

CP/M@2.2 OPERATING SYSTEM MANUAL

820 INFORMATION PROCESSOR

Xerox is a registered trademark of Xerox Corporation

CP/M is a registered trademark of Digital Research Incorporated

Portions of this manual are reproduced by permission of Digital Research
Incorporated, Pacific Grove, California

Copyright ©1981 Xerox Corporation. All rights reserved.
9R80240

Reprinted August 1981

CP/M is a registered trademark of Digital Research, Inc.

Z-80 is a registered trademark of Zilog, Inc.

Warning: This equipment generates, uses, and can radiate radio frequency energy
and if not installed and used in accordance with the instructions manual, may cause
interference to radio communications. As temporarily permitted by regulation it
has not been tested for compliance with the limits for Class A computing devices
pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference. Operation of this equipment in a
residential area is likely to cause interference in which case the user at his own
expense will be required to take whatever measures may be required to correct the
interference.

ii

TABLE of CONTENTS

GENERAL INTRODUCTION 1

FEATURES &: FACILITIES
Introduction 1
Functional Description of CP/M 3

General Command Structure 3
File References 3

Swi tching Disks 6
The Form of Built-In Commands 7

ERA afn cr 7
DIR afn cr 8
REN ufnl=ufn2 cr 8
SAVEnufncr 9
TYPE ufn cr 9

Line Editing and Output Control 11
Transient Commands 12

STAT cr 13
ASM ufn cr 16
LOAD ufn cr 17
PIP cr 18
ED ufn cr 25
SYSGEN cr 27
SUBMIT ufn parmlll ••• parmlln cr 28
DUMP ufn cr 30

"-
MOVCPM cr 30

BDOS Error Messages 33
Operation of CP/M on the MDS 34

USER'S GUIDE
An Overview of CP/M 2.0 Facilities 1
User Interface 3
Console Command Processor (CCP) Interface 4
ST A T Enhancements 5
PIP Enhancements 8
ED Enhancements 10
The XSUB Function 11
BDOS Interface Conventions 12
CP/M 2.0 Memory Organization 27
BIOS Differences 28

ALTERATION GUIDE
Introduction 1
First Level System Regeneration 2
Second Level System Generation 6
Sample Tetsys and Putsys Programs 10
Diskette Organization 12
The BIOS Entry Points 14
A Sample BIOS 21
A Sample Cold Start Loader 22
Reserved Locations in Page Zero 23
Disk Parameter Tables 25

\

"--

iii

The DISKDEF Macro Library
Sector Blocking and Deblocking

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

INTERFACE GUIDE
Introduction
Operating System Call Conventions
A Sample File-to-File Copy Program
A Sample File Dump Utility
A Sample Random Access Program
System Function Summary

ASSEMBLER
Introduction
MACRO-80 Assembler

Running MACRO-80
Command Format
Format of MACRO-80 Source Files
Expression Evaluation
Opcodes as Operands
Pseudo Operations
Macros and Block Pseudo Operations
Using 280 Pseudo-ops
Sample Assembly
MACRO-80 Errors
Compatability with Other Assemblies
Format of Listings

LINK-80 Linking Loader
Running LINK-80
Command Format
Format of LINK Compatible Object Files
LINK-80 Error Messages
Program Break Information

TEKDOS Operating System
TEKDOS Command Files
MACRO-80
CREF-80
LINK-80

CONTEXT EDITOR
Ed Tutorial

Introduction to ED
ED Operation
Text Transfer Functions
Memory Buffer Organization
Memory Buffer Operatin
Command Strings

iv

30
34
36
39
50
56
59
61
66

1
3

29
34
37
46

1-1
2-1
2-1
2-1
2-5
2-8

2-10
2-11
2-25
2-33
2-34
2-35
2-36
2-37

4-1
4-1
4-1
4-7

4-10
4-11
A-I
A-I
A-I
A-2
A-2

1
1
1
1
5
5
7

Text Search and Alteration
Source Libraries
Repetitive Command Execution

Ed Error Conditions
Control Characters and Commands

DEBUGGING TOOL
Introduction
DDT Commands

The A (Assemble) Command
The D (Display) Command
The F (Fill) Command
The G (Go) Command
The I (Input) Command
The L (List) Command
The M (Move) Command
The R (Read) Command
The S (Set) Command
The T (Trace) Command
The U (Untrace) Command
The X (Examine) Command

Implementation Notes
An Example

DIAGNOSTICS
Diagnostics

SYSTEM COMPONENTS
630 Printer
Forms Tractor
Introduction
Monitor Command Summary

Dump Command
Memory Command
Test Command
Fill Command
Copy Command
Go To Command
Read Command
Boot Command
Typewriter Command
Input Command
Output Command

Monitor Resident I/o Driver Functions
Interrupt Processing
Memory Mapped Video Display

Display Character Codes
Key Station Numbering
Key Codes

Parallel Keyboard Input
Floppy Disk Controller
Serial Input/Output
Real Time Clock
Parallel I/O Option

User Accessible Monitor Routines and Variables
Xerox 820 Subroutine Entry Points

v

8
11
12
13
14

1
3
3
4
4
4
5
6
6
6
7
7
8
8
9

10

9-1

10-1
10-19
10-23
10-23
10-24
10-25
10-25
10-25
10-26
10-26
10-26
10-27
10-27
10-27
10-27
10-28
10-28
10-28
10-31
10-32
10-33
10-36
10-36
10-38
10-38
10-38
10-39
10-39

Theory of Operation
Central Processor

Clock Generator
Reset Controller
Port Address Decoding
Disk Transfer Synchronization

CRT Display Controller
Video Scrolling
Video RAM Addressing
Video Generation
Display Blanking

64 K RAM and Bank Switching
Refresh
Bank Switching

Floppy Disk Controller, System PIO, and CTC
Floppy Disk Controller
Data Separator
Data Bus Buffering
CTC
System PIO

General Purpose PIO and SIO
SIO
Baud Rate Generator
Interrupt Structures

General Purpose PIO Strappings (J 11) and Pin Assignments (J8)
CTC Strapping and I/O Assignments (J 1 0)
Video Output Connector Pin Assignments (J7)
Serial I/O Connector Pin Assignments Channel A (J4)
Serial I/o Strapping Options for Channel A (J9)
Serial I/o Connector Pin Assignments Channel B (J3)
Keyboard Connector Pin Assignments (J2)
Disk Drive Connector Pin Assignments (J 1)

vi

10-42
10-42
10-42
10-42
10-42
10-43

10-43
10-43
10-43
10-44
10-44
10-44
10-44
10-44
10-44
10-44
10-45
10-45
10-45
10-45
10-46
10-46
10-46
10-47
10-48
10-48
10-48
10-49
10-49
10-50
10-51
10-51

INTRODUCTION

This is your CP/M Reference Manual. In it you will find complete instructions for
using the CP/M operating system on your XEROX 820.

The CP/M operating system is an industry standard operating system that lets you use
a variety of programs you can purchase at software houses everywhere. The
instructions you'll need to load programs can be found in the CP/M Primer as well as
in this reference manual.

A brief description of the 820 is given on page 1-5 of this manual. More information
on the 820's single-board computer and ROM monitor commands are given in the
SYSTEM COMPONENTS section of this manual (beginning on page 10-23). This
information will be helpful to you as a programming aid.

To go along with the reference manual is the CP/M Primer (separate package) that
you can use to learn the basics of CP/M. As you go through the CP/M Primer, you'll
notice a few discrepancies between the illustrations in the Primer and what you see
on your screen. For instance, the illustration may show titles vertically whereas the
screen displays the titles horizontally. The MAIN difference between what you read
in the Primer and what you see on the screen is how the messages are displayed.

To use this manual and the CP/M p'rimer, you'll need

o a Xerox 820 Information Processor (screen, keyboard, and disk drives --the
printer's, optional), and

o a CP/M disk (packaged at the back of this manual), and

o a blank disk so you can make a backup copy of your CP/M disk.

We recommend you get the CP 1M disk and a blank disk right now and make the
backup copy of your software. That way, if anybody spills coffee on the disk, you
still have your software. The instructions on the next page tell you how to prepare a
disk and copy your software. The instructions are written for both 5"" and 8" disks.

We also recommend that you always remove your disks from the 820 before you turn
it off. . Leaving disks in the system when you power down can permanently erase
information on the disks.

GENERAL INTRODUCTION
1-1

HOW TO MAKE BACK UP COPIES OF YOUR DISKS

The instructions below tell you how to load the CP/M software. Before you can copy
a disk (or use the 820 to run other programs), you must load CP/M.

Loading the CP 1M software

7/1/81

OPEN the disk drives (as shown below) and remove any disks

DRIVE
A

5~II DISK DRIVES

DRIVE
B

8" DISK DRIVES

LOCATE the ON/OFF switch under the right side of the screen (shown below)

TURN the screen on, or press the RESET button if it is already ON

SCREEN

RESET
BUTTON

8" DISK DRIVES

(on bocIc of screen)

ON/OFF
SWITCH.

LOCATE the ON/OFF switch on the left side of the 8" disk drives, if your
system has them (The 5W' disk drives does not have a ON/OFF switch)

TURN the 8" disk drives on -- if your system has 8" drives, they must be turned
on for your system to operate.

GENERAL INTRODUCTION
1-2

"'--_.

INSERT the CP/M disk in the A (left) drive and CLOSE ,the drive

5~" DISK DRIVES

DRIVE
A

INSERT DISK

CLOSE DRIVE

8" DISK DRIVES

DRIVE
A

TYPE A and press RETURN to load CP/M into the 820's memory.

Initializing a Disk

Before you can use a new dis~ in the 820, you must prepare it by initializing it.
Follow the steps below to use the INIT program to initialize a disk. After you
initialize the disk, you can copy onto it.

OBTAIN at least one ryew disk and take the write protect tape off of the 5~"
disk, or put a write protect tape on the 8" disk.

7/1/81

(If you don't have a new disk, a previously used one will do.)

5W'DISK

WRITE
PROTECT

TAPE

OVAL
CUTOUT

D

GENERAL INTRODUCTION
1-3

8" DISK

UP AND IN
ARROWS

TYPE the word INIT and press RETURN

WAIT for the message ENTER DISK DRIVE TO BE INITIALIZED (A OR B)

INSERT the new disk in drive B, type B and press RETURN twice

Wait for the message 0 FLAWED SECTORS. (If the disk has flawed
sectors as indicated by a number other than 0 in front of the FLAWED
SECTORS message, don't use it to copy your software - get another disk
and initialize it, using steps below)

IF you had flawed sectors, initialize another disk as follows:

• Remove the disk in the B (right) drive
• Insert another disk in the B drive
• Type B
• Press RETURN twice
• Remove the disk after the FLAWED SECTORS message appears

WHEN all the disks are initialized:

• Press the SPACE bar
• Wait for A> to appear on the screen, then continue with the steps

below

Copying a Disk

Now that you've initialized a disk, you are ready to copy the CP/M software.

TYPE the word COpy and press RETURN

Wait for a message that tells you to insert destination and source disks

BE SURE your initialized disk is in the B drive

PRESS the RETURN key

WAIT for the COpy COMPLETE message

REMOVE both disks. Put a label on the copy disk that says "CP/M"

PUT the original disk in the disk holder at the back of this manual

GENERAL INTRODUCTION
1-4

Applications Software

The instructions on page 1-2 and 1-3 told you how to load CP/M. After loading
CP/M, you can run "applications" programs on the 820. The applications software
may be purchased from Xerox or from other vendors.

When you use your CP/M software to run an applications program for the first time,
the program may ask you to define your system. The following information will help
you answer these questions.

Your 820 is configured like a Lear Siegler ADM-3A display terminal.

Your 820 has two disk drives. The 5Y4" disks have 40 tracks and will have 81K of
available space. The 8" disks have 77 tracks and have 241K of available space.

Your software is a CP/M 2.2 operating system.

The Typewriter Feature

If your 820 has a printer, you can use it like a typewriter. Everything you type will
be printed at the printer, but it will not be recorded on a disk. You do not need to
have the CP/M software loaded when you use the 820 typewriter feature.

REMOVE any disks from the disk drives

TURN ON your system or press the RESET button if it is already on

INSERT paper in the printer

PRESS the T key, then press RETURN

TYPE just as you would on any typewriter

As a typewriter, the 820 uses margins of 1 and 65, with tabs set every five spaces. If
you want to change these settings, use the instructions below.

SET LEFT MARGIN by pressing the SPACE bar to move to the desired posi tion,
and pressing ESC then 9

CLEAR ALL TABS by pressing ESC then 2

SET A TAB by pressing the SPACE bar to move to the desired position, and
pressing ESC then 1

7/1/81
GENERAL INTRODUCTION

1-5

(This page intentionally blank)

GENERAL INTRODUCTION
1-6

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF J"ANUARY 1978

Copyright (c) 1976, 1977, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

"'-_.

Table of Contents

Section Paqe

1. INTRODUCTION ••••••••••••••••••••••••••••••••••••••• 1

2.

3.

4.

5.

6.

FUNCTI~~ DESCRIPTION OF CP/M •••••••••••••••••••••
2.1. General Command Structure ••••••••••••••••••••
2.2. File References
SWITCHING DISKS
THE FORM OF BUILT-IN mMMANIS
4.1. ERA afn cr
4.2. DIR afn cr
4.3. REN ufnl=ufn2 cr
4.4. SAVE n ufn cr
4.5. TYPE ufn cr
LINE EDITING .AND OUI'pur mNTROL •••••••••••••••••••••

TRANSIENT mMMANOO
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

...................................... STAT cr
As-i ufn cr
LCYill ufn cr

.
....................................... PIP cr

ED ufn cr
SYSGEN cr

.

....................................
SUBMIT ufn parm#l ••• parm#n cr DUMP ufn cr
OOVCPM cr

3
3
3

6

7
7
8
8
9
9

11

12
13
16
17
18
25
27
28
30
30

7. BOOS ERROR MESSAGES •••••••••••••••••••••••••••••••• 33

8. OPERATION OF CP/M ON THE MDS 34

1. INTRODUcrION.

CP/M is a rronitor control program for microcomputer system development
which uses IBM-compatible flexible disks for backup storage. using a computer
mainframe based u~n Intel's 8080 microcomputer, CP/M provides a general
environment for program construction, storage, and editing, along with
assembly and program check-out facilities. An imp:>rtant feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Ziloq Z-80) Central Processing Unit, and has at least
16K bytes of main rremory wi th up to four IBM-compatible diskette drives. A
detailed discussion of the rrodifications required for any particular hardware
environment is given in the Digital Research document entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a single-density Intel MDS 800, several different hardware manufacturers
support their own input-output drivers for CP/M.

The CP/M roc>nitor provides rapid access to programs through a
comprehensive file management package. The file subsystem supp:>rts a named
file structure, allowing dynamic allocation of file space as well as
sequential and randam file access. Using this file system, a large number of
distinct programs can be stored in both source and machine executable form.

CP/M also supports a p:>werful context editor, Intel-compatible assembler,
and debugger subsystems. Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M's Oonsole Command Processor, the
resulting facilities equal or excel similar large computer facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic I/O System (hardware dependent)

BOOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard p:r ipherals (teletype, CRr, Paper
Tape Reader/Punch, and user-defined T;eripherals), and can be tailored by the
user for any particular hardware environment by llpatchingll this {:X)rtion of
CP/M. The BOOS provides disk management by controlling one or roc>re disk
drives containing independent file directories. The BOOS implements disk
allocation strategies which provide fully dynamic file construction while
minimizirq head roc>vement across the disk during access. Any particular file
may contain any number of records, not exceeding. the size of any single disk.

I In a standard CP/M system, each disk can contain up to 64 distinct files. The
"--

1

BOOS has entry p:>ints mich include the following pr imi tive operations which
can be programmatically accessed:

SEARCH

OPEN

CLOSE

RENAME

READ

WRITE

SELEcr

Look for a particular disk file by name.

Open a file for further operations.

Close a file after processing.

Change the name of a particular file.

Read a record from a particular file.

Write a record onto the disk.

Select a particular disk drive for further
operations.

The CCP provides symbolic interface between the user's console and the
remainder of the CP/M system. The CCP reads the console device and processes
commands ¥.hich include listinq the file directory, pr inting the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands which are available
in the CCP are listed in a following section.

The last se;Jment of CP/M is the area called the Transient Program Area
(TPA). The TPA holds programs which are loaded from the disk under command of
the CCP. During program editing, for example, the TPA holds the CP/M text
edi tor rrachine code and data areas. Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA.

It sh:>uld be rrentioned that any or all of the -CP/M com{X)nent subsystems
can be "overlayed" by an executing program. That is, once a user's program is
loaded into the TPA, the CCP, BOOS, and BIOS areas can be used as the
program's data area. A II bootstrap" loader is programmatically accessible
whenever the BIOS p:>rtion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk.

It sh:>uld be reiterated that the CP/M operating system is partitioned
into distinct nodules, including the BIOS p::>rtion \&.hich defines the hardware
environment in ¥.hich CP/M is executing. Thus, the standard system can be
easily nodified to any non-standard environment by changing the ~ripheral
drivers to handle the custom system.

2

2. FUN:TIONAL DESCRIPrION OF CP/M.

The user interacts wi th CP/M pr imarily through the CCP, mich reads and
interprets commands entered through the console. In general, the CCP
addresses one of several disks mich are online (the standard system addresses
up to four different disk drives). These disk drives are labelled A, B, C,
and D. A disk is ·'logged inn if the CCP is currently crldressing the disk. In
order to clearly irrlicate mich disk is the currently logged disk, the CCP
always {ranpts the operator wi th the disk name followed by the symbol n)n
indicating that the CCP is ready for another command. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the rremory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number. All CP/M systems are initially set to operate
in a 16K .memory space, but can be easily reconfigured to fit any memory size
on the host system (see the M)VCPM transient canmand). Followin:j system
signon, CP/M automatically logs in disk A, prompts the user wi th the symbol
itA) II (indicating that CP/M is currently addressing disk "A"), and waits for a
command. The cOTlmands are implemented at two levels: buil t-in canmands and
transient cOTlmands. .

2.1. GENERAL mMMAND STRUCTURE.

Built-in cOTlrnands are a part of the CCP program itself, mile transient
commands are loaded into the TPA fran disk and executed. The built-in
commands are

ERA Erase sp:cified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

TYPE Type the contents of a file on the logged di sk.

Nearly all of the cOTlmands reference a particular file or group of files. The
form of a file reference is specified below.

2.2. FILE REFERENCES.

A file reference identifies a p3rticular file or group of files on a
particular disk attached to CP/M. These file references can be either
ulIDarnbigoous ll (ufn) or II ambiguous" (afn). An lIDambiguous file reference
uniquely identifies a single file, \\hile an ambiguous file reference may be

3

satisfied by a number of different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic; that
is, the secondary name "ASM," for example, is used to denote that the file is
an assembly language source file, Ybile the primary name distinguishes each
particular source file. The two names are separated by a "." as shown below:

PPPPPPPP.sss

where pppppppp represents the lX'imary name of eight characters or less, and
sss is the secondary name of no !TOre than three characters. As rrentioned
above, the name

PPPPPPPP

is also allo~d and is equivalent to a secondary name consisting of three
blanks. The characters used in s~cifying an unambiguous file reference
cannot contain any of the special characters

<>.,;:= ?*[]

while all alphanumerics and ranaining s~cial characters are allowed.

An ambigoous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is similar to an
unambigoous reference, except the symbol II?II may be interspersed throughout
the 1X imary and secondary names. In various canmands throughout CP/M, the "?"
symbol matches any character of a file name in the II?II {:Osition. Thus, the
ambigoous reference

X?Z.C?M

is satisfied by the unambigoous file names

Xyz.mM
and

X3Z • CAM

Note that the ambigoous reference

.

is equivalent to the ambigoous file reference

???????? ???
while

4

PPPPPPPP.*
and

*.sss

are abbreviations for

PPPPPPPP.???
and

????????sss

respectively. As an example,

DIR * * .
is interpreted by the CCP as a canmand to list the names of all disk files in
the directory, While

DIR X.Y

searches only for a file by the name X.Y Similarly, the command

DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk Which satisfy
this ambiguous reference.

The followi~ file names are valid unambiquous file references:

x XYZ GAMMA

x.Y xyz.mM GAMMA. I

As an crlded convenience, the programmer can generally specify the disk
drive name along with the file name. In this case r the drive name is given as
a letter A through Z follo'M2d by a colon (:). The specified drive is then
"logged inll before the file operation occurs. Thus, the followi~ are valid
file names with disk name prefixes:

A:X.Y B:XYZ C:GAMMA

Z :XYZ.mM B:X.A?M C:*.ASM

It smuld also be noted that all alphabetic lower case letters in file
and drive names are always translated to upper case v.hen they are processed by
the CCP.

5

3. SWITCHING DISKS.

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console input. Thus, the sequence of prompts and canrnands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A.

SAMPLE AEM

SAMPLE PRN

A>B: Switch to disk B.

B>DIR *.ASM List all IASl~" files on B.

DUMP ASM

FILES ASM

B>A: Switch back to A.

6

'''----

4. THE FORM CF BUILT-IN COMMANOO.

The file arrl device reference forms described above can now be used to
fully s~cify the structure of the built-in canrnands. In the description
below, assume the followirq abbreviations:

ufn unambiguous file reference

afn ambiguous f lie reference

cr carriage return

Further, recall that the CCP always translates lower case characters to upper
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in command names and file references.

4.1 ERA afn cr

The ERA (erase) command renoves files from the currently logged-in disk
(i.e., the disk nane currently prompted by CP/M preceding the ")"). The files

which are erased are those w,ich satisfy the ambiguous file reference afn.
The following examples illustrate the use of ERA:

ERA X. Y

ERA X. *

ERA *.ASM

ERA X?Y.C?M

ERA *.*

ERA B:* .PRN

The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned.

All files wi th pr imary name X are removed from
the current disk.

All files with secondary name ASM are removed
from the current disk.

All files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case
the CCP prompts the console with the message

"ALL FILES (Y/N)?II
which requires a Y response before files are
actually removed).

All files on drive B which satisfy the ambiguous
reference ????????PRN are deleted, independently
of the currently logged disk.

7

4.2. OIR afn cr

The DIR (directory) canmand causes the names of all files '...hich satisfy
the anbigoous file name afn to be listed at the console device. As a sp=cial
case, the canmand

OIR

lists the files on the currently logged disk (the canmand "OIR" is eq:uivalent
to the canmand .. OIR *. * II). Val id OIR canrnands are shown below.

OIR X.Y

OIR X?Z.C?M

OIR ??Y

Similar to other CCP canmands, the afn can be pr eceded by a dr i ve name.
The followi n:r OIR canmands cause the selected drive to be crldressed before the
directory search takes place.

OIR B:

DIR B:X.Y

DIR B:*.A?M

If no files can be found on the selected diskette Vvhich satisfy the
directory request, then the rressage "Nor FOUND" is typed at the console.

4.3. REN ufnl=ufn2 cr

The REN (rename) canmand allows the user to change the names of files on
disk. The file satisfyi~ ufn2 is changed to ufnl. The currently logged disk
is assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user's console
supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.

REN XYZ.OOM=XYZ.XXX The file XYZ .XXX is changed to XYZ .mM.

The operator can p:-ecede either ufnl or ufn2 (or both) by an optional
drive address. Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by
a drive nane, then ufnl is assumed to reside on that drive as ~ll. If both
ufnl arrl ufn2 are preceded by drive names, then the same drive must be

8

sp=cified in both cases. The following REN canrnands illustrate this format.

REN A:X.ASM = Y.ASM

REN B:ZAP.BAS=ZOT.BAS

REN B:A.ASM = B:A.BAK

The file Y.ASM is changed to X.ASM on
drive A.

The file ZOT.BAS is changed to ZAP.BAS
on drive B.

The file A.BAK is renamed to A.ASM on
drive B.

If the file ufnl is already tresent, the REN canrnand will respond wi th
the error "FILE EXISTS" and not p=rform the change. If ufn2 does not exist on
the specified diskette, then the ll'essaqe "Nor FOUND" is printed at the
console.

4.4. SAVE n ufn cr

The SAVE canmand places n pages (256-byte blocks) onto di sk fran the TPA
and nanes this file ufn. In the CP/M distribution system, the TPA starts at
100H (hexadecimal), Yklich is the second page of memory. Thus, if the user's
program occupies the area fran 100H through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed. Examples are:

SAVE 3 X.mM

SAVE 40 Q

SAVE 4 X.Y

Cbpies 100H through 3FFH to X.mM.

Copies 100H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal) •

Copies 100H through 4FFH to X.Y.

The SAVE canmand can also sp:cify a disk drive in the afn p:>rtion of the
canmand, as smwn below.

SAVE 10 B:ZOT.mM

4.5. TYPE ufn cr

Copies 10 pages (100H through 0AFFH) to
the file ZOT.mM on drive B.

The TYPE canmand displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE canrnands are

TYPE X.Y

9

TYPE X.PIM

TYPE XXX

The TYPE canmand expands tabs (clt-I characters), assurmniI'X:J tab p::>sitions
are set at eJery eighth coltunn. The ufn can also reference a drive name as
shown below.

TYPE B:X.PRN The file X.PRN from drive B is displayed.

10

5. LINE EDITING AND ourPlJr mNTROL.

The CCP allows certain line editing functions while typing command lines.

rubout

ctl-U

ctl-X

ctl-R

ctl-E

ctl-C

ctl-Z

Delete and echo the last character typed at the
console.

Delete the entire line typed at the console.

(Same as ctl-U)

Retype current canmand line: types a "clean line" fol­
lowing character deletion with rubouts.

Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input from the console (used in PIP and ED).

The control functions ctl-P and ctl-S affect console output as shown below.

ctl-P

ctl-S

Copy all subsequent console output to the currently
assigned list device (see the STAT command). Output
is sent to both the list device and the console device
un til the nex t ctl-pis typed.

Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S). This feature is
used to stop output on high speed consoles, such as
CRT's, in order to view a segment of output before con­
tinuing •

Note that the ctl-key sequences soown above are obtained by depressing the
control and letter keys simultaneously. Further, CCP canrnand lines can
generally be up to 255 characters in length; they are not acted u}:X)n rntil the
carriage return key is typed.

11

6. TRANSIENT OOMMANDS.

Transient commands are loaded from the currently logged disk and executed
in the TPA. The transient commands defined for execution lIDder the CCP are
shown below. Additional flIDctions can easily be defined by the user (see the
LOAD command definition).

STAT

ASM

Lcw)

Dor

PIP

ED

SYSGEN

SUBMIT

DUMP

mVCPM

List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment.

Load the CP/M assembler and assemble the specified
program from disk.

Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command lIDder the CCP) •

Load the CP/M debugger into TPA and start execution.

Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations.

Load and execute the CP/M text editor program.

Create a new CP/M system diskette.

Submit a file of commands for batch processing.

Dump the contents of a file in hex.

Regenerate the CP/M system for a particular memory
size.

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the user. As an added
convenience, the transient command can be preceded by a drive name, which
causes the transient to be loaded fran the specified drive into the TPA for
execution. Thus, the command

B:STAT

causes CP/M to tanp:>rarily' "log inli drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing.

12

The basic transient commands are listed in detail below.

6.1. STAT cr

The STAT coounand provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT cr
STAT "command line" cr

S-p=cial forms of the "canmand linen allow the current device assignment to be
examined and altered as well. The various canrnand lines which can be
specified are shown below, wi th an explanation of each form shown to the
right.

STAT cr

STAT x: cr

STAT afn cr

If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: RIO, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and RIO indicates
the drive is read only (a drive becomes RIO by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start). The space
remaining on the diskette in drive x is given
in kilobytes by nnn.

If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the canrnand ·'STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify a set of files
to be scanned by STAT. The files which satisfy
afn are listed in alphabetical order, with stor­
age requirements for each file under the heading

RECS BYTS EX D:FILENAME.TYP
rrrr bbbK ee d:PPPPPPPP.sss

where rrrr is the number of l28-byte records

13

STAT x:afn cr

STAT x:=R/O cr

allocated to the file, bbb is the number of kilo­
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extensions (ee=bbb/16),
d is the drive name containing the file (A ••• Z),
pppppppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name. After listing the individual
files, the storage usage is summarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified
drive is first selected, and the form "STAT afn u

is executed.

This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place. When a disk is read-only,
the rressage

BDOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key
is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT canmand also allows control over the physical to logical device
assignment (see the IOBYrE function described in the manuals "CP/M Interface
Guide" am "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several plTysical peripheral devices. The four logical devices are
named:

CON:

RDR:

PUN:

LST:

The system console device (used by CCP
for communication with the operator)

The paper tape reader device

The ~per tape punch device

The output list device

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS p:>rtion of CP/M. Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape. In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below:

14

"-

TTY:

CRr:

BAT:

UCl:

PrR:

URI:

UR2:

PrP:

UPl:

UP2:

TJPI' :

ULl:

Teletype device (slow speed console)

Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output qoes to current 1ST: device)

User-defined console

Paper tape reader (high speed reader)

User-defined reader #1

user-defined reader #2

Paper tape punch (hiqh speed punch)

user-defined punch #1

User-defined punch #2

Line printer

user-defined list device #1

It must be emphasized that the physical device names mayor may not
actually correslX)nd to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS portion
of CP/M. In the standard distribution version of CP/M, these devices
correspond to their names on the MDS 800 development system.

The J;X>ssible logical to physical device assignments can be di splayed by
typing

STAT VAL: cr

The STAT pr ints the {X>ssible values which can be taken on for each logical
device:

OON. = TTY: CRr: BAT: UCl:
RDR: = TTY: PI'R: URI: UR2:
PUN: = TTY: Pl'P: UPl: UP2:
LST: = TTY: CRr: LET: ULl:

In each case, the l<Xlical device shown to the left can take any of the four
physical assignments shown to the r iqh t on each line. The cur rent log ical to
physical mapping is displayed by typing the command

STAT DEV: cr

15

which produces a listing of each logical device to the left, and the current
corresponding physical device to the r iqht. For example, the Ii st might
appear as follows:

CON: = eRr:
RDR: = URI:
PUN: = PI'P:
LST: = TTY:

The cur rent logical to physical device assignment can be changed by typing a
STAT canmand of the form

STAT ldl = pdl, Id2 = pd2 , ••• , ldn = pdn cr

where ldl through ldn are logical device names, and r;rll through p1n are
compatible ~hysical device names (i.e., ldi and odi appear on the same line in
the "VAL: Ie canmand shown above). The followin] are valid STA'r commands which
change the current logical to physical device assignments:

STAT CDN:=CRr: cr
STAT PUN: = TTY: ,IST:=LPI':, RDR:=TTY: cr

6.2. AEM ufn cr

The ASM canrnand loads and executes the CP/M 8080 assembler. The ufn
specifies a oource file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The following
ASM canmands are val id :

ASM X

ASM GAMMA

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

The assembler produces a file

x.PRN

where x is the pr imary name s~cified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if
present in the source program), along with the machine code generated for each
statement and diagnostic error messaqes, if any. The PRN file can be listed

16

I

',,-

at the console usi1'XJ the TYPE canmand, or sent to a }:Eripheral device using
PIP (see the PIP canmand structure below). Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the left.rrost 16 collUT1I1s (program crldresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator's guide) by removing the
leftrrost 16 characters of each line (this can be done by issuing a single
edi tor "macro" canmand). The resulting file is identical to the original
source file and can be renamed (REN) fran PRN to ASM for subsequent editing
and assembly. The file

x.HEX

is also produced \\hich contains 8080 machine language in Intel "hex" format
sui table for st.i:>sequent loading and execution (see the I..ClN) command). For
complete details of CP/M's assembly language program, see the "CP/M Assembler
Language (ASM) User's Guide."

Similar to other transient canmands, the oource file for assembly can be
taken from an ~ternate disk by prefixing the assembly language file name by a
disk drive name. Thus, the command

ASM B:ALPHA cr

loads the assembler from the currently logged drive and operates up:>n the
source program ALPHA.ASM on drive B. The HEX and PRN files are also placed on
drive B in this case.

6.3. 1CN) ufn cr

The LQ2ill command reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command. The LQ.rU) conunand
creates a file named

x.CDM

which marks it as containing machine executable code. The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character 11)" printed by the CCP.

In general, the CCP reads the name x followinq the pranpting character
and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

17

x.mM

If found, the machine code is loaded into the TPA, and the program executes.
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this way,
the user can Ifinvent" new coounands in the CCP. (Initialized disks contain the
transient canmands as mM files, which can be deleted at the user's option.)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name. Thus,

LQZill B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at l00H, the beginning of the TPA. Further, the addresses in the
hex records must be in ascending order; qaps in unfilled memory regions are
filled wi th ze roes by the LOAD canmand as the hex records are read. Thus,
LOAD must be used only for creating CP/M standard looM" files which operate in
the TPA. Proqrams \\hich occupy regions of memory other than the TPA can be
loaded under nor.

6.4. PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files. The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP "canmand line" cr

In both cases, PIP is loaded into the TPA and executed. In case (1), PIP
reads command lines directly from the console, prompted with the "*"
character, rntil an empty canmand line is typed (i.e., a single carriage
return is issued by the operator). Each successive command line causes rome
media conversion to take place according to the rules shown below. Form (2)
of the PIP command is equivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines.
The form of each command line is

destination = sourceil, source#2, ••• , sourcein cr

where "destination" is the file or peripheral device to receive the data, and

18

"rourceil, ••• , sourcein" represents a series of one or nore files or devices
which are copied fram left to right to the destination.

When multiple files are given in the canmand line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the 0 parameter to
override this assumption). The equal symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readabili ty. Lower case ASCII alphabetics are internally translated to upper
case to be consistent wi th CP/M file and device name conventions. Finally,
the total canmand line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width) •

The destination and rource elements can be unambiguous references to CP/M
source files, with or without a precedil'X] disk drive name. That is, any file
can be referenced with a p:eceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
the drive name is not included, the currently logqed disk is assumed.
Further, the destination file can also appear as one or rrore of the rource
files, in which case the source file is not altered until the entire
concatenation is complete. If the destination file already exists, it is
removed if the canmand line is properly formed (it is not removed if an error
condi tion arises). The following command lines (with explanations to the
right) are valid as input to PIP:

x = Y cr

x = Y,Z cr

X.ASM=Y.ASM,Z.ASM,FIN.ASM cr

NEW.ZOT = B:OLD.ZAP cr

B:A.U = B:B.V,A:C.W,D.X cr

Copy to file X from file Y,
where X and Yare unambiguous
file names: Y remains unchanqed.

Concatenate files Y and Z and
copy to file X, with Y and Z
unchanged.

Create the file X.ASM from the
concatenation of the Y, Z, and
FIN files with type ASM.

Move a copy of OLD. ZAP from drive
B to the currently logged disk:
name the file NEW.ZOT.

Concatenate file B.V from drive B
with C.W from drive A and D.X.
from the logged disk: create
the file A.U on drive B.

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives. The abbreviated forms are

19

PIP x: =afn cr

PIP x:=y:afn cr

PIP ufn = y: cr

PIP x:ufn = y: cr

The first form copies all files fran the currently loqged disk which satisfy
the afn to the same file names on drive x (x = A ••• Z) • The second form is
equivalent to the first, \\here the source for the copy is drive y (y = A •••
Z) • The third form is equivalent to the canmand "PIP ufn=y:ufn cr" which
copies the file given by ufn fran drive y to the file ufn on drive x. The
fourth form is equivalent to the third, where the rource disk is explicitly
given by v.

Note that the source and destination disks must be different in all of
these cases. If an afn is s~cified, PIP lists each ufn which satisfies the
afn as it is beinq copied. If a file exists by the same name as the
destination file, it is removed UlX>n successful canpletion of the copy, and
replaced by the copied file.

The followinq PIP commands qive examples of valid disk-to-disk copy
operations:

B:=*.CDM cr

A:=B:ZAP.* cr

ZAP.ASM=B: cr

B:ZOT.CDM=A: cr

B: =GAMMA. BAS cr

B:=A:GAMMA.BAS cr

Copy all files which have the
secondary name !100M" to drive B
from the current drive.

Copy all files which have the
primary name "ZAP" to drive A
from drive B.

Equivalent to ZAP.ASM=B:ZAP.ASM

Equivalent to B:ZOT.OOM=A:ZOT.COM

Same as B: GAMMA. BAS=GAMMA. BAS

Same as B:GAMMA.BAS=A:GAMMA.BAS

PIP also allows reference to physical and ICXJical devices which are
attached to the CP/M system. The device names are the same as given tmder the
STAT canmand, alorg with a number of specially named devices. The logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and IST: (list)

while the physical devices are

20

TTY:
CRr:
PI'R:
PI'P:
LPr:

(console,
(console,
(reader) ,
(punch) ,
(list) ,

reader, punch,
or list) ,
URI: (reader),
UP1: (punch),
ULl: (list)

or list)
UCI: (console)
UR2: (reader)
UP2: (punch)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and 1ST: devices are to be used for
console input/output.)

The RDR, 1ST, PUN, and CON devices are all defined wi thin the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system.
(The current physical device mapping is defined by IOBYrE; see the "CP/M
Interface Guide" for a discussion of this function). The destination device
must be capable of receivirq data (i.e., data cannot be sent to the punch),
and the source devices must be capable of qeneratinq data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL:

EOF:

INP:

our:

PRN:

Send 40 "nulls" (ASCII 0's) to the device
(this can be issued at the end of punched output).

Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP).

S{:ecial PIP input source which can be "patched"
into the PIP program itself: PIP qets the input
data character-by-character by CALLing location
l03H, with data returned in location l09B (parity
bit must be zero).

S{:ecial PIP output destination Which can be
patched into the PIP program: PIP CALLs location
l06B with data in register C for each character
to transmit. Note that locations 109B throuqh
lFFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator's manual).

Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands. In each
case, the s~cific device is read tmtil end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files). Data from each device or
file is concatenated fran left to riqht tmtil the last data rource has been

21

read. The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files. Note if the destination is a disk file, then a temp:>rary
file is created ($$$ secondary name) which is chal1q'ed to the actual file name
only uIX>n soccessful canpletion of the copy. Files wi th the extension "roM"
are always assumed to be non-ASCII.

The cq:>y operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respond with the message "AOORrED"
to indicate that the operation was not canpleted. Note that if any operation
is aborted, or if an error occurs during processing, PIP removes any ~nding
commands which were set up while usinq the SUBMIT command.

It slnuld also be noted that PIP performs a s~cial ftmction if the
destination is a disk file wi th type "HEX" (an Intel hex formatted machine
code file), and the rource is an external ~ripheral device, such as a paper
tape recrler. In this case, the PIP program checks to ensure that the oource
file contains a T;roperly formed hex file, with legal hexadecimal values and
checkstml records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches). When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read. If the
tape p:>sition cannot be properly read, simply continue the read (by typing a
return followirq the error rnessaqe), and enter the record manually wi th the ED
program after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered from the console if the oource file is a RDR:
device. In this case, the PIP program reads the device and rronitors the
keyboard. If ctl-Z is t)'tx=d at the keyboard, then the read operation is
terminated normally.

Valid PIP commands are shown below.

PIP 1ST: = X.PRN cr

PIP cr

*CON:=X.ASM,Y.ASM,Z.ASM cr

*X.HEX=CON:,Y.HEX,PTR: cr

*cr

22

Copy X.PRN to the 1ST device and
terminate the PIP program.

Start PIP for a sequence of
canrnands (PIP prompts with n*,,).

Concatenate three ASM files and
copy to the CON device.

Create a HEX file by reading the
CON (until a ctl-Z is typed), fol­
lowed by data from Y.HEX, followed
by data from PTR tmtil a ctl-Z is
encountered.

Single carriage return stops PIP.

PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 40 nulls to the punch device:
then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac­
ters.

The user can also s~cify one or TTPre PIP parameters, enclosed in left
and right square brackets, separated by zero or rrore blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be follo~d by an q:>tional decimal integer value (the Sand 0 parameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received from the source device.
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for rrore
input data. The amount of data which can be buffered is de­
pendent upon the memory size of the host systero (PIP will
issue an error message if the buffers overflow) •

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Fil ter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to
insert new form feeds.

H Hex data transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation. The console will be
prompted for corrective action in case errors occur.

I Ignore 11:0011 records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter) •

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination
starting at one, and incrementinq by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2
is s~cified, then leadinq zeroes are included, and a tab is
inserted followirg the number. The tab is expanded if T is

23

set.

o Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored.

Pn Include page ejects at every n lines (with an initial page
eject). If n = 1 or is excluded altogether, page ejects
occur every 60 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

Qstz Quit copying from the source device or file when the
string s (terminated by ctl-Z) is encountered.

sstz Start copying from the source device when the string s is
encountered (terminated by ctl-Z). The Sand 0 parameters
can be used to "abstra.ct" a particular section of a file
(such as a subroutine). The start and quit strings are al-
ways included in the copy operation.

NOTE - the strings following the s and q parameters are
translated to upper case by the CCP if form (2) of the
PIP canmand is used. Form (1) of the PIP invocation, how­
ever, does not perform the automatic upper case translation.

(1) PIP cr
(2) PIP "command linen cr

Tn Expand tabs (ctl-I characters) to every nth column durinq the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the
the copy operation.

V Verify that data has been copied correctly by rereadinq
after the write operation (the destination must be a disk
file) •

Z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.ABM=B:[v] cr

PIP LPT:=X.ASM[ntSu] cr

Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

COpy X.ASM to the LPT: device: number each
line, expand tabs to every eiqhth column, and
translate lower case alphabetics to upper
case.

24

PIP PUN:=X.HEX[il ,Y.ZOT[h] cr First copyX.HEX to the PUN: device and
ignore the 'trailing II: 00" record in X. HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any 11:00" records which it contains.

PIP X.LIB = Y.ASM [sSUBRl:tz qJMP L31 z] cr Copy fram the file Y.ABM

PIP PRN:=X.ASM[p50]

6.5. ED ufn cr

into the file X.LIB. Start the copy when the
str ing II SUBRl : II has been found, and quit copy­
irg after the string "JMP L3 t1 is encountered.

Send X.ASM to the LST: device, with line n~
bers, tabs expanded to every eighth column,
and page ejects at every 50th line. Note that
ntSp60 is the assumed parameter list for a PRN
file; p50 overrides the default value.

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment. Complete details of
operation are given the ED user's manual, liED: a Context Editor for the CP/M
Disk SysteTl." In general, ED allows the operator to create and operate uIX>n
source files Vwhich are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of
the workirg memory), Vwhich is instead defined by the number of characters
typed between cr' s. The ED pr<XJram has a number of canmands for character
string searching, replacement, and insertion, Which are useful in the creation
and correction of programs or text files under CP/M. Although the CP/M has a
limi ted rremory work space area (approximately 5000 characters in a 16K CP/M
system), the file size Vwhich can be edited is not limited, since data is
easily llpaged ll through this work area.

Upon initiation, ED creates the specified source file, if it does not
exist, and opens the file for access. The programmer then II append s" data fram
the source file into the work area, if the source file already exists (see the
A canrnand), for editirlq. The appended data can then be displayed, altered,
and written fran the work area back to the disk (see the W command).
Particular p::>ints in the program can be automatically paged and located by
context (see the N canmand), allowing easy access to particular J;X)rtions of a
large file.

Given that the operator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED, the X.ABM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ABM. Thus, the X.BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edited file. The operator can always return to
the previous version of a file by renoving the rrost recent version, and
renamin;l the trevious version. Suppose, for example, that the current X.ASM
file was improperly edited; the sequence of CCP canmand shown below would
reclaim the backup file.

DIR X.*

ERA X.ASM

REN X.ASM=X. BAK

Check to see that BAK file
is available.

Erase rrost recent version.

Rename the BAR file to ASM.

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q canmand) wi thout destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to "ping-fX)nq" the oource and create
backup files between two disks. The form of the ED command in this case is

ED ufn d:

where ufn is the name of a file to edit on the currently logged disk, and d is
the name of an alternate drive. The ED program reads and processes the oource
file, and writes the new file to drive d, using the name ufn. Upon completion
of processing, the original file becomes the backup file. Thus, if the
operator is addressing disk A, the following canmand is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X.$$$ on drive
B. Upon canpletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently logged
disk becomes drive B at the end of the edit. Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS

is pr inted at the console as a precaution cgainst accidently destroying a
source file. In this case, the operator must first ERAse the existing file
and then restart the edit operation.

26

Similar to other transient canmands, editing can take place on a drive
different fran the rurrently lcx;Jged disk by preceding the rource file name by
a drive nane. Examples of valid edit requests are shown below

ED A:X.ASM

ED B:X.ASM A:

6.6. SYSGEN cr

Edit the file X.ASM on drive A, with
new file and backup on drive A.

Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A. On
termination of editing, change X.ASM
on drive B to X.BAK, and chanqe X.$$S
on drive A to X.ASM.

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system. The SYSGEN program prompts the console
for canmands, wi th interaction as shown below.

SYSGEN cr Initiate the SYSGEN program.

SYSGEN VERSION m.m SYSGEN sign-on roessaqe.

SOURCE OOIVE NAME (OR REIURN TO SKIP)

SOURCE ON x THEN TYPE RElURN

FUNCTION mMPLETE

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containinq a CP/M sys­
tem: usually A. If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only. Typing a drive name
x will cause the response:

Place a diskette containing the
CP/M operating system on drive
x (x is one of A, B, C, or D).
Answer wi th cr when ready.

System is copied to memory.
SYSGEN will then prompt with:

DESTINATION [RIVE NAME (OR REIURN TO REBOOr)

27

If a diskette is being ini­
tialized, place the new disk
into a drive and answer with
the drive name. Otherwise, type
a cr and the system will reboot
from drive A. Typing drive name
x will cause SYSGEN to prompt

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
x: type return when ready.

FUNCTICN CDMPLETE New diskette is initialized
in drive x.

The "IESTINATION" pranpt will be repeated mtil a single carriage return is
typed at the console, so that more than one disk can be initialized.

Upon canpletion of a successful system qeneration, the new diskette
contains the q;>er ating system, and only the buil t-in canrnands are ava ilable.
A factory-fresh IBM-compatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate roM files
fram an eKisting CP/M diskette to the newly constructed diskette using the PIP
transient.

The user can c~y all files fran an existing diskette by typing the PIP
command

PIP B: = A: *.*[vJ cr

which cq:>ies all files fran disk drive A to disk drive B, and verifies that
each file has been copied correctly. The name of each file is disJ;>layed at
the console as the copy operation proceeds.

It slnuld be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system. Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M.

6.7. SUBMIT ufn parm#l ••• parm#n cr

The SUBMIT command allows CP/M camnands to be batched toqether for
automatic {rocessing. The ufn given in the SUBMIT command must be the
filename of a file which eKists on the currently logged disk, with an assumed
file type of "SUB.II The SUB file contains CP/M prototype canmands, with
possible parameter substitution. The actual parameters parm#l ••• parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted commands are processed sequentially by CP/M.

28

The prototype command file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be included when
the file is submitted for execution. When the SUBMIT transient is executed,
the actual parameters parm#l ••• parm#n are paired with the formal parameters
$1 ••• $n in the prototype canmands. If the number of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console. The SUBMIT function creates a file of
substituted commands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this command file is read by the CCP as a rource of input, rather
than the console. If the SUBMIT function is performed on any disk other than
drive A, the commands are not processed tmtil the disk is inserted into drive
A and the system reboots. Further, the user can abort canmand processing at
any time by typioo a rubout when the canmand is read and echoed. In this
case, the $$$.SUB file is removed, and the subsequent commands come from the
console. Command processing is also aborted if the CCP detects an error in
any of the commands. Programs which execute tmder CP/M can abort processing of
command files when error condi tions occur by simply erasing any existing
$$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single "$" wi thin the command file. Further, an
up-arrow symbol IIfll may precede an alphabetic character x, which nroduces a
sirqle ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, thus
allowing chained batch canmands.

Supp::>se the file ASMBL.SUB exists on disk and contains the prototype
commands

and the conmand

ASM $1
DIR $1.*
ERA *.BAK
PIP $2:=$1.PRN
ERA $l.PRN

SUBMIT ASMBL X PRN cr

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,
stDstituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

AEM X
DIR X.*
ERA *.BAK
PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file Which is on an alternate drive
by precedin;1 the file name by a drive name. Submitted files are only acted
up:>n, however, when they appear on drive A. Thus, it is p:>ssible to create a
submitted file on drive B which is executed at a later time When it is
inserted in drive A.

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal fonn. The file contents are listed sixteen bytes at a time,
with the absolute byte address listed to the left of each line ln
hexadecimal. WI"g typeouts can be aborted by pushing the rubout key during
pr intout. (The oource listing of the DUMP program is given in the "CP/M
Interface Guide" as an example of a pr(XJram written for the CP/M environment.)

6.9. MJVCPM cr

The IDVCPM p:-ogram allows the user to reconfigure the CP/M system for any
particular rremory size. Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the dislX)sition of the new system
at program termination. If the first parameter is anitted or a "*" is given,
the M)VCPM program will reconfigure the system to its maximum size, based up:>n
the kilobytes of contiguous RAM in the host system (starting aat 0000H). If
the second parameter is anitted, the system is executed, but not ~rmanently
recorded: if "*" is given, the system is left in memory, ready for a SYSGEN
operation. The IDVCPM program relocates a rremory image of CP/M and places
this image in memory in preparation for a system generation operation. The
canrnand forms are:

MOVCPM cr Relocate and execute CP/M for manage­
ment of the current memory configura­
tion (memory is examined for contigu­
ous RAM, starting at 100H). Upon com­
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette. The system
which is constructed contains a BIOS
for the Intel MDS 800.

30

MOVCPM n cr

rvDVCPM * * cr

MOVCPM n * cr

The canmand

MOVCPM * *

Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above.

Construct a relocated memory image for
the current memory confiquration, but
leave the memory image in memory, in
preparation for a SYSGEN operation.

Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation.

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation. The message

READY FOR II SYSGEN" OR
IISAVE 32 CPMxx.CDM"

is printed at the console upon completion, where xx is the current memory size
in kilobytes. The operator can then type

SYSGEN cr Start the system generation.

SOURCE DRIVE NAME (OR RETURN TO SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation.

DESTINATION [RIVE NAME (OR REIURN T0 REBOOr)
Respond with 8 to write new system
to the diskette in drive 8. SYSGEN
will prompt with:

DESTINATION ON 8, THEN TYPE REIURN
Ready the fresh diskette on drive
8 and type a return when ready.

Note that if you respond wi th IIAII rather than "8" above, t.he system will be
written to drive A rather than B. SYSGEN will continue to type the prompt:

DESTINATION IRIVE NAME (OR RETURN TO REBOOr)

tmtil the operator responds wi th a single carriage return, which stops the

31

SYSGEN program with a system reboot.

The user can then go through the reboot process wi th the old or new
diskette. Instead of performinq the SYSGEN operation, the user could have
typ=d

SAVE 32 CPMxx.CDM

at the canpletion of the mVCPM function, \\hich would place the CP/M memory
image on the currently logged disk in a form which can be "patched." This is
necessary when operating in a non-standard environment where the BIOS must be
altered for a particular peri1?heral device configuration, as described in
the"CP/M System Alteration Guide."

Valid MOVCPM commands are given below:

MOVCPM 48 cr

MOVCPM 48 * cr

MOVCPM * * cr

Construct a 48K verskon of CP/M and start
execution.

Construct a 48K version of CP/M in prepara­
tion for permanent recording: response is

READY FOR II SYSGEN" OR
"SAVE 32CPM48.00M"

Construct a maximum memory version of CP/M
and start execution.

It is imp:>rtant to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensinq Aqreement.

32

,
"

7. BOOS ERROR r£SSAGES.

There are three error situations \\hich the Basic Disk Operating System
intercepts dur i~ file processsing. When one of these conditions is detected,
the BOOS prints the message:

BDOS ERR ON x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SEC!'OR
SELEcr
READ ONLY

The "BAD SEC!'OR" rressage indicates that the disk controller electronics
has detected an error condi tion in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condi tion of your rnedia. You may also encounter this condition in
readirq files generated by a controller produced by a different manufacturer.
Even trough cont.rollers are claimed to be IBM-compatible, one often finds
small di fferences in recording formats. The MrS-800 controller, for example,
requires two bytes of one's following the data CRe byte, \\hich is not required
in the IBM format. As a result, diskettes generated by the Intel MOO can be
read by alrrost all other IBM-canpatible systems, while disk files generated on
other manufacturer's equipment will produce the "BAD SEcrDR" message when read
by the MIS. In any case, recovery fran this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, \\hich simply
ignores the bad sector in the file operation. Note, however, that typing a
return rey destroy your diskette integrity if the operation is a directory
write, so make sure you have adequate backups in this case.

The II SELEcr II error occurs \\hen there is an attempt to address a drive
beyond the A through D range. In this case, the value of x in the error
message gives the selected drive. The system reboots following any input from
the console.

The "READ ONLY" rressage occurs when there is an attempt to write to a
diskette \\hich has been designated as read-only in a STAT command, or has been
set to recrl-only by the BDOS. In general, the operator should reboot CP/M
ei ther by using the \\arm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed. If a changed diskette is to be read but
not wr itten, BOOS allows the diskette to be chanqed wi thout the warm or cold
start, but internally marks the drive as read-only. The status of the drive
is subsequently charged to read/write if a warm or cold start occurs. Upon
issuing this rnessage, CP/M waits for input fran the console. An automatic
warm start takes place following any input.

33

8. OPERNI'ION OF CP/M ON THE MOO.

This section gives q:>erating procedures for using CP/M on the Intel MOO
microcomputer development system. A basic knowledge of the MIS hardware and
software systems is assumed.

CP/M is initiated in essentially the same manner as Intel's ISIS
operating system. The di sk drives are labelled 0 through 3 on the MIS,
corresp::>ndirq to CP/M drives A. through D, respectively. The CP/M system
diskette is inserted into drive 0, and the roar and RES:m' switches are
depressed in sequence. The interrupt 2 light should go on at this point. The
space bar is then depressed on the device which is to be taken as the system
console, and the light srould go out (if it does not, then check connections
and baud rates). The roar switch is then turned off, and the CP/M siqnon
message srould appear at the selected console device, followed by the "A> II
system p:-anpt. 11he user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT 0 switch on the front panel. The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except men
operatinq under DDT, in which case the DDT proqrarn gets control instead.

Diskettes can be ranoved from the drives at any time, and the system can
be shut down during operation without affecting data integrity. Note,
however, that the user must not remove a di skette and replace it wi th another
wi thout rebooting the system (cold or warm start), unless the inserted
diskette is "read only. II

Due to hardware hang-ups or malfunctions, CP/M may type the message

BOOS ERR ON x: BAD SECI'OR

where x is the drive which has a permanent error. This error may occur when
drive doors are ~ened and closed'· randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure. The user can
optionally elect to ignore the error by typing a single return at the
console. The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the operation again.

Termination of a CP/M session requires no special action, except that it
is necessary to ranove the diskettes before turning the l;Ower off, to avoid
random transients which often make their way to the drive electronics.

It srould be noted that factory-fresh IBM-canpatible di skettes should be
used rather than diskettes which have previously been used wi th any ISIS
version. In particular, the ISIS II FORMAT" operation produces non-standard
sector numbering throughout the diskette. This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34

than the distribution version. If it becomes necessary to reformat a diskette
(which smuld not be the case for standard diskettes), a program can be

written tnder CP/M which causes the MJl3 800 controller to reformat wi th
sequential sector numbering (1-26) on each track.

-------------------------,
Note: "MIS 800" am "ISIS" are registered trademarks of Intel Corporation.

35

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2 USER'S GUIDE

COPYRIGHT (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.
No pa~t of thjs publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language. in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permissjon of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital R.esearch makes no representations or warranties with
respect to the contents hereof and specificaIJy disclaims any
implied warranties of merchantability or fitness for any parti­
cular purpose. Further, Digital Research reserves the right
to revise this pubJication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

TrRdemarks

CP/M is a registered trademark of Digital Research. IVIP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2 USER'S GUIDE

C09yright (c) 1979
Digital Research, aox 579
Pacific Grove, California

1. An Overview ot CP/M 2.0 Facilities

2. User Intertace

3. Console Command ~rocessor (CCP) Intertace

4 • S~A~ Bnhancements

s. FIB 8nnance~ents .

c:
\) . t:D Enhancements

7 . The XSU9 Function

d. JuOS Interrace Conventions •
9. CP/M 2.0 Memory Organization ••

10. 3IOS Differences .••••.

· . 1

• • 3

• • 4

• • j

d

• • . 10

. . • 11

• • 12

• 27

• • 28

1. Ai'J OV8RVI8\,J OF' CP/t'l 2.0 FACILI'fIES.

CP/M 2.0 is a high-gerformance single-console operating system
which uses table driven tecnnigues to allow field recontiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, wnile maintaining upward compatibility from
previous versions of release·l. Features of CP/M 2.0 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reaCh the full drive size
with the capaoility to ex?and to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated oy user numbers, with facilities for file copy operations
from one user area to another. Powerful relative-record random access
functions are present in CP/M 2.0 whlch provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-deoendent oortions of CP/M 2.8 are olaced into a
BIOS-resident "disk ?arameter block" w11ich is either hand coded or
produced automatically using the disk definition macro library
provided with CP/M 2.0. The end user need only s?ecity the maximum
nu~oer of active Jisks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, an6 reserved track values. The macros use
this intormation to generate the appropriate tables and table
references for use during CP/M 2.0 o?eration. Deblocking information
is also provided wnich aids in assembly or disassembly of sector sizes
which are multioles of the tundamental 12d oyte data unit, and the
system alteration ,manual includes qeneral~pur?ose suoroutines wnich
use the this deblocking information to taKe advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
a c c e s sal g 0 r i t nm s , m a k e C P / [1 2 . 0 t r u 1 y a un i v e r sal d a tam a nag em en t
system.

File exoansion is achieved by providing up to 512 logical tile
extents, where eaCh logical extent contains 16K bytes of data. CP/M
2.0 is structured, nowever, so that as much as l28K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), thUS maintaining co~patibility with orevious
versions while taking full advantage of directory space.

Random access facilities are nresent in CP/~l 2.0 which allow
immediate reference to any record of an eight ~egabyte file. using
CP/M'S unique data organization, data blocks are only allocated when
actuallv required and movement to a record Dosition requires little
searCh ~ime. - Sequential file access is u?ward-compatible from earlier
versions to the full .eight megaoytes, while random access
compatibility stops at 5l2K byte files. Due to CP/M 2.0's sim~ler and
faster random access, application orogrammers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/~1 2.0 modules and utilities have im9rovements whiCh
correspond to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCl? ~rovides a "login"

(All Information Contained Herein is Proprietary to Digital Research.)

1

function to change from one user area to anotner. ~he CCP also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-co9Y devices in its enhanced line editing
functions.

'i'he sections belo~:l 1?oint out the individual differences between
CP/M 1.4 and CP/M 2.0, with the understanding that the reader is
eitner familiar witn CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.0 I/O system alteration is
oresentea in the Digital Research manual '~Cp/r1 2.0 Alteration Guide. II

(All Information Contained Herein is Proprietary to Digital Research.)

2

2. USER INTERFACE.

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the s y:n b 0 1 II C t 1 ., below i n d i cat est hat the con t r 0 1 key i s
simultaneously depressed):

rub/del
ctl-C
ctl-E
ctl-ti
ctl-J
c tl-l'1
ctl-R
ctl-u
ctl-x

removes and ecnoes last character
reboot when at beginning of line
physical end of line
nackspace one cnaracter position*
(line feed) terminates current input*
(carriage return) terminates in~ut
retype current line after new line
remove current line after new line
backspace to beginning of current line*

In ?articular, note tnat ctl-H produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
editor keeps track ot the current ?rom~t column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) INTERFACE.

There are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. The CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *.*" and
"SAVE" commands have changed. rr'he altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically "logged" into user area number 0, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user numoer since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active
subsequent USER
is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user U

Due to the fact that user numbers now tag individual directory
entries, the BRA *.* command has a different effect. In version 1.4,
this command can be used to erase a directory whicn has "garbage"
information, gerhaps resulting from use of a diskette under another
operating system (heaven forbid!). In 2.0, however, the ERA ~.*
command affects only th~ current user numoer. ThUS, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever, does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4. STA~ ENHANCEMENTS.

The STAr program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

s'rA'r VAL:

?roduces a summary of the available status commands, resulting in the
out,?ut:

'I'em? RIO 0 i s k:
Set Indicator:
Disk status
User Status
10 by teAs s ig n :

d :=R/O
d:filename.typ $R/O $R/~ $SYS $DIR
DSK: d:DSK:
USR:

(list of 90ssible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:

STAT d:filename.tY9 ~S

wnere "d:'1 is an optional
unambiguous or ambiguous
format:

Size Recs Bytes
48 48 6k
S5 5S 12K

65536 128 2k

dr ive
file

name, and "filename.typil is an
name, 9rOQuces the output display

Ext Acc
1 Rio A.:ED.COH
1 R/O (A : PIP . C 0 [~1)
2 R/w A: X. DAil1

where tne $S oarameter causes the "Size" field to be disI?layed
(without the $S, the Size field is skipped, but the remaining fields
are dis J?l aye d). 'r he S i z e fie 1 d lis t s the vir t u a 1 f i 1 e s i z e in
records, while the "Recs" field sums the number of virtual records in
each extent. For files constructed sequentially, the Size and Recs
fields are identical. °rhe 'IBytes" field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time, and thus tne number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-of-file record ~osition and the Recs
field counts the logical records of each extent (each of these
extents, 110wever, :nay contain unallocated "noles" even though they are
added into the record count). 'rhe" Ext.. f iela coun ts the numbe r of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K oytes (8
logical extents) directly addressed by a single directory entry,
de?ending upon allocation size (in a special case, there are actually
256K bytes which cin be directly addressed by a physical extent).

'fhe .. Acc"
changed usinq

field gives the RIO or R/W access mode, which is
the commands shown below. Similarly, the parentheses

(All Intormation Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COf'1 file name indicate that it has the "system"
indicator set, so that it will not be listed in OIR commands. The
four command forms

STAT d:filename.typ ~R/O
STAT d:filename.typ $R/ri
STAT d:filename.typ $SYS
STAT d:filename.ty? $DIR

set or reset various permanent file indicators. The RiO indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command. The R/O status is recorded in the
directory with tne file so that it remains R/O through intervening
cold start operations. The R/W indicator places the file in a
permanent read/write status. The SYS indicator attacnes the system
indicator to the file, while the DIR command removes the system
indicator. r£he II filename. typ" may be ambiguous or unambiguous, bu t in
eitner case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denoted by Old:" is
optional.

When a file is marked R/O, subsequent attempts to erase or write
into the file result in a terminal BOOS message

Bdos Err on d: File R/O

The BOOS then waits for a console in9ut before performing a subsequent
warm start (a "return" is sufficient to continue). 'rhe command form

s'rA'r d: aSK:

lists the drive characteristics of the disk named bY'''d:'' which is in
the range A:, B:, ••. , P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilobytes. The directory size is listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (1024 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

l2dK in the exam?le above). The number of records per block shows the
basic allocation size (in the example, 128 records/Dlock times 128
bytes per record, or 16K Dytes per block). The listing is ~hen
followed by the number of physical sectors ner track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to sKip lower-numbered disk areas allocated to other
logical disKs. The command form

S£A~ DSK:

?roduces a drive characteristics taDle for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers whicn have files on the
currently addressed disk. ~he display format is:

Active User : 0
Active Files: 0 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user number is 0 (default at cold start), witn three user numbers
whicn have active files on the current disk. 'rhe operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a OIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of CP/M 2.0. All three functions take the form of file parameters
which are enclosed in square brackets following the approprIate file
names. T'he c ommancis are:

Gn Get File from User number n
(n in the range 0 - 15)

W write over RIO files without
console interrogation

R Read system files

'rhe G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. ~he
command

PIP A:=A:*.*[G2]

copies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logg~d user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. 'rhe sequence of operations shown below effectively moves ?IP
from one user area to the next.

USER 0
DDT PIP. COM
(note PIP size

G0
USER 3
SAVE s PIP.COH

login user 0
load PIP to memory

s)
return to CCP
login user 3

where s is the integral number of memory "pages'· (256 byte segments)
occupied by PIP. The number s can be determined when PIP. COM is
loaded under OD'r, by refer ring to the value under the .. NEXT" d i sr;>lay.
If for exam?le, the next available address is lD00, then PIP.COM
requires Ie hexadecimal pages (or 1 times 16 + 12 = 28 ?ages), and
thus the value of s is 28 in the subsequent save. Once PIP is co~ied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent RIO status. If attempt is made to overwrite a RIO
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

8

ORSTINATION FILE IS RIO, DELETE (yiN)?

is issued. If the operator responds with the character "y" then the
file is overwritten. Otnerwise, the response

** NOT DELETED **

is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence. In order to avoid the prom?t and response
in the case of RIO file overwrite, the command line can include the W
parameter, as shown below

PIP A:=3:*.COM[~]

which copies all non-system files to. the A drive from the B drive, and
overwrites any RIO files in the process. If the operation involves
several concatenated files, the ~ parameter need only be included witn
the last file in the list, as shown in the following example

PIP A.OAT = B.DAT,F:NEW.DAT,G:OLD.OAT[W]

Files with the system attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not
recognized. The command line

PIP ED. COM = B:ED.C0M[R]

for example, reads the ED. COM file from the B drive, even if it has
been marked as a RIO ana system file. The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CpIM is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
0. If com?atibility is required with non-standard (e.g., .Idouble
density") versions of 1.4, it may be necessary to select 1.4
com?atibility mode when constructing the internal disk oarameter alock
(see the "CP/iwl 2.0 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

'rhe CP/N standard orogram editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the edi tor has the "v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the 'I_V" command. If you are
not familiar with the ED line number mode, you may wish to refer to
tne Appendix in the ED user's guide, where the "v" command is
described.

ED also takes file attributes into account.
attempts to edit a read/only file, the message

** FILE IS READ/ONLY **

If the operator

appears at the console. The file can be loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/w. If
the edited file has the "system" attribute set, the message

"SYSTEr1" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again,
the S'rA'r prog ram can be used to change the system at tr ibu te, if
desirea.

Finally, the insert mode (.. i") command allows CR'r line edi ting
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

10

'- --

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line' input to programs as well as the console command
processor. The XSU8 command is included as the first line of your
submit file and, when executed, ~elf-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 10) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
I$l.HEX
R
G0
SAVE 1 $2.COH

with a subsequent SUBMIT command:

SUBMI'r SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DD'r which is sent the command lines
"IX.HEX" "R" and "G0" thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the cepe

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command streams do not require the XSUB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register ~air DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list of CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range function numbers.

o
1
2
3
4
5

System Reset
Console Input
Console Output
Reader Input
Puncn Output
List Output

6* Direct Console I/O
7 Get I/O 8yte
a Set I/O Byte
9 Print String

10*
11
12*
13
14
15*
16
17*
18*

Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next

19*
20
21
22*
23*
24*
25
26
27
28*
29*
30*
31*
32*
33*
34*
35*
36*

Delete File
Read Sequential
write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr(Alloc)
write Protect Disk
Get Addr(R/O vector)
Set File Attributes
Get Addr(Disk Parms)
Set/Get User Code
Read Random
Nrite Random
Comoute File Size
Set Random Record

(Functions 2~, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/O is supported under CP/M 2.0 for those
applications where· it is necessary to avoid the BOOS console I/O
operations. program~ whicn currently perform direct I/O through the
BIOS should be changed to use direct I/O under BOOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the inout value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console buffer read ooeration remains uncnanged except that
console line editing is supported, as described in section 2. Note
also that certain functions which return the carriage to the leftmost
~osition (e.g., ctl-X) do so only to the column position where the
prompt ended (?reviously, the carriage returned to the extreme left
margin) • 'rhis new convention makes operator data input and line
correction more legible.

Function 12: Return Version Number.

Function 12 has been redefined to orovide information which
allows version-independent programming (this was previously the "lift
head" function whicn returned HL=0000 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Usin~ function 12, for exam~le, you can
write application programs which orovide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file ooerations described below, DE addresses a file
control block (FCB). Further, all directory operations take place in
a reserved area which does not affect write Dufters as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is required.

The file Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file is accessed randomly. The default file control block
normally located at 005C8 can be used for random access files, since
bytes 00708, 007EH, and 007FH are available for this purpose. For
notational ?urposes, the pea format is shown with the following
fields:

(All Information Contained Herein is proprietary to Digital Research.)

13

Idrlfllf211 Ilf8ltllt2lt3lexlslls2lrcld01/ /ldnlcrlr0lrllr21

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive S,

16=> auto disk select drive P.

fl ••• iS contain the file name in ASCII
u9per case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these 005itions,
tl' = 1 => Read/Only file,
t2- = 1 => SYS file, no OIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

51 reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Function 15: Open File.

;rne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance. Thus, the byte is cleared to ensure
upward compatibility witn the latest version, where it is required.

Function 17: Search for First.

Search First scans the directory for a match with the file given
by the FCf3 addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
1, 2, or 3 is returned indicating the file is ~resent. In the ~ase
that the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A ~ 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Altnough not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, '-the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user numbe~. This latter function is not normally used by
a~~lication ~rograms, out does allow complete flexibility to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function is similar to the SearCh First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items matCh.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is proprietary to Digital Research.)

15

Function 22: Make pile.

The Make File o?eration is identical to previous versions of
CP/M, except that byte s2 is zeroed u~on entry to the 300S.

Function 23: Renru~e File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range 0 to 3 is returned.

Function 24: Return Login vector.

The login vector value returned by CP/M 2.0 is a 16-bit value in
tiL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: write Protect Current Disk.

The disk write protect function provides tem?orary write
protection for the currently selected disk. Any attem?t to write to
the disk, before the next cold or warm start operation ~roduces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector.

Function 29 returns a bit vector in register oair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. 'rhe R/O bit is
set either by an explicit call to function 28, or by the auto~atic
software mechanisms within CP/M which detect Changed disks.

Function 30: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

matcn, and chanqes the matched directory entry to contain the selected
inaicators. Indicators fl' through f4' are not 9resently used, but
may be useful for applications programs, since they are not involved
in the matching orocess during file open and close operations.
Indicators f5' tnrough f8' and t3' are reserved for future system
ext;>ansion.

Function 31: Get Disk Parameter Block Address.

~he address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space ·computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, ap9lication
programs \ViII not require this facility.

Function 32: Set or Get User Code.

An ap9lication program can change or interrogate the currently
active user number by calling function 32. If register E = FF
nexadecimal, tnen tne value of the current user number is returned in
register A, where the value is in the range 0 to 31. If register E is
not F~, then the current user number is chanqed to the value of E
(modulo 32).

Function 33: Read Random.

~he Read Random function is similar to the sequential file read
operation of orevious releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant oyte first (r0), middle
byte next (rl), and high byte last (r2). CP/M release 2.0 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.0, the r0,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from 0 to 65535, providing access to any particular
record of the d megabyte file. In order to orocess a file using
random access, the base extent (extent 0) must first be opened.
Although the nase extent mayor may not contain any allocated data,
this ensures that the file is oroperly recorded in the directory, and
is visible in OIR requests. The selected record number is then stored
into the random record field (r0,rl), and the BDOS is called to read
tne record. Upon return from the call, register A either contains an

(All Information Contained clerein is Proprietary to 0igital Research.)

17

error code, as listed below, or the value 00 indicating the operation
was successful. In the latter case, the current OMA address contains
tne randomly accessed record. Note that contrary to the sequential
reaa operation, the record number is not advanced. Tnus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
r e cor d val u e s are aut oma tic a 11 y set. 'r h us, the f i 1 e can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record ~osition following each ranaom read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of diSK

error cooe 01 ana 04 occur when a random read operation accesses a
data blOCK which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

Function 34: write Random.

The write Random o?eration is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical" extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

switch as it does in sequential mode under either CP/M 1.4 or CP/M
2.0.

~he error codes returned by a random write are identical to the
random read operation with the addition ot error code 05, wnich
indicates that a new extent cannot be created due to directory
ove r flow.

Function 35: Compute File Size.

~hen computing the size of a file, the DE reqister pair
addresses an FCB in random mode format (bytes r0, r1, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory sc~n. Upon return, the random record bytes contain the
II vi r tual" file size wh ich is, in effect,. the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536 in version 2.0. Otherwise, bytes r0 and r1
constitute a 16-bit value (r0 is the least significant byte, as
before) which is the file size.

Data can be ap~ended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the
preset record address.

Tne virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and II holes'i exi s t in the alloca t ion, then. the ·f ile may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random. Recor~.

The Set Random Record fUnction causes the BOOS to automatically
produce the random record position from a file which nas been read or
written sequentially to a ?articula~ point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record 90sition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
90sition along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected ~oint in the file.

This section is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM. COM, the CCP level
command:

RANDOH X. DA'r

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
~rompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, res?ectively. If the W command is issued,
the RAN DOl\1 program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the progra~ls not so brief), the only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. 'rhe
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

which contain the orincipal input line processor,
This particular program shows the elements of
processing, and can be used as the basis for
development •

called
random
further

"readc."
access

t;)rogram

0100

0000 =
0005 =

0001 =
0002 =
0009 =
000a =
J00c =
000£ =
0J10 =
0016 =
Jld21 =
d022 =

005c =
007d =
0~7f =
0080 =

000d =
000a =

0100 3lbc0

0103 0e0c
0105 cd050
0108 £e20
010a d2160

0100 Illb0
0110 cdda0
0113 c3000

. *~*****~*** ,
• * ,
;~ sample random access program for cp/m 2.0

*
*

.* * ,

.*** ,
org

reboot equ
bdos equ

conin? egu
conou t equ
T?string equ
rstring equ
version equ
openf equ
closef egu
makef equ
reacir equ
writer eau

fco
ranrec
ranovf
buff

cr
If

equ
equ
equ
equ

equ
egu

100h

0000h
0005h

1
2
9
10
12
15
16
22
33
34

00Sch
fcb+33
fcb+35
0080h

0dh
0ah

;base of toa

;system reboot
;bdos entry point

;console input function
;console out?ut function
;print string until '$.
;read console buffer
;return version number
;file open function
;close function
;make file function
;read random
; wr i te random

idefault file control block
:random record position
ihigh order (overflow) byte
ibuffer address

icarriage return
iline feed

;
.************************************~************** ,
• * ,
i* load SP, set-up file for random access

*
*

· * * ,
.*** ,

versok:

lxi sp, stack

version 2.0?
mvi
call
cpi
jnc
baa
lxi
call
j mo

c,version
bdos
20h iversion 2.0 or better?
versok

version, message and go back
d ,badver
orint
reboot

correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

;:) 116 0e0f
0118 115c0
0110 cd050
011e 3c
011£ c2370

0122 0e16
0124 115c0
0127 cd0:J0
012a 3c
0120 c2370

012e 113a0
0131 cdda0
0134 c3000

0137 cde50
013a 2 2 ~/d0
013d 217£0
0140 3600
0142 fe51
0144 c2560

0147 0e10
0149 115c0
014c cd0S0
014f 3c
0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b 114d0
015e cdda0

mvi c,openf iopen default fcb
lxi d,fcb
call bdos
inr a ierr 255 becomes zero
j nz ready

cannot open file, so create it
mvi c,makef
lxi d,fcb
call bdos
inr a ierr 255 becomes zero
jnz ready

cannot create file, directory full
1xi d,nospace
call orint
jmp reboot i back to ccp

,
.*** ,
· * ,
· * , looT;:> back to "ready" after each command

*
*

.* * ,

.*******~*** ,

ready:
file is ready for processing

call
snld
lxi
mvi
cpi
jnz

readcom ;read next command
ranrec istore input record#
h,ranovf
m,0 ;c1ear high byte if set
IQ' ;guit?
notq

quit processing, close file
rnvi c,close£
lxi d,fcb
call bdos
inr a ierr 255 becomes 0
jz error ierror message, retry
jmp reboot ;back to ccp

i
.*** ,
· * , *
:* end of quit command, orocess write *
.* * ,
.*** ,
notq:

not the quit command, random write?
cp i • ~v·
jnz notw

this is a random write, fill buffer until cr
lxi d,datmsg
call ~rint idata prompt

(All Information Contained Herein is Proprietary to Digital Research.)

22

0161 0e7f
0163 21800

0166 cS
0167 e5
0168 cdc20
0160 el
016c cl
016d fefjd
016£ ca780

0172 77
0173 23
0174 Od
0175 c2660

u178 3600

017a
017c
017f
01d 2
0183
;a 16 b

0189
018b

a18e
0190
0193
0196
0197

019a
019d
019f

01a2
01a3
01a4
01a6
01a9
01aa

0e22
11Sc0
cd0S0
b7
c2b90
c3370

fe52
c2b90

0e21
11Sc0
cd050
b7
c2b90

cdcf0
0e80
21800

7e
23
e67f
ca370
c5
e5

r loop:

e r loop:

mvi c,127 iU? to 127 characters
lxi h,cuff ;destination
iread next character to buff
puSh b isave counter
push h inext destination
call getchr iCharacter to a
pop h irestore counter
DOD b irestore next to fill
c?i cr iend of line?
j z er 1000

not end, store character
mov
inx
ocr
jnz

rn,a
h
c
rloop

inext to fill
icounter goes down
iend of buffer?

end of read loop, store 00
rnvi m,0

write the record to selected record number
mvi
lxi
call
ora
jnz
jmp

c,writer
d,fcb
bdos
a
error
ready

ierror code zero?
imessage if not
ifor another record

,
.*** ,
. * ,
i* end of write command, ~rocess read
. * ,

*
*
*

.*** ,
notfd:

not a write command, read record?
coi I R'
jnz error iskip if not

read random record
mvi c,readr
lxi d,fcb
call bdos
ora a i return code 00?
jnz error

read was successful, write to console
call cr If inew line
mvi c,128 imax 12d characters
lxi h,buff inext to get

wloop:
mov a,m inext character
inx h inext to get
ani 7fh imask parity
jz ready ifor another command if 00
push b i save counter
puSh h i save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

01ab fe20
01ad d4c80
01b0 el
01bl cl
01b2 0d
01b3 c2a20
01b6 c3370

01b9 11590
01bc cdda0
01bf c3370

01c2 0e01
~11c4 cd050
01c7 c9

01c8 0e02
01ca 5f
01cb cd050
01ce c9

01cf 3e0d
01dl cdc80
01d4 3e0a
01d6 cdc80
0109 c9

01da dS
01db cdcf0
01de dl
016f 0e09
01el cd050
01e4 c9

cpi igraphic?
cnc putchr iskip output if not
pop h
pop b
dcr c icount=count-l
jnz wloop
jrnp ready

i
.******~** ,
. * ,
i* end of read command, all errors end-un here

*
*

.* * ,

.*** ,

error:
lxi
call
jmp

d,errmsg
print
ready

i
.*** ,
.* * ,
i* utility subroutines for console i/o *
.* * ,
.************************************~************** ,
getchr:

iread next console character to a
mvi c,coninp
call bdos
ret

putchr:
iwrite character from a to console
mvi c, conou t
mov e,a icharacter to send
call bdos isend character
ret

cr If:
isend car r iage return line feed
mvi a,cr icarriage· return
call putchr
mvi a,lf iline feed
call Dutchr
ret

i
pr int:

iprint the buffer addressed by de until $
push d
call crlf
pOT;> d i new line
mvi c,pstring
call bdos iprint the str ing
ret

r eadcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24

01e5 116b0
01e8 cdda0
v) 1eb 0e0a
01ed 117a0
01f0 cd050

01f3 21000
01f6 117c0
01f~ la
01fa 13
01fb b7
01fc c8

0lfd d630
01ff fe0a
0201 d2130

0204 29
0205 4d
0206 44
0207 29
0208 29
13209 09
020a 85
02!()o 6t
;2} 20c d2t90
1!120t 24
0210 c3f90

0213 c630
0215 feb1
0217 d8

0218 e65f
021a c9

021b 536f79

023a 4e6f29

024d 547970

0259 457272

026b 4e6570

iread the next command line to tne conbuf
lxi d,prompt
call print i command?
mvi c, r s tr ing
1xi d, conbuf
call bdos iread command line
command line is 1?resent, scan it
1xi h,0 i start wi th 0000
1xi d,con1in icomrnand line

readc: 1dax d inext command cnaracter
inx d ito next command oosition
ora a icannot be end of command
rz
not zero, . ? numerlC.
sui '0 •
cpi 10 i ca r ry if numeric
jnc endrd
add-in next digit
dad h ;~2

mov c,l
mov b,h ibC = value * 2
dad h ;*4
dad h ; *8
dad b ;*2 + *8 = *10
add 1 ;+digit
mov 1,a
jnc readc ;for another char
inr h i ove r flow
jmp readc ifor another char

endrd:
end of read, restore value in a
adi '0 ' ; command
coi 'a' ; translate case?
rc
lower case, mask lower case bits
ani 101$1111b
ret

;
.*************************************~************* ,
. * ,
;* string data area for console messages

*

*
.* * ,
.***~***** ,
oadve r :

db 'sorry, you need co/m version 2$'
nos1?ace:

db 'no directory spaceS'
da tTIlsg :

db 'type data: $'
e r rmsg:

db 'error, try again.$'
pr ornot:

db 'next command? $'

(All Information Contained Herein is Proprietary to Digital Research.)

25

027a 21
027b
~J 27c
0021 =

o 29c

02bc

·*** ,
. * * ,
i* fixed and variable data area *
.* * ,
.*** ,
conbuf: db conI en i 1engt h of console buffer
consiz: as 1 ; resul t ing size after read
conlin: ds 32 ;length 32 buffer
conlen equ $-consiz

ds 32 ;16 level stack·
stack:

end

(All Information Contained Herein is Proprietary to Digital Research.)

26

9 • CP/r-l 2.0 MEt010RY ORGAN IZ A'rION.

Similar to earlier versions, CP/~l 2.0 is field-altered to fit
var ious memory size s, de?ending upon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the table below.

Hodule 20k 24k 32k 48k 64k
CCl? 3400H 4400H 6400H A400H E400H
8DOS 3C00H 4C0 eH-I 6C00H AC00H EC00H
BIOS 4A00H 5A00H 7A00H BA00H FA00H
'rop of Ram 4FFFH 5FFFH 7FFFH BFFFH FFFFH

'l'he distribution disk contains a CP/M 2.0 system configured for a 20k
Intel 1010S- 8 (10 with standard 13M 8 ,. floppy disk drives. The disk
layout is shown belovl:

Sector 'rrack 00 Module ;rrack 01 tvlodule
1 (Bootstrap Loader) 40808 BOOS + 480H
2 3400H CCP + 000H 410108 BOOS + 500H
3 3480H CCP + 0808 41808 800S + 580H
4 3500H CCP + 1008 4200H 300S + 6008
5 3580H CCP + 180H 4280H SOOS + 680H
6 36008 CCP + 200H 4300H BOOS + 700H
7 3680H CCP + 280H 4380H BOOS + 780H
(5 310~H CCP + 3008 44008 BOOS + 8008
:J 3780H CCP + 380tl 4480H BOOS + 881:1H

10 3800d CCP + 400H 4500H 8DOS + 9008
11 3B80H CCP + 480H 4580H BOOS + 980H
12 39006 CCP + 500H 4600H BOOS + A00H
13 3980H CCP + 580H 46808 BDOS + A80H
14 3A00H CCP + 600H 4700H BDOS + B00H
15 3A80H CCP + 6808 4780H BOOS + Bd0H
16 3800H CCP + 700H 48008 BOOS + C00H
17 3BB0H CCP + 780H 4880H BOOS + C80H
18 3C008 BOOS + 000H 4900H BOOS + 000H
19 3C80H BOOS + 080H 4980H BOOS + D80H
20 3D00H BOOS + 100H 4A00H BIOS + 000H
21 3080H BOOS + 180H 4A80H BIOS + 080H
22 3E00H BOOS + 2010H 4B00H BIOS + 100H
23 3E80H BOOS + 280H 4B80H BIOS + 180H
24 3F00H BOOS + 300H 4C00H BIOS + 200H
25 3F80H BDOS + 380H 4C80H aIOS + 280H
26 4000H BOOS + 400H 4000H BIOS + 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BOOS portion,
however, occupies one more 256-byte ?age and the BIOS portion extends
through the remainder of track 01. Thus, the CCP is 800H (2048
decimal) bytes in length, the 800S is E00H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

10. BIOS DIFFERENCES.

The CP/M 2.0 Basic I/O System differs only slightly in concept
from its predecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined. The skeletal form of these
changes are found in the program shown below.

1 :
2 :
3 :
4 :
5 :
6 :
7 :
d :
9 :

10:
11:
12 :
13:
14:
15 :
16 :
17:
18:
19:
2 vJ :
21:
22:
23:
24:
25:
26:
27:
28:
29:
310:
31 :
32:
33:
34:
35:
36:
37:
38:
39:
40:
41 :
42:
43:
44:
45:
46:
47:

bpb
rpo
maxb

. ,
boot:

org
maclio
jmp

4000h
diskdef
boot

listst ;list status
sectran ;sector translate
4

jmp
jmp
disks
large
eau
equ

capaci ty dr ive

equ
diskdef
diskdef
diskdef
disKdef

ret

16*1024 ;bytes per block
bpb/12B ;records per block
65535/r?b ;max block number
0,1,58,3,bpb,maxb+l,128,0,2
1,1,58"bpb,maxb+l,128,O,2
2,0
3,1

listst: xra
ret

a i nop

selds k:
;drive number in c
lxi h,0 ;0000 in hI produces select error
mov a,c ia is disk number 0 ••• ndisks-l
c?i ndisks ;less than ndisks?
rnc ;return with HL = 0000 if not
proper disk number, return dpb element address
mov 1,c
dad h ;*2
dad h ;*4
dad h ;*8
dad h ;*16
lxi d,dpbase
dad d ;HL=.dpb
ret

selsec:
;sector number in c
lxi h,sector
mov m,c
ret

sectran:
itranslate sector BC using table at DE
xchg ;HL = .tran
dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

48: dad b
49: mov
50: fill
51 : ret
52:
53: sector: as
54: endef
55: end

again
I,m

both H

1

if double precision tran
;only low byte necessary here

and L if double ?recision tran
;HL = ??ss

Referring to the program shown above, lines 3-6 reoresent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector elements). The last two elements provide access to the
"LIs'rs'r" (List Status) entry point for DESPOOL. 'rhe use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release. It should be noted that
the 1.4 DESPOOL orogram will not o?erate under version 2.0, but an
update version will be availaole from Digital Research in the near
fu tur e.

'rhe "SEC'rRAN" (Sector Number 'rranslate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
sUbroutine. 'rhis mechanism allows the user to specify the sector skew
factor and translation for ~ ?articular disk system, and is described
below.

A macro library is shown in the listing, called DISKDEF,
included on line 2, and referenced in 12-15. Although it is not
necessary to use the macro liorary, it greatly simplifies the disk
deiinition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all CP/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can use to hand-code the
taoles produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

£'1ACL IB DISKDEF
·
DISKS n
OISKDEF o , •••
DISKDEF 1 , .••
·
DISKOEF n-l
·
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. 'rhe DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
OISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

(All Iriformation Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable ?ortion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKOEF macros, with the ENDEF macro call immediately preceding the
BL-JO statement. 'rhe ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISK 0 E F d n, f s c ,Is c , [s k f] , b 1 s , d k s , d i r , c k s ,of s, [(1]

where

dn is the logical disk number, '1 to n-l
fsc is the first physical sector number (0 or 1)
lsc is the last sector number
skf is the optional sector skew factor
ols is the data allocation block size
dir is the number of directory entries
cks is the number of II checked jl directory entries
ots is the track offset to logical track 00
[0] is an ootional 1.4 compatibility flag

:rhe value 'Idn" is the drive number being defined with this DISKDEF
macro invocation. ;rhe "fsc" parameter accounts for differing sector
nUl1l0er inq systems, and is usually 0 or 1. The ·'lsc·1 is the last
numbered sector on a track. \~hen present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The .lbls·1 parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
mo red a t a and t l1 e B lOS - res id en tram spa c e i s r e du c e d • or he" d k s II
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, tnen the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. 'rhe value of "dirtl is the total number of
directory entries which may exceed 255, if desired. 'rhe ticks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case'with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically 0, since the probability
of cnanging disks without a restart is quite low. The "ofs·1 value
determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

space or to simulate several logical drives on a single large capacity
~ h Y sic aId r i v e • Fin a 11 y, the [0] par am e t e r i sin c 1 u de d w hen . f i 1 e
com?atibility is required with versions of 1.4 which have been
modified for higher density disks. 'rhis oarameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table s9ace, the special form

DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is com9atible with
version 1.4, is defined using the following macro invocations:

DISKS
OISKOEF
DISKDEF
DISKDEF
OISKDEF

ENOEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disKS having the same l?ararneter values of 26 sectors oer
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
s y stem t rack s •

rhe definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.0. All disks have identical parameters, except that drives 0 and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives) •

The DISKS macro generates n "disk header blocks," starting at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

OPBASE
OPE0 :
OPEl:
OPE2 :
OPE3 :

EQU
ow
OW
OW
Dv~

$
XLT0,0000H,0000H,0000H,DIRBUF,DPa~,CSV0,ALV0

XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSVl,ALVl
XLT0,0000H,0000H,0000H,OIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the OPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT0,
which is the translation vector for drive 0 in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

followed by three 16-bi t "scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, and allocation vector address. The check and allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.0,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE0, OPEl, DPE2, or OPE3, in the
above example) in register HL. If SELDSK returns the value HL =
0000H, then the BOOS assumes the disk does not exist, and prints a
select error mesage at the terminal. program lines 22 through 36 give
a sample CP/M 2.0 SELDSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
performs the actual logical to physical sector translation. In
earlier versions of CP/M, the sector translation process was a part of
the BOOS, and set to skip six sectors between eacn read. Due
differing rotational speeds of various disks, the translation function
has become a part of the BIOS in version 2.0. Irhus, the BOOS sends
sequential sector numbers to SECTRAN, starting at sector number 0.
The SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the BOOS. The 800S
subsequently sends th6 translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. In this case, the "skf" parameter
is omitted in the macro call, and SEc'rRAN simply returns the same
val u e w h i chi t r e c e i v e s • 'r he tab 1 e show n below , for e x am pIe, i s
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. 'rhe sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (8 = 00 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLT0 in the case shown above). The SECTHAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate taole, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L. Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL.

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)

32

which is loaded upon cold start, but must be available between the
BIOS and the en6 6f memory. The size of the un initialized RAM area is
determined by EQU statements generated by tne ENDEF macro. For a
standard four-drive system, the ENOEF macro might oroduce

4C72 =

4D80 =
013C =

BEGDA'r EQU :;;
(data areas)
ENDo.Z\'r EQU $
DATSIZ EQU $-BEGDAT

which indicates that un initialized RAN begins at location 4C72H, ends
at 4DB0H-l, and occupies 013C3 bytes. You must ensure that these
addresses are free for use after the system is loaded.

CP/M 2.0 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. Information is orovided by the BOOS
on sector write operations which eliminates the need for pre-read
operations, thus allowing olocking and deblocking to take o13ce at the
BIOS level.

See the 'ICP/~'l 2.0 Alteration Guide" for additional details
concerning tailoring your CP/M system to your oarticular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. An rights reserved.
No pa~t of this publication may be reproduced, transmitted,
transcribed, stored in B.· retrieval system, or translated into
any language or computer language. in any form or by any
means, electronic, mechanical, magnetic, optjcal~ chemical,
manual or otherwise, without the prior written permissjon of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specif1caIJy disclaims any
implied warranties of merchantability or fitness for any parti­
cular purpose. Further~ Digital Research reserves the right
to revise this pub1ication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

TrRdemarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of DigitaJ Research.

"-

1.

2.

Introduction

CP/M 2.2 ALTERATION GllDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove" California

.
First Level System Regeneration •

3. Second Level $ystem Generation

4. Sample Getsys and Putsys Programs

5. Diskette Organization

6. The BIOS Entry points. ·
7 • A Sample BIOS

8. A Sample Cold Start Loader ·
9. Reserved Locations in Page Zero.

10. Disk Parameter Tables

11. The DISKDEF Macro Library • ·
12. Sector Blocking and Deblocking ·

Appendix A · · · · · · · · · · · · · · · · · Appendix B · · · · · · · · · · · · · Appendix C · · · · · · · · · · · · · · · Appendix D · · · · · · · · · · · · · · · Appendix E · · · · · · · · · · · · · · · · · Appendix F · · · · · · · · · · · · · · · · · Appendix G · · · · · · · · · · · · · · ·

1

2

6

10

12

14

21

22

23

25

30

34

36
39
50
56
59
61
66

1. INTRODUCTION

'r h est and a r d CP / H s Y stem ass urn e sop era t ion 0 nan In tel f,lD S - a 0 0
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment. In this way, the user can produce a diskette
wnlcn operates with any IBM-374l format comoatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"nard aisk" systems. In order to simplify the following adaptation
9rocess, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
may wish to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M is separated into
three distinct modules:

BIOS - basic I/O system which is environ,oent dependent
3DOS - basic disk operating system which is not dependent

upon the hardware configuration
ecp - the console command processor which uses the BOOS

Of these modules, only the BIOS is dependent upon the particular
i1 a r dw are. or 11 a tis, the use rca n II pat c h ,I the dis t r i bu t ion ve r s ion 0 f
C~/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
'rhe purpose of this document is to provide a step-by-step procedure
for patcning your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first
time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal
version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to patcn the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

I

2. FIRST LEVEL SYSTEM REGENERATION

'r h e pro c e d u ret 0 follow top a t c nth e C l? / r1 s y stern i s g i v en below in
several steps. Address references in each step are shown with a
following "H" whicl1 denotes the hexadecimal radix, and are given for a
20K CP/f1 system. For larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to
tne memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K 20K = 4K = l000H
32K: b = 32K 20K = 12K = 3000H
40K: b = 40K 20K = 20K = 5000H
4 8K: b = 48K 20K = 28K = 7000H
5 6K: b = 56K - 20K = 36K = 9000H
62K: b = 62K 20K = 42K = A800H
64K: b = 64K 20K = 44K = 8000H

Note: The standard distribution version of CP/M is set for
operation within a 20K memory system. Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write
first two tracks of a diskette into
must begin at location 3380H.
location 1008 (case of the TPA),
Appendix d.

a GETSYS program which reads the
memory. The data from the diskette

Code GETSYS so that it starts at
as shown in the first part of

(2) Test the GETSYS program by reading a blanK diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program.

(3) Run the GETSYS program using an initialized CP/M diskette to
see if GETSYS loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 3400H).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 33808 back onto the first two tracks of the
diskette. The PUTSYS program should be located at 200H, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks: clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS {customized BIOS}. Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Researcn.)

2

(7) Test CBIOS completely to ensure that it pro~erly performs
console character I/O and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/M system after it is
patched.

(8) Referring to Figure 1 in Section 5, note that the 3IOS is
placed between locations 4A00H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). 'rhis replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PU~SYS to 9lace the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(10) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the load).
Upon successful load, brancn to the cold start code at location 4A00cl.
rhe cold start routine will initialize page zero, then jum? to the CCP
at location 3400H which will call the BDOS, which will call the CBIOS.
The C8IOS will be asked by the CCP to read sixteen sectors on track 2,
3.nd if successful, Cp/r1 will type lOA)", the system ~rompt.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has orom?ted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM

(recall that all commands must be followed by a carriage return).

CP/M should respond with another prompt (after several disk accesses):

A)

If it does not, debug your disK write functions and retry.

(12) Then test the directory command by typing

DIR

CP/M should respond with

A: X COM

(13) Test tne erase command by typing

ERA X. COr-1

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A promote When you make it this far, you
should have an operational system which will only require a bootstrap
loader to func-tion completely.

(14) Write a bootstrap loader which is similar to GETSYS, and
place it on track 0, sector 1 using PUTSiS (again using the test
diskette, not the distribution diskette). See Sections 5 and 8 for
more information on the bootstrap operation.

(15) Retest the new test diskefte with the bootstrap loader
installed by executing steps (11), (12), and (13). Uoon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of your
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from your test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing

DIR

CP/M should res~ond with a list of files which are ~rovided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT. COM.

~OTE: from now on, it is important that you always reboot tne CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by anotner diskette, unless the new diskette is to be read only.

(IS) Load and test the debugger by typing

DDT

(see the document "cp/N Dynamic Debugging 'rool (DDT)" for operating
?roceaures. You should take tne time to become familiar with DDT, it
will be your oest triend in later steps.

(19) Before making further CBIOS modifications, practice using
the editor (see the ED user's guide), and assembler (see the ASH
user's guide). Then recode and test the GETSYS, PUT3YS, and CBIOS
programs using ED, ASM, ~nd DDT. Code and test a COpy program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Research.)

4

on eacn copy which is made witn your COBY program.

(20) Modify your CBIOS to include the extra functions for
9uncnes, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which you have
developed, or you can refer to the following section, which outlines
Ce/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the calos portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for your use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
other C~/M systems, (assuming media cOffi?atiolity, of course) which
allows transfer of nOn-9rO?rietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/CVl with the ul10VCPM" program (system relocator) and
place this memory image into a named aisk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
the s e pro gram s, see the " G u ide to C P / i~ Fe a t u res and Fa c iIi tie s ..
:nanual.

Your CSIOS and BOOT can be modified using ED, and assembled using
ASH, producing files called CBIOS.HEX and BOOT.HEX, which contain the
machine code for CSIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the ~PA configured for the
desired memory size, give the command:

N.OVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will oe:

CONs'rRUC'fING xxK CP /r1 VERS 2.0
REZillY FOR ., SYSGEN" OR
"SAVE 34 CPMxx.COH"

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 0900H through
227FB. (i.e., The BOOT is at 0900H, the CCP is at 980H, the BOOS
starts at Ild0H, and the BIOS is at IF80H.) Note that the memory
image has the standard MDS-800 8IOS ana BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and caOOT into it:

SAVE 34 CPMxx.COM

'rhe memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM

DDT should respond with

NEXT PC
2300 0100

Load DDT, then read the CPM
image

(The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 900H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address. Track 00, sector 01 is loaded to location 900H (you should
find the cold start loader at 900H to 97FH), track 00, sector 02 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 34008, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 34008

Assuming two's complement arithmetic, n = 0580H, which can be checked
by

3400H + D5808 = 10980H = 09808 (ignoring high-order
overflow) •

Note that for larger systems, n satisfies

(3400H+b) + n = 9808, or
n = 980H - (34008 + b), or
n = 0580H - b.

The value of n for common CP/M systems is given below

memory size bias b negative offset n

20K 0000H D580H 00011H = 0580H
24K 1000H 05808 1000H = C580H
32K 3000H 0580H 3000H = A580H
40K 5000H 0580H 5000H = 8580H
48K 70008 D580H 7G00H = 6580H
56K 9000H 05808 90008 = 4580H
62K A8008 05808 A80~H = 2080H
64K 8000H 05808 30008 = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

Hx,n Hexadecimal sum and difference

and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

H3400,0580

for example, will produce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the gIOS located at
(4A00H+b)-n which, when you use the H command, oroduces an actual
address of IF80H. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

LIF80

It is now necessary to oatch in your CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual
load address is "n", then to calculate the bias (m) use the command:

H900,n Subtract load address from
target address.

The second number typed in response to the command is the desired bias
(m). For example, if your BOOT executes at 0080H, tne command:

H900,80

will reply

09810 0880 Sum and difference in hex.

irherefore, the bias "m" would be 0880H. Iro read-in the BOOT, give the
command:

ICBoo'r. HEX

l'hen:

Rrn

You may now examine your CBOOT with:

L900

Input file CBOOT.HEX

Read CBOOT with a bias of
m (=900H-n)

We are now ready to replace the CSIOS. Examine
where the original version of the CBIOS resides.

the area
Then type

at IF80H

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBros is being integrated into a 20K CP/M system, and
thus is origined at location 4A00H. In order to properly locate the
C8IDS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loadi ng the hex file. 'rh is is accompl ished by
typing

RD580 Read the file with bias D580H

Upon completion of the read, re-examine the area where the caIOS has
been loaded (use an "LlF80" command), to ensure that is \vas loaded
properly. When you are satisfied that the change has been made,
return from OD'r using a control-C or "G0 II command.

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is ero9rietary to Digital Research.)

8

SYSGEN
SYSGEN VERSION 2.0
SOURCE DRIVE NAME (OR

DESTINATION DRIVE NAME

DESTINATION ON B, THEN

FUNCTION COMPLETE

Start the SYSGEN program
Sign-on message from SYSGEN

RE'fURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
(OR RETURN TO REBOOT)
Respond with liB" to write the
new system to the diskette in
drive B.
TYPE RETURN
Place a scratch diskette in
drive B, then type return.

DESTI~ATION DRIVE NAME (OR RETURN TO REBOOT)

~lace the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

9

4. SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUl'SYS pr og rams referenced in Section 2. Ifhe READSEC and v~Rl'rESEC
sUbroutines must be inserted by the user to read and write the
specific sectors.

GETSYS PROGRAM -
REGISTER

READ 'I'RACKS 0 .AND 1 TO t"1El\10RY AT 3380H
USE

A
B
C
DE
HL
SP

i

(SCRATCH REGISTER)
TRACK COUNT (0, 1)
SECTOR COUNT (1,2, ..• ,26)
(SCRATCH REGISTER PAIR)
LOAD ADDRESS
SET TO STACK ADDRESS

S 1'AR1' : LXI SP,3380H i SErr 8'rACK POIN'rER fro SCRATCH AREA
LXI H, 3380H i SE'r BASE LOAD ADDRESS
MVI S, 0 i 8'rART WITH TRACK 0

RD'f RI<: iREAD NEx'r TRACK (If~I'rIALLY
HVI C,l iREAD STAR'rING WI'fH SEC'l'OR

ROSEC: iREAD NEX'f SECTOR
CALL READSEC iUSER-SUPPLIED SUBROUTINE
LXI D,128 iMOVE LOAD ADDRESS Iro NEXT
JAD D iHL = HL + 128
I r~R C is ECrfOR = SEC'l'OR + 1
(JI0V A,C iCHECK FOR END OF TRACK
CPI 27
JC ROSEC i CARRY GENERA'I'ED IF S EC'rOR

ARRIVE HERE A'r END OF jfRACK, HOVE 'fO NEXT 'fRACK
INR B
MOV A,B i'rES/r FOR LAS'r irRACK
CPI 2
JC RD'fRK i CARRY GENERA'fED Ie 'rRACK

ARRIVE HERE Air END OF LOAD, HAL'f FOR NOH
HL'r

USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:

ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

PUSH
PUSH

B
H

iSAVE BAND C REGISTERS
iSAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

POP
POP
RE'r

H
B

END START

iRECOVER HL
iRECOVER BAND C REGISTERS
iBACK TO MAIN PROGRAM

<

0)
1

1/2 PAGE

< 27

2

(All Information Contained Herein is Proprietary to Digital Research.)

10

l~o te that th is prog ram is assembled and 1 i sted in Appendix C for
reference purposes, with an assumed origin of l00H. The hexadecimal
operation codes which are listed on the left may be useful if the
program has to be entered through your machinels front panel switcnes.

~he PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
wit h i nth e pro gram. The READ SEC sub r ou tin e i s r e l? 1 ace d by a ~~ R I 'r ESE C
subroutine which ~erforms the o~~osite function: data from address HL
is written to the track given by register B and sector given oy
register C. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Prol?rietary to Digital Research.)

11

The sector allocation for the standard distribution version of
CP/M is given here for reference ?ur~oses. The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set u? to bring track 0, sector 1
into memory at a specific location (often location 0000H). The
program in this sector, called BOOif, has the responsibility of
bringing the remaining sectors into memory starting at location
34008+b. If your controller does not have a built-in sector load, you
can ignore the program in track 0, sector 1, and begin the load from
track 0 sector 2 to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings
track 0, sector 1 into absolute address 3000H. Upon loading this
sector, control transfers to location 30006, where the bootstrap
operation commences by loading the remainder of tracks 0, and all of
track 1 into memory, starting at 3400H+b. The user should note that
this bootstrap loader is of little use in a non-MDS environment,
althougn it is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

'rr ack * Sector# Page# Memory Address CP /1''1 Module name
--

(10 01 (boot address) Cold Start Loader
--

00 02 00 3400H+b CCP
03 3480H+b
04 01 3500H+t)
05 3580H+o
06 02 3600H+o
07 36808+b
08 03 3700H+O
09 3780H+b
10 04 3800H+b
11 ,i 38808+b
12 05 3900H+b
13 3980H+b
14 06 3A00H+b
15 3AB0H+b
16 07 3800H+b

00 17 38808+b CCP
--

00 18 08 3C00H+b BOOS
19 ,I 3C80H+b
20 09 3000H+b
21 3080H+b
22 10 3E00H+b
23 3E80H+b
24 11 3F00H+b ,I

iI 25 3F80H+b
26 12 4000H+b

01 (11 I, 4080H+b
", 02 13 4100H+b

03 4180H+b
04 14 4200H+b

.1 05 4280H+b
06 15 430JH+b
07 4380H+b ,j

08 16 4400H+b
09 4480H+b

.1 10 17 4500H+b II

11 4580H+b
.1 12 18 4600H+b

13 4680H+b
.1 14 19 4700H+b

15 .1 4780H+b II

16 20 4800H+b
17 4880H+b
18 21 4900H+b

,.
01 19 4980H+b BOOS

01 20 22 4A00H+b BIOS

21 4A80H+b "
II 23 23 4B00H+b II

24 ,I 4880H+b II

25 24 4C00H+b
01 26 4C80H+b BIOS

02-76 01-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and SDOS
are detailed below. Entry to the BIOS is through a "jump vector"
located at 4A00H+b, as shown below (see Appendices Band C, as well).
The jum? vector is a sequence of 17 jum? instructions which send
~rogram control to the individual BIOS sUbroutines. The BIOS
subroutines may be em?ty for certain functions (i.e., they may contain
d single RET operation) during regeneration of CP/M, but the entries
must be ~resent in the jump vector.

The jump vector at 4AU0H+b takes the form shown below, where the
individual jump addresses are given to the left:

4A00H+b
4A03d+o
4A06fi+b
4A09H+b
4A0CH+b
4A0FH+b
4A12ti+b
4AISH+b
4A18H+b
4AlBd+b
4AlEd+o
4A2lH+o
4A24H+b
4A27H+b
4A2AH+b
4A2DH+b
4A30H+b

JMP BOOl'
JHP WBOOri'
JMP CONST
J"tvlP CON IN
J HP CONOU'I'
JHP LIST
J~P PUNCH
Jt-1P READER
JMP HOME
J I'·lf? S ELDSK
J ~4f? S ET'r RK
J MP S E'rSEC
J Hf? S E'rDt1A
J['.lP READ
JHP ~vRI'rE

J £vIP L I sirs'!'
JMP S ECrrRAN

ARRIVE HERE FROH COLD START LOAD
ARRIVE HERE FOR WARM START
CHECK FOR CONSOLE CHAR READY
READ CONSOLE CHARACTER IN
~vRI'rE CONSOLE CHARAC'rER OU'11
WRITE LISTING CHARACTER OUT
WRI'£E CHARACTER TO PUt~CH DEVICE
READ READER DEVICE
MOVE TO TRACK 00 ON SELECTED DISK
SELECT DISK DRIVE
SE'r 'fRACK NUMBER
SET SEC~OR NUMBER
S Eir Dr4A ADDRESS
READ SELECTED SECTOR
WRITE SELECTED SECTOR
RETURN LIST STATUS
SECTOR TRANSLATE SUBROUTINE

Each jumo address corresponds to a particular subroutine which
performs the specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
whiCh results from calls on BOOT and WBOOT, simple character I/O
performed by calls on CONST, CONIN, CONOU'l\ LIST, PUNCH, READER, and
LISTS'r, and disket te I/O performed by calls on HOME, SELDSK, SET'rRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (?arity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (lAH). Peripheral devices are seen by CP/M as "logical"
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONou'r subroutines (LIS'r, PUl~CH, and READER may be used by PIP, but
not the BOOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial version of CBIOS may have empt~
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE

LIST

.pONCH

READER

The principal interactive console wnich communicates
with" the ~operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CR11 or 'reletype.

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such as a
printer or Teletype.

The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical reader or ~eletype.

Note that a single peripheral can be assigned as
the LIS'r, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other user program. Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a lAH (ctl-Z) in reg A to indicate
immediate end-of-file.

For added flexibility, the user can ootionally
implement the "IOBY'rE" function which allows
reassignment of physical and logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered during CP/M
processing (see the STAT commanC). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently
location 0003H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four di~tinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE AT 0003H I LIST I PUNCH I READER I CONSOLE I

bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range 0-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

CONSOLE field (bits 0,1)
o - console is assigned to the console printer device (TTY:)
I console is assigned to the CRT device (CRT:)
2 batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 user defined console device (UCl:)

READER
I{)

1
2
3

PUNCH
o
1
2
3

field (bits 2,3)
- READER is the Teletype device (TTY:)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (URI:)
user defined reader # 2 (UR2:)

field (bits 4,5)
- PUNCH is the Teletype device (TTY:)
- PUNCH is the high speed punch device (PUN:)
- user defined punch # 1 (UPl:)

user defined ?unch # 2 (UP2:)

LIST field (bits 6,7)
o - LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - user defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
0003H), except for PIP which allows access to the
physical d~vices, and STAT which allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facili ties Guide"). In any case, the IOBY'rE
implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/O is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/O operation. After all these
par~neters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected DMA address before the DMA address is changed.
The track and sector sUbroutines are always called
befbre the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

Boo'r

WBOO'£

CONST

CONIN

Note that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BOOS. If the
error condition is returned to the BOOS, it will report
the error to the user. The HOME subroutine mayor may
not actually perform the track 00 seek, depending upon
your controller characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SET'rRK wi th a parameter of 00.

The exact responsibilites of each entry point
subroutine are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version) • If the
IOBYTE function is implemented, it must be set at this
point. The various system parameters which are set by
the wBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing. Note that reg C must be set to zero to
select dr ive A..

The WBaOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user
9rogram branches to location 0000H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini­
tialized as shown below:

location 0,1,2 set to JMP WBOOT for warm starts
(0000H: JMP 4A.03H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BOOS, which is the
primary entry point to CP/M for
trans ient programs. (000 5H: JMP
3C06H+b)

(see Section 9 for complete details of page zero use)
Upon completion of the initiali~ation, the WBOOT
program must branch to the CCP at 3400H+b to (re)start
the system. Upon entry to the CCP, register C is set
to the drive to'select after system initialization.

Sample the status of the currently assigned console
device and return 0FFH in register A if a character is
ready to read, and 00H in register A if no console
characters are ready.

Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOUT

LIs'r

PU[~CH

READER

HOHE

SELDSK

set the parity oit (high order bit) to zero. If no
console character is ready, wait until a character is
typed oetore returning.

Send the character from register C to the console
output device. The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (SUCh as a TI Silent 700 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for exam?le).

Send the character from register C to the currently
assigned listing device. The character is in ASCII
with zero parity.

Send the character from register C to the currently
assigned punch device. The character is in ASCII with
zero l?arity.

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (lAH).

Return the disk head of the currently selected disk
(initially disk A) to the track 00 position. If your
controller allows access to the track 0 flag from the
drive, step the head until the track 0 flag is
detected. If your controller does not support this
feature, you can translate the HOME call into a call
on SE'I,rrRK wi th a pa r arne ter of 0.

Select the disk drive given by register C for further
operations, where register C contains 0 for drive A, I
for drive S, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives). On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 10. For
standard floppy disk drlves, the contents of the
header and associated tables does not change, and thus
the progr,?Ull segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELOSK returns
HL=0000H as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O function (seek, read or write)
is actually p~rformed, since disk selects often occur
without utimately performing any disk I/O, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Broprietary to Digital Research.)

18

READ

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

Register BC contains the track number for subseauent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
0-76 corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems.

Register BC contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

Register BC contains the OMA (disk memory access)
address for subsequent read or write operations. For
example, if B = 00H and C = 80H when SETDMA is called,
then all subsequent read operations read their data
into 80H through 0FFH, and all subsequent write
operations get their data from 80H through 0FFH, until
the next call to SETDMA occurs. The initial DMA
address is assumed to be 80H. Note that the
controller need not actually support direct memory
access. If, for example, all data is received and
sent through I/O ports, the CBIOS which you construct
will use the 120 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations.

Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

o no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as tne return code. That is, if the value in
register A is 0 then CP/M assumes that the disk
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see it the error is recoverable. When an error is
reported the BDOS will print the message "BOOS ERR ON
x: BAD SEC'rOR". The oper a tor then has the opt ion of
typing <cr> to ignore the error, or ctl-C to abort.

write the data from the currently selected DMA address
to the currently selected drive, track, and sector.
'rhe data shouid be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

LISI's'r

SECl'RAN

maintain compatibility with other CP/r.l systems. 'rhe
error codes given in the REAO command are returned in
register A, with error recovery attemots as described
above.

Return the ready status of the list device. Used by
the OESPOOL program to improve console response during
its operation. The value 00 is returned in A if the
list device is not ready to accept a character, ~nd
0FFH if a character can be sent to the printer. N~te
that a 00 value always suffices.

Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped wi th a II skew factor"
of 6, where six physical sectors are skipped between
each logical reaa operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however,
that you should maintain a single density IBM
compatible version of Cp/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL. For stan6ard systems, the tables and
indexing code is orovided in the CBIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

20

7. A SAMPLE BIOS

'rhe program sho\vn in Al?pendix C can serve as a basis for your
first BIOS. The simolest functions are assumed in this BIOS, so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
COl'.JS'r, CONIN, CONOUT, READ, \-vRll1E, and \'JAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIS'r, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLO S'rAR'r LOADER

'11 he pro gram show n in Ap pen d i x Dca n s e r v e a s a bas is for you reo I d
start loader. The disk read function must be supplied by the user,
ana the program must be loaded somehow starting at location 0000.
Note tnat space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track ~, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system. In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
whicn orancnes to the loader. Subsequent warm starts will not require
this key-in operation, since the entry point 'WBOOT ' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions.

(All Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCA'rIONS IL~ PAGE ZERO

Main memory page zero, between locations 00H ana ~FFH, contains
several segments of code and data which are used during CP/M
processing. 'rhe code and data areas are given below for reference
purposes.

Locations
from to
0000H - (1 0 0 2H

0003H - 000 3H

01{) (1 4H - 000 4H

o 005H 0007H

0008H - 0027H

00308 - {10 37H

0038H - 003AH

003BH kJ03FH

00408 004FH

0050H - 005BH

005CH - 007CH

007DH.- 007FH

Contents

contains a jump instruction to the warm start
entry point at location 4A03H+b. This allows a
simple programmed restart (Jfv1P 0000H) or manual
restart from the front Danel.

Contains the Intel standard I08YTE,
optionally included in the user's
described in Section 6.

which is
CBIOS, as

Current default drive number (0=A, ..• ,15=B).

Contains a jump instruction to the ODOS,and
serves two purposes: JMP 0005H provides the
primary entry point to the BOOS, as described in
the manual "CP/M Interface Guide," and LHLD
0006H brings the address field of the
ins t r u c t ion tot h e B L r eg i s t e r p air. rr his val u e
is the lowest aaaress in memory used by CP/M
(assuming the CCP is being overlayed). Note
tha t the DD'r pr og r am will change the add ress
field to reflect the reduced memory size in
debug mode.

(interrupt locations 1 through 5 not used)

(interrupt location 6, not currently used
reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
use d by C P / Ivl •

(not currently used - reserved)

16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/M

(not currently used - reserved)

default
transient
Brocessor.

file control
program by

block produced
the Console

Optional default random record position

for a
Command

(All Information Contained Herein is Proprietary to Digital Research.)

23

00808 - 00FFH default 128 byte disk buffer (also filled with
the command line when a transient is loaaed
under the CCP).

Note that this information is set-up for normal o~eration under
the CP/M system, but can be overwritten by a transient program if the
SDOS facilities are not required by the transient.

If, for example, a particular program performs only simple I/O and
must negin execution at location 0, it can be first loaded into the
~PA, using normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control from location 0100H, which is the assumed beginning of all
transient ?rogr~s). The move program can then proceed to mo~e the
entire memory image down to location 0, ana pass control to the
starting address of the memory load. Note that if the BIOS is
overwritten, or if location 0 (containing the warm start entry ?oint)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

(All Information Contained Herein is Proprietary to Digital Research.)

24

10. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations. The
format of the disk parameter header for each drive is shown below

Disk Parameter Header

XLT I 0000 I 0000 I 0000 IDIRBUFI DPB CSV ALV

16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT

DIRBUF

D~

C~

ALV

Address of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables.

Scratchpad values for use within the aDOS (initial
value is unimportant).

Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area.

Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Address of a scratchpad area used for software check
for changed disks. This address is different for each
D~.

Address of a scratchpad area used by the BDOS to keep
disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row
of 16 bytes corresponds to drive 0, with the last row corresponding to
drive n-l. The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

00 IXLT 001 0000 1 0000 1 0000 IDIRBUFIDBP 001csv 001ALV 001

01 IXLT 011 0000 1 0000 1 0000 IDIRBUFloBP 01lcsv 011~LV 011

(and so-forth through)

n-lIXLTn-ll 0000 1 0000 1 0000 IDIRBUFIDBPn-lICSVn-lIALVn-ll

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a 0000H returned if the
selected drive does not exist.

NDISKS EQU 4 iNUMBER OF DISK DRIVES

SELDSK:
iSELECT DISK GIVEN BY BC
LXI H,0000H iERROR CODE
MOV A,C iDRIVE OK?
CPI NDISKS iCY IF SO
RNC iRET IF ERROR
iNO ERROR, CONTINUE
MOV L,C iLOW(DISK)
MOV H,B iHIGH(DISK)
DAD H i*2
DAD H i*4
DAD H i*8
DAD H i*16
LXI D,DPBASE iFIRST DPH
DAD D iDPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-l) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-I. The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPHls, takes the general form

SPT IBSHIBLMIEXMI DSM DRM IAL01ALII CKS OFF

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the '18b" or il16b ll

indicator below the field.

SPT

BSH

is the total number of sectors per track

is the data allocation block shift factor, determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research.)

26

EXM

DSM

DRM

CKS

OFF

is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

determines the total storage capacity of the disk drive

determines the total number of directory entries which
can be stored on this drive AL0,ALI determine reserved
directory blocks.

is the size of the directory check vector

is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+l) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
entries, which can take on a l6-bit value. The values of AL0 and ALl,
however, are determined by DRM. The two values AL0 and ALI can
together be considered a string of l6-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

27

AL0 ALI

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL0, and 15 corresponds to the low order bit of the byte
labelled ALI. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS
1,024
2,048
4,096
8,192

16,384

Directory Entries
32 times # bits
64 times # bits
128 times # bits
256 times # bits
512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high order bits of AL0 are set, resulting in the
values AL0 = 0F0H and ALI = 00H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the last directory
entry number. If the media is fixed, then set CRS = 0 (no directory
records are checked in this case).

Finally,
skipped at the
automatically
mechanism for
partitioning a

the OFF field determines the number of tracks which are
beginning of the physical disk. This value is

added whenever SETTRK is called, and can be used as a
skipping reserved operating system tracks, or for
large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPHls
can address the same DPB if their drive characteristics are identical.
F~rther, the DPB can be dynamically changed when a new drive is
addressed by sim~ly changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values csv ~nd ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+l}/4, then you must reserve (DRM+l}/4 bytes for
directory check use. If CKS = 0, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+I.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8 11 single density drives. It may be useful to
examine this program, and compare the tabular values with the
definitions given above.

(All Information Contained Herein is Proprietary to Digital Research.)

29

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro library is included with all CP/M 2.0
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF ·
DISKS n
DISKDEF o , •••
DISKDEF 1 , •••
·
DISKDEF n-l ·
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through P). NJte that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skfl,bls,dks,dir,cks,ofs,[0]

where

dn is the logical disk number, 0 to n-l
fsc is the first physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[01 is an optional 1.4 compatibili ty flag

The value IIdn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

30

macro invocation. The "fsc" parameter accounts for differing sector
number ing systems, and is usually ° or 1. The "lsc " is the last
numbered sector on a track. When present, the "skf ll parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omi tted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks u

s pe c i fie s the tot aId i s k s i z e in" b 1 s II un its. T hat is, i f the b 1 s =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of "dir" is the total number of
directory entries which may exceed 255, if desired. The licks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem. If
the disk is permanently mounted, then the value of cks is typicallY,0,
since the probability of changing disks without a restart is qUIte
low. The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF

ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The DISKS macro generates n Disk Parameter Headers (DPHls),
starting at the DPH table address bPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four
drive standard system, for exam~le, the DISKS macro generates a table
of the form:

DPBASE
DPE0 :
DPEl:
DPE2 :
DPE3 :

EQU
DW
DW
DW
DW

$
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSVl,ALVl
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are
generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the I'skf l
• (skew factor) parameter is omitted (or

equal to 0), the translation table is omitted, and a 0000H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
0000H, and sim~ly returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed into
the corresponding DPHls. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the un initialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72 =

4DB0 =
013C =

BEGDAT EQU $
(data areas)
ENDDA'r EQU $
DATSIZ EQU $-BEGDAT

which indicates that un initialized RAM begins at location 4C72H, ends
at 4DB0H-l, and occuples 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A, ••• ,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved 'rracks

Three examples of DISKDEF macro invocations are
corresponding STAT parameter values (the last
8-megabyte system).

DISKDEF 0,1,58,,2048,256,128,128,2

shown below
produces a

r=4096, k=512, d=128, c=128,. e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

with
full

(All Information Contained Herein is Proprietary to Digital Research.)

33

12. SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically.

upon each call to WRITE, the BDOS provides the following
information in register C:

o
1
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,u
while those related to the host disk system are prefixed by "hst.1I
The equ,ate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk"at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of your
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector
number) • You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% imorovement in overall response.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) l28-byte sectors. This is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

35

0000 =
ffff =
0000 =

0000 =

0000 =
0806 =
1880 =
1600 =
1603 =

3000

1880 =
0002 =
0031 =
0019 =
0018 =

f800 =
ff0f =
0078 =
0079 =
007b =
007f =

0078 =
0079 =
007a =
00ff =
'1003 =
0004 =
0100 =

3000 310001

3003 db79
3005 db7b

3007 dbff

~~~6 e~~130 

APPENDIX A: THE MDS COLD START LOADER 

MDS-800 Cold start Loader for CP/M 2.0 

version 2.0 August, 1979 
i 
false equ 
true equ 
testing equ 

bias 

bias 

cpmb 
bdos 
bdose 
boot 
rboot 

i 
bdosl 
ntrks 
bdoss 
bdos0 
bdosl 
i 
mon80 
rmon80 
base 
rtype 
rbyte 
reset 
i 
dstat 
ilow 
ihigh 
bsw 
recal 
readf 
stack 
i 
rstart: 

if 
equ 
endif 
if 
equ 
endif 
equ 
equ 
equ 
equ 
equ 

org 

equ 
equ 
equ 
equ 
eau 

equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
egu 
equ 
equ 
equ 
equ 

lxi 
clear 
in 
in 

i check 
colds tart: 

in 
ani 
Jnz 

o 
not false 
false 

testing 
03400h 

not testing 
0000h 

bias 
806h+bias 
1880h+bias 
1600h+bias 
boot+3 

ibase of dos load 
ientry to dos for calls 
iend of dos load 
icold start entry point 
iwarm start entry point 

3000h iloaded here by hardware 

bdose-cpmb 
2 itracks to read 
bdosl/128 
25 
bdoss-bdos0 

i# sectors in bdos 
i# on track 0 
i# on track I 

0f800h 
0ff0fh 
078h 
base+l 
base+3 
base+7 

base 
base+l 
base+2 
0ffh 
3h 
4h 
100h 

iintel monitor base 
irestart location for mon80 
i'base' used by controller 
iresult type 
;result byte 
ireset controller 

idisk status port 
;low iopb address 
;high iopb address 
iboot switch 
irecalibrate selected drive 
idisk read function 
iuse end of boot for stack 

sp,stackiin case of call to mon80 
disk status 

rtype 
rbyte 

if boot switch is off 

bsw 
02hd t t-switch on? coT s ar 

36 



300e d37f 

3010 0602 
3012 214230 

\ . , 

3015 7d 
3016 d379 
3018 7c 
3019 d37a 
301b db78 

~~!~ ~g~g30 

3022 db79 
3024 e603 
3026 fe02 

3028 d20030 

302b db7b 

302d 17 
302e dc0fff 
3031 If 
3032 e61e 

3034 c20030 

3037 110700 
303a 19 
303b 05 
303c c21530 

303£ c30016 

start: 

wai to: 

clear the controller 
out reset ;logic cleared 

mvi 
lxi 

b,ntrks ;number of tracks to read 
h, iopb0 

read first/next track into cpmb 
mov a,l 
out ilow 
mov a,h 
out ihigh 
in dstat 
ani 4 
J z wa i to 

check disk status 
in rtype 
ani lIb 
cpi 2 

testing if 
cnc 
endif 
if 
jnc 
endif 

rmon80 ;go to monitor if 11 or 10 

in 
if not 
ral 
cc 

not testing 
rstart ;retry the load 

rbyte ;i/o complete, 
ready, then go to mon80 

rmon80 ;not ready bit 
;restore 

check status 

set 
rar 
ani 11110b ;overrun/addr err/seek/crc 

if 
cnz 
endif 
if 
jnz 
endif 

lxi 
dad 
dcr 
jnz 

testing 
rmon80 ;go to monitor 

not testing 
rstart iretry the load 

d,iopbl ;length of iopb 
d ;addressing next iopb 
b ;count down tracks 
start 

jmp boot, print message, set-up jmps 
jmp boot 

parameter blocks 

37 



3042 80 iopb0: db 80h ; iocw, no update 
3043 04 db readf ;read function 
3044 19 db bdos0 ;# sectors to read trk 0 
3045 00 db 0 ;track 0 
3046 02 db 2 ;start with sector 2, trk 0 
3047 0000 dw cpmb ;start at base of bdos 
0007 = iopbl equ $-iopb0 

; 
3049 80 iopbl: db 80h 
304a 04 db readf 
304b 18 db bdosl ;sectors to read on track 1 
304c 01 db 1 ;track 1 
304d 01 db 1 ;sector 1 
304e 800c uw cpmb+bdos0*128 ;base of second rd 
3050 end 

38 



0014 = 

4a00 
3400 
3c06 
1600 
002c 
0002 
0004 
0080 
000a 

4a00 
4a03 
4a06 
4a09 
4a0c 

= 
= 
= 
= 
= 
= 
= 
= 

c3b34a 
c3c34a 
c36l4b 
c3644b 
c36a4b 

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS) 

vers 

cpmb 
bdos 
cpml 
nsects 
offset 
cdisk 
buff 
retry 

mds-800 i/o drivers for cp/m 2.0 
(four drive single density version) 

version 2.0 august, 1979 

egu 20 ;version 2.0 

copyright (c) 1979 
digital research 
box 579, ?acific grove 
california, 93950 

org 4a00h ;base 
egu 3400h ;base 

of 
of 

equ 3c06h ; base of 

bios 
cT;lm 
bdos 

in 20k 
ccl? 

in 20k 

system 

system 
egu $-cpmb ; length (in bytes) of Cpffi system 
equ 
equ 
equ 
equ 
egu 

perform 
boot 
wboot 

cpml/128;number of sectors to load 
2 ;number of disk tracks used by 
0004h ;address of last logged disk 
0080h ;default buffer address 
10 ;max retries on disk i/o before 

following functions 
cold start 
warm start (save i/o byte) 

(boot 
const 

and wboot are the same for mds) 
console status 

conin 
conou t 
list 
punch 
reader 
horne 

reg-a = 00 if no character ready 
reg-a = ff if character ready 
console character in (result in reg-a) 
console character out (char in reg-c) 
list out (char in reg-c) 
punch out (char in reg-c) 
paper cape reader in (result to reg-a) 
move to track 00 

cp 

e 

(the following calls set-up the io parameter bloc 
mds, which is used to perform subsequent reads an 
seldsk select disk given by reg-c (0,1,2 ••• ) 
settrk set track address (0 r ••• 76) for sub r/w 
setsec set sector address (1, .•• ,26) 
setdma set subsequent dma address (initially 80h 

read/write assume previous calls to set i/o parms 
read read track/sector to preset dma address 
write write track/sector from preset dma addres 

jump vector for indiviual routines 
jmp boot 

wboote: jmp wboot 
jmp const 
jmp con in 
jmp conout 

39 



4a0f c36d4b jmp list 
4a12 c3724b jmp punch 
4a15 c3754b jmp reader 
4a18 c3784b jmp home 
4alb c37d4b jmp seldsk 
4ale c3a74b jmp settrk 
4a21 c3ac4b jml? setsec 
4a24 c3bb4b jmp setdma 
4a27 c3c14b jmp read 
4a2a c3ca4b jmp write 
4a2d c3704b jmp listst ilist status 
4a30 c3b14b jmp sectran 

maclib diskdef iloac the disk definition library 
disks 4 ifour disks 

4a33+= dpbase equ $ ibase of disk parameter blocks 
4a33+824a00 dpe0: dw xlt0,0000h ;translate table 
4a37+000000 dw 0000h,0000h ;scratch area 
4a3b+6e4c73 dw d i r bu f , d P b 0 ;dir buff,parm block 
4a3f+0d4dee dw csv0,alv0 ;check, alloc vectors 
4a43+824a00 dpel: dw xltl,0000h ;translate table 
4a47+000000 dw 0000h,0000h ;scratch area 
4a4b+6e4c73 dw dirbuf,dl?bl idir buff,parm block 
4a4f+3c4dld dw csvl,alvl ;check, alloc vectors 
4a53+824a00 dpe2: dw xlt2,0000h itranslate table 
4a57+000000 dw 0000h,0000h ;scratch area 
4a5b+6e4c73 dw dirbuf,dpb2 ;dir buff,parm block 
4a5f+6b4d4c dw csv2,alv2 ;check, alloc vectors 
4a6 3+8 24a0 (1 dpe3: dw xlt3,0000h ;translate table 
4a67+00f0000 dw 0000h,0000h ;scratch area 
4a6b+6e4c73 dw dirbuf,dpb3 idir buff,parm block 
4a6f+9a4d7b dw csv3,alv3 icheck, alloc vectors 

di skdef 0,1,26,6,1024,243,64,64,offset 
4a73+= dpb0 equ $ ;disk parm block 
4a73+la00 dw 26 isec per track 
4a75+03 db 3 ;block shift 
4a76+07 db 7 iblock mask 
4a77+00 db 0 jextnt mask 
4a78+f200 dw 242 idisk size-l 
4a7a+3f00 ow 63 idirectory max 
4a7c+c0 db 192 i alloc0 
4a7d+00 db 0 iallocl 
4a7e+1000 dw 16 icheck size 
4a80+0200 dw 2 ioffset 
4a82+= xlt0 equ $ itranslate table 
4a82+01 db 1 
4a8 3+07 db 7 
4a84+0d db 13 
4a85+l3 db 19 
4a86+l9 db 25 
4a87+05 db 5 
4a88+0b db 11 
4a89+l1 db 17 
4a8a+17 db 23 
4a8b+03 db 3 

40 



4a8c+09 
4a8d+0f 
4a8e+15 
4a8f+02 
4a90+08 
4a91+0e 
4a92+14 
4a93+1a 
4a94+06 
4a95+0c 
4a96+12 
4a97+18 
4a98+04 
4a99+0a 
4a9a+10 
4a9b+16 

4a73+= 
001f+= 
0010+= 
4a82+= 

4a73+= 
001f+= 
0010+= 
4a82+= 

4a73+= 
001f+= 
0010+= 
4a82+= 

\00 fd = 
00fc = 
00f3 = 
007e = 

f800 = 
ff0f = 
f803 = 
f806 = 
f809 = 
f80c = 
f80f = 
f812 = 

dpbl 
alsl 
cssl 
xltl 

dpb2 
als2 
css2 
xlt2 

dpb3 
als3 
css3 
xlt3 

j 

revr t 
intc 
icon 
inte 

j 

mon80 
rmon80 
ci 
ri 
co 
po 
10 
csts 

db 9 
db 15 
db 21 
db 2 
db 8 
db 14 
db 20 
db 26 
db 6 
db 12 
db 18 
db 24 
db 4 
db 10 
db 16 
db 22 
diskdef 1,0 
equ dpb0 jequivalent parameters 
equ als0 jsarne allocation vector size 
equ css0 jsame checksum vector size 
equ xlt0 j same translate table 
diskdef 2,0 
equ dpb0 jequivalent parameters 
equ als0 isame allocation vector size 
equ css0 i same checksum vector size 
equ xlt0 isame translate table 
diskdef 3,0 
egu dpb0 iequivalent parameters 
equ als0 jsame allocation vector size 
equ css0 j same checksum vector size 
equ xlt0 ; same translate table 
endef occurs at end of assembly 

end of controller - independent code, the remaini 
are tailored to the particular operating environm 
be altered for any system which differs from the 

the following code assumes the mds monitor exists 
and uses the i/o subroutines within the monitor 

we also 
equ 
equ 
equ 
equ 

assume the mds system has four disk drive 
0fdh jinterrupt revert port 
0fch jinterrupt mask port 
0f3h jinterrupt control port 
0111$1110bjenable rst o (warm boot) ,rst 7 

mds 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

monitor equates 
0f800h jmds monitor 
0ff0fh jrestart mon80 (boot error) 
0f803h jconsole character to reg-a 
0f806h jreader in to reg-a 
0f809h jconsole char from c to console 0 
0f80ch jpunch char from c to punch devic 
0f80fh jlist from c to list device 
0f812h jconsole status 00/ff to register 

41 



0078 = 
0078 = 
01079 = 
007b = 

0079 = 
007a = 

0004 = 
0006 = 
0003 = 
0004 = 
000d = 
000a = 

4a9c 
4a9f 
4aal 
4aad 
4ab0 

4ab3 
4ab6 
4ab9 
4abc 
4abd 
4ac0 

0d0a0a 
3230 
6b2QJ.43f 
322e3QJ 
0d0a00 

310001 
219c4a 
cdd34b 
af 
320400 
c30f4b 

4ac3 3181000 

4ac6 0e0a 
4ac8 cS 

4ac9 010034 
4acc cdbb4b 
4acf 0e00 
4adl cd7d4b 
4ad4 0e00 
4ad6 cda74b 
4ad9 0e02 
4adb cdac4b 

4ade cl 
4adf 062c 

; 
base 
dstat 
rtype 
rbyte 
; 
ilow 
ihigh 

readf 
writf 
recal 
iordy 
cr 
If 

signon: 

. , 
boot: 

disk ports and commands 
equ 78h ;base of disk command 

;disk status (input) 
;result type (input) 
;result byte (input) 

io ports 
equ base 
egu base+l 
egu base+3 

equ 
equ 

equ 
equ 
equ 
equ 
equ 
equ 

; s ignon 
db 
db 
db 
db 
db 

;print 
(note: 
lxi 
lxi 
call 
xra 
sta 
jmp 

base+l 
base+2 

4h 
6h 
3h 
4h 
0dh 
0ah 

;iopb low address (output) 
;iopb high address (output) 

;read function 
;write function 
;recalibrate drive 
;i/o finished mask 
;carriage return 
;line feed 

message: xxk cp/m vers y.y 
cr,lf,lf 
, 210' ; sampl e memo ry size 
'k cp/m vers ' 
vers/llO+'0','.' ,vers mod 10+'10' 
cr,lf,0 

signon message and go to ccp 
mds boot initialized iobyte at 0003h) 

sp,buff+80h 
h,signon 
prmsg ;print message 
a ;clear accumulator 
cdisk ;set initially to disk a 
gocpm ;go to cp/m 

wboot:; loader on track 0, sector 1, which will be skippe 
read cp/m from disk - assuming there is a 128 byt 
start. 

wboot0: 

lxi 

mvi 
push 
;enter 
lxi 
call 
mvi 
call 
mvi 
call 
mvi 
call 

sp,buff ;using dma - thus 810 thru ff ok f 

c,retry ;max retries 
b 

here on error retries 
b,cpmb ;set dma address to start of disk 
se tdma 
c,0 ;boot from drive 10 
seldsk 
c,0 
settrk ;start with track 0 
c,2 ;start reading sector 2 
setsec 

read sectors, count nsects to zero 
pop b ;10-error count 
mvi b,nsects 

42 



4ael c5 
4ae2 cdc14b 
4ae5 c2494b 
4ae8 2a6c4c 
4aeb 118000 
4aee 19 
4aef 44 
4af0 4d 
4afl cdbb4b 
4af4 3a6b4c 
4af7 fela 
4af9 da054b 

4afc 3a6a4c 
4aff 3c 
4b00 4f 
4b01 cda74b 
4b04 af 

rdsec: 

4b05 3c rdl: 
4b06 4 f 
4b07 cdac4b 
4b0a cl 
4b0b 05 
4b0c c2e14a 

4b0f f3 
4b10 3e12 
4b12 d3fd 
4b14 af 
4b15 d3fc 
4b17 3e7e 
4b19 d3fc 
4blb af 
4blc d3f3 

4ble 018000 
4b21 cdbb4b 

4b24 3ec3 
4b26 320000 
4b29 21034a 
4b2c 220100 
4b2f 320500 
4b32 21063c 
4b35 220600 
4b38 323800 
4b3b 2100f8 
4b3e 223900 

gocpm: 

iread next sector 
push b isave sector count 
call read 
jnz booterr 
Ihld iod 
lxi d,128 
dad d 
mov b,h 
mov c,l 
call setdma 
Ida ios 
cpi 26 
jc rdl 

iretry if errors occur 
iincrement dma address 
isector size 
iincremented dma address in hI 

iready for call to set dma 

;sector number just read 
iread last sector? 

must be sector 26, zero and go to next track 
Ida iot iget track to register a 
inr a 
mov 
call 
xra 
inr 
mov 
call 
pop 
dcr 

c,a 
settrk 
a 
a 
c,a 
setsec 
b 
b 

jnz rdsec 

i ready for call 

iclear sector number 
ito next sector 
iready for call 

irecall sector count 
i done? 

done with the load, reset default buffer address 
i (enter here from cold start boot) 
enable rst0 and rst7 
di 
mvi 
out 
xra 
out 
mvi 
out 
xra 
out 

a,12h 
revrt 
a 
intc 
a,inte 
intc 
a 
icon 

;initialize command 

icleared 
irst0 and rst7 bits on 

iinterrupt control 

set default buffer address to 80h 
lxi b,buff 
call setdma 

reset monitor entry points 
mvi a, j mp 
sta 0 
lxi h,wboote 
shld 1 ijmp wboot at location 00 
sta 5 
lxi h,bdos 
shld 6 ijmp bdos at location 5 
sta 7*8 ijrnp to mon80 (may have been chan 
lxi h,mon80 
shld 7*8+1 
leave iobyte set 

43 



pr eviousl y selected disk was b, send ~arameter to 
4b41 3a0400 Ida cdisk ;last logged disk number 
4b44 4f mov c,a ;send to ccp to log it in 
4b45 fb ei 
4b46 c30034 jmp cpmb 

; error condition occurred, print message and retry 

4b49 cl 
4b4a 0d 
4b4b ca524b 

4b4e c5 
4b4f c3c94a 

4b52 215b4b 
4b55 cdd34b 
4b58 c30fff 

booterr: 

booter0: 

bootrnsg: 

pop b ;recall counts 
dcr c 
jz booter0 
try again 
push b 
jmp wboot0 

otherwise too many retries 
lxi h,bootmsg 
call prmsg 
jmp rmon80 ;mds hardware monitor 

4b5b 3f626f4 db '?boot',0 

4b61 c312f8 

4b64 cd03f8 
4b67 e67f 
4b69 c9 

const: 

conin: 

;console status to reg-a 
(exactly the same as mds call) 
jmp csts 

;console character to reg-a 
call ci 
ani 7fh ;remove parity bit 
ret 

conout: ;console character from c to console out 
4b6a c309f8 jmp co 

4b6d c30ff8 

4b70 af 
4b71 c9 

list: ilist device out 
(exactly the same as mds call) 
jmp 10 

listst: 
;return list status 
xra a 
ret ;always not ready 

punch: iPunch device out 
(exactly the same as mds call) 

4b72 c30cf8 jmp po 

reader: ireader character in to reg-a 
(exactly the same as mds call) 

4b75 c306f8 jmp ri 
i 
horne: imove to home position 

44 



4b78 0e00 
4b7a c3a74b 

4b7d 210000 
4b80 79 
4b81 fe04 
4b83 d0 

4b84 e602 
4b86 32664c 
4b89 79 
4b8a e601 
4b8c b7 
4b8d ca924b 
4b90 3e30 

4b92 47 
4b93 21684c 
4b96 7e 
4b97 e6cf 
4b99 b0 
4b9a 77 

aB98 ~600 
4bge 29 
4b9f 29 
4ba0 29 
4bal 29 
4ba2 11334a 
4ba5 19 
4ba6 c9 

4ba7 216a4c 
4baa 71 
4bab c9 

4bac 216b4c 
4baf 71 
4bb0 c9 

4bbl 0600 
4bb3 eb 
4bb4 09 
4bb5 7e 
4bp6 326b4c 

~gg~ g~ 

treat as track 00 seek 
mvi 
jmp 

c,0 
settrk 

seldsk: iselect disk given by register c 
lxi h,0000h ireturn 0000 if error 
mov a,c 
cpi ndisks itoo large? 
rnc ;leave hI = 0000 

ani 
sta 
mov 
ani 
ora 
jz 
mvi 

10b i00 00 for drive 0,1 and 10 10 fo 
dbank ito select drive bank 
a,c ;00, 01, 10, 11 
Ib imds has 0,1 at 78, 2,3 at 88 
a ;result 00? 
setd rive 
a,00110000b ;selects drive 1 in bank 

b,a 
h,iof 
a,m 

;save the function 
;io function 

setdr ive: 
mov 
lxi 
mov 
ani 
ora 
mov 
mov mvl. 

11001111b ;mask out disk number 
b ;mask in new disk number 
m,a ;save it in iopb 

~~0 ihl=disk number 
h ; *2 
h ; *4 
h ; *8 
h ; *16 
d,dpbase 

dad 
dad 
dad 
dad 
lxi 
dad 
ret 

d ;hl=disk header table address 

settrk: ;set track address given by c 
lxi h,iot 
mov m,c 
ret 

setsec: ;set sector number given by c 
lxi h,ios 
mov m,c 
ret 

sectran: 
;translate sector bc using table at de 

mvi b,0 ;double precision sector number 
xchg ;translate table address to hI 
dad b ;translate(sector) address 
mov a,m ;translated sector number to a 
sta ios 
mo¥ l,a ; return sector number in 1 
re 

setdma: ;set dma address given by regs b,c 

45 

i 



4bbb 69 
4bbc 60 
4bbd 226c4c 
4bc0 c9 

4bcl 0e04 
4bc3 cde04b 
4bc6 cdf04b 
4bc9 c9 

4bca 0e06 
4bcc cde04b 
4bcf cdf04b 
4bd2 c9 

4bd3 7e 
4bd4 b7 
4bd5 c8 

4bd6 e5 
4bd7 4f 
4bd8 cd6a4b 
4bdb el 
4bdc 23 
4bdd c3d34b 

4be0 21684c 
4be3 7e 
4be4 e6f8 
4be6 bl 
4be7 77 

4be8 e620 
4bea 216b4c 
4bed b6 
4bee 77 
4bef c9 

4bf0 0e0a 

4bf2 cd3f4c 
4bf5 cd4c4c 

4bf8 3a664c 

i 
read: 

i 
write: 

prmsg: 

i 
setfunc: 

i 
waitio: 

rewai t: 

mov l,c 
mov h,b 
shld iod 
ret 

i read next disk record ( assuming disk/trk/sec/dma 
mvi c,readf i set to read function 
call setfunc 
call waitio iperform read function 
ret imay have error set in 

idisk write function 
mvi c,writf 
call setfunc iset to write function 
call waitio 
ret imay have 

utility subroutines 
iprint message at h,l to 0 
mov a,m 
ora a izero? 
rz 
more to print 
push h 
mov 
call 
pop 
inx 
jmp 

c,a 
conout 
h 
h 
prmsg 

error set 

reg-a 

set 
lxi 
mov 
ani 
ora 
mov 
the 

function for next i/o (command in reg-c) 
h,iof iio function address 
a,m iget it to accumulator for maskin 
11111000b iremove previous command 
c iset to new command 
m,a ireplaced in iopb 

mds-800 controller reqls disk bank bit in sec 
mask the bit from the current i/o function 
ani 
lxi 
ora 
mov 
ret 

00100000b imask the disk select bit 
h,ios iaddress the sector selec 
m iselect proper disk bank 
m,a iset disk select bit on/o 

mvi c,retry imax retries before perm error 

start the i/o function and wait for completion 
call intype iin rtype 
call inbyte iclears the controller 

Ida dbank iset bank flags 

46 



4bfb b7 
4bfc 3e67 
4bfe 064c 
4c00 c20b4c 
4c03 d379 
4c05 78 
4c06 d37a 
4c08 c3104c 

4c0b d389 
4c0d 78 
4c0e d38a 

i 
iodrl: 

i 

and 0ffh 
shr 8 

i drive 

izero if drive 0,1 and nz 
ilow address for ioob 
ihigh address for io?b 

bank I? 
ilow address to controlle 

ora 
mvi 
mvi 
jnz 
out 
mov 
out 
jmp 

a 
a,iopb 
b,iopb 
iodrl 
ilow 
a,b 
ihigh 
wait0 

ihigh address 
ito wait for complete 

idrive bank I 
out i 1 ow + 1 0 h i88 for drive bank 10 
mov a,b 
out ihigh+10h 

4c10 cd594c wait0: call 
ani 
jz 

instat 
iordy 
wai to 

iwait for completion 
iready? 4cI3 e604 

4c15 ca104c 

4c18 cd3f4c 

4clb fe02 
4cId ca324c 

4c20 b7 
4c21 c2384c 

4c24 cd4c4c 
4c27 17 
4c28 da324c 
4c2b If 
4c2c e6fe 
4c2e c2384c 

4c31 c9 

4c32 cd4c4c 
4c35 c3384c 

i check io completion ok 
call intype imust be io complete (00) 
00 unlinked i/o complete, 01 linked i/o comple 
10 disk status changed 11 (not used) 
cpi 10b iready status change? 
jz wready 

must be 00 in the accumulator 
ora 
jnz 

check 
call 
ral 
jc 
rar 
ani 
jnz 

a 
werror 

i/o error bits 
inbyte 

wready 

11111110b 
werror 

isome other condition, re 

iunit not ready 

iany other errors? 

read or write is ok, accumulator contains zero 
ret 

wready: inot ready, treat as error for now 
call inbyte iclear result byte 
jmp trycount 

werror: ireturn hardware malfunction (crc, track, seek, e 
the mds controller has returned a bit in each pos 
of the accumulator, corresponding to the conditio 
o - deleted data (accepted as ok above) 
1 - crc error 
2 - seek error 
3 - address error (hardware malfunction) 
4 - data over/under flow (hardware malfunct 
5 - write protect (treated as not ready) 
6 - write error (hardware malfunction) 
7 not ready 

47 



4c38 0d 
4c39 c2f24b 

4c3c 3e0l 
4c3e c9 

4c3f 3a664c 
4c42 b7 
4c43 c2494c 
4c46 db79 
4c48 c9 
4c49 db89 
4c4b c9 

4c4c 3a664c 
4c4f b7 
4c50 c2564c 
4c53 db7b 
4c55 c9 
4c56 db8b 
4c58 c9 

(accumulator bits are numbered 7 6 5 4 3 2 1 0) 

it may be useful to filter out the various condit 
but we will get a permanent error message if it i 
recoverable. in any case, the not ready conditio 
treated as a separate condition for later improve 

trycount: 
register c contains retry count, decrement 'til z 
dcr c 
jnz rewait ifor another try 

cannot recover from error 
mvi a,l ierror code 
ret 

in type, inbyte, instat read dr ive bank 00 or 10 
intype: iaa dbank 

ora a 
jnz intypl iskip to bank 10 
in rtype 
ret 

intypl: in 
ret 

i 
inbyte: Ida 

ora 
jnz 
in 
ret 

inbytl: in 
ret 

rtype+10h 

dbank 
a 
inbytl 
rbyte 

rbyte+10h 

i78 for 0,1 88 for 2,3 

4c59 
4c5c 
4c5d 
4c60 
4c62 
4c63 
4c65 

i 
3a664c instat: Ida 

ora 
jnz 
in 
ret 
in 
ret 

dbank 
a 
instal 
dstat 

b7 
c2634c 
db78 
c9 
db88 
c9 

4c66 00 

4c67 80 
4c68 04 
4c69 01 
4c6a 02 
4c6b 01 
4c6c 8000 

instal: 

. , 
dbank: 

iopb: 

iof: 
ion: 
iot: 
ios: 
iod: 

dstat+10h 

data areas (must be in ram) 
db 0 idisk bank 00 if drive 0,1 

10 if dr ive 2,3 
iio parameter block 
db 80h i normal i/o operation 
db readf iio function, initial read 
db 1 inumber of sectors to read 
db offset itrack number 
db 1 isector number 
dw buff iio address 

define ram areas for bdos operation 

48 



4c6e+= 
4c6e+ 
4cee+ 
4d0d+ 
4d1d+ 
4d3c+ 
4d4c+ 
4d6b+ 
4d7b+ 
4d9a+ 
4daa+= 
013c+= 
4daa 

begdat 
di rbuf: 
a1v0: 
csv0: 
a1v1 : 
csv1: 
a1v2: 
csv2: 
a1v3: 
csv3: 
enddat 
datsiz 

endef 
equ 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
equ 
equ 
end 

$ 
128 ;directory access buffer 
31 
16 
31 
19 
31 
16 
31 
16 
$ 
$-begda t 

49 



101014 = 

10101010 = 
341010 = 
3c06 = 
4aeJeJ = 
1010104 = 
1010103 = 

4aeJ0 
lOeJ2c = 

4a00 c39c4a 

APPENDIX C: A SKELETAL CBIOS 

skeletal cbios for first level of cp/m 2.10 altera 

msize equ 210 ;cp/m version memory size in kilo 

·'bias" is address offset from 34eJ0h for memory sy 
than 16k (referred to as Ilb tl throughout the text) 

; 
bias egu 
ccp equ 
bdos equ 
bios egu 
cdisk equ 
iobyte equ 

org 
nsects equ 

(msize-2eJ) *11024 
341OlOh+bias ;base of ccp 
ccp+8106h ;base of bdos 
ccp+161OlOh ;base of bios 
IOIOeJ4h ;current disk number eJ=a, ••• ,15=p 
lOeJeJ3h ;intel i/o byte 

bios ;origin of this program 
($-ccp)/128 ;warm start sector count 

individual subroutines 
;cold start 

4a03 c3a64a wboote: 
4alO6 c3ll4b 

jump 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 

vector for 
boot 
wboot 
const 
conin 
conout 
list 
punch 
reader 
home 
seldsk 
settrk 
setsec 
setdma 
read 
write 
listst 
sectran 

;warm start 
;console status 

4aeJ9 c3244b 
4a0c c3374b 
4a0f c3494b 
4a12 c34d4b 
4a15 c34f4b 
4a18 c3544b 
4alb c35a4b 
4ale c37d4b 
4a2l c3924b 
4a24 c3ad4b 
4a27 c3c34b 
4a2a c3d64b 
4a2d c34b4b 
4a30 c3a74b 

; 
4a33 734aeJIO dpbase: 
4a37 101010101010 
4a3b f04c8d 
4a3f ec4d71O 

4a43 734alOIO 
4a47 101010101010 
4a4b flO4c8d 
4a4f fc4d8f 

4a53 734aeJIO 
4a57 101010101010 
4a5b flO4c8d 
4a5f IOc4eae 

;console character in 
;console character out 
;list character out 
;punch character out 
;reader character out 
;move head to home positi 
;select disk 
;set track number 
;set sector number 
;set dma address 
;read disk 
;write disk 
;return list status 
;sector translate 

fixed data tables for four-drive standard 
ibm-compatible 8" disks 
disk parameter header for disk 1010 
dw trans,lOeJlO0h 
dw IOlOeJeJh,0100eJh 
dw dirbf,dpblk 
dw chkeJlO,alllOlO 
disk parameter header for disk 101 
dw trans, 10 10 IOlOh 
dw 1OlOlOlOh,lOlOlOlOh 
dw dirbf,dpblk 
dw chklOl,alllOl 
disk parameter header for disk 102 
dw trans, 10 10 eJeJh 
dw 1OlOlOlOh,eJlOlOeJh 
dw dirbf,dpblk 
dw chklO2,all102 

510 



4a63 734a00 
4a67 000000 
4a6b f04c8d 
4a6f lc4ecd 

a~11 ~~~~~g trans: 
4a7b 170309 
4a7f 150208 
4a83 141a06 
4a87 121804 
4a8b 1016 

4a8d 
4a8f 
4a90 
4a91 
4a92 
4a94 
4a96 
4a97 
4a98 
4a9a 

la00 
03 
07 
00 
£200 
3f00 
c0 
00 
1000 
0200 

4a9c af 
4a9d 320300 
4aa0 320400 
4aa3 c3ef4a 

4aa6 318000 
4aa9 0e00 
4aab cd5a4b 
4aae cd544b 

4abl 062c 
4ab3 0e00 
4ab5 1602 

4ab7 210034 

4aba c5 
4abb dS 
4abc e5 
4abd 4a 
4abe cd924b 
4acl cl 

dpblk: 

boot: 

i 
wboot: 

10adl: 

disk 
dw 
dw 
dw 
dw 

parameter header 
trans,0000h 
0000h,0000h 
dirbf,dpblk 
chk03,al103 

for disk 03 

sector translate vector 
gg 
db 
db 
db 
db 
db 

~s~S:rl:17 
23,3,9,15 
21,2,8,14 
20,26,6,12 
18,24,4,10 
16,22 

isectors 
isectors 
isectors 
isectors 
isectors 
isectors 
isectors 

5:g:1:~ 
9,10,11,12 
13,14,15,16 
17,18,19,20 
21,22,23,24 
25,26 

idisk 
dw 
db 
db 

parameter 
26 
3 
7 

block, common to all disks 
isectors per track 
iblock shift factor 
iblock mask 

db o 
dw 242 
dw 63 
db 192 
db o 
dw 16 
ow 2 

inull mask 
idisk size-l 
idirectory max 
ialloc 0 
ialloc 1 
icheck size 
itrack offset 

end of fixed tables 

individual subroutines to perform each function 
isimplest case is to just perform parameter initi 
xra a izero in the accum 
sta iobyte iclear the iobyte 
sta cdisk iselect disk zero 
jmp gocpm iinitialize and go to cp/ 

isimplest case 
lxi sp,.80h 
mvi c,0 
call seldsk 
call horne 

is to read the disk until all sect 
iuse space below buffer f 
iselect disk 0 

igo to track 00 

mvi b,nsects ib counts # of sectors to 
mvi c,0 iC has the current tra~k 
mvi d,2 id has the next sector to 
note that we begin by reading track 0, sector 2 s 
contains the cold start loader, which is skipped 
lxi h,ccp ibase of cp/m (initial 10 
iload one more sector 
push b isave sector count, current track 
push d isave next sector to read 
push h isave dma address 
mov c,d iget sector address to register c 
call setsec iset sector address from register 
pop b irecall dma address to b,c 

51 



4ac2 c5 
4ac3 cdad4b 

4ac6 cdc34b 
4ac9 fe00 
4acb c2a64a 

4ace el 
4acf 118000 
4ad2 19 
4ad3 dl 
4ad4 cl 
4ad5 05 
4ad6 caef4a 

4ad9 14 
4ada 7a 
4adb felb 
4add daba4a 

4ae0 1601 
4ae2 0c 

4ae3 c5 
4ae4 d5 
4ae5 e5 
4ae6 cd7d4b 
4ae9 el 
4aea dl 
4aeb cl 
4aec c3ba4a 

4aef 3ec3 
4afl 320000 
4af4 2l034a 
4af7 220100 

4afa 320500 
4afd 2l063c 
4b00 220600 

4b03 018000 
4b06 cdad4b 

4b09 fb 
4b0a 3a0400 
4b0d 4f 
4b0e c30034 

. , 
gocpm: 

push 
call 

b ireplace on stack for later recal 
setdma iset dma address from b,c 

drive set to 0, track set, sector set, dma addres 
call read 
cpi 00h 
jnz wboot 

no error, move 
pop h 
lxi d,128 
dad d 
pop d 
pop b 
dcr b 
j z gocpm 

iany errors? 
iretry the entire boot if an erro 

to next sector 
irecall dma address 
idma=dma+128 
inew dma address is in h,l 
irecall sector address 
irecall number of sectors remaini 
isectors=sectors-l 
itransfer to cp/m if all have bee 

more sectors remain to load, check for track chan 
inr 
mov 
cpi 
jc 

d 
a,d 
27 
loadl 

isector=27?, if so, change tracks 

icarry generated if sector<27 

end of current track, go to next track 
mvi d,l ibegin with first sector of next 
inr c itrack=track+l 

save 
push 
push 
push 
call 
pop 
pop 
pop 
jmp 

register state, and change tracks 
b 
d 
h 
settrk itrack address set from register 
h 
d 
b 
loadl ifor another sector 

end of load operation, set parameters and go to c 

mvi 
sta 
lxi 
shld 

sta 
lxi 
shld 

lxi 
call 

ei 
Ida 
mov 
jmp 

a,0c3h ic3 is a jmp instruction 
o ifor jmp to wboot 
h,wboote iwboot entry point 
1 iset address field for jmp at 0 

5 
h,bdos 
6 

b,80h 
setdma 

cdisk 
c,a 
ccp 

52 

ifor jmp to bdos 
ibdos entry point 
iaddress field of jump at 5 to bd 

idefault dma address is 80h 

ienable the interrupt system 
iget current disk number 
isend to the ccp 
igo to cp/m for further processin 



4bll 
4b2l 3e00 
4b23 c9 

4b24 
4b34 e67f 
4b36 c9 

4 b3 7 79 
4b38 
4b48 c9 

4b49 79 
4b4a c9 

4b4b af 
4b4c c9 

4b4d 79 
4b4e c9 

4b4f 3ela 
4b5l e67f 
4b53 c9 

4b54 0e00 
4b56 cd7d4b 
4b59 c9 

4b5a 210000 
4b5d 79 
4b5e 32ef4c 
4b6l fe04 

simple i/o handlers (must be filled in by user) 
in each case, the entry point is provided, with s 
to insert your own code 

const: ;console status, return 0ffh if character ready, 
ds l0h ;space for status subroutine 
mvi a,00h 
ret 

conin: ;console character into register a 
ds 10h ;space for input routine 
ani 7fh ;strip parity bit 
ret 

conout: ;console character output from register c 
mov a,c ;get to accumulator 
ds l0h ;space for output routine 
ret 

; 
1 ist: ;list character from register c 

mov a,c ;character to register a 
ret ;null subroutine 

, 
listst: ireturn list status (0 if not ready, 1 if ready) 

xra a ;0 is always ok to return 
ret 

; 
punch: ;punch character from register c 

mov a,c ;character to register a 
ret ;null subroutine 

reader: ;read character into register a from reader devic 

; 
home: 

; 

mvi a,lah ;enter end of file for now (repla 
ani 7fh ;remember to strip parity bit 
ret 

i/o drivers for the disk follow 
for now, we will simply store the parameters away 
in the read and write subroutines 

;move to the track 00 position of current drive 
translate this call into a settrk call with param 
mvi c,0 ;select track 0 
call settrk 
ret ;we will move to 00 on first read 

seldsk: ;select disk given by register c 
lxi h,0000h ;error return code 
mov a,c 
sta diskno 
cpi 4 ;must be between 0 and 3 

53 



4b63 d0 

4b64 

4b6e 3aef4c 
4b7l 6f 
4b72 2600 
4b74 29 
4b75 29 
4b76 29 
4b77 29 
4b78 l1334a 
4b7b 19 
4b7c c9 

4b7d 79 
4b7e 32e94c 
4bBl 
4b9l c9 

4b92 79 
4b93 32eb4c 
4b96 
4ba6 c9 

4ba7 eb 
4ba8 lO9 
4ba9 6e 
4baa 2600 
4bac c9 

4bad 69 
4bae 6lO 
4baf 22ed4c 
4bb2 
4bc2 c9 

4bc3 
4bd3 c3e64b 

4bd6 

rnc ;no carry if 4 ,5, ••• 
disk number is in the proper range 
ds 10 ;space for disk select 
compute proper disk parameter header address 
lda diskno 
mov l,a ;l=disk number 0,1,2,3 
mvi h,0 ;high order zero 
dad h ;*2 
dad h ;*4 
dad h ; *B 
dad h ;*16 (size of each header) 
lxi d,dpbase 
dad d ;hl=.dpbase(diskno*16) 
ret 

settrk: ;set track given by register c 
mov a,c 
sta track 
ds lroh ;space for track select 
ret 

; 
setsec: ;set sector given by register c 

mov a,c 
sta sector 
ds lroh ;space for sector select 
ret 

; 
sectran: 

;translate 
;translate 
xchg 

the sector given by bc using the 
table given by de 

;hl=.trans 
;hl=.trans(sector) 

; 
setdma: 

read: 

; 

dad b 
mov 
mvi 
ret 

;set dma 
mov 
mov 
shld 
as 
ret 

I,m 
h,0 

;1 = trans(sector) 
;hl= trans(sector) 
;with value in hI 

address given by registers band c 
l,c ;low order address 
h,b ;high order address 
dmaad ;save the address 
10h ;space for setting the dma addres 

;perform read operation (usually this is similar 
so we will allow space to set up read command, th 
common code in write) 
ds 10h ;set up read command 
jmp waitio ito perform the actual i/o 

write: ;perform a write operation 
ds lroh ;set up write comman~ 

; 
waitio: ;enter here from read and write to perform the ac 

operation. return a lOlOh in register a if the ope 
properly, and 0lh if an error occurs during the r 

54 



4be6 
4ce6 3e01 
4ce8 c9 

4ce9 
4ceb 
4ced 
4cef 

4cf0 = 
4cf0 
4d70 
4d8f 
4dae 
4dcd 
4dec 
4dfc 
4e0c 
4elc 

4e2c = 
013c = 
4e2c 

in this case, 

ds 256 
mvi a,l 
ret 

we have saved the disk number in I'd 
the track number in I track I (0-76 
the sector number in I sector I (1-
the dma address in 'dmaad l (0-655 
ispace reserved for i/o drivers 
ierror condition 
ireplaced when filled-in 

the remainder of the cbios is reserved uninitiali 
data area, and does not need to be a part of the 
system memory image (the space must be available, 
howeve r, between II begda t" and ,. endda til) • 

track: ds 
sector: ds 
dmaad: ds 
diskno: ds 

2 
2 
2 
1 

itwo bytes for expansion 
itwo bytes for expansion 
idirect memory address 
idisk number 0-15 

begdat 
di rbf: 
al100 : 
al101: 
al102: 
al103 : 
chk00: 
chk01: 
chk02: 
chk03: 
i 

scratch 
equ 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
ds 

enddat equ 
datsiz equ 

end 

ram 
$ 
128 
31 
31 
31 
31 
16 
16 
16 
16 

area for bdos use 
ibeginning of data area 
iscratch directory area 
iallocation vector 0 
iallocation vector 1 
iallocation vector 2 
;allocation vector 3 
i check vector 10 
; check vector 1 
i check vector 2 
i check vector 3 

$ iend of data area 
$-begdatisize of data area 

55 



APPENDIX 0: A SKELETAL GETSYS/PUTSYS PROGRAM 

0100 

0014 = 

0000 = 
3400 = 
3c00 = 
4a00 = 

msize 

combined getsys and putsys programs from Sec 4. 
start the ?rograms at the base of the TPA 

org 0100h 

equ 20 size of cp/m in Kbytes 

; "bias" is the amount to add to addresses for > 20k 
(referred to as "b i' throughout the text) 

bias 
ccp 
bdos 
bios 

gstart: 

equ 
equ 
equ 
equ 

(msize-20) *1024 
3400h+bias 
ccp+0800h 
ccp+1600h 

getsys programs tracks 0 and 1 to memory at 
3880h + bias 

register 
a 
b 
c 
d,e 
h,l 
sp 

usage 
(scratch register) 
track count (0 ••• 76) 
sector count (1 ••• 26) 
(scratch register pair) 
load address 
set to stack address 

0100 318033 lxi sp,ccp-0080h 
h,ccp-0080h 
b r 0 

start of getsys 
convenient plac 
set initial loa 
start with trac 
read next track 
each track star 

0103 218033 lxi 
0106 0600 rnvi 

rd$trk: 
0108 0e01 rnvi 

010a cd0003 
010d 118000 
0110 19 
0111 0c 
0112 79 
0113 felb 
0115 da0a01 

rd$sec: 
call 
1xi 
dad 
inr 
rnov 
cpi 
jc 

c,l 

read$sec 
d,128 
d 
c 
a,c 
27 
rdsec 

get the next se 
offset by one s 

(hl=hl+128) 
next sector 
fetch sector nu 

and see if la 
<, do one more 

arrive here at end of track, move to next track 

0118 04 
0119 78 
011a fe02 
011c da0801 

011f fb 
0120 76 

inr 
rnov 
cpi 
jc 

b 
a,b 
2 
rd$trk 

track = track+l 
check for last 
track = 2 ? 
<, do another 

arrive here at end of load, halt for lack of anything b 

ei 
hIt 

56 



0200 

0200 318033 
0203 218033 
0206 0600 

0208 0e01 

020a cd0004 
0200 118000 
0210 19 
0211 0c 
0212 79 
0213 felb 
0215 da0a02 

0218 (14 
0219 78 
021a fe02 
021c da0802 

021f fb 
0220 76 

0300 

0300 c5 
0301 e5 

0302 

0342 el 
0343 cl 

putsys program, places memory image starting at 
3880h + bias back to tracks 0 and 1 
start this program at the next page boundary 

org 

put$sys: 
lxi 
lxi 
mvi 

wr$trk: 

wr$sec: 
mvi 

call 
lxi 
dad 
inr 
mov 
cpi 
jc 

($+0100h) and 0ff00h 

sp,ccp-0080h 
h,ccp-0080h 
b,0 

c,l 

write$sec 
d,128 
d 
c 
a,c 
27 
wr$sec 

convenient plac 
start of dump 
start with trac 

start with sect 

write one secto 
length of each 
<hl>=<hl> + 128 
<c> = <c> + 1 
see if 

past end of t 
no, do another 

arrive here at end of track, move to next track 

inr 
rnov 
cpi 
jc 

b 
a,b 
2 
wr$trk 

track = track+l 
see if 

last track 
no, do another 

done with putsys, halt for lack of anything bette 

ei 
hIt 

user supplied subroutines for sector read and write 

move to next page boundary 

org ($+0100h) and 0ff00h 

read$sec: 
read the next sector 
track in <b>, 
sector in <c> 
dmaaddr in <hI> 

push 
push 

b 
h 

; user defined read operation goes here 
ds 64 

pop 
pop 

h 
b 

57 



0344 c9 ret 

0400 org ($+0100h) and 0ff00h another page bo 

write$sec: 

; same parameters as read$sec 

0400 c5 push b 
0401 e5 push h 

user defined write operation goes here 
0402 ds 64 

0442 e1 pop h 
0443 c1 pop b 
0444 c9 ret 

end of getsys/putsys program 

0445 end 

58 



0000 

0014 = 

0000 = 
3400 = 
4a00 = 
0300 = 
4a0fi = 
1900 = 
0032 = 

0000 010200 
0003 1632 
0005 210034 

APPENDIX E: A SKELETAL COLD START LOADER 

this is a sample cold start loader which, when modified 
resides on track 00, sector 01 (the first sector on the 
diskette). we assume that the controller has loaded 
this sector into memory upon system start-up (this pro­
gram can be keyed-in, or can exist in read/only memory 
beyond the address space of the cp/m version you are 
running). the cold start loader brings the cp/m system 
into memory at "loadp" (3400h + "bias ll

). in a 20k 
memory system, the value of ~I bias" is 0000h, wi th large 
values for increased memory sizes (see section 2). afte 
loading the cp/m system, the clod start loader branches 
to the "boot" entry point of the bios, which begins at 
IIbios" + "bias." the cold start loader is not used un­
til the system is ?owered u~ again, as long as the bios 
is not overwritten. the origin is assumed at 0000h, an 
must be changed if the controller brings the cold start 
loader into another area, or if a read/only memory area 
is used. 

msize 

bias 
ccp 
bios 
biosl 
boot 
size 
sects 

cold: 

Isect: 

org 0 base of ram in cp/m 

equ 20 min mem size in kbytes 

egu (msize-20) *1024 offset from 20k system 
equ 3400h+bias base of the ccp 
equ ccp+1600h base of the bios 
equ 0300h length of the bios 
equ bios 
egu bios+biosl-ccp size of cp/m system 
equ size/128 # of sectors to load 

begin the load operation 

lxi b,2 b=0, c=sector 2 
mvi d,sects d=# sectors to load 
lxi h,ccp base transfer 

; load the next sector 

insert inline code at this point to 
read one 128 byte sector from the 
track given in register b, sector 
given in register c, 
into the address given by <hI> 

address 

branch to location "cold" if a read error occurs 

59 



0008 c36b00 
000b 

006b 15 
006c ca004a 

006f 318000 
0072 39 

0073 0c 
0074 79 
01075 felb 
0077 da0800 

007a 0e01 
007c 04 
007d c30800 
0080 

************************************************* 
* 
* 
* 

user supplied read o~eration goes here ••• 

************************************************* 

jmp past$patch ; remove this when patche 
ds 60h 

past$patch: 
; go to next sector if load is incomplete 

dcr d ; sects=sects-l 
jz boot . head for the bios , 

more sectors to load 

we aren1t using a stack, so use <sp> as scratch registe 
to hold the load address increment 

lxi sp,128 128 bytes per sector 
dad sp <hI> = <hI> + 128 

inr c sector = sector + 1 
mov a,c 
cpi 27 last sector of track? 
jc Isect no, go read another 

end of track, increment to next track 

mvi c,l sector = 1 
inr b track = track + 1 
jmp Isect for another group 
end of boot loader 

60 



1 : 
2: 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
9 : 

10: 
11: 
12 : 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
2St: 
310: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 

'--
53: 

APPENDIX F: ~ CP/M DISK DEFINITION LIBRARY 

CP/M 2.0 disk re-detinition library 

Copyright (c) 1979 
Digital R=~earch 
Box 579 
Pacific Grove, CA 
93950 

CP/M logic~l disk drives are defined using the 
macros given below, where the sequence of calls 
is: 

disks a 
diskdef ?arameter-1ist-0 
diskdef 9ararneter-list-1 

diskdef parnmeter-list-n 
endef 

where n is the number of logical disk drives attached 
to the CP/M system, and parameter-list-i defines the 
characteristics of the ith drive (i=0,1, .•. ,n-l) 

each parameter-list-i takes the form 
dn,fcc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0] 

where 
dn is the disk number 0,1, .•• ,n-l 
fsc is tde first sector number (usually 0 or 1) 
Isc is ti1e last sector numoer on a track 
skf is o~tiona1 "skew fac tor,4 for sector translate 
b1s is toe data block 
dks is tOl disk size 
dir is tOE:': number of 
cks is the number of 
ofs is the number of 
[0 ] is an optional (3 

for convenience, the form 
dn,drn 

size (1024,2048, ••• ,16384) 
in bls increments (word) 
directory elements (~ord) 
dir elements to checksum 
tracks to skip (word) 
which forces 16K/directory en 

defines disk dn as having the same characteristics as 
a previously defined disk dm. 

a standard four drive CP/M system is defined by 
disks 4 
diskdei 0,1,26,6,1024,243,64,64,2 

dsk set 0 
rept 3 

dsk set dsk+1 
diskdef %dsk,0 
endm 
endei 

the value of "begdat" at the end of assembly defines t 

61 



54: 
55: 
56: 
57: 
58: 
59: 
60: 

; 

beginning of the uninitialize ram area above the bios, 
while the vall1e of "enddat ll defines the next location 
following the end of the data area. the size of this 
area is given by the value of "datsiz" at the end of t 
assembly. note that the allocation vector will be qui 
large if a large disk size is defined with a small blo 
size. 

61: 
62: 
63: 
64: 
65: 
66: 

dskhdr macro dn 
;; define a single disk 

xlt&dn,0000h 
0000h,0000h 
dirbuf,dpb&dn 
csv&dn,alv&dn 

header list 
;translate table 
;scratch area 

dpe&dn: dw 

67: 
68: 

; 
disks 

69: 
70: 
71: ;; 
72: ndisks 
73: 
74: 
j 5 : 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
B 3: 
84: 
85: 
d6: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 

dpbase 
; ; 
dsknxt 

dsknxt 

; 
dpbhdr 
dpb&dn 

ddb 
; ; 

; 
ddw 
; ; 

96: gcd 
97: ;; 
98: ;; 
99: ;; 

1010: gcdm 
101: gcdn 
102: gcdr 
103: 
104: gcdx 
105: gcdr 
1106: 
107: 
108: 

dw 
dw 
dw 
endm 

macro nd 
define nd disks 

;dir buff,parrn block 
;check, alloc vectors 

set nd ;;for later reference 
equ $ ;base of disk parameter blocks 
generate the r.d elements 
set 0 
rept nd 
dskhdr %dsknxt 
set dsknxc+l 
endm 
endm 

macro 
equ 
endm 

macro 
define 
db 
endm 

macro 
define 
dw 
endm 

a 

a 

dn 
~ 

data,comrnent 
db sta tement 

data 

da ta, commen t 
dw statement 

data 

macro m,n 

;disk parm block 

comment 

comment 

greatest common divisor of m,n 
produces value gcdn as result 
(used in sector translate table generation) 
set m ;;variable for m 
set n ;;variable for n 
set 0 ;;variable for r 
rept 65535 
set gcdm/gcdn 
set gcdm - gcdx*gcdn 
if gcdr = 0 
exitm 
endif 

62 



109: 
110: 
Ill: 
112 : 

gcdm 
gcdn 

diskdef 
113 : 
114: 
115: ii 
116: 
117: ii 
118: dpb&dn 
119: als&dn 
120: css&dn 
121: xlt&dn 
122 : 

set 
set 
endm 
endm 

gcdn 
gcdr 

macro dn,fsc,lsc,skf,b1s,dks~dir,cks,bfs,k16 
generate the set statements for later tables 
if nul lsc 
current disk dn s~me as orevious fsc 
equ dpb&fsc i8~uivalent ~arameters 
equ als&fsc isarne allocation vector size 
equ css&fsc isame checksum vector size 
equ xlt&fsc isarne translate table 
else 

123 : 
124: 
125: 
126: 
127: 
128 : 
129 : 
130: 
131 : 
132 : 
133: 
134: 

secmax set 
sectors set 
als&dn set 

lsc-(fsc) iisectors 0 ••• secmax 
secmax+1iinumber of sectors 
(dks)/8 iisize of allocation vector 
((dks) mod 0) ne 0 

135: 
136: 
137: 

als&dn 

css&dn 
, , 
blkval 
blkshf 
blkmsk 

138: ii 
139: blkshf 
140: b1kmsk 
141: b1kval 
142 : 
143: i i 
144: b1kval 
145: 
146: 
147: 
148: 
149: 
150: 
151 : 
152 : 
153 : 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161: 

extmsk 

; ; 
extmsk 
blkval 

; ; 

extmsk 

i i 

extmsk 

162: i i 
163: dirrem 

if 
set 
endif 

a1s&dn+1 

set (cks)/4 iinumber of checksum elements 
generate the block shift value 
set b1s/l28 iinumber of sectors/block 
set 0 iicounts right 0 1 s in blkval 
set 0 i;£ills with lis from right 
rept 16 ;;~nce for eacn bit ?osition 
if blkva1=1 
exitm 
endif 
otherwise, high ordtr 1 not found yet 
set blkshf+1 
set (blkmsk shl 1) or 1 
set blkval/2 
endm 
generate the extent mask byte 
set bls/1024 ;;number of ki1~bytes/block 
set 0 ;;fill from right with lis 
rept 16 
if b1kval=1 
exitm 
endif 
otherwise more to shift 
set (extmsk sh1 1) or 1 
set blkval/2 
endm 
may be double byte 11location 
if (dks) > 256 
set (extmsk shr 1) 
endif 
may be optional [0] in last position 
if not nul k16 
set k16 
endif 
now generate directory reservation bit vector 
set dir i;# remaining to process 

63 



164: 
165: 
166: 
167: 
168: 
169: 

dirbks 
dirblk 

170: ;; 
171: 
172: 
173: 
174: 
175: 
176: 
1 77: 
178: 
179: 
180: 
181: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 

; ; 
dirblk 

dirrem 

dirrem 

190: ;; 
191: 
192: 
193: 
194: 
1~5: 
196: 

xlt&dn 

xlt&dn 

197: ;; 
198: nxtsec 
199: nxtbas 
200: 
2101 : 
202: 
203: ;; 
204: 
205: 
206: 
207: 
208: 

.. , , 
neltst 

; ; 
nelts 
xlt&dn 

209: 
210: 
211: 
212 : 
213: 
214: 
215: 
216: 
217: 
218: 

nxtsec 

nxtsec 

nelts 

set 
set 

bls/32 
o 

;;number of entries per block 
;;fill with l's on each loop 

rept 
if 
exitm 
endif 

16 
dirrem=0 

not complete, iterate once again 
shift right and add 1 high order bit 
set (dirblk shr ~) or 8000h 
if dirrem > dirbks 
set dirrem-di~bks 
else 
set 
endif 
endm 

10 

dpbhdr dn ;;ganerate equ $ 
ddw %sectors,<;sec per track> 
ddb %blkshf,<;blcck shift> 
ddb %blkmsk,<;block mask> 
ddb %extmsk,<;e~tnt mask> 
ddw %(dks)-l,<;uisk size-I> 
ddw %(dir)-l,<;oirectory max> 
ddb %dirblk shr 8,<;al1oc0> 
ddb %dirblk ana 0ffh,<;allocl> 
ddw %(cks)/4,<;check size> 
ddw %ofs,<;offset> 
generate the translate table, if requested 
if nul skf 
equ 0 
else 
if 
equ 
else 

skf = eJ 
o 

ino xlate table 

;no xlate table 

generate the translate taole 
set 10 ; i 11ext sector to fill 
set 0 iifficves by one on overflow 
gcd %sectors,skf 
gcdn = gcd(sectors,skew) 
set sectors/gcdn 
neltst is number of elements to generate 
before we overlap oIevious elements 
set neltst ii~ounter 
equ $ itranslate table 
rept sectors ;ionce for each sector 
if sectors < 256 
ddb %nxtsec+(fsc) 
else 
ddw 
endif 
set 
if 
set 
endif 
set 
if 

%nxtsec+(fsc) 

nxtsec+(skf) 
nxtser >= sectors 
nxtsec-sectors 

nelts-l 
nelts = ra 

64 



219 : 
220: 
221 : 
222 : 
223: 
224: 
225: 
226: 
227: 
228: 
229 : 
230: 
231: 
232 : 
233: 
234: 
235: 
236: 
237: 
238: 
239: 
240: 
241 : 
242: 
243: 
244: 
245: 
246: 
247: 
248: ;; 
249: 

nxtbas 
nxtsec 
nelts 

; 
aefds 
lab: 

; 
Ids 

endef .. , , 
begdat 
dirbuf: 
dsknxt 

dsknxt 

enddat 
datsiz 

nxtbas+l 
nxtbas 
neltst 

set 
set 
set 
endif 
endm 
endif 
endif 
endm 

;;end of nul fac test 
;;end of nul bls test 

macro 
as 
endm 

lab,space 
space 

macro 
aefds 
endm 

Ib,dn,val 
Ib&dn,%val&dn 

macro 
generate the necsssary ram data areas 
equ $ 
ds 128 ;directory access buffer 
set 0 
rept ndisks ;;once for eacn disk 
Ids alv,%dsknxt,als 
Ids csv,%dsknxt,css 
set dsknxt+l 
endm 
equ $ 
equ $-begda t 
db 0 at this point forces hex record 
endm 

65 



APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS. 

1: ;******w********************************************** 
2: ; * * 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 

· * , 
· * , 

Sector Deblocking Algorithms for CP/M 2.0 * 
* 

.***************************************************** , 

smask 
utility macro to compute sector mask 
macro hblk 

9: ;; compute log2(hblk), return @x as result 
(2 ** @x = hblk on return) 10: ;; 

11 : @y 
@x 

set hblk 
12 : 
13: ; i 
14: 

set 0 
count right shifts of @y until = 1 
rept 8 

15 : if @y = 1 
16 : 
17: 
18: ; i 
19: 
20: 

@y 
@x 

exitm 
endif 
@y is not 1, shift right one position 
set @y shr 1 
set @x + 1 

21 : 
22 : 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48 : 
49: 
50: 
51: 
52: 
53: 

endm 
endm 

; 
.***************************************************** , 
· * , 
· * , 

* 
CP/M to host disk constants * 

.* * , 

.***************************************w************* , 
blk s iz 
hstsiz 
hstspt 
hstblk 
cpmspt 
secrnsk 

secshf 

equ 
egu 
equ 
egu 
equ 
equ 
smask 
egu 

2048 
512 
20 
hstsiz/128 
hstblk * hstspt 
hstblk-1 
hstblk 
@x 

;CP/M allocation size 
ihost disk sector size 
;host disk sectors/trk 
iCP/M sects/host buff 
iCP/M sectors/track 
isector mask 
;compute sector mask 
i log 2 (hstblk) 

; 
.***************************************************** , 
.* * , 
· * , 
· * , 

BDOS constants on entry to write * 
* 

.***************************************************** , 
wrall 
wrdir 
wrua1 

equ 
equ 
egu 

o 
1 
2 

iwrite to allocated 
iwrite to directory 
iwrite to unallocated 

i 
.***************************************************** , 
.* * , 
· * , 
· * , 

The BDOS entry points given below show the 
code which is relevant to deblocking only. 

* 
* 

.* * , 

.***************************************************** , 

66 



54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101 : 
102: 
103 : 

; DISKDEF macro, or hand coded tables go here 
dpbase equ $ ;disk param block base 
; 
boot: 
wboot: 

; 
seldsk: 

settrk: 

setsec: 

; 
setdma: 

sectran: 

;enter here on system boot to initialize 
xra a ;0 to accumulator 
sta hstact ;host buffer inactive 
sta unacnt ;clear unalloc count 
ret 

; select disk 
mov 
sta 
mov 
mvi 
rept 
dad 
endm 
lxi 
dad 
ret 

a,c 
sekdsk 
l,a 
h,0 
4 
h 

d,dpbase 
d 

;selected disk number 
;seek disk number 
;disk number to HL 

;multiply by 16 

;base of parm block 
;hl=.dpb(curdsk) 

;set track given by registers Be 
mov h,b 
mov l,c 
shld sektrk ;track to seek 
ret 

;set sector given by register c 
mov a,c 
sta seksec ;sector to seek 
ret 

;set dma address given by Be 
mov h,b 
mov l,c 
shld dmaadr 
ret 

;translate sector number Be 
mov h,b 
mov l,c 
ret 

67 



104: 
105: 
106: 
107 : 
108: 
109: 
110: 
Ill: 
112: 
113: 
114: 
115: 
116: 
117: 
118: 
119 : 
120: 
121: 
122: 
123: 
124 : 
125: 
126: 
127: 
128: 
129 : 
130: 
131: 
132 : 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141 : 
142 : 
143: 
144: 
145: 
146: 
147: 
148 : 
149: 
150: 
151 : 
152: 
153: 
154: 
155: 
156: 
157: 
158: 

.***************************************************** , 
· * , 
· * , 
· * , 

The READ entry point takes the place of 
the previous BIOS defintion for READ. 

* 
* 
* 

· * * , 
.***************************************************** , 
read: 

iread the selected CP/M sector 
rnvi a,l 
sta readop ;read operation 
sta rsflag irnust read data 
rnvi a,wrual 
sta wrtype itreat as unalloc 
jmp rwoper ito perform the read 

; 
.***************************************************** , 
· * * , 
· * , 
· * , 

The WRITE entry point takes the place of 
the previous BIOS defintion for WRITE. 

* 
* 

· * * , 
.***************************************************** , 
write: 

chkuna: 

iwrite the selected CP/M sector 
xra a ;0 to accumulator 
sta readop ;not a read operation 
rnov a,c iwrite type in c 
sta wrtype 
cpi wrual 
jnz chkuna 

write to unallocated, 
rnvi a,blksiz/128 
sta unacnt 
Ida sekdsk 
sta unadsk 
lhld sek trk 
shld unatrk 
Ida seksec 
sta una sec 

;write unallocated? 
;check for unal10c 

set parameters 
inext unalloc recs 

idisk to seek 
;unadsk = sekdsk 

;unatrk = sectrk 

;unasec = seksec 

icheck for write to unallocated sector 
Ida unacnt iany unalloc remain? 
ora 
jz 

a 
alloc iskio if not 

more 
dcr 
sta 
Ida 
lxi 
cmp 
jnz 

unallocated records remain 
a 
unacnt 
sekdsk 
h,unadsk 
m 
alloc 

disks are the same 

68 

;unacnt = unacnt-l 

isame disk? 

isekdsk = unadsk? 
iskip if not 



159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191: 
192: 
193: 
194: 
195: 
196: 
197: 
198: 
199: 
200: 
201 : 
202: 
203: 
204: 
205: 
206: 
207: 
208 : 
209: 
210: 
211 : 
212 : 
213: 

; 
noovf: 

alloc: 

lxi 
call 
jnz 

h,unatrk 
sektrkcmp 
alloc 

tracks are the same 
Ida seksec 
lxi h,unasec 
cmp m 
jnz alloc 

match, move to next 
inr m 
mov a,m 
cpi cpmspt 
j c noovf 

;sektrk = unatrk? 
;skip if not 

;same sector? 

;seksec = unasec? 
;skip if not 

sector for future ref 
;unasec = unasec+l 
;end of track? 
;count CP/M sectors 
;skip if no overflow 

overflow to next track 
mvi 
Ihld 
inx 
shld 

;match 
xra 
sta 
jmp 

;not an 
xra 
sta 
inr 
sta 

m,0 
unatrk 
h 
unatrk 

found, 
a 
rsflag 
rwoper 

mark 

unallocated 
a 
unacnt 
a 
rsflag 

;unasec = 0 

;unatrk = unatrk+l 

as unnecessary read 
;0 to accumulator 
; rsflag = 0 
ito perform the write 

record, requires pre-read 
; 0 to accum 
;unacnt = 0 
;1 to accum 
; rsflag = 1 

; 
.***************************************************** , 
.* * , 
;* Common code for READ and WRITE follows * 
. * * , 
.***************************************************** , 
rwoper: 

;enter here to perform the read/write 
xra a ;zero to accum 
sta erflag ;no errors (yet) 
Ida seksec ;compute host sector 
rept secshf 
ora 
rar 
endm 
sta 

a 

sekhst 

active host sector? 
lxi h,hstact 
mov 
mvi 

a,m 
m,l 

69 

;carry = 0 
; shift r igh t 

;host sector to seek 

;host active flag 

;always becomes 1 



214: 
215 : 
216: 
217: 
218: 
219 : 
220: 
221 : 
222 : 
223: 
224: 
225: 
226: 
227: 
228: 
229: 
230: 
231 : 
232 : 
233: i 
234: nomatch: 

ora 
jz 

a 
filhst 

iwas it already? 
ifill host if not 

host 
Ida 
lxi 
cmp 
jnz 

buffer active, same as seek buffer? 
sekdsk 
h, hstdsk 
m 
nomatch 

same disk, same track? 
lxi h,hsttrk 

isame disk? 
isekdsk = hstdsk? 

call sektrkcmp isektrk = hsttrk? 
jnz nomatch 

same 
Ida 
lxi 
cmp 
jz 

disk, same track, same buffer? 
sekhst 
h,hstsec 
m 
match 

isekhst = hstsec? 

iskip if match 

235: iproper disk, but not correct sector 
236: Ida hstwrt ihost written? 
237 : 
238: 
239: i 
240: filhst: 
241: 
242: 
243: 
244: 
245: 
246: 
247: 
248: 
249: 
250: 
251: 
252: 
253: 
254: match: 
255: 
256: 
257: 
258: 
259: 
260: 
261: 
262: 
263: i 
264: 
265 : 
266: 
267: 
268: 

ora 
cnz 

imay 
Ida 
sta 
Ihld 
shld 
Ida 
sta 
Ida 
ora 
cnz 
xra 
sta 

iCOPY 
Ida 

a 
writehst 

have to fill 
sekdsk 
hstdsk 
sek trk 
hsttrk 
sekhst 
hstsec 
rsflag 
a 
readhst 
a 
hstwr t 

data to or 
seksec 
secmsk 
l,a 
h,0 
7 
h 

iclear host buff 

the host buffer 

ineed to read? 

iyes, if 1 
i0 to accum 
ino pending write 

from buffer 
irnask buffer number 
ileast signif bits 
iready to shift 
idouble count 
ishift left 7 

ani 
mov 
mvi 
rept 
dad 
endm 
hI has 
lxi 
dad 
xchg 
Ihld 
mvi 

relative host buffer address 
d,hstbuf 
d 

dmaadr 
c,128 

70 

ihl = host address 
inow in DE 
iget/put CP/M data 
ilength of move 



269 :, 
270: 
271: 
272: 
273: 
274 : 
275: 
276: 
277: 
278: 
279: 
280: 
281: 
282 : 
283: 
284: 
285: 
286: 
287: 
288: 
289: 
290: 
291: 
292: 
293: 
294: 
295: 
296: 
297: 
298: 
299: 
300: 
301 : 
302: 
303: 
304: 
305: 
306: 
307: 
308 : 
309: 
310: 
311 : 
312 : 
313 : 
314: 
315: 
316: 
317: 
318: 
319 : 
320: 

rwmove: 

Ida 
ora 
jnz 

readop 
a 
rwmove 

iwhich way? 

iskip if read 

write operation, mark and switch direction 
mvi a,l 
sta hstwrt 
xchg 

i hstwrt = 1 
isource/dest swap 

iC initially 128, DE is source, HL is dest 
ldax d isource character 
inx d 
mov m,a ito dest 
inx h 
dcr c iloop 128 times 
jnz rwmove 

data has been moved 
Ida wrtype 
cpi wrdir 
Ida erflag 
rnz 

to/from host buffer 
iwrite type 
ito directory? 
iin case of errors 
ino further processing 

clear host buffer for directory write 
;errors? ora a 

rnz 
xra 
sta 
call 
Ida 
ret 

a 
hstwr t 
writehst 
erflag 

iskip if so 
i0 to accum 
;buffer written 

; 
.***************************************************** , 
· * , 
· * , 
· * , 

utility subroutine for l6-bit compare 
* 
* 
* 

.***************************************************** , 
sektrkcmp: 

iHL = .unatrk or .hsttrk, compare with sektrk 
xchg 
lxi 
ldax 
cmp 
rnz 
low 
inx 
inx 
ldax 
cmp 
ret 

h,sektrk 
d 
m 

bytes equal, 
d 
h 
d 
m 

test 

ilow byte compare 
;same? 
ireturn if not 

high Is 

isets flags 

71 



.***************************************************** 321: 
322: 
323: 
324: 
325: 
326 : 
327: 
328: 
329 : 
330: 
331: 
332: 
333: 
334: 
335: 
336: 
337: 
338: 
339: 
340: 
341: 
342: 
343: ;* 
344 : 
345: 
346: 
347 : 
348: 
349: 
350: 
351: 
352 : 
353 : 
354: 
355: 
356: 
357: 
358: 
359: 
360: 
361 : 
362: 
363: 
364: 
365: 
366 : 
367: 
368: 
369: 
370: 

, 
· * , 
· * , 
· * , 
· * , 
· * , 

WRITEHST performs the physical write to 
the host disk, READHST reads the physical 
disk. 

* 

* 
* 
* 

.***************************************************** , , 

writehst: 

; 
readhst: 

· , 

;hstdsk = host disk #, hsttrk = host track #, 
;hstsec = host sect #. write "hstsiz" bytes 
;from hstbuf and return error flag in erflag. 
;return erflag non-zero if error 
ret 

;hstdsk = host disk #, hsttrk = host track #, 
;hstsec = host sect #. read Ilhstsiz" bytes 
;into hstbuf and return error flag in erflag. 
ret 

.***************************************************** , 
· * * , 

· * , 
unitialized RAM data areas * 

* 
.*************************************n*************** , 
; 
sekdsk: ds 
sektrk: ds 
seksec: ds 

hs tdsk: ds 
hsttrk: ds 
hstsec: ds 

sekhst: ds 
hstact: ds 
hstwrt: ds 

unacnt: ds 
unadsk: qs 
unatrk: ds 
unasec: ds 

erflag: 
rsflag: 
readop: 
w:::-type: 
dmaad r: 
hstbuf: 

ds 
ds 
ds 
ds 
ds 
ds 

1 
2 
1 

1 
2 
1 

1 
1 
1 

1 
1 
2 
1 

1 
1 
1 
1 
2 
hstsiz 

72 

;seek qisk number 
;seek track number 
;seek sector number 

;host disk number 
;host track number 
;host sector number 

;seek shr secshf 
;host active flag 
;host written flag 

;unalloc rec cnt 
;last unalloc disk 
;last una~loc track 
;last unalloc sector 

;error reporting 
;read sector flag 
;1 if read operation 
;write operation type 
;last dma address 
;host buffer 



371: 
372 : 
373 : 
374 : 
375: 
376 : 

.***************************************************** , 
· * * , 
· * , 
· * , 

The ENDEF macro invocation goes here * 
* 

.***************************************************** , 
end 

73 





Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896 

CP/M 2.2 INTERFACE GUIDE 

Copyright (c) 1979 

DIGITAL RESEARCH 



Copyright (c) 1979 by Digital Research. All rights reserved. 
No pa~t of thjs publication may be reproduced, transmitted, 
transcribed, stored in a retrieval system, or translated into 
any language or computer language. in any form or by any 
means, electronic, mechanical, magnetic, optical, chemical, 
manual or otherwise, without the prior written permission of 
Digital Research, Post Office Box 579, Pacific Grove, 
California Q3950. 

Disclaimer 

Digital Research makes no representations or warranties with 
respect to the contents hereof and specifically disclaims any 
implied warranties of merchantability or fitness for any parti­
cular purpose. Further~ Digital Research reserves the right 
to revise this publication and to make changes from time to 
time in the content hereof without obligation of Digital 
Research to notify any person of such revision or changes. 



1 . 

2. 

3 • 

I n t r 0 du c t ion • • 

CP/M 2.2 INTERFACE GUIDE 

Copyright (c) 1979 
Digital Research, Box 579 
Pacific Grove, California 

Operating System Call Conventions 

A Samole File-to-File Copy Program 

4. A Sample File Dump Utility 

5. A Sam pIe Ran d om Ace e ssP r 0 9 r aITl. • 

6. System Function Summary 

1 

3 

• • • 29 

• 34 

• 37 

• 46 





1. INTRODUCTION. 

This manual describes CP/M, release 2, system organization 
including the structure of memory and system entry points. The 
intention is to provide the necessary information required to write 
programs which operate under CP/M, and which use the peripheral and 
disk I/O facilities of the system. 

CP/M is logically divided into four parts, called the Basic I/O 
System (BIOS), the Basic Disk Operating System (BDOS), the Console 
command processor (CCP), and the Transient Program Area (TPA). The 
BIOS is a hardware-dependent module which defines the exact low level 
interface to a particular computer system which is necessary for 
peripheral device I/O. Although a standard BIOS is supplied by 
Digital Research, explicit instructions are provided for field 
reconfiguration of the BIOS to match nearly any hardware environment 
(see the Dig i tal Research manual en titled II CP/M Al tera tion Guide") • 
The BIOS and BOOS are logically combined into a single module with a 
common entry point, and referred to as the FDOS. The CCP is a 
distinct pr·ogram which uses the FOOS to provide a human-oriented 
interface to the information which is cataloged on the backup storage 
device. The TPA is an area of memory (i.e., the portion which is not 
used by the FDOS and CCP) where various non-resident operating system 
commands and user programs are executed. The lower portion of memory 
is reserved for system information and is detailed later sections. 
Memory organization of the CP/M system in shown below: 

high 
memory 

FBASE: 

CBASE: 

TBASE: 

BOOT: 

FOOS (BOOS+BIOS) 

CCP 

TPA 

system parameters 

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and 
FBASE vary from version to version, and are described fully in the 
"CP/M Alteration Guide." All standard CP/M versions, however, assume 
BOOT = 0000H, which is the base of random access memory. The machine 
code found at location BOOT performs a system "warm start" which loads 
and initializes the programs and variables necessary to return control 
to the CCP. Thus, transient programs need only jump to location BOOT 

(All Information Contained Herein is Proprietary to Digital Research.) 

1 



to return control to CP/M at the command level. Further, the standard 
versions assume TBASE = BOOT+0100H which is normally location 0100H. 
The principal entry point to the FOOS is at location BOOT+0005H 
(normally 0005H) where a jump to FBASE is found. The address field at 
BOOT+0006H (normally 0006H) contains the value of FBASE and can be 
used to determine the size of available memory, assuming the CCP is 
being overlayed by a transient program. 

Transient programs are loaded into the TPA and executed a.s 
follows. The operator communicates with the CCP by typing command 
lines following each prompt. Each command line takes one of the 
forms: 

command 
command f ilel 
command filel file2 

where "command" is either a built-in function such as OIR or TYPE, or 
the name of a transient command or program. If the command is a 
built-in function of CP/M, it is executed immediately. Otherwise, the 
CCP searches the currently addressed disk for a file by the name 

command. COM 

If the file is found, it is assumed to be a memory image of a program 
which executes in the TPA, and thus implicitly originates at TBASE in 
memory. The CCP loads the COM file from the disk into memory starting 
at TBASE and possibly extending up to CBASE. 

If the command is 
the CCP prepares one 
system parameter area. 
to access files through 
section. 

followed by one or two file specifications, 
or two file control block (FCB) names in the 

These optional FCB's are in the form necessary 
the FOOS, and are described in the next 

The transient program receives control from the CCP and begins 
execution, perhaps using the I/O facilities of the FOOS. The 
transient program is "called ll from the CCP, and thus can simply return 
to the CCP upon completion of its processing, or can jump to BOOT to 
pass control back to CP/M. In the first case, the transient program 
must not use memory above CBASE, while in the latter case, memory up 
through FBASE-l is free. 

The transient program may use the CP/M I/O facilities to 
communicate with the operator's console and peripheral devices, 
including the disk subsystem. The I/O system is accessed by passing a 
"function number" and an "information address" to CP/M through the 
FOOS entry point at BOOT+0005H. In the case of a disk read, for 
example, the transient program sends the number corresponding to a 
disk read, along with the address of an FCB to the CP/M FOOS. The 
FOOS, in turn, performs the operation and returns with either a disk 
read completion indication or an error number indicating that the disk 
read was unsuccessful. The function numbers and error indicators are 
given in below. 

(All Information Contained Herein is Proprietary to Digital Research.) 

2 



2. OPERA'rING SYSTEM CALL CONVENTIONS. 

The purpose of this section is to provide detailed information 
for performing direct operating system calls from user programs. Many 
of the functions listed below, however, are more simply accessed 
through the I/O macro library provided with the MAC macro assembler, 
and listed in the Digital Research manual entitled "MAC Macro 
Assembler: Language l1anual and Appl ications Guide. ~I 

CP/M facilities which are available for access by transient 
programs fall into two general categories: simple device I/O, and 
disk file I/O. The simple device operations include: 

Read a Console Character 
write a Console Character 
Read a Sequential Tape Character 
write a Sequential Tape Character 
write a List Device Character 
Get or Set I/O Status 
Print Console Buffer 
Read Console Buffer 
Interrogate Console Ready 

The FDOS operations which perform disk Input/Output are 

Disk System Reset 
Drive Selection 
File Creation 
File Open 
File Close 
Directory Search 
File Delete 
File Rename 
Random or Sequential Read 
Random or Sequential write 
Interrogate Available Disks 
Interrogate Selected Disk 
Set DMA Address 
Set/Reset File Indicators 

As mentioned above, access to the FOOS functions is accomplished 
by passing a functiori number and information address through the 
primary entry point at location BOOT+0005H. In general, the function 
number is passed in register C with the information address in the 
double byte pair DE. Single byte values are returned in register A, 
with double byte values returned in HL (a zero value is returned when 
the function number is out of range). For reasons of compatibility, 
register A = L and register B = H upon return in all cases. Note that 
the register passing conventions of CP/M agree with those of Intel1s 
PL/M systems programming language. The list of CP/M function numbers 
is given below. 

(All Information Contained Herein is Proprietary to Digital Research.) 

3 



o System Reset 
1 Console Input 
2 Console Output 
3 Reader Input 
4 Punch Output 
5 List Output 
6 Direct Console I/O 
7 Get I/O Byte 
8 Set I/O Byte 
9 Pr int Str ing 

10 Read Console Buffer 
11 Get Console Status 
12 Return Version Number 
13 Reset Disk System 
14 Select Disk 
15 Open File 
16 Close File 
17 Search for First 
18 Search for Next 

19 Delete File 
20 Read Sequential 
21 write Sequential 
22 CVlake File 
23 Rename File 
24 Return Login Vector 
25 Return Current Disk 
26 Set DMA Address 
27 Get Addr(Alloc) 
28 Write Protect Disk 
29 Get R/O Vector 
30 Set File Attributes 
31 Get Addr(Disk Parms) 
32 Set/Get User Code 
33 Read Random 
34 write Random 
35 Compute File Size 
36 Set Random Record 

(Functions 28 and 32 should be avoided in application programs to 
maintain upward compatibility with MP/M.) 

Upon entry to a transient program, the CCP leaves the stack 
pointer set to an eight level stack area with the CCP return address 
pushed onto the stack, leaving seven levels before overflow occurs. 
Although this stack is usually not used by a transient program (i.e., 
most transients return to the CCP though a jump to location 0000H), it 
is sufficiently large to make CP/fvl system calls since the FDOS 
switChes to a local stack at system entry. The following assembly 
language program segment, for example, reads characters continuously 
until an asterisk is encountered, at which time control returns to the 
CCP (as suming a s tandard CP/M sys tern wi th BOOlr = 00008): 

BOOS EQU 0005H i STANDARD CP /M ENrrRY 
CONIN EQU 1 iCONSOLE INPUT FUNCTION 

ORG 0100H iBASE OF TPA 
N EX'rC: MVI C,CONIN iREAD NEXT CHARACTER 

CALL BDOS iRETURN CHARACTER IN <A> 
CPI . *' iEND OF PROCESSING? 
JNZ NEXlrC i LOOP IF NOlr 
RET i RE'rURN Iro CCP 
END 

CP/M implements a named file structure on each disk, providing a 
logical organization which allows any particular file to contain any 
number of records from completely empty, to the full capacity of the 
drive. Each drive is logically distinct with a disk directory and 
file data area. The disk file names are in three parts: the drive 
select code, the file name consisting of one to eight non-blank 
characters, and the file type consisting of zero to three non-blank 
characters. The file type names the generic category of a particular 
file, while the file name distinguishes individual files in each 
ca tego ry. 'I'he file types listed below name a few gener ic ca tegor ies 

(All Information Contained Herein is Proprietary to Digital Research.) 

4 



which have been established, although they are generally arbitrary: 

ASM 
PRN 
HEX 
BAS 
INT 
COM 

Assembler Source 
Pr inter Listing 
Hex f.1achine Code 
Basic Source File 
Intermediate Code 
CCP Command File 

PLI 
REL 
TEX 
BAK 
SYM 
$$$ 

PL/I Source File 
Relocatable Module 
TEX Formatter Source 
ED Source Backup 
SID Symbol File 
Temporary File 

Source files are treated as a sequence of ASCII characters, where each 
"line" of the source file is followed by a carr iage-return line-feed 
sequence (0DH followed by 0AH). Thus one 128 byte Cp/r.t record could 
contain several lines of source text. The end of an ASCII file is 
denoted by a control-Z character (lAH) or a real end of file, returned 
by the CP/M read operation. Control-Z characters embedded within 
machine code files (e.g., COM files) are ignored, however, and the end 
of file condition returned by CP/M is used to terminate read 
ope rat ions. 

Files in CP/M can be thought of as a sequence of up to 65536 
records of 128 bytes each, numbered from 0 through 65535, thus 
allowing a maximum of 8 megabytes per file. Note, however, that 
although the records may be considered logically contiguous, they may 
not be physically contiguous in the disk data area. Internally, all 
files are broken into 16K byte segments called logical extents, so 
that counters are easily maintained as 8-bit values. Although the 
decomposition into extents is discussed in the paragraphs which 
follow, they are of no particular consequence to the programmer since 
each extent is automatically accessed in both sequential and random 
access modes. 

In the file operations starting with function number 15, DE 
usually addresses a file control block (FCB). Transient programs 
often use the default file control block area reserved by CP/M at 
location BOOT+005CH (normally 005CH) for simple file operations. The 
basic unit of file information is a 128 byte record used for all file 
operations, thus a default location for disk I/O is provided by CP/M 
at location BOOT+0080H (normally 0080H) which is the initial default 
DMA address (see function 26). All directory operations take place in 
a reserved area which does not affect write buffers as was the case in 
release 1, with the exception of Search First and Search Next, where 
compatibility is required. 

The File Control Block (FCB) data area consists of 
33 bytes for sequential access and a series of 36 bytes 
that the f il e' is accessed randomly. The defaul t file 
normally located at 005CH can be used for random access 
the three bytes starting at BOOT+007DH are availabl~ for 
The FCB format is shown with the following fields: 

a sequence of 
in the case 
con trol block 
files, since 
this purpose. 

(All Information Contained Herein is Proprietary to Digital Research.) 

5 



Idrlfllf21/ /lf8Itllt2It3Iexlslls2Ircld01/ /ldnlcrlr0lrllr21 

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35 

where 

dr drive code (0 - 16) 
o => use default drive for file 
1 => auto disk select drive A, 
2 => auto disk select dr ive B, 

16=> auto disk select drive P. 

fl ••• f8 contain the file name in ASCII 
upper case, with high bit = 0 

tl,t2,t3 contain the file type in ASCII 
upper case, with high bit = 0 
tIl, t2 1, and t3 1 denote the 
bit of these positions, 
tIl = 1 => Read/Only file, 
t21 = 1 => SYS file, no DIR list 

ex contains the current extent number, 
normally set to 00 by the user, but 
in range 0 - 31 during file I/O 

sl reserved for internal system use 

s2 reserved for internal system use, set 
to zero on call to OPEN, MAKE, SEARCH 

rc record count for extent "ex," 
takes on values from 0 - 128 

d0 ••• dn filled-in by CP/M, reserved for 
system use 

cr current record to read or write in 
a sequential file operation, normally 
set to zero by user 

r0,rl,r2 optional random record number in the 
range 0-65535, with overflow to r2, 
r0,rl constitute a 16-bit value with 
low byte r0, and high byte rl 

Each file being accessed through CP/N must have a corresponding 
FCB which provides the name and allocation information for all 
subsequent file operations. When accessing files, it is the 
programmer's responsibility to fill the lower sixteen bytes of the FCB 
and initialize the tlcrll field. Normally, bytes 1 through 11 are set 
to the ASCII character values for the file name and file type, while 
all other fields are zero. 

(All Information Contained Herein is Proprietary to Digital Research.) 

6 



FCB's are stored in a directory area of the disk, and are 
brought into central memory before proceeding with file operations 
(see the OPEN and MAKE functions). The memory copy of the FCB is 
updated as file operations take place and later recorded permanently 
on disk at the termination of the file operation (see the CLOSE 
command) • 

The CCP constructs the first sixteen bytes of two optional FCB's 
for a transient by scanning the remainder of the line following the 
transient name, denoted by "filel h and "file2 'i in the prototype 
command line described above, with unspecified fields set to ASCII 
blanks. The first FCB is constructed at location BOOT+005CH, and can 
be used as-is for subsequent file operations. The second FCB occupies 
the d0 ••• dn portion of the first FCB, and must be moved to another 
area of memory before use. If, for example, the operator types 

PROGI~ME B:X.ZOT Y.ZAP 

the file PROGNAME.COM is loaded into the TPA, and the default FCB at 
BOO'I'+005CH is initialized to drive code 2, file name "X" and file type 
.. ZOT " . The second dr ive code take s the def aul t value 0, wh ich is 
placed at BOO rr+006CH, with the file name "Y" placed into location 
BOOT+0 0 6DH and f il e type I. ZAP I, 1 oca ted 8 bytes 1 a ter at BOOT+0 0 7 5H. 
All r ern a i n i ng fie 1 ds t h r ou g h II C r II are set to z e r o. Not e a g a in t hat i t 
is the programmer's responsibility to move this second file name and 
type to another area, usually a separate file control block, before 
opening the file which begins at B001"+005CH, due to the fact that the 
open operation will overwrite the second name and type. 

If no file names are specified in the original command, then the 
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all 
cases, the CCP translates lower case alphabetics to upper case to be 
consistent with the CP/M file naming conventions. 

As an added convenience, the default buffer area at location 
BOOT+0080H is initialized to the commana line tail typed by the 
operator following the program name. 'I'he first pos i tion contains the 
number of characters, with the characters themselves following the 
character count. Given the above command line, the area beginning at 
BOO;r+0080H is initialized as follows: 

BOQ'r+0 0 8 0H : 
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14 

1 4 I. I. U B" II." .. X" II .. II Z II .. 0" II T " .. II .. Y II •• .. II Z" .. A ,. II P II 

where the characters are translated to upper case ASCII with 
uninitialized memory following the last valid character. Again, it is 
the responsibility of the programmer to extract the information from 
this buffer before any file operations are performed, unless the 
default DMA address is explicitly changed. 

The individual functions are described in detail in the pages 
which follow. 

(All Information Contained Herein is Proprietary to Digital Research.) 

'7 



*************************************** 
* * FUNCTION 0: System Reset 
* 

* 
* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: 00H * 
*************************************** 

The system reset function returns control to the CP/M operating 
system at the CCP level. The CCP re-initializes the disk subsystem by 
selecting and logging-in disk drive A. This function has exactly the 
same effect as a jump to location BOOT. 

*************************************** 
* 
* FUNc'rION 1: CONSOLE INPUT 

* 
* 

* * 
*************************************** 
* 
* 
* 

En t ry Par am e t e r s: 
Reg i s ter C: 0lH 

* 
* 
* 

* Returned Value: * 
* Register A: ASCII Character * 
*************************************** 

The console input function reads the next console character to 
register A. Graphic characters, along with carriage return, line 
feed, and backspace (ctl-H) are echoed to the console. Tab characters 
(ctl-I) are expanded in columns of eight characters. A check is made 
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P). 
The FDOS does not return to the calling program until a character has 
been typed, thus suspending execution if a character is not ready. 

*************************************** 
* * 
* FUNCTION 2: CONSOLE OUTPUT * 
* * 
*************************************** 
* En t ry Par am e t e r s: * 
* Reg i s te r c: 02H * 
* Register E: ASCII Character * 
* * 
*************************************** 

The ASCII character from register E is sent to the console 
device. Similar to function 1, tabs are expanded and checks are made 
for start/stop scroll and printer echo. 

(All Information Contained Herein is Proprietary to Digital Research.) 

8 



*************************************** 
* * 
* FUNc'rION 3: READER INPUT 
* 

* 
* 

*************************************** 
* En t ry Par am e t e r s: * 
* Reg i s te r C: 03H * 
* * 
* Returned Value: * 
* Register A~ ASCII Character * 
*************************************** 

The Reader Input function reads the next character from the 
logical reader into register A (see the IOBYTE definition in the "CP/M 
Alteration Guide"). Control does not return until the character has 
been read. 

*************************************** 
* * * FUNC'rION 4: PUNCH OUTPU'r * 
* * 
*************************************** 
* 
* 
* 
* 

En t ry Par am e t e r s: 
Register C: 
Reg ister E: 

* 
fj 4H * 
ASCII Character * 

* 
*************************************** 

The Punch Output function sends the character from register E to 
the logical punch device. 

*************************************** 
* * 
* FUNCTION 5: LIST OUTPUT 
* 

* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: 05H * 
* Register E: ASCII Character * 
* * 
*************************************** 

The List Output function sends the ASCII character in register E 
to the logical listing device. 

(All Information Contained Herein is Proprietary to Digital Research.) 

9 



*************************************** 
* * 
* FUNCTION 6: DIRECT CONSOLE I/O * 
* * 
*************************************** 

* 
* 
* 
* 

Entry Parameters: 
Register C: 
Register E: 

* 
06H * 
0FFH (input) or * 
char (output) * 

* Returned Value: 
* 
* 

* Register A: char or status * 
(no value) * 

*************************************** 

Direct console I/O is supported under CP/M for those specialized 
applications where unadorned console input and output 1S required. 
Use of this function should, in general, be avoided since it bypasses 
all of CP/M's normal control character functions (e.g., control-S and 
control-P). Programs which perform direct I/O through the BIOS under 
previous releases of CP/M, however, should be changed to use direct 
I/O under BDOS so that they can be fully supported under future 
releases of MP/M and CP/M. 

Upon entry to function 6, register E either contains hexadecimal 
FF, denoti~ a console input request, or register E contains an ASCII 
character. If the input value is FF, then function 6 returns A = 00 
if no character is ready, otherwise A contains the next console input 
character. 

If the input value in E is not FF, then function 6 assumes that 
E contains a valid ASCII character which is sent to the console. 

(All Information Contained Herein is Proprietary to Digital Research.) 

10 



*************************************** 
* 
* FUNCTION 7: GET I/O BYTE 
* 

* 
* 
* 

*************************************** 
* 
* 
* 

En try Pa r arne te r s: 
Register C: 07H 

* 
* 
* * Returned Value: * 

* Register A: I/O Byte Value * 
*************************************** 

The Get I/O Byte function returns the current value of IOBYTE in 
register A. See the "CP/lvl Alteration Guide" for IOBYTE definition. 

*************************************** 
* 
* 
* 

FUNc'r ION 8: SE'r I/O BYTE 
* 
* 
* 

*************************************** 
* En t ry Par am e t e r s: * 
* Register C: 08H * 
* Register E: I/O Byte Value * 
* * 
*************************************** 

The Set I/O Byte function changes the system IOBYTE value to 
that given in register E. 

*************************************** 
* * 
* FUNCTION 9: PRINT STRING 
* 

* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: 09H * 
* Registers DE: String Address * 
* * 
*************************************** 

The Print String function sends the character string stored in 
memory at the location given by DE to the console device, until a "$" 
is encountered in the string. Tabs are expanded as in function 2, and 
checks are made for start/stop scroll and printer echo. 

(All Information Contained Herein is Proprietary to Digital Research.) 

11 



*************************************** 
* * 
* FUNCrl'ION 10: READ CONSOLE BUFFER * 
* * 
*************************************** 
* Entry Parameters: * 
* Register c: 0AH * 
* Registers DE: Buffer Address * 
* * 
* Returned Value: * 
* Console Characters in Buffer * 
*************************************** 

The Read Buffer function reads a line of edited console input 
into a buffer addressed by registers DE. Console input is terminated 
when either the input buffer overflows. The Read Buffer takes the 
form: 

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n 

Imxlnclcllc21c31c41c51c61c71 I??I 

where li mx " is the maximum number of characters which the buffer will 
hold (1 to 2 5 5), "nc " is the number of characters read (set by FOOS 
upon return), followed by the characters read from the console. if nc 
< mx, then uninitialized positions follow the last character, denoted 
by .. ?? II in the above f iqure. A number of con trol functions are 
recognized during line editing: 

rub/del 
ctl-C 
ctl-E 
ctl-H 
ctl-J 
c tl-r1 
ctl-R 
ctl-U 
ctl-x 

removes and echoes the last character 
reboots when at the beginning of line 
causes physical end of line 
backspaces one character position 
(line feed) terminates input line 
(return) terminates input line 
retypes the current line after new line 
removes currnt line after new line 
backspaces to beginning of current line 

Note also that certain functions which return the carriage to the 
leftmost position (e.g., ctl-X) do so only to the column position 
where the prompt ended (in earlier releases, the carriage returned to 
the extreme left margin). This convention makes operator data input 
and line correction more legible. -

(All Information Contained Herein is Proprietary to Digital Research.) 

12 



*************************************** 
* * * FUNCTION 11: GET CONSOLE STATUS * 
* * 
*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 0BH 

* 
* 
* * Returned Value: * 

* Register A: Console Status * 
*************************************** 

The Console Status function checks to see if a character has 
been typed at the console. If a character is ready, the value 0FFH is 
returned in register A. Otherwise a 00H value is returned. 

*************************************** 
* * 
* FUNCTION 12: RETURN VERSION NUMBER * 
* * 
*************************************** 
* Entry Parameters: * 
* Reg i s te r C : 0 CH * 
* * * Retur ned Value: * 
* Registers HL: Version Number * 
*************************************** 

Function 12 provides information which allows version 
independent programming. A two-byte value is returned, with H = 00 
designating the CP/M release (H = 01 for MP/M), and L = 00 for all 
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in 
register .. L, wi th subsequent version 2 releases in the hexadecimal 
range 21, 22, through 2F. Using function 12, for example, you can 
write application programs which provide both sequential and random 
access functions, wi th 'random access disabled when operating under 
early releases of CP/M. 

(All Information Contained Herein is Proprietary to Digital Research.) 

13 



*************************************** 
* * * FUNCTION 13: RESET DISK SYSTEM * 
x * *************************************** 
* Entry Parameters: * 
* Register C: 0DH * 
* * 
*************************************** 

The Reset Disk Function is used to programmatically restore the 
file system to a reset state where all disks are set to read/write 
(see functions 28 and 29), only disk drive A is selected, and the 
defaul t DMA address is reset to BOOT+0080H. Thi·s function can be 
used, for example, by an application program which requires a disk 
change without a system reboot. 

*************************************** 
* * * FUNCTION 14: SELECT DISK 
* 

* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: 0EH * 
*. Register E: Selected Disk * 
* * 
*************************************** 

The Select Disk function designates the disk drive named in 
register E as the default disk for subsequent file operations, with E 
= 0 for drive A, 1 for drive B, and so-forth through 15 corresponding 
to drive P in a full sixteen drive system. The drive is placed in an 
"on-line 'i status which, in particular, activates its directory until 
the next cold start, warm start, or disk system reset operation. If 
the disk media is changed while it is on-line, the drive automatically 
goes to a read/only status in a standard CP/M environment (see 
function 28). FCBls which specify drive code zero (dr = 00H) 
automatically reference the currently selected default drive. Drive 
code values between 1 and 16, however, ignore the selected default 
drive and directly reference drives A through P. 

(All Information Contained Herein is Proprietary to Digital Research.) 

14 



*************************************** 
* 
* 
* 

FUNCTION 15: OPEN FILE 
* 
* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: 0FH * 
* Registers DE: FCB Address * 
* * * Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Open File operation is used to activate a file which 
currently exists in the disk directory for the currently active user 
number. The FDOS scans the referenced disk directory for a match in 
positions 1 through 14 of the FCB referenced by DE (byte sl is 
automatically zeroed), where an ASCII question mark (3FH) matches any 
directory character in any of these positions. Normally, no question 
marks are included and, further, bytes "ex " and "s2" of the FCB are 
zero. 

If a directory element is matched, the relevant directory 
information is copied into bytes d0 through dn of the FCB, thus 
allowing access to the files through subsequent read and write 
operations. Note that an existing file must not be accessed until a 
sucessful open operation is completed. Upon return, the open function 
returns a "directory code" with the value 0 through 3 if the open was 
s uc c e s s f ul ,or 0 F F H ( 2 5 5 dec im a 1 ) i f the f i 1 e can not be f 0 u n d • I f 
question marks occur in the FCB then the first matching FCB is 
activated. Note that the current record (lOcr") must be zeroed by the 
program if the file is to be accessed sequentially from the first 
record. 

(All Information Contained Herein is Proprietary to Digital Research.) 

15 



*************************************** 
* * 
* FUNCTION 16: CLOSE FILE * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: 10H * 
* Registers DE: FCB Address * 
* * * Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Close File function performs the inverse of the open file 
function. Given that the FCB addressed by DE has been previously 
activated through an open or make function (see functions 15 and 22), 
the close function permanently records the new FCB in the referenced 
disk directory. The FCB matching process for the close is identical 
to the open function. The directory code returned for a successful 
close operation is 0, 1, 2, or 3, while a '0FFH (255 decimal) is 
returned if the file name cannot be found in the directory. A file 
need not be closed if only read operations have taken place. If write 
operations have occurred, however, the close o?eration is necessary to 
permanently record the new directory information. 

(All Information Contained Herein is Proprietary to Digital Research.) 

16 



*************************************** 
* * 
* FUNCTION 17: SEARCH FOR FIRST * 
* * 
*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Register C: IlH 
Registers DE: FCB Address 

* 
* 
* 
* 

* Returned Value: * 
* Register A: Directory Code * 
*************************************** 

Search First scans the directory for a match with the file given 
by the FCB addressed by DE. The value 255 (hexadecimal FF) is 
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned 
indicating the file is present. In the case that the file is found, 
the current DMA address is filled with the record containing the 
directory entry, and the relative starting position is A * 32 (i.e., 
rotate the A register left 5 bits, or ADD A five times). Although not 
normally required for application programs, the directory information 
can be extracted from the buffer at this position. 

An ASCI I question mark (63 dec imal , 3F' hexadec imal) in any 
position from 'IfI" through lI ex " matches the corresponding field of any 
directory entry on the default or auto-selected disk drive. If the 
"dr" field contains an ASCII question mark, then the auto disk select 
furiction is disabled, the default disk is searched, with the search 
function returning any matched entry, allocated or free, belonging to 
any user number. This latter function is not normally used by 
application programs, but does allow complete flexibility to scan all 
current directory values. If the "dr" field is not a question mark, 
the "s2 11 byte is automatically zeroed. 

*************************************** 
* * FUNCTION 18: SEARCH FOR NEXT 
* 

* 
* 
* 

*************************************** 
* Entry Parameters: * 
: Reg i s te r C: 128 : 

* Returned Value: * 
* Reg i s te r" A: Di rectory Code * 
*************************************** 

The Search Next function is similar to the Search First 
function, except that the directory scan continues from the last 
matched entry. Similar to function 17, function 18 returns the 
decimal value 255 in A when no more directory items match. 

(All Information Contained Herein is Proprietary to Digital Research.) 

17 



*************************************** 
* * 
* FUNCTION 19: DELETE FILE 
* 

* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: l3H * 
* Registers DE: FCB Address * 
* * 
* Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Delete File function removes files which match the FCB 
addressed by DE. The filename and type may contain ambiguous 
references (i.e., question marks in various positions), but the drive 
select code cannot be ambiguous, as in the Search and Search Next 
func t ions. 

Function 19 returns a decimal 255 
files cannot be found, otherwise a 
returned. 

*************************************** 
* * 
* 
* 

FUNc'rION 2": READ SEQUENTIAL * 
* 

*************************************** 
* 
* 
* 
* 

En t ry Par am e t e r s: 
Register C: 
Registers DE: 

l4H 
FCB Address 

* 
* 
* 
* 

* Retur ned Value: * 
* Register A: Directory Code * 
*************************************** 

if the referenced file or 
value in the range 0 to 3 is 

Given that the FCB addressed by DE has been activated through an 
open or make function (numbers 15 and 22), the Read Sequential 
function reads the next 128 byte record from the file into memory at 
the current DMA address. the record is read from position "cr" of the 
extent, and the hcr'l field is automatically incremented to the next 
record pos i t ion. I f the .. c r" field over flows then the next logical 
extent is automatically opened and the hcr" field is reset to zero in 
preparation for the next read operation. The value 00H is returned in 
the A register if the read operation was successful, while a non-zero 
value is returned if no data exists at the next record position (e.g., 
end of file occurs). 

(All Information Contained Herein is Proprietary to Digital Research.) 

18 



*************************************** 
* 
* FUNCTION 21: WRITE SEQUENTIAL 
* 

* 
* 
* 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register c: 
Registers DE: 

l5H 
FCB Address 

* 
* 
* 

* * * Returned Value: * 
* Register A: Directory Code * 
*************************************** 

Given that the FCb addressed by DE has been activated through an 
open or make function (numbers 15 and 22), the write Sequential 
function writes the 128 byte data record at the current DMA address to 
the file named by the FCB. the record is placed at position "cr" of 
the file, and the ncr" field is automatically incremented to the next 
record position. If the "cr l

' field overflows then the next logical 
extent is automatically opened and the "crli field is reset to zero in 
preparation for the next write operation. write operations can take 
pIa c e in to an ex i s t i ng f i Ie, in w h i c h cas e new 1 y w r itt e n r e cor ds 
overlay those which already exist in the file. Register A = 00H upon 
return from a successful write operation, while a non-zero value 
indicates an unsuccessful write due to a full disk. 

*************************************** 
* * * FUNCTION 2~: MAKE FILE * 
* * 
*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Reg ister C: 
Registers DE: 

16H 
FCB Address 

* 
* 
* 
* 

* Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Make File operation is similar to the open file operation 
except that the FCB must name a file which does not exist in the 
currently referenced disk directory (i.e., the one named explicitly by 
a non-zero "dr" code, or the default disk if ndr" is zero). The FDOS 
creates the file and initializes both the directory and main memory 
value to an empty file. The programmer must ensure that no duplicate 
file names occur, and a preceding delete operation is sufficient if 
there is any possibility of duplication. Upon return, register A = 0, 
1, 2, 0 r 3 i f the 0 per a t ion was s u c c e s s f ul and 0 F F H (2 5 5 dec im a 1 ) i f 
no more directory space is available. The make function has the 
side-effect of activating the FCB and thus a subsequent open is not 
necessary. 

(All Information Contained Herein is Proprietary to Digital Research.) 

19 



*************************************** 
* * 
* FUNC'rION 23: RENAME FILE 
* 

* 
* 

*************************************** 
* En t ry Par am e t e r s: * 
* Register C: 17H * 
* Registers DE: FCB Address * 
* * 
* Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Rename function uses the FCB addressed by DE to change all 
occurrences of the file named in the first 16 bytes to the file named 
in the second 16 bytes. The drive code "dr" at position 0 is used to 
select the drive, while the drive code for the new file name at 
position 16 of the FCB is assumed to be zero. Upon return, register A 
is set to a value between 0 and 3 if the rename was successful, and 
0FFH (255 decimal) if the first file name could not be found in the 
d ire c tory s can. 

*************************************** 
* * 
* FUNC'I'ION 24: RETURN LOGIN VECTOR * 
* * 
*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 18H 

* 
* 
* 

* Returned Value: * 
* Registers HL: Login Vector * 
*************************************** 

The login vector value returned by CP/M is a 16-bit value in HL, 
where the least significant bit of L corresponds to the first drive A, 
and the high order bit of H corresponds to the sixteenth drive, 
labelled P. A .10.1 bit indicates that the drive is not on-line, while 
a .. 1 II bit ITt ark san d r i vet hat i sac t i vel yon -1 in e due to an ex p 1 i cit 
disk drive selection, or an implicit drive select caused by a file 
operation which specified a non-zero "dr" field. Note that 
compatibility is maintained with earlier releases, since registers A 
and L contain the same values upon return. 

(All Information Contained Herein is Proprietary to Digital Research.) 

20 



*************************************** 
* 
* 
* 

FUNCTION 25: RETURN CURRENT DISK 
* 
* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: 19H * 
* * * Returned Value: * 
* Register A: Current Disk * 
*************************************** 

Function 25 returns the currently selected default disk number 
in register A. The disk numbers range from 0 through 15 corresponding 
to drives A through P. 

*************************************** 
* * FUNCTION 26: SET DMA ADDRESS 
* 

* 
* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: lAH * 
* Registers DE: DMA Address * 
* * 
*************************************** 

':DMAII is an acronym for Direct Memory Address, which is often 
used 1n connection with disk controllers which directly access the 
memory of the mainframe computer to transfer data to and from the disk 
subsystem. Al though many compu ter sys terns use non-DMA access (i. e. , 
the data is transfeced through programmed I/O operations), the DMA 
address has, in CP/M, come to mean the address at which the 128 byte 
data record resides before a disk write and after a disk read. Upon 
cold start, warm start, or disk system reset, the DMA address is 
automatically set to BOOT+0080H. The Set DMA function, however, can 
be used to change this default value to address another area of memory 
where the data records reside. Thus, the DMA address becomes the 
value specified by DE until it is changed by a subsequent Set DMA 
function, cold start, warm start, or disk system reset. 

(All Information Contained Herein is Proprietary to Digital Research.) 

21 



*************************************** 
* * FUNCTION 27: GET ADDR(ALLOC) 

* 
* 
* * 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: IBH 

* 
* 
* * Returned Value: * 

* Registers HL: ALLOC Address * 
*************************************** 

An '·allocation vector" is maintained in main memory for each 
on-line disk drive. Various system programs use the information 
provided by the allocation vector to determine the amount of remaining 
storage (see the STAT program). Function 27 returns the base address 
of the allocation vector for the currently selected disk drive. The 
allocation information may, however, be invalid if the selected disk 
has been marked read/only. Although this function is not normally 
used by application programs, additional details of the allocation 
vector are found in the "CP/M Alteration Guide." 

*************************************** 
* * 
* FUNCTION 28: WRITE PROTECT DISK * 
* * 
*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: ICH 

* 
* 
* 

*************************************** 

The disk write protect function provides temporary write 
protection for the currently selected disk. Any attempt to write to 
the disk, before the next cold or warm start operation produces the 
message 

Bdos Err on d: R/O 

(All Information Contained Herein is Proprietary to Digital Research.) 

22 



*************************************** 
* 
* 
* 

FUNCTION 29: GET READ/ONLY VECTOR 
* 
* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: IDH * 
* * 
* Returned Value: * 
* Registers HL: R/O Vector Value* 
*************************************** 

Function 29 returns a bit vector in register pair BL which 
indicates drives which have the temporary read/only bit set. Similar 
to function 24, the least significant bit corresponds to drive A, 
while the most significant bit corresponds to drive P. The R/O bit is 
set either by an explicit call to function 28, or by the automatic 
software mechanisms within CP/M which detect changed disks. 

*************************************** 
* * 
* FUNCTION 30: SET FILE ATTRIBUTES * 
* * 
*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Register C: 
Registers DE: 

IEH 
FCB Address 

* 
* 
* 
* 

* Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Set File Attributes function allows programmatic 
manipulation of permanent indicators attached to files. In 
particular, the R/O and System attributes (tIl and t21) can be set or 
reset. The DE pair addresses an unambiguous file name with the 
appropriate attributes set or reset. Function 30 searches for a 
match, and changes the matched directory entry to contain the selected 
indicators. Indicators fl' through f41 are not presently used, but 
may be useful for applications programs, since they are not involved 
in the matching process during file open and close operations. 
Indicators f5 1 through f8 1 and t3 1 are reserved for future system 
expansion. 

(All Information Contained Herein is Proprietary to Digital Research.) 

23 



*************************************** 
* * 
* 
* 

FUNCTION 31: GET ADDR{DISK PARMS) * 
* 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: IFH 

* 
* 
* 

* Returned Value: * 
* Registers HL: DPB Address * 
*************************************** 

The address of the BIOS resident disk parameter block is 
returned in HL as a result of this function call. This address can be 
used for either of two purposes. First, the disk parameter values can 
be extracted for display and space computation purposes, or transient 
programs can dynamically change the values of current disk parameters 
when the disk environment changes, if required. Normally, application 
programs will not require this facility. 

*************************************** 
* * * FUNCTION 32: SET/GET USER CODE * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: 20H * 
* Reg i s t erE: 0 F F H (g e t) 0 r * 
* User Code (set) * 

* 
* Returned Value: * 
* Register A: Current Code or * 
* (no value) * 
***~*********************************** 

An application program can change or interrogate the currently 
active user number by calling function 32. If register E = 0FFH, then 
the value of the current user number is returned in register A, where 
the value is in the range 0 to 31. If register E is not 0FFH, then 
the current user number is changed to the value of E (modulo 32). 

(All Information Contained Herein is Proprietary to Digital Research.) 

24 



*************************************** 
* 
* FUNc'rION 33: READ RANDOM 
* 

* 
* 
* 

*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Regis ter C: 
Registers DE: 

21H 
FCB Address 

* 
* 
* 
* * Returned Value: * 

* Reaister A: Return Code * 
*************************************** 

The Read Random function is similar to the sequential file read 
operation of previous releases, except that the read operation takes 
place at a particular record number, selected by the 24-bit value 
constructed from the three byte field following the FCB (byte 
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence 
of 24 bits is stored with least significant byte first (r0), middle 
byte next (rl), and high byte last (r2). CP/M does not reference byte 
r2, except in computing the size of a file (function 35). Byte r2 
must be zero, however, since a non-zero value indicates overflow past 
the end of file. 

Thus, the r0,rl byte pair is treated as a double-byte, or "word" 
value, which contains the record to read. This value ranges from 0 to 
65535, providing access to any particular record of the 8 megabyte 
file. In order to process a file using random access, the base extent 
(extent 0) must first be opened. Although the base extent mayor may 
not contain any allocated data, this ensures that the file is properly 
recorded in the directory, and is visible in DIR requests. The 
selected record number is then stored into the random record field 
(r0,rl), and the BDOS is called to read the record. Upon return from 
the call, register A either contains an error code, as listed below, 
or the value 00 indicating the operation was successful. In the 
latter case, the current DMA address contains the randomly accessed 
record. Note that contrary to the sequential read operation, the 
record number is not advanced. Thus, subsequent random read 
operations continue to read the same record. 

Upon each random read operation, the logical extent and current 
record values are automatically set. Thus, the file can be 
sequentially read or written, starting from the current randomly 
accessed position. Note, however, that in this case, the last 
randomly read record will be re-read as you switch from random mode to 
sequential read j and the last record will be re-written as you switch 
to a sequential write operation. You can, of course~ simply advance 
the random record position following each random read or write to 
obtain the effect of a sequential I/O operation. 

Error codes returned in register A following a random read are 
listed below. 

(All Information Contained Herein is Proprietary to Digital Research.) 

25 



01 reading unwritten data 
02 (not returned in random mode) 
03 cannot close current extent 
04 seek to unwritten extent 
05 (not returned in read mode) 
06 seek past physical end of disk 

Error code 01 and 04 occur when a random read operation accesses a 
data block which has not been previously written, or an extent which 
has not been created, which are equivalent conditions. Error 3 does 
not normally occur under proper system operation, but can be cleared 
by simply re-reading, or re-opening extent zero as long as the disk is 
not physically write protected. Error code 06 occurs whenever byte r2 
is non-zero under the current 2.0 release. Normally, non-zero return 
codes can be treated as missing data, with zero return codes 
indicating operation complete. 

(All Information Contained Herein is Proprietary to Digital Research.) 

26 



*************************************** 
* 
* FUNCTION 34: WRITE RAND~1 
* 

* 
* 
* 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 
Registers DE: 

228 
FCB Address 

* 
* 
* 

* * * Returned Value: * 
* Register A: Return Code * 
*************************************** 

The Write Random operation is initiated similar to the Read 
Random. call, except that data is written to the disk from the current 
DMA address. Further, if the disk extent or data block which is the 
target of the write has not yet been allocated, the allocation is 
performed before the write operation continues. As in the Read Random 
operation, the random record number is not changed as a result of the 
write. The logical extent number and current record positions of the 
file control block are set to correspond to the random record which is 
being written. Again, sequential read or write operations can 
commence following a random write, with the notation that the 
currently addressed record is either read or rewritten again as the 
sequential operation begins. You can also simply advance the random 
record position following each write to get the effect of a sequential 
write operation. Note that in particular, reading or writing the last 
record of an extent in random mode does not cause an automatic extent 
switch as it does in sequential mode. 

The error codes returned by a random write are identical to the 
random read operation with the addition of error code 05, which 
indicates that a new extent cannot be created due to directory 
overflow. 

(All Information Contained Herein is Proprietary to Digital Research.) 

27 



*************************************** 
* * * FUNCTION 35: COMPUTE FILE SIZE * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: 23H * 
* Registers DE: FCB Address * 
* * 
* Returned Value: * 
* Random Record Field Set * 
*************************************** 

When computing the size of a file, the DE register pair 
addresses an FCB in random mode format (bytes r0, rl, and r2 are 
present). The FCB contains an unambiguous file name which is used in 
the directory scan. Upon return, the random record bytes contain the 
"virtual" file size which is, in effect, the record address of the 
r e cor d f 011 ow i ng the end 0 f the f i 1 e • if, follow i ng a call to 
function 35, the high record byte r2 is 01, then the file contains the 
maximum record count 65536. Otherwise, bytes r0 and rl constitute a 
16-bit value (r0 is the least significant byte, as before) which is 
the file size. 

Data can be appended to the end of an existing file by simply 
calling function 35 to set the random record position to the end of 
file, then performing a sequence of random writes starting at the 
preset record address. 

The virtual size of a file corresponds to the physical size when 
the file is written sequentially. If, instead, the file was created 
i n ran d om mod e and II hoI e s I. ex i s tin the all 0 cat ion, the nth e f i 1 e may 
in fact contain fewer records than the size indicates. If, for 
example, only the last record of an eight megabyte file is written in 
ran d om mod e (i. e., r e cor d n u m be r 6 5 53 5), the nth e vir t ua 1 s i z e i s 
65536 records, although only one block of data is actually allocated. 

(All Information Contained Herein is Proprietary to Digital Research.) 

28 



*************************************** 
* * * FUNC'rION 36: SET RANDOM RECORD * 
* * 
*************************************** 
* Entry Parameters: * 
* Reg ister C: 24H * 
* Registers DE: FCB Address * 
* * 
* Returned Value: * 
* Random Record Field Set * 
*************************************** 

The Set Random Record function causes the BOOS to automatically 
produce the random record position from a file which has been read or 
written sequentially to a particular point. The function can be 
use f ul in t \'/ 0 way s • 

First, it is often necessary to initially read and scan a 
sequential file to extract the positions of various "key" fields. As 
each key is encountered, function 36 is called to compute the random 
record position for the data corresponding to this key. If the data 
unit size is 128 bytes, the resulting record position is placed into a 
table with the key for later retrieval. After scanning the entire 
file and tabularizing the keys and their record numbers, you can move 
instantly to a particular keyed record by performing a random read 
using the corresponding random record number which was saved earlier. 
'rhe scheme is easily generalized when var iable record lengths are 
involved since the program need only store the buffer-relative byte 
position along with the key and record number in order to find the 
exact starting position of the keyed data at a later time. 

A second use of function 36 occurs when switching from a 
sequential read or write over to random read or write. A file is 
sequentially accessed to a particular point in the file, function 36 
is called which sets the record number, and subsequent random read and 
write operations continue from the selected point in the file. 

(All Information Contained Herein is Proprietary to Digital Research.) 

29 



3. A SAMPLE FILE-TO-FILE COpy PROGRAH. 

The program shown below provides a relatively simple example of 
file operations. Irhe program source file is created as COPY.ASM using 
the CP/M ED program and then assembled using ASM or MAC, resulting in 
a .. HEX" file. 'Ilhe LOAD program is the used to produce a COPY. COM file 
which executes directly under the cepe The program begins by setting 
the stack pointer to a local area, and then proceeds to move the 
second name from the default area at 006CH to a 33-byte file control 
block called DFCS. The DFCB is then prepared for file operations by 
clearing the current record field. At this point, the source and 
destination FCB's are ready for processing since the SFCB at 005CH is 
properly set-up by the CCP upon entry to the COpy program. That is, 
the first name is placed into the default fcb, with the proper fields 
zeroed, including the current record field at 007CH. The program 
continues by opening the source file, deleting any exising destination 
file, and then creating the destination file. If all this is 
successful, the prog ram loops a t the label COpy un til each record has 
been read from the source file and placed into the destination file. 
upon completion of the data transfer, the destination file is closed 
and the program returns to the CCP command level by jumping to BOOT. 

0000 = 
0005 = 
005c = 
005c = 
006c = 
0080 = 
0100 = 

0009 = 
000f = 
0010 = 
0013 = 
0014 = 
0015 = 
0016 = 

0100 
0100 311b02 

0103 0e10 

i 
boot 
bdos 
fcbl 
sfcb 
fcb2 
dbuff 
tpa 

printf 
openf 
closef 
deletef 
readf 
writef 
makef 

sample file-to-file copy program 

at the ccp level, the command 

copy a:x.y b:u.v 

copies the file named x.y from drive 
a to a file named u.v on drive b. 

equ 
equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 
equ 
equ 
equ 

org 
lxi 

0000h 
0005h 
005ch 
fcbl 
006ch 
0080h 
0100h 

9 
15 
16 
19 
20 
21 
22 

system reboot 
bdos entry point 
fir s t f i 1 e n am e 
source fcb 
second file name 
def aul t buf fer 
beg inning of tpa 

print buffer func# 
open file func# 
close file func# 
delete file func# 
sequential read 
sequential write 
make file func# 

tpa beginning of tpa 
sp,Stacki local stack 

move second file name to dfcb 
mvi c,16 ; half an fcb 

(All Information Contained Herein is Proprietary to Digital Research.) 

30 



0105 116c00 
0108 21da01 
010b la mfcb: 
010c 13 
010d 77 
010e 23 
010f 0d 
0110 c20b01 

0113 af 
0114 32fa01 

0117 115c00 
011a cd6901 
011d 118701 
0120 3c 
0121 cc6101 

0124 Ilda01 
0127 cd7301 

012a Ilda01 
012d cd8201 
0130 119601 
0133 3c 
0134 cc6101 

0137 115c00 copy: 
013a cd7801 
013d b7 
013e c25101 

0141 11da01 
0144 cd7d01 
0147 11a 901 
014a b7 
014b c46101 
014e c3 3701 

, 

lxi 
lxi 
Idax 
inx 
mov 
inx 
dcr 
jnz 

d,fcb2 
h,dfcb 
d 
d 
m,a 
h 
c 
mfcb 

source of move 
destination fcb 
source fcb 
ready next 
dest fcb 
ready next 
count 16 ••• 0 
loop 16 times 

name has been moved, zero cr 
xra a a = 00h 
sta dfcbcr; current rec = 0 

source and destination fcb's ready 

lxi 
call 
lxi 
inr 
cz 

d, s fc b 
open 
d,nofile; 
a 
finis 

source file 
error if 255 
ready message 
255 becomes 0 
done if no file 

source file open, prep destination 
lxi d,dfcb destination 
call delete remove if present 

lxi 
call 
lxi 
inr 
cz 

d,dfcb 
make 
d,nodir 
a 
finis 

destination 
create the file 
ready message 
255 becomes 0 
done if no dir space 

source file open, aest file open 
copy until end of file on source 

lxi 
call 
ora 
jnz 

d,sfcb 
read 
a 
eofile 

source 
read next record 
end of file? 
skip write if so 

not end of file, write the record 
lxi d,dfcb destination 
call write write record 
lxi d,space ready message 
ora a 00 if write ok 
cnz finis end if so 
jmp copy loop until eof 

eofile: ; end of file, close destination 
0151 Ilda01 
0154 cd6e01 
0157 21bb01 
015a 3c 
015b cc6101 

lxi d,dfcb destination 
call close 255 if error 
lxi h,wrprot; ready message 
inr a 255 becomes 00 
cz finis shouldn't happen 

copy operation complete, end 

(All Information Contained Herein is Proprietary to Digital Research.) 

31 



015e llcc01 lxi d,normal; ready message 
; 
finis: ; write message given by de, reboot 

0161 0e09 
0163 cd0500 
0166 c30000 

mvi c,printf 
call bdos 
j mp boot 

wr i te message 
reboot system 

system interface subroutines 
(all return directly from bdos) 

0169 0e0f open: mvi 
016b c30500 jmp 

; 
016e 0e10 close: mvi 
0170 c30500 jmp 

; 
01730e13 delete: mvi 
0175 c30500 jmp 

, 
o 1 7 8 0 e 1 4 read : m v i 
017a c30500 jmp 

, 
017d 0e15 write: mvi 
" 1 7 f c 3 0 5 0 0 j mp 

, 
0182 0e16 make: mvi 
0184 c30500 jmp 

0187 
0196 
01a9 
01bb 
01cc 

6e6f20fnofile: 
6e6f209nodir: 
6f7574fspace: 
7 7 7 269 5w r pro t : 
6 3 6 f 7 0 (1 norm a 1 : 

console 
db 
db 
db 
db 
db 

c,openf 
bdos 

c,closef 
bdos 

c,deletef 
bdos 

c, readf 
bdos 

c,writef 
bdos 

c,makef 
bdos 

me s sages 
'no source fileS' 
'no directory spaceS' 
'out of data spaceS' 
'write protected?$' 
'copy completeSt 

data areas 
01da 
01fa = 

01fb 

o 21b 

dfcb: ds 33 
afcbcr equ dfcb+32 

Cis 32 
stack: 

end 

destination fcb 
current record 

1 6 1 eve 1 s tack 

Note that there are several simplifications in this particular 
program. First, there are no checks for invalid file names which 
could, for example, contain ambiguous references. This situation 
could be detected by scanning the 32 byte default area starting at 
location 005CH for ASCII question marks. A check should also be made 
to ensure that the file names have, in fact, been included (check 
locations 005DH and 006DH for non-blank ASCII characters). Finally, a 
check should be made to ensure that the source and destination file 
names are different. A speed improvement could be made by buffering 
more data on each read operation. One could, for example, determine 

(All Information Contained Herein is Proprietary to Digital Research.) 

32 



the size of memory by fetching FBASE from location 0006H and use the 
entire remaining portion of memory for a data buffer. In this case, 
the progr~mer simply resets the DNA address to the next successive 
128 byte area before each read. Upon writing to the destination file, 
the DMA address is reset to the beginning of the buffer and 
incremented by 128 bytes to the end as each record is transferred to 
the destination file. 

(All Information Contained Herein is Proprietary to Digital Research.) 

33 



4. A SAMPLE FILE DUHP UfrILITY. 

'rhe file dump program shown below is slightly more complex than 
the simple copy program given in the previous section. The dump 
program reads an input file, specified in the CCP command line, and 
displays the content of each record in hexadecimal format at the 
console. Note that the dump program saves the CCp's stack upon entry, 
resets the stack to a local area, and restores the CCp's stack before 
returning directly to the CCP. Thus, the dump program does not 
perform and warm start at the ena of processing. 

0100 
0005 = 
0001 = 
0002 = 
0009 = 
000b = 
o 00f = 
0014 = 

005c = 
0080 = 

o 00d = 
000a = 

005c = 
005d = 
0065 = 
0068 = 
006b = 
007c = 
007d = 

0100 210000 
0103 39 

0104 221502 

0107 315702 

010a cdc101 
010d feff 
010£ c21b01 

0112 Ilf301 
0115 cd9c01 
0118 c35101 

DUMP program reads input file and displays hex data 

org 100h 
bdos egu 0005h ;dos entry point 
cons equ 1 ; read console 
type f equ 2 ; type function 
prlntf equ 9 ;buffer print entry 
brkf equ 11 ;break key function (true if char 
openf egu 15 ; file open 
readf equ 20 ; read function 
; 
fcb egu 5ch ; file con trol block address 
buff equ 80h ; input disk buffer address 

non graphic characters 
cr equ 0ah ;carriage return 
If equ 0ah ;line feed 

fcbdn 
fcbfn 
fcbft 
fcbrl 
fcbrc 
fcbcr 
fcbln 

file 
equ 
equ 
equ 
equ 
egu 
equ 
equ 

control block definitions 
fcb+0 i disk name 
f c b+ 1 i f i 1 e n am e 
fcb+9 idisk file type (3 characters) 
fcb+12 ifile's current reel number 
fcb+15 ifile's record count (0 to 128) 
fcb+32 icurrent (next) record number (0 
fcb+33 itcb length 

set up stack 
lxi h,0 
dad sp 
entry stack pointer in hI from the ccp 
shld oldsp 
set sp to local stack area (restored at finis) 
lxi sp,stktop 
read and print successive buffers 
call setup ;set up input file 
cpi 255 ;255 if file not present 
jnz openok ;skip if open is ok 

file not there, give error message and return 
lxi d,opnrnsg 
call err 
jrnp finis ito return 

(All Information Contained Herein is Proprietary to Digital Research.) 

34 



011b 3e80 
011d 321302 

0120 210000 

0123 e5 
0124 cda201 
0127 el 
0128 da5101 
012b 47 

012c 7d 
012d e60f 
012f c24401 

0132 cd7201 

0135 cd5901 

0138 0f 
0139 da5101 

013c 7c 
013d cd8f01 
0140 7d 
0141 cd8f01 

0144 23 
0145 3e20 
0147 cd6501 
014a 78 
014b cd8f01 
014e c32301 

0151 cd7201 
0154 2a1502 
0157 f9 

0158 c9 

0159 e5d5c5 
015c 0e0b 
015e cd0500 
0161 cldlel 

openok: 

i 
9 loop: 

nonum: 

i 
finis: 

i 
break: 

iopen operation ok, set buffer index to end 
mvi a,80h 
sta ibp iset buffer pointer to 80h 
hI contains next address to print 
lxi h,0 istart with 0000 

h 
gnb 
h 
finis 
b,a 

isave line position 

irecal1 line position 
icarry set by gnb if end file 

push 
call 
pop 
jc 
mov 
print 
check 
mov 
ani 
jnz 
print 

hex values 
for line fold 

a,l 
0fh icheck low 4 bits 
nonum 

1 ine number 
call cr If 

check for break key 
call break 
accum lsb = I if character ready 
rrc iinto carry 
jc finis idon't print any more 

mov 
call 
mov 
call 

inx 
mvi 
call 
mov 
call 
j mp 

a,h 
phex 
a,l 
phex 

h 
a,' , 
pchar 
a,b 
phex 
gloop 

ito next line number 

end of dump, return to ccp 
(note that a jmp to 0000h reboots) 
call crlf 
lhld oldsp 
sphl 
stack pointer contains ccp's stack location 
ret i to the ccp 

subr ou tines 

icheck break key (actually any key will do) 
push h! push d! push bi environment saved 
mvi c,brkf 
call bdos 
pop b! pop o! pop hi environment restored 

(All Information Contained Herein is Proprietary to Digital Research.) 

35 



0164 c9 ret 
i 
pchar: iprint a character 

0165 e5d5c5 push h! push d! push bi saved 
0168 0e02 mvi c,typef 
016a Sf mov e,a 
016b cd0500 call bdos 
016e cldlel pop b! pop d! pop hi restored 
0171 c9 ret 

i 
cr If: 

0172 3e0d mvi a,cr 
0174 cd6501 call pchar 
0177 3e0a mvi a,lf 
0179 cd6501 call pchar 
017c c9 ret 

pnib: iprint nibble in reg a 
017d e60f ani 0fh i low 4 bits 
017f fe0a cpi 10 
0181 d28901 jnc p10 

less than or equal to 9 
0184 c630 adi 10 1 

0186 c38b01 jmp prn 

greater or equal to 10 
0189 c637 p10: adi I a I - 10 
018b cd6501 prn: call pchar 
018e c9 ret 

i 
phex: iprint hex char in reg a 

018f f5 push psw 
0190 0f rrc 
0191 0f rrc 
0192 0f rrc 
0193 0f rrc 
0194 cd7d01 call pnib iprint nibble 
0197 fl pop psw 
0198 cd7d01 call pnib 
019b c9 ret 

er r: iprint error message 
d,e addresses message ending with 1i$1o 

019c 0e09 mvi c,printf iprint buffer function 
01ge cd0500 call bdos 
01al c9 ret 

i 
gnb: iget next byte 

01a2 3a1302 Ida ibp 
01a5 fe80 cpi 80h 
01a7 c2b301 jnz g0 

read another buffer 

(All Information Contained Herein is Proprietary to Digital Research.) 

36 



01aa cdce01 
01ad b7 
01ae cab301 

fllbl 37 
01b2 c9 

01b3 Sf 
01b4 1600 
01b6 3c 
01b7 321302 

01ba 218000 
01bd 19 

01be 7e 

01bf b7 
01c0 c9 

01cl af 
01c2 ~27c00 

01c5 1l5c00 
01c8 0e0f 
01ca cd0500 

01cd c9 

01ce e 5d5c5 
01dl 115c00 
01d4 0e14 
01d6 cd0500 
01d9 cldlel 
01dc c9 

i 
g0: 

i 
setup: 

i 
diskr: 

call diskr 
ora a izero value if read ok 
jz g0 ifor another byte 
end of data, return with carry set for eof 
stc 
ret 

iread the byte at buff+reg a 
mov e,a ils byte of buffer index 
mvi d,0 idouble precision index to de 
inr a iindex=index+l 
sta ibp iback to memory 
pointer is incremented 
save the current file address 
lxi h,buff 
dad d 
absolute character address is in hI 
mov a,m 
byte is in the accumulator 
ora a ireset carry bit 
ret 

iset up file 
open the file for input 
xra a izero to accum 
sta fcbcr iclear current record 

lxi d,fcb 
mvi c,openf 
call bdos 
255 in accum if open error 
ret 

iread disk file record 
push h! push d! push b 
lxi d,fcb 
mvi c., readf 
call bdos 
pop b! pop d! pop h 
ret 

fixed message area 
01dd 46494c0signon: db 'file dump version 2.0$1 
01f3 0d0a4e00pnrnsg: db cr,lf,' no input file present on disk$' 

0213 
0215 

0217 

0257 

i 
ibp: 
oldsp: 

stktop: 

var iable area 
ds 2 
ds 2 

stack area 
ds 64 

end 

iinput buffer pointer 
ientry sp value from ccp 

ireserve 32 level stack 

(All Information Contained Herein is Proprietary to Digital Research.) 

37 



5. A SAMPLE RANDOM ACCESS PROGRAM. 

This manual is concluded with a rather extensive, but complete 
example of random access operation. The program listed below performs 
the simple function of reading or writing random records upon command 
from the terminal. Given that the program has been created, 
assembled, and placed into a file labelled RANDOM.COM, the CCP ,level 
command: 

RANDOM X .DAT 

starts the test program. The program looks for a file by the name 
X.DAT (in this particular case) and, if found, proceeds to prompt the 
console for input. If not found, the file is created before the 
prompt is given. Each prompt takes the form 

next command? 

and is followed by operator input, terminated by a carriage return. 
The input commands take the form 

nW nR Q 

where n is an integer value in the range 0 to 65535, and W, R, and Q 
are simple command characters corresponding to random write, random 
read, and quit processing, respectively. If the W command is issued, 
the RANDOM program issues the prompt 

type data: 

The operator then responds by typing up to 127 characters, followed by 
a carriage return. RANDOM then writes the character string into the 
X.DAT file at record n. If the R command is issued, RANDOM reads 
record number n and displays the string value at the console. If the 
Q command is issued, the X.DAT file is closed, and the program returns 
to the console command processor. In the interest of brevity, the 
only er ror message is 

error, try again 

The program begins with an initialization section where the 
input file is opened or created, followed by a continuous loop at the 
label "ready" where the individual commands are interpreted. The 
default file control block at 005CH and the default buffer at 0080H 
are used in all disk operations. The utility subroutines then follow, 
which contain the principal input line processor, called '·readc. 1I 

rr'h is pa r ticul ar prog ram shows the el emen ts of random access 
processing, and can be used as the basis for further program 
developmen t. 

(All Information Contained Herein is Proprietary to Digital Research.) 

38 



0100 

0000 = 
0005 = 

0001 = 
0002 = 
0009 = 
000a = 
000c = 
000f = 
0010 = 
0016 = 
0021 = 
0022 = 

005c = 
0070 = 
o 07f = 
0080 = 

000d = 
000a = 

0100 31bc0 

0103 0e0c 
0105 cd050 
0108 fe20 
0l0a d2160 

010d Illb0 
0110 cdda0 
0113 c3000 

0116 0e0f 
0118 l15c0 
011b cd050 
011e 3c 
011f c2370 

.*************************************************** , 

.* * , 
i* sample random access program for cp/m 2.0 * 
.* * , 
.*************************************************** , 

i 
reboot 
bdos 

org 

equ 
egu 

coninp equ 
conou t equ 
pstr ing equ 
rs tr ing equ 
version equ 
openf equ 
closef equ 
makef equ 
readr equ 
wr iter equ 
i 
feb 
ranrec 
ranovf 
buff 

cr 
If 

equ 
equ 
equ 
equ 

equ 
egu 

100h 

0000h 
0005h 

1 
2 
9 
10 
12 
15 
16 
22 
33 
34 

005ch 
fcb+33 
fcb+35 
0080h 

0dh 
0ah 

ibase of tpa 

i system reboot 
ibdos entry point 

iconsole input function 
iconsole output function 
i p r i n t s t ring un til • $ • 
iread console buffer 
ireturn version number 
;file open function 
iclose function 
;make file function 
; read random 
;write ranaom 

;default file control block 
;random record position 
;high order (overflow) byte 
;buffer address 

; car r i ag ere t urn 
;line feed 

i 
.*************************************************** , 
• * , 
i* load SP, set-up file for random access 

* 
* 

.* * , 

.*************************************************** , 
lxi sp,s tack 

version 2.0? 
rnvi c,version 
call bdos 
cpi 20h iversion 2.0 or better? 
jnc ve r sok 
bad version, me s sage and go back 
lxi d, badver 
call print 
j mp reboot 

ve r sok: 
correct version for random access 
mvi c,openf ;open default fcb 
lxi d,fcb 
call bdos 
inr a ierr 255 becomes zero 
jnz ready 

cannot open file, so create it 

(All Information Contained Herein is Proprietary to Digital Research.) 

39 



0122 0e16 
0124 IlSc0 
0127 cd0S0 
012a 3c 
012b c2370 

012e 113a0 
0131 cdda0 
0134 c3000 

0137 cde50 
013a 227d0 
013d 2l7f0 
0140 3600 
0142 fe51 
0144 c2560 

0147 0e10 
0149 115c0 
0l4c cd050 
0l4f 3c 
0150 cab90 
0153 c3000 

0156 fe57 
0158 c2890 

015b l14d0 
015e cdda0 
0161 0e7f 
0163 21800 

0166 c5 
0167 e5 
0168 cdc20 
016b el 

mvi c,makef 
lxi d,fcb 
call bdos 
inr a ierr 255 becomes zero 
jnz ready 

cannot create file, directory full 
lxi d,nospace 
call print 
jmp reboot i back to ccp 

; 
.*************************************************** , 
• * , 
i * loop back to .. ready II after each command 

* 
* 

.* * , 

.*************************************************** , 

ready: 
file is ready for processing 

call 
shld 
lxi 
mvi 
cpi 
jnz 

quit 
mvi 
lxi 
call 
inr 
jz 
jmp 

readcorn ;read next command 
ranrec istore input record# 
h,ranovf 
m,0 iclear high byte if set 
IQI iquit? 
notq 

processing, close file 
c,closef 
d, fcb 
bdos 
a ierr 255 becomes 0 
error i er ror message, retry 
reboot ; back to ccp 

; 
.*************************************************** , 
.* * , 
i* end of quit command, process write * 
.* * , 
.*************************************************** , 
notq: 

not the quit command, random write? 
cpi IW I 

jnz notw 

this is a random wr i te, fill buffer until cr 
lxi d, da trnsg 
call print idata prompt 
mvi c,127 iUP to 127 characters 
lxi h,buff idestination 

r loop: i read next character to buff 
push b ; save counter 
push h inext destination 
call getchr icharacter to a 
pop h irestore counter 

(All Information Contained Herein is Proprietary to Digital Research.) 

40 



016c cl 
016d £e0d 
016£ ca780 

0172 77 
0173 23 
0174 0d 
0175 c2660 

0178 3600 

017a 0e22 
017c 115c0 
017£ cd050 
0182 b7 
0183 c2b90 
0186 c3370 

0189 fe.52 
018b c2b90 

018e 0e21 
0190 115c0 
0193 cd050 
0196 b7 
0197 c2b90 

019a cdcf0 
0190 0e80 
019£ 21800 

01a2 7e 
01a3 23 
01a4 e67f 
01a6 ca370 
01a9 c5 
01aa e5 
01ab fe20 
01ad d4c80 
01b0 el 
01bl cl 
01b2 0d 
01b3 c2a20 
01b6 c3370 

er loop: 

pop b 
cpi cr 
jz erloop 

irestore next to fill 
iend of line? 

not end, store character 
mov 
inx 
dcr 
jnz 

m,a 
h 
c 
rloop 

inext to fill 
icounter goes down 
iend of buffer? 

end of read loop, store 00 
mvi m,0 

write the record to selected record number 
mvi c,writer 
lxi d,fcb 
call bdos 
ora 
jnz 
jmp 

a 
error 
ready 

ierror code zero? 
i message if not 
ifor another record 

i 
i*************************************************** 
. * , 
i* end of write command, process read 

* 
* 

.* * , 

.*************************************************** , 
notw: 

wloop: 

not a write command, read record? 
cpi 'R I 
jnz error iskip if not 

read random record 
mvi c,readr 
lxi d,fcb 
call bdos 
ora 
jnz 

a 
error 

ireturn code 00? 

read was successful, write to console 
c all c r If i new 1 in e 
mvi c,128 imax 128 characters 
lxi h,buff inext to get 

mov 
inx 
ani 
jz 
push 
push 
cpi 
cnc 
pop 
pop 
dcr 
jnz 
jmp 

a,m 
h 
7fh 
ready 
b 
h 
I I 

pu tchr 
h 
b 
c 
wloop 
ready 

inext character 
inext to get 
imask parity 
ifor another comwand if 00 
isave counter 
isave next to get 
igraphic? 
iskip output if not 

i count=count-l 

(All Information Contained Herein is Proprietary to Digital Research.) 

41 



0lb9 11590 
0lbc cdda0 
0lbf c3370 

0lc2 0e0l 
0lc4 cd050 
0lc7 c9 

0lc8 0e02 
0lca Sf 
0lcb cd050 
0lce c9 

0lcf 3e0d 
0ldl cdc80 
0ld4 3e0a 
0ld6 cdc80 
0ld9 c9 

0lda d5 
0ldb cdcf0 
0lde dl 
0ldf 0e09 
0lel cd050 
0le4 c9 

0leS l16b0 
0le8 cdda0 
0leb 0e0a 
0led l17a0 
0lf0 cd050 

; 
;*************************************************** 
.* * , 
;* end of read command, all errors end-up here 
. * , * 

* 
;*************************************************** 

er ror: 

. , 

lxi 
call 
jmp 

d,errmsg 
print 
ready 

;*************************************************** 
.* * , 
;* utility subroutines for console i/o * 
.* * , 
.*************************************************** , 
getchr: 

putchr: 

cr If: 

; 
pr int: 

read com : 

;read next console character to a 
mvi c,coninp 
call bdos 
ret 

;write character from a to console 
mvi c, conou t 
mov e,a ;character to send 
call bdos ;send character 
ret 

;send carriage return line feed 
mvi 
call 
mvi 
call 
ret 

;print 
push 
call 
pop 
mvi 
call 
ret 

a , c r ; car r i ag ere t ur n 
putchr 
allf ;line feed 
pu tchr 

the buffer addressed by de until $ 
d 
crlf 
d ;new line 
c, pstr ing 
b do s ; p r in t the s t ring 

; read 
lxi 
call 

the next command line to the conbuf 
d,prompt 

mvi 
lxi 
call 
command 

print ; command? 
c, rstr ing 
d ,conbuf 
bdos ;read command line 
line is present, scan it 

(All Information Contained Herein is Proprietary to Digital Research.) 

42 



01f3 210010 
01f6 117clO 

h,0 ;start with 010100 
d,conlin;command line 

01f9 la readc: 

lxi 
lxi 
ldax d ;next command character 

01fa 13 
01fb b7 
01fc c8 

fj'lfd d6310 
01ff fe0a 
0201 d2130 

02104 29 
02105 4d 
02106 44 
02107 29 
02108 29 
02109 109 
o 2 lOa 85 
o 210b 6f 
020c d2f91O 
o 210f 24 
0210 c3f91O 

0213 c6310 
"215 fe61 
0217 d8 

0218 e65f 
o 21a c9 

; 

endrd: 

inx 
ora 

d ito next command position 
a ;cannot be end of command 

rz 
not zero, numeric? 
sui '0' 
cpi 110 ;carry if numeric 
jnc endrd 
add-in next digit 
dad h ;*2 
mov 
mov 
dad 
dad 
dad 
add 
mov 
jnc 
inr 
jmp 

c,l 
b,h 
h 
h 
b 
1 
1,a 
readc 
h 
readc 

;bc = value * 2 
;*4 
;*8 
;*2 + *8 = *110 
; +d ig i t 

;for another char 
;overflow 
;for another char 

end of read, restore value in a 
adi '0' ; command 
cpi 'a' ; translate case? 
rc 
lower case, mask lower case bits 
ani 1101$ll11b 
ret 

; 
.*************************************************** , 
.* * , 
;* string data area for console messages * 
.* * , 
.*************************************************** , 
badver: 

021b 536f79 db 'sorry, you need cp/m version 2$1 
nospace: 

o 23a 4e6f29 db Ino directory space$1 
datrnsg: 

024d 547970 db I type data: $ I 
e r rmsg : 

0259 457272 db 'error, try again.$' 
prompt: 

o 26b 4e6570 db Inext command? $ , 

(All Information Contained Herein is Proprietary to Digital Research.) 

43 



027a 21 
027b 
027c 
0021 = 

029c 

02bc 

;*************************************************** 
.* * , 
;* fixed and variable data area * 
.* * , 
.*************************************************** , 
conbu f: db conlen ; length of console buffer 
cons iz: ds 1 ; resul ting size after read 
conlin: ds 32 ; length 32 buffer 
conlen equ $-consiz 

ds 32 ;16 level stack 
stack: 

end 

Again, major improvements could be made to this particular 
program to enhance its operation. In fact, with some work, this 
program could evolve into a simple data base management system. One 
could, for example, assume a standard record size of 128 bytes, 
consisting of arbitrary fields within the record. A program, called 
GETKEY, could be developed which first reads a sequential file and 
extracts a specific field defined by the operator. For example, the 
command 

GETKEY NAMES.OA'r LASTNAME 10 20 

would cause GETKEY to read the data base file NAMES.DAT and extract 
the "LASTNAME" field from each record, starting at position 10 and 
ending at character 20. GETKEY builds a table in memory consisting of 
each particular LAST~ME field, along with its l6-bit record number 
location within the file. The GETKEY program then sorts this list, 
and writes a new file, called LASTNAME.KEY, which is an alphabetical 
list of LAS'fNAME fields with their corresponding record numbers. 
(This list is called an "inverted index" in information retrieval 
par lance. ) 

Rename the program shown above as QUERY, and massage it a bit so 
that it reads a sorted key file into memory. The command line might 
appear as: 

QUERY NAMES. OAT LASTNA~1E. KEY 

Instead of reading a number, the QUERY program reads an alphanumeric 
s tr ing wh ich is a par ticul ar key to find in the NAMES.OA'f da ta base. 
Since the LAS'fNAME.KEY list is sorted, you can find a particular entry 
quite rapidly by performing a "binary search, II similar to looking up a 
name in the telephone book. That is, starting at both ends of the 
list, you examine the entry halfway in between and, if not matched, 
split either the upper half or the lower half for the next search. 
You'll quickly reach the item you're looking for (in 10g2(n) steps) 
where you'll find the corresponding record number. Fetch and display 
this record at the console, just as we have done in the program shown 
above. 

(All Information Contained Herein is Proprietary to Digital Research.) 

44 



At this point you're just getting started. with a little more 
work, you can allow a fixed grouping size which differs from the 128 
byte record shown above. This is accomplished by keeping track of the 
record number as well as the byte offset within the record. Knowing 
the group size, you randomly access the record containing the proper 
group, offset to the beginning of the group within the record read 
sequentially until the group size has been exhausted. 

Finally, you can improve QUERY considerably by allowing boolean 
expressions which compute the set of records which satisfy several 
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE 
less than 45. Display all the records which fit this description. 
Finally, if your lists are getting too big to fit into memory, 
randomly access your key files from the disk as well. One note of 
consolation after all this work: if you make it through the project, 
you'll have no more need for this manual! 

(All Information Contained Herein is Proprietary to Digital Research.) 

45 



6. SYSTEM FUNC'I'ION SUMt-1ARY. 

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Sys tern Reset 
Console Input 
Console Output 
Reader Input 
punch Output 
List Output 
Direct Console I/O 
Get I/O Byte 
Set I/O Byte 
Pr int Str ing 
Read Console Buffer 
Get Console Status 
Return Version Number 
Reset Disk System 
Select Disk 
Open File 
Close File 
Search for First 
Search for Next 
Delete File 
Read Sequential 
write Sequential 
Make File 
Rename File 
Return Login Vector 
Return Current Disk 
Set DMA Address 
Get Addr (Alloc) 
write Protect Disk 
Get R/O Vector 
Set File Attributes 
Get Addr(disk parms) 
Set/Get User Code 
Read Random 
Wr i te Random 
Compute File Size 
Set Random Record 

none 
none 
E = char 
none 
E = char 
E = char 
see def 
none 
E = IOBYTE 
DE = • Buffer 
DE = .Buffer 
none 
none 
none 
E = Disk Number 
DE = .FCB 
DE = .FCB 
DE = .FCB 
none 
DE = .FCB 
DE = .FCB 
DE = .FCB 
DE = .FCB 
DE = .FCB 
none 
none 
DE = .DMA 
none 
none 
none 
DE = .FCB 
none 
see def 
DE = .FCB 
DE = .FCB 
DE = .FCB 
DE = .FCB 

* Note that A = L, and B = H upon return 

none 
A = char 
none 
A = char 
none 
none 
see def 
A = IOBYTE 
none 
none 
see def 
A = 00/FF 
HL= Version* 
see def 
see def 
A = Dir Code 
A = Dir Code 
A = Dir Code 
A = Dir Code 
A = Dir Code 
A = Err Code 
A = Err Code 
A = Dir Code 
A = Dir Code 
HL= Login Vect* 
A = Cur Disk# 
none 
HL= .Alloc 
see def 
HL= R/O Vect* 
see def 
HL= .DPB 
see def 
A = Err Code 
A = Err Code 
r0, rl, r2 
r0, rl, r2 

(All Information Contained Herein is Proprietary to Digital Research.) 

46 



MACRO-80 
Assembler 

Reference Manual 

(c) Microsoft· 1981 

All Rights Reserved Worldwide 



Information in this document is subject to change without notice and does not represent a 
commitment on the part of Microsoft. The software described in this document is 
furnished under a license agreement or non-disclosure agreement. The software may be 
used or copied only in accordance with the terms of the agreement. 

(C) Microsoft, 1979 

NOTE: Chapters 2 and 3 of this manual have been deleted as the associated 
software is not provided as part of the Xerox software. 

CP 1M is a registered trade mark of Digital Research 

8401-340-03 



Microsoft MACRO-80 Assembler, Release 3.4 November 1980 

ADDENDA TO: Utility Software Manual 
MACRO-80 Assembler Reference Manual 
XMACRO-86 Assembler Reference Manual 

The following features were added or modified in release 
3 .4. 

Add to Section 2.2.2 Switches 

Switch 

1M 

Action 

Initialize Block Data Areas. 
If the programmer wants the area that is defined 
by the DS (Define Space) pseudo-op initialized to 
zeros, then the programmer should use the 1M 
switch in the command line. Otherwise, the space 
is not guaranteed to contain zeros. That is, DS 
does not automatically initialize the space to 
zeros. 

IX The presence or absence of IX in the command line 
sets the initial current mode and the initial 
value of the default for listing or suppressing 
lines in false conditional blocks. IX sets the 
current mode and initial value of default to 
not-to-list. No IX sets current mode and initial 
value of default to list. Current mode determines 
whether false conditionals will be listed or 
suppressed. The initial value of the default is 
used with the .TFCOND pseudo-op so that .TFCOND is 
independent of .SFCOND and .LFCOND. If the 
program contains .SFCOND or .LFCOND, IX has no 
effect after .SFCOND or .LFCOND is encountered 
until a .TFCOND is encountered in the file. SO IX 
has an effect only when used with a file that 
contains no conditional listing pseudo-ops or when 
used with .TFCOND. 



MACRO-SO, Release 3.4, Addenda Page 2 

The following chart illustrates the effects 
three pseudo-ops when encountered under 
under no IX. See the addition to Section 
below for a full description of the 
conditional listing pseudo-ops. 

of the 
IX and 
2.6.27 
three 

PSEUDO-OP 

(none) 

.SFCOND 

.LFCOND 

.TFCOND 

.TFCOND 

.SFCOND 

.TFCOND 

.TFCOND 

.TFCOND 

OFF 

ON 

OFF 

ON 

OFF 

OFF 
ON 

OFF 

OFF 

OFF 

ON 

ON 

OFF 

OFF 

ON 
OFF 

ON 

Add to Section 2.6.26 Conditional Pseudo Operations 

IFIDN <argl>,<arg2> 

IFDIF <argl>,<arg2> 

True if the string <argl> is 
IDeNtical to the string <arg2>. 
The angle brackets around <argl> 
and <arg2> are required. 

True if the string <argl> is 
DIFferent from the string <arg2>. 
The angle brackets around <argl> 
and <arg2> are required. 



MACRo-a ° , Release 3.4, Addenda Page 3 

Add to Section 2.6.27 Listing Control Pseudo Ooerations 

There are now five listing control pseudo-ops. 
the listing file can be controlled by the 
pseudo-ops: 

.LIST, .XLIST, .SFCOND, .LFCOND, .TFCOND 

Output to 
following 

The three new pseudo-ops control the listing of conditional 
pseudo-op blocks which evaluate as false. These pseudo-ops 
give the programmer control over four cases. 

1. Normally list false conditionals 
For this case, the programmer simply allows the 
default mode to control the listing. The default 
mode is list false conditionals. If the programmer 
decides to suppress false conditionals, the /X 
switch can be issued in the command line instead of 
editing the source file. 

2. Normally suppress false conditionals 
For this case, the programmer issues the .TFCOND 
pseudo-op in the program file. .TFCOND reverses 
(toggles) the default, causing false conditionals 
to be suppressed. If the programmer decides to 
list false conditionals, the /X switch can be 
issued in the command line instead of editing the 
source file. 

3. Always suppress/list false conditionals 
For these cases, the programmer issu~s either tne 
.SFCOND pseudo-op to suppress false conditionals, 
or the .LFCOND pseudo-op to list all false 
conditionals. 

4. Suppress/list some false conditionals 
For this case, the programmer has decided for most 
false conditionals whether to list or suppress, but 
for some false conditionals the programmer has not 
yet decided. For the false conditionals decided 
about, use .SFCOND or .LFCOND. For those not yet 
decided, use .TFCOND. .TFCOND sets the current and 
default settings to the opposite of the default. 
Initially, the default is set by giving /X or no IX 
in the command line. Two subcases exist: 

1. The programmer wants some false conditionals 
not to list unless /X is given. The programmer 
uses the .SFCOND and .LFCOND pseudo-ops to 
control which areas always suppress or list 
false conditionals. To selectively suppress 
some false conditionals, the programmer issues 
.TFCOND at the beginning of the conditional 
block and again at the end of the conditional 
block. (NOTE: The second .TFCOND is should be 
so that the default setting will be the same as 
the initial setting. Leaving the default equal 



MACRO-80, Release 3.4, Addenda Page 4 

to the initial setting makes it easier to keep 
track of the default mode if there are many 
such areas.) If the conditional block evaluates 
as false, the lines will be suppressed. In 
this subcase, issuing the IX switch in the 
command line causes the conditional block 
affected by .TFCOND to list even if it 
evaluates as false. 

2. The programmer wants some false conditionals to 
list unless Ix is given. of the file. Two 
consecutive .TFCONDs places the conditional 
listing setting in initial state which is 
determined by the presence or absence of the Ix 
switch (the first .TFCOND sets the default to 
not initial; the second to initial). The 
selected conditional block then responds to the 
IX switch: if a IX switch is issued in the 
command line, the conditional block is 
suppressed if false; if no IX switch is issued 
in the command line, the conditional block is 
listed even if false. 

The programmer then must reissue the .SFCOND or 
.LFCOND conditional listing pseudo-op to 
restore the suppress or list mode. Simply 
issuing another .TFCOND will not restore the 
prior mode, but will toggle the default 
setting. Since in this subcase, the next area 
of code is supposed to list or suppress false 
conditionals always, the programmer must issue 
.SFCOND or .LFCOND. 

The three conditional listing pseudo-ops are summarized 
below. 

PSEUDO-OP 

.SFCOND 

.LFCOND 

.TFCOND 

DEFINITION 

Suppresses the listing of conditional blocks 
that evaluate as false. 

Restores the listing of conditional blocks that 
evaluate as false. 

Toggles the current setting which controls the 
listing false conditionals. .TFCOND sets the 
current and default setting to not default. If 
a Ix switch is given in the MACRO-80 run 
command line for a file which contains .TFCOND, 
IX reverses the effect of .TFCOND. 



MACRo-a 0 , Release 3.4, Addenda Page 5 

Add to Section 2.7.9 Special Macro Operators and Forms 

% The percent sign is used only in a macro argument. 
% converts the expression that follows it (usually a 
symbol) to a number in the current radix. During 
macro expansion, the number derived from converting 
the expression is substituted for the dummy. Using 
the % special operator allows a macro call by value. 
(Usually, a macro call is a call by reference with 
the text of the macro argument substituting exactly 
for the dummy.) 

The expression following the % must conform to the 
same rules as the DS (Define Space) pseudo-oPe A 
valid expression returning a non-relocatable 
constant is required. 

EXAMPLE: 

Normally, LB, the argument to MAKLAB, would be 
substituted for Y, the argument to MACRO, as a 
string. The % causes LB to be converted to a 
non-relocatable constant which is then substituted 
for Y. Without the % special operator, the result 
of assembly would be ~Error LB~ rather than ~Error 
1 ~, etc. 

MAKLAB MACRO Y 
ERR&Y: DB ~Error &Y~,O 

ENDM 
MAKERR MACRO X 
LB SET 0 

REPT X 
LB SET LB+l 

MAKLAB %LB 
ENDM 
ENDM 

When called by MAKERR 3 , the assembler will 
generate: 

ERRl: DB ~Error l~,O 

ERR2: DB ~Error 2~,O 

ERR3: DB ~Error 3~,O 





Microsoft 

CONTENTS 

CHAPTER 1 Introduction 

CHAPTER 2 MACRo-ao Assembler 

2.1 Running MACRO-aO 
2.2 Command Format 
2.2.1 Devices 
2.2.2 Switches 
2.3 Format of MACRO-aO Source Files 
2.3.1 Statements 
2.3.2 Symbols 
2.3.3 Numeric Constants 
2.3.4 Strings 
2.4 Expression Evaluation 
2.4.1 Arithmetic and Logical Operators 
2.4.2 Modes 
2.4.3 Externals 
2.5 Opcodes as Operands 
2.6 Pseudo Operations 
2.6.1 ASEG 
2.6.2 COMMON 
2.6.3 CSEG 
2.6.4 DB - Define Byte 
2.6.5 DC - Define Character 
2.6.6 DS - Define Space 
2.6.7 DSEG 
2.6.a DW - Define Word 
2.6.9 END 
2.6.10 ENTRY/PUBLIC 
2.6.11 EQU 
2.5.12 EXT/EXTRN 
2.6.13 INCLUDE 
2.6.14 NAME 
2.6.15 ORG - Define Origin 
2.6.16 PAGE 
2.6.17 SET 
2.6.1a SUBTTL 
2.6.19 TITLE 
2.6.20 . COMMENT 
2 • 6 . 21 . PRINTX 
2.6.22 . RADIX 
2.6.23 .Z80 
2.6.24 .8080 
2.6.25 . REQUEST 
2.6.26 Conditional Pseudo Operations 
2.6.26.1 ELSE 
2.6.26.2 ENDIF 
2.6.27 Listing Control Pseudo Operations 



2.6.28 Relocation Pseudo Operations 
2.6.28.1 ORG Pseudo-op 
2.6.28.2 LINK-80 
2.6.29 Relocation Before Loading 
2.7 Macros and Block Pseudo Operations 
2.7.1 Terms 
2.7.2 REPT-ENDM 
2.7.3 IRP-ENDM 
2.7.4 IRPC-ENDM 
2.7.5 MACRO 
2.7.6 ENDM 
2.7.7 EXITM 
2.7.8 LOCAL 
2.7.9 Special Macro Operators and Forms 
2.8 Using Z80 Pseudo-ops 
2.9 Sample Assembly 
2.10 MACRO-80 Errors 
2.11 Compatability with Other Assemblers 
2.12 Format of Listings 
2.12.1 Symbol Table Listing 

CHAPTER 3 CREF-80 Cross Reference Facility 

CHAPTER 4 LINK-80 Linking Loader 

4.1 
4.2 
4.2.1 
4.2.2 
4.3 
4.4 
4.5 

Running LINK-80 
Command Format 

LINK-80 Switches 
Sample Link 

Format of LINK Compatible Object Files 
LINK-80 Error Messages 
Program Break Information 

CHAPTER 5 LIB-80 Library Manager 

APPENDIX 

5.1 
5.1.1 
5.2 
5.3 
5.4 
5.5 

A 

A.l 
A.2 
A.3 
A.4 

LIB-80 Commands 
Modules 

LIB-80 Switches 
LIB-80 Listings 
Sample LIB Session 
Summary of Switches and Syntax 

TEKDOS Operating System 

TEKDOS Command Files 
MACRO-80 
CREF-80 
LINK-80 



" i 

CHAPTER 1 

INTRODUCTION 

MACRO-80 is a relocatable macro assembler for 8080 and Z80 
microcomputer systems. It assembles 8080 or Z80 code on any 
8080 or Z80 development system running the CP/M, ISIS-II, 
TRSDOS or TEKDOS operating system. The MACRO-SO package 
includes the MACRO-80 assembler, the LINK-80 linking loader, 
and the CREF-80 cross reference facility. CP/M versions 
also include the LIB-80 Library Manager. MACRO-SO resides 
in approximately 14K of memory and has an assembly rate of 
over 1000 lines per minute. 

MACRO-80 incorporates almost all "big computer" "assembler 
features without sacrificing speed or memory space. The 
assembler supports a complete, Intel standard macro 
facility, including IRP, IRPC, REPEAT, local variables and 
EXITM. Nesting of macros is limited only by memory. Code 
is assembled in relocatable modules that are manipulated 
with th~ flexible linking loader. Conditional assembly 
capability is enhanced by an expanded set of conditional 
pseudo operations that include testing of assembly pass, 
symbol definition, and parameters to macros. Conditionals 
may be nested up to 255 levels. 

MACRO-80's linking loader provides a versatile array of 
loader capabilities, which are executed by means of easy 
command lines and switches. Any number of programs may be 
loaded with one command, relocatable modules may be loaded 
in user-specified locations, and external references between 
modules are resolved automatically by the loader. The 
loader also performs library searches for system subroutines 
and generates a load map of memory showing the locations of 
the main program and subroutines. The cross reference 
facility that is included in this package supplies a 
convenient alphabetic list of all program variable names, 
along with the line numbers where they are referenced and 
defined. 



INTRODUCTION Page 1-2 

This manual is designed to serve as a reference guide to the 
MACRO-aD package. It defines, explains and gives examples 
of all the features in MACRO-aD in terms that should be 
understandable to anyone familiar with assembly language 
programming. It is not intended, however, to serve as 
instructional material and presumes the user has substantial 
knowledge of assembly language programming. The user should 
refer ·to instructional material available from a variety of 
sources for additional tutorial information. 



CHAPTER 2 

MACRO-SO ASSEMBLER 

2.1 RUNNING MACRO-SO 

The command to run MACRO-SO is 

MSO 

MACRO-SO returns the prompt 
accept commands. 

n*n , 

NOTE 

indicating it is 

If you are using the TEKDOS 
operating system, see Appendix 
A for proper command formats. 

2.2 COMMAND FORMAT 

ready to 

A command to MACRO-SO consists of a string of filenames with 
optional switches. All filenames should follow the 
operating system's conventions for filenames and extensions. 
The default extensions supplied by Microsoft software are as 
follows: 

File 

Relocatable object file 
Listing file 
MACRO-SO source file 
FORTRAN source file 
COBOL source 
Absolute file 

REL 
PRN 
MAC 
FOR 
COB 
COM 

ISIS-II 

REL 
LST 
MAC 
FOR 
COB 



MACRO-SO ASSEMBLER PAGE 2-2 

A command to MACRO-SO conveys the name of the source file to 
be assembled, the names of the file(s) to be created, and 
which assembly options are desired. The format of a 
MACRO-SO command is: 

objfile,lstfile=source file 

Only the equal sign and the source file field are 
to create a relocatable object file with the 
(source) filename and the default extension REL. 

required 
default 

Otherwise, an object file is created only if the objfile 
field is filled, and a listing file is created only if the 
lstfile field is filled. 

To assemble the source file without producing an object file 
or listing file, place only a comma to the left of the equal 
sign. This is a handy procedure that lets you check for 
syntax errors before assembling to an object file. 

Examples: 

*=TEST 

*,=TEST 

TEST,TEST=TEST 

*OBJECT=TEST 

OBJECT,LIST=TEST 

MACRO-SO also 
invocation and 
example: 

MSO ,=TEST 

Assemble the source file TEST.MAC 
and place the object file in TEST.REL. 

Assemble the source file TEST.MAC 
without creating an object or listing 
file. Useful for error checking. 

Assemble the source file TEST.MAC, 
placing the object file in TEST.REL 
and the listing file in TEST.PRN. 
(With ISIS-II, the listing file is 
TEST. LST.) 

Assemble the source file TEST.MAC 
and place the object file in 
OBJECT.REL. 

Assemble the source file TEST.MAC, 
placing the object file in OBJECT.REL 
and the listing file in LIST.PRN. 
(With ISIS-II, the listing file is 
LIST. LST.) 

supports command lines; that is, 
command may be typed on the same line. 

the 
For 



MACRo-aD ASSEMBLER PAGE 2-3 

2.2.1 Devices 

Any field in the MACRO-aD command string can also specify a 
device name. The default device name with the CP/M 
operating system is the currently logged disk. The default 
device name with the ISIS-II operating system is disk drive 
O. The command format is: 

dev:objfile,dev:lstfile=dev:source file 

The device names are as follows: 

Device ISIS-II 

Disk drives 
Line printer 
Teletype or CRT 
High speed reader 

A:, B:, C:, ••• 
LST: 

:FO:, :Fl:, :F2:, .•• 
LST: 

TTY: TTY: 
HSR 

Examples: 

*,TTY:=TEST Assemble the source file TEST.MAC 
and list the program on the 
console. No object code is 
generated. Useful for error check. 

*SMALL,TTY:=B:TEST Assemble TEST.MAC (found 
on disk drive B), place 
the object file in SMALL.REL, 
and list the program on the console. 

2.2.2 Switches 

A switch is a letter that is appended to the command string, 
preceded by a slash. It specifies an optional task to be 
performed during assembly. More than one switch can be 
used, but each must be preceded by a slash. (With the 
TEKDOS operating system, switches are preceded by commas or 
spaces. See Appendix A.) All switches are optional. The 
available switches are: 

Switch Action 

0 Octal listing 

H Hexadecimal listing (defaul t) 

R Force generation of an object file 

L Force generation of a listing file 

C Force generation of a cross reference file 



MACRO-80 ASSEMBLER PAGE 2-4 

Z Assemble Z80 opcodes (default for Z80 operating 
systems) 

I Assemble 8080 opcodes (default for 8080 operating 
systems) 

P Each IP allocates an extra 256 bytes of stack 
space for use during assembly. Use IP if stack 
overflow errors occur during assembly. Otherwise, 
not needed. 

M Initialize Block Data Areas. If the programmer 
wants the area that is defined by the DS (Define 
Space) speudo-op initialized to zeros, then the 
programmer should use the 1M switch in the command 
line. Otherwise, the space is not guaranteed to 
contain zeros. That is, DS does not automatically 
initialize the space to zeros. 

x Usually used to 
conditionals. 
the IX switch 
technical terms. 

suppress the listing of false 
The following paragraph describes 

more completely but in very 

The presence or absence of IX in the command line 
sets the initial current mode and the initial 
value of the default for listing or suppressing 
lines in false conditional blocks. IX sets the 
current mode and initial value of default to 
not-to-list. No IX sets current mode and initial 
value of default to list. Current mode determines 
whether false conditionals will be listed or 
suppressed. The initial value of the default is 
used with the .TFCOND pseudo-op so that .TFCOND is 
independent of .SFCOND and .LFCOND. If the 
program contains .SFCOND or .LFCOND, IX has no 
effect after .SFCOND or .LFCOND is encountered 
until a .TFCOND is encountered in the file. SO IX 
has an effect only when used with a file that 
contains no conditional listing pseudo-ops or when } 
used with .TFCOND. 



MACRO-BO ASSEMBLER PAGE 2-5 

Examples: 

*=TEST/L 

*=TEST/L/O 

*LAST=TEST/C 

Assemble TEST.MAC, place the object file in 
TEST.REL and a listing file in TEST.PRN. 
(With ISIS-II, the listing file is 
TEST. LST. ) 

Same as above, but listing file addresses 
will be in octal. 

Assemble TEST.MAC, place the object file in 
LAST.REL and cross reference file in 
TEST.CRF. (See Chapter 3.) 

2.3 FORMAT OF MACRO-BO SOURCE FILES 

Input source lines of up to 132 characters in length are 
acceptable. 

MACRO-BO preserves lower case letters in quoted strings and 
comments. All symbols, opcodes and pseudo-opcodes typed in 
lower case will be converted to upper case. 

If the source file includes line numbers from an editor, 
each byte of the line number must have the high bit on. 
Line numbers from Microsoft's EDIT-BO Editor are acceptable. 

2.3.1 Statements 

Source files input to MACRO-BO consist of statements of the 
form: 

[labe 1: [ : ] ] [operator] [arguments] [ icomment] 

With the exception of the ISIS assembler $ controls (see 
Section 2.11), it is not necessary that statements begin in 
column 1. Multiple blanks or tabs may be used to improve 
readability. 

If a label is present, it is the first item in the statement 
and is immediately followed by a colon. If it is followed 
by two colons, it is declared as PUBLIC (see ENTRY/PUBLIC, 
Section 2.6.10). For exmple: 

FOO: : RET 

is equivalent to 

PUBLIC FOO 
FOO: RET 



MACRO-80 ASSEMBLER PAGE 2-6 

The next item after the label, or the first item on the line 
if no label is present, is an operator. An operator may be 
an 8086 mnemonic, pseudo-op, macro call or expression. The 
evaluation order is as follows: 

1. Macro call 

2. Mnemonic/Pseudo operation 

3. Expression 

Instead of flagging an expression as an error, the assembler 
treats it as if it were a DB statement (see Section 2.6.4). 

The arguments following the operator will, of course, vary 
in form according to the operator. 

A comment always begins with a semicolon and ends with a 
carriage return. A comment may be a line by itself or it 
may be appended to a line that contains a statement. 
Extended comments can be entered using the .COMMENT pseudo 
operation (see Section 2.6.20). 

2.3.2 Symbols 

MACRO-80 symbols may be of any length, however, 
first six characters are significant. The 
characters are legal in a symbol: 

A-Z 0-9 $ ? @ 

only the 
following 

With Microsoft's 8080/Z80/8086 assemblers, the underline 
character is also legal in a symbol. A symbol may not start 
with a digit. When a symbol is read, lower case is 
translated into upper case. If a symbol reference is 
followed by ii it is declared external (see also the 
EXT/EXTRN pseudo-op, Section 2.6.12). 

2.3.3 Numeric Constants 

The default base for numeric constants is decimal. This may 
be changed by the .RADIX pseudo-op (see Section 2.6.22). 
Any base from 2 (binary) to 16 (hexadecimal) may be 
selected. When the base is greater than 10, A-F are the 
digits following 9. If the first digit of the number is not 
numeric the number must be preceded by a zero. 



MACRO-80 ASSEMBLER PAGE 2-7 

Numbers are l6-bit unsigned quantities. A number is always 
evaluated in the current radix unless one of the following 
special notations is used: 

nnnnB 
nnnnD 
nnnnO 
nnnnQ 
nnnnH 

X'nnnn' 

Binary 
Decimal 
Octal 
Octal 
Hexadecimal 
Hexadecimal 

Overflow of a number beyond two bytes is ignored and the 
result is the low order l6-bits. 

A character constant is a string comprised of zero, one or 
two ASCII characters, delimited by quotation marks, and used 
in a non-simple expression. For example, in the statement 

DB 'A' + 1 

'A' is a character constant. But the statement 

DB 'A' 

uses 'A' as a string because it is in a simple expression. 
The rules for character constant delimiters are the same as 
for strings. 

A character constant comprised of one character has 
value the ASCII value of that character. That is, 
order byte of the value is zero, and the low order 
the ASCII value of the character. For example, the 
the constant 'A' is 4lH. 

as its 
the high 
byte is 
value of 

A character constant comprised of two characters has as its 
value the ASCII value of the first character in the high 
order byte and the ASCII value of the second character in 
the low order byte. For example, the value of the character 
constant "AB" is 4lH*256+42H. 

2.3.4 Strings 

A string is comprised of zero or more characters delimited 
by quotation marks. Either single or double quotes may'be 
used as string delimiters. The delimiter quotes may be used 
as characters if they appear twice for every character 
occurrence desired. For example, the statement 

DB "I am ""great'''' today" 

stores the string 

I am "great" today 



MACRO-80 ASSEMBLER PAGE 2-8 

If there are zero characters between the delimiters, the 
string is a null string. 

2.4 EXPRESSION EVALUATION 

2.4.1 Arithmetic And Logical Operators 

The following operators are allowed in expressions. The 
operators are listed in order of precedence. 

NUL 

LOW, HIGH 

*, I, MOD, SHR, SHL 

Unary Minus 

+, -

EQ, NE, LT, LE, GT, GE 

NOT 

AND 

OR, XOR 

Parentheses are used to change the order of precedence. 
During evaluation of an expression, as soon as a new 
operator is encountered that has precedence less than or 
equal to the last operator encountered, all operations up to 
the new operator are performed. That is, subexpressions 
involving operators of higher precedence are computed first. 

All operators except +, -, *, I must be separated from their 
operands by at least one space. 

The byte isolation operators (HIGH, LOW) isolate the high or 
low order 8 bits of an Absolute l6-bit value. If a 
relocatable value is supplied as an operand, HIGH and LOW 
will treat it as if it were relative to location zero. 

2.4.2 Modes 

All symbols used as operands in expressions are in one of 
the following modes: Absolute, Data Relative, Program 
(Code) Relative or COMMON. (See Section 2.6 for the ASEG, 
CSEG, DSEG and COMMON pseudo-ops.) Symbols assembled under 
the ASEG, CSEG (default), or DSEG pseudo-ops are in 
Absolute, Code Relative or Data Relative mode respectively. 



MACRO-80 ASSEMBLER PAGE 2-9 

The number of COMMON modes in a program is determined by the 
number of COMMON blocks that have been named with the COMMON 
pseudo-oPe Two COMMON symbols are not in the same mode 
unless they are in the same COMMON block. In any operation 
other than addition or subtraction, the mode of both 
operands must be Absolute. 

If the operation is addition, the following rules apply: 

1. At least one of the operands must be Absolute. 

2. Absolute + <mode> = <mode> 

If the oper?tion is subtraction, the following rules apply: 

1. <mode> - Absolute = <mode> 

2. <mode> - <mode> = Absolute 
where the two <mode>s are the same. 

Each intermediate step in the evaluation of an expression 
must conform to the above rules for modes, or an error will 
be generated. For example, if FOO, BAZ and ZAZ are three 
Program Relative symbols, the expression 

FOO + BAZ - ZAZ 

will generate an R error because the first step (FOO + BAZ) 
adds two "relocatable values. (One of the valu~s must be 
Absolute.) This problem can always be fixed by inserting 
parentheses. So that 

FOO + (BAZ - ZAZ) 

is legal because the first step (BAZ ZAZ) generates an 
Absolute value that is then added to the Program Relative 
value, FOO. 

2.4.3 Externals 

Aside from its classification by mode, a symbol is either 
External or not External. (See EXT/EXTRN, Section 2.6.12.) 
An External value must be assembled into a two-byte field. 
(Single-byte Externals are not supported.) The following 
rules apply to the use of Externals in expressions: 

1. Externals are 
subtraction. 

legal only in addition and 

2. If an External symbol is used in an expression, the 
result of the expression is always External. 

3. When the operation is addition, either operand (but 
not both) may be External. 



MACRo-ao ASSEMBLER PAGE 2-10 

4. When the operation is subtraction, only the first 
operand may be External. 

2.5 OPCODES AS OPERANDS 

a080 opcodes are valid one-byte operands. Note that only 
the first byte is a valid operand. For example: 

MVI A, (JMP) 
ADI (CPI) 
MVI B, (RNZ) 
CPI (INX H) 
ACI (LXI B) 
MVI C,MOV A,B 

Errors will be generated if more than one byte is included 
in the operand -- such as (CPI 5), LXI B,LABELl) or (JMP 
LABEL2) . 

Opcodes used as one-byte operands need not be enclosed in 
parentheses. 

NOTE 

Opcodes are not valid operands 
in Z80 mode. 



MACRO-80 ASSEMBLER PAGE 2-11 

2.6 PSEUDO OPERATIONS 

2.6.1 ASEG 

ASEG 

ASEG sets the location counter to an absolute segment of 
memory. The location of the absolute counter will be that 
of the last ASEG (default is 0), unless an ORG is done after 
the ASEG to change the location. The effect of ASEG is also 
a~hieved by using the code segment (CSEG) pseudo operation 
and the /P switch in LINK-80. See also Section 2.6.28 

2.6.2 COMMON 

COMMON /<block name>/ 

COMMON sets the location counter to the selected common 
block in memory. The location is always the beginning of 
the area so that compatibility with the FORTRAN COMMON 
statement is maintained. If <block name> is omitted or 
consists of spaces, it is considered to be blank common. 
See also Section 2.6.28. 

2.6.3 CSEG 

CSEG 

CSEG sets the location counter to the code relative segment 
of memory. The location will be that of the last CSEG 
(default is 0), unless an ORG is done after the CSEG to 
change the location. CSEG is the default condition of the 
assembler (the INTEL assembler defaults to ASEG). See also 
Section 2.6.28. 

2.6.4 DB - Define ~ 

DB <exp> [ ,<exp> ..•. ] 

DB <string>[<string> ••• ] 

The arguments to DB are either expressions or strings. DB 
stores the values of the expressions or the characters of 
the strings in successive memory locations beginning with 
the current location counter. 



MACRO-BO ASSEMBLER PAGE 2-12 

Expressions must evaluate to one byte. (If the high byte of 
the result is 0 or 255, no error is given; otherwise, an A 
error results.) 

Strings of three or more characters may not be used in 
expressions (i.e., they must be immediately followed by a 
comma or the end of the line). The characters in a string 
are stored in the order of appearance, each as a one-byte 
value with the high order bit set to zero. 

Example: 

0000' 
0002' 
0003' 

41 42 
42 
41 42 43 

DB 
DB 
DB 

2.6.5 DC - Define Character 

DC <string> 

'AB ' 
'AB' AND OFFH 
'ABC' 

DC stores the characters in <string> in successive memory 
locations beginning with the current location counter. As 
with DB, characters are stored in order of appearance, each 
as a one-byte value with the high order bit set to zero. 
However, DC stores the last character of the string with the 
high order bit set to one. An error will result if the 
argument to DC is a null string. 

2.6.6 DS - Define Space 

DS <exp> 

DS reserves an area of memory. The value of <exp> gives the 
number of bytes to be allocated. All names used in <exp> 
must be previously defined (i.e., all names known at that 
point on pass 1). Otherwise, a V error is generated during 
pass 1 and a U error may be generated during pass 2. If a U 
error is not generated during pass 2, a phase error will 
probably be generated because the DS generated no code on 
pass 1. 

2.6.7 DSEG 

DSEG 

DSEG sets the location counter to the Data Relative segment 
of memory_ The location of the data relative counter will 
be that of the last DSEG (default is 0), unless an ORG is 



MACRo-aD ASSEMBLER PAGE 2-13 

done after the DSEG to change the location. See also 
Section 2.6.2S. 

2.6.S DW - Define Word 

DW <exp>[,<exp> ... ] 

DW stores the values of the expressions in successive memory 
locations beginning with the current location counter. 
Expressions are evaluated as 2-byte (word) values. 

2.6.9 END 

END [<exp>] 

The END statement specifies the end of the program. If 
<exp> is present, it is the start address of the program. 
If <exp> is not present, then no start address is passed to 
LINK-SO for that program. 

NOTE 

If an assembly language 
program is the main program, a 
start address (label) must be 
specified. If not, LINK-SO 
will issue a "no start 
address" error. If the 
program is a subroutine to a 
FORTRAN program (for example), 
the start address is not 
required because FORTRAN has 
supplied one. 

2.6.10 ENTRY/PUBLIC 

ENTRY <name>[,<name> ••. ] 
or 

PUBLIC <name>[,<name> ... ] 

ENTRY or PUBLIC declares each name in the list as internal 
and therefore available for use by this program and other 
programs to be loaded concurrently. All of the names in the 
list must be defined in the current program or a U error 
results. An M error is generated if the name is an external 
name or common-blockname. 



MACRO-SO ASSEMBLER PAGE 2-14 

2.6.11 EQU 

<name> EQU <exp> 

EQU assigns the value of <exp> to <name>. If <exp> is 
external, an error is generated. If <name> already has a 
value other than <exp>, an M error is generated. 

2.6.12 EXT/EXTRN 

EXT <name>[,<name> .•• ] 
or 

EXTRN <name>[,<name> .•• ] 

EXT or EXTRN declares that the name(s) in the list are 
external (i.e., defined in a different program). If any 
item in the list references a name that is defined in the 
current program, an M error results. A reference to a name 
where the name is followed immediately by two pound signs 
(e.g., NAME##) also declares the name as external. 

2.6.13 INCLUDE 

INCLUDE <filename> 

The INCLUDE pseudo-op applies only to CP/M versions of 
MACRO-SO. The pseudo-ops INCLUDE, $INCLUDE and MACLIB are 
synonymous. 

The INCLUDE pseudo-op assembles source statements from an 
alternate source file into the current source file. Use of 
INCLUDE eliminates the need to repeat an often-used sequence 
of statements in the current source file. 

<filename> is any valid specification, as determined by the 
operating system. Defaults for filename extensions and 
device names are the same as those in a MACRO-SO command 
line. 

The INCLUDE file is opened and assembled into the current 
source file immediately following the INCLUDE statement. 
When end-of-file is reached, assembly resumes with the 
statement following INCLUDE. 

On a MACRO-SO listing, a plus sign is printed between the 
assembled code and the source line on each line assembled 
from an INCLUDE file. (See Section 2.12.) 

Nested INCLUDEs are not allowed. If encountered, they will 
result in an objectionable syntax error '0'. 



MACRO-80 ASSEMBLER PAGE 2-15 

The file specified in the operand field must exist. If the 
file is not found, the error 'V' (value error) is given, and 
the INCLUDE is ignored. 

2.6.14 NAME 

NAME ('modname') 

NAME defines a name for the module. Only the first six 
characters are significant in a module name. A module name 
may also be defined with the TITLE pseudo-oPe In the 
absence of both the NAME and TITLE pseudo-ops, the module 
name is created from the source file name. 

2.6.15 ORG - Define Origin 

ORG <exp> 

The location counter is set to the value of <exp> and the 
assembler assigns generated code starting with that value. 
All names used in <exp> must be known on pass 1, and the 
value must either be absolute or in the same area as the 
location counter. 

2.6.16 PAGE 

PAGE [<exp>] 

PAGE causes the assembler to start a new output page. The 
value of <exp>, if included, becomes the new page size 
(measured in lines per page) and must be in the range 10 to 
255. The default page size is 50 lines per page. The 
assembler puts a form feed character in the listing file at 
the end of a page. 

2.6.17 SET 

<name> SET <exp> 

SET is the same as EQU, except no error is generated if 
<name> is already defined. 



MACRO-SO ASSEMBLER PAGE 2-16 

2.6.1S SUBTTL 

SUBTTL <text> 

SUBTTL specifies a subtitle to be listed on the line after 
the title (see TITLE, Section 2.6.19) on each page heading. 
<text> is truncated after 60 characters. Any number of 
SUBTTLs may be given in a program. 

2.6.19 TITLE 

TITLE <text> 

TITLE specifies a title to be listed on the first line of 
each page. If more than one TITLE is given, a Q error 
results. The first six characters of the title are used as 
the module name unless a NAME pseudo operation is used. If 
neither a NAME or TITLE pseudo-op is used, the module name 
is created from the source filename. 

2.6.20 • COMMENT 

.COMMENT <delim><text><delim> 

The first non-blank character encountered after .COMMENT is 
the delimiter. The following <text> comprises a comment 
block which continues until the next occurrence of 
<delimiter> is encountered. For example, using an asterisk 
as the delimiter, the format of the comment block would be: 

.COMMENT * 
any amount of text entered 
here as the comment block 

* 
;return to normal mode 



MACRO-80 ASSEMBLER PAGE 2-17 

2.6.21 .PRINTX 

.PRINTX <delim><text><delim> 

The first non-blank character encountered after .PRINTX is 
the delimiter. The following text is listed on the terminal 
during assembly until another occurrence of the delimiter is 
encountered. .PRINTX is useful for displaying progress 
through a long assembly or for displaying the value of 
conditional assembly switches. For example: 

2.6.22 . RADIX 

IF CPM 
.PRINTX /CPM version/ 
ENDIF 

NOTE 

.PRINTX will output on both 
passes. If only one printout 
is desired, use the IFl or IF2 
pseudo-oPe For example: 

IF2 
IF CPM 
.PRINTX /CPM version/ 
ENDIF 
ENDIF 

will only print if CPM is true 
and MaO is in pass 2. 

.RADIX <exp> 

The default base (or radix) for all constants is decimal. 
The .RADIX statement allows the default radix to be changed 
to any base in the range 2 to 16. For example: 

MOVI BX,OFFH 
.RADIX 16 
MOVI BX,OFF 

The two MaVIs in the example are identical. The <exp> in a 
• RADIX statement is always in decimal radix, regardless of 
the current radix. 



MACRO-80 ASSEMBLER PAGE 2-18 

2.6.23 .Z80 

.Z80 enables the assembler to accept Z80 opcodes. This is 
the default condition when the assembler is running on a Z80 
operating system. Z80 mode may also be set by appending the 
Z switch to the MACRO-80 command string -- see Section 
2.2.2. 

2.6.24 .8080 

.8080 enables the assembler to accept 8080 opcodes. This is 
the default condition when the assembler is running on an 
8080 operating system. 8080 mode may also be set by 
appending the I switch to the MACRO-80 command string -- see 
Section 2.2.2. 

2.6.25 • REQUEST 

.REQUEST <filename>[,<filename> ••• ] 

.REQUEST sends a request to the LINK-80 loader to search the 
filenames in the list for undefined globals. The filenames 
in the list should be in the form of legal symbo~s. They 
should not include filename extensions or disk 
specifications. LINK-80 supplies a default extension and 
assumes the default disk drive. 



MACRO-80 ASSEMBLER PAGE 2-19 

2.6.26 Conditional Pseudo Operations 

The conditional pseudo operations are: 

IF/IFT <exp> 

IFE/IFF <exp> 

IFI 

IF2 

IFDEF <symbol> 

IFNDEF <symbol> 

IFB <arg> 

IFNB <arg> 

IFIDN <argl>,<arg2> 

IFDIF <argl>,<arg2> 

True if <exp> is not O. 

True if <exp> is O. 

True if pass 1. 

True if pass 2. 

True if <symbol> is defined or 
has been declared External. 

True if <symbol> is undefined 
or not declared External. 

True if <arg> is blank. The 
angle brackets around <arg> 
are required. 

True if <arg> is not blank. 
Used for testing when dummy 
parameters are supplied. The 
angle brackets around <arg> 
are required. 

True if the string <argl> is 
IDeNtical to the string 
<arg2>. 
The angle brackets around 
<argl> and <arg2> are 
required. 

True if the string <argl> is 
DIFferent from the string 
<arg2>. 
The angle brackets around 
<argl> and <arg2> are 
required. 

All conditionals use the following format: 

IFxx [ argument] 

[ELSE 

ENDIF 



MACRO-SO ASSEMBLER PAGE 2-20 

Conditionals may be nested to any level. Any argument to a 
conditional must be known on pass 1 to avoid V errors and 
incorrect evaluation. For IF, IFT, IFF, and IFE the 
expression must involve values which were previously defined 
and the expression must be absolute. If the name is defined 
after an IFDEF or IFNDEF, pass 1 considers the name to be 
undefined, but it will be defined on pass 2. 

2.6.26.1 ELSE - Each conditional pseudo operation may 
optionally--se used with the ELSE pseudo operation which 
allows alternate code to be generated when the opposite 
condition exists. Only one ELSE is permitted for a given 
IF, and an ELSE is always bound to the most recent, open IF. 
A conditional with more than one ELSE or an ELSE without a 
conditional will cause a C error. 

2.6.26.2 ENDIF - Each IF must have a matching ENDIF to 
terminate the conditional. Otherwise, an 'unterminated 
conditional' message is generated at the end of each pass. 
An ENDIF without a matching IF causes a C error. 

2.6.27 Listing Control Pseudo Operations 

Output to the listing file can be controlled by two 
pseudo-ops: 

.LIST and .XLIST 

If a listing is not being made, these pseudo-ops have no 
effect. .LIST is the default condition. When a .XLIST is 
encountered, source and object code will not be listed until 
a .LIST is encountered. 

The output of false conditional blocks is controlled by 
three pseudo-ops: .SFCOND, .LFCOND, and .TFCOND. 

These pseudo-ops give the programmer control over four 
cases. 

1. Normally list false conditionals 
For this case, the programmer simply allows the 
default mode to control the listing. The default 
mode is list false conditionals. If the programmer 
decides to suppress false conditionals, the IX 
switch can be issued in the command line instead of 
editing the source file. 



MACRO-80 ASSEMBLER PAGE 2-21 

2. Normally suppress false conditionals 
For this case, the programmer issues the .TFCOND 
pseudo-op in the program file. .TFCOND reverses 
(toggles) the default, causing false conditionals 
to be suppressed. If the programmer decides to 
list false conditionals, the /X switch can be 
issued in the command line instead of editing the 
source file. 

3. Always suppress/list false conditionals 
For these cases, the programmer issues either the 
.SFCOND pseudo-op to always suppress false 
conditionals, or the .LFCOND pseudo-op to always 
list all false conditionals. 

4. Suppress/list some false conditionals 
For this case, the programmer has decided for most 
false conditionals whether to list or suppress, but 
for some false conditionals the programmer has not 
yet decided. For the false conditionals decided 
about, use .SFCOND or .LFCOND. For those not yet 
decided, use .TFCOND. .TFCOND sets the current and 
default settings to the opposite of the default. 
Initially, the default is set by giving /X or no /X 
in the command line. Two subcases exist: 

1. The programmer wants some false conditionals 
not to list unless /X is given. The programmer 
uses the .SFCOND and .LFCOND pseudo-ops to 
control which areas always suppress or list 
false conditionals. To selectively suppress 
some false conditionals, the programmer issues 
.TFCOND at the beginning of the conditional 
block and again at the end of the conditional 
block. (NOTE: The second .TFCOND should be 
issued so that the default setting will be the 
same as the initial se~ting. Leaving the 
default equal to the initial setting makes it 
easier to keep track of the default mode if 
there are many such areas.) If the conditional 
block evaluates as false, the lines will be 
suppressed. In this subcase, issuing the /X 
switch in the command line causes the 
conditional block affected by .TFCOND to list 
even if it evaluates as false. 



MACRO-80 ASSEMBLER PAGE 2-22 

2. The programmer wants some false conditionals to 
list unless IX is given. Two consecutive 
.TFCONDs places the conditional listing setting 
in initial state which is determined by the 
presence or absence of the IX switch in the 
command line (the first .TFCOND sets the 
default to not initial; the second to 
initial) • The selected conditional block then 
responds to the IX switch: if a IX switch is 
issued in the command line, the conditional 
block is suppressed if false; if no Ix switch 
is issued in the command line, the conditional 
block is listed even if false. 

The programmer then must reissue the .SFCOND or 
.LFCOND conditional listing pseudo-op to 
restore the suppress or list mode. Simply 
issuing another .TFCOND will not restore the 
prior mode, but will toggle the default 
setting. Since in this subcase, the next area 
of code is supposed to list or suppress false 
conditionals always, the programmer must issue 
.SFCOND or .LFCOND. 

The three conditional listing pseudo-ops are summarized 
below. 

PSEUDO-OP 

.SFCOND 

.LFCOND 

.TFCOND 

DEFINITION 

Suppresses the listing of conditional blocks 
that evaluate as false. 

Restores the listing of conditional blocks that 
evaluate as false. 

Toggles the current setting which controls the 
listing false conditionals. .TFCOND sets the 
current and default setting to not default. If 
a IX switch is given in the MACRO-80 run 
command line for a file which contains .TFCOND, 
IX reverses the effect of .TFCOND. 



MACRO-80 ASSEMBLER PAGE 2-23 

The following chart illustrates the effects of the three 
pseudo-ops when encountered under /X and under no /X. 

PSEUDO-OP 

(none) 

.SFCOND 

.LFCOND 

.TFCOND 

.TFCOND 

.SFCOND 

.TFCOND 

.TFCOND 

.TFCOND 

OFF 

ON 

OFF 

ON 

OFF 

OFF 
ON 

OFF 

OFF 

OFF 

ON 

ON 

OFF 

OFF 

ON 
OFF 

ON 

The output of cross reference information is controlled by 
.CREF and .XCREF. If the cross reference facility (see 
Chapter 3) has not been invoked, .CREF and .XCREF have no 
effect. The default condition is .CREF. When a .XCREF is 
encountered, no cross reference in~ormation is output until 
.CREF is encountered. 

The output of MACRO/REPT/IRP/IRPC expansions is controlled 
by three pseudo-ops: .LALL, .SALL, and .XALL. .LALLlists 
the complete macro text for all expansions. .SALL 
suppresses lsiting of all text and object code produced by 
macros. .XALL is the default condition; a source line is 
listed only if it generates object code. 



MACRO-80 ASSEMBLER PAGE 2-24 

2.6.28 Relocation Pseudo Operations 

The ability to create relocatable modules is one of the 
major features of Microsoft assemblers. Relocatable modules 
offer the advantages of easier coding and faster testing, 
debugging and modifying. In addition, it is possible to 
specify segments of assembled code that will later be loaded 
into RAM (the Data Relative segment) and ROM/PROM (the Code 
Relative segment). The pseudo operations that select 
relocatable areas are CSEG and DSEG. The ASEG pseudo-op is 
used to generate non-relocatable (absolute) code. The 
COMMON pseudo-op creates a common data area for every COMMON 
block that is named in the program. 

The default mode for the assembler is Code Relative. That 
is, assembly begins with a CSEG automatically executed and 
the location counter in the Code Relative mode, pointing to 
location 0 in the Code Relative segment of m~mory. All 
subsequent instructions will be assembled into the Code 
Relative segment of memory until an ASEG or DSEG or COMMON 
pseudo-op is executed. For example, the first DSEG 
encountered sets the location counter to location zero in 
the Data Relative segment of memory. The following code is 
assembled in the Data Relative mode, that is, it is assigned 
to the Data Relative segment of memory. If a subsequent 
CSEG is encountered, the location counter will return to the 
next free location in the Code Relative segment and so on. 

The ASEG, DSEG, CSEG pseudo-ops never have operands. If you 
wish to alter the current value of the location counter, use 
the ORG pseudo-oPe 

2.6.28.1 ORG Pseudo-op - At any time, the value 
of the location counter may be changed by use of the the ORG 
pseudo-oPe The form of the ORG statement is: 

ORG <exp> 

where the value of <exp> will be the new value of the 
location counter in the current mode. All names used in 
<exp> must be known on pass 1 and the value of <exp> must be 
either Absolute or in the current mode of the location 
counter. For example, the statements 

DSEG 
ORG 50 

set the Data Relative location counter to 50, relative to 
the start of the Data Relative segment of memory. 



MACRo-ao ASSEMBLER PAGE 2-25 

2.6.2a.2 LINK-ao - The LINK-aO linking loader (see 
Chapter 4~thIs manual) combines the segments and creates 
each relocatable module in memory when the program is 
loaded. The or~g~ns of the relocatable segments are not 
fixed until the program is loaded and the origins are 
assigned by LINK-aO. The command to LINK-SO may contain 
user-specified origins through the use of the IP (for Code 
Relative) and 10 (for Data and COMMON segments) switches. 

For example, a program that begins with the statements 

ASEG 
ORG SOOH 

and is assembled entirely in Absolute mode will always load 
beginning at SOO unless the ORG statement is changed in the 
source file. However, the same program, assembled in Code 
Relative mode with no ORG statement, may be loaded at any 
specified address by appending the IP:<address> switch to 
the LINK-SO command string. 

2.6.29 Relocation Before Loading 

Two pseudo-ops, .PHASE and 
located in one area, but 
specified area. 

For example: 

0000' 
0100 ES 0003 FOO: 
0103 E9 FFOI 
0106 C3 BAZ: 

0007' E9 FFFB ZOO: 

.DEPHASE, allow code to be 
executed only at a different, 

. PHASE 100H 
CALL BAZ 
~P ZOO 
~T 

.DEPHASE 
~p 5 

All labels within a .PHASE block are defined as the absolute 
value from the origin of the phase area. The code, however, 
is loaded in the current area (i.e., from 0' in this 
example) . The code within the block can later be moved to 
100H and executed. 

2.7 MACROS AND BLOCK PSEUDO OPERATIONS 

The macro facilities provided by MACRO-SO include three 
repeat pseudo operations: repeat (REPT), indefinite repeat 
(IRP) , and indefinite repeat character (IRPC). A macro 
definition operation (MACRO) is also provided. Each of 
these four macro operations is terminated by the ENDM pseudo 
operation. 



MACRO-BO ASSEMBLER 

2.7.1 Terms 

For the purposes of discussion of macros 
operations, the following terms will be used: 

PAGE 2-26 

and block 

1. <dummy> is used to represent a dummy parameter. 
All dummy parameters are legal symbols that appear 
in the body of a macro expansion. 

2. <dummylist> is a list of <dummy>s separated by 
commas. 

3. <arglist> is a list of arguments separated by 
commas. <arglist> must be delimited by angle 
brackets. Two angle brackets with no intervening 
characters «» or two commas with no intervening 
characters enter a null argument in the list. 
Otherwise an argument is a character or series of 
characters terminated by a comma or >. with angle 
brackets that are nested inside an <arglist>, one 
level of brackets is removed each time the 
bracketed argument is used in an <arglist>. See 
example, Section 2.7.5.) A quoted string is an 
acceptable argument and is passed as such. Unless 
enclosed in brackets or a quoted string, leading 
and trailing spaces are deleted from arguments. 

4. <paramlist> is used to represent a list of actual 
parameters separated by commas. No delimiters are 
required (the list is terminated by the end of line 
or a comment), but the rules for entering null 
parameters and nesting brackets are the same as 
described for <arglist>. (See example, Section 
2.7.5) 

2.7.2 REPT-ENDM 

REPT <exp> 

ENDM 

The block of statements between REPT and ENDM is repeated 
<exp> times. <exp> is evaluated as a l6-bit unsigned 
number. If <exp> contains any external or undefined terms, 
an error is generated. Example: 

SET 0 
REPT 10 
SET X+l 
DB X 
ENDM 

igenerates DB 1 - DB 10 



MACRO-80 ASSEMBLER PAGE 2-27 

2.7.3 IRP-ENDM 

IRP <dummy>,<arglist> 

ENDM 

The <arglist> must be enclosed in angle brackets. The 
number of arguments in the <arglist> determines the number 
of times the block of statements is repeated. Each 
repetition substitutes the next item in the <arglist> for 
every occurrence of <dummy> in the block. If the <arglist> 
is null (i.e., <», the block is processed once with each 
occurrence of <dummy> removed. For example: 

IRP X,<1,2,3,4,5,6,7,8,9,IO> 
DB X 
ENDM 

generates the same bytes as the REPT example. 

2.7.4 IRPC-ENDM 

IRPC <dummy>,string (or <string» 

ENDM 

IRPC is similar to IRP but the arglist is replaced by a 
string of text and the angle brackets around the string are 
optional. The statements in the block are repeated once for 
each character in the string. Each repetition substitutes 
the next character in the string for every occurrence of 
<dummy> in the block. For example: 

IRPC X,0123456789 
DB X+I 
ENDM 

generates the same code as the two previous examples. 



MACRO-80 ASSEMBLER PAGE 2-28 

Often it is convenient to be able to generate a given 
sequence of statements from various places in a program, 
even though different parameters may be required each time 
the sequence is used. This capability is provided by the 
MACRO statement. 
The form is 

<name> MACRO <dummylist> 

EN OM 

where <name> conforms to the rules for forming symbols. 
<name> is the name that will be used to invoke the macro. 
The <dummy>s in <dummylist> are the parameters that will be 
changed (replaced) each time the MACRO is invoked. The 
statements before the ENDM comprise the body of the macro. 
During assembly, the macro is expanded every time it is 
invoked but, unlike REPT/IRP/IRPC, the macro is not expanded 
when it is encountered. 

The form of a macro call is 

<name> <paramlist> 

where <name> is the name supplied in the MACRO definition, 
and the parameters in <paramlist> will replace the <dummy>s 
in the MACRO <dummylist> on a one-to-one basis. The number 
of items in <dummylist> and <paramlist> is limited only by 
the length of a line. The number of parameters used when 
the macro is called need not be the same as the number of 
<dummy>s in <dummylist>. If there are more parameters than 
<dummmy>s, the extras are ignored. If there are fewer, the 
extra <dummy>s will be made null. The assembled code will 
contain the macro expansion code after each macro call. 

NOTE 

A dummy parameter in a 
MACRO/REPT/IRP/IRPC is always 
recognized exclusively as a 
dummmy parameter. Register 
names such as A and B will be 
changed in the expansion if 
they were used as dummy 
parameters. 



MACRO-80 ASSEMBLER PAGE 2-29 

Here is an example of a MACRO definition that defines a 
macro called FOO: 

FOO MACRO X 
Y SET 0 

REPT X 
Y SET Y+l 

DB Y 
ENDM 
ENDM 

This macro generates the same code as the previous three 
examples when the call 

FOO 10 

is executed. 

Another example, which generates the same code, illustrates 
the removal of one level of brackets when an argument is 
used as an arglist: 

FOO 

When the call 

MACRO 
IRP 
DB 
ENDM 
ENDM 

x 
Y,<X> 
Y 

FOO <1,2,3,4,5,6,7,8,9,10> 

is made, the macro expansion looks like this: 

2.7.6 ENDM 

IRP 
DB 
ENDM 

Y,<1,2,3,4,5,6,7,8,9,10> 
Y 

Every REPT, IRP, IRPC and MACRO pseudo-op must be terminated 
with the ENDM pseudo-oPe Otherwise, the 'Unterminated 
REPT/IRP/IRPC/MACRO' message is generated at the end of each 
pass. An unmatched ENDM causes an 0 error. 

2.7.7 EXITM 

The EXITM pseudo-op is used to terminate a REPT/IRP/IRPC or 
MACRO call. When an EXITM is executed, the expansion is 
exited immediately and any remaining expansion or repetition 
is not generated. If the block containing the EXITM is 
nested within another block, the outer level continues to be 
expanded. 



MACRO-SO ASSEMBLER PAGE 2-30 

2.7.S LOCAL 

LOCAL <dummylist> 

The LOCAL pseudo-op is allowed only inside a MACRO 
definition. When LOCAL is executed, the assembler creates a 
unique symbol for each <dummy> in <dummylist> and 
substitutes that symbol for each occurrence of the <dummy> 
in the expansion. These unique symbols are usually used to 
define a label within a macro, thus eliminating 
multiply-defined labels on successive expansions of the 
macro. The symbols created by the assembler range from 
•• 0001 to •• FFFF. Users will therefore want to avoid the 
form •• nnnn for their own symbols. If LOCAL statements are 
used, they must be the first statements in the macro 
definition. 

2.7.9 Special Macro Operators And Forms 

& The ampersand is used in a macro expansion to 
concatenate text or symbols. A dummy parameter that 
is in a quoted string will not be substituted in the 
expansion unless it is immediately preceded by &. 
To form a symbol from text and a dummy, put & 
between them. For example: 

. . , , 

ERRGEN MACRO 
ERROR&X:PUSH 

MOVI 
JMP 
ENDM 

X 
BX 
BX,'&X' 
ERROR 

In this example, the call ERRGEN A will generate: 

ERRORA: PUSH B 
MOVI BX,'A' 
JMP ERROR 

In a block operation, a comment preceded by two 
semicolons is not saved as part of the expansion 
(i.e., it will not appear on the listing even under 
.LALL) • A comment preceded by one semicolon, 
however, will be preserved and appear in the 
expansion. 

When an exclamation point is used in an argument, 
the next character is entered literally (i.e., 1; 
and <;> are equivalent). 



I 
I, 

"-

MACRO-80 ASSEMBLER PAGE 2-31 

NUL NUL is an operator that returns true if its argument 
(a parameter) is null. The remainder of a line 
after NUL is considered to be the argument to NUL. 
The conditional 

% 

IF NUL argument 

is false if, during the expansion, the first 
character of the argument is anything other than a 
semicolon or carriage return. It is recommended 
that testing for null parameters be done using the 
IFB and IFNB conditionals. 

The percent sign is used only in a macro argument. 
% converts the expression that follows it (usually a 
symbol) to a number in the current radix. During 
macro expansion, the number derived from converting 
the expression is substituted for the dummy. Using 
the % special operator allows a macro call by value. 
(Usually, a macro call is a call by reference with 
the text of the macro argument substituting exactly 
for the dummy.) 

The expression following the % must conform to the 
same rules as the DS (Define Space) pseudo-oPe A 
valid expression returning a non-relocatable 
constant is required. 

EXAMPLE: Normally, LB, the argument ta MAKLAB, 
would be substituted for Y, the argument to MACRO, 
as a string. The % causes LB to be converted to a 
non-relocatable constant which is then substituted 
for Y. Without the % special operator, the result 
of assembly would be 'Error LB' rather than 'Error 
I', etc. 

MAKLAB MACRO Y 
ERR&Y: DB 'Error &Y' ,0 

ENDM 
MAKERR MACRO X 
LB SET 0 

REPT X 
LB SET LB+l 

MAKLAB %LB 
ENDM 
ENDM 

When called by MAKERR 3, the assembler will 
generate: 

ERR1: DB 'Error l' ,0 
ERR2: DB 'Error 2 ' ,0 
ERR3: DB 'Error 3 ' ,0 



MACRO-80 ASSEMBLER PAGE 2-32 

TYPE The TYPE operator returns a byte that describes two 
characteristics of its argument: 1) the mode, and 
2) whether it is External or not. The argument to 
TYPE may be any expression (string, numeric, 
logical). If the expression is invalid, TYPE 
returns zero. 

The byte that is returned is configured as follows: 

The lower two bits are the mode. If the lower two 
bits are: 

a the mode is Absolute 
1 the mode is Program Relative 
2 the mode is Data Relative 
3 the mode is Common Relative 

The high bit (80H) is the External bit. If the high 
bit is on, the expression contains an External. If 
the high bit is off, the expression is local (not 
External). 

The Defined bit is 20H. This bit is on if the 
expression is locally defined, and it is off if the 
expression is undefined or external. If neither bit 
is on, the expression is invalid. 

TYPE is usually used inside macros, where an 
argument type may need to be tested -to make a 
decision regarding program flow. For example: 

Faa MACRO X 
LOCAL Z 

Z SET TYPE X 
IF Z •.• 



MACRO-80 ASSEMBLER PAGE 2-33 

2.8 USING Z80 PSEUDO-OPS 

When using the MACRO-80 assembler, the following zao 
pseudo-ops are valid. The function of each pseudo-op is 
equivalent to that of its counterpart. 

Z80 pseudo-op 

COND 
ENDC 
*EJECT 
DEFB 
DEFS 
DEFW 
DEFM 
DEFL 
GLOBAL 
EXTERNAL 

Equivalent pseudo-op 

IFT 
ENDIF 
PAGE 
DB 
OS 
DW 
DB 
SET 
PUBLIC 
EXTRN 

The formats, where different, conform to the previous 
format. That is, DEFB and DEFW are permitted a list of 
arguments (as are DB and DW), and DEFM is permitted a string 
or numeric argument (as is DB) . 



MACRO-80 ASSEMBLER PAGE 2-34 

2.9 SAMPLE ASSEMBLY 

A>M80 

*EXMPLl,TTY:=EXMPL1 

MAC80 3.2 PAGE 1 

00100 i CSL3 (P1 , P2 ) 
00200 iSHIFT PI LEFT CIRCULARLY 3 BITS 
00300 iRETURN RESULT IN P2 
00400 ENTRY CSL3 
00450 iGET VALUE OF FIRST PARAMETER 
00500 CSL3: 

0000 1 7E 00600 MOV A,M 
0001 1 23 00700 INX H 
0002 1 66 00800 MOV H,M 
0003 1 6F 00900 MOV L,A 

01000 iSHIFT COUNT 
0004 1 06 03 01100 MVI B,3 
0006 1 AF 01200 LOOP: XRA A 

01300 iSHIFT LEFT 
0007 1 29 01400 DAD H 

01500 iROTATE IN CY BIT 
0008 1 17 01600 RAL 
0009 1 85 01700 ADD L 
OOOA I 6F 01800 MOV L,A 

01900 iDECREMENT COUNT 
OOOB I as 02000 DCR B 

02100 iONE MORE TIME 
OOOC I C2 0006 1 02200 JNZ LOOP 
OOOF I EB 02300 XCHG 

02400 iSAVE RESULT IN SECOND PARAMETER 
0010 1 73 02500 MOV M,E 
0011 1 23 02600 INX H 
0012 1 72 02700 MOV M,D 
0013 1 C9 02800 RET 

02900 END 

MAC80 3.2 PAGE S 

CSL3 OOOOI I LOOP 0006 1 

No Fatal error(s) 



MACRO-SO ASSEMBLER PAGE 2-35 

2.10 MACRO-SO ERRORS 

MACRO-SO errors are indicated by a one-character flag in 
column one of the listing file. If a listing file is not 
being printed on the terminal, each erroneous line is also 
printed or displayed on the terminal. Below is a list of 
the MACRO-SO Error Codes: 

A Argument error 
Argument to pseudo-op is not in correct format or 
is out of range (.PAGE 1; .RADIX 1; PUBLIC 1; 
JMPS TOOFAR). 

C Conditional nesting error 
ELSE without IF, ENDIF without IF, two ELSEs on 
one IF. 

D Double Defined symbol 
Reference to a symbol which is multiply defined. 

E External error 
Use of an external illegal in context (e.g., FOO 
SET NAME##; MOVI AX,2-NAME##). 

M Multiply Defined symbol 
Definition of a symbol which is multiply defined. 

N Number error 
Error in a number, usually a bad digit (e~g., SQ). 

o Bad opcode or objectionable syntax 
ENDM, LOCAL outside a block; SET, EQU or MACRO 
without a name; bad syntax in an opcode; or bad 
syntax in an expression (mismatched parenthesis, 
quotes, consecutive operators, etc.). 

P Phase error 
Value of a label or EQU name is different on pass 
2. 

Q Questionable 
Usually means a line is not terminated properly. 
This is a warning error (e.g. MOV AX,BX,). 

R Relocation 
Illegal use of relocation in expression, such as 
abs-rel. Data, code and COMMON areas are 
relocatable. 

U Undefined symbol 
A symbol referenced in an expression is not 
defined. (For certain pseudo-ops, a V error is 
printed on pass 1 and a U on pass 2.) 



MACRO-BO ASSEMBLER PAGE 2-36 

V Value error 
On pass 1 a pseudo-op which must have its value 
known on pass 1 (e.g., .RADIX, .PAGE, DS, IF, IFE, 
etc.), has a value which is undefined. If the 
symbol is defined later in the program, a U error 
will not appear on the pass 2 listing. 

Error Messages: 

'No end statement encountered on input file' 
No END statement: either it is missing or it is 
not parsed due to being in a false conditional, 
unterminated IRP/IRPC/REPT block or terminated 
macro. 

'Unterminated conditional' 
At least one conditional is unterminated at the 
end of the file. 

'Unterminated REPT/IRP/IRPC/MACRO' 
At least one block is unterminated. 

[xx] [No] Fatal error (s) [,xx warnings] 
The number of fatal errors and warnings. The 
message is listed on the CRT and in the list file. 

2.11 COMPATIBILITY WITH OTHER ASSEMBLERS 

The $EJECT and $TITLE controls are provided for 
compatability with INTEL's ISIS assembler. The dollar sign 
must appear in column 1 only if spaces or tabs separate the 
dollar sign from the control word. The control 

$EJECT 

is the same as the MACRO-BO PAGE pseudo-oPe 
The control 

$TITLE ( I text' ) 

is the same as the MACRO-BO SUB TTL <text> pseudo-oPe 

The INTEL operands PAGE and INPAGE generate Q errors when 
used wi-th the MACRO-BO CSEG or DSEG pseudo-ops. These 
errors are warnings; the assembler ignores the operands. 

When MACRO-BO is entered, the default for the origin is Code 
Relative O. 

With the INTEL ISIS assembler, the default is Absolute O. 



MACRO-SO ASSEMBLER PAGE 2-37 

With MACRO-SO, the dollar sign ($) is a defined constant 
that indicates the value of the location counter at the 
start of the statement. Other assemblers may use a decimal 
point or an asterisk. Other constants are defined by 
MACRO-SO to have the following values: 

A=7 
H=4 

B=O 
L=S 

C=l 
M=6 

2.12 FORMAT OF LISTINGS 

D=2 
SP=6 

E=3 
PSW=6 

On each page of a MACRO-SO listing, the first two lines have 
the form: 

[TITLE text] 
[SUBTTL text] 

where: 

M80 3.3 PAGE x[-y] 

1. TITLE text is the text supplied with the TITLE 
pseudo-op, if one was given in the source program. 

2. x is the major page number, which is incremented 
only when a form feed is encountered in the source 
file. (When using Microsoft's EDIT-SO text editor, 
a form feed is inserted whenever a page mark is 
done.) When the symbol table is being printed, x = 
s. 

3. Y is the minor page number, which is incremented 
whenever the .PAGE pseudo-op is encountered in the 
source file, or whenever the current page size has 
been filled. 

4. SUBTTL text is the text supplied with the SUBTTL 
pseudo-op, if one was given in the source program. 

Next, a blank line is printed, followed by the first line of 
output. 

A line of output on a MACRO-SO listing has the following 
form: 

[crf#] [error] loc#m Ixx I xxxxl··· source 

If cross reference information is being output, the first 
item on the line is the cross reference number, followed by 
a tab. 

A one-letter error code followed by a space appears next on 
the line, if the line contains an error. If there is no 
error, a space is printed. If there is no cross reference 
number, the error code column is the first column on the 
listing. 



MACRo-ao ASS&~BLER PAGE 2-38 

The value of the location counter appears next on the line. 
It is a 4-digit hexadecimal number or 6-digit octal number, 
depending on whether the /0 or /H switch was given in the 
MACRO-80 command string. 

The character at the end of the location 
the mode indicator. It will be one 
symbols: 

" 
<space> 

* 

Code Relative 
Data Relative 
COMMON Relative 
Absolute 
External 

counter value is 
of the following 

Next, three spaces are printed followed by the assembled 
code. One-byte values are followed by a space. Two-byte 
values are followed by a mode indicator. Two-byte values 
are printed in the opposite order they are stored in, i.e., 
the high order byte is printed first. Externals are either 
the offset or the value of the pointer to the next External 
in the chain. 

If a line of output on a MACRO-80 listing is from an INCLUDE 
file, the character 'C' is printed after the assembled code 
on that line. If a line of output is part of a text 
expansion (MACRO, REPT, IRP, IRPC) a plus sign '+' is 
printed after the assembled code on that line. 

The remainder of the line contains the line of source code, 
as it was input. 

Example: 

OC49 3A A9lZ' C+ LDA LCOUNT 

'C+' indicates this line is from an INCLUDE file and part of 
a macro expansion. 



MACRO-80 ASSEMBLER PAGE 2-39 

2.12.1 SYmbol Table Listing 

In the symbol table listing, all the macro names in the 
program are listed alphabetically, followed by all the 
symbols in the program, listed alphabetically. After each 
symbol, a tab is printed, followed by the value of the 
symbol. If the symbol is Public, an I is printed 
immediately after the value. The next character printed 
will be one of the following: 

U Undefined symbol. 

C COMMON block name. (The "value" of the 
COMMON block is its length (number of 
bytes) in hexadecimal or octal.) 

* External symbol. 

<space> Absolute value. 

" 

Program Relative value. 

Data Relative value. 

COMMON Relative value. 





( , 

CHAPTER 4 

LINK-SO LINKING LOADER 

NOTE 

If you are using the TEKDOS 
operating system, see Appendix 
A for proper command formats. 

4.1 RUNNING LINK-SO 

The command to run LINK-SO is 

LSO 

LINK-SO returns the prompt 
accept commands. 

4.2 COMMAND FORMAT 

"*" , indicating it is ready to 

Each command to LINK-SO consists of a string of object 
filenames separated by commas. These are the files to be 
loaded by LINK-SO. The command format is: 

objfilel,objfile2, ••• objfilen 

The default extension for all filenames is REL. Command 
lines are supported, that is, the invocation and command may 
be typed on the same line. 

Example: 

LSO MYPROG,YRPROG 



LINK-SO LINKING LOADER 

Any filename in the LINK-SO command string can 
a device name. The default device name 
operating system is the currently logged disk. 
device with the ISIS-II operating system is 
The format is: 

PAGE 4-2 

also specify 
with the CP/M 

The default 
disk drive o. 

devl:objfilel,dev2:objfile2, ••• devn:objfilen 

The device names are as listed in Section 2.2.1. 

Example: 

LSD MYPROG,A:YRPROG 

After each line is typed, LINK-SO will load the specified 
files. After LINK finishes this process, it will list all 
symbols that remained undefined followed by an asterisk. 

Example: 

*MAIN 

DATA 0100 0200 

SUBRl* (SUBRI is undefined) 

*SUBRI 

DATA 0100 0300 

* 
Typically, to execute a MACRO-SO program and subroutines, 
the user types the list of filenames followed by /G (begin 
execution). To resolve any external, undefined symbols, you 
can first search your library routines (See Chapter 5, 
LIB-SO) by appending the filenames, followed by IS, to the 
loader command string. 

*MYLIB/S 

*/G 

Searches MYLIB.REL for unresolved 
global symbols 

Starts execution 

4.2.1 LINK-SO Switches 

A number of switches may be given in the LINK-SO command 
string to specify actions affecting the loading or execution 
of the program(s). Each switch must be preceded by a slash 
(/) • (With the TEKDOS operating system, switches are 
preceded by hyphens. See Appendix A.) 



LINK-SO LINKING LOADER PAGE 4-3 

Switches may be placed wherever applicable in the command 
string: 

1. At command level. It is possible for a switch to 
be the entire LINK-SO command, or to appear first 
in the command string. For example: 

*/G Tells LINK-SO to begin execution 
of program(s) already loaded 

*/M List all global references 
from program(s) already loaded 

*/P:200,FOO Load FOO, with program area 
beginning at address 200 

2. Immediately after a filename. An S or N switch may 
refer to only one filename in the command string. 
Therefore, when the S or N switch is required, it 
is placed immediately after that filename, 
regardless of where the filename appears in the 
command string. For example: 

*MYLIB/S,MYPROG 
Search MYLIB.REL and load necessary 
library modules, then load MYPROG.REL. 

*MYPROG/N,MYPROG/E 
Load MYPROG.REL, save MYPROG.COM 
on disk and exit LINK-SO. 

3. At the end of the command string. Any required 
switches that affect the entire load process may be 
appended at the end of the command string. For 
example: 

*MYPROG/N,MYPROG/M/E 
Open a CP/M COM file called 
MYPROG.COM, load MYPROG.REL 
and list all global refer­
ences. Exit LINK-SO and save 
the COM file. 

MYLIB/S,MYSUB,MYPROG/N,MYPROG/M/G 
Search MYLIB.REL, load and link 
MYSUB.REL and MYPROG.REL, 
open a CP/M COM file 
called MYPROG.COM, list 
all global references, save the 
COM file, and execute MYPROG. 



LINK-80 LINKING LOADER PAGE 4-4 

The available switches are: 

Switch 

R 

E or E:Name 

G or G:Name 

N 

Action 

Reset. Put loader back in its initial state. 
Use /R if you loaded the wrong file by 
mistake and want to restart. /R takes effect 
as soon as it is encountered in a command 
string. 

Exit LINK-80 and return to the operating 
system. The system library will be searched 
on the current disk to satisfy any existing 
undefined globals. Before exiting, LINK-80 
prints three numbers: the sta~t address, the 
address of the next available byte, and the 
number of 256-byte pages used. The optional 
form E:Name (where Name is a global symbol 
previously defined in one of the modules) 
uses Name for the start address of the 
program. Use /E to load a program and exit 
back to the monitor. 

Start execution of the program as soon as the 
current command line has been interpreted. 
The system library will be searched on the 
current disk to satisfy any existing 
undefined globals if they exist. Before 
execution actually begins, LINK-8~ prints 
three numbers and a BEGIN EXECUTION message. 
The three numbers are the start address, the 
address of the next available byte, and the 
number of 256-byte pages used. The optional 
form G:Name (where Name is a global symbol 
previously defined in one of the modules) 
uses Name for the start address of the 
program. 

If a <filename>/N is specified, the program 
will be saved on disk under the selected name 
(with a default extension of .COM for CP/M) 
when a /E or /G is done. A jump to the start 
of the program is inserted if needed so the 
program can run properly (at IOOH for CP/M) • 



LINK-80 LINKING LOADER PAGE 4-5 

P and D 

u 

M 

s 

/P and /D allow the origin{s) to be set for 
the next program loaded. /P and /D take 
effect when seen (not deferred), and they 
have no effect on programs already loaded. 
The form is /P:<address> or /D:<address>, 
where <address> is the desired origin in the 
current typeout radix. (Default radix is 
hex. /0 sets radix to octal: /H to hex.) 
LINK-80 does a default /P:<link origin>+3 
(i.e., 103H for CP/M and 4003H for ISIS) to 
leave room for the jump to the start address. 
NOTE: Do not use /P or /D to load programs 
or data into the locations of the loader's 
jump to the start address (IOOH to 102H for 
CP/M) unless it is to load the start of the 
program there. If programs or data are 
loaded into these locations, the jump will 
not be generated. 

If no /D is given, data areas are loaded 
before program areas for each module. If a 
/D is given, all Data and Common areas are 
loaded starting at the data origin and the 
program area at the program origin. Example: 

*/P:200,FOO 
Data 200 300 
*/R 
*/P:200 /D:400,FOO 
Data 400 480 
Program 200 280 

List the origin and end of the program and 
data area and all undefined globals as soon 
as the current command l~ne has been 
interpreted. The program information is only 
printed if a /D has been done. Otherwise, 
the program is stored in the data area. 

List the origin and end of the program and 
data area, all defined globals and their 
values, and all undefined globals followed by 
an asterisk. The program information is only 
printed if a /D has been done. Otherwise, 
the program is stored in the data area. 

Search the filename immediately preceding the 
/S in the command string to satisfy any 
undefined globals. 



LINK-80 LINKING LOADER PAGE 4-6 

4.2.2 CP/M LINK-80 Switches 

The following switches apply to CP/M versions only. 

x 

Y 

If a filename/N was specified, /X will cause 
the file to be saved in Intel ASCII HEX 
format with an extension of HEX. 

Example: FOO/N/X/E will create an Intel 
ASCII HEX formatted load module named 
FOO.HEX. 

If a filename/N was specified, /Y will create 
a filename.SYM file when /E is entered. This 
file contains the names and addresses of all 
Globals for use with Digital Research's 
Symbolic Debugger, SID and ZSID. 

Example: FOO/N/Y/E creates FOO.COM and 
FOO.SYM. MYPROG/N/X/Y/E creates MYPROG.HEX 
and MYPROG.SYM. 

4.2.3 Sample Links 

LINK AND GO 

A>L80 
*EXAMPL, EXMPLI/G 
DATA 3000 30AC 
[304F 30AC 49] 

[BEGIN EXECUTION] 

A> 

1792 
14336 

-16383 
14 

112 

LINK AND SAVE 

14336 
-16383 

14 
112 
896 

A>L80 
*EXAMPL,EXAMPLl,EXAM/N/E 
DATA 3000 30AC 
[304F 30AC 49] 
A> 

Loads and links EXAMPL.REL, EXMPLl.REL and creates 
EXAM. COM. 



LINK-SO LINKING LOADER 

4.3 FORMAT OF LINK COMPATIBLE OBJECT FILES 

NOTE 

Section 4.3 is reference 
material for users who wish to 
know the load format of 
LINK-SO relocatable object 
files. Most users will want 
to skip this section, as it 
does not contain material 
necessary to the operation of 
the package. 

PAGE 4-7 

LINK-compatible object files consist of a bit stream. 
Individual fields within the bit stream are not aligned on 
byte boundaries, except as noted below. Use of a bit stream 
for relocatable object files keeps the size of object files 
to a m~n~mum, thereby decreasing the number of disk 
reads/writes. 

There are two basic types of load items: Absolute and 
Relocatable. The first bit of an item indicates one of 
these two types. If the first bit is a 0, the following S 
bits are loaded as an absolute byte. If the first bit is a 
1, the next 2 bits are used to indicate one of fou~ types of 
relocatable items: 

00 Special LINK item (see below). 

01 Program Relative. Load the following 16 bits 
after adding the current Program base. 

10 Data Relative. Load the following 16 bits after 
adding the current Data base. 

11 Common Relative. Load the following 16 bits 
after adding the current Common base. 

Special LINK items consist of the bit stream 100 followed 
by: 

a four-bit control field 

an optional A field consisting of a two-bit 
address type that is the same as the two-bit 
field above except 00 specifies absolute address 

an optional B field consisting of 3 bits that 
give a symbol length and up to S bits for eacq 
character of the symbol 



LINK-ao LINKING LOADER PAGE 4-a 

A general representation of a special LINK item is: 

1 00 xxxx yy nn 

A field 

zzz + characters of symbol name 

B field 

xxx x 
yy 
nn 

Four-bit control field (0-15 below) 
Two-bit address type field 
Sixteen-bit value 

zzz Three-bit symbol length field 

The following special types have a B-field only: 

a Entry symbol (name for search) 
1 Select COMMON block 
2 Program name 
3 Request library search 
4 Extension LINK items (see below) 

The following special LINK items have both an A field and a 
B field: 

5 Define COMMON size 
6 Chain external (A is head of address chain, B is 

name of external symbol) 
7 Define entry point (A is address, B is name) 

The following special LINK items have an A field only: 

a External - offset. Used for JMP and CALL to 
externals 

9 External + offset. The A value will be added to 
the two bytes starting at the current location 
counter immediately before execution. 

10 Define size of Data area (A is size) 
11 Set loading location counter to A 
12 Chain address. A is head of chain, replace all 

entries in chain with current location counter. 
The last entry in the chain has an address field 
of absolute zero. 

13 Define program size (A is size) 
14 End program (forces to byte boundary) 



LINK-aD LINKING LOADER PAGE 4-9 

The following special Link item has neither an A nor a B 
field: 

15 End file 

An Extension LINK item follows the general format of a 
B-field-only special LINK item, but contents of the B-field 
are not a symbol name. Instead, the symbol area contains 
one character to identify the type of Extension LINK item, 
followed by from 1 to 7 characters of additional 
information. 

Thus, every Extension LINK item has the format: 

1 00 0100 zzz i jjjjjjj 

where 

zzz may be any three bit integer (with 000 
representing a) , 

i is an eight bit Extension LINK item type 
identifier, and 

jjjjjjj are zzz-l eight bit characters of 
information whose significance depends on i 

At present, there is only one Extension LINK item: 

i = X'35' COBOL overlay segment sentinel 

zzz = 010 (binary) 

j = COBOL segment number -49 (decimal) 

When the overlay segment sentinel is encountered by the 
linker, the current overlay segment number is set to the 
value of j+49. If the previously existing segment 
number was non-zero and a IN switch is in effect, the 
data area is written to disk in a file whose name is the 
current program name and whose extension is Vnn, where 
nn are the two hexadecimal digits representing the 
number j+49 (decimal). 



LINK-SO LINKING LOADER PAGE 4-10 

4.4 LINK-SO ERROR MESSAGES 

LINK-SO has the following error messages: 

?No Start Address 

?Loading Error 

?Out of Memory 

?Command Error 

?<file> Not Found 

A /G switch was issued, but no main 
program had been loaded. 

The last file given for input was not a 
properly formatted LINK-SO object file. 

Not enough memory to load program. 

Unrecognizable LINK-SO command. 

<file>, as given in the command string, 
did not exist. 

%2nd COMMON Larger /XXXXXX/ 
The first definition of COMMON block 
/XXXXXX/ was not the largest definition. 
Reorder module loading sequence or 
change COMMON block definitions. 

%Mult. Def. Global YYYYYY 
More than one definition for the global 
(internal) symbol YYYYYY was encountered 
during the loading process. 

%Qverlaying { program} Area 
Data 

,Start = xxxx 
,Public = <symbol name>(xxxx) 
,External = <symbol name> (xxxx) 
/P will cause already loaded 

?Intersecting 

A /D or 
data to be destroyed. 

{
Program 1 Area 
Data 

The program and data area intersect and 
an address or external chain entry is in 
this intersection. The final value 
cannot be converted to a current value 
since it is in the area intersection. 

?Start Symbol - <name> - Undefined 
After a /E: or /G: is given, the 
symbol specified was not defined. 



LINK-SO LINKING LOADER PAGE 4-11 

Or igin f Above \ Loader Memory, Move Anyway (Y or N)? 
\ Below J 

After a /E or /G was given, either the 
data or program area has an or~g~n or 
top which. lies outside loader memory 
(i.e., loader origin to top of memory). 
If a Y <cr> is given, LINK-SO will move 
the area and continue. If anything else 
is given, LINK-SO will exit. In either 
case, if a /N was given, the image will 
already have been saved. 

?Can't Save Object File 
A disk error occurred when the file was 
being saved. 

4.5 PROGRAM BREAK INFORMATION 

LINK-SO stores the address of the first free location in a 
global symbol called $MEMRY if that symbol has been defined 
by a program loaded. $MEMRY is set to the top of the data 
area +1. 

NOTE 

If /D is given and the data 
or~g~n is less than the 
program area, the user must be 
sure there is enough room to 
keep the program from being 
destroyed. This is 
particularly true with the 
disk driver for FORTRAN-SO 
which uses $MEMRY to allocate 
disk buffers and FCB's. 





APPENDIX A 

TEKDOS Operating System 

The command formats for MACRO-aO, LINK-aO and CREF-aO differ 
slightly under the TEKDOS operating system. 

A.l TEKDOS COMMAND FILES 

The files Faa, Mao, and cao are actually TEKDOS command 
files for the compiler, assembler, loader, and cross 
reference programs, respectively. These command files set 
the emulation mode to a and select the z-ao assembler 
processor (see TEKDOS documentation), then execute the 
appropriate program file. You will note that all of these 
command files are set up to execute the Microsoft programs 
from drive 1. LINK-ao will also look for the library 
(FORLIB) on drive 1. If you wish to execute any of this 
software from drive 0, the command file must be edited and 
LINK-aO should be given an explicit library search directive 
"FORLIB-S" • (See Section 4.2.1 of thi s manual.) 

A.2 MACRo-a a 

The MaO assembler accepts command lines only. A prompt is 
not displayed and interactive commands are not accepted. 
Commands have the same format as TEKDOS assembler commands~ 
i.e., three filename or device name parameters plus optional 
switches. 

Mao [objfile] [lstfile] sourcefile [swl] [sw2 ••• ] 

The object and listing file parameters are optional. These 
files will not be created if the parameters are omitted, 
however any error messages will still be displayed on the 
console. The available switches are as described in Chapter 
2 of this manual. except that the switches are delimited by 
commas ~r spaces instead of slashes. 



PAGE A-2 

A.3 CREF-80 

The form of commands to CREF80 is: 

C80 lstfile sourcefile 

Both filename parameters are required. The sourcefile 
parameter is always the name of a CREF80 file created during 
assembly, by use of the C switch. 

Example: 

Create a CREF80 file using MACRO-80: 

M80 " TSTCRF TSTMAC C 

Create a cross reference listing from the CREF80 file: 

caD TSTLST TSTCRF 

A.4 LINK-aD 

with TEKDOS, the LINK-aD loader accepts interactive commands 
only. Command lines are not supported. 

When LINK-aD is invoked, and whenever it is waiting for 
input, it will prompt with an asterisk. Commands -are lists 
of filenames and/or devices separated by commas or spaces 
and optionally interspersed with switches. The input to 
LINK-80 must be Microsoft relocatable object code (not the 
same as TEKDOS loader format). 

Switches to LINK-aD are delimited by hyphens under TEKDOS, 
instead of slashes. All LINK-aD switches (as documented in 
Chapter 3) are supported, except "G" and "N", which are not 
implemented at this time. 

Examples: 

1. Assemble a MACRO-aD program named XTEST, creating 
an object file called XREL and a listing file 
called XLST: 

>Mao XREL XLST XTEST 

2. Load XTEST and save the loaded module: 

>L80 
*XREL-E 
[04AD 22Ba] 
*DOS*ERROR 46 
L80 TERMINATED 
>M XMOD 400 22Ba 04AD 



PAGE A-3 

Note that "-E" exits via an error message due to execution 
of a Halt instruction. The memory image is intact, however, 
and the "Module" command may be used to save it. Once a 
program is saved in module format, it may then be executed 
directly without going through LINK-80 again. 

The bracketed numbers printed by LINK-80 before exiting are 
the entry point address and the highest address loaded, 
respectively. The loader default is to begin loading at 
400H. However, the loader also places a jump to the start 
address in location 0, thereby allowing execution to begin 
at O. The memory locations between 0003 and 0400H are 
reserved for SRB's and I/O buffers at runtime. 





$INCLUDE . 
$MEMRY • 

INDEX 

· 2-14 
· 4-11 

• COMMENT • • • • • . • • • • • 2-16 
.CREF . . • • • • 2-23 
.DEPHASE • • •• . •.•• 2-25 
.LALL . • •• . ••••• 2-23 
.LFCOND . •. ••• • 2-20 
.LIST • . •• ••• • 2-20 
• PAGE . • • • •••• 2-37 
.PHASE • . •• • ••••• 2-25 
.PRINTX • • • • • •• 2-17 
.RADIX • . • • . •.• 2-6, 2-17 
.REQUEST • • ••••• 2-18 
.SALL . • • • . • • • 2-23 
.SFCOND ••••••••••• 2-20 
.TFCOND ••••••••••• 2-20 
.XALL • • •••••••••• 2-23 
.XCREF • • •••••• 2-23 
.XLIST . • •••••••• 2-20 

Absolute memory · · · · · · · 2-8, 
Arithmetic operators · · · · · 2-8 
ASEG . . . . . . · · · · · 2-8, 

Block pseudo ops · · · · · · · 2-25 

•• • 2-7 

2-11, 

2-11, 

2-38 

2-24 

Character constants 
Code Relative 
Command format • 
Comments . • • 
COMMON • . • • • 

• ••••. 2-11, 2-24 to 2-25, 2-38 
• •••• 2-1, 3-1, 4-1, 5-1 

• ••• 2-6, 2-16 
• •• 2-8, 2-11, 2-24 to 2-25, 

2-38 to 2-39 
Conditionals • • • •• • • 2-19 
Constants. •••• • • . 2-6 
CP/M. • • • •• • •••• 2-2 to 2-3, 4-4 to 4-6, 

5-1, 5-4 
Cross reference facility .•• 2-4, 2-23, 2-37, 3-1 
CSEG ••••••••••••• 2-8, 2-11, 2-24, 2-36 

Data Relative • •• 2-8, 2-12, 2-24 to 2-25, 
2-38 

DB •••••••••••••• 2-6, 2-11 
DC . • • . • • • • • • • • • • 2-12 
Define Byte ••••••••• 2-6, 2-11 
Define Character . • • • . 2-12 
Define Origin . • • •• • 2-15 
Define Space • . . • . • • • • 2-12 
Define Word • • • • • • • 2-13 
DS . • . •. ••••••• 2-12 
DSEG . . • . • • • • •• • 2-8, 2-12, 2-24, 2-36 
DW . • . • . • . • • • • • • • 2-13 



EDIT-SO ••• . • • • 2-5, 2-37 
ELSE • • • • • • • • • 2-20 
END • • • • • • • • • 2-13 
ENDIF • • • • • • • • 2-20 
ENDM • • ••.•••• 2-25, 2-29 
ENTRY . • • • . • • • 2-13, 5-2 
EQU . • • • •• ••• • • 2-14 to 2-15 
Er ror codes . • •••••• 2-35, 2-37 
Error messages • • •••• 2-36, 4-10 
EXITM • • • • •• 2-29 
EXT • •• •••••• • • 2-14 
Externals 
EXTRN 

2-9, 2-14, 2-35, 2-3S 
2-14 

IF . · · · · · · · 2-19 
IF1 · · · · · · · 2-19 
IF2 · · · · · · · · · · · 2-19 
IFB · · · · · · · · · · · 2-19 
IFDEF · · · · · · · · 2-19 
IFDIF · · · · 2-19 
IFE · · · · · · · 2-19 
IFF · · · · · · · · · · · · · 2-19 
IFIDN · · · · · · · · · · 2-19 
IFNB · · · · · · · · · 2-19 
IFT · · · · · · · · · · · 2-19 
INCLUDE · · · 2-14 
INTEL · · · · 2-36 
IRP · · · · · · · 2-23, 2-25, 2-27 
IRPC · · · · · · · · · · · 2-23,.2-25, 2-27 
ISIS-II · · · · · · · · · 2-2 to 2-3, 2-5, 4-5 

LIB-SO • • • • • • • • 5-1 
Library manager 
LINK-80 ••• 

Listings • • • • • 

LOCAL • • • • • • 
Logical operators 

MACLIB • • •• • • 
MACRO • • • • • • 
Macro operators 
Modes 
Modules • • • 

NAME ••• 

Operators 
ORG • • • • 

•• • 5-1 
• ••• 2-11, 2-13, 

4-1, 5-4 
• ••• 2-14, 2-20, 

3-2, 5-4 
• • • • • • 2-30 
· . . . . . 2-8 

• 2-14 

2-1S, 2-25, 

2-37 to 2-3S, 

• ••••• 2-23, 2-25 to 2-26, 2-28 to 2-29 
• • • 2-30 

2-S 
• • • • 5-.2 

2-15 

• . . . . . 2-8 
• ••• 2-11, 2-13, 2-15, 2-24 

PAGE • ••••••• • 2-15, 2-36 
Program Relative • • • • • 2-S 
PUBLIC • • • • • • • • 2-5, 2-13, 2-39 

REPT • · ~ . • 2-23, 2-25 to 2-26 

SET • 2-15 



Strings • • . ••• 
SUBTTL . .•.••. 
Switches ..• 
Symbol table • • • • • • . 

• 2-7 
• 2-16, 2-36 to 2-37 
• 2-3, 3-1, 4-2, 5-3, 5-5 

•• 2-37, 2-39 

TEKDOS . 
TITLE 

. • 2-1, 3-1, 4-1, A-I 
• ••. 2-15 to 2-16, 2-37 





Microsoft 
Software Problem Report 

Use this form to report errors or problems in: [J FORTRAN-SO 

o COBOL-SO 

o MACRO-SO 

o LINK-SO 

Release (or version) number: 

Date 

Report only one problem per form. 

Describe your hardware and operating system: 

Please supply a concise description of the problem and the 
circumstances surrounding its occurrence. If possible, reduce 
the problem to a simple test case. Otherwise, include all 
programs and data in machine readable ferm (preferably on a 
diskette). If a patch or interim solution is being used, 
please describe it. 

This form may also be used to describe suggested enhancements 
to Microsoft software. 

Problem Description: 

-over-



Did you find errors in the documentation supplied with the 
software? If so, please include page numbers and describe: 

Fill in the following information before returning this form: 

Name Phone ------------------------------------- ----------------------
Organization 

---------------------------------------------------------
Address ------------------------

City ____________ State Zip ____ _ 

Return form to: Microsoft 
10800 NE Eighth, Suite 819 
Bellevue, WA 98004 



Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896 

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM 

USER'S MANUAL 

COPYRIGHT (c) 1976, 1978 

DIGITAL RESEARCH 



Copyright (c) 1976, 1978 by Digital Research. All rights 
reserved. No part of this publication may be reproduced, 
transmitted, transcribed, stored in a retrieval system, or 
translated into any language or computer language, in any 
form or by any means, 'electronic, mechanical, magnetic, 
optical, chemical, manual or otherwise, without the prior 
written permission of Digital Research, Post Office Box 579, 
Pacific Grove, California 93950. 

Disclaimer 

Digital Research makes no representations or warranties with 
respect to the contents hereof and specifically disclaims any 
implied warranties of merchantability or fitness for any 
particular purpose. Further, Digital Research reserves the 
right to revise this publication and to make changes from 
time to time in the content hereof without obligation of 
Digital Research to notify any person of such revision or 
changes. 



1. 

2. 

Table of Contents 

ED TUTORIAL · · · · . . · · · • . 

1.1 Introduction to ED . . • . . 

1.2 ED Operation · · · 

1.3 Text Transfer Functions 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

Memory Buffer Organization. 

Memory Buffer Operation 

Command Strings 

Text Search and Alteration · 

Source Libraries · · · · . . 

Repetitive Command Execution 

1 

1 

1 

1 

5 

5 

7 

8 

. . . 11 

. 12 

ED ERROR CONDITIONS • . . . . . . . . 13 

3. CONTROL CHARACTERS AND COMMANDS. • . . . . . 14 

ii 





ED USER'S MANUAL 

1. ED TUTORIAL 

1.1. Introduction to ED. 

ED is the context editor for CP/M, and is used to create 
and alter CP/M source files. ED is initiated in CP/M by 
typing 

{

<filename> } 

ED <filename>.<filetype> 

In general, ED reads segments of the source file given by 
<filename> or <filename> • <filetype> into central memory, 
where the file is manipulated by the operator, and subse­
quently written back to disk after alterations. If the 
source file does not exist before editing, it is created by 
ED and initialized to empty. The overall operation of ED 
is shown in Figure 1. 

1.2. ED Operation 

ED operates upon the source file, denoted in Figure 1 
by x.y, and passes all text through a memory buffer where 
the text can be viewed or altered (the number of lines which 
can be maintained in the memory buffer varies with the line 
length, but has a total capacity of about 6000 characters 
in a 16K CP/M system). Text material which has been edited 
is written onto a temporary work file under command of the 
operator. Upon termination of the edit, the memory buffer 
is written to the temporary file, followed by any remaining 
(unread) text in the source file. The name of the original 
file is changed from x.y to x.BAK so that the most recent 
previously edited source file can be reclaimed if necessary 
(see the CP/M commands ERASE and RENAME). The temporary 
file is then changed from x.$$$ to x.y which becomes the 
resulting edited file. 

The memory buffer is logically between the source file 
and working file as shown in Figure 2. 

1.3. Text Transfer Functions 

Given that n is an integer value in the range a through 
65535, the following ED commands transfer lines of text 
from the source file through the memory buffer to the tem­
porary (and eventually final) file: 



Source 

File 

After 
Edit (E) 

Backup 

File 

x.BAK 

Figure 1. Overall ED Operation 

Append 

(A) 

Source 
Libraries 

(R) 

Memory Buffer 

Insert 
(I) 

Write 

Type 
(T) 

Temporary 

File 

After 
Edit 

(E) 

New 
Source 

File 

Note: the ED program accepts both lower and upper case ASCII 
characters as input from the console. Single letter commands 
can be typed in either case. The U command can be issued to 
cause ED to translate lower case alphabetics to upper case as 
characters are filled to the memory buffer from the console. 
Characters are echoed as typed without translation, however. 
The -u command causes ED to revert to "no translation" mode. 
ED starts with an assumed -u in effect. 

2 



Figure 2. Hemory Buffer Organi zation 

Source File Memory Buffer 

1 First Line ~ 1 .' First Line" 
.. . 

2 "Appended," 2 ~ Buffered ~ - .. , - " 
3 "Line~"",, ~ ~ "Text "" ~ 

sc.......I~·"~'" -II MP-"" ~,,~ 
I Unprocessed I "'NT~ t I Free 
I I l ex I 
I Source I Append I Memory 

. I I 
I Llnes I Space I 
L--- ____ I L------ __ -...t 

Next 
Write 

1 

2 

3 

TP .. 

Temporary File 

" ~irst Line" 

, Processed' ," 

\ T~xt "', " , \. '\ 
\. ,,\. \. 

, \. -,-, \ -. 
Free File 

Space 

1- _______ I 

Figure 3.. Logical Organization of Memory Buffer 

first 
line 

Memory Buffer 

---------<cr><lf> 

--------<cr><lf> 

current ~ 
line CL ------~------<cr><lf> 

last --------<cr><lf> 
line 

3 



* nA<cr> - append the next n unprocessed source 

nW<cr> 

E<cr> 

H<cr> 

O<cr> 

Q<cr> 

lines from the source file at SP to 
the end of the memory buffer at MP. 
Increment SP and MP by n. 

write the first n lines of the memory 
buffer to the temporary file free space. 
Shift the remaining lines n+l through 
MP to the top of the memory buffer. 
Increment TP by n. 

end the edit. Copy all buffered text 
to temporary file, and copy all un­
processed source lines to the temporary 
file. Rename files as described 
previously. 

move to head of new file by performing 
automatic E command. Temporary file 
becomes the new source file, the memory 
buffer is emptied, and a new temporary 
file is created (equivalent to issuing 
an E command, followed by a reinvocation 
of ED using x.y as the file to edit). 

return to original file. The memory 
buffer is emptied, the temporary file 
id deleted, and the SP is returned to 
position I of the SOlrrce file. The 
effects of the previous editing commands 
are thus nullified. 

quit edit with no file alterations, 
return to CP/M.--

There are a number of special cases to consider. If the 
integer n is omitted in any ED command where an integer is 
allowed, then I is assumed. Thus, the commands A and Wappend 
one line and write I line, respectively. In addition, if a 
pound sign (#)' is given in the place of n, then the integer 
65535 is assumed (the largest value for n which is allowed). 
Since most reasonably sized source files can be contained 
entirely in the memory buffer, the command #A is often issued 
at the beginning of the edit to read the entire source file 
to memory. Similarly, the command #W writes the entire buffer 
to the temporary file. Two special forms of the A and W 

*<cr> represents the carriage-return key 

4 



commands are provided as a convenience. The command OA fills 
the current memory buffer to at least half-full, while OW 
writes lines until the buffer is at least half empty. It 
should also be noted that an error is issued if the memory 
buffer size is exceded. The operator may then enter any 
command (such as W) which does not increase memory require­
ments. The remainder of any partial line read during the 
overflow will be brought into memory on the next successful 
append. 

1.4. Memory Buffer Organization 

The memory buffer can be considered a sequence of source 
lines brought in with the A command from a source file. The 
memory buffer has an associated (imaginary) character pointer 
CP which moves throughout the memory buffer under command of 
the operator. The memory buffer appears logically as shown 
in Figure 3 where the dashes represent characters of the 
source line of indefinite length, terminated by carr~e­
return «cr» and line-feed «If» characters, and cp 
represents the imaginary character pointer. Note that the 
CP is always located ahead of the first character of the 
first line, behind the last character of the last line, or 
between two characters. The current line CL is the source 
line which contains the CP. 

1.5. Memory Buffer Operation 

Upon initiation of ED, the memory buffer is empty (ie, 
CP is both ahead and behind the first and last character). 
The operator may either append lines (A command) from the 
source file, or enter the lines directly from the console 
with the insert command 

I<cr> 

ED then accepts any number of input lines, where each line 
terminates with a <cr> (the <If> is supplied automatically), 
until a control-z (denoted by tz is typed by the operator. 
The CP is positioned after the last character entered. The 
sequence 

I<cr> 
NOW IS THE<cr> 
TIME FOR<cr> 
ALL GOOD MEN<cr> 
tz 

leaves the memory buffer as shown below 

5 



NOW IS THE<cr><lf> 
TIME FOR<cr><lf> 
ALL GOOD MEN<cr><lf~ 

~ 

Various commands can then be issued which manipulate the CP 
or display source text in the vicinity of the CP. The 
commands shown below with a preceding n indicate that an 
optional unsigned value can be specified. When preceded by 
±, the command can be unsigned, or have an optional preceding 
plus or minus sign. As before, the pound sign (#) is replaced 
by 65535. If an integer n is optional, but not supplied, 
then n=l is assumed. Finally, if a plus sign is optional, 
but none is specified, then + is assumed. 

±B<cr> - move CP to beginning of memory buffer 
if +, and to bottom if -. 

±nC<cr> - move CP by ±n characters (toward front 
of buffer if +), counting the <cr><lf> 
as two distinct characters 

±nD<cr> - delete n characters ahead of CP if plus 
and behind CP if minus. 

±nK<cr> - kill (ie remove) ±n lines of source text 
using CP as the current reference. If 
CP is not at the begi~ning of the current 
line when K is issuea, then the charac­
ters before CP remain if + is specified, 
while the characters after CP remain if -
is given in the command. 

±nL<cr> - if n=O then move CP to the beginning of 
the current line (if it is not already 
there) if nFO then first move the CP to 
the beginning of the current line, and 
then move it to the beginning of the 
line which is n lines down (if +) or up 
(if -). The CP will stop at the top or 
bottom of the memory buffer if too large 
a value of n is specified. 

6 



±nT<cr> - If n=O then type the contents of the 
current line up to CPa If n=l then 
type the contents of the current line 
from CP to the end of the line. If 
n>l then type the current line along 
with n-l lines which follow, if + 
is specified. Similarly, if n>l and 
- is given, type the previous n lines, 
up to the CPa The break key can be 
depressed to abort long type-outs. 

±n<cr> - equivalent to ±nLT, which moves up or 
down and types a single line 

1.6. Command Strings 

Any number of commands can be typed contiguously (up to 
the capacity of the CP/M console buffer), and are executed 
only after the <cr> is typed. Thus, the operator may use 
the CP/M console command functions to manipulate the input 
command: 

Rubout 

Control-U 

Control-C 

Control-E 

remove the last character 

delete the entire line 

re-initialize the CP/M System 

return carriage for long lines 
without transmitting buffer 
(max 128 chars) 

Suppose the memory buffer contains the characters shown 
in the previous section, with the CP following the last 
character of the buffer. The command strings shown below 
produce the results shown to the right 

Command String 

1. B2T<cr> 

2. 5COT<cr> 

Effect 

move to beginning 
of buffer and type 
2 lines: 
"NOW IS THE 

TIME FOR" 

move CP 5 charac­
ters and type the 
beginning of the 
line 
"NOW I" 

7 

Resulting Memory Buffer 

L~NOW IS THE<cr><lf> 
~ TIME FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 

NOW I~~ S THE<cr><lf> 
~ 



3. 

4. 

5. 

6. 

7. 

2L-T<cr> 

-L#K<cr> 

I<cr> 
TIME TO<cr> 
INSERT<cr> 
tz 

-2L#T<cr> 

<cr> 

move two lines down 
and type previous 
line 
"TIME FOR" 

move up one line, 
delte 65535 lines 
which follow 

insert two lines 
of text 

move up two lines, 
and type 65535 
lines ahead of CP 
"NOW IS THE" 

move down one line 
and type one line 
"INSERT" 

1.7. Text Search and Alteration 

NOW IS THE<cr><lf> 

TIME FOR<cr><lf> 

~ALL 
~ 

GOOD MEN<cr><lf> 

NOW IS THE<cr><lf> ~ 
L2!:J 

NOW IS THE<cr><lf> 

TIME TO<cr><lf> 

INSERT<cr><lf>~ 
L5:J 

NOW IS THE<cr><lf> ~ 
c..:!:J TIME TO<cr><lf> 

INSERT<cr><lf> 

NOW IS THE<cr><lf> 

TIME TO<cr><lf> ~~ 
~ INSERT<cr><lf> 

ED also has a command which locates strings within the 
memory buffer. The command takes the form 

where cl through ck represent the characters to match followed 
by either a <cr> or control -z*. ED starts at the current 
position of CP and attempts to match all k characters. The 
match is attempted n times, and if successful, the CP is 
moved directly after the character cke If the n matches are 
not successful, the CP is not moved from its initial position. 
Search strings can include-rI (control-I), which is replaced 
by the pair of symbols <cr><lf>. 

*The control-z is used if additional commands will be typed 
following the tz. 

8 



The following commands illustrate the use of the F 
command: 

Command String 

1. B#T<cr> 

2. FS T<cr> 

3. FltzOTT 

Effect 

move to beginning 
and type entire 
buffer 

find the end of 
the string "s T" 

find the next "1" 
and type to the 
Cp then type the 
remainder of the 
current line: 
"TIME FOR" 

Resulting Memory Buffer 

,.6 NOW IS THE<cr><l f> 
~ TIME FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 

NOW IS T ~ HE<cr><lf> 
~ 

NOW IS THE<cr><lf> 

TI ~ME FOR<cr><lf> cp 
ALL OOD MEN<cr><lf> 

An abbreviated form of the insert command is also allowed, 
which is often used in conjunction with the F command to make 
simple textual changes. The form is: 

c <cr> 
n 

where cl through c n are characters to insert. If the inser­
tion string is terminated by a tz, the characters cl through 
c n are inserted directly following the CP, and the CP is 
moved directly after character c n - The action is the same 
if the command is followed by a <cr> except that a <cr><lf> 
is automatically inserted into the text following character 
c n • Consider the following command sequences as examples 
of the F and I commands: 

Command String Effect 

BITHIS IS tz<cr> Insert "THIS IS " 
at the beginning 
of the text 

9 

Resulting Memory Buffer 

THIS IS~OW THE <cr><lf> 

~ 
TIME FOR<cr><lf> 

AL~ GOOD MEN<cr><lf> 



FTIMEtz-4DIPLACEtz<cr> 

find "TIME" and delete 
it; then insert "PLACE" 

3FOtz-3DSDICHANGESt<cr> 

-8CISOURCE<cr> 

find third occurrence 
of "0" (ie the second 
"0" in GOOD), delete 
previous 3 characters; 
then insert "CHANGES" 

move back 8 characters 
and insert the line 
"SOURCE<cr><lf>" 

THIS IS NOW THE<cr><lf> 

PLACE~ FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 

THIS IS NOW THE <cr><lf> 

PLACE FOR<cr><lf> 

ALL CHANGES~<cr><lf> 
~ 

THIS IS NOW THE<cr><lf> 

PLACE FOR<cr><lf> 

ALL SOURCE<cr><lf> 

~CHANGES<cr><lf> 
l.3:J 

ED also provides a single command which combines the F and 
I commands to perform simple string substitutions. The command 
takes the form 

n S c1c 2···ck +z d1d 2 ••. dm «~~» 
and has exactly the same effect as applying the command string 

a total of n times. That is, ED searches the memory buffer 
starting at the current position of CP and successively sub­
stitutes the second string for the first string until the 
end of buffer, or until the substitution has been performed 
n times. 

As a convenience, a command similar to F is provided by 
ED which automatically appends and writes lines as the search 
proceeds. The form is 

n N c
l

c
2 

••• c
k ( 

ctrz ) 

which searches the entire source file for the nth occurrence 
of the string clc2 ••• ck (recall that F fails if the string 
cannot be found in the current buffer). The operation of the 

10 



:~ command is precisely the same as F except in the case that 
the string cannot be found within the current memory buffer. 
In this case, the entire memory contents is written (ie, an 
automatic #W is issued). Input lines are then read until 
the buffer is at least half full, or the entire source file 
is exhausted. The search continues in this manner until the 
string has been found n times, or until the source file has 
been completely transferred to the temporary file. 

A final line editing function, called the juxtaposition 
command takes the form 

with the following action applied n times to the memory buffer: 
search from the current CP for the next occurrence of the 
string clc2 ••. ck. If found, insert the string d 2d 2 ••• ,dm, 
and move CP to follow dm. Then delete all characters following 
CP up to (but not including) the string el,e2, •.. e q , leaving 
CP directly after dm. If el,e2, •.• e q cannot be fo~nd, then 
no deletion is made. If the current line is 

~ NOW IS THE TIf\1E<cr><lf> 
t.::RJ 

Then the command 

JW tzWHATtztl<cr> 

Results in 

NOW WHAT~ <cr><lf> 
13:.l 

(Recall that tl represents the pair <cr><lf> in search and 
substitute strings). 

It should be noted that the number of characters allowed 
by ED in the F,S,N, and J commands is limited to 100 symbols. 

1.8. Source Libraries 

ED also allows the inclusion of source libraries during 
the editing process with the R command. The form of this 
comlnand is 

11 



where flf2 •• fn is the name of a source file on the disk with 
as assumed filetype of 'LIB'. ED reads the specified file, 
and places the characters into the memory buffer after CP, 
in a manner similar to the I command. Thus, if the command 

RMACRO<cr> 

is issued by the operator, ED reads from the file MACRO.LIB 
until the end-of-file, and automatically inserts the charac­
ters into the memory buffer. 

1.9. Repetitive Command Execution 

The macro command M allows the ED user to group ED com­
mands together for repeated evaluation. The M command takes 
the form: 

where clc2 •.. ck represent a string of ED commands, not inclu­
ding another M command. ED executes the command string n 
times if n>l. If n=O or 1, the command string is executed 
repetitively until an error condition is encountered (e.g., 
the end of the memory buffer is reached with an F command). 

As an example, the following macro changes all occur­
rences of GAMMA to DELTA within the current buffer, and 
types each line which is changed: 

MFGAMMAtz-5DIDELTAtzOTT<cr> 

or equivalently 

MSGAMMAtzDELTAtzOTT<cr> 

12 



2. ED ERROR CONDITIONS 

On error conditions, ED prints the last character read 
before the error, along with an error indicator: 

? unrecognized command 

> memory buffer full (use one of 
the commands D,K,N,S, or W to 
remove characters), F,N, or S 
strings too long. 

# cannot apply command the number 
of times specified (e.g., in 
F command) 

o cannot open LIB file in R 
command 

Cyclic redundancy check (CRe) information is written with 
each output record under CP/M in order to detect errors on 
subsequent read operations. If a eRC error is detected, CP/M 
will type 

PERM ERR DISK d 

where d is the currently selected drive (A,B, •.• ). The oper­
ator can choose to ignore the error by typing any character 
at the console (in this case, the memory buffer data should 
be examined to see if it was incorrectly read), or the user 
can reset the system and reclaim the backup file, if it 
exists. The file can be reclaimed by first typing the con­
tents of the BAK file to ensure that it contains the proper 
information: 

TYPE x.BAK<cr> 

where x is the file being edited. Then remove the primary 
file: 

ERA x.y<cr> 

and rename the BAK file: 

REN x.y=x.BAK<cr> 

The file can then be re-edited, starting with the previous 
version. 

13 



3. CONTROL CHARACTERS AND COMMANDS 

The following table summarizes the control characters 
and commands available in ED: 

Control Character 

tc 

te 

ti 

tl 

tu 

tz 

rubout 

break 

14 

Function 

system reboot 

physical <cr><lf> (not 
actually entered in 
command) 

logical tab (cols 1,8, 
15, ... ) 

logical <cr><lf> in 
search and substitute 
strings 

line delete 

string terminator 

character delete 

discontinue command 
(e.g., stop typing) 



Corrunand 

nA 

±B 

±nC 

±nD 

E 

nF 

H 

I 

nJ 

±nK 

±nL 

nM 

nN 

o 

±nP 

Q 

R 

nS 

±nT 

± U 

nW 

nZ 

±n<cr> 

Function 

append lines 

begin bottom of buffer 

move character positions 

delete characters 

end edit and close files 
(normal end) 

find string 

end edit, close and reopen 
files 

insert characters 

place strings in juxtaposition 

kill lines 

move down/up lines 

macro definition 

find next occurrence with 
autoscan 

return to original file 

move and print pages 

quit with no file changes 

read library file 

substitute strings 

type lines 

translate lower to upper case if U, 
no translation if -U 
write lines 

sleep 

move and type (±nLT) 

15 



Appendix A: ED 1.4 Enhancements 

The ED context editor contains a number of commands which enhance its 
usefulness in text editing. The improvements are found in the addition of line numbers, 
free space interrogation, and improved error reporting. 

The context editor issued with CP/M 1.4 produces absolute line number prefixes 
when the "V" (Verify Line Numbers) command is issued. Following the V command, 
the line number is displayed ahead of each line in the format: 

nnnnn: 

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer 
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears 
as 5 blanks. 

The user may reference an absolute line number by preceding any command by 
a number followed by a colon, in the same format as the line number display. In this 
case, the ED progI!&m- moves the current line reference to the absolute line number, 
if the line exists in the current memory buffer. Thus, the command 

345:T 

is interpreted as "move to absolute line 345, and type the line." Note that absolute 
line numbers are produced only during the editing process, and are not recorded with 
the file. In particular, the line numbers will change following a deleted or expanded 
section of text. 

The user may also reference an absolute line number as a backward or forward 
distance from the current line by preceding the absolute line number by a colon. Thus, 
the command 

:4~0T 

is interpreted as "type from the current line number through the line whose absolute 
number is 400." Combining the two line reference forms, the command 

345::4~~T 

for example, is interpreted as "move to absolute line 345, then type through absolute 
line 4f11C1." Note that absolute line references of this sort can precede any of the 
standard ED commands. 

A special case of the V command, "0V", prints the memory buffer statistics in 
the form: 

free/total 

~here "~ree" is the number of free bytes in the memory buffer (in decimal), and "total" 
IS the SIze of the memory buffer. 



ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer) 
command. The form 

nX 

transfers the next n lines from the current line to a temporary file called 

X$$$$$$$.LIB 

which is active only during the editing process. In general, the user can reposition 
the current line reference to any portion of the source file and transfer lines to the 
temporary file. The transferred line accumulate one after another in this file, and 
can be retrieved by simply typing: 

R 

which is the trivial case of the library read command. In this case, the entire 
transferred set of lines is read into the memory buffer. Note that the X command 
does not remove the transferred lines from the memory buffer, although a K command 
can be used directly after the X, and the R command does not empty the transferred 
line file. That is, given that a set of lines has been transferred with the X command, 
they can be re-read any number of times back into the source file. The command 

0x 

is provided, however, to empty the transferred line file. 

Note that upon normal completion of the ED program through Q or E, the 
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist 
if lines have been transferred, but will generally be empty (a subsequent ED invocation 
will erase the temporary file). 

Due to common typographical errors, ED 1.4 requires several potentially disas­
terous commands to be typed as single letters, rather than in composite commands. 
The commands 

E (end), H (head), 0 (original), Q (quit) 

must be typed as single letter commands. 

ED 1.4 also prints error messages in the form 

BREAK "x" AT c 

where x is the error character, and c is the command where the error occurred. 





Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896 

CP/M DYNAMIC DEBUGGING TOOL (DDT) 

USER'S GUIDE 

COPYRIGHT (c) 1976, 1978 

DIGITAL RESEARCH 



Copyright (c) 1976, 1978 by Digital Research. All rights 
reserved. No part of this publication may be reproduced, 
transmitted, transcribed, stored in a retrieval system, or 
translated into any language or computer language, in any 
form or by any means, electronic, mechanical, magnetic, 
optical, chemical, manual or otherwise, without the prior 
written permission of Digital Research, Post Office Box 579, 
Pacific Grove, California 93950. 

Disclaimer 

Digital Research makes no representations or warranties with 
respect to the contents hereof and specifically disclaims any 
implied warranties of merchantability or fitness for any 
particular purpose. Further, Digital Research reserves the 
right to revise this publication and to make changes from 
time to time in the content hereof without obligation of 
Digital Research to notify any person of such revision or 
changes. 



Table of Contents 

Section Page 

I. INrRODUCTION ••••••••••••••••••••••••••••••••••••• 1 
I I. Dill mMMANIl3 ••••••••••••••••••••••••••••••••••••• 3 

1. The A (Assemble) Command ••••••••••••••••••••• 3 
2. The D (Display) Command •••••••••••••••••••••• 4 
3. The F (Fill) Command ••••••••••••••••••••••••• 4 
4. The G (Go) Command ••••••••••••••••••••••••••• 4 
5. The I (Input) Command •••••••••••••••••••••••• 5 
6. The L (List) Command ••••••••••••••••••••••••• 6 
7. The M (Move) Command ••••••••••••••••••••••••• 6 
8. The R (Read) Command ••••••••••••••••••••••••• 6 
9. The S (Set) Command •••••••••••••••••••••••••• 7 
10. The T (1lrace) Command •••••••••••••••••••••••• 7 
11. The U (Untrace) Command •••••••••••••••••••••• 8 
12. The X (Examine) Command •••••••••••••••••••••• 8 

III. IMPLEMENTATION NOTES ••••••••••••••••••••••••••••• 9 
N • ~ EXAMPLE ••••••••••••••••••••••••••••••••••••••• 10 





CP/M Dynamic Debugging Tool (DDT) 

User's Guide 

I. Introduction. 

The DDT program allows dynamic interactive testing and debugging of 
programs generated in the CP/M environment. The debugger is initiated by 
typing one of the following commands at the CP/M Console Command level 

DDr 
DDr filename.HEX 
DDr filename.COM 

where "filename" is the name of the program to be loaded and tested. In both 
cases, the DDT program is brought into main memory in the place of the Console 
Command Processor (refer to the CP/M Interface Guide for standard memory 
organization), and thus resides directly below the Basic Disk Operating System 
portion of CP/M. The BOOS starting address, which is located in the address 
field of the JMP instruction at location SR, is altered to reflect the reduced 
Transient Program Area size. 

The second and third forms of the DDr command shown above perform the same 
actions as the first, except there is a subsequent automatic load of the 
sp=cified HEX or COM file. The action is identical to the sequence of 
commands 

DDr 
Ifilename.HEX or Ifilename.COM 
R 

where the I and R canmands set up and read the specified program to test (see 
the explanation of the I and R commands below for exact details). 

Upon initiation, DDT' prints a sign-on message in the format 

nnK DDr-s VER m.m 

where nn is the memory size (which must match the CP/M system being used), s 
is the hardware system which is assumed, corresponding to the codes 

D Digital Research standard version 
M MDS version 
I IMSAI standard version 
a ~on systems 
S Digital Systems standard version 

and m.m is the revision number. 

1 



Following the sign on message, DDT prompts the operator with the character 
"_" and waits for input carnnands from the console. The operator can tyy;e any 
of several single character canmands, terminated by a carriage return to 
execute the canrnand. Each line of input can be line-edited using the standard 
CP 1M controls 

rubout 
ctl-U 
ctl-C 

remove the last character tyy;ed 
remove the entire line, ready for re-typing 
system reboot 

Any command can be up to 32 characters in length (an automatic carriage return 
is inserted as the 33rd character), \\here the first dlaracter determines the 
command type 

A enter assembly language mnemonics with operands 
D display memory in hexadecimal and ASCII 
F fill memory with constant data 
G begin execution with optional breakpoints 
I set up a standard input file control block 
L list memory using assembler mnemonics 
M move a memory segment from source to destination 
R read program for subsequent testing 
S substitute memory values 
T trace ~ogram execution 
U untraced program monitoring 
X examine and optionally alter the CPU state 

The command character, in some cases, is followed by zero, one, two, or three 
hexadecimal values \\hich are separated by canmas or single blank characters. 
All DDT numeric output is in hexadecimal form. In all cases, the commands are 
not executed until the carriage return is tyy;ed at the end of the command. 

At any };Oint in the debug run, the operator can stop execution of DDT 
using either a ctl-C or G0 (jmp to location 0000H), and save the current 
memory image using a SAVE command of the form 

SAVE n filename.COM 

where n is the nurrber of pages (256 byte blocks) to be saved on di sk. 'rhe 
nurrber of blocks can be determined by taking the high order byte of the top 
load crldress an::] converting this nurrber to decimal. For example, if the 
highest crldress in the Transient Program Area is 1234H then the number of 
pages is 12H, or 18 in decimal. Thus the operator could tyy;e a ctl-C during 
the debug run, returning to the Console Processor level, followed by 

SAVE 18 X.COM 

The memory image is saved as X.COM on the diskette, and can be directly 
executed by simply typing the name X. If further testing is required, the 
memory image can be recalled by typing 

2 



OIJr X.COM 

which reloads previously saved program from loaction lQJQJH throughp3ge 18 
(12FFH) • The machine state is not a part of the COM file, and thus the 
program must be restarted from the beginning in order to properly test it. 

I I. Dill' mlvlMANDS. 

The individual commands are given below in some detail. In each case, the 
operator must wait for the prompt character (-) before entering the command. 
If control is p3.ssed to a IZogram under test, and the program has not reached 
a breakr:oint, control can be returned to OIJI' by executing a RST 7 from the 
front panel (note that the rubout key should be used instead if the program is 
executing a T or U canrnand). In the explanation of each command, the command 
letter is srown in rome cases wi th nurrbers separated by canrnas, mere the 
nurrbers are represented by lower case letters. These nurrbers are always 
assumed to be in a hexadecimal radix, and from one to four digits in length 
(longer numbers will be automatically truncated on the right). 

Many of the canrnands operate up:>n a "CPU state" which corresponds to the 
program under test. 'l'he CPU state holds the registers of the program being 
debugged, and initially contains zeroes for all registers and flags except for 
the rrogram counter (P) and stack tninter (S), mich default to lQJQJH. The 
program counter is subsequently set to the starting address given in the last 
record of a HEX file if a file of this form is loaded (see the I and R 
commands) • 

1. The A (Assemble) Command. ~Oll allows inline assembly language to be 
inserted into the current rremory image using the A command which takes the 
form 

As 

where s is the hexadecimal starting address for the inline assembly. ODr 
prompts the console wi th the address of the next instruction to fill, and 
reads the console, looking for assembly language mnemonics (see the Intel 8QJ8QJ 
Assembly Language Reference Card for a list of mnemonics), followed by 
register references and operands in absolut0 hexadecimal form. Each sucessive 
load cddress is pr inted before reading the console. The A command terminates 
when the first empty line is input from the console. 

Upon canpletion of assembly language input, the operator can review the 
memory segment using the ODr disassembler (see the L command). 

Note that the assembler/disassembler {;X)rtion of ODr can be overlayed by 
the transient program being tested, in which case the Dar program responds 
wi th an error condi tion men the A and L commands are used (refer to Section 
IV) • 

3 



2. 'llhe D (Display) Command. The D command allows the operator to view 
the contents of memory in hexadecimal and ASCII formats. The forms are 

D 
Ds 
Ds,f 

In the first case, memory is displayed from the current display crldress 
(initially 100H), and continues for 16 display lines. Each display line takes 
the form shown below 

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc 

where aaaa is the di splay address in hexadecimal, and bb represents da ta 
present in memory starting at aaaa. The ASCII characters starting at aaaa are 
given to the right (represented by the sequence of c's), where non-graphic 
characters are printed as a p=riod (.) symbol. Note that both upper and lower 
case alphabetics are displayed, and thus will appear as upper case symbols on 
a console device that supfX)rts only uwer case. Each display line gives the 
values of 16 bytes of data, except that the first line displayed is truncated 
so that the next line begins at an address which is a multiple of 16 • 

. The second form of the D camnand shown above is similar to the first, 
except that the display address is first set to address s. The third form 
causes the display to continue from address s through crldress f. In all 
cases, the display address is set to the first address not displayed in this 
command, so that a continuing display can be accomplished by issuing 
successive D commands with no explicit addresses. 

Excessively long displays can be aborted by pushing the rubout key. 

3. The F (Fill) Command. The F command takes the form 

Fs,f,c 

where s is the starting address, f is the final address, and c is a 
hexadecimal byte constant. The effect is as follows: DDT stores the constant 
c at address s, increments the value of s and tests against f. If s exceeds f 
then the operation terminates, otherwise the operation is repeated. Thus, the 
fill command can be used to set a memory block to a specific constant value. 

4. The G (Go) Command. Program e'fecution is started using the G comand, 
wi th up to two optional break}X>int addresses. The G command takes one ot the 
forms 

G 
Gs 
Gs,b 

4 



Gs,b,c 
G,b 
G,b,c 

The first form starts execution of the program under test at the current value 
of the IXogram counter in the current machine state, with no breakpoints set 
(the only way to r€gain control in DDI' is through a RST 7 execution). The 
current IXogram counter can be viewed by typing an X or XP cormnand. The 
second form is similar to the first except that the program counter in the 
current machine state is set to address s before execution begins. The third 
form is the same as the second, except that program execution stops when 
address b is encountered (b must be in the area of the program under test). 
The instruction at location b is not executed when the breakpoint is 
encountered. The fourth form is identical to the third, except that two 
breakpoints are s~cified, one at b and the other at c. Encountering either 
breakpoint causes execution to stop, and both break{X)ints are subsequently 
cleared. The last two forms take the program counter from the current machine 
state, and set one and two break{X)ints, respectively. 

Execution continues from the starting address in real-time to the next 
breakpoint. That is, there is no intervention between the starting address 
and the break address by DDT. Thus, if the program under test does not reach 
a breakpoint, control cannot return to DDT without executing a RST 7 
instruction. Upon encountering a breakpoint, DDT stops execution and types 

*d 

where d is the stop address. The machine state can be examined at this point 
using the X (Examine) command. The operator must s~cify breakpoints which 
differ from the IXogram counter address at the beginning of the G command. 
Thus, if the current program counter is l234H, then the commands 

G,l234 
and 

G400,400 

both produce an immediate break{X)int, wi thout executing any instructions 
whatsoever. 

5. The I (Input) Command. The I command allows the operator to insert a 
file name into the default file control block at 5CH (the file control block 
created by CP/M for transient programs is placed at this location: see the 
CP/M Interface Guide). The default FCB can be used by the program under test 
as if it hcrl been passed by the CP/M Console Processor. Note that this file 
name is also used by DDT for reading addi tional HEX and COM files. The form 
of the I canmand is 

Ifilenarne 
or 

5 



Ifilename.filetype 

If the second form is used, and the filetype is either HEX or COM, then 
subsequent R commands can be used to read the pure binary or hex format 
machine code (see the R command for further details). 

6. 'rhe L (List) Command. The L command is used to list assembly language 
mnemonics in a particular program region. The forms are 

L 
Ls 
Ls,f 

The first canmand lists twelve lines of disassembled machine code from the 
current list crldress. The second form sets the list address to s, and then 
lists twelve lines of code. The 'last form lists disassembled code from s 
thtough address f. In all three cases, the list address is set to the next 
unlisted location in preparation for a subsequent L command. Upon 
encountering an execution breakp::>int, the list address is set to the current 
value of the {Xogram counter (see the G and T commands). Again, long typeouts 
can be aborted using the rubout key during the list process. 

7. The M (Move) Command. The M command allows block movement of program 
or data areas from one location to another in memory. The form is 

Ms,f,d 

where s is the start address of the move, f is the final address of the move, 
and d is the destination address. Data is first moved from s to d, and both 
addresses are incremented. If s exceeds f then the move operation stops, 
otherwise the move operation is repeated. 

8. The R (Read) Command. The R command is used in conjunction wi th the I 
command to read COM and HEX files from the diskette into the transient program 
area in };reparation for the debug run. The forms are 

R 
Rb 

where b is an aptional bias address which is added to each program or data 
address as it is loaded. 'rhe load ~eration must not overwrite any of the 
system parameters from 000H throuqh 0FFH (i.e., the first page of memory). If 
b is ani tted, then b=0000 is assumed. The R command requires a };revious I 
command, specifying the name of a HEX or COM file. The load address for each 
record is obtained from each individual HEX record, while an assumed load 
address of l00H is taken for COM files. Note that any nurrber of R commands 
can be issued following the I command to re-read the program tmder test" 

6 



assuming the tested program does not destroy the default area at SCH. 
Further, any file s};:ecified with the filetype "COM" is assumed to contain 
machine code in pure binary form (created with the LOAD or SAVE command), and 
all others are assumed to contain machine code in Intel hex format (produced, 
for example, wi th the ASM command) • 

Recall that the command 

DDT filename.filetype 

which initiates the DD[' program is equivalent to the commands 

DDr 
-Ifilename.filetype 
-R 

Whenever the R command is issued, DDT responds with either the error indicator 
"?" (file cannot be opened, or a checksum error occurred in a HEX file), or 
with a load message taking the form 

NEXT PC 
nnnn PWP 

where nnnn is the next address following the loaded program, and pppp is the 
assumed program counter (100H for COM files, or taken from the last record if 
a HEX file is specified). 

9. The S (Set) Command. 
examined and optionally altered. 

Ss 

The S command allows memory locations to be 
The form of the command is 

where s is the hexadecimal starting address for examination and alteration of 
memory. DDT resp:>nds wi th a numeric prompt, gi vinq the memory location, along 
with the data currently held in the memory location. If the operator types a 
carriage return, then the data is not altered. If a byte value is typed, then 
the value is stored at the prompted address. In either case, DDT continues to 
prompt with successive addresses and values until either a period (.) is typed 
by the operator, or an invalid input value is detected. 

10. The T (Trace) Command. The T command allows selective tracing of 
program execution for 1 to 65535 program steps. The forms are 

T 
Tn 

In the first case, the CPU state is displayed, and the next program step is 
executed. The txogram terminates 'immediately, wi th the termination address 

7 



displayed as 

*hhhh 

where hhhh is the next address to execute. The display address (used in the 0 
command) is set to the value of Hand L, and the list address (used in the L 
command) is set to hhhh. rrhe CPU state at program termination can then be 
examined using the X command. 

The second form of the T command is similar to the first, except that 
execution is traced for n steps (n is a hexadecimal value) before a program 
breakfOint is occurs. A breakI=Qint can be forced in the trace rrode by typing 
a rubout dlaracter. The CPU state is displayed before each program step is 
taken in trace rrode. The format of the display is the same as described in 
the X canrnand. 

Note that program tracing is discontinued at the interface to CP/M, and 
re.surnes after return from CP/M to the program under test. Thus, CP/M 
functions which access I/O devices, such as the diskette drive, run in 
real-time, avoiding I/O timing problems. Programs running in trace rrode 
execute approximately 500 times slower than real time since Dm gets control 
after each user instruction is executed. Interrupt processing routines can be 
traced, but it must be noted that canrnands which use the breaktx:>int facility 
(G, T, and U) accomplish the break using a RST 7 instruction, which means that 
the tested program cannot use this interrupt location. Further, the trace 
mode always runs the tested program with interrupts enabled, which may cause 
problems if asynchronous interrupts are received during tracing. 

Note also that the operator should use the rubout key to get control back 
to om dur inq trace, rather than executing a RS'I' 7, in order to ensure that 
the trace for the current instruction is completed before interruption. 

11. The U (Untrace) Command. The U command is identical to the T command 
except that intermediate p:-ogram steps are not displayed. The untrace node 
allows from 1 to 65535 (0FFFFH) steps to be executed in monitored mode, and is 
used principally to retain control of an executing proqram while it reaches, 
steady state condi tions. All condi tions of the T command apply to the U 
command. 

12. The X (Examine) Command. The X command allows selective display and 
alteration of the current CPU state for the program under test. The forms are 

X 
Xr 

where r is one of the 8080 CPU registers 

C Carry Flag 
Z Zero Flag 

(0/1) 
(0/1) 

8 



M Minus Flag (0/1) 
E Even Parity Flag (0/1) 
I Interdigit Carry (0/1) 
A Accumulator (0-FF) 
B BC register pair (0-FFFF) 
D DE register pair (0-FFFF) 
H HL register p:lir (0-FFFF) 
S Stack Pointer (0-FFFF) 
P Program Counter (0-FFFF) 

In the first case, the CPU register state is displayed in the format 

CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P--dddd inst 

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double byte 
quantity corresponding to the register p:iir. The II instil field contains the 
disassembled instruction 'Yklich occurs at the location addressed by the CPU 
state's program counter. 

The second form allows display ~nd optional alteration of register values, 
where r is one of the registers given above (C, Z, M, E, I, A, B, D, H, S, or 
P) • In each case, the flag or register value is first displayed at the 
console. The DDT program then accepts input from the console. If a carriage 
return is typed, then the flag or register value is not altered. If a value 
in the proper range is typed, then the flag or register value is altered. 
Note that BC, DE, and HL are displayed as register pairs. Thus, the operator 
types the entire register pair 'Yklen B, C, or the BC pair is altered. 

III. IMPLEMENTATION NarES. 

The organization of DDT allows certain non-essential portions to be 
overlayed in order to gain a larger transient program area for debugging large 
programs. The DDT program consists of two p:lrts: the Dar nucleus and the 
assembler/disassembler rrodule. rrhe Dor nucleus is loaded over the Console 
Command Processor, and, al though loaded wi th the DJJr nucleus, the 
assembler/disassembler is overlayable unless used to assemble or disassemble. 

In particular, the BOOS address at location 6H (address field of the JMP 
instruction at location 5H) is modified by DDT to address the base location of 
the DDT nucleus which, in turn, contains a JMP instruction to the BDOS. Thus, 
progr ams \\hich use this address field to size Iremory see the logical end of 
memory at the base of the DDT nucleus rather than the base of the BDOS. 

The asserrbler/disassembler rrodule resides directly below the DDr nucleus 
in the transient program area. If the A, L, T, or X commands are used during 
the debugging process then the Dor program again alters the address field at 
6H to include this module, thus further reducinq the logical end of memory. 
If a p:-ogram loads beyond the beginning of the assembler/disassembler rrodule, 
the A and L canmands are lost (their use produces a 'I?II in response), and the 

9 



trace arrl display (T and X) commands list the II instil field of the display in 
hexadecimal, rather than as a decoded instruction. 

IV. AN EXAMPLE. 

The followinj example soows an edit, assent>le, and debug for a simple 
program which reads a set of data values and determines the largest value in 
the set. The largest value is taken from the vector, and stored into "IARGE" 
at the termination of the Irogram 

1. 
.l-

LOOP: 

HFOllND: 

END 
MOV 

ll.ft. 
JMP 

TEST 
DB 
EQlI 
DS 

..slil!. ,t 

ORG 
MVI 
MVI 
LXI 
MOV 
SUB 
\,INC 
HELl 
M O~I 
I NX 
DCR 
JNZ 

OF 

; TO HE~<T ELEMENT 
i 110 RE TO SeA N? ~ 
j F (I R A I~ 0 THE R

J 
J 

SCAN .• STORE Cil 
A .• C i GET LARGEST VALUE) 
'LAR GE.1 ,. 
..a iREBOOT J 

2 .. e .. 4, 3~ 5,6 .. 1 .. 502 
f.-vEeT ;LENGTH J 

C '( tal-e SOU(ce. 

'P(~Vo.~ - ~w!e({lvt~ 
C~{l (aclefS ~pec{ 

~ 1N'd3 v-o.'fYl m.e( 

I'J" vePleseu.-k {'{.l((io1e 

(t4u(~. 

~ ;LARGEST VALUE ON EXIT; 

leaH jSTART OF TRANSIENT AREA 
BJLEH ;LENGTH OF VECTOR TO SCAN 
CJ0 ;LARGEST VALUE SO FAR 
HJYECT jBASE OF VECTOR 
AJM jGET VALUE 
C ;LARGER VALUE IN C? 
NFOUND ;JUMP IF LARGER VALUE NOT FOUND 

LARGEST VALUE~ STORE IT TO C 
C.' A 
H 
B 
LOOP 

; TO NE~<T ELEMENT 
;MORE TO SCAN? 
iFOR ANOTHER 

10 



END OF SCAt4 .. STORE C 
MOY A~C ;GET LARGEST VALUE 
8TA LA~:GE 

JMP 0 ;REBOOT 

TEST !lATA 
VEeT: DB 2 .. 0 .. 4 .. 3,5,6 .. 1 .. 5 
LEN 
LARGE: 

EQU $-VECT ;LENGTH 
!IS 1 ;LARGEST VALUE ON EXIT 
END 
4- t ~\Ll of tdlt 

CP/M ASSEMBLER - VER 1.0 

0122 
002H USE FACTOF~ 

E N II 0 F AS:; E t'1 B L Y 

T Y F E 8 C A t4 . P R N - ~ 

Code A.Jd{~ 
e 1 (1'1 M{).dW\f~ Ccx:k ( SOU~(: G :PrCBrGM

l 
0 0 H 

;START OF TRANSIENT AREA 
;lENGTH OF VECTOR TO SCAN 
;LARGEST VALUE SO FAR 

alee 06(18 ,) 
01£12 0E00 
0104 2119£11 
e107 7E L 00 P: 
01£18 9 1 
0109 D20DBl 

NVI 
NV I 
Li·:; I 
t1D V 

B .. LEN 
C .. (1 

H .. VEel 
I~> N 

.' 8 I~ S E 0 F VEe T (I R 
; GET V~)'-UE 

SUB C .. L)~RGEF: I:'t4LUE IN C? 
JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND 
N E It I L A F.' G E ~; T \,1 14 L. U E .' S T (I REI T T (I C 
~10 V C.' A 01ec 4F 

elaD 23 
0laE 0S 
010F (:20701 

N F (I U H II: lIn<; 
nCR 
.JH Z 

H 
B 
LOOP 

iTO rt E ><: TEL E ~1 E N T 
.. ~1 0 RET 0 ::; CAN? 
; FOF: i~NOTHEF: 

e112 79 
0113 322101 
0116 C3~.~e~ I' 

Cc&/dak IlbtlY1J .i 

iru.wa\td '--"t.; 
0119 0200040305VECT: 

:~~i VQlue~ ~~~GE: 
0122 Eq~J 

A} 

END OF SCANI STORE C 
MO 1./ H: C .; [; E T L H R G E ~; T './ A L U E 
STA LAPCE 
.Jt'l P 

TEST DATA 
DB ;2 .. ~1, 4 .. 3., ~L 6 .. 115 
EQU $-VECT ;LENGTH 
DS 1 ;LARGEST VALUE ON EXIT 
EHI! 

1\ 



[I II T S (: AN. H E :x; 
~ 

i 6K DDT VER 1. 0 
HEXT PC 
:;: 21,8000 

-~ 

C0Z9M0E010 A=00 8=0000 D=0000 H=000B 8=0100 P~0000 

'-- ~~Wl~ Ve~lCO~ ioJOte de~~ YUV\, 
P=0000 10(1 

-; e~Clhje 'PC- -\0 lOO 
- X J lock at Vis lSlu6 qgGtl~ rPC. cklll~d. 

P:=iZ/ltl0 ~1Vl B .. 138) C9Z0M0E010 A=B0 8=008£1 D=0000 H=000B S=0100 
-L100 --; 
£11130 
131132 
£1104 
0107 
0108 
0109 
010(: 
010D" 
'~1 €IE 
tti0F 
e 112 
-L 
-j 

N V I 
MVI 
LXI 
NOV 
SUB 
• ...1 He 
MOV 
I t-I:'; 
II C~: 
JHZ 
t10V 

B., 0:3 
c.' 0 ~3 
H .. 0119 
A .• t1 
C 
010 II 
C .• A 
H 
B 
0107 
A.I C 

0i 13 STA 012i 
13116 ,.H1P 913013 
l) 1 1 9 S T A:X: B 

1) r5(i~~~ltJ Macit l~t 
Code a1 lOO~ 

$,et 'Srutce l.1d-I~ 
Df~lSV~) 

ellA HOP 
B 1 1 B I H~: B A l rtte. V'AO,( e. 
8 lie I H,,: B ~adn\V,e Code 
01 LIt DCR B 1._,\ ... 11._1 
(I 1 1 E M'.,J I 8.1 0 1 l vum:.. -rrol 1?(qgm YY\ 
(1 1 2 €I II C R 8 e.wb a1 l()ta..ltO" \ l b 

~ l\t4¥uJu;Y\ 
-to ~atk a\ P~:\UD 

€I 1 21 L}::I D., 220121 'UL \ 
~j 124 LXI H .. 02130 "UJlUA Q J"UP TO QClJOJ . . 
-.t!..U.£ . e\\.lef 'I~l~ a~se~~~ Wtod~ --to e~e -t-ltt.:n.tf -to OOCO lrHt> fA 1(?1 1, W~((1 

~ r.' 7 t"jlLl C(Lttse. fu Pf~Yo.M UVldu -t~* -\0 '(e.in~ -\a "our Lf \ \bH 
(I 1 1 6 R ~ r I '1.1 

. ~ l~ eVru eKtu.m.a· 
01 1 7~ L~lrJj\( ca1\'1·D.jC '(e:6.(~ ~40ps a.'5~Ye mode) 

- L ! 1 3, ust Ca:{( at [\3\.\ 40 ~ M 'R'51 7 WIlS 'PvO\'C(~ InseM 
0113 STA 01 c~ 1 ~1'" 'Place ~ ;JMP 
0116 RST 07 ~ 



011 7' NOP 
0118 HOP 
(1119 S TA}~ B 
ij 1 1 A HOP 
(111 B IHR B 
[11 1 C I Nl: 8 

-X loct a\ l(~lSt(S -;; 

ceZ0M0E010 A=00 8=0000 D=B000 H=0000 8=0100 P=0100 MVI 8J08 

-L.1 &Rcu.~ fYO~(o.W\-ftr 0,/\(. '5kf. i~l~! CPu. Strde" ~t46(€ J i'i tX'ecu.kd 
ceZ0M0E010 A=00 8=0000 D=00e0 H=0008 8=0100 P=0100 MV] E:,,08*01eI2 
-T '. 
-~ Lra:e Ddt -stP aga\\1 (V\6f{ QiU in g) j 

C0ZBM0E010 A=00 8=0800 D=B000 H=0000 8=0100 P=0102 MVl C,00*0104 

- I....) Ir«e tlja;V\ (R~I~~ C ~<. dl'll((dJ 
C0Z0M0E010 A=0e 8=0800 D=0000 H=0000 S=0100 P=0104 LXI H~0119*0107 

- T 3 ~ \rac2. -{-vwe~ ~~S 
ceZet10EeI €I A=00 8=~1800 II=000(1 H=0119 8=0100 P::0107 t10V A" f1 
C0zeM0EeI0 A=02 8=0800 It=00ee H=0119 S=0100 P::0108 SUB C 
C0Zet10E0Il A=02 8:=0800 I1=00e0 H=0119 ~::::~3100 P::01l19 ·..INC 010D*010D 

-~J 
. 

~Ldo. bteo.'t~~o,rtt 0.1 :10DU,---! 'OlsQlo:J MtmOfj $a~~~ crt IlqH. dak. 
£1119 02 00 134 €I3 135 06 01 ~~~~~, , 

0120 a5 1 1 e0 22 21 B0 02 7E EB '?7 
I I 1 3 'J7 

'-..:J E8 Of: 
0130 C2 27 01 C3 03 29 00 £10 130 00 00 f.1 (1 013 00 1-)0 80 
0140 e0 00 a0 e0 e0 £10 00 80 a0 00 00 £10 00 1210 130 00 

D~ lS dl ~~ 'ld ' , , . 0150 00 00 a0 0£1 00 00 £1a 00 08 00 00 0(1 00 130 130 €I '3 " ", .~~, ,' .. 
0160 00 0e 00 130 €Ie 0e 00 80 00 00 £1(1 (Hj 013 00 00 00 . A<iar:. . ttJ \\, , l~' , , Wl d' 0 .. 
0170 00 00 00 1210 00 00 00 €Ie 00 la0 ij (I 0e 013 00 00 00 'l\A -tUe ?~rho~ of . , . 
0180 e0 80 00 13£1 0a 0e e0 e0 0t} 00 (.~ 13 fn) 00 O(~ i30 00 .. 
019£1 e0 e0 00 130 0a £1£1 00 013 00 08 00 00 00 1210 130 €I0 :~o~>6(op~~(: : : : : , , 

01A£1 00 €I0 00 130 00 0e 00 013 00 130 i~ €I eH3 0f1 00 laa €I0 ei..wraUtrs, , , , , , , . 
0180 £Ie 0e a0 ~3e 130 00 00 o ~} ~3 B 00 130 0121 010 Ott 130 Be , , , , , , , , , , , , 

til ce 00 00 £10 13£1 1~0 00 00 00 e0 130 0e. t10 00 00 00 00 , , , , , , , , , , .. 
_. ''X. 
.;:..~ Cu«att CPU *~ ~ 

C0Z0M0E0Il A=02 8=0800 D=00e0 H=0119 ::;=0100 F'::010I1 I ~n(: H 
- T ~3 

-rfact? t; stps ~y~ CLlr(e~ CPu sll -i/ 
C0Z0M0E011 A=02 8:=€18£10 It=0000 H=€1119 8=0100 P::tI10II I N~: H 
C0Z0t10E0Il A=02 8::0800 D=Et000 H=1111A S=0100 P::~:ll(1E nCR 8 A~~-hi. 
ceZet10E0Il A::02 8:=0700 D=0000 H=011f~ S=010€1 P::010F JNZ o I gkfOio.Ct 
C0Z0MBEetI1 A=02 8=078£1 It=f:.t000 H=011A S=0100 P=0107' MOV :~ ~ t1 
C0ZBM0E011 A=00 8=0700 li=0000 H=011A :::=0100 p:: ~I 108 SUB C:H3109 
-U5 

\Nl~~GV1 \l~;~ ~\t~ed lc.dt., ~ks -I \race 
C0Z1MBE111 A=00 B:::€1700 D=€t000 H=Qll1A ~:;:: 0 1 0121 P::0109 ,JNC 010Ii*0108 
-x -; CRu. ~k a.t tL\dof US ~ 
C0~:(1M0E 1 I 1 A=04 8:=0600 D=0000 H=0118 S=0101Z1 P=01tl:3 8UB c 

1:3 



-!i..; l?LtY\ ?rOj rCA~ -\-rCW\. CUntk.-t rc ~-nl Cb~~le.tlb~ (lL.t ~ -+~~e) 
*= eli 6 'o1e&ttt'Di4 ~t llb~ J COJ,6;lG. ~ ~-h~ R~f 1 lYl hWlAoie. &<1~ 
- ~-< 
-J Cfu ~k, at ewt Ii p~tl(m 

(:021M8EI1l A=00 8=00013 D=0000 H=0121 8=0100 P=0116 RST 07 

-!l..!:i l~ll\;ll~ flvtl C.\.wl~l t>(~V1Affl CoVI'\w" 
P=€1116 100 

-J 
-x -; 
ceZlM0El1l 
-T10~ \i0C2 

A = €I 0 8 = tl 00 0 It = {HH3 a H :: 01 ;2.1 S::: iZll 0 (1 p::: Q! i 0 13 f t1 V I B" ~8 fp 

[0 ~~\) ~s ~l;'r ~ ~~{ o.J~ l~ ~II-~ II 
C0Z1M0EI1l 
COZIM0EI1l 
C0Z1M0El11 
C0Z1M0El11 
(:021M0El11 
ceZ0M0E011 
c:eZ0M0E0Il 
[:eZ0M0E011 
COZ0t1BE0Il 
C~3Zat10E011 

A=00 8:=00£10 It=0 - _0 H=0121 S- _100 P::fttI0 ~1Vl B .. t18 
A=S0 D ~0ee 8=0100 P=0102 MVI CJ00 
A=00 8=0100 P=0104 LXI 

A=02 8=0800 
A=02 8=0880 
A=02 8=0790 
A=02 B=07013 

D=€l000 
D=tle00 
It=000e 
D =0 0130 

H=t!119 
H=Oli9 
H=0119 
H=0119 
H=011A 
H=011A 
H=tlllA 

~:;=0100 

~:;=010t1 

8=010(1 
S=1Z110e 
S=€1100 
8=13100 
~;=0100 

A=00 8=070(1 It =0 0 e0 H=~311A C0Z0MBE011 8=0100 
A=00 B=E1700 II =0 (n30 H=011fi C0Z1M0EIIl 8=0100 
A=00 8=0700 D=0000 H=011A C021M0EIIl S=0100 
A=0e E:::::€17e~ It=0000 H=011B ceZ1M0EIIl 8=0100 
A=00 B=~16ee D =0 0 00 H=0118 C0Z0MBE111 5::0100 
A=00 8:=06130 II = Et €I 00 H=011B ceZ0M0El11 5=0100 

P::0107 i10"l 
p::€llel:3 3UB 
P::01tl9 \.IN 
p::~lleIIt I N:X: 
P::010E ItCR 
P::010F ,JHZ 
P::01tI7 MOV 
P::tl108 SUB 
P::0109 .JNC 
p:: €I 10 It I NX 
P::010E II CF.: 
P::€110F \.1 HZ 
P=01t17 t10V 

[: 

0l0I1 
H 
8 
0107 
A J M 
1-' 
"-" 

etl0I! 
H 
P .... 
0107 
A .' M*010e 

- Ale:3 i? '1Y.se.v-I: a. "l.ot pcdd. A. \...t6 1t~aM. ~(.t{~ 'vtaue 'M.t)~t.t! +tt<.. 
£1 1 ~19 \.1 C 16 It ~ ~ Wtk~Ute CoM- (A • 1_ • -ro cl.ta~ -t{,.e, V ~ 1'v'iM1. t\ l\.oro C. ~\vtC-t A '> e. 
'3 i 0 c~ ::rUC. -to \f(, 5u.\.~ +klS Ctde. LUlS rwt t't£w..M) 

- 02 ,1 ~f DDT '5o.;t..oJ 0.. Ve6lbVl of ~ t appeax(' -lb.a:+ --Hte .:r ~C -SWI.l.ItI 
--the p~ P(~ram UlV\ bt Stt~ \.All~ kee~ fA. J"c.. 1 ~~ 

S A V E 1 SeA f~ . C (I t\? 'P~"3va.()t YlS~e.s C'V\ il~t ~tl ~ ~~ i 1'tl~. 

Ii > DDT S (: AN. C I) M ,., 1?t~-kvf wr (.II rtt., -tl.t ~ vet:! \'t1erY16i9 I ~ -10 Ccl<\ -hr!~ +es-h ~ 
i 6V.. IIDT 'v'EF: i. 121 
t~E:Y~T PC 
0200 0100 

- L 1 0 €I J Ll~t '5O~e ~de 

(111210 MVI B.·08 
0102 t1 V I C.' 0 (1 

6104- L:>n H., QI 11 9 ?revlOUS p{)J~ 
. 

ffe5!d X,~~ ~ It lYl 
0107 MOV ~,t1~ 
0108 SUB l: 
0109 • ..1 C 010 



8lec MOY C J A 
01'3D IHX H 
81eE DCR 8 
81eF JHZ £1107 
8 1 12 MOV A.I C 
-xp -; 

ceZ~MeEeI0 A=00 8=~eBB D=~000 H=000~ =~180 MYI 8J88 
ceZ0H0E0I0 A=0e 8=8880 D=Be0e H=000B p=a102 MYI c~ee 
ceZ0M0E0Ie A=00 8=0800 D=000e H=08es P=8104 LXI H~e113 
C0zeMBEBI0 A=ee 8=0800 D=0e0e p=Ble7 MOY A~M 
ceZBN0Eel0 A B~ D=Beee P=BIB8 SUB : 
C0ZBM0E0Il D=Be P=8109 JC al0D 
ceZBMBEell D-- 00 5=Blee P=BIBC MOY C!A 
cezaMBEBll D=0eB8 H=0119 5=8100 P=B10D IHX H 
C0Z0M0Eell A=02 D=Beee H=011A 5=0100 p=~leE DCR B 
C0Z0MBE0Il A=02 D=80eB H=011A 5=0100 P=BIBF JHZ ale7 
ceZBM0Eell A=B2 8=B782 D=Beee H=011A 8=0100 P=@107 MOY A~M 
ceZBMBEell A=Be 8=0782 D=800B H=011A S=0100 p=010a SUB C 
ClzeNIE010 A=FE 8=0702 D=eeea H=011A S=Blee P=BIB9 JC 010n 
CIZBMIEBI0 A=FE 8=0702 D=B00B H=011A 5=0100 p=818n IHX H 
CIZ0MIE010 A=FE 8=0702 D=Beee H=0118 S=01ee p=alBE DCR B 
CIZ0M0EIIl A=FE 8=8682 D=80eB H=9118 5=0109 P=BIBF JHZ 1 0107*0107 

~tbUrl Jiex lb~ 
ClzeM0ElIl A=FE 8~e6B2 D=B0eB H=0118 s=EtlBe P=i1107 ~OY A)M 
-G .. laB el 12UVt.{nJM CUtv(tA.t 'PC aVlJ bveAkpo~~ at I()<l,H 

*01Et8 
-Ka 
CIZ0M0EIIl 
-T 
-,] 

C1ZBMBE1Il 
-T 
-rl 

C(1ZEtMBEfn 1 
-X 
-,/ 

J~td- ~J{MA 

A=B4 B=B6B2 D=B0e0 

~l~k S\q> fO'( 
A=04 8=9682 D=aee0 

A=B2 8=8602 D=800£t 

H=0118 S=0100 P=~108 

li .jlw G9d~ 
H=01 i8 S=0100 P=B18:3 

H=eJ118 S=010f1 P=i31Et9 

SUB C 

:3UB C*01B9 

• ..1 C B10D*01eC 

CeZ0MBE0Il A=B2 8=0682 D=000B H=011B S=0100 P=010C MOV C)A 

-G J R~ -\0 CeO\pleh~ 
* e 11 6 
-'!:...J 

CeZlMBElIl A=B3 8=00B3 D=0e0e H=0121 S=0100 P=0116 RST 87 

- ~c1 \ ook cd %e Ulltte d ,\ LAeS€ u 

e 1 21 e 3; WV()(\J \b.\u.t..I 

I~ 



0122 Be; 

0123 :;.. .j ... ~; 

0124 21.1 

Oi25 00; 

[1 j 26 i12
J 

/ I:.~d oHk s C,iVlvYldvJ. 

0127 7E • 
-~ 

-~; 

01 eel MVI B.,08 
0102 MVI C.,80 
0104 LXI H .. 8119 
0187' MOV A.I M 
011218 SUE: C 
0109 JC ela II 
010(: MOV C.' A 
010If I N~: H 
010E nCR B 
e10F JHZ £1107 
0112 t10\/ A .• C 12evw.v 1k C edt -L 
-J 

(11 13 STA 012 1 
0116 RST 07 
(11 1 (' HOP 
01 18 HOP 
tI 1 19 STAX E: 
o 11 A HOP 
(i 1 1 B I NR B 
01 1 C I N~: B 
(1 11 II DCR B 
o 11 E MVI B J a 1 
012£1 DCR B 
- ~.< F' 
-J 

P = 6 1 1 6 1 £n3 Reset ~e fc. 
-J 

-1.J S\~lt~. I tiVl& ~L~ dak ValltiS 
ceZlMBElIl A=03 8=£1003 D=tl\'300 H=0121 8=0100 p::e1100 MVI 8.,08* e10 2 
-T 
-J 

C0Z1t10EIIl A=03 B=e1S03 D=0000 H=0121 S=0100 P::0102 M V I C.' e€u:e104 
-T f CClUt\+ ~t,..t ~" -J 

~lo.t~ set 
C~jZlMaE11 1 A=£13 8=0800 D=0000 H=0121 8=0100 P==0104 LXI H .. 0119*0107 _. T 

r bt~ adJ.t'SS tf do:k ~t -~ 

C0Z1M0EIIl A=03 8=0800 II =tH3 e0 H=0119 8=0100 P::€lltI7 MOV A .. M*B108 

" 



-T 
-J 

C0ZiMOEIIl 
-T -J 

C0Z0M0E011 
-T -; 
C(1Z0M0E0Il 
-T 
-~ 

C0Z0M0E0Il 
-T -; 
C0Z0MfJE0il 
-T 
-J 

C0Z0t10E011 
-T 
-J 

te20M0E0Il 
-'T 
-~ 

CeZ0M0E0Il 
-T -J 
C12Bt11E010 
-T 
-J 

r-rl~t o.ak tkW' ~Ytl~~1- ~ A 
A=02 8=0880 11=0000 H=01 19 8=0100 P=~)1(1:3 E;UB 

A=02 8=~~800 D=00l)0 H = ~~11 19 :::=010121 p:: tl t l1::1 ,.I C 

A=02 B:::08ee D=0000 H=Bi 19 ::;==01210 P=010C NOV 

r.ft~rd~~ VWNtd -k c.. Cbffdij 

A=02 B=€1802 I1=ee00 H=01 19 8==01e10 p:: ~I 10 It I t~~: 

A=02 8 =0 :38 2 D=0000 H=01 1A ::;=0100 P=010E DCR 

A=€12 8=0702 D =EH3 00 H=01 lA !:;=010(1 P:=e:110F ,..1HZ 

A=02 8:::f1702 D=ttlj00 H::: ~3 i iA ::.:: 0 i 0 ~~ P:::~31ti7 ~'1 (: i,l 

r SI!Co'Nl JotA. lb I.oJou."kt it, A 
A=00 B=07e2 D=€t000 H=011A 8=0100 P=0108 SUB 

r StbfrtlC.1 d.~OB5 dak, Va-ltd- l,Vk\~ w~s (O~~lq //{ 
A=FE 8=0792 D=0e00 H=011A 8=0100 P=0109 JC 

[:*0109 

010D*010C 

,0 ..... ' A*el(3D 

H :ft0 1 e E 

8:il01BF 

0107*l2'107 

A .. f'1*0i08 

CIZ0t11E010 A=FE B=0792 D=0000 H=011A S=0100 P=810D INX H*010E 
-L100 
--J 

0100 
0102 
0104 
Bll1? 
0108 
0109 
£110(: 
£'1 1 9 ~I 
01 (1E 

{3 1 ~)F 
01 1 2 
_. A 10::: 
-oJ 

0i08 

[1i09~ 

MVI 
MVI 
LXI 
MOV 
SUB 
de 
t1 0 V 
I rH; 
nCR 
~.lNZ 

MOV 

B., 0:3 
C.,80 
H .. 0119 
A} t1 I I . 
C ..d-.... -1lA~ sLtou.{d l,i4..Vt k1leL{ fA CMP so ~ yegr5tf A 
~ o~ : II lAk?l.l(d ~ \at dRJro9id. 
H 
8 
0107 
A., C 

eMF' C 
J 

-.0l,} ~p 1)t>T ~ SAVe: 



SAVE 1 SCAN.COM~ 

R}DItT SCAN. COM 
------~ 

16K IlnT VER 1.0 
HE>~T PC 
0200 e10e 
- \<P 

t.:..-.~ 

P=0100~ 

-Li16 
-J 

0116 RST 07 
(1117 HOP 
0118 HOP 
0119 STR,: B 
tlllA HOP 

look. /At ec.de- +0 St.e "If i+ wc.s ?~Di>tx~ Loale4 
(lO\\B ~t\!ou.t a\o~CL~ L»l~ YLlloou,-r ') 

- ( ~LL~ CKk* ) 

- G., 1.1 6 ~UV\ ~VV~ loo~ +0 ~Vl\Vk+l6~ 
~ 

*121116 

-~ ~ ~O(k qt Cr,1~ (oo:uleJ:..1 bl'O) 
Ci~ 

- ~x: i look a.t Cfu. ~td-L 
CIZIMBEI11 A=06 8=0006 D=0000 H=0121 8=0100 P~0116 RST 07 

-~.? Loo~ at'" la'lj!- 0 - d- arPea.(s +0 ~e Cerrtct'. 
0121 06.2 

01:22 00J 

0123 22 .; 

E D seA N. A S t1 
---~-; 

c.-\-t .. l 

/ r' "'. jLARGER VALUE ! N C? 

; LAF.:GER VALUE I N C: "? 

.; J U ~1P IF lAF~GER VALUE NOT FOUND 

~.~ FO U!·~ D i \.1 U rolF' I F LARGE~~ VALUE ~~ 0 T F 0 UN:O 

/S' 



H ~:; [1 ::; C H H, H A'Z -) - ~e -a.~ew.~\e of ~lech~~ 50WlCL -\ Yliffl d l~ Jr 
C F' /(1 ASS E rl B L E R - 'I' E R 1. 0 ~~~~l~ t Sekdr. !I\() 1'{l~{- flit) 
o 1 ;2;:: 
802H USE FACTOR 
E PrO (I F ASS E t'1 B L \' 

1 6 h' II [I T 1,/ E F: 1, (1 

il E >:: T PC 
~ji21 (j000 
_. L 11 6

11 

£11 19 STA;'·: E: 
011A NOP 
ij118 INR 8 
_. (YuboLlt) 

- G It,,,,, 116,., Go -trOM ~~ ;1JIV1·\flj Wl~ b(tt~i'o',>\t at ewi 
* (1 1 i 6 Iov la. ~ P{)l~ ~lCtC~ed 
-'~; Loo~ at "LAt~E.11 c~"uI: Valu.t CtJ~VL\.··h:.( 
01;::1 ~2 7E EB 7? 13 23 
8130 C2 27 01 C3 03 29 00 00 00 00 00 
0140 00 00 00 08 60 00 00 00 00 00 00 

E 
(I 

0 

E: 
~1 

(I 

l;:1 8 78 
(1 i~l ~l Et 
0 Ij 00 

B ~ II I ,-, 
1 

~j [I f1 0 
00 tt 0 

hi ~ 

.> 

~-:: 

I 

I 

I 

I 





DIAGNOSTICS 

Your 820 comes with a Diagnostic Exerciser disk. You can use this disk to check that 
your 820 is in proper working order. The disk will check the different components of 
the system and display a message if it finds a malfunction. 

It's a good idea to check your system when you first install it. If you experience any 
problems while using the system, you can use the Diagnostic Exerciser to check the 
system and find out if it needs to be serviced (repaired). 

HOW TO BEGIN: 

OPEN the disk drives (shown below) and remove any disks 

DRIVE 
A 

5Y4" DISK DRIVES 

DRIVE 
B 

DRIVE 
A 

8" DISK DRIVES 

DRIVE 
B 

LOCATE the ON/OFF switch on the left side of the 8" disk drives (shown below) 
(The 5Y4" disk drives does not have a ON/OFF switch) 

LOCATE the ON/OFF switch under the right side of the screen (shown below) 

SCREEN 

7/1/81 

RESET 
BUTTON 

(on bock of screen) 

DIAGNOSTICS 
9-1 

8" DISK DRIVES 

ON/OFF 
SWITCH 



TURN the screen on -- if it is already turned on, press the RESET button at the 
back of the screen 

TURN the 8" disk drives on -- if your system has 8" drives, they must be turned 
on for your system to operate. 

WAIT for the word XEROX to appear on the screen. If it does not appear after 
a few seconds, try adjusting the brightness control (under the left edge of 
screen) 

If nothing appears on the screen, your system needs servicing 

When you use the Diagnostic disk to check out your system, you'll need to have an 
initialized disk to put in the other disk drive. (An initialized disk is a disk that has 
been prepared for use in the 820.) If you just installed your 820, you'll need to use the 
instructions below to initialize a disk. 

TO INITIALIZE A DISK: 

INSERT the CP/M disk in the left drive (Drive A) and close the drive 

7/1/81 

5W' DISK DRIVES 
DRIVE 

A 

INSERT DISK 

CLOSE DRIVE 

DIAGNOSTICS 
9-2 

8" DISK DRIVES 

DRIVE 
A 

;;;; ----::;;;"~""""""im-I: ; 

I. I~ 

: . \ 



TYPE A and press RETURN 

OBTAIN at least one new disk and take the write protect tape off of the 5W' 
disk, or put a write protect tape on the 8" disk. 
(If you don't have a new disk, a previousley used one will do.) 

5Y4" DISK 

WRITE 
PROTECT 

TAPE 

OVAL 
CUTOUT 

= n u 

8"DISK 

. ~ ARROWS ~ 
V UP AND iN 

\g ~\ WRITE 
PROTECT 

TAPE 

TYPE the word INIT and press RETURN 

WAIT for the message "ENTER DISK DRIVE TO BE INITIALIZED (A or B)" 

INSER T the new disk in drive B 

TYPE B and press RETURN twice 

WAIT for the message "0 FLAWED SECTORS" to display 

If the disk has flawed sectors indicated by a number other than 0 in front 
of the FLA WED SECTORS message, do not use it - initialize another disk 
using the steps below. 

• Replace the disk in drive B with another disk 

• Type B and press RETURN twice 

• Wait for the 0 FLAWED SECTORS message to appear 

REMOVE both disks 

You're now ready to check out the system with the Diagnostic Exerciser disk. 
The instructions for running diagnostics are on the next page. 

7/1/81 
DIAGNOSTICS 

9-3 



TO RUN DIAGNOSTICS: 

Before you run diagnostics, you'll need to put paper in your printer (use two sheets, so 
that the paper covers the width of the platen), and turn on the printer. The On/Off 
Switch is on the back of the Diablo 630 printer. 

As the test runs, you'll need to watch the screen for error messages. 

PRESS the RESET button on the back on the screen (shown on page 9-0 

CHECK the Diagnostic disk to be sure that it is not write protected. 
(The 5Yt." disks are not protected when the tapes are removed, and the 8" 
disks are not protected when the tapes are on.) 

INSERT the Diagnostic disk in the left disk drive (Drive A) and close the drive 

INSERT an initialized disk in the right disk drive (Drive B) and close the drive 
(Be sure that the disk is not write protected) 

PRESS the A key and the RETURN key 

The diagnostic disk will begin to check out the system. Be careful not to 
touch any keys on the keyboard while the test is running. Touching a key 
can stop the test. 

Note: If there is an error during the test, pressing CTRL + C will run the 
remaining tests 

WATCH the screen for the results of the first memory test. In about 30 
seconds, the screen should show: 

PASSES COMPLETE = 0001 ; COUNT OF ERROR BYTES = 0000 
PASSES COMPLETE = 0001; COUNT OF ERROR BYTES = 0000 

H the COUNT OF ERROR BYTES does not equal 0000, your system 
needs to be serviced. 

WATCH the screen for the results of the second memory test. The screen 
should show: 

7/1/81 

PASSES COMPLETE = 0001 ; COUNT OF ERROR BYTES = 0000 
PASSES COMPLETE = 0001; COUNT OF ERROR BYTES = 0000 

DIAGNOSTICS 
9-4 



'--

H the COUNT OF ERROR BYTES does not equal 0000, your system 
needs to be serviced. 

WATCH your screen for the results of the disk test. The disk drives will click 
during this test. When finished the screen should show: 

o read/write error detected 
o seek errors detected 

WATCH the screen test as it displays the screen test. The test pattern should 
fill the screen with characters. (The boader around the test pattern will 
remain black.) 

H there are missing characters or irregularities in the test pattern, your 
system needs to be serviced. 

(If you do not have a printer, the test will end here. Remove both disks 
and press the RESET button.) 

WAIT while the printer prints its test pattern. (If you have an 88 or 
92 character wheel on the 630 Printer, the test patterm will have blanks 
in some places.) 

H the test pattern did not print the alphabet and numbers, or if the 
characters were not properly aligned on the paper, your system may 
need to be serviced. 

LOOK for the message "DIAGNOSTIC COMPLETE. RESET TO CONTINUE" 

REMOVE the Diagnostic disk and the initialized disk, and place them back in 
their disk envelopes. Your manual has a disk holder at the back that you 
can use for storing your Diagnostic Exerciser disk. 

PRESS the RESET button. 

If all the test messages corresponded with those shown in the instructions, your 820 is 
hooked up correctly and in proper working order. 

7/1/81 
DIAG NOSTICS 

9-5 



7/1/81 

(This page intentionally left blank) 

DIAGNOSTICS 
9-6 



DIABLO 630 PRINTER 

INTRODUCTION 

Diablo Systems has combined the simplicity and reliability of a newly designed daisy 
wheel printer with the latest microelectronic technology to produce the Model 630 
Printer. 

The Model 630 is a universal RS 232-C interface printer. It will support a heavy 
work load using conventional serial data interchange techniques and protocols. 

The Model 630 can use all Diablo and Xerox plastic and metal print wheels. 

The Model 630 can use many of Diablo's present paper handling devices, such as 
forms tractors, sheet feeders, etc. 

SYSTEM COMPONENTS 
10-1 



UNPACKING THE 630 

1. Take the printer and all accessories out of the carton and remove the plastic 
dust bag. Place the Model 630 on a desk or table. 

NOTE: The weight of the Model 630 is centered toward its right rear (as you 
look at it); thus it is easiest to lift by holding it at the right-rear and left-front. 

2. Inspect the Model 630 and any accompanying accessories for evidence of 
shipping damage. Immediately notify the shipping agent of any damage to the 
unit or its parts. 

3. Remove the access cover. It is held in place by magnetic latches in front and 
small tabs in back. 

4. Remove the plastic bag and the CAUTION tag attached to the paper bail by 
cutting or removing the tie wrap (nylon strap). 

5. Remove or cut the following shipping restraint items if installed (see pictures 
on opposite page): 

a) Rubber band securing the cover open switch actuator. 

b) Rubber band securing the paper cradle to the paper pressure rollers (if no 
platen is installed). 

c) Tie wrap (nylon strap) holding the carriage to the right printer frame. 

CAUTION: DO NOT cut any other tie wraps! 

SYSTEM COMPONENTS 
10-2 



R€.t-AO\lI!'lG S\-I\PPI!'lG R€.S1RAI!'l1S 

SySTEM COMPONENTS 
10-3 



INSTALLATION 

1. Place the Model 630 on your desk or table. Look at the two cords. One printer 
cord plug fits the large outlet on the back of the printer; the other plug fits the 
large outlet on the back of the 820's screen. One power plug fits the smaller 
outlet on the back of the printer; the other plug fits a wall outlet. 

2. Check the ON/OFF switch on the back of the printer -- it must be OFF! 

3. Plug the printer cord into the large outlet (right side, looking at back -- see 
picture on the opposite page) on the back of the printer. Tighten the screws on 
the plug. 

4. Plug the L-shaped end of the power cord into the small outlet (left side, looking 
at back -- see picture on the opposite page) on the back of the printer. 

Plug the other end of the power cord into the wall outlet. DO NOT turn on the 
printer yet. 

5. If the platen has been removed, reinstall it by lowering it down into place while 
pressing down on both platen release levers. 

NOTE: Make sure the platen's releasable drive gear end is on the right (as you 
view it). 

6. Install the platen knob on the right end of the platen - thru the hole in the top 
cover. Engage the knob on the platen shaft, rotate the knob until its slot fits 
over the cross pin on the platen shaft, then push against the knob to snap it into 
place. 

7. Install a print wheel and ribbon (see instructions on Pages 10-8 and 10-9). 

8. Install the access cover. It is held in place by magnetic latches in front and 
small tabs in back. 

9. Install the sound cover. Insert the sound cover pivot shaft ~n the tabs located on 
the top of the accesss cover. 

SYSTEM COMPONENTS 
10-4 



r! u ____ ~~_ _ _u __ ~ --_ - - _ ~ \~ 
(-_ ...... _'"_.~ __ ,.,... __ ..... __ " __ ~ ___ ~"""'_M~~_-""_~ 

10000000\ 

SYSTEM COMPONENTS 
10-5 

\~ 



FAMILIARIZATION 

(See picture on opposite page) 

1. Control Panel - Operator control switches and indicators. 

2. Access Cover - Operator access to internal controls and for changing print 
wheels and ribbons. 

3. Platen - similar to those on standard office typewriters. There is a hand knob 
on the right side only. 

Paper Handling Features 

4. Platen Knob - This knob, when pushed in (to disengage the drive gear), allows 
the operator to rotate the platen to insert and position paper. 

Platen Release Latches - These two latches are pressed down simultaneously to 
insert a platen or to release the platen for removal. 

5. Paper BaH - The paper bail holds the paper against the platen for optimum print 
quali ty and quietness. The bail must be pulled forward (away from the platen) 
when inserting paper. 

6. Paper Release Lever - This lever releases paper roller pressure when pulled 
forward, allowing the paper to be positioned manually. Returning this lever to 
its back position reestablishes paper roller pressure. 

7. Paper Guide - A movable guide for aid in inserting paper. 

8. Paper Scales - There are two scales associated with the Model 630. One is a 
column indicator, located on the top cover; the second is a paper scale mounted 
on the access cover. These scales aid the operator in centering and spacing 
paper and copy. 

9. Power Indicator Light - This light indicates that the power is on. 

SYSTEM COMPONENTS 
10-6 



7 

/1 

9 

8 6 

10 O[]O 000 

5 

630 PRINTER 

SYSTEM COMPONENTS 
10-7 

·-""'--2 

1 



PREPARATION FOR OPERATION 

Installing a Print Wheel 

CAUTION: Ensure that power to the Model 630 is turned OFF! 

1. Grasp the print hammer assembly and pull it toward you to tilt the print wheel 
mechanism away from the platen and card guide. 

2. Rotate the print wheel motor hub to bring the hub's alignment tab to the upper 
part of its arc of travel. 

3. Grasp the print wheel (metal or plastic) by its rubber hub and place it on the 
print wheel motor hub. Align the wheel's alignment slot with the hub's 
alignment tab, and push the wheel firmly to fully seat it on the motor hub. 

4. Tilt the print wheel mechanism back to its operating position. 

Removal of the print wheel is simple. Tilt the print wheel mechanism toward you, 
grasp the print wheel by its rubber hub and pull it free of the print wheel hub. 

Note: Diablo print wheels are rugged and dependable, but they can be damaged. 
Use care when handling them to avoid bending the "spokes". Always store 
print wheels in their plastic containers when they are not installed in the 
printer. 

INSTALLING PRINT Wt£EL 

SYSTEM COMPONENTS 
10-8 



Installing a Ribbon Cartridge 

1. Open the plastic envelope and take out the ribbon cartridge. Note the small 
knob on the top surface of the cartridge for advancing the ribbon manually. 
Use this knob to take up any slack in the exposed portion of the ribbon and to 
make sure the ribbon is tight and straight. 

2. Hold the cartridge in one hand with the exposed ribbon toward the platen. 
Lower the cartridge down over the print hammer guide (orange stripe). Be sure 
the exposed ribbon is straight and located between the card guide and print 
wheel. Push the cartridge down firmly until both latches have snapped into 
position. Rock the cartridge back and forth on the platform to ensure that the 
ribbon is free to move up and down. Turn the ribbon advance knob a turn or 
two to ensure that the ribbon is tight, straight and ready to operate. 

The ribbon cartridge may be removed by pressing down on both latches 
simultaneously. The cartridge will be raised up slightly and may be grasped 
easily and lifted out of the printer. 

Note: When a ribbon cartridge is nearly empty, a yellow cross-hatched pattern 
will appear on the visible back side of the ribbon. The Model 630 will stop 
printing, sound its alarm and the RIBBON/PAPER light will come on if printing 
is attempted with the ribbon in the warning (yellow) zone. 

PRINT HAMMER 

IMPRESSION CONTROL 

INSTALLING A RIBBON 

SYSTEM COMPONENTS 
10-9 



Inserting Paper or Forms 

Inserting paper or forms into the Model 630 is accomplished in much the same manner 
as in a standard typewriter. Paper is inserted down behind the metal paper out bail 
and platen while the platen is turned manually to bring the paper around and up in 
front of the platen. The front paper bail (Item 5, page 10-6) aids in guiding the paper 
back over the platen to the rear when pulled forward. The paper release lever at the 
right-hand side of the printer may be pulled forward to release roller pressure after 
paper insertion so the paper can be properly aligned in the printer. After paper is 
positioned, both the front paper bail and paper release lever are returned to their 
operating positions. 

Paper Thickness/Print Intensity Adjustment 

The two-position Multicopy lever located at the front of the carriage assembly 
adjusts for paper thickness and print intensity. Setting the lever to its upper position 
moves the carriage close to the platen, and actuates a switch to the proper setting 
for light and medium weight paper and form sets of up to two carbon copies. For 
heavier paper or form sets of up to five copies, the Multicopy lever is set to its lower 
position. This rocks the carriage away from the platen slightly, and deactivates the 
switch to enable an increased print intensity. 

To avoid the possibility of ribbon damage, the Multipcopy lever should always be set <'f 

at its upper position when printing on single sheets of paper using carbon ribbons. 

SYSTEM COMPONENTS 
10-10 



OPERATING THE MODEL 630 PRINTER 

Preliminary Steps 

Install a print wheel, a ribbon cartridge and insert a sheet of paper - as outlined 
on pages 10-8, 10-9 and 10-10. 

Move the carriage manually to the right a short distance. 

Move the power ON/OFF switch at the right rear of the printer to ON. 

The POWER indicator should glow; the carriage should move to the left slowly, 
and then back to the right, to stop at the first print position; and the print 
wheel should rotate and stop at its "home" position (i.e., the "flag" on metal 
print wheels should be at the top if the Print Wheel Select switch - under the 
access cover - has been properly set). This entire process is called the 
INITIALIZATION, RESET or RESTORE sequence. It clears all volatile memory, 
resets all position counters and sets the Model 630 to print the first character. 

Paper Handling Accessories 

-Forms Tractor/Pin Feed Platen: These devices facilitate precision handling of 
the continuous or manifold paper forms and are provided in both unidirectional 
and bidirectional versions. 

-Mechanical Front Feeder: This device also mounts on top of the Model 630. It 
is intended for use with difficult, multipart forms and the heavier ledger card 
stocks. 

-Bottom Feed: The Model 630 can be configured for feeding continuous or 
manifold forms up thru the bottom of the machine. It must be used with either 
a pin feed platen or a forms tractor. 

SYSTEM COMPONENTS 
10-11 



SPECIAL CONSIDERATIONS 

1. Cleaning Print Wheels 

Print Wheels used with carbon ribbons seldom need cleaning. Both Plastic Print 
Wheels and Metal Print Wheels used with cloth ribbons will require an 
occasional cleaning. 

Remove the print wheel and clean with toluene or naphtha * and a soft brush or 
wiper. DO NOT clean with water. DO NOT get solvent on the hub or damper 
ring (metal wheels). Be careful not bend the "spokes". 

2. Changing Ribbons During Operation 

As outlined on page 10-9, the Model 630 will stop printing, the RIBBON/PAPER 
light will appear, and the alarm will sound upon reaching the end of a carbon 
ribbon. Should this happen during receipt and print out of data from a host 
system, the operator should open the access cover, replace the ribbon cartridge 
as described, close the access cover, and then touch the Control Panel RESET 
switch to resume printing. 

3. Cleaning The Print Hammer 

Remove the print wheel and ribbon cartridge as described. Locate the movable 
print hammer inside its guide, as shown on page 10-8. Push the hammer out to 
the rear, to expose as much of the head as possible. Use toluene or naphtha * 
and a wiper or brush to remove any accumulated ink or other substances, and 
wipe dry. 

* Toluene and naphtha are available at most drug stores. 
** 90% isopropyl alcohol may be used as a solvent for cleaning the print 

hammer. 

SYSTEM COMPONENTS 
10-12 



\", 

Setting The Switches Under The Access Cover (left to right) 

The 630 Printer has been factory preset to the proper switch positions for use with a 
Xerox 820 Information Processor. For use with other print wheels, the available 
setting positions are as follows: 

1. Print Wheel Select Switch. Set this switch to match the particular type of print 
wheel being used. This ensures your text will print correctly and prevents 
possible print wheel damage or excessive wear. 

PRINT WHEEL SELECT: 

0: 
2: 
3: 
4: 
5: 
6: 
7: 
1,8,9: 

88 Metal 
92 Metal 
96 Metal 
96D Metal 
APL Metal 
APL Plastic 
Plastic 
Optional 

2. Spacing Select Switch. This switch selects the horizontal spacing for character 
printout. Set this switch to 1 for 10 Pitch PWS or 2 for 12 Pitch PWS. 

0: Proportional 
1: 10 
2: 12 
3: 15 
4 - 9: Self Test 

For use with the Xerox 820 Information Processor in WP, the switches to the right of 
Print Wheel and Spacing switches should be positioned toward the front of the 
printer, except for the BAUD switch marked 120. It should be positioned toward the 
back of the printer. 

SYSTEM COMPONENTS 
10-13 



Setting The Operating Switches 

These six switches are located in the right-hand area of the control panel where they 
are accessible to the operator with all covers on the machine. These are membrance 
type momentary action switches actuated by a touch of the finger. 

1. RESET Switch. This switch will restore the Model 630 to normal operating 
status following a printer check or an error condition, and clears all error 
indicators. 

2. SCROLL Switch. Touching this switch advances the paper a small amount to 
give the operator a clear view of the last printed line. The paper is 
automatically returned to the last printing position when the switch is released. 

3. LF Switch. Touching this switch initiates a single or a double line feed 
operation, as selected by the DOUBLE L.F. MODE SWITCH. Action is repeated 
if the switch is held activated longer than 600msec. A line feed code will not 
be transmitted. 

4. FF Switch. Touching this switch initiates a form feed to the next top-of-form 
position. A form feed code is not transmitted. 

5. HERE IS Switch. Touching this switch causes a special "Here Is. ." message 
of up to 31 characters to be transmitted over the communications link when 
operating in remote ASCII mode with the fully featured HPR05 option 
installed. This is not used with the Xerox 820 Information Processor. 

6. BREAK Switch. Touching this switch causes a Break (250msec space) to be 
transmitted over the communications link when operating in remote mode. 

7. (Audio Alarm). This device buzzes briefly to indicate the occurrence of various 
errors or operating conditions. 

SYSTEM COMPONENTS 
10-14 



Reading The Control Panel Indicators (left to right) 

1. POWER. Indicates that AC power is applied to the Model 630. 

2. PRINT CHK *. Indicates that a print operation has been called for while the 
printer is in a "check" condition. A check condition occurs when a print wheel 
or carriage movement command has been received but cannot be successfully 
completed due to a malfunction. This condition disables the Model 630 until a 
restore sequences clears the check condition. 

RESE T • Note that if the problem causing the check condition has not been 
corrected when a restore sequence has been initiated, the check will reappear 
as soon as printing is attempted. 

3. PARITY. Indicates detection of any of the following types of error: 

-Incorrect parity sensed on received character. 
-A framing error (no stop bit) detected on a received non-break character. 
-A serial data character detected with an excess number of bits. 

When a parity error is detected, a DEL character is substituted for the 
erroneous character. 

This indicator functions only if the PARITY ENABLE switch (under the access 
cover) is ON. 

4. OVFL *. Indicates that the Model 630's print input memory (buffer) is too full 
(has overflowed). Protocol has not been used properly. 

5. RIBBON/PAPER *. Indicates end of ribbon has been reached or that the printer 
is out of paper, and printing has been attempted. 

6. COVER *. Indicates that printing was attempted with the sound cover open. 

* - These errors cause a Break to be transmitted when the Model 630 is in 
Remote mode if DCl/DC3 protocol has not been selected. 

SYSTEM COMPONENTS 
10-15 



SPECIFICA TIONS 

Print Speed: Up to 40 characters per second with metalized print wheels. 

Character Set: 88, 92 or 96 printable characters per print wheel. Switch selectable 
program support for APL and all ENGLISH language print wheels. 

Print Wheels: 
Metal -88 character Xerox 

-96 character Diablo and Xerox 
Plastic -96 character Diablo 

Character Spacing: 10 and 12 pitch. 

Column Spacing: 1/120 inch (.21mm) minimum. 

Print Line: 13.2 inches (335.3mm) 
132 columns 10 pitch 
158 columns 12 pitch 
198 columns 15 pitch 

Paper Width: 16.53 inches (419. 9mm) maximum 
friction feed without Top Paper Out switch. 

16.00 inches (406.4mm) maximum 
friction feed with Top Paper Out switch. 

15.25 inches (387.4mm) maximum 
full width with optional forms tractor (14.75 inches/-374.7mm between holes). 3.25 
inches (82.55mm) minimum with forms tractor (2.75 inches/69.85mm between holes). 

Carriage Speed: 400msec maximum for 13.1 inches (332.77mm) of motion. 

Tabulation: Left or right. 

Line Spacing: 1/48 inch (.53mm) minimum. 

Paper Feed: Bidirectional, except with unidirectional forms tractor and uni-direc­
tional pin feed pIa ten. 

Paper Feed Speed: 4- inches (10 1.6mm) per second plus 40msec (typical) settling delay 
time. 

Sensors: End of ribbon, top paper out, and cover open. 

SYSTEM COMPONENTS 
10-16 



Paper Thickness: 

.000 - .101 inch (.254mm) at low setting 0-3 part forms) 

.010 - .027 inch (.254 - .686mm) at high setting (4--6 part form). 

Other Features: Self-test; host program control thru escape sequences; data 
receive/transmit speed selection. 

Power Reguirements: Strappable for operation from nominal 100, 120, 220 or 240 
volt (+10%/-1596) AC inputs, 49-61 Hz. 350W maximum power consumption. Factory 
preset for 120 V AC. 

CHECK YOUR MODEL 630'5 SERIAL PLATE FOR PROPER INPUT POWER. 

SYSTEM COMPONENTS 
10-17 



This page intentionally left blank. 

SYSTEM COMPONENTS 
10-18 



FORMS TRACTORS 

The unidirectional and bidirectional forms tractors are very sim ilar except the 
unidirectional does not have the reverse drive sprockets required for bidirectional 
paper feeding. 

Unidirectional Forms Tractor - This unit mounts on top of the printer cover 
where it engages the platen shaft for alignment and drive. It requires use of a 
friction feed platen. It is adjustable to any paper width from 2-3/4" (69.85mm) 
to 14-1/2" (368.3mm) maximum as measured between the pin feed drive holes. 

Bidirectional Forms Tractor - This unit mounts on top of the printer cover 
where it engages the platen shaft for alignment and drive. It requirps use of a 
friction feed platen. It is adjustable to any paper width from 2-3/4' \69.85mm) 
to 14-1/2" (368.3mm) maximum as measured between the pin feed drive holes. 
It also features both forward and reverse pin feed paper drives to enable 
feeding paper in either direction. 

SYSTEM COMPONENTS 
10-19 



Forms Tractor Installation 

Note: If your Model 630 has a sound panel, it must be the special sound panel 
designed for use with the forms tractors. 

1) If you have one, swing the sound panel forward to its open position. 

2) Pull the paper release lever and paper bail forward toward the front of 
the Model 630 (see Picture, page 10-7). 

3) Holding the forms tractor at both ends, depress the two latch release 
levers on the tractor and lower it onto the platen shaft (see Picture, page 
10-21). As the tractor is being lowered, guide the paper release actuator 
fork on the tractor over the paper release lever on the Model 630. 

4) Release the latch levers to clamp the tractor assembly onto the platen 
shaft. Check to see that both ends of the tractor are firmly latched. 

a) Bidirectional forms tractors: Swing the paper support rack forward 
then backward to make sure the paper release lever stays inside the 
release actuator fork. If the paper release lever slips out, remove 
the forms tractor and repeat steps 2 through 4 of this installation 
procedure. 

b) Unidirectional forms tractors: The unidirectional tractor is equipped 
with adjustable supports. Adjust these to hold the back of the tractor 
to its forward position, and check to see that the paper release lever 
on the Model 630 snaps in its backward position. Swing the paper 
support rack back to its normal position; the paper release lever 
should be pulled to its forward position. This releases the paper 
tension, which is necessary when operating with the forms tractor. 

Forms Tractor Removal 

1) Remove any paper from the forms tractor. 

2) Swing the sound panel forward. 

3) Depress the two latch release levers (see Picture, page 10-21) and lift the 
tractor straight up. 

SYSTEM COMPONENTS 
10-20 



REVERSE DRIVE ASSEMBLY 

PAPER FEED ASSEMBLY 

SYSTEM COMPONENTS 
10-21 

PAPER RELEASE 
ACTUA TOR FORK 



Loading Paper into the Bidirectional Forms Tractor 

To adapt the following procedure to a unidirectional tractor, simply disregard the 
steps relating solely to the reverse drive assemblies. 

1) If you have one, swing the sound panel open. 
2) Adjust the two pin feed assemblies to the appropriate form width by 

loosening the feed assembly lock levers and sliding the feed assemblies to 
the left or right as necessary. 

Note: The two feed assemblies on the bidirectional forms tractor each consist of a 
pin feed forward drive belt and a reverse drive sprocket joined together by a metal 
bracket. The unidirectional forms tractor is equipped only with the forward drive 
belt assemblies. 

3) Swing the paper support rack on the tractor to its forward position. This 
allows convenient access for engaging the paper onto the reverse drive 
sprockets; it also moves the pressure release lever backward so the platen 
will be able to grip the leading edge of the paper and pull it around to the 
forward drive assemblies. 

4) Open the gates on the reverse and forward drive assemblies. 

5) Bring the leading edge of the continuous form paper up over the rear of 
the Model 630 and hook the pin feed holes along each side of the paper 
onto the feed pins on the reverse drive sprockets. (Be certain that the 
paper is aligned straight on the sprockets.) Close the gates over the 
reverse drive sprockets to hold the paper in place on the feed pins. 

6) Slowly rotate the platen to feed the leading edge of the paper down 
behind the paper bar, down around and then up in front of the pIa ten. 

7) Swing the paper rack back. This moves the paper release lever on the 
printer to release the grip of the pIa ten on the paper. 

8) Grasp the leading edge of the paper and pull it up while manually turning 
the platen until the leading edge is above the forward drive assemblies on 
the tractor. 

9) While gently creating tension on the paper by pulling up on the leading 
edge, fit the side holes in the paper onto the feed pins of the forward 
drive belts. Close the gates to hold the paper in place on the feed pins. 
Be certain that the paper is aligned straight. 

10) Move the paper bail back toward the platen. (The bail will be held away 
from the platen slightly; this is proper when operating with the forms 
tractor .) 

11) Rotate the platen 2 or 3 turns forward and backward to check that the 
paper is feeding properly through the drive assemblies. 

12) Close the sound panel. 

SYSTEM COMPONENTS 
10-22 



--INTRODUCTION-

The XEROX 820 system monitor is the basic control program for the single-board 
computer. It begins execution when the computer is first turned on, or whenever 
the reset button is pressed, and resides in the top 4K of memory. 

The monitor provides two essential functions for the system. It is the initial 
software level of the computer and it contains the routines that initialize and 
control all the basic system input/output resources. The IIfront panel" functions of 
the monitor include commands to display and alter the contents of memory and I/O 
ports, to begin execution at a given address, and to bootstrap programs from disk. 
The basic I/O functions of monitor provide driving routines for the built-in CRT 
display and keyboard input, and the floppy disk controller. In this capacity the 
monitor is always active, even when application programs like the CP/M disk 
operating system have control of the CPU. 

The following sections of this manual will explain how to use the console monitor 
commands, what facilities are provided by the resident I/O handlers, and how to 
interface applications programs to the monitor. 

XEROX 820 MONITOR COMMAND SUMMARY 

The Xerox 820 monitor enters the command mode after it has initialized the 
system following a power-on or a reset. The following sign-on message is displayed 
on the console output device as an indication that the monitor is ready to accept 
commands • 

• • • XEROX 820 .•. 
Enter A for BOOT 
Enter T for TYPEWRITER 
* 
Commands consist of a single character command name and zero to three 
hexadecimal numeric parameters separated by commas or spaces. The command 
line may be entered using upper case or lower case letters. A carriage return is 
used as the terminator. Errors within a line can be corrected by typing control-H 
to delete the last character or control-X to delete the entire line. If a line is 
entered with an unknown command name, an invalid number or parameters or an 
out-of-range parameter, an error message will be displayed and the command will 
not be executed. 

The user may wish to halt long running commands like the memory dump before 
they are finished. This can be done by typing carriage return while the command is 
doing output. Output can also be frozen temporarily and then re-started by typing 
repeatedly on the space bar. 

The following table summarizes the monitor's command set. The items enclosed in 
angle braqkets represent the numeric parameters expected by the command. A 
detailed description of each command is provided in the following pages. 

SYSTEM COMPONENTS 
10-23 



command format 

d(ump) 
m(emory) 
t(est) 

D (start), (end) 
M (address) 
X (start), (end) 

f(ill) F (start), (end), (constant) 
c(opy) C (source_start), (source_end), (dest _start) 

g(oto) G (address) 

r(ead) 
a(boot) 
t(ypewr iter) •• 

R (unit), (track), (sector) 
A(boot) from A drive 
T 

i{nput) I (port) 
o(utput) o (port), (data) 

NOTE: All of the Monitor parameters are hexadecimal. 

1) DUMP COMMAND 

The dump command outputs a tabular display of the contents of memory in 
hexadecimal and ASCII representation. Each display line has the following 
format: 

AAA DD DD DD DD DO 00 00 00 00 00 00 00 00 00 00 00 CCCCCC, 

where AAAA is the starting memory address of the line in hexadecimal, the 
OO's are the hex values of the 16 bytes of data starting at location AAAA, 
and the C's are the ASCII characters equivalent to each data byte. Bytes less 
than 20 hex are replaced in the ASCII portion of the dump by period. 

The dump command accepts zero, one or two address parameters. If two 
addresses are specified, the block of memory between those two locations 
will be dispayed. Entering only one address will display 256 bytes of memory 
starting at the specified location. Typing '0' with no parameters will cause 
the routine to display the 256 byte block of memory starting at the last 
address displayed by the dump command. 

SYSTEM COMPONENTS 
10-24 



I 

'",---

2) MEMORY COMMAND 

The memory examine/change command allows the contents of individual 
memory locations to be read from and written into using the monitor. This 
command accepts one parameter representing the memory address at which 
to begin examining data. The display format is as follows: 

AAAA DD 

where AAAA is the current memory address and DD is the hexadecimal value 
of the data in that location. After displaying the contents of a memory 
location, the routine waits for one of the following items to be input from the 
console. 

o Typing a carriage return will cause the routine to display the data at 
the next memory location, with no modification of content. 

o Typing a minus sign will have a similar effect, except the address is 
decremented instead of incremental. 

o Typing a two digit hexadecimal number will cause that number to be 
stored at the displayed address. The new data is stored as soon as the 
second digit is entered, with no terminating character required. 

o Typing any character other than carriage return, a minus sign or a 
hexadecimal digit will cause the command to terminate. 

3) TEST COMMAND 

4) 

This command allows the user to test memory for errors caused by defective 
16K memory chips, solder bridges and various other problems. Any portion of 
memory may be tested except the area reserved for the monitor (FOOO to 
FFFF hex). Two parameters are required from the user; the starting address 
and ending address of the memory block to be tested. Only the high order 8 
bits of the addresses entered are actually used however, due to a charac­
ter istic of the test algor ithm begin em ployed. If no errors occur, the test 
routine will output a plus sign every time a test pass is done. A total of 256 
plus signs must be output for all possible test patterns to have been tried. 
When errors are detected an error line will be output in the following format: 

AAAA DD should=XX 

where AAAA is the address of a location that fails to test, DD is the data 
read back from the location, and XX is the test pattern that was written 
there. 

FILL COMMAND 

The fill command allows blocks of memory to be filled with a fixed data 
constant. Three parameters are required in the command line; a starting 
memory address, an ending address and a fill constant. Each location in the 
specified block of memory has the constant written into it and then read back 
again to check for memory errors. An error line like the one described for 
the 'X' command is printed for any locations that fail to verify. 

SYSTEM COMPONENTS 
10-25 



5) COpy COMMAND 

The copy command allows blocks of data to be moved around in memory. 
Three parameters are required in the command line; a starting memory 
address, an ending address, and a destination address. The contents of the 
block of memory bounded by the first two addresses is copied to the block 
starting at the third address. As with the fill command, a test is made to 
verify that each byte of the destination block, when read back, is the same as 
the corresponding byte in source block. 

8) GO TO COMMAND 

The goto command allows control of the CPU to be passed to another 
program by the monitor. This command requires a single parameter from the 
user representing the address at which to begin execution. The monitor 
actually passes control to the specified location by executing a CALL 
instruction. This makes it possible for the external routine to return to the 
monitor by doing a RET, assuming it does not re-Ioad the stack pointer and 
loose the return address to the monitor. 

9) READ COMMAND 

The read command allows individual disk sectors to be read into memory and 
displayed on the console. Three parameters are required; a drive unit number 
(range 0 to I), a track number (range 0 to 27 for 5.25" disks or range 0 to 4-C 
for 8" disks) and a sector number (range 1 to 12 for 5.25" disks or range 1 to 
lA for 8" disks). The command routine performs a drive select, track seek 
and sector read sequence using the supplied parameters. If no errors occur, 
the contents of the input buffer will be dumped out the 'D' command format. 
In the event of a disk error, a diagnostic message will be printed in the 
following format: 

disk error XX UAA TBB SCC 

where XX represents the 1771 disk controller error status code, AA is the 
unit number, BB is the track number, and CC is the sector number. The error 
code is composed of eight bits of status information as described in the table 
below: 

bit read/write seek/restore/select 

7 drive not ready drive not ready 
6 write protected unused 
5 write fault unused 
4- record not found seek error 
3 crc error crc error 
2 lost data cannot restore 
1 unused unused 
0 always=1 always=O 

The least significant bit (LSB) of the error code indicates which of the above 
sets of error conditions is applicable. If the LSB= 1 the disk error was 
generated by a read or write operation, otherwise it was caused by a seek, 
restore, or select operation. 

SYSTEM COMPONENTS 
10-26 



10) BOOT COMMAND 

The boot command command is used to load and begin execution of a one 
sector long bootstrap loader from the first sector on drive unit zero. The 
most common use of this command will be to boot up the CP/M disk 
operating system, although it is not necessarily restricted to this purpose 
only. 

The boot works by reading the contents of track 0, sector 1 into memory at 
location 80 hex and the jumping to that address to start execution of the code 
just read in. Normally the routine on sector 1 will be a small loader that in 
turn reads in a larger program such as the operating system. This two level 
bootstrap process makes the boot command more application independent. 
The only requirements are that the first sector of the boot diskette be 
reserved for a loader and that the bottom 256 bytes of memory are not 
wri tten over by the program being loaded. 

11) TYPEWRITER COMMAND 

This command allows the XEROX 820 to be used as a standard electronic 
typewri ter. All key strokes will be typed directly on the attached printer in a 
direct print mode, without displaying any typed information on the screen. 

12) INPUT COMMAND 

This command allows the contents of input ports to be read from using the 
monitor. It operates very much like the memory examine command, except 
that input ports are being examined instead of memory locations. A single 
parameter representing a port number is expected in the command line. The 
contents of adjacent ports can then be examined by typing carriage return or 
a minus sign as in the 1M I command. Typing any other key will cause the 
routine to terminate. 

13) OUTPUT COMMAND 

The output command is provided to allow output ports to be written to using 
the monitor. Two parameters are expected in the command line; a port 
number and a data byte to be output to that port. Both parameters should be 
between 0 and FF hex. After outputting the specified data to the port, this 
routine simply returns to the monitor instead of stepping to the next location 
like the input command. This makes it possible to use the output command to 
initialize 2-80 peripheral devices like the 510, PIO and CTC. 

SYSTEM COMPONENTS 
10-27 



MONITOR RESIDENT I/o DRIVER FUNCTIONS 

This section describes the facilities available in the XEROX 820 monitor for 
controlling the input/ouput resources of the XEROX 820 single-board computer. 

1) INTERRUPT PROCESSING 

The XEROX 820 monitor takes advantage of the powerful interrupt handling 
capabilities of the Z-80 microprocessor. Interrupts are utilized in the I/O 
drivers for the console keyboard input, the real-time clock and the floppy 
disk controller. All necessary initialization tasks and interrupt service 
routines for these devices are contained in the monitor. 

For the most part, the operation of the interrupt mechanism should be 
transparent to most applications programs that will run under XEROX 820. A 
few precautions must be taken however, to insure that user written software 
does not adversely effect the operation of the system. The following list 
describes the major hazards to the interrupt system; 

o Interrupts should not be disabled permanently by user code, as this will 
lock-up the console input and real-time-clock routines. 

o The Z-80 'I' register should never be altered. Doing so is GUARAN­
TEED to crash the sys~.em. 

o The CPU operates in Z-80 interrupt mode 2 and should not be switched 
to either of the other two interrupt modes. 

o Adequate stack space must be reserved in user programs to allow at 
least one level of stack for interrupt return addresses. Use of the stack 
pointer for 'trick' programming purposes is highly discouraged for the 
same reason. 

The monitor initializes the Z-80 'I' register to point to the system interrupt 
vector table at location FFOO to FF 1 F hex. This table contains pre-assigned 
vector locations for all the peripheral devices on XEROX 820, including those 
that are not used by any built-in functions in XEROX 820. The devices that 
are not currently used include SIO channel A, the general purpose PIO and 
CTC channels 0 and 1. These ports can be initialized and used as needed 
without affecting the overall system operation. Consult ,the monitor 
variables table at the end of this manual for the vector addresses. 

2) MEMORY MAPPED VIDEO DISPLAY 

The XEROX 820 single-board computer is equipped with a built-in 80 charac­
ter by 24 line CRT display controller, for use with an external video monitor 
as the system. console output device. The refresh memory for the CRT is 
bank switchable from the system's 64K byte memory space and includes a 
hardware address translation circuit for high speed scrolling. 

The XEROX 820 monitor contains an output driver routine for the CRT that 
emulates the characteristics of a typical stand-alone video terminal. An opera­
tional summary of the CRT driver is given on the next page. 

SYSTEM COMPONENTS 
10-28 



( 
"-

o All character codes between 20 and 7F hex are directly displayable on 
the screen. Characters are formed in a 5x7 dot matrix. 

o New characters are stored on the screen at the location occupied by the 
cursor. The cursor is then moved one place to the right. 

o If the cursor must appear at a screen position occupied by a non-blank 
character, the presence of the cursor will be indicated by making the 
overlayed character blink on and off. 

o If the displayable character is output when the cursor is in the right­
most column of the screen, an automatic carriage return and linefeed is 
generated afterwards. 

o If a linefeed in output when the cursor is on the bottom line of the 
screen, the entire display is scrolled up one line and a new blank line is 
created on the bottom. 

o All character codes between 00 and 1 F hex are interpreted as control 
characters. Only 12 of these codes have some effect on the CRT 
display, and are described in the table below. The remaining 20 are 
treated as nulls. 

CODE KEY NAME EFFECT 

00 @ NUL NONE 
01 A SOH NONE 
02 B STX NONE 
03 C ETX NONE 
04 D EOT NONE 
05 E ENQ NONE 
06 F ACK NONE 
07 G BEL NONE 
08 H BS BACKSPACE OR CURSOR LEFT 
09 I HT HORIZONT AL TAB 
OA J LF LINEFEED OR CURSOR DOWN 
OB K VT CURSOR UP 
OC L FF CURSOR RIGHT 
OD M CR CARRIAGE RETURN 
OE N SO NONE 
OF P SI NONE 
10 P DLE NONE 
11 Q DC1 CLEAR TO END OF SCREEN 
12 R DC2 NONE 
13 S DC3 NONE 
14 T DC4 NONE 
15 U NAK NONE 
16 V SYN NONE 
17 W ETB NONE 
18 X CAN CLEAR TO END OF LINE 
19 Y EM NONE 
1A Z SUB CLEAR SCREEN 
1B ESC ESCAPE SEQUENCE 
1C FS NONE 
ID GS NONE 
IE RS HOME CURSOR 
IF VS DISPLA Y CONTROL CHARACTER 

SYSTEM COMPONENTS 
10-29 

I 



Backspace: 

Moves the cursor to the next column to the left. If the cursor is in the leftmost 
column of the screen, this character has no effect. 

Tab: 

Moves the cursor right to the next tab stop. The tab stops are fixed at every 
eighth column, starting from the left. 

Linefeed: 

Moves the cursor down one line on the screen. If the cursor is the bottom-most 
line, the screen is scrolled up and a blank line is created on the bottom. The top 
line is lost. 

Cursor Up: 

Moves the cursor up one line on the screen. If the cursor is on the top of the 
screen it rolls around to the bottom. 

Cursor Right: 

Moves the cursor to the next column to the right. If the cursor is in the rightmost 
column, there is no effect. 

Carr ier Return: 

Moves the cursor to the leftmost column of the screen. 

Clear to EOS: 

Clears the contents of the screen from the current cursor position to the end of the 
bottom line. 

Clear to EOL: 

Clears the contents of the line the cursor is on, from the cursor position to the end 
of the line. 

Clear Screen: 

Clears the entire screen regardless of the current cursor position and places the 
cursor in the top left corner of the screen. Also re-initializes the CRT driver 
subroutine. 

Escape: 

Used to initiate an XY cursor positioning sequence. The cursor can be moved to an 
arbi trary location on the screen by outputting a 4 character sequence composed of 
1) escape, 2) equals sign, 3) row/! character and 4) column/! character. The 
row/column number characters are formed by taking the desired row/! (range=O to 
23) or columnll (range=O to 79) and adding 20 hex (32 decimal) to it. 

Home Cursor: 

Moves the cursor to the top left corner of the screen, without altering any 
characters on the dis pia y. 

Display CCls: 

Functions as a prefix character to force the output of symbols in the character 
generator that corresponds to ASCII control characters. The next character output 
to the CRT after outputting a I F hex will be displayed on the screen regardless of 
its numeric value. If multiple symbols ~re to be displayed, IF must precede each 
character. 

SYSTEM COMPONENTS 
10-30 



'"" 

DISPLAY CHARACTER CODES 

This table shows the code for each character to be displayed by the XEROX 820. 
Each character is defined by a unique eight bit code which is represented by a 
hexadecimal code IXYI where X represents the 4 most significant bits of the code 
and Y represents the 4 least significant bits of the code. 

There are a total of 128 characters in the font se t. Therefore, Y represents a 
hexadecimal number from 0 to F, and X represents a hexadecimal number from 0to 
7. Therefore, the complete font set is defined by codes from 00 to 7F. If the most 
significant bit of the eight bit code is set to Ill, then the complete font set is 
duplicated with the blink attribute set. The blinking set of characters is then 
defined by codes from 80 to FF. 

0 0 

1 
3 

2 

3 0 

4 @ 

5 P 

6 ..... 

7 p 

1 2 3 4 567 8 9 ABC D E F 

¢ CI § 

:z 0 
c::::I '" 

11 If $ 

1 2 3 4 

A B C D 

Q R S T 

a b c d 

q r s t 

~ 2 
~ 
~ ± +-1 .,.. 

en .,.. I-l ~ U 

% & 

5 6 7 8 9 

E F G H 

U V W X Y 

e f g h 

u v w x y 

SYSTEM COMPONENTS 
10-31 

'" ~ +- ~:~: @I ~ 

~ +' (~I ~ I+-

* + / 

< = > ? 

J K L M N 0 

Z [ \ J A 

k m n 0 

z { } IV 
fm 



KEY STATION NUMBERING 

SYSTEM COMPONENTS 
10-32 



KEY NAME 

HELP 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

MINUS 

EQUAL 

BACKSPACE 

DELETE 

- (PAD) 

7 (PAD) 

8 (PAD) 

9 (PAD) 

TAB 

Q 

W 

E 

R 

T 

Y 

U 

KEY CODES 

KEY /I UNSHIFTED SHIFTED 

01 IE 

02 31 

03 32 

04 33 

05 34 

06 35 

07 36 

08 37 

09 38 

10 39 

11 30 

12 2D 

13 3D 

14 08 

15 7F 

16 2D 

17 37 

18 38 

19 39 

20 09 

21 71 

22 77 

23 65 

24 72 

25 74 

26 79 

27 75 

SYSTEM COMPONENTS 
10-33 

IE 

21 

40 

23 

24 

25 

5E 

26 

2A 

28 

29 

5F 

2B 

08 

7F 

2D 

37 

38 

39 

09 

51 

57 

45 

52 

54 

59 

55 

CONTROL 

9E 

91 

92 

93 

94 

95 

96 

97 

98 

99 

90 

IF 

9A 

88 

FF 

AD 

B7 

B8 

B9 

89 

11 

17 

05 

12 

14 

19 

15 



KEY NAME 

0 

P 

[ 

J 
ESC 

+ (PAD) 
:, 4 (PAD) 

5 (PAD) 

6 (PAD) 

LOCK 

A 

S 

D 

F 

G 

H 

J 

K 

L 

SEMICOLON 

APOSTROPHE 

RETURN 

LINEFEED 

UP ARROW 

1 (PAD) 

2 (PAD) 

Key Codes 
(continued) 

KEY II UNSHIFTED SHIFTED 

28 69 49 

29 6F 4F 

30 70 50 

31 5B 7B 

32 5D 7D 

33 1B 1B 

34 2B 2B 

35 34 34 

36 35 35 

37 36 36 

CONTROL 

09 

OF 

10 

1B 

1D 

9B 

AB 

B4 

B5 

B6 
38 FUNCTION KEY 

39 61 

40 73 

41 64 

42 66 

43 67 

44 68 

45 6A 

46 6B 

47 6C 

48 3B 

49 27 

50 OD 

51 OA 

52 01 

53 31 

54 32 

SYSTEM COMPONENTS 
10-34 

41 01 

53 13 

44 04 

46 06 

47 07 

48 08 

4A OA 

4B OB 

4C OC 

3A 7E 

22 60 

OD 80' 

OA 8A 

01 81 

31 B1 

32 B2 



KEY NAME 

3 (PAD) 
L SHIFT 
Z 

X 

C 
V 

B 
N 
M 

"'-
COMMA 
PERIOD 
SLASH 
R. SHIFT 
L.ARROW 
D.ARROW 
R.ARROW 
o (PAD) 
. (PAD) 
L.CTRL 
SPACE BAR 
R.CTRL 

/" 

( 
.,,----

Key Codes 
(continued) 

KEY /I UNSHIFTED SHIFTED CONTROL 

55 33 33 
56 FUNCTION KEY 
57 7A 5A 
58 78 58 

59 63 43 
60 76 56 
61 62 42 
62 6E 4E 
63 60 40 
64 2C 3C 
65 2E 3E 
66 2F 3F 
67 FUNCTION KEY 
68 04 04 
69 02 02 
70 03 03 
71 30 30 

72 2E 2E 
73 FUNCTION KEY 
74 20 20 

75 FUNCTION KEY 

SYSTEM COMPONENTS 
10-35 

B3 

lA 
18 
03 
16 
02 
OE 
00 
lC 
7C 
5C 

84 
82 
83 
BO 

AE 

00 



3) PARALLEL KEYBOARD INPUT 

A parallel keyboard interface is provided on XEROX 820 for systems that will 
use the built-in keyboard and CRT display as the console I/O device This 
interface is designed to connect to an ASCII encoded keyboard with 8 bits. of 
parallel data and a key-pressed strobe. 

The XEROX 820 monitor contains an interrupt driven input handler for the 
keyboard that maintains a 16 character deep FIFO buffer for input data. This 
makes it possible to do a considerable amount of typing ahead without any 
input characters being lost. If characters are typed while disk access is going 
on, they may be lost because the disk routines lock out all lower priority 
interrupts. Any characters received when the FIFO is full will also be lost. 

4) FLOPPY DISK CONTROLLER 
The system is· equipped with an on-board floppy disk interface capable of 
controlling up to two Shugart compatible 8 inch drives, or two 5~" drives. 
The interface hardware is based on a Western Digital 1771 disk controller 
chip, along with extra TTL support circuitry to provide buffering, drive 
select, head load timing and data separater functions. 

The XEROX 820 monitor contains a complete I/O driver package for the disk 
controller. Linkage to the disk I/o routines in the monitor is provided by a 
set of subroutine entry points described later in this manual. The basic 
functions available are: drive select, restore, seek, track, read sector, and 
write sector. The user can also specify the track-to-track seek stepping rate, 
and the sector record length. 

All disk functions are verified upon completion, with the final status being 
returned in the A register. If the command was executed successfully, then 
A will contain all zeros on return, otherwise it will contain an error status 
byte as described above under the console monitor 'R' command. The disk 
driver routines will attempt to recover from any disk I/o errors that occur, 
so it is generally not necessary for user written programs to try to re-execute 
commands that fail the first time. 

DISK FORMAT 

The XEROX 820 is equipped with two (2) compatible Shugart SA400L (5~") 
drives, or two (8") Shugart SA800 drives. The disks for the SA400L (5~") 
drives are initialized in a CROMEMCO format, and the disks for the SA800 
(8") disks are initialized in an IBM 3740 format. 

A format is divided into three (3) parts, field A, field B, and field C. Field A 
is written at the start of each track known as the preamble. Field B is 
written once for each sector which consists of a gap between sectors, ID 
fields, and a -data field. Field C is written at the end of each track and is 
known as a postamble. 

'T!.' 

SYSTEM COMPONENTS 
10-36 



The XEROX 820 disks are initialized in the following formats: 

Parameter 8" 5Y4" 
Tracks 77 40 
Sectors 26 18 
Bytes/Sector 128 128 
/I of Reserved Track for OS 2 3 
Disk Capacity 241K 81K 

5Jf." Format 
Number of Hex Value Comment 

Bytes of Bytes 

Field A - 16 FF Preamble on Gap 4A 
4 00 Gap 3 
1 FE ID Address Mark 
1 XX Track /I 
1 00 
1 XX Sector /I 
1 00 

*Field B 1 F7 Generate CRe 
11 FF Gap 2 
6 00 
1 FB Data Address Mark 
128 E5 Data Field 'E5' Data 
1 F7 Generate CRe 

"-, 8 FF Gap 8 
Field C - 101 FF Postamb1e Gap 4B 

8" Format 
Number of Hex Value Comment 

Bytes of Bytes 

Field A - 28 FF Preamble - Write at the 
6 00 start of each track 
1 Fe 
26 FF 
6 00 Gap 3 
1 FE ID Address Mark 
1 XX Track /I 
1 00 
1 XX Sector II 
1 00 

*Field B 1 F7 Generate eRe 
11 FF Gap 2 
6 00 
1 FB Data Address Mark 
128 E5 Data Field '5' Data 
1 F7 Generate eRe 
27 FF Gap 3 

Field C - 247 FF Postamble Gap 4B 

\ 
"-- * Repeated for one (1) number of sectors per track. 

SYSTEM COMPONENTS 
10-37 



5) SERIAL INPUT/OUTPUT 

The XEROX 820 single-board computer has provIsIons for two completely 
independent RS-232 serial ports that can be used to interface to printers, 
CR T terminals and data communications equipment. 

6) REAL TIME CLOCK 

The XEROX 820 single board computer has 2-80 CTC device that can be used 
to generate the timebase for interrupt driven timers, real-time clocks, and 
other time keeping functions. The monitor will initialize CTC channels 2 and 
3 to interrupt the processor once a second. Channels 0 and 1 of the CTC are 
not initialized and can be used for other purposes. 

The one second interrupt from the CTC is utilized by the monitor's disk I/O 
routines to implement the disk motor turn-off function. 

7) PARALLEL I/O OPTION 

A 2-80 PIO chip has been included on the XEROX 820 for general purpose I/O 
interfacings. This device is completely unused by any built-in functions. 
The PIO contains two independent 8 bit parallel I/O ports that can be used to 
interface to printers, ROM programmers, analog converters, other compu­
ters, or just about anything else imaginable. Those interested in using the 
PIO should consult the schematic drawings for any needed hardware interfac­
ing details. 'Data about programming the PIO can be found in most 2-80 
applications manual. 

SYSTEM COMPONENTS 
10-38 



"-

\ ,--

USER ACCESSIBLE MONITOR ROUTINES AND VARIABLES 

This section gives the locations and calling sequences of the user accessible I/o 
routines in the XEROX 820 monitor. It also describes a number of important 
monitor variables that may need to be accessed by user written programs. 

XEROX 820 subroutines are accessed via a table of JUMP instructions beginning at 
memory location FOOO hex. All monitor calls should be made to these entry points, 
since the actual addresses of the routines inside XEROX 820 will vary between 
different releases. Parameter passing conventions for the monitor fall into one of 
two groups. The character oriented I/O routines all pass data using the A register, 
while the disk routines pass parameters in C and HL and return status information 
in A. 

Storage for the monitor's stack and working variable occupies the top 256 bytes of 
memory, from FFOO to FFFF hex. The mode 2 interrupt vector table takes up the 
first 32 bytes of this block and the stack starts at the very top. In between, are 
variables used by the monitor resident I/O drivers and interrupt service routines, 
some of which are described below. Programs should not attempt to write into any 
locations in this block that are not specifically mentioned below. 

1) 

FOOO 
F003 
F006 
F009 
FOOC 
FOOF 
F012 
F015 
F018 
F01B 
F01E 
F021 
F024 
F027 

XEROX 820 SUBROUTINE ENTRY POINTS 

ENTO: 
ENT1: 
ENT2: 
ENT3: 
ENT4: 
ENT5: 
ENT6: 
ENT7: 
ENT8: 
ENT9: 
ENT 10: 
ENT11: 
ENT12: 
ENT13: 

JP INIT 
JP PROMPT 
JP CONST 
JP CONIN 
JP CRTOUT 
JP CRTOUT 
JP SIOST 
JP SIOIN 
JP SIOOUT 
JP SELECT 
JP HOME 
JP SEEK 
JP READ 
JP WRITE 

SYSTEM COMPONENTS 
10-39 

;XEROX 820 cold start entry 
;XEROX 820 warm start entry 
;console input status test 
;console input 
;memory-mapped CR Toutput 
;memory-mapped CR Toutput 
;SIO port B input status test 
;SIO port B input 
;SIO port B ouput 
;disk drive select 
;restore to track 0 
;seek track 
;read sector into memory 
;write sector from memory 



FUNCTION 

COLD ••• 

WARM ••• 

CONST ••• 

CONIN ••• 

CONOUT •• 

CRTOUT •• 

SIOST •• 

SIOIN ••• 

SIOOUT ••• 

SELECT ••• 

HOME ••• 

SEEK ••• 

READ ••• 

PARAMETERS 

IN: none 
OUT: does not return 

IN: none 
OUT: does not return 

IN: none 
OUT: status in a 

IN: none 
OUT: character in A 

IN: character in A 
OUT: none 

IN: character in A 
.j") 

OUT: none (1·... "', I .", 

IN: none 
OUT: status in A 

IN: none 
OUT: character in A 

IN: character in A 
OUT: none 

IN: unit number in C 
OUT: status in A 

IN: none 
OUT: status in A 

IN: track number in C 
OUT: status in A 

IN: sector number in C 
buff er pointer in HL 

OUT: status in A 

DESCRIPTION 

Perform cold start initialization of 
XEROX 820 monitor and enter com­
mand mode. 

Enter XEROX 820 monitor command 
mode with no re-initialization. 

Test for data ready in console input 
FIFO and return status in A. If data 
is available then A=FF, else A=OO 
hex. 

Return character from console input 
FIFO in A. If FIFO is empty then 
loop until character is input. 

Output character passed in A to the 
memory mapped CRT display 

Output character passed in A to the 
memory-mapped CRT display. 

Test for received data available from 
SIO channel B and return status in A. 
if data is available then A=FF, else 
A=OO hex. 

Return received data from SIO 
channel B in A. Loop until data is 
received if none is available on entry. 

Output character passed in A to SIO 
channel B transmit register. 

Select specified drive for future 
restore, seek, read or write 
command. If the drive is not ready, 
then the currently selected drive is 
left on. 

Move read/write head to home 
position at track 0 and verify if it got 
there. 

Move read/write head to specified 
track and verify if it got there. 

Read specified sector on current 
track into memory data buffer. 

SYSTEM COMPONENTS 
10-40 



./ 

WRITE ••• IN: sector number in C 
buffer pointer in HL 

OUT: status in A 

Write specified sector on current 
Track from memory data buffer. 

2) STORAGE ALLOCATION FOR XEROX 820 VARIABLES 

(INTERR UPT VECTOR TABLE) 

FFOO SIOVO: DEFS2 ;SIO port B xmit buffer empty 
FF02 SIOV 1: DEFS2 ;SIO port B external/status change 
FF04 SIOV2: DEFS2 ;SIO port B receive data available 
FF06 SIOV3: DEFS2 ;SIO port B special receive condition 
FF08 SIOV4: DEFS2 ;SIO port A xmit buffer empty 
FFOASIOV5: DEFS2 ;SIO port A external/status change 
FFOCSIOV6: DEFS2 ;SIO port A receive data available 
FFOE SIOV7: DEFS2 ;SIO port A special receive condition 

FF10 CTCVO: DEFS2 ;CTC channel 0 interrupt 
FF 12 CTCV 1: DEFS2 ;CTC channel 1 interrupt 
FF14 CTCV2: DEFS2 ;CTC channel 2 interrupt 
FF16 CTCV3: DEFS2 ;CTC channel 3 interrupt 

FF18 SYSVA: DEFS2 ;system PIO port A interrupt 
FF1ASYSVB: DEFS2 ;system PIO port B interrupt 

FF1CGENVA: DEFS2 ;general purpose PIO port A interrupt 
FF1EGENVB: DEFS2 ;general purpose PIO port B interrupt 

(CONSOLE KEYBOARD INPUT VARIABLES) 

FF20 FIFO: 
FF30 FIFCNT: 
FF33 LOCK: 

DEFS 16 
DEFS1 
DEFS1 

;input data fifo buffer 
;number of characters in FIFO 
;character used for software shift 

SYSTEM COMPONENTS 
10-41 



Theory of Operation - CENTRAL PROCESSOR 

CLOCK GENERATOR: 

All the system clocks with the exception of the baud clock and the video dot clock 
are generated from a master oscillator operating at 20 Mhz. The 20 Mhz clock is 
scaled by the divide-by-5 section of decade counter to provide 4- Mhz for use in the 
floppy disk data separator. The 2 Mhz clock for the disk controller is generated 
from the 4- Mhz clock by the remaining divide by two section. 

The 2.5 Mhz processor clock is generated by dividing the master 20 Mhz clock by 8 
with binary counter. The column address strobe "CAS", and the address multi­
plexer control "MUXC", are derived from the 20 Mhz clock. When memory, request 
"MREQ" is low and refresh "RFSH" is high generation of "CAS" and "M'lJXC" is 
enabled. "RFSH" disables the generation of "CAS" and "MUXC" by holding shift 
register reset. This is done to take advantage of the low power row address strobe 
"RAS" only refresh mode of the 16K dynamic RAM. 

RESET CONTROLLER: 

Two types of reset take place on the board. 
conditioned by part of hex schmitt inverter. 
conditioned by a part of hex schmitt inverter. 

PORT ADDRESS DECODING: 

Power on reset is detected and 
The pushbutton reset is also 

Octal decoder is used to select the appropriate I/o device based on the binary 
value of the address bits A2, A3, & 4-. When A7 is low and "M lR" is high, a low on 
"IORQ" will cause the appropriate output of the decoder to go low, selecting the 
I/O device for a read or write operation. 

POR T 0-3 = CHANNEL A BAUD RATE (WRITE ONLY) 
POR T 4- = SIO CHANNEL A DATA 
PORT 5 = SIO CHANNEL B DATA 
PORT 6 = SIO CHANNEL A CONTROL 
POR T 7 = SIO CHANNEL B CONTROL 
PORT 8 = GP PIO PORT A DATA 
PORT 9 = GP PIO A CONTROL 
PORT A = GP PIO PORT B DATA 
PORT B = GP PIO PORT B CONTROL 
POR T C-F = CHANNEL B BAUD RATE (WRITE ONLY) 
PORT 10 = 1771 STATUS/COMMAND REGISTER 
PORT 11 = 1771 TRACK REGISTER 
POR T 12 = 1771 SECTOR REGISTER 
PORT 13 = 1771 DATA REGISTER 
PORT 14--17 = CRT SCROLL REGISTER (WRITE ONLY) 
PORT 18 = CTC CHANNEL 0 
PORT 19 - CTC CHANNEL 1 
PORT lA = CTC CHANNEL 2 
PORT IB = CTC CHANNEL 3 
PORT lC = SYSTEM DATA PORT 
PORT ID = SYSTEM CONTROL PORT 
PORT IE = KEYBOARD DATA PORT 
PORT IF = KEYBOARD CONTROL PORT 

SYSTEM COMPONENTS 
10-4-2 



I" 

DISK TRANSFER SYNCHRONIZATION: 

In order to successfully execute the high speed data transfers between the 
processor and the disk controller, the fast Z-80 non maskable interrupt "NMI" 
response was employed. During reads and writes to and from the disk controller, 
the data at memory location 66 hex is retrieved and stored. This location is 
overwritten with a RETURN instruction. After this setup is accomplished the 
processor executes a HALT instruction. When the processor is in a HALT 
condition, a DATA REQUEST (DRQ) or an INTERRUPT REQUEST (IRQ) from the 
disk controller will cause a non-maskable interrupt to be generated. The processor 
then executes the RETURN instruction at 66 hex and returns to transfer the data 
to or from the disk controller. When the 128 byte transfer is complete the old data 
is restored and the processor resumes normal operation. This hardware assistance 
obviated the necessity for a DMA device by eliminating the disk controller "DRQ" 
status test. 

CRT DISPLAY CONTROLLER 

VIDEO SCROLLING: 

In order to eliminate the delay associated with software scrolling, hardware 
assistance was employed. For ease of understanding, the CRT RAM resides from 
3000 hex to 3FFF hex. Writing into the scroll register adds an offset to the line 
address developed by the line counter. -The net effect is similar to the rotation of 
a cylinder whose axis is horizontal and perpendicular to the line of shift. The 
amount of rotation is determined by the magnitude of the number contained in the 
scroll register. For instance, an offset of zero puts the data at location 3000 hex 
(of the CRT memory) at the bottom of the screen. If the offset was one, the data 
at 3000 hex would be displayed on the line next to the bottom. An offset of 
seventeen hex (23 decimal) puts the data at location 3000 hex at the top of the 
screen. 

VIDEO RAM ADDRESSING: 

If the processor is doing a read or write to video RAM "CR TCE" (CRT memory 
access enable) will go low. When "CR TCE" goes low, the address from the 
processor is selected instead of the address generated by the counter chain. This 
gives the processor access to the video RAM for read or write operations.CPU 
ACCESS OF VIDEO RAM: 

During read or write operations involving the video RAM and the CPU, "CRTCE" 
will go low. When "CR TCE" goes low the proc~ssor address bus is selected as the 
address source for the video RAM. A low on "CR TCE" is also used as a term in the 
direction control logic for data buss access. During a processor read operation, 
data from the video RAM at the specified address is allowed onto the processor 
data bus. During a processor write operation, data from the processor is written to 
the video RAM at the specified address. 

SYSTEM COMPONENTS 
10-43 



VIDEO GENERATION: 

While in the display mode, ASCII data from the video RAM and scan address data 
are used to select the proper dot patterns from the character generator. The 
character generator contains 1 Font pattern of 128 characters. 

DISPLAY BLANKING: 

The display is blanked during horizontal retrace, vertical retrace, CPU access, and 
decode of scan counts 8 & 9. Blanking is accomplished by disabling the character 
generator. 

64 K RAM AND BANK SWITCHING 

REFRESH: 

During the refresh cycle, the Z-80 places the refresh address on the lower 7 bits of 
the address bus. When this address is stable in the RAM array, th "RFSH" pin on 
the Z-80 goes low. The active low "RFSH" generates a "RAS" on all RAMs. An 
active "RFSH" disables the generation of both "CAS" and "MUXC" • 

BANK SWITCHING: 

Bit 7 of port lC hex is the bank switch control. When the output is high, the ROMs 
and the CRT display appear in the lower 16K block. When bit 7 of port lC hex is 
low, all the 64K RAM is available to the processor. 

FLOPPY DISK CONTROLLER, SYSTEM PIO, AND eTC 

FLOPPY DISK CONTROLLER: 

The 1771 Disk Controller performs all the control functions required to interface 
to a floppy disk drive. The only support required by the 1771 is external data 
separation, inverting data bus transceivers, head load timer, and buffering to and 
from the drive(s). 

SYSTEM COMPONENTS 
10-44 



.I 

DATA SEPARATOR: 

Presettable counter is used as a timing reference developed by the system clock. 
Raw data coming from the disk drive is used to preload the counter. If the counter 
does not receive a data bit between clocks the counter in effect times out and 
presents the controller with a logic zero. If the counter receives data between 
clocks, the controller will see a logic one on its data input. 

DATA BUS BUFFERING: 

Inverting transceivers adapt the 1771 to the non-inverted 2-80 data bus. During a 
read operation, data from the 1771 is allowed onto the processor's data bus. 
Otherwise, the processor's data bus always drives the 1771's data inputs. 

CTC: 

The CTC resides at ports 18 hex through 1B hex (see page 10-38). All the inputs 
and outputs associated with the CTC are available to the user. Refer to the 
strapping option section for pin assignments. 

SYSTEM PIO: 

The system PIO resides at ports 1 C hex through 1 F hex. The" A" side of the system 
PIO controls the floppy disk drive select, bank switching, disk power switching, 
sensing keyboard data available (for polled keyboard applications), and on un-

" committed user definable I/o bit. The bit allocations are as follows: 

( 
"'---

BIT 0 = DVSEL 1 
BIT 1 = DVSEL 2 
BIT 2 = SIDE 
BIT 3 IS USED FOR KEYBOARD DATA AVAILABLE 
BIT 4 IS 8"/ 5~" DISK SELECT 
BIT 5 ASSIGNED FOR FUTURE USE 
BIT 6 CONTROLS DISPLAY CHARACTER SET 
BIT 7 CONTROLS THE BANK SWITCHING (O=RAM) 

The drive select information should be presented to the system PIO in the following 
manner: 

read port 1C hex to maintain system status data 
mask off the lower 3 bits 
"or" in the desired drive & side information 
write the modified data to port 1C hex 

The "B" side of the system PIO is devoted to the keyboard. The keyboard port is 
eight bits wide and is fully buffered. 

SYSTEM COMPONENTS 
10-45 



GENERAL PURPOSE PIO AND SIO 

The G.P. PIO provides the user with 16 bits of user definable inp.ut or output or a 
mix of input and output on nibble boundaries. The G.P. PIO resides at ports 08 hex 
-OB hex. The PIO will support all modes of interrupt supported by the 2-80. For 
detailed programming information refer to the 2-80 PIO data sheet. For 
applications information, refer to the strapping option section. 

SIO: 

The 2-80 SIO supports two full channels of serial I/o with the capability of 
supporting full RS-232 protocol on both channels. In addition, the A side of the SIO 
can provide clocks to synchronous modems or receive clocks from the modem. 

Channel A of the SIO can be configured to interface to a modem or a terminal. 
Refer to the strapping option sheets for detailed instructions. Refer to the SIO 
data sheet for programming information. 

Channel B of the SIO is dedicated for printer operation and has no strapping 
options. 

The "SYNC" pins on both channels of the SIO have been connected to the Rx data 
pins to facilitate baud rate selection. Utilizing this feature, the start bit duration 
can be timed, and the baud rate can be set accordingly. 

BAUD RATE GENERATOR: 

The COM 8116 provides the user with two programmable baud rate generators. 
Channel A baud rate resides at port 00 hex and is write only. Channel B baud rate 
resides at port OC hex and is also write only. The programming procedure is as 
follows: 

00 hex = 50 Baud 
01 hex = 75 Baud 
02hex= 110 Baud 
03 hex = 134.5 Baud 
04 hex = 150 Baud 
05 hex = 300 Baud 
06 hex = 600 Baud 
07 hex = 1200 Baud 
08 hex = 1800 Baud 
09 hex = 2000 Baud 
OA hex = 2400 Baud 
OB hex = 3600 Baud 
OC hex = 4800 Baud 
00 hex = 7200 Baud 
OE hex = 9600 Baud 
OF hex = 19.2 Kbaud 

SYSTEM COMPONENTS 
10-46 



\ 

INTERRUPT STRUCTURES: 

All the Z-80 family devices on this board are capable of supporting mode 0, I, and 
2 interrupts. Mode 2 interrupts are used in the monitor delivered with the system. 
The I register in a unmodified system is loaded with OFF hex. The priority chain is 
organized high to low as follows: 

SIO CHANNEL A 
SIO CHANNEL B 
SYSTEM PIO PORT A 
SYSTEM POI PORT B 
GP PIO PORT A 
GP PIO PORT B 
CTC CHANNEL 0 
CTC CHANNEL I 
CTC CHANNEL 2 
CTC CHANNEL 3 

SYSTEM COMPONENTS 
10-47 



GENERAL PURPOSE PIO STRAPPINGS (JII) AND PIN ASSIGNMENTS (J8) 

all odd 1/ pins 
are grounded 

J8 
1 2 

all odd 0 0 

numbered 0 0 
pins are 0 0 

grounded 0 0 

0 0 

0 0 

311 0 0 

1 2 0 0 

0 0 0 0 

0 0 port B READY polarity 0 0 

0 0 port B lower direction 0 0 

0 0 port A READY polarity 0 0 

0 0 port A upper direction 0 0 

0 0 port B upper direction 0 0 

0 0 port A STROBE polarity 0 0 

0 0 port B STROBE polarity 0 0 

0 0 port A lower direction 0 0 

0 0 0 0 

19 20 0 0 

0 0 

39 40 

CTC STRAPPING AND I/o ASSIGNMENTS (JIO) 

310 
2 1 

SYSTEM CLOCKo 0 CLOCK/TRIGGER 
ZC-TOO 0 0 CLOCK/TRIGGER 

ZC-TOI 0 0 CLOCK/TRIGGER 
ZC-T02 0 0 CLOCK/TRIGGER 

8 7 

VIDEO OUTPUT CONNECTOR PIN ASSIGNMENTS (J7) 

37 
6 1 
o 0 
o 0 

6-10 grounded 0 0 Vertical Sync 
Horizontal Sync 
Video 

o 0 

o 0 
10 5 

SYSTEM COMPONENTS 
10-48 

port A STROBE 
port A READY 
port A bit 0 
port A bit 1 
port A bit 2 
port A bit 3 
port A bit 4 
port A bit 5 
port A bit 6 
port A bit 7 
port BREADY 
port B STROBE 
port B bit 0 
port B bit 1 
port B bit 2 
port B bit 3 
port B bit 4 
port B bit 5 
port B bit 6 
port B bit 7 

0 
1 
2 
3 



SERIAL I/o CONNECTOR PIN ASSIGNMENTS CHANNEL A (J4) 

J4 
1 14 

PROTECTIVE GROUND 0 0 

TRANSMIT DATA 0 0 TRANSMIT CLOCK 
RECEIVE DATA 0 0 

REQUEST TO SEND 0 0 RECEIVE CLOCK 
CLEAR TO SEND 0 0 

DATA SET READY 0 0 

PROTECTIVE GROUND 0 0 DATA TERMINAL READY 
CARRIER DETECT 0 0 

0 0 

0 0 

0 0 

0 0 

0 25 
13 

SERIAL I/o STRAPPING OPTIONS FOR CHANNEL A (J9) 

Only channel A is capable of utilizing baud clocks from an external device or of 
providing baud clocks to an external device. When providing the baud clock to the 
external device the SIO must use the same clock source. 

J9 
1 2 
0 0 

0 0 

0 0 (M) RXD to Pin 3 
0 0 (T) TXD to Pin 2 
0 0 (M) TXD from Pin 2 
0 0 (T) RXD from Pin 3 
0 0 (M) CTS to Pin 5 
0 0 (T) RTS to Pin 4 
0 0 (M) R TS from Pin 4 
0 0 (T) CTS from Pin 5 
0 0 (M) DCD to Pin 8 
0 0 (T) DTR to Pin 20 
0 0 (M) DTR from Pin 20 
0 0 (T) DCD from Pin 8 

Clock supplied to Modem as RX Clock 0 0 

Clock supplied to SIO with RX Clock 0 0 

Modem supplies SIO with RX Clock 0 0 

Clock supplied to SIO with TX Clock 0 0 

Modem supplies SIO with TX Clock 0 0 

Clock supplied to Modem with TX Clock 0 0 

39 40 

SYSTEM COMPONENTS 
10-49 



DATA SET READY IS ACTIVE ON BOTH CHANNELS 
Lerend 
(M Indicates modem (Data Commuinications Equipment) function 
(T) Indicates terminal (Data Terminal Equipment) function 

For instance, exercising the (T) strap options will allow communication with a 
modem. Exercising the (M) strap options would allow communication with a 
terminal. 

TXD = Transmitted Data 
RXD = Received Data 
R TS = Request to Send 
CTS = Clear to Send 
DTR = Data Terminal Ready 
DCD = Data Carrier Detect 

SERIAL I/o CONNECTOR PIN ASSIGNMENTS CHANNEL B (J3) 

33 
1 14-

Ground 0 0 

Receive Data 0 0 

Transmit Data 0 0 

Clear to Send 0 0 

Request to Send 0 0 

Data Set Ready 0 0 

Ground 0 0 Da ta Carr ier Detect 
Terminal Ready 0 0 

0 0 

0 0 

0 0 

0 0 

0 25 
13 

SYSTEM COMPONENTS 
10-50 



"-

KEYBOARD CONNECTOR PIN ASSIGNMENTS (J2) 

J2 
1 14 

BIT 0 0 0 

BIT 1 0 0 

BIT 2 0 0 

BIT 3 0 0 

BIT 4 0 0 

BIT 5 0 0 Pins 14-25 are all grounded 
BIT 6 0 0 

BIT 7 0 0 

STROBE 0 0 

0 0 

0 0 

0 0 

+5 volts 0 25 
13 

DISK DRIVE CONNECTOR PIN ASSIGNMENTS (J 1) 

8/5Y4 Select 
Index 
Select 1 
Select 2 
Side 
HDLD 
Step In 
Step 
Write Data 
Write 
TRK 00 
Write Protect 
Read Data 
Low Current 
Ready 

Jl 
I 20 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 Pins 20-37 are all grounded 
0 0 

0 0 

0 0 

0 0 

0 0 

0 37 
19 

SYSTEM COMPONENTS 
10-51 



(This page intentionally left blank) 

SYSTEM COMPONENTS 
10-52 


