e
o

G

EMULS1-PC NoHay

Lt

USER ORIENTATION
INSTALLATION
COMMANDS

PODS
TROUBLESHOOTING
TUTORIAL

SIMULATOR

INDEX

USER ORIENTATION
INSTALLATION
COMMANDS

PODS‘

TROUBLESHOOTING

TUTORIAL

SIMULATOR

INDEX

We will be pleased to answer any questions you may have, or discuss your
comments. If you prefer, you may write to us at the following address:

NOHAU CORPORATION

51 E. Campbell Ave.
Campbell, CA 95008

Phone (408) 866-1820
FAX (408) 378-7869

(NOHAU is pronounced "know how")

DISCLAIMER

Nohau Corporation’s EMUL51-PC is sold with a one-year warranty on the hardware.
The software is sold with no warranty, but upgrades will be distributed to all customers
up to one year from the date of purchase.

Nohau Corporation makes no warranties, express or implied, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. In no
event will Nohau Corporation be liable for consequential damages.

Edition #12

COPYRIGHT © 1985 - 1993 BY NOHAU CORPORATION.
"NoHAU", "EMUL", "EMUL51" AND "EMUL51-PC" ARE TRADEMARKS
oF NOHAU CORPORATION.

ALL RIGHTS RESERVED WORLDWIDE.

Table of Contents

1 USER ORIENTATION

Hardware Overviewc.ciiiiinnunnnn.n. 1-3
Uuserinterfacettt 1-6
Command Language Overview 1-9
Code Window Source Level Debugging 1-14
How the Standard Trace Works 1-22
How the Advanced Trace Worksc.... 1-28
How to Build a "State Machine"

Usingthe SxFunctions 1-37
Breakpoints e e 1-46
MacroS ... e e e e 1-49
Data WIindows ittt it ittt i iie e 1-55

2 INSTALLATION

Dear 8051 User:ttt 2-3
Materials and Supplies i, 2-3
Power Requirements i, 2-3
Inspection of Jumpers o i, 2-4
EmulatorBoard i i, 2-6
Standard Trace Board, 2-10
Advanced TraceBoard 2-13
Addressing the Emulator and Trace Boards 2-14
Installing the Emulator and Trace Boards 2-16
Mapping e 2-17
System Requirements i, 2-18
Getting Started e 2-18
Files Provided i, 2-26
EMULST-PC/BOX ... it i e eeaeens 2-27
BANKSWITCHING ittt 2-33
3 COMMANDS

AASM Assemblymode 3-5
ABR Automatic Breakpoint Remove 3-5

ACC Accum. displayandsetco.... 3-7

ADJUSTWINdows iiiiiiiiinnenennn. 3-7
ASM Assembleoneline, 3-7
AV View Auto Variable, 3-8
B (see ACc) ,
BANK Bank0t iirntnannenesean 3-8
BANKADDRESS Bankaddress 3-9
BANKBYTE Bankbyte 3-9
BANKMODULE Define or display banked modules 3-9
BANKSEGMENT Banksegment 3-10
BANKSY1 Set or show bank SYi signal 3-10
BB Breakoninternalbit 3-10
BIC Break on Internal Contents 3-11
BR Breakpointregisters i, 3-14
BRM Breakpoint Mode Register 3-14
BRS Breakpointin Go Slowmode 3-15
BUFFERSIZE Buffersizeccciiinien.. 3-15
BYB Breakoninternalbyte 3-16
CALCULATE Calculate checksum 3-17
CBCodememorycciiiiiinienenranennnns 3-18
CLB Clear Breakpoint RAM 3-19
COUNT Executionofblock 3-20
CST (see OST) :

CW Code Window On/Offcciiviinnnn. 3-20
DASM Disassembleciiiiiinnnrann 3-21
DBYTE (see CByte)

DEFINE Definemacrosymbol 3-22
DIR Macrodirectory i iiiiinnrnnnns 3-23
DISABLE Disable an EMUL51 function 3-23
DOM Moduledomainccuuiiirennnnenn. 3-26
DP Disassemblefrom PC 3-26
DPTR Data Ptr Reg displayandset 3-26
ENABLE Enable an EMULS1 function 3-27
ENDENRd it ittt 3-29
EVALUATE Evaluate an expression 3-29
EVENT (Sim. only) Specify sim.event 3-30
EXITEXittoDOSttt 3-31
FILL Fil memorywithvalue 3-31
Format Formal Commands 3-32
GB Go till Breakpoint 3-33

Vi

Gl Gotillcontentsmatch 3-33

GO Startemulation i, 3-34
GRGORegister 3-36
GS GOSIOW . ..ottt 3-36
HEAP Heap it 3-37
HELP Help ... i it 3-38
IB Internal Break onpattern 3-38
IF Conditional it iiiiiiinennnn. 3-38
INCLUDE Load commandfile 3-39
INTERRUPT Display interrupts 3-40
J (see SN)

LCLoopCounter it iiiiiirinnnnnnnnn 3-40
LINLinestep00, 3-41
LISTOpenlogfile, 3-41
LOAD Load program/symbols 3-42
LOBLoadBinarycciiiiiiiiiinennnnnnn 3-44
LOP Load Ppasetupcommand 3-44
LOVERLINEOVER iiiiiiiinnnnnnns 3-44
LOW Load Windowsetupcciiiiinen.n. 3-44
MACRO Display MACroscciiiivinnnnn. 3-45
MACDELAY (Sim. only) Macro afterdelay 3-45
MAPCMapCodecciiiiiiininnrnnnnnn. 3-46
MAPX Map eXternaldata 3-46
MEMMemttt iinnenns 3-46
MODModulettt 3-47
N (see SN)

NOHIT Nohit i 3-47
NOSNOW Remove SCreen SNOW vvv v v ennnns 3-47
OST Open Slow Tracebuf 3-47

P1 (see ACc)
P3 (see ACc)
PBYTE (see CByte)

PCPCRegdisplayandset 3-48
PPA ANGlYZOT .« .\ ottt e e et 3-48
PUT Save macros inDOSfile 3-49
QRA Trace Qualifier Register 3-49
QUIETQuiet i, 3-51
RBITBitmemory i iiiiiinennn 3-51
RBS Bankselect it 3-52

RBYTE (see CByte)

Vi

RCS Relative Computer Speed 3-52

REGDisplayregs.c.ciiiiiiinnnnnnn. 3-52
REMOVE Remove symbolsormacros 3-53
REPEAT Repeatblock 3-54
RESET Resettoinitial status 3-55
RO Display and setworkingreg. 3-55

R1-R7 (see RO)
S (see Step)

SAP Save Ppasetupcommand 3-56
SAVE Save programorsymbols 3-56
SAW Save Windowsetupccoovvinn.. 3-57
SCOPESCOPECommand0ouiuinn.. 3-57
SEB Set Breakpoints 3-57
SECONDS Display emulationcycles 3-58
SERIAL (Simulator only) Map SerialPort 3-58
SHELL Shell i, 3-60
SL Sl . e 3-60
SNStepNext i, 3-60
SNAP SNAP Command i, 3-62
SO Sourceleveldebug 3-63
SP (see ACc)
SSTSingleStep Trace i, 3-63
STACK Display contents of stack 3-64
STEP Execute one instructionandstop 3-64
SUFFIX Display orsetradix 3-65
SWD Setup datawindowt 3-65
SWR Setup register window 3-65
SWX Setup ext. datawindow 3-66
SYO0a SYOa Reg. displayandset 3-67
SYMBOLS Display symbols 3-67
SYMLOAD Load symbols from a converted

assemblylisting 3-67
SYSTEM Execute DOS Command 3-69
TABS Tab 3-69
TBTrace Beginc.ciiiiiiinninrnrnenns 3-69
TBR Breakon Tracetrigot 3-70
TCTrigCounter 3-70
TD Trace dissassembleviun.. 3-71
TDF Framedisplay i, 3-71
TOLTDinListmode, 3-72

viii

TETraceEnd i 3-73
TMO (see DPTi)
TM1 (see DPTr)

TR Trace Register 3-73
TS Trace setupot e 3-74
TSGET Load Trace Setupcviiinennn... 3-74
TSPUT Store Trace Setup it 3-74
UNTIL (see COunt)

VERSION Version Number 3-75
WAIT Wait forkeystroket 3-75
WATCH ? and w[x]? - To Display C Variables 3-75
WHILE (see COunt)

WRITE Display express. orstring 3-76
XBYTE (see CByte)

XTAL XTAL ..t e et e e e 3-76
:name (see MACro)

25, 43, 50 Screen Mode Commands 3-77

? (see WATCH)

4 PODs

Pod Selection i 4-3
Connectionand Setup i, 4-10
Adapters e e e 4-10

"Generic" Board: 40-Pin External Mode POD,
POD-31, POD-C31, POD-32, POD-C32, POD-44,

POD-C154, POD-C252/C51FA, POD-C321, POD-C652 4-13
POD-31S ... e e e e 4-17
POD-51 /POD-C51 i, 4-21
POD-C51B,POD-C652B iiiiiiinnnnan. 4-31
POD-CB1FX ... i i e 4-37
POD-C51GB-PGA e 4-45
POD-CB1SL-16t e e 4-49
POD-C52 4-55
POD-C054 i 4-63
POD-C182-DIP e 4-69
POD-C182-PGA i e 4-73
POD-407-14.75 i e e 4-79
POD-CL410 e e e e 4-85
POD-C451-DIP e 4-91

POD-C451-PGA ittt 4-95

POD-C451B-PGAt ittt ittt e e e e 4-99
POD-C452-PGAt ittt it ittt i e e 4-105
SAB C502 Emulation ittt 4-109
SABCSO3Emulationciiiiiiinnnnn 4-111
POD-C515A-PGA-18 it ittt ittt i it ti e 4-113
POD-CS17A-PGA-18 ittt ittt ittt 4-123
POD-C517AB-PGA-18 ittt i i i i e a 4-125
POD-CB17B-PGA ... ittt it ettt e 4-131
POD-CB28 ... ittt it e e 4-143
POD-532-PGA, POD-535-PGA, POD-C535-PGA 4-151
POD-CB837-PGA ... i ittt it it 4-161
POD-C550-PGA ... ottt ittt et et e 4-167
POD-C552-PGA, POD-C562-PGA 4-173
POD-CB52B-PGA ... ittt ittt it it ettt te e e 4-177
POD-CB58-16o ittt ittt it ittt i e e 4-183
POD-CB75 .ottt e e e e e e 4-191
POD-CLB80 ... ittt it ittt ittt ettt e 4-197
POD-CB892-PGA ... ittt ittt ittt i et 4-203
POD-CB98-KIT ... ittt ittt it et e it 4-209
POD-C751 . ittt i i e e e e 4-211
POD-C752 ..ttt ittt e e e e 4-215
POD-CL782 ..ttt ittt ittt ettt it e 4-221
POD-5001-16 ... it ittt it ittt ittt ettt et e e 4-227

5 TROUBLESHOOTING

Basic Standalone Troubleshooting 5-3
Error Messagesttt nnnneenn 5-8
Serial BOX e e e 5-8
Problems Operating in Target Systems 5-8
Source Code Display Problems 5-11

6 TUTORIAL

Userinterface it 6-3
Emulator Commands 6-15
Standard Trace Commandsc.viu.... 6-22
Advanced Trace Commands unn... 6-41
Advanced Trace Features 6-56
Search Function it 6-72

7 SIMULATOR OPTION

OVBIVIEBW . . i et s s e e e e 7-3
Invocation e 7-3
Userinterface i i i 7-4
Simulator Engine 7-4
External Environment Simulator

(EVENT-MACRO) e e e 7-4
External Environment Simulator

(SERIAL CHANNEL) e 7-6
Appendix A
INDEX

NOHAU Sales Offices, Reps, And Distributors

Xi

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-1

USER ORIENTATION

Hardware OVerviewttt ittt i ennn 1-3
Userinterface it i i ittt 1-6
Command Language OVerviewciiiiin e nsnnns 1-9
Code Window Source Level Debugging, 1-14
How the Standard Trace Works 0. 1-22
How the Advanced Trace Workst iiiiinninnnnnn 1-28
How to Build a "State Machine" Using the SxFunctions 1-37
Breakpoints i i i e e e e 1-46
1 = Lo 0T 1-49

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-3

USER ORIENTATION

The EMUL51-PC is a PC-based emulator for the 8051 family of
microprocessors. This section of the manual begins with a hardware
overview, then describes the menu-driven user interface and the command
language. After that, differences between EMULS1-PC and other emulators
are listed. The final pages of this section summarize several of the major
EMULS51-PC features, including:

Trace, Breakpoints, Static Windows and Macros.

Hardware Overview

The basic hardware consists of the emulator board which is mounted in one
of the PC’s slots. The pod board is the small board that replaces the
microcomputer chip on the target system. The ribbon cable connects these
two boards. The optional trace board contains a piece of ribbon cable to
connect the trace board to the emulator board. All three boards have
jumpers to configure them for different functions.

The pod board has an LED which is on when EMUL51-PC is in emulation
mode. Pushbutton switch S1 can be used to reset the microprocessor. The
target systems reset can be disconnected by removing a jumper. This is
useful if your target has a watchdog, controlled under software, which resets
the chip if the software is not running.

TRACE BOARD (option)
Q.I yd ? I microprocessor
ribbon cable : :
e >
* <"@rlbbo able
EMULATOR
BOARD
POD
BOARD TARGET

SYSTEM

Figure 1. Basic Hardware Components

Additional sockets may be added to the socket pins on the solder side of

Page 1-4 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

the board. This may have to be done if components on the target system
are too high. There are also different adapters available. Please refer to a
current price list.

Box Option To accommodate users having PCs without spare card slots
or who may need to move the emulator frequently, as well as PS/2 users, a
Box option of the EMUL51-PC is also offered, (Figure 2). The Box has its
own power supply and accepts the same emulator and trace boards.

4 communication cable microprocessor

Figure 2. EMUL51-PC Box Option

Dimensions of the Box are 5 1/2 in. wide, 9 in. tall and 15 1/8 in. deep.

The Box-P version (not available in all areas) communicates with the PC
over a dedicated parallel port which extends the I/O bus of the PC. The
Box-P parallel bus will run at full speed, but does require a "non-standard"
parallel card to be installed in the PC.

The Box-S version communicates with the PC oveer a standard serial port.
Communication between the PC and emulator is slower with the serial Box-
S, but we have reduced transfer time to a minimum through use of
sophisticated block transfers of data and by 'PROM:ing’ time-critical code in
the box. Transfer speeds are given below.

Serial Channel LOAD: 1.5 sec. per k with 10 MHz AT
SAVE:30 sec. per k with 10 MHz AT

Boards in PC LOAD: 0.2 sec. per k with 10 MHz AT
SAVE: 0.5 sec. per k with 10 MHz AT

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-5

The Box-M version has a serial channel and an internal modem. This
allows the PC to be at a location remote from the Box and system under
test.

Additonal details about the various Box versions can be found in the
Installation chapter.

Page 1-6 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

B User Interface

There are probably as many ideas of how a user interface should work as
there are users. We have combined a fast command language for the
frequent user with a menu-driven, context-sensitive help interface for the
beginner and infrequent user. The idea is that by using the menus you will
automatically learn the commands.

The following shortform overview shows how to move about the screen
using both menus and commands. For a more detailed hands-on session,
please refer to the Tutorial chapter.

1. The Menu line. The top line on the screen shows the 11 major command
groups. You can use the right and left arrow keys or the mouse to move
between the 11 groups. At the bottom of the screen you will always see a
help line explaining each item in more detail. By pressing RETURN, or
clicking the mouse, a "pulldown" menu with detailed command choices will
be seen.

2. Pull Down Menus. The first item will be highlighted. You can now use the
up and down arrows or the mouse to choose a command. Also here the
bottom line will explain each command in detail. If you use the right or left
arrow key, or the mouse, you will move to the top item on the next menu.
To "escape" up to the menuline from a pull down menu, use the ESC key.
To go to the command line, type ESC while at the menu line.

3. Help window. If you press the F1 Function Key at any time, the help
window will open and a detailed description of the current item will appear.
You can then use the arrow keys and PgUp and PgDn keys when you
study the help text. ESC closes the help window.

4. Executing a command from the menu. If you press RETURN, or click
the mouse, at the command you want to perform, the corresponding
command will appear at the bottom of the screen. You will now also see an
additional "syntax" help line telling you what possible parameters you now
must enter. This extra help line may be turned on and off by pressing the
F9 Function Key.

5. Moving back to the menu from the command line. If you want to move
back from the command line to the menu line press the ESC key. You can
also type MENU at the command line to get to the menu line. A third way
is to simply use the mouse to point at the desired group and click it to pull

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-7

down the desired menu. See F7 below for more information.

6. Editing the command lines. You can use the LEFT ARROW and RIGHT
ARROW keys to insert or over-type the text already on the command line.
You can toggle between INSERT Mode (underscore cursor) and
OVERTYPE Mode (block cursor) using the “Ins" key. See F7 below for
more information.

7. Function keys. The function key specifications will appear at the bottom
of the screen when you are in command mode. You can activate them by
pressing the desired function key or point at the desired function at the
bottom of the screen with the mouse and click it. They have the following
functions:

F1 Help Puts the HELP window with appropriate help text up on the
screen. This is especially useful when you are in the pull
down menus, although the "function key line" at bottom of
the screen is not visible at that point.

F2 CpyChr Copy characters one by one from the previous command
line.

F2 SrcAsm When the CODE window is open, F2 is used to toggle
between Assembly Mode and Source Mode.

F3 CpyCmd Copy Command. Copy the previous command line.

F4 AdjWin Adjust Windows. Move current window and/or change size.
(See help line on bottom line).

F5 NxtWin Change current window. Window border will indicate current
window.

F5 Speed? When the CODE Window is open, F5 is used to toggle
between the full speed GO mode and the GO SLOW mode,
which is a single step mode, (see the GS command). GO
mode will execute the instruction where the breakpoint is set,
while GO SLOW will stop at the breakpoint.

F6 WOnOff Window On / Off. Remove window and show full screen.
Toggles On and Off, (see help window at WIN on the top
menu line).

F7 PrvCmd Previous Command. Allows you to go back and look at the
most current 20 commands. You may edit and reuse any
command. These 20 commands are stored in a circular

Page 1-8 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

buffer, so pressing F8 (NxtCmd) when you are at the current
command will give you the oldest command. When editing a
line, you may toggle the cursor between INSERT Mode
(underscore cursor) and OVERTYPE Mode (block cursor).
Use the "Ins" key to toggle.

F8 NxtCmd Next command. Step forward in the command buffer, (see
description of F7 also).

F9 HipOnf Help On / Off. Switch syntax help at second last line On or
Off.
I

F9 GoCurs When the Code Window is open, F9 sets a breakpoint at the
cursor location in the Code Window and executes a GO
command.

F10 Repeat Repeat last command. Works like F3, but includes a
RETURN to complete the command.

Shortcuts for toggling some windows:

CTRL-R register window (Not REGISTER WINDOW on top of
screen)

CTRL-W watch window

CTRL-A code window

CTRL-D data windows

EMUL51 © NOHAU CORP. 1985 - 1993 Orlentation Page 1-9

Command Language Overview

The Commands chapter contains an alphabetical listing of all available
commands. In this Overview we divide the commands into four levels. For
each level the commands within that level will be listed, followed by free-
form descriptions of some typical uses. For more detailed descriptions of
each command, refer to the Commands chapter.

Level 1 - Commands you have to know in order to perform the most
basic operations

ASM (A) One-line assembler command

BRx Breakpoint registers, (x is 0 to 9)

CBYTE (CB) Display or set contents of user code bytes
DASM (D) Disassemble program memory

DBYTE (DB) Display or set contents of internal data

EXIT (EXI) Terminates the EMUL51-PC and returns to DOS
GO (G) Starts emulation

LOAD (LOA) Loads user program and/or symbol table
MAPC Map code memory to emulator or target
RBIT (RBI) Display or set bit memory

RBYTE (RB) Display or set contents of internal registers
REGISTERS (R) Display some internal registers

RESET (RES) Reset BRx, EM or CHIP

STEP (S) Single Step

TD Displays contents of trace buffer

XBYTE (XB) Displays or sets contents of external memory
cw Open the CODE Window.

After EMULS51 is loaded, especially before you become familiar with all
commands, you will use the F1 Help key a lot. Spend some time to learn
how to get to the different paragraphs.

You will probably not need to alter the mapping, because the code memory
is by default mapped to the emulator and the external data memory is
mapped to the target system. If you want to emulate from a PROM on your
target system, you need to use the MAPC command.

Page 1-10 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

You will load your .obj or .hex file, which has been prepared from the
assembler or compiler. Use the LOAD command.

Then you may use the CW, Code Window, command to look at what you
loaded.

Now you may want to start the program. Use S to single step or G to start
the program. When you use the G command you will probably want to
break on some address to be able to view registers, external memory, and
so on. Say you wanted to break on address 012AH. Then type G T 12A.
The program will start on the current PC (program counter) value, which by
default is 0000H. If you want to specify the start address, (changing PC for
instance to 0100H), type G F 100 T 12A. Now your program will start
executing at address 0100H and it will break at 012AH. It will, of course,
only break if 012AH is the first byte of an instruction, and if the program
gets to execute that instruction. If it doesn’t break, you can always break
from the keyboard using the ESC key.

After a break you can look at the trace by typing TD, which will show you
the last few instructions that the processor executed before the break. To
look further back in the trace buffer, use TD -1000 (for example). This will
start displaying 1000 "frames" back in the buffer. Each instruction consists
of 2 - 4 frames.

Now you will probably also want to use the DB, RB, CB, XB, or RBI
commands to take a look at the contents of different memory locations. (Or
alter them).

Use Cirl + R to view the most common registers. (See "Static Windows")

Now if you need to change your code, you may use the A command. First
type A ORG 200. This will change the internal assembly pointer to location
0200H. Then type A MOV A, #10 for instance, or any other instruction you
want to assemble into the code memory. The assembly pointer will
automatically be advanced the correct number of bytes. (See the AA
Command)

To continue from where the break took place simply type G, or if you want
to go to a new breakpoint, say 0234H, type G T 234.

It is not unlikely these are all the commands that you will ever use. But if
you take the time to learn the commands in LEVEL 2, LEVEL 3, and LEVEL
4, we think that you will find it very rewarding!

EMUL51 © NOHAU CORP. 1985 - 1993 Orlentation Page 1-11

Level 2. Commands that take advantage of the powerful EMUL51-PC
TRACE features.

B Trace begin, (used to restart trace)

TBR Used to activate a breakpoint via trig condition
TC Displays or sets trace counter

TD Trace display, disassembled form

TDP Trace Disassembly with Port and address

TDF Trace display, "Frame form"

TDL Trace display, disassembled form and No pause
TDFL Trace display, "Frame form" and No pause
TDPL Trace Disassembly with Port and address, no pause
TDS Trace Display Single step, (OST, CST)

TDFS Trace Display Frame Single step, (OST, CST)
TE Trace End, stops trace while emulating

TR Displays or sets the trace register

TS Trace Setup window

Even though you may do some very complicated things with the trace, it is
quite simple to use. The TR sets up how the trace conditions will be used,
and TC sets up the trig counter. Use the TS command to set up TR, TC,
and TBR.

TB and TE are used restart and break the trace when you are in emulation,
(without disturbing emulation). TD displays the trace buffer in disassembled
form, and TDF displays the trace buffer in frame form. TBR, if ON, causes

a breakpoint to occur when a trace trigger occurs.

For more details, see "How Trace Works" later in this chapter, and the
descriptions of individual commands in the Commands chapter.

Level 3. Commands associated with the MACRO features.

BB
BIC

BYB

COUNT (COU)
DEFINE (DEF)
DIR

DISABLE (DIS)
ENABLE (ENA)
IB

IF

INCLUDE (INC)

Set up Break on direct write to Bit address
Set up Break on Internal Contents

Set up Break on direct write on BYte address
Begins command block to be executed n times
Define macro or symbol

Displays directory of macros

Disable macro expansion or symbols

Enable macro expansion or symbols

Set up Instruction Break

Macro IF condition

Reads sequence of commands from a file

Page 1-12 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

MACRO (MAC) Displays macro definitions

:"macro name" Invokes previously defined macro

PUT Stores macro definitions on file

REMOVE (REM) Remove macro or symbol

REPEAT (REP) Begins block of commands to be repeated
UNTIL See COUNT and REPEAT for details
WAIT Waits for a key stroke

WHILE See COUNT and REPEAT for details
WRITE (WRI) Displays evaluate expression or string

The MACRO commands will save you a lot of typing! This is especially the
case when you need to type a sequence of commands over and over. By
using the DEF :"macro", where "macro" is a name that you supply, you can
define a new macro by simply typing the commands and ending the macro
with the EM (end macro) command. Then to execute the macro you type
macro name," and the commands will automatically be executed. You can
save macros on disk by using the PUT command. To load a macro back
in, use the INC command. To write macros you may also use any editor

under DOS. If you need to alter a macro without leaving the emulator
program, use the SYS command to invoke your editor from within the

EMULS1! By taking advantage of all the macro commands, you may

simplify your testing enormously.

Please also refer to the detailed descriptions of each command in the

Commands chapter!

Level 4. Miscellaneous other commands that can be very useful

ACC Displays or sets the accumulator

BRM Breakpoint mode register

BRS BReakpoints for GS command

CALC Calculates checksum in code memory

CcLB CLear Breakpoint RAM

DOMAIN (DOM) Displays or sets default module name (PL/M51)
DPTR Displays or sets the DPTR registers DPH + DPL

EVALUATE (E)
FILL

Evaluate expression
Fill, (write value to a range of addresses)

Gl Go till Internal register contents match
GS GO Slow, ("Run" using single step)
INTERRUPT (INT) Displays interrupt status

LIN Line step, (single step on line numbers)
LIST Output display copy to specified file
Low Load "window" setup

EMUL51 © NOHAU CORP. 1985 - 1993

Orientation Page 1-13

NOSNOW
P1, P3

PPA

SAVE (SAV)
SAW

SECONDS (SEC)
SN

STACK (STA)
SUFFIX (SUF)
SWD

SWR

SWX

SYOA

SYMBOLS (SYM)
SYSTEM (SYS)
™1, TM2

VER

Use if you get "snow" on screen using window
Displays or sets P1 Register or P3 Register
Program Performance Analysis

Saves user program on file

Save "window" setup

Displays execution timer

Step Next, ("Straight" single step)

Displays the contents of the stack

Default radix for entered data, (default HEX)
Set Window Data

Set Window Registers

Set Window eXternal data

SYO input Active high or low

Display all user defined symbols

Used to execute DOS commands from EMUL51-PC
Displays or sets TMO or TM1

Software version number

Here we would like to point out the usefulness of the LIST command. It can
be used to save everything that is written on the screen to a specified file,
except windows or trace information. (Use the TDL command, etc., to save
trace information.) Then you can use your editor to examine the contents.
You can save a disassembly, work on it with your editor, and in this way
create a source file from the contents of a PROM.

The INT command is very useful to give you a quick overview of the
interrupt status of the processor. The E command provides a built-in
symbolic calculator! The rest of the commands are self-explanatory.

For detailed descriptions of each command, please refer to the Commands

chapter.

Page 1-14 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

| Code Window

Source Level Debugging

The EMUL51-PC lets you open a "Code Window" with the command CW
which toggles the CODE Window On and Off. (You can also use CTRL+A
to toggle the CODE window on / off. The commands ENA CODE and DIS
CODE can also be used to open / close the Code Window).

format:
Cw

Display Modes When the Code window is open two modes of display are
available. By default "assembly mode" is enabled. In this mode the
disassembler is used generate the text in the Code window.

The second mode is the "source mode". This mode depends on a
combination of the contents of the symbol table and the corresponding
source files or list files.

The function key F2 is used to toggle between these two modes. Following
are detailed descriptions of how the two modes are used:

Assembly Mode Disassembly is started at the Program Counter (PC). The
next instruction to be executed is high-lighted. The cursor is on the
command line. The user interface works as usual, so you may enter any
command or use ESC to go up to the menu line.

The contents of the code window will follow the program counter (PC) when
you use the STEP commands and the GO commands. By pressing the
ARROW UP key you can move into the CODE WINDOW. The four leftmost
positions in the CODE WINDOW will then be high-lighted. By pressing F9 a
breakpoint will be placed at the cursor position and a GO will be generated.
By using PgUp and PgDn you can move the contents of the CODE
WINDOW to new addresses.

You may also use the mouse to do PgUp, PgDn. Just point to the arrows
in the corners of the code window and click the left mouse button. The
"down arrows" will scroll the CODE WINDOW one line. If you point in the

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-15

border between the arrows the window will scroll one page. Above the
middle of the border it will scroll up and below the middle it will scroll down.

If you use the disassembly command (D, DASM) you can change the
contents to start at any address. (D 500 would disassemble code from

500H and put it in the CODE WINDOW). After STEP or GO the registers
will not automatically be displayed as they are when the CODE WINDOW is
not turned on. :

But you can use CTRL+R to toggle on a window overlaying the STACK
WINDOW to see the most common registers. The REGISTER WINDOW
on top of the screen is of course updated as usual between each command.

You can redefine some items there to correspond to registers of interest.
The Assembly mode is really "mixed" mode as-it will display source lines
intermixed with assembly if they are available. (See description of Source
mode below). For each disassembled line a check is made if there is an
active breakpoint from the BRx registers. If that is the case a "comment" is
displayed to the right of the mnemonic preceded by a ";". Also a comment is
generated for all JMP instructions; either “;jump" or ";no jump" to indicate if
the jump will be taken or not.

Source Mode Source mode is usable when you are working with
Archimedes/IAR C-Compiler, Keil/Franklin C-Compiler,
Interm etrics/Whitesmith C-Compiler, BSO/Tasking C-Compiler, Intel’s
PL/M-51 compiler or when the "OBJ" file contains LINE numbers and is
supported by EMUL51-PC.

Each time the disassembler finds a code symbol (from the symbol table) it
examines the symbol and if the first character is a '#’ it assumes that it is a
line number. It also notes the module name. It will then look for a file with
the same name as the module name and with extension ".C" or ".LST",
depending on the "SO" command (by default ".C" is assumed). If it is found
it will locate the current line number and display that line. In Assembly Mode
or for that matter any time the disassembler is used, only "code generating"
source lines will be displayed. In Source Mode, however, “non code
generating" source lines will automatically be inserted. If you should put a

Page 1-16 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

breakpoint (as described in Assembly Mode "ARROW UP") on a "non code
generating" line, the breakpoint will automatically be generated on the first
assembly line in the next "code generating" source line.

On top of the CODE WINDOW the name of the module currently displayed,
is shown.

You can only switch to Source Mode when a source line is visible in the
Code window. Therefore if you try to switch to Source Mode when no
source line is visible in the Code Window you will stay in Assembly Mode.
To get to a point where a source line is visible any of the following
methodes can be used:

1. Use PgDn, PgUp or DOWN ARROW until a source line shows up.

2. If you want to show a certain module, first use the DOMAIN (DOM)
command to specify the module (DOM ..module name). Then use
the Disassembler command (D .#line number in specified module).

3. If you want to "single step" on line numbers, use the L command.
This command automatically sets breakpoints on all line numbers,
then executes the code until it hits the first instruction generated by
a source line.

GS Command The GS (Go Slow) command is very useful both in Assembly
mode and in Source mode. The Code window will be automatically updated
as the program is executed, giving you a very good picture of what is
happening, assembly instruction by assembly instruction or high level
statement by high level statement. The "-" key will decrease the speed of
the execution, and the "+" key will increase the speed.

In assembly mode the HB ("Highlighted Bar" in the CODE window) always
shows the next instruction to be executed. This is in principal also the case
in source mode. The problem here is when the sourceline corresponds to
only one assembly line. As explained earlier the L command causes breaks
at the first instruction in each sourceline. The EMUL51-PC always executes
the instruction at the breakpoint before breaking. So if there was only one
instruction, the next instruction would be the first instruction of the next
sourceline. The HB will be at the sourceline closest to the next assembly
instruction. Therefore in cases where the sourceline corresponds to only
one assembly instruction the HB will show one sourceline ahead of the
“current line" (which was actually already executed). In most C-Compilers
this problem can be solved by using a compiler switch which always

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-17

generates an extra NOP at every sourceline. In PL/M-51 this is not possible
so in this case working in mixed mode may be the best solution.

AV Command The AV (Auto Variable) command lets you view C stack
variables when you are inside the function where the variable is "alive."
The EMUL51-PC supports different C-Compilers in different ways,
depending on what information is supplied by the compiler in the "OBJ" file.
NOHAU is continuously updating the software to take advantage of the
compiler manufacturer’'s debug information. This is the latest update:

"C-variable support" available for:
Archimedes: C-Compiler 3.0 and later. Linker 4.0 and

later.

Franklin: C-Compiler 2.12 and later. Linker 2.4 and -
later.

Whitesmith: C-Compiler 3.32 mod 0 and later.

BSO: C-Compiler 1.1A and later. Assembler 3.0B

and later. Linker 5.0A and later.

Generating Correct Object Files The following is a set of examples
showing how correct object files are generated for the EMUL51-PC to
support C-variables.

FRANKLIN / KEIL:
Example 1:
Used INSIDE the file:
#pragma code symbols debug objectextend

Example 2:
Used in batch file:
Assembler ;a51 samplei.a51 debug oe
C-Compiler: ;c51 samplel.c debug oe
Linker: ;151 sample 1.obj to sample

IAR / ARCHIMEDES:

For compilation, switches are as usual but either -r0 or -r1 should be added.
-r1 provides an extra NOP for each C-line. This is useful for the
EMUL51-PC’s handling of breaking on the first instruction of the C-line, as
the instruction on which the breakpoint is put will also be executed. If you
use -r1, be sure to change it to -r0 before burning PROM otherwise the
code would be unneccesarily big!

Page 1-18 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

For linking, switches are also as usual but the -F(format) switch is changed

to-r
INTERMETRICS/WHITESMITHS:
‘ Example:
; 'C’ ¢ -v -dprom -dxdebug -dlistcs -0 sample sample.c

'Asm’ ¢ -v -dprom -dxdebug -dlistcs -0 sample sample.s

When you are ready to program you PROM remove the -dxdebug switch so
that your code with not be unneccesarily big!

BSO/TASKING:
Compiler: cc51 -Ml -s -g sample.c
Assembler: asm51 sample.src
Linker: link51 \lib\cstart.obj,sample.obj,lib\c51L.lib to
sample.abs
Formatter: oct_ieee sample.abs sample.out

When you are ready to program you PROM remove the -g switch so that
your code with not be unneccesarily big! Also you can use a different
formatting program to produce a straight HEX file.

Watch Window for Source Variables All models are supported. A
WATCH WINDOW can be activated to display up to four C variables. It
overlays the REGISTER WINDOW. (Refer to w[x]? command under Source
Deb on top menu line.)

There are no restrictions on how local variables should be declared. There
is also a way to display and set both local and global variables. This is done
with the "?" command. Structures, arrays, arrays of structures and
members of structures can be shown. Following are some examples to
illustrate what can be done:

Syntax: ?[*..Jname[,[#][x | s | d]] [=value] with the details
explained as follows:
- no <space> between the '?’ and the variable name!
- pointers can be preceeded by an appropriate number of
indirections
(*).Only last component of the 'name’ need be a pointer.
- ’'name’ is a simple C-expression for a variable with the following
features:

- nesting of pointers, arrays and structures.

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-19

- asingle element in an array to be given by a decimal
number in brackets.
- no parenthesis permitted.
- the default format can be changed by a trailing:
M a repeat counter
X hex format
Jx combination of above
S
,d

string format
decimal format

otherwise 'floats’ are printed as 'floats’, ‘ints’ as decimal
‘ints’, etc.

- new values can be assigned to simple variables (using
the same format for input and output).

Example: C-declarations:

struct { int number; char name[8]; } list[3] = {
1, "ADAM",
4, "DAVID",
15, "ROBERT" };

struct tag {
struct tag *next;
char symbol[20];
} head,*p=head;

int i =0x1000;

int tbl[6] ={10,11,12,13,14,15 };

int *ptbl =tbl;

int *pptbl = ptbl;
Command Output
2 4096
2, 0x1000
?tbi[4] 14
?*ptbl 10
?*ptbl,3 10,11,12
?**pptbl 10
?ptbl D:ADDR:

where 'D’is memory type and 'ADDR’ is hex-value of pointer

Page 1-20 Orientation

EMUL51 © NOHAU CORP. 1985 - 1993

?list {{1,"ADAM",4},{"DAVID"}{15,"ROBERT"}}
?list[2].name "ROBERT"

?list[0].name[3] 'M’

?head.next->symbol "nextsymb"

?p->next->symbol “nextsymb"

*p {X:1234,"headsymbol"}

Only simple items can be assigned to new values, but it
works in complex expressions. e.g.:

?list[3].name[2] =’A’ (or =0x41)
sets a single character in the string 'name[]’ which is a
member of a struct. ’list’ is an array of structs.

Note. The input format is always the same as the output
format, but can always be overridden by '0x’ for input of HEX
code.

int *tbl;

?*bl = 100

but ?*bl,4 = 1024

*bl: {100,2,3,4}
assignment ignored; prints 4 elements and ignores the
assignment since only single simple item can be assigned.

If a symbol is multiply defined, the local variable is taken
before a global variable.

When the watch window is enabled (visible) you may define
new watchpoints by typing 'w[x]’ before the expression
described above. The Watch window is enabled with ENA
WAT or Ctrl+W.

Syntax: w[Z]?[*..]namel[,[#][x|s]] [=value] where [Z]
is an optional number to specify in which location in

the Watch window the variable is to appear. If the [Z]
is omitted the current contents in the Watch window

will scroll up.

Definition of locations:

PN

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-21

Example: w2?tbl

Displaying stack variables using the AV command.

AV can be used with or without parameters. Without parameters all
stack-variables will be displayed. With the variable name only the
desired variable will be displayed. By default AV displays values in
hex bytes. You may, however, instruct AV to display values in any
format by adding the first character in the type in which you want
the value to be displayed, except that "s" means "string". (See the

AV paragraph)

Examples:
AVii ;display variable i as an integer.
AVic ;display variable i as a character.
AV sune f ;display variable sune as a float.

AV ;display all stackvariables.

Page 1-22 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

How the Standard Trace Works

The trace board makes it possibile for you to record what the
microprocessor is doing. However, if everything is recorded you may end
up with some useless information. To prevent this from happening, the
EMULS1-PC Trace facility lets you set up the trace to record only the
information you want. This part of the manual describes how to program
the trace, and how the collected information can be displayed and optionally
saved to a file. This is applicable only if the trace board is installed and
invoked.

Standard Trace Setup You can enter the Trace Setup screen either from
the "Trace" item on the top menu line, or from the command line with the
TS command. The following description refers to the Trace Setup screen,
(see Figure 3).

Six programmable fields at top of the screen control how the A (QRA0-9)
and B (QRBO0-9) conditions will be used when the trace is collecting data
during emulation. The TRACE field controls the filtering mechanism, and by
default ALL frames are collected.

Pressing the SPACE bar causes the following options to appear:

A collect frame only when an A-condition is true
B collect frame only when a B-condition is true
A &B collect frame only when both A and B are true

A "true" condition can be described as follows. Each machine cycle of the
8051’s execution will present different address, data and port information.
We call the information from one such cycle a “frame." One frame consists
of these 48 bits: 16 bits address, 8 bits miscellaneous signals, 8 bits data,
8 bits from P1 and 8 bits from P3. For each machine cycle executed by the
8051, the trace board compares the 48 bits with the preprogrammed A- and
B-conditions. Actually each condition consists of five (four in V5.6 and
earlier) separate fields: ADDRESS, MISC, DATA, P1 and P3.

Comparisons are made for each field separately, and the result of the
comparison for each field is vertically OR’ed (QRAO - QRA9). The result for
each field is then AND’ed with the other fields (ADDRESS * MISC * DATA *
P1 * P3). This is done independently for both the A- and B-conditions. To
be true, each "FIELD" comparison has to match exactly with the current
data from the active machine cycle. X’s denote "don’t care," and the
corresponding signal can then be either "0" or "1". The "Y" denotes binary.

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-23

Values written into the fields without the ending Y are assumed to be hex.

To summarize what has been said so far, the top line of the Trace Setup
screen controls what to do with the result of every machine cycle
comparison. And as described above, the TRACE field controls the filter
mechanism that determines whether or not to save the collected frame.

The next field on the Trace Setup screen is the TRIG field. By default the
trigger is off, NOTRIG. Pressing the SPACE bar brings up these additional

choices:
A Trigger on a true A-condition.
B Trigger on a true B-condition.
A THEN B First find a true A-condition, then trigger on
the next true B-condition.
A LOOP Trigger when LOOP number of true

A-conditions have been found.
A LOOP THEN B First find LOOP number of true A-conditions,
then trigger on the next true B-condition.

Page 1-24 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

TRACE ALL TRIG NOTRIG ITRACE ALL TC= 8192 LC= 0 TBR= OFF

ACTIVE? ADDRESS & FWR SY INT & DATA & Pl & P3
QRAO = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY¥ XXXX XXXXY
QRAl = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRA2 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY

QRA3 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRA4 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRAS = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRAS6 = no XXXX XXXX XXXX XXXXY¥ XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRA7 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRA8 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRA9 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY

QRBO = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRB1 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRB2 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRB3 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRB4 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRB5 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRB6 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRB7 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRB8 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
QRB9 = no XXXX XXXX XXXX XXXXY XXX XX XXX XXXX XXXXY XXXX XXXXY XXXX XXXXY
‘space bar’: toggle, Arrow: next field, Esc: Exit from this screen.

Figure 3. Trace Setup Screen

The ITRACE field is similar to the TRACE field, but it controls a different
filter function. By default ALL frames are saved. Pressing the SPACE bar
causes two more options to appear:

MAIN Trace frames from the main program only.

INT Trace frames from interrupts only.

The TC (Trigger Counter) field holds the number of frames to be collected
after a trigger is detected before tracing stops. By default this number is
2048 (on a 4K trace board) or 8196 (on a 16K trace board). This means
that you will use half the trace buffer for pre-trigger frames and half the
buffer for post-trigger frames. Programming a small number into TC would
give you more pre-trigger information, while a larger number would give you
more post-trigger information.

The LC (Loop Counter) field is used to program the number of loops to be
used by the trigger options (A LOOP and A LOOP THEN B).

The TBR (Trace BReakpoint) field is used to connect the trace trigger with
the breakpoint logic. By default it is OFF. Pressing the SPACE bar causes
it to toggle between ON and OFF.

The trace will automatically start when emulation begins. When emulation
is on, you may view the results of a trace, set up new trace conditions,
break the trace, and restart it again. When emulation ends, the trace will
automatically stop.

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-25

Instead of the normal prompt (*), the trace status is shown at the bottom of
the screen. When a key is pressed, trace status disappears and you may
now enter a trace command. The trace status will reappear as soon as the
command is executed. If the ESC key is pressed during trace status,
emulation breaks unconditionally.

Trace Display Commands The following two commands may be used
only in emulation mode:

TE Trace End; ends a trace "manually".

B Trace Begin; starts a new trace. Can be used only if
the trace was stopped either by a trigger or by the
manual TE command. Works only when the
emulator is running.

The collected trace data can be viewed only after the trace has been halted,
either by a trigger or by the TE command. After the emulation is halted, it
can of course also be viewed, because the trace is automatically halted
when emulation is stopped.

The following commands are used to display the trace:

TD [start] ;displays trace result in disassembled
form.
TDF [start] ;displays trace in frame form.

TDL <start> <TO | LEN> <STOP>[-filename]
;List without pause disassembled
form optional to disk.

TDFL <start> <TO | LEN> <STOP> [-filename]
;As TDL, in frame form.

TDP [start] ;As TD, but displays with Port info
and ext. address.

TDPL <start> <TO | LEN> <STOP>[-filename]
;As TDL, with Port info and ext.
addresses

TDS [start] ;"Slow trace," from file opened with

‘ OST and closed with CST.

TDFS [start] ;"Slow trace" in frame format from file
opened with OST and closed with
CST.

If [start] is omitted, a default number of frames are displayed (not to exceed
one screen). PgUp can then be used to display more information.

Observe that if you use the filter (TRACE field), you must be careful with
the TD, TDL, and TDP display commands. This is because the

Page 1-26 Orientation ‘ EMUL51 © NOHAU CORP. 1985 - 1993

disassembler is used on the information in the trace buffer. Therefore if
frames are missing from instructions, the disassembly may be misleading.
If, for instance, you program the filter so that only one address is collected
(over and over), and use the TD command to display the result, the
message ** PROCESSING INTERRUPT *** will be shown. This happens
because the address following the F frame, (First byte of an instruction), is
the same as the F frame. This normally indicates an interrupt and would
happen if the address you traced was in fact an F frame. Otherwise the TD
may not show anything. In other words, TDF and TDFL should be used
here!

For the exact format of each command, refer to the detailed descriptions in
the Commands chapter.

Trace Memory The trace memory is 48 bits wide and 4K deep (or 16K deep
if you have that option). One frame, (48 bits), consists of the following:
- 16 bits address
= 8 bits miscellaneous (VF, (Valid Fetch), WR (WRite to
external memory), RD (ReaD from external memory), SY1,
SYO, INT2, INT1, INTO. (The last three bits indicate interrupt

level.)
- 8 bit data
. 8 bits from P1
= 6 bits from P3
= 2 extra bits, (marked EO and E1 on the pod). On some pods

these are the other two bits of P3.

If P1 and/or P3 do not need to be traced, remove the jumpers on the pod.
That means that 18 of the trace inputs can be used to trace external
signals. They are easily connected with the optional EZ-hook wires.

The lower 8 bits of the address are sampled on the trailing edge of ALE.
The higher 8 bits of the address and P3 are sampled on the leading edge of
PSEN, READ or WRITE. P1, data and the 8 miscellaneous signals are
sampled on the trailing edge of PSEN, READ or WRITE.

Frame Data The display of frame data is organized in the following way:
Left-most column: Frame number
Second column: F = Valid fetch frame

R = External memory read frame
W = external memory write frame
- = none of the above

EMUL51 © NOHAU CORP. 1985 - 1993

Orientation Page 1-27

Third column:
Fourth column:
Fifth column:
Sixth column:
Seventh column:

Eighth column:

Address in hex

Data in hex

Interrupt level (0 is main program)

Port1 /Port 3

SY1, SYO, E1, EO (WR and RD on some
pods)

Machine cycle count. The Machine cycle
count can be regarded as a "time stamp". If
a 12 MHz clock or crystal is used, "machine
cycles" are equivalent to microseconds. If
the filter function is used, the "count" is only
accurate on a relative basis within a block of
trace frames with contiguous addresses. In
other words: the counter does not recognize
"gaps" in the trace caused by "filtering out"
frames.

For more information on the Standard Trace please refer to Tutorial Chapter

6, Module 3.

Page 1-28 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

How the Advanced Trace Works

The Advanced Trace Board (ATR), was designed based on customer
feedback from users of our regular trace board. Here is a list of its

! features:

1) 64k "frames" deep. Optionally 256k deep.

2) 64 bits wide (16 bit address, 8 bit data, 2 x 8 bit Port data, 8
miscellaneous signals and 16 bit timestamp).

3) Time stamping with up to 34 bit resolution; 16 bit prescaler.

4) - Multi-level trigger mechanism with each level consisting of boolean
equations of events, counter, and "states".

5) Ratio of pre- and post- trigger information fully programmable within
the 64k (256k) trace buffer.

6) Filter mechanism using boolean equations of events, counter and
"states".

7) Programmable post filter.

8) "Break when Trace Done", "On Trig", and "On S2" functions.

9) Search function on frame within the trace buffer.

10) 32 bit counter / timer. It counts when a Boolean function of events,
counter and "states" is TRUE.

11) 16 bit loop counter whose output can be used in boolean functions.

As the name "Advanced Trace" indicates, this trace function can be used
for some very advanced debugging. To take full advantage of all functions,
the user must also be "advanced". However, most users may never need

~ to make use of all the features which are described below, together with a
definition of terms and some examples. Please refer to the Tutorial Chapter
for additional examples.

EMUL51 © NOHAU CORP. 1985 - 1993

Orientation Page 1-29

Definitions of Terms

<frame>

<event>

<Boolean expression>

64 bits of data collected every memory cycle.
Consists of 16 bit address, 8 bit data, 2 x 8
bit port data (or external signals), 8
miscellaneous signals and 16 bit timestamp.

Once every memory cycle, a frame is
compared with eight events, A - H. Each
comparison will result in TRUE or FALSE.

An event consists of 48 bits (the timestamp is
not included in the frame). As shown below,
each bit can be programmed as a ’0’, ’1’ or
X' (don’t care). Ranges, hex, or binary are
also allowed. Binary is denoted by a trailing
Y’ for binarY.

A Boolean expression consists of a number
of "Boolean operators" working on "Boolean
operands". The Boolean operators are:
AND, OR, NOT

AND between two operands means
that both must be TRUE for the result

to be TRUE.

- OR between two operands means
that one must be TRUE for the result
to be TRUE.

-

NOT before an operand means that
the operand must be FALSE for the
result to be TRUE, or the operand
must be TRUE for a result to be
FALSE.

Page 1-30 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

- THEN between two operands means
that the first operand must come true
first, then the second operand follows
sometime thereafter. This command
is only allowed in the TRIG and the
RECORD fields.

- SET-CLEAR This function will allow
you to tell the trace when to start
recording on a given condition (SET),
and then to stop recording (CLEAR)
on a different conditon.

The hierarchy of the Boolean operators is as follows:

NOT, / Highest
AND
OR, THEN .
SET-CLEAR Lowest
APPLICATION NOTE: The Set-Clear function will have a delay of a

single memory cycle when the SET becomes true until it is actually
recorded in the trace buffer. To capture the actual SET frame or first byte
of the operation, you need to use something like the following example:

RECORD: Yes, if SO or A
S0 = Set A Clear B

The Trace Setup screen (TS) The TS screen is entered either from the
"Trace" item at the top menu or from the command line with the TS
command.

Following is a list of the program fields in the TS window:

Trig

Delay

LoopCount

Break emulation
Record

Filter delay
Timestamp prescaler
Timestamp overflow

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-31

Trig:OFF

Delay: 32768 LoopCount O Break emulation: No Resol:0.50us
Record: ALWAYS

Filter delay: 0 Timestamp prescaler: None Timestamp overflow: OFF

Cycle count enable. S5=
POD Signal "ANB". S4=
Loop counter condition. S3=
S2=

S1=

SO=

ACTIVE? ADDRESS & FWRS?INT& DATA & P1 & P3

= no XX XX XXX XK XKXXY XK XXXXY XKKX XXAKXY
or no XX XX XXX XXX XOKKXY XXX XXXXY XHKKX XXXKXY
= no XX XX XXX XXX XOXXY XKKK XXXXY XXX XOXKXKY
or no XX XX XK XXX XXXKY XXX XXXXY XXX XXXXY
= no XX XX XK XXX IKXXKY XXX XKRXY - XXX XXXXY
or no XX XK XK XKKXY XK XXXXY XXX XXXXY
= no XX XX XK XK XKRXY XXX XXXXY KKK XXXXY
or no XX XX XK XK XKXXY XX XXXXY XK XXXXY
= no XX XXX XK XY XXX XXXXY XK XXXXY
or no XX XX XXX XK XKXXXY XK XKAHXXXY XX XXXXKY
= no XX XX XK XK XY XXX XXXXY XXX XXXXKY
or no XX XX XXX XK XHKRXY XXX XXXXY XXX XXXXY
= no XXX XK XK XOXXY XK XXXXY XXX XXXXY
or no XX XX XK XK XKXXY XX XXXXY XXX XXXXY
= no XX XX XXX XK XOKRKXY XXX XXXXY XXX XHXXXY
or no XX XX XXX XXX XXXXY XXX XXXXY XHXKX XXXXY

Page 1-32 Orientation ' EMUL51 © NOHAU CORP. 1985 - 1993

Description of "Program Fields" These "program fields" define an

Trig

Delay

event or events that control the trace capture. A more detailed description
of a "true event" will follow after the description of the "program fields".

The Trig field is either "OFF" or "Yes, if'. You can toggle between
these two choices with the space bar. The "Yes, if* condition is considered
the "ON’ state of this field. The field to the right of "Yes, if" should be a
Boolean expression operating on the qualifying registers (A-H), SO - S5 and
the output of the loop counter CO (loop COunter done). The Boolean
expression may also contain "THEN".

Examples:

A

NOT A

AORB

AAND B

ATHEN B

A AND NOT B :
A THEN B THEN C THEN D THEN E THEN F THEN G THEN H
AORB THEN CAND NOTDOR E

AORS3

A AND CO

A THEN B OR s3

A THEN B THEN COAND C

When emulation starts, the trace starts tracing automatically. When
the trace triggers according to the Trig, it continues to trace for the number
of cycles programmed in the Delay field. This means that if you have a
small number in Delay, the trace will stop near the trig point. If you have a
larger number, the trace will continue for a longer time before it stops. The
number can be between 2 and 2,147,483,647 (7FFFFFFF in Hex, 32 bit
counter). This means that the trig point can be outside the actual trace that
you are able to display. The default value of Trig Delay is half of trace
memory size (32768 for the 64k ATR board).

Loopcount This field determines how many times S3 must count before CO

becomes TRUE. The number in this field can be between 0 and 65,535.
The default is 0. See "Loop Counter Event" for further details.

Break Emulation This field can be toggled between "No" (default), "On Trig",

"When Done" and "On S2". "No" means that the trace will not affect
emulation. "On Trig" means that a breakpoint will be forced when the trig
occurs. "When done" means that a breakpoint will be forced when the trace
stops, therefore the break will occur "Delay" frames after Trig. "On S2"

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-33

means that the break will occur when S2 becomes TRUE.

Record The Record field can either be "ALWAYS", "Yes, if" or
"Source Only". You can toggle between these three choices with the space
bar. The field to the right of "Yes, if* should be a Boolean expression
operating on the events A-H, S0 to S5 and CO. If "ALWAYS" is chosen, all
frames will be recorded. If "Yes, if* is chosen, only frames that are TRUE
according to the Boolean expression will be recorded. If "Source Only" is
chosen, only frames that have a corresponding line number will be
recorded. When the trace is displayed later, high level statements from the
source file can be shown. Since only one frame for each statement is
recorded, up to 65535 source lines can be recorded! (262,143 if you have a
256k trace.) The "THEN" operator is not allowed here.

Examples:

A

AORB

A AND B

S3 (where S3 could be SET A CLEAR B to record everything between two events).

Filter Delay When Record is in "Yes, if' mode, frames will not be
recorded when the Boolean expression is FALSE. However, in some cases
you may want to continue to record a number of frames after "Record" goes
from TRUE to FALSE. This is done by entering a number between 0 and
15 in the "Filter delay" field. This is particularly helpful when recording
MOVX instructions. The third frame of a MOVX instruction emits an
address to the location where XDATA is read or written. This address can
be outside the "Record expression", but if you have entered a 1 in the
"Filter delay" field the read / write external data will be recorded. Another
use of this feature is to continue to trace after conditional jumps in the code.

Timestamp To view the timestamp, please use TDF or TD commands.
By default, timestamp is shown in cycles. F4 toggles to show time in
absolute or relative mode. The XTAL command is used to set the crystal
rate which will calculate the time. By default, XTAL is 12.0000 MHz. You
may also use the x parameter when you invoke the emulator to change the
crystal frequency:

EMULS51 -p8031 -m 128 -e110 -t100 -f64 -x11.23456

indicating that a XTAL frequency of 11.23456 is used.

Page 1-34 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

Timestamp Prescaler The timestamp mechanism consists of two 16-bit
counters. Only the 16 bit value from one counter is recorded in the trace.
The second counter is the prescaler. If the prescaler is none, you have full
accuracy, which has a resolution of half a cycle. Therefore, you can count
up to 65,535 "half cycles" or 32,767 cycles before the counter rolls over to
0. With a 12MHz crystal this is equivalent to 32.767 ms. With the prescaler
programmed to 2, you would be able to count double the amount of time, or
65,535 ms, but with half the resolution; i.e., 1 cycle or 1 ms. With the
prescaler at 65,535, you would count 65,536 x 65,535 half cycles or for
approximately 2,147 seconds (or 35 minutes) at the resolution of 32 ms.
The default is none. Integers between 1 and 131070 are accepted. The
prescaler can only use EVEN integers. For example, if you enter a 3 the
program will round down the number to 2 (1 to none, 5 to 4, 99 to 98, etc.)

Timestamp Overfiow This field can be either "OFF" or "ON". When it is
"ON", extra frames may be recorded when the timestamp counter rolls over
from FFFF to 0. This will only happen when the RECORD field has
determined that no frame will be recorded. In other words, a frame is
forced to be saved in order to collect a timestamp at the rollover point. If no
frames are recorded (due to the RECORD field), 64k of "overflow" frames
can be recorded (256k with the ATR256).

Let’s say that you want to find out how long it takes between two
addresses. Assume that the first address was not encountered again until
the second address was encountered. With full resolution (Prescaler =
none), you would be able to record up to 65,535 - 2 "overflow" frames.
Since the time between two "rollovers" at full resolution (prescaler = none)
is about 32ms (at 12MHz), up to 35 minutes (32 x 65533 / 1000 x 60) can
be recorded with a resolution of half a cycle (500 ns). With the 256k ATR,
this can be four times more, or almost 2.5 hours. With less resolution you
could go for years!

Since it takes a while to calculate the timestamp, there will be a delay of
several seconds between issuing a trace display command until the display
acttually appears on the screen.

Cycle Count Enable. S5= This field consists of a <Boolean expression> of
<events>, SO to S5 and CO. When the expression is true, a 32 bit counter
is enabled to count cycles. This can be used to measure cycles or time "on
the fly". This is displayed during emulation in the Trace Status Window
(described later in this document). On PODS with the FLF pin, the S5 state
is available. It can also be found on pin 22 of the 50 pin ribbon cable

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-35

connector.

After emulation is done, the SEC command will show total cycles counted

during emulation (counter on the emulator board), the "ATR cycle counter”,
and a ratio of the two. (Refer to the SEC command description about how

SEC works.)

Example:

Using the TEST.A03 program, we want to determine what percentage of the total time is spent in
the interrupt routine. Use default settings in the TS window except as follows:

Cycle count enable. S5= NOT A

ACTIVE? ADDRESS & FWRSYINT & DATA & P1 & P3
A = YES X000 XXXX X0 XXXXY XX XX 000Y X0 XXXXY XXX XXXXY XXX XXXXY

Note that the INT bits are 0.

* res chi
* g from O

Let the emulation run for about 5 seconds, then press the ESC key.

This is the result (depending on when you press the ESC key):

* sec
18836603 cycles TIMER 11986923 microsec RATIO 63.636331%

Page 1-36 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

POD Signal "ANB". $4= This field consists of a <Boolean expression>
of <events> and SO to S5 and CO (loop count). When the expression is
TRUE, the ANB pin of the POD board is low. (ANB is not available on all
PODs, but this signal can be found on pin 21 of the 50 pin ribbon cable
connector.)

Loop counter condition. S3= This field consists of a <Boolean expression>
of <events>, SO to S5 and / or qualifiers A-H that are used to describe how
the loop counter will operate. When the condition goes from FALSE to
TRUE, the loop counter will count down.

S2=
S1=
S0=

These fields can only be used if the "THEN" operator is not used in the
"Trig" field above. If "THEN" is used, these fields will inplement the "state
machine" to handle the "THEN". If "THEN" is not used in the "Trig", SO - S2
can be freely employed as Boolean expressions utilizing events and SO0 to
S5 and CO (loop count). You could then implement your own "state
machine" of up to eight "states". If you don’t use S3 - S5 for loop counter
or pod signal, they can be employed for other conditions that you wish to
set up. In this case, you could implement a state machine of up to 64
states.

EMUL51 © NOHAU CORP.. 1985 - 1993 . Orientation Page 1-37

How to Build a "State Machine" Using the Sx
Functions

Here is an example showing how S2 - SO can be used as a three bit
counter (8 states) to count up each time the A Event equals a First Opcode
fetch (FO) at address 200H. In this case, we use the result of S2 - SO to
trigger the trace when S2, S1 and SO are all TRUE. You can expand this
example by using more events (A - H) in the equations. The result could be
used to turn on and off the RECORD field.

Use TEST.A03 where address 0 is the first address in the interrupt service
routine. The trace setup fields are left in their default values except the
following:

Trig:Yes, if (SO AND S1 AND S2)

$2=S2 and /(SO and S1 and a) or /S2 and (SO and S1 and a)

S$1=S1 and /(SO and a) or /S1 and (SO and a)

S0=(S0 AND /a) OR (/SO AND a)
The expressions in SO, S1 and S2 could have been written using the
Boolean XOR, but the XOR is not implemented. The equivalent
expressions are:

$§2=S2 xor (SO and S1 and A)

S$1=81 xor (SO and A)
S0=S0 xor A

ACTIVE? ADDRESS & FWRS?INT& DATA & P1 & P3
A = YES 200 01 XX X XK XXXXY XK XXXXY XK XXXXY

Example of how to use SET CLEAR with the Sx functions:
S0= SET A CLEAR B

This means that SO will be set to TRUE when A becomes TRUE. It will
then stay TRUE (even if A becomes FALSE) until B becomes TRUE at
which time it becomes FALSE. A and B in the example above may be
Boolean expressions. This can be used in a number of ways but here we
will show an example where it is used to create a "window" for recording.

The trace setup fields are left in their default values except the following:

Record: Yes, if SO ora SO=set a clear b

ACTIVE? ADDRESS & FWRS?INT& DATA & P1 & P3

A = YES 10C XX XX XXX X0 XXXXY XK XKXXY XXXX XXXXY
orno X0 XK XOOOC XXXY XK XX XXX XOO0C XXXXY XK XY XXX XKKXXY

B = YES 10E XX XX XXX 200K XOXKY XK XXKXY XXX XXXXY

Page 1-38 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

The reason A must be in the RECORD expression is that the result of SET
A will appear in SO delayed for one frame, otherwise you would miss
address 10C.

The outcome is that all activities taking place between execution of address
10C and address 10E will be recorded. This is obviously different from
saying that all addresses between 10C and 10E will be captured. If, for
example, there is a subroutine call between 10C and 10E, it will be
recorded even if the addresses of the subroutine are outside the range.

If SET / CLEAR is used under S5, you get a convenient way of measuring
exactly how long it takes to execute a certain portion of your code!

Example of a "six bit state machine" using SET / CLEAR and
demonstrating how the loop counter works and how the cycle counter
works:

In this example TW2.HEX is used. This program consists of a one second
delay starting at address 0, then a number of NOP’s up to address 200
where a jump back to 200 is done (LUMP 0). Then, in the TS Window the A
event is set to be address 200.

* LOA TW2.HEX
*TSG TW2.TSG

When you watch the TS window, you will see that the expressions of S5,
S4 and S3 do not fit on the screen. You have to go into the field and use
the arrow keys to see the complete expression.

Run the program:

* RES CHI
*G

Since S3 (loop counter event) is now exercised, we have programmed the
loop counter to 10. Watch how the loop counter is decremented each time
S3 goes from 0 to 1. In the STATES Window, the bits displayed are from
the most significant bit (MSB) on the left, to the least significant bit (LSB) on
the right.

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-39

This example is shown just to help you see how the state machine can

work as a counter, and is an expansion of the previous example with
the three bit state machine. There is no reason that you really need to
analyze how each of the equations in the (S) registers affect the other.

S5 is also exercised, so when S5 becomes 1 the cycle counter will start to

count. Since the delay in TW2.HEX is about one second, it will take about
64 seconds for all six states to all become 1. Half of this time S5 is 1,
therefore the cycle counter will reach 32,0x,xxx before trigger occurs.
(TRIG is AND’ed between all six "S" bits.)

Event Fields

Active ?

Address

FWR

SY

INT

DATA

These fields are utilized to activate any of the qualifying
registers A-H.

Used to specify an address, address range, or a wild card
address to qualify the capture for the trace buffer.

This column is employed to specify if the address is a valid
fetch (F), write (W), or a read(R).

_F=0t1
_R=10
W =11

_ None of the above = 00

This column is used to specify logic HIGH (1) or Low (0) on
the SY1 and SYO pins, respectively.

This column specifies the interrupt level.

000 interrupt level 0. (Main)
001 interrupt level 1.
010 interrupt level 2.
011 interrupt level 3.
100 interrupt level 4.
101 interrupt level 5.
110 interrupt level 6.
111 interrupt level 7.

This column specifies the DATA value.

Page 1-40 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

P1 Here you specify the value on the probes labeled P1 (by
default Port 1). These pins on the POD can also be
removed and connected to points on the target system.

P3 This field is like P1, except for bits 6 & 7, (which on most
PODS are for the inputs EO and E1, respectively).

The lower 8 bits of the address are sampled on the trailing edge of ALE.
The higher 8 bits of the address and P3 are sampled on the leading edge of
PSEN, READ or WRITE. P1, data and the 8 miscellaneous signals are
sampled on the trailing edge of PSEN, READ or WRITE.

The Trace Status Window: The trace status window will always appear while
emulating if the trace board is installed and both it and the emulator are
invoked. Now we’ll take a closer look at the Trace Status Window that
appears at the top of the screen when the emulator is emulating (see Figure
4). :

TRACE STATUS (ESC TO BREAK)
Break NO Trigdelay: 32768 FilterDelay: 0 PreScaler:
Trig:

Record:

State:00 0000 Loop Counter: 0 Frames Recorded:65535 Cycle Count:

Time Count:
Not Trigged Running : Got OverFlow

Cycle count. S5=

POD signal "ANB". S4=
Loop count cond. S3=
s2=

S1l=

S0=

Figure 4. Trace Status Window

Labeled fields in the TRACE STATUS WINDOW have the following meanings:

Break: Tells setting of the break emulation register.

Trigdelay: , Shows the number of maximum POST trigger
frames.

FilterDelay: Shows the number of frames to be captured

after the filter condition(s).

EMUL51 © NOHAU CORP. 1985 - 1993

Orientation Page 1-41

PreScaler:

Trig:

Record:

State:

Loop Counter:
Frames Recorded:

Cycle Count:
Time Count:

See figure 4.

Cycle count. S5=

POD signal "ANB". S4=

Loop Count cond. S3=

S2, S1, SO

How to Edit Trace Setup Fields

Shows if a prescaler value has been set for the
TIME STAMP function (to be covered later).

Shows the equations for trace trigger.
Shows what the filter condition is.

Shows the status of the STATE machine.
Shows the status of the LOOP COUNTER.

Shows the number of frames that have been
recorded.

Shows the number of cycles executed. Set by
S5 in the trace setup.

Shows the execution time that is conditioned
by (Cycle count) S5.

The fields showing the Not Trigged, Running,
and Got OverFlow are normally shown as a
blank highlighted field and will be displayed if
a trigger has happened, if the trace is running
or stopped, of if the TimeStamp counter has
gone into overflow.

Shows the condition that has be set up for the
Time Count: field.

On some pod boards there is a pin that has the
same label. This field can be set up with some
qualifier to produce an output signal that can
be captured on an oscilloscope.

Shows what condition has been set up for the
loop count qualifier.

General registers that can be used for
triggering or filtering the trace.

In the trace setup (TS) screen, there are some

special keys that are used for movement and editing fields as shown on the

following list:

Ctrl-Home Goto top field in trace setup screen.
PgUp Same as Cirl-Home

Page 1-42 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

Cirl-End Goto bottom of trace setup (event H).
PgDn Same as Cirl-End

Arrow UP Goto previous field.

Arrow DOWN Goto next field.

Insert Toggle, insert or overtype mode.

- Insert mode cursor = flashing underscore
! Overtype mode cursor = full flashing cursor

Enter Enter the change and/or goto next field.
Tab Goto next field
Shift+Tab Goto to previous field
What is a "true” event? Each memory cycle of the 8051’s execution will present

different address, data and port information. We call the information from one
such cycle a "frame". One frame consists of 16 bits address, 8 bits data, 8
bits miscellaneous signals, and 8 bits from P1 and 8 bits from P3 for a total of
48 bits. The 16 bits from the time stamp are not involved in an EVENT. For
each machine cycle executed by the 8051, the trace board compares the 48
bits with the preprogrammed A through H events. Actually, each event
consists of five separate fields - ADDRESS, misc, DATA, P1 and P3 -- and
compares are done for each field separately. The result of the compare for
each field is vertically OR'ed (QRAO - QRA1). The result for each field is then
AND’ed with the other fields (ADDRESS & miscellaneous & DATA & P1 & P3).
This is done independently for all the A through H-events. Each "FIELD"
compare has to match exactly with the current data from the active machine
cycle to be true. X’s denote "don’t cares" and the corresponding signals can
be either "0" or "1". The "Y" denotes binary. Values written into the fields
without the ending Y are assumed to be hex. (See "How to Edit Trace Setup
Fields" above.)

EMUL51 © NOHAU CORP. 1985-1993 Orientation Page 1-43

Trace Display Commands There are two commands that may be used only in ___
emulation mode. They are: ,

TE, Trace End. Ends a trace "manually”.
TB, Trace Begin. Starts a new trace and can be used only if the trace
was stopped either by a trigger or by the manual TE
command. Works only when the emulator is running.

The collected trace data can be viewed only after the trace has been halted,
either by a trigger or by the TE command. The trace is also automatically
stopped and can be viewed after emulation is halted.

The following commands are used to display the trace:

D [start] ;displays trace result in disassembled form.
TDF [start] ;displays trace in frame form.
TDL <start> <TO | LEN> <STOP> [-filename].
;List without pause disassembled form optionally to disk.
TDFL <start> <TO | LEN> <STOP> [-filename]
;As TDL. In frame form.
TDP [start] ;As TD but displays with Port info and ext. address.

If [start] is left out, a default number of frames is displayed (not to exceed one
screen). PgUp and PgDn can then be used to display more information.

Observe that if you use the filter (RECORD field), you must be careful when
you employ the TD, TDL, and TDP display commands. This is because the
disassembler is utilized on the information in the trace buffer. Therefore, if
frames are missing from instructions, the disassembly may be misleading. For
instance, if you program the filter so that only one address is collected (over
and over), and use the TD command to display the result, the disassembly
may not show any information or the display may not make any sense. In
these cases, the user must employ the TDF and TDFL commands.

Other commands that affect the operation of the trace displays are as follows:
TSD [=ON] [=OFF] ;This command is used to turn on/off

the timestamp feature of the the trace
board.

Page 1-44 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

XTAL [=Clock Frequency in MHz] ; This command is used to adjust the
: - display of the TIME COUNT in the
trace status window relative to the

micro’s clock speed.

For the exact format of each command, refer to the detailed description for the

command.
Trace Display The diSpIay of frame data is organized in the following way:
Leftmost column: Frame number
Second column: F = First Op Code Fetch frame
R = External memory read frame
W = external memory write frame
-= none of the above
O = Frame was forced to be stored. Indicates that
the timestamp counter overflowed.
Third column: Address in hex.
Fourth column: Data in hex
Fifth column: interrupt level. O is main program.
Sixth column: Port1 /Port3
Seventh column: SY1, SYO, E1, EO
Eighth column: Time stamp (CyclesA, CyclesR, TimesA, TimesR, use

F4/F5 to shift between them)

25th Line Prompt (Control Keys) On the bottom of the trace dispay screen a
highlighed bar shows the key options that can be used. The following is a
description of those keys:

> PU = PgUp

> PD = PgDn

>t = Arrow keys (up, down)

> -dig = enter a negitive or positive frame number. (goto FRAME#)
>F2 = Switch betweens high level source or mixed mode dispaly.

> F3 = Switch from mixed (source+assembiler) to frames (TDF).

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-45

> F4 = Switch timestamp display between absolute to relative.
> F5 = Switch cycle count between absolute to relative.
> F6 = Pop up search setup window.

> ESC = ESC key to exit display.

Page 1-46 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

I
Breakpoints
Emulation is started with the GO command; it can be ended in a number of
ways.
1. You can press the ESC key. Doing this will inmediately stop
emulation and allow access to the monitor.
2. A previously set up breakpoint is encountered. A breakpoint can only

be set up to break on addresses. It can break on three kinds of
addresses: Opcode address, Read external memory address, and
Write external memory address. Breakpoints are programmed in the
BRx registers, where x is 0 - 9. (See BR for details.) The BRM
register holds the address type(s) that the breakpoints work on. (See
BRM for details.) Breakpoints are activated either in the GR (Go
Register) register, by setting the GR, or inside the GO command. (See
GR and GO.)

3. An external signal SYO. It works in a number of combinations with
breakpoints, set up in GR. SYO can be programmed active high or
active low. This is set up in the SYOA register. (See SY0A.)

4. A trace condition. With the TBR register you can use the trace
conditions to activate a breakpoint. This means that you can use any
combination of the 48-bits wide trace frame to trigger a breakpoint.
(See TBR). Observe that all 48 bits are used. If, for instance, you
want to trigger on an address, you will probably want to set VF (Valid
Fetch, indicating first frame of an instruction) to a "1." Because the
trace is delayed a couple of PSEN cycles, the actual break will occur
one instruction after where the trace condition was set. This means
that the PC (program counter) will show two instructions after the trace
condition that caused the break.

5. If you happen to write a 0 to RD (P3.7) or WR (P3.6) in external mode
pods, a break point is forced. An error line "BREAK OCCURRED
BECAUSE RD OR WR IS LOW" is displayed as the first line after the
break occurred.

6. The L command sets up breakpoints on all LINE numbers defined in
the symbol table. The code is then executed until any of the
breakpoints is encountered. Previously activated breakpoints in the
Breakpoint RAM are erased before this command is executed. Used

EMULS51

© NOHAU CORP. 1985 - 1993 Orientation Page 1-47

Timers

10.

11.

12.

in PL/M-51 and C-51.

The BB command sets up breakpoints on all locations where a
specified bit address is written to. Use the GB command to execute.

The BYB command does the same where a specified byte address is
written to. Use the GB command to execute.

The iB command iets you specify a pattern of three bytes where a
breakpoint will be programmed. The first byte should be the hex
number for an instruction OP-code, while the second and third bytes
can be either numbers or X (don’t care). Use the GB command to
execute.

BIC command will set up breakpoints on all instructions which may
possibly alter the contents of a specified address to a specified value
or range of values. The breakpoints set up with BIC should be used
in conjunction with the GI command, which will use the breaks to
check if the specified condition is reached. If not, the program will
resume. Each break will steal approximately 200 microseconds from
the program before it returns. If the condition was reached, a regular
breakpoint will be taken.

The BB, BYB, IB, and BIC commands may be used to implement
many "overlayed" breakpoint patterns in the breakpoint RAM. The
breakpoint RAM is always cleared when a GO or an L command is
executed. It can also be cleared with the CLB command.

The SEB, ABR and GB commands are used to trap the cause of a
program that "jumps out of bounds". (See the ABR paragraph.)

Observe that the instruction where the breakpoint is set will also be

executed before the break occurs. This means that the PC will show
the next instruction to be executed, (except TBR). (See 4, above.)

On external mode pods, if the timers are active when a break occurs,

they will keep counting for a few cycles before they are stopped by the
emulator software. When emulation is then started again, the timers will be
turned back on by the emulator software a couple of cycles before the actual
emulation begins. The number of cycles lost is shown below:

Page 1-48 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

T0, T1 T2
EMULATION TO MONITOR: 8 cycles 15 cycles or 15 x 6 (in baud rate generator mode)
MONITOR TO EMULATION: 6 cydes 15 cycles or 15 x 6 (in baud rate generator mode)

If this is a problem, you will have to manually adjust the timers with these
numbers. A macro could be used to do this.

These timer delays and prestarts do not occur in "bondout" pods, nor in most
"hooks" pods in internal-code mode.

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-49

Macros

Macros are used to automate the emulation commands. A macro consists of
a number of commands which, instead of being input from the keyboard, are
read from the macro block. Macros can be saved on a file and later read back
into the emulator. They are extremely useful when you need to repeat the
same sequence of commands over and over again.

Another way to repeat and store command sequences is to write them in a
regular ASCI!I file and then use the INCLUDE (INC) command to execute them.
This is also normally faster than macros. (See the INC command for details).

To define a macro you use the DEFINE command. See the DEF paragraph
for details. If you create more complex macros it is best to use an editor to
create a regular ASCII file with the macro definition. If you use the SYSTEM
command this can be done without leaving the emulator. When you have
edited your macro setup you can load it into the emulator with the INC
command.

Example: (This could be the contents of a file, except the "*' and ".*")

*DEF :R ; This defines a macro called R.
XRESET CHIP ; This is the first command in the macro.
*GO FROM .START TO .STOP

*TD -100

XEM ; this ends the macro.

*

To run the macro, you simple enter the following:
*R

Logical Operators and Macros The following is a table of logical and
mathematical operators that the EMUL51-PC understands. These can be used
on the command line or inside a macro.

Mathematical
+ Add
Subtract

* Multiply
/ Divide

Page 1-50 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

Logical

> Greater-Than

< Less-Than

<> Less-Than or Greater-Than
EQ Equal-To

<EQ Less-Than or Equal-To
>EQ Greater-Than or Equal-To
AND Logical AND operation
IOR Inclusive OR

XOR Exclusive OR

NOT

MOD Remainder of Division function

The macro can be made more flexible by including parameters. You may use
up to 10 different parameters in each macro. The parameters are entered into
the macros with the % character followed by a number from O to 9. Here is
an example.

*DEF :FLEX

*XBYTE %0 = %1

*GO FROM %2 T %3

*XBY %4 L 10

JEM

*

Because we used five parameters in the macro (%0 - %4), we must supply the
macro with these five parameters when we execute it. The parameters must

be separated by commas, as shown in the example below.
*FLEX 1000,23,.START,.STOP,2000

In the above example, the %0 corresponds to 1000, the %1 corresponds to 23,
and so on. Each parameter can be used any number of times inside the
macro, and the parameters may appear in any order inside the macro.

If you use %np in a macro, it will be replaced with a number indicating the
number of parameters (np) that were fed to the macro.

Instead of creating the macros with the DEFINE command in the emulator, you
can use your editor to edit the "DEFINE block" in a regular ASCI| file. It can
then be loaded into the emulator with the INCLUDE command. This is the
preferred method, especially if you create more complex macros, since the
macro is easy to correct if it doesn’t work immediately. Even if you do create
the macro directly in the emulator with the DEF command, you can save it to

EMUL51 © NOHAU CORP. 1985 - 1993 Orlentation Page 1-51

a file with the PUT command. After that, you can edit it, (using the SYSTEM
command to invoke the editor without leaving the emulator), maybe use the
REMOVE command to remove the old macro, and then INCLUDE the edited
macro. An example is given below.

* DEF :M ;defining a macro in the emulator
*LOA TEST.A03

* RES CHI

* GO FOREVER

*EM ;end macro

* PUT A:START.MAC :M ;save macro to a file
* SYS EDIT A:START.MAC ;edit macro

(editing the macro SYS EDIT A:START.MAC).

* REM :M ;remove old macro

* INC A:START.MAC ;load the new edited macro
Comments in a macro are allowed. Any line that starts with /* is treated as a
comment and the command interpreter ignores it.

Example:

/* This is a comment line.
DBYTE 56 = 45

GFOT 1234

/* Another comment

The WRITE command is often used in a macro to have text mixed with
numbers printed to the screen. It is possible to format the printing of the
numbers to the screen: We use the same conventions as are used in the "C"
language, except that the "%" sign has been replaced with the "~" sign (tilde).

The format string is placed after the number to be formatted. Here are two
examples; for more details about the WRI command, refer to the Commands

chapter.
WRI 'This is an integer: ’, XBY 1000,~d
WRI 'This is a 4-digit hex number with leading zeros: ’,DB 26,~04X

To list macros use the DIR command. See the DIR paragraph.
To save a macro use the PUT command. See the PUT paragraph.
To load a macro use the INC command. See the INC paragraph.

To enable or disable macro expansion, please refer to the ENA and DIS
paragraphs.

Macros can be nested up to seven levels deep.

Macros can be programmed to form their own small programs using IF, ORIF,
THEN, ELSE structures, or REPEAT, WHILE, UNTIL, or COUNT, WHILE,

Page 1-52 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

UNTIL. For details, see IF, REP, and COU in the Commands chapter.

| Macro Examples These examples are shown in a MACRO form, but remember
that you can do the same on the command line of the emulator.

Macro Example 1:

This macro is an example of reading some values from the emulators
resources, i.e. register, Xdata RAM, Internal data RAM, and processing a
division operation. Then storing the answer into the processor’'s RAM.

Define :m1

/* read xdata location 4000h

def .x4000 = xby 4000

/* read data location 30h

def .d30 = dby 30

[* find answer and store it at Xdata 1000
xb 1001 = .x4000 / .d30

/* and store remainder at Xdata 1001
xb 1000 = .x4000 mod .d30

/* remove user defined symbols

rem sym .x4000

rem sym .d30

em

Macro Example 2:

This is the same as the above macro but instead of storing the value to the
processor’s memory we will print it to the screen.

Define :m1a

/* read xdata location 4000h

def .x4000 = xby 4000

/* read data location 30h

def .d30 = dby 30

/* find answer and save to a new variable
def .answer = .x4000 / .d30

/* and store remainder in another new variable
def .remainder = .x4000 mod .d30

write 'Answer ="’ .answer ’ R:’.remainder
/* remove user defined symbols

rem sym .x4000

rem sym .d30

EMULS51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-53

rem sym .answer
rem sym .remainder
em

Macro Example 3:

This is an example of testing data with some kind of masking operation. This
could be used with various types of applications. One example would be part
of an automated test sequence.

Define :m2

/* read data at location 4000h (Xdata)

def .x4000 = xby 4000

/* mask data with a 3Fh

def .mvalue = .x4000 XOR 3f

/* write the values to the screen

write 'Original value = ’,xby 4000,’'Masked with 3F =’, .mvalue
/* now and with 7Fh

def .avalue = .mvalue AND 7f

/* write the values to the screen

write 'Mask with 3f =’,.mvalue,” ANDed with 87 =’, .avalue

if .mvalue <EQ .avalue

write 'Error: Masked value less than or equal to ANDed value’
else

write 'MVALUE > AVALUE’

end

rem sym .x4000

rem sym .mvalue

rem sym .avalue

em

Macro Example 4:

Here is an example of a test of a bit at a memory location. This example
could be used in some type of automated test sequence or error checking
process.

Define :m3

/* test bit 3 of data memory
def .bvalue = dby 30 and 8
if .bvalue EQ O

[* set the bit

dby 30 = dby 30 ior 8

Page 1-54 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

else

[* clear the bit

dby 30 = dby 30 and F7
end

rem sym .bvalue

em

When using the macro language in the EMULS51-PC you can use a wide
variety of resources from the target or processor. You could also choose not
to use these resources and declare variables to be used for various things; as
an example a counter. (See Macro Example 5)

Macro Example 5:

Define :m4

[* define a variable as a counter

def .counter = 0

/* reset the micro processor

reset chip

/* set up a loop condition based on this counter
repeat

/* go from current PC until a symbol in the program
go till .breakpoint

/* increment the users counter

.counter = .counter +1

/* repeat for 20 loops

while .counter <EQ 19

/* end the repeat

end

/* remove the user defined symbol

rem sym .counter

/* end the macro

em

These are a few of the things that you can accomplish with the macro
language in EMUL51-PC. Other points of interest:

. Macros can be nested up to 7 levels deep.

. TSPut, TSGet, LOW, SAW, and INC commands are
considered macros by the EMUL51-PC software.

EMUL51 © NOHAU CORP. 1985 - 1993 Orientation Page 1-55

Data Windows

The data windows are automatically updated between commands. This
causes a short delay after each command. As the specified memory locations
are all read, read (RD) signals will go out to the target system if the external
data is mapped to the target system, (which it is by default). If this causes a
problem, you can disable the window by using the command DIS XDATA.

Sub-windows There are four data windows. The window at the top has 18
locations that can be programmed by the user to reflect any memory location
in any of the address spaces of the 8051. By default the 18 locations are set
up to reflect the most common special function registers (RBYTE) of the 8051.
For details on how to change each individual location, see SWR in the
Commands chapter. Here is an example of how to change location 5 to reflect
address 1E85H in external memory. The symbol name that we have chosen
is A_VALUE:

SWR 5 XBYTE A_VALUE 1E85

The DATA window reflects 24 contiguous memory locations in the internal data
memory. The first location is 20H by default, but can be set up to any position
between 0 and E7H. For details see SWD in the Commands chapter. This

example changes the first address to 60H:
SWD 60

The XDATA window reflects 24 contiguous memory locations in the internal
data memory. The first location is 4000H by default, but can be set up to any
position between 0 and FFE7H. For details see SWX in the Commands

chapter. This example changes the first external address to OH:
SWX 0

Both the DATA and XDATA windows may be moved around on screen. You
may also change their size by using the function keys listed on the bottom of
the screen.

The STACK window always reflects the stack. It shows a maximum of nine
positions of the stack, starting with the byte to which the stack pointer is

Page 1-56 Orientation EMUL51 © NOHAU CORP. 1985 - 1993

currently pointing. The contents of the stack are then shown in descending
order.

Enable, Disable Tne static window is by default enabled. It can, however, be
disabled using the DISABLE command or the F6 key. See the DIS paragraph
for details.

DIS WINDOW

it may then be reenabled by using the ENABLE command or press F6 again.
See the ENA paragraph for details.

ENA WINDOW

You can move the windows and expand them using the F4 and F5 function
keys.

On-screen Operations Inside the DATA or XDATA window you can use
PgUp and PgDn to scroll information.

File Operations It is also possible to save set ups to a file using the SAW
command. See the SAW paragraph for details.

SAW A_SETUP

Set ups can the be loaded back using the LOW command. See the LOW
paragraph for details.

LOW A_SETUP

By using many set up files you can switch the static window to reflect different
parts of the memory. By using macros to do that you could switch windows
using only three key strokes!

More Windows Ctrl + A toggles CODE Window ON/OFF
Ctrl + R toggles REGS Window ON/OFF
Ctrl + W toggles WATCH Window ON/OFF
Ctrl + D toggles DATA Windows ON/OFF
(F6 has the same function)

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-1

2 INSTALLATION

Dear 8051 User:t 2-3
Materials and Supplies 2-3
Power Requirements 2-3
Inspection of Jumpers 2-4
EmulatorBoard 2-6
Standard Trace Board 2-10
Advanced TraceBoard 2-13
Addressing the Emulator and Trace Boards 2-14
Installing the Emulator and Trace Boards 2-16
Mappingt e 2-17
System Requirements 2-18
GettingStarted i, 2-18
FilesProvided i 2-26
EMULS1-PC/BOX ... oot i e i i e iieenes 2-27

BANKSWITCHING o oot 2-33

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-3

2 INSTALLATION

Dear 8051 User:

Thank you for choosing the EMUL51-PC. We hope it will be valuable to you in
your 8051 projects.

Materials and Supplies
Check that the following items are present:

One pod board

One emulator board

One ribbon cable

Floppy disks

One trace board (optional)
Other optional items

~oQEPTP

Power Requirements

The emulator board requires about 1.7A from the PC’s 5V power supply, and
the trace board typically requires 1.3A. Before proceeding, check that the PC’s
5V power supply is sufficient to deliver the necessary current. If it can’t, a larger
power supply will have to be installed. Your computer dealer can give you
information on where to purchase one.

Page 2-4 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Inspection of Jumpers

Several sets of jumper pins are provided on the boards for configuring of on-
board functions. The connection method is to slide a jumper block over two
adjacent pins, (see Figures 1 and 2 for details).

Ml =] =

a. Pins not connected b. Block connecting pins at right c. Block connecting pins at left

Figure 1. Typical Set of Three Jumper Pins

a. No pins connected b. Two pins connected, ("A4"pair)

Figure 2. Typical Set of Paired Jumper Pins

Jumpers for the emulator and trace boards are described in this section of the
manual. For information on other POD boards, refer to the PODs chapter.

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-5

Board jumpers have been preset at the factory prior to shipment. On the
boards you receive it is important to compare the jumper configurations against
the configurations described in this manual. If a jumper is installed other than
shown, refer to the "Jumper Descriptions" information before changing its
position. Jumpers may be installed for operating characteristics required at the
time of order.

Page 2-6 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Emulator Board

On the emulator board the locations of jumper pins are designated on the
board artwork as E1, E2, E3, E4 and E5, (see specified rectangles in Figure 3).

E4
\
1
=LVl — . | o
e b e el = [
b3 t = Vol I
3 2 [] 1) | " — Eﬂ} | b] 13] IF] 11] 12]
R — 3
ﬂ;L_J =I!;__|#’;__| 31[\!:___1) =“" Lh 15— ue— il.!}_| _" ;
) T '——I“ " i t =3
— o = : [s 13 Il_u!:—'—l F a— | !I';"'1 i3
4 i“ . I!EE I? =- =] |||
Myl = :5 i = 1 .'.lls—l illls yir— i—l
. i H = S a ¥
™
1
E1l E2 E3 ES

(pairs A3-A9)

Figure 3. Locations of Jumpers on Emulator Board

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-7

32K Emulator When shipped from the factory, the emulator board is normally
configured for 32K RAM and with 1/O Port Address set for 110H. Figures 4A
and 4B show details of the jumper connections for this configuration.

The 32K emulator board can be manufactured in either of two ways, depending
on memory availability at the time of manufacture. The variations are: to have
either one large memory installed in the bottom socket, or else to have four
small memories installed in the four sockets.

E4
-3
E1
B
E2 E3
AL w <[:EE-E<

Figure 4A. Emulator Board with ONE CHIP 32KB installed, Address 110H. Code and XDATA (if
mapped to emulator) always overlaid.

ONE-MEMORY E32 BOARD Figure 4A shows the jumper configuration if there is a
single memory in the bottom socket. Note the wire wrap connection between
E2 and E3. The memory is a 32k by 8 static RAM, of the type 62256, 43256,
55256, or similar number.

Page 2-8 Installation EMUL51 © NOHAU CORP. 1985 - 1993

FOUR-MEMORY E32 BOARD Figure 4B shows the jumper configuration if there are
four small memories in the sockets. The memories are 8k by 8 of the type
6264 or similar. (If there are four large memories in the sockets, the board is
not a 32k emulator board.)

Figure 4B. Emulator Board with FOUR CHIP 32KB RAM, Address 110H. Code and XDATA (if mapped
to emulator) always overlaid.

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-9

128k Configurations If four 32k by 8 RAM chips are inserted in sockets U25, U26,
U27 and U28, then the emulator board can be configured either as shown in
Figure 5 or as in Figure 6. The differences between these configurations
depend on whether the 64k code and 64k XDATA are in separate areas or are
overlaid. (Note: For Bank Switch configurations, see "Bank Switching" Section
at the end of this chapter.)

=
E1
g
E2 E3
SR S 2R

Figure 5. Emulator Board with 128KB installed, 64k Code and 64k XDATA in SEPARATE area’
Address 110H.

=N & 2f-EH0%

Figure 6. Emulator Board with 128KB installed, 64k Code and
64k XDATA in OVERLAID areas, Address 110H, MUST BE INVOKED AS A 32k EMULATOR!

Page 2-10 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Standard Trace Board

On the trace board the locations of jumper pins are designated on the board
artwork as W1, W2, W3, W4 and W5, (see specified rectangles in Figure 7).

STANDARD TRACE BOARD MEMORY CONFIGURATION Both
the TR4 and TR16 trace boards are shipped in one of two memory
configurations. There is either one large memory soldered into the bottom row
at position U42, or else there are four small memories soldered into the bottom
row.

The one memory version has the lower jumper, W2, connected. The four-
memory version has the upper jumper, W1, connected. Both variations are
functionally the same. Since the W1/W2 jumper depends on the memories
soldered at the time of manufacture, it does not get changed even if the trace
frame size is changed.

T 0
I

[s { | m— Y s—
L
b [-
1
= ()
[! I H
| S—
—
—=
| e—
=
e

l
-
|
|
L —
| P
=.= —
—=
—T—
—=
—=
—=!
(=t
J —
=
—

(pairs A4-A9)

Figure 7. Locations of Jumpers on Trace Board

W1/W2 setting U39-U41 u42

Wi 8k x 8 8k x 8
w2 empty 32k x 8

These two factory build configurations both have the same function and
size.

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-11

4K Trace Here is the trace board configured for 4k, (with 8k by 8 RAM chips
in sockets U3, U4, and U5), and the I/O Port Address is set for 100H, (see
Figure 8).

w3
T W4

W&
A9

=
A4

Figure 8. Trace Board with 4K installed, Address 100H

Page 2-12 Installation EMUL51 © NOHAU CORP. 1985 - 1993

16K Trace For a 16K trace board, 32K by 8 RAM chips have to be inserted in
sockets U3, U4 and U5. Figure 9 shows the jumper configuration, again
with I/O Port Address set for 100H.

.. W3
Elwae

Figure 9. Trace Board with 16K installed, Address 100H

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-13

Advanced Trace Board The ATR64 trace board has a memory configuration
with the jumper top on the right.

256K 64K

Board Adar |[|o i J2

A987654

64K Advanced Trace Board Jumpers and Headers

The ATR256 trace board is has a memory configuration with the jumper top
on the left.

256K 64K

BoardAddrEﬂgﬂﬂﬂﬂéJZ

A987654

256K Advanced Trace Board Jumpers and Headers

Page 2-14 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Addressing the Emulator and Trace Boards

The emulator address jumpers have been factory preset to 110 (HEX) and
the trace board jumpers have been preset to 100 (HEX). These address
settings are set for a typical system. Table 1 shows how a typical system
uses its address locations. If your system is presently using locations 110
and 100 (HEX), alternate address locations will need to be found and the
appropriate changes made to the jumpers and software.

Table 1. Standard I/O Addresses

Use t
Hex Location
000 - OFF Used by system
1FO - 1F8 Fixed Disk
200 - 207 Game Adaptor
210 - 213 Expansion Unit
278 - 27F Parallel Printer Port 2
2F8 - 2FF Secondary Asynchronous Printer Adaptor
300 - 31F Prototype Card
320 - 323 Fixed Disk Controller
360 - 36F Reserved
378 - 37A Printer Adaptor
380 - 38F Alternate Binary Synchronous Communications Adapter, SDLC Adaptor
3A0 - 3AF Primary Binary Synchronous Communications Adaptor
3BO - 3BF Monochrome Display and Printer Adaptor
3C0 - 3CF Reserved
3D0 - 3DF Color/Graphics Monitor Adaptor
3F0 - 3F7 Floppy Disk Controlier
3F8 - 3FF Primary Asynchronous Printer Adaptor

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-15

To change address jumpers, free address space must be found between
000 and 3FF (HEX) for the emulator and trace I/O addresses. The
emulator board requires 8 consecutive addresses and the trace board
requires 16 consecutive addresses. There are 6 batch files that have been
included on the disk for your convenience. If there is a change to the
addresses and/or memory, the batch files will have to be changed
accordingly. (Batch files are discussed later in this chapter under Getting
Started.)

Addressing Examples The tables below give examples of addressing on the [|
emulator and trace boards. Table entries are arranged in the same order
that the jumpers are physically located on the boards.

Table 2. Emulator Addressing Example

3456789 HexAdr
1000000
BEnE . 100 - 107
(o] []
u/u|nnjujnn] 110-117
aa/ama/a 120-127
alalaa/aal 140-147
i
2lajnuln ajn| 180-187
ala=lalams 210-217
| | | | | |
[;:_:_:: 310-317

Page 2-16 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Table 3. Trace Addressing Example

887654 Hex Adr.
| aalalalals] 100 - 10F
saalalas 110-11F
alaalalals] 120-12F
::;::: 140 - 14F
z::::: 180 - 18F
mmm/m/mlm| 200 - 20F
mummals| 300 -30F

Installing the Emulator and Trace Boards

With the address jumpers in place and after you have inspected the boards
for any damage, it is time to install the board(s) in your PC. Perform the
following steps in the order shown.

1. Turn power off.

POWER MUST ALWAYS BE OFF WHEN YOU PLUG IN THE
BOARDS, AND WHEN YOU CONNECT THE RIBBON CABLE AND

POD BOARD.

2. If you have both the trace and emulator boards, you should first
insert the trace board with the short ribbon cable connected.

3. Connect the ribbon cable to the emulator board before inserting the
board.

4. Make sure the connector fingers of the board(s) are secured into the

female connector of the PC’s motherboard.

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-17

5. Don’t forget to put the screws back on the brackets.

Now connect the long ribbon cable to connector on the emulator
board located at the back of the PC. The connector has a notch on
it, so you can't insert it the wrong way.

7. Attach the other end of the ribbon cable to the POD board. Close
the iocks on the connector over the cabie. The connectors of the
ribbon cable are identical so it does not matter which end is
connected to the POD or the emulator board.

8. Before you plug the pod into the target system, always first connect
the "pod cable" to the target system ground. This prevents ground
currents from flowing through any of the signal pins of the
microprocessor chip, possibly destroying it.

Mapping

Code memory and external data memory can be mapped in 4K blocks to
either the emulator or the target (your board). By default the code memory
is mapped to the emulator, and the external data memory is mapped to the
target. For details on how to change the mapping, please refer to the MAP
paragraph in the COMMANDS section of the manual.

If you have a 32K emulator and you map both code and external data to the
emulator, code and external data will be overlaid. In other words, for this
work you must have your code and your data occupying different address
areas.

If you have a 128K emulator and you map both code and external data to
the emulator, code and external data will reside in physically different areas,
so they are NOT overlaid. If, however, you want code and external data to
be overlaid, (all 64K), you must change the jumpers as shown in Figure 6.
AND YOU MUST INVOKE THE EMULATOR AS A 32K EMULATOR for this
to work!!

Page 2-18 Installation EMUL51 © NOHAU CORP. 1985 - 1993

System Requirements

Make sure that DOS 3.0 or a later version is being used. A minimum
memory size of 640K is recommended.

4l Getting Started

1. Verify that the power supply jumper on the POD board is in the
correct position.

2. Turn on the computer.

3. If you have configured the power jumper for target, power to target
must be turned on.

4. If your installation disk has the file INSTALL.EXE, use it to install the

EMULS51 files onto your hard disk. It can optionally create a new
subdirectory to install the files to.

5. Invoke the program by typing EMULS51 followed by a number of
parameters. For details on parameters see Step 8 below.

6. You can use an editor to create a startup batch file. If the program
CONFIG.EXE is installed you can use it to generate E.BAT.

7. Create the batch file that corresponds to your hardware. If the

emulator address had changed to, say, 240H, you would revise the
contents of the batch file to look like this: EMUL51 -p8031 -e240
-m32

This example applies when only the emulator board is used. Again,
if any changes are made to the trace board address and/or memory,
you will have to revise the contents of the batch file accordingly.
Note that the appropriate *.SYM file should be present in the current
directory or as specified by the environment variable EMUL31, (see
note below).

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-19

Table 5. Typical Batch Files for Invoking EMUL51

File Name Contents

E32.BAT EMUL51 -p8031 -e110 -m32
For emulator only, 32K.

E128.BAT EMULS1 -p8031 -e110 -m128

For emulator only. 128K
(64K emulation memory plus 64K external data memory)

E32T4.BAT EMULS51 -p8031 -e110 -m32 -t100 -f4
32K emulator and 4K trace buffer

E32T16.BAT EMULS51 -p8031 -e110 -m32 1100 f16
32K emulator and 16K trace buffer

E128T4.BAT EMUL51 -p8031 -e110 -m128 -t100 -f4
128K emulator and 4K trace buffer

E128T16.BAT | EMUL51 -p8031 -e110 -m128 -t100 -f16
128K emulator and 16K trace buffer

8. The parameters may appear in any order. The following options are
available:

Page 2-20 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Table 6. Parameter Options When Invoking EMULS51

-p <processor> Depends on POD and invocation. See -p Table 6-A. No "C" is used for CMOS,

and no speed is specified. Example: -p80451 for POD-C451-PGA-16. If the emulator is DMA
modified for 'C152 or 'C452, use a D suffix on all types, regardless of whether that part can do
DMA. (Example: -p8032D for a DMA modified emulator board.)

-e <emulator address>

-m <number of K installed on the emulator (32 or 128)>

-t <trace address>

-f <number of K frames installed on the trace board (4 or 16)>

<ii> or <io> or <oi> or <oo>. Used to specify usage of P3.6 and P3.7 as input (i) or output (o)
for POD-51. Also used for POD-31-S or any "-S" type pod when configured to have P3.6 &
P3.7 as |/O.

e <number>. Used to increase time in time-out loops; useful if you run at very low frequencies.
© <use if you drive a mono monitor with a color card>
v

<use if you have problems with certain EGA/VGA cards>

a <serial channel (if you use the "BOX") (1, 2, 3 or 4)>

<name of include file to be executed at invocation>

‘ <baud rate for serial chennel. (30, 60, 12, 24, 96, 19, 38, 115)>

<crystal frequency in MHz> Used by the advanced trace board for timestamp scaling.

- Maximum number of modules. Default is 100. 29 bytes are allocated for each module,
independently of symbol storage. Increase to accommodate more modules. Reduce to
decrease memory usage.

-n <telephone number for modem including modifying characters>
Modifying characters for telephone number:

P Instructs the modem to use pulse-dialing.

T Instructs the modem to use tone-dialing. (Default).

w Directs the modem to wait until a dial tone is detected. If a dial tone is not detected within 30
seconds, the modem hangs up and displays the message NO DIALTONE.

0-9 | Give the digits of a telephone number to be dialed. When using tone-dialing, the modem can
also transmit the symbols * and # from a 12-button dialing keypad.

, (comma) Directs the modem to pause for 2 seconds before processing the next symboal in the
command.

| Causes a hook flash of 1/2 second.

@ Instructs the modem to wait 30 seconds for one or more rings followed by 5 seconds of silence
before processing the next symbol. This command can be used to call a system that does not
have a dial tone.

/ Causes a pause of 1/8 second in the dialing sequence.

9. To invoke the EMULS51 it is easiest to use a batch file as described above. If
you don't want to use a batch file, you can, of course, type EMUL57 followed by
the appropriate set of parameters as described above in Step 7.

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-21

10. To start the program, insert the disk in the default drive and execute
the batch file that you have prepared.

11. If there is a problem with the addresses, you will receive error
messages like "Can’t find emulator at address xxx" or "Can't find trace
at address xxx". Please check that the POD is connected to the
emulator via the ribbon cable. If you still have problems, you may have
to find another address space. (Also refer to the Troubleshooting
chapter.)

DON'T FORGET TO TURN POWER OFF BEFORE YOU PLUG IN, OR
UNPLUG BOARDS, RIBBON CABLES, OR POD BOARD!
TABLE 6-A: "-p" Parameters for Invocation
Parameters are the same for any frequency suffix.
EXTERNAL MODE PODS

-p8031 POD-31, POD-C31, POD-31-S, POD-C31-S

-p8031d DMA emulator & POD-31, POD-C31, POD-31-S, POD-C31-S

-p8032 POD-32, POD-C32, POD-C32-S

-p8032d DMA emulator & POD-32, POD-C32, POD-C32-S

-p8344 POD-44, POD-44-S

-p8344d DMA emulator & POD-44, POD-44-S

-p80154 POD-C154, POD-C154-S

-p80154d DMA emulator & POD-C154, POD-C154-S

-p80321 POD-321, POD-321-S

-p80321d | DMA emulator & POD-321, POD-321-S

-p8051fa POD-C252/C51FA, POD-C252/C51FA-S

-p8051fad | DMA emulator & POD-C252/C51FA, POD-C252/C51FA-S

Page 2-22 [nstallation EMUL51 © NOHAU CORP. 1985 - 1993

EXTERNAL MODE PODS (Continued)
-p8051gb | POD-C51GB-PGA

-p8051gbd | DMA emulator & POD-C51GB-PGA

-p8051sl | POD-C51SL

-p80152 POD-C152-DIP, POD-C152-PGA

-p80152d DMA emulator & POD-C152-DIP, POD-C152-PGA

-p407 POD-407

-p80451 POD-C451-DIP, POD-C451-PGA

-p80451d DMA emulator & POD-C451-DIP, POD-C451-PGA

-p80452 POD-C452-PGA

-p80452d DMA emulator & POD-C452-PGA

-p80515A POD-C515A-PGA

-p80517A POD-C517A-PGA (Previously called POD-C537A-PGA)

-p80535 POD-532-PGA, POD-535-PGA, POD-C835-PGA

-p80535d DMA emulator & POD-532-PGA, POD-5635-PGA, POD-C535-PGA

-p80537 POD-C537-PGA

-p80537d DMA emulator & POD-C537-PGA

-p80552 POD-C852-PGA

-p80552d DMA emulator & POD-C552-PGA

-p80652 | POD-C852

-p80652d DMA emulator & POD-C652

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-23

BONDOUT PODS

-p5001 POD-5001

-p8051b POD-C51B with C51 or C851 configuration

-p8051bd DMA emulator & POD-C51B with C51 or C851 configuration

-p80652b POD-C51B with 652, 654 or 662 configuration

-p80652bd | DMA emulator & POD-C51B with 652, 654 or 662 configuration

-p83410 POD-CL410

-p83410d DMA emulator & POD-CL410

-p80451b POD-C451B-PGA

-p80451bd | DMA emulator & POD-C451B-PGA

-p80515 POD-C517B-PGA with 515 configuration

-p80515d DMA emulator & POD-C517B-PGA with 515 configuration

-p80515ab | POD-C517AB-PGA with 8XC515A configuration

-p80517 POD-C517B-PGA with 517 configuration

-p80517d DMA emulator & POD-C517B-PGA with 517 configuration

-p80517ab | POD-C517AB-PGA with 8XC517A configuration

-p80552b POD-C552B-PGA

-p80552bd | DMA emulator & POD-C552B-PGA

-p83410 POD-CL580

-p80751 POD-C751

-p80751d DMA emulator & POD-C751

-p83782 POD-CL782

Page 2-24 Installation EMUL51 © NOHAU CORP. 1985 - 1993

HOOKS MODE PODS

-p8751FC POD-C51FX

-p8752 POD-C52

-p8752d DMA emulator & POD-C52

-p87054 POD-C054

-p80528 POD-C528

-p80528d DMA emulator & POD-C528

-p80550 POD-C550-PGA

-p80550d DMA emulator & POD-C550-PGA

-p83558 POD-C558

-p80575 POD-C575

-p80592 POD-C592-PGA

-p80592d DMA emulator & POD-C592-PGA

-p80752 POD-C752

-p80752d DMA emulator & POD-C752

EMULS1 © NOHAU CORP. 1985 - 1993 Installation Page 2-25

PORT SUBSTITUTION (Internal-Mode-Only) PODS
-p8051 POD-51, POD-C51

-p8051d DMA emulator & POD-51, POD-C51

-p8052 POD-51, POD-C51 to use 256 bytes of RAM (but not Timer 2)

-p8052d DMA emulator & POD-51, POD-C51 to use 256 bytes of RAM (but not Timer 2)

NOTE: Some of the DMA "d" options may not be implemented yet.
Contact Nohau if you have a problem.

Page 2-26 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Files Provided
The following files are provided with EMUL51-PC:

Table 7. Some Files Provided With EMUL51-PC (A Partial List)

Command/File Function
EMUL51.EXE Emulator program.
EMUL31.HLP Documentation file. It is used from within EMUL51 via an indexing system. This file

should be in the current directory or in a directory specified by SET EMUL31.

EMUL31.NDX Index file for EMUL31.HLP.
8031.STR Typical 8051 object files are automatically loaded into the EMUL51 at invocation. These
files should be in the current directory, or in a directory specified by SET EMUL31. (See
below.)
Examples: Used for 8032 type processors.
8032 TR Used for 8051.
8051'3;‘;1 Used for 80C452 procesors.
80452. (and many more)
TEST.SRC A short 8051 assembly program (source list file).
TEST.A03 Object file created from TEST.SRC. This file can be loaded into the EMUL51 via the
LOAD command. The disassembler can be used to view it
TEST Obiject file created from TEST.C and TEST1.C. This file can be loaded into EMUL51. It
can demonstrate source-level debugging.
8031.SYM Symbol file for 8031. Symbol files for other processors are also available.

Note that it is not necessary to have *.STR, EMUL31.HLP, EMUL31.NDX and
the *.SYM in the current directory. We have used the "environment" feature
in MS-DOS to implement this. Here is how it works.

The program will start looking for 8031.STR, EMUL31.HLP, etc., in the current
directory. If they are not found, it will look for the environment parameter
EMULS1. If it is found, the string defined by EMULS31 will precede the file
names to form a path to the directory in which the files are. We recommend
adding the SET command to your autoexec.bat file so that it will automatically

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-27

be included when your system is booted.

SET EMUL31=\usr\nohau\ is an example of using the SET command for an
environment string. The files 8031.STR, EMUL31.HLP, etc., should then be
available in the subdirectory \usr\nohau.

EMULS51-PC/BOX

The Box option accommodates users having PCs without spare card slots or
who may need to move the emulator frequently, as well as PS/2 users. The
Box has its own power supply and accepts the same emulator and trace
boards as for the PC.

The Box-S version communicates with the PC over a standard serial port. The
Box-M version has a serial channel and an internal modem; this allows the PC
to be at a location remote from the Box and system under test.

The Box-P version (not available in all areas) communicates with the PC over
a dedicated parallel port which extends the 1/O bus of the PC, and requires a
"non-standard" parallel card (provided by Nohau) to be installed in the PC.

Preliminary Steps If the back of your box chassis is labeled 115/260 volt
or similarly, it has an automatically switched power supply and no selection is
required. If your chassis is not so labeled, remove the top cover from the Box
and confirm that the power supply is correctly configured for your line voltage
(115 - 130 VAC or 220 - 240 VAC). Then plug the power cord into the Box
receptacle at the rear of the box. After that, check the board (or boards)
supplied with the Box, as follows.

Box-S: One serial card that plugs into any slot in the Box.
(Also supplied is a serial communication cable.)

Box-P: One parallel transmitter card that plugs into any slot in
the Box. (Also supplied are a parallel communication
cable and a separate parallel receiver card for plugging
into your PC.)

Box-M: One serial card that plugs into any slot in the Box, and
one modem card (Everex EV-940A) that plugs into any
slot in the Box. (Also supplied is a modular telephone
cable for connecting the Box to the telephone line.)

Emulator and Trace Boards If your emulator board, and trace board if you
have one, are not already installed in the Box, install them in the same manner

Page 2-28 Installation EMUL51 © NOHAU CORP. 1985 - 1993

as you would install these boards into your PC. Don't forget to secure the
boards with the bracket screws.

Box-P (Not available in all areas) Because Box-P is like an extension of
the PC bus, all considerations of I/O addresses for the emulator board and the
trace board as described earlier in this manual still apply. Electrically this
option is equivalent to having the boards inside the PC. The emulator board
comes with the |/O address preset to 110H, and the trace board’s /O address
is preset to 100H.

1. Replace the top cover on the Box.

2. Plug one end of the twisted-pair ribbon cable into the emulator
board; make sure that the tang on the cable lines up with the
notch in the emulator board. Plug the other end of the cable
into the POD board in the same way. (The cable is
symmetrical, so it doesn’t matter which end is plugged into the
emulator.)

Plug the parallel receiver board into an empty slot in the PC.

Mate one end of the communication cable to the connector on
the parallel card in the Box, and mate the other end to the
parallel card in your PC.

5. Plug the Box power cord into the AC power outlet and turn on
the Box.

Turn on your PC.

Install the EMUL51-PC software on your PC and create a
batch file, as described in Table 5 and Table 6 earlier in this
chapter under the heading "Getting Started."

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-29

Box-S The serial card inside the box has an 8-position DIP switch in the
upper rear corner. Figure 12 shows the switch location and gives a list
of the switch settings. For Baud rate a typical setting is 9600.
1. Confirm that the DIP switch settings are properly selected for
your application, then replace the top cover on the Box.

2. Plug one end of the twisted-pair ribbon cabie into the emuiator
board; make sure that the tang on the cable lines up with the
notch in the emulator board. Plug the other end of the cable
into the POD board in the same way. (The cable is
symmetrical, so it doesn’'t matter which end is plugged into the E

emulator.)
DIP Switches EE—
I
I
T T T T 1T 1T 1 eodne

closed closed open open open open open open 118k
closed open Open open open open open open 3BAK
closed open open open open open open cloved 192k
closed open open open open open closed open 9800
ciosed open open open open open closed closed 4800
cosed open open open open closed open open 2400
closed open open open open olosed open closed 1200
closed open open open open closed closed cpen 600
closed open open open open closed closed closed 300

To use the 115 k baud option, you must have:

a EPROM for the Box Board (Rev B2 or "B1 + 115KB" or "2.1 + 115KB" or later)

b. Version 5.6F EMULS51-PC software or later

Figure 12. DIP Switches and Settings on Serial Transmitter Board
3. Mate one end of the serial communication cable to the connector on

the Box serial board, then mate the other end of the cable to the serial
port connector on your PC.

Turn on your PC.
Plug the Box power cord into the AC power outlet and turn on the Box.

6. Install the EMUL51-PC software on your PC and create a batch file, as
described in Table 5 and Table 6 earlier in this chapter under the

Page 2-30 Installation EMUL51 © NOHAU CORP. 1985 - 1993

heading "Getting Started." Here is an example of a batch file:
EMUL51 -p8031 -e110 -m128 100 -f16 -a1

The "-a1" indicates that you are using serial port 1. The following COM

ports are supported: COM1 on address 3F8. COM2 on address 2F8.

COMS3 on address 3E8. COM4 on address 2E8. They are specified as

-al, -a2, -a3 or -a4. Specifying -a1 or -a2 causes interrupts to be used

for received data.

The address of the COM board can also be specified after the -a option.
Example: -a180 for serial port on address 180. If you do not want
interrupts for COM1, specify -a3F8.

The 1/O address range is from 100 to FFFF.

PS/2 computers may only work using interrupts and may be limited to
using either COM1 or COM2.

7. Now execute the batch file. If the program comes up, you are now ready
to start working. [f not, you may get one of the error messages described
below.

The message send error (01) three times it is an indication that the serial
communication is not working. Check the serial card in your PC and
verify that you have indicated the right port number in the batch file. Also
check the physical connections. Then make sure that the switches on the
serial card in the box are in the proper positions: closed, open, open,
open, open, open, closed, open. (See Figure 12.)

If you get error messages like unsuccessful (10) three times, it is an
indication that the serial communication is working, but the emulator is
unable to communicate with the serial board in the box. Probably the
processor on the pod board is not running. Check the power jumper and
crystal jumper. Also confirm that the pod board is hooked up to the
emulator board!

BOX-S Communication Error Codes
"Send Error (XX)": Error messages from COM port.
o1 Timeout.
02 UART Overrun Error.
04 UART Parity Error.
08 UART Framing Error.
80 Lost Carrier (No DCD from Modem).

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-31

Combinations of bits are possible. For example:

"Send Error 03" Both timeout and overrun errors
occurred.

"Data Error": Unexpected data was received.

"CRC Checksum Error": There was a bad CRC in the received
message.

"Unsuccessful (XX)": Error messages back from the box.

01 Lost Carrier (Modem).
02 Wrong start character was received (not STX).

03 Checksum error.

04 Wrong message length.
05 Bad command code.

10 "em_adr" failed (timeout).
11 "em_sdat" failed (timeout).
12 "em_gdat" failed (timeout).
13 "em_go" failed (timeout).

Box-M The program both in the PC and in the box use standard Hayes commands, so
any Hayes-compatible modems should work. However, we can only guarantee
that it will work if you use the Everex EV-940A 2400 baud modem, which is the
type of modem installed in the EMUL51-PC/BOX-M. Given below are some of the
features listed in the EV-940 manual:

Compatibility with the Hayes Smartmodem command set and with the
major types of modems in current use in the United States, Europe, Asia,
Australia, and South America.

Transmission speeds of 300, 1200, and 2400 bits per second.
Automatic adjustment of speed to match the speed of an incoming call.
Automatic adjustment of speed when dialing out at 2400 bps, (i.e.,
"downshifting").

Compatibility with Bell 212A, CCITT V.22bis, and CCITT V.22.

A half-sized board that can be installed in any expansion slot in an IBM
PC, XT, or AT, and in most compatible computers.

Confirm that the DIP switch settings on the serial board are properly
selected for your application, (see Figure 12). For 2400 baud the switch
settings should be:

closed, open, open, open, closed, closed, open, open.

Page 2-32 Installation EMUL51 © NOHAU CORP. 1985 - 1993

2 Replace the top cover on the Box.

3. Plug one end of the twisted-pair ribbon cable into the emulator board;
make sure that the tang on the cable lines up with the notch in the
emulator board. Plug the other end of the cable into the POD board in
the same way. (The cable is symmetrical, so it doesn’t matter which end
is plugged into the emulator.)

4. Plug one end of the modular telephone cable into the jack on the modem
board, and plug the other end into the telephone line.

Turn on your PC.

6. Plug the Box power cord into the AC power outlet and turn on the Box.

Install the EMUL51-PC software on your PC and create a batch file, as
described in Table 5 and Table 6 earlier in this chapter under the heading
"Getting Started." Here is an example of a batch file for 2400 baud and
Nohau’s phone number:

EMUL51 -p8031 -e110 -m128 -t100 -f16 -a1 -b24 -n4088661820
The "-a1" indicates that you are using serial port 1. (Ports 2, 3, and 4 are
also supported.)

EMUL51 © NOHAU CORP. 1985 - 1993 installation Page 2-33

BANK SWITCHING

Many users today are breaking through the 64k barrier of the 8051 family chips.
The problem is that every user is utilizing a different scheme to implement the
bankswitching hardware. Our present solution is to modify a standard 128k
emulator board to mimic the bankswitching schemes of individual target systems.

The operation of bankswitching memory in the EMUL51-PC requires certain
information from the user. This information needs to be very specific about how
the memory operation will be handled.

If the emulator is used without bankswitching there will be 64K of overlaid memory.
(CODE and XDATA). In this case the "bankswitch cables" should be left grounded.

Currently Nohau has two different types of emulators that we feel will meet most
users’ needs. If none of the configurations will satisfy your requirements, please
contact us.

This section covers the following topics :

. Software examples with IAR / Archimedes and Keil / Franklin compilers
. Hardware examples

. EMULS1-PC bankswitch commands and examples on setup

. Description of the Nohau EMULS51-PC/E128-BSW bankswitch emulator
. Description of the Nohau EMUL51-PC/E256-BSW bankswitch emulator

. Hints concerning bankswitching the Nohau way

Page 2-34 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Software Examples Using Bankswitching and the IAR / Archimedes
Compiler

Description of the IAR / Archimedes Banked Memory Model:

The banked memory model is normally supported by the IAR / Archimedes
compiler and does not require any additional software. However, you must use
version 4.00 or later of the compiler / linker package. The compiler supports up
to 256 banks of code. The IAR/ Archimedes compiler supports common area and
banks but has (unlike the Keil / Franklin) the restriction that the common area must
be at least 16kbyte. Like the Keil / Franklin, the compiler works very well with the
Nohau bankswitch emulators. Writing code for bankswitching with the IAR /
Archimedes does not differ from normal use. However, you should keep the
module size as small as possible, or at least check the module size versus the
bank size. This will enable the linker to fit all banks together without losing too
much code space.

Parameters for the IAR / Archimedes compiler / linker in banked memory
model:

IAR / Archimedes ICC8051 compiler options:

-mb This parameter determines that banked memory model should be
used. The library file used with the banked memory model is
called CL8051B.LIB

The default port assignment for bankswitching is port P1. If any
other assignment is required the assembler file L18.S03 needs to
be modified. After the modification, assemble and put the module
in the CL8051B.R03 library using the XLIB librarian
replace-module command (see the XLIB section in the IAR /
Archimedes manual for further reference).

IAR / Archimedes XLINK linker options:

-Z(segment type)segment=address The -Z option is the standard
option for attaching addresses to segments.
When using bankswitching this switch is used for the common
areas and the -b switch, described below, is used for the
bankswitched areas.

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-35

-b(segment type)segment=bank+start address, bank length,
bankincrement+offset

Example 1:

The bank determines what the first bank number should be. The
start address determines the start address of the banked area.
The bank length sets the size of each bank in the banked area.

The bank increment consists of two 16 bit values. The first two

bytes determine the number of bank increments to be performed L

when the previous bank is filled. The last parameter offset is an
offset from the local address to be able to create asymmetrical
bank arrangements. This value is normally set to zero.

-b(CODE)CODE, MOD1, MOD2, DISPLAY = 00006000, 2000, 00010000

Example 2:

The first two bytes tell the linker that the first bank number is zero
and the next two bytes determine that the bank area starts at
6000H. The next parameter sets the bank size to 2000H
(8kbyte). The last parameter determines that each new bank
number should be incremented by one and that no local offset
should be used. Then the linker automatically fills the different
8kbyte banks with code. In this example no common (root) area
is defined. However, this example is not suitable for the Nohau
bankswitch emulators.

A more useful example may be as follows:

-Z(CODE)MOD_INT, KEY_POLL=0
-b(CODE)MAIN, KEYBOARD, DISPLAY, PWM_UNIT = 00008000, 8000,
00010000

This configuration defines the first bank number to be zero, every
bank starts at 8000H, each bank is 32k of size, and the bank
number increment is one with no local address offset. The
standard -Z option defines the common (root) area. In this case
the interrupt and a keyboard poll routine are put in the root area.

This configuration is supported by all of Nohau’'s different
bankswitch emulators and is also quite easy to implement in

Page 2-36 Installation

EMUL51 © NOHAU CORP. 1985 - 1993

Example 3:

hardware (see following hardware examples). It is also software
wise, a good generic solution that allows up to 32k of common
space for interrupt vectors, string constants, and other frequently
used routines. When using the Nohau emulator there is the
possibility of having from one to seven 32k banks in addition to
the root bank. This will cover most needs of large code size
applications.

In general the IAR banked memory model lets you use many -b
declarations to add muitiple modules to one bank definition.

-b(CODE)CODEDO, MAIN, IN_OUT, PWM_UNIT, MAG_READ = 00004000,
4000, 00010000
-b(CODE)SERIAL1, [2C_COM, DISK_|O

Example 4:

This will define a 16k bank system, with the modules both on line
1 and 2 included in the bank definition. This is easily done by just
leaving out the special bank parameters in line 2.

The example above can also be written like this:

-b(CODE)CODEO, MAIN, IN_OUT, PWM_UNIT, MAG_READ \
SERIAL1, 12C_COM, DISK_IO = 00004000, 4000, 00010000

For further information on bankswitching with the IAR / Archimedes
compiler, please refer to the "The Banked Memory Model" section in the
1AR / Archimedes manual.

Using Bankswitching With the Keil / Franklin BL51 Banked Linker

Descripﬁon of the Keil / Franklin BL51 Bank Linker

The Keil / Franklin BL51 Bank Linker is an extension of the standard L51 Linker.
The BL51 Linker is able to handle up to 16 64kbyte banks of code which will
increase the 8051 code area to 1Mbyte instead of the normal 64kbyte. Writing
code for a bankswitch application does not require any modifications of existing
code. This applies to the IAR / Archimedes as well. The only actual difference
to the IAR / Archimedes is the number of banks and the fact that no root bank is
required. However, most applications require a root bank. The BL51 Linker

EMUL51 © NOHAU CORP. 1985 - 1993

Installation Page 2-37

supports all the different modes of the Nohau bankswitch emulators.

Keil / Franklin BL51 Linker Options

BANKAREA (start, end)

Example 1:

BANK AREA (0000H, FFFFH)

Example 2:

BL51 BANKAREA (8000H, FFFFH)

COMMON (saddr | seg)

Example 3:

Determines the size of the
banked code.

This is for a solution using all of
the total 64kbyte as banked

area.

This is for an application with a
physical root bank from 0000H
to 7FFFH and the banked area
from 8000h to FFFFH.

Locates segments in the
common area. The common
area is available to all banks and
does not require any
bankswitching when accessed.

BL51 COMMON { MOD_INT,KEY_POLL, MOD_UART}, BANKO{MOD _1,

MOD2, MODS3 }, BANK1 {MOD3}

This puts the interrupt module
MOD_INT, the keyboard poll
routine KEY_POLL, and the
serial interface module
MOD_UART in the common
area.

BANKO (saddr | seg) / BANKn (saddr | seg)

Locates segments in the bank
0..n. Up to 16 (0..15) banks are
supported.

Page 2-38 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Example 4:

BL51 COMMON {MOD_INT.OBJ, MOD_ROOT.OBJ} BANKO
{MOD_1.0BJ, MOD_2.0BJj BANK1 {MOD DISP.OBJ, MOD_4.0BuJ}
BANKAREA (8000H TO 1FFFFH)

** NOTE **

When using an application with no physical common (root) area, the Keil
BL51 does not duplicate the areas defined as common. By using the
Object Converter OC51 you will get the code of the different banks in
separate files. The Nohau EMUL51 supports this duplication automatically
from version 5.7R. Please contact your Nohau distributor for updates if
required.

For further information on parameters and the BL51 Linker please refer to
the Keil / Franklin BL51 Linker / Locater manual and the L51 Linker /
Locater manual.

Hardware Examples on Bankswitching With the 8051

The following pages will show some examples on how to handle 8051 hardware
bankswitching. These are only examples, so please use them as suggestions on
how to deal with bankswitching when designing your hardware.

When using the Nohau bankswitch emulators, all different types of hardware
designs can be supported. However, some cases may require a specially
configured emulator. If this manual and the different bankswitch schemes do not
seem to meet your needs, please contact Nohau to see if we can work out a
solution that will suit your requirements.

When designing bankswitch hardware which is to be used with emulators, try to
simplify the accessibility of the bankswitch signals since these must always be
connected to the pod board (see the emulator descriptions further on in this
manual). This is especially important if you use xdata writes to switch banks. In
these cases the bankswitching signals are only available in your target.

In general, one thing to consider when designing hardware to be used with
emulators is to prepare for connecting a pod. Make sure the PCB layout does not
put you in a corner. Try to have space around your CPU socket. [f you have a
surface mounted target, mount some of your prototype boards with sockets.
Surface mounted PLCC sockets are available today from most socket and
connector manufacturers.

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-39

EMUL51 BANKSWITCH COMMANDS

The following list of commands, except SCOPE, refer only to bankswitching :

BANKBYTE [address] [memtype] [mask]

Example 1:

This command defines which byte controls the
bankswitching and holds the current bank number. Both

register bytes and XDATA bytes are defined as bankbyte 5
with this command. The emulator needs the bankbyte [i
information to be able to read the current bank number ¥
when the BANK command is issued (see BANK &8

command further down).

BANKBYTE 90H RB 1CH

Example 2:

The address 90H refers to port P1, RB refers to a register
byte, and the value 1CH is the mask used for "filtering"
the port P1 value so that the correct bits are used. In this
example the bits P1.2, P1.3, and P1.4 are used. The
mask bits must be consecutive and not inverted.

BANKBYTE 3FFFH XB 3H

In this case, XDATA address 3FFFH is used. The two
first bits in this byte are used.

BANK [bank number]

Example 3:

BANK 2

This command displays or sets the current bank. Actually
it contains the value of BANKBYTE since that is the
reference to the bankswitch byte.

This sets the current bank to number 2. When using
BANK for switching to a bank, it executes the
BANKSWITCH macro defined before loading your code
(see the "Examples on different ways to set up the
EMULS51 for bankswitching" section further on).

Page 2-40 Installation EMUL51 © NOHAU CORP. 1985 - 1993

BANKADDRESS [address1] TO [address2]
This command is for setting up the "banked area". This
command must be invoked before loading the code. The
emulator needs this information to handle the code
correctly when loading.

The default values are 8000H TO FFFFH, which can be
handled by all of the Nohau bankswitch emulators.

Example 4:

BANKADDRESS 0 TO FFFF
This will set up the emulator for handling a full 64k (OH to
FFFFH) bank area.

BANKSEGMENT [bank number] [segment name]

This command is for "attaching" a certain segment name
to a bank number. Many segments can be attached with
one bank but they must be entered one by one. The
number of segment symbols and segments in each bank
must coincide. The address boundaries of the segments
and the different banks must also coincide. This
command must be used when the object code contains
segment information which needs to be attached to their
respective bank.

Example 5:

BANKSEGMENT 1 SEGMENT1

BANKSEGMENT 1 SEGMENT2

BANKSEGMENT 1 SEGMENT3

BANKSEGMENT 2 SEGMENT4

BANKSEGMENT 2 SEGMENT 5
This will attach segments 1 - 3 to bank 1 and the rest,
4 - 5to bank 2

BANKMODULE [banknumber module]
This command is for attaching a module to a certain
bank. This requires that the module name information is
present in the object file.

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-41

Example 6:

BANKMODULE 1 INT_VEC
This will attach the module INT_VEC to bank 1.

SCOPE [module] This command displays the scope of the code
which was loaded for each module. Scope is the
address area a certain module resides in. If the
code is in a bank as defined by BANKSEG it is
indicated.

Example 7:
SCOPE This displays the code scope of all modules.
SCOPE CMD_INT This displays the code scope of module
CMD_INT.

All of the above commands except SCOPE initiate the emulator to handle
bankswitching. There is not any way to "reset" bank handling, except by exiting
the EMUL51 and re-enter.

Examples of Different Ways to Set Up the EMUL51 For Bankswitching

Example 1:

BANKBYTE 38 DB ;Internal data address 38H is used as " bankbyte"
BANKADDRESS 0 TO FFFF ;All 64k is bankswitched. Bank size is 64k
BANK 1 ;Symbols in FILE1 belong to bank 1

:SWITCH 1 ;invoke macro to switch hardware to bank 1
LOAD FILE1 ;Load FILE1

:SWITCH 2 ;Switch hardware to bank 2

LOAD FILE2 ;Load FILE2

The object files in this example do not contain any segment information.
The macro SWITCH could for example be defined as follows :
DEFINE : SWITCH

P1 = %0
EM

Page 2-42 Installation EMUL51 © NOHAU CORP. 1985 - 1993

The advantage of using macros is that you can make your own “commands" with
parameters. This will save you typing time and when using bankswitching, macros
are required (see macro BANKSWITCH in examples further on).

Example 2:

BANKBYTE E023 XB ;External data address E023 is used as
bankbyte

BANKADDRESS 8000 TO FFFF ;Upper 32k is bankswitched

BANKSEG 1 SEGMENT1 ;Specify banks in different segments

BANKSEG 1 SEGMENT2

BANKSEG 1 SEGMENT3

BANKSEG 1 SEGMENT4

BANKSEG 2 SEGMH1

BANKSEG 2 SEGM2

BANKSEG 2 SEGM3

LOAD BASEBANK.OBJ ;Load the common (root) bank.
Addressed up to 8000 (32k)

‘SWITCH 1 ;invoke macro to switch to bank 1

LOAD BANK1.0BJ ;Load file BANK1.0BJ

:SWITCH 2 :Switch to bank 2

LOAD BANK2.0BJ ;Load file BANK2.0BJ

‘SWITCH 3 :Switch to bank 3

LOAD BANK3.0BJ ;Load the code to the last bank

In this example the segments were defined before loading the code so that all
symbols ended up in the right bank.

Another example of the macro SWITCH could be as follows :

Example 3:

DEF : SWITCH ;:Define macro with name SWITCH

RBY .P1 = %0 ;Sets the bits in P1 according to the input
bank number

EM ;Ends macro definition

In this macro definition P1 is used as bankbyte. The %0 refers to the first
parameter used with this macro. In this case, it is the bank number.

As mentioned above, bankswitching can be performed while the code is loaded.
At present this works for INTEL OMF with SEGMENT INFORMATION as
described above. It also work with IAR / Archimedes. When the loader detects
that bankswitching needs to be done, it checks to see if a user defined macro

EMULS51

© NOHAU CORP. 1985 - 1993 Installation Page 2-43

called BANKSWITCH is present. If so, it calls the macro with one parameter,
namely the bank number.

Example 4:

DEF :BANKSWITCH ;Define macro BANKSWITCH
IF %0 EQ 1 ;if bank number equals 1

RBi .P1+0 =0 ;Set P1.0 to 0"

ENDIF ;End of IF statement

IF %0 EQ 2 ;If bank number equals 2
RBI .P1+0 = 1 ;Set P1.0 to "1"

ENDIF ;End of IF statement

EM ;End macro definition

In this example P1 bit 0 is used to switch banks, and only 2 banks are used. The
BANKSWITCH macro must be defined according to the hardware switching
scheme in the target system.

Tracing During Bankswitching

When bankswitching is activated the trace will use EO and E1 to trace the active
bank. EO and E1 are available on the POD board as "wire wrap posts". When
nothing is connected a "1" will be traced. The following combinations on EO and
E1 indicates current bank:

1 Eo BANK
0 bank 0
1 bank 1
0 bank 2
1 bank 3

The result will be that the correct symbols will be shown according to the bank
indicated by the values traced at EO and E11.

Breakpoint Handling During Bankswitching

On the Nohau bankswitch emulators there are no direct ways to specify in which
bank a break should occur. This could result in breaking at the correct address
but in the wrong bank. If you have a trace board, however, it is possible to make
the break occur in the correct bank as the following examples will show. This
example uses a the external signals EO and E1. The current software only
supports EO and E1 for tracing. That is, only four banks are supported with the
trace and this macro.

Page 2-44 Installation EMUL51 © NOHAU CORP. 1985 - 1993

DEFINE :GO ;Define macro GO
RES BR ;Reset current breakpoints
TBR = ON ;Enable trace breakpoints

TR = TRACE ALL & TRIG A & ITRAC ALL

;Set up trace conditions
IF %1 EQO ;If bank number equals 0
QRAO = ADR %0 & P3 00XXXXXXY

;Set up QRAO for bank 0
GO ;Start emulation
ORIF %1 EQ 1 ;If bank number equals 1
QRAO = ADR %0 & P3 01XX0XXXXXY

;Set up QRAO for bank 1
GO ;Start emulation
ORIF %1 EQ 2 ;If bank number equals 2
QRAO = ADR %0 & P3 10XXXXXXY

;Set up QRAO for bank 2
GO ;Start emulation
ORIF %1 EQ 3 ;If bank number equals 3
QRAO = ADR %0 & P3 11X00KXXY

;Set up QRAO for bank 3

GO ;Start emulation
ELSE
BR = OFF ;Disable trace breakpoints

TR = TRIG NOTRIG ;Set up trace for default values
QRAO = ADR XXXX & P3 XX
;Reset QRAD to default values

DIS QRAO ;Disable qualifier QRAO
GO TILL %0 ;Go till address parameter
ENDIF ;End IF statement

EM ;End macro definition

Usage:
Type ":go [Break Address], [Bank Number #]"
[Break Address]The breakpoint address

[Bank Number #]The bank number in which you want the break to occur
in

0 equals bank number 0

1 equals bank number 1

2 equals bank number 2

3 equals bank number 3

x equals common (root) bank

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-45

This will work when a common (root) bank is used. If the Break Address is
0000 - 7FFF then the emulator will always break, regardless of the Bank Number.
If the address is 8000 - FFFF the Bank Number # must be specified.

In this case two EZ-hooks must be connected between the bankswitch signals in
your target system and EO and E1on the POD board. Use EO as the LSB and E1
as MSB.

The trace can be set up for any type of bankswitching supported by Nohau |
emulators, in addition to a bankswitch application with a configuration other than
that where the above example is used. The possibility to set up with the trace
breakpoints based either on specified port values or xdata writes with a specific
value will let you break in the bank you desire.

For further information on bankswitching and commands for the EMUL51, please
refer to the bankswitching and commands section.

Page 2-46 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Description of the Nohau EMUL51-PC/E128-BSW Bankswitch Emulator

The 128k bankswitch emulator has two different modes of operation which will be
discussed later. This emulator cannot emulate XDATA memory. Any POD board
can be modified to work as a bankswitching unit. For most operations, one or two
wires will be used to control the bank selection. These wires must always be
connected to the bankswitch logic. See Figure 10 for the modifications required
for the POD board.

3

00000000000 LO

White Wire
(not used)

&

O
O
O
O
O
o
O
@]
@)
a

T

Note: On some PODs,
Pin 2 pad is square.

POD BOARD, SOLDER SIDE

-
~

Figure 10. POD Board Modification for
EMUL51-PC/E128-BSW

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-47

The EMUL51-PC/E128-BSW must be invoked as a 32k emulator (-m32). BE
AWARE!! Do not modify the switch settings shown in Figure 11 below. This may
cause improper function and damage to the emulator.

JPX1: 1 added jumper thatis used
to configure the mode of operation
for the 128k bankswitch emulator.

E1

E2
COO0000

TSS

-

Figure 11. Layout of EMUL51-PC/E128-BSW
Bankswitch Emulator

JPX1
o

Mode 0 Banksize = 64k

128k of emulation memory

O Banksize = 32k
Mode1 & 9

128k of emulation memory

Mem: ma e 0 Memory map mode 1

0000 - 7FFF Root bank
0000- FFFF | Switched bank 0 3000 - FFFF | Switohed bank 0

0000 - FFFF | Switched bank 1 | 8000 - FFFF | Switched bank 1
8000 - FFFF | Switched bank 2

Figure 12. Jumper Description and Memory Map
for the EMUL51-PC/E128-BSW

Page 2-48 Installation EMUL51 © NOHAU CORP. 1985 - 1993

Figure 13. Control Lines for the
EMULS1-PC/E128-BSW Bankswitch Emulator

ROOTBANK
OH -7FFFH

Figure 14. Bankswitch Modes EMUL51-PC/E128-BSW
Graphic lllustration

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-49

Description of the Nohau EMUL51-PC/E256-BSW Bankswitch Emulator

The 256k bankswitch emulator has four different modes of operation which will be
discussed later. This emulator can only emulate XDATA memory in mode 3. Any
pod board can be modified to work as a bankswitching unit. For most operations,
two or three wires will be used tc control the bank selection. These wires muist
always be connected to the bankswitch logic. There is a special mode of
operation which is customer specific mode and it requires that four wires are used
to control its operation. See Figure 15 below for modifications for the POD board.

3

OOOOOOOOOO%)OO

f

“The fourth wire is conected
to SY1 on the top side of the
POD

i

Note: On some PODs,
Pin 2 pad is square.

POD BOARD, SOLDER SIDE

O
O
O
O
O
O
O
O
O
(]

-
~

Figure 15. POD Board Modification for the
EMULS1-PC/E256-BSW

Page 2-50 Installation EMUL51 © NOHAU CORP. 1985 - 1993

The EMUL51-PC/E256-BSW must be invoked as a 32k emulator (-m32). BE
AWARE!! Do not modify the switch settings shown in Figure 16 below. This may
cause improper function and damage to the emulator.

[sIs]
JPX1: 2 added jumpers that are used

E1 to configure the mode of operation
o) for the 256k bankswitch emulator.

E2 E3
OO0O0O0O0O

51388

Figure 16. The EMUL51-PC/E256-BSW
Bankswitch Emulator

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-51

<
X
—t

Top
Bottom

Banksize = 32k
256k of emulation memory

Banksize = 32k
256k of emulation memory

@] O
O Q

Banksize = 64k
256k of emulation memory

Banksize = 32k
256k of emulation memory

Mode 1
0000 -7FFF | Eoct bank

8000 - Switched bank 0
8000 - Switched bank 1
8000 - Switched bank 2
8000 - Switched bank 3
8000 - Switched bank 4
8000 - Switched bank 5
8000 - Switched bank &

Code Made § (special)
Switched bank0 | 8000 - FFFF

Switched bank 1 | 8000 - FFFF
8000 - FFFF
8000 - FFFF

Figure 17. Jumper Description and Memory Map
for the EMUL51-PC/E256-BSW

EMUL51 © NOHAU CORP. 1985 - 1993

Page 2-52 Installation

Bank

Whive | Green | Red

bl
=
{2

Figure 18. Control Lines for the
EMULS51-PC/E256-BSW Bankswitch Emulator

EMUL51 © NOHAU CORP. 1985 - 1993 Installation Page 2-53

ROOTBANK
OH -7FFFH

Figure 19. Bankswitch Modes of
EMUL51-PC/E256-BSW, Graphic lllustration

EMUL51 © NOHAU CORP. 1985 - 1993

3

COMMANDS
AASM Assemblymode 3-5
ABR Automatic Breakpoint Remove -5
ACC Accum. displayandset............. 3-7
ADJUST Windows 3-7
ASM Assemble oneline 3-7
AV View Auto Variable 3-8
B (see ACc)
BANK Bank 3-8
BANKADDRESS Bankaddress 3-9
BANKBYTE Bankbyte 3-9
BANKMODULE Define or display banked modules 3-9
BANKSEGMENT Banksegment 3-10
BANKSY1 Set or show bank SY1 signal 3-10
BB Break oninternal bit 3-10
BIC Break on Internal Contents 3-11
BR Breakpoint registers 3-14
BRM Breakpoint Mode Register 3-14
BRS Breakpoint in Go Slowmode 3-15
BUFFERSIZE Buffersize 3-15
BYB Break on internal byte 3-16
CALCULATE Calculate checksum 3-17
CB Codememory 3-18
CLB Clear Breakpoint RAM 3-19
COUNT Execution ofblock 3-20
CST (see OST)

cw Code Window On/Off 3-20
DASM Disassemble 3-21

DBYTE (see CByte)
DEFINE Define macro symbol 3-22
DIR Macro directory 3-23
DISABLE Disable an EMULS51 function 3-23
DOM Module domain 3-26
DP Disassemblefrom PC 3-26
DPTR Data Ptr Reg display and set 3-26
ENABLE Enable an EMUL51 function 3-27
END End i 3-29
EVALUATE Evaluate an expression 3-29

Commands Page 3-1

Page 3-2 Commands EMUL51 © NOHAU CORP. 1985 - 1993

3 COMMANDS

EVENT (Simulator only) Specify a
simulationevent 3-30
EXIT ExittoDOS 3-31
FILL Fill memory with value 3-31
Format Format Commands 3-32
GB Go till Breakpoint 3-33
Gl Goftill contentsmatch 3-33
GO Start emulation 3-34
GR GoRegister 3-36
GS GoSlow 3-36
HEAP Heap, 3-37
HELP Help, 3-38
IB internal Break on pattern 3-38
IF Conditional 3-38
INCLUDE Load commandfile 3-39
INTERRUPT Display interrupts 3-40

J (see SN)
LC LoopCounter 3-40
LIN Linestep 3-41
LIST Openlogfile 3-41
LOAD Load program/symbols 3-42
LOB loadBinary 3-44
LOP Load Ppa setup command 3-44
LOVER LineOVER 3-44
LOwW Load Windowsetup 3-44
MACRO Display MACros 3-45
MACDELAY (Simulator only) Macro after delay ... 3-45
MAPC MapCode 3-46
MAPX Map eXternaldata 3-46
MEM Mem 3-46
MOD Module 3-47
N (see SN)
NOHIT Nohit 3-47
NOSNOW Remove screensnow 3-47
OST Open Slow Trace buf 3-47
P1 (see ACc)

P3 (see ACc)

EMUL51 © NOHAU CORP. 1985 - 1993

3

COMMANDS
PBYTE (see CByte)
PC PC Reg display andset 3-48
PPA Analyzer 3-48
PUT Save macros in DOSfile 3-49
QRA Trace Qualifier Register 3-49
QUIET Quiet 3-51
RBIT Bitmemory 3-51
RBS Bankselect 3-52
RBYTE (see CByte)
RCS Relative Computer Speed 3-52
REG Displayregs.c.o.o.. 3-52
REMOVE Remove symbols or macros 3-53
REPEAT Repeatblock 3-54
RESET Reset to initial status 3-55
RO Display and set workingreg. 3-55
R1-R7 (see RO)
S (see Step)
SAP Save Ppa setup command 3-56
SAVE Save program or symbols 3-56
SAW Save Windowsetup 3-57
SCOPE SCOPECommand 3-57
SEB Set Breakpoints 3-57
SECONDS Display emulation cycles 3-58
SERIAL (Simulator only) Map Serial Port 3-58
SHELL Shell 3-60
SL SL . 3-60
SN StepNext 3-60
SNAP SNAP Command 3-62
SO Source leveldebug 3-63
SP (see ACc)
SST Single Step Trace 3-63
STACK Display contents of stack 3-64
STEP Execute one instruction and stop 3-64
SUFFIX Display or setradix 3-65
SWD Setup data window 3-65
SWR Setup register window 3-65

Commands Page 3-3

Page 3-4 Commands EMUL51T © NOHAU CORP. 1985 - 1993

S COMMANDS

SWX Setup ext. data window 3-66
SYOA SYOa Reg. display andset 3-67
SYMBOLS Display symbols 3-67
SYMLOAD Load symbols from a converted assembly
listing............. ..., 3-67
SYSTEM Execute DOS Command 3-69
TABS Tab ... e e 3-69
B TraceBegin 3-69
TBR Break on Tracetrig 3-70
TC TrigCounter 3-70
TD Trace dissassemble 3-71
TDF Framedisplay 3-71
TDL TDinListmode 3-72
TE TraceEnd 3-73
T™O (see DPTr)
™1 (see DPTr)
TR Trace Register 3-73
TS Tracesetup 3-74
TSGET Load Trace Setup 3-74
TSPUT Store Trace Setup 3-74
UNTIL (see COunt)
VERSION Version Number 3-75
WAIT Wait for keystroke 3-75
WATCH ? and w[x]? - To Display C Variables . . 3-75
WHILE (see COunt)
WRITE Display express. orstring 3-76
XBYTE (see CByte)
XTAL XTAL .. o i i 3-76
:NAME (see MACro)
25, 43, 50 Screen Mode Commands 3-77
? (see WATCH)

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-5

3

COMMANDS
AASM Automatic in-line ASseMbler
abbreviation AA
format AASM
description AASM enters a mode where you can only input instructions

or ORG. To quit this mode press ENTER at the prompt.
(AASM works like the ASM command except that you don’t
have to enter ASM (or A) in front of each instruction.)

Also see the ASM command.

examples AASM
ABR Automatic Breakpoint Remove
abbreviation AB
format ABR <start address> TO <stop address>
description The ABR command is always used in conjunction with the

SEB command (SEt Breakpoints) and the GB command (Go
till Breakpoint). First the SEB command is issued to set the
complete 64K bit breakpoint RAM to all 1’s. Using the GB
command at this point would break immediately at the first
instruction. The ABR command, however, should first be
used to remove breakpoints from all opcode addresses
which are within the legal program. Normally, legal code
resides in a number of different blocks within the 64K
address space of the 8051. Breakpoints must be removed
from each of these blocks separately.

The ABR will remove only the breakpoint of the first byte in
each instruction. Second and third bytes will still have
breakpoints. Data tables within the code must be taken into
consideration. If you include a data table within a block of

Page 3-6 Commands

EMUL51 © NOHAU CORP. 1985 - 1993

examples

legal instructions, the ABR will treat the data table as if it
were instructions. In such a case, ABR will then remove
breakpoints from some bytes of the data table and then
possibly on the wrong bytes of the rest of the block,
(because the breakpoint removing program will get out of
sync).

It is therefore extremely important that you remove
breakpoints from all legal program blocks, but it is equally
important that they are only removed from legal program
blocks. Legal program blocks include the RESET vector at
address 0 as well as any active interrupt vectors. The GB
command should then be used. Now if code is executed
outside of the legal blocks that you programmed, a
breakpoint will occur. By looking back in the trace you
should be able to figure out what caused it to happen.
Without the trace option it may be more difficult to see
exactly what actually happened. (Do NOT use the GO
command, because it will erase all breakpoints and put in
new breakpoints according to the BR registers.)

SEB ;set all breakpoints
ABOTOO ;remove breakpoint on reset vector
AB 13TO 13 ;remove breakpoint on external int 1 vector

AB 100 TO 45F ;remove breakpoints from legal program block

100H to 45FH

AB 470 TO 1134 ;remove breakpoints from legal program block
470 to 1134. Maybe there was a data table
between 460 and 470.

RES CHI ;start from scratch (not neccesary)

GB ; Go till Breakpoint.

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-7

ACC Display and Set Commands for special registers

format ACC [= <value>]
B [= <value>]
P1 [= <value>]
P3 [= <value>]
SP [= <value>]

description These commands provide a way to display and set the
Accumulator and B, P1, P3 and SP Registers.
exampl es ACC ;Display contents in the Accumulator.
ACC = 68 ;Set Acc to 68H.
B ;Display contents in the B register.
B=54 ;Set the B register to 54H.
SP ;Display contents in the SP register.
SP =30 ;Set SP to 30H
P1=FA ;Set Port P1 to FAH.
P38 =CO0 ;Set Port P3 to COH. (Always keep P3.6 and
P3.7 high, except for bondout PODs and
POD-51.)
ADJ Adjust windows command
abbreviation AD
format ADJUST
description The ADJUST command will make the ADJUST window

appear on the screen. Here you can choose which window
to adjust. You can also use the function keys F4 and F5 to
do the same thing.

examples AD
ASM The one line assembler
abbreviation A
format ASM [ORG address]
[instruction]
description ASM will either display or set the EMUL51-PC’s assembly

pointer, or assemble one instruction into code memory at the
assembly pointer location. It displays the updated assembly
pointer after assembling any instruction.

Page 3-8 Commands

EMUL51 © NOHAU CORP. 1985 - 1993

examples

examples

Addresses of JUMP and BRANCH instructions are written as
absolute addresses. The one line assembler will
automatically calculate the offset in the case of a relative
jump.

Bits are denoted using a "+" and nota "."
See also the AASM command.

A INB .P1+4,.LOOP

A CLR .ACC+2

A SETB .B+5
[ORG address] sets the assembly pointer to the specified
address

[instruction] can be any valid instruction mnemonic except
CALL and JMP, (which are "generic instructions").

A ;displays assembly pointer

A ORG 200H ;sets assembly pointer to 200H

A CINE A,

.DAT,.LOOP ;assembles instruction

A JB .P1+5,

1000 ;An offset to address 1000H will be from the
current position.

AV

format
description

View Auto Variable
AV [C stackvariable] [type (i, c, u, s, , I)]

The ? and w? can give you better results than AV. For a
detailed discussion of this command and source level
debugging in general, refer to the Source Level Debugging
section in Chapter 1.

BANK
format
description

Bank
BANK [bank]

Displays or sets current bank. Actually displays or sets the
contents of
BANKBYTE.

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-9

BANKADDRESS Bankaddress
format BANKADDRESS [address1] TO [address2]

description Where [address1] TO [address2] is the "banked address
area". This command MUST be issued BEFORE the user
file is loaded. This is because the loader uses this
information to "mark" the bank number.

The default values are 8000 to FFFF.

BANKBYTE Bankbyte
format BANKBYTE [address] [memtype] [mask]
description Where [address] is a dedicated address in internal data

memory, DB, register memory, RB, or in external data
memory, XB. The mask determines which bits in the byte
are used. Bits must not be inverted and must be in the
correct order of significance. If the type is RB and the
address is a port, the bankbyte can be used by both the
emulator and program as both status and control of the
current bank. The contents of this address must "shadow"
current bank. In other words: the user’s bank switching
code must write to this address when bank switching is
done.

BANKMODULE Define or Display banked modules
format BANKMODULE [banknumber modulename]

description This command can set or show the association between a
module and bank number. [module name] is the module
name in the symbol table that your assembler or compiler
must produce. Only Intel’'s OMF is supported. Many
modules can be associated with one bank, but you must
enter them one by one. All symbols in a bank should be
covered by the correct number of modules present in that
bank. Module and bank boundaries should coincide.

This command should be issued BEFORE the user file is
loaded if you use the "module method" to indicate
bankswitch while loading symbols. This is because the
loader uses this information to "mark" the bank number.

Page 3-10 Commands

EMUL51 © NOHAU CORP. 1985 - 1993

BANKSEGMENT
format
description

Banksegment
BANKSEGMENT [number] [segment name]

This command can set or show the association between a
segment and a bank number. [segment name] is the
segment name in the symbol table that your assembler or
compiler must produce. Only Intel’s OMF is supported.
Many segments can be associated with one bank, but you
must enter them one by one (see example in Chapter 2). All
symbols in a bank should be covered by the correct number
of segments present in that bank. Segment and bank
boundaries should coincide.

This command should be issued BEFORE the user file is
loaded if you use the "segment method" to indicate
bankswitch while loading symbols. This is because the
loader uses this information to "mark" the bank number.

BANKSY1
format
description

Set or show bank SY1 signal
BANKSY1 [=OFF | ON]

This command is for tracing banks with more than two bank
select wires. This SY1 line is in addition to the EO and E1
lines for bankswitched tracing.

format
description

Break on write to Bit address

BB <bit address>

The <bit address> is between 0 and FFH. This command
will go through the entire code memory and look for the
following instructions:

CLR bit
CPL bit
JBC bit, rel
MOV bit, C
SETB bit

When any of them is found, a corresponding breakpoint is
activated in the breakpoint RAM. Then when the GB
command is used, these breakpoints will break the program

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-11

when a bit is written to the specified bit address. NOTE that
only DIRECT bit writes will work. You can combine with the
BYB command. (See the BRK paragraph.)

examples BB 4 ;set up breakpoints on bit writes to bit address 4
BB .EA ;set up breakpoints on bit writes to the EA bit address. (In
the IE register.)

BIC Set Breakpoints on Internal Contents
abbreviation BI
format BIC <address>, <low value>, <high value>, <low code
address>, <high code address>, <type>
where:

<address> is the byte address of either an internal data byte
or a (DBYTE) Special Function Register (SFR).

<low value> is the lower limit of values on which to break.
<high value> is the higher limit of values on which to break.
<low code address> start address for "code scan".

<high code address> stop address plus one for "code scan".
<type> must be DB (DBY, DBYT, DBYTE) or RB (RBY,
RBYT, RBYTE)

description BIC will scan the 64K code area for all instructions, that if
executed, can change the contents of the specified address.
On all such instructions a breakpoint will be set at its
corresponding address. These breakpoints will be treated as
regular breakpoints if you use the GB command to execute
the code. In other words, this would work as BB, BYB and
IB. When using the GI command, however, the breakpoint
will be taken, but if the contents of the address specified in
BIC is not between (and including) <low value> and <high
value>, the program execution will resume. This check
takes approximately 290 cycles, which is equivalent to 290
microseconds if a 12 MHz crystal is used. (For more details,
refer to the Gl command.)

All previous breakpoints are automatically cleared from the
breakpoint RAM before BIC starts to put in new breakpoints.
(This does not affect the BRx registers, which are used for
GO.)

Different categories of instructions can change the contents
of an internal address. When BIC is executed, messages

Page 3-12 Commands

EMUL51 © NOHAU CORP. 1985 - 1993

will be written on the screen that tell which category is
presently scanned for. The following messages can be
seen:

Scanning code (Direct byte). Takes time. Please wait...
Scanning code (Direct bit). Takes time. Please wait...
Scanning code (Indirect byte). Takes time. Please wait...
Scanning code (Register). Takes time. Please wait...
Scanning code (DPL, DPH). Takes time. Please wait...
Scanning code (PUSH). Takes time. Please wait...
Scanning code (CALL). Takes time. Please wait...

Scanning code (B-REG). Takes time. Please wait...

Direct byte: Direct write to a byte address, like MOV addr,A.
See BYB listing of all "direct write byte" instructions.

Direct bit: Direct write to a bit address,like CLR bit. See BB
for a lislting of all "direct write bit" instructions.

Indirect byte: Only in the DBYTE area. Scanning occurs for
the following instructions:

INC @R0; INC @R1; DEC @R0; DEC @R1; MOV
@RQO,#data;

MOV @Rt1,#data; MOV @RO0,data; MOV @R1,data; XCH
A,@RQo;

XCH A,@R1; XCHD A,@R0; XCHD A,@R1; MOV @RO0,A;
MOV @Rt1;

Register: Only in the DBYTE area on addresses under 20H.
Scanning occurs for the following instructions:
INC Rn; DEC Rn; MOV Rn,#data; MOV Rn,data; XCH A,Rn;
DJNZ Rn,addr; MOV Rn,A; wherenis0-7.

DPH, DPL: Only in the RBYTE area. Direct byte writes
already covered by "Direct byte" above. The following two
instructions can however also influence DPH and DPL.:
MOV DPTR, #data; INC DPTR;

PUSH: Only in the DBYTE area and for SP (81H) in the
RBYTE area. Following instruction: PUSH data;

B-REG: Only for the B-register (FOH) in the RBYTE area.
Direct writes to B are covered by "Direct byte" above. The
following two instructions can however also influence B: DIV
AB; MUL AB;

The following SFR:s are not fully covered:
ACC (EOH)

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-13

examples

PSW (DOH).

All timer registers (THO, TLO, TH1, TL1, TH2, TL2)
Port pins are covered, but not Port latches. (See
Read-Modify-Write in 8051 data books.)

All SFR:s where hardware directly changes bits,
(like TCON, SCON and SBUF).

Note 1. When using G, if a breakpoint is not reached and
you press ESC to manually break, you will get WRITE
TIMEOUT and READ TIMEOUT errors. This happens
because the code which is handling breakpoints is modified
to check if the contents of the specified address is within
range. If this occurs YOU MUST ISSUE THE COMMAND "*
RES EMUL" which reloads the 8051 overlay code.

Note 2. When you look back in the trace buffer after a break
has occured after using the Gl command, you will see the
instruction:

JBC .IE+7(EA),addr
or, if you use the TDF command, a number of frames
starting with the following data:

10 AF 01 00
This happens because the trace will always sample the first
instruction in the breakpoint handling routine (which is JBC
.EA, addr) before it turns off. This is normally taken care of
in software so you will not see it. In this case we decided to
let it show for a number of reasons: You get an indication
where "check breaks" were taken. It is also difficult to
remove part of the trace without inadvertently removing
"valid" trace frames.

BIC 30 40 50 0 200 DB
;prepare breakpoints for all instructions between address 0
and 200H which may change the content of address 30H.
Break when contents of 30H is between (and including)
40H and 50H.

BIC .TJ FO 20 0 200 DB
;as previous example. ".TJ" must be previously defined via
DEF or via symbadl table. Range is now FO, F1...FF, 00,
01...20

BIC .SP 23 23 0 200 RB
;Break when SP (stackpointer 81H) becomes 23H if
between addresses 0 and 200H

Page 3-14 Commands

EMUL51 © NOHAU CORP. 1985 - 1993

BR

Breakpoint Registers display and set

format BR
BRx (where x is any number from O to 9)
BRx = address
BRx = address1 TO address2
BRx = address LENGTH number
BRx = wild card expression
description There are 10 breakpoint registers. BR2 - BR9 must be
programmed directly with the BR command. Only BRO,
BR1, and BR (BRO or BR1) can be set inside the GO
command. See "Breakpoints" in Chapter 1. Breakpoints are
enabled by the GR (Go Register), or directly within the GO
command. Breakpoints can also be set up directly within the
GO command. (See GR and GO.) Breakpoints can be
disarmed by setting the GR to FORever. Breakpoints can
be reset with the REset command: for example RES BR2 or
RES BR.
examples BR ;displays all 10 breakpoint registers.
BRO ;displays breakpoint register 0.
BR9 ;displays breakpoint register 9.
BR2 = 124A TO 125F
;sets breakpoint register 2 to addresses between 124AH
and 125FH
BR6 = 96E L 10
;sets breakpoint register 6 to addresses starting at 96EH
and 16 addresses ahead to 97EH.
BR1 = XXX
;X means don't care, in this case ell addresses with first 4
bits = 0000.
BR1 = XXXY
;Y denotes binary, in this case all addresses starting with
0000 0000 0000 0
BR1 = 0101XXX010XXY
;Any combination is allowed.
BRM BReakpoint Mode register
format BRM
BRM = [OP] [WR] [RD] (any combination)
description The BRM command triggers breakpoints on OP (opcode

addresses), WR (external write addresses), RD (external
read addresses) or any combination of these addresses.

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-15

exampl es BRM ;displays current status of BRM
BRM = RD ;breaks only on external read addresses
BRM = WR ;breaks only on external write addresses
BRM = OP ;breaks only on opcode addresses. (default).

BRM = RD WR ;breaks on external read or write addresses
BRM = OP RD WR
;breaks on opcode, external read, or external write.

BRS Breakpoint Registers for "Slow" breakpoints

format BRS
BRSx (where x is any number from O to 9)
BRSx = <partition> <type> [address]

description Displays or sets BRSx registers. These breakpoints are
"software breakpoints" so they only work when you use the
GS (Go Slow) command.

<partition> is any range or wildcards, normally used only for
addresses. Here they stand for "memory contents" unless
<type> is ADDR.

<type> specifies one of the following memory types or its
abbreviations: CBYTE, DBYTE, PBYTE, RBYTE, XBYTE or
ADDR.

[address] is a unique address for which the "content" should
be tested for a match with <partition>. The address has no
meaning when <type> is ADDR, in which case <partition>
gives the address or range of addresses.

exampl es BRS ;displays all BRS registers.
BRSO displays the BRSO register.
BRS1 = 10 TO 20 DB 30
;sets BRS1 to break when the contents of internal databyte at
address 30H becomes a value between 10H and 20H.

BUFFERSIZE Buffersize
format BUF

description Displays the size of the trace buffer, the location of the first
frame, and the location of the last frame. Display will not
work when the trace is running.

Page 3-16 Commands EMUL51 © NOHAU CORP. 1985 - 1993

example BUF
Stored frames: 9014
First frame: -2045
Last frame: -6969
BYB Break on direct write to Byte address
format BYB <byte address>
description The <byte address> is between 0 and FFH. This command

will go through the entire code memory and look for the
following instructions:

ANL dir,A
ANL dir,#data
DEC dir
DJNZ dir,rel
INC dir

MOV dir,A
MOV dir,RO
MOV dir,R1
MOV dir,R2
MOV dir,R3
MOV dir,R4
MOV dir,R5
MOV dir,R6
MOV dir,R7
MOV dir, dir
MOV dir,@R0
MOV dir,@R1
MOV dir,#data
ORL dir,A
ORL dir,#data
XCH A, dir
XRL dir,A
XRL dir,#data

When any of these instructions is found, a corresponding
breakpoint is activated in the breakpoint RAM. Then when
the GB command is used, these breakpoints will break the
program when a byte is written to the specified byte address.
NOTE: only DIRECT byte writes. You can combine with the
BB or IB commands. (See the BRK paragraph.)

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-17

examples BYB 4 ;set up breakpoints on byte writes to bit address 4.

BYB .IE ;set up breekpoints on byte writes to the IE register).
CAL Calculate checksum
abbreviation CA
format CALC <start address> TO <stop address>
description Calculates a 16-bit checksum by adding all bytes in code

memory between and including <start address> and <stop
address>. On aregular PC a calculation of 64K bytes takes
approximately 1.5 minutes.

examples CALC 0 TO 1FFF ;celculates checksum of all bytes between 0 and

1FFF.

Page 3-18 Commands EMUL51 © NOHAU CORP. 1985 - 1993

cB Display and change memory contents
abbreviation See Description
format See Description
description The following types of memory space can be displayed or

changed via EMUL51-PC:

Type of Memory Command Range
On-chip data memory: DB, DBY, DBYT, DBYTE | O - 7FH, (plus
Data Byte 80H - FFH if

available)
Register memory: RB, RBY, RBYT, RBYTE 80H - FFH
Register Byte
Bit addressable memory: RBI, RBIT 0 -FFH
Register Bit
External data memory, XB, XBY, XBYT, XBYTE 0 - FFFFH

(with read back check):
eXternal Byte

External data memory, PB, PBY, PBYT, PBYTE 0 - FFFFH
(without read back
check): Put Byte

Code memory: Code CB, CBY, CBYT, CBYTE | O - FFFFH
Byte

Commands to display and change memory contents can be used in
many ways. The examples that follow demonstrate each possibility.
In place of CB in these examples you can substitute any of the
other commands listed above; in place of the numbers you can
substitute any other numbers that fall within corresponding valid
range listed above. Symbols defined in the internal or external
symbol table may also be used. See also FILL.

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-19

examples CB 23 ;Displays data byte on address 23.
CB 23 TO 35 ;Displays data bytes on addresses 23 through 35.
CB23L 10 ;Displays data bytes on address 23 + another 10

bytes. L means length and can also be
expressed as LEN or LENGTH.

CB23=10 ;Changes the contents of address 23 to 10.

CB 23 =10, 14, 15
:Same as previous example, but contents of
addresses following the first address are also
changed to the data separated by commas.

CB23TO70=12
;All addresses from 23 through 70 are filled with
12.

CB23L10=12
;Addresses from 23 + another 10 addresses are
filled with 12.

CB 23 TO 45=12,13,14
;Addresses from 23 through 45 are filled with a
repeating pattern of 12,13,14.

CB23L 10 =1234,56
;Same as previous example.

CB 100 = XB 400 TO 40F
;Specifies addresses from other memory areas on
the right side of = sign.

The above two examples can be combined in a number of ways:
CB .LOOP L 100 = 12,34,’ABC’,XBYT 1000 TO 1010
'ABC’ is evaluated as three bytes with ASCII equivalents of
A, B and C, (41H, 42H, 43H).

NOTE: If used to the right of the = sign, CB and DB must be written
as CBY and DBY, (because otherwise they would be interpreted as
the hexadecimal numbers CBH and DBH).

CLB CLear Breakpoint RAM
format CLB
description This command clears the breakpoint RAM. The BB, BYB,

BIC and IB commands can be used to set patterns of
breakpoints to the breakpoint RAM; they will overlay patterns
in the RAM without destroying earlier patterns. The GO
command will also clear the breakpoint RAM before putting
in active breakpoints as defined by the BR registers. After
the GO command these breakpoints are still active and can
thus be combined with more patterns created with the above
mentioned commands. This special command is different

Page 3-20 Commands

EMUL51 © NOHAU CORP. 1985 - 1993

than simply resetting the breakpoint registers: see the
RESet and BR commands.

Cou
abbreviation
format

description

Count
CcO

COUNT decimal-expression<cr>
[command<cr>]
[WHILE boolean-expression<cr>]
[UNTIL boolean-expression<cr>]
ENDCOUNT

This command sets up loops. To end the command before
the full number of loops are done, just press the ESC key. It
may take a couple of loops before the break occurs.

COUNT begins a block of commands to be executed a
specific number of times.

decimal-expression is a dec. number or expression in which
default radix is decimal.

<cr> is an intermediate carriage return. In a block command
such as Count, all carriage returns are intermediate,
(terminating the input line but not terminating the command
entry), until the ENDCOUNT keyword is entered.

WHILE and UNTIL are keywords.

boolean-expression is the least significant bit in an
expression. Condition is TRUE if the least significant bit is
1, otherwise it is FALSE.

ENDCOUNT terminates the block of commands; it can be
abbreviated to END.

cw
format
description

Code Window On and Off
Ccw

This command toggles the Code Window on and off. (You
can also open the Code Window by using ENA CODE, and
close it using DIS CODE.) Two modes of display,
"assembly" and "source," are available when the Code
Window is open. (You use the F2 Function Key to toggle

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-21

between Assembly and Source.)

In Assembly Mode, which is enabled by default, the
disassembler is used to generate the text in the Code
Window. Source Mode is usable only when you are working
with either the Archimedes or Franklin/Keil C-compiler, or
with a PL/M-51 compiler. For more details about Assembly
and Source Mode, see Code Window in Chapter 1.

DAS Disassemble
abbreviation D
format DASM
DASM partition
description This command disassembles the contents of user program

memory into assembler mnemonic and operands.

If DASM without partition is used, 10H bytes starting from
the address currently pointed to by the disassembly pointer
are disassembled. The disassembly pointer will be
automatically incremented, so that if you issue the D
command again disassembly will continue from where the
previous disassembly command ended.

In the above format, the partition is a single address, or a
range of addresses expressed as address TO address, or
address LENGTH address. An instruction is displayed if its
first byte is within the partition, even if subsequent bytes are
outside.

The D command with a partition, and the DP command, will
automatically change the disassembly pointer, so that it will
be available for the next D command. See also the DP
command.

Page 3-22 Commands

EMUL51 © NOHAU CORP. 1985 - 1993

examples D .LOOP ;disassembles one instruction starting on the label .LOOP
D 100 TO 200 ;disassembles from 100 and 200 addresses
D .STARTL 20 ;disassembles from .START and 20H addresses
D .#120L 10 ;disassemble from PL/M line 120. (Domain must be set.
See Domain command.)
D ;disassembles 10H bytes starting from disassembly pointer.
DBYTE Data Byte See CB
DEF Define macro, Define symbol

abbreviation

format

description

examples

format
description

DEF
Define Macro

DEFINE :macroname<cr>
[command<cr>]
EM

This command allows you to enter a user defined macro
name and block of commands into the macro definition table.

:macroname is the name of the macro block preceded by a
colon.

<cr> stands for Carriage Return

EM Terminates the macro definition.

See also Macros in Ch. 1.

*DEF :G

*GO FROM .START TILL .END
MR

*EM

Define symbol
DEFINE [..module-name].symbol-name = expression [type]

This command also allows you to define a symbol.

After the keyword DEFINE you type the desired user-defined
symbol and corresponding numeric value into the user
symbol table.

..module-name is the name of an existing module to contain
the symbol being defined. If no module name is specified,

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-23

the symbol is placed in the unnamed module. Unnamed
modules occurs before named modules in the symbols table.
.symbol-name is the name of the symbol preceded by a
period.

EXPRESSION is a number, reference or formula that
equates to the number expressed.

type can be CODE, XDATA, DATA, IDATA, BIT, NUMB,
LINE, or UNDEF.

exampl es * DEFINE .MOTOR = 210T ;add new symbol to unnamed module.
* DEF .FLAG = 34 BIT ;new symbol gets BIT type.
DIR Macro Directory
format DIR
description Displays a directory of the names of all macros. In the

macro definition table, the names are listed in the order that
they were entered.

DIS Disable Command
abbreviation DIS

format DISABLE [CASE]
[CODE]
[EXPANSION]
[GLOBAL]
[HELP]
[LABEL]
[LSYMB]
[NSYMB]
[NUMB]
[PLUS]
[REG]
[SIG]
[SOURCE]
[SYMBOLIC]
[SYNTAX]
[WATCH]

[WINDOW]
[XDATA]

Page 3-24 Commands

EMUL51 © NOHAU CORP. 1985 - 1993

description

This command cancels the effect of its object on the
EMULS51-PC.

CASE By Default the characters in symbols are not case
sensitive. ENA CASE will make them case sensitive while
DIS CASE makes them non-sensitive.

CODE Disables the CODE window if it was active. By
default it is not enabled.

EXPANSION When disabled, macro expansion is not
displayed. When enabled, the macro expansion is displayed
on the console before execution.

GLOBAL When enabled, ALL symbols will be searched. If
disabled ONLY the current module will be searched.
Disabling GLOBAL will speed up disassembly, trace
disassembly and CODE WINDOW update. Disabled by
default.

HELP When enabled, the small HELP window at the lower
right of the screen is visible. Can also be toggled on and off
with Alt + F10. Enabled by default.

LABEL By default labels are automatically shown during
disassembly. DIS LABEL suppresses labels in disassembly
listings.

LSYMB When disabled, no symbols are shown when
listings generated by DBYTE, CBYTE, XBYTE, PBYTE,
RBYTE, or RBIT are used. Disabled is default.

NSYMB When enabled, symbols typed as NUMB will be
used in place of all other types. Useful only with Archimedes
/ IAR C-51, if you have used the XOBJ program to generate
an OBJ file. Disabled is default.

NUMB When enabled, the symbol table will search through
all variables defined as "NUMB". Normally "EQU’S".
Disabling NUMB may significantly speed up disassembly,
trace disassembly and code window update. Enabled by
default.

PLUS See ENABLE comand.
REG Disables the REGS window.
SIG See ENABLE command.

EMUL51 © NOHAU CORP. 1985 - 1993 Commands Page 3-25

SOURCE Enables the Source only in the CODE window.

SYMBOLIC When disabled, addresses are displayed in
hexadecimal radix. When enabled, addresses are displayed
in symbolic format. Symbols are initially enabled.

SYNTAX When enabled, context sensitive help line will be
seen at the bottom of the screen when typing new
commands. Enabled by default.

These commands, (which may be combined with the
ENABLE command), can be used in an INCLUDE file to
automatically initialize a desired setup. (See Chapter 2
under the -j option for the invocation line.)

WATCH Disables the WATCH window if it was active. Itis
disabled by default.

WINDOW When enabled, the static windows reflecting
different memory locations are shown. Enabled by defauit.
XDATA Disables the EXTERNAL DATA window. When the
EXTERNAL DATA window is on REA"D signals (/RD) will be
emitted from the chip to either the target or emulator
depending on how the mapping is set. That