
Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

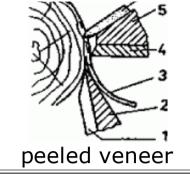
2. Materials Made of Wood

2.1. Solid Wood

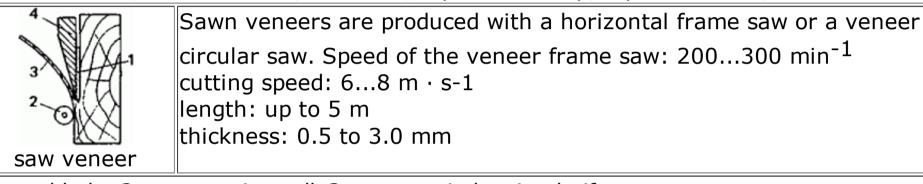
Solid wood is obtained from raw wood by longitudinal and cross cutting. It is used without or after improvement of the wood.

2.1.1. Not Improved Solid Wood

/10/2011		
round timber	Round timber is obtained from rough wood by cross cutting. It includes saw logs, veneer flitches, masts, poles and others.	Saw logs and veneer flitches are intermediate products which are intended for further cutting.
Sawn timber	Sawn timber is produced by longitudinal cutting of round timber. Sawn timber has at least 2 parallel surfaces and is thicker than 5 mm.	Making of simple cut and double cut; simple cut:
		single passage through the machine yields untrimmed products; double cut:
		two passages through the machine; first passage is precut, edge boards and slabs are cut off; second passage is second cut; from the material turned by 90° the trimmed product is obtained.
Veneer	Is produced by longitudinal cutting (slicing, sawing) or arcuate cutting-off (peeling) of round wood; veneer is ≤ 3 mm thick and ≥ 80 mm broad.	


Kinds of sawn timber

Kinds	Width in mm (b)	Thickness in mm (s)
Schematic representation		
	>100	>100
squared timber		
frame timber	≤ 2s	38100
0 0	round-edged \geq 2 s	>16
board (1) round-edged (2) edge-trimmed	edge-trimmed \ge 75	
lath	>75	1635
<u>Anne</u>	edge-trimmed \ge 75	615


22/10/2011	Formulae and Tables	Formulae and Tables - Wood / textbooks for vocational tr			
	ply				
		or	615		
		round-edged < 75			
	strip				

Kinds of veneers

Kinds Schematic	Manufacture
representation	
sliced veneer	Sliced veneers are made by slicing off lamella by lamella in an operation similar to planing. Effective strokes of the machine: 1636 min ⁻¹ cutting speed: 0.5 to 1.5 m s ⁻¹
Silced Verleer	length: up to 5 m thickness: 0.05 to 2.7 mm
1 knife, 2 knife ho	lder, 3 veneer, 4 pressure strip, 5 pressure bar
	Peeled veneers are taken from a rotating trunk by an operation similar to turning.
6	cutting speed: 0.2 to 2.5 m · s ⁻¹ length: up to 4.5 m thickness: 0.08 - 2.7 mm

1 veneer knife, 2 knife holder, 3 veneer, 4 pressure strip, 5 pressure bar, 6 scratcher knife

1 saw blade, 2 compression roll, 3 veneer, 4 cleaving knife

2.1.2. Improved Solid Wood

Kind of solid wood	Manufacture	Application
	beating or rolling under the influence of	machine parts in the textile industry, bearing shells, press- drawing tools, etc.
solid wood	agents (e.g. resin, oil, metal) for	synthetic resin-impregnated timbers in electric engineering, oil- impregnated wood as self-

Formulae and Tables - Wood / textbooks for vocational tr...

		lubricating machine parts, metal- impregnated wood as slide bearing
formed solid	solid wood formed under the influence of	for bent parts in furniture
wood	temperature, moisture and pressure (by	construction, in vehicle
	applying pressure on the cross-grain ends	construction and boat building, for
	of the blank the latter is compressed and	the manufacture of sports
	thus made bendable)	equipment etc.

2.2. Laminated Wood

Laminated wood consists of veneer layers which are symmetrically laid one on top of the other. It is glued together by means of adhesive under pressure and temperature to form sheet material. Laminated wood has improved properties compared with solid wood and can be used for many more purposes.

Name	Material construction	Physical quantities	Application
plies (plywood)	symmetrical arrangement of the veneer layers, the layers are staggered alternately 90° according to the grain direction	0.60075 g · cm ⁻³	furniture industry, interior work, packaging industry, building industry etc.

Formulae and Tables - Wood / textbooks for vocational tr...

Formulae and Tables - wood / textbooks for vocational tr				
		5575 MPa		
laminated wood	veneers are arranged in parallel with each other (grain direction); up to 15 % vertically to it	· ·	aircraft manufacture, shipbuilding, vehicle construction, timber engineering etc.	
	arrangement of the veneers is the same as with plywood or laminated wood; by applying pressures of about 10 MPa compression is achieved (10 %)	0.80 [°] 1.15g • cm ⁻³ δzB ≤ 220 MPa	machine parts, timber engineering, apparaturs construction, toolroom work, vehicle construction	
laminated	same as compressed laminated wood, but made of synthetic resin-impregnated veneer		vehicle construction, electric engineering, apparatus	

22/10/2011	Formulae and Tables - Wood / textbooks for vocational tr
wood	$\delta zB \leq 140$ construction, timber
	MPa engineering, machine
	$\delta dB \leq 300$ parts
	MPa
	$\delta bB \leq 240$
	MPa

2.3. Sandwich Boards

Sandwich boards consist of a core and two cover plies, one on each side. Compared to the solid starting material considerable savings in material are possible and improved properties are reached.

Name	Material construction	Physical quantities	Application
sandwich board with solid wood core		0.420.52	furniture industry, interior work, pattern making, development working etc.
	crossband veneer; thickness ≥ 1.8 mm ore of blackboard		

sandwich board with hollow core		ho = 0.010.04 $g \cdot cm^{-3}$ $\delta zB = 1.7$ MPa $\delta dB = 2.9$ MPa $\delta bB = 14$ MPa	doors, partition walls, vehicle construction and shipbuilding, interior work, boat building
	ers of veneer, plywood, hard fibre boards, astic boards; 2 core of paper honeycombs		
board with particle	Particle boards as cores are coated on both sides with veneer or synthetic resin- impregnated papers. In this way their properties and appearance are improved.	$\begin{array}{l} \rho = \\ 0.70.8 \text{ g} \\ \cdot \text{ cm}^{-3} \\ \text{face} \\ \text{strength } \approx \\ 0.9 \text{ MPa} \\ \delta \text{bB} \approx 40 \\ \text{MPa} \end{array}$	furniture construction, interior work, ship building and waggon construction

2.4. Fibreboards

Fibreboards are a flat, sheet wood-based material made under the influence of pressure and temperature which consists of fibrous material cotaining lignocellulose.

Properties of fibreboards

Kind of board	Thickness in mm	Gross density _ρ in g · cm ⁻³	Bending strength δbB in MPa	Compressive strength δdB in MPa	Transverse tensile strength δ in MPa
hardened fibreboards	16	1.01.1	60	5060	3055
hard fibreboards	16	0.951.05	2575	2550	1540
medium hard fibreboards	625	3075	1040	80	825
porous fibreboards	620	2540	1.03.0	0.82.0	1.03.0
medium- dense fibreboards	1019	0.600.85	1532		0.30.7

Use of the fibreboards

Kind of board	Special features	Applications
medium-	three-layer structure, high surface	same as (three-layer) particle boards for
dense	quality, homogeneous core structure,	furniture, especially for visible outer
fibreboards	closed homogeneous narrow surfaces	surfaces of furniture

porous fibreboards	low density, low strength, heat- insulating	ceilings and panellings, roof sheathing, floor underlay
medium- hard fibreboards	heat-insulating	partition walls, panellings, roof sheathing
hard fibreboards	uniform surface, elastic, bendable, nailing and screwing possible	ceiling boarding and panelling, furniture parts, doors, partition walls, coverings
	oil-impregnated, especially abrasion- proof, water-repellent	panelling and sheathing outdoors, inner and outer doors, concrete moulds, floor, staircase and table coverings
sound- absorbing boards	porous fibreboards provided with holes, slits or similar for sound absorption	ceiling boarding and panellings in offices, telephone exchanges, cinemas, concert halls etc.
multilayer insulating boards	boards consisting of two or more layers of porous fibreboards glued in a water-proof manner	partition walls, displaceable walls, false ceilings
varnished boards	hard fibreboards with varnish coating	panellings in kitchens, shops, bathrooms, for furniture in rooms in which water is handled
sheet and plastic- coated fibreboards	plastic sheets or synthetic resin- impregnated special papers	panellings in kitchens and bathrooms, for furniture in damp rooms, for table coverings in kitchens, shops, workshops, laboratories etc.
	hard fibreboards which during	for decorative purposes in interior work

fibreboards	manufacture were given an embossed surface and (possibly	
	subsequently) a colour treatment extra hard fibreboards which are laid like parquet, high wear resistance	for floor coverings
multi-layer	3	panels, shock-resistant coverings, partition walls, false ceilings

2.5. Particle Boards

The particle board is a wood-based material made of wood chips with the addition of synthetic resin under the influence of pressure and temperature. Its properties can be varied by the kind and quantity of the additives, by the quality and arrangement of the chips and the compression ratio.

Properties of the particle boards

Kind of board	Thickness in mm	Gross density ρ in g · cm ⁻ 3	Bending strength δbB in MPa	Transverse tensile strength ρ in MPa
single-layer flat pressed particle boards	625	0.50.85	1520	0.20.3
triple-laver		0.550.85	2030	0.20.3

flat pressed particle boards	2/10/2011	Formulae and Tables - wood / textbooks for vocational tr
particle boards		
extruded 875 $0.550.70 \approx 2.0$ in pressing direction ≈ 0.6 in pressingparticle boards ≈ 15.0 at right angles todirection ≈ 4.0 at right	extruded	$\approx 15.0 \text{ at right angles to} \text{direction} \approx 4.0 \text{ at right} \\ \text{the pressing direction} \text{angles to the pressing} \\ \end{array}$

Use of the particle boards

Kind of board	Special features	Applications
flat pressed particle boards, raw, single- layer	dense surface, heat and sound-insulating, pressure- proof	interior work, building construction, agricultural building, floor underlays, insulating boards etc.
Flat pressed particle boards, raw multi- layer		manufacture of furniture, self- supporting structural elements, interior work, vehicle construction
extrusion particle boards, raw	low bending strength, coating absolutely necessary, in other aspects like single-layer boards	core for sandwich boards in furniture manufacture, in interior work, shipbuilding and vehicle construction, building industry
impregnated particle boards	additives are added to the binder, therefore resistant to temperature and wood pests	building industry, agricultural building, shipbuilding
veneer-coated particle	more resistant to varving	visible surface in furniture

		manufacture, interior work and shipbuilding, for panelling, cladding
with laminated boards, PVC-hard- boards or decorative	sides, higher strength,	furniture in damp rooms, doors, partition walls, structural elements for walls, but also containers, concrete moulds, mainly in the kitchen furniture industry

*) decorative laminates: plastic sheets with wood pattern

<u>Home</u>"" """"> <u>ar.cn.de.en.es.fr.id.it.ph.po.ru.sw</u>

Textbooks for Vocational Training	Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)
Formulae and Tables - Wood	▶□ 3. Plastic materials
Full 2	(introduction)
III CATES OF SI	3.1. Classification of Plastic Materials
	3.2. Properties of Important Plastic Materials
	3.3. Applications of Important Plastic Materials
Institut für berufliche Entwicklung s.V. Berlin	

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

3. Plastic materials

Plastics are synthetic materials or macromolecular organic-chemical materials produced by conversion of polymer natural products.

3.1. Classification of Plastic Materials

Starting material	Chemical stability					
Modified natural materials						
cellulose, nitric acid	resistant to weak acids and alkalis					
ermosetting plastics)						
phenol or cresol, formaldehyde and filler materials	instable to concentrated acids and alkalis					
phenol or cresol, formaldehyde and laminar substrates	same as phenolic moulding compounds					
urea or melamine resins and formaldehyde	same as phenolic moulding compounds					
urea or melamine resins, formaldehyde and filler materials	same as phenolic moulding compounds					
urea or melamine resins, formaldehyde and laminar filler materials	same as phenolic moulding compounds					
	cellulose, nitric acid cellulose, nitric acid phenol or cresol, formaldehyde and filler materials phenol or cresol, formaldehyde and laminar substrates urea or melamine resins and formaldehyde urea or melamine resins, formaldehyde and filler materials urea or melamine resins, formaldehyde and laminar filler					

Rolymerizates (thermoplastics) and by droclaric acid

22/10/2011

Formulae and Tables - Wood / textbooks for vocational tr...

(unplasticized PVC)	acelyiene and lables - Wood / textbooks for vocational t	compounds	
polyvinyl chloride, flexible (plasticized PVC)	acetylene, hydroclorid acid and plasticizer	stability less than for rigid PVC	
poloystyrene	ethylene and benzene	instable to most of the organic compounds	
polyvinyl acetate	acetylene and acetic acid	(almost only improving or auxiliary agent)	
Polyaddition product	S		
polyurethanes	diisocyanates and dialcohols	instable to concentrated acids	
Polyesterification pro	oducts		
polyester	carboxylic acid or phtalic acid and alkohols	instable to some organic compounds, when unsaturated	
epoxy resins	epichlorhydrin, phenols	stable	
alkyd resins	maleic acid and phtalic acid, multivalent alcohols	medium resistance to solvents and alcohols	

3.2. Properties of Important Plastic Materials

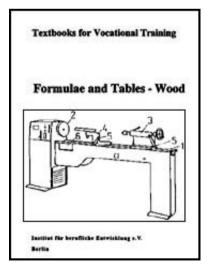
Plastic material	Density in g · cm ⁻³			Compressive strength δdB in MPa	Bending strength δbB in MPa	Tensile strength δzB MPa
cellulose	1.38	50	3050	60	60	6070

22/1	$\cap r$	2011
22/1	.U/ 4	2011

Formulae and Tables - Wood / textbooks for vocational tr...

10/2011		Formulae and Tal	oles - Wood / text	tbooks for vocational tr		
nitrate						
phenolic moulding compounds	1.4	125		120200	5070	25
phenolic laminates	1.4	125		140	120	40
urea resins	0.014 0.28		0.36	200	80	30
urea resin moulding compounds	1.45 1.5	130		240	80	70
urea resin Iaminates	1.3 1.45	130		150	150	120
rigid PVC	1.38	60	18	80	120	4560
flexible PVC	1.23 1.36					825
polystyrene	1.04 1.09	6090	1-20	45120	70 130	3570
polyvinyl acetate				100	100	50
poly-urethane	1.2 1.215	<100	≈ 250	3090	2065	4460
polyester	1.21.4	≈ 130		150	90	42

3.3. Applications of Important Plastic Materials


Plastic material	Applications	
cellulose nitrate	varnishes and adhesives	
phenolic moulding compounds	preservative (see wood-based materials), adhesive and adhesive film, pimer paper for coating furniture elements varnishes, moulded parts	
phenolic Iaminates	compression moulded sheets for coating kitchen furniture parts, but also laboratory furniture and similar	
urea resins	adhesives, primer paper and decorative overlay for the furniture industry, foamed plastics and insulating materials, varnish resins	
urea resin moulding compounds	moulded parts, e.g. for furniture fittings	
urea resin laminates	decorative laminated sheets for kitchen furniture, laboratory furniture and damp rooms, decorative overlays for the furniture industry	
rigid PVC	films, sheets, moulded parts	
flexible PVC	flexible sheet as furniture fittings, decorative overlay and foam sheet, small surface tape for coating furniture veneered stock, overlapping edge bands, foamed plastics, varnishes	
polvstvrene	compression moulded sheets. furniture films. moulded parts. foamed	

	plastics and varnishes
polyvinyl acetate	adhesives, surface coatings, oil-resistant sheets, varnishes
	adhesives, varnishes, rigid foamed plastics as insulation material and for furniture elements (seat shells), structural foam as moulded parts for furniture, semirigid foam for cushions, back-rests and similar, flexible foam for upholstery etc.
Polyester	adhesives, primer paper and decorative overlay, foamed plastics, varnishes
epoxy resins	adhesives and varnishes
alkyd resins	varnishes

-

Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

- Formulae and Tables Wood / textbooks for vocational training (GTZ, 122 p.)
 - ➡□ 4. Glass Materials
 - (introduction...)
 - 4.1. Classification of Glass Materials
 - 4.2. Properties of Glass Materials
 - 4.3. Applications of Glass Materials

rormulae and ladies - wood / textbooks for vocational training (GIZ, 122 p.)

4. Glass Materials

Glass is a transparent, isotropic *) inorganic material.

*) showing the same physical properties in all directions of space

4.1. Classification of Glass Materials

Classification aspect	Glass grade	Remarks
flat glass	sheet glass	as thin, window and thick glass
	flat glasses with special effects, refined flat glass products	ribbed glass, antique glass, opal glass, frosted glass, plate glass, safety glass, thermoglass panes
fibre-glass materials	glas fibres	coarse glass fibres, textile fibres made of glass
	glass silk	superfine glass fibres

4.2. Properties of Glass Materials

Property	Sheet	glass		Glass fibres
density ρ in g \cdot cm-3	2.4	2.6		2.5
compressive strength δdB in MPa	800	1000		
tancila ctranath SZR in MDa D:/cd3wddvd/NoExe/Master/dvd001//meister11.htm	70	۵N	<u> </u>	1000 according to the thickness

10/2011 הרבווסווב אובווענוו 10עם ווו דרם		textbooks for vocational tr
bending strength δbB in MPa	50150	1703400 according to the thickness
temperature stability in °C	≤ 500	-50+300-C

Dimensions of sheet glass

Glass grade	thickness in mm	width in mm	length in mm
thin glass	0.91.6	300700	12001400
window glass	2.04.0	3001800	10002000
thick glass	4.55.5	4002010	10502550

Dimensions of furniture glass

Glass element	thickness in mm	width in mm	length in mm
sliding doors	3.06.0	801200	1001600
revolving doors	5.06.0	801200	1001600
panels	3.06.0	801200	1001600
glass tops	3.05.5	801200	1001600
insertable plates	3.07.5	80600	1001600

4.3. Applications of Glass Materials

Material	Application	Remarks	
thin glass	picture glass		
window	alazina in housina		
D:/cd3wddvd/NoExe/Mast	er/dvd001//meister11.htm		21/6

10/2011	Formulae and Tak	ples - Wood / textbooks for vocational tr
glass	construction and social buildings, furniture, glass- houses, stables etc.	
thick glass	shop windows, shop fittings, furniture making	
ribbed glass	shop building, interior work, kitchen furniture etc.	shaping is made during the drawing process
antique glass	interior work, period furniture	old glass is imitated by inclusions, staining and similar
opal glass	hospital windows, office partition walls and similar	toughened or etched panes
frosted glass	shop building, interior work, furniture	an opal glass from the frosted side of which flat splinters are torn out
plate glass	mirrors in flates and social buildings, vehicle construction, furniture making etc.	flat glass covered on one side with a silver layer of > 70 nm thickness; the silver layer is provided with protective layers
safety glass	skylights, glass-roofed courts, roof parts, doors, all-glass walls etc.	as wired glass (rolled in wire cloth), one-layer and multilayer safety glass and compound glass (flat glass panes bonded with transparent foil)
thermoglass panes	housing construction and social buildings	two window glass panes hermetically joined together enclose a space filled with dry air, which prevents misting up of the panes at outdoor

Formulae and Tables - Wood / textbooks for vocational tr...

		temperatures down to -15 °C
glass fibres	building industry, machine	for heat and sound insulation, for reinforcement of
	building, textile industry	plastic building materials
		processing with, for example, polyester resins into high-strength materials

_

<u>Home</u>"" """"> <u>ar.cn.de.en.es.fr.id.it.ph.po.ru.sw</u>

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

5. Steel

Steels are ferrous materials which regardless of other alloying constituents have carbon contents of less than 2 %.

5.1. Classification of Steels

Classification aspect	Kinds of steels	Remarks
according to the manufacturing process	Bessemer steel Thomas steel open-hearth steel electric steel crucible cast steel	converter process like Bessemer steel open- hearth process made in the electric furnace remelting process in refractory crucibles
according to properties and application	general structural steels steels for mechanical engineering structural steels for special applications high-alloy special steels steels with special electric and magnetic properties tool steels	e.g. sectional steels e.g. screw steel e.g. wear-resistant steels e.g. corrosion-resistant steels e.g. dynamo sheet steels e.g. high-speed steels
according to the composition		
structural steel	unalloyed and alloyed steels	single-alloy steels (one alloying constituent); multiple-alloy steels (several alloying constituents)
tool steels	unalloved tool steels, low-	

	alloy tool steels, medium- alloy tool steels, high-alloy	
according to the form of production	tool steels sectional steel special profiles bar steel strip steel plate and sheet	e.g. U-steel, > 80 mm high e.g. rails e.g. U-steels, ≤ 80 mm high
	tube wire semifinished products forged pieces	e.g. plate > 4 mm thick, sheet < 4 mm thick seamless or welded various gauges and cross- sections sheet bars, billets etc. hammer and drop forgings

5.2. Properties of Important Steels

Name	Designation of the steel grade	Carbon content C in %	Tensile strength δzB in MPa	Alloying constituents in %
heat- treated steel	C 22	0.180.25	500600	0.30.6 Mn, ≤ 0.045 P 0.150.35 Si ≤ 0.045 S
	C 35	0.320.40	600720	0.40.7 Mn 0.150.35 Si ≤ 0.045 P and S each
	C 45	0.420.50	650800	0.50.8 Mn

Formulae and Tables - Wood / textbooks for vocational tr...

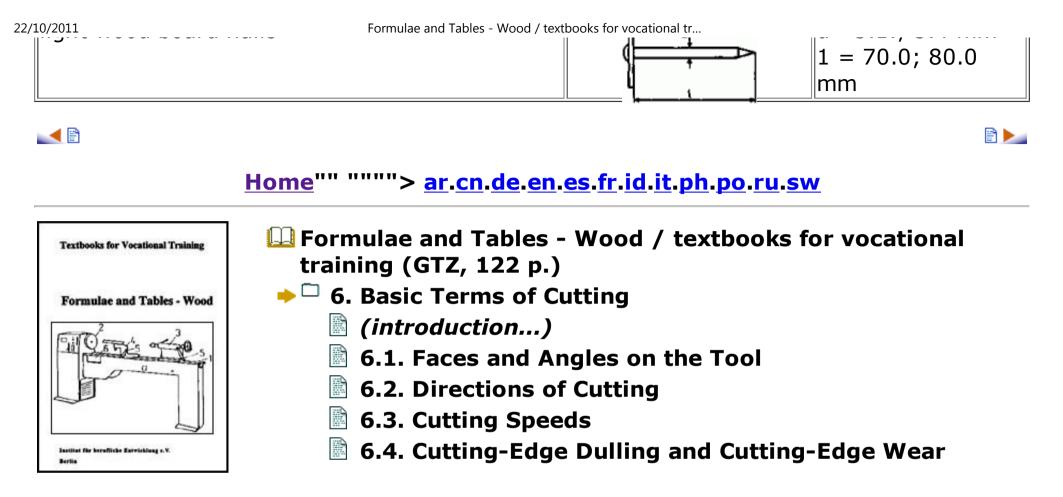
10/2011	FU	ormulae and Tables - Wood / 1		
				0.150.35 Si < 0.045 P and S each
	C 60	0.570.65	750900	like C 45
	30 Mn 5	0.270.34	800950	1.21.5 Mn 0.150.35 Si
	37 Mn Si 5	0.330.41	9001050	1.11.4 Mn 1.11.4 Si
	25 Cr Mo 4	0.220.29	800950	$\begin{array}{l} 0.50.8 \mbox{ Mn} \\ 0.91.2 \mbox{ Cr} \\ 0.150.35 \mbox{ Si} \\ 0.150.25 \mbox{ Mo} \\ \leq 0.035 \mbox{ P and S each} \end{array}$
	34 Cr Mo 4	0.300.37	9001050	like 25 Cr Mo 4
	42 Cr Mo 4	0.380.45	10001200	like 25 Cr Mo 4
	50 Cr Mo 4	0.460.54	11001300	like 25 Cr Mo 4
	36 Cr Ni Mo 4	0.320.40	10001200	0.91.2 Cr and Ni each \leq 0.035 P and S each
	34 Cr Ni Mo 6	0.300.38	11001300	1.41.7 Cr and Ni each \leq 0.035 P and S each
	30 Cr Ni Mo 8	0.260.34	12501450	1.82.1 Cr and Ni each \leq 0.035 P and S each
case- hardening steels	C 10	0.060.12	420520	0.150.35 Si 0.250.5 Mn ≤ 0.045 P and S each

Formulae and Tables - Wood / textbooks for vocational tr..

/10/2011		ormulae and Tables - Wood /		
	C 15	0.120.18	500650	like C 10
	15 Cr 3	0.120.18	600850	0.40.6 Mn 0.50.8 Cr
				$0.150.35$ Si ≤ 0.035 P and S each
	16 Mn Cr 5	0.140.19	8001100	1.01.3 Mn 0.81.1. Cr 0.150.35 Si ≤ 0.035 P and S each
	20 Mn Cr 5	0.170.22	10001300	1.11.4 Mn 1.01.3 Cr 0.15,0.35 Si \leq 0.035 P and S each
	15 Cr Ni 6	0.120.17	9001200	1.41.7 Cr 1.41.7 Ni, Mn, Si, P and S like 15 Cr 3
	18 Cr Ni 8	0.150.20	12001450	1.82.1 Cr 1.82.1 Ni, Mn, Si, P and S like 15 Cr 3

5.3. Applications of Important Steels

Steel grade	Applications
35 W Cr V 7,80 W V 2	machine blades
100 Cr 2	files


100 Cr 6	Formulae and Tables - Wood / textbooks for vocational tr measuring instruments, saw blades for metal, cutting tools
64 Si Cr 5,85 Cr 1	saw blades for wood working
110 Mo V 5	metal saw blades
90 Cr 3	cutting tools
140 Cr 2,110 Cr 2,120 W V 4	twist drills
C 115 W 1	screws
C 100 W 1	cutters
C 130 W 2	files, flat drills, countersinks and counterbores
C 90 W 2	circular saw-blades, planing tools, cutters, cutter chain teeth, wood-carving knives
C 80 W 2	hammers, machine bits for wood
C 70 W 2	screw drivers, axes, pliers, vice jaws
C 60 W 3	wood working tools
C 85 W 6	hand saw blades, frame and circular saw blades
X 97 W Mo 3.3	twist drills
X 82 W V 9.2	high-speed wood working tools
X 86 W V 12.2	turning tools, cutters, twist drills
C 35, C 45, 25 Cr Mo 4	screws, nuts

5.4. Screws and Nails

(Material: unalloyed steel with low or medium carbon content, $C = \le 0.55$ %)

Name	Representation	Dimensions
raised countersunk head wood screws	T Thomas -	$d_1 = 1.68.0 \text{ mm}$
	- 5 00000000 D	d2 = 3.014.5
		mm
		1 = 8.090.0 mm
cross recessed raised countersunk oval head screw		similar dimensions
slotted round head wood screw	- Annonomi +	d ₁ = 1.68.0 mm
		d ₂ = 3.216.0 mm
	a ¹ al	1 = 8.090.0 mm
cross recessed round head wood screw	Thursday-	similar dimensions
slotted countersunk head wood screw	S PLUCOULDER S	d ₁ = 1.68.0 mm
Slotted Countersultk head wood Screw	} <u>-</u>	
		$d_2 = 3.014.5$
		mm $1 = 8.090.0 \text{ mm}$
		1 – 0.090.0 mm
cross recessed countersunk head wood screw		similar dimensions
hexagon head cap wood screw		$d_1 = 6.012.0$
		mm
		$d_2 \leq d_1$
		1 = 30.0120.0
		mm
Γ	_1	ור

10/2011	Formulae and Tables - Wood / text	books for vocational tr	
countersunk-head nails			d = 1.46.0 mm 1= 20.0200.0
flat-headed nails			mm d= 0.84.6 mm 1= 8.0130.0 mm
button-head nails			d = 0.82.5 mm 1 = 8.030.0 mm
upset-head nails			d = 1.03.8 mm 1= 14.0100.0 mm
tin tacks			$d_1 = 1.42.8 \text{ mm}$ $d_2 = 4.010.5$ mm $1 = 10.040.0$ mm
clout nails			like tin tacks
hardened nails			d= 1.2 and 2.0 mm 1 = 16.050.0 mm
light wood board nails			d= 3.1.; 3.4 mm

Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

6. Basic Terms of Cutting

The science of cutting deals with the processes, laws and connections for chipforming working with cutting tools.

6.1. Faces and Angles on the Tool

Symbol

Formulae and Tables - Wood / textbooks for vocational tr...

10/2011 Formulae		
Representation		
primary cutting edge faces on the tool - saw tooth	HS	line of cut between flank and tool face
secondary cutting edge faces on the tool - milling tool	NS	cutting edge adjacent to the primary cutting edge
tool face faces on the tool - drilling tools V F F F F F F F F F F	Sf	face on the cutting wedge on which he chip is removed
flank	Ff	face on the cutting wedge facing the area of cut produced on the work-piece
flank of the drill point	Hf	face on the tool next to the flank
comer	E	point on the tool at which primary and

Formulae and Tables - Wood / textbooks for vocational tr...

		secondary cutting edges meet
tool orthogonal clearance angles on the tool - planing tool	α	angle between flank and tool cutting plane (plane through the cutting edge)
tool orthogonal wedge angle angles on the tool - saw tooth	β	angle between flank and tool face
tool orthogonal rake	γ	angle between tool face and a vertical to the tool cutting plane $\gamma = 90^{\circ} - \alpha - \beta$
cutting angle angles on the tool - drilling tools	δ	angle between tool face and tool cutting plane $\delta = \alpha + \beta$

tool cutting edge inclination angles of the tool - drilling tool	λ	angle between cutting edge and tool reference plane
point angle	3	angle between primary and secondary cutting edges
drill point angle	εВ	angle between two primary cutting edges, also called face angle

6.2. Directions of Cutting

The cutting direction of a cutting operation is the direction of motion of the primary cutting edge referred to the grain direction of the solid wood or the board plane of plane materials of wood.

Cutting directions in solid	Cutting directions in	Cutting directions in
wood	laminated wood	particle and fibre

Formulae and Tables - Wood / textbooks for vocational tr...

/10/2011 FC	ormulae and Tables - wood / textbooks for vocational tr	I I I I I I I I
		boards
Contraction of the second seco	and the second s	
A cross-cutting cutting	b	b
direction vertically to the grain	cutting direction vertically to the board plane; approximately like cross-cutting of solid wood	cutting direction vertically to the board plane; rough area of cut, crumbly chip
B longitudinal cutting cutting	a/B	а
direction parallel to the grain	cutting direction in board plane,	cutting direction in board
direction; rough area of cut,	in the direction of the grain	plane; cutting only in the
coherent chip, long tool path	direction of the top layer; like longitudinal cutting of solid wood	top layer, smooth area of cut, crumbly chip
C transverse cutting cutting	a/C	
direction transversely to the	cutting direction in board plane	
grain direction; rough area of	and transversely to the grain	
cut, brittle chip	direction of the top layer; like	
	transverse cutting of solid wood	

6.3. Cutting Speeds

Term	Symbol	Definition	
cuttina D:/cd3wddvd/NoE	-	speed at which the cutting edge of a tool performs chip-forming	3

22/10/2011

Formulae and Tables - Wood / textbooks for vocational tr...

			indiae and rables - wood / textbooks for vocational ti	
speed		movements in the workpiece		
		$v = d \cdot \pi \cdot n$	in m · s ⁻¹	
			d = diameter of the cutting circle of the tool	
			n = tool speed	
feed	u	speed at which the workpiece is fed to the stationary tool or the tool is fed		
rate		to the workpiece clamped in place; unit of measurement: m \cdot min ⁻¹		

Formulae and Tables - Wood / textbooks for vocational tr...

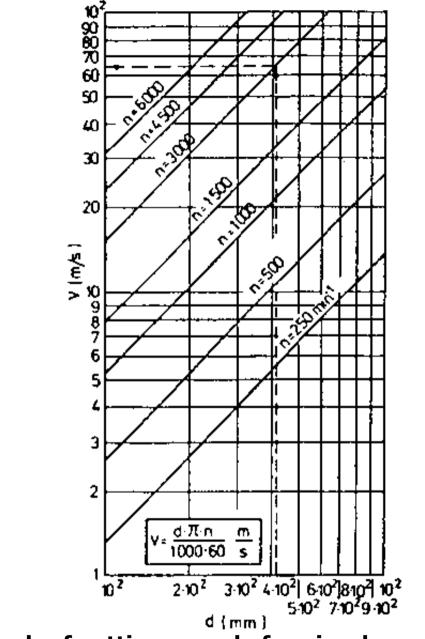


Figure 3 Graph of cutting speeds for circular sawing machines

Example:

Which cutting speed does a circular saw blade having a diameter of 400 mm reach at a speed of rotation of 3000 min⁻¹?

Solution:

Find the diameter on the lower line, go vertically upwards to the point of intersection with the diagonal for $n = 3000 \text{ min}^{-1}$, from there read off the result horizontally on the left side: $v = 62.8 \text{m} \cdot \text{s-1}$

Formulae and Tables - Wood / textbooks for vocational tr...

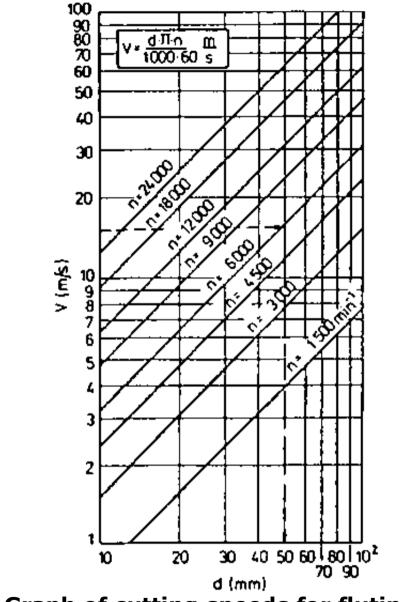


Figure 4 Graph of cutting speeds for fluting machines

Example:

```
A cutting speed of approx. 15m \cdot s<sup>-1</sup> is to be reached; the tool speed is 6000 min<sup>-1</sup>.
```

```
Which tool diameter is to be chosen?
```

Solution:

Find the value for v on the left side, find horizontally the point of intersection with the diagonal for n = 6000 min⁻¹, from there drop a perpendicular and read off on the lower line: d \approx 50 mm.

6.4. Cutting-Edge Dulling and Cutting-Edge Wear

The loss of the original keenness (dressed keenness) of the tool cutting edge and the outer comers in the process of cutting is called dulling, its result is called wear.

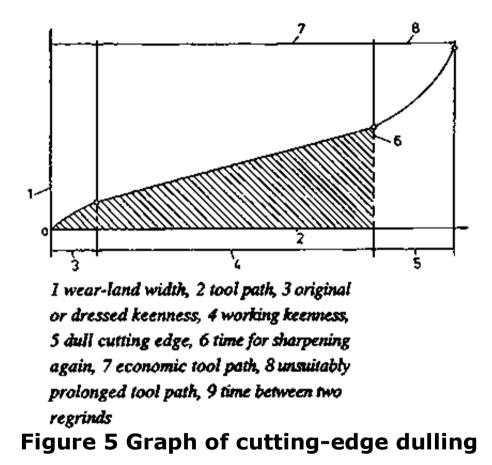
Causes of wear

Cause of wear	Effect of wear						
Angles on the	e tool cutting edges						
wedge angle	The cutting forces rise with increasing wedge angle. Therefore, it must be kept as small as possible (taking into consideration the necessary stability).						
rake anale	If the rake angle is too small, the consequences will be the same as with a						

10/2011	Formulae and Tables - Wood / textbooks for vocational tr							
-	too large wedge angle.							
clearance Large clearance angles result in a smaller load on the cutting edge (les angle friction and lower temperature).								
Cutting condit	Cutting conditions							
cutting speed	High cutting speeds have the effect of increasing the load on the whole cutting wedge. For economical reasons they are to be kept as low as possible.							
cutting depth	Keep it as small as possible. Great cutting depths lead to increasing mechanical stress on the cutting edges.							
Mechanical st	resses							
friction	Excessive roughness of the cutting edge (choice of the proper abrasive tool) results in increased wear at the cutting wedge.							
impact load	Mainly at the beginning of cutting when the cutting edge penetrates int the wood for the first time; it results in the loss of the original keennes							
compressive stress	The pressure of the workpiece on the tool is increasing with dulling (sharpening in time is necessary).							
Various kinds	of stresses							
thermal stress	The friction between workpiece and tool produces temperatures of about 800 °C at the cutting edge. This results in softening of the cutting wedge surface and increased abrasion of material (proper choice of the cutting-edge material of the tool is necessary).							
electrochemical stress	The diluted acids in the wood cells form electrolytes. In connection with frictional electricity produced during cutting the cutting-edge material is dissolved by electrolysis.							

electroerosion Spark discharges occur through electrostatic charges during cutting as a result of which particules are torn out of the flank. This formation of craters (increased roghness) favours the mechanical wear.

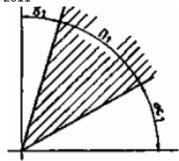
Forms of wear

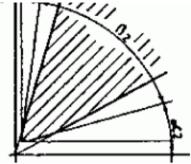

Form of wear Representation	Influences and measurable variables
tool-flank wear	a result of mechanical wear, thermal load and electroerosion; the wear- land width is the measurable variable. This mark characterizes the size of the regrind, because the cutting edge has to be set back during sharpening so far that the wear mark disappears; wear mark for steel cutting edges <i>s</i> 0.3 mm.
cutting edge-wear	caused especially by thermal and frictional stresses; the external radius of the cutting edge is the measure of the cutting-edge wear;
Corner wear	caused by the influence of friction and temperature; with increasing dulling the comer wear rapidly rises;

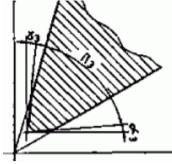
2/10/2011	Formulae and Tables - Wood / textbooks for vocational tr
tool face wear	Apart from friction (flowing off chip) and temperature there is above all
	the electrochemical influence that is at work. The resetting of the cutting edge is the measure of the tool face wear (recommended dimension ≈ 0.15).
crater wear	special form of the tool face wear as a result of friction and thermal influence by the flowing off chip
measurable	
variables of	
cutting-edge dulling	
1 crater wear, 2	
cutting-edge	

Formulae and Tables - Wood / textbooks for vocational tr...

reset, 3 wear-land width, 4 cuttingedge rounding

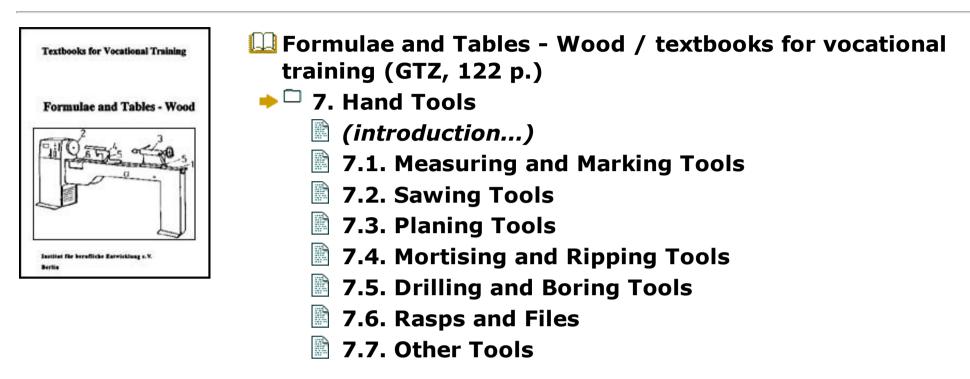

Development of the cutting-edge dulling


1521 V


44/62

22/10/2011

Formulae and Tables - Wood / textbooks for vocational tr...


cutting wedge cutting wedge (operating keenness) with the wedge angle β_2 that has become larger stage of dulling) with β_3 (dressed keenness) with the by incipient dulling and the tool orthogonal that has become still larger original cuttingclearance α_2 that has become smaller and α_3 and γ_3 that have edge angles α_1 , β_1 the tool orthog rate γ_2 and γ_1

cutting wedge (advanced become still smaller

Dulling period of the cutting edge

Term	Symbol	Definition	Connections
tool life			$T = \frac{S}{W_t}$ S = tool path W _t = path of cut per unit of time
tool path		cutting edge cutting in the	the tool path in connection with the tool life is an important parameter for the economical use of machine tools

Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

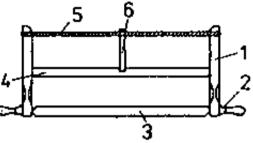
Formulae and Tables - Wood / textbooks for vocational training (GTZ, 122 p.)

7. Hand Tools

Hand tools are individually guided working tools by means of which action is taken on the object of work (workpiece) when the respective operations are carried out.

7.1. Measuring and Marking Tools

Marking tools serve the purpose of transferring sizes to the workpiece and of marking the transferred sizes.

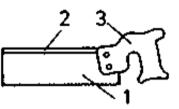

Tool Representation	Construction and use
back square	The back square serves for marking out right angles. It has a shorter, thicker part (head piece, stop) and a longer, thinner blade (rail). It consists of wood or steel.
mitre rule	Mitre rules serve to mark out 45° angles, with the shorter leg serving as stop.
bevel gauge	Bevel gauges are back squares where both legs can be adjusted to each other as desired (angles of any size can be formed).
scratch gauge	The scratch gauge serves for marking out straight scribed linears parallel to one side of the workpiece. The stop is adjustable and is arrested by wedges or screws.
Compasses	The compasses serve for taking and transferring sizes and for marking out circular arcs.
1 guide beam, 2 centring point, 3 slide, 4 pencil holder	

22/	10/2011 Formulae	and Tables - Wood / textbooks for vocational tr
		workpiece between graduation carrier and sliding member. The diameter of bore holes can be measured with the sensing elements. For determining the depth of bore holes and similar the depth gauge is used.
		or bore notes and similar the depth gadge is used.
	<i>1 measuring surface of the graduation carrier, 2 measuring surface of the sliding member, 3 sensing element for determining the diameter of bore holes, 4 depth gauge</i>	
	outside caliper	caliper-like measuring instrument (caliper) with
	Solution	inwardly bent legs for tracing and comparing diameter, lengths and tick-nesses
	inside caliper	caliper-like measuring instrument (internal caliper
		gauge) with outwardly bent leg points for tracing and comparing bore holes, counterbores and similar
	radius gauge/profile gauge	Radius gauges are templates like profile gauges and similar, by means of which the profiles of boards, but also of narrow surfaces can be checked.

7.2. Sawing Tools

Hand saws have triangular teeth and consist of tool steel. We distinguish between span-web saws and saws without span web.

Parts of a saw without span web



I saw arm, 2 adjustable handle, 3 saw blade, 4 connecting strip

5 tensioning part, 6 lock

Figure 6 Parts of a span web saw

Parts of a saw without span web

1 saw blade, 2 back reinforcing part (steel rail), 3 handle Figure 7 Parts of a saw without span web

Kinds and dimensions of span-web saws (frame saws)

Kind of saw						
	length in mm		thickness in mm		Setting width*) in	Applications

Formulae and Tables - Wood / textbooks for vocational tr...

				mm	mm			
cabinet saw	700;800	25	0.7	5	0.4	for work in grain direction; trimming, cutting off		
pad saw	700:800	40	0.7	4	0.25	finer cuts across the grain direction, for wood-based materials		
fret saw	700	10	0.7	3	0.25	for sawing out bends		

*) tooth set: alternate bending out of saw teeth to reach a cutting width which is greater than the blade thickness.

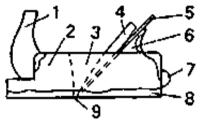
Kinds and dimensions of saws without span web

Kind of saw	length in mm	Saw blade width in mm	thickness in mm	Saw pitch in mm	Setting width in mm	Applications
foxtail	250- 500		0.7-0.8	3-5	0.2-0.25	fine work, cutting of plywood and other materials
keyhole saw	300		1.0	4	0.35	for cutting out openings
fine saw	250	65	0.5	1.5	0.15	especially for mitre cuts

22/10/2011	Formulae and Tables - Wood / textbooks for vocational tr						
back saw	300	100	0.7	3-4	0.2	like fine saw	

nest of saws: Saw blades of all span-web saws known so far can be fixed to a handle as required.

Tool geometry of hand saws


Kind of saw	Angle at th	e a tool cu	tting edge in °
	α	β	γ
cabinet, pad, fret saws	45	70	-25
foxtail saw, keyhole saw	60	60	-30
fine saw	65	50	-25
back saw	10	60	20

Recommendations for maintenance and use

Untension frame saws after use, turn the row of teeth inwards during transport, saturate wooden parts with linseed oil varnish or with polish to prevent impurities from getting into them; keep hand saws in a hangig position, clean the saw blade from impurities by means of petroleum or similar and protect it against rust by means of acid-free grease. Cover the teeth of saws without span web during transport and storage so that no injuries are possible.

7.3. Planing Tools

Parts of a plane

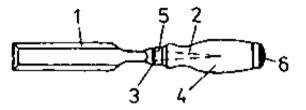
I nose, 2 plane body, 3 chip hole, 4 clamping wedge, 5 plane knife, 6 hand guard, 7 impact button, 8 plane face, 9 chip opening

Figure 8 Parts of plane

Kind of plane	Cutting angle δ in ^o	• •
finish plane		without flap; coarse chip removal, for flattening and rough smoothing, chip thickness up to 1 mm
1 plane knife, 2 plane body, 3 chip hhole, 4 workpiece, 5 chip, 6 wedge angle, 7 cutting angle, 8 flap of the plane		
double iron plane		with flap, smoother surface than with the finish plane, for flattening of finished surfaces

1 plane knife, 2 plane body, 3 chip hole, 4		
workpiece, 5 chip, 6 wedge angle, 7		
cutting angle, 8 flap of the plane		
trying plane	45	with flap; basically a long double plane; for dressing of surfaces, for edging and jointing of narrow surfaces
smoothing plane	49	with flap; for smoothing of surfaces, for planing of end surfaces
1 plane knife, 2 plane body, 3 chip hole, 4		
workpiece, 5 chip, 6 wedge angle, 7		
cutting angle, 8 flap of the plane		
rabbet plane	4548	simple rabbet plane without flap,
		double rabbet plane with flap; for
		replaning and resmoothing of rebates

Recommendations for maintenance and use


Regularly clean the plane iron and the face of the plane; when putting the plane down, lay it on its side; the face of the plane must be even, if not, dress it and

afterwards oil it slightly; replace faces of planes that are excessively worn by new ones; if the plane is blocking, check whether the flap is tightly fitting, the wedge is fitting or whether the pressure of the wedge is properly acting on the lower part of the plane iron.

7.4. Mortising and Ripping Tools

Mortising and ripping tools are hand tools for chiselling, mortising and turning operations.

Parts of the mortising and ripping tools

1 blade, 2 tang, 3 shoulder or collar, 4 haft, 5 clamp,

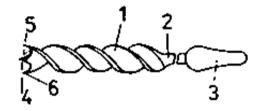
6 impact button

Figure 9 Parts of the mortising and chiselling tools

Kinds and dimensions of the mortising and ripping tools

Tool			nsion of blade		
		width in mm	thickness in mm	Applications	
rippina D:/cd3wddvd/NoExe/Ma	liaht		2.54	for mortising recesses, for recessing fittings,	54/0

22/10/2011		Forr		Vood / textbooks for vocational tr
chisel	medium heavy	640 2035	3.54.2 4.25	for mortising recesses at an acute angle
mortise chisel		226	1215	for mortising orftenon holes and similar
turning chisel, flat		450	3.5; 4.5	making of turned bodies, soft wood working, finishing work; $\alpha = 1020^{\circ}$ $\beta = 2030^{\circ}$
turning chisel, hollow		450	3.56	hard wood working, roughing work; $\alpha = 1020^{\circ}$ $\beta = 4050^{\circ}$


Recommendations for maintenance and use

The tool must be clean and sharp; always clamp the workpiece, always chisel on the carpenter's bench plate, not on the collets; further hints: like plane irons.

7.5. Drilling and Boring Tools

Drills are tools for making round holes.

Parts of a drill

1 drill scew, 2 parallel shank, 3 squared end, 4 centre-point with infeed thread, 5 cutting tool tip, entering tap Figure 10 Parts of a drill

Drilling and boring tool	Dimensions in mm		Applications
twist drill with roof-shaped point	diameter thread length	3.08.3 4270	for drilling into hard wood and end-grained wood, into wood-based materials and metals
twist drill with a spiral flute	diameter overall length	212 120170	for drilling into end-grained wood
auger bit	diameter length	630 185250	for deep drilling into soft and hard wood

D:/cd3wddvd/NoExe/Master/dvd001/.../meister11.htm

22/10/2011

Formulae and Tables - Wood / textbooks for vocational tr...

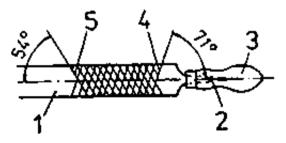
twisted auger	diameter		mainly for predrilling for woods screw into soft
	length	125160	wood; produces high splitting effect
centre bit	diameter	650	drilling into cross pieces
	length	80140	
grimlet	diameter	210	for predrilling screw and nail holes, mainly into
	length	90200	soft wood
wood	diameter	16 and	for reaming bore holes, these get a funnel-
countersinks	length	20 100	shaped bevel

Aspects for the drill selection

Feature	Application
with square shank	for breast drill
with parallel shank	for drill chuck and machine
with entering tap	for cross-piece drilling
with chip groove	for deep drilling

with roof-shaped point for non-fibrous materials and end-arained wood D:/cd3wddvd/NoExe/Master/dvd001/.../meister11.htm

with centre point	for exact advance
with feed thread	for manual work
without feed thread	for machine work
with short die head	for flat drilling


Recommendations for maintenance and use

Drilling and boring tools must be clean and well sharpened. When storing them, protect cutting parts. Keep them safe in a hanging or lying position in cabinets or cases, they must not contact each other. Remove impurities with hot water or petroleum after use, slightly grease them with acid-free grease against rust.

7.6. Rasps and Files

Rasps and files are hand tools for flattening and smoothing. Rasps have coarser cutting edges, files have finer ones.

Parts of rasps and files

1 file blade, 2 file tang, 3 file handle, 4 upcut, 5 undercut Figure 11 Parts of rasps and files

Kinds and dimensions of rasps

ΤοοΙ	Length in	Cross-section	Application
	mm	in mm	
flat rasp	200350	20 × 536 × 8	Rasps serve for coarse smoothing of round
P			portions and recesses.
2////// v			
1 width, 2			
thickness			
half-round	200300	18 × 630 ×	
		10	
b			
1 width, 2			
thickness			
round rasp	200250	diameter 8 and	
		10 mm	
b .			
1 width			

Kinds of dimensions of files

Tool Length in Crossmm section in

Application

22/10/2011

Formulae and Tables - Wood / textbooks for vocational tr...

/10/2011		FOITIUIAE a	nd Tables - wood / textbooks for vocational tr
		mm	
rectangular	200 and	20 × 3.5;	for fine smoothing of round portions and recesses,
file	250	25 × 4	reworking of rasped surface
V///////			
1 width, 2			
thickness			
flat/round	like		
file	rectangular		
	file		
1 width, 2			
thickness			
triangular	100200	side length	especially as saw sharpening file, edge angle 60°,
file		617	edges slightly rounded for machining the tooth gullet
117			
b			
1 width			

Special kinds, e.g. as special saw and mill files

Recommendations for maintenance and use

Use only tools the tangs of which are straightly and firmly seated in the haft (stab injuries). Work in grain direction, if possible. Choose tooth spacing*) according to

the wood quality (use files with coarse cut for soft or damp wood). Clean the tools from impurities by dipping them into hot water, brush them with a hand brush. Clean metal files with file brushes made of fine copper wires.

*) Cuts: Cutting edges lying closely one after the other and recessed or cut into the metal base body by machine.

7.7. Other Tools

ΤοοΙ	Application	
	for cutting glass panels. The glass is scratched under slight pressure by means of a diamond particle or a hard metal tip.	
5	for setting hand saws. The tool head provided with the recesses may have a varying number of notches; the notches are of different widths and correspond to the different thicknesses of the saw blades.	e
	for setting hand and machine saw blades. The setting pliers are designed for various tooth depths and blade thicknesses; setting depth and setting width can be adjusted. The setting pliers allow more exact working than the setting iron.	
<i>1 adjusting screw for tooth depth 2 adjusting screw for setting width</i>		
d3wddvd/NoExe/Master/dvd001//meister11.	htm	

setting pliers for tooth depths of up to 8 mm and blade thicknesses of 0.31.5 mm	
1 adjusting screw for	
tooth depth 2 adjusting screw for setting width	
setting pliers for tooth depths of up to 15 mm and blade thicknesses of 0.53.0 mm	
hone	for honing (smoothing) the cutting edge. Natural as well as synthetic stones are used, with the latter mostly having on both sides different grain sizes (rough honing, fine reworking). Water and oil are used as lubricants.
scraper	for smoothing hard wood surfaces. Chip removal by sharp burrs on the longitudinal edges; 0.8 - 3 mm thick, made of tool steel

