Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Connection Design**

#### Be clear in the function of the connection

What loads does it have to resist.

#### How could it fail.

#### Will it be easy to maintain in the future.

Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



#### **Must Resist:**

**Axial forces** 

**Moment forces** 

#### **Shear forces**



Page 2 of 2















### Lessons from the Kansas City Collapse, 1981

Imagine that you are the structural element or the connection: how could the forces be transferred from one member to the other.

For axial force members, align each member so the connection reduces to a

# single point

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Connection Geometry**



#### Centroid axis of each member should pass through the same point

# (partical folge estructures like trusses.)

### **Steel Bracing Connections**



### Centroid axis of each presentier or hyperical same point

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Bolt in Single Shear**

Shear stresses try to slice the bolt

Stress equals shear force divided by the cross-sectional area of the bolt



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Bolt in Double Shear**

Shear stress is one *half the value of* the applied load







Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



#### could fail. (allowable stress = 10 ksi)

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



#### г – (Stress)(Area) – (то кы) (1 in<u>5(kips</u>i(5000 pounds)

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw







Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



pg\_0017

Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2
Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



### connections can fail in many ways

# **Axial Force Connections**

# **Consider all sections of material where failure could occur**

Compare allowable force for each section, and the lowest force value governs the design load capacity

### If the joint acts in

# of mycksign(typically in plates)

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Moment Connections**



### Tie flanges together to transfer moment

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Moment Connections**





### **Design for axial force, P**

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Shear Connections**



### Use the web of the beam to transfer shear

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Shear Connections**



### Use the web of the beam to transfer shear







Cellular structure is very efficient Handles both compression and tension well Different strengths with and against the grain Inhomogeneous material with imperfections

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



# Must consider various **possible** failure

# **Connections: Beware!**

4. Someone will have to disassemble your connection in the future: your construction today will be somebodys problem in the future

Case study: Williamsburg Bridge

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# Williamsburg Bridge

Carried traffic and trains throughout the 20<sup>th</sup> century

But maintenance was neglected badly for decades

In 1988 the poor condition of the bridge became



# **Decay of Williamsburg Bridge**

Main cables had corroded badly (were not galvanized)

Pin joints in the main trusses were corroded

**Rusted girders** 

# **1990-2005: Rebuilding the Williamsburg Bridge**

New cables, new girders, new roadways, new bearings, new paint, etc Original designers didnt consider how to repair many elements

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Designing for Maintenance and Deconstruction**

Develop a maintenance plan for your structure

Design components which are accessible and replaceable

Avoid toxic materials which are hazardous for future repairs or demolition

# **Connection Conclusions**

Design for strength: how could it fail.

Design for serviceability: can it be maintained easily.

To design a good connection you must know exactly what it has to do: seek clarity in design

# **Steps in Finite Element Analysis**

- 1. Define geometry
- 2. Connect nodes with members
- 3. Assign section properties (A, E, and I)
- 4. Define fixity of nodes and connections
- 5. Apply loads

6. Run analysis and examine output

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Structural Failure**

### Be clear in the function of the connection

What loads does it have to resist.

### How could it fail.

### Will it be easy to maintain in the future.

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw


Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



### connections can fail in many ways

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Four-Legged Stool Example**

Now imagine the load is increased to cause failure

When load is 270 lbs, the two legs will begin to fail

As they squash, the other two legs will start to carry



Page 2 of 2

load also

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Collapse of a 4-Legged Stool**

At final collapse state, all four legs carry 135 pounds and the stool carries 540 pounds.

This occurs only if the structure is ductile (ie, if the legs can squash)



Ic NOT valid if

Page 2 of 2

becklingomeclegswill fail suddenly

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Ductile Collapse**

So small imperfections do not matter, as long as the structural elements are ductile

The forces in a hyperstatic structure cannot be known exactly, but this is not important as long as we can predict a ductile collapse state



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### Why is steel a good structural material.

### High strength

Ductile material

Page 2 of 2

pg\_0008





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



| L |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Failure of Independent Elements**

#### Tension element: breaking stress exceeded

#### **Compression element:**

Crushing stress exceeded

Buckling occurs

**Truss:** 

Statically determinate: one element fails

Indeterminate to n degrees: n elements fail

#### Beam:

Either flange fails in compression or tension will form a **hinge (Indeterminate to n** 



home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Parallel Axis Theorem**

To calculate the moment of inertia, I, of a built-up section with respect to an axis other than its centroid:

 $\mathbf{I} = \mathbf{S}\mathbf{I} + \mathbf{S}\mathbf{A}\mathbf{d}^{2}$ 

Where:

A is the area of the segment

### d is the distance from the centraicboththaxis being considered

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



# Must brace columns against weak

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2



Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2



Failure by buckling or crushing Reality may be in between the two modes

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Importance of Ductility**

Large displacements before collapse (as **opposed to a brittle material, which fails suddenly**)

Energy dissipation as the steel yields (important for resisting earthquakes and other overloading)

Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



pg\_0017

Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Missouri: 8.2 in New Madrid, MO, 1812

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Structural Failures**

How could it fail. What is the weak link in the system.

# **Buckling is difficult to predict due to sensitivity of the parameters**

# Some failure modes are combined modes, i.e., local crushing can


Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw









Page 2 of 2



### **Good Practice in Wind Design**

#### Provide greater resistance along shorter dimension

#### Careful attention to detail

Continuity of structure Provide ties for each element

Greater weight can provide greater wind resistance

**Protect inhabitants from flying projectiles** 

Page 2 of 2



each side



### (15 ft)(12 ft)(30 psf) = 5,400 lbs Applied at top of wall, 2,700 lbs/frame (2.7 k)





### $F_v = 3.6 \text{ k}$



Page 2 of 2



| Cable dlameter, d                 | <del>^</del> /4     | <i>-</i> ) |
|-----------------------------------|---------------------|------------|
| = 0.7 inches (A=p                 | =                   |            |
| Sprecify steel cable (A = 0.44 in | 2 <b>9.38</b><br>in |            |



Page 2 of 2





 $F_v = 2.6 \text{ k}$ 



Page 2 of 2



| Caple diameter, d =                    | <del>^</del> /4     | <i>-</i> ) |
|----------------------------------------|---------------------|------------|
| 0.56 inches (A=p                       | =                   |            |
| Specify $5/8$ steel cable (A = 0.31 in | $^{2})_{in}^{0.25}$ |            |

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Compression Element as Wind Bracing**



Now one element must carry 5.8 k in both tension and compression

For tension, must have an area of 0.38 in <sup>2</sup> (3/4 in diameter bar)

So cross-sectional area must be greater than 0.38 in <sup>2</sup>

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2

# **Design Considerations**

Tension braces use less material than compression braces for lateral loads

**Compression members must resist buckling which requires extra material** 

Must consider buckling about either axis,



#### and snould brace the weak axis

# **Design Considerations**

Want to have ductility in our structures so that sudden collapse does not occur

Failure by buckling may be sudden and unexpected not a ductile failure

Statically determinate structures are easier to design because you can know the



Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2


















pg\_0023





pg\_0023











pg\_0026



file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/BASIC\_STRUCTURE/14/EN... 09/11/2011

Page 1 of 2















pg\_0029

Page 2 of 2



















pg\_0033


















pg\_0037















pg\_0041



pg\_0041









pg\_0043





















pg\_0047



home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw







### **Vertical Displacement (inches)**









|  | 1 | 2 | 3 | 4 |
|--|---|---|---|---|
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |

## **Lessons: Concept**

Systems with many unknowns are difficult to predict

Structures which are simple and clear in their load paths are easier to design



pg\_0052



# **Lessons: Construction**

Details are critical Repetition helps Small differences add up to big differences 3D joints are not easy!





pg\_0053

Page 2 of 2



# **Lessons: Buckling**

#### Failure occurred significantly below calculated values:

Sensitive to imperfections Support conditions Insufficient bracing Lower load in postbuckled state (not a ductile failure) Effective buckling length was typically

length was typically much longer than assumed



pg\_0054

Page 2 of 2

|  |  | - // | 1- | - | - | -/ |
|--|--|------|----|---|---|----|
|  |  |      |    |   |   |    |
|  |  |      |    |   |   |    |
|  |  |      |    |   |   |    |
Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### **Sustainable Engineering: The Importance of Structures**

**Professor John Ochsendorf** 

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **End of Life Design**

30 million computers are thrown away each year (only ~14% are recycled now)

Tackling waste flows can reduce environmental impact and save money

The electronics and automobile industry are beginning to design for the end of life (MIT



Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Outline of Lecture**

Introduction Materials Selection Case Studies Sustainable Structural Design Conclusions Future Challenges



In the United States, buildings account for:

37% of total energy use
(65% of electricity consumption)
30% of greenhouse gas emissions
30% of raw materials use
30% of waste output (136 million tons/year)
12% of potable water consumption

Source: US Green Building Council (2001)



# **Spending on Construction**

In industrialized nations, construction contributes more than 10% of the Gross Domestic Product (GDP)

An estimated 47% of total spending on construction is for renovation.

file:///D:/cd3wddvd/NoExe/Master/dvd001/dvd1/OCW/BASIC\_STRUCTURE/15/EN... 09/11/2011

0

Page 2 of 2



Source: Daratech (2001)

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### **Construction Waste**

US Environmental Protection Agency (EPA) estimates 136 million tons of waste generated by construction each year

Most from demolition or renovation and



Page 2 of 2

#### nearly half theom**cig**tte

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Goals of Structural Design**

Efficiency

Economy

Elegance

But all must consider the environmental impact as well

Page 2 of 2

# **19th Century Design Concern**

**EFFICIENCY IS IMPORTANT:** New materials in construction, such as wrought iron and steel, lead to greater concern for efficiency

# **20th Century Design Concern**

MAINTENANCE IS IMPORTANT: The initial design is important, though we must also design for maintenance throughout operating life

# **21st Century Design Concern**

END OF LIFE IS IMPORTANT: Waste from the construction industry is a vast consumer of natural resources on a global scale

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### **Buildings are Not Permanent**

Stone pinnacles of cathedrals are replaced ~200 years

Buildings are *waste in transit* 

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Choosing Materials**

#### **Environmental Impact**

**Durability** 

**End of Life** 





pg\_0014



Ecological profile of various material properties expressed per unit strength. The Institution of Structural Engineering

#### Is concrete a green material.

Concrete is made from local materials.

Concrete can be made with recycled waste or industrial byproducts (fly ash, slag, glass, etc).

Concrete offers significant energy savings over the lifetime of a building. Concretes high thermal mass moderates temperature swings by storing and releasing energy needed for heating and cooling.

#### **Energy Required for Concrete**

| Component          | Percent by<br>weight | Energy % |
|--------------------|----------------------|----------|
| Portland<br>cement | 12%                  | 92%      |
| Sand               | 34%                  | 2%       |
| Crushed<br>stone   | 48%                  | 6%       |
| Water              | 6%                   | 0%       |

Each ton of cement produces  $\sim 1$  ton of CO <sub>2</sub>

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



pg\_0017

# **Energy Consumption for Steel**



| (3 year moving averages) |
|--------------------------|
| Source: Eurostat         |
Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





### Kyoto Protocol and CO<sub>2</sub>

To meet Kyoto Protocol: ~33,000 lbs of CO<sub>2</sub>/year/person (-7% from 1990)

But individual contributions are only 1/3 of per capita contributions rest is industry, agriculture, etc.

So individuals annual goal would be 11,000 lbs (though many scientists are calling for much greater reductions)

### **Kyoto Protocol**

Aims to reduce CO2 emissions by 7% over 1990 levels (though the UK has just committed to going much further 60% reductions of current emissions)

## Would limit personal carbon emissions to 11,000 pounds of CO2/year

#### This quantity of CO2 is produced by:

Two coast-coast flights (economy class) Driving 11,000 miles (with 20 mpg fuel efficiency) Casting 16 cubic yards of concrete



About 14 cubic **About 5 truction feet** of virgin aluminum steel

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Kyoto Protocol**

Aims to reduce CO2 emissions by 7% over 1990 levels (though the UK has just committed to going much further)

This requires approximate CO2 emissions of 33,000 lbs/year for each person in the US

Only about 1/3 comes from personal decisions, the rest is due to industry and services

### Architects and engineers



### The Greenest of ThemAll.

Only one primary building material:

-comes from a renewable resource;
-cleans the air and water;
-utilizes nearly 100% of its resource for products;
-is the lowest in energy requirements;
-creates fewer air and water emissions; and is
-totally reusable, recyclable and biodegradable.

And it has been increasing in US net reserves since 1952, with growth exceeding harvest in the US by more than



#### -American Wood Council

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Planting trees.**

A healthy tree stores about 13 pounds of CO2 per year -- NOT MUCH!

Would require nearly 3,000 trees per person to offset CO2 emissions

Specifying timber reduces CO2 emissions compared to steel and concrete, but carbon sequestration is a small contribution to this reduction

Main advantage is that wood does not produce nearly

# as much CO2 as steel and concrete

### High vs. Low Embodied Energy.

Materials with the lowest embodied energy intensities, such as concrete, bricks and timber, are usually consumed in large quantities.

Materials with high energy content such as stainless steel are often used in much smaller amounts.

As a result, the greatest amount of embodied energy in a building can be either from low embodied energy materials such as concrete, or high embodied energy materials such as steel.

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Steel and Concrete**

#### **Energy intensive materials**

#### High associated CO2 emissions

#### **Dominant structural materials**

Industry standards Many engineers have not designed with other materials Economies of scale Steel provides ductility, the ability to absorb energy before **failing** 

#### Manv other materials can serve in



ppace offesteel and

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Energy Savings from Recycling**

|                      | Energy required<br>to produce from<br>virgin material<br>(million Btu/ton) | Energy saved<br>by using<br>recycled materials<br>(percentage) |  |
|----------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|--|
| Aluminum             | 250                                                                        | 95                                                             |  |
| Plastics             | 98                                                                         | 88                                                             |  |
| Newsprint            | 29.8                                                                       | 34                                                             |  |
| Corrugated Cardboard | 26.5                                                                       | 24                                                             |  |
| Glass                | 15.6                                                                       | 5                                                              |  |





### **Embodied Energy vs. Operating** Energy (3,750 sf home)

| Home type,<br>location         | Heating<br>Energy<br>MM Btu/year<br>(Gj/year) | Embodied<br>Energy<br>MM Btu<br>(Gj) | Embodied<br>Energy<br>in years of<br>heating<br>energy |
|--------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------------------------|
| Conventional,<br>Vancouver     | 101 (107)                                     | 948 (1,000)                          | 9.4                                                    |
| Energy-efficient,<br>Vancouver | 57 (60)                                       | 1019 (1,075)                         | 17.9                                                   |
| Conventional,<br>Toronto       | 136 (143)                                     | 948 (1,000)                          | 7.0                                                    |



Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Typical Building Embodied Energy**

Breakdown of Initial Embodied Energy by Typical Office Building Components Averaged Over Wood, Steel and Concrete Structures [Cole and Kernan, 1996].



Page 2 of 2

Average Total Initial Embodied Energy 4.82 GJ/m<sup>2</sup>

## **Range in Embodied Energy**

| Material                         | Density           | Low value         | High value        |
|----------------------------------|-------------------|-------------------|-------------------|
|                                  | kg/m <sup>3</sup> | GJ/m <sup>3</sup> | GJ/m <sup>3</sup> |
| Natural<br>aggregates            | 1500              | 0.05              | 0.93              |
| Cement                           | 1500              | 6.5               | 11.7              |
| Bricks                           | ~1700             | 1.7               | 16                |
| Timber<br>(prepared<br>softwood) | ~500              | 0.26              | 3.6               |
| Glass                            | 2600              | 34                | 81                |
| Steel<br>(sections)              | 7800              | 190               | 460               |

| Plaster | ~1200 | 1.3       |      | 8.0               |
|---------|-------|-----------|------|-------------------|
|         |       | 8cc - 335 | Sour | ce: BRE, UK, 1994 |

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



### Use Recycled Content Products and Materials

High recycled content:

Paper on both the face and the back of all drywall is a 100% recycled product.

Structural steel uses mostly recycled material (though it is still energy-intensive and responsible for harmful pollutants.)

**Example of an item that you can specify:** 

Armstrong ceiling tiles contain 79% recycled material (cornstarch, newsprint, mineral wool, recycled tiles). Both the ceiling tiles and the suspension systems can also be reclaimed and recycled rather than dumped

Page 2 of 2

in a landfill.

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Separating Waste**









pg\_0036

#### (Source of material for this lecture.)
Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Steel and Concrete**

Can be designed for reuse (concrete pavers)

Can reduce required quantities through efficient design

We will return to the design of indeterminate structures and the importance of structural form

Designers can use the constraints of economics, efficiency, and the environment to

### find new forms

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Ecological Comparison of Materials**

Each material has environmental advantages and disadvantages

Choice of material will depend on the site and design problem

# Embodied energy is only one of manv

# considerations

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Designing for Maintenance**

Develop a maintenance plan for your structure

Design components which are accessible and replaceable

Avoid toxic materials which are hazardous for future maintenance

. .



#### operations

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# Demolition: Lessons from History

Sustainable structures must consider the end of life of the structure

~24% of solid landfill waste in the US is generated by the construction industry

Up to 95% of construction waste is recyclable, and



is clean and unmixed

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## Two Extreme Approaches to Sustainable Structures

**1. Permanence:** Very high quality construction, with materials which can be reused in future construction

2. Temporary: Less expensive construction, with a short life span. Materials must be lowimpact.

Page 2 of 2

### impact.

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Two Sustainable Bridge Types**

#### Inca suspension bridge

High stresses High maintenance Short lifetime Low initial cost Renewable materials Low load capacity



#### Roman arch bridge

Low stresses Low maintenance Long lifetime High initial cost Reusable materials High load capacity







home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# Conclusions

Each material has environmental advantages and disadvantages: good design is local

**Recycle or reuse materials to decrease waste** 

Consider end of life in the initial design

History suggests sustainable solutions: Inca structures (temporary) and Roman structures



home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Energy intensive materials like steel and concrete can be used more efficiently

### Alternative materials should be explored

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Future Challenges**

### Education of architects and engineers

Teaching design and analysis Assessment of existing structures Environment as a design constraint, not an opponent

### Maintenance and disposal plan for new structures

# Code improvements for the reuse of salvaged structures and new uses of traditional materials

Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw **Tension Structures** 4.440 Basic Structural Theory

Page 2 of 2

























Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Review of Compression Lecture**

Masonry structures must contain lines of compression within the material

Arches can provide a range of thrust values





### Efficient


Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## Hookes 2 <sup>nd</sup>Law (1675)

ut pendet continuum flexile, sic stabit contiguum rigidum inversum

As hangs the flexible line, so but inverted will stand the rigid arch



| ai |  |
|----|--|
|    |  |
|    |  |

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw







Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Range of Arch Thrust**



-

1

# COMPRESSION

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Tension Structures**

Tension structures must have a structural form: <u>cables dont lie</u>

Due to their light weight and long spans, tension structures are susceptible to vibration and other dynamic problems

For really long spans (like suspension

### bridges), the self weight of thetationant load

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

12 53

| Truss Analysis |  |
|----------------|--|
|                |  |
|                |  |
|                |  |
|                |  |

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Review: Member Design**

**Compression elements have lower stresses due to buckling** 

 $P_{cr} = p^2 E I / (kL)^2$ 

When using graphic statics for truss analysis, use clockwise convention to determine if an element is in tension or compression.

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Three Equations of Equilibrium**

## 1. Sum of vertical forces must be zero

$$SF_y = 0$$

## 2. Sum of horizontal forces must be zero SF<sub>x</sub> = 0

#### 3. Sum of moments must be zero



Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw







Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw







Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





Page 2 of 2





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Cantilevered Streetlight**





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Reactions at Supports**





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### Trusses

#### **Rotational Equilibrium**

Sum of the moments must equal zero. Use to calculate reactions at supports and to find internal forces



Trusses are an efficient way to carry loads with minimal material

Look for examples of moment






Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Beam Design**





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Review of Lecture 5: Trusses**

#### **Rotational Equilibrium**

Sum of the moments must equal zero. Use to calculate reactions at **supports and to find internal forces** 



Trusses are an efficient way to carry loads with minimal material

Look for examples of moment











Page 1 of 2





Page 1 of 2





Page 1 of 2





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Concrete connections**





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Reinforcing rod connections**





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Concrete Y-beams**





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Interior View**





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Castellated Beams**





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Timber Cantilever Beams**





Page 1 of 2











pg\_0016





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw







pg\_0018




pg\_0019





Bearing plate and web stiffening



























Page 2 of 2





1) Determine external reactions on beam

- 2) Walk along beam with your pen
- 3) Pen goes up and down with the loads

# 4) Must close diagram at the ends of the beam

Page 2 of 2













Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



pg\_0029

Page 2 of 2



Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### Lecture 6: Beams

Beams carry loads in bending, with compression and tension on opposite sides

Visualize trusses within the depth of a beam

Shear and moment diagrams are used to illustrate internal forces in beams

Page 2 of 2



#### Shear diagram equals the slope of moment diagram

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





## Architecture 4.440

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### Outline

Introduction Static Indeterminacy Support Conditions Degrees of Static Indeterminacy Design Considerations Conclusions

Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### Forces in the Legs of a Stool





Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Three-Legged Stool**

#### **Statically determinate**

One solution for the axial force in each leg

Why.

3 unknowns3 equations of equilibrium



Uneven



floor has no effect

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

## **Four-Legged Stool**

#### Statically indeterminate

A four legged table on an uneven surface will rock back and forth

Why.

- It is hyperstatic:
- 4 unknowns
- 7





s equations of equilibrium
Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Four-Legged Stool**

Infinite solutions exist

Depends on unknowable support conditions

A four legged table on an uneven surface will rock back and forth

The forces in each leg are constantly changing



Fundamental difference between hyperstatic and static structures

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### Forces in the Leg of a Stool





Statically Indotorminato



#### determinate

(hyperstatic)

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Three-Legged Stool**

Design for a person weighing 180 pounds

60 pounds/leg

**Regardless of uneven** floor



# 60 lbs 60 lbs

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### **Collapse of a Three-Legged Stool**

Design for a person weighing 180 pounds

If the safety factor is 3:

 $P_{cr} = 3(60) = 180 \text{ lbs}$ 

And each leg would be designed to fail at a load of 180 pounds

The stool would carry a



Page 2 of 2



total load of 540 pounds 180 lbs 180 lbs

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### **Elastic Solution for 4-Legged Stool**

Design for a person weighing 180 pounds

45 pounds/leg

But if one leg does not touch the floor



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Four-Legged Stool**

If one leg doesnt touch the floor, the force in it is zero.

If one leg is zero, then the opposite leg is also zero by moment equilibrium.

The two remaining legs carry all of the load:





Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Four-Legged Stool**

#### Therefore

All four legs must be designed to carry the 90 pounds (since any two legs could be loaded)



00

Page 2 of 2

lbs

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Four-Legged Stool**

If the elastic solution is accepted, with a load in each leg of 45 pounds, then assuming a safety factor of 3 gives:

$$P_{cr} = 3(45 \text{ lbs}) = 135 \text{ lbs}$$

And each leg would be designed to fail





Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Four-Legged Stool**

Now imagine the load is increased to cause failure

When load is 270 lbs, the two legs will begin to fail

As they squash, the other two legs will start to carry



Page 2 of 2

load also

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Collapse of a 4-Legged Stool**

At final collapse state, all four legs carry 135 pounds and the stool carries 540 pounds.

This occurs only if the structure is ductile (ie, if the legs can squash)



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Ductile Collapse**

So small imperfections do not matter, as long as the structural elements are ductile

The forces in a hyperstatic structure cannot be known exactly, but this is not important as long as we can predict the collapse state



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### **Lower Bound Theorem of Plasticity**

If you can find one possible set of forces, then the structure can find a possible set of forces

It does not have to be correct, as long as the structure has capacity for displacements (ductility)

For indeterminate structures, we



Page 2 of 2

#### cannot be certain of **shatenterne**lforces

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

#### **Examples of Statically Determinate Structures**

# Unstressed by support movements or temperature changes

Three-legged stool

Simply supported beam

Cantilever beam

Three-hinged arch





Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

# **Simply Supported Bridge**



#### Can adjust to support moments and hanges

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw











Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw



Page 2 of 2

|  |  | Contrada a | States and | Call State |
|--|--|------------|------------|------------|
|  |  |            |            |            |

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

| Statically Determinate | Indeterminate (hyperstatic) |
|------------------------|-----------------------------|
| Simply supported beam  | Continuous beam             |
| Cantilever beam        | Propped cantilever beam     |
| Three-hinged arch      | Fixed end arch              |
| Three-                 | Riaid                       |


Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw







indeterminacy.





indeterminacy.







### What is the degree of static indeterminacy.

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





statically determinate. What is the degree of static indeterminacy.

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





statically determinate. What is the degree of static indeterminacy.

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw





statically determinate. What is the degree of static indeterminacy.

# How to find forces in statically indeterminate structures

#### **Approximate hand calculations**

Make simplifying assumptions

#### **Computer: Finite Element Methods**

Solve for internal forces based on relative stiffness of each element and many other assumptions (elastic analysis)

## Analyze limiting cases to determine one possible state of internal forces

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Finite Element Analysis**

Divide structure into a mesh of finite elements

Solves for internal forces based on relative stiffness of each element

## **Finite Element Analysis**

But cant account for imperfections in supports and construction

Like a four-legged stool, it is impossible to know the exact forces

Finite element analysis is more sophisticated, but is not necessarily better

## **Design Considerations**

Statically indeterminate structures offer greater redundancy, i.e. more possible load paths

## But are less clear in their structural action

More complicated to design and assess May be more difficult to repair

Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

### **Static Indeterminacy**

For a given set of applied loads, any possible equilibrium state is acceptable (internal forces in the legs of the stool)

Find extreme equilibrium cases by releasing the extra supports (i.e., assume two legs dont touch the ground)



You can choose any internal equilibrium state as long as buckling



#### does not occur (lower bound theorem)





#### Is there one answer.



wL<sup>2</sup>/12  $wL^{2}/12$ 





attract more of a bending moment.

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw






What is the moment diagram for this beam under a uniform load, w, if we make a cut at midspan.



Page 2 of 2



What is the moment diagram for this beam under a uniform load, w, if we make a cut at centerspan.









What is the moment diagram for this beam under a uniform load, w, if it is simply supported.



Page 2 of 2



What is the moment diagram for this beam under a uniform load, w, if it is simply supported.



×\_\_\_\_\_



Moment diagram shifts up and down as the supports change their degree of fixity

## **Statically Indeterminate Beams**

Which is correct. All of them!

As a designer, you choose the function by choosing the form

Shape the structure to reflect the load acting on it

Articulate the role of each structural connection







Page 2 of 2

## **Statically Indeterminate Beams**

Release unknown reactions until the structure becomes statically determinate.

Draw moment diagram for statically determinate structure.



Remove roller support to make it a cantilever beam





Release unknown reactions until the structure becomes statically determinate.

Draw moment diagram for statically determinate structure.



Page 2 of 2







Release unknown reactions until the structure becomes statically determinate.

Draw moment diagram for statically determinate structure.



Remove fixed support to make it a simply-supported beam.



11111.

## **Statically Indeterminate Beams**

Release unknown reactions until the structure becomes statically determinate.

Draw moment diagram for statically determinate structure.







Release unknown reactions until the structure becomes statically determinate.

Draw moment diagram for statically determinate structure.

















Page 2 of 2



Page 2 of 2



|  | 7 |  |
|--|---|--|
|  |   |  |
|  |   |  |






Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw









Page 2 of 2





## You choose the function by choosing the form function follows form

## For a given loading, the moment diagram simply moves up and down as you change the support conditions

































|  | 7 |  |
|--|---|--|
|  |   |  |
|  |   |  |






Page 1 of 2

home.cd3wd.ar.cn.de.en.es.fr.id.it.ph.po.ru.sw











## **Review: Indeterminate Structures**

For a given loading on a beam, the moment diagram simply moves up and down as you change the support conditions

## You choose the function by choosing the form function follows form

## Must prevent buckling (think of three-legged stool example)