Xerox
820

Information
Processor

XEROX.

cP/M®2.2 OPERATING SYSTEM MANUAL

820 INFORMATION PROCESSOR

Xerox is a registered trademark of Xerox Corporation
CP/M is a registered trademark of Digital Research Incorporated

Portions of this manual are reproduced by permission of Digital Research
Incorporated, Pacific Grove, California

Copyright ©1981 Xerox Corporation. All rights reserved.
9IR 80240

Reprinted August 1981

CP/M is a registered trademark of Digital Research, Inc.
Z2-80 is a registered trademark of Zilog, Inc.

Warning: This equipment generates, uses, and can radiate radio frequency energy
and if not installed and used in accordance with the instructions manual, may cause
interference to radio communications. As temporarily permitted by regulation it
has not been tested for compliance with the limits for Class A computing devices
pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference. Operation of this equipment in a
residential area is likely to cause interference in which case the user at his own
expense will be required to take whatever measures may be required to correct the
interference.

ii

TABLE of CONTENTS

GENERAL INTRODUCTION

FEATURES & FACILITIES
Introduction
Functional Description of CP/M
General Command Structure
File References
Switching Disks
The Form of Built-In Commands
ERA afncr
DIR afn cr
REN ufnl=ufn2 cr
SAVE n ufn cr
TYPE ufn cr
Line Editing and Output Control
Transient Commands
STAT cr
ASM ufn cr
LOAD ufn cr
PIP cr
ED ufn cr
SYSGEN cr
SUBMIT ufn parm#! ... parmin cr
DUMP ufn cr
MOVCPM cr
BDOS Error Messages
Operation of CP/M on the MDS

USER'S GUIDE

An Overview of CP/M 2.0 Facilities
User Interface

Console Command Processor (CCP) Interface
STAT Enhancements

PIP Enhancements

ED Enhancements

The XSUB Function

BDOS Interface Conventions

CP/M 2.0 Memory Organization
BIOS Differences

ALTERATION GUIDE
Introduction

First Level System Regeneration
Second Level System Generation
Sample Tetsys and Putsys Programs
Diskette Organization

The BIOS Entry Points

A Sample BIOS

A Sample Cold Start Loader
Reserved Locations in Page Zero
Disk Parameter Tables

iii

OO0 OONNONWWW—

oo \n = W i—

10

12
27
28

The DISKDEF Macro Library
Sector Blocking and Deblocking

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

INTERFACE GUIDE

Introduction

Operating System Call Conventions
A Sample File-to-File Copy Program
A Sample File Dump Utility

A Sample Random Access Program
System Function Summary

ASSEMBLER
Introduction
MACRO-80 Assembler
Running MACRO-80
Command Format
Format of MACRO-80 Source Files
Expression Evaluation
Opcodes as Operands
Pseudo Operations
Macros and Block Pseudo Operations
Using Z80 Pseudo-ops
Sample Assembly
MACRO-80 Errors
Compatability with Other Assemblies
Format of Listings
LINK-80 Linking Loader
Running LINK-80
Command Format
Format of LINK Compatible Object Files
LINK-80 Error Messages
Program Break Information
TEKDOS Operating System
TEKDOS Command Files
MACRO-80
CREF-80
LINK-80

CONTEXT EDITOR

Ed Tutorial
Introduction to ED
ED Operation
Text Transfer Functions
Memory Buffer Organization
Memory Buffer Operatin
Command Strings

iv

30

36
39
50
56
59
61
66

29

37
4e

Llpmnppe

NNNt'\)NNNN
WLWWLWWLWWN P

)
1
NN = e ON == =N AW WU O 00\ =

b—t) |

>>>>?F?a¢ee

N N\ = e e e

Text Search and Alteration
Source Libraries
Repetitive Command Execution
Ed Error Conditions
Control Characters and Commands

DEBUGGING TOOL
Introduction
DDT Commands
The A (Assemble) Command
The D (Display) Command
The F (Fill) Command
The G (Go) Command
The I (Input) Command
The L (List) Command
The M (Move) Command
The R (Read) Command
The S (Set) Command
The T (Trace) Command
The U (Untrace) Command
The X (Examine) Command
Implementation Notes
An Example

DIAGNOSTICS
Diagnostics

SYSTEM COMPONENTS
630 Printer
Forms Tractor
Introduction
Monitor Command Summary
Dump Command
Memory Command
Test Command
Fill Command
Copy Command
Go To Command
Read Command
Boot Command
Typewriter Command
Input Command
Output Command
Monitor Resident I/O Driver Functions
Interrupt Processing
Memory Mapped Video Display
Display Character Codes
Key Station Numbering
Key Codes
Parallel Keyboard Input
Floppy Disk Controller
Serial Input/Output
Real Time Clock
Parallel I/O Option
User Accessible Monitor Routines and Variables
Xerox 820 Subroutine Entry Points

11
12
13

QWO NNONANANNFETFFTFTWWE—

—

9-1

10-1
10-19
10-23
10-23
10-24
10-25
10-25
10-25
10-26
10-26
10-26
10-27
10-27
10-27
10-27
10-28
10-28
10-28
10-31
10-32
10-33
10-36
10-36
10-38
10-38
10-38
10-39
10-39

Theory of Operation 10-42

Central Processor 10-42
Clock Generator 10-42
Reset Controller 10-42
Port Address Decoding 10-42
Disk Transfer Synchronization 10-43

CRT Display Controller 10-43
Video Scrolling 10-43
Video RAM Addressing 10-43
Video Generation 10-44
Display Blanking 10-44

64 K RAM and Bank Switching 10-44
Refresh 10-44
Bank Switching 10-44

Floppy Disk Controller, System PIO, and CTC 10-44
Floppy Disk Controller 10-44
Data Separator 10-45
Data Bus Buffering 10-45
CTC 10-45
System PIO 10-45

General Purpose PIO and SIO 10-46
SIO 10-46
Baud Rate Generator 10-46
Interrupt Structures 10-47

General Purpose PIO Strappings (J11) and Pin Assignments (J8) 10-48

CTC Strapping and I/O Assignments (J10) 10-48

Video Output Connector Pin Assignments (37) 10-48

Serial I/O Connector Pin Assignments Channel A (J4) 10-49

Serial 1/0O Strapping Options for Channel A (J9) 10-49

Serial I/O Connector Pin Assignments Channel B (33) 10-50

Keyboard Connector Pin Assignments (J2) 10-51

Disk Drive Connector Pin Assignments (J1) 10-51

vi

INTRODUCTION

This is your CP/M Reference Manual. In it you will find complete instructions for
using the CP/M operating system on your XEROX 820.

The CP/M operating system is an industry standard operating system that lets you use
a variety of programs you can purchase at software houses everywhere. The
instructions you'll need to load programs can be found in the CP/M Primer as well as
in this reference manual.

A brief description of the 820 is given on page 1-5 of this manual. More information
on the 820's single-board computer and ROM monitor commands are given in the
SYSTEM COMPONENTS section of this manual (beginning on page 10-23). This
information will be helpful to you as a programming aid.

To go along with the reference manual is the CP/M Primer (separate package) that
you can use to learn the basics of CP/M. As you go through the CP/M Primer, you'll
notice a few discrepancies between the illustrations in the Primer and what you see
on your screen. For instance, the illustration may show titles vertically whereas the
screen displays the titles horizontally. The MAIN difference between what you read
in the Primer and what you see on the screen is how the messages are displayed.

To use this manual and the CP/M P'rimer, you'll need

o a Xerox 820 Information Processor (screen, keyboard, and disk drives --the
printer's, optional), and

o a CP/M disk (packaged at the back of this manual), and

o a blank disk so you can make a backup copy of your CP/M disk.

We recommend you get the CP/M disk and a blank disk right now and make the
backup copy of your software. That way, if anybody spills coffee on the disk, you
still have your software. The instructions on the next page tell you how to prepare a
disk and copy your software. The instructions are written for both 5%" and 8" disks.

We also recommend that you always remove your disks from the 820 before you turn
it off. Leaving disks in the system when you power down can permanently erase
information on the disks.

GENERAL INTRODUCTION
1-1

HOW TO MAKE BACK UP COPIES OF YOUR DISKS
The instructions below tell you how to load the CP/M software. Before you can copy
a disk (or use the 820 to run other programs), you must load CP/M.

Loading the CP/M software

OPEN the disk drives (as shown below) and remove any disks

5%" DISK DRIVES 8" DISK DRIVES
DRIVE DRIVE DRIVE
A B A /5
' mnmnmm \
[T
A

LOCATE the ON/OFF switch under the right side of the screen (shown below)
TURN the screen on, or press the RESET button if it is already ON
SCREEN 8" DISK DRIVES

RESET
BUTTON
(on back of screen)

BRIGHTNESS
CONTROL

(under edge of screen) ON/OFF

SWITCH
(under edge of screen)

ON/OFF
SWITCH .

LOCATE the ON/OFF switch on the left side of the 8" disk drives, if your
system has them (The 5%" disk drives does not have a ON/OFF switch)

TURN the 8" disk drives on -- if your system has 8" drives, they must be turned

on for your system to operate.

GENERAL INTRODUCTION
7/1/81 _ 1-2

INSERT the CP/M disk in the A (left) drive and CLOSE the drive
5%" DISK DRIVES 8" DISK DRIVES
\

INSERT DISK

/ anmam \ —

o -{. '

i i&s 0

CLOSE DRIVE
N

TYPE A and press RETURN to load CP/M into the 820's memory.
Initializing a Disk

Before you can use a new disk in the 820, you must prepare it by initializing it.
Follow the steps below to use the INIT program to initialize a disk.
initialize the disk, you can copy onto it.

After you
OBTAIN at least one new disk and take the write protect tape off of the 54"
disk, or put a write protect tape on the 8" disk.
(If you don't have a new disk, a previously used one will do.)

5%" DISK 8" DISK
— UP ANDIN
— WRITE P~ -— ARROWS
L ~ PROTECT U |
TAPE | =
, o]) °)
0= 0=
>) WRITE
\ PROTECT
[OVAL TAPE
CUTOUT

GENERAL INTRODUCTION
7/1/81 1-3

TYPE the word INIT and press RETURN

WAIT for the message ENTER DISK DRIVE TO BE INITIALIZED (A OR B)

INSERT the new disk in drive B, type B and press RETURN twice

Wait for the message 0 FLAWED SECTORS. (If the disk has flawed
sectors as indicated by a number other than 0 in front of the FLAWED
SECTORS message, don't use it to copy your software - get another disk
and initialize it, using steps below)

IF you had flawed sectors, initialize another disk as follows:

e Remove the disk in the B (right) drive

Insert another disk in the B drive

Type B

Press RETURN twice

Remove the disk after the FLAWED SECTORS message appears

WHEN all the disks are initialized:

@ Press the SPACE bar
e Wait for A> to appear on the screen, then continue with the steps
below

Copying a Disk

Now that you've initialized a disk, you are ready to copy the CP/M software.

TYPE the word COPY and press RETURN

Wait for a message that tells you to insert destination and source disks
BE SURE your initialized disk is in the B drive
PRESS the RETURN key
WAIT for the COPY COMPLETE message
REMOVE both disks. Put a label on the copy disk that says "CP/M"
PUT the original disk in the disk holder at the back of this manual

GENERAL INTRODUCTION
1-4

Applications Software
The instructions on page 1-2 and !-3 told you how to load CP/M. After loading
CP/M, you can run "applications" programs on the 820. The applications software
may be purchased from Xerox or from other vendors.
When you use your CP/M software to run an applications program for the first time,
the program may ask you to define your system. The following information will help
you answer these questions.

Your 820 is configured like a Lear Siegler ADM-3A display terminal.

Your 820 has two disk drives. The 5%" disks have %40 tracks and will have 81K of
available space. The 8" disks have 77 tracks and have 241K of available space.

Your software is a CP/M 2.2 operating system.

The Typewriter Feature
If your 820 has a printer, you can use it like a typewriter. Everything you type will

be printed at the printer, but it will not be recorded on a disk. You do not need to
have the CP/M software loaded when you use the 820 typewriter feature.

REMOVE any disks from the disk drives

TURN ON your system or press the RESET button if it is already on
INSERT paper in the printer

PRESS the T key, then press RETURN

TYPE just as you would on any typewriter

As a typewriter, the 820 uses margins of 1 and 65, with tabs set every five spaces. If
you want to change these settings, use the instructions below.

SET LEFT MARGIN by pressing the SPACE bar to move to the desired position,
and pressing ESC then 9

CLEAR ALL TABS by pressing ESC then 2

SET A TAB by pressing the SPACE bar to move to the desired position, and
pressing ESC then 1

GENERAL INTRODUCTION
7/1/81 1-5

(This page intentionally blank)

GENERAL INTRODUCTION
1-6

0] DIGITAL BESEARCH'

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Copyright (¢) 1976, 1977, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents
Section Page '
1. INT'RODUCI‘IW 80 6080006000068 00880080008000080880ac8c8000s0s0s0ss l

2. FUNCTIONAL DESCRIPTION OF CP/M .cecccacccccsacccssss 3
2.1. General Command StructUre ...ccecesscecssscsccse 3
2.2I File References I EENNERENENENNENNENNINENNRNNRN NN N NN N NN 3

3. SWITCHING DISKS IR N RRRENEENNNNNNERERENNERRENENENNNRRRREN) 6

HE FORM OF BUILT-IN CDMMANDS ssssssscssssscnssssace
« ERA afn Cr siiieeecncaceccccccccncccncscacanns
DIR @ffl CF 4ueeeeccccccccsecccscccssccascancas
REN l.lfnl=ufn2 CL eeccsnssasscsccssscscsscsscacscae
SAVE N UfN Cf ..eeeveescsccccccccacaccacscasscs
« TYPE ufn cr S00esscsssssssscssscacscsascnsnsnssse

T

4.1
4,2
4.3
4.4
4,5

[NeliNe o oo BUN RN |

5. LmE E:I)ITING MD OUI'P[II‘ mN'I‘mL.......‘.....C....... ll

60 TRMSIENT mMMANIE G 8 8 0 0 08 00V BLSILNBesNLBLIOIOSINBESILIBANOLS 12
STAT Cr vecesccccccsccvecscscsssannsacscsssscsssss 13
Am Ufrl cr 9 6 00 8080809000800 888000snsscadssssssansasa 16
LOAD UfN Cr seeeeccccccscscosscscasscsssassase 17
PIP cr 9 008 8800800000008 008880088s00808s00s0008s800088s8 18
ED UfN CI seveeeeccncccaccoscascccsoscncanasee 2D
SYSGEN Cr @0 000085 S 0 LSCIRLNLLEINIGIEBISIIESBLEEEBRNG 27
SUBMIT ufn parm#l ... PAIMEN Cr ceeecesccceccss 28
DUMP UfN Cr seeeescecccccescsccscccsescscsaase 30
mVCPM Cr 9 0800000 EBBVSBLLLLIVNOIRIIOSISCEBRTROSIEOE 3@

O\O\O\O\?\C’\O\G\O’\
OLOoO~JOUd WM -
.

7. Bws ERWR mSSAGE:S 9 8 0080880803000 000000s008a80s088000 33

8., OPERATION OF CP/M ON THE MDS sceecesccccccscacassens 34

1. INTRODUCTION,

CP/M is a monitor control program for microcomputer system development
which uses IBM-compatible flexible disks for backup storage, Using a computer
mainframe based upon Intel’s 8080 microcomputer, CP/M provides a general
environment for program construction, storage, and editing, along with
assembly and program check-out facilities, An important feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Zilog %2-80) Central Processing Unit, and has at least
16K bytes of main memory with up to four IBM-compatible diskette drives., A
detailed discussion of the modifications required for any particular hardware
environment is given in the Digital Research document entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a single-density Intel MDS 80@, several different hardware manufacturers
support their own input-output drivers for CP/M,

The CP/M monitor ©provides rapid access to programs through a
comprehensive file management package, The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
seguential and random file access, Using this file system, a large number of
distinct programs can be stored in both source and machine executable form,

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystems, Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with wvarious
high-level languages. When coupled with CP/M°s Console Command Processor, the
resulting facilities equal or excel similar large computer facilities,

CP/M is logically divided into several distinct parts:

BIOS Basic I/0 System (hardware dependent)
BDOS Basic Disk Operating System

cce Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRT, Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by "patching" this portion of
CP/M. The BDOS provides disk management by controlling one or more disk
drives containing independent file directories, The BDOS implements disk
allocation strategies which wvprovide fully dynamic file construction while
minimizing head movement across the disk during access, Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files., The

BDOS has entry points which include the following primitive operations which
can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations,

CLOSE Close a file after processing.,

RENAME . Change the name of a particular file,

READ Read a record from a particular file,

WRITE Write a record onto the disk.

SELECT) Select a particular disk drive for further
operations,

The CCP provides symbolic interface between the user’s console and the
remainder of the CP/M system, The CCP reads the console device and processes
commands which include listing the file directory, printing the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers, The standard commands which are available
in the CCP are listed in a following section,

The last segment of CP/M is the area called the Transient Program Area
(TPA), The TPA holds programs which are loaded from the disk under command of
the CCP, During program editing, for example, the TPA holds the CP/M text
editor machine code and data areas. Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA,

It should be mentioned that any or all of the :CP/M component subsystems
can be "overlayed" by an executing proaram, That is, once a user s program is
loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area. A "bootstrap" loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk,

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the hardware
environment in which CP/M is executing, Thus, the standard system can be
easily modified to any non-standard enviromment by changing the peripheral
drivers to handle the custom system,

2. FUNCTIONAL DESCRIPTION OF CP/M.

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console, In general, the CCP
addresses one of several disks which are online (the standard system addresses
up to four different disk drives), These disk drives are labelled A, B, C,
and D, A disk is "logged in" if the CCP is currently addressing the disk., In
order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol ">"
indicating that the CCP is ready for another command. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.,m is the CP/M version number, All CP/M systems are initially set to operate
in a 16K -memory space, but can be easily reconfigured to fit any memory size
on the host system (see the MOVCPM transient command), Following system
signon, CP/M automatically logs in disk A, prompts the user with the symbol
"A>" (indicating that CP/M is currently addressing disk "A"), and waits for a
command. The cammands are implemented at two levels: built-in commands and
transient cammands,

2.,1. GENERAL (QOMMAND STRUCTURE,
Built-in cammands are a part of the CCP program itself, while transient

commands are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase specified files,

DIR List file names in the directory.

REN Rename the specified file,

SAVE Save memory contents in a file,

TYPE Type the contents of a file on the logged disk.

Nearly all of the commands reference a particular file or group of files, The
form of a file reference is specified below.

2.2, FILE REFERENCES,

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
"unambiguous" (ufn) or “ambiguous" (afn). An unambiguous file reference
uniquely identifies a single file, while an ambiguous file reference may be

satisfied by a number of different files,

File references consist of two parts: the primary name and the secondary
name, Although the secondary name is optional, it usually is generic; that
is, the secondary name "ASM," for example, is used to denote that the file is
an assembly language source file, while the primary name distinguishes each
particular source file, The two names are separated by a "." as shown below:

PPPPPPPP. SSS

where pppppppp represents the primary name of eight characters or less, and
sss is the secondary name of no more than three characters, As mentioned
above, the name

BPPPPPPP

is also allowed and is eguivalent to a secondary name consisting of three
blanks, The characters used in specifying an unambiquous file reference
cannot contain any of the special characters

<>, 3 0= 2% (]

while all alphanumerics and remaining special characters are allowed,

An ambiguous file reference is used for directory search and pattern
matching, The form of an ambiguous file reference is similar to an
unambiguous reference, except the symbol "?" may be interspersed throughout
the primary and secondary names., In various commands throughout CP/M, the "?2"
symbol matches any character of a file name in the "?" position. Thus, the
ambiguous reference

X?%2.C?M

is satisfied by the unambiguous file names
XYZ ,C0OM

and

X3Z .CaM

Note that the ambiguous reference

* *

is eguivalent to the ambiguous file reference

oooooooo

while

PPPPPPPP. *
and
* .sss

are abbreviations for

PPPPPPPP. ??27?
and

respectively. As an example,
DIR *_*

is interpreted by the CCP as a command to list the names of all disk files in
the directory, while

DIR X.Y
searches only for a file by the name X.Y Similarly, the command
DIR X?Y,C?M

causes a search for all (unambiguous) file names on the disk which satisfy
this ambiguous reference,

The following file names are valid unambiguous file references:
X XYZ GAMMA
X.Y XYZ .COM GAMMA.1
As an added convenience, the programmer can generally specify the disk
drive name along with the file name., In this case, the drive name is given as
a letter A through Z followed by a colon (:). The specified drive is then
"logged in" before the file operation occurs, Thus, the following are wvalid
file names with disk name prefixes:
A:X.Y B:XYZ C:GAMMA
Z:XY7 ,COM B:X.,A?M C:* ,ASM
It should also be noted that all alphabetic lower case letters in file

and drive names are always translated to upper case when they are processed by
the CCP.

3. SWITCHING DISKS.

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console input, Thus, the sequence of prompts and commands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A,
SAMPLE ASM

SAMPLE PRN

A>B: Switch to disk B.

B>DIR * ,ASM List all "AsM" files on B,
DUMP ASM

FILES ASM

B>A: Switch back to A.

4, THE FORM OF BUILT-IN (OMMANDS,

The file and device reference forms described above can now be used to
fully specify the structure of the built-in cammands. In the description
below, assume the following abbreviations:

ufn - unambiquous file reference
afn - ambiguous file reference
cr - carriage return

Further, recall that the CCP always translates lower case characters to upper
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in canmand names and file references,

4,1 ERA afn cr

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the ">"). The files
which are erased are those which satisfy the ambiguous file reference afn.
The following examples illustrate the use of ERA:

ERA X.Y The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned,

ERA X, * All files with primary name X are removed from
the current disk,

ERA * ,ASM All files with secondary name ASM are removed
from the current disk,

ERA X?Y,.C?M All files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted.

ERA * * Erase all files on the current disk (in this case
the CCP prompts the console with the message
"ALL FILES (Y/N)?"
which requires a Y response before files are
actually removed) .

ERA B:*_,PRN All files on drive B which satisfy the ambiguous
reference ???????? ,PRN are deleted, independently
of the currently logged disk,

4,2, DIR afn cr
The DIR (directory) command causes the names of all files which satisfy
the ambiguous file name afn to be listed at the console device, As a special
case, the canmand
DIR

lists the files on the currently logged disk (the command "DIR" is equivalent
to the cammand "DIR *.*"), Valid DIR commands are shown below.

DIR X.Y

DIR X?7Z.C?M

DIR ?2?2,Y

Similar to other CCP commands, the afn can be preceded by a drive name.

The following DIR commands cause the selected drive to be addressed before the
directory search takes place.

DIR B:

DIR B:X.Y

DIR B:*,A?M

If no files can be found on the selected diskette which satisfy the
directory request, then the message "NOT FOUND” is typed at the console,

4.3. REN ufnl=ufn2 cr

The REN (rename) command allows the user to change the names of files on
disk. The file satisfying ufn2 is changed to ufnl., The currently logged disk
is assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left—directed arrow instead of the equal sign, if the user’s console
supports this graphic character. Examples of the REN command are

REN X.Y=0.R The file Q.R is changed to X.Y.
REN XYZ,COOM=XYZ .XXX The file XY¥Z.XXX is changed to XYZ.COM.

The operator can precede either ufnl or ufn2 (or both) by an optional
drive address, Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by
a drive name, then ufnl is assumed to reside on that drive as well, If both
ufnl and ufn2 are preceded by drive names, then the same drive must be

specified in both cases., The following REN commands illustrate this format.

REN A:X,ASM = Y_ASM The file Y.ASM is changed to X.ASM on
drive A,

REN B:ZAP,BAS=ZOT,BAS The file ZOT.BAS is charged to ZAP.BAS
on drive B,

REN B:A.ASM = B:A,BAK The file A,BAK is renamed to A.,ASM on
drive B,

If the file ufnl is already present, the REN command will respond with
the error "FILE EXISTS" and not perform the change. If ufn2 does not exist on
the specified diskette, then the message "NOT FOUND" is printed at the
console,

4,4, SAVE n ufn cr

The SAVE command places n pages (256-byte blocks) onto disk from the TPA
and names this file ufn, 1In the CP/M distribution system, the TPA starts at
100H (hexadecimal), which is the second page of memory. Thus, if the user’s
program occupies the area from 1@@H through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed, Examples are:

SAVE 3 X.,00M Copies 10@H through 3FFH to X,COM,.

SAVE 46 Q Copies 10@H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

SAVE 4 X.,Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below,

SAVE 10 B:ZOT.QOM Copies 10 pages (100H through @AFFH) to
the file ZOT.COM on drive B,

4,5, TYPE ufn cr

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE commands are

TYPE X.Y

TYPE X,PLM
TYPE XXX
The TYPE command expands tabs (clt-I characters), assumming tab positions
are set at every eighth colum, The ufn can also reference a drive name as
shown below,

TYPE B:X.PRN The file X,PRN from drive B is displayed.

10

5. LINE EDITING AND OUTPUI' CONTROL.

The CCP allows certain line editing functions while typing command lines, |

rubout

ctl-U
ctl-x

ctl-R

ctl-E

ctl-C

ctl-2Z

Delete and echo the last character typed at the
console.

Delete the entire line typed at the console,
(Same as ctl-U)

Retype current command line: types a "clean line" fol-
lowing character deletion with rubouts,

Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input from the console (used in PIP and ED) .

The control functions ctl-P and ctl-S affect console output as shown below,

ctl-p

ctl-s

Copy all subsequent console output to the currently
assigned list device (see the STAT command), Output
is sent to both the list device and the console device
until the next ctl-P is typed.

Stop the console output temporarily. Program execution
and output continue when the next character is typed

at the console (e.g., another ctl-S)., This feature is
used to stop output on high speed consoles, such as
CRT’s, in order to view a segment of output before con-
tinuing,

Note that the ctl-key seguences shown above are obtained by depressing the
control and 1letter keys simultaneously. Further, CCP command lines can
generally be up to 255 characters in lenath; they are not acted upon until the
carriage return key is typed.

11

6. TRANSIENT COMMANDS.

Transient commands are loaded from the currently logged disk and executed
in the TPA, The transient commands defined for execution under the CCP are
shown below, Additional functions can easily be defined by the user (see the
LOAD command definition),

STAT List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment,

ASM Load the CP/M assembler and assemble the specified
program from disk,

LQAD Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command under the CCP).

DDT Load the CP/M debugger into TPA and start execution,

PIP Load the Peripheral Interchange Program for subseguent
disk file and peripheral transfer operations,

ED L[oad and execute the CP/M text editor program.

SYSGEN Create a new CP/M system diskette,

SUBMIT Submit a file of commands for batch processing.,

DUMP Dump the contents of a file in hex.

MOVCPM Rggenerate the CP/M system for a particular memory
size,

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the wuser, As an added
convenience, the transient command can be preceded by a drive name, which
causes the transient to be loaded from the specified drive into the TPA for
execution, Thus, the command

B:STAT
causes CP/M to temporarily “log in" drive B for the source of the STAT

transient, and then return to the original logged disk for subsequent
processing.

12

The basic transient commands are listed in detail below.
6.1. STAT cr

The STAT command provides general statistical information about file
storage and device assignment., It is initiated by typing one of the following
forms:

STAT cr
STAT "command line" cr

Special forms of the "command line" allow the current device assignment to be
examined and altered as well, The various command lines which can be
specified are shown below, with an explanation of each form shown to the
right,

STAT cr If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

X: R/W, SPACE: nnnkK
or
x: R/O, SPACE: nnnkK

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start), The space
remaining on the diskette in drive x is given

in kilobytes by nnn,

STAT x: cCr If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the command “STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnkK
STAT afn cr The command line can also specify a set of files
to be scanned by STAT. The files which satisfy
afn are listed in alphabetical order, with stor-
age requirements for each file under the heading

RECS BYT'S EX D:FILENAME,TYP
rrrr bbbK ee d:pppppppp.sss

where rrrr is the number of 128-byte records

13

allocated to the file, bbb is the number of kilo-
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extensions (ee=bbb/16),

d is the drive name containing the file (A...Z),
pPePpPppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name, After listing the individual
files, the storage usage is summarized.

STAT x:afn cr As a convenience, the drive name can be given
ahead of the atn. In this case, the specified
drive is first selected, and the form "STAT afn*
is executed.

STAT x:=R/0 cr This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place, When a disk is read-only,
the message

BDOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x., CP/M waits until a key

is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT command also allows control over the physical to logical device
assignment (see the IOBYTE function described in the manuals “CP/M Interface
Guide" and "CP/M System Alteration Guide"), In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices, The four logical devices are
named:

CON: The system console device (used by CCP
for communication with the operator)

RDR: The paper tape reader device

PUN: The paper tape punch device

LST: The output list device

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS portion of CP/M, Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape, In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below:

14

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (console is current RDR:,
output goes to current LST: device)

UC1: User-defined console

PTR: Paper tape reader (high speed reader)

UR1: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)

UP1: User-defined punch #1

UP2: User—defined punch #2

LPT: Line printer

ULl: User—defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS portion
of Cp/M, In the standard distribution version of CP/M, these devices
correspond to their names on the MDS 800 development system,

The possible logical to physical device assignments can be displayed by
typing
STAT VAL: cr

The STAT prints the possible values which can be taken on for each logical
device:

CON. = TTY: CRT: BAT: UCl:
RDR: = TTY: PIR: URl: UR2:
PUN: = TTY: PIP: UPl: UP2:
IST: = TTY: CRT: LPT: ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line, The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

15

which produces a listing of each logical device to the left, and the current
corresponding physical device to the right, For example, the 1list might
appear as follows:

CON: = CRT:
RDR: = UR1:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing a
STAT command of the form

STAT 1d1 = pdl, 1d2 = pd2 , ... , 1dn = pdn cr
where 1dl through 1ldn are logical device names, and pdl through pdn are
compatible physical device names (i.e., 1di and odi appear on the same line in
the "VAL:" cammand shown above), The following are valid STAT commands which
change the current logical to physical device assignments:

STAT (ON:=CRT: cr
STAT PUN: = TTY:,LST:=LPT:, RDR:=TTY: cr

6.2, ASM ufn cr
The ASM command loads and executes the CP/M 8080 assembler. The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified., The following
ASM commands are valid:
AM X
ASM GAMMA

The two-pass assembler is automatically executed, If assembly errors occur
during the second pass, the errors are printed at the console,

The assembler produces a file
X .PRN
where x is the primary name specified in the ASM command. The PRN file
contains a listing of the source vprogram (with imbedded tab characters if

present in the source program), along with the machine code generated for each
statement and diagnostic error messages, if any. The PRN file can be listed

16

at the console using the TYPE command, or sent to a peripheral device using
PIP (see the PIP command structure below). Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 columns (program addresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator s quide) by removing the
leftmost 16 characters of each line (this can be done by issuing a single
editor "macro" command). The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly, The file

X HEX

is also produced which contains 8680 machine language in Intel "hex" format
suitable for subsequent loading and execution (see the LOAD command), For
complete details of CP/M’s assembly lanquage program, see the "CP/M Assembler
Language (ASM) User s Guide,"

Similar to other transient commands, the source file for assembly can be

taken from an a.ternate disk by prefixing the assembly language file name by a
disk drive name. Thus, the command

ASM B:ALPHA cr
loads the assembler from the currently logged drive and operates upon the
source program ALPHA,ASM on drive B, The HEX and PRN files are also placed on
drive B in this case.
6.3. LOAD ufn cr
The LOAD command reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed, The file name ufn is assumed to be of the form
X JHEX

and thus only the name x need be specified in the command., The LOAD command
creates a file named

x,COM
which marks it as containing machine executable code, The file is actually
loaded into memory and executed when the user types the file name X
immediately after the prompting character ">" printed by the CCP,
In general, the CCP reads the name x following the prompting character

and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

17

x . COM

If found, the machine code is loaded into the TPA, and the program executes,
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name., In this way,
the user can "invent" new commands in the CCP, (Initialized disks contain the
transient commands as QOM files, which can be deleted at the user’s option,)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name, Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins,

It must be noted that the BETA,HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at 100H, the beginning of the TPA., Further, the addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read. Thus,
LOAD must be used only for creating CP/M standard "COM" files which operate in
the TPA. Programs which occupy regions of memory other than the TPA can be
loaded under DDT,

6.4, PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files. The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP “"command line" cr

In both cases, PIP is loaded into the TPA and executed., 1In case (1), PIP
reads command 1lines directly from the console, prompted with the "*"
character, until an empty command line is typed (i.e., a single carriage
return is issued by the operator)., Each successive command line causes some
media conversion to take place according to the rules shown below, Form (2)
of the PIP command is eguivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines,
The form of each command line is

destination = source#l, source#2, ... , source#n cr

where "destination" is the file or peripheral device to receive the data, and

18

"source#l, ..., source#n” represents a series of one or more files or devices
which are copied from left to right to the destination,

When multiple files are given in the command 1line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption), The egual symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readability., Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions, Finally,
the total cammand line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width).

The destination and source elements can be unambigquous references to CP/M
source files, with or without a preceding disk drive name. That is, any file
can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
the drive name 1is not included, the currently logged disk is assumed,
Further, the destination file can also appear as one or more of the source
files, in which case the source file is not altered until the entire
concatenation is camplete, If the destination file already exists, it is
removed if the command line is properly formed (it is not removed if an error
condition arises), The following command 1lines (with explanations to the
right) are valid as input to PIP:

X=Ycr Copy to file X from file Y,
where X and Y are unambiguous
file names; Y remains unchanged,

X=Y,2 cx Concatenate files Y and Z and
copy to file X, with Y and 2
unchanged,

X.,ASM=Y ASM,7 .ASM,FIN_,ASM cr Create the file X.ASM from the

concatenation of the Y, 72, and
FIN files with type ASM,

NEW,.ZOT = B:OLD,ZAP cr Move a copy of OLD,ZAP from drive
B to the currently logged disk;
name the file NEW,ZOT.

B:A.,U = B:B.,V,A:C,W,D.X cr Concatenate file B,V from drive B
with C,W from drive A and D.X.
from the logged disk; create
the file A,U on drive B,

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives, The abbreviated forms are

19

PIP x:=afn cr
PIP x:=y:afn cr
PIP ufn = y: cr
PIP x:ufn = y: cr

The first form copies all files from the currently logged disk which satisfy
the afn to the same file names on drive x (x = A...Z). The second form is
eguivalent to the first, where the source for the copy is drive y (y = A...
Z). The third form is eguivalent to the command "PIP ufn=y:ufn cr" which
copies the file given by ufn from drive y to the file ufn on drive x, The
fourth form is equivalent to the third, where the source disk is explicitly
given by v.

Note that the source and destination disks must be different in all of
these cases, 1If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied. If a file exists by the same name as the
destination file, it is removed uron successful completion of the copy, and
replaced by the copied file,

The following PIP commands qgive examples of wvalid disk-to-disk copy
operations:

B:=* ,(OM cr Copy all files which have the
secondary name "COM" to drive B
from the current drive,

A:=B:ZAP.,* cr Copy all files which have the
primary name "ZAP" to drive A
from drive B,

ZAP.,ASM=B: cr Equivalent to ZAP,ASM=B:ZAP,ASM
B:ZOT.(OM=A: cr Equivalent to B:ZOT,COM=A:Z0T.COM
B:=GAMMA,BAS cr Same as B:GAMMA,BAS=GAMMA,BAS
B:=A:GAMMA_BAS cr Same as B:GAMMA.BAS=A:GAMMA.BAS

PIP also allows reference to vhysical and logical devices which are
attached to the CP/M system, The device names are the same as given under the
STAT command, along with a number of specially named devices, The logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and IST: (list)

while the physical devices are

-,

20

TTY: (console, reader, punch, or list)

CRT: (console, or list), UCl: (console)
PI'R: (reader), URl: (reader), UR2: (reader)
PIP: (punch), UPl: (punch), UP2: (punch)
LPT: (list), ULl: (list)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and IST: devices are to be used for
console input/output.)

The RDR, IST, PUN, and CON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system,
(The current physical device mapping is defined by IOBYTE; see the "CP/M
Interface Guide" for a discussion of this function)., The destination device
must be capable of receiving data (i.e., data cannot be sent to the punch),
and the source devices must be capable of generating data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 48 "nulls" (ASCII @°s) to the device
(this can be issued at the end of punched output),

EOF s Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP),

INP: Special PIP input source which can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CALLing location
103H, with data returned in location 1@9H (parity
bit must be zero).

OUT: Special PIP output destination which can be
patched into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit, Note that locations 1@9H through
1FFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator s manual).

PRN: Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands, In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files), Data from each device or
file is concatenated from left to right until the last data source has been

21

read. The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files, Note if the destination is a disk file, then a temporary
file is created ($$$ secondary name) which is changed to the actual file name
only upon successful campletion of the copy. Files with the extension "COM"
are always assumed to be non-ASCII,

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respond with the message "ABORTED"
to indicate that the operation was not completed, Note that if any operation
is aborted, or if an error occurs during processing, PIP removes any pending
commands which were set up while using the SUBMIT command,

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external peripheral device, such as a paper
tape reader. In this case, the PIP program checks to ensure that the source
file contains a properly formed hex file, with legal hexadecimal values and
checksum records, When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action, It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 26 inches), When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read., If the
tape position cannot be properly read, simply continue the read (by typing a
return following the error message), and enter the record manually with the ED
program after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered from the console if the source file is a RDR:
device, In this case, the PIP program reads the device and monitors the
keyboard., If ctl-Z is typed at the keyboard, then the read operation is
terminated normally,

Valid PIP commands are shown below.

PIP IST: = X,PRN cr Copy X.PRN to the LST device and
terminate the PIP program.

PIP cr Start PIP for a sequence of
commands (PIP prompts with "*"),

*ON:=X,ASM,Y.ASM,Z2,ASM cr Concatenate three ASM files and
copy to the CON device,

*X ,HEX=CON:,Y . HEX,PTR: cr Create a HEX file by reading the
QON (until a ctl-Z is typed), fol-
lowed by data from Y.HEX, followed
by data from PTR until a ctl-Z is
encountered,

*cr Single carriage return stops PIP.

22

PIP PUN:=NUL:,X.ASM,ECF:,NUL: cr Send 40 nulls to the punch device;

then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac-
ters,

The user can also specify one or more PIP parameters, enclosed in left
and right square brackets, separated by zero or more blanks, Each parameter
affects the copy operation, and the enclosed 1list of parameters must
immediately follow the affected file or device, Generally, each parameter can
be followed by an optional decimal integer value (the S and Q parameters are

exceptions) .

B

Dn

The valid PIP parameters are listed below,

Block mode transfer: data is buffered by PIP until an ASCII
x-of £ character (ctl-S) is received from the source device.
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader, Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
input data. The amount of data which can be buffered is de-
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Delete characters which extend past column n in the transfer
of data to the destination from the character source, This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device.

Echo all transfer operations to the console as they are being
performed.

Filter form feeds from the file, Aall imbedded form feeds are
removed. The P parameter can be used simultaneously to
insert new form feeds,

Hex data transfer: all data is checked for proper Intel hex
file format, Non-essential characters between hex records
are removed during the copy operation., The console will be
prompted for corrective action in case errors occur,

Ignore ":0@" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter),

Translate upper case alphabetics to lower case.

Add line numbers to each line transferred to the destination
starting at one, and incrementing by 1. Leading zeroes are

suppressed, and the number is followed by a colon, If N2

is specified, then leading zeroes are included, and a tab is
inserted following the number. The tab is expanded if T is

23

set,

(0] Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored,

Pn Include page ejects at every n lines (with an initial page
eject), If n=1 or is excluded altogether, page ejects
occur every 60 lines, If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted,

0sfz Quit copying from the source device or file when the
string s (terminated by ctl-2) is encountered,

Ssstz Start copying from the source device when the string s is
encountered (terminated by ctl-Z), The S and Q parameters
can be used to “abstract" a particular section of a file
(such as a subroutine), The start and quit strings are al-
ways included in the copy operation,

NOTE - the strings following the s and g parameters are
translated to upper case by the CCP if form (2) of the
PIP command is used, Form (1) of the PIP invocation, how-
ever, does not perform the automatic upper case translation,
(1) PIP cr
(2) PIP "command line" cr

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the
the copy operation,

v Verify that data has been copied correctly by rereading
after the write operation (the destination must be a disk
file).

Z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.,ASM=B:[v] cr Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

PIP LPT:=X,ASM[nt8u] cr Copy X.ASM to the LPT: device; number each
line, expand tabs to every eighth column, and
translate lower case alphabetics to upper
case,

24

PIP PUN:=X,HEX[i],Y.Z0T[h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any ":00" records which it contains,

PIP X,LIB = Y,ASM [sSUBRl1:Tz gJMP 37z] cr Copy from the file Y,ASM
into the file X.LIB., Start the copy when the
string "SUBRl:" has been found, and quit copy-
ing after the string "JMP L3" is encountered,

PIP PRN:=X,ASM[p50] Send X,ASM to the LST: device, with line num-
bers, tabs expanded to every eighth column,
and page ejects at every 50th line., Note that
nt8p6@ is the assumed parameter list for a PRN
file; p5@ overrides the default value.

6.5. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment, Complete details of
operation are given the ED user s manual, "ED: a Context Editor for the CP/M
Disk System." In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed seguence). There is no
practical restriction on line length (no single line can exceed the size of
the working memory), which is instead defined by the number of characters
typed between cr’s., The ED program has a number of commands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M. Although the CP/M has a
limited memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area.

Upon initiation, ED creates the specified source file, if it does not
exist, and opens the file for access., The programmer then "appends" data from
the source file into the work area, if the source file already exists (see the
A command), for editing., The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file,

Given that the operator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run, Upon completion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X,ASM, Thus, the X.BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edited file, The operator can always return to
the previous version of a file by removing the most recent version, and
renaming the previous version, Suppose, for example, that the current X,ASM
file was improperly edited; the sequence of CCP command shown below would
reclaim the backup file,

DIR X.* Check to see that BAK file
is available,

ERA X, ASM Erase most recent version,

REN X,ASM=X,BAK Rename the BAK file to ASM,

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q command) without destroying the original file, 1In this case, the
BAK file is not created, and the original file is always intact,

The ED program also allows the user to "ping-pong" the source and create
backup files between two disks, The form of the ED command in this case is

ED ufn d:

where ufn is the name of a file to edit on the currently logged disk, and d is
the name of an alternate drive, The ED program reads and processes the source
file, and writes the new file to drive d, using the name ufn, Upon completion
of processing, the original file becomes the backup file, Thus, if the
operator is addressing disk A, the following command is valid:

ED X.,ASM B:

which edits the file X.ASM on drive A, creating the new file X,.$$$ on drive
B. Upon campletion of a successful edit, A:X.ASM is renamed to A:X,BAK, and
B:X.$$$ is renamed to B:X.,ASM, For user convenience, the currently logged
disk becomes drive B at the end of the edit, Note that if a file by the name
B:X,ASM exists before the editing begins, the message

FILE EXISTS
is printed at the console as a precaution against accidently destroying a

source file, 1In this case, the operator must first ERAse the existing file
and then restart the edit operation,

26

Similar to other transient commands, editing can take place on a drive
different from the currently logged disk by preceding the source file name by
a drive name, Examples of valid edit requests are shown below

ED A:X.ASM Edit the file X.ASM on drive A, with
new file and backup on drive A.

ED B:X.,ASM A: Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A, On
termination of editing, change X,ASM
on drive B to X.BAK, and change X.S
on drive A to X,ASM,

6.6. SYSGEN cr

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system, The SYSGEN program prompts the console
for cammands, with interaction as shown below,

SYSGEN cr Initiate the SYSGEN program.
SYSGEN VERSION m,m SYSGEN sign-on message,

SOURCE DRIVE NAME (OR RETURN TO SKIP)

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys-
tem; usually A, If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only, Typing a drive name

X will cause the response:

SOURCE ON x THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
X (x isone of A, B, C, or D),
Answer with cr when ready.

FUNCTION (OMPLETE System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

If a diskette is being ini-
tialized, place the new disk
into a drive and answer with

the drive name, Otherwise, type
a cr and the system will reboot
from drive A. Typing drive name
X will cause SYSGEN to prompt

27

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
x; type return when ready.

FUNCTION COMPLETE New diskette is initialized
in drive x.

The "DESTINATION" prompt will be repeated until a single carriage return is
typed at the console, so that more than one disk can be initialized.

Upon campletion of a successful system generation, the new diskette
contains the operating system, and only the built-in commands are available,
A factory-fresh IBM-compatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate OOM files
from an existing CP/M diskette to the newly constructed diskette using the PIP
transient,

The user can copy all files from an existing diskette by typing the PIP
command

PIP B: = A: *,*[v] cr

which copies all files from disk drive A to disk drive B, and verifies that
each file has been copied correctly, The name of each file is displayed at
the console as the copy operation proceeds,

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system, Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place., In fact, a new diskette needs absolutely no initialization to
be used with CP/M.

6.7. SUBMIT ufn parm#l ... parm#n cr

The SUBMIT command allows CP/M commands to be batched together for
automatic processing, The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of *“SUB.,” The SUB file contains CP/M prototype commands, with
possible parameter substitution, The actual parameters parm#l ... parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted cammands are processed sequentially by CP/M,

28

The prototype command file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be included when
the file is submitted for execution, When the SUBMIT transient is executed,
the actual parameters parm#l ... parm#n are paired with the formal parameters
$1 ... $n in the prototype commands, If the number of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console, The SUBMIT function creates a file of
substituted cammands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this command file is read by the CCP as a source of input, rather
than the console., If the SUBMIT function is verformed on any disk other than
drive A, the commands are not processed until the disk is inserted into drive
A and the system reboots, Further, the user can abort command processing at
any time by typing a rubout when the command is read and echoed., In this
case, the $$$.SUB file is removed, and the subsequent commands come from the
console. Command processing is also aborted if the CCP detects an error in
any of the cammands., Programs which execute under CP/M can abort vrocessing of
command files when error conditions occur by simply erasing any existing
$$S$.SUB file,

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single "$" within the command file, Further, an
up-arrow symbol “*" may precede an alphabetic character x, which vroduces a
single ctl-x character within the file,

The last cammand in a SUB file can initiate another SUB file, thus
allowing chained batch commands,

Suppose the file ASMBL.SUB exists on disk and contains the prototype
commands
ASM S1
DIR $1.*
ERA *_ BAK
PIP $2:=$1.PRN
ERA S1.PRN

and the cammand
SUBMIT ASMBL X PRN cr .

is issued by the operator, The SUBMIT program reads the ASMBL.SUB file,

sbstituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

ASM X

DIR X.*

ERA *,BAK

PIP PRN:=X,PRN
ERA X,PRN

which are executed in sequence by the CCP,

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name. Submitted files are only acted
upon, however, when they appear on drive A, Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is
inserted in drive A.

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form, The file contents are listed sixteen bytes at a time,
with the absolute byte address 1listed to the 1left of each 1line in
hexadecimal, ILong typeouts can be aborted by pushing the rubout key during
printout, (The source listing of the DUMP program is given in the "CP/M
Interface Guide" as an example of a program written for the CP/M environment,)

6.9. MOVCPM cr

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disposition of the new system
at program termination, If the first parameter is omitted or a "*" is given,
the MOVCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contiguous RAM in the host system (starting aat 0000H), If
the second parameter is omitted, the system is executed, but not permanently
recorded; if "*" is given, the system is left in memory, ready for a SYSGEN
operation, The MOVCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation, The
command forms are:

MOVCPM cr Relocate and execute CP/M for manage-
ment of the current memory configura-
tion (memory is examined for contigu-
ous RAM, starting at 100H), Upon com—
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette, The system
which is constructed contains a BIOS
for the Intel MDS 804.

30

MOVCPM n cr Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above.

MOVCPM * * cr Construct a relocated memory image for
the current memory confiquration, but
leave the memory image in memory, in
preparation for a SYSGEN operation,

MOVCPM n * cr Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation,

The cammand
MOVCPM * *

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation, The message

READY FOR "SYSGEN” OR
"SAVE 32 CPMxx,COM"

is printed at the console upon completion, where xx is the current memory size
in kilobytes, The operator can then type

SYSGEN cr Start the system generation.

SOURCE DRIVE NAME (OR RETURN TO SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation,

DESTINATION DRIVE NAME (OR RETURN T@ REBOOT)
Respond with B to write new system
to the diskette in drive B. SYSGEN
will prompt with:

DESTINATION ON B, THEN TYPE RETURN
Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond with "A" rather than "B" above, the system will be
written to drive A rather than B. SYSGEN will continue to type the prompt:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a single carriage return, which stops the

31

SYSGEN program with a system reboot,

The user can then go through the reboot process with the o0ld or new
diskette, Instead of performing the SYSGEN operation, the user could have

typed
SAVE 32 CPMxx,O0OM

at the campletion of the MOVCPM function, which would place the CP/M memory
image on the currently logged disk in a form which can be "patched." This is
necessary when operating in a non-standard environment where the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide.”

Valid MOVCPM commands are given below:

MOVCPM 48 cr Construct a 48K verskon of CP/M and start
execution,
MOVCPM 48 * cr Construct a 48K version of CP/M in prepara-

tion for permanent recordina; response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48,COM"

MOVCPM * * cr Construct a maximum memory version of CP/M

and start execution,

It is important to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Aqreement,

32

7. BDOS ERROR MESSAGES,

There are three error situations which the Basic Disk Operating System
intercepts durinmg file processsing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The "BAD SECTOR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette, If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media. You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer,
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats, The MDS-80@ controller, for example,
requires two bytes of one’s following the data CRC byte, which is not required
in the IBM format. As a result, diskettes generated by the Intel MDS can be
read by almost all other IBM-compatible systems, while disk files generated on
other manufacturer’s equipment will produce the "BAD SECTOR" message when read
by the MDS. In any case, recovery from this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, which simply
ignores the bad sector in the file operation, Note, however, that tvping a
return may destroy your diskette integrity if the operation is a directory
write, so make sure you have adeduate backups in this case.

The "SELECT" error occurs when there is an attempt to address a drive
beyond the A through D range, In this case, the value of x in the error
message gives the selected drive. The system reboots following any input from
the console,

The "READ ONLY" message occurs when there is an attempt to write to a
diskette which has been designated as read-only in a STAT command, or has been
set to read-only by the BDOS, In general, the operator should reboot CP/M
either by using the warm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed, If a changed diskette is to be read but
not written, BDOS allows the diskette to be changed without the warm or cold
start, but internally marks the drive as read-only, The status of the drive
is subsequently charged to read/write if a warm or cold start occurs. Upon
issuing this message, CP/M waits for imput from the console, An automatic
warm start takes place following any input,

33

8. OPERATION OF CP/M ON THE MDS.

This section gives operating procedures for using CP/M on the Intel MDS
microcomputer development system, A basic knowledge of the MDS hardware and
software systems is assumed.

CP/M is initiated in essentially the same manner as Intel’s ISIS
operating system. The disk drives are 1labelled @ through 3 on the MDS,
corresponding to CP/M drives A through D, respectively, The CP/M system
diskette is inserted into drive @, and the BOOT and RESET switches are
depressed in seguence, The interrupt 2 light should go on at this point. The
space bar is then depressed on the device which is to be taken as the system
console, and the light should go out (if it does not, then check connections
and baud rates). The BOOT switch is then turned off, and the CP/M signon
message should appear at the selected console device, followed by the "A>"
system prompt. The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT @ switch on the front panel, The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operating under DDT, in which case the DDT program gets control instead.,

Diskettes can be removed from the drives at any time, and the system can
be shut down during operation without affecting data integrity, Note,
however, that the user must not remove a diskette and replace it with another
without rebooting the system (cold or warm start), unless the inserted
diskette is "read only,"

Due to hardware hang-ups or malfunctions, CP/M may type the message
BDOS ERR ON x: BAD SECTOR

where x is the drive which has a permanent error, This error may occur when
drive doors are opened and closed randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure, The user can
optionally elect to ignore the error by typing a single return at the
console, The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data, The operator can reboot the CP/M system and try
the operation again,

Termination of a CP/M session requires no special action, except that it
is necessary to remove the diskettes before turning the power off, to avoid
random transients which often make their way to the drive electronics.,

It should be noted that factory-fresh IBM-compatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version, In particular, the ISIS "FORMAT" operation produces non-standard
sector numbering throughout the diskette, This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34

than the distribution version, If it becomes necessary to reformat a diskette
(which should not be the case for standard diskettes), a program can be
written under CP/M which causes the MDS 800 controller to reformat with
sequential sector numbering (1-26) on each track,

R = - e ——

Note: "MDS 809" and "ISIS" are registered trademarks of Intel Corporation.

35

10) DIGITAL RESEARCH

Post Office Box 5§79, Pacific Grove, California 93950, (408) 649-3896

CP/M 2 USER'S GUIDE

COPYRIGHT (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (e¢) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify anv person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2

USER'S GUIDE

Cooyright (c) 1973
Digital Researcn, Box 573
Pacific Grove, California

An Overview of C2/% 2.9 Facilities ., . . .

Jser Interftace . . .

Console Commana Processor (CCP) Interface

STAT £nhancements .
PIP f£nnancements . .
£D Enhancements . .

‘The A503 Function .

3D0S Interface Conventions

Cp/M 2.y #Memory Organization

3I05 Differences . .

. . . . - . .
. 3
.
- 3 3
. . . . - . .
. -

19

11

12

27

28

1. AN OVERVIEW OF CP/M 2.0 FACILITIES.

CP/d 2.9 is a high-performance single-console operating system
which uses table driven tecaniques to allow field recontiquration to
match a wide variety of disk caracities. All of the fundamental file
restrictions are removed, wnile maintaining upward compatibility from
previous versions of release.l. Features of CP/M 2.0 1include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reacn the full drive size
with the <capaoility to exvand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonapble number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.4 are physically
separated oy user numbers, with facilities for file copy operations
from one user area to another. powerful relative-record random access
functions are present in CP/M 2.9 which provide direct access to any
of the 65536 records of an eight megaoyte file.

All disk-dependent portions of CP/M 2.0 are wplaced 1into a
BIOS~resident *"disk parameter ©block"™ which is either nand coded or
produced automatically wusing the disk definition macro library
orovided with CP/M 2.¥. The end user need only specify the maximum
nunpoer of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, ana reserved track values. The macros use
this information to generate the appropriate taoles and table
references for use during CP/M 2.3 overation. Deblocking information
is also provided wnich aids in assembly or disassembly of sector sizes
wnich are multioles of tne tundamental 128 pyte data wunit, and the
system alteration .manual 1includes general-purpose suoroutines wnich
use the tnis deplocking information to take advantage of larger sector
sizes. Use of these subroutines, togetner with the table driven data
access algorithms, make CP/M 2.9 truly a universal data management
system.

File exvansion is achieved by providing up to 512 logical tile
extents, where each logical extent contains 16K bytes of data. CP/M
2.9 1s structured, nowever, so that as much as 123K pytes of data 1is
addressed by a single ohysical extent (corresponding to a single
directory entry), thus maintaining compatibility witn orevious
versions while taking full advantage of directory space.

Random access facilities are vresent in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. Using
CP/i's unigue data organization, data blocks are only allocated wnen
actually reguired and movement to a record vosition requires little
search time. Sequential file access is uoward compatible from earlier
versions to the full eight megaoytes, while random access
compatibility stops at 512K byte files. Due to CP/¥M 2.0's simopler and
faster random access, avplication vrogrammers are encouraged to alter
their programs to take full advantage of the 2,0 facilities.

Several CP/M 2.0 modules ana utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP vrovides a "login”

(All Information Contained Herein is Proprietary to Digital Research.)

1

ftunction to change from one user area to anotner. The CCP also
formats directory displays 1in a more convenient manner and accounts
for botn CRT and hard-cooy devices 1in its enhanced line wediting
functions.

The sections below point out the inaividual differences between
Ccp/# 1.4 and CP/M 2.4, with the understanding that the reader is
either familiar witn CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.0 I/0 system alteration is
oresented in the Digital Researcn manual "CP/M 2.3 Alteration Guide."

(All Information Contained Hderein is Proprietary to Digital Research.)

2

2. USER INTERFACE.

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the sympol "ctl" below 1indicates tnat the control key 1is
simultaneously depressed):

rub/del removes and ecnoes last character

ctl-C reboot when at beginning of line

ctl-E physical end of line

ctl-d backspace one cinaracter position¥*

ctl-J (line feed) terminates current input*
ctl-M (carriage return) terminates inout
ctl-R retype current line after new line
ctl-U remove current line after new line
ctl-X Dbackspace to beginning of current line*

In particular, note tnat ctl-H produces the proper backspace overwrite
function (ctl-H can be cnanged internally to another character, such
as delete, through a simple single pyte change). Further, the line
aditor keeps track ot the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command,

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) INTERFACE.

There are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCp) level. The CCP now
displays directory information across the screen (four elements vper
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *_,*" and
"SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically "logged" into user area number ¢, which
is compatible with standard CP/M 1.4 directories, The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are 1logged-in while
addressing one user number are automatically active when the operator
moves to another user numper since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active user number 1is maintained until changed by a
subseguent USER command, or until a cold start operation when user §
is again assumed.

Due to the fact that user numbers now tag individual directory
entries, the ERA *.* command has a different effect, 1In version 1.4,
this command can be used to erase a directory wnicn has ‘"garbage"”
information, wvperhaps resulting from use of a diskette under another
operating system (heaven forbidl),. In 2.9, however, the ERA *_,%*
command affects only the current user numoer. Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory 1image due to
directory operations following extent boundary changes., Version 2.3,
nowever, does not pverform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4, STAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk pmarameter display, user number display, and file indicator
manipulation. The command:

STAT VAL:

nroduces a summary of the available status commands, resulting in the
outout:

Temo R/0 Disk: d:=R/0

Set Indicator: d:filename.typ 3R/0 $R/W $SYS $DIR
Disk Status DSK: d:DSK:

User Status USR:

Iobyte Assign:

(list of possible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:
3TAT d:filename.tyo 585

wnere "d:" is an optional drive name, and “"filename.typ" 1is an
unampiguous or ambiguous file name, ©vroduces the output display
format:

5ize Recs 3ytes Ext Acc

43 43 6k 1 R/O0 A:ED.COM
55 55 12k 1 R/O (A:PIP.COM)
©55306 123 2k 2 R/W A:X.DAT
where tne 35S parameter causes the "“Size" field to Dpe disvlayed

(without the $S, the Size field is skipped, but the remaining fields
are disvlayed). The Size field 1lists the wvirtual file size 1in
records, while the "Recs" field sums the number of virtual records in
each extent, For files constructed sequentially, the ©Size and Recs
fields are 1identical. The "8ytes" field lists the actual number of
bytes allocated to the corresponding file, The minimum allocation
unit is determined at contiguration time, and thus tne number of bytes
corresponds to the record count nlus the remaining unused space in the
last allocated block for seguential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. 1In the case of random access, the
5ize field gives the logical end-of-file record position and the Recs
field counts the 1logical records of each extent (each of these
extents, however, may contain unallocated "noles" even though they are
added into the record count). The "Ext" field counts the number of
logical 16K extents allocated to the file, Unlike version 1.4, the
Ext count does not necessarily corresoond to the number of directory
entries given to the file, since there can be up to 128K pytes (8
logical extents) directly addressed by a single directory entry,
devending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

‘The "Acc” field gives the R/0 or R/W access mode, which 1is
changed using the commands shown below. Similarly, the parentheses
(All Information Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COM file name indicate that it has the ™"system"
indicator set, so that it will not be listed in DIR commands. The
four command forms

STAT d:filename.typ $R/O
STAT d:filename.typ $R/W
STAT d:filename.typ 35YS
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/0 indicator
places the file (or set of files) in a read-only status until changed
by a subseguent STAT command. The R/O status 1is recorded in the
directory with tne file so that it remains R/0 through intervening
cold start operations. The R/W 1indicator places the file 1in a
permanent read/write status. The 5YS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The “filename.typ" may be ambiguous or unambiguous, but in
either case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denotea by "d:" 1is
optional.

When a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BDOS message

B8dos Err on d: File R/O

The BDOS then waits for a console inout before performing a subseguent
warm start (a “"return" is sufficient to continue). The command form

3TAT d:DSK:

lists the drive characteristics of the disk named by "d:" which is 1in
the range A:, B:, ..., P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity
8192: Kilopyte Drive Capacity
128: 32 Byte Directory Entries
0: Checked Directory Entries
1024: Records/ Extent
128: Records/ Block
58: Sectors/ Track
2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 1is an 8 megabyte drive), followed by the total
capacity listed in Kilobytes, The directory size 1is 1listed next,
followed by the "checked" entries., The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism 1is used to detect changed media during CP/M operation
without an intervening warm start., For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start., The number of records per extent determines the
addressing capacity of each directory entry (1924 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

128K in the example above). The number of records ver pblock shows the
basic allocation size (in the example, 128 records/plock times 128
bytes per record, or 16K bpytes per block). The listing is then
followed by the number of physical sectors ver track and the number ot
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be qguite large, since this
mechanism is used to skio lower-numbered disk areas allocated to other
logical disks. The command form

STAT DSK:

nroduces a drive characteristics tapble for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers which have files on the
currently addressed disk. The display format is:

Active User : %
Active files: ¢ 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a 1list of user numbers
scanned from the current directory. In the above case, the active
user numper 1is ¥ (default at cold start), with three user numbers
whicn have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(811 Information Contained Herein is Proprietary to Digital Research.)

7

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of CP/M 2.0. All three functions take the form of file parameters
which are enclosed in square brackets following the appropriate file
names. The commanas are:

Gn Get File from User number n
(n in the range 4 - 15)

W Write over R/0 files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4, The
command

PIP A:=A:*_ *[G2]

conies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number. HNote
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. The sequence of operations shown below effectively moves PIP
from one user area to the next.

USER ¥ login user ¥

DDT PIP.COM load PIP to memory
(note PIP size s)

GO return to CCp

USER 3 login user 3

SAVE s PIP,COH

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is
loaded under ODT, by referring to the value under the "NEXT" disvlay.
If for example, the next available address is 1DPO, then PIP.COM
requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subseqguent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which 1is

set to a permanent R/O status. If attempt is made to overwrite a R/O
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

]

PDRSTINATION FILE IS R/O, DELETE (Y/N)?

is issued. If the operator responds with the character "y" then the
file is overwritten. Otnerwise, the response

** NOT DELETED **

is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence. 1In order to avoid the prom»t and response
in the case of R/0 file overwrite, the command line can include the W
parameter, as shown below

PIP A:=B:*_,COM[W]

which copies all non-system files to.the A drive from the B drive, and
overwrites any R/O files in the process., If the operation involves
several concatenated files, the § parameter need only be included witnh
the last file in the list, as shown in the following example

PIP A.DAY = B.DAIl,F:NEW.DAT,G:OLD.DAT[W]

files with the system attribute can be included in PIP transfers
if the R parameter 1is 1included, otherwise system files are not
recognized, The command line

PIP ED.COM = B:ED,COM[R]

for example, reads the ED.COM file from the 3 drive, even 1if 1t has
been marked as a R/0 anda system file., The system file attributes are
copied, 1if present.

It should be noted that downward compatibility with previous
versions of CP/® 1is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
g, If compatibility 1is required witn non-standard (e.g., "double
density") versions of 1.4, it wmay be necessary to select 1.4
compatibility mode when constructing the internal disk parameter plock
(see the "CP/M 2.8 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities
in the 2.9 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the editor has the “v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v" command. If you are
not familiar with the ED line number mode, you may wish to refer to
tne Appendix in the £D wuser's guide, where the "v" command is
described.

ED also takes file attributes into account, If the operator
attempts to edit a reada/only file, the message

** FILE IS READ/ONLY **

appears at the console. The file can bpe loaded and examined, but
cannot Dbe altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system" attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE
is displayed at the console, and the edit session is aborted. Again,
the STAT wvprogram can be used to change the system attribute, if

desiread.

Finally, the insert mode ("i") command allows CRT 1line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

19

7. THE XSUB FUNCTION,

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line " input to programs as well as the console command
processor, The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command 1lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 1@0) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB

DDpT

IS1.HEX

R

GO

SAVE 1 $2.COM

with a subsequent SUBMIT command:
SUBMIT SAVER X Y
which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DDT which is sent the command lines
“IX.HEX" "R" and “G@" thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the CCP.
The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate 1its presence, Subsequent
submit command streams do not reauire the XSUB, unless an intervening

cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 0685H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double byte values returned in
dL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list of CP/M 2.¢ calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.6, MNote that a zero wvalue 1is returned for
out-of range function numbers.

Jd System Reset 19*% Delete File

1 Console Input 20 Read Seguential

2 Console Output 21 Write Seguential

3 Reader Input 22* Make File

4 Punch Output 23* Rename File

5 List Output 24* Return Login Vector

6* Direct Console I/0 25 Return Current Disk

7 Get I/0 Byte 26 Set DMA Address

3 Set I/0 Byte 27 Get Addr(Alloc)

9 Print String 28* Write Protect Disk
18* Read Console Buffer 29* Get addr(R/O Vector)
11 Get Console Status 30* Set File Attributes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Disk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15* Oven File 34* Write Random
16 Close File 35* Comoute File Size
17* Search for First 36* Set Random Record

18* Search for Next

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

runction 6: Direct Console I/0.

Direct Console I/0 is supported under CpP/M 2.8 tfor those
applications where it 1is necessary to avoid the BDOS console I/0
operations. Programs which currently perform direct I/0 through the
B3I0S should be changed to use direct I/0 under BDOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input reguest, or register E contains an ASCII
character,. If the input value is FF, then function 6 returns A = ¥y
if no character is ready, otherwise A contains the next console input
character,

If the inout value in £ is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console,

(A1l Information Contained Herein is Proprietary to Digital Research.)

12

Function 1d: Read Console Buffer.

The console puffer read overation remains unchanged except that
console 1line editing 1is supported, as described in Section 2., Note
also that certain functions which return the carriage to the leftmost
vosition (e.g., ctl-X) do so only to the column position where the
promot ended (previously, the carriage returned to the extreme left
margin). This new convention makes operator data input and line
correction more legible,

Function 12: Return Version Number.

Function 12 has been redefined to orovide information which
allows version-independent orogramming (this was previously the "lift
head" function whicn returned HL=00#9 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 9§08 for the CP/M release (H = @1 for MpP/M), and L = 99 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subseguent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for examole, you can
write application programs which orovide both seguential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file overations described Dbelow, DE addresses a file
control plock (FCB). Further, all directory operations take place in
a reserved area which does not affect write puffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatipility is reguired.

The File Control 3lock (FCB) data area consists of a sequence of 33
bytes for seguential access, and a series of 36 bytes in the case that
the file 1is accessea randomly. The default file control block
normally located at ¥d5Cd can be used for random access files, since
pytes ¥87DiH, YWOTEH, and ©@07FH are available for this purpose. For
notational purposes, the FC3 format 1is shown with the following
fields:

(All Information Contained Herein is Proorietary to Digital Research.)

13

]
wher

d

f

t

with

b 01 B2
e

r

1...88

1,t2,t3

ex

sl

s2

rc

dd...dn

cr

rd,rl,r2

be B9

contain the file name
uoper case, with nigh

contain the file type
upper case, with high
t2°',

t1l’,

auto disk select

16 11 12 13 14 15 16 ...

ve code (U - 16)

> use default drive for file
> auto disk select

> auto disk select

drive A,
drive B,

drive P.

in ASCII
bit = 6

in ASCII
bit = @

and t3' denote the

bit of these positions,
tl* = 1 => Read/Only file,

t2' =
contains
normally
in range

reserved

reserved

to zero on call to OPEN, MAKE,

1 => SYS file,

no DIR list

the
set
§ -

current extent number,
to 96 by the user, but
31 during file I/0

for internal system use

for internal system use, set

SEARCH

record count for extent "ex,"

takes on

values from § - 128

filled—-in by CP/M, reserved for
system use

current record to read or write in
a seguential file operation, normally
set to zero by user

optional

random record number in the

range ¥-65535, with overflow to r2,
rd,rl constitute a 1l6-bit value with

low byte

r@d, and high byte rl

Function 15: Open File,

Tne Open File operation is identical
exception
previous versions of CP/M defined this

the

to previous
that byte s2 is automatically zeroed,
byte as zero,

31 32 33 34 35

but made

definitions,

Note that
no

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance, Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: Searcnh for First.

Searcn First scans the directory for a match with the file given
oy the FCB addressed by DE. The wvalue 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise a value of A egqual to 4,
l, 2, or 3 is returned indicating the file is present. In the case
tnat the file 1is found, the current DMA address is filled with the
record containing tne directory entry, and the relative starting
position 1is A * 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Although not normally required for application programs,
the airectory information can be extracted from the buffer at this
position,

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from £f1 through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number,. This 1latter function 1is not normally used by
application programs, out does allow complete flexibility to scan all
current directory values, 1If the dr field is not a guestion mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

Function 19: Delete fFile,

The Delete File function removes files which match the FCB
addressed by DE, The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range @ to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File,

The Make File overation is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the 3DOS.

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range ¥ to 3 1is returned,

Function 24: Return Login Vector,

The login vector value returned by CP/M 2.8 is a 16-bit value in
HL, where the least significant bit of L <corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk.

The disk write wprotect function provides temporary write
protection for the currently selected disk. Any attemot to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector.

Function 29 returns a bit vector in register wpair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 38: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2' above) can be
set or reset., The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset, Function 34 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

matcn, and changes the matched directory entry to contain the selected
inaicators. Indicators fl' through f4' are not wonresently used, but
may be useful for applications programs, since they are not involved
in the matching vprocess during file open and close operations.
Indicators £5' tnrough £3' and t3' are reserved for future system
exmansion.

Function 31: Get Disk Parameter 3lock Address.

The address of the BIOS resident disk parameter block 1is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
pe extracted for display and space .computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk enviromment changes, if required. w®ormally, avnlication
programs will not require this facility.

Function 32: Set or Get User Code,

An application program can change or interrogate the currently
active wuser number by calling function 32, If register E = FF
nexadecimal, then tne value of the current user number is returned in
register A, where the value is in the range ¥ to 31. 1If register E is
not FF, then the current wuser number is changed to the value of E
(modulo 32).

Function 33: Read Random.

he Read Random function is similar to the sequential file read
operation of wprevious releases, except that the read operation takes
olace at a particular record number, selected by the 24-bit wvalue
constructed from the three bpyte field following the FCB (byte
oositions r® at 33, rl at 34, and r2 at 35). ©Note that the seduence
of 24 pits 1is stored with least significant byte first (ry), middle
pyte next (rl), and high byte last (r2). CP/M release 2.8 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.9, the rb6,rl byte pair 1is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from & to 65535, oproviding access to any particular
record of the 8 megabyte file. 1In order to ovrocess a file wusing
random access, the base extent (extent ¥) must first be opened.
Although the pase extent may or may nat contain any allocated data,
this ensures that the file is oroperly recorded in the directory, and
is visible in DIR requests. The selected record numpber is then stored
into the random record field (rd,rl), and the BDOS is called to read
the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to vigital Research.)

17

error code, as listed below, or the value 59 indicating the overation
was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
reaa operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record,

Jpon each random read operation, the logical extent and current

record values are automatically set, Thus, the file can be
seguentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last

randomly read record will be re~read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a seguential write omeration. You can, of course, simply advance
tne random record vosition following each ranadaom read or write to
obtain the effect of a seguential I/O overation.

Error codes returned in register A following a random read are
listed below.

1 reading unwritten data

42 (not returned in random mode)
P3 cannot close current extent

d4 seek to unwritten extent

Y45 (not returned in read mode)

26 seek past ovhysical end of disk

Error code ¥l ana ¥4 occur when a random read operation accesses a
data Dpblock which has not been previously written, or an extent which
nas not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code §6 occurs whenever byte r2
is non-zero under the current 2.9 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

Function 34: Write Random.

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address, Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues., As in the Read Random
operation, the random record number is not changed as a result of the

write. The logical extent number and current record positions of the
file control block are set to corresvond to the random record which is
being written, Again, seguential read or write operations can

commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

switch as it does in seguential mode under either CP/M 1.4 or CP/M
2.0.

The error codes returned by a random write are identical to the
random read operation with the addition of error code ¥5, wnich
indicates that a new extent cannot be created due to directory
overflow.

Function 35: Compute File Size.

when computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r6, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual"” file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 91, then the file contains the
maximum record count 65536 in version 2.9. Otherwise, bytes rd and rl
constitute a 16-bit value (r# 1is the 1least significant byte, as
before) which is the file size.

Data can be appended to the end of an existing file by simoly
calling function 35 to set the random record position to the end of
file, tnen performing a seguence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. 1If, instead, the file was created
in random mode and "holes" exist in the allocation, then the .-file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the wvirtual size 1is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random. Record.

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a varticular. point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encounterea, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 pbytes, the resulting record vosition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record 1lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write., A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selectea point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation., The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM,COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file 1is <created before the
orompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nRkR Q

where n is an integer value in the range 4 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, resvectively. If the W command is 1issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return, RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. 1In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again
The nrogram begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The

default file control block at 285CH and the default buffer at #080H
are used in all disk operations. The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

29

which contain the orincipal input 1line processor, called *“readc."”
This particular ovrogram shows the elements of random access
processing, and can be wused as the basis for further orogram
development.
;*****x*******************x******k******************
;* *
;* samnle random access program for co/m 2.9 *
« % *
;***
4199 org 139h ;base of tova
H
a0d9 = reboot eaqu GooBdh :system reboot
2095 = bdos egu J8¥5h ;bdos entry point
i
ool = coninp equ 1 ;console input function
o622 = conout equ 2 ;console output function
Y09 = pstring equ 9 ;print string until 'S’
ddda = rstring egu 19 ;read console buffer
Jddbc = version egu 12 ;return version number
Qpet = openf equ 15 ;file open function
3419 = closef eqgu le ;close function
dg0le = makef egu 22 ;make file function
Ju2l = readr egu 33 ;read random
Ju22 = writer egu 34 ;write random
gd5¢c = fco egu #d5ch ;default file control block
ggld = ranrec egu fcb+33 ;random record position
galt = ranovf equ fco+35 ;nigh order (overflow) byte
2089 = buff 2au 2386h ;buffer address
H
Phdd = cr equ 2dh ;carriage return
0pda = 1f egu dah ;:line feed
:.*******************x*******************************
ok *
;* load SP, set-up file for random access *
- X *
;**k*
3106 31lbcd 1xi sp,stack
; version 2,97
¥193 dellc mvi c,version
2195 cdpsy call bdos
0198 fe2d cpi 29h ;version 2.0 or better?
Ylova d2le0 jnc versok
; bad version, message and go back
g1lvd 111obd ixi d,badver
¥119 cdday call orint
2113 c3000 jmo reboot
versok:
: correct version for random access

(All Information Contained Herein is

21

Proorietary to Digital Research.)

W1lle Yelf mvi c,openf ;open default fcb

118 115cH 1xi d,fcb

g1lo cdds5yg call bdos

glle 3c inr a ;err 255 becomes zero

D11E c2379 jnz ready
; cannot open file, so create it

¥122 delb navi c,makef

d124 115c¢¥ 1xi d,fcb

9127 cdbbe call bdos

Bl2a 3c inr a serr 255 becomes zero

9120 c2379 jnz ready
H cannot create file, directory full

Jd12e 113ad 1xi d,nospace

¥131 cdaday call print

J134 c38998 jmp reboot ;back to ccp
IR EE SRS E SR EE SRR RS SRS EEESSE SRS SRS SEESEEEEESEEESEEEESEEEE
* *
* loop back to “ready" after each command *
* *

KK KKK KR E K AKR KA K KAKR AR KR KRR RAKRKRAKRKRKR KRR RR KRR AR R Rk hkdhhkhkkkkk

~e we I Ne we wo w8 we “wo wo

eady:
file is ready for processing

V137 cdesy call readcom ;read next command

g13a 227dv shld ranrec ;store input record#

v13d 2175 Ixi h,ranovft

9144 3099 mvi m,o ;clear high byte if set

0142 fe51 coi Q' ;jguit?

9144 c2569 jnz notg
7
: guit processing, close file

147 Yeld mvi c,closetf

@149 115c¥ 1xi d,fcbo

dl4c cdaso call bdos

vwl4f 3c inr a ;err 255 becomes

3158 caby¥i jz error ;error message, retry

#153 c3d09 jmp reboot ;back to ccp
;*****************************‘k*********************
« % *
;* end of gquit command, orocess write *
. X *
;***
notaqg:
; not the guit command, random write?

9156 fe57 cpi "W

158 c2890 jnz notw
’
: this is a random write, fill buffer until cr

¥15b 11449 1xi d,datmsg

d15e cddad call print ;data prompt

(All Information Contained Herein is Proprietary to Digital Research.)

22

3161 3e7f mvi c,127 ;up to 127 characters

9163 21890 1xi h,buff ;destination
rloop: ;read next character to buff

9166 cb push o) ; Save counter

3167 e5 push h ;next destination

Y168 cac2d call getchr j;character to a

¥16o el joJe}) h ;restore counter

Jl6c cl DOD b ;restore next to fill

wloed fedd cpi cr ;end of line?

d1o6f ca78d jz erlooo
; not end, store character

4172 77 mov m,a

0173 23 inx h ;snext to fill

3174 0d dcr c ;counter goes down

g175 c2660 jnz rloop ;end of puffer?
erloop:
: end of read loop, store d6

0178 3649 mvi m,d
: write the record to selected record number

d17a Ye22 mvi c,writer

¥917c 115cd 1xi d,fcb

d17f cdoS5d call bdos

182 b7 ora a ;error code zero?

¥183 c2bSy jnz error ;message if not

0186 c3379 jmp ready ; for another record
;*‘x*************'k************"K**********************
o %k *
;* end of write command, nrocess read *
« % *
;x**********x*******x*******************************
notw:
; not a write command, read record?

3189 fes52 cpi 'R’

d18b c2b9d jnz error ;skip if not
’
H read random record

d18e de2l mvi c,readr

9199 115c® 1xi d,fch

0193 cdis50 call bdos)

0196 b7 ora a ;return code 96?

9197 c2b9y jnz error
: read was successful, write to console

B19a cdcfe call crlf ;new line

#19d de8d mvi c,128 ;max 128 characters

¥19f 21840 1xi h,buff ;next to get
wloop:

$1a2 Te mov a,m ;next character

#la3 23 inx h ;nhext to get

plad e67f ani 7fh ;jmask parity

21laé ca379 jz ready ;for another command if 90

#lad9 c5 push b ;save counter

#laa e5 push h ;save next to get

(All Information Contained Herein

is Proprietary to Digital Research.)

23

Blab fe2d cpi sgraphic?

dlad d4c8i cnc putchr ;skip output if not

d1lby el pop h

¥1bl cl pop b

d1b2 @d dcr c scount=count-1

91b3 c2a2@ jnz wloop

¥1lb6 c3379 jmp ready
; IR R ESEEEE R EEEEEEEEEEE S SRS EEEEEEEEEEE RS SRR R EE S
«k *
;* end of read command, all errors end-uo here *
« %k *
; khkkkhkkhkhkhkkhkkhkrkkkkhkhkhkkkkhkkkkkhhkhkrhhkhkhkkkhkkkkhkhkkkixkkhkhkxk*xx
error:

P1bY 11590 1xi d,errmsg

#1lbc cddad call print

31bf c3370 jmp ready

-e

REREEEEESEE SRS SRS E SRS E RS SRR SRR SRR SRR SRR RS EEEEEEESE
*

* utility subroutines for console i/o *
*

EREEEEEEESEEE SRS EEEEESEEEE R R SRR EEEEEEESEREEEEEEESEESS

*

~e Ne we Se S
*

getchr:
s:read next console character to a
Flc2 dedl mvi c,coninp
dlcd cdygsd call bdos
glc7 c9 ret

H
putchr:
;write character from a to console

P1c8 Gei2 mvi c,conout
Glca 5f mov e,a ;character to send
d1lcb cddbd call bdos ;send character
dlce c9 ret

crif:

;send carriage return line feed

Jdlcf 3end mvi a,cr ;carriage return
31d1l cdc8i call putchr
¥1d4 3eda mvi a,lf ;line feed
#1d6 cdc8# call putchr
d1la’d9 c9 ret

print:

;print the buffer addressed by de until §

¥lda d5 oush d
#1db cdcfd call crlf
¥ylde dl jole)e) d- ;new line
d1af 0beb?d mvi c,pstring
Plel cd@s0 call bdos ;orint the string
Jled c9 ret

readcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24

s;read the next command line to the conbuf

dle5 116bY 1xi d,prompt

Ble8 cddad call print ;command?

Jleb defda mvi c,rstring

¥led 11l7a¥ 1xi d,conbuf

01£d cdd59 call bdos ;read command line
; command line is present, scan it

B1f3 21000 1xi h,? sstart with 9900

g1f6 117c@ 1xi d,conlin;command line

91£f9 1la readc: 1ldax d ;next command character

d1fa 13 inx d ;t0 next command position

D1fb b7 ora a ;cannot be end of command

Jlic c8 rz
; not zero, numeric?

#1fd do3d sui ‘o

Y1ff felba cpi 19 scarry if numeric

¥201 421393 jnc endrd
H add-in next digit

0284 29 dad h %2

V205 4d mov c,l

B206 44 mov b,h ;bc = value * 2

9207 29 dad h ;%4

2208 29 dad h ;%8

2299 09 dad b 1*2 + *8 = *19

P2da 85 add 1 ;+digit

9290 ST mov 1,a

d28c a2£99 jnc readc ;for another char

J129f 24 inr h ;overflow

V210 c3f99 jmp readc ; for another char
endrd:
: end of read, restore value in a

9213 c639 adi 9’ : command

9215 febl coi 'a' ;translate case?

3217 a8 rc
; lower case, mask lower case bits

0218 e65f ani 13181111b

92la c9 ret
;**************r******************'k***x*************
ek *
:* string data area for console messages *
« Kk *
;***x*****
padver:

¥21b 536£79 db 'sorry, you need cp/m version 28°'
nospace:

023a 4e6f29 db 'no directory space$’
datmsg:

$24d 547979 db ‘type data: §$'
errmsqg:

2259 457272 db ‘error, try again.$'
prompt: '

B260 4e6570 db 'next command? $'

.
1

(All Information Contained Herein is Proprietary to Digital Research.)

25

;*********************x*‘k***************‘k***********

« x *
’
;* fixed and variable data area *
;* *
;****************************‘k********************7’(*

g27a 21 conbuf: db conlen ;length of console buffer
927b consiz: ds 1 sresulting size after read
B2ic conlin: ds 32 :length 32 buffer
dd2l = conlen equ $-consiz
d29c ds 32 116 level stack.

stack:
d2bc end

(All Information Contained Herein is Proprietary to Digital Research.)

26

9. CP/M 2.0 MEMORY ORGANIZATION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, depending uvon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the taple below.

Module 290k 24k 32k 43Kk 64k
CcCp 34094 44099H 64004 A4004d E40dR
BDOS 3CO9H 4Cpdd 6CP0H ACPdH EC@@H
BIOS 4A0JH 5A09dH 72804 BAQOH FAQ 34

Too of Ram 4FFFH 5FFFH 1FFFH BFFFH FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MDS-8084 with standard 1I3M 38" floppy disk drives. The disk
layout is shown below:

Sector Track @8 Module Track 41 Module
1 (Bootstrap Loader) 43894 BDOS + 483H
2 34904 CCP + BQ9H 41200 BDOS + 500H
3 343vd CCP + 08uYH 4184UH BDOS + 58dH
4 35334 CCP + 1204 42994 BDOS + 680d
5 358¥H CCP + 184dH 423YH BDOS + 6306d
6 36@49d CCP + 200H 436d BDOS + 780H
7 363804 CCp + 28UH 4389¥H BDOS + 780H
8 37dvi CCP + 3094 44pYH BDOS + B0W0H
9 37894 CCp + 3884 448¢6H BDOS + 88UH

19 38yid CCp + 4908 45906H BDOS + 9@0H
11 338uH CCP + 486§ 4580H BDOS + 98dH
12 390 uH CCP + 59@H 46J¥H BDOS + AQ@H
13 398vH CCp + 58¢H 4680PH BDOS + AB80H
14 3AG0H CCpP + 609d 4739H BDOS + BO@H
15 3A80H CCP + 68@8 4780H BDOS + B3WH
16 3BYOH CCP + 79094 480PH BDOS + COOH
17 3830H CCP + 7892H 48804 BDOS + C8@H
18 3CyBH BDOS + PDBH 49p0H BDOS + DHGH
19 3C86H BDOS + $80H 4980PH BDOS + D8@H
20 3DdH6H BDOS + 104dH 4AGPH BIOS + WOOH
21 3D8PH BDOS + 180H 4A80H BIOS + 980H
22 3EQQH BDOS + 240H 4BPAH BIOS + 180H
23 3E80H BDOS + 280H 4B8¢0H BIOS + 18@H
24 3FdPAH BDOS + 390H 4C@%H BIOS + 200H
25 3F80H BDOS + 380H 4C80H BIOS + 2804
26 40@PH BDOS + 400H 4DYPPH BIOS + 390H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4, The BDOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track 01, Thus, the CCP is 800H (2048
decimal) bytes in length, the BDOS is E@GOH (3584 decimal) bytes 1in
length, and the BIOS is up to 380H (898 decimal) bytes in length. 1In
version 2.8, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

19, BIOS DIFFERENCES.

The CP/M 2.6 Basic I/0 System differs only slightly in concept
from its predecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined. The skeletal form of these
changes are found in the program shown below.

1l: org 4008h
2: maclio diskdef
3: jmp boot
4: ; . e
5: jmp listst ;list status
6: jmp sectran ;sector translate
7: disks 4
8: large capacity drive
9: bpb egu 16*1924 ;bvytes per block
19: rpb egu bpb/128 ;records per block
11: maxb equ 05535/rpbo ;max block number
12: diskdef ¢,1,58,3,bpb,maxb+1,128,8,2
13: diskdef 1,1,58, ,opb,maxb+1,128,6,2
14: diskdef 2,9
15: diskdef 3,1
16: ;
17: boot: ret ;s hop
13: ;
19: listst: xra a ; nop
24 ret
21: ;
22: seldsk:
23: ;drive number in c
24: 1xi h,?d ;9080 in hl produces select error
25: mov a,c ;@ is disk number d ... ndisks-1
26: cpi ndisks ;less than ndisks?
27: rnc sreturn with HL = 89J8 if not
28: ; proper disk number, return dpb element address
29: mov l,c
30 dad h ;%2
31: dad h ;%4
32: daa h ;%8
33: dad h :*16
34: 1xi d,dpbase
35: dad d ;HL=,dpb
36 ret
37: ;
38: selsec:
39: ;sector number in ¢
49 1xi h,sector
41: mov m,cC
42 ret
43: ;
44: sectran:
45 ;translate sector BC using table at DE
46: Xxchg ;HL = .tran
47: dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

48: dad b again if double precision tran

49; mov 1l,m ;only low byte necessary here
50: ; fill both H and L if double vrecision tran
51: ret HL = ?7?ss

52: ;

53: sector: ds 1

54: endef

552 end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector elements). The 1last two elements ©provide access to the
"LISTST" (List Status) entry point for DE3POOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release, It should be noted that
the 1.4 DESPOOL oprogram will not overate under version 2.8, but an
update version will be availaple from Digital Research in the near
future.

The "SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a BI0S-resident sector translation .
subroutine. This mechanism allows the user to specify the sector skew
factor and translation for a varticular disk system, and is described
below.

A macro 1library is shown in +the 1listing, <called DISKDEF,
included on line 2, and referenced 1in 12-15. Although it is not
necessary to use the macro liprary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro 1library 1is
included with all Cp/M 2.0 distribution disks. (See the CP/M 2.9
Alteration Guide for formulas which you can use to hand-code the
tapbles produced by the DISKDEF library).

A BIOS disk definition consists of the following seguence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 9,...
DISKDEF 1

DISKDEF n-1

ENDEF

rF o oo

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as vyour BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, @ through n-1 (corresvonding to logical drives A
through P). Note that the DISKS and DISKDEF macros dgenerate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable portion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion of your 8I0S is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, ¥ to n-1
fsc is the tirst physical sector number (0 or 1)
1sc is the last sector number
skf is the optional sector skew factor
pls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ots is the track offset to logical track 94
[0] is an opotional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro 1invocation, The "fsc" parameter accounts for differing sector
numbering systems, and is usually g or 1. The "lsc" is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors 1is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. WNo translation table is created if the
skf parameter is omitted (or equal to 0). The “bls" varameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1924, 2048, 4896, 8192, or 16384. Generally,
pverformance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "“dks"
specifies the total disk size in "bls" units, That is, if the bls =
2048 and dks = 1003, then the total disk capacity is 2,348,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1624. The wvalue of "dir* is the total number of
directory entries which may exceed 255, if desired. The *“cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data 1is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically ¥, since the ©probability
of changing disks without a restart is guite low. The “ofs" value
determines the number of tracks to skip when this particular drive is
"addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [#] parameter is 1included when " file
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only
16K 1is allocated for each directory record, as was the case for
previous versions. ~Normally, this varameter is not included.

For convenience and economy of table svace, the special form
DISKDEF i,

gives disk 1 the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS 4
DISKDEF 9,1,20,6,1024,243,64,64,2
DISKDEF 1,9
DISKDEF 2,9

3,9

DISKDEF

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1@24 pbytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.8. All disks have identical parameters, except that drives # and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
address DPBASE which 1is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE EQU 3

DPE@: DW XLT0 ,2000H,0000H,0000d,DIRBUF ,DP3J,CSVY ,ALVY
DPEl: DW XLTY ,0000H,0d00H,0000H,DIRBUF ,DPBY,CSV1,ALV1
DPE2: DW XLTO,0090H,0000H,9009H,DIRBUF ,DPBJ,CSV2,ALV2
DPE3: DW XLTO ,0000H,0000H,0000H,DIRBUF ,DPB®,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive @0
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLTO,
which is the translation vector for drive # in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

followed by three 16-bit "scratch" addresses, followed by the
directory buffer address, cdisk parameter block address, check vector
address, and allocation vector address, The check anda allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables,

The SELDSK function is extended somewhat in version 2.4. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.4,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE@, DPEl, DPE2, or DPE3, in the
above example) in register HL, If SELDSK returns the value HL =
d00PH, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal. Program lines 22 through 36 give
a sample CP/M 2,0 SELDSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
pertforms the actual 1logical to physical sector translation. 1In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between each read, Due
differing rotational speeds of various disks, the translation function
has become a vpart of the BIOS in version 2.,#. Thus, the BDOS sends
" sequential sector numbers to SECTRAN, starting at sector number 4.
The SECTRAN subroutine uses the seguential sector number to produce a
translated sector numpber which is returned to the B8DOS. The BDOS
subsequently sends the translated sector number to SELSEC before the
actual read or write is verformed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary, In this case, the "skf" parameter
is omitted in the macro call, and SECTRAN simply returns the same
value which it receives. The table shown below, for example, 1is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call: '

XLTO0: DB 1,7,13,19,25,5,14,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = 00 in this case), Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLT0 in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate taple, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L, Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL,

Following the ENDEF macro call, a number of wuninitialized data
areas are defined. These data areas need not be a part of the BIOS
(All Information Contained Herein is Proprietary to Digital Research.)

32

which is loaded upon cold start, but must be available between the
8I0S and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by tne ENDEF macro., Ffor a
standard four-drive system, the ENDEF macro might oroduce

4C72 = BEGDAT EQU 3
(data areas)
4DBY = ENDDAT EQU 3
¥13C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAS begins at location 4C72H, ends
at 4DBYH-1l, and occupies ¥1l3Cid bpytes. You must ensure that tnese
aadresses are free for use after the system is loaded.

CP/M 2.8 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. 1Information is orovided by the BDOS
on sector write operations which eliminates the need for pre-read
operations, thus allowing plocking and deblocking to take nlace at the
BI0S level.

See the “CP/M 2.9 Alteration Guide” for additional detalls
concerning tailoring your CP/M system to vour varticular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33

i0

DiGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright

Copyright (e) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language. in any form or by anv
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Introduc

tion .,

First Level System Regeneration .

Second Level System Generation

Sample Getsys and Putsys Programs

Diskette
The BIOS
A Sample
A Sample

Reserved

Organization

Entry Points

BIOS .

Cold Start Loader . .

Locations in Page Zero

Disk Parameter Tables

The DISKDEF Macro Library . . .

Sector Blocking and Deblocking
AppendiX A e e e e e e e .
Appendix B . 4 ¢ 4 ¢ 4 e 4 0 e e
AppendiXx C . v v ¢ ¢ ¢ e o s e o s
AppendiXx D & v ¢ 4 4 o o e o o o .
Appendix E . . . ¢ ¢ v 4 4 e e e
Appendix F . . . o & ¢ o o« o o o
Appendix G . . . v ¢ 4 4 4 e e e e

10
12
14
21
22
23
25

39

1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS-3060
microcomputer develooment system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating enviromment, 1In this way, the user can produce a diskette
whicn operates with any IBM—-3741 format compatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is confiqured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-cavacity
"hard aisk" systems. In order to simplify the following adaptation
orocess, we assume that CP/M 2.9 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M 1is available, the
customizing process is eased considerably. 1In this latter case, you
may wish to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M 1is separated into
three distinct modules:

BIOS - pasic I/0 system which is environnent dependent

BDOS - pasic disk operating system which is not dependent
upon the hardware configuration

CCP - the console command processor which uses the BDOS

Of these modules, only the B8I0S is dependent upon the particular
nardware, That is, the user can "patch" the distribution version of
CP/M to provide a new BIOS which provides a customized 1interface
between the remaining CP/M modules and the user's own hardware system,
The purpose of this document is to provide a step-by-step procedure
for patcning your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing., fThe standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS 1is given in Appendix C which can serve as the
basis for a modified BIOS. 1In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. 1In order to patcn the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
vplaces an altered version of CP/M back onto the diskette, PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands, Sample skeletal GETSYS and PUTSYS programs are
describea in Section 3, and listed in Apoendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(A1l Information Contained Herein is Proprietary to Digital Research.)

1

2. FIRST LEVEL SYSTEM REGENERATION

The procedure to follow to patcn the CP/#M system is given below in
several steps. Address references in each step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a
20K CpP/¥M system, For larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to
tne memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K - 20K = 4K = 1090H
32K: o = 32K - 20K = 12K = 30#9H
49K: b = 49K - 28K = 20K = 5000H
48K b = 48K - 2¥YK = 28K = 7000H
56K: b = 56K - 20K = 36K = 9900H
62K: b = 62K = 20K = 42K = A800H
04K: b = 64K - 20K = 44K = BJ00H

WNote: The standard distribution version of CP/M 1is set for
operation within a 20K memory system. Therefore, you must first bring
up the 28K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation),

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 338éH. Code GETSYS so that it starts at
location 14¥H (pase of the TPA), as shown 1in the first wvart of
Appendix d.

(2) Test the GETSYS program by reading a blank diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered 1in any way by the GETSYS
program.

(3) Run the GETSYS program using an initialized CP/M diskette to
see 1if GETSYS 1loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 349dd). -

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 3386d back onto the first two tracks of the
diskette. The PUTSYS program should be located at 20#8H, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Researcn.)

2

(7) Test CBIOS completely to ensure that it woproperly verforms
console character I/0 and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes., Failure to make these <checks
may cause destruction of the initialized CP/# system after it is
patched.

(3) Referring to Figure 1 in Section 5, note that the B3IOS is
placed Dbetween locations 4ApdH and 4FFFH., Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(19) Use GETSYS to bring the copied memory image <from the test
diskette back 1into memory at 338YH, and check to ensure that it has
loaded back properly (clear memory, if possible, before the 1load).
Upon successful load, brancn to the cold start code at location 4AdYd.
The cold start routine will initialize vage zero, then jumo to the CCP
at location 340W¥H which will call the BDOS, whicih will call the CBIOS.
The CB8I0S will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A>", the systemn prompt.

When you make it this far, you are almost on the air, If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (18), CP/¥ has promoted the console
for a command input., Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (after several disk accesses):
A>
If it does not, depug your disk write functions and retry.
(12) Then test the directory command by typing
DIR
CP/M should respond with
A: X | CcoM
(13) Test the erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A promot, When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS, ana
place it on track #, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette). See Sections 5 and 3 for
more information on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion of
these tests, typve a control-C (control and C keys simultaneously). The
system should then execute a "warm start” which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of vyour
customized CP/M system on your test diskette., Use GETSYS to load CpP/#
from vyour test diskette, Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing
DIR
CP/4 should respond with a list of files which are provided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT,COM,
NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced

by another diskette, unless the new diskette is to be reaa only.

(18) Load and test the debugger by tvyping

DDT
(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating
procedures, You should take the time to become familiar with DDT, it

will be your pest ftriend in later steps.

(1Y) Sefore making further CBIOS modifications, practice using
the editor (see the ED wuser's guide), and assembler (see the ASHM
user's guide). Then recode and test the GETSYS, PUT3YS, and CBIOS
programs using ED, AS!, and DDT. Code and test a COPY program whicn
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: reaa your CP/M
Licensing Agreement; it specifies vour legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Researcn.)

4

on eacn copy which is made with your COPY program,

(20) Modify vyour CBIOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which vyou have
developed, or vyou can refer to the following section, which outlines
Cp/M facilities which will aid you in the regeneration process.

Yyou now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/#M which you have developned belongs to
you, the modified version of CP/M which you have created can be copied
for vyour use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use,

It should be noted that your system remains file-compatible with all

other CP/M systems, (assuming media compatiplity, of course) which
allows transfer of non-nroprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, vyou will want to
configure CP/M for your memory size. 1In general, you will first get a
memory image of CP/M with tnhe "MOVCPM" program (system relocator) and
olace this memory image into a named aisk file. The disk file can then
be loaded, examined, patched, and replaced wusing the debugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
manual.

Your CBIOS and B00T can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOO0OT.HEX, which contain the
machine code for CBIOS and B800T in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xXx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will pe:

CONSTRUCTING xxK Cp/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx,COM"

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location ¥99vH throughn
227FH, (i.e., The BOOT is at #90ed, the CCP 1is at 980H, the BDOS
starts at 1180H, and the BIOS is at 1F80H.) Note that the memory
image has the standard MDS-8@¥ BIOS and BOOT on it, It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM
The memory image created by the "MOVCPM" ovrogram is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded wunder DDT and examined or
changed 1in preparation for a new generation of the system, DDT is
loaded with the memory image by typing:

DDT CpPMxx.COM Load DDT, then read the CPM
image

DDT should respond with
NEXT PC
2300 0109
- (The DDT prompt)

You can then use the display and disassembly commands to examine

(A1l Information Contained Herein is Proprietary to Digital Research,)

o

portions of the memory image between Y80H and 227Fd. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the (CpP/M address to find the actual
address., 'Track dY, sector g1 is loaded to location 96BH (you shoula
find the cold start loader at Y¥0H to 97FH), track @8, sector 2 is
loaded into 986H (this is the base of the CCP), and so-forth through
the entire CP/M system load. 1In a 20K system, for example, the CCP
resides at the CP/¥ address 3400H, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 930UH - 349JH

Assuming two's complement arithmetic, n = D58#H, which can be checked
by

340@¢H + D580H = 10980H = P98PH (ignoring nigh-order
overilow).

Note that for larger systems, n satisfies
(3406UH+b) + n = Y8UYH, or

n 98¥H - (34¢9H + b), or
n D58@H - b.

The value of n for common CP/M systems is given below

memory size bias b negative offset n
20K Wa0RH D58YH - VWYBYH = D530H
24K lovwd D58PH - 19092H = C538vH
32K 30008 D580H - 3049H = A589¥H
4K 50004 D58yYH - 5¢U¥H = 8580H
4 8K 7300H D58JH - 780WH = 65890H
56K 99 0VH D589YH - 9YU0OH = 458¢H
6 2K AB00QH D580VH - A80uH = 2D80H
64K BO30H D580H - BOYOH = 2589H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

gx%,n Hexadecimal sum and difference
and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

H3400,D580

for example, will produce 989H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS 1located at
(4AYPH+D) -n which, when vyou use the H command, oroduces an actual
address of 1F89H. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

L1F89
It is now necessary to vatch in your CBOOT and CBIOS routines. The
BOOT resides at 1location @90¥H in the memory image. If the actual
load address is "n", then to calculate the bias (m) use the command:

H906 ,n Subtract load address from
target address.

The second number tyved in response to the command is the desired bias
(m). For example, if your BOOT executes at ¥¥80UH, the command:

H90d,80
will reply
B98W VB8O Sum and difference in hex.

Therefore, the bias “m" would be ¥88YJH. To read-in the BOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then:
Rm Read CBOOT with a bias of
m (=90JH-n)

You may now examine your CBOOT with:
L9499

We are now ready to replace the CBIOS. Examine the area at 1F80H
where the original version of the CBIOS resides. Then type

ICBIOS.HEX Ready the “"hex" file for loading

assume that your CB8IOS is being integrated into a 20K CP/M system, and
thus is origined at location 4AgYHd. 1In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file. This is accomplishea by
typing

RD584d Read the file with bias D586H

Upon completion of the read, re-examine the area where the CBIOS has
peen 1loaded (use an “L1F86" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from DDT using a control-C or "GZ" command.

Now use SYSGEN to replace the patched memory image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown 1in the following interaction

(All Information Contained Herein is Proprietary to Digital Research.)

3

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2.4 Sign-on message from SYSGEN
SOURCE DRIVE NAME (OR RETURN TO SKIP)
Resoond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.
DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in
drive B, then type return.
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

4, SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced 1in 3Section 2. The READSEC and WRITESEC
subroutines must be inserted by the user to read and write the
specific sectors.

GETSY5 PROGRAM - READ TRACKS @ AND 1 TO MEMORY AT 3389H

H REGISTER USE
; A (SCRATCH REGISTER)
H B TRACK COUNT (4, 1)
H C SECTOR COUNT (1,2,...,26)
; DE (SCRATCH REGISTER PAIR)
H HL LOAD ADDRESS
; SP SET TO STACK ADDRESS
1
START: LXI Sp,3380H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 338YH ;SET BASE LOAD ADDRESS
MVI B, U ;s START WITH TRACK ¥
RDTRK: ; READ NEXT TRACK (INITIALLY 9)
MVI c,1 ;READ STARTING WITH SECTOR 1
RDSEC: s READ NEXT SECTOR
CALL READSEC ;USER-SUPPLIED SUBROUTINE
LXI D,128 ; MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
JAD D ;HL = HL + 1238
INR c ;SECTOR = SECTOR + 1
MOV A,C ;CHECK FOR END OF TRACK
CpI 27
JC RDSEC ;CARRY GENERATED IF SECTOR < 27
4
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
JcC RDTRK ;CARRY GENERATED IF TRACK < 2

~-e

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

~e

USER-SUPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER 8,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

:U ~e o

~e we wo we

PUSH B ;SAVE B AND C REGISTERS
PUSH 5| ;SAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

L A I R N B R B N N B I B B B B B A I IR B B Y B A I A

POP H ;RECOVER HL

POP B ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research,)

19

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 1J4H., The hexadecimal
operation codes which are listed on the left may be wuseful 1if the
program has to be entered through your machine's front panel switcnes.

The PUTSYS program can pbe constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown 1in
Appendix D. The register wpair HL Dbecome the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opvosite function: data from address HL
is written to the track given by register B and sector given by
register C, It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(A1l Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
Ce/i is given here for reference purposes., The first sector (see
table on the followinaga page) contains an optional software boot
section, Disk controllers are often set uo to bring track o, sector 1
into memory at a svecific location (often location §000H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
34pPi+b, If your controller does not have a built-in sector load, you
can ignore the program in track 9, sector 1, and begin the 1load from
track 4 sector 2 to location 3490dH+b.

As an example, the Intel MDS5-800 hardware cold start loader brings
track ¥, sector 1 into absolute address 3dd0H. Uoon loading this
sector, control transfers to 1location 3009H, where the bootstrap
operation commences by loading the remainder of tracks ¥, and all of
track 1 1into memory, starting at 34¢YuwH+b. The user should note that
tnis bootstrap loader is of 1little wuse in a non-MDS environment,
although it 1is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Trackf# Sectori Pageit Memory Address CP/M Module name

4o 91 (boot address) Cold Start Loader
b0 D2 g 34y UH+b Cccp
. 23 " 3480H+Db "

. 04 P11 350 dH+b .

" b5 . 353UH+b "

" 36 32 360¥H+D "

" 07 " 3680H+b "

" 98 g3 376¥d+p "

" 29 ” 3780H+b .

' 19 g4 3800H+b .

" 11 " 3880H+b "

" 12 25 394¢H+b "

" 13 " 398dd+b "

" 14 6 3A00H+b "

" 15 » 3A80UH+D "

" 16 37 380 0H+b "
29 17 " 3B8YH+D Cccp
/Y] 13 ha 3C39H+b BDOS

" 19 " 3C80H+b "

" 24 39 3DGYH+D .

" 21 " 3D8@H+D "

" 22 192 3EZ30H+b "

" 23 " 3E3@H+b "

" 24 11 3FJ0QH+D .

" 25 " 3F80H+b "

" 26 12 4308H+Db "
g1 61 " 40 80H+b "

" 32 13 4199H+b .

" g3 " 4180H+b .

" J4 14 4239PH+b "

! 25 " 4280H+Db .

" J6 15 43093H+b "

" 97 " 4389H+b o

. 98 16 4400H+b »

. @9 . 4480H+Db "

" 19 17 45063H+b o

" 11 . 4589H+b .

o 12 18 4600Hd+b .

" 13 " 4689H+Db "

. 14 19 4700H+b .

" 15 g 478@H+b .

o 16 20 4800H+b "

o 17 " 4880H+b "

" 18 21 49G0H+b .

g1 19 . 4380H+b BDOS

71 20 22 4AG0H+b BIOS

" 21 » 4780H+b "

" 23 23 4B@@H+Db "

" 24 . 4B8@H+b .

" 25 24 4COPH+D "

g1 26 " 4C8@H+b BIOS

g2-76 g1-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BDOS
are detailed below. Entry to the BIOS 1is through a "jump vector”
located at 4Ad9H+b, as shown below (see Appendices B and C, as well).
The jump vector is a sequence of 17 Jjump instructions which send
program control to the individual BIOS subroutines. The BIOS
subroutines may be empty for certain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector.

The jump vector at 4AUPH+b takes the form shown below, where the
individual jump addresses are given to the left:

4ADDH+D JMp BOOT
4AP3d+p0 JHMP WBOOT
472 6H+D JMP CONST
4A09H+b JMP CONINW
4A9CH+D JMP CONOUT
4APYFH+D JMP LIST
4Al 2H+b JMP PUNCH
4A15H+b JMP READER
4A18H+Db JMP HOME

ARRIVE HERE FROM COLD START LOAD
ARRIVE HERE FOR WARM START

CHECK FOR CONSOLE CHAR READY

READ CONSOLE CHARACTER IN

WRITE CONSOLE CHARACTER OUT
WRITE LISTING CHARACTER OUT

WRITE CHARACTER TO PUNCH DEVICE
READ READER DEVICE

MOVE TO TRACK ¥0 ON SELECTED DISK

WO WO NE NS NS NS NG NE NS NG NG N WP NE Ne we wo

4A15d+DH JMP SELDSK SELECT DISK DRIVE
4AlEiH+0 JMP SETTRK SET TRACK NUMBER
4A21H+0 JMP SETSEC SET SECTOR NUMBER
4A24H+b JMP SETDMA SET DMA ADDRESS
4727H+b JMP READ READ SELECTED SECTOR
4AZAH+D JMP WRITE WRITE SELECTED SECTOR
4A2DH+b JMP LISTST RETURN LIST S5TATUS
SECTOR TRANSLATE SUBROUTINE

4A39H+b JMP SECTRAN

Fach jumo address corresponds to a particular subroutine which
performs the specific function, as outlined below, There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character 1/0
verformed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/0 verformed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/0 operations are assumed to be performed in
ASCII, upper and lower case, with high order (varity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (lAH). Peripheral devices are seen by CP/M as ™"logical"®
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by PIP, but
not the BDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the 1initial version of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

LIST The principal listing device, if it exists on vyour
system, which is usually a hard-copy device, such as a
printer or Teletype,

PUNCH The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

READER The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single peripheral can be assigned as
the LIST, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message soO that the system does
not "hang" if the device is accessed by PIP or some
other user oprogram, Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a 1aH (ctl-2) in reg A to 1indicate
immediate end-of-file.

For added flexibility, the user <can optionally
implement the "IOBYTE" function which allows
reassignment of ohysical and 1logical devices. The
IOBYTE function <creates a mapping of logical ¢to
physical devices which <can be altered during CP/M
processing (see the STAT commanc). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently
location ¥Y@¥3H) is maintaineda, called 1IOBYTE, which
defines the logical to physical device mapping which 1is
in effect at a particular time. The mapping is
verformed by splitting the IOBYTE into four distinct
fields of +two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE AT 96034 | LIST | PUNCH | READER | CONSOLE |

-y - ———— ————— —— ———— P — —— — —— " - " - - - - — - —— — —

bits 6,7 bits 4,5 bits 2,3 bits 6,1
The value in each field can be in the range §-3,
defining the assigned source or destination of each

logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

CONSOLE field (bits 0,1)

@ - console is assigned to the console printer device (TTY:)
1 - console is assigned to the CRT device (CRT:)
2 = batch mode: use the READER as the CONSOLE input,
and the LIST device as the CONSOLE output (BAT:)
3 - user defined console device (UCl:)

READER fleld (bltS 2,3)
READER is the Teletype device (TTY:)
- READER is the high-speed reader device (RDR:)
- user defined reader # 1 (UR1l:)
- user defined reader # 2 (UR2:)

WS

PUNCH field (bits 4,5)
§ - PUNCH is the Teletype device (TTY:)
1 - PUNCH is the high speed punch device (PUN:)
2 - user defined punch # 1 (UPl:)
3 - user defined vunch # 2 (UP2:)

LIST field (bits 6,7)
0 - LIST is the Teletype device (TTY:)
1 -~ LIST is the CRT device (CRT:)
2 = LIST is the line printer device (LPT:)
3 = user defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of vyour
CBIOS. No CP/M systems use the IOBYTE (althougn they
tolerate the existence of the IOBYTE at location
dov3d), except for PIP which allows access to the

physical devices, and STAT which allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guiage"). In any case, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/0 is always performed through a seauence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0 operation. After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/0 operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
tollowed by several calls which read or write from the
selectea DMA address pbefore the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

l6

Note that the READ and WRITE routines should
perform several retries (190 1is standarad) before
reporting the error condition to the BDOS. If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 00 seek, depending upon
your controller characteristics; the important voint is
that track 60 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 3@.

The exact responsibilites of eacn entry point
subroutine are given below:

BOOT The BOOT entry point gets control from the cold start
loader and 1is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point. The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3460H+b for further
processing. Note that reg C must be set to zero to
select drive A,

WBOOT The WBOOT entry point gets control when a warm start
occurs, A warm start 1is performed whenever a user
program branches to location #880H, or when the CPU is
reset from the front panel, The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if vyou have
completed your patch). System parameters must be ini-
tialized as shown below:

location 4,1,2 set to JMP WBOOT for warm starts
(Pd@pH: JMP 4AQ3H+Db)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which 1is the
primary entry point to CP/M for
transient programs, (0@@5H: JMP
3CU6H+D)

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 34ddH+b to (re)start
the system. Upon entry to the CCP, register C is set
to the drive to select after system initialization,

CONST Sample the status of the currently assigned console
device and return OFFH in register A if a character is
ready to read, and @0H in register A if no console
characters are ready.

CONIN Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

set the parity pit (high order bit) to zero. If no

console character is ready, wait until a character is
tyeea pefore returning.

CONOUT Send the character from register C to the «console
output aevice, The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (such as a TI Silent 700 terminal). You
can, 1if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for examole).

LIST Send the character from register C to the currently
assigned 1listing device, The character is in ASCII
with zero parity.

puwcH Send the character from register C to the currently
assigned punch device. The character is in ASCII with
zero parity,

READER Read the next character from the currently assigned
reader device 1into register A with zero parity (high
order bit must be zero), an end of file <condition is
reported by returning an ASCII control-z (1lAH).

HOME Return the disk heaa of the currently selected disk
(initially disk A) to the track 90 position., If your
controller allows access to the track ¢ flag from the
drive, step the head until the track ¥ flag is
detected. If your controller does not support this
feature, vyou <can translate the HOME call into a call
on SETTRK with a parameter of d.

SELDSK Select the disk drive given by register C for further
operations, where register C contains @ for drive A, 1
for drive B, and so-forth up to 15 for drive P (the
standard CP/#M distribution version supports four
drives)., On each disk select, SELDSK must return in
HL the base address of a l6-byte area, called the Disk
Parameter Header, described in the Section 16, For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically., If there is an
attempt to select a non-existent drive, SELDSK returns
HL=000dH as an error indicator., Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18

before selecting the new drive, This would cause an
excessive amount of noise and disk wear.

SETTRK Register BC contains the track number for subsecuent
disk accesses on the currently selected drive, You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
¥-76 corresponding to valid track numbers for standard
floopy disk drives, and 0-65535 for non-standard disk
subsystems,

SETSEC Register BC contains the sector number (1 through 26)
for subseguent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

SETDMA legister 3C contains the DMA (disk memory access)
address for subseqguent read or write operations. For
example, if B = G9PH and C = 88H when SETDMA is called,
then all subsequent read operations read their data
into 88H through ¢fFH, and all subsequent write
operations get their data from &8oH through OFFH, until
the next call to SETDMA occurs. The initial DMA

address is assumed to be B80H. Note that the
controller need not actually support direct memory
access, If, for example, all data is received and

sent through I/O0 vorts, the CBIOS which you construct
will use the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write ovberations,

READ Assuming the drive has been selecteda, the track has
been set, the sector has been set, and the DMA aadress
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

%) no errors occurred
1 non-recoverable error condition occurred

Currently, CP/iM responds only to a 2zero or non-zero
value as the return code. That is, if the value in
register A is @ then CP/M assumes that the disk
operation completea properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see if the error is recoverable, When an error is
reported the BDOS will print the message "BDOS ERR ON
X: BAD SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort,

WRITE Write the data from the currently selected DMA address

to the currently selected drive, track, and sector,
The data should be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

maintain compatibility with other CP/M systems, The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above,

LISTST Return the ready status of the list device. Used by
the DESPOOL program to improve console response during
its operation. The value ¥¥ is returned in A if the
list device is not ready to accept a character, and
WFFH 1if a character can be sent to the printer. Note
that a 09 value always suffices,

SECTRAN Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped with a "skew factor"
of 6, where six physical sectors are skipped between
each logical reaa operation, This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector, In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response, Note, however,
that vyou should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, wusing a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address 1in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL, For stanaard systems, the tables and
indexing code is vrovided in the CBIOS and need not be
changed,

(All Information Contained Herein is Proprietary to Digital Research.)

29

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for vyour
first BI0S5. The simplest functions are assumed in this BIOS, so that
you can enter it through the front wvanel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines, Storage is
reserved for wuser-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS 1is wused 1in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.,)

21

8. A SAMPLE COLD START LOADER

The program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must pbe supplied by the user,
ana the program must be loaded somehow starting at location ¢dd0.
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track b, sector 1), and cause your controller to load it into memory
automatically upon system start-uo., Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system, In this case, it will pbe necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
whicn pbrancnes to the loader., Subsequent warm starts will not require
this key-in operation, since the entry point °'WBOOT' gets control,
thus pbringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
pe enhanced on later versions,

(All Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations @$0H and UFFH, contains
several segments of code ana data which are wused during CpP/H
processing. The code and data areas are given below for reference
purposes.

Locations Contents
from to
Goopd - 9Y0O2H Contains a jump instruction to the warm start

entry point at location 4A03H+b. This allows a
simole programmed restart (JWMP @0@¥H) or manual
restart from the front oanel,

00034H

2903H Contains the Intel standarda IOBYTE, which 1is
optionally included in the wuser's CBIOS, as
described in Section 6.

VY04 Y0048 Current default drive number (¥=A,...,15=p).

YOO5H

0PB7d Contains a jump instruction to the BDOS,and
serves two purposes: JiP UB05H provides the
primary entry point to the BDOS, as descriped in
the manual “CP/M Interface Guide," and LHLD
pPP6H brings the address field of the
instruction to the HL register pair. This value
is the lowest address in memory used by Cp/#
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size in
debug mode,

WYY3H - 0027H (interrupt locations 1 through 5 not used)

pv36d - 90378 (interrupt location 6, not currently used -
reserved)

Y938 - UO3AH Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

@33BH - WA3FH (not currently used — reserved)

Vo40H - VUQ4FH 16 byte area reserved for scratch py CBIOS, but
is not used for any purpose in the distribution
version of CP/M

PO50H - YIVSBH (not currently used - reserved)

Wo5CH - 897CH default file control block produced for a
transient wprogram by the Console Command

Processor,

PO@7DH.

P@TFH Optional default random record position

(All Information Contained Herein is Proprietary to Digital Research.)

23

po8YH - GOFFH default 1238 byte disk buffer (also filled with
the command 1line when a transient is loaded
under the CCP).

Note that this information is set-up for normal operation under
the CpP/M system, but can be overwritten by a transient rrogram if the
BDOS facilities are not reguired by the transient,

If, for example, a particular program performs only simple I/0O and
must begin execution at location ¥, it can be first 1loaded 1into the
TPA, wusing normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program mnust get
control <from location @léPxE, which is the assumed beginning of all
transient programs), <The move prodram can then proceed to move the
entire memory image down to location ©#, ana pass control to the
starting address ot the memory 1loaa. Wote that if the BIOS 1is
overwritten, or if location ¥ (containing the warm start entry voint)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start seguence,

(All Intormation Contained Herein is Proprietary to Digital Research,)

24

19. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations. The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
| XLT | 0090 | 0000 | 9000 |DIRBUF| DPB | Csv | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (l6-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT Address of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables,

0o00 Scratchpad values for use within the BDOS (initial
value is unimportant).

DIRBUF Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same

scratchpad area.

DPB Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Ccsv Address of a scratchpad area used for software check
for changed disks. This address is different for each
DPH.

ALV Address of a scratchpad area used by the BDOS to keep

disk storage allocation information, This address is
different for each DPH,

Given n disk drives, the DPH's are arranged in a table whose first row

of 16 bytes corresponds to drive 6, with the last row corresponding to
drive n-1., The table thus appears as

(A1l Information Contained Herein is Proprietary to Digital Research.)

25

90 |XLT 00| 09000 | 6006 | 9000 |DIRBUF|DBP 00|CSV 00 |ALV 00|

91 |XLT 01| 0009 | 9900 | 0000 |DIRBUF|DBP @1|CSV ¢l|ALV 01|

n-1|XLTn-1| 9009 | 0003 | 0090 |DIRBUF|DBPn-1|CSVn-1|ALVn-1|

———— ———————— — — - —— . — T ——— D - ——— " — " G _n S > W T D EED T — —— — T

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a @000H returned if the
selected drive does not exist,

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
SELDSK:
;SELECT DISK GIVEN BY BC
LXI H,0060H ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ; LOW (DISK)
MOV H,B ;HIGH(DISK)
DAD H 1 %2
DAD H ;%4
DAD H ;%8
DAD H ;*¥16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH (DISK)
RET

The translation vectors (XLT @@ through XLTn-1l) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1, The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH's, takes the general form

—— —— — s — — —— . D GiD MDY D D i D — — — — — — — . S . TN T i S s = . - ——— T ———— —— - ———— —— - —

—— . — ——————————— — > " - ——— ——— ———— - - —— ———t— — —— — — — ——————— —— - - T

lé6b 8b 8b 8b 16b l6b 8b 8b l6b 16b

where each is a byte or word value, as shown by the "“8b" or "1l6b"
indicator below the field.

SPT is the total number of sectors per track
BSH is the data allocation block shift factor, determined
by the data block allocation size.
(311 Information Contained Herein is Proprietary to Digital Research.)

26

EXM is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive AL@,ALl1 determine reserved
directory blocks,

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which 1is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

where all values are in decimal, The value of EXM depends wupon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024] N/A
2,048 1 g
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value. The values of AL@ and ALl,
however, are determined by DRM, The two values AL# and ALl can
together be considered a string of 16~bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

27

00 01 02 03 04 05 66 07 @8 69 164 11 12 13 14 15

where position 06 corresponds to the high order bit of the byte
labelled AL#, and 15 corresponds to the low order bit of the byte
labelled ALl1. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 66 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,024 32 times # Dbits
2,048 64 times # Dbits
4,096 128 times # Dbits
8,192 256 times # Dbits

16,384 512 times # Dbits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, reqguiring 4 reserved blocks, In
this case, the 4 high order bits of AL# are set, resulting in the
values AL@ = @FPH and ALl = 00H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the last directory
entry number, If the media is fixed, then set CKS = 0 (no directory
records are checked in this case).

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk. This wvalue 1is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections,

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked,

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain, Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be

unigue for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which 1is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+l)/4, then you must reserve (DRM+1l)/4 bytes for
directory check use, If CKS = @, then no storage is reserved,

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV 1is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to
examine this program, and compare the tabular wvalues with the
definitions given above,

(All Information Contained Herein is Proprietary to Digital Research.)

29

11. THE DISKDEF MACRO LIBRARY,.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro 1library is included with all CP/M 2.0
distribution disks,

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0,...
DISKDEF 1,...

DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the <characteristics of
each logical disk, @ through n-1 (corresponding to logical drives A
through P), Note that the DISKS and DISKDEF macros denerate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of vyour BIOS, typically
directly following the BIOS jump vector,

The remaining portion of your BIOS 1is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement, The ENDEF (End of Diskdef) macro generates the

necessary uninitialized RAM areas which are located in memory above
your BIOS,

The form of the DISKDEF macro call is

DISKDEF dn,fsc,1sc,[skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, @ to n-1
fsc is the first physical sector number (8 or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 040

(0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

30

macro invocation. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" 1is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes, No translation table is created if the
skf parameter is omitted (or equal to @). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 10624, 2648, 4096, 8192, or 16384, Generally,
performance increases with 1larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced, The "dks"
specifies the total disk size in "bls" units, That is, if the bls =
2048 and dks = 1006, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024, The value of "dir" 1is the total number of
directory entries which may exceed 255, if desired. The “cks*
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem. If
the disk is permanently mounted, then the value of cks is typically 0,
since the probability of changing disks without a restart is aquite
low. The "Yofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive, Finally, the [08]
parameter is included when file compatibility is reguired with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for ©previous versions, Normally, this
parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i,3
gives disk i the same characteristics as a previously defined drive j.

A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

DISKS 4
DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1

DISKDEF 2
DISKDEF 3

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks,

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU $

DPED: DW XLTG ,000¥H,0000H,0000H,DIRBUF ,DPBO,CSV@ ,ALVE
DPEl: DW XLTO ,0000H,0000H,0000H,DIRBUF,DPBO,CSV]1,ALV]
DPE2: DW XLTY ,0000H,0000H,0090H,DIRBUF,DPBY,CSV2,ALV2
DPE3: DW XLTO ,0060H,0000H,0000H,DIRBUF,DPB@,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive @ through 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the "skf" (skew factor) parameter 1is omitted (or
equal to @), the translation table is omitted, and a 0606H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subseguent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
PBAPH, and simply returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter 1is present, and the (non-zero) table address is placed into
the corresponding DPH's. The table shown below, for example, 1is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT@: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of wuninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(A1l Information Contained Herein is Proprietary to Digital Research,)

32

4C72

BEGDAT EQU $
(data areas)
ENDDAT EQU $
DATSIZ EQU S-BEGDAT

4DBO
913C

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DBOH-1, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information, The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive 4 (d=A,...,P) and displays
the values shown below:

128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Directory Entries
Records/ Extent

Records/ Block

Sectors/ Track

Reserved Tracks

oD QQAR

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full
8-megabyte system).

DISKDEF 6,1,58,,2048,256,128,128,2
r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t

2

DISKDEF 2,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=0, e=128, b=1l6, s=58, t=2

DISKDEF ¥,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research.)

33

12, SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit, The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically.

Upon each call to WRITE, the BDOS provides the following
information in register C:

normal sector write
write to directory sector
write to the first sector
of a new data block

]
1
2

Condition @ occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write 1is to other than the first sector of an unallocated block, or
when the write is not into the directory area, Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. 1In most cases, application programs read or write multiple
128 byte sectors 1in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on vyour CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector, Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on 1line 57, while the SELDSK entry point must be
augmented by the code starting on line 65, Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk-at this point
(it 1is selected 1later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point, SECTRAN performs a trivial trivial function of
returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of vyour
previous READ and WRITE operations,

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector

number) . You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 86 megabyte hard
disk wunit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 460% improvement in overall response,
In this situation, there 1is no apparent overhead involved in
deblocking sectors, with the advantage that wuser programs still
maintain the (less memory consuming) 128-byte sectors. This 1is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

35

APPENDIX A: THE MDS COLD START LOADER
MDS-888 Cold Start Loader for CP/M 2.0

Version 2.0 August, 1979

® we w6 we

209 = false equ 0
ffff = true equ not false
0o0B = testing equ false
if testing
bias equ 03400h
endif
if not testing
P000 = bias equ 0000h
endif
000y = cpmb equ bias ;base of dos load
0806 = bdos equ 806h+bias ;entry to dos for calls
18880 = bdose equ 188@0h+bias ;end of dos load
1600 = boot egu 1600h+bias ;cold start entry point
1663 = rboot eqgu boot+3 ;warm start entry point
3000 org 3066h ;loaded here by hardware
14
1880 = bdosl equ bdose-cpmb
pog2 = ntrks egu 2 stracks to read
0031 = bdoss eqgu bdosl/128 :# sectors in bdos
P19 = bdosf egu 25 :# on track 0
18 = bdosl eau bdoss-bdosf :# on track 1
£f800 = mon89 equ Pf800h ;intel monitor base
Efof = rmon80 equ Gffdfh ;restart location for mon86@
@o78 = base equ #78h ; 'base’ used by controller
pB79 = rtype egu baset+l ;result type
007b = rbyte equ base+3 ;result byte
Po7f = reset equ base+7 ;reset controller
p078 = dstat equ base ;disk status port
4079 = ilow equ base+l ;low iopb address
g@7a = ihigh equ base+2 ;high iopb address
BOff = bsw equ gffh ;boot switch
peo3 = recal equ 3h ;recalibrate selected drive
pBo4e = readf egu 4h ;disk read function
6100 = stack equ 1006h ;use end of boot for stack
rstart:
3000 3160601 1xi sp,stack;in case of call to mon80
: clear disk status
3603 db79 in rtype
3005 db7b in rbyte
: check if boot switch is off
coldstart:
3087 dbff in bsw
3062 858%30 M B8asearisvitch on?

36

300e

3010
3612

3015
3016
3618
3019
3b1b

391¢

3622

3024
3026

3028

302b

3024
302e
3631
3032

3034

3037
363a
383b
303c

303f

da37f

p602
214230

74
d379
7¢c
d37a
ab78
§80830

db79

e6B3
fef?2

d20830

db7b

17
dc@fff
1f
e6le

c20030

110700
19
B5
c21530

c30016

~e wo

tart:

~e ~e [} ~e

waith:

~e ~e ~e ~e e ~eo

-e we

~e weo wo

~e weo

clear the controller

out reset :1logic cleared
mvi b,ntrks ;number of tracks to read
1xi h,iopb®

read first/next track into cpmb

mov a,l

out ilow

mov a,h

out ihigh

in dstat

52t vaite

check disk status

in rtype

ani 11b

cpi 2

if testing

cnc rmon8f ;go to monitor if 11 or 14
endif

if not testing

jnc rstart ;retry the load

endif

in rbyte ;i/0 complete, check status
if not ready, then go to mon8@

ral

cc rmon86 ;not ready bit set
rar ;restore

ani 11110b ;overrun/addr err/seek/crc
if testing

cnz rmon8@ ;go to monitor

endif

if not testing

jnz rstart ;retry the load

endif

1xi d,iopbl ;length of iopb

dad d ;addressing next iopb
dcr b ;count down tracks
jnz start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

3042
3043
3044
3045
3046
3047
woov7

3049
304a
304b
3d4c
3644
304e
3050

80
04

0o
02
booo

80

18
g1
1
800c

iopb#:

iopbl

iopbl:

db
db

db
db
dw
equ

ab
db
db
ab
db
dw
end

80h
readf
bdosg
0

2
cpmb

$—-iopb@

80h
readf
bdosl
1

1

;iocw, no update

;read function

;% sectors to read trk 0
strack @

;start with sector 2, trk ©
;start at base of bdos

ssectors to read on track 1
strack 1
:sector 1

cpmb+bdos@*128 ;base of second rd

38

bol14

4200
3460
3ch6
1600
302c
6002
0064
00806
g0da

4a00
4a03
4a66
4ap9
4dafc

W nnnnon

c3b34a
c3c34a
c3614b
c3644b
c36adb

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

EIEE TR TR LR VIR TP I PR VIR TR R
1)
~
n

cpmb
bdos
cpml
nsects
of fset
cdisk
buff
retry

WO NG NI NG NE N NS NE NG NG NE N NG NG WO NG NS NG NG NS NG N NG WO N v~

wboote:

mds-800 i/o drivers for cp/m 2.0
(four drive single density version)

version 2,0 august, 1979

equ 20 sversion 2.0
copyright (c) 1979

digital research

box 579, vacific grove
california, 939590

org 4a@dh ;base of bios in 20k system

egu 3408h ;base of com cco

equ 3c@6h ;base of bdos in 20k system

equ $-cpmb ;length (in bytes) of cpm system

equ cpml/128;number of sectors to load

egu 2 ;number of disk tracks used by cp
eqgu BO@4h ;address of last logged disk

equ 3380h sdefault buffer address

equ 19 ;max retries on disk i/o before e

perform following functions
boot cold start
wboot warm start (save i/o byte)
(boot and wboot are the same for mds)
const console status
reg-a = 06 if no character ready
reg-a = ff if character ready
conin console character in (result in reg-a)
conout console character out (char in reg-c)
list list out (char in reg=-c)
punch punch out (char in reg-c)
reader ©paper tape reader in (result to reg-a)
home move to track 00

(the following calls set-up the io parameter bloc
mds, which is used to perform subseguent reads an
seldsk select disk given by reg-c (6,1,2...)
settrk set track address (#,...76) for sub r/w
setsec set sector address (1,...,26)

setdma set subsequent dma address (initially 80h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines

jmp boot

jmp wboot
jmp const
jmp conin
jmp conout

39

4aff c36d4b
4al2 c3724b
4al5 c3754b
4al8 c3784b
4alb c37d4b
4ale c3a74b
4a2l c3acdb
4a24 c3bb4b
4a27 c3cldb
4a2a c3cadb
4a2d c376G4b
4a30 c3bldb

4a33+=

4a33+824a00
4a37+0000060
4a3b+6edc73
4a3f+@0dddee
4a43+824200
4ad47+000606
4adb+6edc73
4a4f+3c4dld
4a53+824a00
4a57+060000
4a5b+6edc73
4a5f+6bdddc
4a63+824a00
4a67+0G0O00
4abb+6ed4c73
4a6f+9a4d7b

4a73+=
4a73+1abod
4275463
4a76+67
4a77+60
4a78+£200
4a7a+3f00
4a7c+cl
4a7d4+00
4a7e+l1000
4a80+9200
4a82+=
4aB82+¢1
4a83+67
4a84+vd
4a85+13
4386+19
4a87+05
4a88+0b
4a89+11
4a8a+l7
4a8b+03

-e

dpbase
dpe®:

dpel:

dpe2:

dpe3:

dpbd

x1t9d

jmp
jmp
jmp
jmp
Imp
jmp
jmp
jmp
jmp
jmp
jmp
Jmp

maclib
disks
egu
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
aw
dw
dw
aw
diskdef
equ
dw
ab
db
db
dw
dw
db
db
dw
dw
equ
ab
db
db
ab
db
db
db
db
db
db

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst ;list
sectran

diskdef ;load
4 ; four
S ;base
x1t@,0000h
G000h,0060h
dirbuf,dpbd
csvd,alve
x1tl,0000h
GOO6h,d0006h
dirbuf,dpbl
csvl,alvl
x1t2,0000h
d900h,00600h
dirbuf,dpb2
csv2,alv2
x1t3,0006h
P000Ch, 00060
dirbuf,dpb3
csv3,alv3

9,1,26,6,1024,

26

40

status

the disk definition library
disks
of disk parameter blocks
:translate table
:scratch area
;dir buff,parm block
;check, alloc vectors
stranslate table
;scratch area
;dir buff,parm block
scheck, alloc vectors
stranslate table
;scratch area
;dir buff,parm block
;check, alloc vectors
stranslate table
;scratch area
;dir buff,parm block
;check, alloc vectors
243,64 ,64,0ffset
;disk parm block
;sec per track
:block shift
:block mask
;extnt mask
;disk size-1
;directory max
sallocd
;allocl
;check size
;offset
;translate table

4a8c+09
4a8d4+0f£f
4aB8e+l15
4a8f+02
4a90+08
4a9l1+0e
4a92+14
4a93+1a
4a94+06
4a95+0c
4396+12
4a97+18
4a98+64
4a9%99+pPa
4a9a+10
4a9b+16

4a73+=
BO1lf+=
PO10+=
4a82+=

4a73+=
0B1f+=
PO1G+=
4a82+=

4a73+=
DB1f+=
P310+=
4a82+=

Pafd
@0fc
BOLf3
B@7e

£800
ffof
£863
£806
£809
f80c
£80fF
£812

dpbl
alsl
cssl
x1tl

dpb2
als?2
css2
x1t2

dpb3
als3
css3
x1t3

WO NE Ne Ne We we we we wo

csts

db
ab
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
equ
equ
equ
equ
diskdef
equ
equ
equ
eqgu
diskdef
eqgu
equ
equ
equ

endef occurs at

end of controller - independent code,

9

15
21

2

8

14
20
26

6

12
18
24

4

16
16
22
1,0
dpb@
als®
cssh
x1lto
2,0
dpbg
als@d
cssd
x1t@
3,0
dpb@
alsy
cssi
x1t@

;equivalent parameters

;same allocation vector size
:same checksum vector size
:same translate table

;eguivalent parameters

;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters

;same allocation vector size
;same checksum vector size
;same translate table

end of assembly

the remaini

are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

we also assume the mds system has four disk drive

equ
equ
equ
equ

mds
equ
equ
equ
equ
equ
equ
eqgu
equ

@gfdh
@fch
#f3h

;interrupt revert port
;interrupt mask port
;interrupt control port

$111$1110b;enable rst @ (warm boot),rst 7

0£800h
PEfAfh
P£803h
p£8@6h
P£809h
pf8dch
p£8Ofh
p£812h

41

monitor equates

:mds monitor

;restart mon8@ (boot error)
;console character to reg-a
;reader in to reg-a

;console char from ¢ to console o
;punch char from ¢ to punch devic
;list from ¢ to list device
;console status 06/ff to register

0078
po78
pB79
p07b

@6@79
g07a

yoa4a
poo6
6003
gov4a
0o0d
bo0da

4a9c
4a9f
4aal
4aad
dabl

4ab3
4abb6
4ab9
4abc
4abd
4ace

4ac3

4acé
4dac8

4acH
4acc
dact
4adl
4ad4
4ad6
4add
4adb

4ade
4adf

fdbada
3230

6b2043f
322e30
PdPad o

3160601
219c4da
cdd34b
af

320400
c30fdb

318600

deba
c5

016634
cdbbdb
0eld @
cd7d4b
geldl
cda74b
Beld?2
cdacdb

cl
d62c

base
dstat
rtype
rbyte
ilow
ihigh
readf
writf
recal
iordy
cr

1f

signon:

‘we

pboot:

boot:;

Ne ~e Ne E Ne ~e

wbootf:

~e wo

disk ports and commands

egu 78h ;base of disk command io ports
equ base ;disk status (input)

egu base+l ;result type (input)

equ base+3 ;result byte (input)

equ base+l ;iopb low address (output)
equ base+2 ;iopb high address (output)
egu 4h sread function

equ 6h ;write function

equ 3h ;recalibrate drive

equ 4h ;i/0 finished mask

equ gdh ;carriage return

equ Pah :line feed

;signon message: xxk cp/m vers y.y

db cr,1f,1f

db ‘29" ;sample memory size

db 'k cp/m vers '

db vers/10+'6"','."',vers mod 10+'@’
db cr,1f,0

;print signon message and go to ccp
(note: mds boot initialized iobyte at 606G3h)
1xi sp,buff+806h

1xi h,signon

call prmsg ;print message

Xra a :clear accumulator

sta cdisk ;set initially to disk a
jmp gocpm ;90 to cp/m

loader on track 6, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start,

1xi sp,buff ;using dma - thus 80 thru ff ok £
mvi c,retry ;max retries

push b

;enter here on error retries

1xi b,cpmb ;set dma address to start of disk
call setdma

mvi c,d :boot from drive 0§

call seldsk

mvi c,®

call settrk ;start with track 0

mvi c,2 ;start reading secteor 2

call setsec

read sectors, count nsects to zero
pop b ;10-error count
mvi b,nsects

42

rdsec: ;read next sector

4ael cb5 push b ;save sector count
4ae2 cdcléb call read
4ae5 c2494b jnz booterr ;retry if errors occur
4ae8 2a6cdc 1hld iod ;increment dma address
4aeb 1180600 1xi d,128 ;sector size
4aee 19 dad d :incremented dma address in hl
4aef 44 mov b,h
4af@ 4d mov c,1 ;ready for call to set dma
4afl cdbbdb call setdma
4afd4 3abbdc lda ios ;sector number just read
4af7 fela cpi 26 ;read last sector?
4af9 da@54b jc rdl
: must be sector 26, zero and go to next track
4afc 3abadc lda iot ;get track to register a
4aff 3c inr a
4bgo 4f mov c,a ;ready for call
4b@1 cda74b call settrk
4b04 af Xra a :clear sector number
4bP5 3c rdl: inr a ;to0 next sector
4bd6 4f mov c,a ;ready for call
4b@7 cdacdb call setsec
4bida cl poD b srecall sector count
4bdb 05 dcr b ;done?
4bfc c2elda jnz rdsec
: done with the load, reset default buffer address
gocpm: ; (enter here from cold start boot)
: enable rstfh and rst7
4bgf £3 di
4bl@ 3el?2 mvi a,lzh ;initialize command
4bl2 d3fd out revrt
4bl4 af Xra a
4bl5 d3fc out intc ;cleared
4bl7 3eTe mvi a,inte ;rst® and rst7 bits on
4bl19 d3fc out intc
4blb af Xra a
4blc d3£3 out icon ;interrupt control

~e ~o

set default buffer address to 86h

4ble 018009 1xi b,buff
4b21 cdbbédb call setdma
; reset monitor entry points
4b24 3ec3 mvi a,jmp
4b26 320000 sta Y
4029 21634a 1xi h,wboote
4b2c 220100 shld 1 ;jmp wboot at location #0
4b2f 320500 sta 5
4b32 21063c 1xi h,bdos
4b35 220600 shld 6 ;jmp bdos at location 5
4b38 323800 sta 7*8 ;Jmp to mon8# (may have been chan
4b3b 2100f£f8 1xi h,mon8#4
4b3e 223900 shld 7*8+1

-e

leave iobyte set

43

previously selected disk was b, send parameter to

~e

4b4l 3ad400 lda cdisk :last logged disk number
4b44 4Af mov c,a ;send to ccp to log it in
4b45 f£fb el
4b46 c30034 jmp cpmb
: error condition occurred, print message and retry
booterr:
4b49 cl pop b ;recall counts
4bda Pd decr C
4bdb cab524b jz booterf
; try again
4bde c5 push b
4b4f c3c94a jmp wboot@
booter@:
: otherwise too many retries
4b52 215b4db 1xi h,bootmsg
4b55 cdd34b call prmsg
4b58 c30fff jmp rmon86 ;mds hardware monitor
bootmsg:
4b5b 3f626f4 db '?boot’',0

onst: ;console status to reg-a
(exactly the same as mds call)

~e () ~e wo

4b61 c312£8 jmp csts

conin: ;console character to reg-a
4b64 cdp3fs call ci
4b67 e67f ani 7fh ;remove parity bit
4b69 c9 ret

conout: ;console character from ¢ to console out
4bba c309£8 jmp co

list: :1list device out

; (exactly the same as mds call)
4b6d c30ff8 jmp lo

listst:

;return list status

4b70 af Xra a
4b71 c9 ret salways not ready

punch: ;punch device out

: (exactly the same as mds call)
4b72 c30cf8 jmp po

reader: ;reader character in to reg-a

; (exactly the same as mds call)
4b75 c306£8 jmp ri

home: ;move to home position

44

4b78
4b7a

4b7d
4b8Y
4p81
4b83

4b84
4b86
4b89
4b8a
4b8c
4b8d
4b99

4b92
4b93
4b96
4b97
4b99
4b9a

4B38
4b9%e
4b9f
4bad
4bal
4ba?2
4bab
4ba6

4ba’
4baa
4bab

4bac
4dbat
4bbp

4bbl
4bb3
4bb4
4bb5
4bbé

1BB3

bedd
c3a74b

2100066
79
fefld
ag

e60?2
32664c
79
e601
b7
cal%24b
3e30

47
21684c
Te
e6ct
b

77
5200
29

29

29

29
11334a

19
c9

216adc
71
c9

2lobdc
71
c9

60w
eb

29

Te
326b4dc

&5

~e

mvi
jmp

seldsk:
1xi
mov
cpi
rnc

~e

ani
sta
mov
ani
ora
jz

mvi

setdrive:

mov
1xi
mov
ani
ora
mov

mov
mvi

dad
dad
dad
dad
1xi
dad
ret

:select

treat as track 60 seek

c,d
settrk

disk given by register c

h,00066h ;return 9400 if error
a,c
ndisks ;too large?
:leave hl = G000
16b ;00 08 for drive 90,1 and 16 10 fo
dbank ;to select drive bank
a,c ;00, 61, 10, 11
1b smds has #,1 at 78, 2,3 at 88
a :result 0672
setdrive
a,f061160008b ;selects drive 1 in bank
b,a ;save the function
h,iof ;io function
a,m
11661111b ;mask out disk number
b ;mask in new disk number
m,a ;save it in iopb
B G shl=disk number
h s *2
h : %4
h ;%8
h :*16
d,dpbase
d :hl=disk header table address

14
settrk: ;set track address given by c

1xi
mov
ret

.
14

setsec:
1xi
mov
ret

sectran:

mvi

xchg

dad
mov
sta

mo
re

;set

h,iot
m,C

sector number given by c

h,ios
m,cC

;translate sector bc using table at de

b,d ;double precision sector number i
;translate table address to hl

b ;translate(sector) address

a,m stranslated sector number to a
ios
1,a sreturn sector number in 1

setdma: ;set dma address given by regs b,c

45

4bbb
4bbc
4bbd
4bcf

4bcl
4bc3
4bcé6
4bc9

4bca
4bcc
4bcf
4bd2

4bd3
4bd4
4bd5

4bd6
4bd7
4bds
4bdb
4bdc
4bdd

4bed
4be3
4bed
4beb
4be’

4be8
4dbea
4bed
4bee
4bef

4bfo
4bf2

4bf5

4bf8

69
60
226cdc
c9

Pedd
cdef 4b
cdf@d4b
c9

fef6
cdef4b
cdfd b
c9

Te
b7
c8

e5
4f
cd6adb
el
23
c3d34b

21684c
Te
e6f8
bl

77

e620
216bdc
b6

77

c9

deba

cd3fdc

cddcdc

3a664c

’
read:

~e wo

write:

T ~e ~e e

rmsgqg:

~e

r
setfunc:

.
I

—-e we

4

waitio:

rewait:

.
14

~e

mov 1l,c
mov h,b
shld iod
ret

;read next disk record (assuming disk/trk/sec/dma

mvi c,readf ;set to read function

call setfunc

call waitio ;perform read function

ret ;may have error set in reg-a

;disk write function

mvi c,writf ,
call setfunc ;set to write function
call waitio

ret ;may have error set

utility subroutines
;print message at h,1 to 0

mov a,m

ora a ;zero?
rz

more to print

push h

mov c,a

call conout

pop h

inx h

jmp prmsg

set function for next i/o (command in reg-c)

1xi h,iof :io function address

mov a,m ;get it to accumulator for maskin
ani 111110080b ;remove previous command
ora c ;set to new command

mov m,a ;replaced in iopb

the mds-806 controller req's disk bank bit in sec
mask the bit from the current i/o function

ani $01000060Db :mask the disk select bit
1xi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a ;set disk select bit on/o
ret

mvi c,retry ;max retries before perm error

start the i/o function and wait for completion

call intype ;in rtype
call inbyte ;clears the controller
lda dbank :set bank flags

46

4bfb
4bfc
4bfe
4cp@
4c@3
4c@5
4cho
4cP8

4cidb
4c@d
4che

4clo
4cl3
4cl5

4cl8

4clb
4cla

4c20
4c21

4c24
4c27
4c28
4c2b
4c2c
4cle

4c31

4c32
4c35

b7
3e67
goedc
c2@bdc
d379
78
d37a
c31d4c

d389
78
d38a

cd594c
e6d4
cald4c

cd3fdc

fed?2
ca324c

b7
c2384c

cdd4cdc
17
da324c
1f
e6fe
c2384c

c9

cddcdc
c3384c

iodrl:

waitf:

~e w~o

~e wo ~e wo

-e

~e e

wready:

error:

NO Ne N Ne Ne N6 Ne Ne Ne we F ~e

ora a :zero if drive 6,1 and nz

mvi a,iopb and @ffh ;low address for iovb

mvi b,iopb shr 8 shigh address for iopb
jnz iodrl ;drive bank 17

out ilow ;low address to controlle
mov a,b

out ihigh ;high address

jmp waitg ;to wait for complete

:drive bank 1

out ilow+16h ;88 for drive bank 10
mov a,b

out ihigh+16h

call instat ;wait for completion
ani iordy ;jready?

jz waitg

check io completion ok

call intype ;must be io complete (80)
@0 unlinked i/o complete, Pl linked i/o comple
10 disk status changed 11 (not used)

cpi 16b ;ready status change?

jz wready

must be 08 in the accumulator
ora a
jnz werror ;some other condition, re

check i/o error bits

call inbyte

ral

jc wready ;unit not ready
rar

ani 11111116b ;any other errors?
jnz werror

read or write is ok, accumulator contains zero
ret

;hot ready, treat as error for now
call inbyte ;clear result byte
jmp trycount

;return hardware malfunction (crc, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
- deleted data (accepted as ok above)

- Crc error

- seek error

address error (hardware malfunction)

- data over/under flow (hardware malfunct
- write protect (treated as not ready)

- write error (hardware malfunction)

- not ready

Nooibd wihhES
1

47

4c38
4c39

4c3c
4c3e

4c3f
4cd?2
4c43
4c46
4c48
4c49
4cdb

4c4c
4caf
4c50
4c53
4c55
4¢c56
4c58

4c59
4c5c
4c5d
4c60
4c62
4c63
4c65

4c66

4co67
4c68
4c69
4coba
4c6b
4cobe

pd
c2f24b

3edl
c9

3ab664dc
b7
c2494c
db79
c9
db89
c9

3ab64c
b7
c2564c
db7b
c9
db8b
c9

3a664dc
b7
c2634c
db78
c9
db88
cY

0o

80
04
1
B2
61
8000

Ne (T e N0 Ne Ne No o~

~e “s

H
;
1

intypl:

inbyte: lda

inbytl:

14
instat: lda

instal:

.
[4
.
14
.
’
.
’
d

iopb:

iof:
ion:
iot:
ios:
iod:

~e we ~e

ntype:

bank:

(accumulator bits are numbered 7 6 5 4 3 2 1 @)

it may be useful to filter out the various condit
but we will get a permanent error message if it i

recoverable,

in any case, the not ready conditio

treated as a separate condition for later improve

rycount:

register ¢ contains retry count, decrement 'til z
dcr c
jnz rewait ;for another try

cannot recover from error

mvi a,l
ret

rerror code

intype, inbyte, instat read drive bank 08 or 10

lda dbank
ora a
jnz intypl ;skip to bank 10
in rtype
ret
in rtype+léh ;78 for 6,1 88 for 2,3
ret
dbank
ora a
jnz inbytl
in rbyte
ret
in rbyte+lgh
ret
dbank
ora a
jnz instal
in dstat
ret
in dstat+108h
ret

data areas (must be in ram)

db 0

;disk bank 08¢ if drive 6,1
; 19 if drive 2,3

;10 parameter block

db 80h ;normal i/o operation

db readf sio function, initial read
db 1 ;number of sectors to read
db offset ;track number

db 1 ;sector number

dw buff ;io0 address

define ram areas for bdos operation

48

endef

4cbe+= begdat equ $

4cbe+ dirbuf: ds 128 ;directory access buffer
4cee+t alvp: ds 31

4dgd+ csvi: ds 16

4dla+ alvl: ds 31

4d3c+ csvl: ds 16

4d4c+ alv2: ds 31

4d6b+ csv2: ds 16

4d7b+ alv3: ds 31

4d9a+ csv3: ds 16
4daa+= enddat equ $

@1l3c+= datsiz equ $-begdat
4daa end

49

0014

Po00
3400
3cl6
4a00
0004
0003

4a00
982c

4alG@
4a03
4206
4a@9
4dabc
4dagf
4al2
4al5
4318
4alb
dale
4a2l
4a24
4a27
4a2a
4a2d
4a30

4a33
4a37
4a3b
4a3f

4a43
4a47
4ad4b
4adf

4a53
4a57
4a5b
4a5f

c39cda
c3abda
c3114b
c3244b
c3374b
c3494b
c34d4b
c34f4b
c3544b
c35a4db
c37d4b
c3924b
c3addb
c3c34b
c3d64b
c34b4b
c3a74b

734a00
pOGo00o
fB84c8d
ec4d7g

734a00
PR0R00
f@4c8d
fc4d8f

734200
000000
f@4c8d
@cdeae

Ne e e ~e T oNe N

b
c
b
b
C
i

n

~e “eo

w

~e Q) ~e ~e e ~o

~e

size

ias
cp
dos
ios
disk
obyte

sects

boote:

pbase:

APPENDIX C: A SKELETAL CBIOS
skeletal cbios for first level of cp/m 2.0 altera
equ 20 ;cp/m version memory size in kilo

"bias" is address offset from 34@66h for memory sy
than 16k (referred to as "b" throughout the text)

eqgu (msize=-20)*1024

equ 34@0h+bias ;base of ccp

equ ccp+806h ;base of bdos

equ ccp+l606h 1base of bios

equ B@04h ;current disk number #=a,...,15=p
equ @@@3h ;intel i/o byte

org bios ;origin of this program

equ ($-ccp) /128 swarm start sector count

jump vector for individual subroutines

jmp boot ;cold start

jmp wboot ;warm start

jmp const ;console status

jmp conin ;console character in
jmp conout ;console character out
jmp list ;list character out
jmp punch ;punch character out
jmp reader ;reader character out
jmp home ;move head to home positi
jmp seldsk ;select disk

jmp settrk ;set track number

jmp setsec ;set sector number

jmp setdma ;set dma address

jmp read ;read disk

jmp write ;write disk

jmp listst ;return list status
jmp sectran ;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00

dw trans,00060h
dw P00Bh,0000h
dw dirbf,dpblk
dw chk0@,all00
disk parameter header for disk @1
dw trans,00008h
dw 0000h,0000h
dw dirbf,dpblk
dw chk@l,alldl
disk parameter header for disk 02
dw trans,8000h
dw P0B0h,0000h
aw dirbf ,dpblk
dw chk@2,all@g2

50

4a63
4a67
4a6b
4a6f

1377
4a7lb
4a7f
4a83
4a87
4a8b

4a8d
4a8f
4a940
4a91
4392
4a94
4a96
4a97
4398
4a%a

4a9c
4a9d
4aad
4aa3

4aab
4aa9
4aab
4aae

4abl
4ab3
4abs

4ab7

4aba
4abb
4abc
4abd
4abe
4acl

734206
bo0o0d0
£f@4c8d
lcdecd

158208

170309
150268
141a06
121804
1816

1a09
g3
a7
Ga
£200
3f00
cg
0o
1006
B200

af

3203009
3204060
cl3efda

318000
0edd

cd5a4db
cd544b

P62cC
fel?d
1662

210034

c5
as
eb
4a
cd924b
cl

e

~e “wo

trans:

épblk:

O ~e ~o No e

O
o
o

’
wboot:

~e

~e

loadl:

disk parameter header for disk 63

dw trans,00060h

dw G06Oh,0000h

dw dirbf,dpblk

dw chk@3,all@3

sector translate vector

48 3575131117 iSSSEQEE 1:2:3:8

db 23,3,9,15 :sectors 9,16,11,12
db 21,2,8,14 :sectors 13,14,15,16
db 20,26,6,12 ;sectors 17,18,19,20
db 18,24,4,10 :ssectors 21,22,23,24
db 16,22 ;sectors 25,26

;disk parameter block, common to all disks
dw 26 ;sectors per track
db 3 ;block shift factor
db 7 :block mask

db @ ;null mask

dw 242 ;disk size-1

aw 63 ;directory max

db 192 ;alloc 0

db a ;alloc 1

dw 16 scheck size

aw 2 strack offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi

Xra a :zero in the accum

sta iobyte ;jclear the iobyte

sta cdisk ;select disk zero

jmp gocpm ;initialize and go to cp/
;simplest case is to read the disk until all sect
1xi sp,80h ;use space below buffer £
mvi c,0 ;select disk 0

call seldsk

call home ;go to track 60

mvi b,nsects ;b counts # of sectors to
mvi c,d ;¢ has the current track
mvi d,2 ;d has the next sector to

note that we begin by reading track #, sector 2 s
contains the cold start loader, which is skipped

1xi h,ccp i ;base of cp/m (initial lo
;load one more sector

push b ;save sector count, current track
push d ;save next sector to read

push h ;save dma address

mov c,d ;get sector address to register c
call setsec j;set sector address from register
pop b ;recall dma address to b,c

51

4ac2
4ac3

4acé
4acH
4acb

4dace
4acft
4ad2
4ad3
4ad4
4ad5
4ad6

4ad9
4ada
4adb
4add

4aed
4ae?

4ae3
daed
4aeb
4aeb
4ae9
daea
daeb
daec

daef
4afl
4af4
4af’?

4afa
4afd
4bpH @

4b@3
4b06

4b09
4bla
4b@d
4bPe

c5
cdaddb

cdc34b
fego
c2a64da

el
118000
19
dl
cl
@85
caefda

14

7a
felb
dabada

1601
@c

c5
das
e5
cd7d4b
el
dl
cl
c3bada

3ec3

320000
21034a
220100

320500
21963c
220600

018000
cdadé4b

fb
3a0400
4f
c30034

~e we

~e weo

~e weo

~e weo

~e weo

0] ~e ~e
o
3
=

~e

~e

LX)

push b ;jreplace on stack for later recal
call setdma ;set dma address from b,c

drive set to @, track set, sector set, dma addres
call read

cpi @dh ;any errors?

jnz wboot ;retry the entire boot if an erro

no error, move to next sector

pop h ;recall dma address

1xi d,128 ;dma=dma+128

dad d :new dma address is in h,l1l

pop d ;recall sector address

pop b ;recall number of sectors remaini
dcr b ;sectors=sectors-1

jz gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan

inr d

mov a,d ;sector=27?, if so, change tracks
cpi 27

jc loadl ;carry generated if sector<27

end of current track, go to next track

mvi d,l1 ;begin with first sector of next
inr o ;track=track+l

save register state, and change tracks
push b

push d

push h

call settrk ;track address set from register
pop h

pop d

pop b

jmp loadl ; for another sector

end of load operation, set parameters and go to cC

mvi a,éc3h ;c3 is a jmp instruction

sta Y] ; for jmp to wboot

1xi h,wboote ;wboot entry point

shld 1 ;set address field for jmp at 0
sta 5 ;for jmp to bdos

1xi h,bdos ;bdos entry point

shld 6 ;address field of jump at 5 to bd
1xi b, 86h ;default dma address is 80h

call setdma

el ;enable the interrupt system

lda cdisk ;get current disk number

mov c,a :send to the ccp

jmp ccp ;go to cp/m for further processin

52

4bl1l
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b43

4b49
4bda

4bdb
4b4dc

4b4d
4bde

4b4f
4b51
4b53

4b54
4b56
4b59

4b5a
4b5d
4b5e
4b61l

3ed@d
c9
e67f
c9

79

cY

79

c9

af

c9

79

c9
3ela
e67f
c9
fedd
cd7d4b
c9
2100080
79
32efdc
fell 4

onst:

conout:

= ~e
(™S
03]
t
)

=~

istst:

punch:

eader:

g o~ ~o

~e 1 ~e ~e e we ~e o

seldsk:

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

;console status, return @Gffh if character ready,

ds 16h ;space for status subroutine
mvi a,fdh
ret

:console character into register a

ds 10h ;space for input routine
ani 7fh ;strip parity bit
ret

;console character output from register c

mov a,c ;jget to accumulator
ds 16h ;space for output routine
ret

:1list character from register c
mov a,c scharacter to register a
ret ;null subroutine

;return list status (6 if not ready, 1 if ready)
Xra a :0 is always ok to return
ret

;punch character from register ¢

mov a,c ;character to register a
ret ;null subroutine

;read character into register a from reader devic

mvi a,lah ;enter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with param

mvi c,d :select track @
call settrk
ret ;we will move to @@ on first read

;select disk given by register c

1xi h,08000h ;error return code

mov a,c

sta diskno

cpi 4 smust be between # and 3

53

4b63
4b64

4bbe
4b71
4b72
4b74
4b75
4b76
4b77
4b78
4b7b
4b7c

4b7d
4b7e
4b81
4b91

4b92
4b93
4b96
4bab

4ba’7
4ba8
4ba9
4baa
4bac

4bad
4bae
4baf
4bb2
4bc2

4bc3
4bd3

4bdé

3Jaefic
6f
2600
29

29

29

29
11334a
19

c9

79
32e94c

c9

79
32ebdc

c9

eb
g9
6e
2600
c9

69
60
22ed4c

c9

c3e64b

-e

~e

14
settrk:

sectran:

rnc ;no carry if 4,5,...
disk number is in the proper range
ds 10 ;space for disk select

compute proper disk parameter header address
lda diskno

mov 1,a :1=disk number #,1,2,3

mvi h,? +high order zero

dad h s %2

dad h 1 %4

dad h :*8

dad h :*16 (size of each header)
1xi d,dpbase

dad d ;hl=_,dpbase(diskno*16)

ret

;set track given by register ¢

mov a,c

sta track

ds 106h :space for track select
ret

;set sector given by register c

mov a,c

sta sector

ds 106h ;space for sector select
ret

;translate the sector given by bc using the
;translate table given by de

xchg shl=_trans

dad b :hl=,trans(sector)

mov l,m sl = trans(sector)

mvi h,o +hl= trans(sector)

ret ;swith value in hl

;set dma address given by registers b and ¢
mov 1l,c ;low order address

mov h,b ;high order address

shld dmaad :save the address

ds 16h ;space for setting the dma addres
ret

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)

ds 16h ;set up read command

jmp waitio ;to perform the actual i/o

;perform a write operation
ds 10h ;set up write commanu

;enter here from read and write to perform the ac

operation, return a @@h in register a if the ope
properly, and @lh if an error occurs during the r

54

4beb
4ceb
4ce8

4ced
4ceb
4ced
4cef

4cfo
4cfd
4470
448f
4dae
4dcd
4dec
4dfc
4edc
4elc

de2c
B13c
4e2c

3edl
c9

Ne Ne w8 wo o

* we we we we wo

track:
sector:
dmaad:
diskno:

’

begdat
dirbf:
all@gad:
allpl:
allg2:
all@g3:
chk@d0:
chk@l:
chk@?2:
chk@3:

enddat
datsiz

in this case, we have saved the disk number in "d

ds
mvi
ret

256
a,l

the track number in *track' (08-76
the sector number in ‘'sector® (1l-
the dma address in 'dmaad’ (0-655
;space reserved for i/o drivers
s;error condition

;replaced when filled-in

the remainder of the cbios is reserved uninitiali
data area,
system memory image (the space must be available,
however, between "begdat" and "enddat").

and does not need to be a part of the

;two bytes for expansion
;two bytes for expansion
;direct memory address
;disk number 6-15

scratch ram area for bdos use

ds 2
ds 2
ds 2
ds 1
eqgu $
ds 128
ds 31
ds 31
ds 31
ds 31
ds 16
ds 16
ds 1o
ds 16
equ $
equ

end

;beginning of data area
;scratch directory area
sallocation vector
sallocation vector
sallocation vector
;allocation vector
scheck vector @
;check vector 1
;check vector 2
s;check vector 3

[OSIN O i S

:end of data area

$—-begdat;size of data area

55

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

; combined getsys and putsys programs from Sec 4,
H Start the programs at the base of the TPA

3100 org 3100h

gRl4d = msize equ 20 ; size of cp/m in Kbytes

“bias" is the amount to add to addresses for > 20k
(referred to as "b" throughout the text)

-e we

2000 = bias equ (msize-20) *1024
3400 = ccp equ 3400h+bias
3cf@ = bdos equ ccp+0800h
4apgp = bios equ ccp+160@h

; getsys programs tracks # and 1 to memory at

: 3880h + bias

: register usage

: a (scratch register)

: b track count (@,..76)

: c sector count (1...26)

: d,e (scratch register pair)

: h,1 load address

H sp set to stack address

gstart: ; start of getsys
0100 318@33 1xi sp,ccp-00@80h : convenient plac
0103 218033 1xi h,ccp-00880h : set initial loa
0106 0600 mvi b,0 ; start with trac

rdStrk: : read next track
0108 Qedl mvi c,l ; each track star

rdS$sec:
Pl0a cdooo3 call readS$sec ; get the next se
010d 118000 1xi d,128 ; offset by one s
9110 19 dad d : (hl=h1+128)
111 Oc inr c : next sector
9112 79 mov a,c : fetch sector nu
#3113 felb cpi 27 : and see if la
9115 dada@dl jc rdsec ; <, do one more

;s arrive here at end of track, move to next track
0118 04 inr b : track = track+l
0119 78 mov a,b ; check for last
flla fe@2 cpi 2 ; track = 2 ?
@llc dap8al jc rdStrk : <, do another

; arrive here at end of load, halt for lack of anything b
@11f fb ei
3120 76 hlt

56

0200

0200
0203
0206

0208

020a
9284
0210
0211
p212
p213
p215

7218
3219
g21la
B2lc

p21f
8220

0300

0300
0301
0302

0342
0343

318033
218033
P600

dedl

cdoog4
118000
19

dc

79
felb
dadaf?2

g4

78
fef2
dap8n2

fb
76

c5
e5

el
cl

~e we wo

org ($+8100h) and Offo6h
putS$sys:
1xi sp,ccp-0080h
1xi h,ccp-0080h
mvi b,d
wrStrk:
mvi c,l
wr$sec:
call writeS$sec
1xi d,128
dad d
inr c
mov a,c
cpi 27
jc wrSsec

arrive here at end of track, move to

-e

inr b

mov a,b
cpi 2

jc wrstrk

done with putsys, halt for lack

-e

ei
hlt

~e we wo

~e

e Ne wE WO N9 we s

putsys program, places memory image starting at
3880h + bias back to tracks @ and 1
start this program at the next page boundary

convenient plac
start of dump
start with trac

start with sect

write one secto
length of each
<hl>=<hl> + 128
<c> = <Ke> + 1
see if

past end of t
no, do another

next track

~o we we we

track = track+l
see if

last track
no, do another

of anything bette

; user supplied subroutines for sector read and write

move to next page boundary

e

org ($+0108h) and @f£fO0h

read$sec
read the next sector
track in ,

sector in <c¢>
dmaaddr in <hl>

e we wo we oo

push b
push h
; user defined read operation goes here
ds 64
pop h
pop b

57

w344

0400

0400
p4p1
0402
0442

0443
0444

p445

c9

c5
e5

el
cl
c9

ret
org ($+0100h) and Gff@0h
writeSsec:

; Same parameters as read$sec

push b
push h
; user defined write operation goes here
ds 64
pop h
pop b
ret

; end of getsys/putsys program

end

58

’

another page bo

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 00, sector 91 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro-
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running) . the cold start loader brings the cp/m system
into memory at "loadp" (3406h + "bias"). 1in a 20k
memory system, the value of “bias" is 06006h, with large
values for increased memory sizes (see section 2), afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias." the cold start loader is not used un-
til the system is powered up again, as long as the bios
is not overwritten, the origin is assumed at @896h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area

WO NP MO WE NE NP NG NE NG NG NG NG NG NE N Ne ws wo

is used.

BoG0O org g ; base of ram in cp/m
pol4a = msize equ 20 ; min mem size in kbytes
gooe = bias egu (msize-20) *1024 ; offset from 20k system
34060 = ccp equ 34@0h+bias ; base of the ccp
4apg = bios equ ccp+16@0h ; base of the bios
300 = biosl equ ¥360h ; length of the bios
4a0@g = boot egu bios
1900 = size equ bios+biosl-ccp ; size of cp/m system
pP32 = sects equ size/128 ; # of sectors to load

: begin the load operation

cold:
go00 610200 1xi b,2 ; b=@, c=sector 2
@d68063 1632 mvi d,sects ; d=# sectors to load
@965 210034 1xi h,ccp ; base transfer address

lsect: ; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hl>

Ne e Ne w6 we N wo

branch to location "cold" if a read error occurs

59

poos8
0B0b

0o6b
Boec

d06f
0072

pB73
0074
2075
a7

B@7a
Bo7c
@74
0080

c36bd0

15
caflfda

318000
39

fgc

79
felb
dap 80w

gedl
G4
c30800

~e WO we we we

khkhkkkkkhkhkhkkhhkkhkkhhkhkhhkhkkhkhhkhkhkhkhkhkkhkkkkhkhkkkhkkkikkkkdkkx
*

* user supplied read operation goes here...
*

kkkhkhkhkhkkhkkhhkkkkhhkkhkhkkkkhkhkkhkkhkhhhkhkhkkhhkhkhkkkhkkkhkhkhkhkk

Jmp past$patch ; remove this when patche
ds 60h
past$patch:
; go to next sector if load is incomplete
dcr d ; sects=sects-1
jz boot ;: head for the bios

~e o w0 we

-e

more sectors to load

we aren't using a stack, so use <sp> as scratch registe

to hold the load address increment

1xi sp,128 ; 128 bytes per sector
dad sp ; <hl> = <hl> + 128

inr c ; sector = sector + 1
mov a,c

cpi 27 : last sector of track?
jc lsect ; no, go read another

end of track, increment to next track

nvi c,l : sector =1

inr b ; track = track + 1
jmp lsect ; for another group
end : of boot loader

60

—
e GOV AU S WN

12:

WO MO MO NG NE MO WO MO NE WO WP WE W WO WO NE NG NG WP NS WO VO Np e WO WO WO N NG NE NG Ne WO NP WO WE WO NP N _NE WO W N N W WS NE N N W Ne v wo

APPENDIX F:, (P/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-definition library

Copyright (c) 1979
Digital Rzsearch
Box 5795

pPacific Grove, CA
93950

CP/M logicel disk drives are defined using the

macros given below, where the sequence of calls
is:

disks n
diskdef oDarameter-list-9
diskdef parameter-list-1

diskdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=¢,1,...,n-1)

each parameter-list-i takes the form
dn,fsc,lsc, [skt] ,bls,dks,dir,cks,ofs, [¥]

where

dn is the disk number 6,1,...,n-1

fsc is tue tirst sector number (usually & or 1)
1sc is tne last sector number on a track

skE is optional "skew factor" for sector translate
bls is tne data block size (1024,2048,...,16384)
dks is tne disk size in bls increments (word)

dir i3 tne number of directory elements (word)

cks is ta¢ number of dir elements to checksum

ofs is the number of tracks to skip (word)

(0] is an optional 8 which forces l6K/directory en

for convenience, the form

dn,dm
defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four drive CP/M system is defined by

disks 4

diskdef »,1,26,0,1024,243,64,04,2
dsk set @

rept 3
dsk set dsk+1

diskdef %dsk,®

endm

endet

the value of “"begdat" at the end of assembly defines t

61

59:

skhdr

Qi~e O, e Ne S N8 Se Ne N o

;
pe&dn:

-
’

disks
i
ndisks
dpbase
i

dsknxt

dasknxt

dpbhdr
dpb&dn

~e

- Q\O
-e CL
o

~e O~
Q
%

o Ne N0) ~e
Q
o

~e wo weo

gcdm
gcdn
gcdr

gcdx
gcdr

beginning of the uninitialize ram area above the bios,
while the valve of "enddat" defines the next location
following the end of the data area. the size of this
area is given by the value of "datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

macro dn
define a single disk header 1list

dw xlt&dn,00006h ;translate table

dw OB0Uh,vd06h :scratch area

dw dirbuf,dpb&dn ;dir buff,parm block
dw csv&cn,alvadn scheck, alloc vectors
endm

macro nd
define nd disks

set nd ;;for later reference

equ S ;base of disk parameter blocks
generate the rnd elements

set 7]

rept nd

dskhdar %dsknxt

set dsknxc+l

endm

endm

macro dn
equ $;disk parm block
endm

macro data,comment

define a db statement

db data comment
endm

macro data,comment

define a dw statement

dw data comment
endm

macro m,n

greatest common divisor of m,n

produces value acdn as result

(used in sector translate table generation)

set m ;;variable for m
set n ;;variable for n
set] ;;variable for r

rept 65535

set gcdm/gcdn

set gcdm - gcdx*gcdn
if gcdr = @

exitm

endif

62

129: gcdm set gcdn

116: gcdn set gcdr

111: endm

112: endm

113: ;

114: diskdef macro dn,fsc,1sc,skf,bls,dks,dir,cks,ofs,kl6
115: ;; generate the set statements for later tables
lle: if nul lsc

117: ;; current disk dn same as previous fsc

118: dpb&dn equ dpb&fsc ;eauivalent parameters

119: als&dn eqgu als&fsc ;same allocation vector size
120: css&dn equ css&fsc ;same checksum vector size
121: xlt&dn equ xlts&fsc ;same translate tabple

122: else

123: secmax set lsc-(fsc) : ;Ssectors #,..secmax
124: sectors set secmax+l; ;number of sectors

125: als&dn set (dks)/8 ;;size of allocation vector
126: if ((dks) mod &) ne ¥

127: als&dn set als&dn+l

1238: endif

129: css&dn set (cks)/4 ;;number of checksum elements
13v: ;; generate the block shift value

131: blkval set bls/128 ;;number of sectors/block
132: blkshf set g ; scounts right 0's in blkval
133: blkmsk set 4 ;;r0ills with 1's from right
134: rept 16 ;;once for eacn bit position
135: if blkval=1

136: exitm

137: endif

138: ;; otherwise, high order 1 not found yet

139: blkshf set blkshf+1

146: plkmsk set (blkmsk shl 1) or 1

141: blkval set blkval/2

142: endm

143: ;; generate the extent mask byte

l44: blkval set bls/1624 ; snumber of kilobytes/block
145: extmsk set] ;3f£iil from right witn 1's
146: rept 16

147: if blkval=1

148: exitm

149: endif

1590: ;; otherwise more to shift

151: extmsk set (extmsk shl 1) or 1

152: plkval set blkval/2

153: endm

154: ;; may be double byte 1i1llocation

155: if (dks) > 256

156: extmsk set {extmsk shr 1)

157: endif

158: ;; may be optional [#] in last position

159: if not nul k16

160: extmsk set klé

l61: endif

162: ;; now generate directory reservation bit vector
163: dirrem set dir ;:# remaining to process

63

164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
186:
181:
182:
183:
184:
185:
186:
187:
183:
189:
1996
191:
192:
193:
194:
195:
196:
197:
198:
199:
200
291:
202:
203:
204 :
285:
206
207:
208
299
210:
211:
212:
213:
214:
215:
216:
217:
2138:

dirbks
dirblk

irblk

Q~e ~e

dirrem

dirrem

L)
r s

xlt&dn

xlt&dn

i
nxtsec
nxtbas

i
neltst
i
HH
x1lt&dn
nxtsec

nxtsec

nelts

set bls/32 ;;number of entries per block
set) 7:£il1l with 1's on each loop
rept 16

if dirrem=49

exitm

endif

not complete, iterate once again
shift right and add i1 high order bit
set (dirblk shr 1) or 8908h

if dirrem > dirbks

set dirrem~-dirbks

else

set a

endif

endm

dpbhdr dn ;19e2nerate equ §

ddw $sectors,<;sec per track>
ddb $blkshf,<;blcck shift>

ddb $blkmsk,<;blcck mask>

ddb $extmsk,<;extnt mask>

ddw 3(dks)-1,<;aisk size=-1>

ddw $(dir)-1,<;airectory max>
ddb %dirblk shr 8,<;alloci>

ddb $dirblk ana 0ffh,<;allocl>
ddw %(cks)/4,<;check size>

ddw 3ofs,<;offset>

generate the translate table, if requested
if nul skf

eqgu 0 s:no xlate table
else

if skf = @

equ) ;no xlate tabple
else

generate the translate taple

set] ;;uext sector to fill
set %) ;;mcves by one on overflow
gcd $sectors,skf

gcdn = gcd(sectors,skew)

set sectors/gcdn

neltst is number of elements to generate
before we overlap orevious elements

set neltst ;;ccunter

equ $;translate table
rept sectors ;;once for each sector
if sectors < 256

ddb gnxtsec+(fsc)

else

ddw $nxtsec+(£fsc)

endif

set nxtsec+(skf)

if nxtsec >= sectors

set nxtsec-sectors

endif

set nelts-1

if nelts = @

64

219:
220
221:
222:
223:
224:
225:
226
227:
228:
229
2306
231:
232:
233:
234:
235:
236:
237:
238:
239:
240
241:
242:
243:
244:
245:
246:
247:
248:
249:

nxtbas
nxtsec
nelts

defds
lab:

=~

ds

[

endet

e o
7

begdat
dirbuf:
dsknxt

dsknxt

enddat
datsiz

e o
r s

set
set
set
endif
endm
endif
endif
endm
macro
ds
endm
macro
defds
endm

macro

nxtbas+i
nxtbas
neltst

:;end of nul fac test
:;end of nul bls test

lab,space
space

1b,dn,val
1b&dn, 3val&dn

generate the necesssary ram data areas

equ
ds
set
rept
las
1ds
set
endm
equ
egu

$

128 ;directory access buffer
]

ndisks ;;once for each disk
alv,%dsknxt,als

csv,%dsknxt,css

dsknxt+1

$
S-begdat

db @ at this point forces hex record

endm

65

QW OO ULBE WN

=

-

-
—
e

N NN N e e el S
HFRWOWOIOU D WN
L]

NN
=W N
L] . L1 (1]

NN
(&) W%y
e L]

27:

[\OR \O)
\© o
.. L1 Y)

w W w
DS
.

w W
W
.

52:
53:

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

;***

« % *
14
i Sector Deblocking Algorithms for CP/M 2.0 *
o % *
;***
1
: utility macro to compute sector mask
smask macro hblk
7 compute log2 (hblk), return @x as result
13 (2 ** @x = hblk on return)
Qy set hblk
@x set g
i count right shifts of @y until =1

rept 8

if @y = 1

exitm

endif
] @y is not 1, shift right one position
ey set @y shr 1
@x set @x + 1

endm

endm
;***
« % : *
;¥ CP/M to host disk constants *
o X *
;***
blksiz equ 2048 ;CP/M allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 20 shost disk sectors/trk
hstblk equ hstsiz/128 :CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 :sector mask

smask hstblk ;compute sector mask
secshf equ @x :1log2(hstblk)
;***
P *
;* BDOS constants on entry to write *
P *
;***
wrall equ] ;jwrite to allocated
wrdir equ 1 jwrite to directory
wrual egu 2 ;jwrite to unallocated

’
;***

= *
’

il The BDOS entry points given below show the *
s ¥ code which is relevant to deblocking only, *
% *

e kkkhkkkhkkkkkkhkkhkhkkkhkhhkkhkkkkkkikkhkkkkkhkhkkhkkkkkkhkhkhkkkkkkkkkk

’
.
14

66

; DISKDEF macro,

épbase egu
boot:
wboot:

senter here on

Xra
sta
sta
ret

’

seldsk:

$

a
hstact
unacnt

:select disk

mov
sta
mov
mvi
rept
dad
endm
1xi
dad
ret

settrk:

a,c
sekdsk
l,a
h,6

4
h
d,dpbase
d

or hand coded tables go here

;disk param block base

system boot to initialize

:@ to accumulator
shost buffer inactive
sclear unalloc count

iselected disk number
1seek disk number
;disk number to HL

;multiply by 16

;base of parm block
;hl=_dpb(curdsk)

;set track given by registers BC

mov
mov
shld
ret

.
14

setsec:

h,b
1,c
sektrk

strack to seek

;set sector given by register c

mov
sta
ret

.
’

setdma:

a,c
seksec

:sector to seek

;set dma address given by BC

mov
mov
shld
ret

’

sectran:

h,b
1l,c
dmaadr

stranslate sector number BC

mov
mov
ret

h,b
1l,c

104:
165
106:
107
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145;
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:

;***

« % *
14
i The READ entry point takes the place of *
s ¥ the previous BIOS defintion for READ, *
o % *
’

;***

read:
;read the selected CP/M sector

*
;***

write:

mvi a,l

sta readop ;read operation

sta rsflag smust read data

mvi a,wrual

sta wr type ;treat as unalloc

jmp rwoper ;to perform the read
;***
.* *
’
i * The WRITE entry point takes the place of *
;¥ the previous BIOS defintion for WRITE. *
ok
’

swrite the selected CP/M sector

Xra a ;8 to accumulator

sta readop ;not a read operation
mov a,c swrite type in c

sta wr type

cpi wrual ;write unallocated?
jnz chkuna :check for unalloc

“e we

write to unallocated, set parameters

mvi a,blksiz/128 ;next unalloc recs

sta unacnt

lda sekdsk :disk to seek

sta unadsk sunadsk = sekdsk

1hld sektrk

shld unatrk sunatrk = sectrk

lda seksec

sta unasec ;unasec = seksec
chkuna:

;check for write to unallocated sector

lda unacnt ;any unalloc remain?

ora a

jz alloc ;skio if not

more unallocated records remain

~e we

dcr a sunacnt = unacnt-1l
sta unacnt

lda sekdsk ;same disk?

1xi h,unadsk

cmp m ; sekdsk = unadsk?
jnz alloc ;skip if not

disks are the same

~e weo

63

159: 1xi h,unatrk

160 call sektrkcmp ;sektrk = unatrk?
161: jnz alloc ;skip if not

162: ;

163: ; tracks are the same

164: 1da seksec ;same sector?

165: 1xi h,unasec

166: cmp m ;seksec = unasec?
167: jnz alloc ;skip if not

168: ;

169: ; match, move to next sector for future ref
1706 inr m ;junasec = unasec+l
171: mov a,m ;end of track?

172 cpi cpmspt ;count CP/M sectors
173: jc noovf ;skip if no overflow
174: ;

175: ; overflow to next track

176: mvi m,@ ;unasec = §

177: 1hld unatrk

178: inx h

179: shld unatrk sunatrk = unatrk+l
180: ;

181: noovf:

182: smatch found, mark as unnecessary read

183: Xra a :0 to accumulator
184: sta rsflag ;rsflag = @

185: jmp rwoper ;to perform the write
186: ;

187: alloc:

188: ;not an unallocated record, requires pre-read
189: Xra a 19 to accum

190: sta unacnt ;unacnt = 0

191: inr a ;1 to accum

192: sta rsflag ;rsflag = 1

igz; ;**************************‘k**************************
195: ;* *
196: ;* Common code for READ and WRITE follows *
197: ;* *
198: ;***
199: rwoper:

200: ;enter here to perform the read/write

201: xra a ;2zero to accum

202: sta erflag ;no errors (yet)

203: lda seksec ;compute host sector
204: rept secshf

205: ora a ;carry = 0

206: rar :shift right

207: endm

208: sta sekhst. shost sector to seek
209: ;

210: ; active host sector?

211: 1xi h,hstact ;host active flag
212: mov a,m

213: mvi m,1l ;always becomes 1

69

214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
249
241:
242
243:
244:
245
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256
257:
258:
259:
260:
261:
262:
263:
264:
265:
266
267:
268:

~e e

~e wo

~o e

I
nomatch:

Hh e

ilhst:

match:

~e

ora a ;was it already?
jz filhst :£i11 host if not

host buffer active, same as seek buffer?
lda sekdsk

1xi h,hstdsk ;same disk?
cmp m ;sekdsk = hstdsk?
jnz nomatch

same disk, same track?

1xi h,hsttrk
call sektrkcmp ;sektrk = hsttrk?
jnz nomatch

same disk, same track, same buffer?
lda sekhst

1xi h,hstsec :sekhst = hstsec?
cmp m

jz match ;skip if match
;proper disk, but not correct sector

lda hstwrt rhost written?
ora a

cnz writehst sclear host buff

smay have to fill the host buffer
lda sekdsk
sta hstdsk
1lhld sektrk
shld hsttrk

lda sekhst

sta hstsec

1da rsflag sneed to read?
ora a

cnz readhst ;ves, if 1

Xra a ;0 to accum

sta hstwrt ;no pending write

;copy data to or from buffer

lda seksec ;mask buffer number
ani secmsk :least signif bits
mov 1l,a ;ready to shift
mvi h,® ;double count

rept 7 ;shift left 7

dad h

endm

hl has relative host buffer address

1xi d,hstbuf

dad d ;:hl = host address
xchg ;now in DE

1hld dmaadr ;get/put CP/M data
mvi c,128 ;length of move

70

269:
270:
271:
272:
273:
274:
275:
276
277:
278
279:
28
281:
282:
283:
284:
285:
286:
287:
288:
289:
290
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301
362:
3803:
304:
305:
306:
387:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:

1lda readop ;which way?
ora a
jnz rwmove ;skip if read

~e wo

write operation, mark and switch direction

mvi a,l
sta hstwrt thstwrt = 1
xchg ;source/dest swap
14
rwmove
;C initially 128, DE is source, HL is dest
1dax d ;source character
inx d
mov m,a ;to dest
inx h
der o] :loop 128 times
jnz rwmove

~e wo

data has been moved to/from host buffer

lda wrtype ;write type

cpi wrdir sto directory?

lda erflag :1in case of errors

rnz ;no further processing

YR

clear host buffer for directory write

ora a serrors?

rnz ;skip if so

Xra a ;0 to accum

sta hstwrt ;buffer written

call writehst

lda erflag

ret
;***
;* x
H Utility subroutine for 1lé6-bit compare *
«k *
;************-k**
sektrkcmp:

;HL = .unatrk or ,hsttrk, compare with sektrk

xchg

1xi h,sektrk

ldax d ;low byte compare

cmp m ; same?

rnz ;return if not
H low bytes equal, test high 1s

inx d

inx h

ldax d

cmp m ;sets flags

ret

~e

71

321:
322:
323:
324:
325:
326
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:

;***

%k *
14

: * WRITEHST performs the physical write to *
0 * the host disk, READHST reads the physical *
3 * disk. *
P *
;***

writehst:
shstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz" bytes
sfrom hstbuf and return error flag in erflag.
s;return erflag non-zero if error

ret

readhst:
;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz" bytes

;into hstbuf and return error flag in erflag,
ret

hkhkkkhhkhkkhkhkkhhkhhhkhkhkhhhkhhhkhkhhkhkhkkhhhkhkhkhhkhhhhkhkkhxkkhkhxx
*

Unitialized RAM data areas *

*

LSRR E S SR RS SRR R R E R R R R R EEEFEEEEREEEEEEESEEES

® We N8 Ne Ne we “wo
¥ % % F %

éekdsk: ds 1 :seek disk number
sektrk: ds 2 :seek track number
seksec: ds 1 ;seek sector number
hstdsk: ds 1 :host disk number
hsttrk: ds 2 shost track number
hstsec: ds 1 ;host sector number
sekhst: ds 1 ;seek shr secshf
hstact: ds 1 ;host active flag
hstwrt: ds 1 shost written flag

.
14

unacnt: ds 1 sunalloc rec cnt
unadsk: ds 1 slast unalloc disk
unatrk: ds 2 ;last unalloc track
unasec: ds 1 slast unalloc sector

erflag: ds

1 ;error reporting
rsflag: ds 1 ;read sector flag
readop: ds 1 ;1 if read operation
wrtype: ds 1 ;write operation type
dmaadr: ds 2 :last dma address
hstbuf: ds hstsiz shost buffer

’

72

371: ;***
372: ;* *
373: ;3 * The ENDEF macro invocation goes here *
374: ;* *
375: ;***********************‘k*****************************

376: end

73

i

DIGITAL RESEARCH

Post Office Box 5§79, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 INTERFACE GUIDE

Copyright (e¢) 1979

DIGITAL RESEARCH

Copyright (e) 1979 by Digital Research, All rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language. in any form or bv any
means, electronie, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically diselaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

CP/M 2.2 INTERFACE GUIDE

Copyright (c¢) 1979
Digital Research, Box 579
Pacific Grove, California

Introduction

Operating System Call Conventions

A Sample File-to-File Copy Program

A Sample File Dump Utility .

A Sample Random Access Program

System Function Summary

34
37

46

1. INTRODUCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic 1I/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS 1is a hardware-dependent module which defines the exact low level
interface to a particular computer system which 1is necessary for
peripheral device 1I/0. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide").
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high | |

memory | |

| FDOS (BDOS+BIOS) |

FBASE: | |

| |

| CCp I

CBASE: | I

| |

| I

| [

I TPA |

I |

TBASE: | |
| system parameters

BOOT: | |

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
“CP/M Alteration Guide," All standard CP/M versions, however, assume
BOOT = @QO@@PH, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

to return control to CP/M at the command level, Further, the standard
versions assume TBASE = BOOT+#1l@0H which is normally location 9100H,
The principal entry point to the FDOS 1is at location BOOT+0@@d5H
(normally 0005H) where a jump to FBASE is found. The address field at
BOOT+0@00P6H (normally @@0P6H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing command
lines following each prompt, Each command 1line takes one of the
forms:

command
command filel
command filel file2

where "command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program, If the command is a
built-in function of CP/M, it is executed immediately., Otherwise, the
CCP searches the currently addressed disk for a file by the name

command, COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.,

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area, These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section,

The transient program receives control from the CCP and begins
execution, perhaps using the I/0O facilities of the FDOS. The
transient program is "“called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. 1In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1 is free,

The transient program may use the CP/M 1I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/0 system is accessed by passing a
"function number" and an "information address” to CP/M through the
FDOS entry point at BOOT+@0@5H, In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful, The function numbers and error indicators are
given in below.

(A1l Information Contained Herein is Proprietary to Digital Research,)

2

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions 1listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide,"

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file I/O. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+@@05H, 1In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of 1Intel's
PL/M systems programming language. The list of CP/M function numbers
is given below,

(All Information Contained Herein is Proprietary to Digital Research.)

3

P System Reset 19 Delete File

1 Console Input 20 Read Seguential

-2 Console Output 21 Write Sequential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector

6 Direct Console 1I/0 25 Return Current Disk

7 Get I/O Byte 26 Set DMA Address

8 Set I/O Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
19 Read Console Buffer 29 Get R/O Vector

11 Get Console Status 380 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0980H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a 1local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = Q0Q%H) :

BDOS EQU @0 05H ; STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG ¥160H ; BASE OF TPA
NEXTC: MVI C,CONIN ; READ NEXT CHARACTER
CALL BDOS s RETURN CHARACTER IN <A>
CPI txe ;END OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
Characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each

category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carriage-return line-feed
sequence (UDH followed by @AH). Thus one 128 byte CP/M record could
contain several lines of source text, The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation, Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is wused to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from ©0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area, Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values, Although the
decomposition 1into extents is discussed in the ©paragraphs which
follow, they are of no particular consequence to the programmer since
each extent 1is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+@@5CH (normally @@5CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/0O is provided by CP/M
at location BOOT+0@80H (normally @@80H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the case
that the file 1is accessed randomly. The default file control block
normally located at 605CH can be used for random access files, since
the three bytes starting at BOOT+d@7DH are available for this purpose.
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research,)
5

g9 91 62 ... 68 99 19 11 12 13 14 15 16 ... 31 32 33 34 35
where
dr drive code (@ - 16)
@ => use default drive for file
1l => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

f1...f8 in ASCII

bit]

contain the file name
upper case, with high

£1,t2,t3 in ASCII
bit = 0
denote the

of these positions,

1 => Read/Only file,

1 => 5YS file, no DIR list

contain the file type
upper case, with high
tl', t2', and t3'
bit
tl!
t2'

ex

sl

s2

rc

dg...dn

cr

rg,rl,r2

contains
normally
in range
reserved

reserved

to zero on call to OPEN, MAKE,

the
set
Q_

current extent number,
to @00 by the user, but
31 during file I/0

for internal system use

for set

SEARCH

internal system use,

record count for extent "ex,"

takes on

values from ¢ - 128

filled-in by CP/M, reserved for
system use

current record to read or write in

a sequential file operation, normally
set to zero by user

optional

random record number in the

range #-65535, with overflow to r2,
rd,rl constitute a 16-bit value with

low byte r@, and high byte rl
Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subseguent file operations. When accessing files, it

programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research,)

6

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions)., The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) .

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “"filel" and "file2" 1in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+@¢@®5CH, and can
be used as—-is for subsequent file operations. The second FCB occupies
the d¢ ... dn portion of the first FCB, and must be moved to another
area of memory before use., If, for example, the operator types

PROGNAME B:X.20T Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+G@¥5CH is initialized to drive code 2, file name "X" and file type
"ZOT" . The second drive code takes the default value @, which is
placed at BOOT+0606CH, with the file name "Y" placed into location
BOOT+gP6DH and file type "ZAP" located 8 bytes later at BOOT+6@754.
All remaining fields through "cr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOCT+0@5CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+0@5DH and BOOT+G@6DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions,

As an added convenience, the default buffer area at location
BOOT+0#@P8GH is initialized to the commana 1line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+0080GH is initialized as follows:

BOOT+P080H:
+60 +01 +62 +63 +0P4 +05 +06 +07 +08 +P9 +1P +11 +12 +13 +14
l 4 » “ " B L1 " . " " X (L] 1] . n i Z 1] ” O (L] [Tn " " n Y 10 L] . " " Z 1" uA L1} " P 0

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is

the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the

default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow.

(A1l Information Contained Herein is Proprietary to Digital Research.)
7

KhkhkhkhkkhkhkhkkhkhkRkkhkkkkkkkkhkhkkhkhkhkhkhkkkkkkkkk

* *
* FUNCTION @: System Reset :
*

KAkKKKRKK kA KAKRAAkhIAR Rk A khhkhkhkhhkhhkhkhkhhxxkkk
* Entry Parameters: *
* Register C: @04 *

LR EEEEE RS EEEEEEEESEEST SRS R RS S SR

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

LR R R R R R R R SR RIS LT

* *
* FUNCTION 1: CONSOLE INPUT *
* *
khkhkhhhkhkhkkhkkhhkhkhhhkhkhkhkhdhkhkhkhhkhhkhkhkhhkk
* Entry Parameters: *
* Register C: @1H *
* *
* Returned Value: *
* Register A: ASCII Character *
LE SRS EE TSRS EEEEEEE SRS S

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console, Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

L R Y R R L]

* *
* FUNCTION 2: CONSOLE OUTPUT *
* *
LRSS EEEESEL S S S S EESESEEEEEEEE LR EEEEE LSS
* Entry Parameters: *
* Register C: @2H *
* Register E: ASCII Character *
* *

khkkhkkhkhhhkkhhkhkhhhkkhkhhkhhkkhhhhkkhkhhdkhkkkhkkkx

The ASCII character from register E 1is sent to the console
device, Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

EEEEEEE SRS RS SIS TET LTSS SRS ESE SRR R R SR

* *
* FUNCTION 3: READER INPUT *
* *
IR RS SRR R RS SRR S EEESEEESEEEEEEEEEEEEEEEE &
* Entry Parameters: *
* Register C: @3H *
* *
* Returned Value: *
* Register A: ASCII Character *
R R EEEEEFE LS LSS ESEEE SRS EEESEEEEEEEE S &

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has
been read.

FhhhkkhhkAhhkhkhkhkhhkhhkhkkhkkhkkhkkhrhhkhkkkhk

* *
* FUNCTION 4: PUNCH OUTPUT *
* *
IR R R EF RS SR EE SRS RS SRS EEEEEEEEEEEEEEEEEE S
* Entry Parameters: *
* Register C: 04H *
* Register E: ASCII Character *
* *

LR EEEEEEEEEE SRS EEESESEEELEE SR EREEE LRSS

The Punch Output function sends the character from register E to
the logical punch device.

kKhkkhhhhhhhhhhhhhhkhkhkhkhkhkhkhkhkhkkhkkihhkhhhhkhk

* *
* FUNCTION 5: LIST OUTPUT *
* *
LR EEEEEE LT EEESEEE SRS FEEEELS SRS RS LS LR
* Entry Parameters: *
* Register C: 05H *
* Register E: ASCII Character *
* *

RS EEESE S SRR RS EEEEE S EEER SRR EEE RS

The List Output function sends the ASCII character in register E
to the logical listing device,

(All Information Contained Herein is Proprietary to Digital Research.)

9

IR EEEEEEEEEES S S S SRS SEEEEEEEEEEEEESSEEE

* *
* FUNCTION 6: DIRECT CONSOLE I/0 :
*

LRSS EEEEEEEEEE SRS SRS EEEEEEEEEEEESE RS

* Entry Parameters:

Register C: 0e6H

Register E: @OFFH (input) or
char (output)

*

Returned Value:

Register A: char or status
(no value)

* % % ¥ * X

*
*
*
*
*
*
*
*

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output 1is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P), Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input reguest, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = 00

if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

10

KKK AkIAKRAhkAAkhkhkAhkkhhkkhkkhrhhkhkhkhhkhkhhohkhkhkhkhkhkxkx

* *
* FUNCTION 7: GET I/0 BYTE *
* *
tE R SRR L EEEE AR R EREEEEEEEEEEEEEESEEEEE]
* Entry Parameters: *
* Register C: @7H *
* *
* Returned Value: *
* Register A: 1I/0 Byte Value *
LEEEEEEEEEEREEEEE SRS EEREEEEEEEEEERE SRS

The Get I/0 Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.,

LR EEE SRR EEE S FEEE PR T T PR T TR R

* *
* FUNCTION 8: SET 1I/0 BYTE *
* *
LR E R R Y P R R R R
* Entry Parameters: *
* Register C: 08H *
* Register E: 1I/0 Byte Value *
* *

KXKRAKKRhIhhkAhkhhkhhhhhhhhkhkhhkXXkXkAXRkkkkkhkkk%x

The Set I/O Byte function changes the svstem IOBYTE value to
that given in register E.

AR EEEEEEEEEEESEESEEEEEEEEEEEEEEEREEEE SRR

* *
* FUNCTION 9: PRINT STRING *
* *
LEEEEEEE TR R R R R R R
* Entry Parameters: *
* Register C: 09H *
* Registers DE: String Address *
* *

LRSS EEEEE SRR S R R R R R R R Y S

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a "§"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

11

IR RS EEE RS EE SRR RS ER RS RS RS RS SR SRR EEEE S

* *
* FUNCTION 10: READ CONSOLE BUFFER *
* *

L P R R R R R R R R R R R R R]
* Entry Parameters: *
Register C: 0AH

Registers DE: Buffer Address

Console Characters in Buffer

*
*
*
*
*
LR R RS EEEE SRR R R R R R S Y R R R R R]

*
*
*
Returned Value: *
*
*

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE, Console input is terminated

when either the input buffer overflows. The Read Buffer takes the
form:

DE: +¢ +1 +2 +3 +4 +5 +6 +7 +8 o o » +n

—— . —— — - —— T —— — —— e T . — = . T T D e - T Gua - G . G —— —

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), "nc" is the number of characters read (set by FDOS
uoon return), followed by the characters read from the console. 1if nc
< mx, then uninitialized positions follow the last character, denoted
by "??" in the above figure, A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl-J (line feed) terminates input line

ctl-M (return) terminates input line

ctl-R retypes the current line after new line
ctl-U removes currnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the <carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

the extreme left margin). This convention makes operator data input
and line correction more legible,

(All Information Contained Herein is Proprietary to Digital Research.)

12

IR EEEE RS RS EE SR RS SRS LR SRR SR TR

* *
* FUNCTION 11: GET CONSOLE STATUS *
* *

XKhkhkhkkhkhkhkkhkhkkkhkhkkhhkkhkhkhkkhkhkhkhkkkhkkkkkkkkkkkx

* Entry Parameters:
Register C: 0@BH

*

Register A: Console Status

* *
* *
* Returned Value: *
x *
KEKKKKKKRKKAKRKKRKA A KRR A KRKRARAAIAAARAXAA ARk Ak XKk kX

The Console Status function checks to see if a character has
been typed at the console, 1If a character is ready, the value OFFH is
returned in register A, Otherwise a #0H value is returned.

KhkRkkRkhkkxhhhkkhkkhkhhhkhkhkhkhkkhkkkhkkhkhkhkkkkkkk

* *
* FUNCTION 12: RETURN VERSION NUMBER *
* *

IR R R E R RS ES R RS R RS E SRS R SRS R R R RS TR R
* Entry Parameters: *

* Register C: @CH *
* *
* Returned Value: *
* Registers HL: Version Number *
kKhkkkhkhkhkhkhkkkkkhkkhkhhkhkhhhkhhkhkkhkhhkhkkhkhhkkkkx

Function 12 provides information which allows version
independent programming., A two-byte value is returned, with H = 00

designating the CP/M release (H = @81 for MP/M), and L = 00 for all
releases previous to 2.0, CP/M 2.0 returns a hexadecimal 20 1in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F, Using function 12, for example, vyou can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under

early releases of CP/M.

(A1l Information Contained Herein is Proprietary to Digital Research.)

13

Akhkkkhkhkkhkkhkhkhkhkhhkhhkhkhkhkhkhhhhkhkhkkhkhhkhkhkkkhkhhhkx

* *
* PFUNCTION 13: RESET DISK SYSTEM *
:*************************************:
* Entry Parameters: *
* Register C: 0ODH *
* *

khkhkhhkhkhkhkhhhkhkhkhhhkhkhkhhhhkhhhhkkhhkhhhkhhhhkx

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address 1is reset to BOOT+0@8¢H, This function can be
used, for example, by an application program which requires a disk
change without a system reboot.

RS XSS ST E SR SRR R EEEEEEEREREEE SRS

* *
* FUNCTION 14: SELECT DISK *
* *
LRSS E SRR SR LR LSS SRR EEEEREEEREEEESEEESES
* Entry Parameters: *
* Register C: 0QEH *
* Register E: Selected Disk *
* *

LIRS EEESEEETEEEEESESES SRR R RS R R EE RN R

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= § for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
"on-line" status which, in particular, activates its directory until
the next «cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M enviromment (see

function 28). FCB's which specify drive code =zero (dr = @0H)
automatically reference the currently selected default drive. Drive

code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(A1l Information Contained Herein is Proprietary to Digital Research.)
14

LR L R R P PR T T R TR E PR TR T R T R R

* *
* FUNCTION 15: OPEN FILE *
* *
LR e A R R R R R R R R R R L
* Entry Parameters: *
* Register C: @FH *
* Reglsters DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
AKX A KA AR AR AR A AR AR AR AR AR RA AR XN IR KR AR XA d XK %

The Open File operation is used to activate a file which
currently exists 1in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match 1in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches any
directory <character in any of these positions. Normally, no guestion
marks are included and, further, bytes "ex" and "s2" of the FCB are
zero.

If a directory element 1is matched, the relevant directory
information is copied into bytes d8 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a “directory code" with the value # through 3 if the open was
successful, or @FFH (255 decimal) if the file cannot be found. If
guestion marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("cr") must be zeroed by the
program if the file is to be accessed sequentially from the first
record,

(All Information Contained Herein is Proprietary to Digital Research.)

15

khhkhkhkkkkkhhhkhkhhhkhkhhhhhhhhkhhhkhkkkhhhkhkdixk

* *
* FUNCTION 16: CLOSE FILE *
* *
AhkhkAhkhkhkhkkhkhkkAkhkhkhkkkAkdhhkhhkhhkkhkkhkhkkxhkhkk
* Entry Parameters: *
* Register C: 10H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
khkhkkhhkhkhkhkkhkkhkkhkkhkkkhkhkhkhkhhhkhkkhkkhkkhkkkkkhkk

The Close File function performs the inverse of the open file
function, Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the <close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close 1is identical
to the open function., The directory code returned for a successful
close operation is #, 1, 2, or 3, while a "@FFH (255 decimal) 1is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place, If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

l6

ERE AR EE ST R TSRS SRS ST LSRR E SR LR

* *
* FUNCTION 17: SEARCH FOR FIRST :
*

KEE AR AR AR AR KRARRRAKRARIARRN KRR AR AR AR A A k**
* Entry Parameters: *
* Register C: 1l1H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LEE SRS F R P EE IR SRR E SRR PR RS EE R R R

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The wvalue 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise 6, 1, 2, or 3 is returned
indicating the file is present. 1In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from “f1" through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
“dr" field contains an ASCII gquestion mark, then the auto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This 1latter function 1is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the “dr" field is not a question mark,
the "s2" byte is automatically zeroed.

I EEEEEETESESEEES ISR SRS SRS LSRR SRR RS S

* *
* FUNCTION 18: SEARCH FOR NEXT *
* *
AhkhkhkkkkkAAkkhkkkhkRkAkXkhrkhkhkkhkhkhkdhkhkhkhkkhhhkkhik
* Entry Parameters: *
X Register C: 12n X
* Returned Value: *
* Register A: Directory Code *
kkhkkhkhkkhkhkhkkhkkAkhkhAkkAkAkxkhkhkkkhkhkkkhkhkhhkhkkhhkk

The Search Next function 1is similar to the Search First
function, except that the directory scan continues from the last

matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

17

Ahkkhkhkkkkhkkhddhhhhhhhhhhkxhhkhhhhhhhhdhhhkkk

* *
* FUNCTION 19: DELETE FILE *
* *
RS EEEREERE SRS EEEREEEEEREEEEEREEEEEEEES]
* Entry Parameters: *
* Register C: 13H *
* Registers DE: FCB Address *
* *
* Returned Value:) *
* Register A: Directory Code *
LEEEEE R EEEE SRS SRS SRS EE LRSS R

The Delete File function removes files which match the FCB
addressed by DE, The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code <cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found, otherwise a wvalue 1in the range 6 to 3 1is
returned,

LR R R EE R SRR R TR TR LR R T PR

* *
* FUNCTION 26: READ SEQUENTIAL *
* *

khkkhdhhkhhhkkhhhhhkhhhkhhhhdhhdhhhkhhhkhkhhkhkkhxk

* Entry Parameters:
Register C: 14H
Registers DE: FCB Address

*

Register A: Directory Code
Khkkhkhkhkhkhkhkhkhkhhbhkhkhkhkhkhkhkhkhhhkhkhhkhkhkhkhkhxhxk

* *
* *
* *
* Returned Value: *
* *
* *

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Seguential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr" of the
extent, and the "cr" field is automatically incremented to the next
record position, If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next read operation., The value @@H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

18

LR EEE R R Y Y R R R R R R T

* *
* FUNCTION 21: WRITE SEQUENTIAL *
* *

R R AR AR KR AR KR AKR KRR R AKR AR KR AR I AR AR KA AR KKK KX

Entry Parameters: *
Register C: 15H
Registers DE: FCB Address

*

* *
* *
* *
* Returned Value: *
* *
* *

Register A: Directory Code
EE R EEE R TR TR E RS TSR R T RS E SR RS XSS E RN E L B

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Seguential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr" of
the file, and the "cr" field is automatically incremented to the next
record position, If the "“cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = @@H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

KR I KA KRR I AR R A AR R AR AR AR R KA AR AR AR A AR KKk

* *
* FUNCTION 22: MAKE FILE *
* *
R R SRR SRR R TR R R R R R E R R R R ER SRR RS R
* Entry Parameters: *

Register C: 16H
Registers DE: FCB Address

Register A: Directory Code

*
*
*
*
*
LEEEEEEEE LR RS E R R EEEEEEEEEE

x
*
)
* Returned Value:
*
*

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "dr" code, or the default disk if "dr" is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = @,
1, 2, or 3 if the operation was successful and @FFH (255 decimal) 1if
no more directory space 1is available, The make function has the
side-effect of activating the FCB and thus a subsequent open 1is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

19

LRSS R SRR SRS SRS RS R E R T YR X

* *
* FUNCTION 23: RENAME FILE *
* *
AhkhkhkhkkkhkhhkhhhhhhkhkrkrhhkX kXA Xxkhhkkhkhdhdkk
* Entry Parameters: *
* Register C: 17H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LR R R R I R R PR R TR R ¥

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position 6 is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between 9 and 3 if the rename was successful, and

OFFH (255 decimal) if the first file name could not be found in the
directory scan.,

AR KRR AR R AR R AR AR AR AR AR AR R AR AR ARKRKA KKK K

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *
KA AR A Ak AR AR AR ARAR IR ARAAR KA AR R A AR I Ak Rk kk k&
* Entry Parameters: *
* Register C: 18H *
* *
* Returned Value: *
* Registers HL: Login Vector *
LR SRS AL SR EEEEEEEEEEELT R SR EELEEERE LR XXX LR

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A "@" bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return,

(All Information Contained Herein is Proprietary to Digital Research.)

29

Khhkkkkhkhkhkkhkhkhhkhhkkhhhhkhhhkkhkhkhkdhk

* *
* FUNCTION 25: RETURN CURRENT DISK *
* *
LR R SRR E LR R P P E EEE R X
* Entry Parameters: *
* Register C: 194 *
* *
* Returned Value: *
* Register A: Current Disk *
KKK KREARAKRAAIAKARRKRR IR A AR A A AR A Ak ARk hk Xk %

Function 25 returns the currently selected default disk number

in register A, The disk numbers range from § through 15 corresponding
to drives A through P.

hkkkkkkkkhkkkhkhhkkhkkkhkhkhkhkkhhkkkhhkhkkhkhkkk

* *
* FUNCTION 26: SET DMA ADDRESS *
* *
KA A AR A AR I AR IA AR KR AXRKNRKAARKRA IR KRN A AR AR A Ak k%
* Entry Parameters: *
* Register C: 1AH *
* Registers DE: DMA Address *
* *

R E SRR LSS SRS SRR RS EREEEEEREREEEEREEEEES,

"DMA" is an acronym for Direct Memory Address, which 1is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk

subsystem. Although many computer systems use non-DMA access (i.e.,
the data 1is transfered through programmed I/0O operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address 1is
automatically set to BOOT+0@8QH. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside., Thus, the DMA address becomes the
value specified by DE until it is changed by a subseguent Set DMA
function, cold start, warm start, or disk system reset.

(All Information Contained Herein is Proprietary to Digital Research.)

21

IR R EE SRR SRS RS SRR SRR R EREREREEEESE,

* *
* FUNCTION 27: GET ADDR (ALLOC) *
* *

IR R RS SRS S EEEEE SR E RS SRR EREREEEESESESS

Entry Parameters:
Register C: 1BH

*
*

Registers HL: ALLOC Address
LR RS SR EETTEEEEEEESSEEESSEEEEEE R LR LR K

* *
* *
* Returned Value: *
* *
* *

An "allocation vector" is maintained in main memory for each
on-line disk drive, Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally

used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide,"

R R R EEE ST IS SRR EEESEESS SRS R RS R EE SR N

* *
* FUNCTION 28: WRITE PROTECT DISK :
*

Ahkhkhkkhkhhkhkhhkhhkkhkhhhkkhkhdhhhdhkhhkhkhkkhhkhkhhkhkkkhk
* Entry Parameters: *
* ~ Register C: 1CH *
* *

Ahkhkhkhkhhhhkhkhhkhhkhhhkhhhhhkhkhkhkhkhhkdk

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

KRR KA I AR AR AR RARKRKRARKRAK A AR AR KRR A A IR KRN XA A K

* *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *
R R AR R EEEE LRSS EEEEEEEEEE LSS EEEEEEEEEEERS
* Entry Parameters: *
* Register C: 1DH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
(RS EEE RS RS EEEEEEEFELTESEE SR LR R EEE RS EE TR

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

KRR A AR AR A AAKRK KKK KKRARAKRKRKRKRKRAKRKRKN KA A A XXX A%

* *
* FUNCTION 3¢: SET FILE ATTRIBUTES *
* *
KEKKRKR AR AKR AKX KRAKRR R KR A AR AR AR AAN KRR A AR Ak hkkh k%
* Entry Parameters: *
* Register C: 1EH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LERE ST SRR TR TR IR ETETESSEEE S S EEE SRS LS L SRS

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
varticular, the R/0 and System attributes (tl' and t2') can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset, Function 38 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators f1' through f4' are not presently used, but

may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.

Indicators £5' through £8' and t3' are reserved for future system
expansion,

(All Information Contained Herein is Proprietary to Digital Research.)

23

LR A RS S S SRR EES R IR R R SRR R R

* *
* FUNCTION 31: GET ADDR(DISK PARMS) *
* *
LR EEEEEERTEETEE RS EETESS LRSS ERS RS SRS S L L
* Entry Parameters: *
* Register C: 1FH *
* *
* Returned Value: *
* Registers HL: DPB Address *
LR R SR SR LR RS SRS SR SRS EEEEEEX RS SRS BN

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk enviromment changes, if reguired. Normally, application
programs will not reguire this facility.

LEEEEEREEEEE RS R R R R R R R R RS EE

* *
* FUNCTION 32: SET/GET USER CODE *
* *
KK AR KRR AR KRR A AKNRR A AR KNI AIRARKRKRARKR AR A AR AR KK
* Entry Parameters: *
* Register C: 20H *
* Register E: OFFH (get) or *
* User Code (set) *
* *
* Returned Value: *
* Register A: Current Code or *
* (no value) *
IR EEE SRS SRS S SRS EEEIEEETEEEEERE RS LS 8 &

An application program can change or interrogate the currently
active user number by calling function 32, 1If register E = @FFH, then
the value of the current user number is returned in register A, where
the value is in the range @ to 31. If register E is not @FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

LERESEEEEESEEEEE LTRSS TS EE SRS R EEE S

* *
* FUNCTION 33: READ RANDOM *
* *

KRR R A AR KR A RN KRR AR AKRRKRKA R AR AR AR KR AARKRAKRKR K,
* Entry Parameters: *

Register C: 21H
Registers DE: FCB Address

* *
* *
* *
* Returned Value: *
* Register A: Return Coade *
KA EKKRAKNRKKAKRKRAKRARRKRKRKRRAR A A AR KR AR A A Ak hkhhhhkk

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r® at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits 1is stored with least significant byte first (r@), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2

must be zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the r#d,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from 0 to
65535, providing access to any particular record of the 8 megabyte
file. 1In order to process a file using random access, the base extent
(extent @) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and 1is visible in DIR reguests. The
selected record number is then stored into the random record field
(r®,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the segquential read operation, the
record number 1is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position, Note, however, that in this case, the 1last
randomly read record will be re-~read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a seguential I/0 operation,

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

g1 reading unwritten data

@2 (not returned in random mode)
@3 cannot close current extent

@4 seek to unwritten extent

@5 (not returned in read mode)

g6 seek past physical end of disk

Error code #1 and 94 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions, Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code #6 occurs whenever byte r2
is non-zero under the current 2.0 release, Normally, non-zero return
codes can be treated as missing data, with =zero return codes
indicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research.)

26

KK AR AR KR IR AR A KRR AR IR IR AKRKR KRR ARKRIKRARKRKRKRKK

* *
*¥ FUNCTION 34: WRITE RANDOM *
* *
IR E R EEEEEETEESEEEELSESEL SRR R LR SR SRS S &R
* Entry Parameters: *
* Register C: 22H *
* Registers DE: FCB Address *
* x
* Returned Value: *
* Register A: Return Code *
IR E R ES EE RS S ST F R TS SRR R ER R TR B EEE T

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the

write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written, Again, sequential read or write operations can

commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a seguential
Write operation., Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in seguential mode,

The error codes returned by a random write are identical to the
random read operation with the addition c¢f error code €5, which
indicates that a new extent cannot be c¢reated due to directory
overflow,

(All Information Contained Herein is Proprietary to Digital Research.)

27

Khkhkhdhkhkhkkhhhkhhhhhhhhhdhhhdhhhh kb hhhhhkkk

* *
* FUNCTION 35: COMPUTE FILE SIZE *
* *

IR S S EEREREREE S S SR EEEEEEEEREEEEEESE SR &S

* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *
I E XS SRR LR PR EEEETEESEEEESEEEEE LS SRR SR &8 K5 8

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r@, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536, Otherwise, bytes r@ and rl constitute a
l6-bit value (r@ 1is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of

file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may

in fact contain fewer records than the size indicates. If, for

example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size 1is

65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

LEEEEEEEE SRS S EEEEEE S SRS RS SRR RS R R

* *
* FUNCTION 36: SET RANDOM RECORD *
* *
L R R R N Y R R R R R R R R R R L L]
* Entry Parameters: *

Reg@ster C: 24H
Registers DE: FCB Address

Random Record Field Set

*
*
*
*
*
KhRkkkhkhkhkkkhkhkhkkkkkhkhkkhkhkhkkhkkkhkhhkkhkhkixhkkkkkxkx

*
*
*
* Returned Value:
*
*

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various “"key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme 1s easily generalized when variable record 1lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time,

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets thé record number, and subsequent random read and
write operations continue from the selected point in the file,

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY,ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a “"HEX" file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP, The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at 006CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at @@5CH is
properly set-up by the CCP upon entry to the COPY program, That is,
the first name is placed into the default fcb, with the proper fields

zerogd, including the current record field at @07CH. The program
contlnues by opening the source file, deleting any exising destination
file, and then <creating the destination file. If all this is

successful, the program loops at the label COPY until each record has

been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file 1is <closed

and the program returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program
at the ccp level, the command
copy a:x.y b:iu.v

copies the file named x.y from drive
a to a file named u.v on drive b.

0 Ne NE NE Ne Ne N6 N8 o~

0Bon = boot equ 8060h ; system reboot
Qees5 = bdos equ @0 @5h ; bdos entry point
@@s5¢c = fcbl equ @d5ch ; first file name
@@5¢c = sfcb equ fcbl ; source fcb
goec = fcb2 equ go6ch ; second file name
pR8B = dbuff eqgu @080h ; default buffer
0100 = tpa equ #100h ; beginning of tpa
poe9 = printf equ 9 ; print buffer func#
300t = openf equ 15 ; open file func#
0010 = closef equ 16 ; close file func#
9013 = deletef equ 19 ; delete file func#
pol14 = readf equ 20 ; sequential read
gols = writef equ 21 ; seqguential write
golée = makef equ 22 ; make file func#
P1loo org tpa ; beginning of tpa
0169 311bg2 1xi sp,stack; local stack

; move second file name to dfcb
0103 geld mvi c,16 : half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

195 116cdg 1xi a,fcb2 source of move

2108 21dagl 1xi h,dfcb ; destination fcb
210b la mfcb: ldax d ; source fcb
Pldc 13 inx d ; ready next
glea 77 mov m,a ; dest fcb
B1lge 23 inx h ; ready next
B19f o6d dcr c : count 16...0
01190 c20bdl jnz mfcb ; loop 16 times
; name has been moved, zero cr
4113 af Xra a ; a = @0h
7114 32fapl sta dfcbcr ; current rec = @

source and destination fcb's ready

~e weo we

8117 115c60 1xi d,sfcb ; source file
lla cd690l call open ; error if 255
9lld 118701 1xi d,nofile; ready message
9120 3c inr a : 255 becomes @
3121 cc61dl cz finis ; done if no file

; source file open, prep destination
9124 11dagl 1xi d,dfcb ; destination
9127 cd7361 call delete ; remove if present
612a 11dadl 1xi d,dfcb ; destination
9124 cd8zgl call make ; create the file
0130 115601 1xi d,nodir ; ready message
133 3c inr a : 255 becomes 9
¥134 ccelyl cz finis ; done if no dir space

source file oven, dest file open
copy until end of file on source

() S0 ~e Se ~o

8137 115cw@ copy: 1xi d,sfcb ; source

¥1l3a cd7801 call read ; read next record
13d b7 ora a ; end of file?
P1l3e c25191 jnz eofile ; skip write if so

~e ~o

not end of file, write the record

¥1l41 11dapl 1xi d,dfcb ; destination
144 cdidel call write : write record
#147 11a961 1xi d,space ; ready message
0ld4a b7 ora a ; U0 if write ck
B1l4b c46191 cnz finis ; end if so
gl4e c33701 jmp copy ; loop until eof
eofile: ; end of file, close destination
0151 11dagl 1xi d,dfcb ; destination
154 cdeeldl call close ;s 255 if error
9157 21bbll 1xi h,wrprot; ready message
Ppl5a 3c inr a ; 255 becomes 00
015b cc6101l cz finis ; shouldn't happen
; copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research.)

31

0l5e llccol 1xi d,normal; ready messade

i
finis: ; write message given by de, reboot

@161 0ed9 mvi c,printf
8163 cdo508 call bdos : write message
$166 Cc30000 jmp boot ; reboot system

system interface subroutines
(2all return directly from bdos)

Q ~e S ~o e

2169 Pedf pen: mvi c,openf
@16b c36500 jmp bdos
0l6e dell élose: mvi c,closef
0170 c30500 jmp bdos
0173 Pels éelete: mvi c,deletef
0175 c30500 jmp bdos
D178 Geld fead: mvi c,readf
Bl7a c30500 jmp bdos
@17d Gel5 &rite: mvi c,writef
017f c30580 jmp bdos
0182 Gel6 make: mvi c,makef
0184 c30500 jmp bdos
; console messages
0187 6e6t20fnofile: db 'no source file$'
U196 6e6f£299nodir: db 'no directory space$'
Pla9 6f7574fspace: db ‘out of data space$'
¥lbb 7772695wrprot: db ‘write protected?s$’
d1lcc 636f700normal: db 'copy completeS$'
; data areas
g1lda dfcb: ds 33 ; destination fcb
glfa = dfcbcr equ dfcb+32 ; current record
01fb as 32 ; 16 level stack
stack:
821b end

Note that there are several simplifications in this particular
program, First, there are no checks for invalid file names which
could, for example, contain ambiguous references, This situation

could be detected by scanning the 32 byte default area starting at
location #@5CH for ASCII guestion marks. A check should also be made

to ensure that the file names have, in fact, been included (check

locations @@5DH and 906DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file

names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location #0@6H and use the
entire remaining portion of memory for a data buffer. 1In this «case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read, Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to

the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4, A SAMPLE FILE DUMP UTILITY.

The file dump program shown below is slightly more complex than
the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command 1line, and
displays the content of each record in hexadecimal format at the
console, Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing,

; DUMP program reads input file and displays hex data
H

0126 org 16 6h
BPB5 = bdos equ @0065h ;dos entry point
popl = cons egu 1 ;read console
poe2 = typef egu 2 ;type function
oG9 = printf equ 9 ;buffer print entry
pogb = brkf equ 11 :break key function (true if char
poot = openf egu 15 ;file open
0014 = readf equ 20 ;read function
@05c = fcb egu 5ch ;file control block address
B8O = buff equ 80h ;input disk buffer address
; non graphic characters
PGda = cr egu gdh ;carriage return
goga = 1f eqgu @ah ;line feed
- : file control block definitions
Be5c = fcbdn egu fcbh+i ;disk name
ggsd = febfn equ fcb+l ;file name
goe6es = fcbft eqgu fch+9 ;disk file type (3 characters)
0668 = fcbrl egu fcb+l2 ;file's current reel number
gg6b = fcbrc egu fcb+l5 ;file's record count (# to 128)
ggic = fcber equ fcb+32 j;current (next) record number (0
p@7a = fcbln equ fcb+33 ;fcb length
H set up stack
0100 210000 1xi h,0
0163 39 dad Sp
H entry stack pointer in hl from the ccp
0104 221502 shld oldsp
: set sp to local stack area (restored at finis)
9167 315702 1xi sp,stktop
; read and print successive buffers
Pl@a cdcl@l call setup ;set up input file
p10d feff cpi 255 :255 if file not present
P10f c21bol jnz openok ;skip if open is ok
; file not there, give error message and return
9112 11£301 1xi d,opnmsg
@115 cd9chl call err
@118 c35101 jmp finis sto return

~e

(All Information Contained Herein is Proprietary to Digital Research.)

34

openok: ;open operation ok, set buffer index to end

#11b 3e80 mvi a,84h
114 321302 sta ibp ;set buffer pointer to 80h
H hl contains next address to print
8120 210000 1xi h,? ;start with 0000
14
gloop:
@123 e5 push h ;save line position
0124 cdaz201l call gnb
9127 el pop h ;recall line position
0128 da5101 jc finis ;carry set by gnb if end file
B31l2b 47 mov b,a

print hex values
check for line fold

~e we

gl2c 74 mov a,l
9124 e6df ani Bfh scheck low 4 bits
B12f c24401 jnz nonum
; print line number
0132 cd7201 call crlf
; check for break key
@135 cd5901 call break
; accum 1lsb = 1 if character ready
8138 Af rrc ;into carry
139 da5191 jc finis ;don't print any more
81l3c 7c ' mov a,h
0134 cd8f@1 call phex
#1406 74 mov a,l
6141 cdgfol call phex
nonum:
144 23 inx h ;to next line number
6145 3e20 mvi a," !
0147 cd6501 call pchar
Pl4a 78 mov a,b
B1l4b cd8fol call phex
Glde c32301 jmp gloop
finis:
; end of dump, return to ccp
: (note that a jmp to 9@60h reboots)
3151 cd7241 call crlf
@154 2al562 1hld oldsp
@157 £9 sphl
: stack pointer contains ccp's stack location
9158 c9 ret ;to the ccp
; subroutines
break: ;check break key (actually any key will do)
$159 e5d5c5 push h! push d! push b; environment saved
Pl5c Pebb mvi c,brkf '
#15e cdp5600 call bdos
Plol cldlel pop b! pop d! pop h; environment restored

(All Information Contained Berein is Proprietary to Digital Research.)

35

6164 c9 ret

’
pchar: ;print a character

165 e5d5c5 push h! push d! push b; saved
2168 Peld?2 mvi c,typef
@dloa 5f mov e,a
gléb cdos00 call bdos
plee cldlel pop b! pop d! pop h; restored
¥g171 c9 ret
crif:
#9172 3ebdd mvi a,cr
174 cd6501 call pchar
3177 3ela mvi a,lf
179 cd6501 call pchar
@l7c c9 ret
pnib: ;erint nibble in reg a
P17d e6df ani @fh :low 4 bits
B1l7f feba cpi 16
p181 d28901 jnc pld
: less than or egqual to 9
9184 c630 adi ‘g’
#0186 c38bgl jmp prn
; greater or equal to 10
¥189 c637 plo: adi '‘a' - 10
P18b cd6501 prn: call pchar
#18e c9 ret
phex: ;print hex char in reg a
J18f £5 push psw
0190 0f rrc
9191 Of rrc
#4192 Of rrc
#1933 0f rrc
0194 cd7d491 call pnib ;print nibble
@197 f1 pop pSW
$198 cd7d401 call pnib
#19b c9 ret
err: ;print error message
: d,e addresses message ending witn "$"
@19c Gel9 mvi c,printf ;print buffer function
@19%e cdgs504d call bdos
@lal c9 ret
gnb: ;get next byte
vlaz 3al302 lda ibp
gla5 fe80 cpi 80h
Pla7 c2b361 jnz g0
: read another buffer

~e

(All Information Contained Herein is Proprietary to Digital Research.)

36

~e

dlaa cdcefl call diskr

flad b7 ora a ;zero value if read ok
0lae cab3fl jz g0 ; for another byte
; end of data, return with carry set for eof
g1bl 37 stc
g1lb2 c9 ret
go: ;read the byte at buff+reg a
p1b3 5f mov e,a ;1s byte of buffer index
g1lb4 1600 mvi 4,0 ;double precision index to de
¥1b6 3¢ inr a ;index=index+1
G1b7 3213062 sta ibp ;back to memory

pointer is incremented
save the current file address

~e weo

Plba 218000 1xi h,buff
g1lbd 19 dad d
; absolute character address is in hl
glbe 7e mov a,m
: byte is in the accumulator
g1bf b7 ora a ;reset carry bit
P1lc@d c9 ret
setup: ;set up file
: open the file for input
Plcl af Xra a ;Zero to accum
Glc2 327cH0 sta fcber ;clear current record
P1lc5 115c00 1xi da,fcb
Plc8 Pedf mvi c,openf
@lca cadv560 call bdos
: 255 in accum if open error
@lcd c9 ret
diskr: ;read disk file record
@lce e5d5c5HS push h! push d! push b
91dl 115c@0 1xi d,fcb
0144 Geld mvi c,readf
p1d6 cd@g500 call bdos
9149 cldlel pop b! pop d! pop h
Pldc c9 ret
; fixed message area
p1ldd 46494c@signon: db 'file dump version 2,08’
#1f3 fdgadefopnmsg: db cr,1f,'no input file present on disk$'
: variable area
p213 ibp: ds 2 ; input buffer pointer
8215 oldsp: ds 2 ;entry sp value from ccp
; stack area
$217 ds 64 ;reserve 32 level stack
stktop:
9257 end

(All Information Contained Herein is Proprietary to Digital Research,)

37

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,

assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input, If not found, the file 1is <created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range § to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and qguit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label “ready" where the individual commands are interpreted. The
default file control block at @05CH and the default buffer at 09080H
are used in all disk operations., The utility subroutines then follow,

which contain the principal input 1line processor, called “"readc."
This particular program shows the elements of random access

processing, and can be wused as the basis for further program
development,

(All Information Contained Herein is Proprietary to Digital Research.)

38

;***

ok *
;* sample random access program for cp/m 2.0 *
-k *
;***

0100 org 108h ;base of tpa

pRoR = reboot equ 3990h ;system reboot

0OB5 = bdos equ @ @05h ;bdos entry point

o1 = éoninp equ 1 ;console input function

29082 = conout eqgu 2 ;console output function

ppo9 = pstring equ 9 ;print string until '$°

poada = rstring equ 19 ;read console buffer

ggbc = version equ 12 ;return version number

poRt = openf egu 15 ;file open function

gg1o = closef equ 16 ;close function

gele = makef equ 22 imake file function

GgB21 = readr equ 33 ;read random

22 = writer equ 34 :write random

@85c = fcb egu @@5ch ;default file control block

pp7d4 = ranrec equ fcb+33 ;random record position

PRIt = ranovf egqu fcb+35 ;high order (overflow) byte

2080 = buff eqgu g080h ;buffer address

ppod = cr eqgu @dh ;carriage return

poda = 1f egu Gah :1line feed
;***
ok *
;* load SP, set-up file for random access *
P *
;*******************‘k*******************************

g180 31bcH 1x1 sp,stack
: version 2.07?

8103 Gefc mvi c,version

§1@5 cdes5g call bdos

P108 fe20 cpi 20h ;version 2.0 or better?

@lPa d2l60 jnc versok
; bad version, message and go back

@10d 111b6 1xi d,badver

118 cddal call print

113 c3060 jmp reboot
versok:
: correct version for random access

116 PDedf mvi c,openf ;open default fcb

3118 115cH 1xi d,fcb

P1llb cdes5e call bdos

@lle 3c inr a ;err 255 becomes zero

011f c2370 jnz ready
; cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research.)

39

122 Geles mvi c,makef

124 115co 1xi d,fcb

3127 cdes59 call bdos

@l2a 3c inr a serr 255 becomes zero

012b c2370 jnz ready
: cannot create file, directory full

#12e 113a0 1xi d,nospace

131 cddag call print

G134 c30009 jmp reboot ;back to ccp
;***
« % *
;* loop back to “ready" after each command *
.k *
;***
ready:
; file is ready for processing

@137 cdeb0 ’ call readcom ;read next command

913a 227d0 shld ranrec ;store input record#

8134 217f9 1xi h,ranovf

0140 3600 mvi m,d ;clear high byte if set

142 fe51 cpi 'Q! jquit?

0144 c2560 jnz notq
; quit processing, close file

0147 Gelyd mvi c,closef

149 115cH 1xi d,fcb

@l4c cdosg call bdos

B14f 3c inr a rerr 255 becomes @

3150 cab9yg jz error ;error message, retry

#153 c3000 jmp reboot ;back to ccp
:.***
.k ’ *
* end of guit command, process write *
« % *
kkkkhkkhkkhkkkhkhhhhhkkhdhhkhkhkhkhkhkhhhdhdhhhkhkhkhkhkhkIAAA XA A A A Ak A Ak A Ak k%

Se 3 ~e Se Se
O
t
Q

not the guit command, random write?

g156 fe57 cpi ‘w'
0158 c2890 jnz notw
: this is a random write, £ill buffer until cr
@15b 1144d¢ 1xi d,datmsg
#15e cddag call print ;data prompt
3161 Be7f mvi c,127 ;up to 127 characters
#3163 2184@0 1xi h,buff ;destination
rloop: ;read next character to buff
0166 c5 push b ;save counter
0167 e5 push h ;jnext destination
0168 cdc2@ call getchr ;character to a
P16b el pop h ;restore counter

(A1l Information Contained Herein is Proprietary to Digital Research.)

40

Blec cl pop b ;restore next to fill

pled fefd cpi cr ;end of line?

@lef ca780 jz erloop
: not end, store character

0172 77 mov m,a

@173 23 inx h ;next to fill

9174 94 dcr c ;counter goes down

0175 c2660 jnz rloop ;end of buffer?
erloop:
; end of read loop, store 00

G178 3609 mvi m,0
; write the record to selected record number

@l7a @e22 mvi c,writer

@1l7c 115c@ 1xi d,fch

Bl7f cdes5e call bdos

9182 b7 ora a ;error code zero?

P183 c2b9d jnz error ;message if not

2186 c3379 jmp ready ; for another record
;***
o % *
i* end of write command, process read *
ek *
;***
notw:
; not a write command, read record?

8189 fe52 cpi 'R'

B18b c2b9g jnz error ;skip if not
; read random record

f18e @Ge2l mvi c,readr

3190 115cH 1xi da,fcb

3193 cdes0 call bdos

#3196 b7 ora a ;return code 007

9197 c2b9p jnz error
: read was successful, write to console

@19a cdcfp call crlf ;new line

319d Ge89 mvi c,128 ;max 128 characters

@19f 21800 1xi h,buff ;next to get
wloop:

Pla2 Te mov a,m ;next character

@la3 23 inx h ;next to get

Blad e67f ani 7fh ;mask parity

@laé ca370 jz ready :for another command if 06

@la9 c5 push b ;save counter

@laa e5 push h ;save next to get

@lab fe2@ cpi v ;graphic?

@lad d4c8o cnce putchr ;skip output if not

@1bg el pop h

g1lbl cl pop b

#1b2 @d der c scount=count-1

@1b3 c2a2@ jnz wloop

@1b6 c3370 jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

41

L
’
: KAkKKkKKkhkhkkhhkhhhhhkhkkhhkkhkkhkhhkhkkhhhhkhkhkhkhkkkhkhkhhhhkhkkkk

*
* *
* end of read command, all errors end-up here *
*
*

*

r
i
;
pRFII IR AR R KRR AN Ak h ARk hkkkhhhkkhhhkhh Xk hhhrkkhhhhk %
;
e

rror:
g1b9 11590 1xi d,errmsg
@ lbc cddag call print
@1bf c33790 jmp ready
;***
o % *
;* utility subroutines for console i/o *
% *
;***
getchr:
sread next console character to a
0lc2 gefl mvi c,coninp
01lcd cdps50 call bdos
@1lc7 c9 ret
putchr:
;write character from a to console
01c8 Qef2 mvi c,conout
@lca 5f mov e,a scharacter to send
glcb cd@gs0 call bdos :send character
@lce c9 ret
’
crlf:
;send carriage return line feed
@lcf 3e0d mvi a,cr ;carriage return
#1dl cdc8o call putchr
91d4 3efa mvi a,lf ;line feed
#1d6 cdc80 call putchr
9149 c9 ret
print:
;print the buffer addressed by de until §
plda d5 push d
@1db cdcfd call crlf
@lde dl pop d ;new line
g1df 0eB9 mvi c,pstring
flel cd@ds59 call bdos ;print the string
fled c9 ret
14
readcom:
;read the next command line to the conbuf
@le5 116b0 1xi d,prompt
le8 cddad call print ;command?
gleb geda mvi c,rstring
gled 117a0 1xi d,conbuf
P1f0 cdese call bdos ;read command line

command line is present, scan it

-e

(All Information Contained Herein is Proprietary to Digital Research,)

42

01f£3
g1f6
P19
glfa
p1lfb
Blfc

¢ 1£fd
g1ff
6201

0204
0285
0206
@207
0208
0209
g 20a
g28b
020c

¢ 20f
0216

9213
9215
w217

9218
p2la

921b
923a
@24ad

9259

f26b

21000 1xi h,o ;start with 0009

117cH 1xi d,conlin;command line

la readc: ldax d ;next command character

13 inx d ; to next command position

b7 ora a ;cannot be end of command

c8 rz
: not zero, numeric?

de639 sui ‘g

fepa cpi 10 ;carry if numeric

d2130 jnc endrd
; add-in next digit

29 dad h ;%2

44 mov c,l

44 mov b,h sbc = value * 2

29 dad h ;%4

29 dad h ;%8

g9 dad b 1¥2 + *8 = *1§

85 add 1 ;+digit

6f mov 1l,a

d2£90 jnc readc ;for another char

24 inr h ;overflow

c3f90 jmp readc ; for another char
endrd:
: end of read, restore value in a

Cc638 adi ‘g’ ; command

fe6l cpi ‘al ;translate case?

ds rc
7 lower case, mask lower case bits

e65f ani 191$1111b

c9 ret
;***
ok *
;* string data area for console messages *
ok *
;***
badver:

536£79 db 'sorry, you need cp/m version 2$'
nospace:

4e6£29 db 'no directory space$'’
datmsg:

547970 db 'type data: $'
errmsg:

457272 db ‘error, try again,$'
prompt:

4e6579 db 'next command? S$'

’

(All Information Contained Herein is Proprietary to Digital Research.)

43

;***

o % *
;* fixed and variable data area *
« % *
;***
g27a 21 conbuf: db conlen ;length of console buffer
@27b consiz: ds 1 sresulting size after read
B27c conlin: ds 32 ;length 32 buffer
2021 = conlen equ S~consiz
@29c ’ ds 32 116 level stack
stack:
g 2bc end

Again, major improvements could be made to this particular
program to enhance its operation, In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and

extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 18 and
ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file, The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical

list of LASTNAME fields with their corresponding record numbers,
(This list is called an “inverted index" 1in information retrieval
parlance,)

Rename the program shown above as QUERY, and massage it a bit so

that it reads a sorted key file into memory, The command 1line might
appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which 1is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
gquite rapidly by performing a "binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search,
You'll gquickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number, Fetch and display
this record at the console, just as we have done in the program shown
above,

(All Information Contained Herein is Proprietary to Digital Research.)

44

At this point you're just getting started. With a 1little more
work, you <can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description,
Finally, if your 1lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: 1if you make it through the project,
you'll have no more need for this manuall

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY.

FUNC FUNCTION NAME INPUT PARAMETERS

OUTPUT RESULTS

] System Reset none none

1 Console Input none A = char

2 Console QOutput E = char none

3 Reader Input none A = char

4 Punch OQutput E = char none

5 List Output E = char none

6 Direct Console I/0 see def see def

7 Get 1I/0 Byte none A = IOBYTE

8 Set I/0 Byte E = IOBYTE none

9 Print String DE = .Buffer none
10 Read Console Buffer DE = ,Buffer see def
11 Get Console Status none A = g@/FF
12 Return Version Number none HL= Version¥*
13 Reset Disk System none see def
14 Select Disk E = Disk Number see def
15 Open File DE = .FCB A = Dir Code
16 Close File DE = .FCB A = Dir Code
17 Search for First DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = .FCB A = Dir Code
20 Read Seguential DE = .FCB A = Err Code
21 Write Seguential DE = .FCB A = Err Code
22 Make File DE = .FCB A = Dir Code
23 Rename File DE = ,FCB A = Dir Code
24 Return Login Vector none HL= Login Vect*
25 Return Current Disk none A = Cur Disk#
26 Set DMA Address DE = .DMA none

27 Get Addr(Alloc) none HL= .Alloc
28 Write Protect Disk none see def
29 Get R/O Vector none HL= R/0 Vect*
30 Set File Attributes DE = ,FCB see def
31 Get Addr(disk parms) none HL= ,DPB
32 Set/Get User Code see def see def
33 Read Random DE = .FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = .FCB rg, rl, r2
36 Set Random Record DE = .FCB rg, rl, r2

* Note that A = L, and B = H upon return

(All Information Contained Herein is Proprietary to Digital Research.)

46

MACRO - 80

Assembler
Reference Manual

(c) Microsoft - 1981

All Rights Reserved Worldwide

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be

used or copied only in accordance with the terms of the agreement.

(C) Microsoft, 1979

NOTE: Chapters 2 and 3 of this manual have been deleted as the associated
software is not provided as part of the Xerox software.

CP/M is a registered trade mark of Digital Research

8401-340-03

Microsoft MACRO-80 Assembler, Release 3.4 November 1980

ADDENDA TO: Utility Software Manual
MACRO-80 Assembler Reference Manual
XMACRO-86 Assembler Reference Manual

The following features were added or modified in release
3.4.

Add to Section 2.2.2 Switches

Switch Action

/M Initialize Block Data Areas.

If the programmer wants the area that 1is defined
by the DS (Define Space) pseudo-op initialized to
zeros, then the programmer should use the /M
switch in the command line. Otherwise, the space
is not guaranteed to contain zeros. That 1is, DS
does not automatically initialize the space to
zeros.

/X The presence or absence of /X in the command 1line
sets the initial current mode and the initial
value of the default for 1listing or suppressing
lines in false <conditional blocks. /X sets the
current mode and initial wvalue of default to
not-to-list. No /X sets current mode and initial
value of default to list. Current mode determines
whether false conditionals will be 1listed or
suppressed. The initial value of the default 1is
used with the .TFCOND pseudo-op so that .TFCOND is
independent of .SFCOND and .LFCOND. If the
program c¢ontains .SFCOND or .LFCOND, /X has no
effect after .SFCOND or .LFCOND 1is encountered
until a .TFCOND is encountered in the file. So /X
has an effect only when used with a £file that
contains no conditional listing pseudo-ops or when
used with .TFCOND.

MACRO-80, Release 3.4, Addenda Page 2

The following chart illustrates the effects of the
three pseudo-ops when encountered under /X and
under no /X. See the addition to Section 2.6.27
below for a full description of the three
conditional listing pseudo-ops.

PSEUDO-OP NO /X /X

(none) OoN OFF
.SF%OND O;F O%F
.LF%OND Oé Oé
.TFéOND O;F Oé
.TF%OND Oé OéF
.SF%OND OéF O%F
.TFéOND O;F Oé
. TFCOND OoN OFF
.TFéOND O;F Oé

Add to Section 2.6.26 Conditional Pseudo Operations

IFIDN <argl>,<arg2> True 1if the string <argl> 1is
IDeNtical to the string <arg2>.
The angle brackets around <argl>
and <arg2> are required.

IFDIF <argl>,<argl> True 1if the string <argl> is
DIFferent from the string <arg2>.
The angle brackets around <argl>
and <arg2> are required.

MACRO-80, Release 3.4, Addenda Page 3

Add to Section 2.6.27 Listing Control Pseudo Overations

There are now five listing control pseudo-ops. Output to
the listing file <can be controlled by the following
pseudo-ops:

.LIST, .XLIST, .SFCOND, .LFCOND, .TFCOND

The three new pseudo-ops control the listing of conditional
pseudo-op blocks which evaluate as false. These pseudo-ops
give the programmer control over four cases.

1. ©Normally list false conditionals
For this case, the programmer simply allows the
default mode to control the listing. The default
mode is list false conditionals. If the programmer
decides to suppress false conditionals, the /X
switch can be issued in the command line instead of
editing the source file.

2. Normally suppress false conditionals

For this case, the programmer issues the ,TFCOND
pseudo-op in the program file. .TFCOND reverses
(toggles) the default, causing false conditionals
to be suppressed. If the programmer decides to
list false conditionals, the /X switch can be
issued in the command line instead of editing the
source file.

3. Always suppress/list false conditionals
For these cases, the programmer issues either the
.SFCOND pseudo-op to suppress false conditionals,
or the .LFCOND pseudo-op to 1list all false
conditionals.

4., Suppress/list some false conditionals

For this case, the programmer has decided £for most
false conditionals whether to list or suppress, but
for some false conditionals the programmer has not
yet decided. For the false conditionals decided
about, use .SFCOND or .LFCOND. For those not vyet
decided, use .TFCOND. .TFCOND sets the current and
default settings to the opposite of the default.
Initially, the default is set by giving /X or no /X
in the command line. Two subcases exist:

1. The programmer wants some false conditionals
not to list unless /X is given. The programmer
uses the .SFCOND and .LFCOND pseudo-ops to
control which areas always suppress or list
false conditionals. To selectively suppress
some false conditionals, the programmer issues
.TFCOND at the beginning of the conditional
block and again at the end of the conditional
block. (NOTE: The second .TFCOND is should be
so that the default setting will be the same as
the initial setting. Leaving the default equal

MACRO-80,

The three
below.

Release 3.4, Addenda Page 4

PSEUDO-0OP

. SFCOND

. LFCOND

. TFCOND

to the initial setting makes it easier to keep
track of the default mode 1if there are many
such areas.) If the conditional block evaluates
as false, the lines will be suppressed. In
this subcase, issuing the /X switch in the
command line causes the conditional block
affected by .TFCOND to 1list even 1if it
evaluates as false.

The programmer wants some false conditionals to
list unless /X 1is given. of the file. Two
consecutive L.TFCONDs places the <conditional
listing setting in 1initial state which 1is
determined by the presence or absence of the /X
switch (the first .TFCOND sets the default to
not initial; the second to 1initial). The
selected conditional block then responds to the
/X switch: if a /X switch 1is 1issued 1in the
command line, the conditional block 1is
suppressed if false; if no /X switch is issued
in the command line, the conditional block is
listed even if false.

The programmer then must reissue the .SFCOND or
. LFCOND conditional listing pseudo-op to
restore the suppress or list mode. Simply
issuing another .TFCOND will not restore the
prior mode, but will toggle the default
setting. Since in this subcase, the next area
of code is supposed to list or suppress false
conditionals always, the programmer must issue
. SFCOND or .LFCOND.

conditional 1listing pseudo-ops are summarized

DEFINITION

Suppresses the listing of conditional blocks
that evaluate as false.

Restores the listing of conditional blocks that
evaluate as false.

Toggles the current setting which controls the
listing false conditionals. .TFCOND sets the
current and default setting to not default. If
a /X switch 1is given in the MACRO-80 run
command line for a file which contains .TFCOND,
/X reverses the effect of .TFCOND.

MACRO-80, Release 3.4, Addenda Page 5

Add to Section 2.7.9 Special Macro Operators and Forms

%

The percent sign is used only in a macro argument.
% converts the expression that follows it (usually a

symbol) to a number in the current radix. During
macro expansion, the number derived from converting
the expression is substituted for the dummy. Using

the % special operator allows a macro call by value.
(Usually, a macro call is a call by reference with
the text of the macro argument substituting exactly
for the dummy.)

The expression following the % must conform to the
same rules as the DS (Define Space) pseudo-op. A
valid expression returning a non-relocatable
constant is required.

EXAMPLE:

Normally, LB, the argument to MAKLAB, would be
substituted for Y, the argument to MACRO, as a
string. The % causes LB to be converted to a
non-relocatable constant which is then substituted
for Y. Without the % special operator, the result
of assembly would be “Error LB” rather than “Error
17, etc.

MAKLAB MACRO Y
ERR&Y: DB “Error &Y~,0
ENDM
MAKERR MACRO X
LB SET 0
REPT X
LB SET LB+1
MAKLAB %$LB
ENDM
ENDM

When called by MAKERR 3, the assembler will
generate:

ERR1: DB “Error 17,0
ERR2: DB “Error 27,0
ERR3: DB “Error 37,0

Microsoft

CONTENTS

CHAPTER 1 Introduction

CHAPTER 2 MACRO-80 Assembler

Running MACRO-80
Command Format
Devices
Switches
Format of MACRO-80 Source Files
Statements
Symbols
Numeric Constants
Strings
Expression Evaluation
Arithmetic and Logical Operators
Modes
Externals
Opcodes as Operands
Pseudo Operations
ASEG
COMMON
CSEG
DB - Define Byte
DC - Define Character
DS - Define Space
DSEG
DW - Define Word
END
ENTRY/PUBLIC
EQU
EXT/EXTRN
INCLUDE
NAME
ORG -~ Define Origin
PAGE
SET
SUBTTL
TITLE
.COMMENT
«PRINTX
.RADIX
.280
.8080
. REQUEST
Conditional Pseudo Operations
.1 ELSE
.2 ENDIF
Listing Control Pseudo Operations

. .

e o o o o o & e o o o »
¢ o o o
w N =W N -

e o e o o o e o o & & o e & o

GRS ISR SRR SR SENNSRESRESESESE SN VE SIS SESESESE SRS SESR SR SESESENENESESETSESNENESE S SENE SRS NN

AN ARNRUIANAANNANAANANNNAANAAAOUTES A LWWWWWNDNDND

NNODODODNDNODNDNDOONNHEFEHEEHEHEPFPRHEBEEREODONOAV R WN -

NoO OO NMEWNHFOWONNOWTUMTIEWNDEFHO

CHAPTER

CHAPTER

CHAPTER

APPENDIX

2.6.28 Relocation Pseudo Operations
2.6.28.1 ORG Pseudo-op

2.6.28.2 LINK-80

2.6.29 Relocation Before Loading

2.7 Macros and Block Pseudo Operations
2.7.1 Terms

2.7.2 REPT-ENDM

2.7.3 IRP-ENDM

2.7.4 IRPC-ENDM

2.7.5 MACRO

2.7.6 ENDM

2.7.7 EXITM

2.7.8 LOCAL

2.7.9 Special Macro Operators and Forms
2.8 Using Z80 Pseudo-ops

2.9 Sample Assembly

2.10 MACRO-80 Errors

2.11 Compatability with Other Assemblers
2.12 Format of Listings

2.12.1 Symbol Table Listing

3 CREF-80 Cross Reference Facility
4 LINK-80 Linking Loader

Running LINK-80
Command Format
1 LINK-80 Switches
2 Sample Link
Format of LINK Compatible Object Files
LINK-80 Error Messages
Program Break Information

5 LIB-80 Library Manager

5.1 LIB-80 Commands

5.1.1 Modules

5.2 LIB-80 Switches

5.3 LIB-80 Listings

5.4 Sample LIB Session

5.5 Summary of Switches and Syntax

TEKDOS Operating System

1 TEKDOS Command Files
.2 MACRO-80

3 CREF-80

4 LINK-80

CHAPTER 1

INTRODUCTION

MACRO-80 is a relocatable macro assembler for 8080 and 2z80
microcomputer systems. It assembles 8080 or Z80 code on any
8080 or 7280 development system running the CP/M, ISIS-II,
TRSDOS or TEKDOS operating system. The MACRO-80 package
includes the MACRO-80 assembler, the LINK-80 linking loader,
and the CREF-80 cross reference facility. CP/M versions
also include the LIB-80 Library Manager. MACRO-80 resides
in approximately 14K of memory and has an assembly rate of
over 1000 lines per minute.

MACRO-80 incorporates almost all "big computer" -assembler
features without sacrificing speed or memory space. The
assembler supports a complete, Intel standard macro
facility, including IRP, IRPC, REPEAT, local variables and
EXITM. Nesting of macros is limited only by memory. Code
is assembled 1in relocatable modules that are manipulated
with the flexible 1linking 1loader. Conditional assembly
capability is enhanced by an expanded set of conditional
pseudo operations that include testing of assembly pass,
symbol definition, and parameters to macros. Conditionals
may be nested up to 255 levels.

MACRO-80's linking loader provides a versatile array of
loader <capabilities, which are executed by means of easy
command lines and switches. Any number of programs may be
loaded with one command, relocatable modules may be loaded
in user-specified locations, and external references between
modules are resolved automatically by the loader. The
loader also performs library searches for system subroutines
and generates a load map of memory showing the locations of
the main program and subroutines. The cross reference
facility that 1is included in this package supplies a
convenient alphabetic list of all program variable names,
along with the 1line numbers where they are referenced and
defined.

INTRODUCTION Page 1-2

This manual is designed to serve as a reference guide to the
MACRO-80 package. It defines, explains and gives examples
of all the features in MACRO-80 in terms that should be
understandable to anyone familiar with assembly language
programming. It is not intended, however, to serve as
instructional material and presumes the user has substantial
knowledge of assembly language programming. The user should
refer to instructional material available from a variety of
sources for additional tutorial information.

CHAPTER 2

MACRO-80 ASSEMBLER

2.1 RUNNING MACRO-80
The command to run MACRO-80 is
M80

MACRO-80 returns the prompt "*", indicating it is ready to
accept commands.

NOTE
If you are using the TEKDOS

operating system, see Appendix
A for proper command formats.

2.2 COMMAND FORMAT

A command to MACRO-80 consists of a string of filenames with
optional switches. All filenames should follow the
operating system's conventions for filenames and extensions.
The default extensions supplied by Microsoft software are as
follows:

File CP/M ISIS-II
Relocatable object file REL REL
Listing file PRN LST
MACRO-80 source file MAC MAC
FORTRAN source file FOR FOR
COBOL source COB COB

Absolute file COM

MACRO-80 ASSEMBLER PAGE 2-2

A command to MACRO-80 conveys the name of the source file to
be assembled, the names of the file(s) to be created, and
which assembly options are desired. The format of a
MACRO-80 command is:

objfile,lstfile=source file

Only the equal sign and the source file field are required
to create a relocatable object file with the default
(source) filename and the default extension REL.

Otherwise, an object file is created only if the objfile
field is filled, and a listing file is created only if the
1stfile field is filled.

To assemble the source file without producing an object file
or listing file, place only a comma to the left of the equal
sign. This is a handy procedure that lets you check for
syntax errors before assembling to an object file.

Examples:

*=TEST Assemble the source file TEST.MAC
and place the object file in TEST.REL.

*,=TEST Assemble the source file TEST.MAC
without creating an object or listing
file. Useful for error checking.

TEST, TEST=TEST Assemble the source file TEST.MAC,
placing the object file in TEST.REL
and the listing file in TEST.PRN.
(With ISIS-II, the listing file is
TEST.LST.)

*OBJECT=TEST Assemble the source file TEST.MAC
and place the object file in
OBJECT. REL.

OBJECT,LIST=TEST Assemble the source file TEST.MAC,

placing the object file in OBJECT.REL
and the listing file in LIST.PRN.
(With ISIS-II, the listing file is
LIST.LST.)

MACRO-80 also supports command 1lines; that is, the
invocation and command may be typed on the same line. For
example:

M80 ,=TEST

MACRO-80 ASSEMBLER PAGE 2-3

2.2.1 Devices

Any field in the MACRO-80 command string can also specify a
device name. The default device name with the CP/M
operating system is the currently logged disk. The default
device name with the ISIS-II operating system is disk drive
0. The command format is:

dev:objfile,dev:1lstfile=dev:source file

The device names are as follows:

Device CP/M ISIS-II
Disk drives A:, B:, Cz,... :F0:, :Fl:, :F2:, ...
Line printer LST: LST:
Teletype or CRT TTY: TTY :
High speed reader HSR
Examples:
* , TTY:=TEST Assemble the source file TEST.MAC

and list the program on the
console. No object code is
generated. Useful for error check.

*SMALL,TTY:=B:TEST Assemble TEST.MAC (found
on disk drive B), place
the object file in SMALL.REL,
and list the program on the console.

2.2.2 Switches

A switch is a letter that is appended to the command string,
preceded by a slash. It specifies an optional task to be
performed during assembly. More than one switch can be
used, but each must be preceded by a slash. (With the
TEKDOS operating system, switches are preceded by commas or
spaces. See Appendix A.) All switches are optional. The
available switches are:

Switch Action
0 Octal listing
H Hexadecimal listing (default)
R Force generation of an object file
L Force generation of a listing file
C Force generation of a cross reference file

MACRO-80 ASSEMBLER PAGE 2-4

Assemble Z80 opcodes (default for 280 operating
systems)

Assemble 8080 opcodes (default for 8080 operating
systems)

Each /P allocates an extra 256 bytes of stack
space for use during assembly. Use /P if stack
overflow errors occur during assembly. Otherwise,
not needed.

Initialize Block Data Areas. If the programmer
wants the area that is defined by the DS (Define
Space) speudo-op initialized to 2zeros, then the
programmer should use the /M switch in the command
line. Otherwise, the space is not guaranteed to
contain zeros. That is, DS does not automatically
initialize the space to zeros.

Usually used to suppress the 1listing of £false
conditionals. The following paragraph describes
the /X switch more completely but in very
technical terms.

The presence or absence of /X in the command 1line
sets the initial current mode and the initial
value of the default for 1listing or suppressing
lines in false conditional blocks. /X sets the
current mode and initial wvalue of default to
not-to-list. No /X sets current mode and initial
value of default to list. Current mode determines
whether false conditionals will be 1listed or
suppressed. The initial value of the default is
used with the .TFCOND pseudo-op so that .TFCOND is
independent of .SFCOND and .LFCOND. If the
program contains .SFCOND or .LFCOND, /X has no
effect after .SFCOND or .LFCOND 1is -encountered
until a .TFCOND is encountered in the file. So /X
has an effect only when used with a £file that
contains no conditional listing pseudo-ops or when
used with .TFCOND.

Py

MACRO-80 ASSEMBLER PAGE 2-5

Examples:

*=TEST/L Assemble TEST.MAC, place the object file in
TEST.REL and a 1listing file in TEST.PRN.
(With ISIS-II, the listing file is
TEST.LST.)

*=TEST/L/O Same as above, but 1listing file addresses
will be in octal.

*LAST=TEST/C Assemble TEST.MAC, place the object file 1in

LAST.REL and cross reference file in
TEST.CRF. (See Chapter 3.)

2.3 FORMAT OF MACRO-80 SOURCE FILES

Input source lines of up to 132 characters in length are
acceptable.

MACRO-80 preserves lower case letters in quoted strings and
comments. All symbols, opcodes and pseudo-opcodes typed in
lower case will be converted to upper case.

If the source file includes line numbers from an editor,

each byte of the 1line number must have the high bit on.
Line numbers from Microsoft's EDIT-80 Editor are acceptable.

2.3.1 Statements

Source files input to MACRO-80 consist of statements of the
form:

[label:[:]] [operator] [arguments] [;comment]

With the exception of the ISIS assembler $ controls (see
Section 2.11), it is not necessary that statements begin in
column 1. Multiple blanks or tabs may be used to improve
readability.

If a label is present, it is the first item in the statement
and is immediately followed by a colon. If it is followed
by two colons, it is declared as PUBLIC (see ENTRY/PUBLIC,
Section 2.6.10). For exmple:

FOO:: RET
is equivalent to

PUBLIC FOO
FOO: RET

MACRO-80 ASSEMBLER PAGE 2-6

The next item after the label, or the first item on the line
if no label is present, is an operator. An operator may be
an 8086 mnemonic, pseudo-op, macro call or expression. The
evaluation order is as follows:

1. Macro call
2. Mnemonic/Pseudo operation
3. Expression

Instead of flagging an expression as an error, the assembler
treats it as if it were a DB statement (see Section 2.6.4).

The arguments following the operator will, of course, vary
in form according to the operator.

A comment always begins with a semicolon and ends with a
carriage return. A comment may be a line by itself or it
may be appended to a 1line that contains a statement.
Extended comments can be entered using the .COMMENT pseudo
operation (see Section 2.6.20).

2.3.2 Symbols

MACRO-80 symbols may be of any 1length, however, only the
first six characters are significant. The following
characters are legal in a symbol:

A-2 0-9 $. ? e

With Microsoft's 8080/280/8086 assemblers, the underline
character is also legal in a symbol. A symbol may not start
with a digit. When a symbol 1is read, 1lower case is
translated into wupper case. If a symbol reference is
followed by ## it 1is declared external (see also the
EXT/EXTRN pseudo-op, Section 2.6.12).

2.3.3 Numeric Constants

The default base for numeric constants is decimal. This may
be changed by the .RADIX pseudo-op (see Section 2.6.22).
Any base from 2 (binary) to 16 (hexadecimal) may be
selected. When the base 1is greater than 10, A-F are the
digits following 9. If the first digit of the number is not
numeric the number must be preceded by a zero.

MACRO-80 ASSEMBLER PAGE 2-7

Numbers are 1l6-bit unsigned quantities. A number is always
evaluated 1in the current radix unless one of the following
special notations is used:

nnnnB Binary

nnnnD Decimal

nnnno Octal

nnnnQ Octal

nnnnH Hexadecimal
X'nnnn' Hexadecimal

Overflow of a number beyond two bytes is ignored and the
result is the low order 1l6-bits.

A character constant is a string comprised of zero, one or
two ASCII characters, delimited by quotation marks, and used
in a non-simple expression. For example, in the statement

DB TA' + 1
'A' is a character constant. But the statement
DB Al

uses 'A' as a string because it is in a simple expression.
The rules for character constant delimiters are the same as
for strings.

A character constant comprised of one character has as 1its
value the ASCII value of that character. That is, the high
order byte of the wvalue is zero, and the low order byte Iis
the ASCII value of the character. For example, the value of
the constant 'A' is 41H.

A character constant comprised of two characters has as its
value the ASCII value of the first character in the high
order byte and the ASCII value of the second character in
the low order byte. For example, the value of the character
constant "AB" is 41H*256+42H.

2.3.4 Strings

A string is comprised of zero or more characters delimited
by quotation marks. Either single or double quotes may be
used as string delimiters. The delimiter quotes may be used
as characters 1if they appear twice for every character
occurrence desired. For example, the statement

DB "I am ""great"" today"
stores the string

I am "great" today

MACRO-80 ASSEMBLER PAGE 2-8

If there are zero characters between the delimiters, the
string is a null string.

2.4 EXPRESSION EVALUATION

2.4.1 Arithmetic And Logical Operators

The following operators are allowed in expressions. The
operators are listed in order of precedence.

NUL

LOW, HIGH

*, /, MOD, SHR, SHL

Unary Minus

+, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR
Parentheses are used to change the order of precedence.
During evaluation of an expression, as soon as a new
operator is encountered that has precedence 1less than or
equal to the last operator encountered, all operations up to
the new operator are performed. That 1is, subexpressions

involving operators of higher precedence are computed first.

All operators except +, -, *, / must be separated from their
operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate the high or
low order 8 bits of an Absolute 1l6-bit value. If a
relocatable value is supplied as an operand, HIGH and LOW
will treat it as if it were relative to location zero.

2.4.2 Modes

All symbols used as operands in expressions are 1in one of
the following modes: Absolute, Data Relative, Program
(Code) Relative or COMMON. (See Section 2.6 for the ASEG,
CSEG, DSEG and COMMON pseudo-ops.) Symbols assembled under
the ASEG, CSEG (default), or DSEG pseudo-ops are in
Absolute, Code Relative or Data Relative mode respectively.

MACRO-80 ASSEMBLER PAGE 2-9

The number of COMMON modes in a program is determined by the
number of COMMON blocks that have been named with the COMMON
pseudo~-op. Two COMMON symbols are not in the same mode
unless they are in the same COMMON block. 1In any operation
other than addition or subtraction, the mode of both
operands must be Absolute.

If the operation is addition, the following rules apply:
