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ABOUT THIS MANUAL

Introduction

This manual didn’t start out as a manual. It started as a series of informal
papers written by a single programmer (Merrill Cornish) in his own special
style to help train new programmers on the Explorer project. (So he wouldn’t
have to keep answering the same questions for each new person who came on
board.) The use of these papers, known as Gentle Introductions, became so
widespread that our Education Center started using them in formal training
classes. So...

Here are the collected Gentle Introductions, now to be known as eight sec-
tions of the Programming Concepts manual. The papers have been lightly
edited, updated for the current release, and put into one book with an index
for your edification and enjoyment.

Included with Merrill’s Gentle Introductions are Hints to Macro Writers
(from an earlier release of the Explorer Lisp Reference manual) and Color
Concepts.

Caveat and
Assumptions

Some people claim that the Gentle Introductions are rather brutal. The sec-
tions do assume previous knowledge—sometimes a great deal of previous
knowledge. Specifically, the sections in this manual are geared to be read by
a programmer who is familiar with Lisp and who has experience working on
the Explorer system. Some sections assume that the reader has experience
with the joys and troubles of dealing with very large software applications.

A novice programmer can still benefit greatly from the explanations in this
manual. It’s well worth reading.

Contents of
This Manual

This manual consists of 10 sections, as follows:

Section 1 Conventional Use of the Standard Streams

Section 2 Flavors

Section 3 Condition Signaling and Handling

Section 4 defsystem and make-system

Section 5 Loading and Patching

Section 6 Pathnames

Section 7 Processes and Scheduling

Section 8 Hints to Macro Writers

Section 9 How to Prepare a Program Product for Delivery on an Explorer
System

Section 10 Color Concepts

Each of the sections can be treated as a standalone paper. So you can read
these in any order, skipping around as you choose. Typically, you should
read each section sequentially—most examples in a section are carried
through the discussion.

Oh, yes—the remainder of this section is the standard boilerplate information
about notational conventions. So, if you’re familiar with our system and typo-
graphical conventions, feel free to skip ahead to the meat of the manual.
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About This Manual

Notational
Conventions

Keystroke Sequences

Mouse Clicks

The following paragraphs describe the notation for keystroke sequences,
mouse clicks, and Lisp syntax.

Many of the commands used with the Explorer system are executed by a
comibination or sequence of keystrokes. Keys that should be pressed at the
same time, or chorded, are listed with a hyphen connecting the name of each
key. The following table explains the conventions used in this manual to
describe keystroke sequences.

Keyboard Sequence Interpretation

META-CTRL-D Hold the META and CTRL keys while
pressing the D key.

CTRL-X CTRL-F Hold the CTRL key and press the X Kkey,
release the X key, and then press the F key.
Alternately, press CTRL-X, release both
keys, and press CTRL-F.

META-X Find File Hold the META key while pressing the X
RETURN key, release the keys, type the letters find
file and then press the RETURN Kkey.

TERM - SUPER-HELP Press the TERM key and release it, press the
minus key (=) and release it, then press and
hold the SUPER key while pressing the
HELP key.

The mouse has three buttons that enable you to execute operations from the
mouse without returning your hand to the keyboard. Pressing and releasing a
button is called clicking. The following table lists abbreviations used to
describe clicking the mouse.

Abbreviation Action

L Click the left button (press the left button
once and release).

M Click the middle button (press the midclle
button once and release).

R Click the right button (press the right button
once and release).

L2, M2, R2 Click the specified button twice quickly.
Alternately, you can press and hold the
CTRL key while you click the specified
button once.

LHOLD, MHOLD, RHOLD  Press the specified button and hold it down.

XX
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Lisp Language
Notation

About This Manual

The Lisp language notational convention helps you distinguish Lisp functions
and arguments from user-defined symbols. The following table shows the
three fonts used in this manual to denote Lisp code.

Typeface Meaning

boldface System-defined words and symbols, including names of
functions, macros, flavors, methods, variables,
keywords, and so on—any word or symbol that appears
in the system source code.

italics Example names or an argument to a function, such as a
value or parameter you would fill in. Names in italics can
be replaced by any value you choose to substitute.
(Italics are also used for emphasis and to introduce new
terms.)

monowidth Examples of program code and output are in a monowidth
font. System-defined words shown in an example are
also in this font.

For example, this sentence contains the word setf in boldface because setf is
defined by the system.

Some function and method names are very long—for example, get-ucode-
version-of-band. Within the text, long function names may be split over two
lines because of typographical constraints. When you code the function name
get-ucode-version-of-band, however, you should not split it or include any
spaces within it.

Within manual text, each example of actual Lisp code is shown in the
monowidth font. For instance:

(setf x 1y 2) => 2
(+xXy) =>38

The form (setf x 1 y 2) sets the variables x and y to integer values;
then the form (+ x y) adds them together.

In this example of Lisp code with its explanation, setf appears in the
monowidth font because it is part of a specific example.

For more detailed information about Lisp syntax descriptions, see Section 1,
Introduction, of the Explorer Lisp Reference manual.

Programming Concepts
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CONVENTIONAL USE OF THE

STANDARD STREAMS

Introduction

1.1 Common Lisp provides you with seven default input/output streams.
These streams are represented by the following global special variables:

*terminal-io*

*standard-input* and *standard-output*
*error-output*

*query-io*

*debug-io*

*trace-output*

After a boot, *terminal-io* is bound to the Lisp Listener, and all the other
standard streams are bound to a synonym stream of the *terminal-io* stream
(see make-synonym-stream).

Notice the distinction. The other streams are not bound to the Listener them-
selves. Instead, they are bound to whatever *terminal-io* is currently bound
to. Rebinding *terminal-io* (it's bad form to setf a global special variable)
has the effect of changing all of its synonym streams simultaneously. In con-
trast, if all streams had been directly bound to the Listener, then changing
one would have no effect on the others.

These are two questions to be answered here:

W If all of these streams are going to the same place, then why have seven
different ways of doing it?

M Why is *terminal-io* different? Why does it seem to be the parent of the
other standard streams?

Why So Many?

1.2 If you ignore *terminal-io* itself for a moment, the other six names
represent a general classification of the kinds of I/O a program might need to
do during its development and production lifetime:

B Basic data input and output

Error reporting

End user prompting

Program debugging

Execution tracing

While it is often useful to use the monitor and keyboard for all 1/0, you
eventually find yourself wishing you could split things up. For example,

B While tracing a program from a monitor, you wish you could either sup-
press the program’s normal output or at least redirect it to a disk file.

Programming Concepts
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Conventional Use of the Standard Streams

H You want to run a program in pseudo-batch mode by reading ordinary
keyboard input from one disk file and saving output to another disk file.
But you still want any unexpected errors to be displayed on the monitor
right away.

m For testing purposes, you are running your program in two windows on a
split screen. You want one window to handle all normal keyboard input
and user prompts just as the end user would see. But you want to use the
other window to handle the debugging and tracing things you need during

. development.

Each of these standard streams is available to handle a different, well-defined
class of I/0. You will eventually need to switch input between keyboard and
disk or to switch output among monitor, disk, and a bit bucket that throws all
output away.

Given that you have these six standard streams, the next question is: “Which
one is appropriate to use when?” In general, Lisp itself doesn’t care what you
do as long as you use an output stream for output and an input stream for
input. However, bug reports we receive show that if your program violates the
user’s expectations too much, he complains. The following paragraphs give
guidelines for when to use each stream. Then we get to an explanation of
what’s so special about *terminal-io*.

*standard-input*
and
*standard-output*

1.3 *standard-input* and *standard-output* are the workhorse streams
that all basic I/O functions default to. They are analogous to C’s STDIN and
STDOUT streams, to Pascal’s INPUT and OUTPUT files, and to Fortran's
Unit 5 and Unit 6. In general, you should use these unless you have a specific
reason to use one of the others.

These streams are frequently bound to disk files to make a program run in a
batch-like mode. Therefore, you should

B Never use these to prompt the user for input.

B Never use *standard-output* for an error or warning message you want
the user to take immediate action on.

*standard-output* is the appropriate stream for progress messages, com-
ments, summaries, and report information. For example, print-herald,
print-disk-label, and describe use it.

Also, certain functions, such as load, offer a :verbose keyword option that, if
nil, suppresses output. If you write a function that outputs general commen-
tary, you should output it to this stream, and it would be considered friendly
if you provided a :verbose keyword to control it.

When deciding whether to use *standard-output*, ask yourself the question:

Can I afford to ignore the information in this message during execution if I
am able to look at it on disk later?

As a rule of thumb:

m If you find that the user needs that information in real time, then you
should use another stream such as *query-io*.

1-2
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m If other software needs that information, then perhaps you really need to
signal a condition instead.

There is a point of confusion about default streams: the standard I/O func-
tions such as read, read-line, print, princ, prinl, and so on all default to
*standard-input* for input and to *standard-output* for output. Further-
more, as a notational convenience (and a matter of necessity as we will see
later), these functions also accept a stream argument of t as meaning
*terminal-io*. The popular format function has no default output stream,
but it accepts t as a shorthand for *standard-output*—not *terminal-io*.
Beware.

Some programmers have empirically discovered that providing the symbol t
as the stream argument to a function seems to work. It works, of course,
because of the shorthand notation mentioned above. But those programmers
may ultimately pay for being too lazy to type in a real stream name. Depend-
ing upon what output functions are used internally, their output may do the
following:

Go to *standard-output* (if used by format)

Go to *terminal-io* (if used by print and friends)

Go into the debugger (if a message was sent to t)
M Do any or all combinations of the above

In other words, the symbol t is not a stream surrogate. It is just an argument-
defaulting convention that some, but not all, I/O functions happen to use.

*query-io*

1.4 *query-io* is the appropriate stream for prompting the user in real time
with some information and then reading the response interactively. *query-
io* should never be bound to a disk file. It should always be bound to an
interactive display.

This is the stream used by the y-or-n-p, yes-or-no-p, fquery, and prompt-
and-read functions. As a rule of thumb, use *query-io* when your program
is doing something similar to one of these functions. That is, use *query-io*
when you want your I/0 to go to the same place y-or-n-p would go.

*error-output*

1.5 *error-output* is the stream used by the warn, error, ferror, cerror,
and signal functions and by the error-checking case statements such as ecase
and etypecase. You should use this stream for messages you want to appear
in the company of ferror and friends. On the other hand, if you do output to
*error-output*, then you are probably doing something wrong. You should
probably either be outputting to *standard-output* or be signaling an
error.

Let’s say your program comes upon a strange situation that should be noted.
Here are some alternative actions:

B Output a comment to *standard-output*
B Output an error message to *error-output*

W Formally signal an error

Programming Concepts
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If you output to *standard-output*, you must consider that *standard-
output* may be bound to a disk file. The user at the monitor will not see the
message when it happens and may never see it if he or she doesn’t look at the
disk file later.

Furthermore, no mattér what *standard-output* is bound to, higher level
software will not be aware that you detected anything amiss, much less have
any idea of what you are trying to report. Remember, software understands
signal names—not ASCII text.

If you output to *error-output*, then you have a better chance that the
message will show up on the user’s monitor in real time—but you still have no
guarantee. Also, higher level software can’t understand ASCII text on
*error-output* any better than on *standard-output*. Therefore, don’t use
either *standard-output* or *error-output* if you want anyone to see your
message right away.

If you signal a condition (whether or not that condition is an error), then you
can still provide the same message text as before, but this time you know that
it will be seen. Furthermore, higher level software can detect your signal and
respond to it, if appropriate. Therefore, anything you would normally output
to *error-output* could probably have been better handled by an error or
warning reporting function.

A common shortcoming of error handling code is that the programmer thinks
in terms of telling the user at the monitor about what has happened. But any
function the user can enter from the keyboard, another piece of software can
call internally. If there is something important enough to tell the user about
immediately, then it is probably important enough to tell any calling software
about too.

Therefore, simple messages to *error-output* are suspect. In the same vein,
the Explorer’s ferror function with a first argument of nil and Common
Lisp’s error function are also suspect. Although they formally signal an error
so that higher level software knows something has happened, the software still
doesn’t know what kind of error has occurred. So, if you are going to signal
an error, you should at minimum use ferror with a symbol as its first argu-
ment that uniquely identifies the error.

As an aside: the Explorer system’s implementation of the error function
causes confusion because it offers outward compatibility between the incorn-
patible functionality of Zetalisp’s old error function and Common Lisp’s
error function. That is, the functionality of the Explorer’s error function’s
functionality actually changes depending upon the types of the arguments it is
called with.

m If called with ferror-like arguments (a signal name, a format string, and
format args), then it is identical to ferror.

B If called with only a format string and format args, then it is identical to
the Common Lisp error function.

A good rule of thumb is to use error as the Common Lisp standard function
and use ferror if you want the extra functionality of an explicit signal name.

1-4
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*trace-output*

1.6 *trace-output* is the stream used by the trace facility. You should not
have much need for it unless you want your program to provide extra
annotation during a trace. This stream exists mainly so you can separately
control where trace output goes rather than having it be something you output
to yourself.

*debug-io*

1.7 *debug-io* is another stream that exists mainly so you can separately
control where it goes. The debugger uses this stream so that most I/0 to it is
done while your program is suspended. Therefore, there is little practical
value in reading or writing to it yourself from your program.

The *debug-io* stream is unique among the standard streams in one respect.
If your program were to enter the debugger and the debugger were to find
that the value of *debug-io* is nil, then the debugger uses the *terminal-io*
stream of your program (its normal default) instead. From your point of view,
this convention means that if, in the heat of debugging, you have set *debug-
io* to some other stream and you want to return it to its default, then you
only have to set it to nil rather than finding a synonym stream for *terminal-
io*.

This defaulting is a convenience feature provided to you by the debugger
before it begins to do its work assuming that *debug-io* is used only by the
debugger. The rest of the system knows nothing of this convention. If you
were to set *debug-io* to nil and then use it as a stream argument to the
standard I/0 functions, then they would see a stream of nil that they assume
is a shorthand notation for something else (usually *standard-output*).

Why Is
*terminal-io*
Different?

1.8 Now it is time to answer the second of the two questions posed earlier.
Although, as we have seen above, the standard streams can be bound to disk
files, they are frequently bound to windows. Now, what happens if your pro-

gram tries to write to its window using one of these streams while your window
is buried?

® If your window was created with the :save-bits option, then your output
goes to a memory image of your window to be displayed when your win-
dow is eventually unburied.

W Otherwise, you have essentially told the Screen Manager to write some
text without giving it anywhere to write it. Not good. You end up with the
dreaded Window Lock.

Window Lock is the Screen Manager’s rather graceless way of pointing out
that you haven’t thought your program logic through completely. It freezes
the system and displays Window Lock in the status line until you manually
find and expose the offending window so the typeout can complete.

In an attempt to avoid the most common causes of Window Lock, the system
has implemented certain conventions involving *terminal-io*, the other stan-
dard streams, and the window exposure state.

1. If you have a window, bind *terminal-io* to it.

2. If you want one of your streams (standard or otherwise) to do I/O to that
window, then bind that stream to a synonym stream of *terminal-io*.

Programming Concepts
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The Background
Helper Function

3. Never pass the variable *terminal-io* as a stream argument to any func-
tion. Instead, pass a synonym stream of *terminal-io*.

4. When the window becomes exposed, then the system will see to it that
*terminal-io* is bound to that window (thereby connecting all those
synonym streams to the window also).

5. If the window becomes deexposed, then the system will bind *terminal-
io* to a special-purpose function that knows how to handle window lock
conditions without actually causing Window Lock.

It is the operation of this special-purpose function that leads to those admoni-
tiohs about not passing *terminal-io* as a stream argument. If you will just
accept the conditions listed above, then you can skip the next few para-
graphs. However, if you want to find out just how much trouble you can
cause by ignoring system conventions, then read on.

1.8.1 The easiest way to explain what the mysterious background helper
function does is to work out an example. Let’s start by assuming that your
window is buried so that your copy of *terminal-io* is bound to that func-
tion. That your window is buried does not necessarily mean that your process
is stopped. You could still be running in background. Now, what happens if
your background process writes to, say, *standard-output*?

If you have followed convention, *standard-output* will be bound to a syno-
nym stream of *terminal-io*, which means that the helper function the sys-
tem bound to *terminal-io* will actually receive your output request. Oddly
enough, the function starts execution by totally ignoring its arguments (that is,
your request to *standard-output*).

Instead, the function selects a Background Stream Typeout window from a
resource of such windows it maintains. It then setfs your *terminal-io* to
that window. Finally, it blindly takes the arguments you originally sent to
*standard-output* and resends them to the new *terminal-io*. At some
point along the way, the user receives a notification worded something like:

Process X wants to typeout.

This is the user’s cue to look for the new Background Stream window. From
the System Menu, if you click on Select in the Windows column, the windows
that include Background Stream in their name were created by the mecha-
nism described above.

NOTE: If you kill the Background Stream window, then you will kill the
process that is outputting to that window too.

Any later attempts by your program to write to any synonym stream of
*terminal-io* now go directly to that background window. When your win-
dow eventually is exposed, the system once more binds *terminal-io* (taking
all of its synonym streams along with it) to the window, and the temporary
background window is returned to the resource.

1-6
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Conventional Use of the Standard Streams

So far, we’ve talked only in terms of a process that had a window. Of course,
some processes don’t have windows even though they might still contain
writes to *standard-output* and friends. You can think of these windowless
processes as processes with windows that are never exposed. That is, attempts
by windowless processes to output to *terminal-io* or to any synonym
stream of it will get the background window described above.

1.8.2 Now, what happens if you ignore the warnings and bind *standard-
output* directly to the value of *terminal-io* rather than to a synonym
stream of it? Remember that the system switches the binding of *terminal-
io* as the window switches between exposure and deexposure. Synonym
streams of *terminal-io* will be switched with it. However, a stream that
simply has the same value as *terminal-io* is not switched.

Sooner or later, one of these nonsynonym streams will end up trying to out-
put to a deexposed window (which causes Window Lock). Or else it will
output to a background window when the real window is exposed and waiting
for output.

For everything to work smoothly, all streams must be switched together as
their window alternates between exposure and deexposure. The system has
no way of knowing which standard streams you might be using or what other
streams you may have created yourself. Therefore, it switches only
*terminal-io* and relies on you to make use of its value.

1.8.3 If you should ignore the warnings not to pass *terminal-io* as a
stream argument to a function, then the system continues its retribution. If
you pass *terminal-io* as a stream argument to some function, then that
function executes with a local copy of the value of *terminal-io* that existed
on entry to the function, not with the current value *terminal-io* itself,
which is being switched.

For example, let’s suppose the following function appeared in your code:

(defun print-foo (foo stream)
"Print all elements of FOO to STREAM."
(dotimes (i (length foo0))
(print (elt foo i) stream)))

Now if you called this function as, say,
(print-foo foo-object *standard-outputx*)

then all would be well because *standard-output* is a synonym stream of
*terminal-io*. But if you called it as, say,

(print-foo foo-object *terminal-io*)
while your window was deexposed, then amazing things happen.

M On the first call to print-foo, each element of foo gets printed in its own
background window.

M On all succeeding calls to print-foo, all elements are printed out in one
background window as expected.
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How To Guarantee
Your Defaults

The reason for this odd behavior is left as an exercise for the reader. The
moral of all this is:

Don’t mess with *terminal-io*.

Now you've seen the real reason that the standard output functions such as
print, princ, prinl have the special convention that a stream argument of t
tells the function to output directly to *terminal-io*. It’s safe to output
directly to *terminal-io* itself since any change to *terminal-io* by the
background helper function is seen immediately by the print function.

1.8.4 We’ve seen that the system depends heavily upon each process having
a private *terminal-io* and having all other standard streams bound to a
synonym stream of it. Unfortunately, the system doesn’t guarantee these
defaults when it starts a new process.

Therefore, if your program includes its own process, then you should include
the following set of bindings around the body of the process’s Initial Func-
tion:

(let* ((*terminal-io* *terminal-iox*)
(*standard-output* (make-synonym-stream ‘*terminal-io*))
(*standard-input* (make-synonym-stream “*terminal-io*))
(*error-outputx* (make-synonym-stream ‘*terminal-iox))
(*trace-output* (make-synonym-stream ‘*terminal-io*))
(*query-io* (make-synonym-stream ‘*terminal-iox))
(*debug-iox* (make-synonym-stream ‘*terminal-io*)))

...body of Initial Function...)

When your process is started, all of its standard streams including *terminal-
io* are bound to the same thing as their counterparts in the parent process.
Binding *terminal-io* to itself assures that if *terminal-io* should be setfed
somewhere in your program (despite all warnings to the contrary), then only
your version of *terminal-io* will be changed. Otherwise, your parent proc-
ess’ *terminal-io* would have been setfed too. The binding of the other
standard streams to a synonym stream of *terminal-io* guarantees that your
process will have the proper defaults despite anything your parent process has
done.

Other Interesting

Streams

sys:cold-load-stream

Advantages

1.9 There are two other streams provided by default on the Explorer system
although they are not part of the Common Lisp standard. These streams are
represented by the global special variable sys:cold-load-stream and the sys-
tem constant sys:*null-stream*. These symbols must never be either set or
bound—treat them as constants.

1.9.1 This is the most primitive stream available for 1/O to an Explorer
monitor. It is commonly known as THE cold load stream because there is
one and only one. The principal feature of the cold load stream is that it
completely bypasses the window system. Such a primitive tool has both
advantages and disadvantages.

1.9.1.1 The main advantage of sys:cold-load-stream is that it is guaranteed
to work. When you output to it, you never get into a Window Lock state or
any other locked state unless you explicitly request it (see :tyi below). Any
process—even a background process—can output to the cold load stream.

1-8
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The reason programmers dread being thrown into the cold load stream is that
by implication, the window system has become so wedged that the cold load
stream is the only way left for the system to get a message to you. Good luck.

1.9.1.2 The main disadvantage is that sys:cold-load-stream ignores the
window system, and the window system is the centerpiece of much of the
Explorer software.

Output to this stream makes a mess of the monitor. Writing to the cold load
stream just writes to successive characters on the monitor, independently of
where the window system is writing. It overwrites any windows that it happens
to cross, including the thin line around the edge of the monitor and the
mouse documentation window or status line (which most programmers don’t
even know can be done). You can clear the main screen with the CLEAR-
SCREEN key, but not the mouse documentation window or status line if they
were overwritten.

If you enable more processing for this stream, then all processes must wait
until your user responds to a **more** prompt from the cold load stream in
your process.

These disadvantages mean that the cold load stream should be used only
when needed for debugging. If your user ever sees any of your output via the
cold load stream, then you have done something wrong.

1.9.1.3 The simplest way to output to the cold load stream is to use format
with sys:cold-load-stream as its stream argument. In addition, the cold load
stream supports the :line-out, :string-out, :clear-eol, :set-cursor-pos, and
ityi messages. A typical debugging sequence might be:

(send sys:cold-load-stream :set-cursor-pos 0 0)
(send sys:cold-load-stream :clear-eol)
(send sys:cold-load-stream :string-out (format nil "..." args...))

The last two forms together effectively accomplish the following:

(format sys:cold-load-stream "..." "args...")

However, the format function does not offer you any way of specifying where
the output starts, as the :set-cursor-pos message in the first form does. Also,
the raw :string-out message just ORs its text with whatever was already on
the screen. Therefore, you need to preface the :string-out with a :clear-eol
to make sure it’s writing on a “clean” line.

The :tyi method of sys:cold-load-stream is also very primitive. It stops exe-
cution of all other processes until a character is typed (which it does not
echo, so the monitor is unchanged). Therefore, if you want your program to
pause while you examine the monitor, then insert

(send sys:cold-load-stream :tyi)

into your program. Your program, and everything else, hangs waiting for you
to press any key.

Programming Concepts
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sys: *null-stream*

1.9.2 sys:*null-stream* is designed to do nothing, but to do it intelligently.
It is analogous to the dummy files that exist on conventional operating sys-
tems. Its main (non-) action is to throw away any output sent to it and to
return an immediate end of file for any attempt at input from it. For
example, the following

(let ((*standard-output* sys:*null-streamx))
...body...)

would cause all output from within the body of the let to *standard-output*
or to any of its synonym streams to be thrown into the bit bucket.

On the Explorer system sys:*null-stream* handles many (but not all) stream
messages with legal but trivial responses. However, this stream does not han-
dle some of the higher level stream messages that do not have acceptable
defaults answers. It signals an :unclaimed-message error if you ask it to do
something it doesn’t understand.

Odds and Ends

Streams Versus
Variables

streamp Predicate

Dribble Files

1.10 The following topics are interesting odds and ends that don’t fit else-
where in this section.

1.10.1 Lisp programmers loosely talk about things like *terminal-io* beirg
a stream when actually it is a global special variable whose value is a stream
object. As with most of the sloppy Lisp jargon, the distinction usually isn’t
important for one reason or another. But if the subject should come up,
remember: you saw it here.

1.10.2 On the Explorer system, the Common Lisp streamp predicate is
actually a heuristic that in extreme cases can be tricked into falsely identifying
something as a stream. There is no stream data type on the Explorer system,
and there is no stream structure type, so no direct, unambiguous check is
possible. Any object capable of accepting the stream messages can serve as a
stream. Therefore, on the Explorer system, there is a wide variety of things
that might be streams.

The checks streamp makes are tight enough that you should never have a
problem. However, if some programmer were to, say, write a function which,
given :which-operations as an argument, returns a list containing either :tyi
or :tyo; then streamp is going to be fooled.

Notice that since streamp sends a :which-operations message to the object
as a last resort, the object may react strangely if it isn’t a stream. In particu-
lar, it is not safe to use streamp on nonstream functions that have side
effects. While streamp is trying to deduce whether the object is a stream, it
may inadvertently trigger the side effect.

1.10.3 As a matter of record (literally), you can use the Common Lisp
dribble function in a Lisp Listener to cause input from *standard-input*
and output to *standard-output* to be saved to a disk file in addition to
being output to the Listener as usual. To start a dribble file (also known as a
Wall Paper file), simply call the dribble function with a file namestring as an
argument.

1-10
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You cannot look at the contents of a dribble file until you have closed it. You
close it by simply calling dribble again with no arguments.

This simple dribble file will not record error messages output to *error-
output* or queries to *query-io*. If you wish to record I/O to all standard
streams, then use the dribble-all function, an Explorer extension. As before,
you close this dribble file with a call to dribble without arguments.

Programming Concepts
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FLAVORS

Introduction

2.1 The terms object-oriented programming, message passing, and flavors
are often used interchangeably—but there is a difference.

B Object-oriented programming is just a way of looking at a problem. It can
be done in several distinctly different ways by simply adopting certain
programming techniques and data structures. In particular, you do not
need a special software system.

B Message passing is a style of programming. It is basically an alternate
syntax that conveys the appearance that you are manipulating objects
rather than actions.

B Flavors is a set of software which has the principal purpose of construct-
ing new functions out of existing functions at your direction. Its technique
of constructing new from old is called inheritance in the literature. The
code it constructs uses message passing.

The object-oriented programming principle is only a small part of everything
that goes to make up flavors. However, many people will refer to the whole
flavor system as object-oriented programming. When this naming of the
whole by the part is used in poetry, it’s called synecdoche; when it’s used in
conversation, it's called confusing.

If we want to sort out this confusion about what should be called object-
oriented programming, then we need to first understand what it is replacing:
action-oriented programming.

Action-Oriented
Programming

Limitations

2.2 Our normal mode of programming could be described as action-
oriented programming since we call a function to perform a specific action
and provide it with specific arguments. In many situations, action-oriented
programming is the only programming technique that makes sense.

For example, let’s assume that the only output device available to our Lisp
machines is a printer. In such an impoverished situation, we could get by with
a single action-oriented character output function named, say, char-out that
would be called with the character to output as its argument.

Because there is only one very specific action to be performed in our example
(outputting a character to a printer), there is nothing to be gained in this case
from object-oriented programming or message passing. The program notation
would be different, but nothing else.

2.2.1 The limitations of action-oriented programming show up when we
have to deal with several closely related actions. Those basic action-oriented
techniques still work, but we start to get the vague feeling that there ought to
be a better way.

Programming Concepts



Flavors

An Action-Oriented
Solution

For example, let’s now assume that we have several output devices on gur
machine: a printer, a CRT, and a network port. Our action-oriented pro-
gramming technique would need three action-specific functions: char-out-
printer, char-out-crt, and char-out-net. Each time a programmer wants to
output a character, it is up to him to select the correct function.

From this example, we can begin to see the problem. Although the program-
mer tends to think in generic terms “output this character,” he must also
decide how to output it so that he can select the correct function name. The
problem becomes worse if the program is, say, a utility that may be outputting
to different devices at different times.

2.2.2 If the programmer needs some sort of general-purpose character out-
put routine, he must code some sort of case statement that chooses the right
function at run time based on the current output device. For example,
assume that out-device is the argument to the utility identifying which output
device to use. To output the letter A, our programmer would have to write

(case out-device
(printer (char-out-printer #\A))
(ert (char-out-crt #\A))
(net (char-out-net #\A)))

and would have to include a similar case statement everywhere he had to
output a character.

Usually, when programmers are faced with the problem of a messy piece of
code that is repeated in many places, they’'re going to try to make a sub-
routine out of it. In the process, they will probably be reinventing object-
oriented programming whether they know it or not.

Object-Oriented
Programming

2.3 What our programmers really want is a generic char-out function that
takes, say, a device identifier symbol and a character to output as arguments.
If they specifically want to output the letter A to the printer, then they would
call

(char-out ‘printer #\A)

On the other hand, if the device identifier had been passed in as the argu-
ment out-device, then they would call

(char-out out-device #\A)

Internally, the function char-out would probably be implemented much as
our original open-coded case statements:

(defun char-out (device-id char)
(case device-id
(printer (char-out-printer char))
(crt (char-out-crt char))
(net (char-out-net char))))

This little char-out function seems like an obvious and straightforward way to
solve the problem. It does implement the basic notion of object-oriented
programming: a generic function performs one of several possible related
actions based on the type or value of one of its arguments (in this case,
device-id).
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However, the previous example does not clearly show why this style of
programming should be dignified with the formal title of object-oriented
programming. After all, a lot of functions modify their execution based on
the value of their arguments—that’s what arguments are for.

2.3.1 There is an alternative implementation of our char-out function avail-
able in Lisp that illustrates stronger object orientation. In this alternative
example, we are going to record the device-specific function on the property
list of each device identifier symbol:

(setf (get ‘printer ‘char-out) #’char-out-printer)
(setf (get ‘crt ‘char-out) #‘char-out-crt)
(setf (get ‘net ‘char-out) #’char-out-net)

That is, the char-out property of the symbol holds a function object that
knows how to output a character to the device represented by that symbol. If
the above notation looks unfamiliar, just remember that setf is Common
Lisp’s generic assignment function so that

(setf (get symbol property-name) property-value)
is Common Lisp’s way of doing the traditional
(putprop symbol property-value property-name) .

To see how we would use these properties, assume that the argument output-
device mentioned above has the symbol crT as its value. Then

(get output-device ‘char-out) =>
(get ‘crt ‘char-out) => #’char-out-crt

meaning that the symbolic name of each device (PRINTER, CRT, or NET) identi-
fies to the programmer which device to use while the char-out property on
the symbol identifies the specific function needed to output a character to
that device. Now we can rewrite char-out to use these properties.

(defun char-out (device-id char)
(funcall (get device-id ‘char-out) char))

2.3.2 From one viewpoint, these two implementations of char-out are just
a matter of personal programming style. From another viewpoint, the
property-list version seems more object-oriented. In a sense, the object—the
device identifier—knows how to output its own characters since it carries its
own unique character output function on its property list.

You will find a practical difference between the two char-out implementa-
tions when it comes time, for example, to upgrade the software to handle
character output to a tape unit using a new char-out-tape function. If you
had used the cAsE statement implementation, then you would have to modify
the existing char-out function to add a new clause to the casg statement as
shown below:

(defun char-out (device-id char)
(case device-id
(printer (char-out-printer char))

(crt (char-out-crt char))
(net (char-out-net char))
new == (tape (char-out-tape char))))

Programming Concepts



Flavors

An Advantage

If, however, you had used the property-list implementation, then you would
have had to do nothing more than put a char-out property onto the tape
symbol: ’

(setf (get ‘tape “char-out) # char-out-tape)

The version of the char-out function that uses the funcall would not have to
be changed.

2.3.3 This example is simple enough that you might not see why adding new
code is better than modifying existing code. The first reason is purely prag-
matic: if it works, don’t fix it. The modification needed in our example above
was simple, but other upgrades might require a significant rewrite. The more
you change, the more chance there is for fumble fingering an error into work-
ing code.

The second reason applies to systems that do not offer dynamic linking as
Lisp machines do. Modifying and then recompiling a function of the Lisp
machine allows everyone who uses that function to immediately use the new
version. On systems that require, say, a link edit step, you would have to
relink the entire program.

The third reason is that you may simply not have the source program avail-
able to modify.

Message Passing

2.4 With either of the alternatives above, a call to output a character would
have looked the same:

(char-out device-id char)
The differences would have been inside the char-out function. However, our
property-list version could be cast in a different call format that emphasizes

the fact that it is the object that knows how to do a given operation:

(send device-id “char-out char)

This statement would be read as “send device-id a char-out message” and
would be understood to mean “tell the device-id object to output char”. This
message passing notation is really just syntactic sugar. Remember that

(char-out device-id char)

in Lisp is always equivalent to

(funcall ‘char-out device-id char)

so that the send notation

(send device-id ‘char-out char)

simply substitutes send for funcall and swaps the first two arguments. This
send notation emphasizes the message passing aspects of the call without
actually changing how things execute very much.

The Explorer’s flavor system currently uses this message passing notation

using send. The Common Lisp committee on object-oriented programming is
considering making object-oriented calls look like ordinary function calls.

2-4
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This generic call syntax gives system programmers freedom to choose and
change between function and flavor implementations without affecting the
users.

A Generalization

2.5 The examples of object-oriented programming above use Lisp symbols
as objects and property-list entries as storage locations—but please don’t be
lulled into thinking of object-oriented programming only in these terms.

The common thread here is that an object is any data structure in any lan-
guage that can have a little extra information associated with it. That extra
information can be in one of two forms:

W An object type identifier (which would allow a case statement implemen-
tation to select the right function call for a given object)

B An association of an operation name with a function name that can
perform that operation (which would allow a property-list-like implemen-
tation to find the right function)

In our property-list example, we put only one property, char-out, on the
symbol that named the device—but we could have put more. For example,
the char-in property could have held an appropriate character input func-
tion, the device-clear property could have held a reset function, and so on.
Therefore, we need to think of an object as being associated with a list of
operator-name/operator-function pairs.

Flavor
Programming

2.6 In its most trivial form, flavors is a message passing system that defines
objects and then associates the necessary extra information with those

objects. If this were all flavors did, it would be of little added value over plain
message passing.

However, the real value of flavors is not in packaging function names and
data objects. The power of flavors comes from its ability to construct new
software with added functionality out of existing software. Instead of writing
new software from scratch or rewriting existing software, flavors uses the tech-
nique of creating new functionality by adding to existing software.

As an intellectual exercise, try reading the definition of defflavor in the Ex-
plorer Lisp Reference manual. First, notice the components argument, which
allows you to specify that your new flavor is to be built on top of one or more
other flavors. Next, read through the list of defflavor options, which is
described later in that same section in the Lisp Reference manual. For the
moment, don’t worry about understanding exactly what they are doing and
exactly how you should use them. Instead, notice the types of things they
allow you to do.

B :settable-, :gettable-, and :outside-accessible-instance-variables offer
to automatically generate various simple accessor functions for you.

W :inittable-instance-variables and :default-init-plist let you fine tune
the default values for instance variables when a new instance is created.

B :included-flavors allows you more control over who shadows whom
when flavors with conflicting instance variables or methods are mixed
together.
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B Because you can define intermediate flavors that are meant to be used
only as components to higher level flavors, :abstract-flavor tells the sys-
tem to warn anyone trying to use this flavor by itself that it will not work.

B The :required-flavors, -methods, -instance-variables, and -init-
keywords provide further warning to programmers who use a component
flavor improperly.

B :method-combination gives you more flexibility in defining how methodls
with the same names should be used together rather than one shadowing
all the others.

Now that we have flavors in perspective, the remainder of this section
describes flavors from the viewpoint of the software engineering tradeoffs it
provides to programmers. From that point, it is up to you to see how they can
best work for you. The value of flavors to the designer of large software sys-
tems is independent of whether that programmer knows—or even cares—
about the advertised wonders of object-oriented programming.

Do not, however, dismiss flavors for more mundane-sized programming pro-
jects. The same flavor characteristics that make otherwise unwieldly projects
manageable also make ordinary-sized projects unusually straightforward.

Large-Scale
Software

2.7 If you are implementing a large-scale software project—and you don’t
want to make a career out of that one project—then you must build upon
what already exists rather than reinventing every wheel. Software reusability
has always been known as a good thing, but success is often limited because
conventional programming systems do not offer much in the way of data hid-
ing or other modularization features. In our case, data hiding is being used in
the general sense of

m Using a function (not just data) without having to know about the inner
working of that function

m Being able to change the functionality by adding new code rather than
modifying what’s already there

Trivial Flavors

2.8 In its simplest form (and it has many options), a flavor is a set of defini-
tions of variables called instance variables and a set of functions called meth-
ods to go along with those variables. This is a good time to get a little
terminology out of the way. Lisp programmers are notorious for using related
terms interchangeably, thereby confusing newcomers.

M An operation is something like char-out mentioned previously.

M An instance is the object on which the operation is done.

B A message is the notation in the program that specifies

s the operation you wish to execute (for example, char-out).

s the instance you wish to do that operation on (for example, the in-
stance of a CRT that is the system console).

» any arguments needed by that operation (for example, a character to
output).

2-6
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For example,

instance operator argument

(send output-device :char-out #\A)

\ /
\'4

a message

sends a message to an instance of a device residing in output-device telling it
to do a :char-out operation of the letter a.

The piece of software that actually executes the message when it arrives is
called a handler. Handlers are internally constructed from one or more meth-
ods you or others have written, and you seldom deal with handlers directly.
To summarize the analogy of conventional function terms to flavor terms:

Function Terms Flavor Terms
Function definition Method
Function name Operation
Function call Message

and there is no direct analogy of a handler in conventional terminology.

Of course, few Lisp programmers bother with these distinctions and just use
the terms method, operation, and message interchangeably—but that’s pro-
grammers for you.

2.8.1 If you were to define a flavor with only instance variable definitions
and no methods, then you will have created the equivalent of a Pascal or
COBOL record. The flavor definition becomes a sort of template describing
the record layout. Just as the NEW function in Pascal uses its record template
to define a block of memory in that format, the make-instance function in
Lisp uses the flavor definition template to define an instance of the specified
variables.

The functionality of a flavor with only instance variable definitions is the
same as a traditional record, although the notation used to access the data is
different. And, in truth, accessing flavor instance variables from outside of
methods is a little less efficient than accessing simple record components in
most other languages. However, access from inside method bodies is more
efficient than access to Lisp structures or arrays.

If all you wanted was the functionality of an ordinary record in Lisp, then you
should use defstruct to create a structure (Lisp’s name for a record). The
real point of this illustration is that you are well familiar with the notion of
flavor instance variables even though you would have called them by other
names.
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2.8.2 The other half of this illustration concerns a flavor with only methods
and no instance variable definitions. Writing such methods with no associated
instance variables and no other flavor options is functionally no different
from writing ordinary functions. Once again, the notation for calling methods
is different and suffers more overhead than the equivalent function call.

2.8.3 The description so far has been less than encouraging. It would
appear that flavors do nothing that Lisp structures and functions do not
already do except that flavors take longer to do it. Actually, the source of this
added overhead is also the source of all the power of flavors. It just so hap-
pens that the deliberately trivial example used so far did not make use of
flavors’ unique capabilities.

A Simple Flavor

2.9 Now, let’s start using a simple flavor definition and some methods to go
along with it. As an aside: this report uses the suffix -flvr on flavor names
just to serve as a reminder to you. Actually, you may name them anything
you wish as long as all flavor names are unique within a package. In particu-
lar, a flavor name may be the same as a function name or a variable name.

Now back to the example: you use the defflavor macro to define a flavor as
shown below:

(defflavor foo-flvr ; flavor name foo-flvr
(a ; instance variables a, b, and ¢
b
c)
0 ; no component flavors
...options...) ; other options

This notation defines a template for a flavor named foo-flvr with three
instance variables, a, b, and ¢. The empty list identified as component flavors
and the options will be ignored for now. This template also establishes
another internal data structure called a method table that will be used to
remember methods defined for this flavor. We will see later how this table is
used to create mixtures of flavors.

Next, we can use the defmethod macro to define a few methods to go with
our flavor as follows:

(defmethod (foo-flvr :x) (args...)
...body forms...)

(defmethod (foo-flvr :y) (args...)
...body forms...)

(defmethod (foo-flvr :2) (args...)
...body forms...)

The most obvious feature of defmethod is that it looks almost exactly like a
defun except that it has a list in the form of

(flavor-name operation-name)

in the place of defun’s function spec, which is usually just a symbol. A
defmethod needs this enhanced notation to identify its parent flavor so it can
be recorded in its parent’s method table. Otherwise, defmethods and defuns
can have the same lambda list arguments and the same forms in their bodies.
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These methods define the operations :x, y, and :z. Notice that, unlike their
function name analogues, operator names are always in the keyword package
(that’s what the leading colon means) and not in the current package. There
are two reasons for this convention: one practical and one philosophical.

The practical reason is that flavors don’t need the package designation to
keep operations separate. So, it is convenient to put them all in the same
package (in this case, the keyword package) for easy reference.

The philosophical reason that operation names are not distinguished by pack-
ages (as most other symbols are) is that an operation such as :char-out
should mean the same thing regardless of which piece of code (in whichever
package) uses it in a message. A logical operation should be a logical opera-
tion regardless of who uses it from where.

However valid these reasons may be now, when object-oriented programming
is eventually added to|Common Lisp, method names may become package-
specific.

There is a notational |distinction between methods and ordinary functions.
Instance variables are' accessed at run time by a different mechanism than
other variables. Since the body forms of methods deal with instance variables
so frequently, the system allows you to reference an instance variable of the
method’s parent flavor with the same notation that references an ordinary
variable. The special accessing mechanism is invoked for you.

For example, suppose you wanted to set the instance variable A to the value
of the instance variable b plus 2. If you were inside one of foo-flvr’s meth-
ods, then you could just write

(setf a (+ 2 b))

The system recognizes that a and b refer to instance variables, and it does
the right thing. In fact, the only way you can access the instance variables of a
flavor is from within its methods (not quite true, but accept it for now). If you
want to access a flavor’s instance variables from the outside world (which
includes accesses from methods of other flavors), then you will have to write
several trivial accessor methods. For example,

(defmethod (foo-flvr :get) ()
a)

accesses the value of the instance variable a and returns it as the value of the
:get operation. Similarly,

(defmethod (foo-flvr i:set) (new-value)
(setf a new-value))

Sets the value of the instance variable a to the specified value. To save you
the trouble of having to write a whole bunch of trivial accessor methods, you
can have the flavor system do it for you by using a couple of the defflavor
options we brushed over before:

(defflavor foo-flvr
(a b e)
O
:settable-instance-variables
:gettable-instance-variables)

flavor name
instance variables
component flavors
options
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The default operation names for the get-methods are simply the instance vari-
able names (in the keyword package, of course). For the case of foo-flvr,
these methods would be :a, :b, and :c. The set-methods use set- as a prefix
to the instance variable name, for example, :set-a, :set-b, and :set-c.

Therefore, our previous example of adding 2 to b and storing the sum intc a
would look like

(setf a (+ 2 b))
if it appeared in a method of foo-flvr, but it would look like
(send foo-inst :set-a (+ 2 (send foo-inst :b)))

in an ordinary function or in the methods of a different flavor. Actually, you
could use the verbose version inside foo-flvr’s methods, too, but that would
be unnecessarily clumsy and a little slower.

You can, of course, write your own accessor methods and give them any
operation names you wish—but there is seldom any reason not to let the sys-
tem create the default operations for you. The system’s convention of using
the instance variable’s name as the get-method name is perfectly reasonable,
but it sometimes causes confusion.

To a new, slightly confused user it appears that sometimes you write the in-
stance variable without the colon and sometimes you use a colon.

Rule of thumb: If you are talking about the instance variable itself, just use
its name. If you are talking about the get-method for the variable, then use
the colon.

In particular,

B  Anywhere you are referring to the instance variables as instance vari-
ables, then just use the instance variable name symbol that is in whatever
package the defflavor was defined (in other words, not the keyword
package). For example,

w  References from within the body of a method of the parent flavor
[for example, (setf A (+ 2 B))]

= References in an instance variable-related defflavor option (for ex-
ample, :settable-instance-variables)

M Anywhere you are referring to the get-method of an instance variable,
then use the official name of that method (which happens to be the name
of the instance variable in the keyword package):
= Any sends of the get-method [for example, (send inst :get-a)]

= References in a method-related defflavor option (for example,
:required-methods)

2-10
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A Recap

2.10 Here is a list of what we have learned about flavors so far, plus a few
extra pieces of information that we skipped over before:

You can use a defflavor macro to define a flavor with whatever set of
instance variables you want. In this macro, you can specify:

Default values for any combination of a flavor’s instance variables
that will be shared by all instances.

That any combination of instance variables be made inittable when
make-instance is executed (thereby providing a way to optionally
override the default values).

A flavor’s instance variables are directly accessible only from methods of
that flavor.

Outsiders must call a flavor’s accessor methods to read or write any
one of that flavor’s instance variables.

You can request the defflavor to write default accessor methods for
you to make any combination of instance variables settable or get-
table at run time.

You can use make-instance to instantiate as many copies of your flavor

as you want.

The make-instande allows you to optionally specify initial values for
instance variables [defined as inittable in the defflavor.

All instances of a [flavor share the code of the methods you defined
for that flavor.

Each instance has a unique copy of that flavor’s instance variables.
(that is, defflavor defines what the instance variables will be while
make-instance allocates memory for them).

You must remember the value returned by make-instance so that
you can send messages to it later.

You can use defmethod to define a method for a flavor you’'ve already
defined. '

The name of a method is a combination of the name of its parent
flavor and the operation name keyword that is unique within that
flavor.

The method name is remembered in the method table of its parent
flavor.

When a method’s code is executed in response to a message sent to a
particular instance, then references to instance variables in that code
actually access the set of variables unique to that particular instance. (An
example of this is shown below.)

So far, the idea of flavors has been interesting, but you have not yet seen that
they can do anything you could not already do. The feature that enables the
magic is explained next.
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Flavor
Instances

2.11 Before you can do anything with a flavor—even to call one of its
associated methods—you must make an instance of it. For example,

(setf foo-inst (make-instance ‘foo-flvr))

creates an instance of our foo-flvr flavor and remembers it in a variable
named foo-inst. You may make as many instances of foo-flvr as you want.
All instances of one flavor will share the code of that flavor’s methods, while
each of those instances will have its own private copy of that flavor’s instance
variables. That’s why they’re called instance variables.

To demonstrate this separation of instance variables, let’s assume you have
made two instances of foo-flvr called ff1 and ff2:

(setf ffi1 (make-instance ‘foo-flvr))
(setf ff2 (make-instance ‘foo-flvr))

Now, assuming the default accessor methods, let’s set instance variable a in
each instance to a different value:

(send ff1 :set-a 11) ; same code for method :set-a called
(send ff2 :set-a 22) ; twice, but on different instances

Finally, by reading the same variable in the two different instances, we can
see that they are separate:

(send ff1i :a) => 11 ; same variable name in different
(send ff2 :a) => 22 ; instances kept separate

We previously drew an analogy between doing a make-instance on a Lisp
flavor name and doing a NEW function on a Pascal record name: both allo-
cated a new block of memory for the data. If you have been paying close
attention, however, you have noticed that the object returned by NEW and
the object returned by make-instance are radically different. In many Pascal
implementations, NEW returns little more than the starting address of the
newly allocated block of memory.

In contrast, make-instance actually returns a custom built function-like
object called an instance that not only knows the starting address of the newly
allocated instance variables but also knows the method hash table that
records all method handlers associated with its parent flavor. When you
speak of an instance of a flavor, you are really talking about this customized
function-like object. And, when you speak of sending a message to an
instance, you are really calling this instance with the operation name keyword
as the first argument along with any other arguments that operation needs. By
the way, instance is a primitive data type on the Explorer system.

When called, this instance object, in turn, decides which method handler
function to call based upon the operation name. This function call and
lookup step that'stands between the caller and the method handler is the
source of the overhead mentioned above. Furthermore, if a method of a
flavor calls one of its sibling methods of that same flavor, then it, too, must go
through this same instance object to be the message decoded. There is no
backdoor for getting to a method within the same flavor (unless, of course,
you know where to look).

Let’s say the code in the body of the :x method of foo-flvr needs to call the
:y method of that same flavor. The :x code can get at the :y code by sending

2-12
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a :y message to any instance of foo-flvr because all instances share the
method code body. But :x and :y can share instance variables only if :x
sends the message to its own instance. Therefore, whenever any method of
any flavor is executing, the variable self is bound to the current instance.
Therefore, :x could have used

(send self :y)

to assure that it was calling its :y rather than some other instance’s :y.

Mixing
Flavors

Defining
super-foo-flvr

2.12 Flavors were designed to be mixed. Rather than continuing with the
“how it works” development, let’s jump ahead and see how we could build
on the flavor we’ve already defined, foo-flvr.

2.12.1 Let’s say that the Foo Facility (which is implemented by our foo-
flvr) is a tried and true piece of software used for many years. Now you get
the idea for a SuperFoo utility. This new program is very much like the old
foo-flvr with the following differences:

B You need an additional method that (with a continuing lack of imagina-
tion) you call :w.

m This new method needs an additional instance variable, d, for its own
private use. Outside code doesn’t need to know about it.

M You still need an :x method that takes the same arguments as before, but
your new version needs to do something completely different.

M The original :y method is okay as it stands, but you now need to attach a
counter to it to see how many times it gets called.

M The original :z method is unchanged. However, when it internally calls
:x and :y, then it needs to use your new versions rather than the ones
written for foo-flvr.

Starting from foo-flvr and given the additional requirements listed above,
then you could do the following:

(defflavor super-foo-flvr ; flavor name
(d) ; instance variable
(foo-flvr) ; component flavor

) ; no options

(defmethod (super-foo-flvr :w) (args...)
...body forms...)

(defmethod (super-foo-flvr :x) (args...)
...body forms...)

(defmethod (super-foo-flvr :before :y) (args...)
.. .increment counter. ..)

Here is what you are seeing:

m The definition of super-foo-£lvr includes foo-flvr as a component flavor
(a defflavor field we have ignored until now). super-foo-flvr will (un-
less overridden) automatically inherit all instance variables and methods
of foo-flvr.
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B In addition to what super-foo-flvr inherited from foo-flvr, it also
defines a new instance variable, d, and a new method, :w.

B super-foo-flvr’'s version of method :x replaces foo-flvr’s version that
would normally have been inherited. (We’ll see how in a moment.)

M super-foo-flvr’'s version of method :y is called every time the original
version of :y (known as the primary method) is called but super-foo-
flvr's version is called first.

Notice that there is no mention of the :z method here. The actual code body
written for foo-flvr will be used for super-foo-flvr because of inheritance.
Furthermore, whenever :z does a send self of :x or :y, it always gets the :x
and :y handlers associated with its own instance—whatever they may be.

This definition of super-foo-flavor with foo-flvr as a component is equiva-
lent to the following alternative definition where everything is written from
scratch rather than being defined as a mixture:

flavor name
instance variables
component flavors
options

(defflavor super-foo-flvr-
(abcd
QO
(:settable-instance-variables a b ¢)
(:gettable-instance-variables a b ¢))

e ws e -

This alternate notation emphasizes that instance variables a, b, and ¢ are
settable and gettable from the outside world because they were gettable and
settable in foo-flvr. However, the new instance variable d is accessible only
from: within the methods themselves.

The above example also introduces additional defflavor syntax. defflavor
options such as :settable-instance-variables that refer to instance variables
can be written two ways. Written by themselves, they apply to all instance
variables of the enclosing defflavor (but not of its component flavors). If
written as the first element of a list, they apply only to the instance variables
names in the remainder of that list. Therefore,

:settable-instance-variables

would have applied to all four instance variables: a, b, ¢, and d; but
(:settable-instance-variables a b ¢)

applies only to a, b, and c.

Furthermore, this alternate built-from-scratch flavor definition would have
the following definitions for its methods:

M :w and :z—just as before
M :x—just as super-foo-flvr’'s (foo-flvr’s version would be ignored)

B A new version of :y that would combine the :y bodies for super-foo-flvr
and foo-flvr in the specified order:

(defmethod (super-foo-flvr :y) (args...)
...increment counter. ..
.. .original body forms. . .)

2-14
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The implications of all of this are a little overwhelming to take in at once.
Having foo-flvr’s instance variables and methods added to those of super-
foo-flvr is understandable enough. The action of a component flavor decla-
ration is very much like the traditional INCLUDE or INSERT statements in
other languages. The fact that super-foo-flvr’'s version of :x superseded
foo-flvr’s original version is also understandable because such shadowing is
frequently used in the link edit control files of conventional languages by
controlling the order in which libraries are searched.

However, what happened to the :y method is strange. It was not ignored, it
was not replaced, it was modified. Now when you send an instance of super-
foo-flvr a :y message, a counter will be incremented before the original body
of :y is executed. Incidentally, only instances of super-foo-flvr will see this
change. New instances of the original foo-flvr will still execute the original :y
method just as they have always done. super-foo-flvr’s use of foo-flvr does
not change the operation of foo-flvr in the slightest.

In flavor nomenclature, foo-flvr’'s :y method is called a primary method
because it is always executed. super-foo-flvr’s :y method is called a daemon
method because, like Maxwell’s daemon, it is never called directly but does
its thing automatically whenever its primary method is called. The principal
flavor daemons are :before, :after, and :around.

2.12.2 We now have enough background to thoroughly illustrate the flavor
producing mechanism. Here is a quick review of what we know:

B defflavor declares a set of instance variables definitions and an initially
empty method table to record all later methods that listed it as their
parent flavor.

M A make-instance on a flavor name returns an instance object customized
to know that flavor’s set of instance variables and its method hash table.

m In a simple case, such as foo-flvr, this instance object serves as a simple
dispatcher redirecting messages to their handlers based upon their opera-
tion name.

Now let’s consider the difference in the instance object for the original foo-
flvr and the one for the new super-foo-flvr.

W super-foo-flvr's instance object knows about one extra instance variable
and about one new method, but that seems straightforward enough.

M super-foo-flvr’s instance object knows about the same handler for the
:z operation that foo-flvr's instance function uses, so they share that
piece of code.

B super-foo-flvr's instance uses a different method definition for the :x
operation.

M super-foo-flvr’s instance includes a special handler for the :y operation.
This handler first calls the code for super-foo-flvr’s :before :y daemon
method and then calls the code for foo-flvr's primary :y method.

This last action is the most instructive. It is the heart of the flavor system and
is called method combination.
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In most programming languages, if you had wanted to add a counter to a
subroutine, then you would have had either to modify the source of that
subroutine or to find every call to that subroutine and insert a call to the
counter function in front of it. That is, to make the change, you would have
had to modify existing code to add a new function.

The flavor system, however, effectively did this modification for you by inter-
cepting calls to :y and doing the right thing. We have two distinct pieces of
code. foo-flvr’s primary :y method does the basic :y action, and super-
foo-flvr’s :before :y daemon method implements the counter.

When a :y operation is sent to an instance of foo-flvr, then that instance
function simply calls a handler that is foo-flvr's primary :y method. When a
:y operation is sent to an instance of super-foo-flvr, then that instance
(which, remember, is unique to super-foo-flvr) calls a handler that first calls
super-foo-flvr’s :before :y method that does the counting. Then it calls
foo-flvr’s primary :y method to do the actual work.

compile-flavor-
methods

2.13 There is a step between compiling defflavors and defmethods and
executing the first make-instance on a flavor name that we have alluded to
but glossed over. This step is called compile-flavor-methods even though it
has nothing to do with compiling defflavors or defmethods.

When the compiler is given a defflavor to compile, most of the information
eventually needed for execution is missing.

B None of this flavor’'s defmethods can be compiled yet because the
method table created for this defflavor must exist first so there will be a
place to remember associated methods.

B The component flavors of this flavor are known, but only by name. They
have not necessarily been compiled yet.

W The instance variables contributed by this flavor and defined in this
defflavor are known, of course, but none of the instance variables to be
contributed by component flavors are known yet.

W None of the methods contributed by component flavors are known yet.

The compiler will presumably come across all missing information eventually,
but it never knows when it has finished compiling everything needed by one
flavor.

Therefore, the first time a flavor is instantiated, make-instance pauses to
compile all the information that has been accumulating about this flavor into
executable form. This last-minute fix up (after all normal compiling and load-
ing is already done) is called compiling flavor methods because it creates the
handlers for the combined methods that will actually be executed.

For example, now that all component flavors are known, then all instance
variables from all sources are known. So a single master mapping table can be
created and recorded in the flavor definition. All methods will access their
instance variables indirectly through this mapping table.

Similarly, all methods are now known, along with details on who shadows
whom and who gets combined with whom. So a handler function is created
for each operation supported by this instance. Some handlers simply call the
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appropriate method function. Handlers for combined methods actually call
several method functions. For example, the handler for our :y method above
would first call super-foo-fivr’'s :before :y method function and then foo-
flvr’s primary :y method function.

All these handlers are then put into a method hash table for fast access each
time a message is sent to this instance. Notice that the simple method table
created when the defflavor was compiled simply remembered the
defmethods later compiled for this flavor. The compile flavor methods step
takes the method tables from this flavor and all its component flavors and
creates one coherent method hash table out of them.

Because the compile flavor methods step on a complex flavor can take a
noticeable amount of time, you may wish to execute the compile-flavor-
methods macro on your flavor at compile time. Thus, your user does not see
any extra delay at run time.

There is no advantage to doing a compile-flavor-methods on a mixin (that
is, a flavor that is used only as a component in some other flavor). Only
flavors that are actually instantiated by name need the mapping table and
method hash table.

Also, if you do your own compile-flavor-methods, then be sure you wait
until everything has been defined. If, for example, another defmethod is
compiled for the flavor before instantiation, then make-instance will have to
do another compile-flavor-methods anyway.

Executing unnecessary compile-flavor-metheds for mixin flavors or execut-
ing redundant compile-flavor-methods that will have to be redone later
create no logical problems. However, they do create garbage in the environ-
ment that cannot be garbage-collected.

Data Hiding and
Mixing Methods

Data Hiding

2.14 Method combination, the unique feature of flavors, is what allows
reusability of code and data hiding. If you need new code, then you define a
new flavor with new methods. If your new flavor can reuse some of the func-
tionality of existing flavors, then you can specify that your new flavor inherit
the existing flavor’s functionality (that is, its instance variable definitions and
methods).

If unconditional inheritance is not what you want, then you can modify it by
replacing an inherited method with one of your own (while still using all the
others unchanged). Alternatively, you can use the inherited method in modi-
fied form through method combination.

2.14.1 Data hiding is achieved because only the writer of the new flavor
needs to know how the component flavors must be modified. The end user of
a combined flavor never needs to know how a given operation came to be the
way it is. To that end user, :char-out always writes a character to the device
represented by whatever instance the message is sent to. Only the flavor writ-
ers for, say, the CRT 1/O flavor, the TTY 1/O flavor, the plotter I/O flavor,
and so on need to know about the unique handshakes required to actually get
the character written.

Furthermore, this data hiding capability compounds. If end users of the
:char-out operation decide to write a higher level 1/O flavor, they can use all
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Flavor Trees

the device-dependent knowledge embodied (and therefore hidden) inside the
ichar-out operation to build whatever else they need.

2.14.2 You have seen the :before type of method combination in the previ-
ous examples, but you have had to intuit exactly what it does. Our examples
so far have shown only one component flavor and a single level nesting of one
component within another. In practice, one flavor can have several compo-
nents, and each component may itself have components. Therefore, real life
flavors are often the result of mixing a whole tree of subflavors together. For
example, given the following flavor tree:

Al1-FLVR

TOP~FLVR ™] A-FLVR l
A2-FLVR

B1-FLVR
B2-FLVR

—————— B-FLVR t

then the flavors would be ordered top-down, depth-first as shown below for
the purposes of method combination:

TOP-FLVR
A-FLVR
Al-FLVR
A2-FLVR
B-FLVR
B1-FLVR
B2-FLVR

<-- first

Nk W

<-- last

Although this example does not show it, it is possible that a primitive flavor
may appear several places in the tree as a subcomponent of different flavors.
In such a case, only the first appearance of the duplicated flavor appears in
the final ordering.

Primary methods (that is, those with no explicit type) that appear earlier in
the flavor list normally shadow primary methods for the same operation con-
tributed by flavors later in the list. However, defflavor options can force
duplicate primary methods to be combined in other ways too.

Daemon methods such as :before and :after do not shadow each other.
Instead, they are all concatenated. All :before methods for a given operation
are executed in the order shown above, then the first primary method for that
operation is executed, and finally all :after methods for it are executed in
reverse order.

For example, assume that top-flvr and a-flvr define a certain primary
method, and all the B flavors define :before and :after methods for that
same operation. Then those methods are combined in the following order.

B~-FLVR  :before
B1-FLVR :before —
B2-FLVR :hefore
TOP-FLVR primar)]
B2-FLVR :after
B1-FLVR :after —_
B-FLVR  :after

Notice the characteristic nesting of the :before and :after methods of one
component flavor inside the :before and :after methods of component fla-
vors earlier in the ordered list of flavors. The primary method for a-flvr
doesn’t appear because it is shadowed by the primary method for top-flvr.

2-18

Programming Concepts



Flavors

The :before and :after daemon methods are used for this example because
their names imply their actions. Other method combinations process the
ordered list of flavors differently. But in all cases, the description of the
method combination is referencing that same ordered list.

The following is a partial list of method combinations that are available in
flavors. They are listed here just to get your imagination started.

NOTE: These are deliberately not rigorous definitions.

:before — All :before daemons are run before the primary method in the
order specified by the component flavor nesting. They can see, but not
modify, the arguments to the primary method. They can neither see nor
modify their primary’s return value. .

:after — All :after daemons are run after the primary method in reverse
order. They can see, but not modify, the input arguments to their pri-
mary. They can neither see nor modify their primary’s return value.

:around — An :around daemon is called in place of its primary. It can both
see and modify inputs to and return values from its primary. It may also
decide if its primary is even to be called.

tor — All :or methods are called in order. When any of the methods being
executed returns a non-nil value, execution stops, and that non-nil value
is returned. Otherwise, all are executed and the combined method
returns nil.

tand — All :and methods are called in order. When any of the methods
being executed returns nil, execution stops, and nil is returned. Other-
wise, the value returned by the last method is returned by the combined
method.

:progn — All :progn methods are executed in order, and the value of the last
one is returned.

:append — The values returned by all the methods are appended together to
form the return value of the combined method.

:nconc — The values returned by all the methods are nconced together to
form the return value of the combined method.

Method combination can be done by indicating the combination type in the
defmethod itself (as we did with the :before :y method). The manner in
which the methods of component flavors are to be combined can also be
specified in one of the defflavor options of the parent flavor.

Programming Concepts

2-19



Flavors

Other Features

2.14.3 So far, we have only talked about flavors depending upon compo-
nent flavors. Actually, two component flavors (both are components of a
higher level flavor) can communicate with each other if they define common
instance variables.

For example, assume mixin-A defines instance variables I and J while
mixin-B defines instance variables J and K. If mixin-A and mixin-B should
both be declared as components of another flavor, then that other flavor
inherits (among other things) instance variables I, J, and K. At run time,
references to instance variable J by mixin-A and mixin-B are to the same
instance variable in the higher level flavor.

What'’s in
a Name?

2.15 It all started in an ice cream parlor.

Near the MIT campus, the ancestral home of Lisp machines, was Steve’s®
Ice Cream parlor. Whereas many ordinary ice cream emporiums provide top-
pings you can put on your ice cream, Steve’s featured mixins. You would
choose your base flavor and your mixins, and they would be thoroughly
mixed together for you. The ice cream you were finally served was one new
flavor just as though it had been created that way from scratch.

The flavors software system does not just borrow a clever set of names from
an ice cream vendor. The software version also has the unique characteristic
that a base flavor compiled with mixins is almost indistinguishable from a new
flavor written that way from scratch. A complex flavor is not the layers and
layers of software one might first think. Compilation causes a mixed flavor to
be near enough to an original version that you do not have to be concerned
on that account.

Steve's Ice Cream is a registered trademark of Steve’s, Inc.
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SIGNALING AND HANDLING

CONDITION

Introduction

3.1 Lisp programs need a way to detect and handle special conditions,
expected or unexpected, that can occur during processing. You can handle
expected conditions with ordinary IF-THEN-ELSE style logic in the code
because you know where to expect which condition and what to do about it.
But what do you do about unexpected conditions? That is, how can you write
your program to reasonably handle the following:

B Conditions that are expected but that almost never happen, so it seems
burdensome to put explicit checks in the program (for example, putting
error checks around a hundred divide operations on the off chance that
one of them might some day be asked to divide by zero)

B Conditions that are detected easily enough by low-level routines but that
cannot be handled by those routines because they do not have the big
picture of what their callers were trying to do (for example, one math
analysis program may want to treat floating point underflow as a result of
zero while another such program may want to abort all processing)

B Conditions for which timing is totally unpredictable (for example, some-
one pressing the ABORT key while your program is running)

This report develops an intuitive explanation about what you need to do and
how you might go about doing it. The Explorer documentation provides the
detailed definitions of the Lisp forms you need. Since the condition signaling
and handling system is built upon flavors, you need a general knowledge of
flavor terms to make best use of this report.

Some General
Terminology

Condition

Condition Events

3.2 The main terms you need to know are condition, make-condition,
signal, handler, and proceed type. Unfortunately, experienced Lisp program-
mers have a bad habit of using each of these terms to refer to several distinct
but related concepts. Eventually, you will probably fall into the same habits
because the distinctions are not really important in practice. Rather than fight
the popular usage, the following definitions deliberately explain each family
of meanings together.

3.2.1 Lisp programmers use the one word condition to refer to condition
events, condition data structure (that is, flavor) definitions, and condition
instances.

3.2.1.1 A condition event is any event, situation, circumstance, state, or
such that the Lisp software or system microcode finds interesting for some
reason. For example, if you ask the file system to open a file that does not
exist, then that is a file not found condition event.

Condition events are frequently used to indicate errors such as trying to open
a nonexistent file, but you cannot assume that all condition events must be
errors. For example, an end of page condition event simply means your
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make-condition

output has filled up the screen and you have to do something about it (such
as wrapping around back to the top).

Furthermore, your idea of which condition events are errors may change
depending upon what you are trying to do. For instance, if you ask the file
system if a certain file exists, then the same condition event mentioned
above, file not found, is equivalent to the simple answer, No.

3.2.1.2 If a condition event is going to trigger the processing described in
this report, then certain information must be recorded, such as which condi-
tion event occurred and the circumstances of that particular occurrence.
Notice that we are talking only about a data structure definition here. That is,
this is just a template describing each condition event. When some specific
event occurs later, this template will be used to create the actual data object.

Since the entire condition signaling and handling system is built on flavors,
this data structure definition is really a flavor definition. For example, the file
not found condition event mentioned above is represented by the fs:file-
lookup-error flavor definition.

As a matter of convention, a condition event is commonly referred to by the
name of the flavor that defines its template. So, someone speaking of a
condition name is usually talking about the name of its defining flavor. There-
fore, if you ever define some of your own conditions, use reasonable names
for their flavors. In particular, if you give the type-of function a condition
instance, it would return that instance’s condition flavor name that, hope-
fully, describes the condition. Later we will see that a condition name can be
something other than just a flavor name. But for now, we can treat them as
the same.

Because interesting condition events are usually represented by flavors with
matching names, and because occurrences of such a condition event are rep-
resented by instances of those flavors, Lisp programmers tend to further con-
fuse newcomers by using the terms condition and flavor synonymously.

3.2.1.3 When a particular condition event occurs, an instance of its associ-
ated flavor is created to record that occurrence. Notice the distinction: the
condition flavor definition describes the generic condition event while the
condition flavor instance contains both the generic information common to
all such conditions and specific information about this particular occurrence.

If you do not understand this flavor terminology, never mind. The point is
that some of the information is shared by all, some of it is unique to the
occurrence, and none of it can ever be changed once it is created.

3.2.2 A condition instance is actually created by the make-condition func-
tion, which is a slightly customized version of the make-instance function
used for flavors. If you were to provide the extra arguments, you could use
the make-instance function directly instead of make-condition, but that is a
tedious thing to do and is prone to errors. You yourself may never need to
use the make-condition function because it is usually done for you by higher
level signaling functions.

3-2
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3.2.3 A signal is the action that brings to the attention of the system a con-
dition instance describing a particular condition event that has occurred. Sim-
ply making a condition instance does not, by itself, trigger any processing.
The condition instance must be signaled before anything happens.

Once again, Lisp programmers are casual about their terminology. Strictly
speaking, you are supposed to have a condition instance already available
before you signal it. However, several of the most convenient signaling func-
tions accept either an existing condition instance or just a condition name
plus some initialization values. When these functions are called with a con-
dition name, they go on and call the make-condition for you. So, when
someone talks about signaling a condition, you do not really know where the
signaled condition instance came from—but you do not usually care, either.

If you are familiar with the catch and throw functions in Lisp, then a signal is
analogous to a throw while the handlers described next are part of the catch
structure. The condition names are used as if they were throw tags.

3.2.4 The term handler, or handling, can also take on a number of related
meanings. In the most basic sense, a handler is just the piece of Lisp code
that does whatever is necessary to process a particular signal. By extension,
Lisp programmers often loosely refer to the Lisp forms that contain the han-
dler code (such as condition-bind, condition-case, and condition-call) as
condition handlers, or just handlers.

Finally, the detailed function descriptions in the manuals draw a subtle dis-
tinction between the handler functions used in condition-bind and the simple
list of forms that perform a similar role in condition-case and condition-call.
This distinction is sometimes important because condition-bind’s handler
functions are run in the same environment in which the condition occurred
(and can therefore see all bindings local to the code that signaled the event).
In contrast, the forms in condition-case and condition-call run in the envi-
ronment in which they (not the condition event) were defined. An example
of this difference is shown under paragraph 3.3.4, Handler Functions versus
Handler Forms.

A Simple
Handler Example

A condition-bind
Version

3.3 Rather than jumping into an explanation of all of the sophistication and
features of the entire system, let’s start with a simple example and build from
there. The basic example is first fully described using condition-bind and is
then briefly repeated with condition-case and condition-call to show their
additional features.

One additional word of caution: each of these forms contains features other
than what is used in this example. Therefore, do not artificially limit yourself.
Read the detailed descriptions in the Explorer Lisp Reference manual to get
the full power of this system.

3.3.1 For this example, assume that there is a block of Lisp code con-
taining a number of condition events that might be signaled. Of all these
conditions, we are interested only in handling conditions W, X, Y, and Z,
whatever they may be. (Remember, when we say we “handle condition name
X”, this means that the handler will receive an instance of the condition
flavor X—or, as explained later, of a condition built on flavor X.)
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Let’s further assume that we have written several functions:
B A function handler-w to handle condition W

B A function handler-xy to handle both conditions X and Y (which are
presumably closely related)

M A function handler-z to handle condition Z

If it was necessary for handler-xy to tell which condition, X or Y, was actually
sigrialed, then it could have used, say,

(typep signaled-instance ‘Xx)

which returns true if and only if its argument (called signaled-instance here)
is an instance of flavor X, which defines condition event X. Actually, we
would really want to use

(condition-typep signaled-instance ’x)

because, as alluded to before (but not explained yet), a condition name does
not always have to be a flavor name. The typep predicate above would tell
you if signaled-instance was built on the flavor X. The condition-typep predi-
cate would tell you everything that typep does, plus it would tell you if X was
a nonflavor condition name associated with signaled-instance.

(condition-bind (( w ‘handler-w )
((x y) ‘handler-xy)
(z “handler-z ))

forms to be protected that contain
signals of w, x, y, and z
3)

Now, here is what you are seeing:

B condition-bind is wrapped around a block of forms (represented by the
ellipses). This block of forms is referred to in these examples, for want of
a better term, as the protected forms.

B condition-bind can only see signals that originate in these protected
forms and responds only to signals of conditions w, x, y, and z. Signals of
any other conditions are ignored and are passed through to the code that
this condition-bind is nested within.

W The symbols w, x, vy, and z are the condition names that identify the
condition event this condition-bind handles.

M The symbols handler-w, handler-xy, and handler-z are the names of the
functions that are called if their corresponding condition is signaled.
Notice that handler-xy handles both condition x and condition y.

»  These handlers are called with at least one argument that is the con-
dition instance that was signaled and that contains all pertinent infor-
mation about this occurrence of the condition.

= Although this example does not show it, you can also provide addi-
tional arguments after the handler name. If the handler is called, its
first argument is the condition instance, and its remaining arguments
are the ones you coded in the condition-bind.
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= As elsewhere in Lisp, these handler function names could have been
replaced by lambda expressions. Lambda expressions are typically
used when the function is short and is used only in one place. For
example, if the handler-z function was very simple, then we might
have used:

#° (lambda (signaled-instance) ...handler-z forms... )

When a condition is signaled somewhere in the protected forms, the system
searches the condition-bind’s handler list from the first one listed to the last.
The fact that the handlers are searched in a known order can be useful, as
shown in the example under paragraph 3.4.2, An Example.

If the system finds a match as it searches the handler list, then that handler is
called. If it finds no match, then the search expands outward through the
code containing this condition-bind. As with any Lisp forms, condition-
binds (and related forms) can be nested to any depth. The innermost one
that can handle the signaled condition gets called. Outer level condition-
binds and so on never see signals that were handled lower down.

3.3.2 Now let’s repeat the previous example using a condition-case. There
are two differences. First, the order of the code to be protected and the
handlers is swapped. The protected code now comes first, and the handler
clauses matching what to do for each condition come second.

The second difference is that we now code the body of the handler functions
directly into the condition-case rather than just providing the name of a
function defined elsewhere. Remember that the condition-bind called its
handler functions with one argument that was the particular condition in-
stance that was signaled. The condition-case, however, binds that condition
instance to a symbol that you provide (named signaled-instance in this exam-
ple) for use by the handler forms.

The other change is that a condition-case protects only a single form. How-
ever, since a single Lisp form such as the progn shown in the example can
contain an entire program if necessary, this single form restriction is not
important.

(condition-case (signaled-instance)

(progn
Coe forms to be protected that contain
. signals of w, x, y, and z
e e l)
(w - - - body forms of handler-w
- )
(xy) --- body forms of handler-xy
--9)
(z - - - body forms of handler-z
- =)

The one distinction between condition-bind and condition-case that does
not shew up in this example is that the handler function in condition-bind
runs in the environment where the condition was signaled while the handler
forms in condition-case run in the environment of the condition-case.

Remember that the block of code being protected may be quite elaborate
with its own local bindings and declarations. A condition-bind’s handler
function can see these local binding and modify them if necessary. A condi-
tion-case’s handler forms can only see and modify things that are global to
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the condition-case form itself. These handler forms can never see things that
were local to the code they were protecting. The further implications of this
distinction are explained below in paragraph 3.3.4, Handler Functions Versus
Handler Forms.

One other option to condition-case that sometimes comes in handy is that
you can add a clause at the end with the pseudo-condition name of
:no-error. The forms in this clause are called only if no other clause of the
condition-case was executed.

When the :no-error forms are being executed, the list of symbols before the
protected form (which, in this example, is just the symbol signaled-instance)
takes on a different meaning. These symbols are bound to the values
returned by the protected form so that they can be accessed by the form in
the :no-error clause. For example,

(condition-case (A B C)

( ... protected form... )
(w P A = condition instance ... )
((x y) e A = condition instance. ... )
(z . A = condition instance ... )
(:no-error ... A,B,and C = return values ... ))

shows the same example as before, except that a :no-error clause has been
added and several symbols are provided.

If a condition W, X, Y, or Z were signaled, then A—the first symbol in the
list—would be bound to the condition instance, and the remaining symbols, B
and'C, would remain unbound. If, however, none of the listed conditions
(W, X, Y, or Z) were signaled, then the symbols A, B, and C would be
bound to the first three values returned by the protected form so that they
can be accessed by the :no-error forms.

3.3.3 A condition-call is structurally identical to a condition-case. Act-
ally, this example is not very good for showing off what a condition-call can
do. The whole point of a condition-call is to allow a more complex case
choice than simply matching the signaled instance to condition names. The
following example shows predicate expressions that mimic the original condi-
tion flavor choices. Just remember that these predicates can be as elaborate
as your program requires.

(condition-call (signaled-instance)
(progn
. forms to be protected that contain

signals of w, x, y, and z

o)
((condition-typep signaled-instance ‘w)
- - - body forms of handler-w
- =)
((or (condition-typep signaled-instance -x)
(condition-typep signaled-instance ‘y))
- — = body forms of handler-xy
- =)
((condition-typep signaled-instance -z)
- = - body forms of handler-z
- = =))
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3.3.4 The previous text mentions several times that the handler function
specified in condition-bind forms runs in the environment in which the con-
dition was signaled. Let’s see graphically what the difference is.

(condition-bind ((...handler...)
(...handler...))

s'ig'm.zl <~--handler runs as though it
e were called from this point

y o

A condition-bind is the only one in which a handler can fix up the error and
proceed from the signal point. It can proceed because the condition-bind
arranges things so it appears that the handler function was actually called by
the signal. Therefore, proceeding is little more than simply returning from the
handler (at least as it appears to the outside world).

(condition-case ()
(progn
.;igr.ml.

.o )
(...handler. . .)
(...handler...)
)

. <--— handler runs as though it
were called from this point

A condition-call (or condition-case) handler cannot proceed from the point
that the event was signaled because all code that caused the signal has already
been exited before the handler is called. condition-call arranges things such
that execution appears to branch from the signal point to the end of the
protected code block and then call the handler. Although the handler is given
the condition instance that was signaled, it can do no more than any other
inline code following the condition-call.

Now, what does this difference translate to in practice? If the same condition
can be signaled from many places within the protected code block under a
wide variety of circumstances, then there is very little that the handler code
can assume about which variables are bound at this particular site. In this
case, a handler function in a condition-bind cannot do much more than the
simple handler forms in a condition-case or condition-call.

If, however, that condition was signaled from exactly one spot (as shown in
the previous example), then the handler function could be written as though
it was a piece of local error fixup code. That is, it is almost as if you could
replace IF error THEN signal-condition with IF error THEN call handler
SJunction. Now the question arises, if such a handler function is equivalent to
an ordinary piece of inline code, then why bother with writing a separate
function and setting up a condition-bind?

Because, with this feature, the programmer who writes the code that detects
the condition need not devise a universal error handler that would fit all
future needs. That is, just because you can detect an error, that does not
mean you have any idea what the caller would like to do about it.

In other words, if you're writing a relatively primitive function, you know
what kinds of errors can occur (for example, a file doesn’t exist, an array has
the wrong dimensions, and so on). You signal a separate condition for each
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Conditional
Condition Handlers

kind of error. Then, when your colleague Smedley writes code that calls this
primitive function, Smedley (not you) can decide the appropriate way to han-
dle a particular condition (such as creating the non-existant file, truncating
the array to the correct dimensions, and so on).

As a general rule, all system functions that are meant to be called by someone
else would normally choose simply to signal the condition and let the caller
decide what is the best way to handle it. If the programmer who signals an
error knows a default to take if the caller had no better idea, then that pro-
grammer can use a default handler as described below.

3.3.5 Sometimes you want to handle a condition only if nobody else has a
better idea. Therefore, we need a way of establishing a default handler to be
used only if a real handler is not available.

The need for default handlers is not as rare as it might sound. Many condi-
tions are defined such that if they are not handled in the program, then they
will bring up the debugger on the terminal—often to the total confusion of the
end user.

Therefore, programmers trying to write user friendly application programs
may often find themselves saying, “I do not really know what to do with this,
but anything is better than the debugger.” Then they create a default condi-
tion handler that will probably give some vague message about a system error
and encourage the user to try again anyway.

condition-bind-default is the counterpart of condition-bind. When a condi-
tion is signaled, the system begins searching from the most recently bound
condition handler outward. It is looking for any regular handler clause that
lists one of the condition names that matches the signaled instance or one of
the condition flavors the signaled instance was built upon. If the system does
not find such a match or if none of the matches it finds will agree to handle
the condition (see paragraph 3.6, Provisional Handlers), then it starts back at
the signal site and performs another inside out search, this time for the de-
fault handlers.

3.3.6 Confusing as this name might sound, there is one last variant on con-
dition handlers that allows you to decide at run time if you actually want the
forms to be protected or not.

Regular Handlers Conditional Handlers
condition-bind condition-bind-if and
condition-bind-default-if
condition-case condition-case-if
condition-call condition-call-if

These if variants have an additional predicate argument. If this predicate is
true when the form is evaluated, then the enclosed forms are protected as
described in this section. If this predicate is false, then the forms are exe-
cuted without protection as though the condition handler had never been
coded.

One use of these conditional condition handlers is to make a production pro-
gram handle errors differently, depending upon whether the program is being
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run in a production environment by an end user or run in a debug session by
the program’s author. For example, in a production run, the condition han-
dlers might be in force to change internal errors into messages an end user
can deal with. In a debug run, however, the condition handlers would be
turned off so that the author can use the debugger. For example:

(condition-bind-if *production-mode-p*
(w ‘handler-w )
((x y) ‘handler-xy)
( z ‘handler-z ))
forms to be protected for the
end user but not the author
)

Therefore, if *production-mode-p* is false, then the condition handler func-
tions are not bound and the forms are not protected—just as though the
condition-bind had not been wrapped around them. If, however,
*production-mode-p* is true, then the forms are protected just as described
for condition-bind above.

The Condition
Hierarchy

Component
Flavors

3.4 The discussion so far has simply assumed that each condition event is
represented by one flavor definition—which is true as far as it goes. But some-
times you want to handle each condition individually, and sometimes you
want to handle related conditions as a group. Therefore, we need a way of
establishing a hierarchy of conditions.

For example, suppose a condition was signaled (remember, signaled means
that it was detected and formally presented to the system for handling). You
might approach your task of establishing a hierarchy by asking some ques-
tions:

W What kind of condition is it? (Let’s say it was an error condition.)
® What kind of error condition is it? (Let’s say an arithmetic error.)
B What kind of arithmetic error? (Let’s say a divide by zero.)

In other words, one situation (a divide operation that had a divisor of zero)
can imply many different things (condition, error, arithmetic exception, or
divide by zero) depending upon what the programmer was trying to do at the
time. For example, if a programmer was trying to maintain an error log, then
he would need a handler for an error condition that would intercept all errors
whether they were arithmetic exceptions or not. If, however, you are pro-
gramming an iterative algorithm, then you may want, say, to intercept only
divide by zero arithmetic exceptions so that you will know when to terminate
the iteration.

3.4.1 How do you create a Lisp object (the condition instance signaled by
the divide operation) that implies “I am a divide by zero, which is a kind of
arithmetic exception, which is a kind of error, which is a kind of condition”?
The Lisp flavor system provides an ideal answer because it allows you to build
flavors on other flavors.
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For example, there is a specific flavor for divide by zero (named sys:divide-
by-zero), which, among other things, records the divide by zero error
message. But remember that a flavor can be built upon another flavor. In this
case,

m the Divide by Zero Flavor (and other arithmetic exceptions) is built upon

B the Arithmetic Error Flavor (named sys:arithmetic-error) which, in
turn, is built upon

m the Error Flavor (named simply error), which (along with all conditions)
is built upon

B the Condition Flavor (named condition)

A divide by zero operation causes the Divide By Zero flavor to be instan-
tiated. Because of the nesting of flavor definitions, this one instance of the
Divide By Zero flavor carries along with it its entire pedigree, so to speak,
which includes all the information necessary to treat it as a specific divide by
zero error, an arithmetic exception, an error, or just as a general condition—
depending upon what you are interested in.

A word of caution: at this point, the nomenclature begins to break down
again. Since all conditions are defined as flavors, Lisp programmers tend to
use the terms condition and flavor interchangeably. When they speak of an
error condition, they are probably talking about a condition built on the Error
flavar or an instance of that condition rather than about an erroneous situ-
ation. Similarly, a condition instance usually means an instance of a flavor
that happens to define a condition. The final confusion is that each condition
is represented by a unique flavor (of the same name), and all these flavors
are built upon the base condition flavor. Therefore, there is such a thing as a
Condition condition.

3.4.2 Finally, consider an example of how this hierarchy might be used to
sort out conditions. Assume that your application program is doing file I/0
and you would like to shield the user from some of the more obscure error
messages built into the system by providing your own more informative mes-
sages. After consulting your handy reference manual, you discover that

B The fs:file-operation-failure condition flavor represents all of the I/0
errors a user is likely to cause by mistake.

M The fs:file-lookup-error condition flavor is one of several flavors built
on fs:file-operation-failure and is the one that covers the sorts of errors
you get from, say, a typo in a pathname.

B The fs:file-not-found condition name is build on fs:file-lookup-error
and indicates that the directory exists, but the specified file is not there.

Therefore, you might wrap a condition-case around your I/O code with sev-
eral handler clauses such as those in the following:

(condition-case (signaled-instance)

( ...form containing file ilo... )
(fs:file-not-found .. .handler forms... )
(fs:file-lookup-error . ..handler forms... )
(fs:file-operation-failure ...handler forms... ) .
(error .. handler forms... ))
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which means:

B If the file system cannot find a particular file in an existing directory, then
the handler for fs:file-not-found is called. A typical error message might
be, Your directory exists, but it does not contain the file you
asked for.

M If the file system has some other problem in finding the file, then the
handler for fs:file-lookup-error is called. A typical error message might
be, I cannot find your directory from the pathname you gave me.

m If there was an I/O error that did not involve identifying the file, then the
fs:file-operation-failure handler is called. A typical error message might
be, I got an I/0 error while trying to access your file.

W If any other error occurred, then the error handler is called. A typical
error message might be, I got a system error while trying to access
your file. [Remember, error is the name of a condition flavor as well
as of a function.] :

When the system is searching for a handler for a signaled condition, it checks
each condition-case clause. It looks to see if any of the condition names
associated with the signaled condition match the condition name (or names).
In the above example, if error had been listed first as shown in the following,

condition-case (signaled-instance)

( ...form containing file ito... )
(error ... handler forms. .. )
(fs:file-operation-failure ...handler forms... )
(fs:file-lookup-error .. .handler forms. .. )
(fs:file-not-found ... handler forms... ))

then all errors would have shared that same generic “you got a system error”
handler, and the other handlers could never be reached. For example,
assume that an fs:file-not-found error is signaled. When the system begins to
search the handler list, it finds an immediate match in the first entry, error,
because fs:file-not-found was built on error and therefore is considered to
be a type of error. In contrast, the general error handler followed its children
in the first version; they got first chance to be called with the generic message
reserved for unanticipated system errors.

Ad Hoc
Condition Names

Unique Messages

3.5 All conditions are built on flavors, and the names of these flavors can
be used as condition names—but that is not quite enough. For example, sup-
pose you have a function that detects ten fatal error situations. You want to
signal an error condition for each such situation, but you don’t see the need
for any special error handling other than a unique error message.

3.5.1 From what has been explained so far, you might be led to believe that
you will be forced to define ten new but trivial flavors to handle the ten error
cases. Fortunately, however, you don’t have to go to this extreme. Since the
message text is the most common difference among signals, you can just sig-
nal one error and provide a pertinent message for each one.

The easiest way to signal a general purpose fatal error is with the error func-
tion, which takes a format-string and format-args in the manner of the
format function. For example,

(error "-a READ AN ILLEGAL CHARACTER -~c." fun-name in-char)
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would be a typical fatal error message reporting that a certain function (repre-
sented by the argument fun-name) read a certain illegal input (represented by
the argument in-char).

Appropriate error message text solves the problem of human readable errors
but not software readable errors. If the only thing the error handling system
ever did were to print messages to the terminal, then you would never need
anything more than the format function. But the whole point of condition
signaling and handling is that your programming power is multiplied many
times if the software itself can detect and rationally respond to a signaled
error.

3.5.2 Returning to our previous example of your function with ten error
signals, external software and the operator at the terminal are both able to tell
that you have signaled an error—but only the operator can tell which one
from the message text. Although the message text is available to the software,
the study of artificial intelligence has not yet progressed to the point that
software can reliably infer the nature of an error from a programmer’s one-
line error message. How can the software tell which of the ten errors was
signaled?

Once again, it seems that we must resort to writing ten trivial flavors differing
only in name so that the condition handlers can tell them apart. But once
again, the answer is, “Not necessarily”. The problem of providing software
readable distinctions among signals is so common that extra condition names
can be attached to a condition flavor instance.

That is, when a condition is signaled, an instance of some flavor is instan-
tiated as described above. And also as described above, this instance auto-
matically carries with it all the names of its component flavors as condition
names. However, at instantiation time, you are allowed to add extra ad hoc
names as properties of that instance.

3.5.3 If you look through system code, you will see that most fatal errors are
signaled with the ferror (that is, fatal error) function as shown below:

(ferror nil "...format string..." arg arg arg...)

Actually, the error function mentioned above is implemented as a call to
ferror with the first argument as nil, as is shown here. These calls provide
unique error messages to an anonymous error condition.

The ferror function allows simple but limited access to the ad hoc condition
names feature. For example, you could signal your ten different fatal errors
by putting something like the following at each signal point:

(ferror ‘errl "...error message 1 ..." argarg ...)
(ferror ‘err2 "...error message 2 ..." argarg ...)
(ferror ‘errl0 “...error message 10..." argarg ...)

Of course, you would hopefully come up with more meaningful signal names
than erri, err2, and so on—but the error handler software doesn’t really
care. Each signal will now have a unique condition name that can be
detected. The condition handling software arranges things such that all
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condition names are treated the same way regardless of whether they repre-
sent a component flavor name or just a last minute add-on name.

In the above example, the actual condition flavor being signaled is ferror in
all ten cases. But each instance of ferror has a different condition name in its
property list. Regardless of how many ad hoc condition names may be used,
there must be at least one flavor underlying each condition.

3.5.4 1If you took the time to check the system software, you will find that
I've lied to you (but all in a good cause). The earlier text described each
condition name as being represented by a distinct flavor. Actually, some are
flavors (for example, fs:file-lookup-error), and some are merely ad hoc
condition names attached to instances of other flavors (for example, fs:file-
not-found is really just a condition name on the property list of an instance
of fs:file-lookup-error).

This deception was useful to simplify the initial explanation. The deception is
also not too important because all relevant condition name accessing func-
tions handle the two different sources of condition names transparently. If
you pressed the point, you would find that even experienced Lisp program-
mers don’t always know (and fewer care) which condition names are really
flavors.

3.5.5 Calling ferror with a unique symbol solved the immediate problem of
creating software distinguishable signals, but what if we also wanted to treat all
ten errors signaled from your function as a group on some occasions. What
we need to do is to attach two ad hoc condition names to each signal: one is a
unique symbol such as we are now unimaginatively calling err1, err2, and so
on; the other is the same for all, such as my-func.

Unfortunately, ferror itself accepts only one condition name. The easiest way
to get several is to use defsignal. Updating that last example, you would have
the following declarations at the front of the file containing your function:

(defsignal fel (ferror erri my-func))
(defsignal fe2 (ferror err2 my-func))

(defsignal fel0 (ferrox: errl0 my-func))

and your actual signals would look like this:

(signal “fel "...error message 1 ..." argarg ...)
(signal ‘fe2 "...error message2 ..." argarg ...)
(signal “fel0 "...error ;nessage 10..." argarg ...)

Consider the first defsignal: it defines a signal name, fe1, which is to be built
on the flavor ferror (that is, the first symbol in the list) and is to have the
additional condition names err1 and my-func. defsignal actually allows sev-
eral other pieces of information to be associated with the signal name, but
these are the ones that interest us now.

Programming Concepts
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Once the signal names fe1 through fei0 have been defined, you can signal
any of them as many times as you wish with the signal function, providing a
different error message each time. If you were to signal, say fes, then an
instance of the flavor ferror would be instantiated with properties that
recorded the extra condition names of errs and my-func.

This particular example uses distinct signal and condition names for clarity.
In practice, the signal name can be—and often is—the same as one of the
condition names.

The following is an example of how you might use both the specific condition
names and the general one too:

(condition-case ()
(...protected form...)

(err3 .. <handler forms for error 3. ..)
(err7? .. .handler forms for error 7. ..)
(my-func ...default handler forms. .. ))

and here is what you are seeing:

B None of the error handler forms in this particular example need to refer-
ence the condition instance that was signaled, so the list immediately
before the protected form is empty.

W  Error 3 and Error 7 are handled uniquely.

B All other errors are handled as a group by a default handler.

Provisional
Handlers

3.6 Sometimes a handler, especially a general purpose handler, is not able
to handle all of the conditions handed to it. For example, an Arithmetic
Exception condition handler may know how to overcome all arithmetic
exceptions except for Divide By Zero conditions. Therefore, it needs a way of
gracefully declining a condition that it has already tentatively accepted.

When a condition is signaled, the system begins its inside out search of con-
dition handlers, looking for a match. When it finds one, then it gives the
condition instance to the matching handler. If the handler finally tells the
system, “I took care of it,” then condition processing is finished. If, however,
the handler tells the system, “I cannot take care of this one after all,” then
the original search resumes, first in any clauses remaining in the current con-
dition handler and then in the outer level statements. See paragraph 3.7.3, A
Sketchy Example, for an explanation of how a handler accepts or rejects a
signal.

Error Recovery

3.7 So far, we have discussed various ways of informing special code (the
handlers) that some noteworthy situation (the condition events) has
occurred. Since few conditions are actually catastrophic and force processing
to stop, we need a way for handlers to continue processing, possibly after
some fixup, if that is a reasonable thing to do.

3-14
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3.7.1 One option is always available to condition handlers (or any other
Lisp code, for that matter): a handler can always throw to a tag in some
higher level enclosing code. This action has the effect of making the program
go back and start over. This form of error recovery is so common that there
are functions, such as error-restart, that do it for you directly.

Notice that error-restart is another unfortunately named Lisp function
because it does not necessarily have anything to do with errors. It would be
more appropriate to call this the conditional-restart function.

3.7.2 A second, and far more powerful, feature of the condition handling
system is proceeding with proceed types. The details on how to define and
invoke these proceed types are quite elaborate and are described in the
Explorer Lisp Reference manual. These paragraphs will just give you an intui-
tive feeling for what they do.

Some error condition events have an obvious fix that might work and allow
processing to continue. For example, if your program tried to access another
host on the network and received a timeout, then you would probably want to
be able to try it again knowing that these things sometimes just fix themselves.
Similarly, if your program collected a pathname from the user at the terminal
only to find that there was no such file, then you would probably want to ask
the user if he had any other ideas. This is the notion of proceed types.

Three things must be done before processing can proceed from the point at
which the condition was signaled:

B The condition flavor must have been defined with whatever proceed
types might be pertinent.

B The code that signaled the condition must indicate in the signal which, if
any, of this condition’s proceed types it is prepared to handle.

M The handler code (which must be in a condition-bind) must either
decide for itself or ask the user at the terminal whether it wants to pro-
ceed, whereby it returns the appropriate proceed type to the system,
along with any new information that is needed.

The system then returns the fixup information, if any, to the code that origi-
nally signaled the condition along with a note as to how it is to proceed.

Notice that just because a condition has a potential proceed type, this does
not mean that the code at the site that detected the condition knows how to
correct the problem even if it were given the right data. That is why each
signal point can itemize which proceed types it can use.

3.7.3 Let’s suppose that you have signaled an error that has several proceed
types, all of which you can use if someone in the outer world gives you
replacement information. At the point where you detected the error, you
would signal it just as described above. If the user at the terminal (or some
intervening error handler) decides not to proceed, then the signal function
never returns. This is what ferror would do, for example.
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Resume Handlers

Ignoring Errors

If someone (or something) does decide to proceed, then the signal function
you called returns with a proceed type keyword as its value. You then use that
keyword in, say, a case statement to decide exactly what must be done.

Some proceed types imply the need for new data. For example, the
sys:wrong-type-argument error condition has :argument-value as a pro-
ceed type that indicates a new value is to be substituted for the bad one. If
the user decides to proceed from this error, then the signal function returns
two values: the :argument-type keyword and the new value. In general, if a
given proceed type requires N arguments, then signal returns N+1 values
(that is, the proceed type keyword plus its N arguments).

Let’s look at this same example from the point of view of a condition-bind
error handler for sys:wrong-type-argument. If the handler decides not to
handle the condition, then it returns nil, and the search for an error handler
resumes. If the handler does handle the condition, it returns the multiple
values described above (proceed type keyword plus arguments), which are
then returned by the signal function.

3.7.4 The basic notion of proceed types implies that the range of possible
ways to proceed is inherent in the condition and that the selection of which
proceed types can be handled in a given instance is stated in the signal itself.
However, there may be other ways to proceed with the overall process that
are independent of the particular signal.

For example, assume that a function tries to open a file only to find that there
is no such file by that pathname. That function can signal fs:file-not-found,
which, reasonably enough, has the proceed type :new-pathname. However,
the outer level of software that called the function in the first place may
understand that a nonexistent file may really mean something else. There-
fore, this software may want to offer some additional proceed types such as
“give up trying to open that file”. This notion of non-local proceed types is
the basis for resume handlers.

You use a resume handler when you—with your broader view of what you are
trying to accomplish—know that a reasonable way of handling certain errors is
to try something seemingly unrelated. Therefore, you wrap a resume handler
around the code that is likely to signal the error that interests you.

A fairly common example of this try-something-else-instead strategy can be
seen in most errors that are handled by the debugger. The first few proceed
types listed are specific to the particular error that was signaled. At the bot-
tom of the list, however, will be some extra proceed types such as reset the
process, return to top level, and so on. These are the nonlocal proceed types
that are more like alternatives to the error than like ways of handling the
error proper.

3.7.5 It may be pushing the definition a little to class the ignore-errors
function as a form of error recovery, but it is quite useful anyway. In the
simplest case, you wrap it around a form if you want to say “Do this if you
can, but never mind if you can’t”. For example,

(ignore-errors (delete-file “temp-pathname”))
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says, “Delete my temporary file if you can. Otherwise, forget it.” In the more
general case, you can use this function as a pass/fail condition handler. For
example,

(multiple~value-setq (stream failed-p)
(ignore-errors (open “tentative-pathname”))
(when failed-p
(setq stream (open “fallback-pathname”)))

says, “If I cannot open the first pathname (tentative-pathname) for any rea-
son, then use my alternate (fallback-pathname).”

It may not be a good idea to ignore errors as blatantly as the above example
did. It does come in handy, though, to suppress errors while you are trying to
clean up during an error exit. That is, some fatal error has occurred, and you
would like to cleanup as much as possible before you exit even though that
clean-up may trigger other errors. By judicious use of ignore-errors, you can
assure that your user will not be faced with an embarrassing error in error
situation.

Signal
Processing
Summary

3.8 When a Lisp program or the system microcode detects, say, a foo situ-
ation, it does the following:

1. It assumes that a foo condition flavor
B Has previously been defined

W Has been built on the flavor or flavors of more general conditions
that logically include this one in some manner (it can be the direct
descendent of several different conditions, if that makes sense.)

W Has instance variables, if needed, that will hold information unique
to the particular situation that might be useful in handling the
condition

B Has a list of proceed types, if needed, that represent all of the things
that might be done to recover from this condition gracefully if anyone
wants to try

2. It instantiates the foo condition flavor with its instance variables initial-
ized. (For example, a File Not Found condition flavor is instantiated with
the pathname instance variable initialized to the pathname that could
not be found.)

Since a condition flavor may be signaled from more than one point under
a variety of circumstances, all of the proceed types defined in the flavor
may not be usable from every signal point. Therefore, the instantiation of
the condition flavor may limit which proceed types can be accommo-
dated.

Notice that merely instantiating this condition flavor does not do anything
in itself. Nothing happens until this instance is signaled. Although condi-
tion instances are normally instantiated as the conditions are detected
and signaled immediately, they can be instantiated ahead of time and
saved until needed.

3. It signals this newly created foo condition instance, thereby officially
informing the system that there is a condition that needs to be processed.
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4.

. The system begins at the point where the foo condition was detected and

searches the enclosing condition-cases (and related special forms) from
the innermost to the outermost. Within a given condition-case, its han-
dler clauses are searched in order.

If no regular handlers are found, the search returns to its original starting
point and begins a new inside out search, this time for default handlers.

If no default handlers are found, the system goes to the handler of last
resort. For conditions built on the Error condition, the handler of last
resort is the debugger. For other conditions, the handler may do nothing
more than resume the program as if nothing has happened; it all
depends.

The search is looking for a handler to match the foo condition itself or
any of the conditions upon which the foo condition is built,

When a handler is found that matches one of the component conditions
in the foo condition, that handler is tentatively given that instance for
processing. The handler must do one of three things after it has looked at
the condition:

®  Change its mind and decline to handle the condition after all (in
which case the original search resumes)

® Do whatever processing it deems necessary (which may include
prompting the user for suggestions based upon proceed types) and
then throw to an outer level tag (which presumably resets the pro-
gram to some earlier state before resuming execution)

B Do whatever processing it deems necessary (which may include
prompting the user for suggestions based upon proceed types) and
then tell the system to proceed from the point where the foo condi-
tion was signaled

3-18

Programming Concepts



DEFSYSTEM AND MAKE-SYSTEM

Introduction

4.1 Let’s assume you have an interpreted Lisp program composed of several
files. What help would you like in managing this system? An aside: all the
problems described here apply equally to a program of three files or to a
system of 100 files. The only difference is that the more files you have, the
harder it is for you to ignore the problem of managing the system.

M You want to load every file that needs to be loaded but you don’t want to
bother to load anything else.

B  You want to load all files in the right order (if that happens to make a
difference—as it sometimes does).

If you are worried about the time it takes to load your system, and you will be
eventually, then you might also be interested in a related issue. You don’t
want to needlessly reload a file that is already satisfactorily loaded.

So far, we've been talking about the simple case of interpreted files—but what
if you have compiled files? The list started above now gets more complicated.
You can state the problem many ways, but it all comes down to making sure
the program you are executing is the same as the source you are reading. The
basic requirement is that you always want to load the compiled version (for
the machine to execute) that matches the latest source (which you are read-

ing).
This last requirement implies the final major set of requirements:

B You want to load the compiled version that matches the latest source,
which may mean you have to recompile it before you load it if the com-
piled version is out of date.

m If you recompile, then you want the files presented to the compiler in the
right order. (Before, you had to worry only about their being loaded in
the right order.)

Our pair of simple sounding requirements at the top has grown to six not-so-
simple statements of dependencies and conditions.

The Explorer’s defsystem declaration and make-system function are
intended to manage the problem described above. The defsystem defines a
system by listing all of its parts and describing everything that needs to be
done to compile and load the system.

make-system takes a defsystem description along with directives from you
and manipulates your system for you. These manipulations range from a com-
plete rebuild of the universe that causes everything to be recompiled and
reloaded to a simple describe operation that tells you what the system has in it
and what needs to be done to it.

Given the preceding introduction to the problem, what follows explains how
defsystem and make-system work—after a lot of preliminaries.
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Conditions and 4.2 1If it weren’t for conditions and dependencies among files, there would

Dependencies be no reason for defsystem, for make-system, and for many gray hairs.
Therefore, we must concentrate on what the required conditions and
dependencies are and what causes them. Remember the difference between a
dependency and a condition:

B A dependency is something like saying “I can’t do A correctly until I
know about B.”

W A condition is like saying “I need to do A only if X is true.”

Common Conditions 4.2.1 Let’s consider some of the obvious conditions and dependencies that
you frequently run across. First, the conditions:

B The main compile condition is “Compile a source file if it’s newer than its
object version.”

B A common supplemental compile condition is “Compile a source file if
another file that defines code that must be expanded inline while compil-
ing this source file (for example, a file containing defmacros and
defconstants) is newer than this source file’s object.”

B The main load condition is “Load the version of a file on disk if it is
newer than the version that is already installed in the system.”

Although numerous other compile and load conditions can be used, these
three are the obvious ones, and they cover just about everything you will
normally need.

Common 4.2.2 Load dependencies are usually the same as compile dependencies, so
Dependencies we won’t treat load dependencies separately for now. Compile dependencies
are common, and that’s where all the fun is. The Lisp compiler has a signifi-
cant set of do-this-before-you-do-that rules. If you could put everything in
one file, then a lot of your problems would go away (and you certainly would
not need a make-system), but you would still need to be careful of certain

orderings (much more on that later).

If—as is most often the case—you must break your program into several files,
then you must mentally analyze the ordering dependencies imposed by the
compiler. Such analysis helps you know how to partition your code into sepa-
rate files so you can finally state the code dependencies in terms of file order-
ing. Got that?

Or you might look at it this way: those heartless compiler writers have placed
specific limitations on the order in which the Lisp forms in your program must
be presented to their compiler. If everything were in one file, then you would
just shuffle the source around until the compiler stopped complaining. If,
however, things are in several files, then you must describe the necessary file
ordering to a defsystem and then have a make-system handfeed the files to
the compiler and loader according to what that defsystem says. If you have
done the defsystem right, a hundred-file system compiles just as smoothly as
a single-file system—if you have done the defsystem right.
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On the other hand, the worst case is really bad. If you have been too casual
about the way you broke your code up into files, then you may find that there
is no order of compiling and loading that is unconditionally correct!

4.2.3 To recap our odyssey so far, we have listed six intuitive require-
ments for getting a system loaded and ready to execute, which can be boiled
down to four guidelines as follows:

1. Compile any file whose object is out of date for any reason, but do not
compile anything else.

2. Present the files to the compiler in the right order.

3. Load the latest version of all objects needed by the system, but do not
load anything else.

4. Present the files to be loaded in the right order.

On closer inspection, those four requirements imply various conditions and
dependencies for compiling and loading a system. Of these, the compiling
dependences are the most detailed and hardest to get right. Finally those
compiling dependencies are imposed by the compiler, so before you even
consider writing a defsystem, you need to figure out what the compiler
expects of you.

However, if you try to wade through a stark list of DO this and DON'T DO
that compiler ordering rules, then you will get discouraged sooner than neces-
sary. Therefore, it is useful to understand the problems that Lisp presents to
the compiler for which these rules are a solution.

Partitioning a
Program
Into Files

4.3 Figuring out how to partition a large program into multiple files is a
small field of study in itself. Of course, you want to break your program into
functional modules, but consider the following:

m If you really do it badly, there will be no way of compiling and loading
your program and getting it right.

m If you don’t do it well, then you'll find that make-system wastes a lot of
time needlessly recompiling and reloading files.

The remainder of this section refers to macro-like definitions (or sometimes
just macro definitions) that include defmacros, defsubsts, defstructs,
defflavors, and (by a slight stretch of analogy) defconstants. These all have
the common characteristic that at least part of what they define must be
expanded inline by the compiler. Therefore, if their definition is changed,
then not only must their definition be recompiled, but all source in which that
definition was expanded inline must be recompiled too.
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Suppressing
Needless
Recompiles

4.3.1 As mentioned above, the main compile condition is source newer
than object. The need for a recompile in this case is obvious and always use-
ful. It is the recompiles triggered by changes to macro-like source that are
open to pitfalls. The chain of circumstances is as follows:

B make-system can only cause complete files to be compiled or loaded.

M Therefore, defsystem describes conditions and dependencies only
among complete files.

M Therefore, if anything changes in a file, then everything in the file is
recompiled (whether it was actually changed or not).

B Therefore, if a file is recompiled, then all other files that depend upon
any macro definitions in the newly recompiled file must themselves be
recompiled (whether their particular macro definitions were actually
changed or not).

In an extreme case, changing one macro definition can trigger a recompile of
the entire system. The rules of thumb to limit recompiles are as follows:

W If a macro-like feature is to be used only in one file, then place its defini-
tion at the top of that file.

B Otherwise, put macro-like definitions that tend to be used together into
the same file. Therefore, changes to several macros still cause the same
set of files to be recompiled.

M Avoid defining macros that use a lot of other macros, if at all possible.
Otherwise, a cascade effect of a change to one macro file causing a
change to all macro files can then cause all files to be recompiled—
regardless of whether you need them to be.

M Put functions that use the same macro-like definitions in the same file or
set of files while excluding other functions that do not use those defini-
tions.

It Worked Last
Night—Why Won’t
It Compile This
Morning?

4.4 This is a good place to illustrate a delightful eccentricity of the Lisp
environment: just because your program compiled cleanly one time does rot
mean that it will compile at all the next time. Why? Because almost every-
thing you do modifies your environment.

Let’s suppose that you compile a file and get a warning something like Error:
use of X came before definition of X. So, you innocently try compiling it
again and it works! Your problem is solved (or so you think), and you con-
tinue happily on. But what almost certainly happened was that the second
attempt to compile the use of X saw the definition of X left over in the envi-
ronment from the previous compile, so no official warning was issued—but
that does not necessarily mean you win.

What if between the two compiles you made a few changes, including a
change to the definition of X. Now, during the second compile, the first uses
of X will be compiled with the old definition while the later uses will get the
new definitions. Since the compiler always had a definition available when-
ever it needed one, it never issued any warnings. You now have internal
inconsistencies in the object as executed that do not appear in the source as
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read. The compiler will try to do the right thing and warn you of inconsisten-
cies like this that it sees. However, it can’t see everything, so good luck.

The next day (that is, after the machine has been rebooted) you’ll get the
same “use before definition” warnings again. And again it will go away after a
recompile. Think real hard. It’s trying to tell you something.

4.4.1 For plain vanilla files, doing a Compile Buffer command from the
editor is supposed to have the same effect as a compile-file followed by a
load from a Listener (which is what make-system essentially does). How-
ever, these two go about their job differently:

B Zmacs’ Compile Buffer does an incremental compile and load. That is,
each top level form in the buffer is first compiled and then loaded before
the next top level form is compiled.

B make-system’s approach compiles the whole file in an environment that
does not yet include any of the file's contents, and then it loads the
completely compiled file.

So far, so good. These two alternatives behave as you would expect. How-
ever, if you take advantage of certain advanced programming features of the
Explorer, then you might be in for a surprise.

In particular, you can bring problems on yourself if you deliberately force
things to be done at compile time that are normally done at load or eval time.
For example, wrapping an eval-when (compile) around a group of forms or
prefixing a form with sharp-sign reader macro #. will cause it to be executed
at compile time rather than just to be turned into code for later execution.

Of course, everything that appears in one of these forms must be known at
compile time (not exactly the same as saying everything is compile time con-
stants)—and that’s the catch. If you are doing a Compile Buffer from Zmacs
(incremental compile and load, remember), then the result of forms com-
piled and loaded at the top of the buffer are known at compile time for forms
compiled at the bottom of the buffer. But! If you were to use a compile-file
as make-system does, then nothing is known at compile time unless it is a
true compile time constant.

For example, assume that you have a compile time calculation at the end of
the file that relies on a variable defined by a defparameter at the beginning
of the file. If you use Compile Buffer in Zmacs, then it will work because the
defparameter is both compiled and loaded before the compiler continues.
Therefore, the defparameter’s value is ready and waiting in the compile time
environment when the later compile time calculation occurs.

But things are different for make-system’s compile-file. Again the
defparameter is compiled, but its value is not loaded into the compile time
environment. When the compiler reaches the later compile time calculation
that attempts to use the defparameter’s value, you get a standard undefined
variable error even though the definition for that variable (the
defparameter) is sitting right there at the top of the file, as plain as day.

Therefore, if you use eval-when or #. to force extra calculations at compile
time, then you will need an extra measure of embarrassment insurance.
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Embarrassment
Insurance

4.4.2 1If you have gotten to a point where your program is finished and it
works (or maybe it’s not finished but you’'ve got to turn it over to someone
anyway); then you can buy some embarrassment insurance by doing the fol-
lowing: ‘

1. A Precondition: if your program already permanently exists in the load
band, then either try to kill it or use some other load band that does not
have it installed for the following steps.

2. Starting from a cold boot, recompile your entire program without loading
anything not needed by the compiles [for example, (make-system 'foo
:recompile :noload)].

3. Starting from another cold boot, load your entire program without recom-
piling [for example, (make-system 'foo)].

If both the compile and the load went smoothly, then you can have a strong
degree of confidence that your program can be ported and installed on other
systems. On the other hand, if you’ve never done this before, you may be
surprised and dismayed (I know I was).

Summary of
Compile
Conditions and
Dependencies

4.5 The following represents the most important information that a
defsystem typically must describe. These rules follow from one simple
observation:

If the compiler uses some piece of information it found in File A to
compile a piece of code from File B; then if that information in File
A changes, File B must be recompiled.

The problem with that observation is figuring out which piece of information
the compiler remembers from which form for later use in compiling other
files.

For example, the compiler remembers only that a defvar’s symbol was
proclaimed special—it does not need to remember that symbol’s initial value
after it has been compiled. Since most debugging changes you might make to
a defvar are to its initial value, changing a defvar is not a reason to
recompile another file that uses it.

In contrast, the compile does remember a defconstant’s value (after all,
that’s the purpose of the defconstant). Therefore, any change to a
defconstant is reason to recompile all other files that use it.

When the following discussion refers to “placing X so that the compiler sees it
before Y, it is referring both to the ordering of X and Y within a single file
and to the ordering of files presented to the compiler by make-system
because of a defsystem declaration. Notice that the admonition that the
compiler must see X before Y is confounded by back-to-back compiles. The
second compile will always see X before Y even though some of the X’s may
be old definitions, and some may be new ones. Therefore, the consequences
described below are true for only the first compile and load following a cold
boot.
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For correct execution, place the defsetf so that the compiler sees it
before it sees setfs of that object. Otherwise, the compiler will complain
that it does not know how to setf the object.

For efficiency, place deftype before you use the type it defines. How-
ever, execution is correct regardless of the order.

The defresource, defsignal, and defsignal-explicit macros have no
ordering constraints for either efficiency or correct execution.

For correct execution of the special forms you define by using a &quote
in a function’s lambda list:

s  You must always place the special form definition so that the com-
piler sees it before it sees any calls to that special form. Otherwise,
the function will be called at run time with its quoted argument(s)
evaluated.

= You must recompile all calls to that special form only if you change
which arguments to the function are quoted. Otherwise, the function
will be called at run time with the wrong arguments evaluated.

For correct execution of macros you define by using defmacro:

= You must always place the defmacro so that the compiler sees it
before it sees any calls to that macro. Otherwise, code attempts to
illegally funcall a macro at run time.

=  You must recompile all calls to that macro only if you change the
definition such that it expands differently. Otherwise, unrecompiled
code still uses the old macro definition.

NOTE: If, and only if, you have provided an optimize declaration with
safety equal to 0 and speed greater than size and you have not provided
a proclaim notinline, then the compiler can choose—at its discretion—to
make short functions inline even though you did not proclaim them
inline. Use who-calls to check whether this has happened to a particular
function. If the function is listed as Used as a macro, then this function
was expanded inline (whether by a defmacro, defsubst, or proclaim
inline).

Of the functions that you have proclaimed to be inline:

m»  For efficiency’s sake only, you must place the proclaim, the defun,
and the calls to that function so that the compiler sees them in that
order. Otherwise, the calls are treated as ordinary function calls
rather than as being expanded inline.

s For correct execution, you must recompile all places where that func-
tion was expanded inline only if you change the function such that it
expands differently. Otherwise, unrecompiled code still uses the old
definition.
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m Of substitutable functions you have defined with defsubst:

For efficiency’s sake only, you must place the defsubst so that the
compiler sees it before it sees any simple calls to that subst. Other-
wise, the calls are treated as ordinary function calls rather than as
being expanded inline.

For correct execution, you must place the defsubst so that the com-
piler sees it before it sees any nonsimple uses of that subst as a gener-
alized variable (for example, as the place argument of a setf, incf,
push, and so on). Otherwise, you will get a compiler warning that it
does not know how to setf that subst.

m For functions defined automatically for structures you have defined using
defstruct:

If you are in Common Lisp Mode and accept the defaults for callable
constructors, for callable accessors, and for no alterant; then for cor-
rect execution treat the defstruct as a defsubst.

For correct execution in all other cases (including Zetalisp Mode),
treat the defstruct as a defmacro.

NOTE: Recall that a defstruct actually defines a number of functions. If
struct is the name of a structure and slot is the name of a slot in that
structure, then defstruct creates all of the following:

A funcallable and setfable accessor function struct-slot
A funcallable constructor function make-struct

A funcallable predicate struct-p

A funcallable copier function copy-struct

m For correct execution of variables you have proclaimed to be special or
have defined with defvar or defparameter:

You must always place the proclaim, defvar, or defparameter so
that the compiler sees it before it sees any uses of that variable.
Otherwise, you get a compiler warning that it does not know what the
variable is and has assumed that it is special.

If you should change your code so that a variable previously pro-
claimed or defined to the compiler as special is no longer special,
then you must unbind that variable name with makunbound and
must recompile all places that used that variable.

m Of constants you have defined by using defconstant:

For efficiency’s sake only, you must place the defconstant so that
the compiler sees it before it sees any uses of that constant. Other-
wise, the value will be accessed as just another defparameter value
at run time.

For correct execution, you must always recompile all places where a
constant was expanded inline if you change that constant’s value.
Otherwise, the unrecompiled code uses the old value.

4-8
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m  Of functions you have defined by using defun-method, by placing a func-
tion definition inside a declare-flavor-instance-variables macro, or by
placing a declare :self-flavor in a function definition (collectively re-
ferred to as pseudo-methods below):

»  For efficiency’s sake only, you must place the pseudo-method so that
the compiler sees it before it sees any calls to it. Otherwise, the func-
tion will suffer extra run-time entry overhead each time it is called.

»  For correct execution, you must call a pseudo-method only from
within a method or another pseudo-method of the same parent
flavor. Otherwise, the preinitialized environment the pseudo-method
is expecting upon entry at run time does not exist, and you get arbi-
trarily weird results.

»  For correct execution, you must place the parent defflavor of the
pseudo-method so that the compiler sees it before it sees the pseudo-
method. Otherwise, the compiler mistakes references to the flavor’s
instance variables in the pseudo-method as references to free vari-
ables.

B For correct execution of functions you have defined using defmethod or
defwrapper: you must place the parent defflavor of the defmethod or
defwrapper so that the compiler sees the defflavor before it sees the
defmethod or defwrapper. Otherwise, the compiler has no place to
record the defmethod or defwrapper and will mistake references to the
flavor’s instance variables in the defmethod or defwrapper as references
to free variables.

B For correct execution of :select-method function specifications: you
must place the parent defselect-incremental so that the compiler sees it
before it sees any of its :select-method function specifications. Other-
wise, the compiler has no place to record the select method.

In general, the rule of thumb is defs before refs. That is, place definitions so
that the compiler sees them before it sees any references to them. Typically,
if the compiler sees improperly ordered forms during a compile of one file, it
will warn you (that is, a defmacro follows a use of the macro). However, the
compiler has a hard time seeing across compiles of different files, so you must
accept that responsibility.
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defsystem and
make-system Tips

defsystem’s
:compile-load
Transform

4.6 A number of features and implementation details of defsystem and
make-system repeatedly cause confusion. This paragraph is an amorphous
collection of things you should watch out for.

4.6.1 :compile-load is the single most common transform in defsystem.
Unfortunately, the action implied by its name does not quite match what it
does in real life. For example, if you had the following defsystem fragment:

(:compile-load a-mod)
(:¢ompile-load b-mod)

then this is the action sequence you would intuitively expect:

compile a-mod

load a-mod
compile b-mod
load b-mod

whereas this is what you actually get:

compile a-mod
compile b-mod
load a-mod
load b-mod

That is, make-system will normally do all compiles in the order listed fol-
lowed by all the loads in the same order.

In the above example, if the correct compilation of b-mod actually does de-
pend upon a-mod already being loaded, then your make-system will fail. If
b-mod has a compilation dependency on a-mod, then that dependency must
be. listed in the compilation dependency field of the :compile-load. For
example,

(:compile-load a-mod)
(:compile-load b-mod (:fasload a-mod))

correctly states the dependency you are counting on, and your make-system
will work.

A comment was made before in passing that load dependencies are usually
the same as compile dependencies. The main reason is that the compiler
routinely leaves certain classes of forms uncompiled in the object file so that
they can be evaluated at load time or at run time. Since it is not always easy
for you to discern which is which, it is a safe bet to assume that if the com-
piler needs to know something to compile the file correctly, then the loader
may need to know the same thing. Therefore, we should rewrite that previous
example:

(:compile-load a-mod)
(:compile-load b-mod (:fasload a-mod) ; compile dependencies
(:fasload a-mod)) ; load dependencies

4-10
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4,6.2 In the documentation, the :compile-load-init transform is unfortu-
nately listed as one of the esoteric transforms. Actually, this transform is
possibly the second most common after :compile-load—or at least it should
be.

Let’s continue to develop the previous example by adding another module
called macros that contains a bunch of defmacros. Further assume that both
a-mod and b-mod use macros defined in the module macros. Now, remem-
bering the compile dependencies, you might write the following:

(:compile-load macros)

(:compile-load a-mod (:fasload macros)
(:fasload macros))

(:compile-~load b-mod (:fasload a-mod macros)
(:fasload a-mod macros))

which is correct as far as it goes. Whenever a-mod or b-mod needs to be
compiled, the macro definitions in macros are loaded first.

But that’s not the end of it. The macro bodies are actually expanded inline in
the object files of a-mod and b-mod. If the macros module is changed and
recompiled, then a-mod and b-mod are probably left with old versions of the
macros. Every time we recompile macros, then we must also recompile a-mod
and b-mod. Therefore, we need the following:

(:compile-load macros)
(:compile-load-init a-mod (macros) ()
(:fasload macros))
(:compile-load-init b-mod (macros) (:fasload a-mod)
(:fasload a-mod))

which adds an extra compile condition to both a-mod and b-mod. Notice that
the presence of macros and an extra compile condition implies that it is also a
compile dependency, so you don’t have to list it again—but you could if you
wanted.

The rule of thumb is that each module containing macros or any other forms
that expand inline must be represented by :compile-load-init transforms.
The extra compile conditions list of these transforms must include all other
modules defining macros (and their friends) that the :compile-load-init
module uses. Notice there is no :fasload or :readfile prefix to the module
names in this list.

4.6.3 Very large systems may take an hour or more to compile everything
and then load it. However, if only a few files of the many files that make up
the system were changed, then the :compile option of make-system attempts
to do the minimum work necessary to get the system back up-to-date. In
particular, the :compile option does the following:

1. Determines which compilable files in the defsystem have source newer
than object and marks those to be compiled.

2. If any of these files marked to be compiled are mentioned as an extra
compile condition of a :compile-load-init, then it also marks the files of
that :compile-load-init for compilation.
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3. When given the total list of files to be compiled, it collects all their
dependencies (usually just fasloads of other files) and marks them to be
done.

This technique is efficient and powerful, but it does assume that the
defsystem declarations it was using were fully constrained. That is, it assumes
that you have used :compile-load-inits wherever needed and that all compile
and load dependencies are listed on each transform.

If you have not properly listed all the dependencies that exist among the files
in your defsystem, then make-system still recompiles files whose source is
newer than their object. However:

m It will not recompile other files that contain calls to macros that are being
recompiled.

m It will not get all necessary files loaded into the environment before the
compiling starts.

Therefore, if you have not taken the time to properly constrain your
defsystem, then you should never use the :compile option on make-systerm.
Instead, you should use :recompile to cause everything to recompile regard-
less of whether source or object is newer.

make-system’s 4.6.4 If you have not done any make-systems since the last reboot, then
:reload Option the :reload option does what you expect: causes all files to be reloaded
regardless of whether they have been loaded before.

In other situations, however, :reload does something unexpected. If there
has been a previous make-system, then :reload causes the transforms of that
previous make-system to be reexecuted. Notice that this action is not the
same as simply resubmitting the previous make-system.

For example, if you did a make-system with a :compile option, then only
your .modified files are recompiled. If you now do a make-system with a
:reload option, then the same set of compiles and loads is done again. Con-
trast this with reentering the original make-system :compile, which would do
nothing the second time because everything is freshly compiled and loaded.

As a rule of thumb, you should avoid make-system’s :reload option because
it seldom does what you think it is going to do. If you are in doubt about what
any of these make-system options is going to do, then enter the make-
system into a Lisp Listener along with whatever options you are interested in
and then add the option :print-only. make-system will now list everything
those other options would have caused it to do, but it will not actually compile
or load anything.
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Introduction

5.1 Most computers have a way of patching a program already installed.
The Explorer system also supports patching—but in a form and with capabil-
ities unfamiliar to the conventional world of assemblers, compilers, and link
editors. Generally speaking:

B Ordinary patching involves permanently changing locations of a pro-
gram’s executable disk file.

On the Explorer system, you modify your active environment (that is, the
copy of your load band in virtual memory). To make the change perma-
nent, you must save this maodified image to another load band. There-
fore, you never directly modify a disk image—you create a new one.

m Conventional patching replaces existing locations in the executable disk
file with new values so that the program size does not grow (but total
patching is limited in size and functionality).

The Explorer system appends the changes to your active environment
leaving the old code in place so that the load band size grows (and patch-
ing is essentially unlimited).

B Most patch writers try to distill the change down to as few locations as
possible.

On the Explorer, an entire function is replaced if anything in that func-
tion needs to be changed.

Conventional systems have special utilities to apply their patches. In contrast,
the Lisp Loader patches old code by doing ordinary Lisp loads of ordinary
compiled Lisp source. Therefore, an introduction to patching must start with
an introduction to loading.

Redefinition
Versus Patching

5.2 The basic modification technique in the Lisp world is redefinition,
whereas conventional machines use replacement. Both techniques are
referred to as patching by their respective users, to the confusion of all.

Replacement simply means that one or more bytes of an executable image in
memory or on disk are replaced with a different bit pattern. The replacement
approach usually means that add-on code or data must be limited to space
already reserved in the executable image.

Conventional patching utilities typically know nothing about an executable
image except that it is an arbitrary byte array. These utilities cannot know
program-specific information such as starting location of functions, locations
of variables, dimensions of array, and so on. Therefore, patching tends to be
in terms of specific bit patterns to specific addresses, which greatly discour-
ages large replacements or the use of high level languages to define the patch.
In fact, programmers sometimes equate the term patch with hand-assembled
hex code.

Programming Concepts

5-1



Loading and Patching

Redefinition, on the other hand, means that alternate function bodies and
data structures are appended to the current system, leaving the original ver-
sions intact. Then all existing references to these functions and structures are
diverted to the new versions. Of course, if the only required change was to
replace one data value with another, then Lisp just replaces it, since no
definition is involved. That is, patching Lisp code (redefinition) is a little
different from patching Lisp data (replacement). See paragraph 5.6, How to
Patch the Environment.

Therefore, even if only one word in a function were wrong, a Lisp patch
would create a whole new function body (with that word changed) and add it
to the system. At first glance, the redefinition approach would seem to
require an extremely complicated and time-consuming patch utility. Actually,
this all happens to be done transparently by the Lisp Loader, as explained
below.

In the following paragraphs, just remember that new code is always added to
a Lisp system, and old code is modified through redefinition. When Lisp
programmers talk about patches, they are really talking about a set of soft-
warée maintenance conventions built on top of redefinition and not about bit-
twiddling.

How the
Loader Works

5.3 We can start with a small simplification for this discussion: it does not
matter whether the Loader is loading Lisp source or XLD object files—they
both behave the same way at the level we are discussing.

The Loader loads a file by executing each top level form (that is, each Lisp
form not nested in another form) as it reads that form. For example, when
the Loader reads a Lisp file, its action is very much as if you were rapidly
typing that same Lisp source into a Lisp Listener. Each time you type a clos-
ing top-level parenthesis, the Listener executes that form then and there
before looking at anything else you have typed.

We intuitively think of a loader as reading bits from a disk file and stuffing
them into memory in some appropriate format, but not executing them. In
contrast, the Lisp Loader simply acts like a Lisp Listener for disk files. Some
Lisp forms have a side effect on virtual memory when executed, and some
don’t. Of those that have a side effect, some create definitions and some
modify variables. For example,

Form Loaded _ Side Effect on Memory
(+12) None

(setf a (+ 1 2)) Set value of symbol a=3
(defun foo ...) Define function foo

Executing a defun form, whether in the Listener or the Loader, acts to define
a function body rather than to execute it. The act of definition includes the
following major steps:

1. Allocate a new block of virtual memory and store the function’s body in
it.

2. If the function’s name (in this case, foo) is not already interned as a
symbol, then intern it; otherwise use the symbol already interned.

§-2
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3. Place a pointer to the virtual memory where the function’s body is stored
in the definition cell of the symbol foo.

All later run-time calls to this function find the function code by using this
definition cell of the function’s name symbol. The implication of all of this is
that the Lisp system maintains a permanent symbol table (actually several
dozen of them, called packages) of everything ever loaded. The Loader
updates these symbol tables, and all symbolic accesses use them. Therefore,
the Lisp system implements something similar to a linking loader.

Notice that the function’s name symbol is reused if it already exists (regard-
less of what it was previously used for), but new memory is always allocated
for the function’s body. We will later see that this characteristic is the founda-
tion of the Lisp patching technique.

How Redefinition
Works

More Than
Just Patching

When Is It
Really a Patch?

5.4 What if you load a defun of foo and then load it (or perhaps a differ-
ent defun of foo) again? After the first load, there exists in virtual memory a
symbol foo with a definition cell that points to the code body of the first foo.
After the second load, the same symbol foo is still there, but its definition

cell now points to a new block of memory that holds the second definition of
foo.

B New memory was allocated for the second body (even if the second body
were identical to the first).

W The old memory that held the first body is still there undisturbed.

B The first body is remembered as the :previous-definition property of the
symbol foo. A symbol’s definitions cell and its : previous-definition prop-
erty act as a two-entry pushdown stack. Therefore, the third defun of a
symbol causes the first definition to fall off the bottom of this stack. The
undefine function swaps these two stack entries.

In short, a simple reload of any function definition automatically patches the
previous definition by diverting all later calls to that function to the new body.

5.4.1 Part of Lisp’s widely advertised programming development environ-
ment is built on this redefinition ability. You can enter a function definition
into a Zmacs buffer, compile that function, and then execute it. If the test
uncovers a problem, you can re-edit, recompile, and reexecute it as many
times as necessary.

Actually, when you compile a Zmacs buffer with the Compile Region or Com-
pile Buffer commands, you are in fact compiling and loading it. The tradi-
tional link edit step is not needed since the Loader is maintaining those global
symbol tables in real time. Therefore, normal software development on a Lisp
machine has little functional distinction from patching.

5.4.2 While Lisp’s loading technique offers a transparent method of
patching, such transparency can be a problem:

Given two function definitions with the same name, how does the
Loader know if the second is meant to patch the first or if you have
accidentally given a new function the same name as an old one?

Programming Concepts

5-3



Loading and Patching

To get around this problem, the Loader uses a simple heuristic that does the
right thing most of the time.

Whenever the Loader loads a function definition (or any symbol definition,
for that matter), it records on that symbol’s :source-file-name property the
pathname of the file the definition was in. If a later redefinition comes from
the same place, the Loader does not complain because it assumes you are
just debugging the original source file. However, if a function is redefined by
a different file, then the Loader issues a warning and asks if you really wanted
to redefine this function. Your responses can be any of the following:

Response Description

Y [also T or SPACE] Yes, redefine the current
definition with the one just read.

N [also RUBOUT] No, leave the current definition in
place and discard the one just read.

E Enter the error handler.

P Proceed by redefining the current definition, and

accept all later redefinitions between these two files
without further queries.

The Proceed option is best explained with an example. If foo was originally
defined in, say, File-A and then later another definition was found in File-B,
then the Proceed option tells the Loader to automatically accept the current
redefinition in question plus all redefinitions of other functions originally
found in File-A and later also found in File-B. Redefinitions of File-A’s defi-
nitions by any file other than File-B are still flagged.

You will find this Proceed option useful if you should ever have to rename a
file. Without this option, the Loader would stop and ask you about every
single definition in the whole file (and there could be dozens).

You can control the Loader’s reaction to redefinitions by binding the global
variable inhibit-fdefine-warnings to one of the following symbols:

Possible Symbol  Description

nil Output the warning and then query the user about
how to proceed. (This is the default.)

t Ignore redefinitions: do not warn, do not query.
(Note: this must be the symbol t, not just non-nil.)

:jast-warn Output the warning and then proceed without
querying.

Similarly, if you add the attribute patch-file:t to a file’s file attribute list (use
META-X Set Patch File in Zmacs), then the Loader will effectively bind
inhibit-fdefine-warnings to t for you while it loads that particular file. Patch
files generated by Zmacs use this feature.

5-4
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5.4.3 When a file is initially loaded into the system, all of the definitions in
it end up on adjacent virtual memory. That is, there tends to be good locality
of reference among related functions. However, patching causes a new defini-
tion to be created in a remote piece of virtual memory, thereby destroying
locality.

Therefore, although a patched definition is functionally indistinguishable
from the original version, there is a potential performance penalty if that
function is called from a time-critical block of code.

How Creating a
Patch Works

Patch File Details

5.5 Since a patch file is an ordinary Lisp file, you can manually create a
patch yourself—if you remember all of the details. Zmacs has several com-
mands defined to make things easier by taking care of those details for you.
Before getting into a discussion of how patching works from Zmacs, let’s
consider why those details are important.

5.5.1 The extra details that go into a patch file can be divided into two
groups: those required for correct compiles and those that provide a patch
audit trail. First, let’s consider the required details.

Normally when a function is compiled by make-system, it is actually in the
middle of a file of many functions all being compiled at the same time. The
file attribute list of a function’s parent file effectively sets up a miniature
environment in which the function is compiled. The main attributes of this
environment are:

W Mode (Common Lisp or Zetalisp)
B Base (usually 8 or 10)

W  Package

M Fonts (if this file includes fonts)

If you are going to be able to compile a function properly when it is isolated
in a patch file, then you must reestablish at least this much of its original
environment.

However, simply copying these attributes into the file attribute list of the
patch file isn’t good enough. A patch file may have several function
redefinitions, each with its own requirements. Therefore, Zmacs first wraps a
compiler-let special form around the function definition to establish things
for the compiler, and then it prefixes the compiler-let with reader macros to
establish things for the Lisp reader. In the end, we have a half dozen or so
lines prefixing each function body in the patch file, looking something like
this:

#!c #10r foo-package: ; reader macros
(compiler-let ((... ) ; compile time bindings
e ca)
(... Lol ))
(defun bar ' ; patch for function BAR

- -
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Using Zmacs To
Create a Patch

Correct the Source

Mark the Region

Execute Add Patch

Since each function body now carries its own package declaration, the
package attribute in the patch file’s file attribute list is actually unused.
Therefore, if you notice a progress message from the Loader claiming that
your patch file is being loaded into the user package, ignore it. Each function
in that patch file is going into whichever package it belongs in. During the
load, you can watch the package name in the status line change as the Loader
encounters each function body.

Now, let’s consider the details that are added to a patch file to establish an
audit trail. You may, of course, put anything in there you want such as, per-
haps, bug report disposition information. If you create the patch using Zmacs
commands, Zmacs adds the following comments to the front of the patch file
for things like the following:

B Time, date, and login name of the programmer making the patch
B Machine name and load band on which the patch was made

B A copy of the patch documentation string (described below)
|

A poorly formatted list of all loaded systems and their current version
numbers

In addition, Zmacs inserts a comment in front of each function body specify-
ing that function’s parent file. It needs to record the source of each definition
in the patch file individually because the fix being implemented by the patch
file may touch several different functions in several different files. Therefore,
a single comment at the top of the file would not be enough.

5.5.2 The following is one way to use Zmacs to create patches for you.
Once you are familiar with this sequence, you can experiment with the
related Zmacs commands.

5.5.2.1 Edit the source file(s) to make your correction(s) and then test it.
This step is not really different from how you would go about debugging any
problem. Saving the source file(s) when you are finished effectively modifies
the source for the next build. However, modifying the source does nothing
about getting the change to the field before the next build. Now you must
mark the region.

5.5.2.2 Mark a form you just modified in the source file (that is, point at its
open parenthesis with the mouse and click once on the middle mouse but-
ton). If you don’t mark a region, Zmacs takes the top level form surrounding
the cursor.

Remember, Zmacs is going to blindly take whatever is in this region and
make a standalone patch out of it. So make sure you mark something (such
as an entire function definition) that can reasonably be compiled and loaded
by itself.

5.5.2.3 Execute the Zmacs command Meta-X Add Patch. The first time
you do an Add Patch, Zmacs asks you what system you are patching. After
you specify the system name, Zmacs then does the following:

1. Finds that system’s defsystem and from it the patch directory
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2. Warns you if you have not already loaded all patches for the system you
are now patching

3. Determines what the pathname of the next patch file will be
4. Creates a new patéh buffer with that pathname

5. Places the marked region in it along with all the other details discussed
above

If all you needed to change was just the one form in this one file, then you
are finished with this step. If more changes are needed for this fix, then
iterate on the Mark Region and Add Patch steps. You may include forms
from several source files in one patch file. All Add Patch commands after the
first one merely append to the current patch file.

5.5.2.4 Until you execute the Zmacs command Meta-X Finish Patch, the
patch file you are accumulating is available as an ordinary Lisp file in the
Zmacs buffer. Therefore, you are able to add to it yourself manually or to
edit it as you please. We will see later why you often must edit a patch file
before doing a Finish Patch command.

When you execute Finish Patch, Zmacs prompts you for a documentation
string (mentioned above) that briefly describes the purpose of this patch. This
documentation string can be as long as you want, but you should choose your
words carefully. This string is likely to be read by people, possibly customers
at a remote site, where flippancy may not be fully appreciated. Furthermore,
this comment should be phrased in terms of what benefit the user will get
from this patch rather than in terms of what you fixed.

Once Zmacs has collected your documentation string, it saves the patch file
to the associated system’s patch directory and compiles it. When Zmacs
finally returns, the patch is complete.

5.5.2.5 To avoid common mistakes, keep the following points in mind:

B Before you begin to debug any system, be sure that you have loaded all
patches for that system. Otherwise, you will be executing in an environ-
ment that does not match the source you are patching. Any testing that
you do in this situation is suspect.

M Be very sure that you have included in the patch every change you origi-
nally made to the source while debugging it. If all of the changes you
made to the source to get it working are not reflected in patches, then a
freshly booted system with your patch loaded will still not work.

M Zmacs saves off the patch buffer to the patch directory, but it does not
save off the modified source files the patch was made from. If you forget
to save off all of the source changes, then your patch may work fine, but
the patch will disappear after the next build.

B Sometimes a project may choose to have patching done on a special file
server. Sometimes project personnel don’t pay attention to which file
server they are using. So, after you think you’ve saved off everything, go
look on the official file server to see if your newly modified source files
are really there.
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M If the patched file is known by a logical pathname, Zmacs tries to deter-
‘mine that logical pathname and record it in the patch buffer, regardless
of what name you used to load the buffer for editing. Double-check that
this pathname in the patch buffer is the right one.

m If your patch involves structure-defining forms such as defstruct or
defflavor, then be aware that the patch will only affect new instances of
these structures. If correct execution also requires that existing instances
be changed, then you will also have to add environment patches (dis-
cussed below).

B A defstruct in Zetalisp mode with defaults or a defstruct without callable
accessors and constructors in either mode creates hidden macros. There-
fore, you must recompile every place that accessed or constructed one of
these defstructs. The basic defstruct in Common Lisp mode doesn’t
cause this type of problem.

B If you edit the patch file in the patch directory after you have done a
Finish Patch (that is, after Zmacs has compiled it), then remember to
recompile your change. Otherwise, META-. shows you the newly modi-
fied Lisp source, but load-patches loads the old XLD object.

B When everything is finished, cold boot, load all of your system’s patches,
.and run your tests one last time. Your original debugging session may
have had several false starts that change your environment in subtle ways.
.Loading patches after a cold boot is the way the customers in the field
will see it, so that’s what counts.

How To Patch
the Environment

Patching a Data
Structure Definition

5.6 So far, we have talked only about a patch redefining a function or
funétion-like object (for example, a flavor method)—but that is only half the
story. Step back for a moment to get a higher-level view: there is something
wrong with the system, and the patch is supposed to fix it.

If that something is just a bad function definition, then we’ve already seen
how to handle it. If, however, that something is a bad data structure, then
changing its definition is necessary, but it isn’t enough. New instances of that
data structure created after the patch will be correct, but the original ones will
still be there.

5.6,1 For example, suppose your system contains the *bar-record* vari-
able, which is an instance of the bar defstruct. The original source code
might have looked something like this:

(defstruct bar ...)
(defvar *bar-record* nil)

where *bar-record* is initialized to an instance of the defstruct bar later in
the ‘code.

Now let’s suppose you find that the defstruct of bar was wrong. Your natural
inclination is to just patch the defstruct, but that is only half the answer. To
make this patch both redefine the defstruct of bar (for use by later instantia-
tions) and reset the value of *bar-record*, we must create a patch file some-
thing like:

(defstruct bar ...)
(setf *bar-record* (make-bar ...))

5-8
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The new defstruct of bar corrects the definition (just as we have done before
with functions) while the setf of *bar-record* corrects the existing data struc-
ture.

This new definition of the defstruct must be reflected in the source code so
that it will be correct on the next build. However, the setf form is just a
random piece of fixup code for the patch file only.

At the beginning of this section, it appeared that top level forms that did not
define something were just so much wasted effort on the part of the Loader.
Now we see that they have their own set of uses. However, creating a patch
file with forms such as this setf is not quite as automatic as patching defini-
tions.

If you were using Zmacs to create the above patch file, you could edit the
defstruct in the source, mark it as a region, and then use an Add Patch
command as before. But there may be nothing in the source file you can
mark as a patch to accomplish the setf. This is the case alluded to above
where you must manually edit Zmacs’ patch buffer before you do the Finish
Patch command to add the setf (or whatever fixup is needed).

5.6.2 If you are patching a method of a flavor and that flavor has
H no component flavors

B no combined methods (for example, :before or :after methods, and so
on)

then you can skip this section. Otherwise, you need to know how to compile
flavor methods.

Despite what it sounds like, compile flavor methods does not refer to the
compilation of either defflavors or defmethods. Even though a flavor and all
of its methods have been compiled and loaded, several special tables must be
created for a flavor before it can be instantiated. This extra table creation
step (referred to as compiling flavor methods) is part of the magic that allows
a flavor—which may have been defined as a complex hierarchy of component
flavors—to execute at run time as if it were a simple flavor with a bunch of
methods you wrote just for it.

Normally, your Lisp source code contains the defflavor followed by all of the
defmethods for that flavor. For run time efficiency of flavors with component
flavors or with combined methods, you should also include compile-flavor-
methods for that flavor after its last defmethod—for the following reasons.

When the system instantiates a flavor for the first time, it checks to see if that
flavor’s tables are freshly compiled (that is, no new methods defined after the
last flavor methods compile). If everything is already compiled, the instantia-
tion is done immediately. However, if the compilation is out-of-date (for
example, you’ve patched a method in the meantime), then the system stops
then and there and does another flavor method compilation—which can
cause a noticeable delay to your user.

To save your users a run-time wait, you can append a compile-flavor-
methods form to the end of any patch file that includes a redefinition of a
defmethod. If several different patches all patch methods for the same
flavor, then you need the compile-flavor-methods form only after the last
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Things You
Can’t Patch

one. Multiple calls to this form are okay, but all compiles except the last one
become garbage taking up space in the load band.

There is a simple way to check whether you have forgotten a compile-flavor-
methods form in your. patch files (or in your source, for that matter).

1. - Set the global variable sys:*flavor-compilations* to nil.
2. Load and patch your system.

3. Exercise your code (try to make sure you instantiate each of your flavors
at least once).

4. Examine sys:*flavor-compilations*. It will contain a list of all flavors
that had their flavor methods compiled on the fly during run time.

5.6.3 Actually you can patch anything; it’s just that patches for some things
have no effect. These troublesome things are known collectively as inlines:
defmacros, defsubsts, defconstants, and any defuns that have been pro-
claimed inline.

In addition, the compiler may optimize trivial defuns to be inline even though
you have not explicitly proclaimed them to be inline. The compiler will
consider this optimization only if you have explicitly included an optimize
declaration that Safety is 0 and Speed is more important than Space.

Think of these inlines as special directives to the compiler for use in compil-
ing.other pieces of code. If you patch them, then while you have created new
directives, your program is still executing those other pieces of code compiled
under the original, incorrect directives. Net effect: your patched code exe-
cutes just as badly as your unpatched code.

If you need to correct one of these inlines, then your patch must not only
include the corrected definition of the inlines itself, but it must also include
all other definitions that use that inline. This means that the patched source
code for these other definitions will be identical to their original source—-but
their compiles will be new, and that’s what counts in the case of inlines.

You can find out where an inline you are patching has been used with the
who-calls function. Wherever who-calls says your patched function has been
used as a macro (it uses this general term for any inline expansion), then you
must recompile that function too. Furthermore, if you suspect that the com-
piler might have converted some of your simple functions to inlines, then use
who-calls to see if they were ever recorded as being used like macros. Unfor-
tunately, there is no current way to search for uses of defconstants.

How Installing a
Patch Works

5.7 The basic way a user installs a patch in the field is simply to load the
patch file—and that is it. However, there are some other considerations.

m Simply loading the patch file is sufficient to modify the environment for
testing purposes, but to make the change permanent, you must do some-
thing more.

m Since the potential for having many different versions of a piece of soft-
* ware is always a problem, you need some way to formally record which
patches have been loaded.

5-10
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You solve the question of permanence by a manual procedure: cold boot,
load the patch file(s), garbage collect, and then do a disk-save. Maintaining
a formal record of which patches have been applied to which systems requires
a small database (called a patch directory) and a bookkeeping function
(done by the load-patches function).

5.7.1 How many different things does the word system mean? When used in
a phrase such as the Lisp system, it usually means the entire Lisp environ-
ment and all software that comes with the machine. This usage is usually
apparent from its context.

When used in relation to patching, it literally means any piece of software
defined by a defsystem and built by make-system. Such a system logically
corresponds to a program, a product, or an application on a conventional
machine. The common connotation is that a system is a more or less stand-
alone piece of software that can be optionally added to a base system.

Unfortunately, the clean distinction drawn by the two previous paragraphs
blurs when you consider that the base system of Lisp software (the stuff that
eventually becomes known as the Lisp system) is itself defined by a
defsystem named system. So there is such a thing as the system system.

5.7.2 While anyone can create and load a patch file by hand, formal patch
maintenance is reserved for software defined by a defsystem with a :patch-
directory declaration and built by make-system. The :patch-directory dec-
laration makes a system a patchable system. The same program files—if
compiled and loaded by some other means—execute the same way, of course,
but they will not have the extra overhead information needed by the patch
maintenance utilities.

First, all the patches for a system are kept in a directory specified in that
system’s defsystem. Therefore, before you do anything with patches, the
software usually asks you to identify which system you are talking about so it
can find the appropriate patch directory. If the defsystem simply says that
the system is patchable without specifying a patch directory, the system
defaults to a top-level directory on the sys-host with the same name as the
defsystem name.

Within a patch directory, individual patch files are named according to a
three-part standard filename:

1. A prefix string that may be:

B A string specified by the programmer as the second optional para-
meter of the :patch-directory declaration of the defsystem

M The string “PATCH” if the system has its own private patch directory
(this is the most common case)

B The string “defsystem-name-PATCH” if the system shares a patch
directory
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load-patches

2. A major version number (usually incremented each time you use make-
system to recompile that system)

3. A sequential patch number (called a minor version number) reset for
each release.

For example, “PATCH-2-12" would presumably be the twelfth patch written
for the second build of the system that is the sole user of the patch directory
containing this patch file.

The patch number is used for more than just keeping the filenames unique.
Two patch files in one directory may or may not be independent of each
other (that is, one patch may require that the other patch be loaded first).
Therefore, system utilities such as load-patches always take the conservative
approach and load patches in ascending order.

In addition to the patch files themselves, there is a header file in each patch
directory (possibly with several versions) with a name in the form

prefix . LISP

where prefix is the prefix string mentioned above. This file exists solely for
identifying the name of the system that owns this patch directory and the
current major version number.

Finally, there is a log file in each patch directory (almost certainly with
several versions) with a name in the form

prefix-r# LISP

where prefix is the same as above and r# is the major version number. This
file contains the documentation string for each patch file in the directory.

This header file and log file are initially created by make-system during the
compilation step. These files, or later versions of them, are required by
make-system during the load step if your defsystem indicates to make-
system that your system is patchable. These requirements are transparent if
you exclusively use make-system to compile and load the system. If, how-
ever, you try to do some of the compile steps by hand, you may trigger error
messages from make-system if it thinks the patch directory is inconsistent.

5.7.3 The load-patches function uses the patch directory database to apply
patches to the system or systems you specify in its argument list. If you choose
to unselectively patch a system, then load-patches does the following:

1. Reads a global data structure it maintains to find what is the highest
numbered patch that has been applied to that system so far.

2. Reads the system’s defsystem to find out where the system’s patch direc-
tory is.

3. Starts loading patches, beginning with the first unapplied patch, and load-
ing in ascending order.

4. Records the number of the last patch loaded back in that global data
structure.
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If you choose to load patches selectively, then load-patches pauses for each
patch and displays that documentation string recorded in the patch log file
and then asks if you want to load that particular patch or not.

Notice that although load-patches records the highest patch loaded, it does
not record whether you told it to skip some patches. Therefore, if you choose
to load patches selectively, then you assume the responsibility of making cer-
tain that dependencies between patches (that is, this patch must be loaded
after that patch) are met.

Miscellaneous

Explorer System
Patch Directories

How Do You
Find defsystems

5.8 The following are various things that come up during patching but that
do not seem to fit in anywhere else.

5.8.1 Patch directories for Explorer system code have logical pathnames of
the form “SYS:system-PATCH;” where system is a system name such as
Compiler, Window, Zmacs, and so on. These directories are for the sole use
of the officially distributed Explorer system software patches.

You should not add your own patches to Explorer system software to these
directories even though that seems the logical place to put them. This restric-
tion exists for the most practical of reasons: patches from the Explorer
Technical Support Line are typically installed by replacing the old patch
directory with a new one. Also, new releases are distributed with new patch
directories—usually empty. Therefore, your site-specific patches on these
system patch directories will be lost.

Your patches to Explorer system code should be kept on other directories.
One site patching convention that allows you the convenience of the patching
utilities is to define a trivial defsystem that only has a :patch-directory
declaration such as:

(defsystem explorer-site
(:name "explorer site pseudo-system")
(:patch-directory "pathname"))

where pathname is pointing to anywhere except the Explorer’s official patch
directories. Also, be sure to create a .SYSTEM file for EXPLORER-SITE as
explained in paragraph 5.8.2, How Do You Find defsystems.

Now, whenever you come up with something you want to patch in the
Explorer system software, you tell Zmacs that you are patching the
EXPLORER-SITE system. This is a lie, of course, but all that really interests
Zmacs is finding a directory to put the patch in. From then on, whenever you
load system patches, for whatever reason, also load the patches for the
EXPLORER-SITE system.

5.8.2 Previously, we saw how the Zmacs Add Patch command asks you for
the name of the system you are patching so that it can find the defsystem.
Then, from that defsystem, we saw how the declarations tell where every-
thing else is. Question: How did it find the defsystem in the first place?

The global variable sys:*systems-list* is a list of the system objects of all
systems that have actually been loaded along with the names (as keywords) of
all other systems for which the location of their defsystems are known (but
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Case of defvar

not yet loaded). When software such as make-system, load-patches, Zmacs,
and:so on needs to find a system’s defsystem, it first looks here.

m If it finds the system object it needs, it uses it.

m If it finds the systexﬁ name it needs, it looks up the defsystem pathname
on that symbol’s :source-file-name property and loads it, thereby creat-
ing the system object.

W If the system is not on this list, then it falls back to the SYS:SITE;
directory.

By convention, the SYS:SITE; directory holds files that are site specific. If
you have written your program properly, then you can move it from site to
site by changing nothing more than certain files in this directory at each site.
The! file SYS:SITE;-READ-ME-.TEXT explains several things this directory
is used for. For the moment, we are interested in its files of type SYSTEM.

If there is no record of, say, system FOO on the sys:*systems-list*, then the
software looks for a file named SYS:SITE;FOO.SYSTEM. If it finds one,
then it loads that file with the expectation that when the load is complete,
system FOO will be on sys:*systems-list*. This file should contain one of the
following:

H The defsystem itself (not recommended)

B A load form that loads the file containing the defsystem (not much
better)

W A sys:set-system-source-file-name form that maps a system name to a
namestring containing that system’s defsystem (this is preferred)

It is this sys:set-system-source-file-name form that puts those system names
on sys:*systems-list* and attaches the defsystem pathname to that symbol’s
:source-file-name property.

5.8.3 defvar and defparameter do the same thing—almost. The first time
either one is loaded, each

1. Defines its respective symbols as global special variables
2. Evaluates its initial forms (if any)
3. Sets its symbols to those initial values

The second time they are loaded, defparameter does exactly what it did the
first time—defvar does nothing. In particular, defvar does not reevaluate its
initial form, and it does not set its symbol to a new value.

The key here is that on the first load, the symbols defined by both defvar
and :defparameter were unbound. On the second and all later loads, how-
ever, the symbols had already been bound. Therefore, defparameter always
rebinds its symbol regardless of that symbol’s bound state, while defvar binds
only an unbound symbol. Why?

5-14
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While debugging, it is not unusual to load a file or to compile a buffer (which
quietly loads it too) many times. Is it reasonable to keep re-evaluating those
initial forms over and over? Usually yes, sometimes no. For example,

B An initial form may.instantiate a complex data structure that takes a long
time to do and makes garbage out of the previous identical instantiation,
thereby wasting time and memory.

B An initial form may have a significant side effect such as starting a
process, establishing a network connection, triggering a file system trans-
action, and so on, each of which should be done only once.

Therefore, you could say that defvar and defparameter do the same thing
except that defvar does the same thing only once. This subtle distinction is
lost on a lot of people.

Even though a defvar’s symbol does not get reset by default on each load,
there are times when you do want it reset regardless. So there are ways to
force it to be reset (or not reset) on loading. For example,

B If you mark a region and then compile or evaluate it (that is, CTRL-
SHIFT-C or CTRL-SHIFT-E) then the defvar value is not reset. (The
assumption is that this defvar just happened to fall inside a region being
compiled.)

® If you just point at the defvar with the cursor without marking it as a
region and compile or evaluate it, then it is reset. (The assumption is that
you were deliberately trying to change it.)

At this point, the options (and confusion) compound. If you mark a region
and evaluate it with META-CTRL-SHIFT-E rather than just CTRL-
SHIFT-E, then it will be reset. (The assumption is—obscure.)

Finally, the one that most interests us: if the file being loaded has a PATCH-
FILE file attribute of non-nil (that is, a patch file), then the defvars are
always reset.

Therefore, it is safe and reasonable to put defvars into patch files if you need
to redefine their initial values.
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Introduction

6.1 The original Lisp machine software developed at MIT was built on
assumptions that have proven more farsighted than those implemented even
today:

B The Lisp machine can be used as a backend to various mainframes.

W The Lisp machine is normally on a local area network with an unknown
mixture of machines and operating systems.

By implication, the Lisp machine file system would have to routinely commu-
nicate with foreign hosts, as they were called, and the communication would
have to be in terms the foreign host’s operating system could understand.

The most visible problem of talking to a multitude of disparate operating
systems is that each has its own idiosyncratic file-naming conventions. For
example,

DS01.DIR.SUBDIR.OBJ.NAME
/DIR/SUBDIR/NAME.O
DIR.SUBDIR;NAME.OBJ#1
SYS$DISK:[DIR.SUBDIRJNAME.OBJ;1
>DIR>SUBDIR>NAME.OBJECT.1

are all different ways of identifying the same file on different operating sys-
tems. The problem is how to handle such diversity without creating masses of
ad hoc code for each case.

Internal Versus
External Names

6.2 The first step is to separate the external form of these file specifica-
tions that you see from the internal format that the Explorer software uses:

B A pathname object is the internal form that the software sees. On the
Explorer, it is an instance of a flavor built on the fs:pathname flavor.

M A namestring is the external form that you see. It is a string with the
internal syntax of the host holding that file.

Time out for confusion: Lisp programmers often use the terms name, name-
string, path, pathname, pathname object, file, filename, file spec, stream,
and file stream interchangeably. Part of this laxity is brought on by the fact
that most Lisp functions needing to identify a file accept either an external
namestring or an internal pathname object. It is easy for a function to coerce
either one into the other.
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To limit confusion, I always use the following terminology in this section:
M Namestring for the external user representation
M Pathname object. for the internal software representation

B Just pathname for the general case of anything convertible to a pathname
object

Notice that just about anything that accepts a namestring as an argument also
accepts a symbol. In such a case, the symbol’s print name (which is a string,
see symbol-name) is used as the namestring.

Pathname Objects

Device Component

6.3 Converting the namestrings of all foreign operating systems into one,
standard internal pathname object sounds like a good idea, but how do you
do it?

If you were to inspect namestrings from a variety of operating systems, then
you would notice that many of them can be viewed as a hierarchy of
components:

Device
Directory
Filename
File type
Version

NOTE: Those of you who already know something about pathnames will
wonder why the host component is missing from the list. Right now, we are
talking about namestrings as different operating systems see them. Later we
will introduce the notion of a host to identify which namestring belongs to
whom.

6.3.1 The device component identifies the storage medium holding the file
on the host. Depending upon the host, the device component could represent
the name of any of the following:

M A physical disk drive (independent of the pack mounted on it)

M A physical disk pack (independent of the drive it is mounted on)

® - A physical partition on a disk

W A logical partitioning of any online storage medium

On Explorers, the device component corresponds to a File Band—which
requires a little explanation.

An Explorer partition is a sequence of one or more consecutive blocks on an
Explorer disk. A disk is typically divided into several such physical partitions,
which are used for various things. An Explorer band is a logical grouping of
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one or more physical partitions. However, not all bands are created alike (to
say the least). A few examples are as follows:

M There can be multiple Load Bands and Microload Bands per disk, but
each must be exactly one partition (hence the common notion that parti-
tion and band are synonymous).

W There can be only one Page Band for the entire system, and it can be
composed of any number of partitions on any number of disks.

M There can be multiple File Bands per system, and each File Band can be
composed of any number of partitions on any number of disks.

The moral of this story is that each type of band has its own characteristics.
Although an Explorer can have more than one File Band on its disk(s), only
one of these may be booted at a time. Therefore, pathname processing
assumes that it has no choice since there is only one File Band on an
Explorer, so it ignores the device component.

Most hosts that allow multiple devices have the notion of a default device that
they use if the device component is not specified. Similarly, if the host has
only one device, then there is no need for this component. The Explorer
device component in a pathname object is always coerced to nil. For other
hosts that have no need for a device component, that component is coerced
to :unspecific.

6.3.2 The notion of a directory is common enough. The directory compo-
nent of a namestring actually includes the top level directory as well as any
subdirectories under it. Different operating systems use different delimiters to
separate directories and subdirectories in their namestrings.

The directory component is the one component of a pathname object that is
normally structured (that is, it is composed of lower level subdirectories).
Therefore, while the other components are normally represented as simple
strings, the directory component is represented as a list of strings, one for
each subcomponent. If there is only a single level of directory, then it is rep-
resented as a list of one string.

For example, the namestring fragment “FOO.BAR;BAZ” would be repre-
sented in a pathname object as

Directory Component => ("FOO" "BAR")

Name Component => "BAZ"

while “MUMBLE;BAZ” would be represented as
Directory Component => ("MUMBLE")

Name Component => "BAZ"

See paragraph 6.13, Absolute Versus Relative Directories, for other informa-
tion that can be recorded in a pathname object’s directory component.

The highest level directory on a device is called the root. In functions like
make-pathname, an Explorer extension to Common Lisp allows the root to
be designated with the keyword :root since it does not have a name itself. If
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Filename Component

File Type Component

you specify the directory component as being :wild, then—depending on the
context—the system may assume that you really meant :root and use that.

6.3.3 The name component is the one traditionally thought of as the file-
name within a directory.

One minor point of confusion: many operating systems have generalized their
file systems such that a directory is just one of several types of files.

m If a directory is being used as a directory (for example, to access things
below it), then its name appears in the directory component of the name-
string.

m If it is being used as a file (for example, to read its contents to, say,
create a directory listing), then its name appears as the name component.

On the Explorer system, for instance, “HOST:DIR.SUBDIR;*.*#*” refers to
the contents of the directory SUBDIR, which is itself a member of the direc-
tory DIR. Therefore, the form

(delete-file "HOST:DIR.SUBDIR;*.*#x*")

would delete all files under the directory suBpIrR. A listing of the directory
parent DIR would still show an entry for SUBDIR, but it would have zero
length. In contrast, the namestring “HOST:DIR;SUBDIR.DIRECTORY#1”
refers to the file under the directory DIR that records the contents of the
directory SUBDIR. Therefore, the form

(delete-file "HOST:DIR;SUBDIR.DIRECTORY#1")

would delete the suBDIR directory itself (assuming it was already empty). An-
other listing of the directory DIR would no longer show an entry for SUBDIR.

6.3.4 The file type component does not exist on all operating systems, and
the ones that do support it sometimes view the type component as just an
extension of the name component (it’s even called the file extension in some
cases).

However, even though the basic operating system may make no assumptions
about the relationship of name and type components, many higher level func-
tions use it for the convenience of the users. For example, unless you tell it
otherwise, the Explorer’s Lisp compiler assumes that its input source files are
of type :lisp and that its output files are of type :xld (the reason for using
keywords rather than strings is explained in paragraph 6.7, Canonical File
Types). For example,

(compile-file "HOST:DIR;FOO")

actually compiles file “HOST:DIR;FOO.LISP” into file “HOST:DIR;
FOO.XLD"”. So, if you go against the type component naming conventions
too much, you might find that a lot of otherwise convenient software is work-
ing against you. That is, you will find that you can no longer use all of those
convenient defaults built into the system. Instead, you must specify everything
completely.
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6.3.5 The version component is also not supported on some operating sys-
tems (for example, the UNIX® OS). The version is simply an incrementing
number for each successive update of the file. Thus, Common Lisp functions
such as make-pathname allow you to use the keyword :newest to represent
the highest currently available version. The Explorer also allows you to use
:oldest for the lowest available number.

Again, the average operating system makes few assumptions about the rela-
tionship of the version components to the name and type components—but
almost every other piece of file handling software on the Explorer does. In
particular, everybody defaults to working with the newest version (that is, the
highest version number) of a file. If you have manipulated the file system so
that the highest version number is not the newest, you lose.

6.3.6 Now that we know what each component is supposed to be used for,
let’s look at those five diverse namestrings we saw on the first page again:

Device Directory Name Type Version
DSO01. DIR.SUBDIR.OBJ. NAME

/DIR/SUBDIR/ NAME .0

DIR.SUBDIR; NAME .OBJ #1
SYS$DISK: [DIR.SUBDIR] NAME .OBJ i1

>DIR>SUBDIR> NAME OBJECT .1

As you can see, all namestrings don’t have all the components.

Namestrings

6.4 The internal syntax of namestrings is simple enough because they are
formally defined by each operating system. But how do you get such a wide
variety of syntaxes parsed into one common pathname object?

Time out for a few assumptions: computers (called hosts in Explorer nomen-
clature) on a local area network are commonly identified by nicknames.
Each host name represents a specific hardware type (for example, Explorer,
VAX™, and so on) and a specific operating system (for example, Common
Lisp, VMS™, UNIX®, and so on). Therefore, for our purposes, knowing the
host name automatically tells us the operating system type and, by implica-
tion, the namestring syntax. Now, back to our story.

The convention developed for the Lisp machine is that a namestring must be
parsed with respect to a specific host. That is, it has to know which operating
system the namestring is for before it can tell how to parse the namestring.
Part of the information recorded about each type of host known to the system
is a namestring parsing function. Next question: where do you find which host
you are supposed to parse the namestring with respect to?

UNIX is a registered trademark of AT&T.
VAX and VMS are trademarks of Digital Equipment Corporation.
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There are three basic sources for determining a namestring’s host. First, if
the namestring is in the following form:

host:namestring

then: the portion of the string before the first colon is considered to be the
host name. There may be additional colons in the namestring itself, but the
first one delimits the host name. This namestring format is said to have a
manifest host name (that is, the host name is actually present in the name-
string rather than just being available from some default). Furthermore, Lisp
programmers do not bother to distinguish a namestring with a manifest host
from a namestring without one. Therefore, they would have referred to the
above format as just a namestring.

Since the manifest host name is used only by the Explorer parsing functions,
its case is unimportant. That is, even if the rest of the host’s namestring is
case’ sensitive, its manifest host prefix is still case insensitive.

Second, the general-purpose parse-pathname function allows you to option-
ally specify a with-respect-to host. If you use this feature, you cannot use it to
actually override a manifest host. If both a manifest host and a with-respect-
to option are present, the two hosts must match or else you will get an error.

Third, if there is no manifest host in the namestring and no with-respect-to
host option in the function call, the system looks at the available default
pathnames and uses the first likely host it finds to parse the original name-
string. Sometimes the default pathname is specified as an argument to the
parsing function. Otherwise, the information in the *default-pathname-
defaults* variable is used.

Since the system must always have a host in order to understand a name-
string, it treats the host as a sixth component that actually comes first in the
hierarchy:

Host
Device
Directory
Filename
File Type
Version

In addition, even after an external namestring has been parsed into an inter-
nal pathname object, its original host is remembered along with the other
components. Among other things, recording the host allows special purpose
external namestrings (with proper host-specific syntax) to be reconstructed
from the standard internal representation on demand. These reconstructed
namestrings are collectively called “string-fors” because they are created by
methods named :string-for-host, :string-for-dired, :string-for-printing,
and so on.

6-6
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Parsing Functions

6.5 The following is a brief illustration of the functions used to convert
among namestrings, pathname components, and pathname objects.

(pathname “namestring”) => pathname-object
(namestring pathname-object) => “namestring”
(make-pathname thost “host” => pathname-object

tdevice “device”

:directory *(“dir” “subdir™)

‘name “name”

:type “type”

:version number)
(pathname-host pathname-object) => host-object
(pathname-device - pathname-object ) => “device”
(pathname-directory pathneme-object) => (“dir”“subdir”)
(pathname-name pathname-object) => “name”
(pathname-type pathname-object) => “type”
(pathname-version pathname-object ) => number

Note the symmetry. pathname and namestring are complementary functions
converting between namestrings and pathname objects while make-
pathname and pathname-host and so on are complementary functions con-
verting between individual pathname components and pathname objects.
Some miscellaneous points:

You can experiment with namestring parsing with the form (describe
(pathname “namestring”)) where pathname does the parsing and
describe lists each component of the pathname object. Notice that the
string-fors are not filled in until someone actually asks to see one.

Just because you have a pathname object doesn’t mean you can do any-
thing with it. A pathname object always has a valid host component or it
could not be a pathname object, but any and all other components may
be nil.

The parse-namestring function is similar to pathname except that it
allows you more options and control over defaults (for example,
pathname calls parse-namestring with fixed options).

Components omitted from the end of the namestring usually default to
nil in the pathname object.

Some things have been deliberately left out of these examples for simplicity.
Look up the individual function descriptions before you try to use them.

Interned 6.5.1 If you intern the external name of something (we’re not just talking
pathnames now), then the system looks it up in a special table.

Pathnames

If the external name is not already represented in the table, then a new
internal data structure appropriate to whatever you are interning is
created, stored in the table, and returned.

If an internal version of the external name is already in the table, then
that internal object is returned.

Programming Concepts
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Why Intern?

That is, the first time you intern something, you get a new object. Every time
you intern the same external name from then on, you get the same object.

On the Explorer, symbols and pathname objects are the only objects that are
interned. Symbols are interned by the intern function in tables called pack-
ages. Pathname objects are interned by the parse-pathname function in the
fs:*pathname-hash-table* hash table. Therefore, if

(pathname "FOO.LISP") => <pathname-object>
then on the Explorer

(setf a (pathname "FOO.LISP"))
(setf b (pathname "FOO.LISP"))
(eq a b) => true

For the purpose of portability, Common Lisp recommends that equal be the
preferred predicate for comparing pathnames. Since objects that are eq (such
as identical Explorer pathname objects) are also equal, the Explorer’s path-
name interning does not invalidate the standard usage.

A namestring cannot be used until it has been converted into a pathname
object by parse-namestring or one of its variants. Since the conversion
causes the pathname object to be interned, then fs:*pathname-hash-table*
becomes something like a pathname log for the system. That is, it should
always have one copy of every pathname that has ever been used in the
system.

6.5.2 Why does the system go to all the trouble to intern pathnames? Well,
if it didn’t, then you could never reliably compare two pathname objects to
see if they represent the same pathname.

The problem is that pathname objects are instances of flavors, and a property
of flavor instances is that they can be compared only as eq. That is, two
instances are considered to be the same only if they are actually the same
data structure in memory. Simply pointing to two identical data structures is
not sufficient. For example,

(setf a (make-instance ‘my-flavor))
(setf al a)

(setf b (make-instance “my-flavor))
(eq a al) => true

(eq a b) => false

Even though the values of a and b are bit-for-bit identical, they are not eq
because a and b themselves are pointers to two different addresses. You
can’t even fool the system by using the eql, equal, or equalp predicates. As
soon as they recognize that they are comparing flavor instances, they all
revert to eq.

Now consider the needs of a programmer manipulating Explorer namestrings.
The two forms

(setf x (pathname "EX22:ABC;XYZ.LISP#4")
(setf y (pathname "EX22:ABC;XYZ.LISP#4")

Programming Concepts
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both represent fully qualified namestrings. They are as specific as you can get,
and they match component for component. By all standards, they should be
considered as the same pathname; however, they won’t compare as eq unless
x and y actually point to the same flavor instance.

6.5.3 Interning solves our comparison problem. On the first call to pathname
above, the pathname object representing "Ex22:ABC;XYZ.LISP#4" is interned
into fs:*pathname-hash-table* as described above. The newly interned
instance is returned by pathname and stored in x. Next, the second call to
pathname finds the first pathname object in the hash table and returns it again
(without interning anything new). Therefore, the same instance is also stored
in y so that x and y are eq (and all is well once again).

If comparing pathname instances is such a problem, how did the system ever
manage to find a matching pathname object in the hash table? Fortunately,
an Explorer extension to the Common Lisp make-hash-table function allows
you to specify an arbitrary predicate for the hash table lookup comparisons.
The Explorer uses a special predicate function that individually compares all
six components for equal while either observing or ignoring case as the host’s
namestring syntax requires. This fairly elaborate predicate successfully imple-
ments a programmer’s notion of which namestrings should be considered the
same and which should be considered different.

By interning the namestring, the elaborate, time consuming comparisons are
done only when a namestring is parsed. All later pathname object compari-
sons are done with the fastest available predicate: eq.

Defaulting Versus
Merging

Defaulting

A Good Example

6.6 Defaulting refers to the general practice of the Explorer software
prompting you for input while simultaneously offering you the input it thinks
you want. In most cases outside the file system, you have only an all-or-
nothing choice: you either accept the entire default as-is, or you supply a
replacement for the entire default.

Inside the file system, however, the thing most frequently being defaulted is
pathnames. Since pathnames have several components, the file system uses
merging to create namestrings that are a mixture of some default components
merged with some user-specified components. Since virtually all defaulting in
the file system requires merging, Lisp programmers seldom bother to distin-
guish between the two and tend to use them interchangeably.

6.6.1 A major ease-of-use feature of the Explorer is pathname defaulting.
That is, you specify part of a namestring, and the system fills in the rest.

6.6.1.1 One of the best examples of the convenience of defaulting is the
Zmacs editor. If you are editing one file and then enter the Find File com-
mand, then Zmacs prompts you for the namestring of the file you want while
displaying the current buffer’s namestring as a default. Although newcomers
might be tempted to type in the whole thing just to be sure, they really need
to type in only those components of the new namestring that are different
from the default. Given a default Explorer namestring of, say,

“host-a: dir-b; file-c.type-d#>"
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A Bad Example

the input on the left in the table shown below would be merged with the
default shown here to create the namestring shown on the right in the table
below:

Type-In ~ Merged Namestring

FILE-Y => host-a: dir-b; FILE-Y.type-d#>
.TYPE-X => host-a: dir-b; file-c. TYPE-X#>
HOST-W: => HOST-W: dir-b; file-c.type-d#>
#4 => host-a: dir-b; file-c.type-d#4

HOST-W: FILE-Y#4 => HOSTA-W: dir-b; FILE-Y.type-d#4

The capitalization in this example is just a way of emphasizing the changed
components—Explorer namestrings are not case-sensitive (although the
namestrings for some other hosts are).

This example also illustrates the advantage of having different delimiters for
each component: if you input a namestring fragment, then the parsing func-
tion, parse-namestring, can figure out which components you specified and
which you left out. For example, the host and directory components are
identified by trailing punctuation whereas type and version have leading
punctuation.

A namestring fragment containing no delimiters is treated as a name compo-
nent. Therefore, if you want Zmacs to find another file in the same directory
your current buffer came from (which is a common case), then you only have
to type in the new filename. Defaulting takes care of filling in the host, direc-
tory, type, and version for you.

6.6.1.2 Zmacs also offers a counter example of how a defaulting scheme
that works 99% of the time can trip you up. To understand what is happen-
ing, remember that

B Reading the newest version of a file reads the highest existing version
number.

W Writing the newest version creates a new version number one higher than
the highest existing one.

M Reading or writing a specific version reads or writes that exact version.

Let’s say the most recent version of the file FOO.LISP is version 4. If you ask
Zmacs to edit “FOO.LISP”, it does the right thing, so to speak, and defaults
your input to “FOO.LISP#>”, that is, the newest version, which, in this case,
happens to be 4. In particular, the namestring “FOO.LISP#>" is now associ-
ated with the Zmacs buffer. When you save that buffer, it is saved to
“FOO.LISP#>", which has the effect of creating a newer version, version 5,
and all is well with the world.

But what if you had explicitly asked to edit “FOO.LISP;#4” (which is sup-
posed to be just another name for the same file)? Now the namestring
“FOO.LISP;#4" is associated with the buffer. When you ask to save it this
time, Zmacs tries to save it literally as version 4—but a version 4 already
exists and the file system complains. This is yet another case of the stupid
computer doing exactly what you told it to.

6-10
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6.6.1.3 Although it’s not properly a part of this section, you might be inter-
ested in how to recover from the above problem. Fortunately, your original
state is left unchanged: the file system has not been modified, the buffer has
not been modified, and it is still marked as needing saving. Therefore, you
are free to enter new Zmacs commands.

You are either going to have to get rid of the conflicting version on disk by
deleting it or renaming it, or you are going to have to store your buffer to a
version that doesn’t conflict. The simplest thing is to use Write File (CTRL-X
CTRL-W) because it will prompt you for a new namestring while offering the
buffer’s associated namestring as a default.

Since the version number is the only problem, enter just a new version num-
ber into the minibuffer and let everything else default. In particular, entering,
say, “#42” would cause it to be written out as version 42 while “#>" would
write it out as the next higher version—whatever that may be.

6.6.2 You accomplish pathname defaulting by merging two pathnames (that
is, symbols, namestrings, or pathname objects) with the merge-pathnames
function.

merge-pathnames accepts two arguments: a target pathname to be defaulted
and a source pathname from which to take the defaults. It converts both
arguments into pathname objects (if they weren’t already) and replaces nil
components in the target pathname object with the corresponding compo-
nents from the source pathname object. Components in the target pathname
that are anything other than nil are left unchanged.

Therefore, merging means replacing nil components in one pathname object
with non-nil components from another pathname object.

If you sneak a peek at the definition of merge-pathnames, then you’ll notice
that the default pathname source argument is actually optional, which means
you can call merge-pathnames with only one pathname. But what does it
mean to merge one pathname? This is beginning to sound like the Lisp ver-
sion of the Zen koan, “What is the sound of one hand clapping?”.

6.6.3 As it turns out, Lisp is quite resourceful. If you don’t specify a default
pathname argument, it goes and finds one for itself. Lisp uses a simple heuris-
tic that allows it to do the right thing (from your point of view) by choosing
the last pathname used for the host of the target pathname you are merging.
If that host has not been accessed before, it uses some other previously ac-
cessed pathname.

These candidate default pathnames are remembered in the variable named
*default-pathname-defaults*. That's right. These are the defaults for the
optional default pathname arguments that you defaulted by not specifying
them in the function calls.

Taking that again more slowly: a number of pathname functions require a
default pathname to use as a source of missing components. These functions
have an optional argument to let you specify that default pathname. But if
you don’t supply one yourself on the function call, it still needs to find a
default somewhere—so it looks in *default-pathname-defaults*.
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The Common
Lisp Approach

The Explorer’s
Approach

Problems With
the UNIX OS

Implied UNIX
File Types

6.6.3.1 In Common Lisp, *default-pathname-defaults* is just a single
pathname. The basic assumption is that you have a choice either of binding
this Common Lisp variable to a default value once or of specifying the default
argument to each function that needs one. The Common Lisp usage of this
variable is not supported on the Explorer—yet.

6.6.3.2 The Explorer uses Zetalisp’s more general version of this variable,
which is a small database that allows more intelligent guesses about which
defaults would do you the most good. In the Explorer, this variable is an
association list of specific file server hosts and the most recent pathname
object used for each host. Therefore, if you are merging a pathname of, say,
host EXPLRS, then the merging function searches this alist for the last path-
name object you used for EXPLRS.

If no match is found in the alist, there is a catch-all entry (its host is listed as
nil). This entry is roughly equivalent to Common Lisp’s view of what its
*default-pathname-defaults* should be. You might say this catch-all entry
is the default for the default pathname defaults—got that?

The Explorer’s use of that alist is controlled by the variable fs:*defaults-are-
per-host*. If this variable is true, then merging operates as discussed above.
If it is false, then merging uses only the catch-all entry in the alist.

6.6.4 The UNIX operating system does not support version numbers on
files. Therefore, pathname objects for UNIX hosts always have a version
component of :unspecific so UNIX version numbers present no particular
problem. As long as the pathname object is being manipulated internally, the
:unspecific marker prevents internal functions from making use of the ver-
sion number. Later, when a string-for namestring is created for use by UNIX
itself, the :unspecific marker is dropped.

UNIX also does not support type components, but that does not stop UNIX
programmers from developing programming conventions that use the notion
of file types. UNIX itself recognizes no components below the level of the
name component, but that name component may contain periods (which
count as just another alphabetic character to UNIX).

Nevertheless, if the average UNIX programmer should see two UNIX files,
FOO.C and FOO.O, then he would assume FOO.C is a C source file and that
FOO.O is probably the compiled version of FOO.C. Similarly, if a UNIX C
compiler was told to compile the file FOO, it would probably look for FOO.C
to read for input and produce FOO.O for output. To UNIX itself, on the
other hand, FOO.C and FOO.O are two unrelated files with unknown con-
tents.

6.6.4.1 When the Explorer’s parse-namestring function is given a UNIX
namestring with a name component of, say, FOO.BAR.BAZ, it uses the last
period as the delimiter of the name component, FOO.BAR (note the embed-
ded period) and the implied type component of BAZ. Notice that the delim-
iting period itself is not explicitly recorded in either component.

This interpretation of FOO.BAR.BAZ as a name/type combination may not
match what the UNIX programmer had in mind. He may have considered it
to be just one long filename with two periods in it. Fortunately, this potential
misinterpretation is just a detail of the internal representation in the UNIX
pathname object.

6-12
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If the Explorer software is asked to reconstruct a string-for namestring from
the UNIX pathname object, then the FOO.BAR name component and the
BAZ type component are recombined into FOO.BAR.BAZ complete with
the original delimiting period. Since parse-namestring (and its simplified
variant, pathname) is symmetrical with namestring, no information is lost
despite the occasional internal misrepresentation.

6.6.4.2 Unfortunately, parsing problems do arise if the UNIX programmer
did not imply a file type in his namestring. For example, UNIX programmers
would commonly view filenames such as FOO, FOO., FOO.., .FOO, ..FOO,
and so on as just filenames with no type.

parse-namestring understands this convention and records the undivided
filename complete with all leading or trailing periods as the name component
of the UNIX pathname object. But what should it record as the type compo-
nent? As it turns out, there can be no single correct answer.

If a Lisp programmer inputs a file named FOO, he expects the system to
provide appropriate default canonical types of, say, :lisp or :xld depending
on how the file is being used. Such defauilting is a known feature of the sys-
tem and is widely used—in Lisp.

If, on the other hand, a UNIX programmer inputs FOO, he expects it to stay
FOO no matter how it is used. Outside of a few specific cases where certain
programs, such as compilers, have their own naming conventions, UNIX pro-
grammers do not expect the system to manipulate filenames behind their
backs.

6.6.4.3 What’s a parser to do? If it parses FOO as a type of nil, then the
type component in the pathname object is eligible for defaulting by merge-
pathnames later. This is the right thing to do for Lisp programmers, but it is
a bug to UNIX programmers. If it parses FOO as a type of :unspecific, then
the type component in the pathname object cannot be defaulted—just the
way UNIX programmers like it, but now it’s a Lisp bug.

The Explorer’s solution to this impasse is to let the users fight it out among
themselves. The global variable fs:*merge-unix-types* determines what
parse-namestring supplies as the type component for UNIX namestrings that
do not contain an implied type.

Value of Supplied

fs:*merge- Type

unix-types* Component Description

true nil The real file type can be merged in
later.

false :unspecific The file type will remain unchanged

regardless of later attempts at merging.

Therefore, set fs:*merge-unix-types* as you like it.

The following are some examples of how UNIX namestrings would be parsed
using these conventions. The phrase as per flag means that a type component
of nil or :unspecific is substituted according to the fs:*merge-unix-types*
flag as described above.
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Namestring Name Type
Fragment Component Component
“FOO” FOO <as per flag>
“.FOO” .FOO <as per flag>
“..FOO" ..FOO <as per flag>
“FOO.” FOO. <as per flag>
“FOO0.."” FOO.. <as per flag>
“FOO.BAR” FOO “BAR”
“FOO.BAR.BAZ” FOO.BAR “BAZ"

The following examples show how the default operation shown above can be
overridden for specific cases by using special Explorer characters to force
specific interpretation of individual components regardless of the value of
fs:*merge-unix-types*. The Explorer character of the double left/right
arrow (&) is produced by pressing (SYMBOL-1). The Explorer character of
the union operator (U) is produced by pressing (SYMBOL-r).

Namestring Name Type
Fragment Component Component
“FOO.&%" FOO nil
“FOO..&" FOO. nil
“FOO.u” FOO ‘unspecific
“FOO..U” FOO. :unspecific
“£5.BAR” nil BAR
“U.BAR” tunspecific BAR

Notice that when the &5 or U notation is used, it must stand for the entire
component. Therefore, a namestring fragment such as “+5..BAR” cannct be
parsed. The “.BAR” suffix would become the type component of “BAR”,
leaving £5. (note the trailing period) to be interpreted as a name component
of—what?—the symbol nil and the character #\.?

Canonical File

Types

The Role of
File Types

6.7 The purpose of many features of the Explorer namestring processing is
to allow the free transfer and access of files between widely differing operat-
ing systems. There are certain obstacles, however, that even the most clever
of software cannot overcome. For example, if the filename on one machine is
longer than another machine will accept, then it is pretty much up to the
programmer to rename the file to some mutually acceptable name before
transferring it.

6.7.1 But when it comes to file types, the software can help out. Although,
strictly speaking, you can specify anything you want for a namestring’s type
component, in practice, you usually stick to a handful of well-known types.
You choose the host, device, directory, and name components to uniquely
identify components within their respective levels of the pathname hierarchy.
In contrast, you choose the type component mainly to classify a file. Such
classification allows various functions to respond intelligently to a file,
depending upon what kind of file (that is, what type) it is.

6-14
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For example, the readfile function loads a Lisp source file into memory
whereas its companion fasload function loads an object file. Lisp program-
mers seldom use these functions (and most newcomers have never heard of
them) because of the intelligent use the general purpose load function makes
of file types. When you give load the pathname of a file to load, it examines
the file type to determine whether to call readfile or fasload. That is, load
calls the right function on your behalf, depending upon the class of the file
you want loaded.

Actually, load has a few other surprises, too. If you specify a pathname with-
out a type, then load tries to do the right thing by first probing to see if there
is an :x1d version of that file. If so, it gets loaded. Otherwise, load falls back
to loading the :lisp version. But be warned: load does not check version
numbers. If the :lisp files are newer than the :xld, load still loads the :xld.

6.7.2 Unfortunately, different operating systems have different ideas about
what to name the same classes of files. Text files are of type TEXT on some
systems and TXT on others. Lisp files may be 1, LSP, or LISP, depending
upon where your files are stored. When the load function mentioned above
first probes for the Lisp object file and then for the Lisp source file, how does
it figure out what exact type name to look for?

The idea behind canonical types is that you identify the class of a file to the
system with a keyword, and the system chooses an appropriate type string to
use in constructing a host-specific namestring. For example, the canonical file
type :lisp would be converted into a type component of LISP on an Explorer,
LSP on DEC’s TOPS-20™OS, and 1 (note the lowercase) on the UNIX OS.

The function fs:define-canonical-type defines the mapping of a canonical
type keyword to an OS-specific string, and the make-pathname function
translates the keywords into the appropriate strings for you. The global vari-
able fs::canonical-types is a property list of canonical type keywords paired
with their mappings for each operating system. About three dozen canonical
types are now defined, but only a handful are commonly used.

Unfortunately, canonical types can be used only with make-pathname and
not with namestrings. The colon that introduces the canonical type keyword
would be mistaken for a syntax delimiter in a namestring.

Rule of thumb: any pathname you must generate in your program (that is, not
something the user gave you) should have a canonical file type.

6.7.3 Actually, this canonical mapping is two-way. If an Explorer name-
string with a type component of LISP has to be converted into, say, a
TOPS-20 namestring (which accepts only three character type strings), then
the pathname software—if asked—can deduce that LISP is an Explorer-
specific instance of the canonical type :lisp and that the canonical type :lisp
translates to LSP on TOPS-20.

TOPS-20 is a trademark of Digital Equipment Corporation.
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The fs:define-canonical-type function can establish a one-to-many mapping
if need be. For example, the canonical type :lisp has a preferred mapping for
UNIX of 1. This mapping is preferred in the sense that UNIX programmers
traditionally use terse, lowercase mnemonics to name things. However, UNIX
itself will accept longer type names such as “lisp”. Therefore, the canonical
type :lisp is translated to 1 on UNIX, but both the UNIX implied types | and
lisp are recognized as instances of the one canonical type :lisp.

This one-to-many mapping is both a feature and a problem. While the
canonical type software recognizes that the files FOO.LSP and BAR.LISP
both represent Lisp source files, it also sees FOO.LSP and FOO.LISP as
being the same file—which probably isn’t what the programmer intended.

Interchange
Format

6.8 Namestring interchange format is an effort to maintain the aesthetics
of namestring capitalization as namestrings are first parsed into pathname
objects and then later reformed from pathname objects to be sent to foreign
hosts. This is one of those topics you need to know just enough about to
recognize it when you see it and to know how to look up specifics when you
need them.

Even on operating systems that allow both cases in pathname components,
programmers commonly develop preferred capitalization conventions. For
example, UNIX namestrings are traditionally lowercase while VAX name-
strings are traditionally uppercase. If a namestring or a namestring compo-
nent is in interchange format, then its case (all upper, all lower, or mixed)
tells something about how it should be recorded in a pathname object for a
particular host:

B If the interchange component is all uppercase, then when it is stored into
a pathname object, it should be given the preferred capitalization of that
pathname object’s host.

® If the component is all lowercase, it should be stored in just the opposite
of the host’s preferred capitalization.

W If the component is mixed case, then no assumptions are made about
preferred capitalization as it is moved around.

A namestring that a user types in is considered to be in raw form. The rules
of interchange format attempt to preserve any significant information that the
capitalization of the original raw input implied no matter how individual com-
ponents may be shuffled about.

Consider the following example of a UNIX namestring (where case is signifi-
cant and lowercase is preferred) versus an Explorer namestring (where case is
ignored and uppercase is preferred). The functions used in this example are
the following:

B pathname, which parses a namestring and returns a pathname object
which, as you'll remember, is an instance of a flavor

W symeval-in-instance, which lets us directly see the value of an instance
variable without going through any translation the accessor methods
might sneak in
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B pathname-directory, which returns the interchange form of the direc-
tory component of a pathname object

B fs:pathname-raw-directory, which returns the raw form of the directory
component of a pathname object

pathname and pathname-directory are standard Common Lisp functions.
The other two are Explorer extensions. We need symeval-in-instance
because the :directory method of the fs:pathname flavor doesn’t just return
the contents of the fs:directory instance variable as it would for most flavors.
Instead it returns the interchange format so we need a more primitive way to
look at the value of the instance variable itself.

Now, if you assume that UHOST represents some UNIX host at your site and
EHOST represents some Explorer host, then

(setf u-path (pathname "uhost:/aaa/bbb"))

(symeval-in-instance u-path ‘fs:directory) => ("aaa")
(pathname-directory u-path) => ("AAA")
(fs:pathname-raw-directory u-path) => ("aaa")

which shows that
B The raw input was in preferred capitalization.
B The components were stored in the object as raw components.

B Extracting the interchange format gives uppercase, indicating that the
component should have preferred capitalization.

Now, looking at an uppercase UNIX pathname we see

(setf u-path (pathname "uhost:/AAA/BBB"))

(symeval-in-instance u-path “fs:directory) => ("AAA")
(pathname-directory u-path) => ("aaa")
(fs:pathname-raw-directory u-path) => ("AAA")

which shows that
M The raw input was the opposite of preferred capitalization.
M The components were still stored in the object as raw components.

B Extracting the interchange format gives lowercase, indicating that the
component should have the opposite of preferred capitalization.

Now let’s look at an Explorer pathname

(setf e-path (pathname "ehost:xxx;yyy")

(symeval-in-instance e-path “fs:directory) => ("XXX")
(pathname-directory e-path) => ("XXX")
(fs:pathname-raw-directory e-path) => ("XXX")

Actually, if you try this for yourself, you’ll find that it doesn’t matter what
capitalization you type in for Explorer pathnames, for everything comes out
in uppercase. Since case isn’t significant in Explorer pathnames, pathname
sort of assumes that everything is equally preferred, so it stores everything as
uppercase.
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Now for a demonstration of the lengths that the Explorer’s file system will g0
to to try to keep everybody happy:

(setf new-u-path (make-pathname :directory (pathname-directory e-path)
:defaults u-path))
(symeval-in-instance new-u-path ‘fs:directory) => ("xxx")
(pathname-directory new-u-path) => ("XXX")
(fs:pathname-raw-directory new-u-path) => ("xxx")

where the make-pathname function effectively replaces the directory com-
ponent of the UNIX pathname with the directory component from the
Explorer pathname. Since the pathname-directory function of e-path
returned an uppercase string, make-pathname knew that it should be stored
in the preferred form for the destination host. Therefore, the Explorer direc-
tory "xxx" became the UNIX directory "xxx*.

If you were to try the inverse of this last experiment and use make-pathname
to insert the UNIX directory into the Explorer pathname object, then you
would see that the UNIX directory "aaa" becomes the Explorer directory
llAAAll.

Generic Pathnames

6.9 Let’s say your XYZ program includes a source file FOO plus a compiled
version of that file—what exactly do you name these two related files? Your
friendly local file system (Explorer or otherwise) probably doesn’t care, but
most programmers do. :

Most programmers develop some pattern for naming related files. On the
Explorer, related files are traditionally distinguished by file types. Further-
more, the single pathname that is used to represent one of these families of
related files is called a generic pathname. If you send a pathname object
:generic-pathname message, then it will return another pathname object
with the type and version components as :unspecific.

The :generic-pathname method actually goes a step further. It attempts to
back translate physical pathnames into their logical pathname forms—if there
is one. Unfortunately, the back-translated-pathname function is not fully
deterministic. Since any number of logical pathnames can be defined to
translate into the same physical pathname, back translating may result in
several choices.

Generic pathnames are mainly used by programs such as make-system,
which have their own conventions about how related files are named. In
make-system’s case, the namestring in the defsystem’s :module declaration
is first converted into a generic pathname. Then, individual namestrings with
specific type names are created for input and output to the various make-
system transforms according to the defaults defined for those transforms (for
example, the :compile transform assumes its input is of type :lisp and its
outputs of type :xld while the :fasload transform assumes its input is :x1d).

As with most conventions on the Explorer, defsystem offers a specific syntax
to override these defaults. It is something of a tribute to the planning behind
the Lisp system that programmers seldom need to change these defaults and
many don’t even know that you can.
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Development
Scenario

Choice of Host

6.10 Logical pathnames are one of the most important production software
facilities on the Explorer. And yet they are so poorly understood by new-
comers that they are usually counted as a hinderance rather than as a vital
tool. The overall problem here is that inexperienced programmers (and some
experienced ones who should know better) can’t see the trouble that’s in
store for them when it’s eventually time to release their work as a product.

6.10.1 Let’s say that a new Explorer programmer, Smedley, is assigned to
build a new expert system. He starts by creating a directory for the program
on his system under his personal directory, “EX22:SMEDLEY.EXPERT;”.
So far so good—all the program’s files will be in one place so that it will be
easy to hand off the software when finished.

Part of this expert system includes a help file that Smedley displays to the
user if the user presses the HELP key. He places this help file in

“EX22:SMEDLEY.EXPERT;HELPER-FILE.TEXT"”

in the directory along with all the other program files, but this file is different:
he must code a reference to this file inside his program. In a burst of clever-
ness, Smedley codes the namestring in his program as

“LM:SMEDLEY.EXPERT;HELPER-FILE. TEXT”

so that wherever his expert system is running, it will always get its help file off
the local machine rather than his personal machine, EX22. The special host
name LM always refers to the machine the software is running on. Perhaps
you already see some problems with this choice, but let’s itemize poor
Smedley’s problems.

6.10.1.1 Smedley assumed that each machine on which his expert system
will be installed in the load band would also have a copy of his program’s files
in its file band. Wrong:

B Some machines (and many delivery vehicles) do not have a local file
band.

B Even if the machine does have a file band, sites often choose to conserve
disk space by keeping common files on a central file server.

What Smedley really needs is some way to postpone the decision as to what
host to use until installation time.

Furthermore, Smedley coded this pathname as a host-specific (in this case,
Explorer-specific) namestring. Even if we found a way to change the host
component to something else, the syntax in the rest of the namestring might
be wrong (for example, VAX VMS requires square brackets around the di-
rectory, whereas UNIX requires slashes between everything).
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6.10.1.2 Since an Explorer has only one file system per machine, it never
needs to make use of the device component of the namestring syntax.
Smedley did not code a device in the help file namestring, so he is going to
get the default device on whichever host he is loaded on. On systems that do
have multiple devices, the default device may or may not be the one the user
wants to use (default devices have a way of becoming overcrowded). So
Smedley needs to allow a host-specific device to be specified once the host is
decided upon.

6.10.1.3 It is reasonable to assume that all of the expert system files that
were in'Smedley’s expert system directory on his machine are still in one
directory at the user’s site. It is probably even reasonable to assume (but not
guaranteed) that this dedicated directory at the user’s site is named EXPERT
(that is, it’s short and doesn’t use special characters). But it is a wild flight of
fancy to assume that there will be a SMEDLEY directory at each site under
which to place the EXPERT subdirectory. In fact, he is not guaranteed that
the host operating system even supports multilevel directories, regardless of
their names.

Smedley has committed the programming equivalent of the man who built a
boat in his basement only to discover when he finished that he had no way to
get it out. Smedley is going to have to explain to each site that not only are
they going to have to create a directory named EXPERT, but also they are
going to have to create a dummy top-level directory named SMEDLEY to put
it in—programmer immortality the hard way.

What Smedley needs is a way of changing the name of his directory as his
program is moved from site to site and of allowing his directory to be attached
at any level in an existing hierarchy of directories at a given site.

6.10.1.4 While the file name HELPER-FILE is nicely descriptive, it is too
long for some popular operating systems (8-9 characters limit is common),
and it contains a special character, the hyphen, that other operating systems
disallow. Unless Smedley is willing to name his files to fit the worst case oper-
ating system (five uppercase letters?), then he needs a way to map filenames
as his program is moved from site to site.

6.10.1.5 Some systems don’t support file types, but as long as Smedley
doesn’t have any other file named HELPER-FILE (that is, he doesn’t need
the type component to distinguish the file), then he should just be able to
safely drop the type. Of those systems that do allow file types, virtually all
have a text file type, so he is on safe ground there. But! All systems with text
file types don’t necessarily name that type TEXT. Several popular systems
name it TXT.

6-20

Programming Concepts



Pathnames

We have already seen the answer for this particular part of the problem:
canonical types. Smedley needs to specify the file type as :text and then let
the system figure out what type name string is appropriate. That is, this prob-
lem of type name and the problem of Explorer-specific syntax mentioned at
the start could have been solved if Smedley had used make-pathname to
assemble the pathname components rather than hardcoding a namestring.
Instead of

"LM:SMEDLEY.EXPERT ; HELPER-FILE.TEXT"

he should have used

(make-pathname :host "LM"
:directory “("SMEDLEY" "EXPERT")
:name "HELPER-FILE"
stype ‘text)

which would have taken care of the host-specific syntax and type name prob-
lems but not the general name mapping problem. This example might suggest
some other alternatives to you. For example,

(make-pathname :host *gxpert-file-serverx*
:device *expert-device*
:directory *expert-directory*
:name *expert-help-file*
:type ttext)

allows the troublesome host, device, directory, and name components to be
filled in at run time from global variables that can be set at each site.

Although such use of make-pathname with variable arguments solves Smed-
ley’s problem, widespread use of this technique would create havoc at the
user’s site. Each new program would potentialy require dozens of meaningless
variables to be initialized to obscure values before the program would work.
The real solution is to use logical pathnames in the program and then to
provide a single translation table at each site mapping those logical pathnames
to site-specific physical pathnames.

By the way, if you think I'm ridiculing inexperienced programmers like our
hapless Smedley, then please understand that I am speaking from the collec-
tive experience of my friends and me. One of the reasons I was asked to
rewrite my Load Distribution Tape utility for the Explorer is that the original
version assumed that the local machine would always have a file system.
Wrong.

Logical
Pathnames —
Part 11

6.11 Question: What makes a logical pathname different from a physical
pathname? Answer: a logical host rather than a physical host.

We saw in our original discussion of namestrings that the characters before
the first colon are assumed to be the name of the physical host the namestring
pertains to. The namestring parsing software looks up that physical host name
in system tables to find out how to parse the remainder of the namestring
following that colon.

Logical namestrings are the same: the characters before the colon still iden-
tify the host. However, when the namestring parsing software looks up the
host name, it discovers that this is a logical rather than physical host. (That
is, the host object it finds is built on the fs:logical-pathname flavor, as physi-
cal pathnames are not.) Knowing that this namestring has a logical host tells
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the parser how to parse the remainder of the logical namestring into compo-
nents (just as before). However, those components cannot be used directly.
Instead, they must be mapped, or translated, according to a translation table
associated with that particular logical host.

There are two logical namestring syntaxes. The original syntax should be
portable across Zetalisp-derived Lisp machines, and it uses a minimum num-
ber of delimiters:

"HOST : DIRECTORY ;NAME TYPE VERSION"

The newer syntax looks just like Explorer namestring syntax but, of course, is
not portable:

"HOST : DIRECTORY ; NAME . TYPE#VERSION"

The Explorer’s parse-namestring function accepts either syntax and parses
the logical namestring into a pathname object with these logical (untrans-
lated) components. When it comes time to actually access the physical file,
you can send a :translated-pathname message to the pathname object, and
it will return the corresponding physical pathname object. If this message is
sent to a physical pathname object (one that requires no translation), then
that physical pathname object is returned unchanged.

The translated-pathname function is a little more general-purpose. It
accepts either a namestring or a pathname object and returns a physical path-
name object. As with the :translated-pathname message, a physical name-
string is returned as a physical pathname object, and a physical pathname
object is returned as is.

The mapping that defines how to translate each namestring for a given logical
host is specified by the fs:set-logical-pathname-host function. By conven-
tion, the fs:set-logical-pathname-host function that defines logical
lhost is the sole form in the file

“SYS:SITE;lhost. TRANSLATIONS”

so that loading this file automatically defines the logical translations for logical
lhost. Creating this file and defining the fs:set-logical-pathname-host form
that goes in it is typically done by the programmer whose program needs that
host.

6.11.1 Now that we know something about logical pathnames, how should
Smedley have named his files?

6.11.1.1 The first question is: “How many logical hosts does he need?” This
immediately brings up a second question: “Why do we care?”

We care because one logical host translates into one physical host. Therefore,
if your end user has a practical need to place your files on more than one file
server, then you need more than one logical host.

For most Explorer software products, the only files involved are the product
object files and, if a source license was included, the source files. Because of
assumptions built into the Explorer system software, source and object files
should always be in the same directory if at all possible. Therefore, if source

6-22

Programming Concepts



Choice of Device

Choice of Directory

Choice of Name

Choice of Type

Choice of Version

Pathnames

and object files are the only files associated with the product, then one logical
host will do.

Once a product has been installed in a load band, there is no need to access
its source or object files during run time. However, some products also
include run-time files such as help files (like Smedley’s), configuration files,
database files, and so on, that are needed in the day-to-day operation of the
product. Furthermore, some of these run-time files may have been designed
to be customized by the user so that one site-wide copy is not appropriate.
Even if personal copies of run-time files are not needed, software license
restrictions often require that access to source files be restricted, whereas the
run-time files are treated as public information.

Considering all of this, Smedley would probably do well to define two logical
hosts: one for his expert system’s source and object files and one for his
run-time files such as the help file we talked about before.

6.11.1.2 Logical pathnames don’t have device components, so Smedley is
spared making a decision about what to code in his program for this one.
However, his translations file can specify a physical device for each logical
directory if need be.

6.11.1.3 Again, Smedley doesn’t have a problem here when coding his pro-
gram. He can use anything he wants because it is going to be mapped into a
specific physical directory or subdirectory before it is used.

It is common practice for programmers to define their logical directories to
have the same names as the physical directories on their home machines.
Newcomers are occasionally confused when they translate a logical name-
string only to discover that they still have the same namestring but now with a
physical host. Not to worry. The presence of the physical host shows that the
namestring really was translated.

Then again, maybe you should worry. A misfeature of our current logical
pathname translation software is that an unknown logical directory is trans-
lated as being itself without flagging an error. Therefore, if all your logical
directories have the same names as your physical directories, then you’ll still
need a translation file to map the logical host to a physical host, but you
won't need any directory translations. All directory names default to them-
selves. Of course, if there is a typo in your logical directory name, instead of
getting some sort of undefined directory error you quietly get a typo in your
physical pathname.

6.11.1.4 Smedley’s two main concerns here are the length of the name
component and special characters in the name. For the most part, logical
pathname translations aren’t going to be of any help to Smedley. He’s going
to have to pick something mutually acceptable to all operating systems that
are likely to host his program.

6.11.1.5 Smedley should always use canonical types.

6.11.1.6 Smedley should always use the newest version of any file. There-
fore, he should not mention the version and let it default to newest, or—if he
is paranoid (as it pays to be)—then he should explicitly code the newest ver-
sion indicator into each pathname.
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6.11.1.7 Smedley should never hardcode a namestring—even a logical
namestring—in his program. Instead, he should use make-pathname to
assemble the individual logical components into a pathname object. The
make-pathname function is required because logical namestrings do not ac-
cept canonical types.

If Smedley needs a namestring to display to his users, then he should use the
namestring function on the pathname object returned by make-pathname.

6.11.2 Now that Smedley has converted his program to use logical path-
names, there are a few odds and ends left.

First, for each logical host (generically shown as lhost below), he needs to
create a file named

SYS:SITE; lhost . TRANSLATIONS

which contains a single fs:set-logical-pathname-host form. Aside from com-
ments, there should be nothing else in this file. For details, see the file

SYS:SITE;-READ-ME- .TEXT
Second, he should create a file named
SYS:SITE; system .SYSTEM

where system is the name he has chosen for this system (that is, the name
defined by defsystem). The read-me file mentioned above also explains the
contents of this file. A detail the read-me file doesn’t mention is that Smedley
should include a load form to load the translations file(s) ahead of the
defsystem form in the .SYSTEM file. Furthermore, the namestrings used in
the defsystem declarations should be logical namestrings.

Thus, the only place that the site-dependent physical pathnames associated
with Smedley’s program are mentioned is in the translation files(s).

SYS-Host

The Site Directory

6.12 The logical host named SYS (and conversationally referred to as the
SYS-host) is the single most important logical host on the Explorer. SYS-host
has two main uses:

R It holds the SITE directory which, in turn, holds all site-dependent infor-
mation needed by Explorer software products.

B It holds the system source files such as those accessed by META-. in
Zmacs.

6.12.1 If you write your code correctly, then you can move your program
from site to site without changing anything except files in the SYS:SITE;
directory. The idea behind the SITE directory is that all the types of infor-
mation that are likely to change among sites have been broken down into
several classes. Each class is then represented by a file or a group of files on
the SITE directory.
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For example, each logical host on the system must have its own set of logical-
to-physical translations. Therefore, the two namestrings

SYS:SITE;FOO.TRANSLATIONS
SYS:SITE;BAR.TRANSLATIONS

represent the translations files for logical hosts FOO and BAR, respectively.

The previous example illustrates the naming convention for files in the SITE
directory:

SYS:SITE; instance-name.class-name

That is, even though these files are ordinarily :lisp or :xld files, their file type
component is used to identify what class of site-dependent information the
file holds.

The two most common types of files in the SITE directory are :translations
mentioned above and :system, which tells make-system where to find the
defsystem form that defines the system indicated by the name component.
For example, consider some files associated with the Grasper toolkit:

SYS:SITE;GRASPER.SYSTEM
SYS:SITE;GRASPER.TRANSLATIONS

The first file, when loaded, either contains the defsystem for Grasper or it
tells make-system where it can find the defsystem (see the file
SYS:SITE;-READ-ME-.TEXT for details). The second file contains the
translations for the Grasper logical host, which contains the Grasper source
and object files.

This example also illustrates the distinction between system conventions and
programmer conventions. The system understands the implications of the file
types :translations and :system when found in the SYS:SITE; directory. If,
for some obscure reason, you decide not to follow these system conventions,
then you must be careful not to use any system defaults. Instead, you must
fully specify everything you want done (and you’ll probably still get caught).

The example also shows the programming convention of using the product
name, Grasper, as the system name, GRASPER.SYSTEM, and as the princi-
pal logical host associated with the product, GRASPER. TRANSLATIONS.
While this naming convention might seem eminently sensible, the system
couldn’t care less. As far as the system software is concerned, there is no
relationship between the name of the product and its defsystem name or
between its defsystem name and any logical hosts it may use.

6.12.2 The other principal use of SYS-host is to hold the Explorer system
source files. That is, it contains the source files for everything that comes with
the basic Explorer system. Optional Explorer software products usually have
their own logical host rather than sharing SYS-host.

6.12.3 Newcomers to the Explorer often have the system fail for obscure
reasons “because the SYS-host was set wrong”. Why would anyone reset
SYS-host to a different machine? What breaks if you do reset SYS-host? The
main culprit is usually development software.
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Let’s say you have two copies of the system source at your site. Perhaps one
is for the current release and one is for the previous release. Or perhaps one
is for the official release, and one has a bunch of experimental software
added. The META-. facility in Zmacs is so handy that programmers will not
part with it easily. If they are working with something other than the current,
official source, then they will frequently reset SYS-host to point to the
machine that has their development source on it.

Okay, so much for why you might want to change SYS-host; now what can go
wrong? The problem is that just as no man can serve two masters, neither can
SYS-host. When you switch SYS-host so that you can META-. your develop-
ment source, you also switch the place make-system looks to find its :SYS-
TEM files.

If everybody were thorough and conscientious, then there would be no prob-
lem. If you make sure that every potential SYS-host on your network starts
out with a complete copy of the system source for META-. and a complete
SITE directory, then you can just change the individual files you are inter-
ested in, and everything else works fine.

But! SYS-host encompasses a large amount of data. It takes up a lot of valu-
able disk space to keep multiple copies of it; it takes a lot of time to copy it;
and it takes a lot of vigilance to keep everything up-to-date. In short, no one
bothers. Instead, they create a partial SYS-host with just the files they are
interested in and then proceed to use the system as they normally do. Good
luck.

Programmers’ habits of changing SYS-host to this machine or that machine
for one reason or another is what leads to the admonition in the product
installation instructions “make sure your SYS-host is set correctly”. Other-
wise, you can never be sure where your new software will end up.

You can find out where your SYS-host is set to with the form
(translated-pathname "sys:")

and you can change your SYS-host with the form
(sys:set-sys-host "host-name")

where host-name is the name of a network host written as a string.

Absolute Versus
Relative Directories

6.13 Some operating systems (such as, UNIX, Symbolics™, VAX VMS)
support the concept of relative directory specifications in their namestring
syntax. The Explorer system does not have such a feature (it supports only
absolute directories), but it must still be able to parse and manipulate path-
name objects for all hosts it touches.

B An absolute directory specification assumes you are starting at the root
directory of the device. Such a specification always identifies the same
directory regardless of the current execution environment.

B A relative directory specification assumes that there is some current
working directory known in the execution environment and that this rela-
tive directory is really just a suffix specification. Such a specification iden-
tifies different directories at different times.

Symbolics is a trademark of Symbolics, Inc.
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Lisp machines don’t have the formal concept of a working directory to use
when parsing relative directories, but they do always have a default pathname
handy. Therefore, relative directory parsing on the Explorer system is always
relative to the directory component of the current default pathname.

6.13.1 Let's assume that your UNIX working directory is /x/y/z/. Now,
if you specify an absolute UNIX directory of /a/b/c/d/ (note the leading /),
then you get exactly that; /a/b/c/d/, the working directory is ignored. How-
ever, if you specify a relative directory of c/d/ (note the absence of a lead-
ing /), then you get /x/y/z/c/d/. That is, the relative directory is concatenated
onto the working directory.

The relative directory feature is often loosely referred to as relative path-
names even though only the directory component is involved. Typical.

If you view a file system as a logic tree of directory nodes with files as its
leaves, then an absolute directory—such as our working directory in the
example above—uniquely identifies a node in that tree. Given that you are
standing at that node in the directory tree, a relative directory tells you how
to walk away from the working directory node and go one or more levels
down the tree towards the leaves.

6.13.2 1If one notation can tell you how to walk down the tree, then another
notation can tell you to walk up the tree towards the root.

Let’s return to our previous UNIX example where our working directory (that
is, the starting location in the tree) is /x/y/z/. We saw that the relative direc-
tory c/d/ was equivalent to the tree walk instructions:

1. Start at /x/y/z/

2. Go down to z's child named ¢

3. Go down to ¢’s child named d

Now we see that the relative directory ../c/d/ where the leading ../ refers to
the parent directory means to

1. Start at /x/y/z/ (as before)

2. Go up to the parent of z which is y
3. Now go down to y’s child named ¢
4. Go down to c’s child named d

In a similar vein, ../../c/d/ would mean go up to z’s parent y and then go up
to y's parent x before starting down to x's child named ¢ and so on.

If this relative directory syntax were carried to the extreme, then one overly
elaborate namestring could specify a single-directory walk up and down and
up and down the tree. In practice, most operating systems put a stop to such
exuberance by limiting the up components to the beginning of the relative
directory specification. Once you finally start down the tree, you can never go
back (to coin a cliche).
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6.13.3 We saw before that the internal representation of a directory com-
ponent is a list of strings where each string is the name of a directory subcom-
ponent. For example, the namestring directory /a/b/c/d/ would be
represented in a pathname object as

(“a” ubn ucn ud”)

In the case of a simple relative directory, such as c¢/d/, the list starts with the
keyword :relative as in

(:relative "c" "d")

In the case of a general relative directory with up components, it starts with
:relative, and each initial up component is represented by the keyword :up.
In this notation, a string by itself implies down even though there is no
explicit :down keyword as a counterpart to :up. For example, ../../c/d/
would be

(:relative :up :up "c" "d")
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Introduction

7.1 The Explorer is a uniprocessor with a multiprocessing operating system.
That is, it has one CPU that is time-shared among several independent proc-
esses. The time-sharing is controlled by the Scheduler. The current Common
Lisp standard does not include the notion of processes and therefore effec-
tively assumes that everything always executes in the same process.

In many operating systems, processes and their schedulers are system primi-
tives and may even be linked directly to hardware features. On the Explorer,
both processes and their Scheduler are simply coroutines the same as any
Explorer programmer might create for his or her own use in a program.
Coroutining, of course, is that well-known programming concept you learned
in computer science class and have never used since.

Some Terminology

Stack Group

Coroutines

Processes

Scheduler

7.2 Before we get mired in details, let’s sort out some terms that we need
and see how they are related to each other.

7.2.1 At the lowest level we have the stack group, which is a primitive
Explorer data type. Stack groups are primitive only in the sense that they are
implemented directly in microcode. Actually, their internal structure is quite
complex because they must be able to record the complete processing state of
the Explorer hardware and software in case of a context switch.

7.2.2 A stack group, by itself, is just a passive processing environment. If
you give a stack group a function to execute in that environment, then you
have a coroutine. The distinguishing characteristic of a coroutine is that it
allows you to return from it part-way through its execution. Later, when you
call it again, it picks up execution in the middle of wherever it left off rather
than starting over at the beginning again as a subroutine would do.

7.2.3 A coroutine matches our general notion of what a software process
should be (independent execution, independent data), but practical proc-
esses require a lot of bureaucratic overhead: what’s ready to run, what'’s not;
what process has priority over which other; what needs to be killed; and so
on.

On the Explorer, a process is an instance of the sys:process flavor, which
associates various overhead information with exactly one stack group that
records that process’s execution state. Notice that while a programmer may
include coroutines in the implementation of his or her process, the process
itself is represented by one unique stack group.

7.2.4 The Scheduler is another coroutine (not a process) that knows about
all active processes. The Scheduler, in turn, is uniquely known by certain
system initialization code that kicks it off.
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Why Do I
Need Processes?

7.3 Actually, if your life’s goal is to write functions that someone else will
call, then you are neither interested in processes nor care how they are
scheduled. If, on the other hand, you think of the program you are writing as
a standalone application or as an asynchronous server, then you are probably
going to need your own process.

The key word here is asynchronous. For pure functionality, you can do just
about everything you want with one (possibly elaborate) function running in
one process, but it can do only one thing at a time. For example, if you called
a long-running function from a Lisp Listener, then you’ve lost the use of that
Listener until the function returns because the function is using the Listener’s
process.

For a more elaborate example, let’s assume that your function puts two win-
dows on the screen: one for display, one for queries. If both windows are
controlled by the same process, then only one can be doing its thing at a
given time.

W If your function is scrolling a volume of information in the display win-
dow, the query window appears to be dead.

B If the process has queried you and is waiting for your response, then the
display window is frozen.

If these two windows had been controlled by separate processes, then instan-
taneously only one would have been active at a time (because the Explorer is
a uniprocessor), but activity would have regularly alternated between them
independently of what the user happened to do. The data scrolling in the
output window becomes jerky when you respond to a query, and the query
window is sluggish if the display window is in use; but neither comes to a
complete halt waiting on the other to finish. There is the illusion of simulta-
neous execution.

Why Does the
System Need
Processes?

7.4 The previous example also illustrates why coroutines by themselves are
not enough. A pair of query/display coroutines would have given indepen-
dent, and relatively asynchronous execution. For example, simple coroutines
would have allowed the program logic of the query code and the display code
to deliberately alternate between a little querying and a little displaying.

However, if users were slow in answering a query, then the display would
have had to wait for them to finish their type-in. Alternately, a long clisplay
might lock up the query window for many seconds.

In other words, if your goal is to create the illusion of parallel processing
through coroutines, then your coroutines need to be well-behaved and never
hog the processor. Of course, simply giving up the process periodically isn’t
necessarily the right thing to do either. There is no particular value in, say,
the display coroutine courteously giving up the processor in the middle of a
long display if the query coroutine is still waiting for the user to type some-
thing.

7-2

Programming Concepts



Processes and Scheduling

Rule of Thumb: Coroutines should be designed to switch among themselves
only as their program logic requires. Coroutine switching for the purpose of
processor sharing should be done by some third party who has a more global
view of what is going on.

Explorer
Coroutines

Call/Return
Versus Resume

Argument Passing

7.5 The notion of calling a subroutine is deeply ingrained in our thinking;
a call to a function causes execution to do the following:

1. To jump to the logical beginning of that function
2. To run to the logical end of that function
3. To return

Notice that there is something of a master/slave relationship implied by a
subroutine call: master calls slave, slave returns to master.

7.5.1 Our faithful terms, call and return, fail us when we talk about corou-
tines. Coroutines are equals. An executing coroutine can transfer to another
coroutine, which causes that other coroutine to be resumed (we’ll see how
coroutines are resumed later). A transfer out of the executing coroutine is
much like calling an ordinary function, but resuming means just what it says:
execution picks up in the middle where it left off—not at the beginning.

Furthermore, in coroutining, there is no analogy to the subroutine return.
Instead, Coroutine A resumes Coroutine B, which runs a while and then
resumes another coroutine. Coroutine B may have resumed Coroutine A, but
it may have resumed some other coroutine. While an Explorer coroutine can
blindly resume its Resumer just as a subroutine can blmdly return to its
Caller, this capability is just a convenience detail.

If you were to characterize subroutine-like execution as call, return, call,
return; then coroutine execution would be resume, resume, resume, resume.
With coroutines, you’ve got to stop thinking about what happens when the
function you have called returns.

7.5.2 Instead of talking about arguments and return values, which implies
that master/slave relationship again, we need to think in terms of transferring
a Lisp object to the coroutine being resumed. Therefore, when Coroutine A
resumes Coroutine B, A may optionally transfer an object to B. If Coroutine
B executes a while and then resumes A, it may transfer an object to A.

From the point of view of Coroutine A, it transferred a single argument to
Coroutine B and then B eventually returned a value. Sounds like our familiar
call/return relationship, doesn’t it? But there is a surprise lurking here.

Let’s say Coroutine A resumed Coroutine B. Next, B resumed C and finally
C resumed A with an object transferred on each resume. Again, from
Coroutine A’s viewpoint, it transferred an object to Coroutine B and, at some
later point, Coroutine B returned to A—passing the object that came from
Coroutine C!
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Keeping Track
of Coroutines

An Aside

Coroutine
Programming

Beware: if you insist on thinking of coroutine transfers in terms of the tradi-
tional call and return, then remember that the coroutine that returns to you is
not necessarily the one you called.

7.5.3 The description of Explorer coroutines so far makes it sound as if to
use coroutines is to lose control of execution. Actually, it is not as bad as all
that. The important point is that coroutines allow, but do not require, a
call/return execution pattern.

For example, if Coroutine A resumes Coroutine B, then the microcode
updates current-stack-group-resumer, a special variable in B’s environ-
ment, to record B’s Resumer (which, in this case, is Coroutine A). There-
fore, any coroutine can return to its caller (without knowing who that caller
is) by resuming the value of current-stack-group-resumer—but it is usually
simpler just to execute the stack-group-return function that does the resume
for you.

On the other hand, a strict call/return pattern implies that everything was
planned out ahead of time. What do you do when something unplanned hap-
pens?

For example, the Scheduler normally resumes a process and then that proc-
ess later resumes the Scheduler (that is, the call-return pattern). However, if
that process should get an error, then the microcode forces the process to
resume the Error Handler coroutine. If the Error Handler can fix up the
problem, then it resumes the interrupted process (call/return again). If, how-
ever, the error is fatal, the Error Handler resumes a different process. In the
end, the Scheduler will once more be resumed, but not by the same process
the Scheduler thought it was running.

7.5.4 The fact that the Error Handler runs in a separate process explains
why newcomers trying to use the Error Handler to examine their code some-
times complain, “Hey! Where did my data go?” Actually, the data is right
where you left it in its own process—but that isn’t the environment the Error
Handler is in.

Normally, you’ll never notice any problem because the Error Handler’s
examination commands make a point of examining the process that called
the Error Handler and not the Error Handler’s environment itself. Of course,
even the Error Handler can be fooled on occasions.

If you ever get more than one right pointing arrow as an Error Handler
prompt, then your Error Handler has gotten an error and called itself recur-
sively. Now the Error Handler’s examination functions will show you the pre-
vious Error Handler and not your original process. Surprisel

7.5.5 If you want to use the Explorer’s coroutining facility for traditional
coroutine implementations, then the simplest way to do a call/return is to
funcall the stack group that represents the coroutine you want to call with
one argument that is the object you want transmitted. That coroutine later
returns by executing the stack-group-return function, again with the object
to be transmitted as its single argument.

On the other hand, if you need the anybody-can-resume-anybody feature of
Explorer coroutines, then you can use the stack-group-resume function,
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which takes two arguments: the stack group (that is, the coroutine) to be
resumed and the object to be transmitted.

Notice that even though you can funcall a stack group as though it were a
function, stack groups and functions are two different beasts. You’ll remem-
ber that stack groups are a primitive data type, which means they can be
recognized on sight by the microcode. Therefore, if the object you funcall is
a symbol data type, then the microcode does a traditional function call. If it
is a stack group data type, then the microcode does a stack group switch. (If
it is an instance data type, then the microcode sends a message—but that’s
another section.)

Stack Groups

Stack Group
Contents

Global Versus
Private Variables

7.6 Coroutines and stack groups don’t come up in ordinary conversation
much; but when they do, the two words tend to be used interchangeably. One
term reflects the programmer’s viewpoint; one reflects the microcode’s.

There is a distinction, however. A stack group as created by the function
make-stack-group is merely a passive environment in which a function can
execute. The stack-group-preset function initializes an existing stack group
so that a specified function (your coroutine) starts executing the first time
that stack group is resumed.

7.6.1 A stack group is a data structure containing three principal pieces of
information:

B Register save area — This is the traditional save area for the hardware
registers when the stack group is not executing in the CPU.

m Control stack — This is the traditional call/return stack that holds the
function-calling history, arguments, and local variables. This stack is also
called the regular PDL. PDL stands for push down list, the old name for
a push down stack, and is pronounced piddie.

H Dynamic environment stack — This is the stack that records which spe-
cial variables have been shadowed by which bindings so far in this stack
group. This stack is also called the special PDL.

This pair of stacks, the regular PDL and special PDL, is why this object is
called a stack group.

7.6.2 Now that we know that a stack group is used to record the private
environment of a process, it would be useful to distinguish private from global
variables.

W Special variables declared at the top level (in other words, proclaimed
special or defined in a defvar, defparameter, or defconstant) are
global special variables and are equally accessible to all stack groups.

M Global special variables that are later bound within a stack group are
shadowed such that stack group code inside the binding sees only these
newly bound values while other stack groups still see the original global
values.

W Variables declared special within a stack group are accessible only within
that stack group.
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Bindings

Do not confuse special variables that are accessible only within one stack
group with Jocal variables (that is, non-special variables) that are accessible
only within the lexical scope of a block of source code. For example,

(defvar *a* 11)
xXXX
XXXX
(let ((*ax* 99)
(b 22))
(declare (special b))
yyyy

yyyy)
XXX
XXX

Let’s call the code represented by the xxxx lines in the above example the
x-code and that represented by yyyy lines the y-code.

The variable *a* with the value 11 is a global special variable and is therefore
available to all code of all stack groups. In particular, the x-code of this
example (both before and after the let) sees *a*=11. This defvar definition
of »a* illustrates the first bullet above.

The let in this example binds *a* to 99 so that the y-code sees *a*=99 even
though other stack groups still see *a*=11 (assuming, of course, that they
haven’t bound *a* to something else as this example did). Furthermore, if
the y-code should setf *a* to some other value, then it is this let’s binding
(which can be seen only by the y-code) that is set, not the global value seen
by the other stack groups. In contrast, if the x-code (which is outside the let)
should setf *ax, then it would be seen in other stack groups. This let binding
of *ax illustrates the second bullet.

The let binding of b and the declare make b available to the y-code and to
everything called by the y-code as a special variable. Neither the x-code in
this stack group nor any code in any other stack group can see b. This let
binding of b illustrates the third bullet.

7.6.3 When a new process is started, the system binds the global special
variables associated with Lisp Listener type-in and type-out (that is, *, **,
BEE 4, ++, 1, [, /], 1], -, and *values*) to themselves. The rationale is
that each process starts out with the same values that its parent process had.
However, later type-in and type-out in that new process’s Listener will not
affect any other Listener.

The important thing to notice here is that these automatic bindings are rela-
tively unimportant because those variables are relatively unimportant to most
code. They deal only with an interactive feature of Lisp Listeners, and most
processes aren’t used as Listeners. Few people will ever care whether these
variables are bound or not. Pity.

On the other hand, the most critical global special variables are not automati-
cally bound at process initialization time. Therefore, if you were to setf one
of these variables, then your process and everybody else’s would see the
change. If that is what you want—fine. However, if you do not want to
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interfere with other processes, then bind that global variable within your
process before you setf it. For example,

(let ((*global-var* *global-var*))
...your code. . .)

7.6.4 1If two Explorer processes need to share a piece of information, then
all you have to do is define a global special variable with a defvar or
defparameter and let both processes access it. Data sharing is as easy as that.
This simplicity is in stark contrast to conventional operating systems that were
designed to keep processes separate at all costs. Data sharing on these
systems is tedious and not necessarily efficient.

Then again, sometimes you don’t want to share data. For example, the global
special variable *print-base* determines how integers are printed by default.
*print-base* is normally set for base 10, but let’s say you need your printouts
in base 16. A setf of *print-base* to 16 would solve your problem, but it
would change the print base of all processes (much to their surprise). Here is
where you need to bind *print-base* within your process so that your
changes to *print-base* do not become global changes.

Rule of Thumb: Never setf a global special variable. Bind it.

There is one final problem to consider: just because your process is inde-
pendent of other processes in the system, will it be independent of itself?
That is, if you have defined a couple of global special variables for your proc-
ess, then what happens if several copies of your process all start using those
variables at the same times?

If any two processes need to update the same global special variable, then
there is always the chance that one process will be time-sliced out of the
processor with the update only half completed. The simplest way to prevent
incomplete updates is to wrap a without-interrupts form around the update
code. This form prevents the Scheduler from being run while the code in the
body of the form is executing.

For example, let’s suppose *print-que* is a global special variable of out-
standing print requests. Various processes put their requests onto this queue,
and the print server takes them off. If a requesting process were to simply use

(setf *print-que* (cons my-request *print-que*))

then another process could potentially be time-sliced in between the time the
cons reads *print-que* and setf writes it. The proper way of doing this
operation would be

(without-interrupts
(setf *print-que* (cons my-request *print-que*)))

Now we can see that data sharing is a two-edged sword. Operating systems
such as UNIX pride themselves on process isolation and make sharing hard.
At the other extreme, the Explorer allows such simple data sharing that
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Bypassing Bindings

you've got to plan your code carefully so you don’t step on someone else’s
numbers. Nothing comes for free.

7.6.5 Binding of global special variables such as shown above usually pro-
vides a solid bulkhead separating the code inside the let from code outside
the let. However, there are ways of tunneling under the bulkhead.

The set-globally function bypasses any intervening bindings of a special vari-
able and permanently sets the global value of that variable for all to see. The
macro let-globally temporarily sets the value of one or more global special
variables while its body executes. Upon exit, the let-globally sets those vari-
ables back to their original value. For example,

(defvar *x* 11)
wwww
wwww
(lat ((*x* *x¥))
XXXX
XXXX
(set-globally “*x* 99)
yyyy

yyyy)
zZz2Z
zzzz

If the above code were the entire program, then

B While the w-code and later the x-code is executing, everyone in the sys-
tem sees *x*=11 (even though the x-code is seeing a local binding of *x*
with that value).

B While the y-code is executing, the y-code still sees *x*=11 because the
local let binding of *x* is remembering the original global value, but
everyone else in the system sees *x*=99 (unless they have bound *x*
themselves) because of the set-globally.

B While the z-code is executing (notice that the let binding of *x* has
expired), everybody in the system including the z-code once again sees
the same value of *x*, which is now 99.

Processes

7.7 Even if you did not know that Explorer processes were implemented as
coroutines, it would be obvious that processes and traditional coroutines have
something in common. The most important similarity is that they must be
able to execute independently of each other and of each other’s data.

The most important difference is that a set of coroutines normally knows
about one another, and each resumes the other as needed to accomplish
their common goal. In contrast, processes normally know nothing of each
other and have no idea of who should be resumed next. Therefore,
coroutines used as processes need a third party mediator who has a more
global view of what is going on in the system.

On the Explorer, this mediator is yet another coroutine called the Scheduler.
The normal operating pattern is for the Scheduler to resume a waiting proc-
ess, the process runs for a while, and then it resumes its Resumer (that is, the
Scheduler). Once resumed, the principal job of the Scheduler is deciding
who to run next. Notice that most of the information recorded in a process
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(described next) goes towards providing the Scheduler with information to
make intelligent “Who's next?” decisions.

An Explorer process is an instance of a flavor built on the sys:process flavor.
The main information recorded in the instance variables of this flavor is:

B Initial Function and Arguments — The Scheduler applies this function to
these arguments the first time a new process starts (that is, the first time it
is resumed).

B Stack Group — This is the private environment in which the process'’s
Initial Function executes.

B Wait Function and Arguments — The Scheduler applies this function to
these arguments for each process that is a candidate for being resumed. If
this form returns true, this process is resumed.

B Miscellaneous memory allocation parameters.

B Miscellaneous scheduling parameters.

7.7.1 This function and any functions it calls do the work of your process.
The process is temporary or permanent depending on whether this Initial
Function returns or not. For a temporary process, the Initial Function even-
tually returns and the process terminates normally. For a permanent process,
the Initial Function usually contains an infinite loop around the main process-
ing body.

This Initial Function can do anything you want, but good programming prac-
tice suggests that this function establish all process private bindings and then
call the main processing body. A starter set of bindings that all processes
should have is:

(let ((*terminal-io* *terminal-iox*)
(*standard-output* (make-synonym-stream ‘*terminal-io*))
(*standard-input* (make-synonym-stream ‘*terminal-iox*))

(*error-outout* (make-synonym-stream “*terminal-io*))
(*trace-outputx* (make-synonym-stream ‘*terminal-io*))
(*query-iox* (make-synonym-stream ‘*terminal-io*))
(*debug-iox* (make-synonym-stream ‘*terminal-io*)))

. .your Initial Function Body...)

These bindings assure that the standard I/0O streams operate in the expected
way, regardless of whatever strange state they may have been in while inside
the process that made yours. Furthermore, if you suspect that code called by
your Initial Function might be imprudently setting shared global variables
such as *print-base* mentioned above, then add bindings of those variables
to themselves such as

(*print-base*x *print-base*)

to guarantee that local modifications to those variables can never escape to
raise havoc in the outside world.
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process-wait
Versus Wait Function

Once a process starts executing, it can stop for one of four reasons:

B A process may voluntarily pause by calling the function process-allow-
schedule. It will automatically be resumed the next time through the
Scheduler’s polling. loop.

B A process may deliberately wait by executing the function process-wait
and leaving a wake-up call in the form of a Wait Function and arguments
(explained below).

B A continuously running process is involuntarily suspended about once a
second by a hardware interrupt called a sequence break. The process is
automatically resumed the next time through the polling loop.

B In case of error, the microcode forces the process to resume the Error
Handler process (for its own good, you understand).

Even though the Initial Function executes in the process’s private stack group
environment, its arguments (if any) are evaluated in the Scheduler’s environ-
ment. Therefore, these Initial Function arguments should be forms that refer-
ence only constants and global special variables. See paragraph 7.7.6, Errors
Inside the Scheduler, for some caveats.

7.7.2 The way the Scheduler determines whether a waiting process is ready
to run yet is to apply that process’s Wait Function to that Wait Function’s
arguments, if any. If the function returns true, the process is resumed. Other-
wise, the process continues to wait at least until the next time through the
polling loop.

Both the arguments to the Wait Function and the Wait Function itself are
evaluated in the Scheduler’s environment. Therefore, as before in the case of
the Initial Function arguments, this function and its argument forms should
reference only constants or global special variables. In particular, a process’s
Wait Function cannot reference any of the process’s private variables. See
paragraph 7.7.6, Errors Inside the Scheduler.

You should design your Wait Functions so that if they are going to return
false, they do so as quickly as possible. If that sounds like an odd require-
ment, look at things from the Scheduler’s point of view as it goes around the
polling loop. Once around the loop means the Scheduler has executed every
Wait Function once, and usually all but one or two have returned false.
Therefore, inefficiently written Wait Functions do little for their processes,
but they do slow down the polling loop for everyone.

Here is one more important caveat about what you can put into a Wait Func-
tion: a Wait Function should never have side effects. You are not guaranteed
when it will be called, what order it will be called in, or how many times it
may be called as the Scheduler goes through the polling loop.

7.7.3 process-wait is a system supplied function that a process calls when it
wants to suspend execution temporarily. The arguments to process-wait are a
function and some arguments for that function that are handed to the Sched-
uler to be used as that suspended process’s Wait Function.

There are several variants on process-wait. The function process-sleep is
like a process-wait in which the wait function automatically checks for an
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elapsed time measured in 60ths of a second. The Common Lisp sleep func-
tion and process-sleep are similar, except that sleep’s argument is in whole
seconds.

Finally, process-wait-with-timeout combines the process-wait and the
process-sleep. You specify both a Wait Function and a maximum wait time.
If the time limit expires without the Wait Function coming true, then the
process is resumed anyway. The return value allows you to distinguish why
you were resumed.

process-wait-with-timeout is frequently used by long-running functions that
may occasionally need to query the user about some special situation. There
is always the possibility that the user got bored and wandered away from the
terminal. If the query has a reasonable default, then the process might issue
the query and use process-wait-with-timeout to wait for the reply. If the
process resumed because of timeout, then it continues as though the user had
chosen the default.

7.7.4 We intuitively think of creating a process to perform some specific
job. Therefore, it is natural to think of each process as having one well-
defined Initial Function that gets the job done. However, just because one
job is completed, there is no particular reason to turn its associated process
instance into garbage.

You can think of a process object as an execution container complete with an
empty environment just waiting for an Initial Function to run. In fact, the
system maintains a resource of reusable processes (see the functions process-
run-function and process-run-restartable-function).

Therefore, although make-process can create a new process instance with a
predefined Initial Function, we also need a way of modifying a process’s
Initial Function. Changing the Initial Function is called presetting the
process.

Actually, the :preset operation on a process instance does more than just
update the Initial Function and its arguments in the instance. The system
assumes that if you have reason to change the Initial Function, then you are
no longer interested in whatever the old Initial Function was doing, so it
resets the process.

Resetting a running process causes it to gracefully stop whatever it was doing
and start over at the beginning by re-executing its Initial Function. Of course,
if you have preset the process’s Initial Function in the meantime, then the
process will start over by doing something entirely different. Resetting is the
basic way of starting a new process.

A process’s Wait Function is even more temporary than its Initial Function.
A new Wait Function is reestablished each time a process voluntarily waits by
calling the function process-wait. Later, you will see that the Scheduler
freely modifies the Wait Function for its own purposes under certain circum-
stances.
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7-11



Processes and Scheduling

Simple Processes

Errors Inside
the Scheduler

7.7.5 Even though the stack switching that occurs when one coroutine
resumes another has been optimized, there is still overhead involved. If a
process is going to execute for only a short time before waiting again, then the
time it takes to switch stacks from Scheduler to process and then back to
Scheduler is significant. Therefore, the system provides simple processes that
are instances of the flavor sys:simple-process rather than of sys:process.

If the simple process’s Wait Function returns true, then instead of doing a
context switch to the process’s stack group, the Scheduler simply calls the
process’s Initial Function directly. Therefore, a simple process runs inside the
Scheduler as though it were just another function in the Scheduler (see para-
graph 7.7.6, Errors Inside the Scheduler). Other implications of simple proc-
esses are:

B No Stack Group — A simple process has no stack group of its own, so it
can have no process private variables. If it needs to remember informa-
tion across calls, it must use global special variables.

N No Automatic Timeout — A simple process must be short. A runaway
simple process inside the Scheduler is out of reach of the one-second
sequence breaks triggered by the watchdog timer, and the system will
hang.

Simple processes are often used to implement fast dispatching functions that
do no real work themselves but just initialize something else.

For example, the network hardware has only limited buffer space available
for incoming packets, so they must be moved out of the hardware buffer
quickly. However, full software processing of a given packet may be cuite
lengthy. Therefore, a dispatcher function built as a simple process can be set
to watching the network board. When a packet arrives, this processing copies
the hardware buffer onto a software buffer queue in virtual memory, thereby
freeing the network board. The real network process now watches this soft-
ware queue.

7.7.6 This is the paragraph you’ve heard so much about. We've previously
seen several things that were evaluated inside the Scheduler. We've already
seen that you are restricted to forms that reference only constants or global
special variables. Now consider what happens if something the Scheduler is
evaluating on your behalf should signal an error.

The Scheduler is low man on the totem pole. There is no one for it to fall
back on. If it gets an error—either one of its own or one of yours—it goes into
the infamous Cold Load Stream—the user interface of last resort. Your best
bet in this situation is to choose the option to restart the Scheduler.

Getting thrown into the Cold Load Stream and then getting restarted annoys
the Scheduler to no end. It reacts by bashing the process that caused the
trouble so that the process cannot run again without outside intervention. All
in all, it is considered very bad form for your software to cause an error inside
the Scheduler.

7-12

Programming Concepts



Processes and Scheduling

Of course, there is a very small, but finite, possibility that a hardware error
unrelated to any software activity (for example, a NuBus™ Timeout) might
occur while the Scheduler is executing. In such a situation, the Scheduler
retaliates by bashing an innocent process. In at least one known instance, the
Scheduler imprudently bashed itself, necessitating a reboot.

Process
Activity States

Simple Is Not
Good Enough

An Example of
the Problem

7.8 There are many instance variables associated with a process so it techni-
cally has many states. However, there are only three major classes of
states:

B Inactive — For debugging purposes, the process is recorded on the
sys:all-processes list. But the Scheduler cannot see it since the
Scheduler polls only the sys:active-processes list. The process-disable
function is the most common way of inactivating a process.

B Active — The process is recorded on both lists. Its Wait Function is
evaluated each time through the polling loop. There may be many active
processes.

H Executing — Of course, no more than one process can actually be execut-
ing in the hardware at one time, and there will be no process in this state
in an idle system.

We’ve already seen how a process moves from the Active state to Executing:
when the Wait Function of an active process evaluates to true, the process
executes. Now, how does an Inactive process become Active?

7.8.1 The simple expedient of having something like, say, an Active Flag
that you can turn on or off as needed is not good enough. The problem is
that in a system with multiple software processes and a human user, there can
be conflicting, but independent, requirements. A simple Boolean flag is just
not enough to record all possible conditions.

7.8.1.1 Let’s consider a simple physical analogy of a line printer that has
only an Active Flag to turn it on or off. If a user somewhere on the network
wants to print a file, he or she waits until the Active Flag is off, then turns the
Flag on and transmits the file to be printed. Once the file is transmitted, the
user turns the printer’s Active Flag off. So far, so good.

Now lets look at another independent agent, the computer operator who
occasionally notices that the paper in the printer is bunching up and about to
jam. This operator needs to be able to turn the Active Flag off temporarily
while he or she straightens the paper and then to turn the Flag back on.

The problem is that we have two agents trying to independently control the
same printer—one to temporarily turn it on, one to temporarily turn it off—
but neither agent has direct knowledge of the other. How can the network
user tell if the printer’s Active Flag is off because the printer is idle or
because the operator is clearing a paper jam? When the operator finishes
clearing a paper jam, how does he or she know if there is more to be printed
or if the user has canceled the print request in the meantime? A single on/off
Active Flag just isn’t enough.

NuBus is a trademark of Texas Instruments Incorporated.
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The Example
Revisited

Our problem is this: there may be one or more independent reasons for run-
ning an Explorer process. At the same time, there may be one or more inde-
pendent reasons for arresting a running process. Therefore, the sys:process
flavor records a list of Run Reasons and a list of Arrest Reasons for each
process. A process is placed on the sys:active-processes list (that is, ready to
run whenever its Wait Function returns true when polled) if

B There is at least one item on the Run Reasons list.
M There are no items on the Arrest Reasons list.

Otherwise, the process is inactive, is not on the active processes list, and will
not be polled.

7.8.1.2 Now, let’s see how our user and operator would have controlled the
printer using this Run/Arrest Reason list convention. Assume the global spe-
cial variable *printer* holds the printer process. When the user wants to start
the printer, he sends the following message

(send *printer* :run-reason ‘print-a-file)

This message adds the symbol print-a-file to the Run Reasons list of the
printer process. This symbol was chosen simply for its mnemonic value. The
system does not care what kind of Lisp object you push onto the Run Reasons
list as long as you push something. However, as we will see in a moment,
there is sometimes an advantage in using a unique symbol for your Run Rea-
son.

After the :run-reason operation has pushed print-a-file onto the Run Rea-
sons list, it then checks to see if the conditions are now right for this to be an
active process (that is, any Run Reason but no Arrest Reason). If so, then the
process is moved to the sys:active-processes list if it is not already there.

When the user is finished printing the file, he sends the following message:

(send *printer* :revoke-run-reason ‘print-a-file)

This message removes the symbol print-a-file from the process’s Run Rea-
sons list if it is present. Any other items on the list are left undisturbed. The
reason for using a unique symbol as mentioned above is that you can assert
and revoke your own reasons without stepping on other outstanding run and
arrest reasons.

As before, after the :revoke-run-reason operation has deleted print-a-file
from the Run Reasons list, it checks to see if this process needs to be
removed from sys:active-processes.

The operator who sees a paper jam can send the message

(send *printer* :arrest-reason ‘paper-jam)

This message, of course, pushes the symbol paper-jam onto the process’s
Arrest Reasons list and removes the process from the sys:active-processes

list. When the paper jam has been cleared, the operator sends

(send *printer* :revoke-arrest-reason ‘paper-jam)

After all of this build up for the justification and analysis of dual Run Reasons
and Arrest Reasons lists, the truth is that most Explorer processes do not

7-14
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need such elaborate control. The usual way to make a process active is to use
the process-enable function, which first removes all Run and Arrest Reasons
and then gives the process a single Run Reason of the keyword :enable.

All Things
Considered

Bashing a Process

7.9 If you have been paying close attention (possible) and have been think-
ing about what you have read (doubtful, this is tedious stuff), then you will
have realized that we have set the stage for some really confusing processing
states. The following terms are used to describe the simultaneous states of a
process’s Run Reasons list, Arrest Reasons list, and Wait Function return
value:

Stopped — All Run Reasons and all Arrest Reasons are revoked. Wait Func-
tion is unchanged, but it is not being polled by the Scheduler since no
Run Reasons means it is not on the sys:active-processes list. The func-
tion process-disable is normally used to stop a process.

Active (or Runnable) — There is at least one Run Reason and no Arrest
Reasons. The process is on the sys:active-processes list and being
polled, so execution depends upon the Wait Function.

Executable — Same as Active above except that the Scheduler has forced the
Wait Function to be #'true (that is, always to return true). The implica-
tion is that this process either has called process-allow-schedule or is a
long-running active process that got time-sliced by a sequence break. It
will run for its full allotted second each time through the polling loop.

Waiting Forever — Same as Active above except that the system has forced
the Wait Function to be #'false. Even though this Wait Function can
never return true, the process is still on the sys:active-processes list and
being polled. It will not be able to execute again until someone Presets or
Resets it.

Flushed — Same as Waiting Forever above except that the Wait Function is
#'sys:flushed-process (which always returns false, but is distinguishable
from #’false).

Arrested — Any process not on the sys:active-processes list because it has
no Run Reason or has at least one Arrest Reason.

7.9.1 Bashing is a colorful term with the general meaning of inflicting your
will on a process from the outside. A process can be bashed in several ways:

Reset — If the process is running, it stops the process gracefully by forcing it
to throw out of all computations (that is, unwind-protects in the process
are honored). The Run Reasons and Arrest Reasons lists are not modi-
fied, but the process’s Wait Function is set to #’true. The next time the
Scheduler polls this process, it will reapply its Initial Function to the
Initial Function's arguments, and the process takes off.

Flush — Same as Reset except that the Wait Function is replaced with
#’sys:flushed-process, which always returns false but is detectably differ-
ent from the #'false function. Even if this process is officially active, it
will wait forever until someone Presets or Resets it.

Kill — Similar to Reset except that once the process is stopped, it is removed
from both the sys:active-processes list and the sys:all-processes list. If
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the process instance originally came from a resource, it is returned. If no
one is remembering this process, it becomes garbage.

Scheduler

7.10 Most of what you need to know about the Scheduler has already been
said in passing. The Scheduler is an Explorer coroutine whose job it is to poll
the processes on the sys:active-processes list. For each process on that list, it
applies that process’s Wait Function to the Wait Function’s arguments. This
evaluation takes place in the Scheduler’s stack group, and if the evaluation
returns true, the process is run.

In an idle system, (that is, only the Scheduler is running) the Scheduler polls
sys:active-processes once every 60th of a second. Of course, if it takes more
than one 60th of a second to go around the loop, then the processes are
polled less frequently.

A continuously running process is usually allowed to execute no more than
one second at a time (this default can be changed) before a hardware watch-
dog timer forces a sequence break. These long-running processes were origi-
nally started when their Wait Function returned true to the Scheduler. Once
interrupted by a sequence break, they need to be unconditionally run on
each subsequent poll regardless of what their original Wait Function might
later return.

Therefore, a process interrupted by a sequence break is given a Wait Func-
tion of #’true so that it will continue to execute each time through the polling
loop until it calls some variant of process-wait and provides its own process-
specific Wait Function.

7-16
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Introduction 8.1 There are many useful techniques for writing macros. Over the years,
Lisp programmers have discovered techniques that most programmers find
useful, and they have identified pitfalls that must be avoided.

The most important thing to keep in mind as you learn to write macros: the
first thing you should do is figure out what the macro form is supposed to
expand into, and only then should you start to actually write the code of the
macro. If you have a firm grasp of what the generated Lisp program is sup-
posed to look like, you will find the macro much easier to write.

In general, any macro that can be written as an inline function should be
written as one, not as a macro, for several reasons: inline functions are easier
to write and to read; they can be passed as functional arguments (for exam-
ple, you can pass them to mapcar); and there are some subtleties that can
occur in macro definitions that you need not worry about with inline func-
tions. A macro can be an inline function only if it has exactly the same
semantics as a function, rather than those of a special form. The macros
discussed in this section are not semantically like functions; they must be
written as macros.

Name Conflicts 8.2 One of the most common errors in writing macros is best illustrated by
example. Suppose you want to write dolist as a macro that expands into a do.
The syntax of the dolist is as follows:

(dolist (element (append a b))
(push element *big-listx)
(foo element 3))

From this macro, you decide the expanded code should look like the follow-
ing:

(do ((list (append a b) (cdr list))
(element))
((null list))
(setf element (car list))
(push element *big-listx)
(foo element 3))

Now you could start writing the macro that would generate this code and, in
general, convert any dolist into a do. However, there is a problem with the
above scheme for expanding the dolist. The above example’s expansion
works fine unless a user happened to code the following:

(dolist (list (append a b))
(push list *big-listx*)
(foo list 3))
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This is exactly like the form above, except that the programmer decided to
name the looping variable list rather than element. The corresponding
expansion would be as follows:

(do ((list (append a b) (edr list))
(list))
((null list))
(setf list (car list))
(push list *big-list*)
(foo list 3))

This form does not work at all. In fact, this is not even a valid form because it
contains a do that uses the same variable in two different iteration clauses.

The following is another example that causes trouble:

(let ((list nil))

(dolist (element (append a b))
(push element list)
(foo list 8)))

If you work out the expansion of this form, you see that there are two vari-
ables named list and that the programmer meant to refer to the outer one,
but the generated code for the push actually uses the inner one.

The problem here is an accidental name conflict. This can happen in any
macro that has to create a new variable. If that variable ever appears in a
context in which user code might access it, then you have to worry that it
might conflict with another name that the user has defined for his own
program.

One way to avoid this problem is to choose a name that is very unlikely to be
picked by the user, simply by choosing an unusual name in a package that
only you will write code in. This strategy will probably work, but it is inelegant
because there is no guarantee that the user will not coincidentally chocse the
same name. The way to reliably avoid name conflicts is to use an uninternecl
symbol as the variable in the generated code. The function gensym is useful
for creating such symbols.

The following is the expansion of the original form, using an uninterned
symbol created by gensym:

(do ((#:G4005 (append a b) (cdr #:G4005))
(element))
((null #:G4005))
(setq element (car #:G4005))
(push element *big-list*)
(foo element 3))

This is the right kind of form to expand into. Now that you understand how
the expansion works, you can actually write the macro:

(defmacro dolist ((var form) . body)
(let ((dummy (gensym)))
*(do ((,dummy ,form (cdr ,dummy))
(,var))
({(null ,dummy))
(setf ,var (car ,dummy))
,body)))

8-2
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Many system macros don’t use gensym for the internal variables in their
expansions. Instead, they use symbols whose print names begin and end with
a dot. This convention provides meaningful names for these variables when
you are looking at the generated code and when you are looking at the state
of a computation in the error handler. These symbols are in the SYS pack-
age; as a result, a name conflict is possible only in code that uses variables in
the SYS package. These name conflicts don’t normally happen in user code,
which resides in other packages.

Block Name
Conflicts

8.3 A related problem occurs when you write a macro that expands into
a prog or do (or anything equivalent) unexpectedly (unlike dolist, which is
documented to be like do). Suppose you want to implement error-restart as
a macro that expands into a loop, which becomes a prog. In this case, the
following (contrived) Lisp program would not behave correctly:

(dolist (a list)
(error-restart ((sys:abort error) "Return from FOO.")
(cond ((> a 10) (return 5))
((> a 4) (ferror “lose "You lose.")))))

The problem is that the return returns from the error-restart instead of the
dolist.

The best solution is to make the expanded code use only explicit block with
obscure block names or block names processed by gensym and never by a
prog or do.

Macros such as dolist specifically should expand into an ordinary do,
because you expect to be able to exit them with return.

Macros Expanding
Into Many Forms

8.4 Sometimes a macro is supposed to do several different things when its
expansion is evaluated. In other words, sometimes a macro should expand
into several things, all of which should happen sequentially at run time (not
macro-expand time). For example, since defparameter is implemented as a
macro, it must do two things: declare the variable to be special and set the
variable to its initial value. (Here a simplified defparameter is implemented;
it does only these two things, without any options.) What should a
defparameter form expand into? Ideally, the appearance of (defparameter a
(+ 4 b)) in a file should be treated as the same as the following two forms:

(proclaim ‘ (special a))
(setf a (+ 4 b))

However, because of the way that macros work, they expand only into one
form, not two. So a defparameter form must expand into one form that is
exactly like having two forms in the file. The following is such a form:

(progn (proclaim “ (special a))
(setf a (+ 4 b)))

In interpreted Lisp, it is easy to see what happens here. This is a progn
special form, so all its subforms are evaluated in turn. The proclaim form
and the setf form are evaluated. The compiler recognizes progn specially and
treats each argument of the progn form as if it were encountered at top level.
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The following is the macro definition to produce one form to represent the
two forms in the file:

(defmacro defparameter (variable init-form)
“(progn (proclaim - (special ,variable))
(setf ,variable ,init-form)))

Next is another example of a form that should expand into several things. A
special form called define-command is implemented, which is intended to be
used to define commands in an interactive user subsystem. For each com-
mand, there are two things provided by the define-command form: a function
that executes the command and a character that should invoke the function
in this subsystem. Suppose that, in this subsystem, commands are always
functions of no arguments, and characters are used to index a vector called
dispatch-table to find the function to use. A typical call to define-command
would look like the following:

(define~-command move-to-top #\control-<
(do () ((at-the-top-p))
(move-up-one)))

; Expands into:

(progn (setf (aref dispatch-table (char-int #\control-«))
“move-to-top)
(push “move-to-top *command-name-list*)
(defun move-to-top ()
(do () ((at-the-top-p))
(move-up-one))))

The define-command expands into three forms. The first one sets up the
specified character to invoke this command. The second one puts the com-
mand name onto the list of all command names. The third one is the defun
that actually defines the function itself. Note that the setf and push are exe-
cuted at load time (when the file is loaded); the function, of course, is also
defined at load time.

When you write a large system in Lisp, frequently you can make it much
more convenient and clear by using macros to extend Lisp into a customized
language for your application. In the above example, a small language exten-
sion has been created: a new special form that defines commands for the
system. It lets you put documentation strings right next to the code that they
document so that the two can be updated and maintained together. Because
the Lisp environment allows load-time evaluation to build data structures, the
documentation database and the list of commands can be constructed auto-
matically.

Macros That
Surround Code

8.5 A particular kind of macro very useful for many applications is one that
you place around Lisp code so that this code is evaluated in a modified
context. For a very simple example, you can define a macro called with-
output-in-base that executes the forms within its body such that any output
of numbers defaults to a specified base:

(defmacro with-output-in-base ((base-form) &body body)
“(let ((*print-base* ,base-form))
,body))
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A typical use of this macro might look like the following:

(with-output-in-base (*default-basex)
(print x)
(print y))

The preceding form expands into the following:

(let ((*print-basex* *default-basex*))
(print x)
(print y))

This example is too trivial to be very useful; it is intended to demonstrate
some stylistic issues. However, there are standard Explorer constructs that are
similar to this macro, such as with-open-file and with-input-from-string.
Most importantly, of course, you can define similar constructs for your appli-
cations.

One very powerful application of this technique was used in a system that
manipulates and solves the Rubik’s cube® puzzle. The system heavily uses a
construct called with-front-and-top, which translates to the following: evalu-
ate this code in a context in which one specified face of the cube is consid-
ered the front face, and another specified face is considered the top face.

When you write this sort of macro, keep in mind that you can make your
macro much clearer to people who might read your program if you conform
to a set of loose standards of syntactic style. By convention, the names of
such constructs start with with-. This seems to be a clear way of expressing
the concept that a context is being established; the meaning of the construct
is: perform these operations with the following conditions true. Another con-
vention is that any parameters to the construct are to appear in a list that is
the first subform of the construct and that the rest of the elements are to
make up a body of forms that are evaluated sequentially with the last one
returned.

All of the examples cited above work this way. In the with-output-in-base
example, one parameter (the base) appears as the first (and only) element of
a list that is the first subform of the construct. The extra level of parentheses
in the printed representation serves to separate the parameter forms from the
body forms so that these two kinds of forms remain textually distinct; it also
provides a convenient way to specify default parameters (a good example is
the with-input-from-string construct, which takes two required and two op-
tional parameters). Another technique is to use the &body keyword in the
defmacro to tell the editor how to indent the elements of the body.

Also keep in mind that the construct can relinquish control either by the last
form’s returning or by a nonlocal exit (go, return, or throw). You should
write the definition in such a way that everything is cleaned up appropriately
no matter how control exits. The with-output-in-base example presents no
problem because nonlocal exits release lambda bindings. However, in even
slightly more complicated cases, an unwind-protect form is needed: the
macro must expand into an unwind-protect that surrounds the body, with

Rubik's cube is a registered trademark of Ideal Toy Corporation.
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cleanup forms that deactivate the context that the macro set up. For
example:

(using-resource (window menu-resource) body...)
;3 Expands into

(let ((window nil))
(unwind-protect
(progn (setf window (allocate-resource ‘menu-resource))
body. ..)
(when (not (null window))
(deallocate-resource ‘menu-resource window))))

In this way, the allocated resource item is deallocated whenever control
leaves the using-resource macro.

Multiple and

8.6 In any macro, you should always pay attention to the problem of multi-

Out-of-Order ple or out-of-order evaluation of user subforms. Consider the test macro,
Evaluation which defines a special form with two subforms. The first is a reference, and
the second is a form. The macro is defined first to create a cons whose car
and cdr are both the value of the second subform and then to set the refer-
ence to be that cons. The following is a possible definition:
(defmacro test (reference form)
“(setf ,reference (cons ,form ,form)))
Simple cases using this definition work correctly:
(test foo 3) ==> (setf foo (cons 38 3))
But a more complex example, in which the subform has side effects, can
produce surprising results:
(test foo (setf x (1+ x)))
==> (setf foo (cons (setf x (i+ x))
(setf x (1+ x))))
The resulting code evaluates the setf form twice, and so x is increased by 2
instead of by 1. A better definition of test that avoids this problem is the
following:
(defmacro test (reference form)
(let ((value (gensym)))
*(let ((,value ,form))
(setf ,reference (cons ,value ,value)))))
With this definition, the expansion works as follows:
(test foo (setf x (1+ x))) ==>
(let ((#:G4005 (setf x (1+ x))))
(setf foo (cons #:G4005 #:G4005)))
In general, when you define a new construct that contains one or more argu-
ment forms, you must be careful that the expansion evaluates the argument
forms the proper number of times and in the proper order. There is nothing
fundamentally wrong with multiple or out-of-order evaluation if that is really
what you want and if it is what you document your macro to do. But if this
happens unexpectedly, it can make invocations fail to work as they appear
they should.
8-6
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The once-only macro can be used to avoid multiple evaluation. It is most
easily explained by example. You write test using once-only as follows:

(defmacro test (reference form)
(once-only (form)
*(setf ,reference (cons ,form ,form))))

This form defines test in such a way that the form is only evaluated once,
and any references to form inside the macro body refer to that value. The
once-only macro automatically introduces a lambda binding of a generated
symbol to hold the value of the form. Actually, this macro is more clever than
that; it avoids introducing the lambda binding for forms whose evaluation is
trivial and can be repeated without harm or cost, such as numbers, symbols,
and quoted structure. This lambda binding is merely an optimization that
helps produce more efficient code.

The once-only macro makes it easier to follow the principle but does not
completely or automatically solve the problems of multiple and out-of-order
evaluation. It is merely a tool that can solve some of the problems some of
the time; it is not a panacea.

Nesting Macros

8.7 A useful technique for building language extensions is to define pro-
gramming constructs that employ two macros, one of which is used inside the
body of the other. The following is a simple example with two macros. The
outer one is called with-collection, and the inner one is called collect. The
collect macro takes one subform, which it evaluates; with-collection only
has a body, whose forms it evaluates sequentially. The with-collection
macro returns a list of all the values that were given to collect during the
evaluation of the body of with-collection. For example:

(with-collection (dotimes (i 5) (collect 1i)))
=> (1 2 8 4 8)

Remembering the first step in designing macros, you next determine what the
expansion looks like. The following shows how the above example can
expand:

(let ((#:G4005 nil))
(dotimes (i &)

(push 1 #:G4005))
(nreverse #:G4005))

Now, you write the definition of with-collection, which is fairly easy:

(defmacro with-collection (&body body)
(let ((var (gensym)))
*(let ((,var nil))
,@body
(nreverse ,var))))

Writing collect, however, is more difficult:
(defmacro collect (argument) " (push ,argument ,var))

Note that collect uses the variable var freely. It depends on the binding that
takes place in the body of with-collection in order to get access to the value
of var. Unfortunately, that binding takes place when with-collection is
expanded; the expander function of with-collection binds var, and it is
unbound when the expander function is executed. By the time the collect
form is expanded, var has long since been unbound. The macro definitions
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above do not work. Somehow the expander function of with-collection
must communicate with the expander function of collect to pass over the
generated symbol.

The only way for with-collection to convey information to the expander
function of collect is for it to expand into something that passes that infor-
mation. You can define a special variable (called *collect-variable* ) and
have with-collection expand into a form that binds this variable to the name
of the variable that collect should use:

(defvar *collect-variablex)

(defmacro with-collection (&body body)
(let ((var (gensym)))
*(let ((*collect-variable* *,var))
((,var nil))
,@body
(nreverse ,var))))
(defmacro collect (argument)
“(push ,argument ,*collect-variablex))

But this is still incorrect: it works in the evaluator but not in the compiler. To
understand this problem, consider how it works in the evaluator. The evalu-
ator first sees the with-collection form and calls the expander function to
expand it. The expander function creates the expansion and returns to the
evaluator, which then evaluates the expansion. The expansion includes in it a
let form to bind *collect-variable* to the generated symbol. When the
evaluator sees this let form during the evaluation of the expansion of
the with-collection form, it sets up the binding and recursively evaluates the
body of the let. Now, during the evaluation of the body of the let, the
special variable is bound, and if the expander function of collect is run, it is
able to see the value of *collection-variable* and to incorporate the gener-
ated symbol into its own expansion.

When compiling, however, the let binding for *collect-variable* causes
that variable to be bound only when the compiled code is executed. It does
not cause *collect-variablex to be bound at any time during compilation,
including the time when collect must be expanded.

You can fix your definitions by using compiler-let instead of let. The
compiler-let special form exists specifically to do the sort of thing you are
trying to do in this case. The compiler-let special form is identical to let as
far as the interpreter is concerned, so the macro continues to work in the
interpreter with this change. When the compiler encounters a compiler-let,
however, it actually performs the bindings that the compiler-let specifies and

proceeds to compile the body of the compiler-let with all of those bindings in

effect. In other words, it acts as the interpreter would.

The following is the correct way to write these macros in this fashion:

(defvar *collect-variablex)

(defmacro with-collection (&body body)
(let ((var (gensym)))
“(let ((,var nil))
(compiler-let ((*collect-variable* *,var))
,body)
(nreverse ,var))))

(defmacro collect (argument)
*(push ,argument ,*collect-variablex*))

8-8
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Another correct way to write these macros is using macrolet:

(defmacro with-collection (&body body)
(let ((var (gensym)))
*(macrolet ((collect (argument)
*(push ,argument ,‘,var)))
(let ((,var nil))
,@body
(nreverse ,var)))))

In this example, with-collection expands into code that defines collect
specially to know about which variable to collect into. The ,-, form causes
the value of var to be substituted when the outer backquote, the one around
the macrolet, is executed. The argument, however, is substituted when the
inner backquote is executed, which jhappens when collect is expanded.

This technique has the interesting consequence that collect is defined only
within the body of a with-collectibn. It simply would not be recognized
elsewhere, or it could have another definition, for some other purpose, glob-
ally. This has both advantages and disadvantages; for example, it might be
preferable, when using collect outside of any with-collection, to give a
specific error message rather than only a warning that an undefined function
named collect was called.

Functions Used
During Expansion

8.8 The technique of defining functions to be used during macro expansion
deserves explicit mention here. Actually, a macro expansion function is a
Lisp program like any other Lisp program, and it can benefit in all the usual
ways by being broken down into a collection of functions that perform various
parts of its work. Usually, macro expansion functions are relatively simple
Lisp programs that take things apart and put them together slightly differ-
ently, but some macros are quite complex and perform a great deal of work.
Several Explorer features, including flavors, the loop macro, and defstruct,
are implemented using very complex macros, which, like any complex, well-
written Lisp program, are broken down into modular functions. You should
keep this in mind if you ever invent an advanced language extension or ever
find yourself writing a five-page expansion function.

Note especially that any functions used by macro expansion functions must
be available at compile time. You can make a function available at compile
time by surrounding its defining form with an (eval-when (compile load
eval) ...). Doing this means that at compile time, the definition of the func-
tion is interpreted, not compiled, and hence runs more slowly.

Another approach is to separate macro definitions and the functions they call
during expansion into a separate file, often called a defs (definitions) file.
This file defines all the macros as well as all functions that the macros call. It
can be separately compiled and loaded before compiling the main part of the
program that uses the macros. The make-system facility (described in the
Explorer Lisp Reference manual) helps keep these various files distinct, com-
piling and loading things in the proper order.
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You can use the mexp function to help you debug macros; it prints the
expansion form of an evaluated macro.

Suppose that you type the following:
(mexp)

Next, you type the following:

(rest (first x))

Then, mexp prints the following:

(cdr (first x)) —
(cdr (car x)))

You then press ABORT to exit mexp.

8-10
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PREPARING A PROGRAM
PRODUCT FOR DELIVERY

Introduction

9.1 Designing, implementing, and debugging a new program product is
trouble enough in itself. Preparing that product for delivery to customers in
the field is something else again. The goals for delivery to a customer’s site
include:

The product can be installed by the customer with no previous knowledge
of the product or its internal structure beyond prompts and instructions
he receives during installation.

The customer should be able to install all products from all vendors by
the same basic procedure. Differences in installation should reflect a
unique product requirement—not gratuitous inconsistencies.

A newly installed product should be smoothly integrated with that portion
of the system it interfaces with while remaining isolated from unrelated
portions of the system and other products.

Each item represents one or more details that you must consider in the struc-
turing of your product and in its preparation for delivery to your customer.

Checklist

9.2 Specifically, to accomplish the aforementioned details:

Each product should be in its own package, and each of the product’s
Lisp files should have a file attribute list identifying its package.

Independent of how the product was developed, the product should have
a defsystem capable of loading the product at the customer’s site.

Each product should have

= a translations file defining the mapping of the logical pathnames used
by the product to physical pathnames at the customer’s site

s a system file identifying the location of the product’s defsystem file

Each product should have its own logical host, and all pathnames used to
build or run the product should be logical pathnames.

Each product that must manipulate the file types at run time should spec-
ify canonical file types.

Each product should have a top-level function with sufficient bindings to
ensure that it does not interfere with other products.

These elements are described further in the following paragraphs.
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9.3 Each product should be in its own package to avoid symbol-name con-
flicts. with other products and with the Explorer system code. You should not
put your code in any system-provided package such as LISP, SYSTEM, or
USER or in the package of another product that you don’t have full knowl-
edge of.

That is, whatever package you use must contain the same thing on your
development system as it will contain on the customer’s system. Otherwise,
you won’t see the conflicts your user will see. If you create a package dedi-
cated to your product, there will be no problem. If you use some other pack-
age that you don’t control, then you have no idea what may be in that
package at the customer’s site when your product arrives to be installed.

9.3.1 On the Explorer, all standard Common Lisp symbols are in the LISP
package. The symbols for all TI extensions are in the TICL package. The
USER package uses both the LISP and the TICL packages, so it has access
to everything commonly used. The combination of the LISP and TICL pack-
ages is roughly equivalent to the GLOBAL package of Zetalisp but without
the obsolete symbols and without the symbols that conflict with Common
Lisp symbols.

What does all this mean? If you create your package and define it to use the
LISP package, then your code will automatically be restricted to Common
Lisp standard functions plus whatever functions you write. If you wish to use
any of the Explorer extensions, you must explicitly prefix those function sym-
bols with TIcL:. When you have completed coding your product, if you have
used ho package prefixes anywhere, then you have taken a big step towards
Common Lisp portability.

On the other hand, if you define your package to use the LISP and TICL
packages, your code will have access to all Common Lisp standard functions
as well as all TI extension functions without having to worry about package
prefixes in your code (but probably at the cost of Common Lisp portability).

9.3.2 The Common Lisp standard is in two parts: a standard language syn-
tax and a standard function/variable library. These standard functions (and
other standard symbols) are in the LISP package, which itself is part of the
standard. Normally, the symbols in the LISP package are the only symbols
that can be used everywhere without a package prefix.

In addition to this standard function library, the Explorer comes with an even
larger library of functions written in Common Lisp syntax. These functions
are things that you could write yourself if you had a lot of time. Most of these
TI-supplied, Common Lisp-conforming functions are in their own special pur-
pose packages and normally have to be written with their package prefixes
(that is, FS for the file system, W for the window system, EH for the error
handler, and so on). These functions are no different from any other user-
supplied functions.
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There is another group of TI-supplied functions in the TICL package that
are as widely used on the Explorer as the Common Lisp standard functions.
These functions are so frequently used that it is a decided annoyance to
always have to write the TICL prefix. Therefore, system-supplied packages
(including the USER package of the Common Lisp standard) all use the
TICL package as well as the standard LISP package. So, it is possible to
reference symbols in the TICL package without a package prefix, thereby
giving the outward appearance that TI has extended the Common Lisp stan-
dard function library in the LISP package.

9.3.3 Of all the symbols used in your product, you should decide which will
need to be commonly called by users and programs outside your package.
These symbols should be listed in an export statement. As a rule of thumb, if
you have documented a symbol to your users, it should be exported.

According to the Common Lisp standard, an outsider can access a symbol
that has been exported from its package as package:symbol (note the single
colon). If a symbol has not been exported, the standard says it must be
accessed as package::symbol (note the double colon). The Explorer system is
sophisticated enough to allow any symbol to be accessed by either notation—
but other Common Lisp implementations might not be so thoughtful.

For some products, only the top-level function that the user calls to start the
product will need to be exported. At the other extreme, a product such as a
math library should have all its advertised function names exported.

What is the practical benefit of exporting a symbol? If another package uses
your package, only your officially exported symbols will be inherited by that
new package. The users of this new package can now access your exported
symbols without bothering with cumbersome package prefixes. At the same
time, all of the unexported internal symbols you happened to use to imple-
ment your exported functions are still safely within your package—they will
not accidentally interfere with similar symbols in the new package. If that user
wants to deliberately reach inside your package, Common Lisp says to use the
double colon notation, while the Explorer accepts either one or two colons.

9.3.4 Because the existence of your package is basic to the compilation and
loading of all your product’s code, the make-package, in-package (the
Common Lisp standard), or defpackage (the TI extension) form should
probably be in the first file loaded. Because the first file loaded whenever a
system is compiled or loaded is the DEFSYSTEM file, one likely place for
your package definition is at the beginning of this file (see the example DEF-
SYSTEM file below).

Although it may seem like a frill, you should design your product so that it
can be loaded on top of itself. The most common reasons why a product gets
loaded on top of itself are

m A glitch in the first installation attempt (real or imagined) causes the
customer to try to reinstall it.

® The customer upgrades an existing product to a newer version.
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The make-package function by itself will thwart reinstallation attempts by
signaling an error if asked to make a package that already exists. The def-
package macro is more accommodating. It will simply modify an existing
package as necessary to make it conform to the defpackage macro’s argu-
ment. If you wish to stick to the Common Lisp standard, simply use in-
package instead:

(in-package "XYzZ" . . .)

Place the export statement anywhere after the package has been created.

9.3.5 Time out for a small, but useful, naming convention. In theory, Lisp
lets you name most things anything you want no matter how long, how fanci-
ful, or how inappropriate. However, we can use the Explorer’s TCP/IP pro-
gram product as an example of a practical (though unimaginative) naming
convention—everything is named 1p:

B The product’s system name (as defined by its defsystem) is 1p.
M The product’s package name is IP.

B The product’s logical host name is 1P.
|

The logical directory holding the TCP/IP files is named 1P (that is, the
logical pathname of the IP directory is 1P:1P;).

B  When the customer is installing the IP Distribution Tape, the prompts he
sees always mention the 1P product.

While all of this naming consistency is of little interest to the system itself, it is
a blessing to the programmer because just knowing the product’s common
name tells the programmer where to find a lot of information about that
product. In following examples, we will use xyz as our product’s common
name.

9.3.6 One small caveat about package names: Don’t put spaces in them
even though spaces technically are allowed. Certain places in the system soft-
ware (such as the patch file generation logic) do not expect such freedom of
choice and will output package names without the necessary escape charac-
ters.

For example, if you were to try to use the Zmacs editor to write a patch for a
function in the “PRODUCT ABC” package (note the embedded blank), then
Zmacs will construct a patch file containing the following:

PRODUCT ABC:
(defun . . .

which Zmacs thinks is telling the compiler that everything in the defun form
is in package ProDUCT ABC. But because the space between PRODUCT and ABc is
not escaped with a backslash (that is, ProbucT\ ABC), the compiler will actu-
ally see an undefined top-level symbol PRODUCT (which it objects to)
followed by a function definition in the package ABC (which it hasn’t heard
of either). If you had named your package PrRobUCT-ABC, all would have been
well, (Of course, if you follow the naming convention suggested above, you
would have product XYZ's package to be simply xvz.)
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A second caveat: don’t use lowercase letters in package names even though
they are allowed. Why? Because Common Lisp package names are case sen-
sitive. Actually, a lot of things are case sensitive, but no one ever notices
because the Lisp Reader automatically uppercases all symbols before the
case-sensitive code ever gets to see them. For example, the code fragment

(in-package "xyz")
(setf xyz:count 0)

would fail when the Lisp Reader objects that the package xyz does not exist,
which is true. The package xyz is the one you defined; the package xyz does
not exist. To make the setf work, you would have had to code the symbol
xyz:count as |xyz|:count to keep the Lisp Reader from uppercasing the
package prefix and then complaining that the uppercase package doesn’t
exist. All this is more trouble than it is worth. Uppercase your package
names.

9.3.7 If the purpose of packages is to avoid symbol name conflicts among
independent products, how do you guarantee that your package name is
unique? You don’t. Basically, you choose a package name that doesn’t con-
flict with the four dozen or so packages in the Explorer system software itself
and that reflects your product closely enough that other vendors are unlikely
to use it. So far, this problem has never come up.

File Attribute
List

9.4 Every Lisp source file should begin with a file attribute list. A file attrib-
ute list is defined as the text between the pair of -*- delimiters in the first
nonblank line of the file. While a file attribute list might visually wrap onto
more than one line when viewed in the editor, no RETURN characters are
used before the closing -*- delimiter. For example, a basic file attribute list
might look like this:

133 —*— Mode:Common-Lisp; Package:XYZ -~*-

This file attribute list informs the editor, the compiler, the loader, and any-
one else who cares to ask that this file is written in Common Lisp syntax and
all symbols are in the XYZ package unless explicitly overridden by a package
prefix. If your code were actually in Zetalisp syntax, your Mode attribute
would have looked like Mode:Zetalisp; instead.

You should always include the package attribute for each Lisp source file.
Otherwise, the code will be loaded into whatever package happens to be in
the global special variable *package* at the time the file is loaded. A product
that does not have package attributes in its files will exhibit a certain discon-
certing randomness in execution.

For example, whenever you bring one of these files into a Zmacs buffer for
editing, the buffer will assume the same package as the previous Zmacs buffer
had. Therefore, each time you edit one of these files, it could appear to be in
a different package.

One last point: Notice the leading semicolons in the file attribute list example
above. A far as the Lisp Reader is concerned, that line is a comment and is
ignored. The contents of a file attribute list are read by system utilities inde-
pendent of language processors such as the Lisp compiler. Therefore, file
attribute lists can be placed in any sort of file that includes the notion of a
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comment line. For example, a C source file might have the following file
attribute list:

/% -*%- Mode:C ~*- %/

which would be invisible to the C compiler but would tell the Zmacs editor to
switch to its C editing mode when editing this file.

9.4.1 Common Lisp does not have a convention that provides the type of
general purpose information to system utilities that the file attribute list does.
But the Common Lisp standard can still peacefully coexist alongside the
Explorer conventions if you follow certain_guidelines:

B All the code in one file has the same default package.

W The default package is recorded both in the file’s file attribute list (for
Explorer utilities) and in an in-package form at the beginning of the file
(for Common Lisp systems).

If you follow these guidelines, you can have Common Lisp-conforming code
and still get the full benefit of the Explorer environment. If, however, you
were to try to mix several default packages in one file by inserting in-package
forms in several places, then several situations might arise:

M Functions that actually process the Lisp forms in the file from start to
finish (for example, compile-file, load, and the Zmacs Compile Buffer
command) should see each package change correctly.

W Functions that process only fragments of Lisp code (for example, the
Zmacs Compile Region and Add Patch commands) see only the package
ih the file attribute list.

B Functions that examine or manipulate the Lisp code without actually
processing the forms (for example, most Zmacs commands) will probably
see only the file attribute list.

Logical
Pathnames

9.5 One of the most persistent problems in moving a product from your
system to your customer’s system is what to do about pathnames. In the
simplest case, you have to worry only about finding a place for your product’s
object files on the customer’s system just long enough to get your procuct
loaded. In more complicated cases, a product must also access permanent
auxiliary files (for example, help files, configuration files, and so on) during
run time.

Common Lisp defines a pathname to have six components: host, device,
directory (a general term including subdirectories), name, type, and version.
When product files are moved from your site to the customer’s site:

B The host and device names obviously must change, and the customer’s
host is not necessarily an Explorer.

B Whereas you may have used a top-level directory on your system, the
customer’s file server may have other naming conventions (for example,
system administrators often frown on top-level directories).

9-6

Programming Concepts



Pathname
Translations

Customer-Specific
Translations

Preparing a Program
Product for Delivery

M You are more or less free to pick the filenames as long as they are accept-
able to your customer’s file server OS (for example, some don’t like
hyphens, many have a length limit, and so on).

B  You are not really free to choose arbitrary file type names because these
names are used to classify the contents of a file (that is, if you give a Lisp
source file a type that identifies it as a C object file, funny things might
happen).

H You cannot count on the customer’s file server supporting version num-
bers, so your code must assume that it is always working with the newest
version of a file (which avoids the question of whether other versions are
being remembered or not).

Your problems of choosing a host, device, and directory name are solved with
logical pathnames explained here. The problem of choosing the correct file
type is handled by canonical types which are explained later.

9.5.1 The basic idea is simple. You write all your code in terms of logical
pathnames. Then at each customer’s site, an fs:set-logical-pathname-host
form is executed that maps the logical host and directory names you used to
the customer’s physical host and directory. By convention, a single fs:set-
logical-pathname-host form that defines logical host foo is the sole content
of the file SYS:SITE;foo.TRANSLATIONS (except for comments, of
course). Simply loading this “translations” file causes the logical host to be
defined. In practice, a load form loading this translations file is usually
placed in the “system” file (explained below).

Why should there be only one fs:set-logical-pathname-host form per trans-
lations file? Some pieces of system code know that if they should need the
translations for logical host foo, they can look for the file SYS:SITE;
Joo. TRANSLATIONS and load it if it exists. If you had also placed the trans-
lations for, say, logical host bar in this file, then they would effectively be
hidden from the system software.

9.5.2 Of course the problem now becomes: How do you get your customer
to modify your translations file to fit his needs? Actually, the Explorer’s built-
in Load Distribution Tape utility can help here. The restore phase of a
Distribution Tape typically starts with a call to a special utility function that
presents your generic translations file to the customer and offers him the
following alternatives:

M Accept your generic translations file as is.

NOTE: These generic files automatically detect what physical host the
customer is using as the SYS-host and use that host as their physical host.

M Have the installation software automatically rewrite your generic transla-
tions file to use the same directories on a different physical host at the
customer’s site.

Programming Concepts

9-7



Preparing a Program
Product for Delivery

Patchable Products

M Have the installation software automatically rewrite your file to place your
product directory under some physical subdirectory specified by the cus-
tomer.

W As a last resort, place your translations file in a Zmacs buffer and let the
customer do as he wishes.

Whatever the customer chooses, the Load Distribution Tape utility writes the
final version to the SYS:SITE; directory. The customized translations file is
then loaded and all the rest of the installation is done in terms of those trans-
lations. In a properly designed product, the translation files are the only place
that physical pathnames exist, and therefore, only the translations files must
be changed as a product is moved from system to system.

For example, our XYZ example product would store its files on a logical host
named XYZ. The generic translations for this XYZ logical host would be kept
in the SYS:SITE;XYZ.TRANSLATIONS file. The contents of this file would
look like the following:

;31 —%- Mode:Common-Lisp; Package:USER -*-
(fs:set-logical-pathname-host "Xyz®
:PHYSICAL-HOST (send (sys:parse-host "SYS") :name)
:TRANSLATIONS ~“ (("XYzZ" "XYZ;")
("PATCH" "XYZ-PATCH;")))

These translations are generic in the sense that their physical host will default
to whatever the customer is using for his SYS-host. Furthermore, the transla-
tions assume top-level physical directories using Explorer syntax—a require-
ment for the Load Distribution Tape utility to be able to automatically
manipulate the translations for the customer.

9.5.3 The preceding example translation file also implies that the XYZ
product is patchable. There are a number of implications to a patchable sys-
tem on the Explorer:

B The product must be represented by a defsystem with a :patchable dec-
laration.

B The product must have been compiled by make-system (that is, you
can’t make a system patchable after it has been compiled).

B You are able to write patches for products in the field that, for the most
part, replace whole functions (although environment changes are
allowed, too).

W Patches can be sent to customers either as periodic updates or as needed.
These patches can be installed using the same Load Distribution Tape
utility that was used to install the original product.

W The print-herald utility function can display a listing of all products in
the system including their release number plus their patch level (for ex-
ample, xyz 2.4 would mean that patch number four has been applied to
release two of xyz).

The details of how to use defsystems and how to make a product patchable
are explained below.
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The patch directory mentioned in the translations file example would be used
to hold the patch files themselves along with a brief description of what each
patch is intended to accomplish. This patch directory was deliberately placed
in a separate directory from the main XYZ source and object files.

9.5.4 The rationale for a separate logical directory for the patch directory is
that many customers with limited disk space move source and object files
offline as soon as a product is installed. Nevertheless, the patch directory
must be present if the customer intends to load new patches. By separating
the patch directory, the customer can usually afford to leave the patch direc-
tory online even if the main directory has been deleted to save space.

This same line of argument applies to any auxiliary files your product may
need at run time (for example, help files). Files that must be kept online at
run time should always be in a separate logical directory from the main source
and object directories. In this way, a customer strapped for disk space can
easily pare the product’s online files down to the essentials. The release notes
for your product should indicate which directories must be kept online and
which can be deleted after installation.

For more information on logical pathnames and on Explorer pathnames in
general (including canonical types), see Section 6, Pathnames, in this man-
ual.

Creating and
Manipulating
Internal
Pathnames

9.6 One of the side effects of the Explorer’s transparent file I/O is that you
can never be sure of what kind of host your customer is using. Therefore,
you must take particular care to avoid OS-specific pathname notation in your
code. There are two main rules of thumb:

B Never hardcode a namestring in your product. Instead, specify the indi-
vidual pathname components to make-pathname and let it create the
pathname for you.

B Never hardcode a file type—even to make-pathname—if you can help it.
Instead, specify a canonical file type if one is available.

The use of make-pathname to assemble a host-dependent pathname from
host-independent components is a standard feature of Common Lisp.
Canonical types, however, is an Explorer extension.

Common Lisp pathnames with their six components don’t just represent a
six-level hierarchy. Rather, different components represent different kinds of
information. For example,

B The host and device components provide physical identification of a
machine on the network and a disk (or file system) on that machine.

B The directory and name components represent the programmer’s unique
multilevel name for the file.

m The type component provides file content identification to system utili-
ties.

m The version component provides a simple change identification.
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The type component of a pathname represents a simplistic communication
interface between the programmer and the system. To some extent, the pro-
grammer must constrain himself to type names the system understands if he
wants the system’s defaults to work for him.

The problem is, of course, that all operating systems don’t agree on which file
types means what. A text file may be designated as TEXT or as TxT. A Lisp
source file might be L1sp, LsP, or 1 depending on the OS. The Common Lisp
make-pathname function allows you to specify pathname components inde-
pendent of OS namestring syntax; but what do you do about an OS-specific
component?

On the Explorer, a canonical type is named by a keyword. Each canonical
type has a set of OS-specific mappings associated with it. When you specify a
canonical type keyword as the :type argument to make-pathname, a TI
extension chooses a type component that matches the host of the pathname
being formed.

For example, the Explorer Lisp. compiler writes out an object file with the
same pathname as the Lisp source file except that the file type represents a
Lisp object file. Assuming that the compiler has just compiled the Lisp source
file represented by input-pathname, the compiler might generate the output
filename like this:

(make-pathname :type :XLD
:version (pathname-version input-pathname)
:defaults input-pathname)

where :XLD is the canonical type for Lisp object files on Explorer Release 3.
Although the point was simply to replace the type component of input-
pathname, the new version had to be explicitly specified as being the same as
the old version because make-pathname is defined to default its version to
‘newest.

defsystem and
make-system

9.7 In theory, a defsystem specifies the order in which files must be com-
piled and loaded

B To transform the source files on disk into object files on disk at the de-
veloper’s site

B To load object files on disk into memory at the customer’s site

In practice, you are free to create the product as you wish, but you should
still make an effort to give the customer a common interface across all prod-
ucts. Therefore, a product to be delivered on an Explorer should have at
least a dummy defsystem that is capable of loading the product at the cus-
tomer’s site.

Ideally, a customer should never have to do anything more than enter the
form

(make-system “xyz :noconfirm)

to a Lisp Listener to get the XYZ product loaded. This form tells make-
system to load the product with a defsystem named xvz. If the XYZ
defsystem has already been loaded, then make-system uses the information
in the defsystem to load the product.

9-10
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9.7.1 If the defsystem for XYZ has not been seen yet, then make-system
will load the file SYS:SITE;XYZ.SYSTEM#> if it exists (this is the system file
mentioned above). Once this file is loaded, make-system is now supposed to
know either what the defsystem is or at least where to find it. In the case of
our XYZ product, this file would look something like the following:

;3; -*- Mode:Common-Lisp; Package:USER -*- (load
"SYS:SITE;XYZ.TRANSLATIONS") (sys:set-system-source-file ‘xyz
"XYZ:XYZ ;DEFSYSTEM")

Remember, this system file is normally the first product-specific file loaded.
Therefore, starting this file with a load of the XYZ translations file means that
everything that follows can be written in terms of logical pathnames. The
second form, sys:set-system-source-file, effectively tells make-system, “If
you ever need the defsystem for xyz, it can be found in the XYZ:XYZ;DEF-
SYSTEM file.”

Another convention that we are trying to foster on the Explorer is that a
product’s system file is the primary point of reference for a customer wanting
to install or use the product. Therefore, you might add comments to the file
to cover such things as

m Official title and a one-line product description

Copyright, trademark, and proprietary notices

Hotline numbers, mailing address, and bug reporting procedure

How to start the system (SYSTEM key? System menu? Lisp function?)

Where to find out about the product (that is, name of the user’s manual)

And any other information

The DEFSYTEM
File

9.8 In the preceding example, the sys:set-system-source-file form in the
SYS:SITE;XYZ.SYSTEM file told make-system where to look for the
defsystem file. That file might look something like the following:

i+; =*- Mode:Common-Lisp; Package:USER —*-
(when (null (find-package "XYZ")) ;define the product package

(make-package "XYZ")) ; (once and only once)
(export “( . . . )) ;export “public” symbols
(defsystem xyz ;define the XYZ system

(:name "XYZ Analysis Program")

(:short-name "XYZ")
(:readfile "XYZ:XYZ;main.lisp"))

Actually, this is an example of a trivial defsystem that loads a single Lisp file,
which (presumably) then loads the rest of the system. This sort of defsystem
will interface the Explorer’s make-system convention with the sort of prod-
ucts that instruct the customer to “load file X to load the product.” Of
course, if you have built your product using a defsystem, then you would put

Programming Concepts
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that defsystem in this file. But in a pinch, the following simplified defsystem
should be enough to allow the form

(make-system “xyz :noconfirm)

to load the product. All your customer has to remember is your product’s
system name. The customer is not bothered with remembering which file you
put your load-it-all forms in.

If you build your product using a defsystem with a :patchable declaration,
then—at the end of the customer’s make-system to install your product—the
string from the :name declaration will appear in the print-herald display
along with its version number and patch level. This publicly displayed version
information is particularly handy if the customer calls you about a problem.
Nonpatchable systems are not shown by print-herald. Following the conven-
tions we’ve suggested here, the :patchable declaration in the defsystem
should look like the following:

(:patchable "XYZ:PATCH;" PATCH)

In the normal course of events, it is possible for your DEFSYSTEM file to be
loaded (and reloaded) even though the system is not being recompiled or
reloaded. Therefore, you should not put your defsystem in a general-purpose
source file with a bunch of other code. Try to limit the DEFSYSTEM file to
what you see in the example above. Otherwise, the act of loading your
defsystem will inadvertently load part of your system before its time.

For more information on defsystem and make-system, see Section 4,
defsystem and make-system. For more information about patching, see Sec-
tion 5, Loading and Patching.

Inter- and Intra-
Product
Independence

9.9 There is a crucial distinction between multiuser operating systems (such
as workstations and mainframes have) and single user multiprocessing cper-
ating systems (such as an Explorer system has). A mainframe more or less
assumes that each process is working for a different user, while the Explorer
system assumes that all processes are working for the benefit of the same
user. As a consequence, mainframe operating systems pride themselves on
isolating individual processes, while the Explorer prides itself in the ease of
sharing data among processes.

On the Explorer system, all global special variables (that is, variables defined
by defvar or defparameter) are shared by all processes. Variables declared
within a process and bindings of global special variables within that process
are private to that process. The problem you face in designing your product is
making certain that you share what you want to share and keep everything
else to yourself. If the user is running one copy of your product, does it keep
running if the user starts running a second copy? You must look at this prob-
lem from two angles:

B  You must make certain your product does not interfere with any cther
product or the Explorer system code.

M  You must make certain that multiple copies of your product (if such a
thing is reasonable) do not interfere with each other.

9-12
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For example, the global special variable *print-base* controls the default
printing radix for integers (usually 10). If you wanted some numbers printed
in hex, you might do the following:

(setf *print-base* 16.)
. . code to print the integers . . .
(setf *print-base* 10.)

which is not good. Because you have modified the global value of *print-
base*, not only will your code print in hex, but everyone will print in hex. As
a rule of thumb, never set a global variable, bind it. For example,

(let ((*print-base* 18.))
. code to print the integers . .
)

causes your code that prints the integers and all code that it calls directly or
indirectly to see a *print-base* of 16 while the rest of the world sees the
original value...whatever it was.

9.9.1 If your product is something like a set of math utility functions, then
you have few concerns here. Your functions will simply run in whatever envi-
ronment they were called. Your precautions can be limited to not setting
global variables.

If, on the other hand, your customer invokes your product by entering some
top-level function to a Lisp Listener, then you will need to make sure your
product runs in its own little world. For example, let’s assume that your prod-
uct has defined two global special variables, *foo* and *bar*, and that each
running copy of your product requires its own private copy of these variables.
Then your top-level function should look something like this:

(defun xyz ( . . . )
(let ((*foox* *foox*
(*bar* *barx))
. main body of the top-level function . . .
))

Binding a global special variable to itself effectively makes a working copy of
it. The initial values of *foo* and *bar* as seen by the body of the function
will be the same as their values in the environment that called xyz. However,
any attempt to set one of these variables during the execution of your product
will modify only the values seen by this particular instance of the product. No
changes will be seen by any other copies of the product that happen to be
executing.

Furthermore, if you suspect that something in your code is setting a global
special variable such as *print-array* rather than binding it (despite all
admonitions to the contrary), then you can protect yourself by binding that
global variable to itself in this outermost let. This binding ensures that any
modification to that global variable will be local to your product, no matter
what your code may do.
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Running in Your
Own Process

Running in Your
Own Window

9.9.2 If the user calls your top-level function from a Lisp Listener, then
your function will effectively take over that Listener’s process until your func-
tion returns. In the meantime, the user has lost the use of that Listener.
Sometimes this is fine. Sometimes, however, you want your product to run in
its own process free and independent of whomever initiated it.

It is simple to run a function in its own process on the Explorer: just call
make-process or process-run-function (which calls make-process for you)
by passing it the name of your top-level function along with the arguments for
that function, and your function is off and running in its own process. This
process will terminate normally when your function returns (if ever). In
process terminology, your top-level function and its arguments are known as
the process’s initial function and initial arguments.

When your top-level function is running in its own process, however, it has to
worry about some extra bindings. When your function starts, the value of
*terminal-io* will be bound to the bidirectional window stream that your
function is supposed to use. Even if your function runs in background without
a window, this value of *terminal-io* is important because—at a minimum—
this stream is where errors occurring in your background process will be
reported. The beginning of your process’s initial function would now look like
this:

(defun xyz ( . . . )
(let ((*terminal-iox* *terminal-iox*)
(*standard-output* (make-synonym-stream “*terminal-io*))
(*standard-input* (make-synonym-stream ‘*terminal-iox*))

(*error-output* (make-synonym-stream “*terminal-iox))
(*trace-output* (make-synonym-stream “*terminal-io*))
(*debug-io* (make-synonym-stream ‘*terminal-iox))
(*query-iox* (make-synonym-stream “*terminal-io*))

(*foo* *foo*)
(*bar* *barx))
-))

The binding of *terminal-io* to itself was done for the same reasons as
before. The binding of the other standard streams (that is, *standard-out-
put* and friends) to synonym streams of *terminal-io* is done to establish
the default operation Explorer users have come to expect; that is, all standard
streams default to the same place unless explicitly redirected elsewhere.
Without these bindings, your defaults will match those of the process that
created your process—regardless of how they might have been changed.

The other standard streams are bound to a synonym stream of *terminal-io*
so that redirecting *terminal-io* redirects everybody. That is, *terminal-io*
becomes a collective name for all the standard streams. The relationship
between windows and *terminal-io* is explained in Section 1, Conventional
Use of the Standard Streams.

9.9.3 Products that run in their own process frequently have their own win-
dow and vice versa. This close association is so common that the system has
made special provisions for establishing this relationship. When you define
your window flavor, simply mix in the w:process-mixin flavor. Now, any-
thing that creates your window will automatically cause a new process to be
created with your initial function running in it. Similarly, if someone Kills the
window, its associated process will be Killed also.

9-14
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There are several ways of specifying your top-level function to w:process-
mixin. One option is to construct your product as a function of one argu-
ment, which is the newly created window it is to be associated with the proc-
ess. Therefore, you will have to change the opening portion of your function
as follows:

(defun xyz (window)
(let* ((*terminal-io* window)

(*standard-output* (make-synonym-stream ‘*terminal-io*))
D)

)
That is, everything is the same except that you must bind your copy of
*terminal-io* to your new window (the function argument) rather than to
itself. The other standard streams are still bound to synonym streams of
*terminal-io*.

For more information on Explorer processes, see Section 7, Processes and
Scheduling.

Initializing Your
Product

9.10 From the time your customer receives the tape with your product on it
until the time he is running that product, there are several points at which
initializations must be made only one time. For example,

W Tape Restore Time: These initializations are things such as creating direc-
tories and are usually done automatically during the restore phase of the
Load Distribution Tape utility.

B Product Load Time: These initializations are things that might accom-
pany the main make-system and are usually done automatically during
the load phase of the Load Distribution Tape utility.

m Before Disk Save Time: These initializations are things that must be done
to the current environment before it is saved as a new load band. These
initializations get rid of temporary processes and data you don’t want
carried over to the new band and force active processes into a state that
will carry over.

m After Cold Boot Time: These initializations are done only at cold boot
time and not at warm boot. Only the most primitive systems functions
usually need these sort of initializations.

m After Warm Boot Time: These initializations are done after every cold
boot and on every warm boot. These initializations are widely used to
start (or reset and restart) background servers.

m Before Garbage Collect Time: These initializations are done before a full
garbage collection step. The idea is to Kill (and thereby turn into garbage)
all temporary data, buffers, caches, windows, processes, etc. so that the
garbage collected load band will be as compact as possible.

The first two sets of initializations are handled automatically by the product
specific restore and install files carried on the product’s Distribution Tape.
The remaining initializations are handled by the Explorer’s initialization list
facility.
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An initialization list is a list of forms that are executed sequentially at certain
specified times. If your product needs to have something special done at one
of these times, then you can use the add-initialization form to have your
initializations run.

For example, if our XYZ product were a network server for the custorner’s
site, then we would want to be sure it gets started every time the system is
booted—even if the user doesn’t think to start it himself. Then you could add
the following top-level form at the end of the last file loaded by make-
system:

(add-initialization "Start XYZ Server"
‘(xyz:start-xyz-server)
‘(:warm :first))

where

"Start XYz Server" is a comment that will appear with the entry on the
initialization list.

‘ (xyz:start-xyz-server) is the form that will actually be executed at
warm boot so it should do all the work of starting the server.

s(:warm ...) identifies this as a warm boot initialization (you will need
one add-initialization form for each initialization list you want your form
on).

‘(... :first) indicates that the above form is to be executed first before
it is added to the initialization list (this allows the server to start immedi-
ately after the make-system rather than having to wait for the next boot).

Notice that a warm boot by itself usually means that the system got so wedged
that the customer was forced to warm boot to regain control. Therefore, your
warm boot form should take into account that it may have been called under
less than ideal circumstances. If your product was already running when the
warm boot occurred, your warm boot form should make every effort to reset,
recreate, and reinitialize everything about your product short of actually
destroying the customer’s work in progress.

Even if your product does not need any of the initialization lists for its own
correct operation, you might still consider whether you can help out your
customer when he does a full GC in preparation for saving a new load band.
If your product has any history lists, caches, data buffers, temporary win-
dows, and so on that are going to be thrown away by the next cold boot
anyway, then you can use an initialization list to clean up your product. For
example:

(add-initialization "Cleanup XYZ Server"
’(xyz:cleanup-xyz-server)
‘(:full-ge))

Now whenever your customer does a full-gc in preparation for saving a new
load band, you product will oblige him by turning data structures it no longer
needs into garbage so that they can be collected. The tacit assumption, by the
way, is that the call to full-gc will be immediately followed by a call to disk-
save so that your product will not be accessed after the full GC initialization
list is run.
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A Helping Hand
For copy-file

9.11 If your product uses only files with common file types (for example,
LISP, XLD, TEXT, and so on), then this_paragraph is of no interest to you.
However, if your product does create its own brand of files, there is some-
thing you can do to allow your custom file types to blend in.

Let’s begin by considering two details of the Explorer world. First, the
Explorer uses a modified 7-bit ASCII code internally. The first 32 codes
(which are normally ASCII control characters) have been replaced with addi-
tional printable characters, and the control functions have been moved to
codes beginning at 128. The Explorer system cleverly masks its special char-
acter set from the outside world by performing character translation on char-
acter files. Therefore, you always have the ASCII standard on the network
and the Lisp machine standard on the Explorer’s disk.

Second, Common Lisp defines a byte to mean roughly what most languages
call a bit-string. That is, byte does not necessarily mean eight bits. In particu-
lar, the Explorer supports files with 1-, 2-, 4-, 8-, 16-, and (in some cases)
32-bit bytes. The Common Lisp functions read-byte and write-byte work in
terms of the file’s defined byte-size.

Now, let’s consider one of the consequences of these two details: before an
Explorer can copy a file from one place to another, it must determine—in
some manner—whether the file contains ASCII characters that need translat-
ing and the byte size of the file. The copy file logic usually manages to derive
the information it needs from a heuristic based on file properties and file type
name. If this heuristic fails, the software stops what it is doing and asks the
user what kind of file he or she is copying. This query can become annoying
if the user happens to be copying a whole directory of these funny files.

The quickest way to see if any of your private file types will cause problems at
copy time is to use copy-file on one of them and see what happens. If it
queries you about characters and byte-size, and if you want to be nice to your
customers, then you can identify your private file types to the system so that
copy-file won’t have to ask next time.

Three global special variable are described below; each contains a list of file
types. Push your private file type name (written as a string) onto the appropri-
ate list:

m fs:*copy-file-known-text-types* records file types for 8-bit character
files. The source file types for all languages as well as text and document
file types are on this list.

B fs:*copy-file-known-binary-types* records file types for 16-bit non-
character files. These file types are usually restricted to the special case of
Lisp machine object files.

B fs:*copy-file-known-short-binary-types* record file types for 8-bit non-
character files. These files fit the conventional notion of a binary file.

Programming Concepts
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Introduction

10.1 This section discusses the issues involved in color programming and
then presents the basics of programming the Color Explorer. References for
further reading are provided at the end of this section.

NOTE: Color programming on the Explorer system requires optional color
hardware.

Basics of Color
Perception

Nature of Light

Nature of the Eye

10.2

10.2.1 Light is that range of electromagnetic radiation that our eyes can
detect and react to. Light radiation, like radio waves, can be characterized by
its frequency. However, light is traditionally measured by its wavelength,
which is an equivalent but irrelevant measure. Suffice it to say that light at the
blue end of the visible spectrum has a wavelength shorter than light at the red
end. Thus, one often sees references to short versus long wavelengths of
light. We perceive light of different wavelengths as different colors.

All light we see is composed of lightwaves of various lengths. As we shall see,
this is important when it comes to generating colors with a computer display.

10.2.2 There are several important aspects of the interaction between light
of various wavelengths and our eyes. Perhaps the simplest is the fact that our
eyes cannot focus on all colors at the same time. If the lens of the eye has
been shaped by the muscles to focus on red, green will be somewhat out of
focus and blue will be badly out of focus. Thus, a display with a wide range of
colors will place severe demands on the eye, leading to fatigue as the eye
continuously refocuses on different portions.

Another aspect of the eye is that its sensitivity to light is due to the wavelength
of the light and the part of the eye where the light lands. Similar intensities of
red or green are harder to perceive when the light lands in the periphery of
vision than in the center of vision. The eye is more sensitive to a yellowish-
green, falling off on either side of a sensitivity-versus-wavelength plot.
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The Analytic Model

Finally, and most importantly, color perception is not purely a function of
wavelength. Color is a matter of the brain interpreting stimuli from the eye. In
essence, the eye has three different receptors, each “tuned” to a portion of
the visible spectrum. When light lands on the eye, each of the receptors sends
the brain a message .indicating how “strong” a signal is being received.The
brain combines all these inputs and synthesizes a response, such as emerald
green or royal blue. The same color sensation can be invoked by more than
one combination of wavelengths and intensity.

For example, suppose the color x is generated by light consisting of 3 units at
4100 Angstroms, 12 units at 5350 Angstroms, and 7 units at 6442
Angstroms. Suppose this light is being projected on a screen. Now someone
comes along and sets up a second projector and proceeds to “tune” it until
the observer declares the two spots of light are the same color. When the
“tuner settings” are examined, the results are 9 units at 4223 Angstroms, 8
units at 5290 Angstroms, and 9 units at 6511 Angstroms. The eye cannot tell
the difference — the resulting response is identical. The brain reacts to a
“net” stimulus, not individual wavelengths. If it were not for this marvelous
property of the eye, generation of color displays would be much more diffi-
cult!

10.2.3 Because the brain reacts to a “net” stimulus and not individual
wavelengths, one color can be generated by combining other colors. The
most common way to demonstrate this is to shine light of different colors
onto a screen. In the region where the two colors overlap on the screen, we
perceive a different color. Shining red and green light onto a screen results in
yellow. So naturally we can ask, what colors do we need to generate all the
other colors?

There is no unique answer. Suppose we use three colors A, B, and C. Let the
intensity of A be a, the intensity of B be b, etc. Then, a color X might be

X = a%*A + b*B + c*C
But, we could choose three other colors, L, M, and N, such that
X = 1%L + m*M + n*N

The same color is represented using 3 other colors! In either case, the set of
colors used to generate a new color are called the primary colors, and the
amount of each color required are color coefficients.

Suppose we use three colors L, M, and N to try to match the color Q. We
shine a source of Q-colored light on the screen. Next to it we shine some L,
some M, and some N. We fiddle and adjust but never come close to match-
ing Q. What is wrong? Well, the answer is that the amount of one of the
colors may be negative. STOP, you shout, how can you have “negative light”?
Well, of course, you can’t. But let’s suppose that m equals -7.2. We can then
write the equation as

Q = 1*L - 7.2%M + n*N
This is the same as

Q + 7.2*%M = 1*L + n*N

10-2
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This means that we can’t match Q, but we can shine 7.2 units of M onto the
the Q-colored spot. The resulting color can then be matched by a mixture of
L and N. Since we are going to generate colors by having a CRT glow with the
light landing in our eye, we cannot “subtract” colors to get a desired color. In
other words, a CRT cannot generate every color that our eye can perceive.
But there are three colors that, with all positive coefficients, maximize the
range of colors we can generate with a CRT. These three colors are red,
green, and blue.

Basics of
Computer-
Generated Color

Color CRT
Operation

Color Models

10.3

10.3.1 All we need to know to program a color display is that, for each
picture element (pixel) on the display, there is a little triad of color phos-
phor. The three colors of the triad are the three primaries mentioned above,
red, green, and blue. At the back of the CRT are three electron guns that
each produce a stream of electrons (beam) that sweep across the inside face
of the CRT. As the beams sweep back and forth, the intensity of each beam
changes so that the pixels glow in the desired colors. On the Explorer system,
each beam can take on one of 256 different intensity levels, with 0 being off
and 255 being full strength. Since the magnitude of each of the primary
colors is independent of the other two, there are a total of 256 times 256
times 256 possible combinations of red/green/blue intensity. That is, there
are over 16 million possible colors that can be generated.

10.3.2 When controlling a device that has multiple independently
controlled parameters, it is helpful to have a model that shows what happens
when any one of the parameters is changed. This is certainly true of color
programming, since there are three independent parameters (the amount of
red, green, and blue). Color does not mix the way sound does. If one listens
to three separate notes and then listens to these three notes in a chord, there
is a new sensation (the harmony of the chord), but the three notes are still
distinguishable. With light, one color results when three colors are mixed,
and it is not always easy to determine the end result of a small change in one
of the source colors. So, color models have been developed to help the user
anticipate the effect of changing the parameters.

The most common (but least useful for many) is the RGB model. In this
model the three parameters are the amount of red, the amount of green, and
the amount of blue. Of course, as already stated, it’s hard to predict the
result of combining these three values. But the model is pervasive because it
corresponds directly to how the hardware works.

A much more useful model is the HSV model. This model is more percep-
tually oriented than the RGB model. H stands for hue, S for saturation, and
V for value. We will define these in more detail shortly, but first a few general
observations about the model. With the HSV model, colors can be manipu-
lated in a more natural way. As any of the three parameters is changed, the
underlying software translates the change into the appropriate values of R, G,
and B. The change is particularly easy to observe using the Explorer Color
Map Editor. The editor provides six slide bars. Three slide bars provide the
user with control over the values of the R, G, and B components of the color
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being edited. The other three slide bars provide control over the values of H,
S, and V. As you change the value of H using the slider, you can see how the
R, G, and B sliders all change to create the new color.

Now, for a more detailed definition of HSV. Recall that color sensation is the
result of the brain processing stimuli from the eye as light of various wave-
lengths. Wavelengths in the range of 450 to 480 nanometers (nm) evoke a
sensation of blue, 500 to 550 nm evoke a sensation of green, 570 to 580 nm
evoke a sensation of yellow, and 610 nm and higher evoke a sensation of red.
This sensation of color is called hue. In the HSV model, hue takes on a value
between 0 and 360 degrees, i.e., a circle that spans the spectrum around the
circumference: red to yellow to green to cyan to blue to magenta and back to
red again. "

In the real world, light reaching the eye rarely consists of a single wavelength
or a narrow range of wavelengths. Instead, a number of different wavelengths
are usually present. A color produced by a very narrow range of wavelengths
is called a dominant hue. The color of a dominant hue is considered to be
pure or highly saturated. Adding different wavelengths to a dominant hue
causes the color to become less saturated and therefore less pure.

The value parameter applies to a color’s intensity. The best way to remember
the relationships of value and saturation is this:

Value Saturation Yield
0 0 No hue
1 0 White
0 1 Black
1 1 Pure colors

Value and saturation can be any number from 0 to 1. Decreasing saturation
without changing value is like adding white to a color. Decreasing value with-
out changing saturation is like adding black to a color.

Guidelines for
Effective Use of
Color

General Principles

10.4

10.4.1 Why use color anyhow? In recent years, researchers have been
asking questions about information processing. The researchers wanted to
know how information should be coded and formatted, how quickly users
can process information, how much information can be displayed at once,
and how quickly the information can be updated. The results of the research
have shown that color plays an important role in increasing human productiv-
ity when it is applied to interactive information displays. For example,
suppose the task at hand was spotting and correcting words in a text file that
have been flagged by a program as potentially misspelled. Color has been
shown to be superior to reverse video, blinking, or underlining.

But one cannot just splash color across an interface indiscriminately. The
following paragraphs lists guidelines for using color for Explorer color
interfaces.

10-4
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Designing the Color 10.4.2 The Explorer is an open system that any application developer can
User Interface customize to a great extent. But research on the use of color in user inter-
faces has shown that the effectiveness of color coding can be impaired when

the coding varies from application to application. Therefore, we have

provided guidelines for developing Explorer-based applications that meet

most user interface needs, and encourage everyone to model their user inter-

faces on these guidelines. To provide this consistency as simply as possible,

the Explorer system features several Profile variables that specify the color of

common parts of the interface, such as menu background color, menu fore-

ground color, scroll bar shading, and so on. These variables are described in

Section 19, Using Color, of the Explorer Window System Reference manual.

The following recommendations resulted from two areas of research. One
area has focused on how the eye detects color and how the brain reacts to
color. The other area has studied how color affects information processing
tasks. If you would like to know more about the bases of these recommenda-
tions, please refer to the reference documents listed in paragraph 10.6. The
numbers in brackets that follow an item refer to this reference list.

m Before you try to incorporate color into an application, design an effec-
tive user interface and screen layout in monochrome. Adding color to an
effective design can enhance the usability of the application; adding color
to a poor design simply adds color rather than makes the application
easier to use. Adding color to a poor design may, in fact, emphasize its
deficiencies.

Probably the most important recommendation resulting from the research
is don’t overuse color. The brain can only track about 5 to 7 independent
concepts at once. If each color in a display has a specific meaning, more
than 5 to 7 colors can lead to situations where the user must react to a
color stimulus, but cannot recall the meaning associated with the color.
This can be annoying in, say, an editor. It can be disastrous in a process
control environment.[1]

M Avoid using too many bright colors on a single, frequently used applica-
tion screen. As a rule of thumb:

s Use only four colors (preferably the ones used in the Explorer
convention) on a screen where each color signifies a different type of
highlighting (such as a mouse blinker, text, marked items, and so
on).

= Use a maximum of seven colors for the screen.

NOTE: This guideline does not apply to colors used to highlight
power-up screens, login screens, copyright screens, and the like.
These types of screens often benefit from flashy displays of color that
attract attention.

= When possible, use redundant coding for shape and color. [3]

s Use brightness and saturation to draw attention. [1]
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Use similar colors for similar meanings. This is the assumption most users
make, whether true or not.[1]

Group related elements by a common background color.[1]

Use monochrome tones (that is, black, white, and the various shades of
gray) for backgrounds, desktops, menus, and other nonactive elements
of the user interface. Using a monochrome, or achromatic, appearance
for nonactive elements increases the effectiveness of colors used for high-
lighting.

Use primary (that is, named) colors for highlighting errors, marked text,
selected objects, and so on. These colors provide good contrast when
used with an achromatic background (a background composed of black,
white, and/or shades of gray). In addition, if you use only named colors
for highlighting, you can use the same colors from machine to machine
and keep consistency regardless of brand of monitor.

Avoid large areas of a high-intensity white color. Instead, use a light
shade of gray for backgrounds, menus, and so on. Using a light gray
rather than pure white reduces the halation effect that makes text and
small objects displayed on a white area difficult to see. You can use small
amounts of white to increase contrast and legibility—for example, to
display text on a dark background.

Avoid red and green at the outer edges of large displays. The peripheral
color vision of the eye is poor for red and green. [1]

Avoid pure blues for text, thin lines, and small shapes. The eye muscles
cannot contour the lens enough to completely focus short wavelength
light. For the same reason, blues are good for large background areas.

(1]

Avoid the simultaneous display of highly saturated, spectrally extreme
colors. When the eye muscles focus the lens for long wavelength light
(such as yellow or red), short wavelength light (such as blue or green) is
no longer in focus. [1]

Use brightness contrast to convey hierarchies, depth, and dimensionality.
Use light colors to give the appearance of nearness or to suggest impor-
tance; use darker colors (ones with less contrast) to give the appearance
of fading into the distance or to suggest relatively less importance. For
example, a menu that includes several subheadings and subordinated
entries could display the subheadings in white on a dark gray background
with the entries displayed in light gray on the same dark gray background.

The magnitude of a detectable change in color varies across the
spectrum. Small changes in extreme reds, purples, and greens are more
difficult to detect than the same amount of change in a yellow or blue-
green color. [1]

Use higher brightness levels for users with vision impairments. They need
higher brightness levels to distinguish colors. [1]
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B Keep in mind cultural considerations. Beyond the obvious RED = stop or
alert while GREEN = go or save, specific disciplines have certain
meanings associated with color. For example, in medical analysis of CAT
scans, danger areas are often coded in greens or purples while safe areas
are coded in red or yellow. Also, blue, (as in CODE BLUE) is associated
with death. [2]

m Keep in mind the physiological response to color. For example, warm
colors refer to action, required response, and spatial nearness. Cool
colors refer to status, background information, and spatial separation. [3]

Basics of
Programming the
Color Explorer

Considerations for
Programming
Applications

10.5 Now that we have the basic ideas of how users perceive color, how the
computer generates color, and how one might use these colors to create user
interfaces, we can discuss how to program color on the Explorer system. The
following paragraphs discuss adding color at the application level and how to
incorporate color in your specialized system functions if you are working at a
lower level (such as building tools for creating user interfaces).

10.5.1 This paragraph describes how color is implemented on the Color
Explorer, not in terms of how the hardware works, but in terms of what an
applications programmer needs to know in building an application on top of
the window system.

The Explorer color option brings to the window system a hardware capability
of 8 bits of information per picture element (pixel), compared with the 1 bit
per pixel capability of the monochrome system. The hardware can generate
24 bits of color information to drive the color monitor. These 24 bits are
composed of 8 bits for red, 8 bits for green, and 8 bits for blue. So, each of
the three colors (R, G, and B) can take on one of 256 values, with 0 being
completely off and 255 being full strength. Taking in all possible combina-
tions, there are over 16 million possible colors. But, you may ask, how can 8
bits per pixel represent 16 million colors? The answer is, they can’t! Each
pixel can take on one of 256 possible values. Each of these values is trans-
lated by the hardware into a 24-bit value (8 bits of Red, 8 bits of Green, 8
bits of Blue). The translation is performed using a data table called the color
look-up table (LUT). So, at any one time only 256 different colors can be
displayed on the Explorer color monitor. Later on we will describe how to
modify the contents of this LUT. For now we will rely upon the fact that the
table is initialized by the window system with a factory-preset color LUT.

Although the addition of color would, at first glance, seem to be a simple
extension to the window system, it does have some immediate consequences
that affect how you might program the window system. Let us introduce these
new concepts by way of contrast with the monochrome system you are
already familiar with.

Remember that each pixel in the monochrome system can have only one of
two values, either on or off. When running the window system on color hard-
ware, each pixel can take on any one of 256 values, ranging from 0 to 255.
Thus, a pixel is no longer just on or off, black or white, 0 or 1, but rather it is
an integer with a range of values. Furthermore, since the integer value is
translated into screen colors via a LUT, the same integer value may represent
different colors, depending on the currently installed LUT. This integer value
is referred to as either the pixel value or the logical color of a pixel. The
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value generated by the LUT that corresponds to the logical color is the
physical color.

For many operations such as writing text or drawing a simple line, there are
only two colors of interest. These colors are called the foreground color and
the background color. Perhaps the best way to understand the meaning of
foreground and background is by comparison with the monochrome system.
When the screen is cleared, all pixels are set to the off state. One can also
think of this as setting all the pixels to their background color. When text is
drawn to the screen, you can think of pixels as being turned on, or as pixels
set to the foreground color. For example, clearing the screen on a color
system may result in the screen being turned completely green (the back-
ground color) with text appearing on it in white (the foreground color). In
general, any operation that in a monochrome system turns a pixel off, in a
color system sets a pixel to the window’s background color. Any operation
that: turns a pixel on in a monochrome system will, on a color system, set the
pixel to the foreground color.

Each window has its own foreground and background color. In the simplest
case, every window has the same foreground and background color. By
default, any text or graphics operation is drawn in the window’s foreground
color. Thus, any application transferred from a monochrome system will run
with: black and white replaced by the window’s current foreground and back-
ground colors.

As described in the Explorer Window System Reference manual, there are a
number of ways that a pixel on the screen can be changed, based on the new
value to be written and the ALU operation to be performed. For example, a
common operation on a monochrome system is to perform an exclusive OR
(XOR) operation between the pixel value to be written and the existing pixel
value. After the XOR operation is performed, the resulting on or off state is
written to the memory location corresponding to the desired pixel. The same
ALU operations are available for the color environment, as are some
additional operations.

However, some of the same operations that were provided for monochrome
systems are less valuable in a color system. The main reason for the
decreased usefulness is that these operations are binary operations. Their
meaning is clear when applied to 1-bit pixels but not so when applied to the
8-bit pixels of a color system. For example, XORing an ON pixel with an ON
bit yields an OFF pixel. But, what does it mean to XOR a green pixel with a
pink value? For color, more meaningful operations are needed.

These additional operations are add, subtract, max, min, average, add with
saturation, subtract with clamping, transparency, and background. The first
two are pretty obvious. Combining a source value of 3 with an existing pixel
of 27 yields a resulting pixel of value 30. Now, what color is this? It depends
on the LUT. For example, if the table was set up so that the values 20 to 40
corresponded to dark blue to light blue, then the pixel will have changed
from one shade of blue to a slightly lighter shade of blue. But, 27 could have
been green and 30 could have been orange. The lesson here is that, unlike
the monochrome environment in which the only thing that determined how a
pixel looked was the values and the ALU operation, in a color environment
the same values combined using the same ALUs can result in different colors
depending on the color LUT.
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The add and subtract operations are performed modulo 256. That is, if a
pixel’s current value is 254 and a value of 4 is added, the result is 258. But
258 is greater than the largest available value, so the result is 258 - 256 = 2.
One can think of the addition as wrapping around to the front of the table.
Similarly, a value of 3 minus a value of 7 yields a pixel value of 252.

One place the add and subtract ALUs are used is in blinkers. In a mono-
chrome environment, blinkers are made to appear on the screen using XOR
and removed using a second XOR. For the color environment, the blinker is
added to make it appear and subtracted to make it disappear. The wrap-
around feature is important, for example, in adding an offset of 5 to color
255 to yield color 4, and in restoring the contents to color 255 when 5 is
subtracted.

For some applications this wraparound behavior is not desirable. For such
applications the add with saturate and subtract with clamp are the proper
operations to use. Suppose the saturation value is set to 150 and the clamp
value to 10. Then 128 + 10 yields 138 as expected. But 128 + 50 yields 150,
since the result is constrained to not exceed the saturation value. Similarly,
128 - 20 yields 108, but 128 - 126 yields 10. Section 19 of the Explorer
Window System Reference manual describes how to set the saturate and
clamp values.

The max and min operations are also straightforward. For example, if 20 is
combined with 30 using max, the resultant pixel is 30. If 50 is combined with
30 using max, the resultant pixel is 50. The average operation performs the
arithmetic average of the source and destination pixel, truncating any
fractional remainder. For example, combining 20 with an existing pixel of
value 40 yields (20 + 40) / 2 = 30. Once again, the results of these operations
only make sense if the color map is properly prepared.

The other two operations are background and transparency. The background
ALU simply forces the destination pixel to the window’s current background
color regardless of the value of the source or destination pixel value. Trans-
parency is harder to understand, but very valuable. Let us discuss transpar-
ency by using text, since that is the most common application. The definition
of each letter displayed in the screen consists of a pattern of on and off bits.
As stated before, on bits result in pixels being set to the foreground color and
off bits setting pixels to the background color. With text, all we are really
concerned with are the on bits. When the transparency operation is used, on
bits still set pixels to the foreground color, but off bits are ignored—the corre-
sponding pixel is left as is. Since the result is that existing colors “show
through” wherever a letter has off bits, the off bits are “transparent.”

NOTE: If you are converting applications to color by writing your applications
to use the general ALU functions provided by the window system (i.e.,
w:char-aluf and w:erase-aluf), your application will work in either color or
monochrome, since the window system always sets these to the appropriate
value. If, however, you have placed specific ALU operations in your code
(for example, ALU-XOR or ALU-IOR) your application will run in color—
but it may have cosmetic problems. You can fix such problems by changing to
the new ALU functions. In general, use the new ALU functions for all appli-
cations. They are defined to work equally well in either a color or a mono-
chrome system.
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Another extension added is the texture pattern, used in w:graphics-mixin
methods. Texture (or dither) patterns are an important supplement to color.
In the monochrome window environment, the w:graphics-mixin methods
have an argument somewhat misnamed color. In the monochrome environ-
ment, the color argument is used to draw in one of eight dither patterns,
simulating various shades of gray. In the color environment this same
argument actually does specify the drawing color. For some applications it is
still desirable to draw a pattern, or texture, in color. Therefore, the
wigraphics-mixin methods have a new optional parameter to provide a
pattern.

The last but most important concept is that of the color map. We’ve already
described LUTs. The LUT is used during each refresh cycle of the monitor to
translate 8-bit pixel values into 24 bits of physical color information. The
LUT is part of the color option hardware. There is only one LUT on the
color board. Yet, you may need different color definitions for each of several
windows.

Therefore, the window system has been extended to associate each window
with a data structure called a color map. The name color map was chosen to
distinguish it from the hardware LUT. A programmer works with the color
map, not directly with the color LUT buffers. Functions to access and modify
any of the elements of this structure are documented in the Explorer Window
System Reference manual. For now, the important points are:

M. Each window has its own color map.
M The color map contains the clamp and saturate values for the window.

B The color map contains a color map table of R, G, and B values for each
of the 256 possible colors.

When a window is created, the default action is to give the window a pointer
to its superior’s color map. This default action is important for some applica-
tions. For example, panes in a constraint frame logically share the same color
map. When a window is created, the default can be overridden with an
initialization option. A window’s color map can also be changed at any time
by sending the window a method to set a new color map and then selecting
the window to load the new color map. You can also modify the existing color
map, either through programmer control or through user control via the color
map editor.

Whenever a window is exposed or selected, its color map table is automati-
cally loaded into one of the LUT buffers, and the LUT is then loaded from
the freshly updated buffer. So, as different windows are selected, the hard-
ware is always using a copy of the currently selected window’s color map
table. At the same time that the color map table is loaded into the LUT, the
clamp and saturate values of the color map are placed where microcode can
access them during add with saturate or subtract with clamp operations.

Although the user can modify any location in the color map table, it is
strongly recommended that the reserved colors be left alone. The reserved
colors are listed in the reserved field of the color map. Currently, the first 32
slots are reserved. These 32 slots contain 8 shades of gray (for compatibility
with the 8 dither patterns in the monochrome environment) plus comrnonly
named colors such as red, green, yellow, orange, and so on. All system
software is defined to use only these reserved colors for such things as the
default foreground and background of a window, border colors, highlighting
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colors, and so on. By confining the specialized colors you need for your
application to the rest of the color map table, you can ensure that all your
windows will maintain a consistent appearance. For example, your applica-
tion may require a set of pastel colors, some shades of brown, and several
shades of green. Before exposing your application window, you would use the
color map functions to, for example, define the pastel colors in locations 40
through 64, the shades of brown in 70 through 90, and the shades of green in
locations 200 to 215.

If, for some application you must modify and use all 256 locations of the
color map table, keep in mind that some system-defined features may look
somewhat odd when your color map is installed and active. By the same
token, popping up a window over your application may result in a different
color map table being loaded to the LUT, making your application look
wrong. As soon as the pop-up window is removed, however, your window’s
color map table is loaded and your application once again returns to normal.

The remaining locations of the color map table are loaded with values for a
red color ramp, a green color ramp, and a blue color ramp. (A ramp is a
sequence of colors. These ramps vary in intensity from very dark shades to
very light shades of the same color.)

To summarize, Table 10-1 lists the important terms defined in this section,
plus a few additional useful terms.

Programming Concepts — Change 1 10-11



Color Concepts

Table 10-1

Glossary of Color Terms

Term

Definition

background color
color
color environment

color map

color map table

color model

foreground color

frame buffer

logical color

LUT (Look-Up Table)

LUT buffer

pixel

pixel value

The color corresponding to an off or 0-bit pixel in a monochrome
environment.

Generic term meaning pixel value, RGB value, HSV value, or some
other abstract quality whose exact meaning is determined by context.

A configuration of optional hardware and software that allows the
Explorer system to display 256 colors at one time.

The software data structure (a defstruct) that contains, among other
things, the color map table. Each window contains an instance of a
color map. When a window is exposed or selected, its color map
ibecomes the active color map, which means that the color map’s table
is downloaded to the hardware.

The software data structure (an array) that specifies a mapping of pixel
values (logical colors) to RGB values (physical colors). The values in the
color map table are downloaded to the hardware LUT buffer when a
window is exposed or selected.

The representation used to define a color. Providing the values for red,
green, and blue is just one of many ways to define a color. The
Explorer system uses the RGB model to define a color. Other models
such as HSV (hue/saturation/value), HSI (hue/saturation/intensity), and
YIQ (used for commercial TV broadcasts) can be found in popular
books on color.

The color corresponding to an on or 1-bit pixel in a monochrome
environment.

The actual hardware memory array that contains the values of pixels
displayed on the physical screen. The Explorer frame buffer is 1024 by
1024 by 8 bits. This is the equivalent of a screen array. Note that only
1024 by 808 is used for displaying an image on the screen.

The integer value that corresponds to an address in the LUT. Also see
pixel value.

The actual hardware table holding the currently available RGB values.
This table cannot be read by the software. The LUT is the only table
that the hardware uses to translate 8-bit color data into 24 bits of RGB
data.

The two hardware buffers from which the LUT can be loaded. These
buffers can be read from and written to by software.

A single picture element.

A value stored in the frame buffer that represents the logical color of its
associated pixel. A pixel value is used as an index into the LUT, which
transforms the pixel value into a physical color for driving the display.
Pixel values are 8-bit quantities.

RGB value A value describing a physical color. It is divided into three fields that
specify the intensity of each of the additive primary colors (red, green,
and blue) in a single color.
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Considerations for 10.5.2 This paragraph describes how the color system works and how the

Programming the programmer interacts with the color system. The following paragraphs

Explorer System describe how the hardware works and how to use the functions and methods
provided so you don’t have to worry about manipulating the hardware.

As with the monochrome system interface board (SIB), the Color SIB
(CSIB) has a section of memory called the frame buffer that is part of the
address space of the Explorer system. This memory is scanned by the
hardware on the CSIB to generate the display you see on the color monitor.
The memory is arranged so that each 8-bit byte corresponds to one pixel on
the display monitor. As the hardware scans this memory, each 8-bit value is
read and used to look up the pixel’s red, green, and blue intensity values
from the LUT.

All color programming boils down to manipulating one of two quantities. The
first is the contents of the color LUT, which contain, in essence, a definition
of the color for each of the 256 possible values that an 8-bit pixel can have.
For example, the LUT may contain values of red, green, and blue for each
pixel value such that the resultant display is seen in shades of gray. Or the
values in the LUT could be such that the pixel values 0 to 255 correspond to
different slices of a rainbow. Functions are provided to directly manipulate
the LUT buffers from which the LUT is loaded, and to manipulate the
contents of the color map, which is an instance variable of windows.

The second quantity that can be manipulated is the contents of the frame
buffer. If a pixel value of 99 results in a shade of blue appearing on the
screen, and 100 results in a shade of green on the screen, then for each
location in the frame buffer that you cause to be set to the value 99, a blue
pixel will appear on the monitor, while for each location that you set to a
value of 100, a green pixel appears on the monitor. As simple as this sounds,
there are a number of factors that affect what the final contents of the frame
buffer will be.

First, we must digress and discuss the concept of expansion. Expansion is
used whenever the basic information known about an object is its shape. The
classic example of this situation is text. For each letter, the pattern of 0s and
1s in a font merely describe the shape of the letter, they do not describe the
color of the letter. In other words, fonts are essentially 1-bit deep sources of
information. Yet, to cause color to appear on the monitor, an 8-bit quantity is
required in each location of the frame buffer. The interface between the 1-bit
deep source (the font) and the 8-bit deep destination (the frame buffer) is
color expansion. Expansion works as follows: The hardware is loaded with an
8-bit value in a location called the foreground color register. Another 8-bit
value is loaded in a second register called the background color register.
Now, when we write a 1-bit deep pattern of 1's and 0’s to the frame buffer,
expansion kicks in. For each 1 written, the value written in the frame buffer
is the value found in the foreground register. Similarly, for each 0 written, the
value written in the frame buffer is the value found in the background regis-
ter. For example, suppose the contents of the LUT are such that color 200 is
dark-purple and color 76 is yellow. By loading 76 into the foreground color
register and 200 into the background color register, text drawn on the screen
will appear in yellow against a dark-purple background. This happens because
the frame buffer has a 76 written for each 1 in the font copied to the screen,
while a 200 is written in the frame buffer for each 0 in the font.
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Now, this may all seem a bit messy, and we're going to muddy the waters a bit
more here, but soon you will see that you rarely have to work this close to the
hardware for color programming. The one thing that we haven’t discussed yet
that complicates the picture is ALU operations. On a monochrome system,
values written to the screen memory are combined with the current conterits
using a specified operation. For example, the value to be written can be
ANDed with the existing pixel value. The value can also be Exclusive Or'ed

(XORed) with the existing pixel value. All these familiar operations are

available in color, but in some cases their use is more limited than in a mono-
chrome environment.

The classic example of these operations is the XOR. XOR is widely used in a
monochrome environment because of one property: XORing the same
pattern onto the screen twice in a row leaves the screen unmodified. The first
time object X is drawn onto the screen using an XOR operation, it appears
because wherever there is a pixel in the source, the destination is forced into
the opposite state, (on pixels switch to off and vice versa). Thus, regardless of
what is on the screen, the source pattern appears because it changes the pixel
to its opposite state. Performing the operation a second time switches all the
pixels again, thus restoring the original screen. When operating in a color
environment, XOR behaves logically as it should, but the result on the screen
can be more difficult to predict, since the resultant color is determined by the
contents of the color LUT.

For color systems, however, there are some additional ALUs. For example,
there are ADD and SUBTRACT ALUs. When the source and destination are
combined using the ADD ALU, the resultant pixel value is the sum of the
source and destination pixel values. Similarly, the SUBTRACT ALU causes
the new pixel value to be the destination pixel minus the source pixel. By
combining an object with the screen using first an ADD, then a SUBTRACT,
the net change to the screen (as with two successive XORs) is no change at
all. Of course, the result still depends on the contents of the LUT. For
example, red plus yellow could result in a shade of pink, a shade of blue, or
any other of the 16 million possible colors, depending on the color definitions
stored in the LUT at the location specified by the pixel value resulting from
the sum.

To summarize to this point, color programming involves defining colors by
putting values for red, green, and blue intensity into the LUT, and by causing
locations in the frame buffer to take on one of 256 possible values. But, it
sure looks like a lot of work! So far, we have been talking about what
happens at the low level of the window system. Now let’s see how simple
things can really be.

In the simplest case, you need do nothing to run the window system in color.
Every window has an instance variable that contains the COLOR-MAP as
well as instance variables that contain the FOREGROUND-COLOR and
BACKGROUND-COLOR. When you turn on your Color Explorer, these
instance variables are initialized to predetermined defaults. Whenever a
window is exposed or selected, its color map is copied into the LUT, and the
FOREGROUND-COLOR and BACKGROUND-COLOR instance variables
are copied into the hardware. So, all of the programming described above is
performed for you automatically using system defaults.
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You can change the appearance of windows several ways. One way is to use
the System menu to access the Edit Attributes menu to change the fore-
ground and background colors of the window. After doing so, any operation
performed is done using the new values of the instance variables. Thus, you
can easily change a black and gray window to a green and yellow window, or
whatever two colors you choose. Another way to change the color of windows
is to use the Profile utility to change the window default colors. Then, every
window you create will use your new defaults rather than the factory-set
defaults.

The most common way to program the system in color is to use the optional
color parameters added to the window system’s functions and methods that
perform screen output. For example, you can draw a pink line with

(send my-window :draw-line start-x start-y end-x end-y thickness
w:pink)

Or you can write a blue letter using

(send my-window :tyo #\A ‘cptfont w:blue)

The Explorer Window System Reference manual lists all of the modified func-
tions that indicate the additional color parameter.

If you need to develop your own output routines and want to have control
over the output color, the following discussion describes how the current
window system software works, and can serve as a model for your efforts.

As you probably are aware, all output ultimately is performed by a small set
of microcoded routines. These routines are described in Section 12, Graph-
ics, of the Explorer Window System Reference manual. These functions
perform identically on monochrome or color systems with the exact same
parameter lists. How, then, do we get color on color systems? There are two
answers, which we will call the direct method and the indirect method.
Before defining these two terms, let us take a quick detour.

Prior to the development of the color system, the microcode routines were
designed to deal with either 1-bit or 8-bit quantities in matched sets. For
example, one could BITBLT a 1-bit source to a 1-bit destination, or an 8-bit
source to an 8-bit destination. But a 1-bit source to an 8-bit destination was
illegal. With the addition of color capability and the concept of expansion,
the microcode was enhanced to understand 1-bit sources (such as a font or a
pattern) and 8-bit destinations (such as a screen array). In this case, the
microcode ensures that the 1-bit source is expanded into 8-bit quantities as
described above. Sending an 8-bit source to a 1-bit destination is still an
illegal operation.

Now, back to the main road. Direct color programming means that you
provide the microcode with 8-bit source information that is used to write into
the 8-bit locations of the destination array. For example, suppose that you
create an array called X with a repeating pattern of 0, 9, 27, and 33. Suppose
also that these values correspond to black, dark-green, medium-green, and
light-green. Then, if you were to use %draw-shaded-triangle with X as the
PATTERN parameter, the resultant triangle on the screen would be painted
with a repeating pattern of green intensities.

Programming Concepts — Change 1 10-15



Color Concepts

Indirect programming means that you load the foreground color register and
the background color register, and then provide a 1-bit source array. When
the drawing occurs, the source array is expanded into the frame buffer using
the contents of the foreground and background registers. By changing the
register contents, the same array can be drawn in a variety of colors. Because
the resultant display depends on the register contents for color rather than
upon the source array, this form of programming is called inclirect
programming.

NOTE: Direct programming overrides indirect programming. For example, if
you set up the registers for a green foreground and a pink background, then
supply an 8-bit deep source array whose values produce shades of blue, the
result on screen will be shades of blue. Why? Because the source array is
8-bits deep, which means expansion is not required, which means the
contents of the registers are not used.

With the above preparatory remarks, we can describe how the window system
handles color. (Remember, all of this is handled automatically if you use the
window system methods and functions.) First of all, the prepare-sheet macro
has been modified so that everytime a prepare-sheet is performed, the fore-
ground and background color registers are loaded using the values found in
the window’s foreground and background color instance variables. Thus, the
hardware tracks the window colors automatically. When you provide one of
the optional color parameters (for example, for drawing a line in a color
other than the current foreground color), one of two things happens. If the
internal software of the window system can make a change before a prepare-
sheet is called, a macro called prepare-color, is used. For example:

(prepare-color (window COLOR)
(progn
«vesr 333y misc code here
(prepare-sheet (window)
. 333 code here that draws

)
)
)

The prepare-color macro saves the window’s current foreground color, and
then sets the foreground color to the value coLor. Within the prepare-sheet
code this color is loaded into the hardware. The final part of the prepare-
color executes after the body of its code, and restores the window’s instance
variable to the value saved earlier.

If the code is already within a prepare-sheet, a macro called prepare-color-
register is used. This macro is very similar to prepare-color, except that it
saves, loads, and restores the hardware register directly rather than via the
instance variable.

Whenever possible, manipulate window instance variables. Each window has
its own instances, so each window remembers what is in the hardware. If you
manipulate the hardware directly, another window may come along and
change the contents of the hardware.
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Just as the window’s foreground and background instance variables are
loaded into the hardware automatically, so is a window’s color map table.
Whenever a window is exposed or selected and is visible on the screen, its
color map table is downloaded into the hardware. Functions are provided for
altering the contents of the hardware LUT and the color map table, for
loading the LUT from the color map table. Again, the safest approach is to
manipulate the window’s color map table, since then the window remembers
its color definitions. If you directly manipulate the hardware and then
another window is exposed, your changes will be overwritten by the exposed
window’s values.

If you are developing your own system code, that is, code that does not rely
on the window system, you can use the prepare-color and prepare-color-reg-
ister macros just described. But what if you are developing general-purpose
code you expect to work properly on either a monochrome system or a color
equipped system? There are just a few simple rules.

First, always use the new ALU operations. The microcode automatically does
the right thing on a monochrome or color system. But if you hardcode your
routine to use alu-xor, then the microcode can’t turn it into alu-add or alu-
sub. If you use alu-transp anywhere you would draw with alu-ior, you get
IOR on monochrome and alu-transp on color-equipped systems. Similarly, if
you use alu-back, you get alu-andca on monochrome for erasing and alu-
back in color for erasing. If you examine the truth table of a 1-bit alu-add or
alu-sub with no carry, you discover that both alu-add and alu-sub have the
same truth table as alu-xor. This means that, if you write your code to put
items on the screen with alu-add and remove them with alu-sub, in a mono-
chrome system you actually get two successive alu-xors as desired, and in
color you get the color add and subtract as desired. So, the code does not
need to know specifics of the system configuration.

Secondly, changing the foreground-color and background-color instance
variables does no harm in a monochrome system, since the hardware registers
are loaded with 255 and 0 respectively and never changed, even when the
instance variable changes. But the same code running on a color system will
change color as you change your instance variable values.

Conversely, if you do change the contents of the foreground-color-register
and the background-color-register on a monochrome system, unexpected
results can occur since the normal value of 255 (hexadecimal FF) ensures
that upon expansion all 8-bit planes are active. If you cannot avoid writing
code that reaches down to the hardware level, you should conditionalize the
code to change the hardware only when the screen and its windows are color
windows. This can be determined either by the general-purpose function

(get-display-type window-or-sheet)

which returns :MONOCHROME on a monochrome window or :8-BIT-
COLOR on a color window. This function is intended to be general-purpose
and can be expected to return other keyword values when new display
products are developed and introduced.

If all you need to know is if the window is color or not, then you can use the
macro

(color-system-p sheet)

which returns nil if sheet is on a monochrome system; otherwise, the macro
returns the type of system, for example :8-bit-color.
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Alphabetization The alphabetization scheme used in this index ignores package names and

Scheme nonalphabetic symbol prefixes for the purposes of sorting. For example, the
rpc:*callrpc-retrys* variable is sorted under the entries for the letter C
rather than under the letter R.

Hyphens are sorted after spaces. Consequently, the multiple menus entry
precedes the multiple-choice facility entry.

Underscore characters are sorted after hyphens. Consequently, the xdr-io
macro precedes the xdr_destroy macro.
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General

A

accessor methods, 2-9

action-oriented programming. See
programming, action-oriented

Active processing state, 7-15

application program. See program product

arrest reasons, 7-14

Arrested processing state, 7-15

B

background stream

helper function, 1-6

typeout window, 1-6
band, 6-2
bashing processes, 7-15—7-16
bindings

bypassing, 7-8

initial values for a process, 7-6—7-7
block names, conflicts in macros, 8-3

C

canonical types, 6-15
code
adding versus modifying, 2-4
redefinition versus replacement, 5-1—5-2
reusability of, 2-17
colons, indications of whether a symbol is
exported, 9-3
color concepts, 10-1—10-18
add ALU operation, 10-9
add with saturate ALU operation, 10-9
ALU operations, 10-8, 10-14, 10-17
average ALU operation, 10-9
background ALU operation, 10-9
background color, 10-8
background color instance variable, 10-16
background color register, 10-13, 10-17
basics of computer-generated color,
10-3—10-4
color argument of w:graphics-mixin methods,
10-10
color coefficient, 10-2
color CRT operation, 10-3
color, definition, 10-12
color environment, 10-12
color map, 10-10
color map table, 10-10
color models, 10-3
color perception
analytic model, 10-2
basics, 10-1—10-3
Color SIB (CSIB), 10-13
color-system-p macro, 10-17

designing the color user interface, 10-5

direct color programming, 10-15

Edit Attributes menu for changing the
window colors, 10-15

expansion, 10-13

foreground color, 10-8

foreground color instance variable, 10-16

foreground color register, 10-13, 10-17

frame buffer, 10-12

get-display-type function, 10-17

glossary of color terms, 10-12

guidelines for effective use of color,

10-4—10-7
HSV model, 10-3
hue, 10-3

indirect color programming, 10-16

light, 10-1

logical color, 10-7

Look-Up Table (LUT), 10-7

LUT buffer, 10-10

max ALU operation, 10-9

min ALU operation, 10-9

nature of the eye, 10-1

physical color, 10-8

pixel, 10-3

pixel value, 10-7

prepare-color macro, 10-16

prepare-color-register macro, 10-16

prepare-sheet macro, 10-16

primary color, 10-2

programming the color Explorer,

10-7—10-17

purity, 10-4

ramp, 10-11

references of color programming

information, 10-18

RGB model, 10-3

RGB value, 10-12

saturation, 10-3

subtract ALU operation, 10-9

subtract with clamp ALU operation, 10-9

texture pattern, 10-10

transparency ALU operation, 10-9

value, 10-3
Common Lisp

extensions to, 9-2

portability of programs, 9-2
compile conditions, 4-1

summary, 4-6—4-9
compile-flavor-methods function, 2-16
compiling

back-to-back, 4-6

commonly used functions for, 4-10—4-12

incremental, 4-5
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component flavor, 2-13
condition handlers, conditional, 3-8—3-9
condition-bind macro
example of a handler, 3-3—3-5
handlers default, 3-8
condition-call macro, example of a handler,
3-6
condition-case macro
example of a handler, 3-5—3-6
:no-error clause, 3-6
condition-typep predicate, 3-4
conditions
definition of, 3-1
events, 3-1—3-2
handlers, 3-3
hierarchy of, 3-9—3-11
ad hoc, 3-13—3-14
instances of, 3-2
names of, 3-11—3-14
proceeding from, 3-7
copy-file macro, testing file types with, 9-17
coroutines, 7-3—7-5
programming, 7-4—7-5
resuming, 7-3
customer sites and customer-specific
translations, 9-7

D
data hiding, 2-17-2-18
definition, 2-6
data sharing among processes, 7-7—7-8
data structure patching, 5-8—5-9
default handlers, 3-8
default streams, 1-3
defaulting pathnames, 6-9—6-11
definition, 6-9
specifying standard defaults, 6-11—6-12
defflavor macro, 2-8
defmethod macro, 2-8
defparameter macro, compared to defvar,
5-14—5-15
.DEFSYSTEM file, 9-3
defsystem macro
:compile-load transform, example of, 4-10
:compile-load-init transform, example of,
4-11
fully constrained declarations, 4-12
defvar macro, compared to defparameter,
5-14—5-15
dependencies, 4-1
load, 4-10
summary, 4-6—4-9
device component of a pathname, 6-2—6-3
directories
characteristics
as a directory, 6-4
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as a file, 6-4
relative, 6-26—6-28
root, 6-3
site, 6-24—6-25
directory component of a pathname, 6-3—6-4
disk space, logical directories, reducing, 9-9
dribble files, 1-10—1-11

E

embarrassment insurance, 4-6
environment

modified, 4-4—4-5

patch, 5-5

patching the, 5-8—5-10
error handler process, 7-4
errors

ignoring, 3-16—3-17

proceeding from, 3-15

software-readable, 3-12
evaluations

multiple, 8-6—8-7

out-of-order, §-6—8-7
Executable processing state, 7-15
exporting symbols, 9-3

F

file attribute list, 9-5
as a comment line, 9-5
Common Lisp standard, 9-6
file attributes, 5-5
filename component of a pathname, 6-4
files, translations, 9-7
flavors, 2-1
adding to software with flavors, 2-5
instance, 2-12—2-13
mixing, 2-13—2-16
programming, 2-5—2-6
trees, 2-18—2-19
Flushed processing state, 7-15
flushing processes, 7-15—7-16
function, defining steps in, 5-2—5-3

G

GLOBAL package, 9-2

global special variables, providing program
isolation with bindings, 9-13

global variables, 7-5

H

handler, 3-3
default, 3-8
definition of, 2-7
functions versus handler forms, 3-7
provisional, 3-14
host name, manifest, 6-6
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I

I/0, kinds of 1/O a program may need,
1-1—1-2
incremental compile, 4-5
inheritance, 2-1
initialization list, 9-16
instance variables
accessing, 2-9
common, 2-20
contrasted with operation and message, 2-6
:gettable, 2-9
naming, 2-10
:settable, 2-9 .
interchange format of namestrings, 6-16—6-18
internal pathnames, 9-9 |
interned pathnames, 6-7—6-8

K

KEYWORD package, and operator names, 2-9
killing processes, 7-15—7-16

L

LISP package, 9-2

load dependencies, 4-10

local variables, 7-6 '

logical hosts, program products and, 9-6

M

macros '
block name conflicts, 8-3
functions used during expansion of,
8-9—8-10
multiform bodies, 8-3—8-4
nesting, 8-7—=8-9
surrounding code, 8-4—8-6
with- naming convention, 8-5
make-condition function, 3-2
make-system function '
:compile option, 4-11—4-12
:reload option, 4-12
merging, pathnames, 6-11
merging pathnames, definition, 6-9
message, contrasted with éperation and
instance, 2-6
message passing, 2-1, 2-4+-2-5
send notation, 2-4
method combinations
order of execution, 2-18
partial list of, 2-19 '
method hash table, 2-17
method table, 2-8
methods
combined, 2-16
daemon, 2-15
patching, 5-9—5-10
primary, 2-15
mixing flavors, 2-13—2-16

modified environment, 4-4—4-5

modifying code
redefinition versus replacement, 5-1—5-2
versus adding code, 2-4

N

namestrings, 6-1
interchange format, 6-16—6-18
reconstructed by :string-for- methods, 6-6
nested macros, 8-7—8-9

(0

object-oriented programming. See
programming, object-oriented

operation, contrasted with instance and
message, 2-6

operator names, 2-9

P

package declaration, placement of, 9-3
package names, unique, 9-5
packages
naming, 9-4
standard system, 9-2
partition, 6-2
patch directories, 5-11—5-12
reason for separate, 9-9
system-defined, 5-13
patch environment, 5-5
patch file, naming, 5-12
patch numbers, 9-8
patchable program products, 9-8
patchable system, print-herald and, 9-12
patches
directory of, 5-11
filenames of, 5-12
loading, 5-12—5-13
using Zmacs to create, 5-6—5-8
patching
avoiding common mistakes, 5-7—5-8
data structure definitions, 5-8—5-9
editing a patch buffer manually, 5-9
existing instances (the environment),
5-8—5-10
installing a patch, explanation, 5-10—5-13
methods, 5-9—5-10
requirements for a patchable system, 9-8
what you cannot patch, 5-10—5-11
patching the, environments, 5-8—5-10
pathname component
device, 6-2—6-3
directory, 6-3—6-4
filename, 6-4
host, 6-6
type
pathname component (continued)
canonical, 6-15
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from UNIX, 6-12—6-14
role of, 6-14—6-15
type, 6-4
version, 6-5
pathname object, 6-1
pathnames
defaulting, 6-9—6-11
merging versus, 6-9 :
specifying standard defaults, 6-11—6-12
generic, 6-18
internal, 9-9
interned, 6-7—6-8
logical
defining translations, 6-22
example of use, 6-19—6-21
merging, 6-11
definition, 6-9
translations, 9-7
physical pathnames, translation files and, 9-7
presetting a process, 7-11
print names of macro internal variables, 8-3
proceed types
definition, 3-15
nonlocal, 3-16
processes, 7-8—7-13
active list, 7-14
activity states, 7-13—7-15
arrest reasons, 7-14
bashing, 7-15—7-16
error handler, 7-4
initial function, 7-9—7-10
killing, 7-15—7-16
presetting, 7-11
resetting, 7-11, 7-15—7-16
run reasons, 7-14
sequence break, 7-10
sharing data among, 7-7—7-8
simple, 7-12
standard bindings of, 7-9
states (specific terms), 7-15
stopping, 7-10
synonym streams and, 9-14
wait function, 7-10
waiting voluntarily, 7-10—7-11
why use them, 7-2
program
alternative ways of informing, 1-3
noting a situation, 1-3
program product
checklist for delivery, 9-1
initializations, 9-15
isolation from other code, 9-12
loading with a make-system, 9-10
logical host and, 9-6
naming convention for, 9-4
patchable, 9-8
processes and, 9-14
reinstalling software, 9-3
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verifying that file types port, 9-17

windows and processes, 9-14
programming

action-oriented, 2-1—2-2

flavors and, 2-5—2-6

object-oriented, 2-1, 2-2—2-4
provisional handlers, 3-14

R

recompiling, suppressing unnecessary, 4-4

redefinition
as a technique for modifying code, 5-1
explanation of, 5-3—5-5
responses to warnings, 5-4

relative directories, 6-26—6-28

release numbers, 9-8

replacement, as a technique for modifying

code, 5-1

resetting a process, 7-11, 7-15—7-16

resume handlers, 3-16

resuming a coroutine, 7-3

reusability of code, 2-17

root directory, 6-3

rule of thumb
asking for information, 1-2—1-3
avoiding OS-specific pathname notation, 9-9
binding special global variables, 7-7
coroutine switching, 7-3
exporting symbols, 9-3
instance variable naming, 2-10
macros and the :compile-load-init transform,

4-11

order of declarations in a file, 4-9
pathnames and canonical types, 6-15
*query-io* similar to y-or-n-p, 1-3
:reload option of make-systems, 4-12
when to use error or ferror, 1-4

run reasons, 7-14

Runnable processing state, 7-15

S

Scheduler, 7-8
errors, 7-12—7-13
signal, 3-3
site directory, 6-24—6-25
software
reinstalling reasons for, 9-3
using flavors to add to, 2-5
software-readable errors, 3-12
special global variables, binding versus setting,
7-7
stack groups, 7-5—7-8
Steve’s Ice Cream, 2-20
Stopped processing state, 7-15
streamp predicate, heuristic, 1-10
streams
checking for, 1-10

Programming Concepts — Change 1

Index-5



General Index

sys:cold-load-stream, supported messages,
1-9
default, 1-3
specific
*error-output*, 1-3—1-4
sys:cold-load-stream, 1-8—1-10
*debug-io*, 1-5
sys: *null-stream*, 1-10
*query-io*, 1-3
*standard-input*, 1-2—1-3
*standard-output*, 1-2—1-3
*terminal-io*, 1-5—1-8
as a troublesome argument, 1-7
initial value, 1-1
*trace-output*, 1-5
synonym, 1-7
guaranteeing the correct defaults for a
process, 1-8
processes and, 9-14
t as an argument, 1-3
variable versus, 1-10
structured component of a pathname, 6-3
symbols, exporting, 9-3
SYS-host
manipulating, 6-26
problems, 6-25—6-26
system file, as a reference source, 9-11
.SYSTEM files, 5-13-—5-14

T
TICL package, 9-2
.TRANSLATIONS file, 9-7
translations files, 9-7
type component of a pathname, 6-4
from UNIX, 6-12—6-14
canonical, 6-15
role of, 6-14—6-15

U
USER package, 9-2

\%

variables
binding versus setting global special, 7-7
global versus private, 7-5—7-6
local, 7-6
name conflicts, 8-1—8-3
shadowing, 7-5
special, 7-5
streams versus, 1-10
version component of a pathname, 6-5

w

Waiting Forever processing state, 7-15
window lock status, 1-5
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