
r~mml~
111111111

Applied
Microsystems
Corporation

EL800
User's Manual
Z80 and HD64180
Microprocessors

mmll!!
111111 II

Applied
Microsystems
Corporation

EL 800
User's Manual
zao and HD641aO
Microprocessors

PIN 920-11576-02
October 1988
Copyright © 1988 Applied Microsystems
Corporation. All rights reserved.

Table of Contents

PREFACE
Unpacking the EL 800
Service .. ii
Limited Hardware Warranty ... iii
Hardware Extended Warranty .. iii
Hardware Service Agreements ... iv
Interference Warning ... iv

1. INTRODUCTION
How to Use this Manual .. 1-2
The EL 800 Emulator .. 1-4
Optional Modules .. 1-8
Emulation as a Tool... 1-9

2. GETTING STARTED
Introduction 2-1
Emulator Setup Requirements .. 2-1
Installation Steps ... 2-2

3. TUTORIAL
Overview of Tutorial ... 3-1
Getting Started ... 3-2
The Code File... 3-3
Single Stepping Through Code3-13
Setting Basic Breakpoints ... 3-19
Setting Advanced Events .. 3-23
A More Complex Advanced Events Setup3-36
Summary of Tutorial .. 3-45
Exit the System .. 3-46

Table or Contents

4. HARDWARE
Base Module 4-3
}>robe Modules ... 4-7
Stacking and Un stacking the Modules .. .4-10
Maintenance ... 4-16
Troubleshooting ... 4-17
Specifications ... 4-18

5. cmp AND EMULATOR CHARACTERISTICS 5-1
Z80 .. 5-1
64180 ... 5-9

6. OPERATION
Window Basics .. 6-1
Cover Window ... 6-6
Main Menu ... 6-13
Expression Analyzer ... 6-15
Assembler Window ... 6-17
Break/Event Summary Window ... 6-20
Configuration Window .. 6-46
Diagnostics Window ... 6-60
Emulate Window ... 6-63
File Access Window .. 6-69
Memory Mode Window .. 6-74
Overlay Window .. 6-77
Registers Window ... 6-81
Symbol Table Window .. 6-83
Trace Window .. 6-86
Watch Window .. 6-91
Exit Window .. 6-93

APPENDIX A: COMMAND SUMMARy .. A-I

APPENDIX B: SERIAL INTERFACE ... B-1
Serial Interface for the PC AT .. B-1
Serial Interface for the PC XT .. B-3

Table of Contents

APPENDIX C: FILE FORMATS FOR OBJECT FILES C-l
Program File Up/Download Formats ... C-l
Extended TekHex Format C-l
Motorola EXORcisor Format ... C-9
Microtec-Hitachi S-Record Format ... C-ll
Intel Hex Format .. C-13
Tektronix Hexadecimal Format .. C-IS

APPENDIX D: WHAT HAPPENS WHEN ... D-1
lIardware Power .. D-l
Power-an-Reset Sequence ... D-I
Software Startup .. D-2
Emulator Initialization .. D-3
Shell Code Reload ... D-3
Exit from Software .. D-3
Exit from Windows ... D-4
lIardware Power Off .. D-S

APPENDIX E: ERROR MESSAGES ... E-l

APPENDIX F: USING EXPRESSIONS ... F-I
Values ... F-l
Symbols .. F-2
Operators .. F-3
Type Casting .. F-3
Memory Access ... F-3
Expressions .. F-4
Formats ... F-4
Repeat Counts .. F-S

APPENDIX G: DEBUGGING MULTIPROCESSOR SYSTEMS G-l
Trigger Inputs and Outputs ... G-I
Debugging Multi-Processor Systems ... G-3

Table of Contents

Preface

PREFACE.
Unpackiilg the EL 800 • • • • • • •
Service •••. • • • • • •
Limited Hardware Warranty • • • •• ••••
Hardware Extended Warranty • • . • • • .
Hardware Service Agreements • • • • • •
Interference Warning • • • • •

ii
iii
iii
IV

iv

PREFACE

Unpacking the EL 800

As soon as you unpack your EL 800 emulator, examine all components for external
damage. If you find any damage, file a claim with the carrier and notify Applied
Microsystems Corporation. In the United States and Canada, call 206-882-2000 or
800-426-3925 and ask for Customer Service. Outside the U.S. and Canada, please
contact your local sales office or representative.

After checking for external damage, verify that the following components are
present

- Base unit module

- Probe module and attached probe tip (the probe tip is packaged in a protective
cardboard box)

- Male-to-male microprocessor socket

- EL 800 User's Manual

- RS-232 cable (9 to 25 pin)

- RS-232 AT adapter cable (25 pin to 9 pin)

- 2 floppy disks containing emulator control software

- 5 wires with clips: one black (ground wire), four red (for connecting to other
equipment)

- Power supply: 110 vac or 220 vac
- 110 vac power supply includes power cord
- 220 vac power supply (international) does not include power cord

- Vertical support stand

EL 800 User's Manual

- Optional accessories:
- carrying case

Remove the EL 800 from the shipping carton and set it on a flat surface, preferably
the work site. Save the protective cardboard box surrounding the probe-tip to use
when you are not using the probe tip in a target. Save the rest of the packaging in
case you have to ship or transport the EL 800.

Detailed installation instructions begin in Section 2.

Service

If the EL 800 unit needs to be returned for repairs, please follow these instructions.

In the United States and Canada,

1. Call 206-882-2000 or 800-426-3925 and ask for Customer Service. They will
give you a return authorization number and shipping information.

Outside the U.S. and Canada,

1. Please contact your local sales office or representative for repair procedures.

After the expiration of the warranty period, service and repairs are billed at standard
hourly rates, plus shipping to and from your premises.

ii

Preface

Limited Hardware Warranty

Applied Microsystems Corporation warrants that all Applied Microsystems
manufactured products and associated hosted control software will be free from
defects in materials and workmanship from date of shipment for a period of one (1)
year, with the exception of mechanical parts (such as probe tips, cables, pin adapters,
test clips, leadless chip sockets, and pin grid array adapters), which are warranted for
a period of 90 days. If a..T}Y such product proves defective during the wa..~T}ty period,
Applied Microsystems Corporation, at its option, will either repair or replace the
defective product This warranty applies to the original owner only and is not
transferrable.

To obtain warranty service, the customer must notify Applied Microsystems
Corporation of any defect prior to the warranty expiration and make arrangements
for prepaid shipment to Applied Microsystems Corporation. Applied Microsystems
Corporation will prepay the return shipping to US locations. For international
shipments, the customer is responsible for all shipping charges, duties and taxes.
Prior to returning any unit to Applied Microsystems Corporation for warranty repair,
a return authorization number must be obtained from Applied Microsystems
Corporation's customer service department (see Service section).

This warranty shall not apply to any defect, failure or damage caused by improper
use, improper maintenance, unauthorized repair, modification, or integration of the
product

Hardware Extended Warranty

Applied Microsystems Corporation's optional Extended Warranty is available for all
hardware products for an additional charge at the time of the original purchase. The
Extended Warranty may be purchased to extend the warranty period on mechanical
parts normally restricted to 90 days to a total of one (1) or two (2) years and to extend
the warranty on electrical parts and all other mechanical parts to two (2) years.

iii

EL 800 User's Manual

Hardware Service Agreements

Service agreements are available for purchase at any time for qualified Applied
Microsystems Corporation manufactured products. The service agreement covers the
repair of electrical and mechanical parts for defects in materials and workmanship.
For information, contact your local Applied Microsystems Corporation sales office or
representative.

Interference Warning

This equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instructions manual, may cause
interference to radio communications. It is temporarily permitted by regulation and
has not been tested for compliance with the limits of Class A computing devices
pursuant to Subpart J of Part 156 of FCC Rules, which are designed to provide
reasonable protection against such interference. Operation of this equipment in a
residential area is ILkely to cause interference. It is up to the user, at his own
expense, to take whatever measures may be required to correct the interference.

iv

SECTION 1

Table of Contents

Introduction

Dt,PfRODUCTION
How to Use This Manual
The EL 800 Emulator. • •

Real-Time, Transparent Emulation
Trace Memory. • • • • •
Powerful Breakpoint and Event Systems •
Complex Triggering Capability. • • •
Easy Transition Between Target CPU's • • • •
User Interface • • • • • • • • . • .
Symbolic Debugging

Optional Modules. •
Overlay Memory •

Emulation as a Tool • • • •
The Development Process
Emulation Steps • • • • • • • •

Debugging Prototype Hardware • • • • •
Debugging Software • • • • • • • • •
Debugging Integration of Software and Hardware

1-1
1-2
1-4
1-4
1-5
1-5
1-6
1-7
1-7
1-7
1-8
1-8
1-9
1-9

1-11
1-11
1-12
1-13

Section 1

INTRODUCTION

The EL 800 Series of microprocessor emulators provides a flexible, cost-effective
approach to developing and debugging systems using 8-bit microprocessors and
microcontrollers. During emulation, the emulator physically replaces the emulated
microcontroller, and provides the ability to dynamically examine and modify CPU
registers, memory and I/O. With it, you can stop a program and examine the history
of events leading up to or surrounding a problem.

The EL 800 consists of a base unit~ a choice of probe modules and optional expansion
modules, and convenient, menu-driven emulator control software for the IBM PC
and compatibles.

Probe modules are available for the Zilog Z80 family (Z80, Z80A, Z80B, Z80H,
NMOS and CMOS versions) in the DIP package. They are also available for the 6, 8,
and 10 MHz Hitachi HD64180 microprocessors with the RO, Rl, and Z masks in both
DIP and PLCC packages. For complete information on your chip, please refer to the
reference manuals:

Zilog:
Hitachi:

Z80x-CPU Technical Manual
HD64180 8-Bit High Integration CMOS Microprocessor
User's Manual

Additional chip specific information is available in Section 5 of this manual.

1-1

EL 800 User's Manual

How to Use This Manual

This manual is your guide to using the Applied Microsystems Corporation's EL 800
Emulator for Zilog ZSOH and Hitachi HD64180 microprocessors. It describes the use
of the EL 800 emulator, and is not intended to be used as a general "how-to" guide to
emulation, although you may find that it contains useful examples and procedures for
debugging problems.

If this is your first time using the EL 800, read through the Introduction, Getting
Started, and Tutorial sections.

Once you are familiar with the emulator, the Operation section is an alphabetical
reference to the windows and commands within each window.

The comprehensive index and Appendix A (Command Summary) are useful for
finding specific information in the manual.

The manual is organized as follows:

Section 1: Introduction introduces Applied Microsystems Corporation's EL 800
emulators. It introduces the features of the EL 800 and explains the uses of emulation
throughout the development cycle. It also describes this manual's layout and general
contents.

Section 2: Getting Started provides instructions for setting up and starting the
EL 800 emulator and control software. Hardware and software installation
instructions are included.

Section 3: Tutorial is designed to familiarize you with using your emulator. This
section describes a sample session, including downloading a code file, setting
breakpoints, and setting more advanced events.

Section 4: Hardware contains information on each module: emulator, probe and
optional modules, as well as details on the serial port, maintenance and
troubleshooting.

Section 5: Chip and Emulator Characteristics describes the unique features of
your target microprocessor which affect emulation, and explains how the EL 800
addresses these unique features.

1-2

Introduction

Section 6: Operation is an alphabetic reference for using each window.

The Appendices provide a handy reference for EL 800 commands, information on
cables, object file formats, error messages, when certain information is stored, and
the use of expressions in the control software. Appendix G provides a detailed guide
to using the cross triggering capability of the EL 800 for multiprocessor
development

Appendix A: Command Summary
Appendix B: Serial Interface: Cable Information
Appendix C: Object File Formats
Appendix D: What Happens When ...
Appendix E: Error Messages
Appendix F: Using Expressions
Appendix G: Debugging Multiprocessor Systems

1-3

EL 800 User's Manual

The EL 800 Emulator

The EL 800 emulator, used with a host computer, is a complete development system
for software development and testing, hardware testing and hardware/software
integration. The EL 800 has two basic parts: hardware which allows target access,
target control and recording of target activity, and a set of software programs which
allow software development and debugging, and provide a convenient human
interface to the hardware functions.

Features include:

• Real time, transparent emulation at full system clock speed.

• Full symbolic debug capability.

• Two powerful breakpoint and event systems:

- Basic Breakpoint System which provides up to one million
address and range breakpoints.

- easy to use, powerful Advanced Event System. which provides a state
transition system for setting breakpoints and controlling the target.

• 8K x 48 bit high speed trace memory.

• Up to 1 MB of overlay memory.

• Convenient, menu-driven emulation control software.

• Quick, convenient switching between microprocessors.

Real-Time, Transparent Emulation

The EL 800 emulator runs at full target clock speed, with less than 5 ns signal skew,
so you can trust that a program that works during the development process will
actually work in real-time in the target.

No wait states are inserted and no interrupts are preempted for breakpoints. The
emulator is transparent to the target system, so there are no restrictions on memory,
software or interrupts. The latest surface mount and FET technology make it
possible to have less than 5 ns timing corruption and to maintain transparent CPU
driver levels.

1-4

Introduction

Trace Memory

The 8K x 48 bit Trace Memory reveals the actual sequence of program instructions.
providing a way to follow the events leading up to or around a problem. The trace
data lets you selectively capture execution. Trace data can be captured in real time
for clock cycle speeds up to 10 MHz for the HD64180 and up to 8 MHz for the
Z80H. without slowing down the target system.

Powerful Breakpoint and Event Systems

There are two breakpoint/event systems in the EL 800: the Basic Breakpoint system.
and a state machine Advanced Event System.

The Basic Breakpoint System provides up to 1 million address or range breakpoints.
The number of breakpoints available depends on the number of overlay memory
modules you have installed.

The powerful Advanced Event System is standard with all EL 800 emulators. and
allows you to debug complex. hierarchical problems:

- Flexible comparators and logical combinations give you complete breakpoint
control.

- When a condition is reached. you have more choices than just breaking
emulation.

- Four nested levels of statements let you monitor recursive and reentrant events.

You define conditions as combinations of comparators. including data. status.
address. counters and control lines. You have a choice of actions (or a combination
of actions) when a condition is reached. such as breaking emulation. tracing one
cycle. starting or stopping trace acquisition, controlling the counter. triggering
another device and moving between event states.

1-5

EL 800 User's Manual

Figure 1-1. The Advanced Event System

Conditions
(input)

CPU Bus

Address
(ranges)

Data

Status
and

Control

Trigger
Inputs

WHEN·THEN
Statements

State 4 I
State 3 J

State 2 I
State 1

Preset counter

Complex Triggering Capability

The two trigger outputs can be used to:

- trigger a logic analyzer

Actions
(output)

Select state

Set standard breakpoint

Trigger out

Trace control
- trace 1 cycle
- begin tracing
- stop tracing

Counter control
- decrement counter
- begin counting
- stop counting
- counter preload

- trigger another EL SOO or an ES ISOO emulator for debugging multiprocessor
development projects

The two trigger inputs can be used to:

- gather additional input from your target board

- receive a trigger from another EL SOO or an ES ISOO emulator

On the EL SOO for the Z80 microprocessor, there are four additional address lines
which can be used for four additional inputs from your target.

1-6

Introduction

Easy Transition Between Target CPU's

To emulate a different microprocessor, you just need to unstack one probe module,
replace it with a new probe module, load new host software onto your computer and
download new shell code to your emulator.

User Interface

The emulation control software provides a window for each emulator function, such
as configuration. trace. register access, and Advanced Event System control. You can
easily switch between windows, or put several on the screen at once.

For windows that require input, you enter information on the command line (the
bottom line of the screen). A help message showing valid choices and command
syntax is always displayed to the right of the prompt, and comprehensive help for
each prompt is available by typing a question mark (?).

You can control your entire development process through the EL 800: downloading,
uploading, and emulation functions are all part of the control software, and
convenient shell escapes let you escape to DOS or run your favorite editor, file
viewer or make utility.

Symbolic Debugging

You can refer to trace data, events, breakpoints, memory and I/O locations by their
assembly source symbolic name, so you don't need to use hex addresses. The
emulator displays the symbolic names along with the physical values during memory
disassemblies, trace displays, and emulation control.

1-7

EL 800 User's Manual

Optional Modules

Optional modules allow you to conveniently add functionality to your EL 800
emulator. The entire EL 800 system is designed to be extendible for a variety of
modules.

Overlay Memory

Overlay memory replaces all or a portion of your target memory, allowing easy
integration of the program with target hardware as it becomes available. You can
examine, modify, verify or move data in the target system and overlay.

The overlay memory module also provides a simple breakpoint system which can
break on addresses and ranges with read, write and status qualifiers. The number of
breakpoints is dependent on the size of overlay memory, with a maximum of 1 MB of
additional breakpoints.

A choice of 64KB, 128KB, and 256KB overlay memory is available, with or without
battery backup. You can stack up to four modules together, for a maximum of 1 MB
of overlay. Overlay is mappable anywhere, with 1 KB resolution and 160 ns access
time. If you want to use wait states to mimic a slow target, you can set the number of
wait states from 1 to 4, and you can choose to execute the desired number of wait
states for each mapped memory segment.

The following commands can be used with the overlay memory:

- map segments of memory*
- set up simple breakpoints
- display raw data or disassembled data
- examine, modify, move and fill memory
- download or upload code or data to or from your PC or compatible

* Memory may be qualified as target, overlay, read/write, read only, or invalid.

1-8

Introduction

Emulation as a Tool

Emulation speeds the debugging process during embedded system design by
providing the ability to interactively control and examine the state of the system at
any chosen time.

The EL 800 provides three key emulation functions:

1. Visibility: The EL 800 emulator makes it possible for you to observe the bus
cycle trace, and to gather information on addresses accessed, instructions
executed, registers and timing. You can halt program execution at a program
state you have predefined, and look at the data for that program state.
Information is stored in buffers, making it easy to find the information you
need.

2. Control: You can control your target through one of the EL 800's two
breakpoint systems: the Basic Breakpoint System, or the Advanced Event
System. With the Basic Breakpoint System, you can break on individual
addresses or ranges with read or write qualifiers. With the Advanced Event
System, you can track any program state, and choose a variety of actions,
including trace control, counter control, setting breakpoints, switching event
states or sending a trigger out signal once a program state is reached.

The emulator and host software make it easy to manage development tasks,
with easy download of files to target memory or to the emulator.

3. Transparency: When the EL 800 emulator is in use, it is virtually
indistinguishable from the microprocessor in terms of code execution, logical,
mechanical and electrical operation. With the CPU in the probe tip, and the
latest surface mount and FET technology, there is less than 5 ns skew.

The Development Process

Each stage of developing a product requires different debugging techniques. The
EL 800 is used at four stages of product development:

1-9

EL 800 User's Manual

Figure 1-2. Tools Used During the Development Cycle

~Prototype Tools
Hardware Design 'fools ... Emulator

c. A. E. Oscilloscope

Integration Tools
Emulator
Software debugger TestTools

A. T. E.
Emulator

(

logic Analyzer

-----c

Software Design Tools
C. A. S. E. Software Tools

Simulator
'- ~ Code Executer
~ Software Debugger

Emulator

Optimization Tools
Performance Analyzer
Emulator

1. When software is available. and no hardware is available. At this stage, the
EL 800 emulator can be used with the built-in test target to run your code. The
overlay RAM in the emulator can be used in place of allocated memory space
in the target. This RAM can be configured to act like ROM so that ROM code
can be checked and modified before programming the actual chips.

2. When prototype hardware is available. As each board is complete, the
emulator is typically first used to check for static problems around the CPU,
such as the clock signal at the CPU, and then dynamic states such as whether
signals are being transferred properly and bus contention problems.

When hardware problems are discovered, an emulator and oscilloscope or
logic analyzer can be used for troubleshooting, using the emulator to duplicate
the problem and the oscilloscope or logic analyzer to help pinpoint the
problem.

3. When target hardware and software are available. At the integration stage, the
emulator is used to narrow down whether the problem is due to software or
hardware. The emulator can step through the code and show whether the
hardware or software is functioning as expected, making it easy to isolate the
source of a problem. The emulator is capable of tracking deeply nested
software bugs which take the majority of integration time.

4. As part of testing. Emulators are useful in production and production testing.

1-10

The microprocessor socket is an excellent interface to most systems, since it
usually has access to most of the hardware. Emulators can be used to checksum

Introduction

ROM, test RAM, exercise I/O ports, etc., without the overhead of including
test programs in the product The EL 800 also has many scope loops available
as target diagnostics.

Using emulation throughout the development cycle has three major advantages:

1. Emulators can help to isolate problems in software and hardware at each stage.

2. By using emulation during early development stages, you make sure that your
product will work with an emulator, so that at the time-critical integration
stage, you don't have to worry about whether your debug tools will run in your
target.

3. Both software and hardware engineers are familiar with the same debug tool,
and don't have to learn a new tool during hardware and software integration.

Emulation Steps

The specific way you will use your emulator depends on which step of the
development cycle you're in, and whether your focus is on the hardware or the
software. This section describes typical steps for

- a software engineer debugging code before hardware is available
- a hardware engineer debugging prototype hardware
- a hardware or software engineer debugging the product at integration

Debugging Prototype Hardware

1. Check power supply voltages in your target system to make sure you won't
damage your prototype when you power it up.

2. Plug the probe tip in to the target board.

3. Turn on power to the prototype.

4. Tum on emulator power.

5. Try to run, using a target reset button if available.

6. Write a simple loop in emulator overlay memory to cycle through memory or
run a diagnostic loop from the Diagnostics window.

1-11

EL 800 User's Manual

7. Look at address, data and control lines with the emulator.

8. Check static signals around the CPU.

9. Check dynamic signals around the CPU.

Other tools useful in this process are logic analyzers, oscilloscopes, and timers.
Emulators can be used to pinpoint where a problem is occurring, and can be used to
trigger a logic analyzer at that exact point.

Debugging Software

1. Write the program modules.

2. Compile or assemble the modules using the appropriate cross compiler or cross
assembler for your microprocessor.

3. Debug modules using a cross debugger, if available.

4. For code that requires your target to run, you must use a simulator to test the
code before hardware is available.

5. For code that can work without your specific target, download the code from
the PC to the emulator overlay memory and download the symbols into the
control software.

6. Set up the control parameters. Tell the emulator the address at which to start
executing code, define the program state(s) to break emulation or trigger
another emulator or logic analyzer, and specify what information you want to
see after a break takes place.

7. Emulate. Execute code within the conditions described in the previous step.

8. Observe. Examine trace memory to view the trace of code execution.

1-12

Introduction

Debugging Integration of Software and Hardware

The steps of debugging during integration vary depending on the problems that you
are solving. The following shows the first steps you might do.

1. Download code from the PC to the emulator overlay memory.

2. Set up the control parameters. Tell the emulator the address at which to start
executing code, define the program state(s) to break emulation or trigger
another emulator or logic analyzer, and specify what information you want to
see after a break takes place.

3. Emulate. Execute code within the conditions described in the previous step.

4. Observe. Examine trace memory to view the trace of code execution.

1-13

SECTION 2

Table of Contents

Getting Started

GETTING STAR1ED
Introduction • • • •
Emulator Setup Requirements
Installation Steps • • •

Step 1: Hardware Setup
Stack Modules ••••
Connect Power Cord. • • • • •
Set Up Vertical Support Stand • • • • •
Emulator/pc Connection (Serial Interface)

Step 2: Using the Emulator With Your Target •••••••
Step 2: Using the Emulator With the Test Target. • • • • • •
Step 3: Software Installation: PC's and Compatibles

Directory Structure
Run the Install Command
Set Up Directory PATH • •

Step 4: Turn on Power
Step 5: Invoke the EL 800 Control Software

Changing Port, Baud Rate and IRQ Info
Using Resident Device Drivers. • • • • • • •

2-1
2-1
2-1
2-2
2-2
2-2
2-5
2-5
2-7

2-10
2-11
2-13
2-14
2-14
2-16
2-17
2-17
2-21
2-21

Section 2

GETTING STARTED

Introduction

This section explains how to set up your EL 800 emulator and target system. Once
you have the hardware and software installed, Section 3 provides a tutorial on using
the emulator.

Emuiator Setup Requirements

The EL 800 emuiator must be used with an IBM PC/XT, PC/AT or compatible
computer:

• MS-DOS or PC-DOS 2.0 or higher

• 640K RAM minimum

• 1 hard disk drive

• 1 IBM compatible RS232 port (com 1: or com2:)

2-1

EL 800 User's Manual

Installation Steps

There are five steps to set up your EL 800 emulator. Each step is described in detail
in this section. Please follow the installation steps in the following order. Operational
details of the hardware can be found in Section 4.

1. Set up the EL 800 hardware. This includes stacking the modules, setting two
sets of dip switches to indicate your baud rate and overlay memory
configuration and connecting your PC to the EL 800 with the supplied cable(s).
(pages 2-2 to 2-9)

2. Set up the EL 800 with either your target or the built-in test target. (pages 2-10
to 2-12)

3. Install the EL 800 software on your PC. This includes loading the software,
setting up your directory structure and configuring the software. (pages 2-13 to
2-16)

4. Turn on power to the emulator and target. (page 2-13)

5. Invoke the EL 800 control software.

Step 1: Hardware Setup

Stack Modules

To stack the modules,

1. Flip both connector covers on the base module to the open position to expose
the connectors (see Figure 2-1). Press LlJe connector covers down so they lie
flat against the base module.

2-2

Getting Started

Figure 2-1. Opening Connector Covers

flip connector covers open
to expose connectors

2. Pull out both grey handles on the base module to the first click. Each handle
will extend about 1131t from the module.

3. If you have not purchased any overlay modules, set the probe module on top of
the base module. Press the modules together. When the modules are seated,
push in both handles on the base unit, locking them together. No cables are
necessary to connect the modules.

CAUTION
Forcing together misaligned modules or modules with the handles in the wrong
position may bend the connector pins, making the emulator unusable.

2-3

EL 800 User's Manual

Figure 2-2. Stacking Modules

probe
module

base
module

~ extend stacking handles on both
sides of bottom module to first click

4. If you have purchased one or more overlay modules. stack them between the
base and pod modules. All modules stack the same way:

2-4

- pull out both handles on bottom module to first click (the modules
cannot be connected with the handles fully extended or completely
pushed in)

- set top module on top of bottom module
- press modules together (fingertip pressure should suffice)
- when the modules are seated, push in both handles
on bottom module to lock modules in place

The order of the overlay modules does not matter. There are eight dip switches
on the left side panel. Switches I and 2 (from the left) indicate the
configuration of overlay modules you are using, as shown in Figure 2-3.
Switches 3-8 are not use, and should be left on (1), No two overlay modules
can have the same switch setting.

Getting Started

Figure 2-1. Opening Connector Covers

flip connector covers open
to expose connectors

2. Pull out both grey handles on the base module to the first click. Each handle
will extend about 1/3" from the module.

3. If you have not purchased any overlay modules, set the probe module on top of
the base module. Press the modules together. When the modules are seated,
push in both handles on the base unit, locking them together. No cables are
necessary to connect the modules.

CAUTION
Forcing together misaligned modules or modules with the handles in the wrong
position may bend the connector pins, making the emulator unusable.

2-3

EL 800 User's Manual

Note: When using the EL 800 with its built in target, you need to position the
vertical stand so that the rubber feet of the EL 800 are up.

Figure 2-4. Attaching the Vertical Support Stand

1. Tip front edge of stand under
front handle prongs

2. Hook back handle prongs through
holes In stand

Once the stand is secure, tip the EL 800 onto its side. Figure 2-5 shows a typical
configuration of the EL 800 in the vertical position.

2-6

Getting Started

Figure 2-5. Typical Configuration: Vertical Operating Position

Emulator/PC Connection (Serial Interface)

Cables

The emulator is connected to the PC via an RS-232 cable. The EL 800 is shipped
with two cables: one 9 pin to 25 pin cable, and one short 25 pin to 9 pin adapter. Use
the cables required for your host computer, and connect your computer to the RS-232
port on the base unit.

Host Computer Cables to Use
IBM PC XT or compatible 9 pin to 25 pin cable

IBM PC AT or compatible
9 pin to 25 pin cable and
the 25 pin to 9 pin adapter cable

If you want to make your own cables, the cable pin connections for most PC host
computers are shown in Appendix B.

2-7

EL 800 User's Manual

Port and IRQ Setting

Configure the serial port on your PC as either com1: or com2:. If the PC has selection
for RS-232 or current-loop, make sure that RS-232 voltage levels are selected.
Usually, PCs are shipped with com1:, RS-232 selected. Appendix B contains
diagrams for configuring IBM serial ports.

The EL 800 uses an interrupt driven serial receive port. If your PC serial adapter has
jumpers for the interrupt request line, they must be set also. Normal IRQ settings are
as follows:

Port IRQ Setting

com1 IRQ4

com2 IRQ3

com3 IRQ5

com4 IRQ7

For some compatibles, the IRQ setting may vary, so check the manual for your PC
and interface card.

Baud Rate

We recommend that you set your baud rate to 19,200 baud for the most efficient
operation of your EL 800. The baud rate is set in two places: on the base unit and in
the software (Step 4 of installation).

To set the baud rate on your base unit to 19,200, set up the dip switch as shown in
Figure 2-6. All the available baud rates and switch settings are shown in the
following table.

2-8

Figure 2-6. Base U . Note: 0 indicates off
mt, Showing Di S '

Note: Th' p wuch set to 19.200

e up sWItch ' , table, or ON posIllon is eqUI' al , vent to 1 ' In the above

I~ ~~ ~~ ~ ~ ~I'\

trigger inputs ~
trigger out puts

2-9

EL 800 User's Manual

Step 2: Using the Emulator With Your Target

Connect the ground on the base module to the ground on your target. If the target and
emulator have different ground potentials, the emulator CPU in the probe tip may be
damaged

Figure 2-7: Ground Connection on Base Module

Plug your probe tip into the microprocessor socket on your target board, making sure
to line up pin 1 on your target socket with pin 1 on the probe tip.

CAUTION

1. Plug in the probe tip to your target system before turning on power to your
target or emulator.

2. Use standard static precautions when using the probe tip, as it is static
sensitive.

3. Don't plug or unplug your probe tip with target power on.

4. Don't pull on the probe tip or cable.

2-10

Figure 2-8: DIP Probe Tip: Pin 1 Location

\

Figure 2-9: PLCC Probe Tip: Pin 1 Location

Step 2: Using the Emulator With the Test Target

Getting Started

BOTTOM

The test target board is built-in to a pull-out drawer in the probe module. To use the
test target board for software debugging:

2-11

EL 800 User's Manual

1. Pull the board out from the top slot (see Figure 2-10)
(There is no release lever - just pull hard on the front corners of the board.)

2. Turn the board over.
3. Insert the board in the bottom slot It goes in about 1 ": you'll hear

a soft click when it is seated. (See Figure 2-11)
4. Insert the probe tip into the microprocessor socket on the board.

(See Figure 2-11)

When you are not using the test target board, store it in the top slot

Figure 2-10. Test Board Being Pulled Out of Storage

2-12

Getting Started

Figure 2-11. Test Board with Probe Tip Plugged In

Step 3: Software Installation: PC's and Compatibles

The EL 800 control software is shipped on two floppy disks formatted for either
360KB or 1.2MB double-sided, double-density soft-sectored disk drives. The label
on your disks indicates the format.

There are four steps to installing your software:

1. Set up your directory structure.

2. Insert disk one and run the INSTALL program.

3. Set up your directory search PATH.

4. Invoke the software.

2-13

EL 800 User's Manual

Directory Structure

While the EL 800 control software may be installed in any directory on your hard
disk, we recommend that you reserve a directory by itself named AMCTOOLS for
this software and any other utilities you may obtain from Applied Microsystems
Corporation.

Run the Install Command

To install the control software, insert the disk into drive A. Make drive A the current
drive by typing:

A:

Then, start the installation program by typing:

A: INSTALL

a.'ld follow t.lte instructions.

The command INSTALL prompts you to:

- specify the name of the drive to install the programs on
- specify the directory to install the files in

The INSTALL command will then read in the appropriate configuration files from
the distribution disks. You will be prompted to change disks when appropriate.

The following files are included in the distribution for the EL 800. Note that ??? is
replaced by either Z80 or 64180, depending on which processor you are using.

2-14

README
???cfg
el???exe
el???hlp
???.lca

???pod

???1.shl
???2.shl

esxlate.pc
install.exe
install.fiI

rlconfig.dat
symtab.dbd
tutor.eth

tutor.sym
tutor.win

h64z.lca

Getting Started

Current release notes
Configuration database
Executable for the control software
Help file
Shell code part four:

code loaded into gate arrays in base unit
Shell code part three:

code executed by pod processor in idle mode
Shell code part one: operating kernel
Shell code part two:
applications software specific to processor

Error message translator
Installation program executable file
Configuration information for installation

program
Shell code file list
Databasee for symbol table
Demonstration program for Section 3

tutorial, stored in Extended Tek Hex
Symbol table for demonstration program
Window setup information for tutorial

Special LCA file for Z-mask 64180 processors only
(see the Z-Mask Emulation with DIP Emulator part
of Section 5.)

2-15

EL 800 User's Manual

Set Up Directory PATH

In order to use the EL 800 from other directories, your PATH must include the
installation directory.

To find out the current PATH, type PATH at the DOS prompt DOS will return with
a string specifying the current path. If no path has been set, DOS will display tlNo
Pathtl.

To set a new PATH, type in the full path at the DOS prompt

For example, you may be working on a program :MIFILE.ASM in directory
\WORK, have an assembler stored in directory \ASMB, and editor in directory
\UTIL, the EL 800 software stored in directory \AMCTOOLS, and DOS stored in
the directory \DOS. An appropriate PATH for this example would be:

path=\dos;\asmb;\util;\amctools

NOTE

Your PATH should be based on how the files are organized on your PC.

Once set, this path string becomes part of the DOS environment and instructs DOS to
look first in the current directory, then in directory \DOS, then \ASMB, then \UTIL
and finally \AMCTOOLS for a program when the program name is typed at the
prompt The EL 800 software uses the PATH to find its required files, such as the
help file and configuration database.

The best place for the PATH command is in the AUTOEXEC.BAT file in the root
directory. This causes the PATH command to be executed each time you boot up
your PC.

See your DOS manual for more information about PATH and AUTOEXEC.BAT.

2-16

Getting Started

Step 4: Turn on Power

If you are using your own target:

1. Make sure the EL 800 emulator probe tip is plugged into your target before
turning on power to the the emulator.

2. Turn on power to the target.

3. Turn on the power to the emulator.

If you are using the test target, turn on power to the emulator. The test target gets its
power through the emulator.

The power switch for the emulator is on the right side of the base unit.

WARNING

Don't plug or unplug the probe tip with target power on.

Step 5: Invokt the EL 800 Contiol Softwaie

To start the EL 800 control software, type:

EL???

where ??? is replaced by either zSO or 64180, depending on your target processor.

As the software loads, you'll see three status messages in the upper right comer:

Loading Configuration Parameters
Opening Emulator Interface
Clearing Advanced Event System

You may also see the message: Booting Emulator, Please Wait •••

The first full screen you see (the Cover window) displays the software and hardware
configuration. If you don't see any error messages, and the hardware information is
displayed (Figure 2-12), you have successfully installed your EL 800 hardware and
software. The rest of Section 1 covers troubleshooting startup problems, so you can
now either try the tutorial in Section 3, or begin using the EL 800.

2-17

EL 800 User's Manual

NOTE
If you are using an LCD monitor, please refer to page 6-58 for information regarding
screen colors.

Figure 2-12. EL 800 Cover Window Showing Successful Communication

EL 808 EHULATOR CONTROL SCWnlARE

Copyright (c) Applied Microsystems Corporation 1988

Software Configuration
Processor:
Version:
Serial Number:

Hardware Configuration
Base Module:
Pod Module:
Overlay Module:
Overlay Module:

zoe Your serial number

3.OB ~
NBBBBB9

ELOBe
ZBB
128K-B
256K

t Complete information
indicates successful
completion

« ? for help/Initialize emulator/Reload shell code/<return> to continue

If you see an error message in the upper right comer of the screen, the software and
hardware are not communicating. The chart on page 2-20 explains common startup
error messages. For now, note the error message and press <esc> to clear the error
message from the screen. The Cover Window will then be displayed.

Figure 2-13 shows the Cover Window if your hardware and software are not
communicating properly.

2-18

Getting Started

Figure 2-13. EL800 Cover Window Showing Communication Problem

EL 800 EMULATOR CONTROL SOFT~ARE

Copyright (c) Applied Microsystems Corporation 1988

Software Configuration
Processor:
Version:
Serial Number:

Hardware Configuration
Base Module:

Your serial number
z08 I
3.88 t
NHR8HR8

Pod Module: -4--- Missing information
indicates communication
problem

« ? for help/Initialize emulator/Reload shell code/<return> to continue

There are 4 steps to getting your EL 800 hardware and software communicating:

1. Look up your error message in the table on the next page.

2. Do the actions specified.

3. Exit the software by typing :X<retum>.

4. Start the software again.

2-19

EL 800 User's Manual

Error Message Action Required

No Target VCC; The Turn on power to your target. If you don't have a
Target Power is Off target, plug your probe tip into the test target.

Mismatch: probe, Your probe module must be for the same
software microprocessor as your shell code and executable EL

800 control software file.

Physical device This message may have several causes.
sync failure It indicates that the host computer

has not been able to establish communications
with the emulator.

Check to see that the cables are attached,
that emulator power is on.

Make sure the baud rate is the same on the
base unit and in the Communications Configuration
Window. (page 2-21)

Check that your cable is attached to the same
com port on your PC as you have specified
in the Communications Configuration Window.
(page 2-21)

Check your IRQ setting. The IRQ on your PC
should match what you specified in the
Communications Configuration Window. (page 2-21)

Boot Failed; One of your required setup files was not found.
Communications Link Not Check the list of files on page 2-15, and make sure
Found; Configuration I that all are in the same directory as the ??? .exe file.
Database Not Found; No These should all be either in your current directory or
Configuration File in your search path.

Configuration database Your? ? ? .cfg file was not found.
file not found Check the list of files on page 2-15, and make

sure that all are in your search path.

2-20

Getting Started

If after checking and correcting the above conditions, you cannot establish
connections between your PC and the emulator, please call Applied Microsystems
Corporation at (800) 426-3925 (in WA, call (206) 882-2000).

Changing Port, Baud Rate and IRQ Info

To change the port or baud rate in the control software, start the software, and press
<esc> to clear any error messages that appear. Press <return> from the Cover
Window to get to the Main Menu, and then C to go to the Configuration window.

Type C to get to the Communications sub-window. Use the arrow keys to go to the
Port Name choice. Make sure the Port Name, Baud Rate and IRQ are set
appropriately for your PC. The baud rate must match what is set on the switch on the
left side of the base unit of the EL 800 (see page 2-9).

Exit the control software:

<esc>
:X
<return>

exit Configuration/Communications Window
exit EL 800 control software
confirm exit

Then start the EL 800 control software again (EL?? ?). If the emulator and control
software are communicating properly, the hardware/software Cover Window should
have all the hardware information.

Using Resident Device Drivers

If coml: is used for the EL 800, we suggest that you do not use com2: (IRQ3) for
Ethernet/NFS or other hardware drivers. Instead, use com4: (IRQ7) for
NFS/Ethernet

2-21

Table of Contents

Tutorial: 64180, Z80

TUTORIAL: 64180, Z80 •
Overview of Tutorial • • • • • • • • • • • • •
Getting Started •••••••• • • • •

Choosing Windows • • •• ••••••
The Code File • • • • • • • • • • • • • • • • • •

Mapping to Overlay • • • • •
Downloading the Code File •
Examining Code in RAM • • • • •
Understanding the Code File

Single-Stepping Through Code • •
Loading Custom Window Configuration • • • • • • •

Setting Basic Breakpoints • • • • • • • • •
Clear Basic Breakpoints • • • • • • • • • • • • • •

Setting Advanced Events •••••••• ••••
Advanced Event System Overview ••••••••••
Conceptualizing the Set Up • • •• ••••

When-Then Description Pass One • • • • • • • • • •
When-Then Description Pass Two • . • • •

Entering When-Then Statements and Comparators •
Emulating With the Advanced Events System Setup

The Additional When-Then Statement ••••••••
Execution and Observation • • • . • • • • • • • • •

A More Complex Advanced Events Setup •.•••••••
Conceptualizing the Setup • • •. ••••

When-Then Description Pass One • •••••••
When-Then Statement Pass Two • • • • •

Entering When-Then Statements and Comparators • • • • • •
Loading the Counters ••••••••••••••
Emulating with the Advanced Events System Set Up • • • • •
Examining Trace • • • • • . • • . •

Summary of Tutorial . • • •• ••••.••••
Exit the System . • • • •

3-1
3-1
3-2
3-2
3-3
3-3
3-6
3-8
3-9

3-13
3-18
3-19
3-22
3-23
3-23
3-24
3-24
3-24
3-25
3-30
3-33
3-35
3-36
3-37
3-37
3-38
3-39
3-41
3-42
3-45
3-45
3-46

Section 3

TUTORIAL: 64180, Z80

This section provides a short tutorial to help familiarize you with the many powerful
features of the EL 800.

Overview of Tutorial

The tutorial follows a hypothetical, but typical sequence you might follow when
using your EL 800 to debug software before t~rget hardware is av~11able. As such, it
requires either the use of Overlay Memory or a target with available RAM. The
tutorial can be used with either the Z80 or 64180 version of the EL 800.

This tutorial guides you through:

- the basics of accessing the windows and commands
- downloading and viewing the demonstration code
- single stepping through the code
- using the Basic Breakpoint System
- using the Advanced Event System

Demonstration code is provided on the distribution disk, and is installed in the same
directory as the executable control software by the INSTALL program.

Please note the following conventions:

bold type
<key>

Bold type indicates you should type the item as shown.
Angle brackets are used to enclose single key strokes
such as <space>, <return> and <PgUp>.

3-1

EL 800 User's Manual

Getting Started

The tutorial assumes one of two hardware configurations:

1. Test target. Overlay Module
You should already have set up and installed your EL 800 hardware, including
one Overlay Module, and have plugged your probe tip into the self-test target.

2. Target RAM
You should already have set up and installed your EL 800 hardware without an
Overlay Module, and have plugged your probe tip into a target with RAM
space available. You must add the appropriate offSet to all addresses specified
in this tutorial.

To begin the tutorial, follow these steps.

1. Turn the emulator's power on.

2. Invoke the EL 800 control software, by typing EL??? (where ??? is either
Z80 or 64180, depending on which probe module you are using).

3. You'll see a Cover Window which shows the current software revisions and
lists the installed hardware modules. If you see any error messages, please see
Section 2, and make sure you have successfully established communication
between your EL 800 software and emulator.

4. Press <return> to go to the Main Menu.

Choosing any item on the Main Menu opens up a window and provides access to a
group of related tasks. The system is designed so that several windows can be
opened simultaneously.

Choosing Windows

To choose a window, use the arrow keys to highlight the name of the window and
press return. To return from a window, press <esc>.

At the bottom of the screen is a prompt, which guides you through the available
commands. This line is also where you enter commands to the emulator.

3-2

Tutorial: 64180. Z80

The Code File

If you are doing stand-alone emulation tasks (tasks performed without a target
system), code must exist in the emulator's overlay memory. Typically, this code is
downloaded from your host computer to the overlay memory.

If you are using your own target RAM, download the code from your host computer
to the target RAM.

Mapping to Overlay

When code is downloaded to the emulator system, its destination can be either RAM
on the target circuit that you have designed, or RAM in the emulator's overlay. For
this tutorial, if you are using the self-test target, your desired destination is emulator
overlay RAM. If you are using your target, the destination is your RAM.

To ensure that a download operation loads code where you want it, the address range
of the code must be mapped either to overlay or to the target.

If you're using your target RAM, you don't need to map your code space, since the
default is to map all available memory to target.

To map overlay to run in the self-test target, type :0 to display the Overlay Window.
You should see Figure 3-1 on your screen.

3-3

EL 800 User's Manual

Figure 3-1. Overlay Window

Applied Microsystems Co~oration -z80- Main Menu Type? for Help

Amount of overlay
/ depends on your configuration

OVERLAY AVAILABLE: lEOO T

« Add/Delete/Utilities

All the tutorial code lies between addresses 0000 and 1040. (Note: if using target
RAM, remember to add the offset for the location of your RAM).

To map this address to overlay, type A. The command line at the bottom of you
screen should change to read:

Add « from (addr) , to (addr) [; type]

This tells you that the emulator is going to add a mapping specification, and that it
expects the first entry to be the beginning address of the area mapped, terminated by
a comma. Next, the emulator expects you to enter the ending address of the area
mapped, terminated by a semicolon, and then it expects type information.

Type 0000 followed by a comma (,) and you should see the following command line:

Add 0000 to _ «to(addr) ; type

(If you make a mistake entering the address or any other information on the
command line, use the <backspace> key to remove instructions, one at a time, from
the command line. If you backspace all the way to the first character of the command

3-4

Tutorial: 64180, 7.80

line, you can even remove the Add command.)

As you can see, your comma was repiaced by the word "to", which is the natural
language meaning of the comma. The list of necessary actions in the command line
no longer displays the action you just performed (0000 and ,).

Type 1040;. The new command line is:

Add 0000 to 1040; _« Target/readWrite/Readonly/Illegal

If you're using the self-test target, you want to map your code space to overlay and
not to your target circuit's RAM. There are three choices for mapping to overlay
RAM: readWrite, Readonly and Illegal. In this case, you should define the new code
space as read/write memory, which is selected by typing "W" (the upper case letter in
"readWrite"). Type W. The command line now reads:

Add 0000 to 1040; readWrite _ «insert wait state(s) YIN

You will not need wait states for this tutorial, so type N. Press <return> to confirm
your mapping instruction.

(Note L;at the mapping conditionals "read\Vrite" (hid "no wait states" (h-e defaults, (hid
simply pressing <return> after entering the address range would achieve the same
results as above.)

The Add/Delete/Utilities command line should reappear, and you should see Figure
3-2 on your screen.

3-5

EL 800 User's Manual

Figure 3-2. Overlay Window Showing Mapped Overlay

Applied Mierosystems Co~ration -z80- Main Menu Type? for Help

OVERLAY AVAILABLE: lEOO T

m{::::@)II:m:~1tm::::::::I:m::Mfn::Ilt:~m~f:J~ittIif.#'ii:UliUI
[1] 1400 TO FFFF TG SPACE:MEM

« Add/Delete/Utilities

Note that the upper address (13FF) of your newly-defined address space is slightly
larger than the value you entered (1040). This is because the mapper controls
memory in l-Kbyte blocks, and will increase your entry to the next multiple of lK.

Note also that the default mapping entry (originally ()()()() to FFFF to target) has had
your newly-mapped overlay space subtracted from it Target space now starts where
your overlay space ends, and extends to FFFF. This prevents you from mapping one
memory space to two different RAMs.

Downloading the Code File

Now that you have defined the memory space for the code, you can download the
code file.

Type a colon (:) to bring up the following command line:

:_ «AiB/CIDfEfFfMlOIR/S/T/W/X

This tells you, in an abbreviated form. that you may now enter any of the windows

3-6

Tutorial: 64180, Z80

shown in the Main Menu without actually returning to the Main Menu.

Since you need to do some file manipulation, type F, and you will enter the File
Access Window, shown in Figure 3-3.

Figure 3-3. File Access Window

rldebug. og
rlz80.cfg
runz:8B. da t
stepz813.dat
syrntab.dat

Current Object File Format t

sym
symtab.key
tutor.eth
tutor.sym
zSB.efg

ca
zSB.pod
z881.shl
z882.shl

Notice that the screen displays a listing of the current directory. In this listing, you
will find our tutorial code file TUTOR.ETH. The .ETH extension indicates that the
file is stored in Extended Tek Hex format. This file includes code and symbols.

To download this file, type D. Your command line now reads:

Download «enter filename

To enter the requested file name, type tutor .eth and <return> (or you could move
the cursor to the filename using the arrow keys, and then press <return>. The small
status window in the screen's upper right will confinn that the emulator is
downloading TUTOR.ETH. Your tutorial code is now located in overlay RAM, from
OOOOh to 1040h.

3-7

EL 800 User's Manual

Examining Code in RAM

Now that the code is downloaded to overlay RAM or target RAM, you can verify that
your code is in fact where you think it is.

There are several ways to do this. If you don't mind disassembling hex bytes in your
head, you could examine your code by using the memory window (:M) to examine
OOOOh to 1040h. The Assembler/Disassembler Window provides an easier way to
view your code.

Type :A to use the Assembler Window. You will be asked for a starting address.
Although your code occupies OOOOh to 1040h, the interesting code starts at address
lOOOh. Type 1000 and <return>. The Assembler Window should appear on your
screen as in Figure 3-4.

Figure 3-4. Assembler Window Showing Memory Disassembly

ASSEMBLER SPACE: MEM

:~~~~~m::III:)}:tt:)w~:~mmmttt~~mmt:ttmttIt@tttt~lM!it~JtImtttttttttttmm
1002 210F11 LD HL,B2END [090F]
1005 0610 LD B,10

ZLOOP: 1007 77 LD (HL) ,A
1008 2B DEC HL
1009 05 DEC B
100A C20810 JP NZ,ZLOOP [1007]

LOAD: 100D 3E07 LD A,07
100F 210711 LD HL,B1END [0907]
1012 0604 LD B,04
1014 08 EX AF,AF'
1015 D9 EXX
1016 3EOO LD A,OO
1018 210011 LD HL,B1ST [0900]
101B 08 EX AF,AF'
101C D9 EXX

LLOOP: 1010 77 LD (HL) ,A

« enter line to be assembled

In the leftmost column of your screen are the symbols ZERO:, ZLOOP:, and LOAD:.
The four digits in the next column to the right are the addresses of the first byte in the
instruction. In the next column you can see the hex bytes of the instruction. The
mnemonic is in the next column, with the operands in the rightmost column. When a

3-8

Tutorial: 64180, 280

label is used in the operands, the value of that label is shown to the right of the
operands.

Understanding the Code File

Before you can perform meaningful emulation tasks with a piece of code, it is
important to understand the structure and function of that code. This section explains
the code file TUTOR.ETH.

A flowchart for TUTOR.ETH is shown in Figure 3-5, a listing is shown in Figure 3-6,
and a functional description follows.

3-9

EL 800 User's Manual

Figure 3-5. Flow Chart/or TUTOR.ETH

3-10

Tutorial: 64180, 7.80

Figure 3-6. Listing for TUTOR.ETH
ERR LINE ADDR OBJ

LIST B,G
0000

NAME tutor
0000
0900 b1st equ 0900h
0907 blend equ 0907h
0908 b2st equ 0908h
090F b2end equ 090fh
0010 size equ 10h

10 0008 hsize equ 08h
11 0004 qsize equ 04h
12 0007 upper equ 07h
13 0000
14 org OOOOh
15 0000 31 00 09 start: Id sp,0900h
16 0003 C3 00 10 jp zero
17 org 1000h
18 1000 3E 00 zero: Id a,Oh
19 1002 21 OF 09 Id hl,b2end
20 1005 06 10 Id b, size
21 1007 77 zloop: Id (hI) ,a

22 1008 2B dec hI
23 1009 05 dec b
24 100A C2 07 10 jp nz, zloop
25 100D 3E 07 load: Id a, upper
26 lOaF 21 07 09 1d hI, blend
27 1012 06 04 Id b,qsize
28 1014 08 ex af,af'
29 .lV.l..:J D9 exx
30 1016 3E 00 Id a,Oh
31 1018 21 00 09 Id hI, b1st
32 101B 08 ex af,af'
33 101C D9 exx
34 lOlD 77 lloop: Id (hI) ,a
35 10lE 2B dec hI
36 10lF 3D dec a
37 1020 05 dec b
38 1021 08 ex af,af'
39 1022 D9 exx
40 1023 77 Id (hI) ,a
41 1024 23 inc hI
42 1025 3C inc a
43 1026 08 ex af,af'
44 1027 D9 exx
45 1028 C2 1D 10 jp nz,lloop
46 102B CD 31 10 call blmv
47 102E C3 00 10 jp zero
48 1031 01 08 00 blmv: Id bc,hsize
49 1034 11 08 09 Id de, b2st
50 1037 21 00 09 Id hI, blst
51 103A ED BO Idir
52 103C C9 ret
53 103D end

SYMBOL TABLE
BlEND 0907 B1ST 0900 B2END 090F
B2ST 0908 BLMV 1031 HSIZE 0008
LLOOP 101D LOAD 100D MEMORY M 0000
NARG 0000 QSIZE 0004 SIZE 0010
STACK S 0000 START 0000 UPPER 0007
ZERO 1000 ZLOOP 1007

3-11

EL 800 User's Manual

The first line of the program, labeled START, is at address OOOOh, the reset vector.
The stack pointer is set here and the program jumps to lOOOh, label ZERO.

The routine at ZERO sets the size and location of a data block in memory, as shown
in Figure 3-7. This data block is divided into two sub-blocks, blockl and block2.
The location of these blocks in memory are determined by the values of B 1 ST (Block
1 start), B lEND (Block lend), B2ST (Block 2 start). and B2END (Block 2 end).
SIZE is the number of bytes in the two blocks, HSIZE (Half-size) is the number of
bytes in each block, and QSIZE (Quarter size) is one half of HSIZE.

Figure 3-7. Data Block

The routine at ZLOOP is executed SIZE times, writing a zero into each location in
Block 1 and Block 2.

The routine at LOAD places address, data, and loop-count information in the main
registers to write at the upper end of the upper half of block!. The main registers are
then switched with the primes. Address and data information are placed in the prime
registers to write at the lower end of the lower half of block!. Mains and primes are
switched again.

The routine at LLOOP loads one blockl upper half byte and decrements the address
and data value, while counting loop iterations. Mains and primes are switched and
the block I lower half byte is loaded. Address and data are incremented and mains
and primes are switched. This loop is executed QSIZE times, completing the blockl
load.

3-12

Tutorial: 64180. Z80

BLMV (Block move) is called. This loads the register with values to move the
contents of block 1 to block2, using the LDIR instruction.

After the return from BLMV, the program jumps to ZERO and the procedure starts
over.

Single-Stepping Through Code

The simplest control you can exercise over your code is to execute one line of code
and stop execution. While stopped, you can examine trace, memory, registers, and/or
event status to determine the effects of executing the instruction.

Let's use the single-step command to examine some code execution, and, at the same
time, learn some of the emulator's features. To do this, type :E to enter the Emulate
Window. Note that the use of :E from any window calls up the Emulate Window
precisely as if you had used <esc> to return to the Main Menu and had then pressed E
to enter the Emulate Window. This is called "tunnelling".

Since you will want to set your program counter to the beginning address of the
tutorial code, and since you will also want to observe changes in the PC and other
registers, enter :R to use the Register Window. If you are using the EL 800 Z80 probe
module, L~e registers are divided into two groups, Primary and Alternate, for
convenient display. The Primary window is shown in Figure 3-8, and the Alternate
window is composed of only the "prime" registers.

If you are using the EL 800 HD64180 probe module, the registers are also divided
into groups for convenient display, but six groups are used. The first two groups are
identical to the above-described Z80 register groups. The newly-started Register
Window displays the contents of the Primary registers. If you wish to examine or
change the contents of registers not in the Primary group, use the arrow keys to
highlight "PRIMARY". Use <space> to toggle through the register groups. For this
demonstration, leave the Register Window displaying Primary.

Note that while you are displaying two windows, Emulate and Register, only the
Register Window is surrounded by double lines. The double lines means the Register
Window is active, and can be controlled by you, while the Emulate Window is
inactive, and cannot be controlled by you.

You should see Figure 3-8 on your screen.

3-13

EL 800 User's Manual

Move the cursor down until the PC register is highlighted and enter O. The PC value
should now be 0000.

Remove the Register Window by entering <escape> and notice the double lines now
surrounding the Emulate Window.

Figure 3-8. Emulate Window With Register Window

Applied Microsystems Corporation -z80- Main Menu Type? for Help

EMULATE EMULATOR STOPPED
o RESET MARK

~~tt~~$.fA.ittt~t~:~::tt:::q~:~~g::~ttt~l~~~l1.ttttt@:ttt~t~~~~t~t.~t:lP:~~
o 0003 C3001A JP ZERO [1000]
o 0006 00 NOP
o UPPER:
o HSIZE:
o
o
o
o
o
o
o
o SIZE:
o
o
o
o

0007
0008
0009
OOOA
OOOB
oooe
OOOD
OOOE
OOOF
0010
0011
0012
0013
0014

00 NOP
00 NOP
00 NOP
00 NOP
00 NOP
00 NOP
00 NOP
00 NOP
00 NOP
00 NOP
00 NOP
00 NOP
00 NOP
00 NOP

PRIMARY

PC 0000
SP 0000
A 00
BC 0000
DE 0000
HL 0000
IX 0000
IY 0000
IV 0000
RFRSH 5E
IFFl FF

S:O Z:O
P/V:O N:O

« Go/Step/Z-restart/Event-state/<raturn> to single step

H:O
C:O

The highlighted line of code in the Emulate Window will be executed if you choose
the "<return> to single step" option, as shown in the command line at the bottom of
the Emulate Window. Since this instruction loads a value of 900 into the stack
pointer, you would expect pressing <return> to change the value of the stack pointer
in the Registers Window to 900. Further, you would expect the highlight to advance
to the next instruction, the JP ZERO at address 0003. You might also expect the
value of the PC to change to that of the next instruction, 0003.

Press <return> to execute this instruction, and <:R> to call up the Registers Window
to observe these changes. After you have examined the Register Window, enter
<escape> to return to the Emulate Window. Although this invoking and removing of
the Registers Window is extra effort right now, you will soon learn a method for
keeping the Registers \Vindow available with an active Emulate Window.

3-14

Tutorial: 64180, 280

Single-stepping through the next few instructions should allow you to monitor
several kinds of change. You will first see the PC value change to the value of the
instruction ZERO:, where you will be able to watch the accumulator set to zero. You
will see the instruction LD B,lO load the value 10 into the B register.

Press <return> to execute a single instruction, then :R to observe the effects of each
instruction on the registers, then <escape> to remove the Registers Window, until the
highlight is over the instruction:

ZLOOP: LD (HL),A

At this point you have entered the loop ZLOOP, which will be executed lOR, or l6D
times. There are 4 instructions in ZLOOP:, ending with a jump-if-not-zero to
ZLOOP:. This means that you will spend the next 64 single-steps in ZLOOP:, and
nothing exciting will happen until you are almost finished with this loop.

The Step command is designed for this situation, allowing you to specify how many
steps you would like to make with one instruction. Notice the status message in the
top window border showing that the emulator is stepping.

Enter S62 <return>. The 62 single steps take about a minute to complete. Notice the
status message in the top window border showing that the emulator is stepping.

When the stepping is complete, the status message in the window border will read
"EMULATOR STOPPED" and you'll see Figure 3-9.

3-15

EL 800 User's Manual

Figure 3-9. Emulate Window, Showing Result of the Step Command

Applied Miorosystems Corporation -z80- Main Menu Type? for Help

MULATE EMULATOR STOPPED

20 1009 05 DEC B
19 100A C2071A JP NZ, ZLOOP [1007]
16 ZLOOP: 1007 77 LD (HL) ,A 0902<00
14 1008 2B DEC HL
13 1009 05 DEC B
12 100A C2071A JP NZ, ZLOOP [1007]
9 ZLOOP: 1007 77 LD (HL) ,A 0901<00
7 1008 2B DEC HL
6 1009 05 DEC B
5 100A C2071A JP NZ, ZLOOP [1007]
2 ZLOOP: 1007 77 LD (HL) ,A 0900<00
o 1008 2B DEC HL

:~~~t~~ttttt~~tt~(((()))J:~W9)(~:!}':Mtttt~~~:t~(~~~:~::P.~t.¢t::(J~tt~:)t))tttttttt~tttt:tttttttttt::tt:~tt
100A C2071A JP NZ, ZLOOP [1

LOAD: 100D 3E07 LD A,07
100F 210719 LD HL,B1END [1
1 00 1 2 0 60 4 LD B, 04
1014 08 EX AF,AF'

« Go/Step/Z-restart/Event-state/<return> to single step

There is a great deal of information contained in your Emulate Window. Learning to
locate and interpret this information will make your emulation and development
work more efficient. To that end, let's examine this screen.

Use the <PgUp>, <PgDn>, i and J,. keys to position the relative address number
(those numbers in the extreme left-hand column in the Emulate Window) so that 120
is at the upper edge of your window. You will have to <PgUp> several times to get
to this location. This line should be labeled START:, and represents the first
instruction you entered in this session.

The contents of your screen, from relative address 120 to the uppermost relative
address 0 (the line immediately above the highlighted cursor) are a record of every
instruction you have executed since this session began. This record is the trace, a
powerful emulation tool.

Examination of the trace can reveal much about the execution of your code. If you
examine relative address line 112 in the trace, you will see that the constant B2ThTI
was loaded into register pair HL, and that the value of B2END is 90F.

3-16

Tutorial: 64180. Z80

You can see on line 107 that the accumulator contents were loaded into the memory
location pointed to by the contents of pair HL, and that the absolute values of this
instruction were 00, loaded into address 90F. This is shown in Figure 3-10.

If you page down this display until the highlighted line 0 is the 6th line up from the
screen's bottom (the display will stop scrolling here), you will be back to the screen
of Figure 3-9, and can derive more information from the display.

Figure 3-10. Emulate Window, Showing Trace

App1ied Microsystems Corporation -z80- Main Menu Type? for He1p

MULATE EMULATOR STOPPED

120 START: 0000 310009
117 0003 C30010
114 ZERO: 1000 3EOO
112 1002 210F09
109 1005 0610
107 ZLOOP: 1007 77
105 1008 2B
104 1009 05
103 100A C20710
100 ZLOOP; 1007 77

98
97

1008 2B
1009 05

96 100A C20710
93 ZLOOP: 1007 77
91 1008 2B
90 1009 05
89 IOOA C20710
86 ZLOOP: 1007 77

LD SP , B1ST [0900]
JP ZERO [1000]
LD A,OO
LD HL,B2END [090F]
LD B , 10
LD (HL) I A 090F<00
DEC HL
DEC B
JP NZ, ZLOOP [1007]
LD (HLj IA

DEC HL
DEC B
JP NZ,ZLOOP [1007]
LD (HL) I A 090D<00
DEC HL
DEC B
JP NZ, ZLOOP [1007]
LD (HL) 1 A 090C<00

« Go/Step/Z-restart/Event-state/<return> to single step

The instructions above the highlighted instruction, on lines 0 to 20, represent
instructions actually executed.

Some information is also available about the future of code execution. The
highlighted line, for instance, will be the next instruction to be executed.

The five instructions under the highlight are simply the next instructions in memory,
and are not necessarily to be executed next, or even in the displayed order. If the
instruction below the highlight, JP NZ, ZLOOP, causes a jwnp to ZLOOP, the
instruction immediately below it, LD A,07, will not be executed now.

This raises an interesting question: will the instruction JP NZ ,ZLOOP cause a jwnp

3-17

EL 800 User's Manual

to ZLOOP when it is executed?

Loading Custom Window Configuration

To answer this question, it would be convenient to watch the Register window while
emulating. Unfortunately, when the Emulate window is called up, it covers the
Registers window.

Fortunately, the EL 800 provides a window-customizing utility, which allows you to
define the size and location of active windows. This re-definition may be saved with
the :Files/Save/Windows command. In fact, a good solution to the present problem
has been worked out and saved in the file TUTOR.WIN.

To use the window configuration of TUTOR.WIN, type :F to enter the Files window,
R W TUTOR.WIN <return> to restore the TUTOR.WIN window configuration.
When a window is opened now, its size and location will be defined by
TUTOR.WIN.

To invoke a viewable Register window and an active Emulate window, enter :R :E.

Now, if you were to enter <return> to single-step and execute the instruction DEC
B, you should be able to see the contents of register B in the Registers Window,
presently 01, decremented to 00. Because of this, you should also see the Z (zero)
flag at the bottom of the Register window set The Z flag should display "1" after the
single-step.

Enter <return> to single-step. Because you can see zero flag is se4 you should not
expect the highlighted instruction, the next instruction to be executed, to cause a
jump to ZLOOP.

Enter <return> and verify this.

3·18

Tutorial: 64180, 7.80

Setting Basic Breakpoints

The Basic Breakpoint System requires that at least one Overlay Module be installed.
Please skip this section if you do not have an Overlay module.

A basic breakpoint is a way of halting code execution, or breaking, when a specified
address is encountered.

It would be useful if we could examine the execution of our demonstration code
TUTOR.ETH at the end of each iteration of the memory-loading loop LLOOP, and
examine the progress of the loading process. The basic breakpoint is a convenient
tool for this.

Enter :B to use the Break/Event Summary Window, from which you can use the
Basic Breakpoint System or the Advanced Events System. Enter B to select the Basic
Breakpoints Window.

Our goal is to set a breakpoint which will become active, causing a break, when the
last line of code in LLOOP is executed. This can be described as a READ at address
1028.

Enter S for SET, and observe the following command line:

Set _ « (addr) [, (to addr)]

The Basic Breakpoint System is now expecting an address.

Enter 1028 to enter the address, <return> to enter the breakpoint, and <escape> to
deselect the Basic Breakpoints window. You should see Figure 3-11. The emulator
will now break each time a read or write is performed at address 1028.

3-19

EL 800 User's Manual

Figure 3-11. Basic Breakpoint Window With One Breakpoint Set

BREAK/EVENT SUMMARY

BASIC BREAKPOINTS

Set 1028 I
WHEN-THEN SUMMARY

COUNTER X COUNTER Y

I X = 0 y o

« Set/Delete/Enable/dIsable

Enter :E to use the Emulate Window, and notice that it is exactly as you left it.

Enter G to GO, and <return> to indicate that you want to run your code without
changing the starting PC value.

When the new trace is written to the Emulate Window, you can see that the
instruction at 1028 was read and executed, and emulation was broken. The
highlighted cursor is on the next instruction, LLOOP, as shown in Figure 3-12.

3-20

Tutorial: 64180, Z80

Figure 3-12. Emulate Window after Breaking at Breakpoint

Applied ~crosysterns Corporation -zSO- Main Menu Type? for Help _

EMULATE EMULATOR STOPPED

12 1020 05 DEC B
11 1021 08 EX AF,AF'
10 1022 D9 EXX
9 1023 77 LD (HL) ,A 0
7 1024 23 INC HL
6 1025 3C INC A
5 1026 08 EX AF,AF'
4 1027 D9 EXX
3 1028 C21D10 JP NZ,LLOOP [101D]
o BREAK

:lliWpiHtt:}}}}}}}Nltitt:tttttt:::}}}}}t'P.:::}}}::XBlifIW}}:tttttttt:::

,-

101E 2B
101F 3D
1020 05
1021 08

DEC HL
DEC A
DEC B
EX AF,AF'

« Go/Step/Z-restart/Event-state/<return> to single step

The function of the loop LLOOP is to load one high and one low byte pair into Block
1, which extends from address 900 through 907. For verification, let's examine the
memory location Block 1.

Enter :M to use the Memory Window, enter 900 to indicate which part of memory
you wish to examine, and enter <return> to confirm the entry. You should see
Figure 3-13. The Memory window is another window resized by restoring the file
TUTOR.WIN.

3-21

EL 800 User's Manual

Figure 3-13. Memory Mode Window

MEMORY-St6e'R f"ORMAT"'§PAct:MEMORY ADDR: 00900 VERIFY:OFF

00900 :::00::: 00 00 00 00 00 00 07 00 00 00 00 00 00 00 00
00910 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00920 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00930 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

EMULATE EMULATOR STOPPED

12 1020 05 DEC B
11 1021 08 EX AF,AF'
10 1022 D9 EXX
9 1023 77 LD (HL) ,A 0
7 1024 23 INC HL
6 1025 3C INC A
5 1026 08 EX AF,AF'
4 1027 D9 EXX
3 1028 C21D10 JP NZ,LLOOP [1010]

ll8Bt~~~~~~~I~B~r:&Wr6TB~:mI1W~:m:~~~:m~r~:~~~:~:rr(tB~~~~~~(((~~~~~t:~~:~:~~1~JJJJ~~~:JJJI11~
101E 2B
101F 3D
1020 05
1021 08

DEC HL
DEC A
DEC B
EX AF,AF'

_ « Go/Step/Z-restart/Event-state/<return> to single step

You can see that 07 has been written to 907, and you can predict that 00 has been
written to 900. It seems logical to predict that another go-until-breakpoint operation
should write another pair of bytes into Block 1.

Let's verify this. Enter:E to bring up an active Emulate window. Enter G <return>
to run to your breakpoint and examine the Memory window. Another pair of bytes
has been written to Block 1: 06 is written to 906, and 01 to 901.

This procedure can be repeated as often as you like.

Clear Basic Breakpoints

At this point, let's clear the Basic Breakpoint setup so that it doesn't get in our way
when we set up an advanced event Type <escape> to close the Memory Window,
<escape> to close the Emulate Window and you'll see the Break/Event Summary
Window again. Type B to select the Basic Breakpoints window, D to delete, and
either 0 or , * , and <return> to confirm the clearing of breakpoint O. Enter <escape>
to deselect the Basic Breakpoints window.

3-22

Tutorial: 64180, ZSO

Setting Advanced Events

While the Basic Breakpoint System exercise you just completed is sufficiently
powerful to handle many situations, many users will need greater power and
flexibility. The Advanced Event System lets you break and perfonn other actions
based on a wide variety of conditions.

For example, you might experience difficulties with the block-move functions
perfonned by the LDIR instruction in the routine BLMV in your test program
TUTOR.ETH. It would be helpful to examine the read and write cycles of the LDIR
instruction, noting particularly the data on the bus, while viewing the contents of the
source and destination locations in memory.

Further, you might want to gather this infonnation for only one iteration of the
BLMV routine and then halt code execution to examine your infonnation. In
addition, it would be nice if the only infonnation gathered (traced) were the BLMV
infonnation, so that you would not need to wade through execution infonnation
irrelevant to your problem.

The Advanced Events System provides tools to qualify execution and trace this
specifically. See Sections 6 and 7 for further infonnation.

Advanced Event System Overview

Before going into the details of setting up this example, this section provides a
conceptual overview, and describes the steps involved in using the Advanced Event
System.

The Advanced Event System is based on WHEN-THEN statements:

WHEN conditions THEN actions

The conditions are logical combinations of address, data, status, count limits, and
trigger inputs. The actions are combinations of breaking emulation, trigger out, trace
control, counter control, and switching states. There are four independent sets of
condition inputs, one set for each of the four state windows.

There are six steps to setting up the Advanced Event System:

1. Conceptualize the progression of generalized program conditions you wish to
isolate, dividing these conditions into groups (states) whose contained

3-23

EL 800 User's Manual

conditions will be simultaneously active.

2. Decide how each condition will be expressed, and what events will be caused.

3. Load the condition comparators with all conditions necessary for each state.

4. Write the WHEN-THEN statements, making sure that the state-to-state
transition statements are included.

5. Reset or clear the state of the Advanced Events System to a beginning state.

6. Execute your program, using the Go command in the Emulate window (:EG)

Conceptualizing the Set Up

While developing WHEN-THEN statements to solve an emulation problem, it can be
handy to write your WHEN-THEN statements in a kind of pseudocode. Once you
have expressed the WHEN-THEN statements in pseudocode, it is easy to enter the
statements into the Advanced Event State windows.

When-Then Description Pass One

For example, to solve the above problem of verifying possible block-move problems
in BLMV, the WHEN-THEN statements might read:

WHEN the first line of code is executed, THEN turn the trace of[
OR

WHEN the routine BLMV is called, THEN turn trace on.
OR

WHEN the last instruction in the routine BLMV is read, turn
trace off and halt code execution (break).

When-Then Description Pass Two

The next step in describing the WHEN-THEN statements should include some
values. For example, the first line of code executed in TUTOR.ETH is the LD SP,900
at address 00. There are several ways to describe this line of code uniquely, but the
most straightforward description is the line of code at address 00. This can be
described by the following:

WHEN the operation is a fetch and the address value is 00,
THEN turn the trace off.

3-24

Tutorial: 64180, Z80

The second WHEN-THEN statement should should tum the trace on when the
program calls the routine BLMV. Since this line of code, at line 102B, is the only
CALL instruction in the test code, and since the hex value of the CALL instruction is
CD, this can be described by the following:

WHEN the data is CD and the operation is a fetch,
TIffiN tum trace on.

For the third WHEN-THEN statement, we will use the fact that the last line of the
routine BLMV is the only RET instruction in the program. The hex value of an RET
instruction is C9. This condition can be described as follows:

WHEN the data is C9 and the operation is a fetch
TIffiN tum the trace off and break.

Entering When-Then Statements and Comparators

Enter:B to use the Break/Event Summary Window, shown in Figure 3-14.

Figure 3-14. Break/Event Summary Window

BREAK/EVENT SUMMARY

BASIC BREAKPOINTS

I
WHEN-THEN SUMMARY

COUNTER X COUNTER Y

I x = 0 I Y = 0

_« Clear/Breakpoints/ctrX/ctrY/When-thens/state: 1/2/3/4

3-25

EL 800 User's Manual

Note that no WHEN-THEN statements are currently present in the WHEN-THEN
expression summary.

Since we decided that our proposed WHEN-THEN statements would be active in
state 1, enter 1 to use the Event System State 1 Window.

To implement our first WHEN-THEN statement, "WHEN the operation is a fetch, and
the address value is 0000, THEN tum trace off", it is necessary to understand that the
emulator determines that a fetch has been recognized when a status comparator set to
recognize a fetch has been satisfied. Similarly, an address value of 0000 is
recognized by satisfying an address comparator set to recognize the hex word 0000.

Since your State 1 Window has address comparators A and B, data comparators E
and F, and status comparators R and S, you have a way to enter your conditions for
WHEN-THEN statement # 1.

Enter A to use the Address Comparator A sub-window. Note the command line at
the bottom of your screen. It prompts you to "Set/Delete" a comparator entry; enter S
to set Again on the command line, you are asked for an address value (l6-bit, if you
have not selected a 20-bit address bus in the Emulator Configuration window). Enter
0000 and <return> to set address comparator A to recognize the hex word 0000.
Enter <escape> to deselect Address Comparator A.

Now enter R to use the Status Comparator R sub-window, and S to set an entry and
view your choices. The status condition you want is fetch 1 , which has no upper case
letters, but does include a number, 1. Enter 1 and notice that fetch1 has been
selected, as indicated by the highlighting of the word "fetch1" in this sub-window.
Enter <return> to enter "fetch!" into the comparator, and enter <escape> to exit this
sub-window and set status comparator R to fetchl.

Enter W to select the When-Then Statements sub-window.

Now you are ready to enter the WHEN-THEN statement, which will appear in the
command line at the bottom of your screen.

Enter W and see "WHEN" appear. Enter A and see "WHEN addrA" in your
command line. Enter (with no leading or trailing spaces) & to indicate a logical
ANDing process, R to specify status comparator R, T to specify THEN. You should
see "WHEN addrA & stR THEN" in your command line.

The rest of your command line lists the options open to you, including "Trace". Enter

3-26

Tutorial: 64180, Z80

T to select trace, and notice your command line options again. Because you want
this WHEN-THEN statement to turn trace off, enter S. You should see "WHEN
addrA & stR THEN Trace-Stop". This is the desired statement, so enter <return> to

accept the statement, and <escape> to deselect the When-Then Statements sub­
window.

With statement #1 set up, your State 1 screen should appear as shown in Figure 3-15.

Figure 3-15. Advanced Event State 1

BREAK/EVENT SUMMARY

ADDRESS COMPARATOR A ADDRESS COMPARATOR B

~[____ o_] ____ se_t ____ o_oo_o ____________ ~11 ~ ____________________________________ ~
DATA COMPARATOR E DATA COMPARATOR F

[0] Set CD I I
WHEN-THEN STATEMENTS
[0] WHEN addrA & stR THEN Trace-Stop

STATUS COMPARATOR R STATUS COMPARATOR S

0] R = fetchl

x = 0 Y = 0

_« Clear/addrA/addrB/dataE/dataF/statusR/statusS/When-then

For WHEN-THEN statement #2, you need to have the hex value of the CALL
instruction in a data comparator, meaning data comparator E.

Enter E to select the Data Comparator E sub-window, and S to set a comparator
entry. Enter CD <return> to load data comparator E with CD, and <escape> to
deselect comparator E.

3·27

EL 800 User's Manual

As before, enter the WHEN-THEN statement. The key stroke sequence is
W W E & R T T B <return> <escape>. You should now have, in the main State 1
window, the following:

WHEN dtaE & stR THEN Trace-Begin

With statements one and two set up, your State 1 screen should appear as shown in
Figure 3-16.

Figure 3-16. State 1 Window with Two When-Then Statements

EVENT STATE #1

ADDRESS COMPARATOR A ADDRESS COMPARATOR B

~[..... o_J __ s_et __ O_o_o_O ____ ~1 ~I ________ ______ ~
DATA COMPARATOR E DATA COMPARATOR F

[OJ Set CD I I
WHEN-THEN STATEMENTS

OJ WHEN addrA & stR THEN Trace-Stop
1J WHEN dtaE & stR THEN Trace-Begin

STATUS COMPARATOR R STATUS COMPARATOR S

OJ R = fetch1

x = 0 Y = 0

_« Clear/addrA/addrB/dataE/dataF/statusR/statusS/When-then

Statement #3 is created by loading data comparator F with the value C9 (the hex
value of an RET instruction), and writing the statement "WHEN dataF and stR THEN
Trace-Stop Break". This causes a trace-off and a break every time an RET instruction
is executed. As in the previous statement, this is a special case, with only one RET
occurring in the test code.

The key stroke sequence to load the comparator is F S C9 <return> <escape>.
Enter this.

3-28

Tutorial: 64180, Z80

The key stroke sequence to select the When-Then window, create the WHEN-THEN
statement, and deselect the window is: W W F & R T T S B <return> <escape>.
Enter this. You should see the following line in the State 1 window.

WHEN dataF & stR THEN Trace-Stop Break

With statements one, two and three set up, your State 1 screen should appear as
shown in Figure 3-17.

Figure 3-17. State 1 Window with Three When-Then Statements

EVENT STATE #1

ADDRESS COMPARATOR A ADDRESS COMPARATOR B

~ __ o_] __ se_t __ o_oo_o ______ ~1 I~ ____________________ ~
DATA COMPARATOR E DATA COMPARATOR F

[0] Set CD I I 0] Set C9

WHEN-THEN STATEMENTS
0] WHEN addrA & stR THEN Trace-Stop
1] WHEN dtaE & stR THEN Trace-Begin
2] WHEN dtaF & stR THEN Trace-Stop Break

STATOS COMPARATOR R STAT OS COMPARATOR S

0] R = fetch1

x = 0 Y = 0

_« Clear/addrA/addrB/dataE/dataF/statusR/statusS/When-then

This is the last of the WHEN-THEN statements, so enter <escape> to exit the State 1
Window and return to the Break/Event Summary Window.

You have now set up your emulation events with everything needed to satisfy your
original conditions. Notice that the Summary window shows your three WHEN­
THEN statements.

3-29

EL 800 User's Manual

Emulating With the Advanced Events System Setup

When you execute code with the setup you have just entered, you will want to
observe the effects of execution as interpreted by the trace function of the Emulate
window, and you will also want to observe the Block 1 and Block 2 locations in
memory, using the Watch window.

Invoke the Watch window by entering: W.

For convenience of display, you will set up the watch window to watch the memory
area from 0900 to 090F in four blocks of four bytes. Blocks of 0900-0903, 0904-
0907, 0908-090B, and 09OC-090F will be used. To enter these blocks in the Watch
window, location, data type, and display format must be defined. (A complete guide
to the expression formats used here may be found in Appendix F, "Using
Expressions".)

For instance, a pointer to the starting byte of the first watched block might be
described as "(byte *)900". Further, you would like to examine four bytes in this
block, and display them as hexadecimal integers, described as "4 x". The complete
specification would read "(byte *)0900,4 x".

To enter this specification into the watch window, enter A to add a specification.
This will open the addition window. which will ask you to enter an expression. Enter
the expression described above, for the first watched memory block,
(byte *)900, <space> 4 <space>. When the statement is complete in the addition
window, confirm it and enter it into the Watch window by entering <return>.

Now enter the next three memory watch specifications:

A (byte *)904, <space> 4 <space>.
A (byte *)908, <space> 4 <space>.
A (byte *)90C, <space> 4 <space>.

Enter <escape> to deselect the Watch window.

Enter:E to open the Emulate window.

Enter E to open the Event State sub-window. This sub-window displays the current
state of the event system, and may be used to evaluate your progress through an
elaborate emulation experiment.

3-30

Tutorial: 64180, Z80

Note the "« Clear state variables" message in the command line. "Clear", in this
sense. resets all your state variables to a standard starting position, in state 1, with
both counters stopped, with trace turned on, and with the counters loaded with the
values you entered in the Break/Event Window. In normal operation, it is wise to
clear the state variables before beginning emulation.

To clear the state variables and leave the Event State sub-window, enter
C <return> <escape>.

You should see the screen of Figure 3-18.

Figure 3-18. Composite Emulate/Watch Screen.

WATCH DISPIAY
0] (byte *) 0900, 4 x
1] (byte *)0904, 4 x
2] (byte *)0908, 4 x
3} (byte *)090c, 4 x

mmEmmm
[0900]

0003 C30010 JP ZERO
0006 00 NOP

UPPER: 0007 00 NOP
HSIZE 0008 00 NOP

0009 00 NOP
OOOA 00 NOP
OOOB 00 NOP
oooe 00 Nap
DODD 00 Nap
OOOE 00 Nap
OOOF 00 Nap

SIZE: 0010 00 NOP

-->
-->
-->
-->

[1000]

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

_ « Go/Step/Z-restart/Event-state/<return> to single step

Before you begin emulation within your new Advanced Events System, note that the
Emulate and Watch windows are sized and located such that both are completely
visible. These specifications are from the file TUTOR.WIN, your custom window
configuration file. Note also that your Emulate window is "clipped" on the right side,
also an artifact of your custom window configuration.

You may recall that the right margin of the Emulate window was moved to uncover
the Register window. In the following example, register information will not be
needed, but the bus activity information trimmed from the Emulate window will be

3-31

EL 800 User's Manual

needed.

To move the Emulate window's right margin to the screen's right margin, for the
purpose of displaying bus activity information, enter <Fl> and see the command
line:

<resize> _ « Arrow keys: Left Right Up Down

Because the Emulate window is the active window (with the double-line margin) it is
the Emulate window that will be resized by the arrow keys. Using the ~ and f­

keys, move the right margin of the Emulate window to the right margin of the screen.

Before you begin emulation within your new Advanced Events System constraints,
you should Restart the emulator's target processor. Enter Z <return>G <return> to
Restart and begin execution. Note that the breakpoint will be encountered before the
"EMULATION STOPPED" annunciator at the top of the Emulation window is
updated to show emulation running.

After running to the breakpoint, you should see the screen of Figure 3-19.

Figure 3-19. Emulate/Memory Screen with Trace.

3-32

WATCH DISPLAY
0]

1]
2]
3}

(byte *)0900, 4 x
(byte *)0904, 4 x
(byte *)0908, 4 x
(byte *)090c, 4 x

EMULATE EMULATOR STOPPED
33 103A EDBO LDIR
29 103A EDBO LDIR
25 103A EDBO LDIR
21 103A EDBO LDIR
17 103A EDBO LDIR
13 103A EDBO LDIR

9 103A EDBO LDIR
5 103A EDBO LDIR
1 103C C9 RET
o BREAK

-->
-->
-->
-->

00 01 02 03
04 05 06 07
00 01 02 03
04 05 06 07

0900>00 0908<00
0901>01 0909<01
0902>02 090A<02
0903>03 090B<03
0904>04 090C<04
0905>05 090D<05
0906>06 090E<06
0907>07 090F<07

~~~ttff}f}}}::~~~~}///@:@t.~:~:t~~~~~~~~x.:o:~~~~~~~~~~:/~~:::JW::})}~t~R{tnM:i:~:@tt~t~ttt~~:tt}~tt:~t~~t~::~:~:~~t~:~:~:::t}t~:::~: 
BLMV: 1031 010800 LD BC,HSIZE [0008] 

1034 110809 LD DE,B2ST [0908] 
1037 210009 LD HL,B1ST [0900] 
103A EDBO LDIR 
103C C9 RET 

« Go/Step/Z-restart/Event-state/<return> to single step 



Tutorial: 64180, Z80 

This screen contains the essential information concerning the block-transfer function 
of routine BLMV. Each of the lines from #33 to #5 shows one pair of 
read-from-source and write-to-destination cycles of the LDIR instruction. Notice 
that the address read from or written to is shown at the right side of the Emulate 
window, as is the data value on the bus during that read or write. 

In the four-line Watch window, the contents of the block-move source addresses 
(0900 to 0907) and the block-move destination addresses (0908 to 090F) are 
displayed. The values shown in Figure 3-19 are what you would predict. 

This brings up a subtle, but important, point. Since every execution of BLMV should 
leave the Watch window displaying the information in Figure 3-19, it is not possible 
to know, from this setup, if this iteration of BLMV loaded memory correctly, or if 
memory has not been changed since the last time BLMV loaded the memory 
correctly. 

The program sets the contents of memory locations 0900 to 090F to 00 before it loads 
0900 to 0907 and block-moves that data to 0908 to 090F. If you were to insert an 
additional break instruction in the Advanced Event System that broke emulation 
immediately after the watched memorf location is set to zero, t.lJ.e Go comm3.a"1d 
would cause the emulator to break alternatively after zeroing, and then after load­
and-transfer. This would allow verification of memory modifications at every Go. 

Since no trace specifications would be added with the new WHEN-THEN statement, 
code inside the routine BLMV will still be the only trace acquired. 

The Additional When-Then Statement 

You need to describe a condition for this breakpoint that occurs after memory 
zeroing (this occurs in ZLOOP) and before LLOOP, where the memory load process 
starts. In addition, you have one address comparator left in Advanced Events System 
State 1. 

All that is necessary is to pick an instruction between the end ZLOOP and the body 
of LOAD, and specify that instruction's address, ANDed with fetchl, and you will 
have described the necessary condition. The instruction at the label 
LOAD, LD A ,UPPER matches these criteria, and will be used. 

You could load the address of this instruction by entering the address value lOOD 
into address comparator B, but there is an easier and more flexible way to enter this 

3-33 



EL 800 User's Manual 

number. 

If, at the appropriate point in assembling the When-Then statement, you enter a space 
instead of a number, the expression analyzer is started. The expression analyzer 
allows you to use symbols from your code instead of the numbers those symbols 
represent. In this case, the starting address of the block-move source-load routine 
corresponds to the symbol LOAD. Note the upper case letters here, because the 
expression analyzer is case-sensitive. 

If you want to check what symbols are in your symbol table, enter :8 to display the 
symbol table. You can see LOAD, with a value of lOOD, in Figure 3-20. 

Figure 3-20. Symbol Table Window Showing Symbols 
I 

Applied Microsystems Corporation -z80- Main Menu Type? for Help 

SYMBOL TABLE 

Owner Name Scope Class Type Value Name 
?iW.P.tt))I(II\~}}j;to.ii~i.?}??}((trrIj~~fujtrrrrJ)j~'I}}~lid~trrIr~}ffff 
TUTOR GLOBAL LABEL 0900 BIST 
TUTOR GLOBAL LABEL 090F B2END 
TUTOR GLOBAL LABEL 0908 B2ST 
TUTOR GLOBAL LABEL 1031 BLMV 
TUTOR GLOBAL LABEL 0008 HSIZE 
TUTOR GLOBAL LABEL 1010 LLOOP 
TUTOR GLOBAL LABEL 1000 LOAD 
TUTOR GLOBAL LABEL 0004 QSIZE 
TUTOR GLOBAL LABEL 0010 SIZE 
TUTOR GLOBAL LABEL 0000 START 
TUTOR GLOBAL LABEL 0014 TUTOR 
TUTOR GLOBAL MODULE CODE 0007 UPPER 

« Add/Find/Module/Delete 

Enter :BIB to return to the Advanced Event state I window, and select the Address 
Comparator B subwindow. 

To load address comparator B with IOOD, enter 
8 <space> LOAD <return> <return> <escape>. 

To create the When-Then statement, enter W W B & R T B <return> <escape>. 
You should see, as When-Then statement #4, WHEN addrB & stR THEN Break. 

3-34 



Tutorial: 64180, 280 

Execution and Observation 

Go back to the composite Emulate!Watch window by entering <escape> <escape> 
<escape>. 

Reset the processor and Go to the first breakpoint (Z <return> G <return». 

You should see the screen of Figure 3-21, with the displayed memory locations set to 
zero, and only the BREAK traced. 

Figure 3-21. Memory Locations Set to Zero 
- - -

WATCH DISPLAY 
0] 
1] 

2] 
3} 

(byte *}0900, 4 x 
(byte *)0904, 4 x 
(byte *}0908, 4 x 
(byte *}090c, 4 x 

EMULATE EMULATOR STOPPED 
27 103A EDBO LDIR 
23 103A EDBO LDIR 
19 103A EDBO LDIR 
15 103A EDBO LDIR 
11 103A EDBO LDIR 

7 103A EDBO LDIR 
3 103C C9 RET 
2 BREAK 
1 Illegal Instruction 
o BREAK 

--> 
--> 
--> 
--> 

00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

0902>02 090A<02 
0903>03 090B<03 
0904>04 090C<04 
0905>05 090D<05 
0906>06 090E<06 
0907>07 090F<07 

~{{{{{~I~{{~~~t~((~tItfQ:ot))ijJt7.§))))))LIitt~)j~i&B.itN.:ti)l~~@'1fl~~lltllttlllltt)lt)t~~ 
1012 0604 LD B,04 
1014 08 EX AF,AF' 
1015 D9 EXX 
1016 3EOO LD A,OO 
1018 210009 LD HL,B1ST [0900] 

« Go/Step/Z-restart/Event-state/<return> to single step 

Go to the next breakpoint (G <return>. 

You should see the screen of Figure 3-22, which traces the BLMV execution, and 
displays the modified memory after memory load and block-move. 

3-35 



EL 800 User's Manual 

Figure 3-22. Trace of BLMV and Memory Modification 

WATCH DISPLAY 
0] (byte *)0900, 4 x 
1] (byte *)0904, 4 x 
2] (byte *)0908, 4 x 
3} (byte *)090c, 4 x 

EMULATE EMULATOR STOPPED 
33 103A EDBO LDIR 
29 103A EDBO LDIR 
25 103A EDBO LDIR 
21 103A EDBO LDIR 
17 103A EDBO LDIR 
13 103A EDBO LDIR 

9 103A EDBO LDIR 
5 103A EDBO LDIR 
1 103C C9 RET 
o BREAK 

--> 
--> 
--> 
--> 

00 01 02 03 
04 05 06 07 
00 01 02 03 
04 05 06 07 

0900>00 0908<00 
0901>01 0909<01 
0902>02 090A<02 
0903>03 090B<03 
0904>04 090C<04 
0905>05 090D<05 
0906>06 090E<06 
0907>07 090F<07 

~:t:ttt:t:ttt::tt:}}}}fff2t}:tc:M~~:Hft::tttj~}:t:\titio.::tti~Hf6.1ttttttttttttttttt:tt:ttt::t::t: 
BLMV: 1031 010800 LD BC,HSIZE [0008] 

1034 110809 LD DE,B2ST [0908] 
1037 210009 LD HL, B1ST [0900] 
103A EDBO LDIR 
l03C C9 RET 

_ « Go/Step/Z-restart/Event-state/<raturn> to single step 

If you had acquired a great deal of trace, and needed ways to move around in a large 
trace file, you could go to the Trace window with a :T. While you would see 
essentially the same infonnation as in the trace portion of the Emulate window, you 
could request, by line number, a desired line in trace memory and display it in 
context. In addition, you could examine the trace instructions bus cycle by bus cycle 
(raw trace). 

A More Complex Advanced Events Setup 

The Advanced Event System exercise you just finished was designed as an 
introduction to the Advanced Events System, and did not seriously explore the 
logical possibilities of the EL 800's Advanced Event System. The following exercise 
is designed to expose you to more of the system's capabilities. 

As you did in the previous exercise, assume a hypothetical problem. Assume that 
data corruption occurs occasionally on accesses to the memory area Block 1 (0900 to 
090f). Assume further that the corruption only affects data bit D2, and that only 
logical-low values of D2 are corrupted. Also, the problem only occurs after the 

3-36 



Tutorial: 64180, Z80 

target circuit has been "exercised" by many thousands of bus cycles. This problem is 
so occasional that a large number of memory accesses must be traced to have a 
reasonable chance of observing the problem, so very selective trace is needed. 

Conceptualizing the Setup 

As before, a sort of "when-then pseudocode" will be used to define the problem for 
the Advanced Events System. The development of this definition follows: 

Turn the trace off, run code for a long time, then trace some large number of bus 
cycles where Block 1 memory is accessed and the data read or written has data bit 
D2 low, then break. 

When-Then Description Pass One 

State 1: 

\11HE~l L'1e first liIle of code is executed, THEN tu..l11 Ll}e t.race off. 
OR 

WHEN the program loops back to the label ZERO THEN 
decrement a counter with a large number in it. 

OR 
WHEN the counter contents are zero THEN change to state 2. 

3-37 



EL 800 User's Manual 

State 2: 

WHEN the address is between 0900 and 0907 AND 
the data is some value with bit D2 = 0 and the 
other bits set to DON'T CARE AND 
it's a memory access THEN trace one bus cycle AND 
decrement a different counter with another large 
number in it 

OR 
WHEN the second counter contents are zero THEN break. 

When-Then Statement Pass Two 

State 1: 

WHEN the operation is a fetch and the address is 0000 
THEN tum trace off. 

WHEN the operation is a fetch and the address is label ZERO 
THEN decrement counter X. 

WHEN counter X equals zero 
THEN change to state 2. 

State 2: 

WHEN the address is between 0900 and 0907 AND 
the data is 00 with a DON'T CARE mask of 04 AND 
memory request (MREQ) is active 

THEN trace one bus cycle and decrement counter Y 

WHEN counter Y equals zero 
THENbrcak. 

3-38 



Tutorial: 64180, Z80 

Entering When-Then Statements and Comparators 

To use the Break/Event window, enter :B. 

To clear existing advanced events conditions, enter C <return>. 

To enter State 1 window, enter 1. 

To set status comparator R to detect the fetchl condition for the first when-then 
statement, enter R S 1 <return> <escape>. 

To set address comparator A to detect address 00 for the first when-then statement, 
enter A S 0000 <return> <escape>. 

Enter the first statement, "WHEN addrA and stR THEN Trace-Stop" 
(W W A & R T T S <return> <escape». 

To set address comparator B to detect the address label ZERO for the second when­
then statement, enter B S <space> ZERO <return> <return> <escape>. 

Enter the second statement, "WHEN addrB & stR THEN ctrX-Count" 
(WW B & R T X C <return». 

Enter the third statement, "WHEN ctrX THEN st2" 
(W W X T 2 <return> <escape». 

You should see your three When-Then statements and comparator contents in the 
State 1 as shown in Figure 3-23. 

3-39 



EL 800 User's Manual 

Figure 3-23. Completed State 1 Window 

EVENT STATE #1 

ADDRESS COMPARATOR A ADDRESS COMPARATOR B 

~ __ o_] __ s_et __ o_o_o_o ______ ~1 1~ ___ 0_] __ S_et __ 1_0_0_0 _________ ~ 

DATA COMPARATOR E DATA COMPARATOR F 

I I 
WHEN-THEN STATEMENTS 

0] WHEN addrA & stR THEN Trace-Stop 
1] WHEN addrB & stR THEN ctrX-Count 
2] WHEN ctrX THEN state2 

STATUS COMPARATOR R STATUS COMPARATOR S 

0] R = fetch 1 

x = 0 Y = 0 

_« Clear/addrA/addrB/dataE/dataF/statusR/statusS/When-then 

To set the State 2 conditions, move to the State 2 window «escape> 2). 

To set address comparator A to detect the range 900-907 for the first statement in 
State 2, enter A S 900,907 <return> <escape>. 

To set data comparator E to detect the byte 00 with a DON'T CARE mask of 04 for 
the first statement in State 2, enter E S 00 ; 04 <return> <escape>. 

To set status comparator R to recognize the :MREQ status for the first statement in 
State 2, enter R S M <return> <escape>. 

Enter the first State 2 statement, " WHEN addrA & dtaE & stR THEN Trace­
One_cycle ctrY -Count" (W W A & E & R T TOY C <return». 

Enter the second State 2 statement, "WHEN ctrY THEN Break" 
(W W Y T B <return> <escape». 

You should see your two When-Then statements and comparator contents as in 

3-40 



Tutorial: 64180, Z80 

Figure 3-24. 

Figure 3-24. Completed State 2 Window 

EVENT STATE #2 

ADDRESS COMPARATOR A ADDRESS COMPARATOR B 

[ Ol Set 0900 to 0907 

DATA COMPARATOR E DATA COMPARATOR F 

0] Set 00 DC 04 I I 
WHEN-THEN STATEMENTS 

OlWHEN addrA & dtaE & stR THEN Trace-One_cycle ctrY-Count 
llWHEN ctrY THEN BREAK 

STATOS COMPARATOR R STAT OS COMPARATOR S 

_« Clear/addrA/addrB/dataE/dataF/statusR/statusS/When-then 

Loading the Counters 

II 

Before you can execute code with this setup, you must first load the Advanced Event 
system's counters. We decided earlier that Counter X must be loaded with some very 
large number, and the counter is a 16-bit counter, so you will load the Counter X with 
the largest number possible, FFFF. 

Counter Y will determine how many bus cycles will be traced, so 3FFF seems 
(arbitrarily) sufficient. 

To load these values, go to the Break/Event window «escape» and load Counter X 
with FFFF (X FFFF <return> <return>. Load counter Y with 3FFF (Y 3FFF 
<return> <return>. 

At the bottom of the window, you should see "X = ffIf', and "Y = 3fff'. 

3-41 



EL 800 User's Manual 

Emulating with the Advanced Events System Set Up 

Enter:E to open the Emulate Window, and E to open the Event State sub-window. 

Enter C <return> <escape> to initialize the state variables, and leave the Event 
State sub-window. 

To begin emulation, Restart and Go (Z <return> G <return>.) Notice the 
"EMULATOR RUNNING" annunciator at the top of the Emulate window. Since the 
emulator has to execute 64K (FFFF) iterations of the test program, execution will 
take about 30 seconds, with a 2.5MHz clock. 

When the emulator halts, notice the "Event System Break" window in the upper right, 
shown in Figure 3-25. 

Figure 3-25. Emulate Window After Emulation 

0] (byte *)0900, 4 x 
1] (byte *)0904, 4 x 
2] (byte *)0908, 4 x 
3} (byte *)090c, 4 x 

EMULATE EMULATOR STOPPED 
1 B1ST 0900 00 Nap 

o BREAK 

--> 
--> 

00 01 02 03 
00 00 00 00 

0900<00 0901<01 

ttmIM:mm:II:ttr/??t??:It:?l@~~t~~M)@~~KttI?:::::I:tt:I:ttt:::titt:II:ttItttt:IItt:ttttIttt: 
o 103C C9 RET 
0 103D 00 Nap 

0 103E 00 Nap 

0 103F 00 Nap 

0 1040 00 Nap 

0 1041 00 Nap 

0 1042 00 Nap 

0 1043 00 Nap 

0 1044 00 Nap 

0 1045 00 Nap 

0 1046 00 Nap 

0 1047 00 Nap 
0 1048 00 Nap 

_ « Go/Step/Z-restart/Event-state/<return> to single step 

Examine the information in your Emulate Window. Is it what you expected? When 
you ran the previous experiment, the Emulate Window displayed, from top to bottom, 
a traced record of the code execution, the next instruction to be executed with a 
highlight, and a sequential code listing. 

3-42 



Tutorial: 64180, Z110 

You appear to have no trace, and have instead only a "BREAK" statement, seen in 
Figure 3-25. 

Whenever the results of an emulation experiment are unexpected, or appear to be 
wrong, it is time to re-examine the code and the specifications in the Break/Event 
Window. 

In this particular case, the problem seems to be absence of trace, and yet you entered 
the statement "WHEN addrA and dtaE and stR THEN Trace-One_cycle ctrY-Count". 
The address you installed in address comparator A certainly is the address range of 
Block 1 and 2, and examination of memory at this address range verifies that the 
memory reads and writes have been successfully performed. 

The solution is in interpretation; the emulator did, in fact, trace one cycle at each 
access to the memory space Blockl and 2. The emulation screen displays only 
disassembled trace, raw data converted into its equivalent instructions, complete with 
mnemonics and labels. What you have traced, however, is single bus cycles 
extracted from multi-bus-cycle instructions; these isolated cycles are not capable of 
being disassembled. 

This does not mean that you can't examine this trace; it means only that the traced 
information is not available in the Emulate Window. Viewing the Trace Window 
will allow you to examine the history of your code's execution. 

Enter:T to use the Trace Display. You will see Figure 3-26. 

3-43 



EL 800 User's Manual 

Figure 3-26. Trace Display Showing Raw Trace 

WATCH DISPLAY 
0] 

1] 
(byte *)0900, 4 x 
(byte *)0904, 4 x 

TRACE DISPLAY 
LINE AD DR DATA R/W BUS 

16 0907 00 W DATA 
15 0906 00 W DATA 
14 0905 00 W DATA 
13 0904 00 W DATA 
12 0903 00 W DATA 
11 0902 00 W DATA 
10 0901 00 W DATA 

9 0900 00 W DATA 
8 0900 00 W DATA 
7 0901 01 W DATA 
6 0902 02 W DATA 
5 0903 03 W DATA 
4 0900 00 R DATA 
3 0901 01 R DATA 

--> 
--> 

RQ AI< WA INT STATE 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 0902 02 R DATA 2 
1 090A 02 W DATA 2 

00 01 02 03 
04 05 06 07 

~\\\)j,~\\r\\)}}}}r?jiWM\i{)\rrrrr}}}}r{{{}}}}{}}}}{}}}}}}\lllr~~}ttttlttt~{IIIIIII~~~~~ 

_ « Go/Step/Z-restart/Event-state/<return> to single step 

The leftmost column is the trace line number column, which contains the position of 
that line in the trace buffer, with the first line having the highest line number, and the 
last line, where emulation broke, having the number 0. The next columns contain the 
contents of the address bus and data bus during the traced cycle, and whether the 
transaction was a read or write. 

The column titled BUS interprets status information and, for the Z80, describes 
whether the traced cycle was a memory request, fetch, interrupt acknowledge, data, 
or I/O request. If the emulator is configured for the HD64180 processor, the BUS 
column may also display DMA and sleep cycle conditions. 

The next four columns display status bit information, indicating if the BUSRQ-, 
BUSACK-, WAIT-, or INT-line have been asserted in this bus cycle. 

The rightmost column in the raw trace display shows the break/event state of the 
emulator during the traced bus cycle. Note that, in this demonstration, all the traced 
cycles are in break/event state #2, as you might expect from your break/event setup. 

3-44 



Tutorial: 64180, 280 

Examining Trace 

Before you use the cursor and page control keys to scroll through your trace, consider 
what you expect to find traced. The only cycles traced will be accesses to memory 
space Block 1. These cycles will be of three types. 

One type is the set-to-zero cycles of ZLOOP, where all eight cycles of each ZLOOP 
are traced because D2 is always low in 00. Trace lines 9-16 are examples of this type 
of cycle. Notice that all these cycles are writes. 

Another type is the loading of values from 00 to 07 in locations 900 to 907, where 
only those cycles with data values having D2 = 0 (less than 04) are traced. Trace 
lines 5-8 are examples of this, and are all writes. 

The third type of cycle is the read portion of the LDIR instruction, and, as above, will 
only be traced for data values less than 04. Trace lines 2-4 are examples of this, and 
are all reads. 

Summary of Tutorial 

In this tutorial, you've gone through a typical debug sequence: downloading a 
sample piece of code, looking at the code in overlay memory, stepping through the 
code, and using the Basic Breakpoint and Advanced Event Systems to isolate 
potential errors. This should give you a good idea of how the EL 800 can be used for 
debugging software and hardware. 

Take a few minutes now and look through the windows the tutorial did not cover. The 
unused windows were the Configuration window and the Diagnostics window. Type 
:C to enter the Configuration window and look through the communications, 
emulator setup and system processes windows. 

Type :D to enter and examine the Diagnostics window. These RAM tests, 
scopeloops, and reset pulses are to aid you with your hardware debugging tasks. 

To go back and view any other window, type : for the list of window letters, then the 
letter representing that window. 

For more detail on any window and information on resizing and moving windows, 
see the alphabetical descriptions of each window in Section 6, Operation. 

3-45 



SECTION 4 

Table of Conienis 

HARDWARE • • 
Base Module 
Probe Modules 

Hardware 

Probe Tip Use • • • • • • • • • 
Test Target Board. • • • • 
Target Diagnostic Tests 

Stacking and Unstacking the Modules • 
Stacking Order ••••• 
Overlay Memory Modules 

Maintenance 
Cables • • • • • • • • 
Probe Tip • • • • • • 
Cooling Vents • • • • • • • • • 

Troubleshooting • • • • 
Specifications • 

4-1 
4-3 
4-7 
4-8 
4-8 
4-9 

4-10 
4-13 
4-14 
4-16 
4-16 
4-16 
4-16 
4-17 
4-18 



Section 4 

HARDWARE 

The hardware for the EL S()() consists of a base module, a probe module, a choice of 
optional modules, a power supply and miscellaneous accessories. The modules stack 
on top of each other, so no connection cables are needed. 

This section describes each module, explains how to stack and un stack the modules, 
and provides information on maintenance of the EL S()(). 

Figure 4-1. EL 800 Typical Configuration 

stacking handle 

4-1 



EL 800 User's Manual 

The components of the EL 800 are the following: 

- Base unit module 

- Probe module and attached probe tip 

- Optional overlay memory modules 

- EL 800 User's Manual 

- RS-232 cable (9 to 25 pin) 

- RS-232 AT adapter cable (25 pin to 9 pin) 

- 2 floppy disks containing emulator control software 

- 5 wires with clips: one black (ground wire). four red (for connecting to other 
equipment) 

- Power supply: 110 vac or 220 vac 
- 110 vac power supply includes power cord 
- 220 vac power supply (international) does not include power cord 

- Vertical support stand 

- Optional accessories: 
- carrying case 

4-2 



Hardware 

Base Module 

The base module provides the 8K x 48 bit trace memory and the Advanced Event 
System, and is the main controller for the EL 800. It has connections for trigger input 
and output, and a serial port. The base module has a battery backup for RAM, so you 
don't need to download code each time you power up. 

There are 5 input/output connectors9 8 dip switches and a green LED on the left side 
of the base module. 

Figure 4-2. The Base Module: Left Side 

LED 

ground 

trigger Inputs 

trigger outputs 

~ 

The connectors, LED's and dip switches on the left side are described below: 

Ground 

Trigger Output 

The ground should always be connected to your target via 
the black clip wire provided. If the target and emulator have 
different ground potentials, the emulator CPU in the probe 
tip may be damaged. To avoid this problem, you should 
connect your target ground to the base module ground 
before you plug the probe tip into your target. 

Two external trigger outputs enable you to look at signals or 
signal duration on an oscilloscope or use other capture 
equipment. These are labeled "OUT 1" and "OUT 2." The 
red clip wires provided can be used for these connections. 

4-3 



EL 800 User's Manual 

Trigger Input 

Dip Switches 

Status LED 

4-4 

Two external trigger inputs provide input from logic outside 
the microprocessor. These are labeled "IN 1" and "IN 2." 
The red clip wires provided can be used for these 
connections. 

The dip switches on the base unit control the baud rate of 
the serial port. Only the first three are used; leave the others 
set to O. The setting on this must match the setting in the 
Configuration/Communications window in the EL 800 
control software. We recommend using the EL 800 at 19200 
baud. 

Baud Rate SWl SW2 SW3 

19200 1 0 0 

9600 0 1 0 
4800 1 1 0 
2400 0 0 1 

1200 1 0 1 

600 0 1 1 

300 1 1 1 

Note: 0 indicates off. 

The LED lights when the unit is turned on and the self-tests 
have completed successfully. 



Hardware 

The right side of the base module has a reset button, an on/off switch, a serial port 
and the power connection. 

Figure 4-3. The Base Module: Right Side 

reset button 

The connectors, and switches on the right side are described below: 

Serial port 

Reset button 

The EL 800 has one RS-232C serial interface on the base 
module. 

The baud rate can be set from 300 - 19,200 baud. It must be 
set in two places: the dip switch on the left side of the base 
unit (see page 4-3) and in the 
Configuration/Comm unications window. 

Two cables are provided: a 9 pin to 25 pin cable, and a short 
25 pin to 9 pin cable. Complete cabling information can be 
found in Appendix B. 

This button is used to reset the emulator 

- before starting the EL 800 control software (optional) 

- if the emulator stops communicating with the control 
software. This may happen if the stack loses its place, 
bus contention leads to execution of incorrect data, or 
interrupts are incorrectly used in your code. 

4-5 



EL 800 User's Manual 

Power connector 

4-6 

The base module is the only module which needs to be 
plugged in. A power supply is included with the EL 800. 
There are two versions available: 110 vac or 220 vac. 

The 110 vac version includes a power cord. If you are using 
the 220 vac version, you will have to supply your own 
power cord. 

Figure 4-4. Power Supply (110 vac) 

Figure 4-5. Power Supply (220 vac) 



Hardware 

Probe Modules 

Each probe module consists of the unit and a probe tip. There is a pull-out board 
stored inside the probe module which can be used as a test target for debugging 
software before your target is available. 

The probe tip is the small assembly that plugs into the target system microprocessor 
socket With the 64180 EL 800, you may use either the DIP probe tip or the PLCC 
probe tip (see Section 5 for specifics). The Z80 probe tip is available only in the DIP 
configuration. 

Figure 4-6. Probe Module Showing Test Target Board Pulled Out 

4-7 



EL 800 User's Manual 

Probe Tip Use 

Please note the following "DOs" and "DON'Ts." 

DO 

1. Note the location of pin 1 on the probe tip. Make sure to line up pin 1 on the 
probe tip, with pin 1 on your target socket 

2. Use standard static precautions when using the probe tip, as the probe tip is 
static sensitive. 

3. Use the male-to-male microprocessor socket provided to avoid damaging pins 
on your probe tip (DIP package only). 

4. Use your EL 800 with the vertical stand. 

DON'T 

1. Don't plug in or unplug the probe tip with the target on. 

2. Don't pull on the probe tip or cable. 

Test Target Board 

The test target board is stored in a pull-out drawer in the probe module. 
To use the test target board for software debugging: 

1. Pull the board out from the top slot (see Figure 4-6) 
(There is no release lever - just pull hard on the front comers of the board. 

2. Turn the board over. 
3. Insert the board in the bottom slot It goes in about 1 ": you'll hear 

a soft click when it is seated. (See Figure 4-7) 
4. Insert the probe tip into the microprocessor socket on the board. (See Figure 4-7) 

When you are not using the test target board, store it in the top slot 

4-8 



Hardware 

Target Diagnostic Tests 

The EL 800 control software includes ten diagnostic tests you can run on your target 
hardware. These diagnostics include scope loops and memory tests. Please see the 
"Operation" section for more information. 

Figure 4-7. Test Board with Probe Tip Plugged In 

4-9 



EL 800 User's Manual 

Stacking and Unstacking the Modules 

To connect two modules together: 

1. Flip both connector covers on the base unit to the open position (see Figure 4-
8). 

Figure 4-8. Opening Connector Covers 

flip connector covers open 
to expose connectors 

2. Pull out both dark grey handles on the top of the bottom module to the first 
click. In this position, the dark grey handles extend· 1/3" inch from the module. 

3. Place the top module on top of the bottom module. 

4. Push down on the top module; you'll hear a click when the module is firmly 
seated. 

5. Push in the handles in the bottom module to lock the two modules together. 

4-10 



Figure 4-9. Stacking the Modules 

To unstack the modules: 

Hardware 

probe 
module 

base 
module 

'-- extend stacking handles on both 
sides of bottom module to first click 

1. Pull the dark gray handles on the module just below the separation point out to 
the second click (extending approximately 2" from the module). (See Figure 
4-10.) This releases the connection between the modules. DO NOT pry apart 
the units as this will damage the module connectors. 

2. Lift the top module(s) oft: 

4-11 



EL 800 User's Manual 

Figure 4-10. Unstacking the Modules 

4-12 

L completely extend stacking handles 
on both sides of bottom module 



Hardware 

Stacking Order 

No matter what combination of optional modules you purchase, the base module 
always goes on the bottom. The following diagram indicates the order for additional 
optional modules such as overlay memory. 

Figure 4-11. Stacking Order 

probe 
module 

1-4 overlay 
modules 

base 
module 

4-13 



EL 800 User's Manual 

Overlay Memory Modules 

There are 6 overlay memory modules available: 

64 KB overlay memory with no battery backup (EL-810) 
64KB overlay memory with battery backup (EL-820) 

128KB overlay memory with no battery backup (EL-812) 
128KB overlay memory with battery backup (EL-822) 

256KB overlay memory with no battery backup (EL-814) 
256KB overlay memory with battery backup (EL-824) 

Any four of these can be stacked together, so you can get exactly the amount of 
overlay memory you need, from 64K to 1 MB. The overlay modules should be 
stacked in between the base module and the probe module. 

There are 8 dip switches on the left side panel. Switches 1 and 2 are used to show the 
configuration of overlay modules you are using. Switches 3-8 are not used, and 
should be left at 1. No two stacked modules should have the same switch 1 and 2 
setting. (See Figure 4-13.) 

SWl SW2 Description 
0 0 First overlay module 

0 1 Second overlay module 

1 0 Third overlay module 

1 1 Fourth overlay module 

A yellow LED on the right side panel of each overlay module indicates when overlay 
memory is accessed. 

4-14 



Figure 4-12. Overlay Memory Module 

Figure 4-13. Overlay Memory Showing Dip Switch Settings 

Hardware 

probe 
module 

1-4 
overlay 
modules 

base 
module 

4-15 



EL 800 User's Manual 

Maintenance 

A minimum of maintenance is required for yoW' EL 800 emulator. The three areas 
which require attention are the cables, probe-tip and cooling vents. 

Cables 

The cables are the most vulnerable part of the EL 800 due to flexing during use. 
Inspect the cables regularly for obvious damage such as cuts, breaks or tearS. Even if 
there is no visible damage, wires within a cable may break, causing erratic problems 
if the cable is flexed while the emulator is running. To isolate a faulty cable, swap the 
cable with a known good cable. 

Probe Tip 

The probe tip is the small assembly that plugs into the target system microprocessor 
socket With the 64180 EL 800, you may use either the DIP probe tip or the PLCC 
probe tip (see Section 5 for specifics). The ZSO probe tip is available only in the DIP 
configuration. 

Inspect the adapter each time you use the probe tip, as the pins can be easily bent or 
broken during insertion or extraction. When you are not using the probe tip, store it 
in the protective cardboard box it was shipped in. 

You can protect the adapter by installing a microprocessor socket onto the adapter. If 
a pin on the socket is broken, it is easier to replace than the probe tip. 

Cooling Vents 

Do not block the cooling vents on the back of each module. The EL 800 can be used 
in either the vertical or horizontal position. We encourage use in the vertical 
position, as it increases the efficiency of the free convection cooling. 

4-16 



Hardware 

Troubleshooting 

If your emulator is not working, please do the following: 

1. Check that the stacked modules are seated properly, with all the handles 
pushed completely in. 

2. Make sure the the emulator is plugged into a target system or to the built-in 
test target. If using the test target, make sure it is firmly seated in the bottom 
slot in the probe module. 

3. Make sure power is on to both the emulator and the target. 

4. Push the emulator reset button and restart your EL 800 control software. 

Common start-up problems are covered in Section 2. 

If you experience any problems not listed, please contact Applied Microsystems 
Corporation at (800)426-3925 (US), (206)882-2000 (in WA. state), or call your local 
sales office (International). 

We do not recOlnfrl..end a cOfrl.ponent-level repair in the field, unless performed by a 
qualified service engineer. 

4-17 



EL 800 User's Manual 

Specifications 

ELECTRICAL 
Input power: 

PHYSICAL 
Dimensions (per module): 

Probe tip length: 

ENVIRONMENTAL 
Operating temperature: 
Humidity: 

4-18 

110 vae 60 hz or 220 vac 50 hz 
Table top power supply 

8.5" x 11.0" x 0.85" 
21.6em x 27.9 em x 2.2 em 
16", 40.6 em 

00 C to 400 C 
0-90% noneondensing 



EL 800 User's Manual 

Exit the System 

You can exit the EL 800 control software from any of the main windows or from the 
main menu by typing :X. You will see a prompt to confirm your exit. Any 
configuration changes you make will be saved in the configuration database when 
you leave the EL 800 control software. 

You should always exit the software before turning the emulator power off. 

3-46 



SECTION 5 

Table of Contents 

Chip-Emulator Characteristics 

CHIP-EMULATOR CHARACTERISTICS 
zso . . . . . . . . 

ZSO Functional Overview • • • • 
Address Comparators • • • • • 
Equivilent Circuits/Input Loading ••••• 
Return-From-Interrupt (RETl) Considerations • • • • • 

DATA Switch Function • • • • • 
RETI In Overlay Solutions • • • • • • 

64180 
64180 Functional Overview. 0 • • • • 

Equivilent Circuits!Input Loading ••••••••• 
Z-Mask/Probe Tip Type Considerations • • • • • • • • 

PLCC Target/DIP Emulator •••••••••• 
DIP Target/PLCC Emulator • • • • • • • • 
DIP Target/PLCC Emulator, Z-Mask Processor • • • • • 

Z-Mask Emulation With DIP Emulator • • • • • • 
Return-From-Interrupt (RETl) Considerations 

DATA Switch Function • 
RETI In Overlay Solutions • • • • • 

5-1 
5-1 
5-1 
5-2 
5-2 
5-3 
5-6 
5-6 
5-9 
5-9 

5-10 
5-11 
5-11 
5-12 
5-12 
5-13 
5-13 
5-16 
5-16 



Section 5 

CHIP-EMULATOR CHARACTERISTICS 

This section deals with the Z80 and 64180 microprocessors in two contexts: 

1. a functional overview, and 

2. sensitivities in the design and use of the microprocessors which may affect 
emulation with the EL 800 emulator. 

Information on the Z80 begins on page 5-1. Information on the 64180 begins on page 
5-9. 

zao 

This section contains a functional overview of the ZSO microprocessor, information 
on additional ZSO address comparators, ZSO emulator equivilent circuit information, 
and Return from Interrupt (RETI) considerations. 

ZSO Functional Overview 

The ZSO is an 8-bit microprocessor in the 8080 architectural class. The Z80 has a 
16-bit address bus, unmultiplexed, and an 8-bit data bus. 

The processor has six general-purpose 8-bit registers that are also accessible as three 
16-bit register pairs, one 8-bit accumulator, one 8-bit flag register, a 16-bit program 
counter, a 16-bit stack pointer, and two 16-bit index registers. 

In addition to the above, the accumulator, flag, and general-purpose registers are 
duplicated in the "prime" registers. The ZSO instruction set contains commands that 
toggle accessibility between the main register set an the primes. 

5-1 



Z80 Chip-Emulator Characteristics 

ZSO interrupts include a non-maskable interrupt, and a maskable interrupt usable in 
three modes. 

Of additional interest are the block-transfer and block-search instructions. 

The ZSO uses separate I/O and memory addresses. 

For more information, consult the Zilog Components Data Book. 

Address Comparators 

The ZSO uses only 16 address lines (A:0-15), and the EL 800 has 20 available (A:O-
19). The extra four address lines can be used as four additional inputs from the target 
system. To use these, set the EXTADDR switch (Configuration: Emulator window 
:CE) to I, and connect the gripper clips from the ZSO probe module to the device you 
want input from. Use 20 bit values for the addrA and addrB comparators. 

There are two rules when using EXTADDR set to I: 

I. If you want to use two addresses which differ only in the upper nibble, you 
must use two separate comparators. For example, you can't set two items in 
comparator A to AFFFF and BFFFF. Put one item in comparator A and one in 
comparator B. 

2. If you enter an address range that spans the 64K boundary of AO-AI5, it uses 
up both address comparators for that event state. For example, if you specify 
the range AFFFF to BlOOO, you cannot specify any other addresses or ranges 
for comparators A and B in that state. 

Equivilent Circuits/Input Loading 

This section contains information regarding emulator/processor input loading and 
equivilent circuits. Equivalent circuits for the various probe tip microprocessor 
inputs are shown in Figures 5-IA and 5-IB. These models include the input 
capacitance of the processor itself and the additional emulator loading. 

5-2 



£80 Chlp-Emuiator Characteristics 

Figure 5-1. Emulator Input Equivalent Circuits (Z80) 

APPLICABLE 
MICROPROCESSOR SIGNALS: 

(;) 
30 ohm 

CLOCK 

3Sp! --r- SOp! 

~ 
APPLICABLE 

MICROPROCESSOR SIGNALS: 

8 
30 ohm 

DATA 
WAIT-

Spf J ~~ INT-
RST-
BUSRO-

While the emulator input capacitance is small, a marginal input signal, particularly 
the clock, may be degraded to an inoperable level by the introduction of the emulator 
probe tip. You should observe a strong, clean clock signal at the processor's clock 
input. 

It should be noted here that it is possible to drive the Z80 with a weak clock in such a 
fashion that the processor will appear to function correctly but will generate hard-to­
diagnose errors. 

Return-From-Interrupt (RETI) Considerations 

If your target circuit uses any of the Z80 peripheral devices in interrupt mode 2, and 
you wish to run your interrupt service routines out of overlay, you must take certain 
steps to ensure proper emulation with your EL 800 emulator. This section explains 
the potential problems, aa'1d the necessary steps to avoid them. 

In interrupt mode 2, the interrupting peripheral device must see the return-from-

5-3 



Z80 Chip-Emulator Characteristics 

interrupt (RETI) instruction at the end of the interrupt service routine to complete its 
interrupt cycle. To see and act upon this instruction, the interrupting device must see 
the RET! bytes on the data bus, an active RD- indicating a read, and an active Ml­
indicating an opcode fetch cycle. This set of conditions can, under certain 
circumstances, make emulation more difficult 

The first problem is bus contention. If the interrupting peripheral is to complete its 
interrupt cycle, the target's RD- line must be asserted, and the local target data bus 
may be driven by the target memory, either directly as in Figure 5-2A, or through the 
bidirectional buffer, as in Figure 5-2B. Note the use of RD- as a buffer direction 
control signal. The local target data bus may also be driven by the overlay RAM 
through the control PET. 

The bus contention arises from the bus being driven simultaneously by both the 
target and overlay. Not only is it generally bad practice to allow bus contention, the 
emulator's target data bus may be corrupted in the process, possibly causing 
erroneous execution. 

The second problem is the inability of the interrupting peripheral to see an RETI 
fetch and complete its interrupt cycle. In the circuit of Figure 5-2A, when an RET! is 
fetched from overlay, the interrupting peripheral sees a corrupted data bus, and in the 
circuit of Figure 5-2B, the peripheral sees valid data, but not an RET!. Essentially 
then, in either circuit configuration, the emulator's target data bus integrity is 
threatened, and the interrupt cycle has not been completed. 

The block diagrams of figures 5-2A and 5-2B represent the two major design 
configurations for the purpose of this discussion. These figures show the EL 800 
emulator already installed. In Figure 5-2A, the probe-tip connector, where the 
processor will be in the finished circuit, is placed directly on the same data bus as the 
system memory and the interrupting peripheral. This is the local target data bus. 

In Figure 5-2B, the probe-tip connector is buffered from the memory and peripheral 
bus, now the remote target data bus, by a bidirectional buffer, such as a 74LS245. 

5-4 



Z80 Chip-Emuiator Characteristics 

Figure 5-2. Target Circuit Configurations (Z80) 

RO-

DATA 
BUFFER ENABLE 

.................... 

EMULATOR 
TARGET 
DATA 
BUS 

PROBE TP CONNECTOR LOCAL 
TARGET 

:..----------~ DATA 

AD-

T 
DATA 
BUFFER ENABLE 

····;;····1 

EMULATOR 
TARGET LOCAL 
DATA TARGET 
BUl"S ____ ........ ____ """""'::~A 

PROBE TP CONNECT~ 

BUS 

BI­
DIRECTIONAL 

BUFFER 

INTERRUPTNG 
PERPHERAl 

DEVICE 

REMOTE 
TARGET 
DATA 
BUS 

tlTElftJPTNG 
PERPl-ERAl 

DEVICE 

5-5 



Z80 Chip-Emulator Characteristics 

DATA Switch Function 

To address the bus contention problem, the EL 800 has logical control over the data­
buffer-enable line, and can selectively disconnect the emulator target data bus from 
the local target data bus. User control of the data-buffer-enable line is asserted by 
setting the DATA switch in the Configuration/Emulator window. The DATA switch 
settings have the following effects: 

DATA = 0 

DATA = 1 

DATA=2 

This setting allows data to pass between the emulator target data 
bus and the local target data bus on all target and overlay 
accesses except reads from overlay. 

This setting allows data to pass between the emulator target data 
bus and the local target data bus on target accesses only. Data is 
not passed during overlay accesses. 

This setting allows data to pass between the emulator target data 
bus and the local target data bus during all executions cycles, and 
also during emulator peeks and pokes to target RAM. 

RETI In Overlay Solutions 

Three solutions to the RETI-in-overlay situation are shown below, two for each 
setting of the DATA switch, with buffered and unbuffered data busses. 

DATA = 0, Unbuffered 

A solution for the RETI problem in the circuit of Figure 5-2A, with the data switch 
set to 0, is as follows: 

If your target is in the form of Figure 5-2A, setting the emulator configuration data 
switch to 0 will ensure normal target circuit operation in all cases except that of read 
from overlay memory. In the case of an overlay memory read, the local target data 
bus is driven by the target memory, and the emulator target data bus is driven by 
overlay RAM. The control PET is not conducting, and no bus contention exists. 

If the address read is a valid target memory address, the valid and uncorrupted 
contents of that location appear on the local data bus. With the interrupt service 
routine's RETI mapped to overlay, the interrupt service routine in overlay can be 

5-6 



Z80 Chip-Emulator Characteristics 

terminated with a jump to a previously unused location in target RAM. If an RET! is 
placed in this location, it will be seen by both the interrupting peripheral, which will 
terminate its interrupt cycle, and by the emulator, which will have de-selected 
overlay RAM, avoiding contention, according to our mapping scheme. 

This solution changes timing slightly, requires an unused target RAM location, and 
the RET! -jump substitution requires a change in code and code size. If these changes 
are unacceptable, the target circuit can be designed with socketed ROM, pin­
compatible with some RAM device. If the target ROM is replaced with RAM, and 
the RET! is loaded into that RAM at the same addresses occupied by RETls in 
overlay, exact timing is maintained, and interrupt cycles are completed. 

DATA = 1, Unbuffered 

A solution for the RET! problem in the circuit of Figure 5-2A, with the data switch 
set to 1, is implemented in the same way as the previous example, with the exception 
of the DATA switch setting =1, and has essentially the same results. This solution is 
intended for the situation where the ROM on your target circuit is not read-write 
decoded. 

DATA = 2, Unbuffered 

A solution for the RETI problem in a circuit like Figure 5-2A, with the DATA switch 
set to 2, is implemented with the memory space containing the RETI mapped to 
overlay, the target memory device(s) must be removed or hard-wired de-selected to 
avoid bus contention. Care should be taken to ascertain that ALL target devices 
occupying addresses mapped to overlay are rendered incapable of driving the local 
data bus. 

CAUTION 
Bus contention can shorten the life of emulator and target components, and corrupt 
the emulation process. 

5-7 



Z80 Chip-Emulator Characteristics 

DATA = 0, Buffered 

This is the circuit configuration of Figure 5-2B. The RETI solutions are the same as 
in the DATA=O, unbuffered bus situation. 

DATA = 1, Buffered 

This is the circuit configuration of Figme 5-2B. The RETI solutions are the same as 
in the DATA=O, unbuffered bus situation. 

DATA = 2, Buffered 

This is the circuit configuration of Figure 5-2B. Unless you add direction-control 
circuitry to the target bus bidirectional buffer to resolve bus contention problems, this 
configuration may not be safely and effectively implemented. 

5-8 



64i80 Chip-Emuiator Characteristics 

64180 

This section contains a functional overview of the 64180 microprocessor, 
information on equivilent circuits and input loading, Z-mask/probe tip 
considerations, and Return from Interrupt (RETI) considerations. 

64180 Functional Overview 

The 64180 is an 8-bit microprocessor in the 8080 architectural class, and is upward­
compatible with the Zilog Z80. The 64180 has a 19 or 20-bit address bus, essentially 
unmultiplexed, and an 8-bit data bus. 

The processor has six general-purpose 8-bit registers that are also accessible as three 
16-bit register pairs, one 8-bit accumulator, one 8-bit flag register, a 16-bit program 
counter, a 16-bit stack pointer, and two 16-bit index registers. 

In addition to the above, the accumulator, flag, and general-purpose registers are 
duplicated in the "prime" registers. The 64180 instruction set contains commands 
that toggle accessibility between the main register set an the primes. 

The 64180 incorporates a memory management unit, a two-channel direct memory 
access controller, one synchronous and two asynchronous serial ports, two 16-bit 
programmable counter/timers, and a 12-source interrupt controller. 

64180 interrupts include a non-maskable interrupt, three maskable interrupts, an 
undefined-opcode interrupt, two timer interrupts, two DMA interrupts, and three 
serial port interrupts. 

Of additional interest are the block-transfer and block-search instructions. 

The 64180 uses separate I/O and memory addresses. 

For more information, consult the Hitachi 64180 8-Bit Microprocessor User's 
Manual. 

5-9 



64180 Chip-Emulator Characteristics 

Equivilent Circuits/Input Loading 

Equivalent circuits for the various probe tip microprocessor inputs are shown in 
Figure 5-3. These models include the input capacitance of the processor itself and 
the additional emulator loading. 

Figure 5-3. Emulator Input Equivalent Circuits (64180) 

MICROPROCESSOR 
30 ohm 

12 pi 

MICROPROCESSOR 

12p1 

APPLICABLE 
SIGNALS: 

RESET­
DO-07 
WAIT­
BUSREa­
INTO-,INT1-
INT2-

APPUCABLE 
SIGNALS: 

XTAL, EXTAL 
OREOO-, OREal­
RXAO-, RXA 1-
CTSO-, CTS1-
DCDO-, RXS 
CKAO-, CKA 1-
CKS 

While the emulator input capacitance is small, a marginal input signal may be 
degraded to an inoperable level by the introduction of the emulator probe tip. You 
should observe strong, clean input signals at the processor's inputs. 

It should be noted here that it is possible to drive the 64180 with a weak input in such 
a fashion that the processor will appear to function correctly but will generate hard­
to-diagnose errors. 

5-10 



64180 Chip-Emulator Characteristics 

Z-Mask/Probe Tip Type Considerations 

The Hitachi HD64180 is manufactured in two common packages, the 64-pin DIP 
package, and the 68-pin PLee package. The EL800 64180 emulator is manufactured 
either with the probe tip configured to be inserted in the DIP or PLee processor 
socket In addition, the probe tip that plugs into the DIP socket also accepts only a 
DIP-packaged processor, and the PLee-socket-fitting probe tip accepts only a 
PLee-packaged processor. 

Under many conditions, and with the use of appropriate adapters (where available), 
the DIP version may be used with a PLee target, and the PLee version may be used 
with a DIP target. Note that: 

• Such an adapter will increase susceptibility to noise, ground, and loading 
problems 

• The emulator with adapter may not run in a marginal target 

• There are some obvious restrictions due to a different number of signals on the 
two packages 

This mixing of connector types may be done for three reasons. Two of the reasons 
are simple mechanical adaptation (although some logical and electronic 
considerations pertain), but the third reason is to allow complete emulation of a DIP­
socketed Z-mask 64180. 

PLCC TargetIDIP Emulator 

The HD64180 silicon itself is capable of driving 20 address lines, to address 1 Mbyte 
of memory. In the PLee version, all 20 address lines are brought out, and the PLee 
64180 can actually address a 1 Mbyte memory. 

The DIP version, with 4 pins fewer than the PLee device, can not supply pins for all 
address lines, and only 19 lines are brought out The DIP 64180 can therefore 
address a maximum of 512 Kbytes of memory. 

If an adapter is used to fit a DIP-configured emulator to PLee-configured target, the 
user must take two steps to assure proper emulation. 

5-11 



64180 Chip-Emulator Characteristics 

1. Address line 19 on the target must be pulled up or down, according to the 
user's needs, with an appropriate resistor, limiting the physical address space 
to 512 Kbytes. 

2. The user must verify that his code can run in the hardwired-selected 512 Kbyte 
memory space. If necessary, code must be modified to meet this criterion. 

DIP TargetIPLCC Emulator 

This is essentially the reverse of the previous condition. In this case, the 
processor/emulator is capable of driving one more address line (AI9) than the target 
circuit The processor/emulator is capable of addressing 1 Mbyte of memory, and the 
target's address bus can only address 512 Kbytes of memory. 

To emulate in this configuration, it should be noted that, although the target does not 
see A19, it is still driven by the processor according to the MMU and your code. For 
meaningful trace and break to be effected, care should be taken (with your code) to 
assure a known state of A19. 

DIP TargetIPLCC Emulator, Z-Mask Processor 

This condition is a variant of the previous condition, and is significant for two 
reasons: 

1. If the Hitachi or Zilog Z-mask version of the 64180 is used, the processor can 
be set to suppress selectively the processor output signal LIR-, a signal without 
which the DIP version of the emulator cannot emulate completely. 

2. The PLCC version of the EL800 64180 emulator can completely reconstruct 
code execution without the LIR- signal, allowing complete emulation of the 
Z-mask processor. 

This condition is therefore important when emulating a DIP target using a Z-mask 
processor. The PLCC EL800 with a PLCC-DIP adapter is the solution. 

The code restrictions of the previous example are the only restrictions in this 
condition. 

5-12 



64180 Chip-Emulator Characteristics 

Z-Mask Emulation With DIP Emulator 

Reference has been previously made to "incomplete" emulation when emulating the 
Z-mask 64180 processor with the DIP-processor-configured EL800 emulator. This 
section addresses Z-mask emulation and its limitations with the DIP emulator. 

If you use the Z-mask processor and set bit D7 of internal I/O register OMCR to 0, 
you will suppress normal assertion of the processor's LIR- output signal. In normal 
operation of the DIP-configured EL800 64180, partial loss of LIR- will degrade 
emulator operation to the point of inoperability, and the following steps should be 
taken. 

Replace the H64LCA file in your working directory with the file presently named 
H64Z.LCA, also in your working directory, as the file read by the emulator software 
at bootup. This can be accomplished by renaming H64LCA to H64.TMP and THEN 
renaming H64Z.LCA to H64LCA. 

If the emulator is booted up with the new H64LCA file, emulator operation will be 
correct with the suppressed LIR- signal, with one exception: internal DMA read 
cycles will appear to the emulator as opcode fetches, and will be traced as such. 

Return-From-Interrupt (RETI) Considerations 

If your target circuit uses any of the 64180 peripheral devices in interrupt mode 2, 
and you wish to run your interrupt service routines out of overlay, you must take 
certain steps to ensure proper emulation with your EL 800 emulator. This section 
explains the potential problems, and the necessary steps to avoid them. 

In interrupt mode 2, the interrupting peripheral device must see the return-from­
interrupt (RET!) instruction at the end of the interrupt service routine to complete its 
interrupt cycle. To see and act upon this instruction, the interrupting device must see 
the RETI bytes on the data bus, an active RD- indicating a read, and an active LIR­
indicating an opcode fetch cycle. This set of conditions can, under certain 
circumstances, make emulation more difficult 

The first problem is bus contention. If the interrupting peripheral is to complete its 
interrupt cycle, the target's RD- line must be asserted, a..~d the local target data bus 
may be driven by the target ROM, either directly as in Figure 5-4A, or through the 
bidirectional buffer, as in Figure 5-4B. Note the use of RD- as a buffer direction 

5-13 



64180 Chip-Emulator Characteristics 

control signal. The local target data bus may also be driven by the overlay RAM 
through the control FET. 

The bus contention arises from the bus being driven simultaneously by both the 
target and overlay. Not only is it generally bad practice to allow bus contention, the 
emulator's target data bus is corrupted in the process, possibly causing erroneous 
execution. 

The second problem is the inability of the interrupting peripheral to see an RET! 
fetch and complete its interrupt cycle. In the circuit of Figure 5-4A, when an RET! is 
fetched from overlay, the interrupting peripheral sees a corrupted data bus, and in the 
circuit of Figure 5-4B, the peripheral sees valid data, but not an RET!. Essentially 
then, in either circuit configuration, the emulator's target data bus integrity is 
threatened, and the interrupt cycle has not been completed. 

The block diagrams of figures 5-4A and 5-4B represent the two major design 
configurations for the purpose of this discussion. These figures show the EL 800 
emulator already installed. In Figure 5-4A, the probe-tip connector, where the 
processor will be in the finished circuit, is placed directly on the same data bus as the 
system memory and the interrupting peripheral. This is the local target data bus. 

In Figure 5-4B, the probe-tip connector is buffered from the memory and peripheral 
bus, now the remote target data bus, by a bidirectional buffer, such as a 74LS245. 

5-14 



64180 Chip-Emuiator Characteristics 

Figure 5-4. Target Circuit Configurations (64180) 

DATA 
BUFFER ENABlE 

E .... LATOR 
OIlERlAY 

IWoI 

LOCAl 
TARGET 
DATA 

r-~-~-+--~--""';: BUS 

PRJBE TF CONNECTOR 

BI­
DIRECTIONAl.. 

BUFfER 

~ RAM ~ 

I~ 
~ 

REMOTE 
TARGET 
DATA 
BUS 

INTEfflUPTING 
PERPHEIW. 

DEVICE 

5-15 



64180 Chip-Emulator Characteristics 

DATA Switch Function 

To address the bus contention problem, the EL 800 has logical control over the data­
buffer-enable line, and can selectively disconnect the emulator target data bus from 
the local target data bus. User control of the data-buffer-enable line is asserted by 
setting the DATA switch in the Configuration/Emulator window. The DATA switch 
settings have the following effects: 

DATA=O 

DATA = 1 

DATA=2 

This setting allows data to pass between the emulator target data 
bus and the local target data bus on all target and overlay 
accesses except reads from memory. 

This setting allows data to pass between the emulator target data 
bus and the local target data bus on target accesses only. Data is 
not passed during overlay accesses. 

This setting allows data to pass between the emulator target data 
bus and the local target data bus during all executions cycles, and 
also during emulator peeks and pokes to target RAM. 

RETI In Overlay Solutions 

Three solutions to the RETI-in-overlay situation are shown below, two for each 
setting of the DATA switch, with buffered and unbuffered data busses. 

DATA = 0, Unbuffered 

A solution for the RETI problem in the circuit of Figure 5-4A, with the data switch 
set to 0, is as follows: 

If your target is in the form of Figure 5-4A, setting the emulator configuration data 
switch to 0 will ensure normal target circuit operation in all cases except that of read 
from target memory. In the case of target memory read, the local target data bus is 
driven by the target memory, and the emulator target data bus is driven by overlay 
RAM. The control FET is not conducting, and no bus contention exists. 

If the address read is a valid target memory address, the valid and uncorrupted 
contents of that location appear on the local data bus. With the target ROM space 
containing the interrupt service routine's RET! mapped to overlay, and the remaining 

5-16 



64180 Chip-Emulator Characteristics 

target RAM mapped to target, the interrupt service routine in overlay can be 
terminated with a jump to a previously unused location in target RAM. If an RET! is 
placed in this location, it will be seen by both the interrupting peripheral, which will 
terminate its interrupt cycle, and by the emulator, which will have de-selected 
overlay RAM, avoiding contention, according to our mapping scheme. 

This solution changes timing slightly, requires an unused target RAM location, and 
the RETI -jump substitution requires a change in code and code size. If these changes 
are unacceptable, the target circuit can be designed with socketed ROM, pin­
compatible with some RAM device. If the target ROM is replaced with RAM, and 
the RETI is loaded into that RAM at the same addresses occupied by RETIs in 
overlay, exact timing is maintained, and interrupt cycles are completed. 

DATA = 1, Unbuffered 

A solution for the RETI problem in the circuit of Figure 5-4A, with the data switch 
set to 1, is implemented in the same way as the previous example, with the exception 
of the DATA switch setting =1, and has essentially the same results. This solution is 
intended for the situation where the ROM on your target circuit is not read-write 
decoded. 

DATA = 2, Unbuffered 

A solution for the RETI problem in a circuit like Figure 5-4A, with the DATA switch 
set to 2 is implemented with the target ROM space, containing the RETI, mapped to 
overlay, and the remaining target RAM mapped to target, the target ROM must be 
removed or hard-wired de-selected to avoid bus contention. Care should be taken to 
ascertain that ALL addresses mapped to overlay are rendered incapable of driving 
the local data bus. 

CAUTION 
Bus contention can shorten the life of emulator and target components, and corrupt 
the emulation process. 

5-17 



64180 Chip-Emulator Characteristics 

DATA = 0, Buffered 

This is the circuit configuration of Figure 5-4B. The RETI solutions are the same as 
in the DATA=O, unbuffered bus situation. 

DATA = 1, Buffered 

This is the circuit configuration of Figure 5-4B. The RETI solutions are the same as 
in the DATA=O, unbuffered bus situation. 

DATA = 2, Buffered 

This is the circuit configuration of Figure 5-4B. Unless you add direction-control 
circuitry to the target bus bi-directional buffer to resolve bus contention problems, 
this configuration may not be safely and effectively implemented. 

5-18 



SECTION 6 

Table of Contents 

Operation 

OPERATION 
Window Basics ................................................................................................ 6-1 

Getting Help .................................................................................................. 6-1 
J>rompt Basics ............................................................................................... 6-2 
Error Messages ............................................................................................. 6-2 
S witching Windows ..................................................................................... 6-3 
Displaying Multiple Windows on the Screen. ............................................ 6-4 
Moving and Sizing Windows ...................................................................... 6-4 
Shell Escape .................................................................................................. 6-5 

Cover Window ................................................................................................. 6-6 
rroubleshooting Initial Startup .................................................................... 6-7 
Initialize ........................................................................................................ 6-9 
Reload ............................................................................................................ 6-11 

Main Menu ....................................................................................................... 6-13 
Expression Analyzer ....................................................................................... 6-15 
Assembler Window ......................................................................................... 6-17 
Break/Event Summary Window ..................................................................... 6-20 

Basic Breakpoint System ............................................................................. 6-21 
Advanced Event System .............................................................................. 6-22 
Deleting Items ............................................................................................... 6-24 
Basic Breakpoint Window ........................................................................... 6-26 
X and Y Counter Windows .......................................................................... 6-29 
S tate Windows .............................................................................................. 6-31 

Address Comparator Windows ................................................................. 6-35 
Data Comparator Windows ...................................................................... 6-37 
Status Comparator Windows .................................................................... 6-39 



Z80 Status Signals .................................................................................. 6-40 
64180 Status Signals .............................................................................. 6-40 

WHEN-THEN Statement Windows ......................................................... 6-43 
Entering Conditions ................................................................................ 6-44 
Entering Actions ..................................................................................... 6-44 

Configuration Window .................................................................................... 6-46 
Communications ........................................................................................... 6-47 
Emulator ........................................................................................................ 6-50 
System ........................................................................................................... 6-56 
User Interface ................................................................................................ 6-58 

Diagnostics Window ....................................................................................... 6-60 
Emulate Window ............................................................................................. 6-63 

Event-State Window .................................................................................... 6-67 
File Access Window ........................................................................................ 6-69 
Memory Mode Window .................................................................................. 6-74 
Overlay Window .............................................................................................. 6-77 
Registers Window ........................................................................................... 6-81 
Symbol Table Window .................................................................................... 6-83 
Trace Window .................................................................................................. 6-86 
Watch Window ................................................................................................ 6-91 
Exit Window .................................................................................................... 6-95 



Section 6 

OPERATION 

WINDOW BASICS 

The user interface for the EL 800 microprocessor development system groups 
related emulation functions in windows. You can use multiple windows 
simultaneously, and position and size the windows as you like. 

This section frrst covers the basics of using the windows, and then provides an 
alphabetic reference for each of the main windows, including all commands 
associated with the window. Sub-windows and sub-window commands are 
described after the main window they are associated with. Within each window 
section, under the heading "Command Summary", there is an illustration showing 
all commands relevant to that window. A quick-reference list of all commands is 
also provided in Appendix A. 

Information in windows can be scrolled with the cursor control and paging keys if it 
spans more than one screen. Data in visible windows is updated as it changes. 

Getting Help 

If you need additional information on any command, window, or entry, you can type 
a question mark (?) to display a help message. The help message is displayed in 
a separate window on the screen. The information shown in the help window is 
relevant to your current activity. When you are fInished reading the help 
information, press <esc> to return to the active window. 

6-1 



Window Basics 

Prompt Basics 

The EL 800 lists all possible options for your current activity on a command line at 
the bottom of the screen. This line is called the prompt, since it prompts you for 
the next function. The following rules are used to select commands from a prompt 
line: 

1. Upper case letters (highlighted) in an item are used to select that item. 

2. If there are no upper case letters, use the highlighted numbers to make a 
selection. 

3. Words enclosed in parentheses ( ), or all lower case words, indicate that 
you should type in a value. Don't type the parentheses themselves. 

4. Square brackets [ ] indicate optional items. Do not type the brackets. 

5. Punctuation shown on the command line is important! Enter any 
commas (,) and semicolons (;) as you see them on the prompt line. 

The prompt line essentially anticipates your next request. Try typing a few 
commands, and watch the command line change as you enter additional 
information. The interface is responding to the incoming information and actually 
guides you through command entry. 

When a window is activated, the prompt shows the choices available for that 
window. Note that choices are separated by a slash (t). 

When prompted for a value, you can either type the hexadecimal value or use the 
expression analyzer to convert symbols, math operators, C language operators, or 
numbers in varying radixes to a hexadecimal value (see the Expression Analyzer 
section). 

Error Messages 

If you type an incorrect value, or if an error occurs, an error message appears in 
the upper right comer of the screen. You can get additional information on each 
error message by typing a question mark (?) while the error is displayed. 

Note that you must press <esc> to remove the help message from the screen. 

You can remove the error message from the screen by pressing any key. The 
following example shows how an error message and related help message are 
displayed. The error occurred because a non-existent symbol name was specified 
in the expression analyzer as the assembler starting address. 

6-2 



Window Basics 

Error Message and Help Windows 

F File Access 
M Memory Mode 
o Overlay 
R Registers 
S Symbol Table 
T Trace Display 
¥ ¥atch 
X Exit Program 

Switching Windows 

There are three ways to activate any window: 

name you spec; n 
table. Symbol names are case 

Double lines indicate 
active window 

1. If you are at the Main menu, type the frrst letter of the window name. 

2. If you are at the Main menu, use i and J, to highlight the window name 
and press <return>. 

3. From anywhere in the control software, type a colon (:) followed by the 
fIrst letter of the window name. 

Mter selecting the window, you will either see a prompt on the bottom line of the 
screen (A, C, and M windows), or the new window will appear (B, D, E, F, 0, R, 
S, T, and W windows). All windows listed on the Main menu are called top level 
windows. 

In the Assembler, Configuration, and Memory Mode windows, the prompt 
indicates that you must make a choice or enter data before activating the window. 

To close a window, activate it and then press <esc>. 

6-3 



Window Basics 

Displaying Multiple Windows on the Screen 

You can have multiple windows on the screen at one time. From the fIrst prompt 
in any window, type a colon (:) and you'll see the following prompt: 

« AlB/C/DIElF/M/O/RlSIT/W/X 

Type the letter of the window you want to activate. The new window overlaps the 
previous window, unless you had previously moved or resized the window. 

If two or more windows are on the screen simultaneously, the active window is 
shown surrounded by double lines. The active window, always the most recently 
invoked, determines which commands are listed on the command line at the 
bottom of your screen and your current function. A window must be active before 
you can use it. Typing <esc> from a window returns you to the previously active 
window. Typing <esc> from a top level window closes the window. 

Any visible window's data is constantly updated as emulation progresses so that 
you can change one aspect of emulation and view the resultant changes in other 
areas. For example, while stepping through code in the Emulate window, you can 
watch the Memory, Register, Trace, and Watch windows simultaneously for 
changes. 

Moving and Sizing Windows 

With one or more windows open on your screen, you can position and size each 
window as you see fit. Press <PI> to move the active window. (If the window 
you want to move is not currently active, type a colon (:) followed by one of the 
letters [ABCDEFMORSTWX] to activate the proper window.) Use the left, 
right, up, and down cursor control keys to move the window to the position you 
desire. When finished, press <esc> or <return> to return to the active window. 

Sizing windows works similarly. Press <F2> to resize the active window. Use 
the cursor control keys to size the window as you like. Be sure to press <esc> or 
<return> when you fmish. 

Using the <PI> and <P2> keys on a particular window allows you to completely 
configure your screen the way you like it. Once set, the position and size of a 
window will be maintained until you exit the control software, even if you close 
and then reopen the window. You can also save the window confIguration 
permanently by going to the File Access (:F) window, selecting Save Windows, 
and entering the fIlename for confIguration storage. This window placement and 
size will be used when you next open the window or control software. 

6-4 



Window Basics 

If you want to save several different window configurations, that is also possible. 
You can then exit from the control software and return, restoring the window 
configuration of your choice. 

Shell Escape 

The shell escape feature allows you to temporarily leave the EL 800 control 
software and enter operating system commands. To get to the shell escape 
process (COMMAND.COM is the default), type an exclamation point (!). The 
shell escape only works from the Main Menu and the top level windows. Once you 
have chosen a command or sub-window, you must <backspace> or <esc> out to 
the top level of the window before using the shell escape. To return to the EL 800 
software, use the DOS "EXIT" command. 

To change the default shell escape to a program other than COMMAND.COM, 
use the Configuration/System window (see page 6-56). 

If the shell escape feature seems to be working erratically, you may have overex­
tended your host computer's memory. Try clearing all unnecessary resident pro­
grams from memory and restarting the EL 800 control software. 

6-5 



Cover Window <ctrl-c> 

COVER WINDOW <ctrl-c> 

Description 

The Cover window is the fIrst screen displayed after you start the EL 800 
software. It shows the software serial number and version, the processor type, 
and the names of the hardware modules installed. You cannot change the 
configuration information from this window. (It can only be changed by switching 
pods, overlay, or base modules.) 

Cover Window 

L 8m) H1ULATCIR CClrHROL SOFTV/ARE 

Copyright (c) Applied Microsystems Corporation 1988 

Software Configuration 
Processor: 
Version: 
Serial Nl.ITIber: 

Hardware Configuration 
Base Module: 
Pod Module: 
Overlay Module: 
Overlay Module: 

Z88 
3.88 
N88888 

ElU88 
288 
128K-& 
256K 

If these values are missing. 
your emulator and control 
software are not commun­
icating properly. See 
Section 2 

« ? for help/Initialize emulator/Reload shell code/<return> to continue 

You can take four actions from the Cover window: 

Go to Main Menu To access all emulator functions via the main menu, press 
<return>. 

Initialize emulator The EL 800 emulator automatically saves the current 
status of many windows and internal states when you exit 
the software, so that you can resume debugging where you 

6-6 



Cover Window <ctrl-c> 

left off. IT you want to reset all the windows and internal 
states to their default configuration, press I to initialize the 
emulator. The chart in the Cover Window: Initialize section 
shows the differences between the hardware emulator reset 
button and the Initialize choice. See Appendix D for details 
on what is saved at power-on, reset, power off, software 
startup and exit. 

Reload shell code The emulator shell code is used to configure the emulator 
logic, and should only be reloaded (R) if you change to a 
new hardware processor module or if you receive a software 
update. The shell code is saved in the battery backed up 
RAM in the emulator, so does not need to be reloaded even 
if the emulator's power is turned off. 

Get help Type? to view help infonnation which explains the basics of 
using the EL 800 control software and how to use the other 
three choices in the Cover window. 

If you want to view the Cover window after using other windows, type <ctrl-c>. 
(Typing <ctrl-c> from the Cover window exits the control software completely.) 

Troubleshooting Initial Startup 

If the hardware and software are not communicating when you start the EL 800 
software, you will not see the module types and sizes listed in the Cover window. 
In this case, and for more infonnation, see the troubleshooting chart in Section 2, 
Getting Started (page 2-20). 

If the control software cannot make contact with the emulator, you will see the error 
message "Emulator not opened: Ignore/Retry." At this point you can type <ctrl-c> 
to quit the control software, I to ignore the lack of contact with the emulator and 
start the control software, or R to try making contact again. 

6-7 



Cover Window <ctrl-c> 

6-8 



Cover Window: Initialize <ctrl-c>I 

COVER WINDOW: INITIALIZE <ctrl-c>I 

This window is used to reset the emulator configuration to its default state. The 
following table shows exactly what is affected during this emulator initialization, 
and the differences between using this command and a hardware reset (performed 
with the reset button on the emulator). 

Differences between the Initialize Emulator command and a Hardware Reset 

Initialize Emulator 

- Clears overlay map 
- Sets counters X and Y to tlstop countingtl 
- Sets trace control to "begin tracingtl (position in trace buffer is 

not reset) 
- Switches to Advanced Event System state 1 and initilizes AES 
- Clears soft-switches to default state 
- Loads new target PC vector 
- Sets counters to zero 

Hardware Reset 
- Loads new target PC vector 
- Ciears position in trace buffer 

Initializing and Resetting the Emulator 

See Appendix D for complete information on what happens when you start and 
exit the software, turn power on to the hardware, turn power off, reset, and initial­
ize the emulator. 

6-9 



Cover Window: Initialize <ctrl-c>I 

Initialize Emulator Window 

EL 800 EMULATOR CONTROL SOFTWARE 

INITIALI:E EMUL~TUR 

PRESS <return> TO CONFIRM 
<Esc> to cancel 

« press <return> to confirm/<esc> to cancel 

6-10 



Cover Window: Reload <ctrl-c>R 

COVER WINDOW: RELOAD <ctrl-c>R 

Description 

Emulator shell code is retained in the battery backed up RAM in the emulator, and 
so does not need to be reloaded if emulator power is turned off. 

You only need to reload the emulator shell code if: 

1. you change to a new hardware processor module 

2. you receive a software update 

There are four files that are loaded each time you reload the shell code (plus the 
h64z.1ca file with Z mask 64180 processors). ??? is either Z80 or 64180, 
depending on which processor you are using: 

1. ??? i .shl Operating kernel 

2. ???2.shl 

3. ???pod 

4. ???.1ca 

Processor specific applications software 

Pod processor software 

Base unit software 

These files must be in the same directory as the executable file EL??? .exe (see 
Section 2) 

Reloading the emulator shell code takes approximately 5 minutes. 

6-11 



Cover Window: Reload <ctrl-c>R 

Reload Shell Code Window 

EL :300 Et'1ULATOF' CorHf.'ClL SClFT'",IAFE 

F:ELOAO :;:,HELL 

Reloading the emulator shell code takes several minutes. 
PRESS <return> TO CONFIRM 

_ «press (return> to confirm/(esc) to cancel 

6-12 



Main Menu 

MAIN MENU 

Description 

The Main Menu provides a list of the available windows: 

:A Assembler Line assembler, memory disassembler 
:B Break/Event Advanced event system and basic breakpoints 
:C Configuration Communications, emulator soft switches, shell 

:D 

:E 

:F 

:M 
:0 

:R 
:s 
:T 
:W 

:X 

Diagnostics 

Emulate 

File Access 

Memory Mode 
Overlay 

Registers 
Symbol Table 
Trace Display 
Watch 

Exit Program 

escape, system processes 
Target system diagnostics: RAM tests, scope 

loops 
Go, step, reset emulator, set and clear 

event state variables 
Change directory; upload/download files; save sym­

bol table, breakevent system, emulator switch­
es, overlay mapping, trace and/or windows; 
change default file format; edit or view file; run 
make utility 

Display and modify memory 
Set up, map, and display overlay memory; copy 
data blocks between target and overlay 
Set, clear, and display CPU registers 
Add, delete, fmd and display symbols 
Display raw or disassembled trace data 
Dynamic display of memory locations, symbols, 

and registers 
Return to DOS 

There are three ways to go to any window from the Main Menu: 

1. Type the first letter of the window name. 

2. Use i and J, to highlight the window name and press <return>. 

3. Type a colon (:) followed by the first letter of the window name. 

6-13 



Main Menu 

Main Menu 

B Break/Event 
C Configuration 
D Diagnostics 
E Emulate 
F File Access 
M Memory Mode 
o Overlay 
R Registers 
S Symbol Table 
T Trace Display 
Ii 't'atch 
X Exit Program 

« enter window selection 

6-14 



Expression Analyzer <space> 

EXPRESSION ANALYZER <space> 

Description 

The expression analyzer accepts hexadecimal, decimal, octal, and binary numbers, 
symbols, and math operators. It also understands most of the arithmetic operators 
of the C language. The expression analyzer can be called from any prompt that 
expects a numeric value by pressing the space bar. 

Hex numbers (default) must start with a numeric digit, and should not have a 
following H. To specify numbers in other radixes, prefix the value with a zero (0) 
and one of [X, L,O, N], i.e.: 

OXnnnn hexadecimal (Onnnn also works) 
OLnnnn decimal (.nnnn also works) 
OOnnnn octal 
ONnnnn binary 

The expression analyzer recognizes the standard C language operators. 
Appendix F, Using Expressions, contains detailed information about precedence 
and use in the expression analyzer. 

After an expression has been entered, press <return>. The expression will be 
evaluated, and the result will be inserted on the prompt line. Note that the result 
is shown as the least significant 32 bits of the evaluation, with leading zeros 
suppressed. 

You can also see the value of a register by using the expression analyzer, or use 
the value of a register in an expression. For instance, entering 

*((WORD *) SP +4) 

yields the word residing 4 bytes down in the CPU's stack. See the Registers 
Window section for more information on displaying register values. For more 
information on the expression analyzer and expressions it recognizes, see 
AppendixF. 

6-15 



Expression Analyzer <space> 

Expression Analyzer Window 
') lled t11cr03i3tem3 Cot-:'Or-:;tlon - ::::,Ci - t''lln 11enu T '08 .- fOf- Help 

Examples 

/vi Memory Mode 
o Overlay 
R Registers 
S Symbol Table 
T Trace Display 
'W 'Watch 
X Exit Program 

.18 * ( 5 + loop) The value is the sum of 5 (hex) plus the value of the 
symbol "loop" multiplied by 18 (decimal). 

*(WORD*) 123 + 1 

6-16 

Add one to the two byte value stored at address 123. If 
the value at 123 is FOFF, this expression would be equal 
to Fl00. 



Assembler Window :A 

ASSEMBLER WINDOW : A 

Description 

This window lets you view disassembled memory and assemble lines of code into 
target or overlay memory space, depending on overlay mapping. Enter the 
address where you'd like to start viewing your assembly code and press 
<return>. If no address is given, the disassembly returns to your last position in 
disassembled memory. 

The initial prompt "enter beginning address" expects a hexadecimal address. You 
can use the expression analyzer to enter an expression for this address using 
symbols, numeric data, and C language and math operators by pressing the space 
bar. (See the Expression Analyzer section for more infonnation.) 

Assembler Window 

SSEMB~ __________________________________________________________ _ 

~~I~!!~II!~~ffi~II~lll~l~l~lIIll~lI~~i~~'l~IlII~~Il~lIIIIII~l~IIlI~l~:l:f~III~:~:Ig~~l:'lI:l~l~l~lll~:~lll~l~l~IlIIIlIlI~l~l~IIIlI 
0102 54 LD D, H 
0103 45 LD B, L 
01 04 52 LD D, D 
105 3A284D LD A, (4D28) 

mid: 108 41 LD B,C 
109 53 LD D,E 
010A 4B LD C,E 
010C 41 LD B,C 
010D 4D LD C,L 

end: 010E 45 LD B,L 
010F 3A4620 LD A, (2046) 
0112 57 LD D,A 

Symbols Instruction Data 

« enter line to be assembled 

6-17 



Assembler Window :A 

When the disassembled memory is on the screen, you can use the line assembler 
to change any line. The syntax for entering the line to be assembled is: 

[label:]instruction data 

The instruction you enter will write over the highlighted instruction. You do not 
have to type in the label. 

label Case sensitive. Labels do not need to be in the symbol table; 
using a label here automatically adds it to the symbol table, 
overwriting it if it already exists. To remove a label, you must 
go to the Symbol Table window and type D for the delete 
symbols prompt (:SD). 

instruction Must be valid syntax for your microprocessor. 

data Can be any value acceptable by the expression analyzer (see 
that section). This includes hexadecimal addresses, decimal 
addresses, symbols, or expressions. Hexadecimal numbers 
must start with a digit, and must not have a following H. 

When you press <return>, the new line is assembled and the emulator tries to 
write it to the highlighted address. This address must be RAM or overlay with 
write pennission set (not ROM) or the new line cannot be written to memory. 

If your program resides in overlay memory, the new line will be written to overlay 
memory. If you do not tum off the emulator power, your program remains in 
memory even if you exit the EL 800 control software and so remains available for 
your next emulation session. If you do exit the control software and subsequently 
restart it, do not initialize the emulator unless you want to clear the overlay 
memory map. 

You can display any type of memory space supported by your processor. For the 
Z80 and 64180, the choices are I/O or memory. To display I/O space, type io@ 
immediately before the starting address. To switch back to memory space, type 
mem@. 

6-18 



Assembler Window :A 

Examples 

start: ld a, b 

IdA,(main) 

See Also 

Enter instruction "ld a,b" and label this line with the symbol 
"start." 

Load accumulator A with the contents of the memory location 
indicated by the value of "main." 

Expression Analyzer, page 6-15 

AppendixF 

6-19 



BreaklEvent Summary Window :B 

BREAK/EVENT SUMMARY WINDOW :B 

Description 

The Break/Event window provides access to two separate breakpoint systems: 

• Advanced Event System (AES) 
• Basic Breakpoint System (only available if you have an Overlay Module) 

When you select the Break/Event window, a summary screen composed of 
several windows is displayed, showing basic breakpoints, an Advanced Event 
system summary, and counter values, if any. Each window can be separately 
configured, scrolled, positioned, or removed from the screen entirely. This 
flexibility allows you to enlarge interesting windows, reduce less interesting 
windows, and delete unused windows to meet your individual needs. This 
diagram shows the structure of the program windows: 

BreaklEvent Global counter 
Summary 

I--- preload 
Window windows 

I 
I I I 

Basic Advanced Advanced Advanced 
Breakpoint Event State Event State Event State 
Window 1 Window 2 Window 3 Window 

I I I 

Address, data, Address, data, Address, data, 
status status status 

comparator and comparator and comparator and 
WHEN·THEN WHEN·THEN WHEN·THEN 

statement statement statement 
windows windows windows 

These windows are described separately following this section. 

The Break/Event window has five major functions: 

6-20 

I 

Advanced 
Event State 
4 Window 

1 

Address, data, 
status 

comparator and 
WHEN·THEN 

statement 
windows 



Break/Event Summary Window :B 

Enter Basic Breakpoint window: 

The Basic Breakpoint win.dow is used to set up the Basic 
Breakpoint system. You must have at least one overlay 
module to use the Basic Breakpoint system. 

Display WHEN-THEN summary: 
Shows all the WHEN-THEN statements in the four state 
windows, if any. Each WHEN-THEN statement is 
numbered and shown in the group (one group per state) for 
which it is active. 

Preload counters X and Y: 
The global counter comparators are preloaded from the 
summary window. All the other comparators are set up 
within the four state windows, since there are unique sets of 
address, data and status comparators for each state. 

Enter state windows: 
Enter one of the four advanced event State windows. (See 
Section 3, the State Window, and the WHEN-THEN Window 
sections for infonnation on setting up the WHEN-THEN 
statements used to defme a state.) 

Clear ALL events and breakpoints: 
The Clear option clears the Basic Breakpoint System, the 
Advanced Event System comparators, and all WHEN­
THEN expressions from all four state windows. It also 
resets counter X and Y to 0, sets the event state to 1 and 
turns trace on. There is no undo function to restore a cleared 
setup, but you can save the setup before clearing it with the 
:FSB command. 

Basic Breakpoint System 

The Basic Breakpoint system is used for breaking on addresses and ranges. You 
must have at least one Overlay Module to use this system. When you set a basic 
breakpoint, it is visible from the main Break/Event window. The limit to the 
number of basic breakpoints you can set depends on the available memory in your 
host computer. You can set ranges of breakpoints to eliminate the need for 
multiple breakpoint entries. 

6-21 



Break/Event Summary Window :B 

Advanced Event System 

The Advanced Event System provides flexible system and breakpoint control, 
allowing you to isolate or break on a predefmed series of events, and then perform 
various actions. You use the Advanced Event System from the State windows. 
Each event is specified in the form: 

WHEN conditions THEN actions 

Conditions are logical combinations of address, data, status, count limits, and 
trigger inputs. Actions are combinations of breaking emulation, trigger outputs, 
trace control, counter control, and state switching. There are four independent 
sets of comparators: one set for each state window. 

You can see a summary of the events set up in each State window on the 
Break/Event Summary window. 

6-22 



BreaklEvent Summary Window :B 

The diagram below shows the structure of the Advanced Event System. 

Conditions 
(input) 

CPU Bus 

Address 
(ranges) 

Data 

Status 
and 

Control 

Trigger 
Inputs 

WHEN·THEN 
Statements 

State 4 I 
State 3 I 

~ State 2 I 
State 1 

~ 

Preset counter 

Actions 
(output) 

Select state 

Set standard breakpoint 

Trigger out 

Trace control 
• trace 1 cyde 
• begin tracing 
• stop tracing 

Counter control 
• decrement counter 
• begin counting 
• stop counting 
• counter preload 

6-23 



Break/Event Summary Window :B 

Break/Event Summary Window 
BREAK/EVENT SUt·1~1AR'r' 

<State 1> 
~ ............ [ B] ..,.HEN addrA THEN T race-Ona_cyc 1 e 

[ 1] ..,.HEN addrB THEN state2 ctrX-Count 
<State 2> 

f---...... [ ] ..,.HEN addrA & dtaE THEN Break 

Counter 
preload 
values can 

...---4 be changed 

T"II
', .. ' X = B T'"'''·­y = e 

Deleting Items 

In general, Clear is used to clear several related configurations at once, such as 
the whole breakevent system or an entire state. Delete is used to clear individual 
elements in a given window. To delete all the items from the current state 
window: 

1. Type C for clear. 

To delete items from comparator or WHEN-THEN windows: 

1. Activate the window. 

2. Type D for delete. 

3. Specify the item number in the window. You can also simply highlight 
the item to be deleted using the cursor control keys. For address 
comparators, data comparators and WHEN-THEN expressions, you can 
type an asterisk (*) to indicate all items in the window. 

4. Press <return>. 

For example to delete address comparator 3 from the address comparator A 
subwindow, type D3<return>. 

6-24 



BreaklEvent Summary Window :B 

To escape from the Delete prompt, type <backspace> or <esc> to return to the 
previous prompt 

See Also 

Appendix G, Debugging Multiprocessor Systems, for uses and examples of the 
Advanced Event system with other instruments and multiprocessor debugging. 

6-25 



Basic Breakpoint Window :BB 

BASIC BREAKPOINT WINDOW :BB 

Description 

The Basic Breakpoint window is used to set up the Basic Breakpoint system. You 
must have at least one Overlay Module to use this window. Once your 
breakpoints are set up, use the Emulate window to start running the emulator 
until you reach a breakpoint (:EG). 

Use the Set command to set breakpoints, either single address or range 
breakpoints. Both types will break when either a read or write occurs to the 
address or range. 

Each time the system prompts you for an address, it expects a hexadecimal value. 
To enter an address via an expression using symbols, numeric data, or math 
operators, press <space> to use the expression analyzer. 

When you set a breakpoint, it is autbmatically enabled. To disable one or all 
breakpoints, use the I command. When a breakpoint is disabled, it will be ignored 
when you execute your code. The Go command in the Emulate window (:EG) 
stops only at enabled breakpoints. 

Enabled breakpoints are shown in bright type on the screen. Disabled breakpoints 
are displayed in half intensity, and are surrounded by angle brackets. For example, 
breakpoint 1 is enabled, and 2 is disabled: 

[1] Set 0000 to Offf 
[2]<Set 12345 to 12400> 

You can delete one or all breakpoints by typing D and either the index number of 
one breakpoint or an asterisk (*) to specify all breakpoints. (You can also delete 
individual breakpoints by using the cursor keys to highlight the breakpoint you 
want to delete and typing D <enter>.) There is no "undo" function to restore 
cleared breakpoints. 

When you leave this window, your breakpoints remain set until you exit the 
emulation session with <ctrl-c><ctrl-e> or :X. To save your breakpoint setting 
between sessions, or to save multiple breakpoint settings, use the File Access 
Save Breakevents command (:FSB). To restore a saved Basic Breakpoint 
system setup, use the File Access Restore Breakevents command (:FRB). See 
the File Access section for more information. 

6-26 



Basic Breakpoint Window 
BREAK! EVENT 2.Ut.1t·1t;R'. 

« Set/Delete/Enable/dIsable 

Basic Breakpoint Window :BB 

Angle brackets indicate a 
disabled breakpoint. 

r"lll,",. v = 13 

6-27 



Basic Breakpoint Window :BB 

See Also 

6-28 

Expression Analyzer, page 6-15 

File Access window, page 6-69 

Section 3 



X and Y Counter Windows :BX, :BY 

X AND Y COUNTER WINDOWS :BX, :BY 

Description 

There are two global counters available for use in each of the four advanced event 
states. The ctrX and ctrY preload windows are used to load a value into the 
counters. Preloading a counter value is useful when you want to break or perform 
some other action when the counter reaches zero. The counters will decrement 
from your loaded value to zero per instructions you set up in the THEN portion of 
the WHEN-THEN statement (see page 6-43). 

For example: WHEN addrA THEN ctrY-Count 

WHEN ctrY THEN Break. 

These statements cause counter Y to decrement on each access to the address in 
comparator A. When counter Y reaches zero, emulation breaks. In this way you 
can break emulation on the nth access to a specific address, where n is the 
preloaded counter Y value. 

To view the acD .. !al value in the hardware register. use the event-state selection in 
the Emulate window (:EE). 

The global counter preset values. can be viewed from any of the state windows 
(unless you have resized the windows and covered up the counter value display), 
but can only be changed through the Summary window. All the other comparators 
are set in the state windows, since there is a separate set of comparators for each 
state. 

Each time the system prompts you for a counter preload value, it expects a 
hexadecimal value. To enter a value via an expression using symbols, numeric 
data, decimal numbers, or math operators, press <space> to use the expression 
analyzer. 

6-29 



X and Y Counter Windows :BX, :BY 

X and Y Counter Windows 

<State 1> 
[ 9] ~HEN addrA THEN Trace-Dne_cycle 
[ 1] ~HEN addrB THEN state2 ctrX-Count 
<State 2> 
[ B] ~HEN addrA & dtaE THEN Break 

iii 
_ «enter X preload 

See Also 

WHEN-THEN window, page 6-43 

Expression Analyzer, page 6-15 

Emulate window: Event-state, page 6-67 

Section 3 

6-30 

Til"!,,,,. 
Y = B 



State Windows :Bl, :B2, :B3, :B4 

STATE WINDOWS :Bl, :B2, :B3, :B4 

Description 

There are four state windows, one for each state. A state is a combination of 
conditions and resultant actions defmed by a series of WHEN-THEN statements. 
The four state windows are used to set up the powerful Advanced Event System. 
The existence of four separate states means that you can nest combinations of 
conditions and increases the effectivity of the comparators by four. It also lets you 
take several different actions, based on different criteria, during one emulating 
session. For instance, study this example: 

STATE 1: 

WHEN addr A & dtaE THEN Trace-Begin state 2 

STATE 2: 

WHEN stR & dtaE THEN Break 

The state 1 WHEN-THEN statement specify that when the conditions set in 
address comparator A and data comparator E are met, begin tracing data and 
switch to state 2. The state 2 WHEN-THEN statement specify that when the 
conditions set in status line R and data comparator E are met (in state 2), break 
emulation. 

In this example, emulation will only be broken if state 1 conditions are initially 
satisfied with subsequent satisfaction of state 2 conditions. 

There are several steps to using the full capabilities of the Advanced Event 
System: 

Step 1. Set up the address, data and status comparators for state 1 by typing 
the letter from the prompt line: e.g. A for addrA, R for statusR to 
activate the appropriate comparator window. The prompt line will guide 
you to type in the information required to set up each comparator. To 
set up global counter comparators ctrX and ctrY, you must frrst activate 
their windows from the Break/Event Summary window. 

6-31 



State Windows :Bl, :B2, :B3, :B4 

NOTE: When setting comparators, the system does not stay in set 
mode for multiple entries. Therefore, when setting more 
than one address, data, or status condition, you must type S 
to enter set mode once for each condition entered. 

Step 2. Enter your WHEN-THEN expressions for state 1 (page 6-43). 
WHEN -THEN statements can take advantage of the comparator 
conditions you entered in Step 1. For instance, your WHEN-THEN 
statement could read: 

WHEN addrA & stR THEN Trace-Begin 

which signifies that when the condition you entered in address 
comparator A and the condition you entered in status comparator R are 
both met, begin trace. If you are debugging a condition requiring 
nested statements, you will reference another state as one of the 
WHEN -THEN statement actions. 

Step 3. Set up the comparators and expressions in any other referenced states. 

Step 4. Run your program using the Emulate window go command (:EG) (page 
6-63). 

To delete comparators or WHEN-THEN statements, activate the appropriate 
window and follow the prompt line. Note that when you delete address 
comparators, data comparators, or WHEN-THEN statements, you have a choice 
between deleting one item, or all items. To delete one item, highlight the item 
using the cursor control keys or enter the item's number. To delete all items in a 
window, type an asterisk (*) and press <return>. 

You can also clear an entire state with the Clear command. This command clears 
all comparators (address, data, and status) and all WHEN-THEN statements in 
the current state. There is no undo function for a cleared state. 

You can find further instructions for entering Advanced Event System commands 
in the following pages on comparators (address, data, and status) and WHEN­
THEN statements. Practical examples of Advanced Event System use are 
contained in Section 3. Appendix G contains examples of using the Advanced 
Event System to debug mUltiprocessor targets .. 

Real-time modification of established events and breakpoints can only occur with 
the emulator stopped. By setting the REALTIME switch to OFF in the 
Configuration Emulator window (:CE), you can modify events and breakpoints 
while the emulator is running. However, emulation may occasionally halt to allow 

6-32 



State Windows :Bl, :B2, :B3, :B4 

this capability, so real-time emulation is compromised. 

To save your Advanced Event System setup in a file, use the File Access Save 
Breakevents command (:FSB). This command allows you to save different setups 
in separate files. To restore a particular setup, use the File Access Restore 
Breakevents command (:FRB). 

6-33 



State Windows :Bl, :B2, :B3, :B4 

State Window 
VENT STATE #1 

0] ~HEN addrA THEN Trace-One_cycle 
1] ~HEN addrB THEN state2 ctrX-Count 

x = 0 Y = 0 

« Clear/addrA/addr6/dataE/dataF/statusR/statusS/When-then 

See Also 

6-34 

Break/Event Summary window, page 6-20 

File Access window, page 6-69 

Section 3 

Appendix G 



State Windows: Address Comparators :BnA, :BnB 

STATE WINDOWS: Address Comparators :BnA, :BnB 

Description 

Address comparators are used to match specific address accesses. There are two 
address comparators in each state. The conditions in the address comparators are 
met if the address you enter in the comparator is encountered on the address bus 
during emulation. Used with a WHEN-THEN statement, you can perform any 
valid action (break, trace on/off, trigger, etc.) when the address comparator 
condition is met. 

The address comparators in each state can be assigned specific addresses, a 
range of addresses, or values with don't care masks that function like wildcards, 
allowing you to match certain bit positions and ignore others. Typing A or B from 
the State window activates the appropriate address comparator window. Each 
comparator is a logical OR of the addresses, ranges, or don't care values specified 
in the window. 

Each time the system prompts you for a comparator value, it expects a 
hexadecimal value. To enter a value via an expression using symbols, numeric 
data, dec11llal numbers, or math operators, press <space> and use the 
expression analyzer. Expressions using symbols are translated, and the hex 
address is displayed. 

To enter a range, type a comma (,) after the starting address, and then enter the 
ending address. The EL 800 has 20 available address lines (A:0-19) for you to 
use (provided the processor supports that number). 

To enter a don't care value for an address, type a semicolon (;) after the address 
(don't care values cannot be used with ranges). In the don't care mask, 1 
signifies that the bit position is significant, 0 indicates that the bit position is a 
don't care. Therefore (assuming a 16-bit address range), to show that you care 
only about the values in bit positions 4-15 but are not concerned with the values 

6-35 



State Windows: Address Comparators :BnA, :BnB 

of bit positions 0-3, enter the address as: 100; ffO. Such an entry would cause 
the comparator condition to be met on the following address accesses: 

100 to 10f 
1100 to II0f 
2100 to 210f 
3100 to 310f 

. 
noo to nOf 

To delete an address comparator, type D and specify a specific entry number or 
type * for all entries. 

NOTE: 

Examples 

The Z80 can only address 256 bytes of I/O space, so it doesn't 
make sense to set don't care masks for anything other than the 
lower 8 bits. 

Your keystrokes 
123,IF4 
IFFF;FFFE 

What appears on the screen 
[I] Set 123 TO IF4 
[2] Set IFFF DC FFFE 

See Also 

Section 5 

6-36 



State Windows: Data Comparators :BnE, :BnF 

STATE WINDOWS: Data Comparators :BnE, :BnF 

Description 

Data comparators are used to match specific patterns on the data bus. There are 
two 8-bit data comparators in each state. The conditions in the data comparators 
are met if the data you enter in the comparator is encountered on the data bus 
during emulation. Used wit.lt a WHEN-THEN statement, you can perform a.~y 

valid action (break, trace on/off, trigger, etc.) when the data comparator condition 
is met 

In a data comparator, you can enter specific data, a range of data, or specify don't 
care masks that function like wildcards, allowing you to match certain bit positions 
and ignore others. Typing E or F from the State window activates the appropriate 
data comparator window. Each comparator is a logical OR of the data, ranges, or 
don't care values specified in the window. 

Each time the system prompts you for a comparator value, it expects a 
hexadecimal value. To enter a value via an expression using symbols, numeric 
data, decimal numbers, or math operators, press <space> and use the 
expression analyzer. Expressions using symbols are translated, and the hex 
address is displayed. 

To enter a range, type a comma (,) after the starting address, and then enter the 
ending address. 

To enter a don't care value for data, type a semicolon (;) after the data (don't care 
values cannot be used with ranges). In the don't care mask, 1 signifies that the 
bit position is significant, 0 indicates that the bit position is a don't care. The 
default don't care mask is FF. Therefore, if you are interested in all data patterns 
that have bits 0-5 set high, for example, you would enter: 3f; 3f. The first entry 
(3f - 0011 1111 in binary) determines whether the bits you are interested in will 
be high or low. The semicolon indicates that a don't care mask will follow, and the 
mask itself (30 means that you only care about bits 0-5, and you don't care 
whether bits 6 and 7 are high or low. 

If you wanted bits 0, 3,4, and 5 cleared (low)and bits 1, 2, and 6 set (high) enter: 
46; 7f. 

To delete a data comparator, type D and specify a specific entry number or type * 
for all entries. 

6·37 



State Windows: Data Comparators :BnE, :BnF 

Examples 

6-38 

Your keystrokes 
IF;IF 
33 

What appears on the screen 
[1] IF DC IF 
[2] 33 



State Windows: Status Comparators :BnR, :BnS 

STATE WINDOWS: Status Comparators :BnR, :BnS 

Description 

Status comparators are used to match specific status signals entering the CPU. 
There are two status comparators in each state. The condition in the status 
comparator is met if the status signal you enter in the comparator is encountered 
during emulation. Used with a WHEN-THEN statement, you can perfonn any 
valid action (break, trace on/off, trigger, etc.) when the status comparator 
condition is met. 

Each comparator is a logical AND of the status signals displayed in this window. 

After typing an S to set a status comparator, there are two ways to select a 
status signal: 

1. Highlight a status signal with the arrow keys, then press <space>. 

2. Type the upper case letter in the status signal, or the leftmost number in 
the status signal: e.g., Y for anY, 2 for fetch2_3. 

To change a signal selection, you must first delete the current selection and then 
enter a new signal name (only one selection per window is possible). 

Status comparators cannot be inverted within the comparator itself. To invert the 
polarity of a status signal, enter an exclamation point (!) before the status signal 
name in your WHEN-THEN statement. You can also OR status comparators 
together using the WHEN-THEN statement For instance: 

WHEN !stR I stS THEN Trace-Stop 

This statement stops trace when the inverted signal dermed in status comparator 
R OR the signal dermed in status comparator S is encountered on the status bus. 

To delete a status comparator, type D and press <return>. 

The following status signals are available for each processor. Some of them 
combine multiple CPU status lines. 

6-39 



State Windows: Status Comparators :BnR, :BnS 

Z80 Status Signals 

iOrq 

Data 

fetchl 

fetch2_3 

anY 

Memrq 

inTack 

Wr 

Rd 

brQ 

busacK 

Int 

Nmi 

wAit 

Valid during I/O read or write operation, excluding interrupt 
acknow ledge. 

Valid during any non-fetch data read or write operation. 

Valid during the first opcode fetch (first Ml). 

Valid during the second or third operand fetch of multiple M 1 
instructions. 

Valid during any fetch: fetchl or fetch2_3. 

Valid during a memory read or write operation. 

Valid during an interrupt acknowledge cycle. 

Valid during DMA, memory or I/O write operation. 

Valid during DMA, memory or I/O read operation. 

Valid when an external device requests the bus. 

Valid when bus control is granted to an external device. 

Valid while an interrupt request is pending. 

Valid when a non-maskable interrupt is asserted low. 

Valid when one or more wait states have occurred in current bus 
cycle. 

64180 Status Signals 

iOrq 

Data 

fetchl 

fetch2_3 

anY 

Memrq 

inTack 

Wr 

Rd 

busacK 

6-40 

Valid during I/O read or write operation, excluding interrupt 
acknowledge. 

Valid during any non-fetch data read or write operation. 

Valid during the first opcode fetch (first Ml). 

Valid during the second or third operand fetch of multiple M 1 
instructions. 

Valid during any fetch: fetchl or fetch2_3. 

Valid during a memory read or write operation. 

Valid during an interrupt acknowledge cycle. 

Valid during DMA, memory or I/O write operation. 

Valid during DMA, memory or I/O read operation. 

Valid when bus control is granted to an external device. 



State Windows: Status Comparators :BnR, :BnS 

Valid while an interrupt 1 request is pending. 

Valid while an interrupt 2 request is pending. 

Valid while an interrupt 3 request is pending. 

Valid when a non-maskable interrupt is asserted low. 

IntI 

Int2 

Int3 

Nmi 

wAit Valid when one or more wait states have occurred in current bus 
cycle. 

Status Comparator Window - 7.80 

I I I I 

~ Data fetchl fetch2_3 anY Memrq inTack ~r Rd brQ busacK Int Nmi wAit 

I I 

tlllllllBllIilllll1 

i 
~1~1I_li'il· I 

rEill.lillll~i!tlil. 

I 
I X = 8 I I Y = 8 I 

R= «<space)(select signal)/I 

6-41 



State Windows: Status Comparators :BnR, :BnS 

Status Comparator Window - 64180 

I I 

IJiIIII Data fetch1 fetch2_3 anY Memrq 
Nmi wAit 

I 

rlillllla"'IIIII~1II1 

rIlIIBlI!llll1l1lil. 

l I X = 8 

R= « <spaca>(select signal)/I 

See Also 

Section 3 

Section 5 

Appendix G 

6-42 

I 

I 
I 

I 

1nTack 'tIr Rd busacK Int1 Int2 

I 

rml!1I111111111111111 

I Y = e 

I 

Int3 

I 

I 
I 



State Windows: When-Then Statements :Bn W 

STATE WINDOWS: When-Then Statements :BnW 

Description 

The Advanced Event System uses WHEN-THEN statements to specify program 
states and desired actions. You may use an unlimited number of WHEN-THEN 
statements to meet your desired objectives. WHEN-THEN statements are 
entered in the following fonn: 

WHEN conditions THEN actions 

Conditions can be one or more of the following: 
Address comparators addrA, addrB 
Data comparators dataE, dataF 
Status comparators statusR, statusS 
Global counter comparators ctrX, ctrY 
Trigger inputs trigIn (trigger 1 or 2) 

Conditions can be combined with the following operators: AND (&) and ORe!). 
The AND symbol (&) has higher precedence than the OR symbol (I). Negation 
can be ~vecified using an exchuuation point (!). For example: addrA I !addrB 
means when address comparator A OR NOT address comparator B. 

You can select from many actions to be triggered by specified conditions. Once 
you have specified the conditions you are interested in, type T (for Then) and the 
prompt will display a list of actions. The actions can be one or more of the 
following: 

Break emulation Brk 
Trace control 
Counter control 
Trigger outputs 
Switch states 

Trace (One cycle, Begin or Stop) 
X,Y (Begin, Stop, Preload, or Count) 
trigOut (trigged or trigger2) 
st!, st2, s13, st4 

No punctuation or operators are necessary to combine actions, as they are 
automatically ANDed together. Type the letter or number of each action and the 
prompt line will automatically separate them with a space. The length of a WHEN­
THEN statement is limited to the length of the prompt line, about 77 characters. If 
you have a set of conditions or actions that exceeds this length, you can enter as 
many as possible on one line, then fonn a new WHEN-THEN statement on the 
next line that describes the remaining conditions and actions. 

6-43 



State Windows: When-Then Statements :BnW 

Entering Conditions 

For complete descriptions of how to specify data, status, address and counter 
comparator conditions, see the comparator descriptions on pages 6-35 to 6-42. 

To use the two trigger inputs, connect a wire from the trigger inputs on the base 
module of your EL 800 (labeled IN! and IN2) to a signal on your target board or to 
another instrument, such as a logic analyzer or emulator. For details, see 
Appendix G, Debugging Multiprocessor Systems. 

Entering Actions 

The actions are described in detail below. 

Break: Break emulation. 

Trace: There are three trace actions possible: 
One-cycle Trace only the specified cycle. 
Begin Turn on trace. 
Stop Turn off trace. 

If you specify two trace actions on the same bus cycle, the 
priorities are as follows: 

Begin, trace One-cycle, Stop 

Trigger Outputs: There are two triggers outputs which can be used to trigger 
a logic analyzer, oscilloscope or another Applied 
Microsystems emulator. The connectors for the two triggers 
are on the left side of the base module, and are labeled 
OUT! and OUTI. 

Counters: There are four counter actions possible for each counter: 

6-44 

Begin Begin counting 
Count Decrement counter 
Stop Stop counting 
Preload Set counter to preload value 

Note that the counters are global, so changes to the counter 
in one state will affect the counters in other states. To view 
the current counter values, use the Event-state selection in 
the Emulate window (:EE). 



State Windows: When-Then Statements :Bn W 

WHEN-THEN Window 
B EVENT 3T ATE #1 

Ii.II'iMMm.; 

r,,····ii,IWUIIl 
I x = e y = e 

< < When/De' ete 

6-45 



Configuration Window :C 

CONFIGURATION WINDOW :C 

Description 

The Configuration window is used to set four separate types of configuration: 

Communications: Device, port, baud rate, and IRQ setting 
Emulator: Emulator soft switches 
System: SheIl escape, edit, view and make utility names 
User Interface: Screen color(s), initial Memory window mode selection 

To choose one, press C, E, S or U. Each of these selections brings up a new 
window, and each of these windows is separately explained on the following 
pages. 

Changes made in these windows are saved in the configuration file ???CFG (??? 
= Z80 or 64180) when you exit the window, so are preserved between sessions. 

6-46 



Configuration Window: Communications :CC 

CONFIGURATION WINDOW: Communications :CC 

Description 

The Communications window is used to set the device type, port name, baud rate 
and IRQ value for the host. The IRQ value refers to the priority level of interrupts 
to the host processor. 

To select a new value for an item, use the i and J, to highlight the item, and then 
press <space> or <backspace> to toggle through the choices. 

Your device type should be set to RS-232. The port name depends on which PC 
port you are using. We recommend that you set the baud rate to 19200. 

Normal IRQ settings are: 

com 1 
com2 
com3 
com4 

IRQ4 
IRQ3 
IRQ5 
IRQ? 

For some compatibles, IRQ settings may vary, so check your PC interface card 
manual for information on how to set the IRQ jumper. Parity is set to "no parity", 
and cannot be changed. 

Never set identical IRQ values for any two of your serial ports. 

If you make any changes in the parameters in this window, the emulator will 
attempt to establish or re-establish communication with the emulator when you 
deactivate the window. 

Your changes to the communications information are saved in the ??? .CFG file 
(??? is either Z80 or 64180) when you exit the window. These settings will be 
used the next time you start the EL 800 control software. 

6-47 



Configuration Window: Communications :CC 

Communications Window 

App1ied ~crosystems Corporation -ZBO- Main Menu Type? for He1p 

CONFIGURATION: COMMDEVICE #2 
no choice 

Device Type: RS232 
Port Name: COM1 com1,com2,com3,com4 

Baud Rate: 19200 300,1200,2400,4800, 

IRQ: 4 
9600,19200 

3,4,5,6,7 

6-48 



Configuration Window: Communications :CC 

See Also 

Section 2 

Appendix B: Cable Information 

Appendix D: What Happens When 

6-49 



Configuration Window: Emulator :CE 

CONFIGURATION WINDOW: Emulator :CE 

Description 

This window lets you set several soft-switches used to configure your emulator. 
There are two types of switches: system control and processor control. System 
control switches are the REAL TIME and RESET switches; all others are 
processor control switches, since they affect the ability of certain signals to reach 
the pod's CPU. The window also displays the type of data and program space you 
are using for memory accesses. (For some processors, you have a choice of data 
and program space. With the Z80 and 64180, memory space is the only option, so 
you cannot change these fields.) 

Note that there is some interaction between the switch settings. For example, it 
would not make sense to have DATA set to 1 and WR set to O. 

You can save different emulator switch configurations with the Save command 
available from the File Access window. These settings can also be easily 
restored. Please see the File Access Window portion of this section for details. 

6·50 



Emulator Window 

CONFIGURATION: B1ULATOR SWITCHES 

REALTIME 
RESET 
DATA 
INTERRUPTS 
... AIT 
Ml 
MREQ 
... R 
RD 
BUSREQ 
EXT AD DR 

Data Space 
Program Space 

alii 
8 
8 
8 
T 
8 
8 
8 
8 
8 
8 

MEMORY 
MEMORY 

System Control Soft-Switches 

Configuration Window: Emulator :CE 

Enforce Realtime Emulation 
Target RESET Control 
DO NOT CHANGE-SEE HELP ... INDo-.. 
Target INT Control 
Target ~AIT Control 
Target Ml Control 
Target MREQ Control 
Target 't'R Mask 
Target RD Control 
Target BUSREQ Control 
High Address Nibble Control 

REAL TIME This switch determines whether real-time execution is 
guaranteed by the emulator. To execute some commands in run 
mode (such as memory read and write commands), the pod 
CPU must be halted briefly. Using the REALTIME switch, you 
can prohibit asynchronous halting of the processor during run 
mode. 

OFF OK to execute commands which impact real-time 
execution in run mode. In this position, your target may 
be briefly halted (with no indication to you) to execute 
commands. Use the ON setting if your target hardware 
or software is vulnerable to being asynchronously 
stopped. 

ON With this setting, if you try to execute a command that 
impacts real-time execution, an error message is 
displayed and the command is canceled. 

6-51 



Configuration Window: Emulator :CE 

RESET 

DATA 

6-52 

This switch determines how target generated reset pulses 
affect the emulator CPU. 

o Setting the RESET soft-switch to "0" means that target 
generated resets will not be seen by the emulator CPU in 
pause mode. This is the default condition. 

1 Setting the RESET soft-switch to "1" means that target 
generated resets will be seen by the emulator CPU 
during run and pause modes. Be aware, however, that 
allowing target resets to the pod CPU in pause mode can 
cause the pod to be unexpectedly reset. If this happens, 
the pod may be interrupted while responding to an 
emulator command. !fthis occurs proper operation o/the 
emulator cannot be guaranteed. 

CAUTION: Setting this switch to 2 can cause bus contention 
problems and damage to target and emulator circuits under 
some conditions. See RET! Considerations in Section 5 for 
more information. 

This switch controls data passage between the target, target 
data bus, the overlay memory, and the pod CPU. With the 
DATA switch set to I, you probably want to also set the WR 
switch to 1. If you don't, the data is written to your target but 
may not necessarily match the data written to overlay. 

o Pass data to/from target and overlay in run mode except 
during reads from overlay. This is a safe setting to use 
while running code out of overlay, since it avoids bus 
contention. 

1 Pass data to/from target and overlay in run mode except 
during overlay reads or writes. This is a safe setting to use 
while running code out of overlay, since it avoids bus 
contention, but writes to overlay will not predictably modify 
target memory. This setting is useful when a target device 
may drive the data bus during a write cycle. 

2 Pass data to/from target and overlay at all times in run 
mode, and never in pause mode. This setting should not be 
used while running code out of overlay until you have read 
RET! Considerations in Section 5. Bus contention may 
occur. 



Configuration Window: Emulator :CE 

INTERRUPTS Target interrupt control. This switch determines whether 
target hlterrupts are passed to tIle emulator CPU du..r1Jlg run 
mode. During pause mode and single target bus cycles 
(peeks/pokes), interrupts from the target are not passed to the 
pod CPU. 

WAIT 

o Pass interrupts from target in run mode. 

I Do not pass interrupts from target in run mode. 

The interrupts soft-switch does not apply to non-maskable 
interrupts (NMI). 

Overlay wait state control. This switch is used to specify the 
number of wait states to add to overlay accesses. Wait states 
are inserted by the emulator hardware only if you enabled wait 
states when you mapped the overlay segment, and the value of 
the WAIT soft-switch is between 1 and 4. This switch allows 
you to simulate slow memory devices. 

Enter the number of wait states to be added for segments 
mapped with wait states selected (pn). The range is from 1 to 
4. Tne default is !!T!! wait states, which means that the number 
of wait states used by the target is automatically used for 
memory accesses. If you wish to specifically run overlay with 
zero wait states, do not enable wait states when you map the 
overlay segment, and select any value for this switch except 
"T." 

6-53 



Configuration Window: Emulator :CE 

Ml- (Z80) 

The following table shows the interaction between the WAIT 
soft-switch value and the wait state enable/disable selection 
made during overlay mapping: 

Number of Wait States During Overlay Memory Access 

Value of WAIT Wait State Selection 
soft-switch during overlay mapping 

Enabled Disabled 

1 1 0 
2 2 0 
3 3 0 
4 4 0 
T T T 

T - use target wait states 

Target Ml control. This switch determines whether the Ml 
signal is passed to the target during single target bus cycles 
and run mode. 

o Always pass Ml to target. 

1 Pass Ml to target only on single target bus cycles or in run 
mode. 

LIR - (64180) Target LIR control. This switch determines whether the LIR 
signal is passed to the target during single target bus cycles 
and run mode. 

MREQ 

6-54 

o Always pass LIR to target. 

1 Pass LIR to target only on single target bus cycles or in run 
mode. 

Target MREQ control. This switch determines whether the 
MREQ signal is passed to the target during single target bus 
cycles and run mode. 

o Always pass MREQ to target. 

1 Pass MREQ to target only on single. target bus cycles or in 
run mode. 



WR 

RD 

BUSREQ 

EXTADDR 

See Also 

Section 5 

Configuration Window: Emulator :CE 

Target WR control. This switch detennines when the WR 
signal is passed to t.he target system. The WR signal is never 
passed to the target in pause mode. 

o Pass the WR signal to the target during single target bus 
cycles and in run mode. 

1 Pass the WR signal to the target only on non-overlay 
target cycles. In this state, writes to overlay do not 
produce a write cycle in the target. 

Target RD control. This switch detennines whether the RD 
signal is passed to the target during single target bus cycles 
and run mode. 

o Always pass the RD signal to target. 

1 Pass RD to target only on single target bus cycles or in run 
mode. 

Target BUSREQ control. This switch detennines whether the 
BUSREQ signal is passed to the target during run mode. 

o Always pass BUSREQ to target 

1 Pass BUSREQ to target only during run mode. 

External high address control (Z80 only). 

o The Z80 only uses 16 address lines, and the emulator has 
20 lines available. With this switch set to 0, the four extra 
external address lines are tied to O. Unless you are using 
an external driver for the 4 additional address bits, leave 
this switch set to O. 

1 Enable the four spare address lines (A: 16-A: 19) for the 
external gripper clips that come with your Z80 probe 
module. These can be used for monitoring input from an 
MMU or bank switching device. Unconnected signals 
A:16-A:19 float to a high state. 

6-55 



Configuration Window: System :CS 

CONFIGURATION WINDOW: System :CS 

Description 

The System window is used to enter the path names of your favorite programs for 
escaping to the shell, editing a file, viewing a file and running a make utility. 

The file name fields may be edited: 
move cursor 
insert mode 
overstrike mode 

~f­

<insert> 
toggle <insert> key (default) 

You can get to the operating system by typing an exclamation point (!) from the 
Main Menu or any top level windows. 

To run a system process, you use the File Access window: 

Edit file :FE 
View file :FV 
Run make utility :FM 

The EL 800 will attempt to load the new process and transfer control to it. When 
the external process finishes, control will be returned to this program. 

SOME CAUTIONS WHEN USING THE SHELL ESCAPE: 

1. If you use COMMAND.COM, you must type EXIT to return from DOS 
to the EL 800. 

2. Beware of programs that use interrupts or the serial ports, since they 
may not restore the vectors used by this program. 

3. Programs such as DIR should not be used for the shell escape, as they 
display the information too quickly to read. 

4. If the invoked process installs a process that will remain resident after it 
exits (such as a printer or other device driver), then that process may 
interfere with the loading of other programs after this program exits. 

Your changes to the system processes are saved in the ? ? ? .CFG file (??? is 
either Z80 or 64180) when you leave this window. Tnese settings will be the 
default next time you enter the EL 800 control software. 

6-56 



Configuration Window: System :CS 

System Window 
~ ,-}-, 8,-t-t+ru-u:;::-',rS-t1:'f1f5 tor rrat;lon- - -::88- --- Ma nr-Mentt - - --- e---'-7---+ci-He-l- --

Shell Escape 
View File 
Edit File 
Make util it]' 

See Also 

More 
edlin 
.ake 

File Access window, page 6-69 

Shell Escape, page 6-5 

I 

6-57 



Configuration Window: User Interface :CU 

CONFIGURATION WINDOW: User Interface :CU 

Description 

The User interface window is used to set defaults for variables that affect the 
interface between you and the control software: screen colors and the initial 
memory mode. You can set screen colors from a choice of four options: 

Default 

Blink 

Color! 

Color2 

This option uses a light blue highlight color which can be displayed 
on all types of monitors except LCD (liquid crystal display). Any 
invalid color entry in the color field results in the default colors being 
used. Also, if the color section is missing from the .cfg file the de­
fault colors are used. Colors are: light blue for the window informa­
tion, forest green for the command line prompt, red for error messag­
es' and yellow for user input. 

With this selection, the colors used are similar to the default colors 
except the cursor blinks so LCD monitors can also be used. 

Prompt, help, error message, and user input colors remain the same 
as the default, and the highlight and window information colors are a 
deeper blue. 

Prompt, help, error message, and user input colors remain the same 
as the default, and the highlight and window information colors are a 
gray consistent with monochrome monitors. 

You also use this window to select an initial memory mode. When you first start 
the control software, memory mode is set to either BLOCK, LINE, or ASCII 
depending on your selection here. You can always change the memory mode by 
entering the memory window and using the Parameters window (: M <return> P). 

Any changes you make in this window are automatically saved in the .efg 
(configuration) file when you leave the window. 

6-58 



Configuration Window: User Interface :CU 

User Interface Window 
Ailed t··licr'05\1stems COl' oration - z80 - j"vlain ~~enu Ty-e '7 for Hel-

II 
Color 
Init Memory Mode BLOCK 

6-59 



Diagnostics Window :D 

DIAGNOSTICS WINDOW :D 

Description 

The Diagnostics window provides nine canned test routines for. checking target 
hardware. You can only run one diagnostic at a time, and you cannot perfonn 
other target operations when using the diagnostics. 

The RAM tests detennines if your target or overlay RAM is responding properly 
to read and write accesses, and the scope loops can help you debug other 
hardware problems such as inoperative address, data, or control lines. 

To use these diagnostics on your target, highlight the desired diagnostic with the 
cursor keys. Then, enter the starting and ending addresses, if needed. If the 
diagnostic is a write, enter the data to be written in the appropriate field. If the 
diagnostic is one of the RAM tests, enter the number of times you want the test 
to run in the COUNT field, or leave it at 00 for continuous running. 

Start a diagnostic by pressing <return> while the cursor highlights the desired 
diagnostic. A blinking "RUNNING" message will show the test is active. You 
can press any key to halt the test. 

If the test is successful, the "RUNNING" message disappears. If either of the 
RAM tests fail, an error message is displayed giving you the option of examining 
information on the nature of the error (R), continuing the test (C), or quitting (Q). 
Error information includes the error address, expected data, actual data, phase 
number, current loop number, and the loop number that failed. (The current loop 
might be different from the fail loop if you continued the test after an e.arlier 
failure.) Other tests report any encountered errors but continue running. 

The tests are : 

RAM TEST 1 A simple RAM test. 

RAlVI TEST 2 A complex RA~1 test. 

READ LOOP A continuously looping read scope loop. 

\VRITE LOOP A continuously looping write scope loop. 



WRITEALT 

Diagnostics Window :D 

A continuous scope loop similar to WRITE LOOP except 
that data alternates between t.~e two data patterns 
specified in the "Data" and "AIt-Date" fields. 

WRITE PAT A continuous write scope loop that rotates the data 
pattern by one bit in each iteration. 

WRITE READ This scope loop writes to the test address and then 
reads from that address. 

READ RANGE A continuous scope loop that reads data over a range of 
addresses, returning to the starting address each time 
the end of the range is reached. 

WRITE INCA scope loop that writes an incrementing data pattern to 
an address. The count data restarts at zero and the 
count is reset after the maximum count (determined by 
the grain size) is reached. 

The columns shown on the screen are: 

Start 

End 

Data 

Alt-Data 

Count 

The address to start the test at. 

The endiTJ.g address of the test. 

The data pattern you want written (write tests only). 

The alternate write data pattern (Write Alt test only). 

The number of times to perform the test on the given 
address range. 

D se the cursor control keys to maneuver to the field you want to change. 

6-61 



Diagnostics Window :D 

Diagnostics Window: 

1 lied t.iicrosvsterlls CorJor8tion - z80 - MOlin Menu Ty e "/ tor' Hel 

IIAGNOSTlCS SPACE: ME~·1 

Test Name Start .•.. End ..•... Data .•.. Alt-Data Count 

'_,Umllll.1 IIBB BBBB IB 
[ 2 RAM TEST 2 IBB8 BI8B IB 
[ 3] READ LOOP 8888 
[ 4] liRITE LOOP 88B8 
[ 5] liRITE ALT 8B88 88 88 
[ 6] liRITE PAT 1888 89 
[ 7] liRITE READ 8B88 B9 
[ 8] READ RANGE 8898 8BB8 
[ 9] liRITE INC 8888 
[18] RESET PULSES 

« Space/<return) to select test 

6-62 



Emulate Window :E 

EMULATE WINDOW :E 

Description 

Use the Emulate window to control the target CPU. This window shows the 
current state of the CPU, a disassembled history of the most recently executed 
instructions, and a preview of the next few instructions. The cursor highlights the 
instruction at the current PC (program counter). The highlighted instruction has 
not yet been executed. The window header shows the emulator mode: running, 
stopped, or stepping. 

It is common to also display the Registers window with this window, to allow 
quick display and modification of the registers. To simultaneously display the 
Registers window, you must first resize the Emulate window so the Registers 
window will fit. Of course, you may position both windows, or others, anywhere 
you choose on the screen using the move «Fl» and resize «F2» keys. 

Your choices in this window are: 

Step through code (S) Step through your code one instruction at a time, a 
predetennined number of instructions, or continuously 
(but at a speed slow enough to view). The step option 
provides a way to watch register values or memory 
locations as each instruction is executed. Usually, the 
microprocessor executes code too quickly to watch the 
effects unaided. In this mode, one assembly language 
instruction is executed, and then the microprocessor is 
halted. (In continuous step mode, you must halt the 
processor by pressing any key.) As instructions are 
executed, they are disassembled and displayed in the 
Emulate window. 

Execute the code (G) Run the target. If breakpoints are enabled, the 
emulator will automatically stop executing code when it 
reaches a breakpoint condition you have set with either 
the Basic Breakpoint System or the Advanced Event 
System. You can also run with strobe enabled, which 
stops the target at regular intervals to refresh all 
displayed windows with current data. With this option, 
you can constantly watch the progress of the program. 

6-63 



Emulate Window :E 

You can also use this command to reset the program 
counter or disable breakpoints before entering run 
mode. Change the PC by entering the new value before 
pressing <return>. Disable breakpoints by entering 
an asterisk (*) before pressing <return>. For 
example: 

:G lOOO*<return> 

Note the asterisk (*). Using it in the Go command 
disables all breakpointsfor this command only, so you 
can avoid going to the Break/Event system windows to 
disable breakpoints. Pressing <return> after this 
example starts code execution (without breakpoints) 
at the new PC. 

Restart program (Z) This restarts your program with known Advanced 
Event System state variables: event state 1, trace 
control (on), counter control (oft) and current counter 
values (set to preload comparator values). Z also 
resets the PC register to 0 and sends a reset signal to 
the pod CPU. The current Advanced Event state 
variables can be viewed in the Event-state window. 

Event-state (E) View, change, and clear state variables used when you 
run your program using the Go command. 

To stop emulation, press <return>. 

6-64 



Emulate Window :E 

Emulate Window 

Applied ~crosystems Corporation -Z80- Main Menu Type ? for Help 

EMULATE EMULATOR STOPPED 

120 
117 
114 
112 
109 
107 
105 
104 

START: 

ZERO: 

ZLOOP: 

0000 
0003 
1000 
1002 
1005 
1007 
1008 
1009 

310009 
C30010 
3EOO 
210F09 
0610 
77 
2B 
05 

LD 
JP 
LD 
LD 
LD 
LD 
DEC 
DEC 

SP, B1ST [0900] 
ZERO [1000] 
A,OO 
HL,B2END [090F] 
B,10 
(HL),A 090F<00 

HL 
B 

103 NZ,ZLOOP [1007] IOOA C20710 JP 
100 ZLOOP: 1007 (HL) ,A 090E<00 77 LD 

98 1008 2B DEC HL 
97 1009 05 DEC B 

fI9.~~ImmmfIIIt~IIIIIijb.gJflMt#iiaIIIIII1¥IIjttMi¥itd6iWIItiBfiilttIIIIImmIImmmmIjtttIIttt 
93 ZLOOP: 1007 77 LD (HL) ,A 0900<00 
91 1008 2B DEC HL 
90 1009 05 DEC B 
89 100A C20710 JP NZ, ZLOOP [1007] 
86 ZLOOP: 1007 77 LD (HL) ,A 090C<00 

« Go/Step/Z-restart/Event-state/<return> to single step 

The columns on the screen refer to: 

Cycle # Symbols Address Object Code Instruction Data movements 

6-65 



Emulate Window :E 

LDIRlLDDR (Z80 and 64180) 

The LDIR and LDDR instructions have caused particular confusion for some users 
when debugging their code. LDIR increments a counter and loops the number of 
times specified in the fIrst register pair. LDDR decrements a counter and loops the 
number of times contained in the first register pair. Due to these loops, you may 
see multiple LDIR or LDDR instructions in the Emulate window as you run your 
target even if only one is in your code. When either of these instructions is 
executed, 3 register pairs are loaded: 

BC size of block to be moved 
DE start of fIrst block 
HL start of fIrst block 

These instructions will appear in the trace the number of times stored in the BC 
register. 

:~ 

6-66 



Emulate Window: Event State :EE 

EMULATE WINDOW: Event State :EE 

Description 

This window lets you view, change and clear the Advanced Event System state 
variables. The state variables are modified during emulation by Advanced Event 
System actions, and can be changed in pause mode with the Z command. (See the 
Emulate Window section for a description of how the Z command affects the event 
state variables.) 

The state variables are listed below, with their default values: 

State: 1 
Counter X: OFF 
Counter Y: OFF 

Trace: ON 
Counter X value: 0000 
Counter Y value: 0000 

Clearing the state variables sets them to the following: 

State 1 
Trace on 
Counters off 
Counter values set to counter preload comparator values 

All variables may be changed from this window. To change the State, Counter X, 
and Y, or Trace variables, use the cursor control keys to highlight the variable you 
want to change, then press the space bar to toggle through the options for that 
variable. To change counter values, simply highlight the appropriate counter and 
enter the new value. (Change the preloaded counter values from the Break/Event 
summary window.) 

6-67 



Emulate Window: Event State :EE 

Event-State Window 

Applied Microsystems Corporation -ZBO- Main Menu Type ? for Help 

EMULATE EMULATOR STOPPED 

54 006B 0303 EVENT STATE VARIABLES 
51 0060 3E54 
49 006F 0302 
46 0071 3AE71F State: 1 
42 0074 22E81F Counter X: OFF 
37 0077 E1 
34 0078 220E1F 
29 007B 220C1F 

Counter Y: OFF 
Trace: ON 

18 007E 2AE81F Counter X value: 0000 
13 0081 E073001F Counter Y value: 0000 
7 0085 31001F 
4 0088 FOES 
~mt/tIIIIIttttI1IIJ)j$WtI~it(ijIImIImtmm 
0 0016 3032 
0 0018 204E JR NZ,0068 
0 001A 41 LO B,C 
0 001B 40 LO C,L 

I 0 001C 45 LO B,L 

Event-state: « Clear state variables 

6-68 



File Access Window :F 

FILE ACCESS WINDOW :F 

Description 

The File Access window is used for all utilities that manipulate files in the 
operating system environment. Using this window, you can change directories, 
upload and download code, edit and view files, use the make utility, and save and 
restore a variety of control software configurations and files. You can also change 
the upload/download format using the Parameters option. 

The top line of the window shows the current directory and the upload/download 
fonnat, and the files in the current directory are shown in the window. You select 
files in the window using the cursor keys, <home>, and <end> keys. To access 
files in another directory. you can either change directories (:FC) or type the 
desired filename (with full path information) and press <return>. 

Change directory This option lets you display the files of a different directory 
in the File Access window. The change directory command 
can also be used to list files using * and % as wild cards. 
Type in the file names using the wildcards as desired and 
press <return>. Type •• to quickly change directories one 

Upload file 
level up. 

Use this option to save a section of data in target or overlay 
memory (depending on overlay mapping) to a file. Select the 
format for the upload with the File Access window's 
Parameter command (:FP). You must specify the starting 
and ending address of the memory range, and a filename. If 
you enter the filename without an extension, a default 
extension indicating the current file format is automatically 
appended. If a file of this name already exists, a prompt asks 
whether you want to overwrite the file or stop the upload. 
(See Appendix C for more information on file formats.) The 
default extensions are: 

.eth Extended Tek Hex 

.mot Motorola S 1, S2 or S3 records 

.hex Intel Hex 

.tek TekHex 

.hit Hitachi S records 
To save the symbol table, use L.'1e Save COimnali.d. 

6-69 



File Access Window :F 

Download file 

Edit file 

View file 

Make utility 

Parameters 

6-70 

This option allows you to download data from a file to the 
target or overlay memory. Select the format for the 
download with the File Access window's Parameter 
command (:FP). Enter the name of the file to be 
downloaded. If the filename is entered without any 
extensions, a default extension indicating the current file 
format will be automatically appended. The software looks 
for the file in the current directory, so if it is somewhere else, 
use the full path name. 

To edit a file, use this option. Enter the name of file to be 
edited. The editor specified in the Configuration: System 
Processes window will be used (if available). 

To view a file, use this option. Enter the name of file to be 
viewed. The viewing program specified in the Configuration: 
System Processes window will be used (if available). 

This option runs the make utility specified in the 
Configuration: System Processes window. Enter the 
arguments required by the make file. 

NOTE: If the utility name is "make", the control software 
appends a -f to this command. This option specifies that the 
make command use the file named after the -f, rather than 
the default "makefile". 

Use this option to select the object module format used by 
your linker/loader utility. Your selected format will be used 
by the upload and download commands. (See Appendix C 
for more information on file formats.) The default extensions 
are: 

.eth 

.mot 

.hex 

.tek 
.hit 

Extended Tek Hex 
Motorola SI, S2 or S3 records 
Intel Hex 
TekHex 
Hitachi S records 



Save 

Restore 

File Access Window :F 

You can save all or part of your emulator configurations on 
disk files for use in later emulation sessions USiJlg L1.is 
command. Options include: 

Breakevents 
Emulator switches 
Overlay 
Symbols 
Trace (raw or disassembled) 
Windows 
*All (except trace and symbols) 

Each option saves only the appropriate portion of the 
emulator configuration. The All (*) command saves your 
breakpoint, emulator switches, overlay mapping, and window 
configurations, but not symbols or trace. With the Save 
Trace command (:FST), you must enter the start cycle, 
number of lines, and whether to save trace in raw or 
disassembled form. Trace is saved in ASCII format. 

Use the Restore command to recover a saved configuration. 

Y 011 will be prompted for a file na.'TIe. If a file of this na.'TIe 
already exists, you can overwrite the file or stop the save 
process. 
You can restore any of the saved configuration files listed 
under the Save command except Trace. You must specify 
the filename of the saved configuration file. The file you 
name must be of the correct type for the restoration (in other 
words, you can't restore a saved breakpoint setup to the 
emulator switches configuration). 

When using the Restore All (:FR *) command, the filename 
you specify must have been saved using the Save All (:FS*) 
command described above. 

6-71 



File Access Window :F 

6-72 



File Access Window :F 

File Access Window 

Current object file formatt Current directoryt ........................ 
elz88.hlp rldebug.log symtab.dbd z80.1ca 
esxlate.pc rlz80.cfg symtab.key z80.pod 
filel.tmp runz88.dat tutor.eth z801.shl 
file2.tmp stepz80.dat tutor.sym z802.shl 
rl64180.cfg symtab.dat z80.cfg 

< Chdir/Upld!Dnld/Edit/View/Make/Save/Restore/ParaT.eters 

See Also 

Break/Event summary window, page 6-20 

Configuration: System, page 6-56 

Overlay window, page 6-77 

Symbol Table window, page 6-83 

6-73 



Memory Mode Window :M 

MEMORY MODE WINDOW :M 

Description 

This window displays the contents of memory in one of several formats. Select 
the format from the Parameters window (default is block). You can display any 
type of memory space supported by your processor. For the Z80 and 64180, the 
choices are I/O or memory. To display I/O space, type io@ immediately before 
the starting address. To switch back to memory space, type mem@ at the 
address prompt. 

The Parameters window lets you choose the display mode, display radix, width, 
and verification status. Changes to the memory display parameters are saved as 
you make them. When you return to the Memory Mode window, it remembers the 
display format and parameters from your previous usage unless you initialize the 
emulator from the Cover window. 

You choose the initial memory mode (the memory mode fIrst used when starting 
the control software) through the ConfIguration User Interface window (:CU). 
Once set there, the control software will always start in that mode; you change 
current memory mode with the Parameters window. 

The Utilities window lets you move a section of memory or fIll a memory section 
with a constant pattern. 

Use the Refresh command when you are in block mode and new memory values 
have been written, especially by I/O input or DMA. For speed's sake, the control 
software reads the data from memory and stores it in an internal buffer. Therefore, 
the contents of that buffer are not immediately changed when changes are made to 
memory. Refresh forces a read of all displayed memory locations, and all displayed 
windows are updated with the most current data. (Refresh is not necessary in line 
mode, since you must specifIcally read new data with the Read command. 
Refresh is also not applicable in ASCII mode, since the Refresh command would 
be interpreted simply as "R. ") 

Parameters: 

The Memory Parameters window lets you choose the mode, display radix, display 
width and verification status. In all fIelds, the space bar toggles through the 
available choices. 

Mode: 

6-74 

There are three display modes: block, line and ASCII. The block 
and ASCII modes read a block of memory from the current ad-



Radix: 

Width: 

Verify: 

Utilities: 

Memory Mode Window :M 

dress to display it, and update the display immediately as the 
cursor is moved or data is entered. In li..ne mode. memory is 
read and written only when you explicitly direct the emulator to 
do so (press R for read or W for write once in line mode). Use 
the <return> key to view the next memory address in line mode. 

NOTE: You cannot get to the Parameters or Utilities prompts 
directly from ASCII mode. Typing a P or U is interpreted as the 
ASCII value and simply pokes that letter into memory at the 
current cursor location. To get out of ASCII mode, type <ctrl-z> 
to enter block mode. 

The radix is the base used to display memory: hex, octal, 
decimal, or binary. The binary display type is valid only in line 
mode. If you select binary while in block mode, it will 
automatically be reset to hex. 

This field selects the data width, either byte, word or long. 
ASCII mode uses only byte wide data. 

If verify is on, the emulator performs a read-after-write verify to 
ensure that the write was successful. You may want to set 
verify to off when writing large amounts of data to reduce the 
time required in verification. 

Block move This utility copies the data in one memory block to another. 

Block fill 

You must specify the beginning and ending addresses of the 
source block and the beginning address of the destination block. 
The destination block can be within the source block - in this 
case the source block is read and then shifted to the new 
starting location. Source and destination locations may be in 
target or overlay space, depending on how overlay is mapped. 
You can also specify the memory space for block moves - just 
preface the appropriate address with the letters io@ or 
mem@. 

This utility fills a block of memory with a specified hex byte 
value. Here, you must enter the starting and ending addresses 
and the desired byte pattern. Source and destination locations 
may be in target or overlay space, depending on how overlay is 
mapped. 

6-75 



Memory Mode Window :M 

Memory Mode and Parameters Windows 

Applied Microsystems Corporation -Z80- Main Menu Type? for Help 

MEMORY-BLOCK FORMAT SPACE:MEM ADDR:1921 VERIFY:ON 
1900 
1910 
1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 
19AO 

3E 00 21 OF 09 06 10 77 
07 09 06 04 08 D9 3E 00 

MEMORY PARAMETERS 

MODE 

RADIX 

BLOCK 

HEX 
TYPE BYTE 

VERIFY OFF 

2B 
21 

19BO L.=:=========:::!.b 

6-76 

05 C2 07 10 3E 07 21 >.I .... w+ ..... >.! 
00 09 08 D9 77 2B 3D ...... >. I .... w + = 
00 00 00 00 00 00 00 
00000000 00 00 00 
00 00 00 00 00 0000 
00000000 00 0000 
00000000 00 0000 
00 00 00 00 00 0000 
00 00 00 00 00 0000 
0000 0000 00 0000 
0000 0000 00 0000 
0000 0000 00 0000 



Overlay Window :0 

OVERLAY WINDOW :0 

Description 

The Overlay window shows the currently mapped overlay segments and types, 
how much overlay is still available, and the number of wait states for segments 
specifying wait states. You can add new overlay (A), delete existing overlay (D), 
copy data from the overlay memory to your target (UT) , or copy data from your 
target memory to overlay (UO). 

The use of overlay memory is highly recommended in targets with electrically 
uncertain memory, and required in targets without functioning memory of their 
own. The overlay memory, an optional part of the emulator hardware, logically 
replaces the target memory 0 U sing this window, you map portions (or all) of the 
target memory to overlay. In other words, you redirect target memory accesses to 
the emulator's overlay memory. This is done to simplify debugging, since the 
overlay memory is known to be good, whereas in many cases the target memory 
is uncertain. 

Mapping overlay refers to the process of assigning overlay memory locations 
certain attributes such as whether a section of overlay should emulate RAM (read 
and write), ROM (read only), or illegal target memory. The contents of overlay 
memory are automatically retained between sessions if you have a battery backed 
up overlay module. 

Your overlay map can be permanently saved using the File Access Save Overlay 
command (:FSO), and restored using the Restore Overlay command (:FRO). To 
save multiple maps, use a different file name for each map. 

The smallest memory segment you can map is one kilobyte (1024 bytes). Note 
that if you map a section of memory that is already mapped, your new map 
overwrites your previous map. You can also undo a specific overlay mapping by 
remapping that section of overlay back to the target. 

The following mapping types are supported: 

Target 

Read/Write 

Read only 

Map memory accesses to your target memory. 

Map overlay as read and write memory. 

Map overlay as read only memory. With this mapping, 
read accesses go to overlay and write accesses from the 
target will halt the emulator and display an error 

6-77 



Overlay Window :0 

Illegal 

message. This is useful for protecting PROM space. 
You can also modify read only memory from the Memory 
window if desired. 

Map an address range as illegal, i.e. reads/writes are not 
permitted. If the target attempts to access an illegal 
address, emulation is halted and an error message is 
displayed. 

Use the Add command to map target memory segments to overlay. If you did not 
specify a mapping type, the segment will be mapped as read and write memory. 
Starting and ending addresses are modified as necessary to conform to the 1 KB 
minimum mapping resolution. For instance, if you try to map target addresses 0 to 
100 to overlay, the actual address range mapped will be 0 to 3FF. 

With read only and read/write memory mapping, you must also specify if you want 
wait states enabled for the segment you are mapping. The actual number of wait 
states is set in the Configuration Emulator window (:CE); the entry allows a 
number of wait states greater than zero to occur for this memory segment. 
Pressing <return> at this prompt results in wait states disabled for this memory 
segment. The number of wait states is shown in the top line of the Overlay 
window. 

The Delete command re-maps the specified address range to target memory. 
You can delete any overlay mapping entry individually by entering the item 
number, or all of them using the asterisk (*). There is no undo function to restore 
a deleted overlay mapping entry. 

The total amount of overlay you have depends on the number of overlay modules 
you have with your EL 800 emulator. The Overlay Available information in the top 
line of the window should match what you have installed (unless you have already 
performed mapping). If it does not, see Section 2 for more information on installing 
the Overlay Modules. 

There are two types of Overlay Modules: those with battery backup, and those 
without. If you have battery backed up modules, code loaded into overlay memory 
is automatically saved between sessions. To check to see if you have battery 
backed up overlay, type <ctrl-c> to look at the Cover window. After the size of 
the module, you'll see a -B if the module has battery backup. 

6-78 



Overlay Window :0 

If you plan to use data restored from battery-backed up overlay with newly loaded 
overlay mapping, perform all desired overlay mapping, save the mappin.g (:FSO), 
restore the mapping (:FRO), and then restore the data to overlay, in that se­
quence. Following any other sequence can result in incorrect data in memory. 

Utilities: 

Ovk-- tgt 

Tgt<--ovl 

Copy data from target memory to overlay memory. Specify 
the starting address for the block of target memory you want 
to move, the ending address, and the destination address in 
the overlay module. Without a destination address, the 
block is copied to the same address range specified with the 
starting and ending addresses. 

Copy overlay memory to target memory. Specify the starting 
address for the block of overlay memory you want to move, 
the ending address, and the destination address in the 
target. Without a destination address, the block is copied to 
the same address range specified with the starting and 
endin.g addresses. 

6-79 



Overlay Window :0 

Overlay Window 
Ali ed H i Ct~osyst8m'3 Ccw )ot~a t ion - z80 - Ma i n ~~8nu Ty 8 '/ f or He 1 

unmaprd overlay available 

OVERLA1 AVAILABLE:4800 ~AIT:T 
[9] 9999 TO 83FF RO SPACE: MEM 

1] 
2] 

5888 TO 6FFF 
7C08 TO 8FFF 

RW ~ SPACE: MEM 
IL t SPACE: MEM 

TY~ t 
W ' 'f' d MemorySpace alt states speci Ie 

« Add/Delete/Utilities 

See Also 

6-80 

File Access window, page 6-69 

Configuration Emulator window, 6-50 

Section 2 



Registers Window :R 

REGISTERS WINDOW :R 

Description 

The Registers window is used to view and change the CPU registers. The 
registers are divided into a number of groups depending on the processor (see 
Section 5 for specific information). The Z80 has two groups (primary and 
alternate) and the 64180 has six groups (primary and groups 1 - 5). You toggle 
between groups by placing the cursor on the group name (for instance, "Primary") 
and pressing the space bar. 

Within each group, registers are displayed in pairs following the fashion of the 
microprocessor reference guide. This means that BC, DE, and HL registers are 
displayed as 16 bit entities. The flags register (F) is divided i.tlto an individual bit 
display at the bottom of the window. 

Individual changes to the CPU registers are written to memory when the cursor is 
moved to another register. All your changes are saved when you leave the 
Registers window. When you restart the software, the register values are 
recalled unless you use the Initialize command from the Cover window. 

Due to the way the Z80 and 64180 operate, the IFF1 register is write only. It will 
always display 0 when read, but that doesn't show the true register value. Also, 
the TMDRI register (64180 only) tracks the 64180 timers. These timers do not 
stop when emulation is halted. You will, therefore, notice changes to this register 
value even when the emulator is stopped. 

You can also see the value of a register by using the expression analyzer, or use 
the value of a register in an expression. For instance, 

*«WORD *) SP +4) 

entered in the expression analyzer results in the word 4 bytes from the stack 
pointer in the CPU's stack. 

6-81 



Registers Window :R 

Registers Window 

See Also 

6-82 

Emulate window, page 6-63 

Expression Analyzer, page 6-15 

Section 5 

.~ill;~£~il. 

PC 8888 
SP 8888 
A 88 
BC 8888 
DE 8888 
HL 8888 
IX 8BBB 
IV 8B88 
IV 8B 
RFRSH 8B 
IFFl 8B 

S:8 Z:B H:B 
/V:8 N:8 C:8 



Symbol Table Window :S 

SYMBOL TABLE WINDOW :S 

Description 

The Symbol Table window is used to add symbols to the symbol table, fmd 
symbols, locate all symbols in a particular module and to delete symbols from the 
symbol table. 

Symbols provide a way to reference addresses, data, and numbers used in your 
program with natural language names, rather than numbers. Most compilers and 
assemblers also generate symbol information that you can download into the 
emulator. The use of symbols in your debugging session can reduce the confusion 
inherent in referring to long numbers and addresses, and can reduce typing by 
substituting shorter symbol names for large numbers. 

You can scroll the symbol table with the <pg up>, <pg dn> and i J, keys. 

When you Add a symbol, you must specify the symbol name and its value. You 
can also use this command to change the value of an existing symbol. 

When you Delete a symbol, you can delete one specific symbol by specifying its 
nfuue, or delete all symbols by entering atl asterisk (*). 

The Find command will search the symbol table for the symbol name you specify 
and display its parameters. The Module command searches the symbol table for 
all symbols that belong to a specified module. 

Changes to the symbol table are retained by the emulator until you leave the con­
trol software. The symbol table can be saved using the File Access Save Sym­
bols command (:FSS). It may be restored using the File Access Restore Symbols 
command (:FRS). 

6-83 



Symbol Table Window :S 

Symbol Table Window 

Applied Microsystems Corporation -Z80- Main Menu Type? for Help 

SYMBOL TABLE 

Owner Name Scope Class Type Value Name 
)i~@lHJtt{{mtIIIII~l$.$.#'jIIIIIImtttJt#'ijWt.IIIIIIGii.ittt::t:IItNtal:::IM~jVt.j\MI 
module3 Global Label C09-e 2405 acalypha 
module2 Local Label Code 2003 count 

« Add/Find/Module/Delete 

The columns in the table are: 

Owner Name 

Scope 

Class 

Type 

6-84 

The software module where the symbol is dermed. 

The area of execution where the symbol has meaning. When 
the PC is within the dermed scope, the symbol is valid. If 
global, the symbol is always valid. 

The following class types derme where or how a symbol is 
stored: code, data, local (meaning the symbol is probably 
stack based), section, module, or module end. If none of 
these classes can be determined for a symbol, it is classed 
as UNKNWN (for unknown). 

The following data types derme the kind of data defined by 
the symbol: code, data, local (meaning the symbol is 
probably stack based), section, label, or module end. If none 
of these types can be determined for a symbol, it is typed as 
UNKNWN (for unknown). 



Value 

Name 

See Also 

Symbol Table Window :S 

The software attempts to further classify "data" types as 
either label, byte, word, 3 byte, or long. If the data type is 
indeterminate, you will see "data" in the type field. 

The value the symbol is set to. 

The symbol name must start with an alphabetic character. It 
can include numbers, underscores (_), and dollar signs ($). 

File Access window, page 6-69 

6-85 



Trace Window :T 

TRACE WINDOW :T 

Description 

The Trace window contains a history of your program's execution. If you have not 
qualified the trace information using the Advanced Event System, a complete 
history of the last 8192 bytes of information is available. If trace has been 
qualified, you will see only those cycles you requested. You can display the trace 
buffer in either of the following formats: 

Raw 

Disassembled 

Display the bits traced for every traced bus cycle 

Display trace as disassembled code, showing data 
movement 

Use the Parameters command to specify the format desired. 

Trace is captured dynamically as your program is running. If you request trace 
display while in run mode, the Advanced Event system is automatically disabled 
(for as brief a period as possible), and the trace buffer is displayed. The Advanced 
Event system is then automatically re-enabled. Note that: 

1. You can't acquire trace and read trace at the same time. 
2. While reading trace while running, the Advanced Event System is 

disconnected, so you will miss any events occurring during this time. 

To begin the display at a specified line in the trace buffer, use the Display 
command. 

You can save trace data to a file with the Save Trace command (:FST). There is 
no practical need to restore trace, so you will not fmd a matching Restore Trace 
command. Once trace data is saved, you can view it with the File View command 
(:FV). 

6-86 



Trace Window :T 

Trace Window (Raw Trace) 

Applied Microsystems Corporation -Z80- Main Menu Type? for Help 

TRACE DISPLAY 

LINE ADDR DATA R/W Bus RQ AK WA INT STATE 
61 RESET MARK 
M~fW~jjjjtt~~'-j~j~~tt~~IttjjijIt~~ItI$III~~M*-ii:lttttIItI~~II~IIf~I~~11 1 
59 0067 E7 R DATA W 1 
58 0068 1F R 
57 1FE7 53 W 
56 '0069 3E R 

55 006A 7E R 
54 '006B D3 R 
53 006C 03 R 
52 0303 7E W 
51 '006D 3E R 
50 006E 54 R 
49 ' 006F D3 R 
48 '0070 02 R 
47 0202 54 W 

11

46 '0071 3A R 

« Display/Parameters 

The raw trace display columns are: 

DATA 
DATA 
FETCH R 
DATA 
FETCH 
DATA 
10 
FETCH 
DATA 
FETCH 
FETCH 
10 

FETCH 

A N 1 
1 
1 
1 

1 1 
1 
1 
1 
1 
1 
1 
1 
1 

LINE #: The line number in the display. 0 corresponds to the most 
recently traced cycle. 

ADDR: Z80: One column shows the address of the data fetched. If 
EXTADDR is set to 1, the extra four bits of address 
available are also shown. A single quote (') indicates that 
the address is the fIrst byte of an instruction fetch. 
64180: One column shows the address of the data fetched. A 
single quote indicates that the address is the fIrst byte of an 
instruction fetch. 

DATA: The data on the bus during the cycle. 

RIW: Shows whether data is read from or written to memory. 

6-87 



Trace Window :T 

BUS: 

RQ: 

AK: 

WA: 

INT: 

STATE: 

6-88 

The type of bus cycle: 

INTAK Interrupt acknowledge 

DATA 

FETCH 

Data transfers between memory and the CPU 

Opcode fetch. A FETCH with no single quote next 
to the address indicates a subsequent fetch of a 
multiple byte op code in a multiple Ml (LIR) cycle. 

10 I/O cycle. Data was read from or written to an I/O 
device. 

An R in this column indicates a bus request. 

An A in this column indicates the bus acknowledge line was 
active during this cycle. 

A W in this column indicates one or more wait states were 
inserted during that bus cycle. 

Z80: Interrupt type. N is NMI. 1 is interrupt pending, blank 
means no interrupt is pending. 
64180: Interrupt type. N is NMI. 1-7 are interrupts pending, 
blank means no interrupt is pending. 

This field shows the currently executing Advanced Event 
System state (1-4). 



Trace Window :T 

Trace Window (Disassembled Trace) 

Applied Microsystems Corporation -Z80- Main Menu Type? for Help 

TRACE DISPLAY 
120 START: 0000 310009 LD SP,B1ST [0900] 
117 0003 C30010 JP ZERO [1000] 
114 ZERO: 1000 3EOO LD A,OO 
112 1002 210F09 LD HL,B2END [090F] 
109 1005 0610 LD B,10 
107 ZLOOP: 1007 77 LD (HL) ,A 090F<00 
105 1008 2B DEC HL 
104 1009 05 DEC B 
103 100A C20710 JP NZ,ZLOOP [1007] 
100 ZLOOP: 1007 77 LD (HL) ,A 090E<OO 

98 1008 2B DEC HL 
97 1009 05 DEC B 
96 100A C20710 JP NZ,ZLOOP [1007] 
93 ZLOOP: 1007 77 LD (HL) ,A 090D<00 
91 1008 2B DEC HL 
90 1009 05 DEC B 
89 100A C20710 JP NZ,ZLOOP [1007] 
86 ZLOOP: 1007 77 LD (HL) ,A 090C<00 

« Display/Parameters Value of symbol displayed in instruction 

The disassembled trace columns are: 

Cycle # Symbols Address Object Code Instruction Data movements 

6-89 



Trace Window :T 

6-90 

Emulate window, page 6-63 

Appendix G 



Watch Window :W 

WATCH WINDOW :W 

Description 

The Watch window is designed to let you keep an eye on important expressions, 
symbols, constants, registers, and memory locations. Any item in the Watch 
window is updated immediately if its value changes. 

You can use the Watch window to display data in a format appropriate to the task 
at hand. Use the Add command to add items. For example, you can enter an 
expression to display values in a structured fashion, such as arrays and strings, to 
avoid searching through a memory dump for these values. You can also display 
many unrelated objects in the Watch window, or values from non-contiguous 
section of memory or registers. Typically, you would set up the Watch window 
and then return to the Emulate window to run your program. 

Symbols entered in the Watch window must first be added to the symbol table to 
be recognized. The use of the Watch window in conjunction with the Emulate Go 
strobe option (:EG&) slightly interferes with real-time emulation, as the emulator 
must periodically (once per second) stop to update the Watch window information. 

With the REAL TIME switch in the Configuration Emulator window set to ON, 
you can open the Watch window, but you cannot add any elements to it while 
emulatL~g. Also, the Watch wi.~dow will not be updated duri.~g emulation with the 
REAL TIME switch set to ON. 

You can edit items already in the Watch window by typing E. The prompt asks 
you which item you want to edit. Identify the appropriate item with its number. 
The proper item is displayed in the expression analyzer window for you to edit as 
you wish. After editing the item, press <return> to complete the edit. 

Use the D command to delete items from the Watch window, either individually by 
number or all (*) at once. 

A few examples of Watch window expression syntax follow. For a complete 
guide, see Appendix F, Using Expressions. Note that addresses used in these ex­
amples are four-nibble Z80 addresses, and 64180 addresses will appear as fIve­
nibbles. 

6-91 



Watch Window :W 

All examples below refer to the following memory block contents (0900h to 090Fh 
inclusive): 

Memory 
location BEGIN END.....- Labels 

I I 
900 00 01 02 03 04 OS 06 07 00 01 02 03 04 OS 06 07 

The labels BEGIN and END we assume are set equal to the corresponding 
memory locations in the symbol table. 

Expression 

BEGIN 

Evaluation 

0900 

The value of the label BEGIN is 0900, as set in the symbol table. 

Expression 

(long) BEGIN 

Evaluation 

00000900 

The value of the label BEGIN has been cast as a long word and padded with 
leading zeros. 

Expression 

* BEGIN 

Evaluation 

03020100 

The * operator dereferences the pointer BEGIN and the contents of 0900,0901, 
0902, and 0903 are 03020100. 

Since the expression evaluator does not know the type of * BEGIN, "long" is 
used as the default. 

Expression 

(byte *) BEGIN 

Evaluation 

0900 

The value of BEGIN is still the word 0900, but it has been cast as a pointer to a 
byte, instead of as a pointer. 

to a default long. 

Expression Evaluation 

* (byte *) BEGIN 00 

The first * operator dereferences the pointer BEGIN, which is cast as a pointer to 
a byte. The byte in address 0900 has a value of 00. 

6-92 



Watch Window :W 

Expression Evaluation 

* (byte *) END + 1 08 

The first * operator dereferences the pointer END, which is cast as a pointer to a 
byte. The byte in address 0907 is 07. 1 + 07 = 08. 

Expression Evaluation 

* (byte *)(END + 1) 00 

The first * operator dereferences the pointer (END + 1), which is cast as a pointer 
to a byte. The byte in address 0908 is 00. Fonnat specifiers may be appended to 
an expression with a comma. These specifiers can control both number and fonnat 
of the expression evaluations. It should be noted that the use of a repeat number 
in the format specifier will dereference a pointer expression. An example of this 
follows: 

Expression 

(byte *) END ,x 

(byte *) END ,Ix 

(byte *) END ;2x 

Evaluation 

0907 

07 
1'1."" n.n. 
VI vv 

In the fIrst case, END is cast as a pointer to a byte, and evaluated as 0907(hex). 
In the second case, END is also cast as a pointer to a byte, but is dereferenced by 
the repeat number "1" in the format specifier "Ix", and so is evaluated as the 
contents of 0907, the byte 07. The third case is essentially the same as the 
second, but with a repeat number of "2x". In this case, the contents of 0907 and 
(0907 + 1) are evaluated. 

6-93 



Watch Window :W 

Watch Window 

[ B] (byte *) B1ST ,4 x 
[ 1] (byte *) B2ST ,4 x 

--> 
--> 

BB 1211 82 83 
1218 1218 8e Be 

EMULATE EMULATOR STOPPED REGISTERS 
24 1025 3C INC A PRIMARY 
23 1826 1218 EX AF,AF' 
22 1027 09 EXX PC 18lA 
21 1028 C21018 JP NZ, LLOOP [1810] SP 80FE 
18 1B2B C03118 CALL BLMV [1831] A 83 
13 1031 810888 LD BC,HSIZE [81388] BC 8887 
18 1834 118889 LD DE,B2ST [8988] 
7 11337 21eeB9 LD HL,B1ST [8988] 
4 183A EDB8 LDIR 

DE 8989 
HL 8981 
IX 8888 

13 BREAK IV 8888 
183A EOB8 LOIR IV 18 
l83C C9 RET RFRSH 48 
1B3D se LO H,B IFFl 18 
l83E B0 OR B 
1B3F 1218 NOP S:o 2:0 
1848 Be NOP P/V:l N:O 

« Add/Delete/Edit 

See Also 

Expression Analyzer, page 6-15 

6-94 

H:l 
c:o 



Exit Window :X 

EXIT WINDOW :X 

Description 

To exit the control software press :X <return>. To cancel, press <esc> or 
<backspace>. Another method of leaving the control software is to press 
<ctrl-e> <ctrl-c>. To save any portion or all of your emulation configuration, see 
the Save command in the File Access Window section. 

Exit Window 

~ -lied Mlcro5vstems Cor oratlon - z80 - Maln Menu Ty e ? for Hel 

PRESS <return> TO EXIT PROGRAM 

Exlt_ «press <return> to confirm/<esc> to cancel 

6-95 



APPENDIX A 

Table of Contents 

Command Summary A-I 



Appendix A 

Command Summary 

The following abbreviations are used within this appendix: 

addr 

expr 
file 
n 
dir 
value 

symbol 
[item] 

Address in hex or expression (type <space> to 
enter expression analyzer). 

When entering addresses that can refer to either I/O or 
memory space, prefix the address with either io@ 
or mem@ as appropriate. For example, entering 
io@10 makes it clear you are referring to I/O 
address 10, and mem@3iii indicates memory address 3m. 

Expression. 
Filename with optional extension. 
Decimal number. 
Directory path. 
Hex value or expression (type <space> to 
enter expression analyzer). 
Symbol name. 
Square brackets indicate an optional item. Don't type 
the brackets. 

Commands are shown in upper case, but are case independent. 

A-I 



EL 800 User's Manual 

All commands are shown as you would enter them from anywhere within the 
program. You may shorten the command if the desired window is already displayed. 

? View help information. 6-1 

Shell escape. 6-5 

<esc> Exit the current window, saving changes. 6-3 

<ctrl-o Display Cover window. 6-6 

<ctrl-o! Initialize emulator. 6-9 

<ctrl-oR Reload emulator shell code. 6-11 

<space> Enter expression analyzer. 6-15 

<Fl> Move cmrent window. 6-4 

<F2> Resize current window. 6-4 

<ctrl-o<ctrl-c> Exit program. 6-93 

A-2 



:A Prompt for beginning assembler address. 6-17 

:Aaddr Display Assembler window showing disassembly 6-17 
from address given. 

:Aaddr line Enter new line to be assembled. 6-17 

:B Display Break I Event Summary window. 6-20 

:BB Display Basic Breakpoint window. 6-26 

:BBDn Delete breakpoint n. 6-26 

:BBD* Delete all breakpoints. 6-26 

:BBEn Enable breakpoint n. 6-26 

:BBE* Enable all breakpoints. 6-26 

:BBIn Disable breakpoint n. 6-26 

:BBI* Disable all breakpoints. 6-26 

:BBSaddr Set breakpoint at address. 6-26 

:BBSaddr, addr Set breakpoint in range. 6-26 

:BC Clear Advanced Event and Basic Breakpoint Systems. 6-24 

:BW Display WHEN-THEN statements. 6-20 

:BX Change counter comparator X. 6-29 

:BY Change counter comparator Y. 6-29 

:Bn Enter Advanced Event state n window (1-4). 6-31 

:BnASaddr Set address comparator A in state n. 6-35 

:BnASaddr[; mask] Set address comparator A address with 
optional don't care mask. 6-35 

:BnASaddr ,addr Set address comparator A address range. 6-35 

:BnADm Delete value m in address comparator A, state n. 6-36 

: BnAD* Delete all values in address comparator A, state n. 6-36 

:BnBSaddr Set address comparator B. 6-35 

:BnBSaddr[; mask] Set address comparator B address with 
optional don't care mask. 6-35 

:BnBSaddr ,addr Set address comparator B address range. 6-35 

:BnBDm Delete value m in address comparator B, state n. 6-36 

:BnBD* Delete all values in address comparator B, state n. 6-36 

: BnSEdata Set data comparator E. 6-37 

A-3 



EL 800 User's Manual 

:BnSEdata,data 

: BnEDn 

:BnED* 

:BnESvalue[ ;mask] 

:BnSFdata 

:BnSF data,data 

: BnFDn 

:BnFD* 

: BnFSvalue[ ;mask] 

:BnRD 

:BnRS 

:BnSD 

:BnSS 

:BnWDm 

:BnWD* 

Set data comparator E range. 

Delete value n in data comparator E. 

Delete all values in data comparator E. 

Set optional don't care mask. 

Set data comparator F. 

Set data comparator F range. 

Delete value n in data comparator F. 

Delete all values in data comparator F. 

Set optional don't care mask. 

Delete status comparator R values. 

Set status comparator R values. 

Delete status comparator S values. 

Set status comparator S values. 

Delete WHEN-THEN statement m in state n. 

Delete all WHEN-THEN statements. 

:Bn WWeventsTactions Enter WHEN-THEN statements. 

:C 

:CC 

:CE 

:CU 

:CS 

:D 

:E 

:EE 

:EEC 

:EG 

:EGaddr 

:EG* 

:EG& 

:ES 

A-4 

Display Configuration window. 

Display communications configuration window. 

Display emulator soft-switch configuration window 
and change number of wait states. 

Display the User Interface Configuration window. 

Display Configuration System window. 

Display Diagnostics window. 

Display Emulate window. 

Display Event-state window. 

Clear event-state variables. 

Run program with breakpoints enabled. 

Run program beginning at new PC address. 

Run program with no breakpoints. 

Run program with strobe. 

Single step once. 

6-37 

6-37 

6-37 

6-37 

6-37 

6-37 

6-37 

6-37 

6-37 

6-39 

6-39 

6-39 

6-39 

6-43 

6-43 

6-43 

6-46 

6-47 

6-50 

6-58 

6-56 

6-60 

6-63 

6-67 

6-67 

6-63 

6-63 

6-63 

6-63 

6-63 



:ESn Step by increments of n. 6-63 

:ES* Step continuously. 6-63 

:EZ Restart program. 6-64 

:F Display the File Access window. 6-69 

:FCdir Change to directory specified. 6-69 

:FDfile Download the file name specified. 6-70 

:FRBfile Restore breakevent settings from file. 6-71 

:FREfile Restore emulator softswitch settings from file. 6-71 

:FROfile Restore overlay map from file. 6-71 

:FRSfile Restore symbol table from file. 6-71 

:FRWfile Restore window settings from file. 6-71 

:FR*file Restore all except trace and symbols. 6-71 

:FSBfile Save breakevent settings to file. 6-71 

:FSEfile Save emulator softswitch settings to file. 6-71 

:FSOfile Save overlay map to file. 6-71 

:FSSfile Save symbol table to file. 6-71 

:FSWfile Save window settings to file. 6-71 

:FS*file Save all except trace and symbols. 6-71 

: FSTfiie<return>startcycle,#lines;tormat 
Save trace information to file. 6-71 

:FUaddrl, addr2;file Upload memory range specified to file. 6-69 

: FVfile View file. 6-70 

:FEfile Edit file. 6-70 

:FMfile Invoke make utility. 6-70 

:FP Open the Parameters sub-window to change 
object file format 6-70 

:M Display Memory window. 6-74 

:Maddr Display Memory starting at address given. 6-74 

:MP Display Memory para.T..eters wLTl.dow. 6-74 

:MR Refresh Memory window. 6-74 

:MU Display Memory utilities window. 6-74 

A-5 



EL 800 User's Manual 

:MUFaddr 1, addr2; pal Fill memory range with pattern. 

:MUMaddr 1, addr2 Move memory range to new address. 

:MUMaddr 1, addr2; dest 
Move memory range to new destination. 

:0 Display overlay map. 

:0 Aaddr 1 ,addr2[ ;fype][ wait_states] 

:ODn 

:OD* 

:OU 

Add overlay range to overlay map. 

Delete overlay segment n from map. 

Delete entire overlay map. 

Display the Overlay utilities window. 

:OUOaddrJ ,addr2;dest Copy range from target memory to overlay 
address destination. 

:OUTaddrl ,addr2;dest Copy range from overlay memory to target. 

:R Display Register window. 

;S Display Symbol Table window. 

:SAname,val Add symbol to symbol table. 

:SDname 

:SD* 

:SFname 

:SMname 

:T 

:TDn 

:TPD 

:TPR 

:W 

:WA 

:WDn 

:WD* 

:WEn 

:X 

A-6 

Delete symbol in symbol table. 

Delete all symbols in symbol table. 

Find symbol in symbol table. 

Display symbol owned by module specified. 

Display raw or disassembled trace. 

Display trace beginning at line n. 

Display disassembled trace. 

Display raw trace. 

Display watch window. 

Add an expression to the Watch window. 

Delete an expression from the Watch window. 

Delete all expressions from the Watch window. 

Edit an expression in the Watch window. 

Exit the program. 

6-75 

6-75 

6-75 

6-77 

6-77 

6-77 

6-77 

6-77 

6-79 

6-79 

6-81 

6-83 

6-83 

6-83 

6-83 

6-83 

6-83 

6-86 

6-86 

6-86 

6-86 

6-91 

6-91 

6-91 

6-91 

6-91 

6-93 



APPENDIX B 

Table of Contents 

Serial Interface 

SERIAL INTERFACE. • • • • 
Serial Interface for the PC AT 
Serial Interface for the PC XT 

B-1 
B-1 
B-3 



AppendixB 

SERIAL INTERFACE 

Serial Interface for the PC AT 

Figure B-1 shows the serial interface for the PC AT. 

Figure B-2 shows the cable wiring as if there were only one cable, rather than the two 
supplied. 

Figure B-3 shows the wiring diagrams for the two supplied cables. 

Figure B-1. Serial Interface for the PC AT 

IBM-PC-AT Serial/Parallel Adapter 

COM1: 

COM 2: Parallel 
Port 

Connector 

B-1 



EL 800 User's Manual 

Figure B-2. Wiring Diagrams/or Combined Cables: EL 800 to PC AT 

DB-9P 

El800 
Emulator (9-pin) 

-
N.C. 1 

TX 2 

AX 3 

DTR 4 

GND 5 

DSR 6 

CTS 7 

RTS 8 

N.C. 9 

-

AT 
Connector (9-pin) 

r----
1 

2 

3 

4 

5 

6 

7 

8 

9 

GND. 

RX 
TX 
DTR 

GND 

DSR 

RTS 

CTS 

N.C. ---
Figure B-3. Wiring Diagrams/or Both Cables: EL 800 to PC AT 

ELSOO 
Emulator (9-pin) MAIN 

CABLE 
N.C. 1 

TX 2 

AX 3 

DTR 4 

GND 5 5 

DSR 6 6 

CTS 7 7 

RTS 8 8 8 

N.C. 9 

DB-9P 

20 20 

DB-25S 25 25 DB-25P 

B-2 

DB-9S 

AT 
Connector (9-pin) 

8 CTS 

9 N.C. 

DB-9S 



Serial Interface 

Serial Interface for the PC XT 

Figure B-4 shows the serial interface for the PC XT. Figure B-5 shows the wiring 
diagram for the 9-to-25 pin cable used to connect the EL 800 to the PC XT. 

Figure B-4. Serial Interface for the PC XT 

Port Selection 
COM 1: COM 2: 

IBM-PC-XT Asynchronous Interface Adapter 

B-3 



EL 800 User's Manual 

Figure B-5. Wiring Diagrams/or EL 800 to PC XT Cable 

EL800 PC 
Emulator (9-pin) Connector (2S-pin) 

N.C. 1 GND 

TX 2 TX 

AX 3 RX 

DTR 4 RTS 
DB-9P GND 5 5 CTS 

DSR 6 6 DSR DB-255 
CTS 7 7 GND 

RTS 8 8 N.C. 

N.C. 9 N.C. 

N.C. 

N.C. 
20 DTR 

~N.C. 
25 N.C. 

B-4 



APPENDIX C 

Table of Contents 

File Formats for Object Files 

FILE FORMATS FOR TARGET OBJECT FILES 
Program File Up/Download Formats 
Extended Tekhex Format 
Motorola EXORciser Format 
Microtec-Hitachi S-Record Format 
Intel Hex Format • • • • • 
Tektronix Hexadecimal Format. • 

C-l 
C-l 
C-l 
C-9 

C-ll 
C-13 
C-15 



AppendixC 

FILE FORMATS FOR TARGET OBJECT FILES 

Program File Up/Download Formats 

The EL 800 will upload and download files using Motorola S Record, Tektronix Hex, 
Hitachi S Records, Extended Tekhex, and Intel Hex formats. Attempts to upload or 
download files in a format other than these formats will produce unpredictable 
results. 

Extended Tekhex Format 

Copyright 1983,Tektronix; reprinted by permission. 

Extended Tekhex uses three types of message blocks: 

1. The data block contains the object code. 

2. The symbol block that contains information about a program section and the 
symbols associated with it This information is only needed for symbolic 
debug. 

3. The termination block contains the transfer address and marks the end of the 
load module. 

NOTE 

Extended Tekhex has no specially defined abort block. To abort a formatted 
transfer, use a Standard Tekhex abort block. 

Each block begins with a six-character header field and ends with an end-of-line 
character sequence. A block can be up to 255 characters long, not counting the end-

C-l 



EL 800 User's Manual 

of-line character. The header field has the fonnat shown in the following table. 

Extended Tekhex Format 

NUMBER OF ASCII 
ITEM CHARACI'ERS DESCRIPTION 

% 1 A percent sign specifies that the block 
is in Extended Tekhex format. 

Block 2 The number of characters in the block: 
Length a two-digit hex number. This count 

does not include the leading % or the 
end-of-line. 

Block 1 6 = data block 
Type 3 = symbol block 

8 = termination block 

Checksum 2 A two-digit hex number representing 
the sum, mod 256, of the values of all 
the characters in the block, except 
the leading %, the checksum digits and 
the end-of-line. The following table 
gives the values for all characters 
that may appear in Extended Tekhex 
message blocks. 

Character Values for Checksum Computation 

Characters Values (Decimal) 
0 .. 9 0 .. 9 
A.Z 10 .. 35 
$ 36 
% 37 
. (period) 38 
_ (underscore) 39 
a.z 40-65 

C-2 



File Formats for Object Files 

Variable-Length Fields 

In Extended Tekhex, certain fields may vary in length from 2 to 17 characters. This 
practice enables you to compress your data by eliminating leading zeros from 
numbers and trailing spaces from symbols. The first character of a variable-length 
field is a hexadecimal digit that indicates the length of the rest of the field. The digit 
o indicates a length of 16 characters. 

For example, the symbols START, LOOP, and KLUDGESTARTSHERE are 
represented as SSTART, 4LOOP, and OKLUDGESTARTSHERE. The values 0, 
100H, and FFOOOOH are represented as 10, 3100, and 6FFOOOO. 

Data and Termination Blocks 

If you do not intend to transfer program symbols with your object code, you do not 
need symbol blocks. Your load module can consist of one or more data blocks 
followed by a termination block. The following tables show the format for a data 
block and a termination block. 

Extended Tekhex Data Blm:k Format 

NUMBER OF ASCII 
ITEM CHARACTERS 

Headcr 6 

Load Address 2 to 17 

DESCRIPTION 

Standard header field 
Block type = 6 
Address where the object code is to be 
loaded: a variable length number. 

Object 2n n bytes, each represented as two hex digits 

Extended Tekhex Termination Block Format 

NUMBER OF ASCII 
ITEM CHARACTERS DESCRIPTION 

Header 6 Standard header field 
Block type=8 

Transfer Address 2 to 17 Address whcre program execution 
is to begin: a variable-length number 

C-3 



EL 800 User's Manual 

Symbol Blocks 

A symbol used in symbolic debug has the following attributes: 

1. The symbol itself: 1 to 16 letters, digits, dollar signs, periods, a percent sign, 
or symbolize a section name. Lower case letters are converted to upper case 
when they are placed in the symbol table. 

2. A value: up to 64 bits (16 hexadecimal digits). 

3. A type: address or scalar. (A scalar is any number that is not on address.) An 
address may be further classified as a code address (the address of an 
instruction) or a data address (the address of a data item). As symbolic debug 
does not currently use the code/data distinction, the address/scalar distinction 
is sufficient for standard applications of Extended Tekhex. 

4. A global/local designation. This designation is of limited use in a load module, 
and is provided for future development If the global/local distinction is not 
important for your purposes, simply call all your symbols global. 

5. Section membership. A section may be thought of as a named area of memory. 
Each address in your program belongs to exactly one section. A scalar belongs 
to no section. 

The symbols in your program are conveyed in symbol blocks. Each symbol block 
contains the name of a section and a list of the symbols that belong to that section. 
(You may include scalars with any section you like.) More than one block may 
contain symbols for the same section. For each section, exactly one symbol block 
should contain a section definition field, which defines the starting address and length 
of the section. 

If your object code has been generated by an assembler or compiler that does not 
deal with sections, simply define one section called, for example, :MEMORY, with a 
starting address of 0 and a length greater than the highest address used by your 
program; and put all your symbols in that section. 

The following table gives the format of a symbol block. Tables that follow give the 
formats for section definition field and symbol definition fields, which are parts of a 
symbol block. 

C-4 



File Formats for Object Files 

Extended Tekhex Symbol Block Format 

ITEM 

Header 

Section Name 

Section 

I Definition 

Symbol 

NUMBER OF AScn 
CHARACTERS 

6 

2 to 17 

5 to 35 

5 to 35 

DESCRIPTION 

Standard header field 
Block type=:3 

The name of the section that contains 
the symbols defined in this block: 
a variable-length symbol. 

This field must be present in exactly one 
symbol block for each section. This field 
may be preceded or followed by any 
number of symbol definition fields. 
The table on the next page gives the 
format for this field. 

Zero or more symbol definition fields as 
described in the next table. 

Extended Tekhex Symbol Block Format: Section Definition Field 

NUMBER OF ASCII 
ITEM CHARACTERS DESCRIPTION 

0 1 A zero signals a section definition field. 

Base 2 to 17 The starting address of the Address 
section: a variable-length number. 

Length 2 to 17 The length of the section: a variable-length 
number, computed as: 
1 + (high address -base address) 

C-5 



EL 800 User's Manual 

Extended Tekhex Symbol Block Format: Symbol Definition Field 

NUMBER OF ASCII 
ITEM CHARACfERS DESCRIPTION 

Type 1 A hex digit that indicates the global/local 
designation of the symbol, and the type of 
value the symbol represents: 

1 = global address 
2 = global scalar 
3 = global code address 
4 = global data address 
5 = local address 
6 = local scalar 
7 = local code address 
8 = local data address 

Symbol 2 to 17 A variable-length symbol. 

Value 2 to 17 The value associated with the symbol: 
a variable-length number. 

The following figures show how the preceding tables of information might be 
encoded in Extended Tekhex. The information for the Extended Tekhex Symbol 
Block illustration (see Figure C-3) could be encoded in a single 96-character block. It 
is divided into two blocks for purposes of illustration. 

C-6 



File Formats for Object Files 

Figure C-l. Extended Tekhex Data Block 

,CheCksum: 1CH = 28 = 1+5+6+3+1+0+0+0+2+0+2+ ... ff 
Block length: 15H = 21 

! ~ f Object Code: 6 bytes 

%1561C3100020202020202 

t t Load address: 100H 

L Block type: 6 

L..-___ Header character 

Figure C-2. Extended Tekhex Termination Block 

~ Block length: 8 ! r Checksum: 1AH = 26 = 0+8+8+2+8+0 

%0881A280 

t t Transfer address: 80H 

L Block type: 8 

i..._ __ Header character 

C-7 



EL 800 User's Manual 

Figure C-3. Extended Tekhex Symbol Block 

,...---- Block length: 37H = 55 

r 
Checksum: 60H = (3+7+3+8+28+31 +12+28+29+ ... )mod 256 

L 
Section definition field: 
base address = 40H; length = C6H 

,If 

%373608SVCSTUFF02402C622CRID140PEN25014READ25815WRITE260 
%373C88SVCSTUFF15CLOSE26814EXIT27029BUFLENGTH28013BUF278 

,~ t'L Se~tion name: 

Block type: 3 

...... ------ Header character 

e-8 



File Formats for Object Files 

Motorola EXORciser Format 

Motorola data files may begin with a sign-on record, initiated by the code SO. Valid 
data records start with an eight-character prefix and end with a two- character suffix. 

Figure C-4 demonstrates a series of valid Motorola data records. 

- Each data record begins with the start characters (S1). The emulator will ignore 
all earlier characters. 

- The third and fourth characters represent the byte count, expressing the number 
of data, address, and checksum bytes in the record 

- The address of the first data byte in the record is expressed by the last four 
characters of the prefix. 

- Data bytes follow, each represented by two hexadecimal characters. The number 
of data bytes occurring must be three less than the byte count. 

- The suffix is a two-character checksum. 

C-9 



EL 800 User's Manual 

Figure C-4. Specifications/or Motorola EXORciser 16-Bit Data Files 

INPUT 

B 
C 

A 
A 
A 
A 

H 
H 
H 
H 

START CHARACTERS 

BC = Byte Count. The number of data bytes plus 3 (1 for 
checksum and 2 for addresslln hexadeCimal notallon 

AAAA = Address of first date byte In record. AAAA in 
hexadecimal notation only 

HH = One data byte in hexadeCimal notation 

CC = Checksum. One's complement of binary summation 
of preceding bytes In record (InCluding byte count, 
address and data byteslln hexadecimal notation 

This space can be used for line feed, carriage return or 
comments 

(Beginning of next record I 

LEGEND 
so = Optional Record Start Characters 
S 1 = Start Characters 
BC = Byte Count 

[(Date Butes/Record + 3] 
AAAA = Address of First Data Byte 
HH = Two Hexadecimal Digits (0-9 A-Fl 
CC = Checksum of Record (one byte I 

SIGN ON RECORD OPTIONAL 

m SO Start characters of sign on record. Except 
o for start characters SO record has same format as 

data record 

END OF FILE RECORD 

START CHARACTERS 

B 
C 

Byte Count. BC = 03 in E:nd of File Record 

A 
A 
A 
A 

C 

Address 

C Checksum 

OUTPUT 
NOTES 

11 Number of bytes per record is variable. See Table 3.1 
21 Each line ends with nonprinting line feed, carriage return 

and nulls 
31 Sign on record may precede data 

2 Hex characters 1 byte \ Data Record7 

51 BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC} 
51 BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC 

51 BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC 

51 BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC 

51 BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC 

59BCAAAACC 

NOTE 

S2, S3, S7 and S8 records are also accepted. S2 and S8 records have 24 bit 
addresses (six address characters) rather than the 18 shown. S3 and S7 
records have 32 bit addresses (eight address characters) rather dlan the 18 
shown. 

Copyright 1983, Data I/O Corporation; Reprinted by permission. 

C-10 



File Formats for Object Files 

Microtec-Hitachi S-Record Format 

Microtec-Hitachi S-record files may contain up to nine object module segments. one 
symbol segment (optional) and a maximum of eight data segments. 

Each segment must begin with a header record, contain symbol records or data 
records. and end with a terminator record. 

The structure of, and the information contained in each type of type of record, is 
shown in Figure C-S. 

Figure C-S. Specifications for MRI-Hitachi S-Record Files 

HEADER RECORD 

SYMBOL RECORD 

DATA RECORD 

~J~ _____ DATADATADATADATADA--

TERMINATOR RECORD 

S 9 - - - - - - - -

~~ 

C-ll 



EL 800 User's Manual 

In the header record, 1 is always an "S", 2 is always a 0,3 is the record byte count, 4 
is 01 if more data segments follow and 00 if no data segments follow, 5 is the 
segment base address, 6 is the module name, 7 is "SYM" if a this is a symbol segment 
and 000-007 if this is a data segment, and 8 is the record checksum. 

In the symbol record, 1 is always an "S", 2 is always a 6, 3 is the record byte count, 4 
is always 8000, 5 and 7 are symbol names, 6 and 8 are symbol values, and 9 is the 
record checksum. 

In the data record, 1 is always an "S", 2 is always a 1,3 is the record byte count, 4 is 
the load address, 5 is a maximum of 16 bytes of data, 6 is the record checksum. 

In the terminator record, 1 is always an "S", 2 is always a 9, 3 is the record byte 
count, 4 is the program starting address, and 5 is the record checksum. 

C-12 



File Formats for Object Files 

Intel Hex Format 

There are four types of records which can be used in an Intel hex object file: 

1. Extended address record 

2. Start address record 

3. Data record 

4. End of file record 

Records begin with a colon (ASCII 3AH) and end with a checksum field. The 
checksum is the ASCII value of the two's complement of the eight-bit sum of the 
eight-bit bytes resulting from converting each pair of ASCII hex digits to 1 byte of 
binary. The checksum uses the values beginning with the record length and ending 
with the last byte of the data field. The binary sum of all the ASCII pairs in a record 
(including the checksum and excluding the leading:) is zero. 

Extended Address Record 

Record Byte Zeros Record Upper segment Check 
mark count type base address sum 

02 ()()()() 02 xxxx ss 

Data Record 

Record Byte Load Record Data Check 
mark count address type sum 

00 dd ... dd ss 

Start Address Record 

Record Byte Zeros Record CS IP Check 
mark count type sum 

04 ()()()() 03 xxxx yyyy ss 

C-13 



EL 800 User's Manual 

End of File Record 

Record Byte Zeros Record Check 
mark count type sum 

00 ()()()() 01 FF 

C-14 



File Formats for Object Files 

Tektronix Hexadecimal Format 

Figure C-6. TekhexlCopyright 1983, Tektronix; reprinted by permission 

INPUT 

A 
A 
A 
A 

B 
C 

C 
C 

H 

/ = Start Character 

AAAA = Address of first date byte In record 
(hexadecimal notation) 

BC = Byte Count The hexadecimal number of data bytes 
In the record 
CC = Checksum. Eight bit sum of the four bit 
hexadecimal values of the SIX digits that make up the 
address and byte counts (hexadeCimal notation) 

H HH = One data byte In hexadecimal notation 

CC = Checksum Eight bit sum modula 256, of the four 
bit hexadecimal values of the digits that make up the 
data bytes 

Carriage Return 

(Beginning of next record) 

OUTPUT 
NOTES 

1) Number of bytes per record IS variable. See Table 3.1 
2) Each line ends with non printing line feed, carriage return 

and nulls 

2 Hex characters 1 byte, Data Record7 

lAAAABCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC } 
lAAAABCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC 

lAAAABCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC 

lAAAABCCC ~ End of File Record 

// =Two Start Characters 

xx X = Arbitrary string of ASCII characters 

x 
Carriage Return 

END OF FILE RECORD 

START CHARACTER 

AAAA Transfer Address 

Byte Count BC = 00 In End of File Record 

CC = Checksum. Eight bit sum of the four bit 
hexadecimal values of the SIX digits that make up 
the transfer address and [he byte count 
(hexadecimal notation) 

Carriage return 

LEGEND 

AAAA 
BC 
CC 
HH 
X 

= Start Characters 
= Address Field 
= Byte Count (Date Bytes/Record) 
= Checksum of Record 
= Two Hexadecimal Digits (0-9, A-F) 
= Any ASCII Character 

C-15 



APPENDIX D 

Table of Contents 

What Happens When ... 

WHAT HAPPENS WHEN ...• • 
Hardware Power • • • • • • • • • • • • • 
Power-On-Reset Sequence • • • • • • • • • 

Power-On-Reset Sequence with Uninitialized RAM. • • • • • 
Power-On-Reset Sequence with Initialized RAM •••• 

Software Startup • • • • 
Emulator Initialization ••••••••••••••• 
Shell Code Reload. • • • • • •• ••••••• 
Exit from Software (:X) or <ctrl-c><ctrl-c> • • • • • 
Exit from Windows • • • • 
Hardware Power Off • • • • • • • • 

D-l 
D-l 
D-l 
D-l 
D-2 
D-2 
D-3 
D-3 
D-3 
D-4 
D-5 



AppendixD 

WHAT HAPPENS WHEN ... 

This appendix summarizes what happens in your EL 800 hardware and software 
when you turn on your emulator, press the hardware reset button, start your software, 
initialize the emulator (from the Cover Window), reload the shell code, exit the 
software, and tum off the emulator. 

Hardware Power 

Power for the base module of me EL 800 is backed up by a baitery, so mosi settings 
are preserved between sessions. Software configuration settings are usually saved as 
you leave the configuration window in the control software. Even if the hardware 
loses power, the battery will ensure that your configuration settings are secure. See 
the "Software Startup" information on the next page for a description of which 
settings from your previous session remain available. 

Power-On-Reset Sequence 

Power-On-Reset Sequence with Uninitialized RAM 

The emulator boot code, the emulator operating system kernel, and a configuration 
table reside in the emulator's boot ROM. 

When you turn on the emulator's power or press the hardware reset button, the 
emulator's processor begins executing boot code out of the boot ROM, performing 
system hardware initialization and cyclic redundance checks (CRC) on various 
memory locations, starting with the the system memory configuration table in RAM. 
Because RAM has not been initialized, the CRC of the system memory configuration 

D-l 



EL 800 User's Manual 

table fails. 

When the system memory configuration table CRC fails, program control is passed to 
the ROM-based emulator operating system kernel, which establishes communication 
with the host, allowing the host to download RAM-based emulator code, data, and 
the system memory configuration table. 

CRCs are performed on all code and data sections defined by the newly-downloaded 
system configuration table, and control is transferred to the RAM-based emulator 
operating system. 

Power-On-Reset Sequence with Initialized RAM 

When you turn on the emulator's power or press the hardware reset button, the 
emulator's processor begins executing boot code out of the boot ROM, performing 
system hardware initialization and CRCs on various memory locations, starting with 
the the system memory configuration table in RAM. Because the data in this table 
passes the CRC, the boot code knows that RAM based code has already been 
downloaded, and continues to verify the rest of the code in RAM against its lists of 
CRC values. 

If all the CRCs match, program control passes directly to the RAM-based code, 
which establishes a communications channel with the host 

Software Startup 

When you start the EL 800 control software, the following events occur: 

1. The host keyboard, screen, and search paths are initialized, the database is 
opened, and the host-emulator link is initialized. 

2. The host opens the 111.erg file and loads the configuration parameters 
(communications, user interface parameters, system process configuration). 
The status message "Loading Configuration Parameters" is displayed. 

3. The emulator interface layers are initialized and opened. The emulator's 
runtime status monitor file STATUSLOG is initialized. The status message is 
"Opening emulator interface" 

4. The emulator is reset to a known state. The message "Booting Emulator, 
Please Wait" is displayed. 

D-2 



What Happens When ... 

5. The Advanced Event system setup is cleared; the state is reset to state I, the 
counters are set up in the "stop" counting mode, the trace buffer is cleared, 
trace is set up to the "begin" tracing mode, and the counter values are set to O. 
The message "Clearing Advanced Event System" is displayed. 

If you wish to restore the emulator configuration from a previous session, you can do 
so at this point using the File Access Restore command. 

Emulator Initialization 

When you initialize your emulator, using the I (Initialize emulator) command from 
the Cover Window, the following actions are performed. 

1. The emulator is stopped (if running). 

2. The Advanced Event system setup is cleared, as described above. 

3. The emulator soft-switches are set to their default values. 

4. The overlay map is cleared. 

5. The target reset vectors are loaded into the CPU registers. (Same as the Z­
restart command from the Emulate window). 

Shell Code Reload 

The shell code is loaded at the factory before the EL 800 is shipped. It contains the 
information necessary to initially start the EL 800 with a particular probe module. 
You only need to reload shell code if you receive a shell code update or switch probe 
modules. 

Exit from Software (:X) or <ctrl-c<ctrl-c> 

If you want to save the current emulator configuration so that you can restore it later, 
use the File Save command before exiting the control software. 

Exit the control software before turning off your emulator. When you exit the 
software using either :X (Exit) or <ctrl-c><ctrl-c>, the following occurs: 

D-3 



EL 800 User's Manual 

1. The common channels between the host and the emulator are closed. 

2. The EL 800 control program is terminated. 

If you have battery-backed up overlay modules, any code you store in overlay is 
preserved between sessions, but you must restore the overlay map manually. See the 
Overlay Window part of Section 6 for more information. 

Exit from Windows 

The following table describes the types of information saved as you exit various 
windows in the control software. Window size and position is saved for all displayed 
windows as you exit the control software. 

Assembler 

Break/Event 

Configuration 

Diagnostics 

Emulate 

File Access 

Memory Mode 

D-4 

New lines are written to memory as you type them. 
Symbol changes are entered into the symbol table, but are 
not saved between sessions unless you use the Save 
Symbol table command from the File Access Window. 

Basic and Advanced breakpoint settings are preserved for 
the duration of the software session, and may be saved 
between sessions using the Save Breakevents command 
from the File Access Window. 

Communications, user interface parameters, and system 
process configurations are saved in the configuration file 
when you exit the Configuration windows. Emulator 
soft-switch configurations may be specifically saved 
using the Save Emulator Switches command in the File 
Access window. 

Nothing is saved from the Diagnostics window. 

Changes to the Event State Window are preserved during 
the session. The emulation parameters can be changed 
while running if the appropriate Advanced Event System 
statements are specified. 

The default file format is preserved during the session. 

Memory mode changes are saved as you make them, even 
before you leave the Memory Mode window. 



Overlay 

Registers 

Symbol Table 

Trace Display 

Watch 

What Happens When ... 

The overlay map is only preserved between sessions if 
you have battery backed-up overlay modules, or if the 
Save Overlay command is used in the File Access 
Window. 

The register values are updated when you leave the 
Registers window, and are not preserved in the emulator 
between sessions. 

The symbol table is preserved for the duration of the 
session. To save it between sessions, use the Save Symbol 
table command from the File Access Window. 

The position in the trace buffer is maintained during a 
session, but is reset when you press the hardware reset 
button. You can save the trace buffer contents with the 
Save Trace command in the File Access Window. You 
cannot restore the trace buffer. 

Changes to the Watch window are preserved during the 
emulation session. 

Hardware Power Off 

Make sure that you have saved any emulator configurations you want to restore later 
with the File Save command before turning off the power to your emulator. The only 
information automatically preserved between emulating sessions is the data residing 
in battery-backed up overlay memory. Even with this data, when you return power to 
the emulator the overlay memory must be remapped for the data in overlay to be 
meaningful. 

D-5 



ERROR MESSAGES • 
Error Messages • 

APPENDIX E 

Table of Contents 

Error Messages 

E-1 
E-1 



AppendixE 

ERROR MESSAGES 

Error Messages 

Many times you will find yourself in a situation that does not seem to be described in 
the help files or the body of this manual. In these situations, this appendix might help 
you. It contains a list of error messages, with possible causes and recommended 
resolutions. The messages are listed in alphabetical order so you can quicldy find the 
resolution to any error displayed on your screen. 

Error Message 

A Virtual Connection has Failed and One 
or More Messages Have Been Lost 

Attempted Diagnostic In Run 

Bad Address Attribute 

Description 

The communication link between the 
host and the emulator has failed. 
Check all cable connections and 
baud rates, and make sure that the 
emulator power is on. 

You cannot execute a diagnostic 
during run mode. Go to the 
Emulation window and stop the 
processor, then execute the 
diagnostic. 

You have entered an address space 
that is not valid. The valid memory 
spaces are mem and io. 

E-l 



EL 800 User's Manual 

Bad Interface to Emulator 

Boot Failed 

Can't Delete Module 

Can't Find LCA Download Data 
Can't Find Pod Download Data 

Cannot Execute System Process 

E-2 

This error will occur if you did not 
successfully establish 
communication with the emulator, 
but you asked to proceed into the 
control program anyway by 
responding to the continue dialog 
box with Ignore. At this point you 
cannot execute commands that must 
communicate with the emulator. 

An error was detected while 
attempting to download or run the 
emulator RAM-based software. 
Verify that the "rlconfig.dat" file has 
not been corrupted. Make sure that 
the files referenced in rlconfig.dat are 
in the proper directory, readable, and 
uncorrupted. If corrupted, reload the 
files listed in rlconfig.dat from the 
distribution disk. 

You cannot delete a module without 
first deleting all of the symbols 
associated with it Delete symbols 
from the Symbols window (:SD*). 

Data in the battery backed RAM has 
been corrupted. Verify that the 
proper revision of emulator code is 
downloaded by entering a <ctrl-c> 
to bring up the Cover window and 
select the "Reload shell code" option. 

The process you have selected in the 
Configuration/System window can 
not be executed. Either the file could 
not be found in the directory or there 
is not enough memory to run the 
process. 



Cannot Process Trace Data Request 

Communications Link Not Found 

Communications Service Receive Message 
Timeout 

Communications Service Send Message 
Timeout 

Configuration Database Not Found 

Error Messages 

The trace line number requested 
resides outside the cWTently valid 
trace buffer. Select a smaller trace 
line number. 

The requested physical 
communication device could not be 
found. Make sure the DIP switches 
on the adapter cards in the host are 
set properly. Verify that the 
"???cfg" (??? is either z80 or 
64180) file is in the proper directory 7 

readable, and uncorrupted. 

A message expected from the 
emulator has not been received. 
Verify the communication link 
between the host and the emulator by 
checking all cable connections and 
baud rates, and make sure that the 
emulator power is on. 

An acknowledgement that a message 
transmitted to the emulator has not 
been received. Verify the 
communication link between the 
host and the emulator by checking 
all cable connections and baud rates, 
and make sure that the emulator 
power is on. 

The configuration database file 
???cfg (??? is either z80 or 64180) 
cannot be found. Make sure the file 
is in the proper directory, readable 
and uncorrupted. 

E-3 



EL 800 User's Manual 

Doesn't Own Any Symbols 

Emulator Communications Protocol Error 

Emulator RAM Configuration Table Error 

Entry Can't be Interpreted 

Event System Limitation Error 

E-4 

The module for which you have 
requested the symbols displayed 
does not have any symbols 
associated with it Make sure you 
have typed the module name 
correctly or that you have 
downloaded the symbols. 

The emulator is not responding as 
expected. Check all cable 
connections and baud rates, and 
make sure that the emulator power is 
on. If necessary, reload the proper 
revision of emulator code by 
entering a <ctrl-c> to bring up the 
Cover window and selecting the 
"Reload shell code" option. 

Verify that the rlconfig.dat file has 
not been corrupted. Make sure that 
the files referenced in rlconfig.dat 
are in the proper directory, readable, 
and uncorrupted. 

The value entered cannot be 
processed. Make sure you have not 
mistyped the value. A character in 
place of a digit will cause this error. 

There are not enough event system 
resources to satisfy the last event 
system request Delete all 
unnecessary comparator values and 
WHEN{fHEN statements and try 
again. If that doesn't work, try to 
combine two or more statements into 
a single complex statement or try to 
break a complex statement into two 
or more simpler statements. 



Expression Syntax Error 

Help File Not Found 

Illegal Access Breakpoint Detected 

Illegal Assembler Label 

Illegal Digit in Number 

Illegal File Format 

Illegal Register Access In Run 

Error Messages 

The expression analyzer cannot 
process the expression entered. You 
may have entered an illegal operator 
or mistyped something. 

The help file el??? .hlp (??? is z80 or 
64180) cannot be found. Make sure 
the file is in the proper directory, 
readable and uncorrupted. 

Emulation was stopped because the 
target program attempted to read 
from or write to a memory address 
mapped as illegal. 

You have tried to assign an 
assembler label to a reserved string 
or have entered an illegal character 
in the label name. 

You have entered a digit that is not 
valid in the current radix. For 
example, the digits 8 and 9 are not 
valid if the radix is octal (base 8). 

You have tried to download a file 
that is not in the correct object 
module format or you have tried to 
restore a file of the wrong window 
type. Check the object format 
specified in the File/Parameters 
window. You cannot, for example, 
restore a file saved from the 
Breakevents window to the Overlay 
window. 

An illegal attempt was made to 
access target registers during run 
mode. 

E-5 



EL 800 User's Manual 

Improper Operand 

Improper Operand Type 

Insufficient Memory 

Insufficient Overlay 

LeA Download Error 
LeA Program Error 
LeA Verify Error 

E-6 

The line entered is not valid syntax 
for the assembler. Make sure you 
have entered the op code and 
operands correctly. 

You have tried to perform an 
operation that is not valid on the 
operand specified. 

The host operating system was 
unable to allocate sufficient memory 
to process the command. The 
memory in the host system may have 
become overly fragmented, or you 
may want to terminate some of your 
terminate-and-stay-resident 
programs if they use a lot of 
memory. 

There is not enough overlay memory 
to complete this request Clear all 
memory segments you are not using 
and try again. You can order 
additional overlay modules by 
calling an Applied Microsystems 
Corporation sales office. 

The emulator hardware is not 
responding as expected. Turn off the 
emulator power for a few seconds 
and try again. 



Mismatch: Probe, Software 

No Configuration File 

No Memory Left for Operation 

No Response to Close Request 

Error Messages 

The EL 800 control program and the 
software in the emulator are not of 
the same type. Make sure you are 
running the correct control program, 
elz80.exe for the Z80 microprocessor 
and el64180.exe for the HD64180 
microprocessor. If you have 
changed the emulator probe module 
you must re-download the emulator 
software by entering a <ctrl-e> to 
bring up the Cover window and 
select the"Reload shell code" option. 

The file "???cfg" (??? is either z80 
or 64180) could not be opened or an 
error occurred while reading it 
Make sure this file is in the proper 
directory, readable, and uncorrupted. 

The host operating system was 
unable to allocate sufficient memory 
to process the command. The 
memory in the host system may have 
become overly fragmented, in which 
case you must re-boot the host 
Another possibility is that you have 
too many terminate-and-stay­
resident programs, which you may 
want to remove 
if they use a lot of memory. 

This message will appear if you 
turned off the emulator power or 
disconnected the communication 
cable between the host and emulator 
before exiting the EL 800 control 
program. The emulator cannot 
respond to a host request if it is not 
running. 

E-7 



EL 800 User's Manual 

No Response to Open Request 

No Target vee 

NOT a Real Time operation 

Out of Memory 

Overlay Map Exhausted 

E-8 

The emulator is not responding as 
expected. Thrn off the emulator 
power for a few seconds and try 
again. If it fails again, re-download 
the emulator code by entering a 
<ctrl-c> to bring up the Cover 
window and select the "Reload shell 
code" option. 

The emulator detects no power in 
you target system. 

The REALTIME emulation switch is 
turned on and the requested 
command would have halted 
emulation. You must stop emulation 
before you enter this command, or 
you must tum off the REALTIME 
switch in the 
Configuration/Emulator window. 

The host operating system was 
unable to allocate sufficient memory 
to process the command. The 
memory in the host system may have 
become overly fragmented, or you 
may want to terminate some of your 
terminate-and-stay-resident 
programs if they use a lot of 
memory. 

There is not enough overlay memory 
to complete this request Clear all 
memory segments you are not using 
and try again. You can order 
additional overlay modules by 
calling an Applied Microsystems 
Corporation sales office. 



Overlay Module not Installed 

Overlay Not Mapped Here 

Physical Device Sync Failure 

Pod Fault 
Pod Idle Error 

Restart Message ReceivedfromEmulator 

Error Messages 

You must have an overlay module in 
order to map overlay memory or to 
set basic breakpoints. You can order 
overlay modules by calling an 
Applied Microsystems Corporation 
sales office. 

The command you requested 
attempted to access overlay memory 
at an address that has not been 
mapped. 

The emulator has not responded to 
the EL 800 control program. Check 
all cable connections and baud rates, 
and make sure that the emulator 
power is on. See page 2-20. 

The emulator pod did not respond 
to a request as expected. Reset 
the pod with one of the following 
commands. Note that these 
commands may also change the state 
of the emulator and its hardware. 
- "Z-restart" (Emulation window) 
- "Initialize emulator" 

(Cover window <ctrl-c» 
- Push emulator reset button 
- Thrn off emulator power 
If you still get a pod error, re­
download the emulator code by 
entering a <ctrl-c> to bring up the 
Cover window and select the 
"Reload shell code" option. 

The emulator has unexpectedly re­
booted itself and the current 
emulation session is lost The host 
will attempt to re-synchronize with 
the emulator, but if this does not 

E-9 



EL 800 User's Manual 

Shell Escape Not Permitted 

Switch to Boot Command did not 
Execute Properly 

Switch to Soft Shell Command did not 
Execute Properly 

Target Address Out of Range 

Target Diagnostic is Running 

Target DREQO Asserted 

Target DREQl Asserted 

E-IO 

work, tum off the emulator power or 
push the emulator reset button and 
restart the control software. 

You cannot execute a shell escape 
while the emulator is in run mode. 
Go to the Emulation window and 
halt emulation, then try again. 

The emulator is not responding as 
expected. Thrn off the emulator 
power or push the emulator reset 
button and try again. If you try 
the above and still get a switch 
error, re-download the emulator code 
by entering a <ctrl-c> to bring up 
the Cover window and select the 
"Reload shell code" option. 

The address specified is larger than 
the target CPU's address range. You 
must enter a smaller address value. 
If you are using a ZSO emulator, 
check the state of the EXTADDR 
(Extended Address) soft-switch in 
the Configuration/Emulator window. 

This command is illegal while a 
target diagnostic is running. Go to 
the Diagnostics window and 
tenninate the test, then try again. 

The emulator is reporting that the 
target DREQO line is being held 
asserted. 

The emulator is reporting that the 
target DREQlline is being held 
asserted. 



Target HALT Asserted 

Target RESET Asserted 

Target WAIT Asserted 

The Target Power is Off 

Unable to Find the Specified Bootfile 

Unable to Open ECL Channel 
Unable to Open the ERROR/STATUS 
Channel 

Unable to Read Bootfile 

Unexpected Restart Message From the 
Emulator 

Error Messages 

The emulator is reporting that the 
target HALT line is being held 
asserted. 

The emulator is reporting that the 
target RESET line is being held 
asserted. 

The emulator is reporting that the 
target WAIT line is being held 
asserted. 

The emulator detects no power in 
your target system. 

Make sure that the files referenced in 
rlconfig.dat are in the proper 
directory and are readable. 

The emulator is not responding as 
expected. Tum off the emulator 
power or push tJ.'ie emulator reset 
button and try again. If you try the 
above and still get an open channel 
error, re-download the emulator code 
by entering a <ctrl-e> to bring up 
the Cover window and select the 
"Reload shell code" option. 

Make sure that the files referenced in 
the rlconfig.dat file are uncorrupted. 

The emulator has unexpectedly re­
booted itself and the current 
emulation session is lost The host 
will attempt to re-synchronize with 
the emulator, but if this does not 
work, turn off the emulator power or 
push the emulator reset button and 
restart the control software. 

E-ll 



EL 800 User's Manual 

User Break Requested 

Value Out of Range 

Verify Fail 
Verify Error Detected 

E-12 

The requested command was 
interrupted by the user so the 
command will not be completed. 

The value entered is too large for the 
register. Make sure you are 
assigning a value to the proper 
register, and that you haven't 
mistyped the value. 

The emulator tried to read back data 
it wrote to memory, and it did not 
match. Make sure the memory you 
are trying to modify resides in target 
RAM or is mapped to overlay RAM. 



APPENDIX F 

Table of Contents 

Using Expressions 

USING EXPRESSIONS 
Values • • • • • • • • • • • • 
Symbols • • • • • • • 

Register names • • • • • • • • • • • • • • • • • 
Operators • • • • • • • • • • 
'Type Casting •••••• • • • • • • • 
Memory Access ••••• • • • • • • • • 
Expressions • • • • • • •• ••••••••• 
Formats • • • • • • • • • • • • • • • 
Repeat Counts 

F-l 
F-l 
F-2 
F-2 
F-3 
F-3 
F-3 
F-4 
F-4 
F-5 



AppendixF 

USING EXPRESSIONS 

This appendix describes the type of expressions that the expression analyzer can 
process. Any address or data value can be referred to by an expression. Expressions 
are symbols, register values, and constants combined arithmetically or using C 
language constructs. To use the expression analyzer, press the space bar when the 
control software prompts you for address, symbol, or data value. 

Values 

Numerical values used in an expression must start with a numerical digit or a decimal 
point (.). The control software assumes that the number is hexadecimal unless you 
specify a different radix. You can specify the radix of a number by preceding Li.e 
value with a 0 (zero), and a classification character. The following forms are 
recognized: 

OXnnnn 
OLnnnn 
OOnnnn 
ONnnnn 

A hexadecimal constant 
A decimal constant 
An octal constant 
A binary constant. 

The classification character (X, L, 0, or N) may be upper or lower case. For 
historical reasons, another override specification is recognized: 

.nnnn A decimal constant 

F-l 



EL 800 User's Manual 

You can also use character constants in expressions by placing the character of 
interest in single quotes. Non-printable characters may be used by placing their octal 
representation, preceded by a backslash, in single quotes. The common C language 
escape sequences are also recognized. Some valid character constants: 

'A' 
'\060' (The character '0') 
'\t' (The tab character) 

The data type of a value is inferred from its size in binary notation. A value that may 
be represented in one byte is considered a BYTE, a two byte value is a WORD, 
longer values are LONGs. 

Symbols 

You may insert a symbol into an expression anywhere a value could be used. If the 
symbol is the name of a label, whether data or code, then its value is directly inserted 
into the expression. If the symbol is a scalar, the value at the referenced memory 
location in the target is inserted into the expression. 

One of the symbol's attribute's is its data type. Certain operators expect a symbol to 
be either a label or scalar. The symbol's data type may be overridden with a cast 
operator. 

Symbol names are case sensitive; data, Data, and DATA are three different symbols. 

Register names 

The control software recognizes the names of the target CPU and can use these 
values in expressions. When you enter a register name, the expression analyzer 
fetches that register's value from the emulator. Registers have data types just like 
symbols. 

If a symbol is defined with the same name as a register, the registers value will no 
longer be accessible. Note that register names are not case sensitive, for example, 
"pc", "Pc", "PC", "pC" all refer to the same register. In this example, a symbol named 
PC would eliminate the possibility of referring to the PC register, but referring to the 
same register through another variation of capital and lower case naming, such as Pc 
would still be legal. 

F-2 



Using Expressions 

Operators 

The expression analyzer recognizes the usual C language operators shown in the 
following chart, in order of precedence (with operators on the same line having equal 
precedence): 

1. ( ) 
2. (type) * & 
3. * I % 
4. + 
5. « » 
6. & 
7. 
8. 

Consult Kernighan and Ritchie's The C Programming Language for complete 
descriptions. 

Type Casting 

The operator shown as type in the list above is a typecast operator. It teUs the 
expression analyzer that the following value in the expression should be treated as if 
it were of the specified type. Examples: 

(byte) 1234 Treat 1234 as a byte (it is truncated to 34) 
(long) 23 Treat 23 as a long (it is padded to 00000023) 
(word *) 0 Treat 0 as a pointer to a word in the target memory 

Memory Access 

(it is transformed into the appropriate 
address representation for the target) 

Access to target memory is provided through the C pointer operators * and &. 
* dereferences a pointer, making the expression equal to the value at the address 
pointed to. In the following examples, assume that xPW is the address of a WORD 
in target memory with a value ofOx1234. 

F-3 



EL 800 User's Manual 

*xPW -+ 1234 
* (byte *) xPW -+ 34 (Assuming "little-endian" order, 

where the least significant byte 
precedes the most significant byte) 

* (byte *) 0 -+ 12 (Assuming 12 is at address 0) 

The unary & operator causes insertion of its operand's address into the expression. 
For example, if TIME is a variable stored at location OxOOO2 in target memory, then: 

& TIME 

has the value 2. 

Expressions 

Expressions are entered normally, and read left to right (infix notation). You can 
enter any C expression that uses the operators above with one of the control 
software's unique modes. Examples: 

1+2*4 -+ 9 
--2 -+ 2 

Formats 

In some cases, you can append format specifiers to an expression. Expression results 
may be viewed in a variety of formats. The format notation is adopted from the C 
standard library function printr( ): 

d decimal integer 
0 octal integer 
x hexadecimal integer 
c character 
s C style string 
n binary integer 

Note that length specifiers are not used or accepted; the length of the expression is 
known by the time it is printed. 

The expression analyzer zero-pads non-decimal values. The number of zeros used in 
non-decimal values depends on the mode of the value. 

Format specifiers are added to expressions by preceeding them with a comma. 

F-4 



Examples: 

2 + 3,x ~ 
100,d ~ 
3,0 ~ 

strAB,s~ 

05 
64 
00000011 
hello (strAB points to "hello") 

Repeat Counts 

Using Expressions 

When the control software allows format specifiers, it will also allow you to specify a 
repeat count. Repeat counts are always coupled with format specifiers; the count 
values are placed immediately before the format specifier in the expression. Repeat 
counts can only be used with expressions that evaluate to pointers. The following 
examples assume that there is a string of bytes with values 0, 1, ••. at location 0 in 
target memory. 

(byte *) 0, 2 x ~ 

(word *) 0, 2 x ~ 
0,4x ~ 

0102 
02010403 
ERROR (0 is not a pointer) 

A repeat count may be coupled with the string format specifier. In this case, you are 
implying that an array of pointers resides at the specified value. Each element of that 
array points to a character string for the !!s!! format. As an example, suppose the 
control software is in use on a C program. If argv is an array of pointers to strings 
"ce", "_c", and "test.c", then the following expression could be set up: 

(byte **) argv, 3 s ce -c test.c 

F-5 



APPENDIX G 

Table of Contenis 

Debugging Multiprocessor Systems 

DEBUGGING MULTIPROCESSOR SYSTEMS • 
Trigger Inputs and Outputs 
Debugging MultiProcessor Systems 

Advanced Event System Use • • • • • • 
Common Multiprocessor Debugging Situations 

Scenario 1 • • • • • 
Scenario 2 • • • • • • • • • • • 

G-l 
G-l 
G-3 
G-3 
G-4 
G-S 
G-8 



AppendixG 

DEBUGGING MULTIPROCESSOR SYSTEMS 

This section provides suggestions for using the Advanced Event System with other 
instruments and for multiprocessor debugging. Basic information on the structure of 
the Advanced Event System and on how to use it is described in the Break/Event 
Window part of Section 6. 

Trigger Inputs and Outputs 

The EL 800 can output a trigger signal used to trigger aiiother instrument, such as a 
logic analyzer, oscilloscope, or another emulator. In addition, it can recognize input 
triggers from another instrument or your target system. There are two trigger outputs 
and two trigger inputs on the base module. The following figures show how to 
configure the EL 800 to trigger an oscilloscope and how to use the trigger as an 
additiona1line from a target board. 

G-l 



EL 800 User's Manual 

Figure G-l. Using the Trigger Output with a Oscilloscope 

oscilloscope Input 

Figure G-2. Using the Trigger Input with a Target Board 

0-2 



Debugging Multiprocessor Systems 

Debugging MultiProcessor Systems 

Debugging multiprocessor systems can be difficult, since know ledge of the state of 
one processor does not usually give you complete information about the state of the 
other processors. The only information available to each processor about the state of 
the others is contained in the data passed between them. Debugging is easier if you 
have a mechanism for determining, at any given instant, the state of all processors in 
the system. 

If you have in-circuit emulators for all microprocessors you gain visibility and 
control over the processors and their environments, as well as the capability to allow 
events in one processor's environment to qualify or control the events in the 
environment of another. 

This section describes using the EL 800 with another emulator, the ES 1800, to debug 
designs combining 8 and 16 bit microprocessors. It includes two sample scenarios, 
with complete information on setting up the event systems of each emulator: 

1. Debugging interrupt handling done by a slave processor 
2. Debugging disk handling done by a series of slave processors 

Advanced Event System Use 

The ES 1800 has one output trigger. With the optional Logic State Analyzer pod, 16 
input triggers are available. The EL 800 has two input and two output triggers. 

Asynchronous trigger input signals can be logically combined with address, data, 
status and counter information to qualify event system actions. For example, upon 
reaching a specified condition including a trigger signal from an emulator or logic 
analyzer, the event system can perform any of its actions. 

When a condition based on address, data, status, counters and trigger inputs is 
reached, one possible action is to send a trigger signal out to another instrument. 

G-3 



EL 800 User's Manual 

Common Multiprocessor Debugging Situations 

Problems in multiprocessor systems are often related to the transfer of commands and 
data between the processors. Care must be taken that two processors do not try to 
access memory simultaneously, that the handshake signals are correctly interpreted 
on both sides and that the command/data formats and locations are defined properly 
for both processors. 

Two common kinds of problems found in multiprocessor systems are described in the 
following pages. Following each problem description is a way to use the emulators' 
event systems to catch the problematic situation and quickly determine its cause. 

Each example describes cross-triggering an ES 1800 emulator and an EL 800 
emulator. The examples shown are emulator specific, but the principles are general 
and can be applied to multiple processor designs involving any microprocessors 
currently supported by the ES 1800 and EL 800 series of emulators. 

Let's assume in the following examples that you have a system in which there are 
multiple CPUs: one 68000 and one or more ZSOs. The processors must communicate 
with each other in order to get a job done. 

G-4 



Debugging Multiprocessor Systems 

Scenario 1 

Let's iook at an exampie of a data acquisition scheme in which a Z80 is being 
used to off-load the serial interrupt task from a 68000. In the diagram below you 
can see that there are four peripheral interrupt sources. The Z80 intercepts these 
interrupts and does the processing necessary to package up a complete command 
before interrupting the 68000 from its task of processing the user's commands. 
When interrupted, the 68000 will retrieve the information from the dual port 
RAM. 

Figure G-3. Block Diagram of Scenario 1 

Peripherals 

Interupl 
Control 

I---+l logic 

Symptom 

~~ 8- User RAM _ CPU Interface 
Logic Logic 

L..-__ ~ 

User 

You have determined that the 68000 is receiving the interrupt from the Z80, but 
the resulting action on the 68000 side seems to indicate that the information it 
receives is incorrect. 

Solution 

One approach is to look at the data in the dual port RAM and the data in the 
Z80's and 68000's storage buffers to see if it looks correct in all three places. 

G-5 



EL 800 User's Manual 

There are four steps: 

Step 1: 

1. Connect the ES 1800 output trigger to an EL 800 input trigger. 
2. Set up the ES 1800 event system. 
3. Set up the EL 800 event system. 
4. Run your programs and when a breakpoint occurs, 

observe the data in both processors' memory regions. 
This will help you determine: 

- if data is being corrupted somewhere during the 
processing cycle 

- if the Z80 incorrectly packages the incoming data 
- if the 68000 is misinterpreting the data it receives 
- if there seems to be a hardware problem 

Electrically connect the ES 1800 output trigger to one of the EL 800 input 
triggers. 

Step 2: 

A good place to stop execution would be the last instruction in the 68000' s 
interrupt service routine. At this point we know that the information written into 
the dual port RAM by the Z80 will have been read from the dual port RAM by 
the 68000 and stored into its buffer area. 

We want the ES 1800 to output a trigger signal before it stops executing. To set 
up the event system to do this, define the condition to be the 68000's interrupt 
return instruction and the actions to be an output trigger signal and a break. The 
output trigger will be used to stop the Z80's execution. 

G-6 



ES 1800 Event Statement 

ACl='isr +$54 

W.tIENACI THENTGR,BRK 

Step 3: 

Debugging Multiprocessor Systems 

Description 

Set at'1 address comparator (ACl) to 
the last instruction in the interrupt 
service routine. (The symbol 'isr is the 
beginning of the interrupt service 
routine, and $54 is the length of the 
routine). 

When the address (AC1) is reached, 
output a trigger signal (TGR) and 
break execution (BRK). 

Now set up the EL 800 event system to break execution of the ZSO when the 
trigger input is received. From event state 1, enter the EL 800 event specification 
using the keystroke sequence indicated in the following chart. 

EL 800 Event Statement 

WHENtrigInl THEN Break 

Step 4: 

Key Sequence 

wwiltb 
Description 

When a trigger 
signal is received, 
break execution. 

After both systems have broken emulation, the emulators can be used to compare 
the data in dual port RAM with the data that the 68000 read from the dual port 
and saved in its own buffer. In addition, if the data has not been overwritten by 
more incoming peripheral data, we may still be able to see the original data 
received from the peripheral in the Z80's storage buffer. 

From this data you can determine: 

- if data is being corrupted somewhere during the 
processing cycle 

- if the Z80 incorrectly packages the incoming data 
- if the 68000 is misinterpreting the command or data 
- if there seems to be a hardware problem 

G-7 



EL 800 User's Manual 

Scenario 2 

Let's assume you have a system like the one shown below, with a master 68000 
that processes user input and two slave Z80 disk driver subsystems. 

Figure G-4. Block Diagram of Scenario 2 

logic 

Symptom 

68000 
CPU 

User 
Interface 

logic 

User 

The behavior you are seeing is that every now and then one of the disk drivers 
returns an 'illegal command' error to the 68000. 

To make it interesting, let's say that if an error occurs, the whole system must be 
halted in order to avoid crashing any disks. With the ES 1800 emulator, you can 
use the "forced special interrupt" feature to execute a safe shutdown routine 
before stopping program execution. 

Solution 

To debug this problem, you need three emulators: one EL 800 for each Z80 and 
one ES 1800 for the 68000. 

G-8 



Debugging Multiprocessor Systems 

There are four steps: 

Step 1: 

1. Connect the EL 800 output triggers to the ES 1800 LSA pod 
input triggers. 

2. Set up each EL 800 event system. 
3. Set up the ES 1800 event system. 
4. Run your programs. When the breakpoints occur, observe the 

data in the emulator which triggered the break condition. 
This data will show which Z80 is causing the problem, 
as well as help identify what exactly is causing the problem. 

Electrically connect one output trigger from each EL ZSO emulator to the lowest 
two bits of the ES 1800's LSA pod, and to one of the input triggers of the other 
EL ZSO as shown in the diagram below. 

Figure G-5. Block Diagram of Trigger Connections for Scenario 2 

EL800 EL800 

TGR TGR TGR TGR ES 1800 in out in out 

t I t I LSAbitO 
I I LSAbit1 

G-9 



EL 800 User's Manual 

Step 2: 

There are two parts to setting up each EL 800's event system: 

1. The EL 800 emulating the processor that receives the 
erroneous command must send a trigger signal to the 
other two emulators and then break. 

2. The other EL 800 emulators must have an event specification that causes 
a break when an input trigger is received. 

For the first part, set up each EL ZSO to output a trigger signal if it gets an illegal 
command. We know that an illegal command was received if we begin executing 
the error procedure "err_proc". 

For the second part, set up the event system to break when an input trigger is 
received. 

From event state 1 in each of the EL 800 ZSO emulators, enter the event 
specifications using the keystroke sequences indicated in the following chart 

EL 800 EvenJ Statement Key Sequence Description 

A= err...,proc as errj)roc Set address 
comparator A to the 
beginning of the 
error procedure 
(symbol err_proc). 

WHEN addrA THEN Break trigOutl wwatbol When execution of 
the error procedure 
begins, send out a 
trigger signal and 
break execution. 

WHEN trigInl THEN Break wwiltb When an input 
trigger is received, 
break execution. 

G-I0 



Debugging Multiprocessor Systems 

Step 3: 

Set up the ES 1800 event system to break if bit 0 or 1 of the LSA trigger inputs 
goes active. This is done by using two event system groups to specify two 
distinct program states, one to track each of the LSA bits. We will specify that 
we do not care about the state of the other bits of the LSA trigger inputs by 
specifying a "don't care" mask. As long as neither of the LSA bits becomes 
active, the emulator will toggle between state 1 and state 2 every other cycle. 

The ES 1800 can be used to safely shut down the disk drives, using the forced 
special interrupt (pSI) action to jump to a prewritten soft shutdown program 
before stopping program execution. The ES 1800 has a special interrupt address 
register (SIA) to store the address of the prewritten soft shutdown routine. 

G-ll 



EL 800 User's Manual 

ES 1800 Event Statement Description 

SIA = 'shutdown Set the special interrupt 
address register (SIA) to 
refer to your safe shutdown 
routine, shown by the 
symbol 'shutdown. 

LSA = 1 DC $FFFE Set the Logic State 
Analyzer comparator (LSA) 
to detect when bit 0 goes 
"high". We don't care about 
bits 1-15, so the expression 
'DC $FFFE' indicates a 
don't care mask for these 
bits. 

ACI = 'end_shutdown Set an address comparator 
in group 1 to the end of the 
shutdown routine, indicated 
by the symbol 
'end_shutdown. 

1 WHENLSA THENFSI When the LSA input 
condition for group 1 is true 
(bit 0 high), execute the 
special shutdown routine. 

1 WHENACI THENBRK When the end of the safe 
shutdown routine is 
reached, break emulation. 

1 WHEN NOT LSA THEN GRO 2 When the LSA input 
condition is false (bit 0 
low), go to group 2 to check 
for the bit 1 value. 

G-12 



Debugging Multiprocessor Systems 

ES 1800 Event Statement Description 
LSA.2 = 2 DC $FFFD Set the Logic State 

Analyzer comparator in 
group 2 (LSA.2) to detect 
when bit 1 goes high. We 
don't care about bits 0,2-15, 
so the expression 'DC 
$FFFD' indicates a don't 
care mask for these bits. 

AC1.2 = 'end_shutdown Set up an address 
comparator in group 2 to the 
end of the shutdown 
routine. 

2 WHENLSA THENFSI When the LSA input 
condition for group 2 is true 
(bit 1 high), execute the 
special shutdown routine. 

2WHENACI THENBRK When the end of the safe 
shutdown routine is 
reached, break emulation. 

2 WHENNOTLSA THR.~GRO 1 When the LSA input 
condition is false (bit 1 
low), go to group 2 to check 
for the bit 0 value. 

Step 4: 

When the emulators break, the reason for the illegal command can be determined 
by evaluating the trace memory of the machine that triggered the break condition 
and determining what was wrong with the command. 

G-13 

I 



-6-

64180 
bus contention, 5-13 
data switch, 5-16 
equivalent circuits, 5-10 
functional chip overview, 5-9 
return from interrupt, 5-13 
Z-mask, 5-11 

- A-

Actions, 6-22 
Activating windows, 6-3 
Active window, 6-4 

tutorial,3-14 
Adapters 

probe tip, 5-11 
Adding symbols, 6-83 
Address comparator, 5-2,6-35 

address, 6-35 
breaking on, 6-31 
deleting, 6-36 
don't cares, 6-35 
ranges, 6-35 

Address lines 
extra, 6-55 

Advanced Event System, 6-20, 6-22, G-3 
overview, 1-5 

structure, 6-23 
tutorial, 3-22 

ASCII mode, 6-74 
Assembler window, 6-17 

tutorial, 3-8 
Assembling code, 6-17 

-B-

Base module, 4-3 
dip switches, 4-4 

INDEX 

Basic Breakpoint System, 6-20, 21 
overview, 1-5 

Basic Breakpoint window, 6-26 
Basic breakpoints 

tutorial,3-19 
Battery-backup for overlay, 6-78 
Baud rate 

dip switches, 2-9, 4-4 
hardware setup, 2-8 
setting, 6-47 
software setup, 2-22 

B lock fill, 6-75 
Block mode, 6-74 
Block move, 6-75 
Boot ROM, D-l 
Break emulation, 6-31,6-35,6-44 
Break/Event window, 6-20 
Breakevents 



EL 800 User's Manual 

restoring, 6-71 
saving, 6-71 
summary window, 6-20 

Breakpoints 
delete, 6-26 
disable, 6-26 
enable, 6-26 
range, 6-26 
saving configuration, 6-26 
set, 6-26 
single, 6-26 

Bus contention, 6-52 
64180,5-13 
Z80,5-4 

-c-

C language operators, 6-15 
Cables 

emulator-PC, 2-7 
maintenance, 4-16 
PCAT,B-l 
PCXT,B-3 
PC to emulator (RS-232), 2-7 

Changing configuration parameters, 6-47 
Changing CPU registers, 6-81 
Changing CPU's, 1-7 
Changing directories, 6-69 
Checksum bytes, C-9 
Clear command, 6-24 
Clearing event system, 6-21 
Clearing event-state variables, 6-64, 67 

tutorial,3-30 
Coml,6-47 
Command summary, A-I 
Communications configuration, 6-46 
Communications window, 6-47 
Communication 

successful, 2-19 
unsuccessful, 2-19 

Comparators 

address (1\JB),6-35 
data (E,F), 6-37 
status (R,S), 6-39 

Comparator loading 
tutorial,3-25 

Compatibles (PC) 
setup, 2-8 

Conditions, 6-22 
Configuration window, 6-46 
Configuration 

restoring, 6-69 
saving, 6-69 

Connector covers, 2-2 
Control, 1-9 
Controlling wait states, 6-53 
Cooling vents, 2-5 
Cooling, 4-16 
Copying overlay memory to target, 6-79 
Copying target memory to overlay, 6-79 
Counters 

global,6-29 
preload, 6-44 
toggle off, 6-67 
toggle on, 6-67 
tutorial, 3-40 
X,Y, 6-29 

Cover window, 2-17, 6-6 
CPU registers, 6-81 
Cross triggering 

overview, 1-6 
Customer service, ii 
Customize windows, 6-4 

tutorial, 3-18 

-D-

Data buffer enable 
64180,5-16 
Z80,5-6 

Data comparators, 6-37 
data, 6-37 



deleting. 6-37 
don't cares, 6-37 
ranges. 6-37 
setting. 6-37 

Data movements 
tutorial. 3-17 

Data space. 6-50 
DATA switch. 6-52 

64180.5-16 
Z80.5-6 

Data types. 6-84 
Data width. 6-75 
Debugging 

multiple processors. G-3 
symbolic. 1-7. C-4 

Delete command. 6-24 
Delete 

address comparators. 6-36 
breakpoints. 6-26 
data compa..-ators. 6-37 
overlay map. 6-78 
status comparator. 6-39 
symbols. 6-18. 6-83 
watch window items. 6-91 
WHEN-THEN statements. 6-32 
window items. 6-24 

Demonstration code. 3-1 
Development cycle. 1-9 
Device drivers. 2-22 
Diagnostics window. 6-60 
Diagnostics 

target, 4-9. 6-60 
DIP package, 5-11 
Directories. changing, 6-69 
Directory path. 2-16 
Directory structure. 2-14 
Disassembled trace, 6-86 

tutorial. 3-42 
Disassembling memory, 6-18 
Disk format, 2-13 
Display modes. 6-74 

Index 

Displaying disassembled trace. 6-86 
Displaying instructions, 6-63 
Displaying raw trace, 6-86 
Distribution files, 2-14 
Don't care masks, 6-35 
DOS, exit to, 6-56 
Download format, 6-69 
Downloading code, 6-70 

tutorial,3-3 
Downloading files, 6-70 

tutorial, 3-1,3-6 

-E-

Editing files, 6-56, 69 
EL 800 components, 4-2 
EL 800 features, 1-4 
Emulate window, 6-63 

tutorial, 3-15 
Emulation, 1-9, 6-63 

starting, 6-63 
steps. 1-11 
stopping. 6-63 

Emulator configuration. 6-46 
Emulator loading. 5-2 
Emulator soft-switches window. 6-50 
Emulator switches 

restoring. 6-71 
saving. 6-71 

Emulator-PC connection, 2-7 
initialization, D-3 

Entering actions. 6-44 
conditions, 6-44 
path names, 6-56 

Equivalent circuits 
64180,5-10 
Z80,5-2 

Error messages. 6-2. E-l 
startup. 2-20 

ES 1800 emulator. G-3 
Escaping to operating system, 6-56 



EL 800 User's Manual 

Ethernet, 2-22 
Event system, 6-20, 6-22, G-3 

examples, G-4 
Event-state variables, 6-64 
Event-State window, 6-67 
Examining code, 6-86 

tutorial, 3-8 
Executing code, 6-63 
Exit window, 6-95 
Exit 

from program, D-3, 6-95 
from windows, D-4 

Expression analyzer, 6-15, F-l 
Expressions, F-4 
Extended Tek Hex format, 6-69, C-l 
Extended warranty, iii 

-F-

File Access window, 6-69 
tutorial, 3-7 

File format, 6-69 
program, C-l 
tutorial, 3-7 

Files 
distribution, 2-15 
download, 6-70 
editing, 6-69 
upload, 6-69 
viewing, 6-69 

Filling memory blocks, 6-75 
Finding 

symbols, 6-83 
Formats 

expressions, F-4 
extended Tekhex, C-l 
Hitachi S records, C-ll, 6-69 
Hitachi-MRI, C-ll 
Intel Hex, C-13, 6-69 
Motorola EXORciser, C-9 
Motorola S-record, C-9 

program file, C-l 
Tektronix Hexadecimal, C-15 
up/download, 6-69 

- G-

Global counters, 6-29 
Ground, 2-10, 4-3 

- H-

H64.LCA, 5-13 
H64Z.LCA, 5-13 
Hardware 

diagnostics,4-9,6-60 
installation, 2-2 
inventory, i 
reset, 6-9 
unpacking, i 

Help, 6-1 
Hitachi S records, 6-69 
Hitachi-MRI format, C-ll 

-1-

Initialize emulator, 6-9, D-3 
Install command, 2-14 
Installation 

hardware, 2-2 
software, 2-13 
steps, 2-2 

Integration debugging, 1-13 
Intel Hex format, C-13, 6-69 
Interference, radio, iv 
Interrupt control, 6-53 
Invoke EL 800 control program, 2-17 
IRQ value, 2-8, 6-47 

setting, 6-47 
software setup, 2-22 



-L-

Labels 
symbol table, 6-18 

LCD monitors, 6-58 
LDDR instruction, 6-66 
LDIR instruction, 6-66 
Leaving software, 6-95 
Line mode, 6-74 
LIR- suppressed, 5-12 
Loading counters, 6-44 

tutorial,3-40 
Loading, emulator, 5-2 
Logic analyzer, 6-44 

debugging, G-3 

-M-

Main menu, 6-13 
Maintenance, 4-16 
Make utility, 6-56, 69 
Mapping memory, 6-77 
Memory 

access, F-3 
format, 6-74 
mapping, 6-77 
mode,6-58 
overlay, 6-77 
space, 6-18 
target, 6-77 
types, 6-77 
window, 6-74 

Microtec-Hitachi S-record format, C-ll 
Motorola EXORciser format, C-9 
Motorola S records, 6-69 
Moving memory blocks, 6-75 
Moving windows, 6-4 
Multiple windows, 6-4 
Multiprocessor debugging, G-3 

Index 

-N -

Nesting WHEN-THEN statements, 6-31 
NFS,2-22 
Non maskable interrupt, 6-53 
Null target 

setup, 2-11 
Numbers 

binary, 6-15 
decimal, 6-15 
hexadecimal, 6-15 
octal,6-15 

- 0-

Object module format, C-l 
Opcode value 

tutorial, 3-24 
Operating system 

exit to, 6-56 
Operators 

C language, 6-15 
expression analyzer, F-3 

Optional modules, 1-8 
Oscilloscope, 6-44, G-2 
Overlay dip switches, 4-14 
Overlay map 

deleting, 6-78 
tutorial, 3-3 

Overlay memory, 6-77 
battery-backed up, 6-78 
modules, 4-14 
options available, 1-8 
wait state control, 6-53 

Overlay modules, 4-14 
dip switches, 2-4 
stacking, 2-4 

Overlay window, 6-77 
tutorial, 3-5 
restoring, 6-71 
saving, 6-71 



EL 800 User's Manual 

Package 
DIP, 5-11 
PLCC, 5-11 

PATH, 2-16 

-p-

Pin 1 location, 2-10 
PLCC package, 5-11 
Pod CPU, 6-50 
POR sequence, D-l 
Port, 2-22 

setting, 2-8 
Power cord, 2-5 
Power off: D-5 
Power on sequence, 2-10, 2-17, D-l 
Power supply, 4-6 
Power-on-reset sequence, D-l, D-2 
Preload counters, 6-21,44 
Probe modules, 4-7 
Probe tip, 4-7 

adapters, 5-11 
changing, 6-11 
equivilent circuits (Z80), 5-2 
equivilent circuits (64180),5-10 
maintenance, 4-16 
use, 4-8 

Processor control soft-switches, 6-50 
Processor packages, 5-11 
Program file format. C-l 
Program space, 6-50 
Prompt, 6-2 

rules, 6-2 
Prototype debugging, 1-11 

- R-

Radio interference, iv 
Radixes, 6-75 
RAM tests, 6-60 
Raw trace, 6-86 

tutorial, 3-42 

Read-after-write verify,6-75 
Real-time operation, 1-4 
REALTIME soft-switch, 6-32, 6-50, 

6-51,6-91 
Records 

S2,S3,S7,S8,C-I0 
Register names 

expression analyzer, F-2 
Registers window, 6-81 

changing, 6-81 
display, 6-81 
tutorial, 3-14 
values, 6-15 

Reload shell code, 6-11, D-3 
Repairs, ii 

extended warranty, iii 
return authorization number, ii 
warranty, iii 
service agreements, iv 

Repeat counts 
expressions, F-5 

Requirements 
hardware, 2-1 
software, 2-1 

Reset button, 4-5 
RESET switch, 6-50, 52 
Resetting emulator, 6-9,4-5,6-50,6-52 
Resident device drivers, 2-22 
Resizing windows, 6-4 
Restarting the program, 6-64 
Restoring 

breakevents, 6-71 
configurations, 6-69,6-71 
overlay, 6-71 
switches, 6-71 
symbols, 6-71 
windows, 6-71 

RET! 
considerations, 6-52 
64180,5-13 
Z80, 5-2 



Return from interrupt, 6-52 
64180,5-13 
Z80,5-2 

ROM, boot, D-l 
RS-232 port, 4-5 
Running diagnostics, 6-60 
Running the emulator, 6-63 
Runtime monitor, D-3 

-s-

52,53,57,58 records, C-I0 
Saving 

all,6-71 
breakevents, 6-71 
breakpoint configuration, 6-26 
configur.wtions, 6-69 
overlay, 6-71 
switches, 6-71 
symbols, 6-71 
trace, 6-71 
windows, 6-71 

Scope loops, 6-60 
Screen color, 6-58 
Selecting data width, 6-75 
Selecting memory mode, 6-58 
Serial interface 

emulator, B-4 
PC AT, B-1, B-3 
PC XT, B-1, B-3 

Serial number, 6-6 
Serial port, 4-5, 6-47 

baud rate, 4-5 
interrupt driven, 2-8 

Service agreements, iv 
Setting 

address comparators, 6-35 
baud rate, 6-47 
communication parameters, 6-46 
device type, 6-47 
event-state variables, 6-64, 67 

initial memory mode, 6-58 
IRQ value, 6-47 
port name, 6-47 
screen color, 6-46, 6-58 
soft-switches, 6-46 
utility names, 6-46 

Setup requirements, 2-1 
Shell code reload, 6-11, D-3 
Shell escape, 6-5 
Single step 

tutorial, 3-14 
Sizing windows, 6-4 
Soft-switches 

BUSREQ,6-55 
DATA, 5-6, 5-16, 6-52 
emulator, 6-50 
EXTADDR, 5-2, 6-55 
INnnERRln?TS, 5-10, 6-53 
MREQ,6-54 
RD,6-55 
REALTIME, 6-52 
RESET, 5-10, 6-52 
restoring, 6-71 
saving, 6-71 
setting, 6-46 
WAIT, 5-10, 6-53 
WR,6-55 

Software debugging, 1-12 
Software serial number, 6-6 
Software startup, D-2 
Specifications, 4-18 
Specifying data width, 6-75 
Stacking modules, 2-2,4-10 
Stacking order, 4-13 
Starting the EL 800, 2-2, 3-2, D-2 
Startup 

troubleshooting, 2-19 
State variables, 6-67 

default, 6-67 
State windows, 6-21, 31 

Index 

States, Advanced Event System, 6-22 



EL 800 User's Manual 

Static precautions, 2-10,4-8 
Status comparator, 6-39 

deleting, 6-39 
inverting, 6-39 
setting, 6-39 

Status messages, 2-17 
Status signals 

64180,6-40 
ZSO,6-40 

STATUS.LOG, D-3 
Step command 

tutorial, 3-1,3-16 
Stepping through code, 6-63 
Stopping emulation, 6-20, 6-44, 6-63 
Sub-windows, 6-1 
Switches 

restoring, 6-71 
saving, 6-71 

Switching windows, 6-3 
Symbol blocks, C-4 
Symbol Table window, 6-83 
Symbolic debug, 1-7, C-4 
Symbols 

adding, 6-83 
changing, 6-83 
class, 6-84 
deleting, 6-83 
expression analyzer, F-2 
finding, 6-83 
name, 6-85 
restoring, 6-71 
saving, 6-71 
scope, 6-84 
table, 6-18 
type, 6-84 
value, 6-85 

System configuration, 6-46 
System window, 6-56 

-T-

Target generated reset pulses, 6-52 
Target inputs, G-2 
Target interrupt control, 6-53 
Target RAM, 3-2 
Target set up, 2-1 ° 
TekHex, 6-69, C-15 
Tektronix hexadecimal format, 6-69, C-15 
Temperature, 2-5, 4-16 
Test target, 4-7 

board,4-8 
setup, 2-11 
tutorial, 3-2 
use 

Testing hardware, 6-60 
Trace 

disassembled, 6-86 
examining (tutorial), 3-43 
memory, 1-5 
off, 6-44 
on, 6-44 
one cycle, 6-44 
raw, 6-86 
saving, 6-71 
toggle off, 6-67 
toggle on, 6-67 
tutorial,3-42 
window, 6-86 

Transparency, 1-4, 1-9 
Trigger signals 

input, 4-3, 6-44, G-l 
output, 4-3, 6-44, G-l 
overview, 1-6 

Troubleshooting, 4-17 
error messages, 2-20, 6-2, E-l 
startup, 2-19 

TUTOR.ETH,3-7 
startup, 3-2 
flow chart, 3-10 

Tutorial, 3-1 



Type casting, F-3 
Typical configUFdtion, 4-1 

-u-

Unpacking, i 
Un stacking modules, 4-11 
Upload format, 6-69 
Uploading files, 6-69 
User interface configuration, 6-46 
User interface window, 6-58 
Using expressions, F-l 
Utilities window 

memory mode, 6-74 
overlay, 6-79 

- V-

Values 
expression analyzer, F-l 

Variables 
event-state, 6-64 

Verification of write, 6-75 
Vertical support stand, 2-5,4-16 
Viewing files, 6-56, 69 
Viewing memory 

assembled,6-17 
disassembled,6-17 

Visibility, 1-9 

-w-

Wait states, 1-4,6-53,6-77 
Warranty extended, iii 
Watch window, 6-91 

editing, 6-91 
tutorial, 3-29 

Watching 
constants, 6-91 
expressions, 6-91 
memory, 6-91 

registers, 6-91 
symbols, 6-91 

WHEN-THEN pseudocode 
tutorial, 3-23 

Index 

WHEN-THEN statements, 6-31,43 
actions, 6-43 
conditions, 6-43 
operators, 6-43 
syntax, 6-22 
tutorial, 3-25 

Window sizing, 6-4 
tutorial, 3-31 

Windows, 6-1 
moving, 6-4 
resizing, 6-4 
restoring, 6-71 
saving configuration of, 6-71 
tutorial, 3-2,3-31 

-x-

X counter, 6-29 

-y-

Y counter, 6-29 

-z-

Z-mask 64180, 5-11 
Z80 

bus contention, 5-4 
data switch, 5-6 
equivalent circuits, 5-2 
family, 1-1 
functional chip overview, 5-1 
return from interrupt, 5-2 



: IIII111 

Applied 
Microsystems 
Corporation 
Applied Microsystems Corporation maintains a worldwide network of direct sales offices 
committed to quality service and support. For information on products, pricing, or delivery, 
please call the nearest office listed below. If you are unsure which office to contact, call 
1-800-426-3925 for assistance. 

CORPORATE OFFICE 
Applied Microsystems Corporation 
5020 148th ,l\venue Northeast 
P.O. Box 97002 
Redmond, WA 98073-9702 
(206) 882-2000 
1-800-426-3925 
TRT TELEX 185196 
Fax (206) 883-3049 

EUROPE 
Applied Microsystems Corporation 
Chiltern Court 
High Street 
Wendover 
Aylesbury. Bucks 
44 (0) HP22 6EP England 
296-625462 
Telex 265871 REF WOT 004 
Fax 44 (0) 296-623460 

JAPAN 
Applied Microsystems Japan, Ltd. 
Nihon Seimei 
Nishi-Gotanda Building 
7-24-5 Nishi-Gotanda 
Shinagawa-Ku 
Tokyo T141. Japan 
3-493-0770 
Fax 3-493-7270 

U.S. REGIONAL SALES OFFICES 
Western Region 
AppJied ~v1icrosystems 
Corporation of Washington 
3333 Bowers Avenue 
Suite #220 
Santa Clara, CA 95054 
(408) 727-5433 
Fax (408) 727-9011 

Applied Microsystems 
Corporation of Washington 
2101 Business Center Drive 
Suite #140 
Irvine, CA 92715 
(714) 476-3177 
Fax (714) 476-8546 

Central Region 
Applied Microsystems Corporation 
Suite #142 
Richardson, TX 75081 
(214) 235-8827 
Fax (214) 238-0719 

Eastern Region 
Applied Microsystems 
Corporation of Washington 
6 Cabot Place 
Stoughton, MA 02072 
(617) 341-3121 
Fax (617) 341-0245 



PIN 922-00021-02 
October 1988 


	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-46
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	6-001
	6-002
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	6-78
	6-79
	6-80
	6-81
	6-82
	6-83
	6-84
	6-85
	6-86
	6-87
	6-88
	6-89
	6-90
	6-91
	6-92
	6-93
	6-94
	6-95
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-00
	B-01
	B-02
	B-03
	B-04
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	E-00
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-00
	F-01
	F-02
	F-03
	F-04
	F-05
	G-00
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	xBackA
	xBackB

