => (a b)

;; Now set new-high-notes to a different set (not eq) of cons cells
;+ pointing to (¢ d e) and try 1diff again.

(setf new-high-notes “(c d e)) => (¢ d e)

(1diff notes new-high-notes) => (a b ¢ d e)

Stack Lists

6.5 When you are creating a list that will not be needed once the function
that creates it is finished, you can create the list on the stack instead by
consing it. This method avoids any permanent storage allocation because the
space is reclaimed as part of exiting the function. However, this method is
also risky: if any pointers to the list remain after the function exists, they
become meaningless.

These lists are called temporary lists or stack lists. You can create them
explicitly using the special forms with-stack-list and with-stack-list*. Some
&rest arguments also create stack lists.

6-14

Lisp Reference

Lists and List Structure

If a stack list or a list that might be a stack list is to be returned or made part
of permanent list structure, it must first be copied (see copy-list in paragraph
6.4, Functions Associated With Lists). The system cannot detect the error of
omitting to copy a stack list; you may simply find that a value has changed
without you knowing it.

with-stack-list (variable {element}*) {body-form}* Special Form
with-stack-list* (variable {element}* tail) {body-form}* Special Form

These special forms create stack lists that reside inside the stack frame of the

function in which these special forms are used. You should assume that the
stack lists are valid only until the special form is exited. For example:

(with-stack-1list (funky x y)
(get-down funky))

The following form is equivalent to the preceding except that funky’s value in
the first example is a stack list:

(let ((funky (list x y)))
(get-down funky))

The list created by with-stack-list* looks.the one created by list*. The value
of tail becomes the ultimate cdr rather than an element of the list.

The following is a practical example. The condition-resume macro (see
Section 21, Compiler Operations) could have been defined as follows:

(defmacro condition-resume (handler &body body)
(with-stack-list (eh:condition-resume-handlers
,handler eh:condition-resume-handlers)

,body))

It is an error to execute replacd on a stack list (except for the tail of one
made using with-stack-list*). However, rplaca works normally on a stack
list.

6.6 The following set of functions alter a list’s structure in a destructive

manner. For more information on destructive and nondestructive functions,
see paragraph 6.4, Functions Associated With Lists.

Altering a list’s structure can be done safely, but be especially careful when
doing so. Specifically, suppose that several variables point to the same list
object. If you use one of these variables in a function that modifies the list
destructively, then all the variables that pointed to the original list now point
to the altered list. In other words, a destructive function changes the list’s
cons cells permanently. Under certain circumstances this alteration may be
desirable, but in some cases destructive functions may lead to quite un-
expected results. However, using destructive functions has two advantages:
destructive functions are usually faster because they change a list instead of
making a copy and modifying this copy, and destructive functions perform
less consing, which means that less garbage is generated in your virtual ad-
dress space.

Lisp Reference

6-15

LISIS ana LISt dStructure

Also note that you should not use these functions for side effects. If you are
trying to change a variable’s value, you should explicitly set the new value.
For instance, suppose you want to destructively modify a list x to find the
intersection of x and y. Assume that x is set to the list (1 2 s) and that y is
set to the list (2 3). The following, then, does not change x:

(nintersection x y) => (2 3)
X => (1 2 3)

The correct way to modify x is as follows:

(setf x (nintersection x y)) => (2 3)

nbutlast list &optional count [c] Function

This function is the destructive version of butlast (see paragraph 6.4, Func-
tions Associated With Lists). The nbutlast function returns Jist with the last
count elements deleted. The default for count is 1. Because the elements of
list are indexed starting with 0, if count is specified and list has count or
fewer elements, nbutlast returns nil and lis¢ is unchanged. Use this function
only for its returned value, not for its side effects. Consider the following
example:

(setf thud - (bonk crash ping pong whizz))

(setf thud (nbutlast thud)) => (bonk crash ping pong)
thud => (bonk crash ping pong)

(setf thud (nbutlast thud 2)) => (bonk crash)

(setf thud -’ (bonk crash . ping))
(nbutlast thud) => (bonk)

;+ count is equal to the number of elements in the list.
;+ Thus, nbutlast returns nil.
(nbutlast “(not-least)) => nil

;; count is greater than the number of elements in the list.
i+ Thus, nbutlast returns nil.
(nbutlast nil) => nil

nconc &rest lists) [c] Function

This function is similar to append in that it concatenates all its arguments into
one list but differs in that all its arguments are altered to create the new
returned list. Unlike append, nconc does not make copies of its arguments.
Use this function only for its returned value, not for its side effects. Consider
the following example:

(setq a “(u v w))
(setg b “(x y 2))
(setf a (nconc a b)) => (Uuv wxy 2)
a=>(uvwxyz)

In this example, the value of a changes because nconc causes the cdr pointer
of its last cons to point to the value of b. Evaluating (nconc a b) again would
produce a circular list structure. This result is produced because the last cons
of a is the value of b, and evaluating this form again causes the cdr pointer of
this last cons to point to itself. Were the *print-circle* global variable non-
nil, its printed representation would be (u v w . #1=(x y z . #1#)).

6-16

Lisp Reference

Lists and List Structure

nreconc list] list2 [c] Function

The form (nreconc 1listi list2) is a more efficient version of (nconc
(nreverse listl) list2). The arguments list] and list2 must be lists, and
nreconc alters the list] argument. Use this function only for its returned
value, not for its side effects. See also revappend.

rplaca cons object [c] Function

This function destructively replaces the car of cons with object and returns
cons. For example:

(setf 1lst “(a b ¢))

;s Replace first element of Ist with x.
(rplaca 1lst “x) => (x b ¢)
1st => (x b ¢)

;; Replace second element of Ist with y.
(rplaca (rest 1lst) ‘y) => (y ¢)
Ist => (x y ¢)

You can use the setf macro instead of rplaca. Using setf is probably clearer
than rplaca. For example:

(setf lst “(a b ¢))

;s Replace first element of Ist with x.
(setf (first 1lst) ’x)
1st => (x b ¢)

rplacd cons object [c] Function

This function alters the cdr of cons with object and returns cons with this
modification. For example:

;3 SetIst to (a b ¢).
(setf 1st “(a b ¢))

;3 Replace cdr of Ist with (x y).
(rplacd 1lst “(x y)) => (a x ¥)
1st => (a x ¥)

;; Replace cdr of Ist with z.

(rplacd 1lst “z) => (a . 2)
1st => (a . 2)

You can use the setf macro instead of rplacd. Using setf is probably clearer
than using rplacd. For example:

(setf 1st ‘(a b ¢))

(setf (rest 1lst) “(x y))
Ist => (a x y)

(setf (rest 1lst) ‘z)
lst => (a . 2)

Lisp Reference 6-17

Lists and List Structure

List Functions
With Keyword
Arguments

6.7 Several functions that operate on lists can also accept one or more
keyword arguments that modify the function in various ways. The basic func-
tions fall into two categories: those that operate on every occurrence of a
single target element in a list, and those that operate on every element that
satisfies a specified predicate. As an example of the first category, the follow-
ing form returns the sublist of example-list, which begins with
target-element:

(member target-element example-list)

Many of the list functions from the second category are variants of the first
category with an added -if or -if-not suffix. Rather than expecting a target
element, these functions expect a test condition predicate as a required argu-
ment. For example, the following form returns the tail of example-1ist whose
first element is a number:

(member-if #‘numberp example-list)

The following keywords can be used to specify arguments that modify the
operation performed by many of the list functions:

B :test, :test-not — The argument to either of these keywords is a function
that determines which elements in the list are to be operated on. This
function should expect two arguments. The order of the arguments sup-
plied to the test function is the same as the order of the arguments to the
calling list function. In most cases, this means that the first argument is
the target item and the second argument is an item from the list. When
no :test argument is specified, the default is eql. For example, the fol-
lowing form returns the sublist, or tail, whose first element is ok-symbol:

(member ‘ok-symbol
‘ (good-symbol ok-symbol bad-symbol)
ttest #-eq)

=> (ok-symbol bad-symbol)

If :test-not had been used in the previous example, the result would have
been the original list, because the first element in the list is not eq to
ok-symbol.

W :key — The argument to this keyword is a function that preprocesses
every element in the list before the condition test is applied. The result of
this function is passed as an argument to the test condition predicate. The
function specified should expect only one argument. When no :key func-
tion is specified, the default is to use the element in the list as is. For
example, the following form returns the sublist in which the car of the
first element is eq to ok-symbol:

(member “ok-symbol
‘((good-symbol . good-data)
(ok-symbol . ok-data)
(bad-symbol . bad-data))
:key #’car
:test #°eq)
=> ((ok-symbol . ok-data) (bad-symbol . bad-data)

Lisp Reference

Substitution
Within a List

Lists and List Structure

NOTE: These functions resemble several functions documented in Section 9,
Sequences; however, the functions documented in this section operate only
on lists.

6.7.1 The following functions provide various ways to change list elements.

subst new old tree &Kkey :test :test-not :key [c] Function
subst-if new test tree &key :key [¢] Function
subst-if-not new test tree &key :key [c] Function

The function subst replaces with new every element or subtree in tree that
matches old, returning a new tree. This function is not destructive; therefore,
list structure is copied as necessary to avoid destroying parts of tree. For
example:

{(setf x {1 23 45)) =>(123435)
(setf y (subst 8 3 x)) => (1 2 8 4 5)
{eg {cdddr x) {cdddr y)) => true

(setf x “((1 2) (3 4))) => ((1 2) (3 4))

(setf y (subst “(4 5 6) (3 4) x :test #’equal))
=> ((1 2) (4 5 6))

(eq (car x) (car y)) => true

The rule for copying portions of a tree is as follows: if a branch of a tree has
no substitution performed in it, then that cons cell is eq to the respective

2300 DDLU CIIQIINICA 111 A%, L2121 Lilal QOIS Ll =& =N MY L IS

branch in the orxglnal tree. Otherwise, the tree is copied. Consider the follow-
ing example:

(subst “peppers ‘pebbles
‘(Peter Piper picked a peck of (pickled pebbles)))
=> (Peter Piper picked a peck of (pickled peppers))

(subst ‘ha nil ‘(Peter Piper picked a peck of
(pickled peppers)))
=> (Peter Piper picked a peck of (pickled peppers . ha) . ha)

(subst “({something . blue) ‘(something . black)
‘((something . old) ((something . new) something . borrowed)
(something . black)) :test #°equal)
=> ((something . old) ((something . new) something . borrowed)
(something. blue))

Compare this function with substitute.

The functions subst-if and subst-if-not, which are variations of subst, use a
test function that takes a single argument and is applied to each element of
the tree. Whether the substitutions are performed depends on the results of
test. In subst-if, they are performed if test is true, and in subst-if-not, they
are performed if test is not true.

NOTE: The subst function has a slightly different meaning in Zetalisp mode;
see Appendix A.

Lisp Reference

6-19

Lists and List Structure

nsubst new old tree &key :test :test-not :key [c] Function
nsubst-if new test tree &key :key [¢] Function
nsubst-if-not new test tree &key :key [c] Function

These functions perform the same operations as subst but destructively alter
the value of tree. Thus, nsubst substitutes new for every occurrence of old in
tree. Use these functions only for their returned values, not for their side
effects.

sublis a-list tree &key :test :test-not :key [c] Function

This function performs multiple parallel substitutions for objects in tree,
returning a new tree. The argument tree is not modified because the list struc-
ture is copied as necessary. If no substitutions are made, the result is tree.
The argument a-list is an association list (a list of pairs). Each element of
a-list specifies one replacement; the car is what to look for, and the cdr is
what to replace it with. The first argument to the test function is the car of an
element of a-list. For example:

(sublis “((a . 1) (b . 4) (c . 10))
‘(+ (*a ("x2)) (*bx)e)
=> (+ (* 1 (" x 2)) (* 4 x) 10)

nsublis a-list tree &Kkey :test :test-not :key [c] Function

Lists as Sets

This function performs the same operations as sublis but destructively alters
tree. Use this function only for its returned value, not for its side effects.

6.7.2 The following functions provide a variety of operations for treating
lists as sets.

member item list &key :test :test-not :key [c] Function
member-if predicate list &key :key [c] Function
member-if-not predicate list &key :key [c] Function

The member function determines if item is a member of list according to
:test, which defaults to eql. If item is a member of list, member returns the
rest of list beginning with item. If item is not a member of list, member
returns nil; thus, this function can be used as a predicate. The keywords are
described in paragraph 6.7, List Functions With Keyword Arguments.

NOTE: The member function has a slightly different meaning in Zetalisp
mode; see Appendix A.

Consider the following example:

(member ‘x “(a b ¢ d)) => nil

(member-if #-numberp “(a 5/3 foo)) => (5/3 foo)
(member-if-not #‘numberp “(a 5/3 foo)) => (a 5/3 foo)
(member ‘a ‘(g (ay) cadxaz)) =>(adxa z)

The result of the last example is a list that is eq to the tail of the original list
starting at the first a at the top level. Thus, you could invoke rplaca on this
returned value, provided that you first verify that member does not return
nil.

6-20

Lisp Reference

Lists and List Structure

See also find and position.

union listl list2 &Kkey :test :test-not :key [c] Function
nunion list] list2 &key :test :test-not :key [c] Function

The union function returns a list representing the set that is the union of the
sets represented by the arguments. Anything that is the element of at least
one of the arguments is also an element of the result. If the :key functional
argument is provided, then it is applied to elements of both arguments to
select the portion to be compared. For example:

(union “(1 2 3) (4 2 5)) => (1 2 38 4 5)
(union “(abbec) “(abd) => (abbcd

Generally, you can specify any predicate for :test, and the elements of the
two lists are compared as follows: each element from the second list is tested
against all the elements from the first list. If the two elements being tested are
considered the same, one of the two is placed in the returned list.

If any element in either list does not match any element of the other list, the
unmatched element appears in the result.

The nunion function operates the same as union but destructively alters all of
the lists supplied as arguments by using their cons cells in building the
returned list. Use this function only for its returned value, not for its side
effects.

NOTE: These functions are different in Zetalisp mode—see Appendix A.

intersection listl list2 &Kkey :test :test-not :key [c] Function
nintersection list] list2 &Kkey :test :test-not :key [c] Function

The intersection function produces a list consisting of only those elements
that are common to all the lists supplied as arguments. If neither argument
has duplicates, then the result will not have duplicates. For example:

(intersection “(1 2 3) ‘(4 2 §)) => (2)

If the :key functional argument is provided, then it is applied to elements of
both arguments to select the portion to be compared.

Generally, you can specify any predicate for :test, and the elements of the
two lists are compared as follows: each element from the second list is tested
against all the elements from the first list. If the two elements being tested are
considered the same, one of the two is placed in the returned list. If any
element in either list does not match any element of the other list, the
unmatched element does not appear in the resuit.

The nintersection function operates the same as intersection but destruc-
tively alters list! by using its cons cells to build the returned list. Use these
functions only for their returned values, not for their side effects.

Lisp Reference

6-21

Lists and List Structure

NOTE: These functions are different in Zetalisp mode—see Appendix A.

adjoin item list &key :test :test-not :key [c] Function

This function adds item to the front of list if it is not already a member of list.

The keywords operate as described in paragraph 6.7, List Functions With
Keyword Arguments. The default test is eql, and if the :key functional argu-
ment is provided, then it is applied to elements of /ist and to item. For exam-
ple:

(adjoin ‘steve (mike john) => (steve mike john)
(adjoin “steve - (steve mike john) => (steve mike john)

For any test specified (including the default), item is consed onto the front of
list only if the test fails for every element of list.

See pushnew in paragraph 6.4, Functions Associated With Lists.

set-difference list] list2 &key :test :test-not :key [c] Function
nset-difference list] list2 &key :test :test-not :key [c] Function

The set-difference function returns a list containing all the elements of Jist]
that do not match any element of /ist2. Neither list is destructively altered. If
the :key functional argument is provided, then it is applied to elements of
both list arguments.

The result contains no duplicate elements if list] contains none.

Any predicate can be used as the argument for :test, which compares the two
lists as follows. Each element in /ist] is tested against every element in list2.
The element from /list] is placed in the returned list only if it fails the test for
every element of list2. For example:

(set-difference “(1 23 458 7889) (1235 7))
=> (486 8 9)

Note that the order of the output does not necessarily match the order of the
input, and some elements of the output may share structure with the input.

The nset-difference function operates the same way as set-difference but
destructively alters list]. Use these functions only for their returned values,
not for their side effects.

set-exclusive-or list! list2 &Kkey :test :test-not :key [c] Function
nset-exclusive-or list1 list2 &key :test :test-not :key [c] Function

The set-exclusive-or function returns a list containing all the elements of
list1 that do not match any element of list2 and all the elements of list2 that
do not match any element of listI. The result contains no duplicate elements
if neither list] nor list2 contains any. This operation is not destructive. If the
:key functional argument is provided, it is applied to elements of both list
arguments.

Note that the order of the output does not necessarily match the order of the
input, and some elements of the output may share structure with the input.

6-22

Lisp Reference

Lists and List Structure

The nset-exclusive-or operates the same as set-exclusive-or but destruc-
tively alters both list] and lisz2. Use these functions only for their returned
values, not for their side effects.

subsetp list] iist2 &key :test :test-not :key [c] Function

This function returns true if each element of list] is a member of /ist2. Other-
wise, subsetp returns nil. If the :key functional argument is provided, then it
is applied to elements of both list arguments.

Association Lists

6.8 The following functions provide a variety of operations for manipulating
association lists. For a definition of association lists, see paragraph 6.1, List
Definitions.

acons key datum a-list [c] Function

copy-alist list

This function conses the association pair (key . datum) onto a-list. For
example:

{acens :home "Austin® “{{:names . "Bob") {(:employsr . "TI")))
=> ({(:home . "Austin") (:name . "Bob") (:employer . "TI"))

[c¢] Function

This function copies the top level of association lists in the same manner as
copy-list copies lists. Additionally, for every element in list that is a cons,
copy-alist creates new cons cells that point to the same car and cdr elements.

pairlis keys data &optional a-list [c] Function

This function creates an association list from the key and data arguments.
The two lists keys and data should be the same length. If a-list is specified,
the created association list is consed onto it.

On the Explorer system, the new pairs appear in the returned value in the
same order as they appear in the argument lists. For example:

(setq nums
(pairlis “(one two) ‘(1 2) “((three . 3) (four . 4))))

nums => ((one . 1) (two . 2) (three . 3) (four . 4))

assoc item a-list &key :test :test-not :key [c] Function

assoc-if predicate a-list

[c] Function

assoc-if-not predicate a-list [c] Function

The function assoc scans a-list for the first association pair whose key satis-
fies the argument for :test with item. If you specify the :key functional argu-
ment, then it is applied to each argument before the argument is passed to
the test function. The returned value is the found association pair. For
example:

(assoc 5 “((ace . hearts) (ace . clubs) (10 . diamonds)
(5 . spades) (2 . spades)))
=> (5 . spades)

(assoc “clubs “((ace . hearts) (6 . clubs))) => nil

(assoc 2 “((1 xy 2) (2bcd) (-10 a b ¢)))
=> (2bcd

Lisp Reference

6-23

I PI IS WIPLE LD DT LT T

If you want to update the associated value of an item in an a-list, use setf as
in the following form:

(setf (rest (assoc item a-list)) new-value)

Consider the following example:

(setf standings -’ ((Pittsburgh . 28-7) {(New-York . 20-13)
(Saint-Louis . 10-23)))

(assoc “Pittsburgh standings) => (Pittsburgh . 26-7)

(setf (rest (assoc “Pittsburgh standings)) 27-7)

(assoc ‘Pittsburgh standings) => (Pittsburgh . 27-7)

The assoc-if and assoc-if-not functions search and return the first associa-
tion pair of g-list whose key satisfies or does not satisfy predicate. For exam-
ple:

(setq pred ‘numberp)
(setq alist “((x a) (2 b) (d ¢)))

(assoc-if pred alist) => (2 b)
(assoc-if #°numberp alist) => (2 b)

(assoc-if-not ‘numberp alist) => (x a)

The specified predicate argument must follow the rules outlined in paragraph
6.7, List Functions With Keyword Arguments.

NOTE: These functions are different in Zetalisp mode—see Appendix A.

rassoc item a-list &Kkey :test :test-not :key [c] Function
rassoc-if predicate a-list [c] Function
rassoc-if-not predicate a-list [c] Function

The rassoc function scans a-list for an association pair whose datum passes
the test specified for :test and returns the found association pair. If you spec-
ify the :key functional argument, then it is applied to each argument before
the argument is passed to the test function. For example:

(rassoc ‘mild ‘((arizona . dry) (kansas . mild)
(minnesota . cold)))
=> (kansas . mild)

NOTE: These functions are different in Zetalisp mode—see Appendix A.

6-24

Lisp Reference

Lists and List Structure

Property Lists

6.9 The following functions provide a variety of operations for manipulating
property lists. For a definition of property lists, see paragraph 6.1, List
Definitions.

getf place indicator &optional default [c] Function

This function is similar to get but differs in that generalized variables (not
symbol names as in get) are used to reference a property list or part of a
property list. Note that the getf function does not necessarily access a prop-
erty list of a symbol; it accesses any location pointed to by the place argu-
ment. If this location is, for instance, a value cell, then getf treats whatever is
in the value cell as a property list. The indicator argument is used to find the
desired property. When the default argument is provided, its value is the
returned value of the function if indicator is not contained in the property list
of place; otherwise, nil is returned. The place argument has the same restric-
tions as for the place argument to setf. Consider the following examples:

(symbol-plist ‘bar) => (one 1 two 2 three 3)) ; Current plist

(getf (symbol-plist “bar) “two) => 2 ; Get from plist

(setf bar “(one 1 two 2 three 3))

(getf bar ‘three) => 8 : Get from valie

(getf bar ‘four :default-4) => :default-4 ; Get default
get-properties place indicator-list [c] Function

This function is similar to getf but takes a list of indicators (rather than a
single indicator) as its second argument. Like getf, the get-properties func-
tion treats the value stored at place as a property list. This function looks for
the first element in this property list whose indicator is also in indicator-list.
The indicator must be eq to the property list item.

The get-properties function returns the following three values: the found
indicator, the corresponding property value of the indicator, and the tail of
the property list, starting with the found property value pair. The place argu-
ment has the same restrictions as for the place argument to setf. Consider the
following example:

(symbol-plist “foo) => (d 4 ¢ 3 b 2 a 1)
{get-propertiss (symbol-plist “foo) “{c b))
=> C

3

(c 83b 2a1l)

remf place indicator [c} Macro

This macro removes the property value whose indicator is indicator from the
property list stored at place. The eq comparison is used to determine if
indicator is in the property list indicated by place. If indicator is found in this
property list, remf returns a true value; otherwise, it returns nil. The place
argument has the same restrictions as for the place argument to setf. See also
remprop.

List Predicates

6.10 The following functions can be used to test lists and conses.

Lisp Reference

6-25

Lists and List Structure

consp object

listp object

atom object

[¢] Function

If object is a cons, this function returns true; otherwise, it returns nil. For
example:

(consp ‘(black list)) => true
(consp “list) => nil
(consp “()) => nil

[c] Function

If object is a list (including the empty list), this function returns true; other-
wise, it returns nil. This predicate returns true even if object ends with a

dotted pair. For example:

(listp “(black list)) => true

(listp “list) => nil
(listp “()) => true
(listp nil) => true
(listp (1 . 2)) => true

NOTE: This function is different in Zetalisp mode—see Appendix A.

[c] Function

This predicate returns true if object is not a cons; otherwise, it returns nil.
Thus, (atom ()) returns true because it is the same as (atom nil).

endp list [¢] Function
This function returns nil if /ist is a cons cell; it returns true if Jist is nil. This is
the function Common Lisp recommends for terminating a loop that cdr’s
down a list.

tailp sublist list [c] Function
This predicate returns true if sublist is a sublist of list (that is, if sublist shares
any cons cells with /ist); otherwise, it returns nil. Note that the following form
always returns nil:
(tailp nil any-list)

tree-equal treel tree2 &key :test :test-not [c] Function

null object

This function compares two trees recursively to all Jevels. Atoms must match
according to the test specified by the :test functional argument (which
defaults to eql). Conses must match recursively in both the car and the cdr.

If a :test-not functional argument is specified instead of :test, then two atoms
match if the returned value of the :test-not function is nil.

[¢] Function

This predicate returns true if its argument is nil; otherwise, it returns nil. This
function is the same as not but is used for a different purpose: null indicates
whether its argument is an empty list, whereas not is used to invert a logical
value (such as testing to see if two objects are not equal). For example:

(null 0) => nil

(null - (black list)) => nil
(null ()) => true

(null nil) => true

6-26

Lisp Reference

ARRAYS

Array Definitions

7.1 Objects of the array data type contain components arranged according
to a rectilinear coordinate system. You can access the components in the
array by specifying a list of numeric indices for each dimension of the array.
Components of a general array can be any kind of Lisp objects, whereas
specialized arrays are optimized to contain a single data-type.

When an array is created, each dimension is given a size that is expressed as
a nonnegative integer. Note that Common Lisp arrays have a zero origin; that
is, the index for the first element in'any dimension is 0, not 1. Therefore, the
largest index permitted for a dimension is one less than the number specified
for that dimension when the array was created. The smallest number for the
index is always 0. The number of components contained in an array is the
product of the sizes for all the dimensions. On the Explorer system, the size
of an array is limited by only two constraints: the total number of components
must be representable as a fixnum, and there must be sufficient virtual
address space available.

The rank of an array is the number of its dimensions. On the Explorer sys-
tem, the rank of an array must be less than 8, which is the value of array-
rank-limit. If the rank of an array is 0, then it has no dimensions but is
defined to contain one element. If any dimension of an array is 0 (which is

not the same as having no dimensions), then it has all the associated proper-
ties of an array but has no components regardless of the rank.

Arrays can be created by the Reader using the Reader macro
#nA(array-elements), where n is the rank of the array and array-elements is
a set of nested lists, one level for each dimension in the array (see the
:initial-contents option to make-array for more details). Each dimension of
the array is determined by the length of the first sequence in that dimension.
For example

#2A((1 2) (3 4)) ; Produces a 2 X 2 array.

#2A((1 2 3 4)(5 6 7 8)(9 0)) ; Produces a 3 X 4 array.

The printer also prints arrays using this format, where *print-array* is
non-nil.

On the Explorer system, any generic sequence can be used instead of a list.
Because character strings are sequences (see Section 9, Sequences), the fol-
lowing example places each character of the string into a separate cell of the
array:

#2A("abc" "def™) ; Produces a 2 X 3 array.

Several optional features for arrays can be used to enhance their power and
flexibility. An array leader is like a one-dimensional array attached to the
main array. The leader can be stored into and examined by a special set of
functions different from those used for the main array. The leader is always
one-dimensional and always can hold any kind of Lisp object, regardless of
the type or rank of the main part of the array. Very often the main part of an

Lisp Reference

7-1

Arrays

array is used as a homogeneous set of objects, whereas the leader is used to
remember a few associated nonhomogenous pieces of data. In this case, the
leader is not used like an array. Each slot is used differently from the others.
Do not use explicit numeric subscripts for the leader elements of such an
array; instead, describe the leader with a defstruct using the :array-leader
type option, and give each slot a name that describes its correspondence to
the array leader. By convention, component 0 of the array leader contains
the fill pointer (defined in the next paragraph). If you are not using a fill
pointer, you should set slot 0 to nil or make sure that it contains a non-
numeric value. If the main array is a non-Common Lisp named structure,
then the name of the structure is kept in slot 1.

In one-dimensional arrays, a fill pointer can manage the linear allocation of
the component slots. In arrays with fill pointers, the number of active
elements grows until the last component is filled, but the physical size of the
array does not change. To enable arrays to grow physically, you should
declare them adjustable at the time you create them. Adjustable arrays can
alter their size to be bigger or smaller dynamically.

Common Lisp defines that multidimensional arrays store their components in
row-major order. In practice, this means that multidimensional arrays are
stored as one-dimensional arrays. For example, suppose that you have cre-
ated a 4-by-5 array. Since the array is stored in row-major order, elements
(0,0) through (0,4) are stored in the first five memory slots allocated for the
array (remember that Common Lisp arrays are zero-origined). Then, ele-
ments (1,0) through (1,4) are stored in the next five memory slots, and so
on. In a 4-by-4-by-5 array, element (1,0,0) would be stored immediately
after (0,3,4).

Row-major order provides a standard method of storage for array elements,
enabling Common Lisp to define displaced arrays in which two arrays share
some portion of their component set. For example, assume that x is a one-
dimensional array and that y is a 2-by-2 array displaced into x with an offset
of 1 (which means that the first element of x begins at the second element
of y):

(aref x 1) <=> (aref y 0 0)
(aref x 2) <=> (aref y 0 1)
(aref x 3) <=> (aref y 1 0)
(aref x 4) <=> (aref y 1 1)

Arrays that do not have fill pointers, that are not displaced into other arrays,
and that were not specified as adjustable when created are called simple
arrays.

Vectors 7.1.1 One-dimensional arrays are defined to be of type vector, which is a
subtype of array. Vectors are also of type sequence, as is anything of type
list. Consequently, the functions in Section 9, Sequences, can also be used
on vectors. A string is a specialized vector in which all components are of
type string-char. Thus, functions in Section 8, Strings, apply to these special-
ized vectors. A bit-vector is a vector whose components are all of type bit;
functions for manipulating bit-vectors are documented in this section.

-3
L}
[

Lisp Reference

Internal Array Types

Arrays

A simple general vector can be created using one of the support functions
{(such as make-array) or by placing the data objects between the delimiters
#(and). For example:

#(14982 nil 1776 1884 1985) ; A vector of five components.

An Explorer extension allows you to optionally provide a length argument to
the Reader macro: #n(elements), where n specifies the length of the vector.
If n is greater than the number of elements supplied, then the last element is
repeated as many times as necessary to give the array n elements. For
example:

#3(1 2) ; Equivalent to #(1 2 2)

A bit-vector is created by using the characters #* followed by 1s and 0s. For
example, #*1100 creates a bit-vector of four components.

7.1.2 Common Lisp does not always explicitly define array types other than
bit-arrays, strings, and general-purpose arrays. For the most part, Common
Lisp defines array element types. The Explorer system explicitly defines array
types that correspond to the internal array representation.

The following are the Explorer-defined array types (the prefix art- stands for
array type):

B art-q — Arrays that can hold Lisp objects of all types.

B art-g-list — Arrays that can hold Lisp object

handled as lists (except that the rp‘ia::d function cannot be used with
these arrays).

B art-fix — Arrays that can contain any fixnum.

B art-1b, art-2b, art-4b, art-8b, art-16b , art-32b — Arrays that hold
nonnegative integers and that store only the number of least-significant

bit, art-2b stores only the two least-significant bits, and so on.
B art-string — Arrays that can contain elements of type string-char.

W art-fat-string — Arrays that hold characters consisting of an eight-bit
code attribute and an eight-bit font attribute.

B art-half-fix — Arrays that contain halfword signed fixed numbers from
~32768 to 32767.

B art-single-float, art-double-float — Arrays that contain floating-point
numbers.

W art-complex — Arrays that contain any kind of number, including com-
plex numbers.

B art-complex-single-float, art-complex-double-float — Arrays that con-
tain real and complex numbers whose real and imaginary parts are both
floating-point numbers.

Lisp Reference

7-3

Arrays

Table 7-1

Table 7-1 shows the correspondence between the Explorer extension array
types and the Common Lisp array element types.

Array Types and Array Element Types

Explorer Array Type

Common Lisp Array Element Type

(:type) (:element-type)
art-1b bit

art-2b (unsigned-byte 2)
art-4b (unsigned-byte 4)
art-8b (unsigned-byte 8)
art-16b (unsigned-byte 18)
art-32b (unsigned-byte 32)
art-fix fixnum

art-half-fix

art-string
art-single-float
art-double-float
art-complex
art-complex-single-float
art-complex-double-float
art-fat-string

art-q

art-q-list

art-reg-pdl
art-stack-group-head
art-special-pdl

(signed-byte 18)
string-char
single-float
double-float

complex

(complex single-float)
(complex double-float)
;No equivalent.

t

;No equivalent.

;No equivalent.

;No equivalent.

;No equivalent.

Note that art-reg-pdl, art-stack-group-head, and art-special-pdl are for

internal use only.

Array Creation

make-array dimensions &Kkey :element-type :initial-element

7.2 The following functions are associated with creating arrays.

[c] Function

:initial-contents :adjustable :fill-pointer :displaced-to

:displaced-index-offset

make-array dimensions &Kkey :element-type :initial-element

Function

:initial-contents :adjustable :fill-pointer :displaced-to
:displaced-index-offset :area :type :leader-length :leader-list
:named-structure-symbol

This function makes an array with the dimensions specified by dimensions,
which should be a list of integers indicating the size of each dimension. The
number of integers in dimensions equals the rank of the array. For one-
dimensional arrays, you can simply specify an integer for dimensions rather
than a list with one element. Two values are returned: the array itself and the
number of words allocated to the array.

Every integer specified in dimensions must be less than the array-
dimensions-limit constant. The total size of the array (that is, the product of
its dimensions) must be less than the array-total-size-limit constant. If you
specify an initial value of nil for dimensions, make-array makes a zero-
dimensional array.

Lisp Reference

Common
Lisp

Standard
Keywords

Arrays

On the Explorer system, make-array has some additional keyword argu-
ments that are considered extensions and may not be portable to other Com-
mon Lisp sites.

:element-type — The argument for :element-type must be a name that
specifies the data type for the array elements. The default for :element-
type is t, which means that the array’s elements can be of any type. If
you specify a type other than t, then all the elements subsequently stored
in this array must be of the specified type. On the Explorer system, the
internal array representation (see Table 7-1) that best matches the speci-
fied element type is used.

:initial-element — The argument for :initial-element specifies a single value
to be stored in each element of the new array. If you do not provide an
:initial-element argument (and do not provide either an :initial-
contents or :displaced-to argument), the values of the array cells are
undefined according to Common Lisp. As an Explorer extension, if the
array type is numeric, the array is initialized to the appropriate form of 0;
otherwise, the elements of the array are initialized to nil. You cannot use
:initial-element and also use :initial-contents or :displaced-to.

:initial-contents — The argument to this keyword specifies a value for each
element of the new array. This argument should be a sequence that has a
length equal to the size of the first dimension. If the array has two dimen-
sions, then each element of the original sequence should be a sequence
equal in length to the size of the second dimension, and so on for as
many dimensions needed. Recall that a sequence is either a list or a vec-
tor (and vectors include strings). If the array being created is zero-dimen-
sional, then the value specified for :initial-contents becomes the single
element in the array. For an array of any other dimensions, the argument
for :initial-contents must be a sequence of sequences in which the num-
ber of elements in each list equals its corresponding dimension number.
For example, note the creation of the following 5-by-2-by-3 array:

(make-array (5 2 3) :initial-contents

(((Rick Rhoden P) (14 9 2.72))
((Larry McWilliams P) (12 11 2.93))
((John Tudor P) (12 11 3.27))
((John Candelaria P) (12 11 2.72))
((Jose Deleon P) (7 13 3.74)))

If you do not provide an :initial-contents argument (and do not provide
either an :initial-element or :displaced-to argument), the values of the
array cells are undefined according to Common Lisp. As an Explorer
extension, if the array type is numeric, the array is initialized to the
appropriate form of 0; otherwise, the elements of the array are initialized
to nil. You cannot use :initial-contents and also use :initial-element or
:displaced-to.

:adjustable — When a non-nil value is provided to this keyword, the array is
adjustable, which means that it is permissible to change the array’s size
with the adjust-array function. The default value is nil. On the Explorer,
all arrays are always adjustable; this argument is ignored.

:fill-pointer — The value supplied for this keyword is used to initialize the fill
pointer index for the vector being created; that is, it defines the number
of active elements in the newly created vector. The value should be an
integer between 0 (inclusive) and the length of the array, or t. If you
specify t for :fill-pointer, make-array uses the array’s length for this
option. The default value for this keyword is nil, meaning that there is no
fill pointer; non-nil values are only permitted when creating vectors.

Lisp Reference

7-5

Arrays

Using the :fill-pointer keyword is equivalent to using the :leader-list
keyword with a list one component long.

:displaced-to — If this keyword is given a non-nil argument, a displaced
array is constructed. To be compatible with Common Lisp, this value
must be an array whose element type agrees with the type of array being
created.

If the value for :displaced-to is an array, make-array creates an indirect
array. On the Explorer system, if the value is an integer or a locative,
make-array creates a regular displaced array that refers to the specified
section of virtual address space.

If you use the :displaced-to option, you cannot specify a value for either
the :initial-element or the :initial-contents option. Also note that the
array being defined must not be larger than the array to which it is being
mapped. :

:displaced-index-offset — If this argument is specified, the value of the
:displaced-to option should be an array. The value for :displaced-
index-offset should be a nonnegative integer that is used as an index into
the :displaced-to array. The element location indicated by this index
becomes the first element in the displaced array.

The size of the array being defined plus the offset must not exceed the
size of the array to which it is being mapped.

The following keyword arguments to make-array are Explorer extensions to
the Common Lisp standard.

Explorer :area — This keyword specifies in which memory area (see paragraph 25.5,
Extension Storage and Allocation Areas) the array is to be created. It should be
Keywords either an area number (an integer) or nil to indicate the default area.

:type — This is similar to the Common Lisp keyword :element-type but
differs in that an Explorer array type name is used as its value (see Table
7-1). The default is art-q. The elements of the array are initialized
according to the specified type: if the array is of a type whose elements
can only be fixnums or floating-point numbers, then the array is auto-
matically initialized to 0 or 0.0; otherwise, every element is initialized to
nil.

:leader-length — If a corresponding value is given to this keyword, it must be
2 fixnum. The array then has an array leader. The length of the array
leader is equal to this value, and the elements of the array leader are
initialized to nil unless the :leader-list option (described below) is given
a non-nil value.

:leader-list — If an argument value is given to this keyword, it must be a list.
If the number of elements in the list is n, then the first n elements of the
array leader are initialized from successive elements of this list. If the
:leader-length keyword is not given a value, then the length of the array
leader is n. If the :leader-length keyword is given a value and this value
is greater than n, then the nth and following leader elements are initial-
ized to nil. If the value specified for :leader-length is less than #n, an
error is signaled. The leader elements are filled in forward order; that is,
the first element of the list is stored in leader element 0, the next element
of the list is placed in in element 1 of the array leader, and so on.

7-6 Lisp Reference

Arrays

:named-structure-symbol — The argument to this keyword is either nil or a
symbol to be stored in the named-structure cell of the array. The array is
tagged as a named structure (see the :named option to defstruct in para-
graph 10.4.1, Common Lisp defstruct Options). If the array has a
leader, then this symbol is stored in leader element 1 regardless of the
value of the :leader-list keyword. If the array does not have a leader,
then this symbol is stored in array element 0.

vector &rest objects ' [c] Function

This function constructs and returns a simple general vector (one-
dimensional array} whose elements are objects. For example:

(setf pirate-starting-pitchers
(vector "Rhoden® "McWilliams" "Tudor” "Candelaria" "DeLeon")) -
=> #("Rhoden" "McWilliams" "Tudor" "Candelaria® "DeLeon")

Array Information 7.3 The following functions, constants, and variables are associated with
retrieving information about array implementation and individual arrays.

array-dimension-limit [c] Constant

Any one dimension of an array must be smaller than the value of this con-
stant. On the Explorer system, this constant is set to 16777214, the largest
possible fixnum.

array-total-size-limit [c] Constant
The total number of elements in an array must be smaller than the value of

4 e~

this constant. On the Expiorer system, this constant is set to 16777214, the
largest possible fixnum.

array-rank-limit [c] Constant

The rank of an array must be smaller than this constant. On the Explorer
system, this value is 8; therefore, arrays can have a rank between 0 and 7
(inclusive). All Common Lisp'systems must have a rank limit of at least 8.

array-element-type array [c] Function

This function returns a type specifier that describes what kind of elements
can be stored in array (see Section 12, Type Specifiers, for more informa-
tion). Thus, if array is a string, the value is string-char. If array is an art-1b
array, the value is bit. If array is an art-2b array, the value is (mod 4). If
array is an art-q array, the value is t (the type to which all objects belong).

array-type array Function
This function returns the Explorer array type name of array. For example:

(setq a (make-array “(3 5)))
(array-type a) => art-q

array-rank array {c] Function

This function returns the number of dimensions of array. This value is always
a nonnegative integer less than the value of array-rank-limit.

Lisp Reference 7-7

Arrays

array-dimension array n [¢] Function

This function returns the length of dimension n of array. For example:

(setq a (make-array ‘(2 3)))
(array-dimension a 0) => 2
(array-dimension a 1) => 3

array-dimensions array [c] Function

This function returns a list whose elements are the dimensions of array. For
example:

(setq a (make-array “(3 5)))
(array-dimensions a) => (3 5)

array-total-size array [c] Function
array-length array Function

These functions return array’s total number of components, which is the
product of its dimensions. For example:

(setf pirate-starting-pitchers
(make-array °(5 2 38) :initial-contents

“(((Rick Rhoden P) (14 9 2.72))
((Larry McWilliams P) (12 11 2.93))
((John Tudor P) (12 11 38.27))
((John Candelaria P) (12 11 2.72))
((Jose DelLeon P) (7 13 3.74)))

(array-total-size pirate-starting-pitchers) => 30

The array-total-size function ignores fill pointers in vector arrays that have
them. The total size for a zero-dimensional array is always 1.

array-active-length array Function
If array has a fill pointer, it is returned; otherwise, the length of array is
returned.

array-row-major-index array &rest indices [c] Function

This function calculates the cumulative index in array of the element at
indices. Note the following equivalence:

(ar-1-force array (array-row-major-index array indexl index2 L))
<=> (aref array indexl index2 ...)
array-element-size array Function

Given an array, this function returns the number of bits that fit in an element
of that array. For arrays that can hold general Lisp objects, the result is 25,
assuming you are storing fixnums in the array.

displaced-array-p array [c] Function

This function returns two values. If array is an indirect array, the first value is
the array to which it is offset and the second value is the index to which it is
offset. If array is not an indirect array, then the values nil and 0 are
returned.

Lisp Reference

Arrays

array-index-offset array Function

This function returns the index offset of array if it is an indirect array that has
an index offset. Otherwise, it returns nil. The array argument can be any
kind of array.

Accessing and
Setting Arrays

7.4 The following functions are used to access arrays.

aref array &rest subscripts [c] Function

This function returns the element of array designated by the subscripts,
which must be nonnegative integers and whose number must match the rank
of array.

The aref function disregards fill pointers, unlike elt, which signals an error if
an attempt is made to read past them.

To permanently change an array element, you can use setf with aref. For
example:

(setf (aref pirate-starting-pitchers 3) ‘Reuschel)

When dealing with multidimensional arrays, you frequently need to retrieve
one of the array’s elements by using a list of integers for the subscripts. You
can do this easily using apply. As an example, suppose that array rotation is
a 5-by-2-by-3 array and that you want to retrieve element (4 1 0) of this
array using apply:

(setgq x “(4 1 0))
(apply #-aref rotation x) => 7

The number of elements in this list must equal the rank of the array. This use
of apply is also helpful for assigning or changing the value of a particular
array element. For example:

(setf (apply #’aref rotation x) 8)

svref simple-vector index [c] Function

This is a special accessing function that operates on simple general vectors
(vectors with no fill pointer, not displaced, and not adjustable).

ar-1-force array index Function
row-major-aref array index [c] Function

These functions access an array with a single subscript regardless of how
many dimensions the array has. These functions can be useful for manipulat-
ing arrays of varying rank, as an alternative to maintaining and updating a list
of subscripts or to creating one-dimensional indirect arrays. Note that you can
update an item in an array by using setf with ar-1-force as a place argument.
The ar-1-force function can also be used as an argument to locf to return the
location of an item in the array.

Lisp Reference

7-9

Arrays

Filling and 7.5 The following functions are used for filling and copying arrays.
Copying Arrays

array-initialize array value &optional start end Function

This function stores value into all or part of array. Within this function, array
is treated as a one-dimensional array regardless of its true rank. The start and
end arguments are optional indices that delimit the part of array to be initial-
ized. They should be nonnegative numbers smaller than the total size of the
array (that is, they are not lists of indices). They default to the beginning and
end of the array.

The array-initialize function is generally much faster than using a loop to
assign each element.

fillarray array x Function

This function is obsolete; use the fill function instead (see Section 9,
Sequences).

This function returns array or, if array is nil, the newly created array. There
are two forms of this function, depending on the type of x. If x is a list, then
fillarray fills up array with the elements of list. If x is too short to fill up all of
array, then the last element of x is used to fill the remaining elements of
array. If x is too long, the extra elements are ignored. If x is nil (the empty
list), array is filled with the default initial value for its array type (nil or 0). If
x is an array, then the elements of array are filled up from the elements of x.
If x is too small, then the extra elements of array are not affected. The array
argument can be any type of array. It can also be nil, in which case an array
of type art-q is created. If array is multidimensional, the elements are
accessed in row-major order: the last subscript varies most quickly. The same
is true of x if it is a multidimensional array.

listarray array &optional limit Function

This function creates and returns a list whose elements are those of array.
The array argument can be any type of array. If limit is specified, it should be
a fixnum indicating how many elements from array to put in the returned list.
Thus, the maximum length of the returned list is limit. If array is multidimen-
sional, the elements are accessed in row-major order: the last subscript varies
most quickly.

The g-l-p function is more efficient than listarray, when it is applicable.

g-l-p array Function

This function (which stands for get list pointer) returns a list that shares the
storage of array. The array argument must be an art-q-list array. For
example:

(setq a (make-array 4 :type ‘art-q-list))
(aref a 0) => nil

(setq b (g-1-p a)) => (nil nil nil nil)
(setf (car b) t)

b => (t nil nil nil)

(aref a 0) => t

(setf (aref a 2) 30)

b => (t nil 30 nil)

7-16 Lisp Reference

Arrays

list-array-leader array &optional limit Function

This function creates and returns a list whose elements are those of array’s
leader. The array argument can be any type of array. If limit is specified, it
should be a fixnum indicating how many elements from array’s leader are put
in the returned list. Thus, the maximum length of the returned list is limit. If
array has no leader, nil is returned.

copy-array-contents from-array to-array Function

This function copies the contents of from-array into the contents of to-array,
component by component. The arguments from-array and to-array must be
arrays. If to-array is shorter than from-array, the rest of from-array is
ignored. If from-array is shorter than to-array, the rest of to-array is filled
with nil, 0, or 0.0, according to the type of array. This function always
returns t.

The entire length of from-array or to-array is used, ignoring any fill pointers.
The leader itself is not copied.

The copy-array-contents function works on multidimensional arrays. If
from-array is a string, then to-array contains char-code fixnums instead of
string-chars. This function always returns t. The arguments from-grray and
to-array are treated as linear arrays, and components are taken in row-major
order.

copy-array-contents-and-leader from-array to-array Function

This function is like copy-array-contents (described previously) but also
copies the leader of from-array (if any) into to-array.

copy-array-portion from-array from-start from-end to-array to-start to-end Function

This function copies—component by component—the portion of the array
from-array, with indices greater than or equal to from-start and less than
from-end, into the portion of the array to-array, with indices greater than or
equal to to-start and less than to-end. If there are more components in the
selected portion of to-array than in the selected portion of from-array, the
extra components are filled with the default value nil, 0, or 0.0, depending
on the type of array. If there are more components in the selected portion of
from-array, the extra components are ignored. Multidimensional arrays are
treated the same way that copy-array-contents (described previously) treats
them. If from-array is a string, then to-array contains char-code fixnums
instead of sdtring-chars. This function always returns t.

bitblt alu width height from-array from-x from-y to-array to-x to-y Function

This function (which stands for bit block transfer) copies a rectangular por-
tion of from-array into a rectangular portion of to-array. The value stored
can be a Boolean function of the new value and the value already there,
under the control of the function specified by the alu argument (see Table
3-4 and see the description for boole). The from-array and to-array argu-
ments must be two-dimensional arrays of bits or bytes (art-1b, art-2b,
art-4b, art-8b, art-16b, or art-32b). This function is most commonly used
in connection with raster images for video displays.

The top-left corner of the source rectangle is (aref from-array from-y
from-x). The top-left corner of the destination rectangle is (aref to-array to-y
to-x). The width and height arguments are the dimensions of both rectangles.
If width or height is 0, bitblt does nothing. The x coordinates and width are
used as the second dimension of the array, because the horizontal index is

Lisp Reference

7-11

Arrays

the one that varies fastest in the screen buffer memory and the array’s last
index varies fastest in row-major order.

The from-array and to-array arguments can specify the same array. The
bitblt function normally traverses the arrays in increasing order of x and y
subscripts. If width is negative, then (abs width) is used as the width, but the
processing of the x direction is performed backwards, starting with the highest
value of x and working down. If height is negative, it is treated analogously.
When you call bitblt on an array to itself, and when the two rectangles over-
lap, it may be necessary to work backwards to achieve effects such as shifting
the entire array downwards by a certain number of rows. Note that if width or
height is negative, the (x, y) coordinates specified by these arguments are not
affected; these coordinates still specify the top-left corner even if bitblt starts
at some other corner.

If the two arrays are of different types, bitblt works by bit and not by compo-
nent. That is, if you invoke bitblt from an art-2b array into an art-4b array,
then two components of the from-array correspond to one component of the
to-array.

If bitblt goes outside the bounds of the source array, the copying wraps
around to the beginning of the source array. This feature allows such opera-
tions as the replication of a small stipple pattern through a large array. If
bitblt goes outside the bounds of the destination array, it signals an error.

If src is a component of the source rectangle and dst is the corresponding
component of the destination rectangle, then bitblt changes the value of dst
to (boole alu src dst). See the boole function in paragraph 3.9, Number
Component Extraction. There are symbolic names for some of the most use-
ful alu functions; they are boole-1 (plain copy), boole-ior (inclusive or),
boole-xor (exclusive or), and boole-andcl (and-with-complement of
source).

The bitblt function is written in highly optimized microcode and performs
much faster than would the same function written with ordinary aref and aset
operations. Unfortunately, this optimization causes bitblt to have a couple of
strange restrictions. Wraparound does not work correctly if from-array is an
indirect array with an index offset. The bitblt function signals an error if the
second dimensions of from-array and to-array are not both integral multiples
of the machine word length. For art-1b arrays, the second dimension must
be a multiple of 32. For art-2b arrays, it must be a multiple of 16, and so on.

\

Bit-Vectors
and Bit-Arrays

7.6 An array that contains only bits is called a bit-array, and a vector that
contains only bits is called a bit-vector. The default method for printing a
bit-vector uses a symbolic representation. For example:

#%1010 => #<art-1b-4>

When the global variable *print-array* is set to true, the printed representa-
tion displays the contents of the arrays. For example:

#*1010 => #%1010

For the sake of clarity, the latter notation is used in the examples on this
topic.

7-12

Lisp Reference

Arrays

The following functions are used for manipulating bit-vectors and bit-arrays.

bit bit-array &rest subscripts [c] Function
sbit simple-bit-array &rest subscripts [c] Function

These functions are special accessing functions defined to work only on bit-
vectors and only on simple bit-vectors, respectively.

As with aref, you can use setf with bit or sbit to change the contents of a
bit-array cell permanently.

bit-and bit-arrayl bit-array2 &optional result-bit-array [c] Function
bit-ior bit-arrayl bit-array2 &optional result-bit-array [c] Function
bit-xor bdit-arrayl bit-array2 &optional result-bit-array [c] Function
bit-eqv bit-arrayl bit-array2 &optional result-bit-array [c] Function
bit-nand bit-arrayl bit-array2 &optional result-bit-array [c] Function
bit-nor bit-arrayl bit-array2 &optional result-bit-array [c] Function
bit-andcl bit-arrayl bit-array2 &optional result-bit-array [c] Function
bit-andc2 bit-arrayl bit-array2 &optional result-bit-array [c] Function
bit-orcl bit-arrayl bit-array2 &optional result-bit-array [c] Function
bit-orc2 bit-arrayl bit-array2 &optional result-bit-array [c] Function

These functions perform their respective Boolean operations component by
component on bit-arrays. For each of these functions, bit-arrayl and bit-
array2 must match in size and shape, and all of their components must be
integers. Corresponding components of bit-arrayl and bit-array2 are taken
and passed to one of logand, logior, and so on, to process a component of
the result array.

If resuit-bit-array is t, the resuits are stored in bit-array!. If result-bit-array
is not t but is non-nil, then this array is assumed to be another array, into
which the results are stored. Otherwise, a new array of the same type as
bit-arrayl is created and used for the result. In any case, the value returned
is the array where the results are stored.

In Common Lisp, these functions were introduced for bit-arrays only. On the
Explorer, these functions accept not only bit-arrays but any array whose com-
ponents are integers.

Table 7-2 indicates the result of one component of a bit-array when these
functions are applied to two-argument bit-arrays.

Lisp Reference

7-13

Arrays

Table 7-2 Bitwise Logical Operations on Bit-Arrays

Function Name

Logical Operation

bit-arrayl 0 0 1 1
bit-array2 0 1 0 1
bit-and 0 0 0 1 And
bit-ior 0 1 1 1 Inclusive or
bit-xor 0 1 1 o0 Exclusive or
bit-eqv 1 0 0 1 Exclusive nor
bit-nand 1 1 1 0 Nand
bit-nor 1 0 0 0 Nor
bit-andcl 0 1 0 0O And the complement of bit-arrayl with bit-array2
bit-andc2 0 0 1 o0 And bit-arrayl with complement of bit-array2
bit-orcl 1 1 0 1 Or complement of bit-arrayl with bit-array2
bit-orc2 1 0 1 1 Or bit-arrayl with complement of bit-array2
Consider the following example:
(bit-and #*0110 #%1100) => #%0100
(bit-ior #0110 #*1100) => #*1110
(bit-xor #%0110 #*1100) => #%1010
(bit-andecl #%*0110 #%1100) => #*1000
(bit-orcl #*0110 #%1100) => #%1101
bit-not bit-array &optional result-bit-array [c] Function

This function performs lognot on each component of bit-array to produce a
component of the result. If result-bit-array is non-nil, the result components
are stored in it (result-bit-array must match bit-array in size and shape).
Otherwise, a new array of the same type as bit-array is created and used to
hold the result. The returned value of bit-not is the array where the results
are stored. Consider the following example:

(setq x #*1010)
(setq y ##*0011)

; Copy of x inverted returned.
(bit-not x) => #*0101

; Change y to inverted x.
(bit-not x y) => #0101
¥ => #%0101

X => #*1010

; Invert x.
(bit-not x x) => #*0101
X => #*%0101

Fill Pointers
and Array Leaders

7.7 The following functions manipulate fill pointers and array leaders.

NOTE: Although fill pointers are part of the Common Lisp specification,
array leaders are not. On the Explorer system, however, fill pointers are
implemented using array leaders. To ensure that your programs are portable
Common Lisp, use the Common Lisp functions. :

7-14

Lisp Reference

Arrays

An array leader is like a one-dimensional art-q array attached to the main
array and is used to store a few nonhomogenous pieces of information (see
paragraph 7.1, Array Definitions, for more details on fill pointers and array
leaders). By convention, element 0 of the array leader holds the number of
active array elements and is called the fill pointer. Element 1 is used in con-
junction with the named structure feature described in Section 10, Structures,
to associate a data type with the array.

fill-pointer vector fe] Function

This function returns the fill pointer of vector. An error is signaled if vector
does not have a fill pointer. This function can be used with setf to set the
array’s fill pointer.

vector-push item array [c] Function

If array is not already full, this function first stores item in the cell of array
specified by the fill pointer of array and then increments the fill pointer by 1.
The array argument must be a vector with a fill pointer, and item can be any
object that can be stored in the array. The returned value is the original value
of the fill pointer (that is, before it is incremented). As a safety-locking fea-
ture, the array is referenced and the fill pointer is incremented without inter-
ruption. If array is already full, vector-push returns nil, and the fill pointer
for array is unchanged.

vector-push-extend item array &optional extension [c¢] Function

Like vector-push, this function pushes item onto array. However, if array is
already full, vector-push-extend extends the size of array to accommodate
item. In this case, the optional extension argument, if provided, specifies the
number of cells to be added to array.

On the Explorer system, this value generally defaults to 64 or to one-fourth of
the size of the array, whichever is larger.

vector-pop array [c] Function

This function decreases the fill pointer by 1 and returns the array element
designated by the new value of the fill pointer. The array argument must be a
vector with a fill pointer. The two operations (decrementing and array refer-
encing) proceed without interruption. If there are no more elements to pop
(the fill pointer has already reached 0), an error is signaled.

array-leader array index Function

This function returns the element specified by index from array’s leader. The
array argument should be an array with a leader, and index should be a
fixnum. This function is analogous to aref. It can also be used as a place
argument for setf.

store-array-leader item array index Function

This function stores the value for x in the element specified by index from
array’s leader and returns item. This is analogous to aset. It is preferable to
use setf with array-leader as a generalized variable. The array argument
should be an array with a leader, and index should be an integer. The argu-
ment item can be any object.

Lisp Reference

7-15

AWy

array-leader-length array Function

This function returns the length of array’s leader if it has one, or nil if it does
not.

Modifying Array
Characteristics

7.8 The following function is used to change the dimensions of an already
created array.

adjust-array array new-dimensions &key :initial-element [c] Function

:element-type :initial-contents :fill-pointer :displaced-to
:displaced-index-offset

This function modifies various aspects of an array. The argument array is
modified in its current location if possible; otherwise, a new array is created
and subsequent references are forwarded to it in a transparent way. In either
case, the adjusted array is returned. The arguments have the same names as
arguments to make-array and signify approximately the same thing. How-
ever, note the following individual cases.

~ new-dimensions — You can change the dimensions of the array, but you

cannot change the rank of the array. .

tinitial-element — If this keyword is specified, then all newly created loca-
tions in the array are initialized to this value. If the newly adjusted array
is a displaced array (if the :displaced-to option is used), then :initial-
element has no effect.

:element-type — This keyword is merely an error check; adjust-array can-
not change the array type. If the array type of array is not what
:element-type implies, an error is signaled.

tinitial-contents — If this keyword is specified, then the contents of the
adjusted array are initialized as with make-array. None of the old con-
tents of the array are accessible in the newly adjusted array. As with
make-array, you cannot use both :initial-contents and :initial-element.
If the newly adjusted array is a displaced array (if the :displaced-to op-
tion is used), then :initial-contents has no effect.

:fill-pointer — If this keyword is specified, it is used as the new fill pointer in
the adjusted array. Otherwise, the adjusted array has a leader with the
same contents as in the original array. If data is copied from the old array
to a new adjusted array location, neither the old fill pointer nor a newly
specified fill pointer is used to limit the amount of data copied (array-
total-size is used).

:displaced-to — If this keyword is specified, then the newly adjusted array is
displaced as indicated by the :displaced-to and :displaced-index-offset
keywords. These arguments work the same way as in make-array.

:displaced-index-offset — If this keyword is specified, it works in conjunc-
tion with :displaced-to the same as with make-array. If the old array is
currently displaced, you should note that the default for this keyword is
still 0 and not the offset value of the old array.

According to Common Lisp, an array’s dimensions can be adjusted only if
the :adjustable option is specified to make-array with a non-nil value when
the array is created. The Explorer system does not distinguish adjustable and
nonadjustable arrays; any array can be adjusted. Portable Common Lisp pro-
grams should not call adjust-array on an array that was not created with the
:adjustable option.

7-16

Lisp Reference

Arrays

For example, suppose you set the variable players to the following 5-by-4
array:

#2A((Kirk Gibson outfielder Tigers)
(Darrell Porter catcher Cardinals)
(Donnie Moore pitcher Angels)
(Cesar Cedeno outfielder Cardinals)
(Dave Kingman designated-hitter Athletics))

Then you call adjust-array on players with the following arguments:
(adjust-array players “(3 5) :initial-element “free-agent)

The following array is returned by adjust-array:

#2A((Kirk Gibson outfielder Tigers free-agent)
(Darrell Porter catcher Cardinals free-agent)
(Donnie Moore pitcher Angels free-agent)

If some array aryl has been displaced to another array aryz that is sub-
sequently used as an argument to adjust-array, the displacement is
unaffected. That is, ary1 is still displaced to ary2. However, because ary2
has been adjusted, ary1 is also adjusted relative to the adjustment made to
ary2. For example:

(setf ary2 (make-array °(2 2) :adjustable t))
(setf aryl (make-array 4 :displaced-to ary2))
(setf (aref aryl 0) O (aref aryl 1) 1 (aref aryl 2) 2 (aref aryl 3) 3)

The following table shows the memory locations, indices, and contents of the
two arrays before adjustment:

Idyo

Location ary2 aryl Contents
0 (0,0) () 0
1 (0,1) (1 1
2 (1,0 (2 2
3 (L1 (3) 3

Next, ary2 is adjusted as follows:
(setf ary2 (adjust-array ary2 “(3 3)))

The following table shows the memory locations, indices, and contents of the
two arrays after adjustment:

Location ary2 aryl Contents
0 (0,0) (0) 0

1 0,1) (1) 1

2 0,2) 2) nil

3 (1,0) 3) 2

4 (1,1) 3

S (1,2) nil

6 (2,0) nil

7 2,1) nil

8 2,2) nil

Lisp Reference

7-17

Arrays

Note that the contents of ary1 have changed such that (aref aryi 2) now
returns nil to match the corresponding new element of aryz (0,2) and that
aryl no longer holds the value 3 because none of its elements correspond to
element (1,1) of ary2.

sys:change-indirect-array array type dimension-list displaced-p index-offset Function

This function changes the type, size, or target pointed at for the indirect array
specified by array. The type argument specifies the new array type. The
dimension-list argument specifies the new dimensions of the array. The
displaced-p argument specifies the target that array should point to (an array,
locative, or fixnum). The index-offset argument specifies the new offset in the

new target.
Array Predicates 7.9 The following functions are predicates used to perform various tests on
arrays.
arrayp object [¢] Function

This predicate returns true if object is an array; otherwise, it returns nil.

vectorp object [¢] Function
This predicate returns true if object is an array of rank 1.

simple-vector-p object [c] Function

This predicate returns true if object is an array of rank 1 that has no fill
pointer, that is not displaced, and that can hold any Lisp object as an
element.

bit-vector-p object [c] Function

This predicate returns true if object is an array of rank 1 that allows only 0
and 1 as elements.

simple-bit-vector-p object [c] Function

This predicate returns true if object is an array of rank 1 that has no fill
pointer, that is not displaced, and that allows only 0 and 1 as elements.

array-in-bounds-p array &rest subscripts [c] Function

This predicate returns true if subscripts are legitimate subscripts for array;
otherwise, it returns nil. Note that this predicate does not observe fill
pointers.

adjustable-array-p array [¢] Function

This predicate returns true if array can be adjusted with adjust-array (that
is, if the :adjustable keyword was specified when array was made with make-
array). On the Explorer system, this function always returns true because all
arrays are adjustable.

array-has-fill-pointer-p array [c] Function

This predicate returns true if array has a fill pointer. On the Explorer, sys-
tem, the array specified by array must have a leader, and leader element 0
must be an integer. While array leaders are not standard to Common Lisp, fill
pointers are, and so is this function.

7-18

Lisp Reference

Arrays

array-displaced-p array Function
This predicate returns true if array is any kind of dispiaced array (including
an indirect array). Otherwise, it returns nil. The argument array can be any
kind of array.

array-indirect-p array Function
This predicate returns true if array is an indirect array. Otherwise, it returns
nil. The array argument can be any kind of array.

array-indexed-p array Function
This predicate returns true if array is an indirect array with an index offset.
Otherwise, it returns nil. The array argument can be any kind of array.

array-has-leader-p grray Function
This predicate returns true if array has a leader; otherwise, it returns nil.

Matrices and 7.10 The following functions are used to perform operations on matrices.
Systems of
Linear Equations

math: multiply-matrices matrix-1 matrix-2 &optional matrix-3 Function

This function multiplies matrix-1 by matrix-2. If matrix-3 is supplied,
multiply-matrices stores the results in matrix-3 and returns matrix-3, which
shouid be of exactly the proper dimensions for containing the result of the
muitipiication; otherwise, this funciion creates an array to contain the answer
and returns this array. All matrices must be either one-dimensional or two-
dimensional arrays, and the first dimension of matrix-2 must equal the

second dimension of matrix-1.

math:invert-matrix matrix &optional into-matrix Function

This function computes the inverse of matrix. If into-matrix is supplied, this
function stores the result in into-matrix and returns into-matrix; otherwise,
invert-matrix creates an array to hold the result and returns this array. The
argument matrix must be a two-dimensional square array. The Gauss-Jordan
algorithm with partial pivoting is used. Note that if you want to soive a set of
simultaneous equations, you should not wuse this function; use
math:decompose and math:solve.

math:transpose-matrix matrix &optional into-matrix Function

This function transposes matrix. If into-matrix is supplied, this function
stores the result in into-matrix and returns into-matrix; otherwise, transpose-
matrix creates an array to hold the result and returns this array. The matrix
argument must be a two-dimensional array. The into-matrix argument, if pro-
vided, must be two-dimensional and have exactly the proper dimensions to
hold the transposition of matrix.

math:list-2d-array array Function

This function returns a list of lists containing the values in array, which must
be a two-dimensional array. There is one element for each row; each element
is a list of the values in that row.

Lisp Reference . 7-19

Arrays

math:fill-2d-array array list ' Function

This function fills a two-dimensional array and is thus the complement of
math:list-2d-array. The list argument should be a list of lists, with each ele-
ment being a list corresponding to a row. If list is not long enough,
math:fill-2d-array wraps around, starting over at the beginning. The lists
that are elements of /ist also wrap around if more elements are needed.

math:determinant matrix Function

This function returns the determinant of matrix. The matrix argument must
be a two-dimensional square matrix.

The next two functions are used to solve sets of simultaneous linear equa-
tions. The math:decompose function takes a matrix holding the coefficients
of the equations and produces the LU decomposition; this decomposition can
then be passed to math:solve along with a vector of right-hand sides to get
the values of the variables. If you want to solve the same equations for many
different sets of right-hand side values, you need only call math:decompose
once. In terms of the argument names used in the following descriptions,
these two functions exist to solve the vector equation Ax=b for x. A is a
matrix. The values b and x are vectors.

math:decompose a &optional lu ps Function

This function computes the lu decomposition of matrix a. If the array speci-
fied by lu is non-nil, this function stores the result in Ju and returns /u; other-
wise, decompose.creates an array to hold the result and returns this array.
The lower triangle of lu, with 1s added along the diagonal, is L, and the
upper triangle of /u is U such that the product of L and U is a. Gaussian
elimination with partial pivoting is used. The /u array is permuted by rows
according to the permutation array ps, which is also produced by decompose;
if the argument ps is supplied, the permutation array is stored into it; other-
wise, an array is created to hold it. This function returns two values: the LU
decomposition and the permutation array.

math:solve lu ps b &optional x Function

This function takes the u decomposition and associated permutation array
produced by math:decompose and solves the set of simultaneous equations
defined by the original matrix a given to math:decompose and the right-
hand sides in the vector b. If x is supplied, the solutions are stored into x and
x is returned; otherwise, an array is created to hold the solutions and this
array is returned. The argument » must be a one-dimensional array.

Planes

7.11 The following functions are used for manipulating planes. A plane is an
array whose bounds in each dimension are plus infinity and minus infinity;
thus, all integers are legal as indices. Planes can be of any rank. When you
create a plane, you need not specify the size, just the rank. You also must
specify a default value to which every component of the plane is initialized at
the time of creation. Because you can never change more than a finite num-
ber of components, only a finite region of the plane must be stored. When
you refer to an element for which space has not yet been allocated, you
simply receive the default initialization value.

7-20

Lisp Reference

Arrays

make-plane rank &key :type :default-value :extension Function
:initial-dimensions :initial-origins

This function creates and returns a plane. The rank argument specifies the
number of dimensions. The keyword arguments are as follows.

:type — The array type symbol (for example, art-1b) specifying the type of
array out of which the plane is made.

:default-value — The value to which each plane component is initialized
when the plane is created.

:extension — The amount by which to extend the plane, in any direction,
when plane-store is invoked outside of the currently stored portion.

:initial-dimensions — The value nil or a list of integers whose length is
rank. If this keyword is not nil, each element corresponds to one dimen-
sion, specifying the initial width in that dimension to allocate for the
array.

:initial-origins — The value nil or a list of integers whose length is rank. If
not nil, each element corresponds to one dimension, specifying the
smallest index in that dimension for which storage should initially be
aliocated.

For example:
(make-plane 2 :type “art-4b :default-value 3)

This example creates a two-dimensional plane of type art-4b with default
value 3.

plane-origin plane . Function

This function returns a list of numbers (subscript indices), giving the lowest
coordinate values actually stored in plane.

plane-default plane Function

This function returns the default value to which each plane component was
initialized when plane was created.

plane-extension plane Function

This function returns the amount by which to extend plane, in any direction,
when plane-store is invoked outside of the currently stored portion.

plane-aref plane &rest subscripts Function
plane-ref plane subscripts Function

These two functions return the contents of a specified component of plane.
The subscripts argument specifies the element to be returned. These func-
tions differ only in the way they take their arguments: plane-aref accepts the
subscripts as arguments, while plane-ref accepts a list of subscripts.

plane-aset datum plane &rest subscripts Function
plane-store datum plane subscripts ' Function

These two functions store datum into the specified element of plane, extend-
ing it if necessary, and return datum. The subscripts argument specifies the
component to be accessed. These functions differ only in the way they take
their arguments: plane-aset accepts the subscripts as arguments, while plane-
store accepts a list of subscripts.

Lisp Reference 7-21

STRINGS

String Definitions

8.1 The data type string defines an object which is a one-dimensional array
whose elements are of type string-char. String-chars are defined as character
objects whose bit and font attributes are both set to 0. Therefore, strings are
specialized vectors. Because they are vectors, strings are also of type
sequence. Thus, operations described in Section 9, Sequences, also accept
strings as arguments.

The written syntax for a string is simply a sequence of characters preceded by
and terminated by double quotation marks (”). The Lisp Reader does not
atterpt to map lowercase characters to uppercase while reading a string se-
quence. If you want to include either a double quotation mark or a backslash
(\) character in a string, you must precede the character by a backslash. As
with symbol names, the preceding backslash does not become part of the
name but serves only as a signal to the Lisp Reader to interpret the next
character as part of the sequence. Note that during the reading of strings, the
vertical bar character (|) has no special meaning as it does when symbol
names are read. Consider the following examples:

(length "") => 0

(length "abcdefghijklmnopqrstuvwxyz®) => 26

{length "./\.") => 3 ;Note that the backslash does not become part
;of ihe siring.

On the Explorer system, string-char objects are implemented with eight-bit
code attributes ranging from 0 to 255 and with no font or bit attributes, since
these are defined to be 0. An alternative array type called art-fat-string
allows an additional eight bits to be allocated for each character. These bits
can be used to save font information or represent an extended character code
attribute set. However, the art-fat-string type is not part of the Common
Lisp standard and therefore may not be portable. On the Explorer system,
fat-strings can be used as string arguments to Common Lisp functions. Note
that those functions using char= as a test condition will test for equality in the
font field.

Functions described in this section whose names begin with the string- prefix
accept symbols for their string arguments. For such functions, the print name
of the symbol is used. Because print names cannot be modified, symbols
cannot be used as arguments to functions that attempt to modify their string
arguments. Note that the generic sequence operations do not accept symbols
as sequence arguments.

The characters of a string are stored in order, with the leftmost character
located at index 0 of the vector. You can access the contents of a string in the
same way that you access the contents of an ordinary array:

(setf EXPLORER "Ai") => ALY

(aref EXPLORER 1) => #\i

(setf (aref EXPLORER 1) #\I) => #\1
EXPLORER => "AI"

If you create a string that does have a fill pointer, string operations generally
operate only on the active portion of the vector. Although these array access
functions always operate properly on strings, Common Lisp defines two spe-

Lisp Reference

8-1

cial routines (char and schar) for accessing the elements of a string. In some
implementations, these routines provide an optimized access algorithm. On
the Explorer, however, char and schar are equivalent to aref.

Note that the read function is defined by Common Lisp always to create a
simple vector, that is, one that does not have a fill pointer, is not adjustable,
and is not offset into another array. A string with these qualities is called a
simple string. On the Explorer system, however, all arrays are adjustable.

Print routines can generate output in two different forms. Some routines print
the string as interpreted by the Lisp Reader (that is, with escape characters
removed), and others print the string in a syntax suitable for input to the Lisp
Reader (that is, with escape characters in appropriate places so that the string
can be parsed by the Reader again). Thus, you probably should not include
escape characters in documents such as text reports, but do use escape char-
acter encoding for data that will subsequently be reread by the Lisp Reader.
See the Explorer Input/Output Reference for more details on print routines.

Character Access

8.2 The following functions are associated with accessing individual charac-

in Strings ters in strings.
char string index [c] Function
schar simple-string index [c] Function

These functions are used for accessing individual characters from string.
They return the character at the position specified by the argument index,
which must be a nonnegative integer less than the length of string. Note that
the string specified for char can include a fill pointer but that the string speci-
fied for schar cannot—it must be a simple string (a string without a fill point-
er; see paragraph 7.1, Array Definitions, for a description of fill pointers). As
with all sequences in Common Lisp, indexing for these functions is zero-
origin based. Consider the following examples:

(char "AbCAEfGhIjK1MnOpQrStUvWxyz" 0) => #\A
(schar "AdeEthIjKllanpQrSthWsz" 1) => #\b

The setf macro can be used with char or schar to destructively replace a
character within a string. On the Explorer system, char and schar are syn-
onymous with the Common Lisp version of aref, but on other implementa-
tions, char and schar may be more efficient.

String Equality

8.3 The following functions are associated with determining whether strings
are equal.

When you use the start and end keywords as indices into the string argu-
ments, comparisons start with the character indexed by the value given to
:startl and/or :start2, and continue up to but do not not include the charac-
ter indexed by the value given to :end1 and/or :end2. The default for the
start keyword is 0, and the default for the end keyword is the active length of
the string. Thus, the default case uses all of the data in the string.

Lisp Reference

Strings

string= stringl string2 &key :startl :start2 :endl :end2 [c] Function

This function compares two strings, returning true if they are equal according
to char= and nil if they are not. The character case and font of the argu-
ments’ characters is taken intc account during the comparison. For example:

{string= "XYZA" "xyza") => nil

(string= "xyza" "xyza") => true

(string= "abcd" "“abce") => nil

(string= "coffee" "feed" :startl 3 :end2 3) => true

When equal compares string arguments, it uses string= to make the compari-
son.

string/= stringl string2 &key :startl :end1l :start2 :end2 [c] Function

This function returns a number if the specified portions of string! and string2
are different. The number returned is actually the index, relative to stringl,
of the first difference between the strings. Case is significant in comparing
characters. For example:

{(string/= "abcde" "abcds") => nil
(string/= "abcde" "abdef") => 2
{string/= "abcde" "aBcde") => 1

Lexicographical 8.4 The following functions are associated with the lexicographical com-

Comparison parison of strings, that is, a sorted ordering for strings including distinctions
between uppercase and lowercase characters.

string< stringl string2 &key :startl :endl :start2 :end2 [c] Function

string> stringl string2 &key :startl :end1l :start2 :end2 [c] Function

string<= stringl string2 &key :startl :endl :start2 :end2 [c] Function

string>= stringl string2 &key :startl :endl :start2 :end2 [c] Function

These functions compare all or the specified portions of string! and string2
using lexicographic order. Characters are compared using char< and char=
so that font and alphabetic case are taken into account.

These functions operate in the following way:

1. Identify the string or substring to be operated on for both s¢ringl and
string2.

2. Compare corresponding elements of the strings:

B If each of the corresponding characters is char=, then if the function
call was string<= or string>=, return the index of stringl that is one
past the last character tested. If equal strings were not allowed (that
is, if string< or string> was called), then return nil.

B If any two characters are not char=, then the appropriate inequality
test (char> if string> was called, or char< if string< was called) is
performed. If the result of this test is true, the index of the character
in stringl is returned. If the result of this test is not true, nil is re-
turned.

Note that Common Lisp specifies that all uppercase letters will collate cor-
rectly, that all lowercase letters will collate correctly, and that digits 0 through
9 will collate correctly. However, it does not specify how a mixture of num-
bers, uppercase letters, and lowercase letters will collate. Thus, the letter A

Lisp Reference

8-3

Strings

may be greater than the letter a, or the letter a may be greater than the letter

A. On the Explorer, all uppercase letters are less than their corresponding
lowercase letters.

Consider the following examples:

(string< "AB1CD" "AB2CD") => 2

(string< "AB2CD" "AB1CD") => nil

(string>= "ABCD" "ABCD") => 4

(string>= "THIS" "WHICH, THAT ONE?" tendl 3 :start2 7 :end2 10) => 2

string-compare stringl string2 &optional startl start2 endl end2 Function

This function compares all or the specified portions of two strings using lexi-
cographical order (as defined by char-lessp). The arguments are interpreted
the same way as in string= except that the arguments are positional rather
than associated with keywords. The result is 0 if the strings are equal, a nega-
tive number if stringl is less than string2, or a positive number if stringl is
greater than string2. If the strings are not equal, the absolute value of the
number returned is one greater than the index (in stringl) where the first
difference occurred.

String Comparison
Ignoring Case

8.5 For the following functions associated with lexicographical comparison
of strings, distinctions between uppercase and lowercase characters are
ignored.

string-equal stringl string2 &Kkey :startl :start2 :endl :end2 [c] Function

This function compares two strings, returning true if they are equal according
to char-equal and nil if they are not. Unlike string=, string-equal is not
character case and font sensitive.

The arguments to the keywords :startl and :start2 are the starting indices
into the strings. The arguments to the keywords :end1 and :end2 are the final
indices; the comparison stops just before the final index. The default value
for the start keywords is 0; for the end keywords, the default is nil. If no
argument or nil is provided to the end keywords, then the comparison stops
at the end of the string. If the two strings are of unequal length, string-equal
returns false. Consider the following examples:

(string-equal "Match” "match") => true
(string-equal *match" "Match") => true
(string-equal "miss" "match") => nil
(string-equal "element" "select”

:startl 0 :endl 1 :start2 3 :end2 4) = > true

string-not-equal string! string2 &key :startl :endl :start2 :end2 [¢] Function

This function returns a number if the specified portions of stringl and string2
are different. The number returned is actually the index, relative to stringl,
of the first difference between the strings. Case is significant in comparing
characters. For example:

(string-not-equal "abcde" "abcde") => nil
(string-not-equal "abcde" "ABCDE") => nil
(string-not-equal "abcde” "abdef") => 2

Lisp Reference

’ Strings

string-lessp stringl string2 &key :startl :endl :start2 :end2 [e] Function
string-greaterp stringl string2 &key :startl :endl :start2 :end2 [c] Function
string-not-greaterp stringl string2 &key :startl :end1l :start2 :end2 [c] Function
string-not-lessp stringl string2 &key :startl :endl :start2 :end2 [c] Function

These functions perform the same comparisons as string<, string>, string<=,
and string>=, respectively, but without regard for character case and font.
For example:

(string-lessp "aa" "Ab") => 1
(string-lessp "aa" "Ab”" :endl 1 :end2 1) => nil
(string-not-greaterp "Aa" "Ab" :endl 1 :end2 1) => 1

String Construction
andManipulation

8.6 The following functions are associated with the construction and mani-
pulation of strings.

make-string size &Key :initial-element [c] Function

This function makes a simple string of the length specified by size with each
element initialized to the argument given to :initial-element, which should be
a character. Although Common Lisp does not specify a default for :initial-

" element, on the Explorer system it is initialized with a code attribute of 0 (see

char-code in paragraph 4.4, Character Construction and Attribute Retrieval).

To make character arrays that are more complex than simple strings, use
make-array.

string-trim char-set string [c] Function
string-left-trim char-set string [c] Function
string-right-trim char-set string [c] Function

These functions return a copy of a substring of string with all characters in
char-set trimmed off. With string-trim, the characters are trimmed off the
beginning and end; with string-left-trim, the characters are trimmed off the
beginning; and with string-right-trim, the characters are trimmed off the
end. The char-set argument is a set of characters, which can be represented

as a list of characters, a string of characters, or a single character. For exam-
nle:
ple:

(string-trim #\space " Dr. No ") => "Dr. No*"
(string-trim *ab® “abbafooabb®) => “foo¥
(string-left-trim ‘(#\space) " Dr. No ") => “Dr. No "
(string-left-trim "ab" "abbafooabb") => "fooabb"
(string-right-trim ‘(#\space) " Dr. No ") => " Dr. No"
(string-right-trim "ab" "abbafooabb") => "abbafoo™

Note that the order of characters in the char-set argument is not taken into
account when characters are trimmed from the string argument. If any char-
acter in the beginning or end of string matches one of the characters in char-
set, it is trimmed. Otherwise, a copy of string is returned unchanged.

Lisp Reference

Nondestructive Case 8.6.1 The following functions convert the character case of a string non-
Conversion Functions destructively; that is, the original argument string is not modified, but a con-
verted copy is returned.

string-upcase string &key :start :end [c] Function
string-downcase string &key :start :end [c] Function

The string-upcase function returns string with all uppercase letters, and the
string-downcase function returns string with all lowercase letters. If the
:start or :end argument is specified for either function, only the specified
portion of the string is converted, but in any case, the entire string is
returned.

If no changes are made to string, Common Lisp specifies that the original
argument may be returned, but on the Explorer a copy of string is always
returned. Consider the following examples:

(string-upcase "In the Beginning was the Word")
=> "IN THE BEGINNING WAS THE WORD"
(string-downcase "In the Beginning was the Word"®)
=> "in the beginning was the word"
(string-upcase "In the Beginning was the Word"
:start 7 :end 20)

=> "In the BEGINNING WAS the Word"

string-capitalize string &key :start :end ‘ [c] Function
string-capitalize string &key :start :end :spaces Function

This function returns a string like string in which all, or the specified portion,
is processed by capitalizing each word. For this function, a word is any sub-
sequence of alphanumeric characters delimited by a nonalphanumeric char-
acter or by.the end of the string. This string is capitalized by putting the first
character (if it is a letter) in uppercase and any letters in the rest of the word
in lowercase. If the value for :spaces is true, then hyphens are replaced with
spaces and the subsequent characters are candidates for capitalization.

If no changes are made to string, Common Lisp specifies that the original
argument may be returned, but on the Explorer a copy of string is always
returned. Consider the following examples:

(string-capitalize " john") => " John"

(string-capitalize "puff the mAgiC dRAGon")
=> "Puff The Magic Dragon"

(string-capitalize ‘common-lisp-zeta-lisp)
=> "Common-Lisp-Zeta-Lisp"

(string-capitalize "DON‘T!")
=> "Don‘T!" ; Delimited by the quote.

string-capitalize-words string &optional copy-p spaces Function

Like string-capitalize, this function puts each word in string into lowercase
with an initial uppercase letter. If spaces is true, this function replaces each
hyphen character with a space.

If copy-p is true (the default value), the returned value is a copy of string,
and string itself is unchanged. Otherwise, string itself is returned, with its
contents changed.

8-6 Lisp Reference

Destructive Case
Conversion Functions

Strings

This function is somewhat obsolete. You can use string-capitalize followed
optionally by string-subst-char.

8.6.2 The following functions convert the character case of a string destruc-
tively; that is, the original argument string is modified during conversion.
Symbols are not allowed as arguments with these functions because symbol
print names must not be altered.

nstring-upcase string &Key :start :end [c] Function
nstring-downcase séring &key :start :end [c] Function
nstring-capitalize string &Kkey :start :end [c] Function

These functions perform the same operations as string-upcase, string-
downcase, and string-capitalize, respectively, but alter the string argument.

Other
String Operations

8.7 The following functions that manipulate strings are not part of the
Common Lisp standard because the functionality of these operations is
provided by the sequence functions described in Section 9, Sequences.

nsubstring string start &optional end area Function

This function creates an indirect array to share part of the string argument,
beginning at start and going up to but not including the character specified by
end. The default for end is the end of string. Modifying either the original
string or the new substring modifies the other.

Note that nsubstri

e LAiat 2

A 2 use less storage than substring; an
nsubstring of any length uses at least as much storage as a substring that is
12 characters long. So you should not use this function only for efficiency;
nsubstring is intended for uses in which it is important to have a substring
that, if modified, causes the original string to be modified, too.

When the area argument is provided, it makes the array in the specified area
(see paragraph 25.5, Storage and Allocation Areas).

string-append &rest strings Function

This function copies and concatenates any number of strings into a single
string. With a single argument, string-append simply copies it. If there are no
arguments, the returned value is an empty string. Arrays of any type can be
used as arguments, and the returned value is of the same type as the first
argument. Thus, string-append can be used to copy and concatenate any
type of one-dimensional array. If the first argument is not an array (for exam-
ple, if it is a character), the returned value is a string.

The corresponding Common Lisp function is concatenate.

substring-after-char char string &optional start end area Function

This function returns a copy of the portion of string that follows the next
occurrence of char after the index specified by start. The copied portion
ends at the index specified by end. If char is not found before end, a null
string is returned.

The returned value is consed in area or in default-cons-area unless it is a
null string. The start argument defaults to 0, and end defaults to the length of
string.

Lisp Reference

Strings

For standard Common Lisp, see position and subseq in paragraphs 9.6,
Sequence Searching, and 9.3, Elementary Sequence Functions, respectively.

string-nconc modified-string &rest strings Function

This function is like string-append, except that instead of making a new
string containing the concatenation of its arguments, string-nconc modifies
its first argument. The modified-string argument must have a fill pointer so
that additional characters can be appended to it. Compare this function with
vector-push-extend. The value returned by string-nconc is modified-string
or a new, longer copy of it; in the latter case, the original copy is concate-
nated onto the new copy. Unlike nconc, string-nconc with more than two
arguments modifies only its first argument, not every argument except the
last.

In Common Lisp, use the format function with a stream argument that is a
string with a fill pointer.

string-remove-fonts Jat-string Function

This function returns a copy of Jat-string with each character truncated to
eight bits, that is, changed to font 0 with 0 control bits. If Jat-string is of type
art-string, nothing is changed. Typically, the fat-string argument is of type
art-fat-string.

string-pluralize string v Function

This function returns a string containing the plural of the word in the argu-
ment string. For example:

(string-pluralize "event") => "events"
(string-pluralize "Man") => "Men"
(string-pluralize "ox") x> "oxen"
(string-pluralize "Can®) => "Cans"
(string-pluralize "key") => "keys"
(string-pluralize "TRY") => "TRIES"

For words with multiple plural forms that depend on the meaning, string-
pluralize cannot always return the proper form.

string-select-a-or-an word Function

This function returns a* or "an", depending on the string specified by word,
whichever one appears to be correct to use before a word in English.

string-append-a-or-an word &rest more-words Function

This function returns the result of appending *a" or *an*, whichever is appro-
priate, to the front of the concatenation of word and all the more-words.

alphabetic-case—affects-string-comparison Variable

If this variable is true, then string-equal, string-search, and string-reverse-
search consider case (and font) significant in comparing characters. Nor-
mally, this variable is nil and the string comparison functions ignore
differences in case.

This variable can be bound by user programs around calls to the string com-
parison functions, but do not set it globally because doing so may cause sys-
tem malfunctions.

Lisp Reference

Strings

String Searching

8.8 The following functions are used for string searching and character
substitution.

string-search-set char-set string &optional start end consider-case-p * Function

This function searches through string looking for a character that is in char-
set. The char-set argument is a set of characters that can be represented as a
list of characters, a string of characters, or a single character.

The search begins at the index start, which defaults to 0. The search returns
the index of the first character that is char-equal to any element of char-set,
or nil if none is found. If end is non-nil, it is assumed to be an integer and is
used in place of the length of string to limit the extent of the search.

Case and font are significant in character comparison if consider-case-p is
non-nil. In this instance, char= is used for the comparison rather than char-
equal.

For standard Common Lisp, use position-if.

string-search-not-set char-set string &optional from to consider-case-p Function

This function is like string-search-set but searches for a character that is not
in char-set.

For standard Common Lisp, use position-if-not.

string-reverse-search-set char-set string &optional start end consider-case-p Function

This function searches through string in reverse order for a character that is
char-equal to any element of char-set. The char-set argument is a set of
characters that can be represented as a list of characters, a string of charac-
ters, or a single character.

The search starts from an index that is one less than start and returns the
index of the first suitable character found, or nil if none is found. When start
is nil, the search starts at the end of string. Note that the index returned is
from the beginning of the string, aithough the search starts from the end. The
last (leftmost) character of string examined is the one at index end, which
defaults to 0.

Case and font are significant in character comparison if consider-case-p is
non-nil. In this case, char= is used for the comparison rather than char-
equal.

The standard Common Lisp equivalent of string-reverse-search-set with a
value specified for consider-case-p is as follows:

(position-if #‘(lambda (x) (member x char-set :test #°char=))
(string String-arg)
:start start
:end end
:from-end (not (null start)))

In this example, char-set, to, and from correspond to the parameters of the
same name in the syntax line for string-reverse-search-set. The string-arg
argument corresponds to the string parameter in the syntax line.

Lisp Reference

8-9

Strings

For the Common Lisp equivalent of string-reverse-search-set with con-
sider-case unspecified, use the preceding form with char-equal in place of
char=.

string-reverse-search-not-set char-set string : Function

&optional start end consider-case-p

This function is like string-reverse-search-set but searches for a character
that is not in char-set.

For the Common Lisp equivalent of string-reverse-search-not-set, use the
form specified for string-reverse-search-set with position-if-not in place of
position-if.

string-subst-char new-char old-char fat-string copy-p retain-font-p Function

This function returns a copy of fat-string where all occurrences of old-char
have been replaced by new-char.

Case and font are ignored in comparing old-char with characters of Jat-string.
Normally, the font information of the replaced character is preserved, so an
old-char in font 3 is replaced by a new-char in font 3. (Only art-fat-strings
can retain a font ID other than 0.) If retain-font-p is nil, the font specified in
new-char is stored whenever a character is replaced. The default value for
retain-font-p is t.

If copy-p is nil, fat-string is modified destructively and returned. The default
value for copy-p is t.

For standard Common Lisp, see substitute and nsubstitute in paragraph
9.5, Modifying Sequences.

String Type
Functions

stringp object

8.9 The following functions test whether an object is a string and coerce an
object into a string.

[c] Function

This predicate returns true if object is a string; otherwise, it returns nil. This
predicate also returns true for strings of type art-fat-string. For example:

(stringp "shazam") => true

(setf gomer "shazam") => "shazam”
(stringp gomer) => true

(stringp “gomer) => nil

(stringp "7") => true

(stringp 7) => nil

simple-string-p object [c] Function

string x

This function returns true if object is a string that has no fill pointers and that
is not displaced. According to Common Lisp, simple arrays—and therefore
simple strings—are not adjustable. However, on the Explorer system, all
arrays are adjustable.

[c] Function

This function coerces x into a string. If x is already a string, it is returned
unchanged. If x is a symbol, its print name is returned. If x is a string-char
character, then string returns a string consisting of that single character. If x
is a flavor instance that accepts the :string-for-printing operation (such as a
pathname), the result of that operation is returned.

8-10

Lisp Reference

Strings

NOTE: This function operates differently in Zetalisp mode. See Appendix A
for details.

Do not use string when attempting to make a string from a sequence of
individual characters; use coerce instead. (The coerce function does not con-
vert symbols to strings, nor does string convert sequences to strings.)

Also, do not use string when attempting to convert an object’s printed
representation into a string; use format with a first argument of nil instead.
(You can also use princ-to-string and prinl-to-string for this purpose.)

Lisp Reference

8-11

SEQUENCES

Sequence
Definitions

9.1 A sequence is a Lisp object that contains an ordering of zero or more
elements. Lists, nil, vectors, and therefore strings are all subtypes of type
sequence. For vectors with fill pointers, the sequence is defined to be the set
of active elements. Note that dotted lists are not sequences; the use of dotted
lists as sequence arguments is undefined except where explicitly stated.

The functions that operate on sequences fall into two categories: those that
operate on every occurrence of a single target-item in the sequence, and
those that operate on all items that satisfy a specified predicate. As an exam-
ple of the first category of sequence functions, the following form removes all
occurrences of target-item in some-sequence:

(remove target-item some-sequence)

Many of the members of the second category of sequence functions are vari-
ants of members of the first category with an added -if or -if-not suffix.
Rather than expecting a target item, these functions expect a test-predicate as
a required argument (these functions do not support the :test and :test-not
keywords described later). For example, the following form removes all items
from some-sequence that are numbers:

(remove-if # numberp some-sequencse)

For functions of this second category, the test-predicate should be a function
that operates with only one argument. Whenever a sequence function pro-
duces a new vector or string as its result, it produces a simple vector or simple
string, respectively.

Arguments to

9.2 The following information describes some general characteristics about

Sequence Functions the arguments to sequence functions:

m Optimized sequence arguments — At runtime, sequence functions must
determine the type of sequence being passed as an argument. Depending
on whether this argument is a list or a vector, a specialized routine is
called. Although this runtime flexibility is an important feature, it is also a
needless expense if you know that the arguments will always be vectors
(or lists). If you can guarantee that the type of sequence will always be
the same, then you can use the type specifier the so that the compiler can
optimize the sequence call to the appropriate specialized routine. For
example:

(remove target-item (the list some-list))

B :test, :test-not — The argument to either of these keywords is a function
that determines which elements in the sequence are to be operated on.
This function should operate with only two arguments. The order of the
arguments supplied to the test function is the same as the order of the
arguments to the calling sequence function. In most cases, the first argu-
ment is the target item, and the second is an element from the sequence
(this order is important if your test function is not commutative).

Lisp Reference

9-1

Sequences

For example, the following form removes all occurrences of bad-symbol
from the specified list:

(remove ‘bad-symbol ‘(good-symbol ok-symbol bad-symbol) :test #°eq)

If you had used the :test-not keyword in this example, the result of the
test condition would be logically inverted, thus removing from the list all
items except bad-symbol. You cannot supply both the :test and :test-not
keywords to the same function. If neither is specified, the default test
function is :test eql.

:key — The argument to this keyword is a function that preprocesses
every element of the sequence before the test predicate is applied. The
result of this function is passed as an argument to the test predicate. The
function specified for :key should operate with only one argument. For
example, the following form removes any element whose key is bad-key
from the specified association list:

(remove “bad-key “((good-key . good-datum) (bad-key . bad-datum))
‘test #°eq :key #-°car)

If the value of the :key argument is nil or unspecified, then no
preprocessing is performed.

:from-end — When the argument to this keyword is true, the sequence
argument is conceptually processed in reverse order. That is, the result of
the operation will seem to have been produced by processing the
sequence in reverse order; however, this order of processing is not guar-
anteed. For this reason, any user-specified test functions should be free
of side effects.

:start, :end — The arguments to these keywords are integer indices that
allow you to specify that the operation is to be performed on only a por-
tion of the sequence argument. This portion, or subsequence, begins with
the element specified by the :start argument and ends with the element
whose index is 1 less than the :end argument. If the :start argument is
unspecified or nil, it defaults to 0. If the :end argument is unspecified or
nil, it defaults to the length of the sequence argument.

:startl, :endl, :start2, :end2 — The arguments to these keywords are to
be used the same way as those for the :start and :end keywords but are
provided for those functions that take two sequences as arguments.

icount — The argument to this keyword is an integer that specifies the
maximum number of items from the sequence argument that are to be
processed after satisfying the test condition. (Recall that a true value is
returned when the :test argument is satisfied, and a nil value is returned
when the :test-not argument is satisfied.) Once this number has been
reached, the remainder of the sequence is not tested and is therefore
returned as part of the result. The default value for :count is nil, which
means that every item in the sequence is to be tested.

9-2

Lisp Reference

Sequences

Elenientary
Sequence
Functions

9.3 The following functions are considered elementary operations on
sequences. Most of these functions return newly constructed sequences and
do not destructively modify the sequence argument. However, those func-
tions that do destructively modify their arguments are clearly identified.

elt sequence index [c] Function

This function returns the element at the position indicated by index in
sequence. The index argument must be a nonnegative integer smaller than the
number of elements in sequence. Because zero-origin indexing is used, the
first element in sequence is element number 0.

If sequence is a vector, elt observes its fill pointer if it has one. For retrieving
elements with an index greater than the fill pointer, use aref (see paragraph
7.4, Accessing and Setting Arrays). Consider the following examples:

(setf sqn “((a b) ¢ d e))
(elt sqn 0) => (a b)
(elt sqn 2) =>d

To permanently change the value of a particular element in sequence, use
setf with elt as follows:

;; Using sqn from previous example.
(setf (elt san 0) “(f &)
sqn => ((f g) ¢ d @)

subseq sequence start &optional end [c] Function

copy object

This function returns a subsequence of sequence beginning at start and end-
ing one element before end, if specified. Note that the element specified by
end does not appear in the returned subsequence. If sequence is a list, the
new subsequence does not share cons cells with sequence, so the original
sequence is not destructively altered by subseq. The new subsequence is of
the same type as sequence. For example:

(setf strng "abcdefghij")
(subseq strng 8) => "defghij"
(subseq strng 3 8) => "def"

You can use setf in conjunction with subseq to destructively alter a subse-
quence of sequence as follows (see also replace in paragraph 9.5, Modifying
Sequences):

;:Using strng from previous example.
(setf (subseq strng 3 8) "wxyz")
strng => "abcwxyghij"

In this example, because the string "wxyz" is longer than the subsequence
specified by subseq, this string is truncated to fit the length specified by
subseq. Thus, z does not appear in strng. Had the substituted string been
shorter than that specified by subseq, the balance of characters specified by
subseq would have remained unchanged. In either case, the length of the
original sequence is unchanged.

[c] Function

This function generates a copy of object. Although copy returns a copy ofa
sequence, its implied usage is slightly more general than just copying se-
quences. For instance, if object is a structure, copy calls the the user-defined
copy routine to generate the copy.

Lisp Reference

9-3

Sequences

copy-seq sequence [c] Function

This function returns a copy of the argument sequence. For example:

(setf kong-stats “(35 118 0.268)) => (35 118 0.288)
(setf imposter-stats (copy-seq kong-stats)) => (85 118 0.268)
(eq imposter-stats kong-stats) => nil

length sequence [c] Function

This function returns the length of sequence as an integer. For a vector with a
fill pointer, this is the fill pointer value. Note that for lists, the number of
elements is defined to be the number of cons cells; thus, the last item in a
dotted list is not considered an element. For example:

(length “(a b ¢)) => 3
(length “(a b . ¢)) => 2
(length "abc defg") => 8
(length “("abc" "def")) => 2

make-sequence type size &Key :initial-element [c] Function

This function returns a sequence of the type specified by type (type must be a
type specifier of some kind of vector or list) containing the number of ele-
ments specified by size. If it is supplied, the :initial-element argument speci-
fies the initial value for each element in the new sequence and must be a
valid object for the type of sequence indicated by type. For example:

(setf player-game-stats (make-sequence ‘(vector integer)
19 :initial-element 0))

(elt player-game-stats §) => 0

(elt player-game-stats 15) => 0

If the argument type is list and no :initial-element is provided, then the
returned sequence contains nil for each element. If the argument type is
some kind of vector and :initial-element is not specified, then the elements
of the returned sequence are undefined.

Concatenating,
Mapping, and
Reducing
Sequences

9.4 The following functions perform sequence concatenation, mapping,
and reduction operations.

concatenate result-type &rest sequences [¢] Function

This function returns a sequence that is a copied concatenation of all its
sequence arguments; the order of elements in the new sequence preserves the
order in which they were specified in sequences. The result-type argument
indicates the type of the new sequence and must be a type of list or vector.
Note that the new sequence is a copied concatenation, which means that if
the sequence is a list, new cons cells are created for it, leaving the cons cells
of the original sequences unchanged (unlike append, which uses the cons
cells of its arguments to create a new sequence).

If you specify only one sequence for sequences whose type is already result-
type, then this function merely returns a copy of the sequence. If you only
want a type conversion when one argument is provided, then use the coerce
function. Consider the following examples:

Lisp Reference

Sequences

(concatenate “list “{(1 2) “#(A 3)) => (1 2 A 3)

(concatenate ‘vector ‘(1 2) “#(A 3)) => #(1 2 A 3)

map result-type function sequence &rest more-sequences fcj Function

This function returns a sequence of type result-type whose elements are the
result of applying function to successive elements in sequence and more-
sequences. For example the nth element in the return sequence is as follows:

(function (elt sequence nth)
{elt mors-sequences-1 nth)
(elt more-sequences-2 nth)
L)

The length of the return sequence is equal to the length of the shortest
sequence provided as an argument to map.

If function destructively alters its arguments, it alters the elements of
sequence and more-sequences one at a time, starting with element 0. There-
fore, you do not have to worry about side effects occuring to elements before
they are processed by function.

The argument result-type, which must be a type of list or vector, specifies the
type of the returned result. If you specify result-type as nil, then function is
executed purely for its side effects and the resulting calculations of function
are discarded, no new sequence is produced, and map returns nil.

Compatibility Note: In earlier versions of Lisp, the function map did not
return a value. Due to recent developments in functional programming, the
term map in current literature has come to mean what in the past Lisp users
have called mapcar. Common Lisp follows the current meaning of map, and
what was previously called map is now called mapl in Common Lisp.

Consider the following example:

(setf hero-nemesis-list
(map “list #-list - (Mozart Holmes Batman)
’{Salisri Moriarty

=> ((Mozart Salieri) (Holmes Moriarty) (Batman Penguin)

reduce function sequence &Kkey :start :end :initial-value :from-end [c] Function

This function combines the elements of sequence using function, which
should be a function of two arguments. First, function is applied to the first
two elements of sequence to produce a result. Next, function is applied to this
result and the third element of sequence to produce a second result. Then,
function is applied to this second result and the fourth element of sequence to
produce a third result. This procedure continues until all sequence elements
have been processed, and then the final result is returned.

The :start, :end, and :from-end keywords operate as described in paragraph
9.2, Arguments to Sequence Functions.

If :initial-value is specified, it acts like an extra element of sequence, used in
addition to the actual elements of the specified part of sequence. It comes, in
effect, at the beginning if :from-end is nil, but at the end if :from-end is
true. In any case, the :initial-value element is the first element to be
processed.

Lisp Reference

9.5

Sequences

If there is only one element to be processed (including :initial-value, if sup-
plied), that element is returned and function is not called.

NOTE: If there are no elements (sequence is of length 0 and there is no
tinitial-value), function is called with no arguments and its value is returned.

Consider the following examples:

(reduce #°+ “(1 2 3)) => 8

(reduce ‘cons ‘(1 2 3) :from-end t) => (12 . 3)

(reduce ‘cons ‘(1 2 3) :from-end t :initial-value nil) => (1 2 3)
(reduce “cons ‘(1 2 3)) => ((1 . 2) . 3)

Modifying
Sequences

reverse sequence

nreverse sequence

fill sequence item &Kkey :start :end

9.5 The following functions are specifically designed for modifying
sequences, although not all of them do so destructively. Those functions that
perform destructive modification are clearly identified.

[c] Function
This function returns a new sequence containing the elements of sequence in
reverse order. The new sequence is of the same type and length as sequence.
The reverse function does not modify its argument, unlike the nreverse
function, which is faster but does modify its argument. For example:

(reverse "foo") => "oof"
(reverse “(a b (¢ d) e)) => (e (¢ d) b a)

[c] Function

This function destructively reverses the order of elements in sequence. For
example:

(setf x "abc") => "abe"
(setf y (nreverse x)) => "cba"
(eq x y) => t

[c] Function

This function modifies the contents of sequence by setting all the elements to
item. The keywords :start and :end can be specified to limit the operation to
a contiguous portion of sequence; if this is the case, then the elements before
:start, at :end, and after :end are unchanged. If :end is nil, the filling goes
to the end of sequence.

The value returned by fill is the modified Sequence. For example:

(setf 1 “(abcde))
(£fill 1 “lose :start 2) => (a b lose lose lose)

9-6

Lisp Reference

Sequences

replace into-sequence-1 from-sequence-2 &Key :startl :endl [c] Function

:start2 :end2

This function destructively replaces the specified portion of sequence-1 with a
copy of the specified portion of sequence-2. If the specified portion of
sequence-2 is shorter than what it is to replace, the extra elements in
sequence-1 are not changed. If the specified portion of sequence-2 is larger
than what it is to replace, then the extra elements of sequence-2 are ignored.
The returned value is the modified sequence-1.

The :startl, :start2, :endl, and :end2 keywords operate as described in
paragraph 9.2, Sequence Keywords

If the two sequence arguments are the same (eq) sequence, then the ele-
ments to be copied are copied first into a temporary sequence (if necessary)
to make sure that no element is overwritten before it is copied. The value
returned by replace is the modified into-sequence-1. For example:

(replace “(a b c d) “(x y z) :startl 1)
=> (a Xy 2)

(replace “(a b ¢ d) “(x y 2) :startl 2 :end2 1)
=> (abxd)

(setf str "Elbow")
(replace str str :startl 2 :endl 5 :start2 1 :end2 4)
=> "Ellbo"

str => "Ellbo”

remove item sequence &Kkey :test :test-not :start :end [c] Function

:count :key :from-end

delete item sequence &key :test :test-not :start :end [c] Function

:count :key :from-end

These functions are used for eliminating elements from a sequence argument.
They test the elements of sequence one by one, comparing them with item.
The functions specified by the keywords :test and :test-not are used as the
comparator in the argument testing. When there is a match during the com-
parison testing, the matching element of sequence is eliminated. The function
remove copies structure as necessary to avoid modifying sequence, whereas
delete can either modify the original sequence and return it or make a copy
and return that. (Currently, a list is always modified, and a vector is always
copied.) The :start, :end, :count, :key, and :from-end keywords operate as
described in paragraph 9.2, Arguments to Sequence Functions.

Do not use the delete function for side effects. If you want to delete item
from sequence, then use the following:

(setf sequence (delete item sequence))
Consider the following examples:

(remove “x “(x (&) (x) (a x)))
=> ((a) (x) (a x))

(remove ‘x “((a) (x) (a x)) :key ‘car)
=> ((a) (a x))

Lisp Reference

Sequences

remove-if predicate sequence &key :start :end :count ‘key :from-end [c] Function
delete-if predicate sequence &key :start :end :count :key :from-end [c] Function

These functions return a sequence like Sequence but missing any elements
that satisfy predicate, which is a function of one argument that is applied to
one element of sequence at a time; if predicate returns a true value, that
element is removed. The function remove-if copies structure as necessary to
avoid modifying sequence, while delete-if can either modify the original
sequence and return it or make a copy and return that, whichever is most
efficient. (Currently, a list is always modified, and a vector is always copied.)

The :start, :end, :count, :key, and :end-from keywords operate as
described in paragraph 9.2, Arguments to SequenceFunctions.

Do not use the delete-if function for side effects. If you want to delete iten
from sequence, then use the following:

(setf sequence (delete-if item sequence))
Consider the following examples:

(remove-if #‘plusp ‘(1 -2 3 -4 5 -8) :count 2)
=> (-2 -4 5 -8)

(remove-if #°plusp “(1 -2 3 -4 5 -8) :count 2 :from-end t)
= (1 -2 -4 -8)

(remove-if #°zerop ‘(1 -2 8 -4 5 -8) :key #°1-)
= (-2 3 -4 5 -8)

remove-if-not predicate sequence &key :start :end :count [c] Function

tkey :from-end

delete-if-not predicate sequence &Kkey :start :end :count [c] Function

tkey :from-end

These functions are like remove-if and delete-if, except that the elements
removed are those for which predicate returns nil.

Do not use the delete-if-not function for side effects. If you want to delete
item from sequence, then use the following:

(setf sequence (delete-if-not item sequence))

remove-duplicates sequence &Kkey :test :test-not [¢] Function

:start :end :key :from-end

delete-duplicates sequence &key :test :test-not {c] Function

:start :end :key :from-end

The remove-duplicates function returns a new sequence like sequence,
except that all but one of any set of matching elements are removed. The
function delete-duplicates is the same as remove-duplicates, except that
delete-duplicates may destructively modify and then return sequence itself.

Elements are compared using :test, a function of two arguments. Two ele-
ments match if :test returns a true value. Each element is compared with all
the following elements and is removed if it matches any of them.

If :start or :end is used to restrict processing to a portion of sequence, both
removal and comparison are restricted. An element is removed only if it is
itself within the specified portion and matches another element within the
specified portion.

9-8

Lisp Reference

Sequences

If :from-end is true, then elements are processed (conceptually) from the
end of sequence forward. Each element is compared with all the preceding
ones and is removed if it matches any of them. For a well-behaved compari-
son function, the only difference :from-end makes is which elements of a
matching set are removed. Typically, when processing begins with the start of
the sequence, the last of the matching elements is kept; with :from-end, the
first one is kept.

The :test-not and :key keywords operate as described in paragraph 9.2,
Arguments to Sequence Functions. Consider the following examples:

(remove-duplicates “(1 2 3 2 4 4 5)) => (1382 4 5)

(remove-duplicates “((foo #\c) (bar #\3) (baz #\C))
:test #°char-equal :key #°second)
=> ((bar #\$) (baz #\C))

The remove-duplicates and delete-duplicates functions are helpful when
you want to transform a sequence into a canonical form that can be used to
represent a set. See paragraph 6.7.2, Lists as Sets.

substitute newitem olditem sequence &key :test :test-not [c] Function

:start :end :count :key :from-end

nsubstitute newitem olditem sequence &key :test :test-not [c] Function

:start :end :count :key :from-end

These functions replace olditem with newitem in the argument sequence. The
test predicate is given olditem and an element from sequence. If this predi-
cate returns true {or nil for the :test-not case), olditem is replaced with
newitem. The function nsubstitute modifies the argument sequence while
substitute modifies a copy of sequence. Note that these functions are much
different from the function replace, which does not test arguments.

The :start, :end, tkey, :count, and :from-end keywords operate as
described in paragraph 9.2, Arguments to Sequence Functions.

Do not use the nsubstitute function for side effects. If you want to substitute
newitem for olditem in sequence, then use the following:

(setf sequence (nsubstitute newitem olditem sequence))

Consider the following examples:

(setf sixers-starters ‘(Toney Cheeks Malone Erving Barkley))
(substitute ‘Threatt ‘Toney sixers-starters)
=> (Threatt Cheeks Malone Erving Barkley)

(setf bullets-starters ‘(Johnson Malone Ruland Johnson Roundfield))

(setf bullets-starters (substitute ‘Williams ‘Johnson
bullets-starters :count 1))
=> (Williams Malone Ruland Johnson Roundfield)

When making its new sequence, substitute copies just enough of sequence to
avoid having to destructively modify it. For example, if all the substitutions
occur in the first three elements of a 12-element sequence, then the last nine
elements of both the new sequence and the original sequence share the same
cons cells. Furthermore, on the Explorer if no substitutions occur, the
returned sequence is eq to the original sequence.

Lisp Reference

Sequences

For substituting in a tree structure, use subst and nsubst (paragraph 6.7.1,
Substitution Within a List).

substitute-if newitem predicate sequence &Key :start :end [c] Function

:count :key :from-end

nsubstitute-if newitem predicate sequence &Kkey :start :end [c] Function

:count:key :from-end

The function substitute-if returns a new sequence like sequence but with
newitem substituted for each element of sequence that satisfies predicate. The
sequence argument itself is unchanged. If sequence is a list, only enough of it
is copied to avoid changing sequence.

The nsubstitute-if function replaces elements in sequence itself, modifying it
destructively, and returns sequence.

The :start, :end, :key, :count, and :from-end keywords operate as
described in paragraph 9.2, Arguments to Sequence Functions.

Do not use the nsubstitute-if function for side effects. If you want to substi-
tute newitem for all items that satisfy predicate in sequence, then use the
following:

(setf sequence (nsubstitute-if newitem predicate sequence))
Consider the following examples:

(substitute-if 0 #°plusp “(1 -1 2 -2 3) :from-end t :count 2)
=> (1 -1 0 -2 0)

(substitute-if 7 #70oddp ‘(1 2 4 1 3 4 5))
=> (724774T7) .

(substitute-if 7 #‘evenp “(1 2 4 1 3 4 5) :count 1 :from-end t)
=> (1241838785)

substitute-if-not newitem predicate sequence [¢] Function

&key :start :end :count :key :from-end

nsubstitute-if-not newitem predicate sequence ‘ [c] Function

&key :start :end :count :key :from-end

These functions are like substitute-if and nsubstitute-if, except that the ele-
ments replaced are those for which predicate returns nil.

Do not use the nsubstitute-if-not function for side effects. If you want to
substitute newitem for all items that satisfy predicate in sequence, then use
the following:

(setf sequence (nsubstitute-if-not newitem predicate sequence))
Consider the following examples:

(substitute-if-not 7 #7oddp “(1 2 4 1 3 4 5))
=> (177131725)

(substitute-if-not 7 #‘evenp “(1 2 4 1 3 4 5) :count 1 :from-end t)
=> (1241347

9-10

Lisp Reference

Sequences

Sequence Searching 9.6 The following functions are used for searching sequences for specific

items.

find item sequence &key :test :test-not :start :end :key :from-end [c] Function

This function finds the first element of sequence that satisfies the test when
compared with item and returns that element. The test is specified by either
the :test or :test-not keyword. If no test is successful, then the function
returns nil.

The :start, :end, :key, and :from-end keywords operate as described in
paragraph 9.2, Arguments to Sequence Functions. Consider the following
examples:

(find 1 “(-3 -2 =1 0 1 2 3) :test #°=) => 1
(find 1 (-3 -2 -1 01 2 38) :test #°> :start 3) => 0
(find 1 “(-3 -2 -1 0 1 2 3) :test #’< :start 2 :key #’1+) => 1

On the Explorer system, a second value is returned, which is the index of the
returned element in sequence.

find-if predicate sequence &Kkey :start :end :key :from-end [c] Function
find-if-not predicate sequence &key :start :end :key :from-end [c¢] Function

The function find-if finds the first element of sequence that satisfies the func-
tion specified by predicate and returns that element.

The function find-if-not finds the first element of sequence that does not
Qatnfv the function <nemﬁed hv nrpn'mn!o

The :start, :end, :key, and :from-end keywords operate as described in
paragraph 9.2, Arguments to Sequence Functions. Consider the following
examples:

(find-if #‘plusp “(-3 -2 ~1 01 2 3)) => 1
(find-if #’plusp ‘(-3 -2 -1 0 1 2 3) :from-end t) => 3
(find-if-not #- plusp ‘(-3 -2 -101238)) => -8

. . .
{find-if-nct #’minusp ‘(-3 -2 -1 0 1 2 3) :from-en

On the Explorer system, a second value is returned, which is the index of the
returned element in sequence.

position item sequence &key :test :test-not :start :end :key :from-end [c] Function

This function is like the find function, but instead of returning the element of
sequence that passes the test with item, it returns the index number of this
element.

The :start, :end, :key, and :from-end keywords operate as described in
paragraph 9.2, Arguments to Sequence Functions. Consider the following
examples:

(position #\A "BabA" :test #°char-equal) => 1

(position #\A "BabA" :test #’char=) => 3

Lisp Reference

9-11

Sequences

position-if predicate sequence &key :start :end :key :from-end [c] Function
position-if-not predicate sequence &key :start :end :key :from-end [c] Function

The function position-if is like find-if but returns the index number of the
first element of sequence that satisfies predicate. If the :from-end argument
is true, then the result returned is as if the sequence were processed in
reverse order. If no element is found, the function returns nil.

The function position-if-not searches for an element of sequence for which
predicate returns nil.

The :start, :end, :key, and :from-end keywords operate as described in
paragraph 9.2, Arguments to Sequence Functions. Consider the following
examples:

(position-if #°plusp “(-8 -2 -1 01 2 8)) => 4
(position-if #°plusp ‘(-8 -2 -1 0 1 2 8) :from-end t) => 8
(position-if-not #°plusp (-3 -2 -1 0 1 2 3) :start 5) => nil

(position-if-not #°minusp “(-8 -2 -1 0 1 2 8) :from-end t) => 8

count item sequence &key :test :test-not :start :end :key [c] Function

This function returns the number of elements of sequence that match item.
The test is specified by either the :test or :test-not keyword.

The :start, :end, and :key keywords operate as described in paragraph 9.2,
Arguments to Sequence Functions.

The :from-end keyword argument is accepted without error, but it has no
effect. Consider the following example:

(count 4 (1 2 8 4 5) :test #°>) => 8

count-if predicate sequence &Kkey :start :end :key [c] Function
count-if-not predicate sequence &key :start :end :key [c] Function

The function count-if tests each element of sequence with predicate and
counts how many times predicate returns a true value. This number is
returned.

The function count-if-not is like count-if but returns the number of elements
for which predicate returns nil.

The :start, :end, and :key keywords operate as described in paragraph 9.2,
Arguments to ‘Sequence Functions. -

The :from-end keyword argument is accepted without error, but it has no
effect. Consider the following examples:

(count-if #°symbolp #(a b "foo" 8)) => 2
(count-if-not #-symbolp #(a b "foo")) => 1

9-12

Lisp Reference

Sequences

mismatch sequencel sequence2 &Kkey :test :test-not [c] Function

:startl :endl :start2 :end2 :key :from-end

This function compares successive elements of the specified portion of
sequencel with successive elements of the specified portion of sequence2,
returning nil if they all match, or else the index in sequencel of the first
mismatch. If the specified portions of the sequences differ in length but
match for all elements compared, the value is the index in sequencel of the
place where the shorter sequence portion ends. If the specified portion of
sequencel is the shorter of the two, the returned value equals the length of
this portion of sequencel, so the value returned is not the index of an actual
element, but it still describes the place where comparison stopped.

If the :test keyword is specified, its value should be a function that operates
with two arguments. This function is applied to corresponding elements in
both sequences. If it returns true, the elements are considered to match, and
processing continues. If the :test-not keyword is used, then the function must
return nil for processing to continue; in other words, the function stops when
the first match is found in the sequences. For example:

(mismatch (1 2 3 4 85) (54 3 2 1) :test-not #'=) => 2

The :startl, :start2, :endl, and :end2 keywords operate as described in
paragraph 9.2, Arguments to Sequence Functions.

If the :key keyword is specified, its value should be a function that operates
with one argument. This function is applied to each element of both
sequences. The value returned from this function is passed on as an argument
to the :test function.

If the :from-end argument is true, the comparison proceeds conceptually
from the end of each sequence or portion. The first comparison uses the last
element of each sequence portion; the second comparison uses the next-to-
the-last element of each sequence portion, and so on. When a mismatch is
encountered, the value returned is one greater than the index of the first
mismatch encountered in order of processing (closest to the ends of the
sequences).

Consider the following examples:

(mismatch "Foo" "Fox") => 2

(mismatch "Foo" "FOO" :key #°char-upcase) => nil
(mismatch “(a b) #(a b c)) => 2

(mismatch "Win" "The Winner" :start2 4 :end2 7) => nil
(mismatch "123..128" "123" :from-end nil) => 3
(mismatch "123..128* "123" :from-end t) => §

search for-sequence-1 in-sequence-2 &Kkey :from-end [c] Function

:test :test-not :key :startl :end1 :start2 :end2

This function searches in-sequence-2 (or a portion of it) element by element
for a subsequence that matches for-sequence-l1. The value returned by
search is the index in in-sequence-2 of the beginning of the matching subse-
quence. If no matching subsequence is found, the returned value is nil. The
comparison of each subsequence of in-sequence-2 is made with mismatch,
and the :test, :test-not, and :key arguments are used only to pass parameters
to mismatch.

Lisp Reference

9-13

Normally, subsequences are considered to start with the beginning of the
specified portion of in-sequence-2 and to proceed toward the end. The value
is therefore the index of the earliest subsequence that matches. If :from-end
is true, the subsequences are processed in the reverse order, and the value
returned identifies the last subsequence that matches. In either case, the
value identifies the beginning of the subsequence found.

The :start, :end, and :key keywords operate as described in paragraph 9.2,
Arguments to Sequence Functions.

Consider the following example:

(search “ (#\A #\B) “cabbage" :test #‘char-equal) => 1

Sorting
and Merging

9.7 The following functions are provided for sorting vectors and lists.
These functions use algorithms that always terminate no matter which sorting
predicate is used, provided that the predicate always terminates.

The main sorting functions are not stable; that is, equal items may have their
original order changed. If you want a stable sort, use the stable versions of
these functions; however, note that stable algorithms are slower.

After sorting is completed, the argument (be it a list or a vector) is rearranged
internally so that it is completely ordered. Vectors are ordered by permuta-
tion of the elements; lists are ordered by use of rplacd. When using these
methods of sorting, ensure that you sort a copy of the sequence argument
(obtained by using copy-seq), unless you want to destructively modify the
original sequence. Furthermore, sort invoked on a list should not be used for
side effects; the result is conceptually the same as the argument but in fact is
a different Lisp object.

If you supply a predicate that destructively alters the sequence and this predi-
cate produces an error during execution, you cannot recover the original
sequence unless you can correct the problem from within the error handler.

The sorting package can process cdr-coded lists and sorts them as if they
were vectors.

sort sequence predicate &Kkey :key [c] Function

This function reorders the elements of sequence, according to the function
specified by predicate, and returns a modified sequence. The predicate argu-
ment must be applicable to all the objects in the sequence. This predicate
should accept two arguments and should return a true value only if its first
argument is less (in some appropriate sense) than its second. If :key is speci-
fied, it should be a function of one argument. Each element in sequence is
passed to this function and the returned value is passed to the predicate
function.

9-14

Lisp Reference

Sequences

The following example sorts a list alphabetically by the first atom found at any
level in each element:

(defun get-symb (x)
(if (symbolp x)
X
(get-symb (car x))))

{sort all-stars
#°(lambda (x y)
(string-lessp (get-symb x) (get-symb y))))

Suppose all-stars contains these elements before the sort:

((Julius Erving) (Philadelphia 76ers))
((Moses Malone) (Philadelphia 78ers))
((Larry Bird) (Boston Celtics))
((Sidney Moncrief) (Milwaukee Bucks))
((Isiah Thomas) (Detroit Pistons))
((Dominique Wilkins) (Atlanta Hawks))

Then, after the sort, all-stars contains the following:

((Dominique Wilkins) (Atlanta Hawks))
((Isiah Thomas) {(Detrocit Pistons))
((Julius Erving) (Philadelphia 78ers))
((Larry Bird) (Boston Celtics))
((Moses Malone) (Philadelphia 78ers))
((Sidney Moncrief) (Milwaukee Bucks))

When sort is given a list, it may change the order of the conses of the list
(using rplacd), so it cannot be used merely for side effects; only the returned

1 i e Az
value of sort is the sorted list. Because cons cells are modified, a symbol

bound to the original list may have some of its elements missing when sort
returns. If you need both the original list and the sorted list, you must copy
the original and sort the copy (see copy-list in paragraph 6.4, Functions
Associated With Lists).

If the sequence argument is a vector with a fill pointer, note that, like most

sequence functions, sort considers the active length of the vector to be the
]enoth so only the active pnart of the vector is sorted.

LRy =il aRAVe Rl VL s VOLW

sortcar sequence predicate Function

This function is the same as sort, except that the predicate is applied to the
cars of the elements of sequence instead of directly to the elements of
sequence. For example:

(sortcar “((3 . dog) (1 . cat) (2 . bird)) #-°<)
=> ((1 . cat) (2 . bird) (3 . dog))

Remember that sortcar, when given a list, may change the order of the
conses of the list (using rplacd), so it cannot be used merely for side effects;
only the returned value of sortcar is the sorted list. The original list is
destroyed by sorting.

A portable Common Lisp program should use the following equivalent form:

(sortcar Sequence predicate) <=> (sort sequence predicate :key #°car)

Lisp Reference

9-15

stable-sort sequence predicate [¢] Function

This function is like sort, but if two elements of sequence are equal
(predicate returns nil when applied to them in either order), then they
remain in their original order.

stable-sortcar sequence predicate Function

This function is like sortcar, but if two elements of sequence are equal
(predicate returns nil when applied to their cars in either order), then they
remain in their original order.

A portable Common Lisp program should use the following equivalent form:

(stable-sortcar sequence predicate) <=>
(stable-sort sequence predicate :key #-car)

merge resuli-type sequencel sequence2 predicate &Kkey :key [c] Function

This function returns a single sequence containing the elements of sequencel
and sequence2 interleaved in order according to predicate. The length of the
result sequence is the sum of the lengths of sequence! and sequence2. The
result-type argument specifies the type of sequence to create, as in make-
sequence.

The interleaving is performed by inserting into the returned sequence the
next element of sequencel unless the next element of sequence? is less than
the element of sequencel according to predicate. Therefore, if each of the
argument sequences is sorted, the result of merge is also sorted.

The :key keyword operates as described in paragraph 9.2, Arguments to
Sequence Functions. Consider the following example:

(merge °string "Abd" "Cef" #’char< :key #’char-upcase)
=> "AbCdef"

The following two functions do not work on general sequences. They are
documented here to provide the complete set of sorting functions.

sort-grouped-array array group-size predicate Function

This function considers its array argument to be composed of records of
group-size elements each. These records are considered as units and are
sorted with respect to one another. The predicate is applied to the first ele-
ment of each record, so the first elements act as the keys on which the
records are sorted.

sort-grouped-array-group-key array group-size predicate Function

This function is like sort-grouped-array, except that the predicate is applied
to four arguments: an array, an index into that array, a second array, and an
index into the second array. The predicate function should consider each
index as the subscript of the first element of a record in the corresponding
array and should compare the two records. This function is more general
than sort-grouped-array because the function can access all of the elements
of the relevant records instead of only the first element.

9-16

Lisp Reference

Sequences

Sequence
Predicates

9.8 The following functions are similar tc mapping functions in that some
or all of a sequence’s elements are tested with a specified predicate. These
functions differ in that they are used as predicates, not as mapping functions.

every predicate sequence &rest more-sequences [cj Function

This function returns nil for the first element of sequence that fails the test
specified by predicate. If every element of sequence passes the test, then
every returns a true value. If more-sequences are specified, every uses
predicate to test the first elements of all the sequences, then all the second
elements, and so on until some element fails the test or until the shortest
sequence is exhausted. The test specified for predicate must accept the same
number of arguments as there are sequences specified for every. For
example:

{(every ‘plusp ‘(-4 0 5 8)) => nil
(every ‘plusp ‘(5 6)) => true

In Zetalisp mode, every has a somewhat different meaning; refer to Appen-
dix A for details.

some predicate sequence &rest more-sequences [c] Function

This function returns true if any element of sequence passes the test specified
by predicate. If more-sequences are specified, some uses predicate to test the
first elements of all the sequences, then all the second elements, and so on
until some element passes the test or until the shortest sequence is exhausted.
The test specified for predicate must accept the same number of arguments as

there are sequences specified for some. For examplie:
(some ‘plusp ‘(-4 O 5 8)) => true
(some ‘> (-4 0 5 8) (0 12 12 12)) => nil

(some ‘> “(-4 0 5 6) "(3 8 8 8)) => true
(some “> “(-4 0 5 8) “(3 8)) => nil

In Zetalisp mode, some has a somewhat different meaning; refer to Appen-
dix A for details.

notany predicate sequence &rest more-sequences [c] Function

This function returns nil for the first element of sequence that passes the test
specified by predicate. If none of the elements of sequence pass the test,
notany returns a true value. If more-sequences are specified, notany uses
predicate to test the first elements of all the sequences, then all the second
elements, and so on until some element passes the test or until the shortest
sequence is exhausted. The test specified for predicate must accept the same
number of arguments as there are sequences specified for notany.

notevery predicate sequence &rest more-sequences [c] Function

This function returns a true value for the first element of sequence that fails
the test specified by predicate. If all the elements of sequence pass the test,
then nil is returned. If more-sequences are specified, notevery uses predicate
to test the first elements of all the sequences, then all the second elements,
and so on until some element fails the test or until the shortest sequence is
exhausted. The test specified for predicate must accept the same number of
arguments as there are sequences specified for notevery.

Lisp Reference

9-17

STRUCTURES

Introduction

10.1 The data type structure defines a data-organizing object within the
Lisp environment. The prime benefit of structures is that they allow data
structures to be referenced as abstract objects. Specifically, the implementa-
tion details of the data structure are hidden from the user, while the designer
of the structure still controls the key aspects of storage allocation and naming
conventions for the various support routines.

Note that structures are generally implemented as sequences and can be
manipulated by the generic sequence operations. Additionally, when you
know exactly what kind of sequence (lists or vectors) is being used, you can
also use support functions for the appropriate data types. Generally, this
practice should be avoided in the interest of data abstraction.

The defstruct macro, which defines a structure, requires an unusually large
amount of documentation because it has so many options and support fea-
tures. However, in its simplest form, it is quite easy to use and remember.

The defstruct
Macro

10.2 The explanation of defstruct is divided into three parts. The following
definition explains the calling sequence to the macro itself. After this defini-
tion is a description of each support feature, which are an important part of
the defstruct facility. Finally, the defstruct options and support functions are
explained.

defstruct name [doc-string] {slot-description}* [c] Macro
defstruct (name {option value}*) [doc-string] {slot-description}* [c] Macro

This macro defines a structure according to the specified arguments. None of
these arguments are evaluated. The name argument, which must be a symboi,
specifies the name of the structure. If no options are specified, then the name
argument can appear by itself. Otherwise, the first argument to defstruct is a
list whose first element is name and whose remaining elements are option
specifications. These options are discussed in paragraph 10.4, defstruct
Options.

The doc-string argument, if supplied, is associated with the structure defini-
tion and can be accessed with this form:

(documentation ‘name ‘structure)

The doc-string argument can be updated with this form:

(setf (documentation ‘name ‘structure) "new documentation")
The slot-description argument can be any of the following forms:
B slot-name

B (slot-name [default-init-form {slot-option}*])

B ({(slot-name byte-spec [default-init-form {slot-option}*])}*)

Lisp Reference

10-1

Structures

For each of these forms, slot-name must be a symbol, and all of the slot-
names must be unique for a given structure definition. When structures of this
type are created, they can supply an initial value for each slot. If no initial
value is supplied to the constructor function, then the default-init-form is
evaluated and its returned value is used as the initial value for the slot.
Besides supplying an initial value with the constructor form or using a default-
init-form, there are several other ways of using 2 defstruct options to estab-
lish an initial value for a slot. If no initial value is made available for a slot,
Common Lisp states that the initial value is undefined. On the Explorer
system, slots without a default-init-form are initialized to an appropriate value
depending on the type of the structure. For more details on the implementa-
tion type, see the explanation of the :type defstruct option in paragraph
10.4, defstruct Options. :

The third form for specifying a slot-description listed previously allows you to
define explicitly how slots can be stored in memory using byte specifiers,
which are also called byte-specs. This feature is an Explorer extension and is
not part of the Common Lisp standard. The use of byte specs is explained in
paragraph 10.5, Byte Fields.

The slot-options are a series of alternating keyword names and their associ-
ated values.

W :type — The corresponding value of this keyword must be a valid type
specifier that declares what the slot’s data type will be. On the Explorer
system, this type restriction is not enforced, although the information is
sometimes used to select storage allocation schemes or code that refer-
ences the slot.

B :read-only — If the corresponding value of this keyword is true, then the
associated slot value cannot be updated once the structure is created.
More specifically, the accessor form for this slot is not setfable.

B :documentation — The corresponding value of this keyword should be a
documentation string for the associated slot access function, which is
described later. This option is an Explorer extension and is not part of
the Common Lisp standard.

Consider the following examples:

(defstruct sailboat beam length-over-all sail-area)

(defstruct yacht
(beam 10)
(length-over-all 34 :type (integer 34)))

The definition of sailboat has three slot values: bean, length-over-all, and
sail-area. The yacht definition has two slots: beam, which defaults to 10, and
length-over-all, which defaults to 34 and which should always be a positive
integer not less than 34.

defstruct Features 10.3 Each of the following defstruct features is automatically made avail-
able as a result of evaluating a defstruct form. For the sake of discussion,
consider the following defstruct form:

(defstruct yacht
{(beam 10)
(length-over-all 34 :type (integer 34)))

Lisp Reference

The Constructor

Data Type

Type

Predicate

Accessor
Functions

Copy Function

#S Reader

Macro

Structures

10.3.1 This form defines a structure-creating function whose default name is
make- followed by the structure name; in this case, it is make-yacht. To
initialize any of the slot values, you supply as arguments the slot name (in
keyword format) followed by the desired initial value. Thus, the following
examples create data structures of type yacht:

(setf nice-boat (make-yacht)) ; Take the defaults.

(setf courageous (make-yacht :beam 20
:length-over-all 90))

10.3.2 When the defstruct is defined, the data type yacht is defined, allow-
ing you to use yacht as the ¢ype argument to typep. Thus, if COURAGEOUS is a
symbol whose value is an object of type yacht, you could test for this type
with the following form:

(typep courageous ‘yacht) => true

10.3.3 The defstruct macro also defines its own predicate function whose
default name is the name of the structure with a -p suffix. Thus, the previous
example could be written as follows:

(yacht-p courageous) => true

10.3.4 For each slot name in the structure, an accessor function is defined.
The name of the accessor function is a concatenation of the structure name
and slot name joined by a hyphen. These accessor functions accept one argu-
ment, which should be an object of the indicated structure type. Additionally,
these accessor functions can be used as place arguments to setf in order to
update the slot values. For example:

(yacht-beam courageous) => 20
(setf (yacht-beam courageous) 11) => 11

10.3.5 In addition to the constructor function, a structure copy function is
defined whose default name is copy- followed by the name of the structure.
This copy function expects one argument, which should be an object of the
indicated structure type. A call to this function creates a copy of the struc-
ture, but the values of the copy’s slots are eql to the corresponding slots in
the original structure. The following form shows how to copy a structure:

(setf aus-2 (copy-yacht courageous))

10.3.6 Besides the defstruct macro, the Lisp Reader #S also creates struc-
tures. The syntax is as follows:

#S(structure-type-name {siot-name-keyword value}*)

In this form, structure-type-name is a defined structure, slot-name-keyword is
the name of a slot in that structure (with a colon prefix), and value is an
acceptable value for that slot. By default, the print function uses this same
format to display a structure object. Frequently, not all slot names are present
in the printed representation because the current value is eql to the

Lisp Reference

10-3

Structures

default-init-form. Thus, if the form is read back in, it will be correctly con-
structed. However, if you change your default-init-form in the defstruct and
read the form back in, you get the new default value.

;33 Specify all arguments.
#S(yacht :beam 12 :length-over-all 42)
=> #S(yacht :beam 12 :length-over-all 42)

i++ Accept the default for all arguments.
#8 (yacht) => #S(yacht)

i3+ Note that the explicitly supplied value is not printed because it
+3; matches the default.
#8 (yacht :beam 10) => #S(yacht)

print-structure Variable

When the value of this variable is true (the default), structure objects are
printed in the following format:

#S(structure-name slot-name slot-value ...)
When the value of this variable is nil, structure objects are printed as follows:
#<object-name address>

To provide compatibility with other Lisp dialects, structures are printed
according to the value of *print-array* if *print-structure* is unbound.

defstruct Options

Common Lisp
defstruct Options

10.4 The options to defstruct are supplied in a list as the first argument.
The first element of this list is the name of the structure. The remaining
elements are either keyword options or a sublist whose first element is a key-
word option and whose remaining elements are its arguments. Thus, for a
structure using options, the syntax for the first argument to defstruct is as
follows:

(name {keyword-option|(keyword-option {arg}*)}*)

In this form, name is the name of the structure being created and the
keyword-options are any of those listed in paragraphs 10.4.1, Common Lisp
defstruct Options and 10.4.2, Explorer Extension defstruct Options. Recall
that none of the arguments are evaluated in the defstruct macro expansion.

10.4.1 The following options to the defstruct macro are part of the
Common Lisp standard.

B :conc-name [c]/ — This option is used to supply the name that is concate-
- nated to the beginning of the accessor functions. If unsupplied, this
option defaults to the name of the structure. This option accepts one
argument, which should be a string or a symbol. Note that if you want a
hyphen between the :conc-name value and the slot name, the :conc-
name argument must include this hyphen. If you supply a value of nil for
:conc-name, then the empty string (“”) is implied. In this case, each of
the slot names becomes the name of its accessor function, so you shouid
choose slot names that do not conflict with existing functions. If you sup-
ply a string, you should probably use all uppercase letters; if you use
lowercase letters, then the symbols that are created for the accessor

10-4

Lisp Reference

Structures

functions also have lowercase letters, which is a problem because the
Reader normally maps all lowercase letters to uppercase.

:constructor [¢] — This option allows you to name the constructor func-
tion for the structure. An extra option also allows you to change the
calling sequence of the constructor to a position-dependent scheme
rather than keyword assignment. If the constructor option is not supplied,
the constructor name is a concatenation of make- and the structure
name. If the argument to this option is nil, then no constructor function
is defined. This option has the following syntax:

(:constructor [constr-name [lambda-list] [doc-string]])

In this form, constr-name should be a symbol (on the Explorer system, it
can also be a function spec), and doc-string is the documentation string
to be associated with the constructor function. If the lambda-list argu-
ment is not supplied, then new instances of the structure are created by
calling make-structure-name (or constr-name if specified) with alternat-
ing slot names (in keyword form) and the values to which they should be
set. For example:

{defstruct (yacht (:constructor ‘buy-a-boat))
beam length-over-all)

(buy-a-boat :beam 20 :length-over-all 90)

You can supply more than one constructor option with defstruct, thus
allowing you to have more than one creation function each with its own

. s
+ +tn + 1 + s 3 b e
name and argument list. It is important to nave at ieast one constructor

that uses keywords (that is, no lambda list) so that the #S Reader macro
can create instances of this structure.

If the lambda-list argument is specified, then the constructor function
expects its arguments in a position-dependent order rather than by key-
word assignment. The lambda-list becomes the lambda list for the con-
structor function. You are allowed to use &optional, &rest, and &aux
lambda-list keywords. Each of the parameters or auxiliary variables
declared in the lambda-list should correspond to a slot name. You are
not allowed to specify supplied-p arguments. If you specify a lambda list,
then the :make-array and :times arguments to the :constructor option
cannot be specified (see the :make-array and :times options in para-

‘graph 10.4.2, Explorer Extension defstruct Options). The following list

specifies the precedence of the ways to initialize a slot:
1. Explicitly supplied arguments to the constructor function.

2. Initialization in the constructor lambda list. (This applies only to
&optional and &aux parameters.)

3. Initialization in :include option overrides for slots defined in sub-
structures. (Note that the constructor lambda list for an included
structure is not considered.)

4. Init-forms in the slot descriptor including those in substructures.

5. Use of the default initial value for the structure type, which is imple-
mentation dependent.

Lisp Reference

10-5

Structures

Consider the following example:

(defstruct (yacht (:constructor buy-a-boat
(price &optional
(length-over-all (/ price 1000))
beam
&rest other-properties
&aux (year-model 1887))
"Doc string for the buy-a-boat function."))
price (beam 10) (length-over-all 34) other-properties year-model))

(buy-a-boat 20000) ; Buy a boat for $20,000.
=> #S(yacht :price 20000 :length-over-all 20
:beam 10 :other-properties nil :year-model 1987)

In this example, five slots are initialized. The price is explicitly supplied,
length-over-all is calculated as a function of price by the constructor
init-form, beam is initialized with the slot init-form, other-properties
defaults to nil, and year-model is set to 1987. Note that in this construc-
tor, year-model is not settable by the caller. Using this scheme, you can
perform operations such as recording the creation date of the structure by
setting a slot variable to the returned value of get-universal-time.

Common Lisp refers to this form of constructor as a By Ordered Argu-
ment constructor, or BOA constructor.

:copier [c] — This option allows you to name the copier function for the
structure. If this option is unsupplied, the copier name is a concatenation
of copy- and the name of the structure. The option can accept one argu-
ment, which should be a symbol (on the Explorer system, a string is also
allowed). If the argument to this option is nil, no copier function is
defined.

If the copier function is created, it takes one argument, which should be
a structure of the appropriate type. The returned value is another struc-
ture of the same type whose slot values are eql to those of the original
structure.

:predicate [c] — This option allows you to name the predicate function
for the structure. If this option is not supplied, the predicate name is a
concatenation of the structure name with a -p suffix. This option accepts
one argument, which should be a symbol (on the Explorer a string is
allowed). If the argument to,this option is nil, no predicate function is
defined.

If the predicate function is created, it accepts one argument, which can
be any object. The returned value is true if the object is a structure of the
appropriate type. Note that the use of this option does not affect the data
type name, which is always the name of the structure.

tinclude [c] — This option allows a structure definition to include slot
definitions from another structure, which is called a substructure. Only
one include statement can appear in each defstruct options list. The
syntax for the :include option is as follows:

(:include substructure-name {slot-description}*)

10-6

Lisp Reference

Structures

If present, the :include option must be given at least one argument,
which should be a structure type. An object of the type being defined
combines the locally declared slots with those of the substructure in a
transparent way. For instance, the accessors for slot names defined in the
substructure are a concatenation of the new structure’s :conc-name value
and the slot name of the substructure. Thus, the slot names of the in-
cluded structure must be different from the slot names in the including
structure. The type being defined is considered to be a subtype of the
included structure type. Consequently, an object of this new type can be
used as an argument to the accessor functions of the substructure. Con-
sider the following examples:

(defstruct boat (beam 10) length-over-all)

(defstruct (sailboat (:include boat))
sail-area)

(subtypep °sailboat ‘boat) => true

(setf my-boat (make-sailboat

:length-over-all 34 :sail-area 300))
(sailboat-beam my-boat) => 10
(boat-beam my-boat) => 10

It is possible to override the default values and slot options of the sub-
structure. To do so, simply include a slot descriptor after the name of the
substructure in the :include argument list. For example:

(defstruct (sailboat (:include boat (beam 15))))
(sailboat-beam (make-sailboat)) => 15

The following rules for :include slot descriptor arguments must be
observed:

s The symbol used for the slot name must be defined in the substruc-
ture. The symbol can be a keyword, in which case the symbol name
of the keyword is expected to be a slot name in the substructure.

= A slot that is read-only in the substructure must also be read-only in
the overriding slot description.

w If a type is specified in the overriding slot descriptor, it must be the
same type or a subtype of what is allowed in the substructure.

Otherwise, the overriding is intuitive. For instance, if the overriding form
does not include a default-init-form, the new slot will not have one even
if the substructure does have a default-init-form. Another possibility is to
make the overriding slot definition read-only instead of updatable as the
substructure slot is.

:print-function [c] — This option allows the user to specify a function to
print a structure of this type. The print function should take three argu-
ments: the structure to be printed, the stream on which to print it, and
the current printing depth (which should be compared with *print-level*
and *print-structure* to decide when to stop recursing). The function is
also expected to observe the values of the various printer-control vari-
ables, such as *print-escape* and *print-pretty*.

Lisp Reference

10-7

Structures

This option cannot be used if the :type option is used. However, if nei-
ther :print-function nor :type is used, the default print function prints
the structure in the #S format (see paragraph 10.3, defstruct Features).

:type [c] — This option allows the user to specify the representation of
the structure. Specifically, the slots are stored in the order in which they
are defined using the prescribed sequence implementation. If you use the
itype option, the structure name is not remembered and does not
become a valid type specifier, nor is a predicate function defined unless
you also use the :named option.

A typical use of this option is for generating a mapping of an existing data
structure into a defstruct definition so that the various support functions
can be used with the existing data structure. If this is your intention, then
you should use the :type option because Common Lisp states that other-
wise the representation is implementation dependent. Thus, the mapping
to your data structure might not be portable to other Common Lisp
implementations. Moreover, when you use this option, arguments to ac-
cessor functions are not type checked (except to verify that the sequence
is long enough).

This option takes one argument, which, in Common Lisp, should be one
of the following type specifications:

= vector — This type specifier causes the structure to be implemented
using a general vector.

» (vector element-type) — This type specifier causes the structure to be
implemented as a vector that can be optimized to hold elements of
type element-type.

= list — This type specifier causes the structure to be implemented as a
list.

The Explorer system supports several other type specifications that are
discussed in paragraph 10.4.2, Explorer Extension defstruct Options.
Notice that the preceding Common Lisp specifications are not prefixed
with colons as the extension specifications are.)

If the structure does not use the :named, :include, or :initial-offset
option, then the slots are stored starting in the first element of the
sequence. If a substructure is included, then all of the space for the sub-
structure is allocated first, including its name and initial offset, if
supplied.

‘named [c¢] — This option specifies that the structure name is to be
stored in the structure. This option is used by default unless you select
the :type option. The :named option takes no arguments.

Note that storing the structure name is different from declaring the struc-
ture name as a valid type specifier. This is the functional difference
between the Common Lisp named structure and the various named struc-
ture types discussed later as Explorer extensions to the :type option.

If a structure uses the :named option and the :type option with a
Common Lisp defined argument, then the structure name is stored in the
first element of the sequence, the first slot is stored in the second element
of the sequence, the second slot is stored in the third element of the

10-8

Lisp Reference

Explorer Extension
defstruct Options

Structures

sequence, and so on. If you also use :initial-offset, then the offset is
allocated starting from the first element of the sequence, followed by the
structure name and then the slots. Note that this method of storage
implies that the argument to :type is either list or a vector whose
element-type allows a symbol (the structure name) to be stored as an
element.

:initial-offset fc] — This option tells defstruct to skip over a certain
number of elements in the storage representation before it allocates the
first slot in the structure. This option requires one argument, which must
be a nonnegative integer, to indicate the number of elemenis 0 be
skipped. This option can be used only if the :type option is also used.

10.4.2 The following are the options to the defstruct macro that are
Explorer extensions and are not part of the Common Lisp standard.

itype — Although this option is provided for in Common Lisp, the
Explorer system supports the following additional structure types:

s :named-array
:array — These type specifiers are like the Common Lisp vector
argument with and without the :named option, respectively. How-
ever, :named-array has the following differences:

» The structure name is remembered as a legal data type.

s If :named-array is used with :initial-offset, the name is allo-
cated before the offset.

s :named-typed-array
:named-vector
:typed-array
:vector — The first two of these are the same as the Common Lisp
vector argument with the :named option, and the last two are the
same as the Common Lisp vector argument without the :named
option. When the structure is named, however, it differs as follows:

« The structure name is remembered as a legal data type.

= The name is stored in element 1 of an array leader that is associ-
ated with the array that holds the slots.

= :named-list
:list — These are the same as the Common Lisp list argument with
and without the :named option, respectively. If this structure type is
named and if :initial-offset is used, then the name is allocated
before the offset.

= :list* — This is the same as the Common Lisp list option except that
the last slot of the structure is stored in the cdr of the last cons cell,
thus making the structure a dotted list (unless, of course, the last slot
contains a list).

® :named-array-leader
:array-leader — These types are like :named-typed-array and
:typed-array except that the data is stored in the array leader, with
the first slot (or initial offset, if specified) stored in element 0 of the

Lisp Reference

10-9

Structures

leader and so on. The type and size of the associated array is left to
the user’s discretion. See the :make-array option discussed later.
The :named-array-leader option has the following differences:

= The structure name is remembered as a legal data type.

= If the array is named, then the name is stored in element 1 of the
leader, but element 0 is still used to store the first slot (or initial
offset), and the second element (or offset) is stored in element 2.

:named-fixnum-array

:fixnum-array — These types are like the Common Lisp vector
argument, but the type of the vector is art-fix. The :named-fixnum-
array has the following differences:

= The structure name is remembered as a legal data type.

» If :named-fixnum-array is used with :initial-offset, then the
name is allocated before the offset.

:named-flonum-array

:flonum-array — These types are like the Common Lisp vector
argument, but the type of the vector is art-single-float. The :named-
flonum-array option has the following differences:

* The structure name is remembered as a legal data type.

= If :named-flonum-array is used with :initial-offset, then the
name is allocated before the offset.

itree — This type specifies that the structure is implemented as a
binary tree of cons cells where each leaf holds a slot.

:fixnum — This unusual type implements the structure as a single
fixnum. The structure can have only one slot. This type is useful only
with the byte-field feature (discussed in paragraph 10.5, Byte Fields);
it lets you store several numbers within fields of a fixnum by specify-
ing the field names.

:grouped-array — This type allows you to store several instances of a
structure side-by-side within an array. However, this feature is some-
what limited: it does not support the :include and :named options.

The accessor functions are designed to take an extra argument,
which should be an integer and which is the index indicating where in
the array this instance of the structure starts. This index should nor-
mally be a multiple of the size of the structure. Note that the index is
the first argument to the accessor function and that the structure is
the second argument. This order is used because the structure is
&optional if the :default-pointer option is used.

Note that the size of the structure (for purposes of the :size-macro
option) is the number of elements in one instance of the structure.
The actual length of the array is the product of the size of the struc-
ture and the number of instances. The number of instances to be
created by the constructor is taken from the :times keyword of the
constructor or the argument to the :times option to defstruct.

10-10

Lisp Reference

-

Structures

= :phony-named-vector — This type is the same as the Common Lisp
vector argument with the :named option.

® (type subtype) — This type is equivalent to specifying type as the
argument to :type and subtype as the argument to :subtype. For
example, (:type (:array (mod 16.))) specifies an array of four-bit
bytes.

:times — This option is used for structures of type :grouped-array to
control the number of instances of the structure to be allocated by the
constructor (see the previous description of :grouped-array). Noncall-
able constructors (macros) also accept a keyword argument :times to
override the value given in the defstruct. If :times appears in neither the
invocation of the constructor nor as a defstruct option, the constructor
allocates only one instance of the structure.

:subtype — For structures that are arrays, :subtype allows you to specify
the array type. This option requires one argument, which must be either
an array type name, such as art-4b, or a type specifier restricting the type
of elements stored in the array. In other words, it should be a suitable
value for either the type or the element-type argument to make-array.

If no :subtype option is specified but a :type slot option is given for every
slot, defstruct may deduce a subtype automatically to make the structure
more compact. :

:alterant — This option defines an alterant macro for the structure,
allowing you to write code that modifies several fields in a structure at
once. If this option is not specified or is supplied as an option without
arguments, then the name of the alterant macro is a concatenation of
alter- and the structure name. Note that this provides an alterant macro
even if you have otherwise strictly conformed to a Common Lisp calling
sequence. This option accepts one argument, which can be a symbol or a
string. If the argument is the symbol nil, then no alterant macro is
created.

The benefits of the aiterant macro are that it looks cleaner than using
multiple setfs and that it can sometimes be expanded into more efficient
code. The syntax for the alterant macro is as follows:
(alter-structure-name structure-object {slot-name-keyword form}+)

Thus, to alter a yacht structure, you would use the following form:

(alter-yacht COURAGEOUS :beam 30 :length-over-all 150)

Lisp Reference

10-11

Structures

:default-pointer — Normally, the accessors defined by defstruct expect
to be given exactly one argument. However, if you use the :default-
pointer argument, the argument to each accessor is optional. If the
accessor is used with no argument, it evaluates the default-pointer form
to find a structure and then accesses the appropriate slot of that struc-
ture. For example:

(defstruct (player
(:default-pointer *default-player*))
name
position)

(macroexpand ‘(player-name x)) ==> (aref x 0)
(macroexpand ‘(player-position)) ==> (aref *default-player* 1)

If no argument is given to :default-pointer, the name of the structure is
used.

:make-array — If the structure being defined is implemented as an array,
you can use this option to control those aspects of the array not otherwise
constrained by defstruct. For example, you might want to control the
area in which the array is allocated. Also, if you are creating a structure
of type :array-leader, you almost certainly want to specify the dimen-
sions of the array to be created, and you may want to specify the type of
the array. The :make-array option can only be used if the :type option
was used to specify an Explorer extension type.

The argument to the :make-array option should be a list of alternating
keyword symbols for the make-array function (see Section 7, Arrays)
and forms whose values are the arguments to those keywords. For exam-
ple, the following form requests that the array be allocated in a particular
area:

(defstruct (some-structure (:type :array-leader)

(:callable-constructors nil)
(:make-array (:area ‘permanent-storage-area
:dimensions ‘(4 4))))
slot-namel slot-name2)

The defstruct macro overrides any of the :make-array options that it
needs to. For example, if your structure is of type :array, then defstruct
supplies the size of thé array regardless of what you specify for the
:make-array option. If you use the :initial-element option to
make-array, all the slots are initialized, but defstruct’s own initializa-
tions are performed afterward. If a subtype has been specified for or
deduced by defstruct, this subtype overrides any :type keyword in the
:make-array argument.

Noncallable constructors (macros) for structures implemented as arrays
recognize the keyword argument :make-array. Attributes supplied
therein override any :make-array option attributes supplied in the origi-
nal defstruct form. If an attribute appears in neither the invocation of
the constructor nor in the :make-array option to defstruct, then the
constructor chooses appropriate defaults. The :make-array option can
only be used with the default style of constructor that takes keyword
arguments.

10-12

Lisp Reference

Structures

The following example uses the preceding defstruct definition; particu-
larly note that the :callable-constructors option must be nil:

(make-some-structure :slot-namel some-value

:slot-name2 another-value
:make-array ‘(:dimensions ‘(8 8)
:element-type ‘fixnum
:initial-element (some-computed-number)))

If a structure is of type :array-leader, you should specify the dimensions
of the array. The dimensions of an array are given to make-array as a
position argument rather than as a keyword argument, so there is no way
to specify them in the previously mentioned syntax. To solve this prob-
lem, you can use the keyword :dimensions or the keyword :length
(which both mean the same thing) with a value that is acceptable as
make-array’s first argument.

:size-macro — This option defines a macro whose expansion is an integer
equal to the size of this structure. The exact meaning of the size varies,
but generally you need to know this number when you are going to allo-
cate one of these structures yourself (for example, the length of the array
or list). The argument of the :size-macro option is the name to be used
for the macro. If this option is present without an argument, then the
macro name is produced by concatenating the name of the structure with
the suffix -size. For example:

(defstruct (doodle :conc-name :size-macro)
{doodls-size)) => 2

:size-symbol — This option is like :size-macro but defines a global vari-
able rather than a macro. The size of the structure is the variable’s value.
Using :size-macro is considered clearer than using :size-symbol.

:but-first — The argument to this option is an access function from
another structure, and this structure is not expected to be found outside

i } N vais oam 1586 3RV
of the resulting slot from the access function. Actually, you can use any

one-argument function or a macro that acts like a one-argument func-
tion. Using the :but-first option without an argument produces an error.
The following example shows how to use this option correctly:

(defstruct (head (:type :list)
(:default-pointer person)
(:conc-name nil)
(:but-first person-head))
nose
mouth
ayes)

The accessors expand as follows:

(nose x) ==> (car (person-head x))
(nose) ==> (car (person-head person))

Lisp Reference

10-13

Structures

m :callable-accessors — This option controls whether accessors are actually

functions and therefore callable or whether they are actually macros. If
this option is given an argument of true, is given no argument, or is
unspecified, then the accessors are actually functions. Specifically, they
are

substs, so they have all the efficiency of macros in compiled programs
while still being function objects that can be manipulated (passed to
mapcar and so forth). If the argument is nil, then the accessors are
actually macros.

:callable-constructors — This option controls whether constructors are
actually functions and therefore callable or if they are macros. An argu-
ment of true makes them functions; an argument of nil makes them mac-
ros. The default is t.

:property — For each structure defined by defstruct, a property list is
maintained for the recording of arbitrary properties about that structure.
(That is, there is one property list per structure definition, not one for
each instance of the structure.)

The :property option can be used to give a defstruct an arbitrary prop-
erty. The form (:property property-name value) gives the defstruct a
property-name of value. Neither argument is evaluated. To access the
property list, you must look inside the sys:defstruct-description struc-
ture itself.

:print — This option controls the printed representation of a structure in
a way independent of the Lisp dialect in use. For example:

(defstruct (doodle :named
(:print "#<Doodle -S -S>"
(doodle-dee doodle) (doodle-dum doodle)))
dee
dum)

Of course, this form works only if you use a named type so that the
system can recognize examples of this structure automatically.

The arguments to the :print option are used as arguments to the format
function (except for the stream, of course). They are evaluated in an
environment in which the name symbol of the structure (doodle in this
case) is bound to the instance of the structure to be printed.

This option works by generating a defselect that creates a named struc-
ture handler. Do not use the :print option if you define a named struc-
ture handler yourself because the two named structure handlers will
conflict.

type — In addition to the options previously discussed, you can also use
any currently defined type (any legal argument to the :type option) as an
option. This feature is provided mostly for compatibility with the old ver-
sion of defstruct. This option allows you to simple specify type instead of
(:type type). This option takes no arguments.

10-14

Lisp Reference

Structures

B other — You can also specify any valid defstruct keyword for the type of
structure being defined, provided that this option is specified in the form
(option-name value). This option is treated exactly like (:property
option-name value). That is, the defstruct is given an option-name prop-
erty of value.

This option provides a primitive way for you to define your own options
to defstruct, particularly in connection with user-defined types. Several
of the options previously discussed are actually implemented using this
mechanism, including :times, :subtype, and :make-array.

The valid defstruct keywords for a particular type are in a list in the
defstruct-keywords slot of the defstruct-type-description structure for

type.

Byte Fields

10.5 The byte-field feature of defstruct allows you to specify that several
slots of your structure are to be bytes that should be packed together in a
single integer, 25 bit maximum. Obviously, one advantage of this feature is a
more compact structure object, but under certain circumstances, you can
manipulate these structures faster with an alterant macro.

The form of a packed slot descriptor is a list in which each element is a slot
descriptor that contains a byte specifier (or byte-spec). The syntax for such a
slot descriptor is as follows:

({(slot-name byte-spec [init-form {slot-option}*])}+)

The slot-name, init-form, and slot-option are the same as those explained
previously. The byte-spec defines a field within an integer. The byte function
is the simplest way to define a slot field. However, the form that you supply
for byte-spec is evaluated each time the associated slot-name is accessed.
Thus, you can supply a function for a byte-spec that returns different values
so that the field moves around within the integer. If byte-spec is the symbol
nil, then the corresponding slot-name is defined to refer to the entire integer
being allocated for this packed slot descriptor.

Constructors (both functions and macros) initialize words divided into byte
fields as if they were deposited in the foilowing order:

1. Initializations for the entire word given in the defstruct form
2. Initializations for the byte fields given in the defstruct form
3. Initializations for the entire word given in the constructor invocation

4. [Initializations for the byte fields given in the constructor invocation

Lisp Reference

10-15

Structures

Alterant macros work similarly: the modification for the entire Lisp object is
performed first, followed by modifications to specific byte fields. If any byte
fields being initialized or altered overlap each other, the action of the con-
structor and alterant is unpredictable. Consider the following example:

(defstruct (phone-book-entry (:type list)
(:conc-name nil))
name
location
((area-code (byte 10. 10.) 512)
(exchange (byte 10. 0)))
line-number)

(setf pbe (make-phone-book-entry
:name "TI Customer Support"
:location "Austin, Texas"
:area-code 512.
:exchange 250.
:line-number 8179.))
=> ("TI Customer Support" "Austin, Texas" 524538 8179)

(area-code pbe) => 512

(macroexpand °(area-code pbe))
=> (LDB (BYTE 10. 10.) (NTH 2 PBE))

Note in the expansion that the accessor function evaluates the byte spec. The
compiler optimizes out this evaluation if the byte spec resolves to a constant.

Named Structure
Handlers

10.6 Because structures that define new data types are recognizable, they
can define generic operations and specify how to handle them. A few such
operations are defined by the system and are invoked automatically from
well-defined places. For example, print automatically invokes the :print-self
operation if you give it a named structure. Thus, each structure type can
define how it should print. The standard defined structure operations are
listed in this paragraph. You can also define new structure operations and
invoke them by calling the structure as a function just as you would invoke a
flavor instance.

Operations on a named structure are all handled by a single function, which
is found as the named-structure-invoke property of the structure type sym-
bol. It is permissible for a named structure type to have no handler function.
In such a case, invocation of any operation on the named structure returns
nil, and system routines such as print take default actions.

If a handler function exists, it is given the following arguments:

W operation — The name of the operation being invoked, usually a
keyword.

B structure — The structure being operated on.
W additional arguments — Any other arguments that are passed when the
operation is invoked. The handler function should have a rest parameter

so that it can accept any number of arguments.

The handler function should return nil if it does not recognize the operation.
The following are the structure operations currently in use: :

B :which-operations — This operation should return a list of the names of
the operations handled by the function. Every handler function must

10-16

Lisp Reference

Structures

handle this operation, and every operation that the function handles
should be in this iist.

:print-self — This operation should output the printed representation of
the named structure to a stream. The additional arguments are the
stream to which output is to be sent, the current depth in list structure,
and the current value of *print-escape®. If :print-self is not in the value
returned by :which-operations or if there is no handler function, print
uses the #S syntax.

:describe — This operation is invoked by describe and should print a
description of the structure to *standard-output*. If there is no handler
function or if :describe is not in the structure’s :which-operations list,
describe prints the names and values of the structure’s fields as defined
in the defstruct.

:sxhash — This operation is invoked by the sxhash function and should
return a hash code to use as the value of sxhash for this structure. It is
often useful to call sxhash on some (perhaps all) of the slots of the struc-
ture and combines the results in some way.

This operation takes one additional argument: a flag indicating whether it
is permissible to use the structure’s address in forming the hash code. For
some kinds of structure, there may not be a way to generate a good hash
code except by using the address. If the flag is nil, the system must do the
best it can, even if that means always returning zero.

It is permissible to return nil for :sxhash. In this case, sxhash produces a
hash code in its defauit fashion.

:fasd-fixup — This operation is invoked by fasload on a named structure
that has been created from data in an object file. The purpose of the
operation is to give the structure a chance to clean itself up if, in order to
be valid, it needs to have contents that are not exactly identical to those
that were dumped. For example, readtables push themselves onto the list
sys:*all-readtables* so that they can be found by name.

For most kinds of structures, it is acceptable not to define this operation
at all (so that it returns nil).

Consider the following example:

(defun (:property boat sys:named-structure-invoke)

(operation struct &rest args)
(case operation
{:which-operations ’{:describe))
(:describe
(format (car args)
"This sailboat is -d feet long and -d feet wide."
(boat -length-over-all struct)
(boat-beam struct)))
))

Note that the handler function of a structure type is not inherited by other
named structure types that include it. For example, the previous definition of
a handler for beat has no effect at all on the sailboat structure. If you need
such inheritance, you must use flavors rather than typed structures (see
Section 19, Flavors).

Lisp Reference

10-17

Structures

Structure Functions 10.7 The following functions operate on structures.

describe-defstruct instance &optional name Function

This function takes an instance of a structure named by name and displays a
description of the instance, including the values of each of its slots. The name
argument is optional only if insrance is an instance of a named structure; if it
is unnamed, the function returns an error message if name is not provided.
The reason for this error message is that describe-defstruct must have some
way to know which structure instance is an instance of. If instance is a named
structure, then the structure name is already embedded within instance, and
describe-defstruct knows where to find it; therefore, name is optional only

.in this case.

This function prints out the information of a structure in the particular man-
ner shown in the following example; however, you can define your own func-
tion to print the information of a named structure in a format of your own
choosing. -

Suppose an instance of a structure called player had been constructed as
follows:

(setf sir-slam (make-player :name "Darryl Dawkins"
:team "New Jersey Nets"
:position "C"
:games 1
:points 12
:rebounds 13
rassists 2
:pts-per-game 12.0))

Then, a call to describe-defstruct would produce the following:

(describe-defstruct sir-slam)
;33 The following information is printed to *standard output*.
#S<PLAYER 123456878> is a structure of type PLAYER

name: "Darryl Dawkins"”
team: "New Jersey Nets"
position: "cn

games: 1

points: 12

rebounds: 13

assists 2

pts-per-game: 12.0

#S(player :name "Darryl Dawkins" :team "New Jersey Nets" :position
"C" :games 1 :points 12 :rebounds 13 :assists 2 :pts-per-game
12.0)

named-structure-p x Function

This semipredicate returns nil if x is not a data type specified by defstruct;
otherwise, it returns the named structure symbol of x.

make-array-into-named-structure array Function

With this function, the array argument is marked as a named structure and is
returned as a named structure. This function is used by make-array when
creating named structures. You should not normally call it explicitly.

10-18

Lisp Reference

Structures

sys:named-structure-invoke operation instance &rest args Function

This function invokes a named siructure operation on instance. The
operation argument should be a keyword symbol, and instance should be a
named structure. The handler function of the named structure symbol, found
as the value of the named-structure-invoke property of the symbol, is called
with appropriate arguments.

If the structure type has no named-structure-invoke property, nil is
returned.

The form (send instance operation args ...), where instance is a named
structure, has the same effect by calling named-structure-invoke.

See also the :named-structure-symbol keyword to make-array in Section 7,
Arrays.

The sys:defstruct-
description
Structure

10.8 This paragraph discusses the internal structures used by defstruct
that might be useful to programs that want to interface to defstruct nicely.
For example, if you want to write a program that examines structures and
displays them the way describe and the Inspector do, your program shouid
work by examining these structures. The information in this paragraph is also
necessary for programmers who are thinking of defining their own structure
types.

Whenever the user defines a new structure using defstruct, defstruct creates
an instance of the sys:defstruct-description structure. This structure can be

- £ e Af s+l e
found as the sys:defstruct-description property of the name of the structure;

it contains such useful information as the number of slots in the structure, the
defstruct options, and so on.

The following is a simplified version of the way the sys:defstruct-description
structure is defined. It omits some slots whose meanings are not worth docu-
menting here. (The actual definition is in the SYSTEM package.)

(defstruct (defstruct-definition
(:type list)
(:default-pointer description))
name
size
property-alist
slot-alist)

The name slot contains the symbol supplied by the user to be the name of the
structure, such as yacht Or phone-book-entry.

The size slot contains the total number of slots in an instance of this kind of
structure. This is not the same number as that obtained from the :size-macro
option to defstruct. A named structure, for example, usually uses up an extra
location to store the name of the structure, so the :size-macro option pro-
duces a number one larger than that stored in the defstruct description.

The property-alist slot contains an association list with pairs of the form
(property-name . property) containing properties placed there by the
:property option to defstruct or by property names used as options to
defstruct.

Lisp Reference

10-19

Structures

The slot-alist slot contains an association list of pairs of the form (slot-
name . slot-description). A slot-description is an instance of the defstruct-
slot-description structure. The defstruct-slot-description structure is
defined something like the following (but also contains slots omitted here)
and is also in the SYSTEM package:

(defstruct (defstruct-slot-description

(:type list)
(default-pointer description)

number

PPSS

init-code

type

property-alist

ref-macro-name

documentation)

The number slot contains the number of the location of this slot in an instance
of the structure. Locations are numbered starting with 0 and continuing up to
a number one less than the size of the structure. The actual location of the
slot is determined by the reference-consing function associated with the type
of structure.

The PPss slot contains the byte specifier code for this slot if this slot is a byte
field of its location. If this slot is the entire location, then the ppss slot con-
tains nil.

The init-code slot contains the initialization code supplied for this slot by the
user in the defstruct form. If there is no initialization code for this slot, then
the init-code slot contains canonical objects that can be tested using
(sys:emptyp slot-value).

The ref-macro-name slot contains the symbol that is defined as a macro or a
subst that expands into a reference to this slot (that is, the name of the acces-
sor function).

10-20

Lisp Reference

HASH TABLES

Hash Table 11.1 The data type hash-table defines a Lisp object which facilitates

Definitions accessing data based on an associated Key. Like a property list or an associa-
tion list, a hash table associates keys with values. However, hash tables are
much faster for large collections of data because they do not use searching
operations to find the value associated with a particular key.

The process of hashing computes a hash code, a nonnegative integer for each
key indicating the location of its associated value. Thus, when a particular
key is specified as an argument to a hash table function, the function uses the
hash code to index the appropriate mapped location. A check is made (using
eq, eql, or equal) to verify that the key in the hash table agrees with the key
specified as the argument to the function. If these two keys are the same
according to the predicate being used, the hash table function performs its
operation. If they are not the same, a collision occurs, which means that two
or more keys map to the same location.

The size of a hash table indicates how many entries it can hold. When the
table’s threshold is exceeded, the table’s size is increased and the entries are
rehashed automatically. That is, new hash codes are computed and the
entries are rearranged according to these new codes. This rehashing process
is performed transparently to the caller.

Hash table keys need not be symbols: they can be any kind of Lisp object.
Similarly, hash table values can be any kind of Lisp object. Because eq does -
not work reliably on numbers, they should not be used as keys in an eq hash
table. Use an eql hash table if you want to hash on numeric values.

The functionality provided by hash tables can be included in a flavor defini-
tion. See paragraph 19.11, Hash Table Operations, for details.

Hash Table - 11.2 The following functions perform the basic hash table operations.
Functions
make-hash-table &key :test :size :rehash-size :rehash-threshold [c] Function
make-hash-table &key :test :size :rehash-size :rehash-threshold Function
:number-of-values

This function creates and returns a new hash table. Equality tests other than
eql can be used through the keyword :test.

:test — This argument specifies a function that identifies the kind of hashing
to be performed. This argument must be a symbol or the function for eq,
eql, or equal. The default for this argument is eql.

:size — This argument sets the initial size of the hash table, in entries. The
actual size is rounded up from the size you specify to the next size that is
appropriate for the hashing algorithm. The number of entries you can
actually store in the hash table before it is rehashed is at least the actual
size times the rehash threshold. On the Explorer system, the default for
:size is 64.

Lisp Reference 11-1

damors L wULED

:rehash-size — This argument specifies the amount to increase the size of
the hash table when it becomes full. This can be an integer indicating the
number of entries to add, or it can be a floating-point number indicating
the ratio of the new size to the old size. On the Explorer, the default is
1.3, which causes the table to be made 30 percent bigger each time it has
to grow.

:rehash-threshold — This argument sets a maximum fraction of the entries
that can be in use before the hash table is made larger and rehashed. The
default is 0.7s0. Alternately, you-can specify an integer, which is the
exact number of filled entries at which a rehash should be done. If, when
the rehash happens, the :rehash-threshold argument is set to an integer,
it is increased in the same proportion as the table has grown.

:number-of-values — This argument specifies how many values to associate
with each key. The default for this argument is 1. Note that the third
value returned by gethash is the complete list of keys and values. This
keyword is an Explorer extension.

For example:

(make-hash-table :rehash-size 15 :test #°eq
:size (* number-of-batting-stats 25))

hash-table-p object [c] Function

This predicate evaluates to true if object is a hash table; otherwise, it returns
nil. Note the following equivalence:

(hash-table-p object) <=> (typep object ‘hash-table)

hash-table-rehash-size hash-table [c] Function

hash-table-rehash-threshold hash-table [c] Function

hash-table-size hash-table [c] Function

hash-table-test hash-table [c] Function
These functions return the appropriate information for the specified
hash-table.

gethash key hash-table &optional default [c] Function

This function finds the entry in hash-table for key and returns three values.
The first two values are defined by the Common Lisp standard, while the
third value is an Explorer extension. The first returned value is the (first)
associated entry for key, or nil if there is no entry. The second value is true if
there is an entry for key or nil if there is not.

On the Explorer system, the third value returned is a list whose car is key and
whose cdr is all the values associated with key. This result allows you to re-
trieve values other than the first if the hash table has more than one value per
entry.

While a gethash operation is processing, other processes are locked out from
access to the hash array to prevent conflicting operations; that is, two proc-
esses can safely share a hash table.

11-2

Lisp Reference

Hash Tables

You can also use the setf macro with gethash to add new entries to a hash
table. When entries are replaced this way, the original value is removed from
the hash table before the new value is added, as you would expect. Also,
when setf is used with gethash, the default argument is ignored; however,
this argument can be helpful when gethash is used in conjunction with mac-
ros related to setf, such as incf.

puthash key value hash-table &rest extra-values Function

This function is used to add an entry to hash-table by associating key to
value. If an entry already exists for key, then this function replaces the cur-
rent value of this key with value and returns value. The hash table automati-
cally grows if necessary.

If the hash table associates more than one value with each key, the remaining
values in the entry are taken from extra-values. While a puthash operation. is
processing, other processes are locked out from access to the hash array to
prevent conflicting operations; that is, two processes can safely share a hash
table. Note the following equivalence:

(puthash key value hash-table)
<=> (setf (gethash key hash-table) value)

remhash key hash-table [c] Function

This function removes any entry for key in hash-table. This function returns a
true value if there was an entry or nil if there was not. Because of these
returned values, the function can also be used as a predicate.

maphash function hash-table [c] Function

maphash function hash-table &rest extra-args Function
This function applies function to each occupied entry in hash-table. The
arguments passed to function include the key of the entry, all the values of
the entry, and (as an Explorer extension) any extra-args. The maphash
function always returns nil. If the hash table has more than one value per
key, all the values, in order, are supplied as successive arguments. Consider
the following example:

;; Remove all players with batting averages less than .200 from
;3 player-hash-table and place them in the list minor-leaguers.
(setf minor-leaguers ())
(maphash #‘ (lambda (player-name batting-average)
(when (< batting-average 0.200)
(push player-name minor-leaguers)
(remhash player-name playen-hash-table)))
player-hash-table)

Note that if function modifies the hash table while the maphash is in pro-
gress, the results are unpredictable because this could cause the hash table to
grow and rehash. The only exception is that function can call remhash (or
setf of gethash) on the key entry currently being operated on.

maphash-return function hash-table Function
This function is similar to maphash but accumulates and returns a list of all
the values returned by function when it is applied to entries in the hash table.
clrhash hash-table [c] Function

This function removes all the entries from hash-table. The value returned is
the hash table itself.

Lisp Reference 11-3

Hash Tables

swaphash key value hash-table &rest extra-values Function

This function specifies new value(s) for key as does puthash but returns val-
ues describing the previous state of the entry, exactly like gethash. In par-
ticular, swaphash returns the previous (replaced) associated value as the first
value (nil if there was none), a true value as the second value if the entry
existed previously, and, as the third value, a list whose car is key and whose
cdr is the list of previous values.

modify-hash key hash-table-function &rest additional-args Function

This function passes the value associated with key in the table to kash-table-
function; whatever hash-table-function returns is stored in the table as the
new value for key. Thus, the hash association for key is both examined and
updated according to hash-table-function.

The arguments passed to hash-table-function are key, the value associated
with key, a flag (which is true if key is actually found in the hash table), and
the additional-args that you specify.

If the hash table stores more than one value per key, only the first value is
examined and updated.

hash-table-count hash-table [c] Function

This function returns the number of filled entries in hash-table. If the hash
table has just been made or cleared, this function returns 0.

sxhash object [c¢] Function
sxhash object &optional ok-to-use-address-p Function

This function is a primitive that performs the hashing process. The sxhash
function computes the hash code of object, and this hash code is returned as
a positive fixnum. With sxhash, (equal x y) always implies
(= (sxhash x) (sxhash y)).

This function computes the hash code in such a way that common permuta-
tions of an argument, such as interchanging two elements of a list or changing
one character of a string, always change the hash code.

11-4 Lisp Reference

TYPE SPECIFIERS

Type Specifier
Definitions

12.1 Type specifiers are Lisp objects that identify data types. These
specifiers come in two different forms: a symbol or a type-specifier list.

In practice, type specifiers have two fairly distinct uses: declaration and dis-
crimination. Declaration allows the programmer to specify to the system the
intended use of a particular variable or array. The purpose of this information
is to allow the system to optimize generated code, although in most cases
Common Lisp does not require that the optimization be performed. For
example, informing make-array that an array’s element type should be
integer does not mean that the array being created can only contain integers.
It merely tells the system to use the most efficient implementation scheme to
hold objects of type integer.

On the other hand, discrimination means that a program wants to determine
if a particular data object is or is not of a specific data type. The simplest
example of discrimination is the use of the typep function.

Using Type
Specifier Lists

12.2 The type specification for a vector is a list of the form (vector type
length). Thus, the following example defines a data type of vectors with 150
elements of type short-float:

(vector short-float 150)

You can leave one of these restrictive elements unspecified by using an
asterisk:

(vector short-float *)

In this case, the vector can be of any length. Furthermore, the type specifier
(vector short-float 150) is a subtype of (vector short-float *) because
the latter type specifier includes all vectors whose elements are of type short-
float, both those with exactly 150 elements and those with more or fewer
elements.

For convenience, when a type specifier ends with one or more asterisks, you
can omit the trailing asterisks. For instance, the type specifier (vector short-
float *) can be abbreviated as (vector short-float). If, as a result of omit-
ting the asterisks, the type specifier list is reduced to a type name, then that
type can be represented by that type name. For instance, (vector * *) is
equivalent to vector. Table 12-1 (in paragraph 12.5, Type Specifier Symbols)
includes all the standard Common Lisp type specifiers that have a single sym-
bol name as an abbreviation.

Lisp Reference

oy

[S
)

[oery

Type Specifiers

Basic

Type Specifiers

12.3 Most data types are defined in the section of this manual which
describes that type of object. For example, number types are described in
Section 3, Numbers. The following type specifiers are of a more general
nature (they did not fit in any particular section), or are of a more complex
nature such that the specification may have restrictive arguments. When any
of the arguments are explicitly supplied, then the type specifier should be
represented as a list. .

atom Type Specifier
This type specifier represents all objects that are not conses.

common Type Specifier
This type specifier represents all objects whose types are specified by
Common Lisp. For example, objects whose types are defined in Table 12-2
are not Common Lisp objects. (Table 12-2 appears in paragraph 12.5, Type
Specifier Symbols.)

keyword Type Specifier
This type specifier represents all objects that are symbols in the KEYWORD
package.

nil Type Specifier
This type specifier is defined to represent no Lisp object. No objects of this
type exist.

t Type Specifier
This type specifier is defined to represent all Lisp objects.

array element-type dimensions [c] Type Specifier

This type specifier represents all objects that are arrays whose rank and
dimensions fit the restrictions described by dimensions and whose type re-
stricts possible elements to match element-type.

The array elements specification has nothing to do with the actual values of
the elements. Rather, it is a question of whether the array’s own type permits
exactly such elements as would match element-type. If anything can be stored
in the array that does not match element-type, then the array is not of this
type. If anything that matches element-type cannot be stored in the array,
then the array is not of this type.

If element-type is t, the type to which all objects belong, then the array must
be one in which any object can be stored: art-q or art-q-list.

If element-type is * (meaning no restriction), any type of array is then
allowed, whether it restricts its elements or not.

The dimensions argument can be *, an integer, or a list. If it is *, the rank
and dimensions are not restricted. If dimensions is an integer, it specifies the
rank of the array. In any case, any array of that rank matches, and the
dimensions are not restricted.

12-2

Lisp Reference

Type Specifiers

If dimensions is a list, its length specifies the rank, and each element of
dimensions restricts one dimension. If the element is an integer, that dimen-
sion’s length must equal that integer. If the eiement is *, that dimension’s
length is not restricted.

For example, the following form is a type specifier for four-dimensional ar-
rays containing rational numbers:

(array rational 4)

The following is a type specifier for a 2-by-20 array containing any kind of
objects:

(array * (2 20))

The following is a type specifier for a two-dimensional array with seven
columns and any number of rows; the array elements are integers:

(array integer (* 7))

simple-array element-type dimensions [c] Type Specifier

This type specifier is equivalent to array except that the array is also a simple
array. (See Section 7, Arrays.)

vector element-type size [c] Type Specifier

This type specifier represents all objects that are vectors of element-type and

of size. The element-type argument operates as described in the array type

specxﬂer mentioned prevxously The size argument must be an 1nteger or *; if
ey e - smbanl PRy b mmecemddem o PR ih | I

it is an integer, the array’s total length, not countin g the fill pointer, must
equal size.

For example, the following form specifies a vector of 12 characters:

(vector character 12)

The following specifies a vector of any length that can hold any kind of
objects:

(vector t *)

Note that the two previous examples describe mutually exclusive subsets.
That is, although (vector t *) can hold characters, it is not specifically made
to optimal storage of characters, as is (vector character 12). In other words,
(vector character 12) is not a subtype of (vector t *).

bit-vector size [c] Type Specifier
simple-vector size [c] Type Specifier
simple-bit-vector size [c] Type Specifier
string size [c] Type Specifier
simple-string size [c] Type Specifier

These type specifiers require the vector to match type bit-vector, simple-
vector, and so on. The size argument works as in vector.

complex type-spec [c] Type Specifier

This type specifier represents all complex numbers whose components match
type-spec. Thus, (complex rational) represents the type of complex numbers
with rational components.

Lisp Reference 12-3

Type Specifiers

function (parameter-type-spec) return-value-type [c] Type Specifier

This type specifier identifies a function that accepts arguments in accordance
with parameter-type-spec and whose returned value is of type return-value-
type. If the function type specified returns multiple values, you can specify
them by using the values type specifier.

Note that this type specifier can only be used in a declare or proclaim form
and is not suitable for discrimination purposes, such as an argument to typep.

A parameter-type-spec is a mapping between the data type of a particular
argument and the respective parameter within a function’s lambda list. Gen-
erally speaking, a parameter-type-spec looks like a lambda list, and the
implied mapping is fairly intuitive. The main difference between a parameter-
type-spec and a lambda list is that in a lambda list you specify a parameter
name, whereas in the parameter-type-spec you provide a type specification
for the corresponding positional argument. In a parameter-type-spec, key-
words are identified by the list (keyword-name keyword-type-spec). You can
use the lambda-list keywords &optional, &rest, &key, and &allow-other-keys
to facilitate this mapping. For example, the following describes a function
that accepts an array as its first argument, an optional second argument of
any type, and, if present, numbers for the remaining arguments. The
returned value is a single value of any type.

(function (array &optional t &rest number) t)

The following type specification describes functions with two positional argu-
ments: the first can be any object, and the second must be a sequence. A
function of this type can accept any keyword arguments, but if the :test key-
word is supplied, its value must be a function. The returned value of this
function is a single object whose type is not restricted.

(function (t sequence &key (:test function) &allow-other-keys) t)

When you describe a function type specification that has keywords, all key-
words must be accounted for. If you do not explicitly list them by name, then
you must use &allow-other-keys to indicate that other keywords are expected.

values {value-type}* ' [c] Type Specifier

This type specifier is used to identify the type and number of returned values
in two cases: when it is used in the return-value-type argument to the
function type specifier, and when it is used in the special form the. Note that
this type specifier has the same name as the function that produces multiple
values, but naturally their purpose is different.

12-4 Lisp Reference

Type Specifiers

The value-type arguments are a sequence of type specifiers, each of which
corresponds to the data type of the multiple values being returned. For
instance, the function fioor returns two values, both of which are integers.
Thus, you could write the following code:

(the (values integer integer) ; The type specification
(floor some-dividend some-divisor)) ; The form that produces
; multiple values

The advantage in using this kind of form is that the compiler can now attempt

certain optimizations based on this extra information.

The lambda-list keywords &optional, &rest, and &key have a special meaning
in the context of the values type specifier. They can be used in combination
just as they are in a defun lambda list, but to keep the explanations simple,
the use of each one is described separately here.

The use of the &optional keyword is fairly straightforward. Its syntax is as
follows:

(values &optional data-type)

This specifier means that a function can return no more than one value. A
practical use of this feature might be the following:

(the (values integer &optional integer) ; The type specification
(or some-integer-or-nil ; The case of one returned value
(floor some-dividend some-divisor)))

; The case of two returned values

T £ ela
41l i

- o O las
€ Us€ O1 € XKEy

(values &key (a-keyword-name keyword-value-type))

This specifier means that the function could return two values: the first
should be :a-keyword-name, and the second should be a data value whose
type is keyword-value-type. In practice, this kind of specifier is used to
declare that a function is to return multiple values that will subsequently be
used as a keyword-and-values pair in a multiple-value-call form. For
example:

(multiple-value-call ‘make-string
size-of-string
(the (values &key (initial-element character))
(determine-initial-element)))

The function determine-initial-element can return no values so that the
initial-element argument to make-string defaults. Alternatively, determine-
initial-element could return two values, the first of which should be
initial-element and the second of which should be an object of type
character.

The use of the &rest keyword is also obscure. Its syntax is as follows:

{(values &rest data-type)

This specifier means that all returned values that are covered by the &rest
argument must be of type data-type. Note that if you use &rest and &Kkey
together, then the data-type should allow for the keyword symbol and value
that the &key specification allows.

Lisp Reference

12-5

Type Specifiers

satisfies type-predicate [c] Type Specifier

This type specifier specifies a type according to all values for which the func-
tional argument type-predicate returns true. The argument type-predicate,
which is passed only one argument, is the specifying predicate. (This argu-
ment can only be a function name; lambda expressions are not allowed
because of scoping problems.) For example:

(setq x #C(4.03s1 5.31s8-2))
(typep x ‘(satisfies numberp)) => true

In this example, x is set to a complex number and then used as an argument
to the typep function along with the predicate-specified type specifier. In this
case, numberp is applied to x, and because x is a number, true is returned.
The following example shows how a new data type can be defined using a
predicate-specified type specifier:

(deftype even-count ()
‘(and (satisfies integerp) (satisfies plusp) (satisfies evenp)))

This example defines a new data type called even-count, which is the set of
all objects that are positive even integers. (The deftype macro is described in
paragraph 12.6, Defining New Type Specifiers.)

CAUTION: The predicate used in a predicate-defined type specifier
should not cause side effects when invoked because it is not easy to pre-
dict exactly when this predicate will be called.

integer low high [c] Type Specifier

This type specifier represents all integers between low and high. When low is
simply integer n, n is an inclusive lower limit. When low is an integer con-
tained in a list (n), n is an exclusive lower limit. When low is *, there is no
lower limit.

The high argument has the same possibilities. If high is omitted, it defaults to
*. If both low and high are omitted, then this form is equivalent to just inte-
ger. Consider the following examples: :

(integer 0) ; Specifies a nonnegative integer.
(integer -4 3) ; Specifies an integer between -4 and 3, inclusive.

mod high [c] Type Specifier
This type specifier represents all nonnegative integers less than high. The high
argument should be an integer. The forms (mod), (mod *), and mod are al-
lowed but are equivalent to (integer 0).

signed-byte size [c] Type Specifier

This type specifier represents integers that fit into a byte of size bits, where
one bit is the sign bit. The type specifier (signed-byte 4) is equivalent to
(integer -8 7). Also, (signed-byte *) and signed-byte are equivalent to
integer.

12-6

Lisp Reference

Type Specifiers

unsigned-byte size [c] Type Specifier

This type specifier represents nonnegative integers that fit into a byte of size
bits, with no sign bit. The type specifier (unsigned-byte 3) is equivalent to
(integer 0 7). AlsO, (unsigned-byte *) and unsigned-byte are equivalent to
(integer 0).

rational low high [c] Type Specifier
float low high ‘ [c] Type Specifier
short-float low high [c] Type Specifier
single-float low high [c] Type Specifier
double-float low high [c] Type Specifier
long-float low high [c] Type Specifier

These type specifiers indicate the restrictive bounds low and high for the
types rational, float, short-float, and so on. The bounds work on these
types the same way they do on integer.

Type Specifiers 12.4 The following type specifiers define a data type consisting of a combi-
That Combine nation of other data types or objects.
member {object}* fc] Type Specifier

This type specifier represents all objects that are eql to any one of objects.
Thus, the following is matched only by t, nil, or x:

(member t nil x)

not type-spec [c] Type Specifier
This type specifier represents all objects that are not of the type specifier
type-spec. i

and {type-spec}* [c] Type Specifier

This type specifier represents individually all objects that are of all the type
specifiers indicated in type-specs. Thus, the following is the type of odd
integers: :

(and integer (satisfies oddp))

Testing is done from left to right, so the oddp function is not cailed uniess the
object is first determined to be an integer.
or {type-spec}* [c] Type Specifier

This type specifier represents individually all objects that are of at least one of
the type specifiers indicated in type-specs. Thus, the following includes all
numbers and all arrays:

(or number array)

Lisp Reference . 12-7

Type Specifiers

Type Specifier
Symbols

Table 12-1

Table 12-2

12.5 The Explorer system provides Common Lisp type specifier symbols
and Explorer extension type specifier symbols. Note that any data type cre-
ated by defstruct, deftype, or defflavor is also available as a legitimate type
specifier symbol.

Table 12-1 shows the Common Lisp type specifier symbols available on the
Explorer system. :

Common Lisp Symbolic Type Specifiers

array integer signed-byte
atom keyword simple-array
bignum list simple-bit-vector
bit long-float simple-string
bit-vector nil simple-vector
character null single-float
common number standard-char
compiled-function package stream
complex pathname string

cons random-state string-char
double-float ratio symbol
fixnum rational t

float readtable unsigned-byte
function sequence vector
hash-table short-float

Table 12-2 shows the type specifier symbols that are Explorer extensions.

Explorer Extension Symbolic Type Specifiers

closure microcode-function stack-group
instance real structure
locative

Defining New
Type Specifiers

deftype type-name lambda-list {declaration|doc-string}* body

12.6 The deftype macro allows you to define your own type specifiers.

[¢] Macro

This macro defines type-name as a type specifier by providing code to expand
it into another type specifier—a kind of type specifier macro.

When a list starting with type-name is encountered as a type specifier, the
lambda-list is matched against the cdr of the type specifier just as the lambda
list of an ordinary macro defined by defmacro is matched against the cdr of a
macro call form. Then the body is executed and should return a new type
specifier to be used instead of the original form.

If there are optional arguments in lambda-list for which no default value is
specified, they receive * as a default value.

12-8

Lisp Reference

Type Specifiers

If type-name by itself is encountered as a type specifier, it is treated as if it
were (type-name); that is, the lambda-list is matched against no arguments,
and the body is executed. In this case, each argument in the lambda-Iist
receives its default value, and there is an error if they are not all optional.

If doc-string is supplied, it is associated with type-name and can be accessed
using the documentation function with a doc-type of “type.

Consider the following deftype examples:

;s This type definition could have been used to define the type “vector”.
{deftype vector (slement-type sizs)
*(array ,element-type (,size)))

(deftype odd-natural-number-below (n) .
“(and (integer O (,n)) (satisfies oddp)))

(typep 5 “(odd-natural-number-below 8)) => true

(typep 7 ‘(odd-natural-number-below 8)) => nil

Type Identification
and Execution
Control

12.7 The following functions and macros are associated with identifying
an object’s data type. Some of the forms are also associated with controi of
execution based on type identification.

type-specifier-p object [c¢] Function

type-of object

This function returns true if object is a valid type specifier; otherwise, it
returns nil. Note that types defined by deftype, defstruct, and defflavor are
accepted as valid type specifiers.

[c] Function

In the Common Lisp definition, the value returned by this function depends
on the implementation in effect. On the Explorer system, this function
returns a symbol corresponding to the machine data type of object, such as
fixnum, bignum, symbol, array, cons, and so on. If the argument is a
flavor instance, then the name of the flavor is returned. If the argument is a
structure instance of a named struciure, then the name of the structure is
returned.

This function is intended to be used only for debugging information purposes.
To test whether an object is of a certain type, use typep or typecase.

typecase key-form {{type-spec {forms}*)}* [c] Macro

This macro evaluates key-form and then executes one (or none) of the
clauses according to the type of the value, which will be called key-form-
value.

Each clause starts with a type-spec, not evaluated, which should be accept-
able as the second argument to typep. (In fact, the typecase macro expands
to a call to typep with type-spec as the second argument.) The rest of the
clauses are composed of forms. The type-spec of each clause is matched
sequentially against the type of key-form-value. If there is a match, the rest of
that clause is executed and the value(s) of the last form is returned from the
typecase form. If no clause matches, the typecase form returns nil.

Lisp Reference

12-9

Type Specifiers

Note that t, the type specifier that matches all objects, is useful in the last

clause of a typecase. The otherwise form can be used instead of t with the
same meaning. For example:

(typecase foo
(symbol (symbol-name foo))
(string foo)
(list (apply ‘string-append (mapcar “hack f00)))
((integer 0) (hack-positive-integer fo00))
(t (princ-to-string fo00)))

etypecase key-form {(type-spec {forms}*)}* [c] Macro

This macro is like typecase, except that an uncorrectable error is signaled if
every clause fails. Neither the t nor the otherwise clause is allowed.

ctypecase place {(type-spec {forms}*)}* ' . [c] Macro

This macro is like etypecase, except that the error is correctable. The first
argument is called place because it must be a place form acceptable to setf. If
the user proceeds from the error, a new value is read and stored into place;
then the clauses are tested again using the new value. Errors repeat until a
value is specified that makes some clause succeed.

Type Predicates 12.8 The following predicates use type specifiers to determine if an argu-
ment is of a particular type.

typep object type-spec [c] Function

This predicate is used to test whether objects are of a specified type. This
predicate returns true if the type of object matches type-spec.

Because some types are subtypes of others, an object is not necessarily of one
type only. The type-spec argument can be any type specifier other than the
function type specifier or the values type specifier.

Calling typep with only its object argument is an obsolete way of specifying
(type-of object). Consider the following examples:

(typep 5 ‘number) => true

(typep 5 “(integer 0 7)) => true
(typep 5 ‘bit) => nil

(typep 5 “array) => nil

(typep "foo" ‘array) => true
(typep nil ‘list) => true

(typep “(a b) ‘list) => true
(typep “lose “list) => nil

If the value of type-spec is known at compile time, the compiler optimizes
typep so that it does not decode the argument at run time.

subtypep typel type2 [c] Function

This predicate returns two values to indicate whether typel is a subtype of
type2. If the first value is true, then typel is definitely a subtype of type2. If
the first value is nil, then typel may not be a subtype of type2.

The system cannot always tell whether typel is a subtype of rype2. When
satisfies type specifiers are in use, this question is mathematically
undecidable. Because of this, it has not been considered worthwhile to make
the system able to answer obscure subtype questions even when it is the oreti-
cally possible. If the answer is not known, subtypep returns nil.

12-10 Lisp Reference

commonp object

Type Specifiers

Therefore, nil could mean that type! is certainly not a subtype of type2, or it
could mean that there is no way to tell whether it is a subtype. The subtypep
function returns a second value to distinguish these two situations: the second
value is true if the first value returned by subtypep is definite, whereas the
second value is nil if the system does not know the answer. For example:

(subtypep ‘cons “list) => true true

(subtypep ‘null “list) => true true

(subtypep “(satisfies oddp) ‘(satisfies evenp)) => nil nil
(subtypep ‘rational ‘number) => true true

(subtypep ‘number ‘rational) => nil true

(subtypep ‘list ‘number) => nil true

(subtypep “symbol -list) => nil true

[c] Function

This predicate returns true if object is of a type that Common Lisp defines
operations on; otherwise, it returns nil.

Type Conversion

12.9 The coerce function allows you to convert an object to a different data
type.

coerce object type-spec [¢] Function

This function converts object to an equivalent object that matches type-spec.
Common Lisp specifies exactly which types can be converted to which other
types. In general, anything that would lose information, such as turning a
floating-point number into an integer, is not allowed as a coercion. The fol-
lowing is a complete list of the types you can coerce to:

complex, (complex type) — Real numbers can be coerced to complex
numbers. If a rational is coerced to type complex, the result equals the
rational and is not complex at all. This is because complex numbers with
rational components are canonicalized to real numbers if possible. How-
ever, if a rational is coerced to (complex single-float) then an actual
complex number does result. It is permissible, of course, to coerce a

complex number to a complex type. The real and imaginary parts are
coerced individually to type-spec if type-spec is specified. For example:
(coerce 75 ‘complex) => 75

(coerce 7.5s0 ‘complex) => #C(7.5s0 0.0s0)

(coerce 7.5s0 ‘(complex short-float)) => #C(7.5s0 0.0s0)

short-float, single-float — Rational numbers can be coerced to floating-
point numbers, and any kind of floating-point number can be coerced to
any other floating-point format. For example:

(coerce 78 “short-float) => 78.0s0
(coerce 77/78 “short-float) => 0.98718s0

(coerce 78 “single-float) => 78.0

float — Rational numbers are converted to single-float numbers.

Lisp Reference

12-11

Type Specifiers

B character — Strings of length 1 can be coerced to characters. Symbols
whose print names have length 1 can be coerced also. Integers can be
coerced to characters. For example:

(coerce 78 ‘character) => #\N
(coerce "78" ‘character) => ERROR
(coerce "8" ‘character) => #\8

® list — Any vector can be coerced to type list. The resulting list has the
same elements as the vector. For example:

(coerce #(x y 2) “list) => (x y 2)

B vector, array or any restricted array type — Any sequence (a list or a
vector) can be coerced to any array sequence or vector type. If you spec-
ify a type of array that restricts the type of elements it can hold, you can
actually produce an array that can hold other kinds of objects. For exam-
ple, the Explorer system does not provide anything of type (array
symbol), but if you specify this type, you get an array that at least can
hold symbols (but can hold other things). If an element of the original
sequence does not fit in the new array, an error is signaled.

B t — Any object can be coerced to type t. Actually, no change occurs to
the object because all objects are of type t.

If the value of type-spec is known at compile time, the compiler optimizes
coerce so that it does not decode the argument at run time.

12-12

Lisp Reference

DECLARATIONS

Declaration
Definitions

13.1 Declarations are used to supply extra information to the Lisp environ-
ment about your Lisp code. For the most part (except with the special decla-
ration), the information you supply does not affect your algorithm. For prac-
tical purposes, use declarations to document your algorithm to make it more
clear, more precise, or more efficient.

Some declarations advise the compiler that certain assumptions can be made,
thus allowing particular kinds of optimizations. Other kinds of declarations
describe diagnostic conditions that can be used to supply error checking. The
Common Lisp standard states that the use of declarative information is com-
pletely optional and implementation dependent. It can also be assumed that
any Common Lisp program that runs correctly with declarations will also run
correctly without those declarations or, alternatively, on a Common Lisp sys-
tem that does not support those declarations.

The only exception to this rule is a group of special variable declarations.
Because they do make a difference to the algorithm, every Common Lisp
implementation must adhere to these declarations.

Nonpervasive declaration specifiers pertain only to the variable bindings that
are established at the beginning of the declaring form. If a nested form lexi-
cally shadows the original variable binding, the original declaration does not
affect the new binding. For example:

(defun test (x)
(declare (type string x)) .
(let ((x 1))
<))

The let form inside of the defun establishes a new variable binding of x,
which is not affected by the earlier type declaration.

Pervasive declaration specifiers are those that have no effect on variable
bindings. Rather, the information that they convey pertains to the entire

declaring form, including nested forms. For example:
LY

(defun test (x)
(declare (inline my-function))
(my-function)
(let ()
(my-function)))

In this example, the inline declaration pertains to both calls to my-function.

Some forms that use declarations contain peripheral code that is not part of
the form’s body, for example, initialization forms of a lambda list and the
return forms of iteration constructs like do. Nonpervasive declarations do not
affect the peripheral pieces of code, whereas pervasive declarations do. For
example:

(defun foo (x &optional (y num))
(declare (type float num))
o))

Lisp Reference

[y

w
1

[y

eciaraguons

The reference to num in the lambda list of the first line of this example is not
affected by the declaration in the second line because the declaration
specifier is nonpervasive.

Consider the following example:

(defun foo (x &optional (y *spvar*))
(declare (special *spvarx*))
ee)

In this example, the reference to *spvar* in the lambda list is affected by the
declaration in the second line because the special declaration pervasively
affects all references to *spvar* within foo.

Declaration Forms

13.2 Declarations can be either global or local. To make global declarations
that affect the entire Lisp environment, use the proclaim function. To make
local declarations, insert a declare statement into one of the special forms
listed in the declare description, or use the locally macro.

declare {decl-spec}* [c] Special Form

This special form is used to make local declarations within certain forms.
Local declarations must appear in specified locations within the forms that
use them (normally they appear immediately before the body of the form).
The specified locations are noted in each functional description of the forms
that use them.

The forms that are permitted to use declarations are lambda expressions and
any of the following:

define-setf-method dolist locally

defmacro dotimes macrolet

defmethod do-all-symbols multiple-value-bind
defsetf do-external-symbols prog

deftype do-symbols prog*

defun flet with-input-from-string
defun-method labels with-open-file

do let with-open-stream

do* let* with-output-to-string

These forms explicitly check for the declare form and process this declara-
tion form prior to carrying out their intended purpose. Specifically, the evalu-
ator processes a declare statement only at the lexical top level of these forms,
and it is an error to evaluate a declaration at any other time.

A macro call is permitted to expand into a declaration, provided that the
macro call is located where a declaration is supposed to be located. However,
it is not permitted for a macro call to be supplied as a decl-spec argument
because these arguments are not evaluated.

13-2

Lisp Reference

Declarations

The values specified for the decl-spec argument must each be a declaration
specifier in the form of a list. The list’s first element (which is a symbol)
specifies the type of the declaration to be made by declare. These specifiers
either affect variable bindings (nonpervasive declaration specifiers) or do not
(pervasive declaration specifiers). However, special is actually both pervasive
and nonpervasive; it affects how referencing within the declaring form works
(it specifies to use the dynamic binding), and it affects variable bindings (it
makes dynamic bindings).

locally {decl-spec}* {body-form}* [c] Macro
This macro executes body-form within the context of the decl-spec. This

macro is synonymous with the progn special form, except that in Common
Lisp, progn does not allow declarations at the beginning.

Another difference with progn is that at the top level in a file being compiled,
progn causes each of its elements to be treated as if at the top level, but
locally does not receive this treatment. The locally form is simply evaluated
when the compiled code is loaded.

proclaim decl-spec ¢] Function
J

This function makes the decl-spec globally effective. The proclaim function
is a replacement for the obsolete traditional use of declare at the top level.
(In Common Lisp, declare is used only for local declarations.) The proclaim
function is different from declare in that it is a function, and its arguments
are evaluated when it is called. Therefore, the arguments to proclaim must
be quoted if it is a declaration specifier, and if it is a variable or a call form,
the returned value must be a declaration specifier. For example, at the top
level you write the following:

(proclaim ‘ (special X))

Top-level special declarations are not the recommended way to make a vari-
able special. Use defvar, defconstant, or defparameter so that you can give
the variable documentation. Proclaiming the variable special should be done
only when the variable is used in a file other than the one that defines it. This
convention allows the file to be compiled without having to load the defining
file first.

special {variable}* Special Form

This special form declares each variable to be globally special. When you are
declaring globally special variables, it is usually better to use defparameter or
defvar. This special form is considered obsolete and is equivalent to the
following:

(proclaim ’(special variables))

unspecial {variable}* Special Form

This special form removes any special declarations of the variables. This spe-
cial form is obsolete and is equivalent to the following:

(proclaim ’(unspecial variables))

Lisp Reference

Declarations

Declaration

Specifiers

special {var}+

13.3 The following are the Common Lisp declaration specifiers.

[c] Declaration Specifier

For this declaration specifier, the var variables are treated as special variables
within the scope of the declaration. The special declaration specifier is non-
pervasive with regard to binding and pervasive with regard to referencing.
Thus, if you bind a variable in a form and declare it special, a nested form
can create another binding to shadow the first variable such that the new
variable is not special (unless explicitly declared to be so in the nested form).
For example:

(let ((x "special value"))
(declare (special x))
(list (symbol-value ’x)
(let ((x "local value"))
(symbol-value °x))))
=> ("special value* "special-value")

Recall that the symbol-value function returns the current special value. Note
that the special binding of x was not affected by the local declaration within
the let.

On the other hand, the pervasive aspect of the special declaration specifies
that references to a variable appearing in this declaration will access the cur-
rent dynamic binding (not the current local binding). For example:

(setq x "special value")
(let ((x "local value"))
(list x
(locally
(declare (special x))

x)))
=> ("local value" "special value")

Note that if x had been proclaimed globally special by a defvar or
defparameter, the let would have created a special binding, in which case
the returned value would have been ("local value" "local value"). This
difference occurs because proclaim has a pervasive effect on binding
whereas declare does not.

For this reason, it is important to keep track of those symbols that are glob-
ally special. It is conventional to begin and end special variable names with
asterisks, though no part of the system requires it.

unspecial {var}+ Declaration Specifier

The var variables are treated as lexical variables within the scope of the dec-
laration, even if they are globally special.

type type-specifier {var}+ [c] Declaration Specifier

This declaration specifier is a nonpervasive declaration that affects variable
bindings only. The variables must take on values of type type-specifier.

This specifier can be abbreviated by writing (¢type-specifier varl var2)
provided that type-specifier is one of the system-defined type specifier sym-
bols listed in paragraph 12.5, Type Specifier Symbols.

13-4

Lisp Reference

Declarations

It is an error for two function type declarations to refer to the same lexical
binding. In practice, this means that it is an error if a variable name appears
in more than one type declaration per set of declarations. For example, in a
let form a variable should have its type declared only once even if one type is
a subtype of the other. You can proclaim the type of a global variable as often
as you want, in which case the most recent proclamation supersedes all
others.

ftype function-type {function-name}+ [c] Declaration Specifier

This declaration pertains only to the bindings of the function-names and
specifies that the values they take on are only of type function-type. The
function-type argument can be any valid function type specifier. The ftype
declaration observes lexical scoping rules; thus, for any lexically apparent
local definition for function-name, the ftype declaration pertains to the local
definition and not to the global definition. For example:

(flet ((first (x) (car x))))
(declare (ftype (function (cons) t) first))
o)

Note that in this example the form (function (cons) t) is a type specifier;
try not to confuse it with the declaration form of the same name.

It is an error for two function type declarations to refer to the same lexical
binding. In practice, this means that it is an error if a variable name appears
in more than one function type declaration per set of declarations. You can
proclaim the type of a global function as often as you want, in which case the
most recent proclamation supersedes all others.

function name arglist return-value-type [c] Declaration Specifier

This declaration specifier provides the same functionality as ftype except that
only one function name is allowed in this syntax. As with ftype, multiple
return values can be expressed using the values type specifier. This declara-
tion is sometimes preferred because it is simpler to write and because it
resembles the defun syntax. For example:

(flet ((first (x) (car x))))
(declare (function first (cons) (values t)))
.2)

This form is equivalent to the example for ftype above.

inline {function-symbol-spec}+ [c] Declaration Specifier
inline {function-spec}+ Declaration Specifier

With this specifier, the function specs are open-coded or optimized by the
compiler within the scope of the declaration, but the compiler can choose to
disregard this declaration. This pervasive declaration specifier can be used to
increase the execution speed of a function, but the trade-off is that code size
usually increases and an open-coded function’s ability to be debugged is
decreased because the inline function cannot be traced. On the Explorer,
inline declarations are implemented in most cases, provided that an inter-
preted definition of the function is available.

Lisp Reference

13-5

Declarations

The inline declaration observes lexical scoping rules; therefore, if a lexically
apparent definition of one of the function specs is defined (via flet or
labels), then the inline declaration applies to that local defirition and not to
the global definition. If a new nested lexical definition for the named function
is defined, as with an flet, it is not treated as inline unless the flet declares it
to be so.

It is an error for an inline and notinline declaration to refer to the same
function spec within the same set of declarations. You can proclaim a global
function inline or notinline as often as you want; the most recent proclama-
tion supersedes all others.

Note that the only function spec that Common Lisp defines is a symbol name.
The use of function specs other than symbols is allowed only as an Explorer
extension.

Also note that functions defined by defsubst or defstruct are expanded
inline by default and that an inline declaration has no effect on macros or on
special forms that the compiler handles specially.

notinline {function-symbol-spec}+ [c] Declaration Specifier
notinline {function-spec}+ Declaration Specifier

With this declaration, the function specs are not open-coded or optimized by
the compiler within the scope of the declaration. The compiler cannot choose
to disregard this declaration.

A notinline declaration causes calls to the function to be compiled into code
that actually calls the function as written, preventing the compiler from doing
any of the following:

B Expanding the function inline in response to an outer-level inline
declaration

B Expanding inline a function defined by defsubst or defstruct
B Optimizing the call to use a different function or a modified argument list
W Using an equivalent machine instruction instead of a function call

A notinline declaration has no effect on macros or on most of the predefined
special forms.

Note that the rules of lexical scoping are followed: if one of the functions
within this declaration has a local definition (made by such forms as flet or
labels), then the declaration affects the local function definition and not the
global function definition.

Also note that the only function spec Common Lisp defines is a symbol
name. The use of function specs other than symbols is allowed only as an
Explorer extension.

ignore {var}+ [c] Declaration Specifier

The purpose of this declaration is to inform the compiler not to issue a warn-
ing message about a variable being unused. This specifier states that the vari-
ables, which are bound in the form that uses this declaration, are
intentionally not referenced in the body of the form.

13-6

Lisp Reference

Declarations

optimize {(feature value) | feature}+ [c] Declaration Specifier

This declaration allows you to specify the importance of each feature. These
features are symbols that refer to various aspects of compiler optimization;
these are the standard features:

B speed — Execution speed of the object code

B space — Memory size of the object code

W safety — Error checking and ease of debugging

M compilation-speed — Speed at which object code is compiled

Each feature is given a corresponding integer value, value, indicating the
importance of that feature. Each value must be between 0 and 3 (inclusive),
with 3 being the value of greatest importance. Note that several features can
be given the same value. In fact, the default value for all features is 1. To set
a feature to its maximum value, you can simply specify feature rather than
(feature 3). This declaration is pervasive. Consider this example:

(defun road-runner (a b)
(declare (optimize (safety 0)))
(error-check a b)
(setup a)
(locally
i+ This inner loop needs to execute at maximum speed.
(declare (optimize speed))
(do

M)
If speed is specified as more important than space, then optimizations are

enabled that minimize execution time at the expense of increasing the size of
the code.

If compilation-speed is more important than speed or space, then some
optimizations that slow down compilation are not performed. However, the
difference in compiler speed may not be enough to be noticeable.

If safety is most important, then some optimizations that make debugging
more difficult are prevented. Specifying (safety 0) allows some additional
optimizations that either complicate debugging (such as tail recursion elimina-
tion) or that create new dependencies between modules (such as automatic
inline expansion of short functions or flavor instance variable addressing with-
out using a mapping table).

It is recommended that the following be used during debugging:
(proclaim -’ (optimize (safety 2)))

Also, the following should be used before compiling a program one last time
after it has been checked out:

(proclaim “(optimize (safety 0) (space 2) (compilation-speed 0)))
Note that a value of 2 is used in these global declarations to allow another
quality to have the higher value of 3 in a local declaration. For example,

functions that are frequently called could contain the following:

(declare (optimize speed))

Lisp Reference

13-7

Declarations

When you compile using (safety 0), it is best to have the program loaded
before recompiling so that all of the definitions are available to the compiler.

Unlike other proclamations, an optimize declaration specifier used as an
argument of proclaim in a file being compiled is effective only during compi-
lation of that file, not when the file is loaded.

declaration {name}+ [c] Declaration Specifier

If you use nonstandard declarations, you should proclaim name globally
within this declaration specifier so that Common Lisp compilers that do not
understand these nonstandard declarations will ignore them. This form indi-
cates that the name declarations are going to be used and prevents the com-
piler from issuing warnings about these declarations being unrecognized. You
can use this declaration specifier only within proclaim.

The following declarations are Explorer extensions and are significant only
when they apply to an entire defun.

arglist . lambda-list Declaration Specifier

This declaration specifier records lambda-list as the descriptive argument list
of the function to be used instead of its real lambda list, if anyone asks what
the function’s arguments are. This specifier is purely documentation. Note
that this syntax line is in the form of a dotted list. It is described in this way
only because the meaning of lambda-list is already established. Of course, in
practice it does not matter if you write a dotted list whose cdr is a list or
simply write a canonical list. For example:

(defun foo (&rest args)
(declare (arglist x y &rest z))
|

values {return-value}* Declaration Specifier

This declaration specifier records return-values as the return values list of the
function, to be used if anyone asks what values it returns. This specifier is
purely documentation. For example:

(defun foo ()
(declare (values w))
Ld)

sys:function-parent parent-function-spec Declaration Specifier

This declaration specifier records parent-function-spec as the parent of this
function. If, in the editor, you ask to see the source of this function and the
editor does not know where it is, the editor shows you the source code for the
parent function instead.

For example, the accessor functions generated by defstruct have no defuns
of their own in the text of the source file. So defstruct generates them with
sys:function-parent declarations, giving the name of the defstruct as the
parent function spec. When you attempt to edit a definition of an accessor
function using META-. the editor positions point at the defstruct definition.

:self-flavor flavor-name Declaration Specifier

This declaration specifier makes instance variables of the flavor flavor-name
in self, accessible in the function.

13-8 Lisp Reference

Declarations

Declarations for
Returned Values

13.4 Besides declaring the types of variables with the type and ftype
declarations, you can declare the type of an evaluated form’s returned value.
This kind of declaration can be made using the the special form.

the value-type form [c] Special Form

This special form evaluates form and returns its value, which is locally
declared to be of type value-type. The value-type argument is not evaluated.
For example:

(= 1 (the integer (foo x)))

In this example, the compiler is notified that it is safe to use integer compari-
son rather than allowing for all types of numbers.

You can also use the values type specifier with the to declare types for multi-
ple returned values. For example:

(the (values integer integer) (floor 11 4))

The form returning multiple values (in this case floor) must return as many
values as values is expecting. Returning more values is not an error, but the
type of the values is unrestricted.

Even if you do not specify value-type using the values type specifier, it is
equivalent to the form (values value-type) with regard to the rules governing
multiple values; that is, if no values are returned—if form is equivalent to
specifying (values)—an error is signaled. If multiple values are returned, then
there is no restriction on the type of the second returned value and any sub-
sequent returned values. :

If you want the type of an expression to be checked at run time and you want
an error reported if it is not what it should be, use check-type (described in
Section 20, Error Handling).

Global Variables
and
Named Constants

13.5 The following macros are used for implementing global variables and
named constants. These forms establish globally pervasive special declara-
tions for a given variable. By convention, global special variable names begin
and end with asterisks.

Note that global variable definitions come in two varieties: defvar and def-
parameter. Although both create global special variables, the manner in
which they initialize those variables differs in intent and implementation. Spe-
cifically, some global variables have their values changed to reflect the cur-
rent state of the data processing, whereas others remain relatively constant
and are in some ways considered parameters to the algorithm. To define
these global variables, use the defvar and defparameter forms, respectively.
For example, a variable that reflects the current time should be defined with
a defvar, whereas a variable that reflects the current time zone should be
defined with a defparameter.

defvar variable &optional initial-value documentation [¢] Macro

This macro is the recommended way to declare the use of a global variable in
a program.

Lisp Reference

13-9

Declarations

Placed at top level in a file, this form declares variable globally special and
records its location in the file for the sake of the editor so that you can ask to
see where the variable is defined. The documentation string is remembered
and returned if you invoke (documentation variable ‘variable).

If you do not supply an initial value, the variable remains unbound. If you
wish to supply a documentation string but no initial value, use the symbol
‘unbound as the initial-value form. If variable has no value prior to the
evaluation of the defvar, it is initialized to the result of evaluating the form
initial-value. The initial-value argument is evaluated only if it is to be used.
Specifically, note that reloading a file that contains defvars does not reinitial-
ize the global variables unless the file is a patch file (see Section 23, Main-
taining Large Systems). If you intend for them to be reinitialized, you should
probably use defparameter.

Using a documentation string has advantages over using a comment to
describe the use of the variable because the documentation string is accessible
to system programs that can show the documentation to interested users who
are using the machine. Although it is still permissible to omit initial-value and
the documentation string, it is recommended that you put a documentation
string in every defvar.

The defvar macro should be used only at top level, never in function defini-
tions, and only for global variables (those used by more than one function).
The form (defvar foo ‘bar "documentation") is roughly equivalent to the
following:

(proclaim ‘ (special foo0))
(setf (documentation ‘foo ‘variable) "documentation")
(if (not (variable-boundp fco))

(setf foo “bar))

If in the editor you mark a region that contains a defvar and either compile
or evaluate it and if variable already has a value, defvar does not reassign
variable to initial-value. If variable does not have a value, then the assign-
ment is made. If you do not explicitly mark the region but use the default
enclosing definition, then the assignment is always made.

defparameter variable initial-value &optional documentation [¢] Macro

This macro is the same as defvar, except that defparameter always sets the
variable to the initial value regardless of whether it is already bound. The
defparameter macro always sets the variable to the specified value so that if,
while developing or debugging the program, you change your mind about
what the value should be and you then evaluate the defparameter form
again, the variable receives the new value. It is not the intent of
defparameter to declare that the value of variable will never change; for
example, defparameter does not permit the compiler to make assumptions
about the value of variable in programs being compiled.

As with defvar, it is good programming practice to include a documentation
string in every defparameter.

defconstant symbol value &optional documentation [¢] Macro

This macro defines a true constant. The compiler is permitted to assume it
will never change. Therefore, if a function that refers to the value of symbol
is compiled, the compiled function may contain value hard coded into it and
may or may not actually refer to symbol at run time.

13-10

Lisp Reference

constantp object

Declarations

The only legal way to change the value of a constant is by reexecuting the
defconstant with a new value. If you change a constant value, it is necessary
to recompile any compiled functions that refer to the value of symbol.

In a file being compiled, a defconstant form is evaluated at compile time for
the benefit of possible references later in the file. Consequently, the value
expression should not reference variables or functions defined earlier in the
same file because these values are not known at compile time. However, it is
acceptable to use constants and macros.

~

"~

[c] Function
This predicate returns true if object is a constant. Constants always evaluate
to the same value. Examples of constants are numbers, characters, strings,
bit-vectors, keywords, and any symbols defined as constants by defconstant

{such as t, nil, and pi). Also, a quote form is a constant. Consider the fol-
lowing examples:

S

(constantp 5) => true

{constantp 'x) => false

Lisp Reference

13-11

CONTROL STRUCTURES

Introduction 14.1 The following functions are the basic forms for controlling the flow of
execution in a Lisp program. These control structures can be classified into
three categories: conditional structures, sequential, and iterative.

Conditionals 14.2 The following macros and special forms are conditional control
structures.

if predicate-form then-form [else-form] [c] Special Form

if predicate-form then-form {else-form}* Special Form
This special form is the simplest conditional form. The predicate-form argu-
ment is evaluated, and if the result is true, the then-form is evaluated and its
result is returned. Otherwise, the else-form is evaluated and its result is
returned. The else-form defaults to nil.
As an Explorer extension, if there are more than three subforms, if assumes
you want more than one else-form; if test returns nil, they are evaluated
sequentially and the result of the last one is returned.
Consider the following examnle:
Consider the following example
(defun divide (x y)

(if (=¥ 0)
(print "ERROR - denominator equal to zero.")
(/ x¥)))

when predicate-form {body-form}* [c] Macro
If predicate-form evaluates to true, the body-forms are executed in sequence
and the value of the last form is returned. Otherwise, the value of the when
macro is nil and the body-forms are not executed.

unless predicate-form {body-form}* [c] Macro
If predicate-form evaluates to nil, the body-forms are executed in sequence
and the value of the last form is returned. Otherwise, the value of the unless
is nil and the body-forms are not executed.

cond {{(predicate-form {body-form}*)}* [c] Special Form

This special form consists of the symbol cond followed by several clauses.
Each clause is a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>