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Chapter 1

Introduction1

1.1 Introduction

The development of algorithms for the fast computation of the Discrete Fourier Transform in the last 30 years
originated with the radix 2 Cooley-Tukey FFT and the theory and variety of FFTs has grown signi�cantly
since then. Most of the work has focused on FFTs whose sizes are composite, for the algorithms depend
on the ability to factor the length of the data sequence, so that the transform can be found by taking the
transform of smaller lengths. For this reason, algorithms for prime length transforms are building blocks for
many composite length FFTs - the maximum length and the variety of lengths of a PFA or WFTA algorithm
depend upon the availability of prime length FFT modules. As such, prime length Fast Fourier Transforms
are a special, important and di�cult case.

Fast algorithms designed for speci�c short prime lengths have been developed and have been written as
straight line code [9], [13]. These dedicated programs rely upon an observation made in Rader's paper [24] in
which he shows that a prime p length DFT can be found by performing a p− 1 length circular convolution.
Since the publication of that paper, Winograd had developed a theory of multiplicative complexity for
transforms and designed algorithms for convolution that attain the minimum number of multiplications
[38]. Although Winograd's algorithms are very e�cient for small prime lengths, for longer lengths they
require a large number of additions and the algorithms become very cumbersome to design. This has
prevented the design of useful prime length FFT programs for lengths greater than 31. Although we have
previously reported the design of programs for prime lengths greater than 31 [27] those programs required
more additions than necessary and were long. Like the previously existing ones, they simply consisted of a
long list of instructions and did not take advantage of the attainable common structures.

In this paper we describe a set of programs for circular convolution and prime length FFTs that are are
short, possess great structure, share many computational procedures, and cover a large variety of lengths.
Because the underlying convolution is decomposed into a set of disjoint operations they can be performed in
parallel and this parallelism is made clear in the programs. Moreover, each of these independent operations
is made up of a sequence of sub-operations of the form I ⊗ A⊗ I where ⊗ denotes the Kronecker product.
These operations can be implemented as vector/parallel operations [34]. Previous programs for prime length
FFTs do not have these features: they consist of straight line code and are not amenable to vector/parallel
implementations.

We have also developed a program that automatically generates these programs for circular convolution
and prime length DFTs. This code generating program requires information only about a set of modules
for computing cyclotomic convolutions. We compute these non-circular convolutions by computing a linear
convolution and reducing the result. Furthermore, because these linear convolution algorithms can be built
from smaller ones, the only modules needed are ones for the linear convolution of prime length sequences.
It turns out that with linear convolution algorithms for only the lengths 2 and 3, we can generate a wide

1This content is available online at <http://cnx.org/content/m18131/1.5/>.
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2 CHAPTER 1. INTRODUCTION

variety of prime length FFT algorithms. In addition, the code we generate is made up of calls to a relatively
small set of functions. Accordingly, the subroutines can be designed and optimized to speci�cally suit a
given architecture.

The programs we describe use Rader's conversion of a prime point DFT into a circular convolution, but
this convolution we compute using the split nesting algorithm [20]. As Stasinski notes [31], this yields algo-
rithms possessing greater structure and simpler programs and doesn't generally require more computation.

1.1.1 On the Row-Column Method

In computing the DFT of an n = n1n2 point sequence where n1 and n2 are relatively prime, a row-column
method can be employed. That is, if an n1 × n2 array is appropriately formed from the n point sequence,
then its DFT can be computed by computing the DFT of the rows and by then computing the DFT of
the columns. The separability of the DFT makes this possible. It should be mentioned, however, that in
at least two papers [31], [15] it is mistakenly assumed that the row-column method can also be applied to
convolution. Unfortunately, the convolution of two sequences can not be found by forming two arrays, by
convolving their rows, and by then convolving their columns. This misunderstanding about the separability
of convolution also appears in [3] where the author incorrectly writes a diagonal matrix of a bilinear form as
a Kronecker product. If it were a Kronecker product, then there would indeed exist a row-column method
for convolution.

Earlier reports on this work were published in the conference proceedings [27], [28], [29] and a fairly
complete report was published in the IEEE Transaction on Signal Processing [30]. Some parts of this
approach appear in the Connexions book, Fast Fourier Transforms2. This work is built on and an extension
of that in [29] which is also in the Connexions Technical Report3.

2Fast Fourier Transforms <http://cnx.org/content/col10550/latest//latest/>
3Large DFT Modules: 11, 13, 16, 17, 19, and 25. Revised ECE Technical Report 8105

<http://cnx.org/content/col10569/latest//latest/>



Chapter 2

Preliminaries1

2.1 Preliminaries

Because we compute prime point DFTs by converting them in to circular convolutions, most of this and
the next section is devoted to an explanation of the split nesting convolution algorithm. In this section we
introduce the various operations needed to carry out the split nesting algorithm. In particular, we describe
the prime factor permutation that is used to convert a one-dimensional circular convolution into a multi-
dimensional one. We also discuss the reduction operations needed when the Chinese Remainder Theorem
for polynomials is used in the computation of convolution. The reduction operations needed for the split
nesting algorithm are particularly well organized. We give an explicit matrix description of the reduction
operations and give a program that implements the action of these reduction operations.

The presentation relies upon the notions of similarity transformations, companion matrices and Kronecker
products. With them, we describe the split nesting algorithm in a manner that brings out its structure.
We �nd that when companion matrices are used to describe convolution, the reduction operations block
diagonalizes the circular shift matrix.

The companion matrix of a monic polynomial, M (s) = m0 +m1s+ · · ·+mn−1s
n−1 + sn is given by

CM =


−m01

1 −m1

. . .
...

1 −mn−1

 . (2.1)

Its usefulness in the following discussion comes from the following relation which permits a matrix formu-
lation of convolution. Let

X (s) = x0 + x1s+ · · ·xn−1s
n−1

H (s) = h0 + h1s+ · · ·hn−1s
n−1

Y (s) = y0 + y1s+ · · · yn−1s
n−1

M (s) = m0 +m1s+ · · ·mn−1s
n−1 + sn

(2.2)

Then

Y (s) = < H (s)X (s)>M(s) ⇔ y =

(
n−1∑
k=0

hkC
k
M

)
x (2.3)

1This content is available online at <http://cnx.org/content/m18132/1.5/>.
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4 CHAPTER 2. PRELIMINARIES

where y = (y0, · · · , yn−1)t, x = (x0, · · · , xn−1)t, and CM is the companion matrix of M (s). In (2.3), we say
y is the convolution of x and h with respect to M (s). In the case of circular convolution, M (s) = sn − 1
and Csn−1 is the circular shift matrix denoted by Sn,

Sn =


1

1
. . .

1

 (2.4)

Notice that any circulant matrix can be written as
∑
khkS

k
n.

Similarity transformations can be used to interpret the action of some convolution algorithms. If
CM = T−1AT for some matrix T (CM and A are similar, denoted CM ∼ A), then (2.3) becomes

y = T−1

(
n−1∑
k=0

hkA
k

)
Tx. (2.5)

That is, by employing the similarity transformation given by T in this way, the action of Skn is replaced
by that of Ak. Many circular convolution algorithms can be understood, in part, by understanding the
manipulations made to Sn and the resulting new matrix A. If the transformation T is to be useful, it must
satisfy two requirements: (1) Tx must be simple to compute, and (2) A must have some advantageous
structure. For example, by the convolution property of the DFT, the DFT matrix F diagonalizes Sn,

Sn = F−1


w0

w1

. . .

wn−1

F (2.6)

so that it diagonalizes every circulant matrix. In this case, Tx can be computed by using an FFT and the
structure of A is the simplest possible. So the two above mentioned conditions are met.

The Winograd Structure can be described in this manner also. Suppose M (s) can be factored as
M (s) = M1 (s)M2 (s) where M1 and M2 have no common roots, then CM ∼ (CM1 ⊕ CM2) where ⊕ denotes
the matrix direct sum. Using this similarity and recalling (2.3), the original convolution is decomposed
into disjoint convolutions. This is, in fact, a statement of the Chinese Remainder Theorem for polynomials
expressed in matrix notation. In the case of circular convolution, sn − 1 =

∏
d|nΦd (s), so that Sn can be

transformed to a block diagonal matrix,

Sn ∼


CΦ1

CΦd

. . .

CΦn

 =
(
⊕
d|n
CΦd

)
(2.7)

where Φd (s) is the dth cyclotomic polynomial. In this case, each block represents a convolution with respect
to a cyclotomic polynomial, or a `cyclotomic convolution'. Winograd's approach carries out these cyclotomic
convolutions using the Toom-Cook algorithm. Note that for each divisor, d, of n there is a corresponding
block on the diagonal of size φ (d), for the degree of Φd (s) is φ (d) where φ (·) is the Euler totient function.
This method is good for short lengths, but as n increases the cyclotomic convolutions become cumbersome,
for as the number of distinct prime divisors of d increases, the operation described by

∑
khk(CΦd

)k becomes
more di�cult to implement.
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The Agarwal-Cooley Algorithm utilizes the fact that

Sn = P t (Sn1 ⊗ Sn2)P (2.8)

where n = n1n2, (n1, n2) = 1 and P is an appropriate permutation [1]. This converts the one dimensional
circular convolution of length n to a two dimensional one of length n1 along one dimension and length n2

along the second. Then an n1-point and an n2-point circular convolution algorithm can be combined to
obtain an n-point algorithm. In polynomial notation, the mapping accomplished by this permutation P can
be informally indicated by

Y (s) = < X (s)H (s)>sn−1
P⇔ Y (s, t) = < X (s, t)H (s, t)>sn1−1,tn2−1. (2.9)

It should be noted that (2.8) implies that a circulant matrix of size n1n2 can be written as a block circulant
matrix with circulant blocks.

The Split-Nesting algorithm [21] combines the structures of the Winograd and Agarwal-Cooley meth-
ods, so that Sn is transformed to a block diagonal matrix as in (2.7),

Sn ∼ ⊕
d|n

Ψ (d) . (2.10)

Here Ψ (d) = ⊗p|d,p∈PCΦHd(p) where Hd (p) is the highest power of p dividing d, and P is the set of primes.

Example 2.1

S45 ∼



1

CΦ3

CΦ9

CΦ5

CΦ3 ⊗ CΦ5

CΦ9 ⊗ CΦ5


(2.11)

In this structure a multidimensional cyclotomic convolution, represented by Ψ (d), replaces each cyclotomic
convolution in Winograd's algorithm (represented by CΦd

in (2.7). Indeed, if the product of b1, · · · , bk is d
and they are pairwise relatively prime, then CΦd

∼ CΦb1
⊗ · · · ⊗ CΦbk

. This gives a method for combining
cyclotomic convolutions to compute a longer circular convolution. It is like the Agarwal-Cooley method but
requires fewer additions [21].

2.2 Prime Factor Permutations

One can obtain Sn1⊗Sn2 from Sn1n2 when (n1, n2) = 1, for in this case, Sn is similar to Sn1⊗Sn2 , n = n1n2.
Moreover, they are related by a permutation. This permutation is that of the prime factor FFT algorithms
and is employed in nesting algorithms for circular convolution [1], [18]. The permutation is described by
Zalcstein [40], among others, and it is his description we draw on in the following.

Let n = n1n2 where (n1, n2) = 1. De�ne ek, (0 ≤ k ≤ n − 1), to be the standard basis vector,
(0, · · · , 0, 1, 0, · · · , 0)t, where the 1 is in the kth position. Then, the circular shift matrix, Sn, can be described
by

Snek = e < k+1>n
. (2.12)

Note that, by inspection,

(Sn2 ⊗ Sn1) ea+n1b = e < a+1>n1+n1 < b+1>n2
(2.13)
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where 0 ≤ a ≤ n1 − 1 and 0 ≤ b ≤ n2 − 1. Because n1 and n2 are relatively prime a permutation matrix P
can be de�ned by

Pek = e < k>n1+n1 < k>n2
. (2.14)

With this P ,

PSnek = Pe < k+1>n

= e < < k+1>n>n1+n1 < < k+1>n>n2

= e < k+1>n1+n1 < k+1>n2

(2.15)

and

(Sn2 ⊗ Sn1)Pek = (Sn2 ⊗ Sn1) e < k>n1+n1 < k>n2

= e < k+1>n1+n1 < k+1>n2
.

(2.16)

Since PSnek = (Sn2 ⊗ Sn1)Pek and P−1 = P t, one gets, in the multi-factor case, the following.

Lemma 2.1:

If n = n1 · · ·nk and n1, ..., nk are pairwise relatively prime, then Sn = P t (Snk
⊗ · · · ⊗ Sn1)P

where P is the permutation matrix given by Pek = e < k>n1+n1 < k>n2+···+n1···nk−1 < k>nk
.

This useful permutation will be denoted here as Pnk,··· ,n1 . If n = pe11 p
e2
2 · · · p

ek

k then this permutation

yields the matrix, Spe1
1
⊗ · · · ⊗ Spek

k
. This product can be written simply as

k
⊗
i=1
Spei

i
, so that one has

Sn = P tn1,··· ,nk

(
k
⊗
i=1
Spei

i

)
Pn1,··· ,nk

.

It is quite simple to show that

Pa,b,c = (Ia ⊗ Pb,c)Pa,bc = (Pa,b ⊗ Ic)Pab,c. (2.17)

In general, one has

Pn1,··· ,nk
=

k∏
i=2

(
Pn1···ni−1,ni ⊗ Ini+1···nk

)
. (2.18)

A Matlab function for Pa,b ⊗ Is is pfp2I() in one of the appendices. This program is a direct implemen-
tation of the de�nition. In a paper by Templeton [32], another method for implementing Pa,b, without `if'
statements, is given. That method requires some precalculations, however. A function for Pn1,··· ,nk

is pfp().
It uses (2.18) and calls pfp2I() with the appropriate arguments.

2.3 Reduction Operations

The Chinese Remainder Theorem for polynomials can be used to decompose a convolution of two sequences
(the polynomial product of two polynomials evaluated modulo a third polynomial) into smaller convolutions
(smaller polynomial products) [39]. The Winograd n point circular convolution algorithm requires that
polynomials are reduced modulo the cyclotomic polynomial factors of sn − 1, Φd (s) for each d dividing n.

When n has several prime divisors the reduction operations become quite complicated and writing a
program to implement them is di�cult. However, when n is a prime power, the reduction operations are
very structured and can be done in a straightforward manner. Therefore, by converting a one-dimensional
convolution to a multi-dimensional one, in which the length is a prime power along each dimension, the split
nesting algorithm avoids the need for complicated reductions operations. This is one advantage the split
nesting algorithm has over the Winograd algorithm.
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By applying the reduction operations appropriately to the circular shift matrix, we are able to obtain a
block diagonal form, just as in the Winograd convolution algorithm. However, in the split nesting algorithm,
each diagonal block represents multi-dimensional cyclotomic convolution rather than a one-dimensional one.
By forming multi-dimensional convolutions out of one-dimensional ones, it is possible to combine algorithms
for smaller convolutions (see the next section). This is a second advantage split nesting algorithm has over
the Winograd algorithm. The split nesting algorithm, however, generally uses more than the minimum
number of multiplications.

Below we give an explicit matrix description of the required reduction operations, give a program that
implements them, and give a formula for the number of additions required. (No multiplications are needed.)

First, consider n = p, a prime. Let

X (s) = x0 + x1s+ · · ·+ xp−1s
p−1 (2.19)

and recall sp−1 = (s− 1)
(
sp−1 + sp−2 + · · ·+ s+ 1

)
= Φ1 (s) Φp (s). The residue < X (s)>Φ1(s) is found

by summing the coe�cients of X (s). The residue < X (s)>Φp(s) is given by
∑p−2
k=0 (xk − xp−1) sk. De�ne

Rp to be the matrix that reduces X (s) modulo Φ1 (s) and Φp (s), such that if X0 (s) = < X (s)>Φ1(s)

and X1 (s) = < X (s)>Φp(s) then  X0

X1

 = RpX (2.20)

where X, X0 and X1 are vectors formed from the coe�cients of X (s), X0 (s) and X1 (s). That is,

Rp =



1 1 1 1 1

1 −1

1 −1

1 −1

1 −1


(2.21)

so that Rp =

 1−1

Gp

 where Gp is the Φp (s) reduction matrix of size (p− 1) × p. Similarly, let X (s) =

x0 + x1s + · · · + xpe−1sp
e−1

and de�ne Rpe to be the matrix that reduces X (s) modulo Φ1 (s), Φp (s), ...,
Φpe (s) such that 

X0

X1

...

Xe

 = RpeX, (2.22)

where as above, X, X0, ..., Xe are the coe�cients of X (s), < X (s)>Φ1(s) , ..., < X (s)>Φpe (s).

It turns out that Rpe can be written in terms of Rp. Consider the reduction of X (s) = x0 + · · ·+x8s
8 by

Φ1 (s) = s− 1, Φ3 (s) = s2 + s+ 1, and Φ9 (s) = s6 + s3 + 1. This is most e�ciently performed by reducing
X (s) in two steps. That is, calculate X ' (s) = < X (s)>s3−1 and X2 (s) = < X (s)>s6+s3+1. Then
calculate X0 (s) = < X ' (s)>s−1 and X1 (s) = < X ' (s)>s2+s+1. In matrix notation this becomes

 X '

X2

 =


I3 I3 I3

I3 −I3
I3 −I3

X and

 X0

X1

 =


1 1 1

1 −1

1 −1

X '. (2.23)
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Together these become 
X0

X1

X2

 =


R3

I3

I3



I3 I3 I3

I3 −I3
I3 −I3

X (2.24)

or 
X0

X1

X2

 = (R3 ⊕ I6) (R3 ⊗ I3)X (2.25)

so that R9 = (R3 ⊕ I6) (R3 ⊗ I3) where ⊕ denotes the matrix direct sum. Similarly, one �nds that R27 =
(R3 ⊕ I24) ((R3 ⊗ I3)⊕ I18) (R3 ⊗ I9). In general, one has the following.

Lemma 2.2:

Rpe is a pe × pe matrix given by Rpe =
∏e−1
k=0

((
Rp ⊗ Ipk

)
⊕ Ipe−pk+1

)
and can be implemented

with 2 (pe − 1) additions.
The following formula gives the decomposition of a circular convolution into disjoint non-circular convo-

lutions when the number of points is a prime power.

Rpe Spe R−1
pe =


1

CΦp

. . .

CΦpe


=

e
⊕
i=0
CΦpi

(2.26)

Example 2.2

R9 S9R
−1
9 =


1

CΦ3

CΦ9

 (2.27)

It turns out that when n is not a prime power, the reduction of polynomials modulo the cyclotomic poly-
nomial Φn (s) becomes complicated, and with an increasing number of prime factors, the complication
increases. Recall, however, that a circular convolution of length pe11 · · · p

ek

k can be converted (by an appro-
priate permutation) into a k dimensional circular convolution of length pei

i along dimension i. By employing
this one-dimensional to multi-dimensional mapping technique, one can avoid having to perform polynomial
reductions modulo Φn (s) for non-prime-power n.

The prime factor permutation discussed previously is the permutation that converts a one-dimensional
circular convolution into a multi-dimensional one. Again, we can use the Kronecker product to represent
this. In this case, the reduction operations are applied to each matrix in the following way:

T
(
Spe1

1
⊗ · · · ⊗ Spek

k

)
T−1 =

(
⊕e1i=0CΦ

pi
1

)
⊗ · · · ⊗

(
⊕ek
i=0CΦ

pi
k

)
(2.28)

where

T = Rpe1
1
⊗ · · · ⊗Rpek

k
(2.29)
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Example 2.3

T (S9 ⊗ S5)T−1 =


1

CΦ3

CΦ9

⊗
 1

CΦ5

 (2.30)

where T = R9 ⊗R5.

The matrix Rpe1
1
⊗ · · · ⊗ Rpek

k
can be factored using a property of the Kronecker product. Notice that

(A⊗B) = (A⊗ I) (I ⊗B), and (A⊗B ⊗ C) = (A⊗ I) (I ⊗B ⊗ I) (I ⊗ C) (with appropriate dimensions)
so that one gets

k
⊗
i=1
Rpei

i
=

k∏
i=1

(
Imi ⊗Rpei

i
⊗ Ini

)
, (2.31)

where mi =
∏i−1
j=1 p

ej

j , ni =
∏k
j=i+1 p

ej

j and where the empty product is taken to be 1. This factorization
shows that T can be implemented basically by implementing copies of Rpe . There are many variations on
this factorization as explained in [35]. That the various factorization can be interpreted as vector or parallel
implementations is also explained in [35].

Example 2.4

R9 ⊗R5 = (R9 ⊗ I5) (I9 ⊗R5) (2.32)

and

R9 ⊗R25 ⊗R7 = (R9 ⊗ I175) (I9 ⊗R25 ⊗ I7) (I225 ⊗R7) (2.33)

When this factored form of ⊗Rni
or any of the variations alluded to above, is used, the number of additions

incurred is given by ∑k
i=1

N
p

ei
i

A
(
Rpei

i

)
=

∑k
i=1

N
p

ei
i

2 (pei
i − 1)

= 2N
∑k
i=1 1− 1

p
ei
i

= 2N
(
k −

∑k
i=1

1
p

ei
i

) (2.34)

where N = pe11 · · · p
ek

k .
Although the use of operations of the form Rpe1

1
⊗ · · · ⊗ Rpek

k
is simple, it does not exactly separate the

circular convolution into smaller disjoint convolutions. In other words, its use does not give rise in (2.28)
and (2.30) to block diagonal matrices whose diagonal blocks are the form ⊗iCΦpi

. However, by reorganizing
the arrangement of the operations we can obtain the block diagonal form we seek.

First, suppose A, B and C are matrices of sizes a× a, b× b and c× c respectively. If

TBT−1 =

 B1

B2

 (2.35)

where B1 and B2 are matrices of sizes b1 × b1 and b2 × b2, then

Q (A⊗B ⊗ C)Q−1 =


A⊗B1 ⊗ C

A⊗B2 ⊗ C

 (2.36)
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where

Q =

 Ia ⊗ T (1 : b1, :)⊗ Ic
Ia ⊗ T (b1 + 1 : b, :)⊗ Ic

 . (2.37)

Here T (1 : b1, :) denotes the �rst b1 rows and all the columns of T and similarly for T (b1 + 1 : b, :). Note
that  A⊗B1 ⊗ C

A⊗B2 ⊗ C

 6= A⊗

 B1

B2

⊗ C. (2.38)

That these two expressions are not equal explains why the arrangement of operations must be reorganized
in order to obtain the desired block diagonal form. The appropriate reorganization is described by the
expression in (2.37). Therefore, we must modify the transformation of (2.28) appropriately. It should be
noted that this reorganization of operations does not change their computational cost. It is still given by
(2.34).

For example, we can use this observation and the expression in (2.37) to arrive at the following similarity
transformation:

Q (Sp1 ⊗ Sp2)Q−1 =


1

CΦp1

CΦp2

CΦp1
⊗ CΦp2

 (2.39)

where

Q =

 Ip1 ⊗ 1t−p2

Ip1 ⊗Gp2

 (Rp1 ⊗ Ip2) (2.40)

1−p is a column vector of p 1's

1−p =
[

1 1 · · · 1
]t

(2.41)

and Gp is the (p− 1)× p matrix:

Gp =


1 −1

1 −1
. . .

...

1 −1

 =
[
Ip−1 − 1p−1

]
. (2.42)

In general we have

R
(
Spe1

1
⊗ · · · ⊗ Spek

k

)
R−1 = ⊕

d|n
Ψ (d) (2.43)

where R = Rpe1
1 ,··· ,pek

k
is given by

Rpe1
1 ,··· ,pek

k
=

1∏
i=k

Q (mi, p
ei
i , ni) (2.44)
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with mi =
∏i−1
j=1 p

ej

j , ni =
∏k
j=i+1 p

ej

j and

Q (a, pe, c) =
e−1∏
j=0


Ia ⊗ 1t−p ⊗ Icpj

Ia ⊗Gp ⊗ Icpj

Iac(pe−pj+1)

 . (2.45)

1−p and Gp are as given in (2.41) and (2.42).

Example 2.5

R (S9 ⊗ S5)R−1 =



1

CΦ3

CΦ9

CΦ5

CΦ3 ⊗ CΦ5

CΦ9 ⊗ CΦ5


(2.46)

where

R = R9,5

= Q (9, 5, 1)Q (1, 9, 5)
(2.47)

and R can be implemented with 152 additions.

Notice the distinction between this example and example "Reduction Operations" (Section 2.3: Reduction
Operations). In example "Reduction Operations" (Section 2.3: Reduction Operations) we obtained from
S9 ⊗ S5 a Kronecker product of two block diagonal matrices, but here we obtained a block diagonal matrix
whose diagonal blocks are the Kronecker product of cyclotomic companion matrices. Each block in (2.46)
represents a multi-dimensional cyclotomic convolution.

A Matlab program that carries out the operation Rpe1
1 ,··· ,pek

k
in (2.43) is KRED() .

function x = KRED(P,E,K,x)

% x = KRED(P,E,K,x);

% P : P = [P(1),...,P(K)];

% E : E = [E(K),...,E(K)];

for i = 1:K

a = prod(P(1:i-1).^E(1:i-1));

c = prod(P(i+1:K).^E(i+1:K));

p = P(i);

e = E(i);

for j = e-1:-1:0

x(1:a*c*(p^(j+1))) = RED(p,a,c*(p^j),x(1:a*c*(p^(j+1))));

end

end

It calls the Matlab program RED() .

function y = RED(p,a,c,x)

% y = RED(p,a,c,x);

y = zeros(a*c*p,1);

for i = 0:c:(a-1)*c

for j = 0:c-1

y(i+j+1) = x(i*p+j+1);
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for k = 0:c:c*(p-2)

y(i+j+1) = y(i+j+1) + x(i*p+j+k+c+1);

y(i*(p-1)+j+k+a*c+1) = x(i*p+j+k+1) - x(i*p+j+c*(p-1)+1);

end

end

end

These two Matlab programs are not written to run as fast as they could be. They are a `naive' coding
of Rpe1

1 ,··· ,pek
k

and are meant to serve as a basis for more e�cient programs. In particular, the indexing

and the loop counters can be modi�ed to improve the e�ciency. However, the modi�cations that minimize
the overhead incurred by indexing operations depends on the programming language, the compiler and
the computer used. These two programs are written with simple loop counters and complicated indexing
operations so that appropriate modi�cations can be easily made.

2.3.1 Inverses

The inverse of Rp has the form

R−1
p =

1
p



1 p− 1 −1 −1 −1

1 −1 p− 1 −1 −1

1 −1 −1 p− 1 −1

1 −1 −1 −1 p− 1

1 −1 −1 −1 −1


(2.48)

and

R−1
pe =

e−1∏
k=0

((
R−1
p ⊗ Ipe−1−k

)
⊕ Ipe−pe−k

)
. (2.49)

Because the inverse of Q in (2.37) is given by

Q−1 =
[
Ia ⊗ T−1 (:, 1 : b1)⊗ Ic Ia ⊗ T−1 (:, b1 + 1 : b)⊗ Ic

]
(2.50)

the inverse of the matrix R described by eqs (2.43), (2.44) and (2.45) is given by

R−1 =
k∏
i=1

Q(mi, p
ei
i , ni)

−1
(2.51)

with mi =
∏i−1
j=1 p

ej

j , ni =
∏k
j=i+1 p

ej

j and

Q(a, pe, c)−1 =
0∏

j=e−1

 Ia ⊗ 1t−p ⊗ Icpj Ia ⊗ Vp ⊗ Icpj

Iac(pe−pj+1)

 (2.52)

where Vp denotes the matrix in (2.48) without the �rst column. A Matlab program for Rt is tKRED() , it
calls the Matlab program tRED() . A Matlab program for R−t is itKRED() , it calls the Matlab program
itRED() . These programs all appear in one of the appendices.



Chapter 3

Bilinear Forms for Circular Convolution1

3.1 Bilinear Forms for Circular Convolution

A basic technique in fast algorithms for convolution is that of interpolation. That is, two polynomials
are evaluated at some common points and these values are multiplied [4], [17], [22]. By interpolating these
products, the product of the two original polynomials can be determined. In the Winograd short convolution
algorithms, this technique is used and the common points of evaluation are the simple integers, 0, 1, and
−1. Indeed, the computational savings of the interpolation technique depends on the use of special points
at which to interpolate. In the Winograd algorithm the computational savings come from the simplicity of
the small integers. (As an algorithm for convolution, the FFT interpolates over the roots of unity.) This
interpolation method is often called the Toom-Cook method and it is given by two matrices that describe a
bilinear form.

We use bilinear forms to give a matrix formulation of the split nesting algorithm. The split nesting
algorithm combines smaller convolution algorithms to obtain algorithms for longer lengths. We use the
Kronecker product to explicitly describe the way in which smaller convolution algorithms are appropriately
combined.

3.1.1 The Scalar Toom-Cook Method

First we consider the linear convolution of two n point sequences. Recall that the linear convolution of h
and x can be represented by a matrix vector product. When n = 3:

h0

h1 h0

h2 h1 h0

h2 h1

h2




x0

x1

x2

 (3.1)

This linear convolution matrix can be written as h0H0 + h1H1 + h2H2 where Hk are clear.
The product

∑n−1
k=0 hkHkx can be found using the Toom-Cook algorithm, an interpolation method.

1This content is available online at <http://cnx.org/content/m18133/1.5/>.

13
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Choose 2n− 1 interpolation points, i1, · · · , i2n−1, and let A and C be matrices given by

A =


i01 · · · in−1

1

...

i02n−1 · · · in−1
2n−1

 and C =


i01 · · · i2n−2

1

...

i02n−1 · · · i2n−2
2n−1


−1

. (3.2)

That is, A is a degree n− 1 Vandermonde matrix and C is the inverse of the degree 2n− 2 Vandermonde
matrix speci�ed by the same points specifying A. With these matrices, one has

n−1∑
k=0

hkHkx = C{Ah ∗Ax} (3.3)

where ∗ denotes point by point multiplication. The terms Ah and Ax are the values of H (s) and X (s)
at the points i1, · · · i2n−1. The point by point multiplication gives the values Y (i1) , · · · , Y (i2n−1). The
operation of C obtains the coe�cients of Y (s) from its values at these points of evaluation. This is the
bilinear form and it implies that

Hk = Cdiag (Aek)A. (3.4)

Example 3.1

If n = 2, then equations (3.3) and (3.4) give
h0 0

h1 h0

0 h1

x = C{Ah ∗Ax} (3.5)

When the interpolation points are 0, 1,and −1,

A =


1 0

1 1

1 −1

 and C =


1 0 0

0 .5 −.5
−1 .5 .5

 (3.6)

However, A and C do not need to be Vandermonde matrices as in (3.2). For example, see the two point linear
convolution algorithm in the appendix. As long as A and C are matrices such that Hk = Cdiag (Aek)A,
then the linear convolution of x and h is given by the bilinear form y = C{Ah ∗ Ax}. More generally, as
long as A, B and C are matrices satisfying Hk = Cdiag (Bek)A, then y = C{Bh ∗Ax} computes the linear
convolution of h and x. For convenience, if C{Ah ∗ Ax} computes the n point linear convolution of h and
x (both h and x are n point sequences), then we say �(A,B,C) describes a bilinear form for n point linear
convolution."

Similarly, we can write a bilinear form for cyclotomic convolution. Let d be any positive integer and
let X (s) and H (s) be polynomials of degree φ (d) − 1 where φ (·) is the Euler totient function. If A,

B and C are matrices satisfying (CΦd
)k = Cdiag (Bek)A for 0 ≤ k ≤ φ (d) − 1, then the coe�cients of

Y (s) = < X (s)H (s) >Φd(s) are given by y = C{Bh ∗ Ax}. As above, if y = C{Bh ∗ Ax} computes the

d-cyclotomic convolution, then we say �(A,B,C) describes a bilinear form for Φd (s) convolution."
But since < X (s)H (s) >Φd(s) can be found by computing the product of X (s) and H (s) and reducing

the result, a cyclotomic convolution algorithm can always be derived by following a linear convolution
algorithm by the appropriate reduction operation: If G is the appropriate reduction matrix and if (A,B, F )
describes a bilinear form for a φ (d) point linear convolution, then (A,B,GF ) describes a bilinear form for
Φd (s) convolution. That is, y = GF{Bh ∗Ax} computes the coe�cients of < X (s)H (s) >Φd(s).



15

3.1.2 Circular Convolution

By using the Chinese Remainder Theorem for polynomials, circular convolution can be decomposed into
disjoint cyclotomic convolutions. Let p be a prime and consider p point circular convolution. Above we
found that

Sp = R−1
p

 1

CΦp

Rp (3.7)

and therefore

Skp = R−1
p

 1

CkΦp

Rp. (3.8)

If (Ap, Bp, Cp) describes a bilinear form for Φp (s) convolution, then

Skp = R−1
p

 1

Cp

diag
 1

Bp

Rpek
 1

Ap

Rp (3.9)

and consequently the circular convolution of h and x can be computed by

y = R−1
p C{BRph ∗ARpx} (3.10)

where A = 1 ⊕ Ap, B = 1 ⊕ Bp and C = 1 ⊕ Cp. We say (A,B,C) describes a bilinear form for p point
circular convolution. Note that if (D,E, F ) describes a (p− 1) point linear convolution then Ap, Bp and
Cp can be taken to be Ap = D, Bp = E and Cp = GpF where Gp represents the appropriate reduction
operations. Speci�cally, Gp is given by Equation 42 from Preliminaries (2.42).

Next we consider pe point circular convolution. Recall that Spe = R−1
pe

(
⊕ei=0CΦpi

)
Rpe as in Equation

27 from Preliminaries (2.7) so that the circular convolution is decomposed into a set of e+ 1 disjoint Φpi (s)
convolutions. If

(
Api , Bpi , Cpi

)
describes a bilinear form for Φpi (s) convolution and if

A = 1⊕Ap ⊕ · · · ⊕Ape

B = 1⊕Bp ⊕ · · · ⊕Bpe

C = 1⊕ Cp ⊕ · · · ⊕ Cpe

(3.11)

then
(
ARpe , BRpe , R−1

pe C
)
describes a bilinear form for pe point circular convolution. In particular, if

(Dd, Ed, Fd) describes a bilinear form for d point linear convolution, then Api , Bpi and Cpi can be taken to
be

Api = Dφ(pi)

Bpi = Eφ(pi)

Cpi = GpiFφ(pi)

(3.12)

where Gpi represents the appropriate reduction operation and φ (·) is the Euler totient function. Speci�cally,
Gpi has the following form

Gpi =

 I(p−1)pi−1 −1−p−1 ⊗ Ipi−1

 I(p−2)pi−1−1

0pi−1+1,(p−2)pi−1−1

  (3.13)
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if p ≥ 3, while

G2i =

 I2i−1

 −I2i−1−1

01,2i−1−1

  . (3.14)

Note that the matrix Rpe block diagonalizes Spe and each diagonal block represents a cyclotomic convolution.
Correspondingly, the matrices A, B and C of the bilinear form also have a block diagonal structure.

3.1.3 The Split Nesting Algorithm

We now describe the split-nesting algorithm for general length circular convolution [22]. Let n = pe11 · · · p
ek

k

where pi are distinct primes. We have seen that

Sn = P tR−1

(
⊕
d|n

Ψ (d)
)
RP (3.15)

where P is the prime factor permutation P = Ppe1
1 ,··· ,pek

k
and R represents the reduction operations.

For example, see Equation 46 in Preliminaries (2.46). RP block diagonalizes Sn and each diagonal block
represents a multi-dimensional cyclotomic convolution. To obtain a bilinear form for a multi-dimensional

convolution, we can combine bilinear forms for one-dimensional convolutions. If
(
Api

j
, Bpi

j
, Cpi

j

)
describes a

bilinear form for Φpi
j

(s) convolution and if

A = ⊕d|nAd
B = ⊕d|nBd
C = ⊕d|nCd

(3.16)

with

Ad = ⊗p|d,p∈PAHd(p)

Bd = ⊗p|d,p∈PBHd(p)

Cd = ⊗p|d,p∈PCHd(p)

(3.17)

where Hd (p) is the highest power of p dividing d, and P is the set of primes, then
(
ARP,BRP,P tR−1C

)
describes a bilinear form for n point circular convolution. That is

y = P tR−1C{BRPh ∗ARPx} (3.18)

computes the circular convolution of h and x.

As above
(
Api

j
, Bpi

j
, Cpi

j

)
can be taken to be

(
Dφ(pi

j), Eφ(pi
j), Gpi

j
Fφ(pi

j)
)
where (Dd, Ed, Fd) describes a

bilinear form for d point linear convolution. This is one particular choice for
(
Api

j
, Bpi

j
, Cpi

j

)
- other bilinear

forms for cyclotomic convolution that are not derived from linear convolution algorithms exist.

Example 3.2

A 45 point circular convolution algorithm:

y = P tR−1C{BRPh ∗ARPx} (3.19)
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where

P = P9,5

R = R9,5

A = 1⊕A3 ⊕A9 ⊕A5 ⊕ (A3 ⊗A5)⊕ (A9 ⊗A5)

B = 1⊕B3 ⊕B9 ⊕B5 ⊕ (B3 ⊗B5)⊕ (B9 ⊗B5)

C = 1⊕ C3 ⊕ C9 ⊕ C5 ⊕ (C3 ⊗ C5)⊕ (C9 ⊗ C5)

(3.20)

and where
(
Api

j
, Bpi

j
, Cpi

j

)
describes a bilinear form for Φpi

j
(s) convolution.

3.1.4 The Matrix Exchange Property

The matrix exchange property is a useful technique that, under certain circumstances, allows one to save
computation in carrying out the action of bilinear forms [11]. Suppose

y = C{Ax ∗Bh} (3.21)

as in (3.18). When h is known and �xed, Bh can be pre-computed so that y can be found using only the
operations represented by C and A and the point by point multiplications denoted by ∗. The operation
of B is absorbed into the multiplicative constants. Note that in (3.18), the matrix corresponding to C is
more complicated than is B. It is therefore advantageous to absorb the work of C instead of B into the
multiplicative constants if possible. This can be done when y is the circular convolution of x and h by using
the matrix exchange property.

To explain the matrix exchange property we draw from [11]. Note that y = Cdiag (Ax)Bh, so that
Cdiag (Ax)B must be the corresponding circulant matrix,

Cdiag (Ax)B =


x0 xn−1 · · · x1

x1 x0 x2

...

xn−1 xn−2 x0

 . (3.22)

Since Cdiag (Ax)B = J(Cdiag (Ax)B)tJ where J is the reversal matrix, one gets

y = C{Ax ∗Bh}
= Cdiag (Ax)Bh

= J(Cdiag (Ax)B)tJh

= JBtdiag (Ax)CtJh

= JBt{Ax ∗ CtJh}

(3.23)

As noted in [11], the matrix exchange property can be used whenever y = T (x)h where T (x) satis�es
T (x) = J1T (x)tJ2 for some matrices J1 and J2. In that case one gets y = J1B

t{Ax ∗ CtJ2h}.
Applying the matrix exchange property to (3.18) one gets

y = JP tRtBt{CtR−tPJh ∗ARPx}. (3.24)
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Example 3.3

A 45 point circular convolution algorithm:

y = JP tRtBt{u ∗ARPx} (3.25)

where u = CtR−tPJh and

P = P9,5

R = R9,5

A = 1⊕A3 ⊕A9 ⊕A5 ⊕ (A3 ⊗A5)⊕ (A9 ⊗A5)

Bt = 1⊕Bt3 ⊕Bt9 ⊕Bt5 ⊕ (Bt3 ⊗Bt5)⊕ (Bt9 ⊗Bt5)

Ct = 1⊕ Ct3 ⊕ Ct9 ⊕ Ct5 ⊕ (Ct3 ⊗ Ct5)⊕ (Ct9 ⊗ Ct5)

(3.26)

and where
(
Api

j
, Bpi

j
, Cpi

j

)
describes a bilinear form for Φpi

j
(s) convolution.



Chapter 4

A Bilinear Form for the DFT1

4.1 A Bilinear Form for the DFT

A bilinear form for a prime length DFT can be obtained by making minor changes to a bilinear form for
circular convolution. This relies on Rader's observation that a prime p point DFT can be computed by
computing a p− 1 point circular convolution and by performing some extra additions [25]. It turns out that
when the Winograd or the split nesting convolution algorithm is used, only two extra additions are required.
After brie�y reviewing Rader's conversion of a prime length DFT in to a circular convolution, we will discuss
a bilinear form for the DFT.

4.1.1 Rader's Permutation

To explain Rader's conversion of a prime p point DFT into a p − 1 point circular convolution [5] we recall
the de�nition of the DFT

y (k) =
p−1∑
n=0

x (n)W kn (4.1)

with W = exp− j2π/p. Also recall that a primitive root of p is an integer r such that < rm>p maps the
integers m = 0, · · · , p− 2 to the integers 1, · · · , p− 1. Letting n = r−m and k = rl, where r−m is the inverse
of rm modulo p, the DFT becomes

y
(
rl
)

= x (0) +
p−2∑
m=0

x
(
r−m

)
W rlr−m

(4.2)

for l = 0, · · · , p− 2. The `DC' term �s given by y (0) =
∑p−1
n=0 x (n) . By de�ning new functions

x′ (m) = x
(
r−m

)
, y′ (m) = y (rm) , W ′ (m) = W rm

(4.3)

which are simply permuted versions of the original sequences, the DFT becomes

y′ (l) = x (0) +
p−2∑
m=0

x′ (m)W ′ (l −m) (4.4)

for l = 0, · · · , p − 2. This equation describes circular convolution and therefore any circular convolution
algorithm can be used to compute a prime length DFT. It is only necessary to (i) permute the input, the
roots of unity and the output, (ii) add x (0) to each term in (4.4) and (iii) compute the DC term.

1This content is available online at <http://cnx.org/content/m18134/1.4/>.
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To describe a bilinear form for the DFT we �rst de�ne a permutation matrix Q for the permutation
above. If p is a prime and r is a primitive root of p, then let Qr be the permutation matrix de�ned by

Qe < rk>p−1 = ek (4.5)

for 0 ≤ k ≤ p− 2 where ek is the kth standard basis vector. Let the w̃ be a p− 1 point vector of the roots
of unity:

w̃ =
(
W 1, · · · ,W p−1

)t
. (4.6)

If s is the inverse of r modulo p (that is, rs = 1 modulo p) and x̃ = (x (1) , · · · , x (p− 1))t, then the circular
convolution of (4.4) can be computed with the bilinear form of :

QtsJP
tRtBt{CtR−tPJQsw̃ ∗ARPQrx̃}. (4.7)

This bilinear form does not compute y (0), the DC term. Furthermore, it is still necessary to add the x (0)
term to each of the elements of (4.7) to obtain y (1) , · · · , y (p− 1).

4.1.2 Calculation of the DC term

The computation of y (0) turns out to be very simple when the bilinear form (4.7) is used to compute the
circular convolution in (4.4). The �rst element of ARPQrx̃ in (4.7) is the residue modulo the polynomial
s−1, that is, the �rst element of this vector is the sum of the elements of x̃. (The �rst row of the matrix, R,
representing the reduction operation is a row of 1's, and the matrices P and Qr are permutation matrices.)
Therefore, the DC term can be computed by adding the �rst element of ARPQrx̃ to x (0). Hence, when the
Winograd or split nesting algorithm is used to perform the circular convolution of (4.7), the computation of
the DC term requires only one extra complex addition for complex data.

The addition x (0) to each of the elements of (4.7) also requires only one complex addition. By adding
x (0) to the �rst element of {CtR−tPJQsw̃ ∗ ARPQrx̃} in (4.7) and applying QtsJP

tRt to the result, x (0)
is added to each element. (Again, this is because the �rst column of Rt is a column of 1's, and the matrices
Qts, J and P t are permutation matrices.)

Although the DFT can be computed by making these two extra additions, this organization of additions
does not yield a bilinear form. However, by making a minor modi�cation, a bilinear form can be retrieved.
The method described above can be illustrated in Figure 4.1 with u = CtR−tPJQsw̃.
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x(1)

x(0)

x(p-1)

y(0)

y(1)

y(p-1)

1

u(1)

u(2)

u(L)

Figure 4.1: The �ow graph for the computation of the DFT.

Clearly, the structure highlighted in the dashed box can be replaced by the structure in Figure 4.2.

1

u(1)-1

Figure 4.2: The �ow graph for the bilinear form.

By substituting the second structure for the �rst, a bilinear form is obtained. The resulting bilinear form
for a prime length DFT is

y =

 1

QtsJP
tRtBt

U tp{Vp
 1

CtR−tPJQs

w ∗ Up
 1

ARPQr

x} (4.8)
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where w =
(
W 0, · · · ,W p−1

)t
, x = (x (0) , · · · , x (p− 1))t, and where Up is the matrix with the form

Up =



1 1

1

1
. . .

1


(4.9)

and Vp is the matrix with the form

Up =



1

−1 1

1
. . .

1


(4.10)



Chapter 5

Implementing Kronecker Products

E�ciently1

5.1 Implementing Kronecker Products E�ciently

In the algorithm described above we encountered expressions of the form A1⊗A2⊗· · ·⊗An which we denote
by ⊗ni=1Ai. To calculate the product (⊗iAi)x it is computationally advantageous to factor ⊗iAi into terms
of the form I⊗Ai⊗ I[2]. Then each term represents a set of copies of Ai. First, recall the following property
of Kronecker products

AB ⊗ CD = (A⊗ C) (B ⊗D) . (5.1)

This property can be used to factor ⊗iAi in the following way. Let the number of rows and columns of Ai
be denoted by ri and ci respectively. Then

A1 ⊗A2 = A1Ic1 ⊗ Ir2A2

= (A1 ⊗ Ir2) (Ic1 ⊗A2) .
(5.2)

But we can also write

A1 ⊗A2 = Ir1A1 ⊗A2Ic2

= (Ir1 ⊗A2) (A1 ⊗ Ic2) .
(5.3)

Note that in factorization (5.2), copies of A2 are applied to the data vector x �rst, followed by copies of
A1. On the other hand, in factorization (5.3), copies of A1 are applied to the data vector x �rst, followed by
copies of A2. These two factorizations can be distinguished by the sequence in which A1 and A2 are ordered.

Lets compare the computational complexity of factorizations (5.2) and (5.3). Notice that (5.2) consists
of r2 copies of A1 and c1 copies of A2, therefore (5.2) has a computational cost of r2Q1 + c1Q2 where Qi
is the computational cost of Ai. On the other hand, the computational cost of (5.3) is c2Q1 + r1Q2. That
is, the factorizations (5.2) and (5.3) have in general di�erent computational costs when Ai are not square.
Further, observe that (5.2) is the more e�cient factorization exactly when

r2Q1 + c1Q2 < c2Q1 + r1Q2 (5.4)

or equivalently, when

r1 − c1
Q1

>
r2 − c2
Q2

. (5.5)

1This content is available online at <http://cnx.org/content/m18135/1.4/>.
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Consequently, in the more e�cient factorization, the operation Ai applied to the data vector x �rst is the
one for which the ratio (ri − ci) /Qi is the more negative. If r1 > c1 and r2 < c2 then (5.4) is always true
(Qi is always positive). Therefore, in the most computationally e�cient factorization of A1 ⊗ A2, matrices
with fewer rows than columns are always applied to the data vector x before matrices with more rows
than columns. If both matrices are square, then their ordering does not a�ect the computational e�ciency,
because in that case each ordering has the same computation cost.

We now consider the Kronecker product of more than two matrices. For the Kronecker product ⊗ni=1Ai
there are n! possible di�erent ways in which to order the operations Ai. For example

A1 ⊗A2 ⊗A3 = (A1 ⊗ Ir2r3) (Ic1 ⊗A2 ⊗ Ir3) (Ic1c2 ⊗A3)

= (A1 ⊗ Ir2r3) (Ic1r2 ⊗A3) (Ic1 ⊗A2 ⊗ Ic3)

= (Ir1 ⊗A2 ⊗ Ir3) (A1 ⊗ Ic2r3) (Ic1c2 ⊗A3)

= (Ir1 ⊗A2 ⊗ Ir3) (Ir1c2 ⊗A3) (A1 ⊗ Ic2c3)

= (Ir1r2 ⊗A3) (A1 ⊗ Ir2c3) (Ic1 ⊗A2 ⊗ Ic3)

= (Ir1r2 ⊗A3) (Ir1 ⊗A2 ⊗ Ic3) (A1 ⊗ Ic2c3)

(5.6)

Each factorization of ⊗iAi can be described by a permutation g (·) of {1, ..., n} which gives the order in
which Ai is applied to the data vector x. Ag(1) is the �rst operation applied to the data vector x, Ag(2) is the
second, and so on. For example, the factorization (5.6) is described by the permutation g (1) = 3, g (2) = 1,
g (3) = 2. For n = 3, the computational cost of each factorization can be written as

C (g) = Qg(1)cg(2)cg(3) + rg(1)Qg(2)cg(3) + rg(1)rg(2)Qg(3) (5.7)

In general

C (g) =
n∑
i=1

i−1∏
j=1

rg(j)

Qg(i)
 n∏
j=i+1

cg(j)

 . (5.8)

Therefore, the most e�cient factorization of ⊗iAi is described by the permutation g (·) that minimizes C.
It turns out that for the Kronecker product of more than two matrices, the ordering of operations that

describes the most e�cient factorization of ⊗iAi also depends only on the ratios (ri − ci) /Qi. To show that
this is the case, suppose u (·) is the permutation that minimizes C, then u (·) has the property that

ru(k) − cu(k)

Qu(k)
≤
ru(k+1) − cu(k+1)

Qu(k+1)
(5.9)

for k = 1, · · · , n− 1. To support this, note that since u (·) is the permutation that minimizes C, we have in
particular

C (u) ≤ C (v) (5.10)

where v (·) is the permutation de�ned by the following:

v (i) = {
u (i) i < k, i > k + 1

u (k + 1) i = k

u (k) i = k + 1

. (5.11)

Because only two terms in (5.8) are di�erent, we have from (5.10)

k+1∑
i=k

i−1∏
j=1

ru(j)

Qu(i)

 n∏
j=i+1

cu(j)

 ≤ k+1∑
i=k

i−1∏
j=1

rv(j)

Qv(i)

 n∏
j=i+1

cv(j)

 (5.12)
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which, after canceling common terms from each side, gives

Qu(k)cu(k+1) + ru(k)Qu(k+1) ≤ Qv(k)cv(k+1) + rv(k)Qv(k+1). (5.13)

Since v (k) = u (k + 1) and v (k + 1) = u (k) this becomes

Qu(k)cu(k+1) + ru(k)Qu(k+1) ≤ Qu(k+1)cu(k) + ru(k+1)Qu(k) (5.14)

which is equivalent to (5.9). Therefore, to �nd the best factorization of ⊗iAi it is necessary only to compute
the ratios (ri − ci) /Qi and to order them in an non-decreasing order. The operation Ai whose index appears
�rst in this list is applied to the data vector x �rst, and so on

As above, if ru(k+1) > cu(k+1) and ru(k) < cu(k) then (5.14) is always true. Therefore, in the most
computationally e�cient factorization of ⊗iAi, all matrices with fewer rows than columns are always applied
to the data vector x before any matrices with more rows than columns. If some matrices are square, then
their ordering does not a�ect the computational e�ciency as long as they are applied after all matrices with
fewer rows than columns and before all matrices with more rows than columns.

Once the permutation g (·) that minimizes C is determined by ordering the ratios (ri − ci) /Qi, ⊗iAi can
be written as

n
⊗
i=1
Ai =

1∏
i=n

Ia(i) ⊗Ag(i) ⊗ Ib(i) (5.15)

where

a (i) =
g(i)−1∏
k=1

γ (i, k) (5.16)

b (i) =
n∏

k=g(i)+1

γ (i, k) (5.17)

and where γ (·) is de�ned by

γ (i, k) = {
rk if g (i) > g (k)

ck if g (i) < g (k)
. (5.18)

5.1.1 Some Matlab Code

A Matlab program that computes the permutation that describes the computationally most e�cient factor-
ization of ⊗ni=1Ai is cgc() . It also gives the resulting computational cost. It requires the computational
cost of each of the matrices Ai and the number of rows and columns of each.

function [g,C] = cgc(Q,r,c,n)

% [g,C] = cgc(Q,r,c,n);

% Compute g and C

% g : permutation that minimizes C

% C : computational cost of Kronecker product of A(1),...,A(n)

% Q : computation cost of A(i)

% r : rows of A(i)

% c : columns of A(i)

% n : number of terms

f = find(Q==0);

Q(f) = eps * ones(size(Q(f)));
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Q = Q(:);

r = r(:);

c = c(:);

[s,g] = sort((r-c)./Q);

C = 0;

for i = 1:n

C = C + prod(r(g(1:i-1)))*Q(g(i))*prod(c(g(i+1:n)));

end

C = round(C);

The Matlab program kpi() implements the Kronecker product ⊗ni=1Ai.

function y = kpi(d,g,r,c,n,x)

% y = kpi(d,g,r,c,n,x);

% Kronecker Product : A(d(1)) kron ... kron A(d(n))

% g : permutation of 1,...,n

% r : [r(1),...,r(n)]

% c : [c(1),..,c(n)]

% r(i) : rows of A(d(i))

% c(i) : columns of A(d(i))

% n : number of terms

for i = 1:n

a = 1;

for k = 1:(g(i)-1)

if i > find(g==k)

a = a * r(k);

else

a = a * c(k);

end

end

b = 1;

for k = (g(i)+1):n

if i > find(g==k)

b = b * r(k);

else

b = b * c(k);

end

end

% y = (I(a) kron A(d(g(i))) kron I(b)) * x;

y = IAI(d(g(i)),a,b,x);

end

where the last line of code calls a function that implements
(
Ia ⊗Ad(g(i)) ⊗ Ib

)
x. That is, the program

IAI(i,a,b,x) implements (Ia ⊗A (i)⊗ Ib)x.
The Matlab program IAI implements y = (Im ⊗A⊗ In)x

function y = IAI(A,r,c,m,n,x)

% y = (I(m) kron A kron I(n))x

% r : number of rows of A

% c : number of columns of A

v = 0:n:n*(r-1);

u = 0:n:n*(c-1);

for i = 0:m-1
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for j = 0:n-1

y(v+i*r*n+j+1) = A * x(u+i*c*n+j+1);

end

end

It simply uses two loops to implement the mn copies of A. Each copy of A is applied to a di�erent subset
of the elements of x.

5.1.2 Vector/Parallel Interpretation

The command I⊗A⊗I where ⊗ is the Kronecker (or Tensor) product can be interpreted as a vector/parallel
command [7], [36]. In these references, the implementation of these commands is discussed in detail and
they have found that the Tensor product is �an extremely useful tool for matching algorithms to computer
architectures [7].�

The expression I ⊗A can easily be seen to represent a parallel command:

I ⊗A =


A

A

. . .

A

 . (5.19)

Each block along the diagonal acts on non-overlapping sections of the data vector - so that each section can
be performed in parallel. Since each section represents exactly the same operation, this form is amenable
to implementation on a computer with a parallel architectural con�guration. The expression A ⊗ I can be
similarly seen to represent a vector command, see [7].

It should also be noted that by employing `stride' permutations, the command (I ⊗A⊗ I)x can be
replaced by either (I ⊗A)x or (A⊗ I)x[7], [36]. It is only necessary to permute the input and output. It is
also the case that these stride permutations are natural loading and storing commands for some architectures.

In the programs we have written in conjunction with this paper we implement the commands y =
(I ⊗A⊗ I)x with loops in a set of subroutines. The circular convolution and prime length FFT programs
we present, however, explicitly use the form I ⊗A⊗ I to make clear the structure of the algorithm, to make
them more modular and simpler, and to make them amenable to implementation on special architectures. In
fact, in [7] it is suggested that it might be practical to develop tensor product compilers. The FFT programs
we have generated will be well suited for such compilers.
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Chapter 6

Programs for Circular Convolution1

6.1 Programs for Circular Convolution

To write a program that computes the circular convolution of h and x using the bilinear form Equation 24 in
Bilinear Forms for Circular Convolution (3.24) we need subprograms that carry out the action of P , P t, R,
Rt, A and Bt. We are assuming, as is usually done, that h is �xed and known so that u = CtR−tPJh can
be pre-computed and stored. To compute these multiplicative constants u we need additional subprograms
to carry out the action of Ct and R−t but the e�ciency with which we compute u is unimportant since this
is done beforehand and u is stored.

In Prime Factor Permutations (Section 2.2: Prime Factor Permutations) we discussed the permutation
P and a program for it pfp() appears in the appendix. The reduction operations R, Rt and R−t we have
described in Reduction Operations (Section 2.3: Reduction Operations) and programs for these reduction
operations KRED() etc, also appear in the appendix. To carry out the operation of A and Bt we need to be
able to carry out the action of Ad1 ⊗ · · · ⊗Adk

and this was discussed in Implementing Kronecker Products
E�ciently (Chapter 5). Note that since A and Bt are block diagonal, each diagonal block can be done
separately. However, since they are rectangular, it is necessary to be careful so that the correct indexing is
used.

To facilitate the discussion of the programs we generate, it is useful to consider an example. Take as an
example the 45 point circular convolution algorithm listed in the appendix. From Equation 19 from Bilinear
Forms for Circular Convolution (3.19) we �nd that we need to compute x = P9,5x and x = R9,5x. These are
the �rst two commands in the program.

We noted above that bilinear forms for linear convolution, (Dd, Ed, Fd), can be used for these cyclotomic
convolutions. Speci�cally we can take Api = Dφ(pi), Bpi = Eφ(pi) and Cpi = GpiFφ(pi). In this case Equation
20 in Bilinear Forms for Circular Convolution (3.20) becomes

A = 1⊕D2 ⊕D6 ⊕D4 ⊕ (D2 ⊗D4)⊕ (D6 ⊗D4) . (6.1)

In our approach this is what we have done. When we use the bilinear forms for convolution given in the
appendix, for which D4 = D2 ⊗D2 and D6 = D2 ⊗D3, we get

A = 1⊕D2 ⊕ (D2 ⊗D3)⊕ (D2 ⊗D2)⊕ (D2 ⊗D2 ⊗D2)⊕ (D2 ⊗D3 ⊗D2 ⊗D2) (6.2)

and since Ed = Dd for the linear convolution algorithms listed in the appendix, we get

B = 1⊕Dt
2 ⊕

(
Dt

2 ⊗Dt
3

)
⊕
(
Dt

2 ⊗Dt
2

)
⊕
(
Dt

2 ⊗Dt
2 ⊗Dt

2

)
⊕
(
Dt

2 ⊗Dt
3 ⊗Dt

2 ⊗Dt
2

)
. (6.3)

From the discussion above, we found that the Kronecker products like D2⊗D2⊗D2 appearing in these ex-
pressions are best carried out by factoring the product in to factors of the form Ia⊗D2⊗Ib. Therefore we need

1This content is available online at <http://cnx.org/content/m18136/1.4/>.
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a program to carry out (Ia ⊗D2 ⊗ Ib)x and (Ia ⊗D3 ⊗ Ib)x. These function are called ID2I(a,b,x) and
ID3I(a,b,x) and are listed in the appendix. The transposed form, (Ia ⊗Dt

2 ⊗ Ib)x, is called ID2tI(a,b,x)

.
To compute the multiplicative constants we need Ct. Using Cpi = GpiFφ(pi) we get

Ct = 1⊕ F t2Gt3 ⊕ F t6Gt9 ⊕ F t4Gt5 ⊕ (F t2G
t
3 ⊗ F t4Gt5)⊕ (F t6G

t
9 ⊗ F t4Gt5)

= 1⊕ F t2Gt3 ⊕ F t6Gt9 ⊕ F t4Gt5 ⊕ (F t2 ⊗ F t4) (Gt3 ⊗Gt5)⊕ (F t6 ⊗ F t4) (Gt9 ⊗Gt5) .
(6.4)

The Matlab function KFt carries out the operation Fd1 ⊗ · · ·FdK
. The Matlab function Kcrot implements

the operation Gpe1
1
⊗ · · ·GpeK

K
. They are both listed in the appendix.

6.1.1 Common Functions

By recognizing that the convolution algorithms for di�erent lengths share a lot of the same computations,
it is possible to write a set of programs that take advantage of this. The programs we have generated call
functions from a relatives small set. Each program calls these functions with di�erent arguments, in di�ering
orders, and a di�erent number of times. By organizing the program structure in a modular way, we are able
to generate relatively compact code for a wide variety of lengths.

In the appendix we have listed code for the following functions, from which we create circular convolution
algorithms. In the next section we generate FFT programs using this same set of functions.

Prime Factor Permutations: The Matlab function pfp implements this permutation of Prime Factor
Permutations (Section 2.2: Prime Factor Permutations). Its transpose is implemented by pfpt .

Reduction Operations: The Matlab function KRED implements the reduction operations of Reduction
Operations (Section 2.3: Reduction Operations). Its transpose is implemented by tKRED . Its inverse
transpose is implemented by itKRED and this function is used only for computing the multiplicative
constants.

Linear Convolution Operations: ID2I and ID3I are Matlab functions for the operations I ⊗D2⊗ I and
I ⊗D3⊗ I. These linear convolution operations are also described in the appendix `Bilinear Forms for
Linear Convolution.' ID2tI and ID3tI implement the transposes, I ⊗Dt

2 ⊗ I and I ⊗Dt
3 ⊗ I.

6.1.2 Operation Counts

Table 6.1 lists operation counts for some of the circular convolution algorithms we have generated. The
operation counts do not include any arithmetic operations involved in the index variable or loops. They
include only the arithmetic operations that involve the data sequence x in the convolution of x and h.

The table in [23] for the split nesting algorithm gives very similar arithmetic operation counts. For all
lengths not divisible by 9, the algorithms we have developed use the same number of multiplications and
the same number or fewer additions. For lengths which are divisible by 9, the algorithms described in [23]
require fewer additions than do ours. This is because the algorithms whose operation counts are tabulated
in the table in [23] use a special Φ9 (s) convolution algorithm. It should be noted, however, that the e�cient
Φ9 (s) convolution algorithm of [23] is not constructed from smaller algorithms using the Kronecker product,
as is ours. As we have discussed above, the use of the Kronecker product facilitates adaptation to special
computer architectures and yields a very compact program with function calls to a small set of functions.
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N muls adds N muls adds N muls adds N muls adds

2 2 4 24 56 244 80 410 1546 240 1640 6508

3 4 11 27 94 485 84 320 1712 252 1520 7920

4 5 15 28 80 416 90 380 1858 270 1880 9074

5 10 31 30 80 386 105 640 2881 280 2240 9516

6 8 34 35 160 707 108 470 2546 315 3040 13383

7 16 71 36 95 493 112 656 2756 336 2624 11132

8 14 46 40 140 568 120 560 2444 360 2660 11392

9 19 82 42 128 718 126 608 3378 378 3008 16438

10 20 82 45 190 839 135 940 4267 420 3200 14704

12 20 92 48 164 656 140 800 3728 432 3854 16430

14 32 170 54 188 1078 144 779 3277 504 4256 19740

15 40 163 56 224 1052 168 896 4276 540 4700 21508

16 41 135 60 200 952 180 950 4466 560 6560 25412

18 38 200 63 304 1563 189 1504 7841 630 6080 28026

20 50 214 70 320 1554 210 1280 6182 720 7790 30374

21 64 317 72 266 1250 216 1316 6328 756 7520 38144

Table 6.1: Operation counts for split nesting circular convolution algorithms

It is possible to make further improvements to the operation counts given in Table 6.1[19], [23]. Speci�-
cally, algorithms for prime power cyclotomic convolution based on the polynomial transform, although more
complicated, will give improvements for the longer lengths listed [19], [23]. These improvements can be easily
included in the code generating program we have developed.
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Chapter 7

Programs for Prime Length FFTs1

7.1 Programs for Prime Length FFTs

Using the circular convolution algorithms described above, we can easily design algorithms for prime length
FFTs. The only modi�cations that needs to be made involve the permutation of Rader [26] and the correct
calculation of the DC term (y (0)). These modi�cations are easily made to the above described approach. It
simply requires a few extra commands in the programs. Note that the multiplicative constants are computed
directly, since we have programs for all the relevant operations.

In the version we have currently implemented and veri�ed for correctness, we precompute the multiplica-
tive constants, the input permutation and the output permutation. From Equation 8 from A Bilinear Form
for the DFT (4.8), the multiplicative constants are given by Vp (1⊕ CtR−tPJQs)w, the input permutation
is given by 1 ⊕ PQr, and the output permutation is given by 1 ⊕ QtsJP t. The multiplicative constants,
the input and output permutation are each stored as vectors. These vectors are then passed to the prime
length FFT program, which consists of the appropriate function calls, see the appendix. In previous prime
length FFT modules, the input and output permutations can be completely absorbed in to the computa-
tional instructions. This is possible because they are written as straight line code. It is simple to modify
the code generating program we have implemented so that it produces straight line code and absorbs the
permutations in to the computational program instructions.

In an in-place in-order prime factor algorithm for the DFT [6], [33], the necessary permuted forms of the
DFT can be obtained by modifying the multiplicative constants. This can be easily done by permuting the
roots of unity, w, in the expression for the multiplicative constants [6], [12], nothing else in the structure of
the algorithm needs to be changed. By changing the multiplicative constants, it is not possible, however, to
omit the permutation required for Rader's conversion of the prime length DFT in to circular convolution.

7.1.1 Operation Counts

Table 7.1 lists the arithmetic operations incurred by the FFT programs we have generated and veri�ed
for correctness. Note that the number of additions and multiplications incurred by the programs we have
generated are the same as previously existing programs for prime lengths up to and including 13. For p = 17
a program with 70 multiplications and 314 additions has been written, and for p = 19 a program with 76
multiplications and 372 additions has been written [14]. Thus for the length p = 17, the program we have
generated requires fewer total arithmetic operations, while for p = 19, ours uses more.

There are several table of operation counts in [16], each table corresponding to a di�erent variation of
the algorithms used in that paper. For each variation, the algorithms we have described use fewer additions
and fewer multiplications. The focus of [16], however, is the implementation of prime point FFT on various
computer architectures and the advantage that can be gained from matching algorithms with architectures.

1This content is available online at <http://cnx.org/content/m18137/1.6/>.
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It should be noted that the highest prime in [16] for which an FFT was designed is 29. Although we have not
executed the programs described in this paper on these computers, they are, as mentioned above, written to
be easily adapted to parallel/vector computers.

P muls adds P muls adds P muls adds

3 4 12 41 280 1140 241 3280 13020

5 10 34 43 256 1440 271 3760 18152

7 16 72 61 400 1908 281 4480 19036

11 40 168 71 640 3112 337 5248 22268

13 40 188 73 532 2504 379 6016 32880

17 82 274 109 940 5096 421 6400 29412

19 76 404 113 1312 5516 433 7708 32864

29 160 836 127 1216 6760 541 9400 43020

31 160 776 181 1900 8936 631 12160 56056

37 190 990 211 2560 12368 757 15040 76292

Table 7.1: Operation counts for prime length FFTs
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Figure 7.1: Plot of additions and multiplications incurred by prime length FFTs.
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Conclusion1

8.1 Conclusion

We have found that by using the split nesting algorithm for circular convolution a new set of e�cient prime
length DFT modules that cover a wide variety of lengths can be developed. We have also exploited the
structure in the split nesting algorithm to write a program that automatically generates compact readable
code for convolution and prime length FFT programs.

The resulting code makes clear the organization and structure of the algorithm and clearly enumerates
the disjoint convolutions into which the problem is decomposed. These independent convolutions can be
executed in parallel and, moreover, the individual commands are of the form I ⊗ A ⊗ I which can be
executed as parallel/vector commands on appropriate computer architectures[37]. By recognizing also that
the algorithms for di�erent lengths share many of the same computational structures, the code we generate
is made up of calls to a relatively small set of functions. Accordingly, the subroutines can be designed to
speci�cally suit a given architecture.

The number of additions and multiplications incurred by the programs we have generated are the same
as or are competitive with existing prime length FFT programs. We note that previously, prime length FFTs
were made available for primes only up to 29. As in the original Winograd short convolution algorithms, the
e�ciency of the resulting prime p point DFT algorithm depends largely upon the factorability of p− 1. For
example, if p− 1 is two times a prime, then an e�cient p point DFT algorithm is more di�cult to develop.

It should be noted too that the programs for convolution developed above are useful in the convolution
of long integer sequences when exact results are needed. This is because all multiplicative constants in an
n point integer convolution are integer multiples of 1/n and this division by n can be delayed until the last
stage or can simply be omitted if a scaled version of the convolution is acceptable.

By developing a large library of prime point FFT programs we can extend the maximum length and the
variety of lengths of a prime factor algorithm or a Winograd Fourier transform algorithm. Furthermore,
because the approach taken in this paper gives a bilinear form, it can be incorporated into the dynamic
programming technique for designing optimal composite length FFT algorithms [10]. The programs described
in this paper can also be adapted to obtain discrete cosine transform (DCT) algorithms by simply permuting
the input and output sequences [8].

1This content is available online at <http://cnx.org/content/m18138/1.2/>.
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Chapter 9

Appendix: Bilinear Forms for Linear

Convolution1

9.1 Appendix: Bilinear Forms for Linear Convolution

The following is a collection of bilinear forms for linear convolution. In each case (Dn, Dn, Fn) describes a
bilinear form for n point linear convolution. That is

y = Fn{Dnh ∗Dnx} (9.1)

computes the linear convolution of the n point sequences h and x.
For each Dn we give Matlab programs that compute Dnx and Dt

nx, and for each Fn we give a Matlab
program that computes F tnx. When the matrix exchange algorithm is employed in the design of circular
convolution algorithms, these are the relevant operations.

9.1.1 2 point linear convolution

D2 can be implemented with 1 addition, Dt
2 with two additions.

D2 =


1 0

0 1

1 1

 (9.2)

F2 =


1 0 0

−1 −1 1

0 1 0

 (9.3)

function y = D2(x)

y = zeros(3,1);

y(1) = x(1);

y(2) = x(2);

y(3) = x(1) + x(2);

1This content is available online at <http://cnx.org/content/m18139/1.5/>.
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function y = D2t(x)

y = zeros(2,1);

y(1) = x(1)+x(3);

y(2) = x(2)+x(3);

function y = F2t(x)

y = zeros(3,1);

y(1) = x(1)-x(2);

y(2) = -x(2)+x(3);

y(3) = x(2);

9.1.2 3 point linear convolution

D3 can be implemented in 7 additions, Dt
3 in 9 additions.

D3 =



1 0 0

1 1 1

1 −1 1

1 2 4

0 0 1


(9.4)

F3 =
1
6



6 0 0 0 0

−3 6 −2 −1 12

−6 3 3 0 −6

3 −3 −1 1 −12

0 0 0 0 6


(9.5)

function y = D3(x)

y = zeros(5,1);

a = x(2)+x(3);

b = x(3)-x(2);

y(1) = x(1);

y(2) = x(1)+a;

y(3) = x(1)+b;

y(4) = a+a+b+y(2);

y(5) = x(3);

function y = D3t(x)

y = zeros(3,1);

y(1) = x(2)+x(3)+x(4);

a = x(4)+x(4);

y(2) = x(2)-x(3)+a;

y(3) = y(1)+x(4)+a;
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y(1) = y(1)+x(1);

y(3) = y(3)+x(5);

function y = F3t(x)

y = zeros(5,1);

y(1) = 6*x(1)-3*x(2)-6*x(3)+3*x(4);

y(2) = 6*x(2)+3*x(3)-3*x(4);

y(3) = -2*x(2)+3*x(3)-x(4);

y(4) = -x(2)+x(4);

y(5) = 12*x(2)-6*x(3)-12*x(4)+6*x(5);

y = y/6;

9.1.3 4 point linear convolution

D4 = D2 ⊗D2 (9.6)

F4 =



1 0 0 0 0 0 0 0 0

−1 −1 1 0 0 0 0 0 0

−1 1 0 −1 0 0 1 0 0

1 1 −1 1 1 −1 −1 −1 1

0 −1 0 1 −1 0 0 1 0

0 0 0 −1 −1 1 0 0 0

0 0 0 0 1 0 0 0 0


(9.7)

function y = F4t(x)

y = zeros(7,1);

y(1) = x(1)-x(2)-x(3)+x(4);

y(2) = -x(2)+x(3)+x(4)-x(5);

y(3) = x(2)-x(4);

y(4) = -x(3)+x(4)+x(5)-x(6);

y(5) = x(4)-x(5)-x(6)+x(7);

y(6) = -x(4)+x(6);

y(7) = x(3)-x(4);

y(8) = -x(4)+x(5);

y(9) = x(4);

9.1.4 6 point linear convolution

D6 = D2 ⊗D3 (9.8)
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F6 =
1
6



6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−3 6 −2 −1 12 0 0 0 0 0 0 0 0 0 0

−6 3 3 0 −6 0 0 0 0 0 0 0 0 0 0

−3 −3 −1 1 −12 −6 0 0 0 0 6 0 0 0 0

3 −6 2 1 −6 3 −6 2 1 −12 −3 6 −2 −1 12

6 −3 −3 0 6 6 −3 −3 0 6 −6 3 3 0 −6

−3 3 1 −1 12 3 3 1 −1 12 3 −3 −1 1 −12

0 0 0 0 −6 −3 6 −2 −1 6 0 0 0 0 6

0 0 0 0 0 −6 3 3 0 −6 0 0 0 0 0

0 0 0 0 0 3 −3 −1 1 −12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 6 0 0 0 0 0



(9.9)

function y = F6t(x)

y = zeros(15,1);

y(1) = 6*x(1)-3*x(2)-6*x(3)-3*x(4)+3*x(5)+6*x(6)-3*x(7);

y(2) = 6*x(2)+3*x(3)-3*x(4)-6*x(5)-3*x(6)+3*x(7);

y(3) = -2*x(2)+3*x(3)-x(4)+2*x(5)-3*x(6)+x(7);

y(4) = -x(2)+x(4)+x(5)-x(7);

y(5) = 12*x(2)-6*x(3)-12*x(4)-6*x(5)+6*x(6)+12*x(7)-6*x(8);

y(6) = -6*x(4)+3*x(5)+6*x(6)+3*x(7)-3*x(8)-6*x(9)+3*x(10);

y(7) = -6*x(5)-3*x(6)+3*x(7)+6*x(8)+3*x(9)-3*x(10);

y(8) = 2*x(5)-3*x(6)+x(7)-2*x(8)+3*x(9)-x(10);

y(9) = x(5)-x(7)-x(8)+x(10);

y(10) = -12*x(5)+6*x(6)+12*x(7)+6*x(8)-6*x(9)-12*x(10)+6*x(11);

y(11) = 6*x(4)-3*x(5)-6*x(6)+3*x(7);

y(12) = 6*x(5)+3*x(6)-3*x(7);

y(13) = -2*x(5)+3*x(6)-x(7);

y(14) = -x(5)+x(7);

y(15) = 12*x(5)-6*x(6)-12*x(7)+6*x(8);

y = y/6;

9.1.5 8 point linear convolution

D8 = D2 ⊗D2 ⊗D2 (9.10)

F8 = [100000000000000000000000000− 1− 11000000000000000000000000− 110− 10010000000000000000000011− 111− 1− 1− 11000000000000000000− 1− 101− 10010− 10000000010000000011− 1− 1− 1100011− 1000000− 1− 110000001− 10110− 1001− 10100− 100− 110− 100100− 1− 11− 1− 1111− 1− 1− 11− 1− 1111− 111− 111− 1− 1− 11010− 1100− 10110− 1100− 100− 101− 1001000011− 1000− 1− 1111− 1000000− 1− 110000000− 10000− 110− 1− 1010000001000000000000011− 111− 1− 1− 110000000000000000000− 101− 10010000000000000000000000− 1− 11000000000000000000000000010000000000000](9.11)

function y = F8t(x)
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y = zeros(27,1);

y(1) = x(1)-x(2)-x(3)+x(4)-x(5)+x(6)+x(7)-x(8);

y(2) = -x(2)+x(3)+x(4)-x(5)+x(6)-x(7)-x(8)+x(9);

y(3) = x(2)-x(4)-x(6)+x(8);

y(4) = -x(3)+x(4)+x(5)-x(6)+x(7)-x(8)-x(9)+x(10);

y(5) = x(4)-x(5)-x(6)+x(7)-x(8)+x(9)+x(10)-x(11);

y(6) = -x(4)+x(6)+x(8)-x(10);

y(7) = x(3)-x(4)-x(7)+x(8);

y(8) = -x(4)+x(5)+x(8)-x(9);

y(9) = x(4)-x(8);

y(10) = -x(5)+x(6)+x(7)-x(8)+x(9)-x(10)-x(11)+x(12);

y(11) = x(6)-x(7)-x(8)+x(9)-x(10)+x(11)+x(12)-x(13);

y(12) = -x(6)+x(8)+x(10)-x(12);

y(13) = x(7)-x(8)-x(9)+x(10)-x(11)+x(12)+x(13)-x(14);

y(14) = -x(8)+x(9)+x(10)-x(11)+x(12)-x(13)-x(14)+x(15);

y(15) = x(8)-x(10)-x(12)+x(14);

y(16) = -x(7)+x(8)+x(11)-x(12);

y(17) = x(8)-x(9)-x(12)+x(13);

y(18) = -x(8)+x(12);

y(19) = x(5)-x(6)-x(7)+x(8);

y(20) = -x(6)+x(7)+x(8)-x(9);

y(21) = x(6)-x(8);

y(22) = -x(7)+x(8)+x(9)-x(10);

y(23) = x(8)-x(9)-x(10)+x(11);

y(24) = -x(8)+x(10);

y(25) = x(7)-x(8);

y(26) = -x(8)+x(9);

y(27) = x(8);

9.1.6 18 point linear convolution

D8 = D2 ⊗D3 ⊗D3 (9.12)

F18 and the program F18t are too big to print.
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Chapter 10

Appendix: A 45 Point Circular

Convolution Program1

10.1 Appendix: A 45 Point Circular Convolution Program

As an example, we list a 45 point circular convolution program.

function y = cconv45(x,u)

% y = ccconv45(x,u)

% y : the 45 point circular convolution of x and h

% where u is a vector of precomputed multiplicative constants

x = pfp([9,5],2,x); % prime factor permuation

x = KRED([3,5],[2,1],2,x); % reduction operations (152 Additions)

y = zeros(45,1);

% -------------------- block : 1 -------------------------------------------------

y(1) = x(1)*u(1); % 1 Multiplication

% -------------------- block : 3 -------------------------------------------------

v = ID2I(1,1,x(2:3)); % v = (I(1) kron D2 kron I(1)) * x(2:3) a : 1=1*1

v = v.*u(2:4); % 3 Multiplications

y(2:3) = ID2tI(1,1,v); % y(2:3) = (I(1) kron D2' kron I(1)) * v a : 2=1*2

% -------------------- block : 9 -------------------------------------------------

v = ID3I(2,1,x(4:9)); % v = (I(2) kron D3 kron I(1)) * x(4:9) a : 14=2*7

v = ID2I(1,5,v); % v = (I(1) kron D2 kron I(5)) * v a : 5=5*1

v = v.*u(5:19); % 15 Multiplications

v = ID2tI(1,5,v); % v = (I(1) kron D2' kron I(5)) * v a : 10=5*2

y(4:9) = ID3tI(2,1,v); % y(4:9) = (I(2) kron D3' kron I(1)) * v a : 18=2*9

% -------------------- block : 5 -------------------------------------------------

v = ID2I(1,2,x(10:13)); % v = (I(1) kron D2 kron I(2)) * x(10:13) a : 2=2*1

v = ID2I(3,1,v); % v = (I(3) kron D2 kron I(1)) * v a : 3=3*1

v = v.*u(20:28); % 9 Multiplications

v = ID2tI(1,3,v); % v = (I(1) kron D2' kron I(3)) * v a : 6=3*2

y(10:13) = ID2tI(2,1,v); % y(10:13) = (I(2) kron D2' kron I(1)) * v a : 4=2*2

% -------------------- block : 15 = 3 * 5 ----------------------------------------

v = ID2I(1,4,x(14:21)); % v = (I(1) kron D2 kron I(4)) * x(14:21) a : 4=4*1

v = ID2I(3,2,v); % v = (I(3) kron D2 kron I(2)) * v a : 6=6*1

1This content is available online at <http://cnx.org/content/m18143/1.3/>.

45



46
CHAPTER 10. APPENDIX: A 45 POINT CIRCULAR CONVOLUTION

PROGRAM

v = ID2I(9,1,v); % v = (I(9) kron D2 kron I(1)) * v a : 9=9*1

v = v.*u(29:55); % 27 Multiplications

v = ID2tI(1,9,v); % v = (I(1) kron D2' kron I(9)) * v a : 18=9*2

v = ID2tI(2,3,v); % v = (I(2) kron D2' kron I(3)) * v a : 12=6*2

y(14:21) = ID2tI(4,1,v); % y(14:21) = (I(4) kron D2' kron I(1)) * v a : 8=4*2

% -------------------- block : 45 = 9 * 5 ----------------------------------------

v = ID3I(2,4,x(22:45)); % v = (I(2) kron D3 kron I(4)) * x(22:45) a : 56=8*7

v = ID2I(1,20,v); % v = (I(1) kron D2 kron I(20)) * v a : 20=20*1

v = ID2I(15,2,v); % v = (I(15) kron D2 kron I(2)) * v a : 30=30*1

v = ID2I(45,1,v); % v = (I(45) kron D2 kron I(1)) * v a : 45=45*1

v = v.*u(56:190); % 135 Multiplications

v = ID2tI(1,45,v); % v = (I(1) kron D2' kron I(45)) * v a : 90=45*2

v = ID2tI(10,3,v); % v = (I(10) kron D2' kron I(3)) * v a : 60=30*2

v = ID2tI(20,1,v); % v = (I(20) kron D2' kron I(1)) * v a : 40=20*2

y(22:45) = ID3tI(2,4,v); % y(22:45) = (I(2) kron D3' kron I(4)) * v a : 72=8*9

y = tKRED([3,5],[2,1],2,y); % transpose reduction operations (152 Additions)

y = pfpt([9,5],2,y); % prime factor permuation

y = y(45:-1:1);

% Total Number of Multiplications : 190

% Total Number of Additions: 839
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11.1 Appendix: A 31 Point FFT Program

As an example, we list a 31 point FFT program.

function y = fft31(x,u,ip,op)

% y = fft31(x,u,ip,op)

% y : the 31 point DFT of x

% u : a vector of precomputed multiplicative constants

% ip : input permutation

% op : ouput permutation

y = zeros(31,1);

x = x(ip); % input permutation

x(2:31) = KRED([2,3,5],[1,1,1],3,x(2:31)); % reduction operations

y(1) = x(1)+x(2); % DC term calculation

% -------------------- block : 1 -------------------------------------------------

y(2) = x(2)*u(1);

% -------------------- block : 2 -------------------------------------------------

y(3) = x(3)*u(2);

% -------------------- block : 3 -------------------------------------------------

v = ID2I(1,1,x(4:5)); % v = (I(1) kron D2 kron I(1)) * x(4:5)

v = v.*u(3:5);

y(4:5) = ID2tI(1,1,v); % y(4:5) = (I(1) kron D2' kron I(1)) * v

% -------------------- block : 6 = 2 * 3 -----------------------------------------

v = ID2I(1,1,x(6:7)); % v = (I(1) kron D2 kron I(1)) * x(6:7)

v = v.*u(6:8);

y(6:7) = ID2tI(1,1,v); % y(6:7) = (I(1) kron D2' kron I(1)) * v

% -------------------- block : 5 -------------------------------------------------

v = ID2I(1,2,x(8:11)); % v = (I(1) kron D2 kron I(2)) * x(8:11)

v = ID2I(3,1,v); % v = (I(3) kron D2 kron I(1)) * v

v = v.*u(9:17);

v = ID2tI(1,3,v); % v = (I(1) kron D2' kron I(3)) * v

y(8:11) = ID2tI(2,1,v); % y(8:11) = (I(2) kron D2' kron I(1)) * v

% -------------------- block : 10 = 2 * 5 ----------------------------------------

v = ID2I(1,2,x(12:15)); % v = (I(1) kron D2 kron I(2)) * x(12:15)

1This content is available online at <http://cnx.org/content/m18140/1.3/>.

47



48 CHAPTER 11. APPENDIX: A 31 POINT FFT PROGRAM

v = ID2I(3,1,v); % v = (I(3) kron D2 kron I(1)) * v

v = v.*u(18:26);

v = ID2tI(1,3,v); % v = (I(1) kron D2' kron I(3)) * v

y(12:15) = ID2tI(2,1,v); % y(12:15) = (I(2) kron D2' kron I(1)) * v

% -------------------- block : 15 = 3 * 5 ----------------------------------------

v = ID2I(1,4,x(16:23)); % v = (I(1) kron D2 kron I(4)) * x(16:23)

v = ID2I(3,2,v); % v = (I(3) kron D2 kron I(2)) * v

v = ID2I(9,1,v); % v = (I(9) kron D2 kron I(1)) * v

v = v.*u(27:53);

v = ID2tI(1,9,v); % v = (I(1) kron D2' kron I(9)) * v

v = ID2tI(2,3,v); % v = (I(2) kron D2' kron I(3)) * v

y(16:23) = ID2tI(4,1,v); % y(16:23) = (I(4) kron D2' kron I(1)) * v

% -------------------- block : 30 = 2 * 3 * 5 ------------------------------------

v = ID2I(1,4,x(24:31)); % v = (I(1) kron D2 kron I(4)) * x(24:31)

v = ID2I(3,2,v); % v = (I(3) kron D2 kron I(2)) * v

v = ID2I(9,1,v); % v = (I(9) kron D2 kron I(1)) * v

v = v.*u(54:80);

v = ID2tI(1,9,v); % v = (I(1) kron D2' kron I(9)) * v

v = ID2tI(2,3,v); % v = (I(2) kron D2' kron I(3)) * v

y(24:31) = ID2tI(4,1,v); % y(24:31) = (I(4) kron D2' kron I(1)) * v

% --------------------------------------------------------------------------------

y(2) = y(1)+y(2); % DC term calculation

y(2:31) = tKRED([2,3,5],[1,1,1],3,y(2:31)); % transpose reduction operations

y = y(op); % output permutation

% For complex data -

% Total Number of Real Multiplications : 160

% Total Number of Real Additions: 776

The constants, input and output permutations are:

% The multiplicative constants for the 31 point FFT

I = sqrt(-1);

u = [

-1.033333333333333

0.185592145427667*I

0.251026872929094

0.638094290379888

-0.296373721102994

-0.462201919825109*I

0.155909426230360*I

0.102097497864916*I

-0.100498239164838

-0.217421331841463

-0.325082164955763

0.798589508696894

-0.780994042074251

-0.256086011899669

0.169494392220932

0.711997889018157

-0.060064820876732
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-1.235197570427205*I

-0.271691369288525*I

0.541789612349592*I

0.329410560797314*I

1.317497505049809*I

-0.599508803858381*I

0.093899154219231*I

-0.176199088841836*I

0.028003825226279*I

1.316699050305790

1.330315270540553

-0.385122753006171

-2.958666546021397

-2.535301995146201

2.013474028487015

1.081897731187396

0.136705213653014

-0.569390844064251

-0.262247009112805

2.009855570455675

-1.159348599757857

0.629367699727360

1.229312102919654

-1.479874670425178

-0.058279061554516

-0.908786032252333

0.721257672797977

-0.351484013730995

-1.113390280332076

0.514823784254676

0.776432948764679

0.435329964075516

-0.177866452687279

-0.341206223210960

0.257360272866440

-0.050622276244575

-2.745673340229639*I

2.685177424507523*I

0.880463026400118*I

-5.028851220636894*I

-0.345528375980267*I

1.463210769729252*I

3.328421083558774*I

-0.237219367348867*I

-1.086975102467855*I

-1.665522956385442*I

1.628826188810638*I

0.534088072762272*I

-3.050496586573981*I

-0.209597199290132*I

0.887582325001072*I
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2.019017208624242*I

-0.143897052948668*I

-0.659358110687783*I

1.470398765538361*I

-1.438001204439387*I

-0.471517033054130*I

2.693115935736959*I

0.185041858423467*I

-0.783597698243441*I

-1.782479430727672*I

0.127038806765845*I

0.582111071051880*I

];

% The input permutation for the 31 point FFT

ip = [

1

2

17

9

5

3

26

29

15

8

20

6

19

10

21

11

31

16

24

28

30

7

4

18

25

13

27

14

23

12

22

];



51

% The output permutation for the 31 point FFT

op = [

1

31

30

2

29

26

6

19

28

23

25

9

5

7

18

12

27

3

22

20

24

10

8

13

4

21

11

14

17

15

16

];
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Chapter 12

Appendix: Matlab Functions For

Circular Convolution and Prime Length

FFTs1

12.1 Programs for Reduction Operations

The reduction matrix of Equation 44 in Preliminaries (2.44) is implemented by KRED which calls RED . Its
transpose and inverse transpose are implemented by tRED , tRED , itKRED and itRED .

function x = KRED(P,E,K,x)

% x = KRED(P,E,K,x);

% P : P = [P(1),...,P(K)];

% E : E = [E(K),...,E(K)];

for i = 1:K

a = prod(P(1:i-1).^E(1:i-1));

c = prod(P(i+1:K).^E(i+1:K));

p = P(i);

e = E(i);

for j = e-1:-1:0

x(1:a*c*(p^(j+1))) = RED(p,a,c*(p^j),x(1:a*c*(p^(j+1))));

end

end

function y = RED(p,a,c,x)

% y = RED(p,a,c,x);

y = zeros(a*c*p,1);

for i = 0:c:(a-1)*c

for j = 0:c-1

y(i+j+1) = x(i*p+j+1);

for k = 0:c:c*(p-2)

y(i+j+1) = y(i+j+1) + x(i*p+j+k+c+1);

y(i*(p-1)+j+k+a*c+1) = x(i*p+j+k+1) - x(i*p+j+c*(p-1)+1);

end

end

end

1This content is available online at <http://cnx.org/content/m18141/1.3/>.
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function x = tKRED(P,E,K,x)

% x = tKRED(P,E,K,x);

% (transpose)

% P : P = [P(1),...,P(K)];

% E : E = [E(K),...,E(K)];

for i = K:-1:1

a = prod(P(1:i-1).^E(1:i-1));

c = prod(P(i+1:K).^E(i+1:K));

p = P(i);

e = E(i);

for j = 0:e-1

x(1:a*c*(p^(j+1))) = tRED(p,a,c*(p^j),x(1:a*c*(p^(j+1))));

end

end

function y = tRED(p,a,c,x)

% y = tRED(p,a,c,x);

% (transpose)

y = zeros(a*c*p,1);

for i = 0:c:(a-1)*c

for j = 0:c-1

y(i*p+j+c*(p-1)+1) = x(i+j+1);

for k = 0:c:c*(p-2)

y(i*p+j+k+1) = x(i+j+1) + x(i*(p-1)+j+k+a*c+1);

y(i*p+j+c*(p-1)+1) = y(i*p+j+c*(p-1)+1) - x(i*(p-1)+j+k+a*c+1);

end

end

end

12.2 Programs for I ⊗ Dk ⊗ I

The operations of Im⊗D2⊗In and Im⊗D3⊗In are carried out by ID2I and ID3I . Their transposes by ID2tI

and ID3tI . The functions D2 and D3 are listed in the appendix, `Bilinear Forms for Linear Convolution.'
Two versions of ID2I are listed here. One of them calls D2 in a loop, while the other version puts the D2

code in the loop instead of using a function call. There are several ways to implement the form I ⊗D2 ⊗ I.
But this is a simple and straightforward method. It is modeled after IAI in the text.

function y = ID2I(m,n,x)

y = zeros(m*n*3,1);

v = 0:n:2*n;

u = 0:n:n;

for i = 0:m-1

for j = 0:n-1

y(v+i*3*n+j+1) = D2(x(u+i*2*n+j+1));

end

end

function y = ID2I(m,n,x)

y = zeros(m*n*3,1);

for i = 0:n:n*(m-1)

i2 = 2*i;
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i3 = 3*i;

for j = 1:n

j2 = i2 + j;

j3 = i3 + j;

y(j3) = x(j2);

y(n+j3) = x(n+j2);

y(2*n+j3) = x(j2) + x(n+j2);

end

end

function y = ID2tI(m,n,x)

y = zeros(m*n*2,1);

v = 0:n:n;

u = 0:n:2*n;

for i = 0:m-1

for j = 0:n-1

y(v+i*2*n+j+1) = D2t(x(u+i*3*n+j+1));

end

end

function y = ID3I(m,n,x)

y = zeros(m*n*5,1);

v = 0:n:4*n;

u = 0:n:2*n;

for i = 0:m-1

for j = 0:n-1

y(v+i*5*n+j+1) = D3(x(u+i*3*n+j+1));

end

end

function y = ID3tI(m,n,x)

y = zeros(m*n*3,1);

v = 0:n:2*n;

u = 0:n:4*n;

for i = 0:m-1

for j = 0:n-1

y(v+i*3*n+j+1) = D3t(x(u+i*5*n+j+1));

end

end
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Chapter 13

Appendix: A Matlab Program for

Generating Prime Length FFT

Programs1

function [u,ip,op,ADDS,MULTS] = ff(p,e);

% [u,ip,op,ADDS,MULTS] = ff(p,e);

% u : multiplicative constants

% ip : input permutation

% op : output permutation

K = length(p);

N = prod(p.^e);

P = N + 1;

[pr, ipr] = primitive_root(P);

Red_Adds = 2 * N * (K - sum(1./(p.^e)) );

ADDS = 2 * Red_Adds;

FS = sprintf('fft%d.m',P);

fid = fopen(FS,'w');

fprintf(fid,'function y = fft%d(x,u,ip,op)\n',P);
fprintf(fid,'%% y = fft%d(x,u,ip,op)\n',P);
fprintf(fid,'%% y : the %d point DFT of x \n',P);
fprintf(fid,'%% u : a vector of precomputed multiplicative constants\n');
fprintf(fid,'%% ip : input permutation\n');
fprintf(fid,'%% op : ouput permutation\n');

Pstr = sprintf('[%d',p(1));

for k = 2:K, Pstr = [Pstr, sprintf(',%d',p(k))]; end

Pstr = [Pstr,']'];

Estr = sprintf('[%d',e(1));

for k = 2:K, Estr = [Estr, sprintf(',%d',e(k))]; end

Estr = [Estr,']'];

1This content is available online at <http://cnx.org/content/m18142/1.4/>.
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PEstr = sprintf('[%d',p(1)^e(1));

for k = 2:K, PEstr = [PEstr, sprintf(',%d',p(k)^e(k))]; end

PEstr = [PEstr,']'];

fprintf(fid,'\n');
S = sprintf('y = zeros(%d,1);\n',P);
fprintf(fid,S);

S1 = sprintf('x = x(ip);');

S2 = sprintf('%% input permutation\n');
fprintf(fid,'%-50s%s',S1,S2);

S1 = sprintf(['x(2:%d) = KRED(',Pstr,',',Estr,',%d,x(2:%d));'],P,K,P);

S2 = sprintf('%% reduction operations\n');
fprintf(fid,'%-50s%s',S1,S2);

e_table = [0:e(1)]';

a = e(1)+1;

for i = 2:K

e_table = [kron(ones(e(i)+1,1),e_table), kron([0:e(i)]',ones(a,1))];

a = a * (e(i)+1);

end

R = prod(e+1);

% ------------------------ MULTIPLICATIVE CONSTANTS ------------------------

k = rp(P,ipr,0:N);

I = sqrt(-1);

W = exp(-I*2*pi*k/P);

h = W(2:P);

h = h(N:-1:1);

h = pfp(p.^e,K,h);

h = itKRED(p,e,K,h);

u = h(1);

S1 = sprintf('y(1) = x(1)+x(2);');

S2 = sprintf('%% DC term calculation\n');
fprintf(fid,'%-50s%s',S1,S2);

DC_ADDS = 2;

ADDS = ADDS + DC_ADDS;

SLINE = '--------------------------------------------------------------------------------';

SB = ' block : 1 ';

SC = SLINE;

BL = 21;

SC(BL:BL-1+length(SB)) = SB;

fprintf(fid,'%% %s\n',SC);
S1 = sprintf('y(2) = x(2)*u(1);');

fprintf(fid,'%-40s\n',S1);
a = 1;

MULTS = 1;

for i = 2:R
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v = e_table(i,:);

f = find(v>0);
q = p(f);

t = v(f);

L = prod(q-1)*prod(q.^(t-1));

B = prod(q.^t);

bs = sprintf('%d',q(1)^t(1));

for k = 2:length(q), bs = [bs, sprintf(' * %d',q(k)^t(k))]; end

if length(q) > 1

SB = sprintf(' block : %d = %s ',B,bs);

SC = SLINE;

SC(BL:BL-1+length(SB)) = SB;

fprintf(fid,'%% %s\n',SC);
else

SB = sprintf(' block : %d ',B);

SC = SLINE;

SC(BL:BL-1+length(SB)) = SB;

fprintf(fid,'%% %s\n',SC);
end

if prod(q.^t) == 2

S1 = sprintf('y(%d) = x(%d)*u(%d);',a+2,a+2,MULTS+1);

fprintf(fid,'%-40s\n',S1);
Mk = 1;

else

d = []; r = []; c = []; Q = []; Qt = [];

for j = 1:length(q)

[dk,rk,ck,Qk,Qtk] = A_data(q(j)^t(j));

if dk > 1

d = [d dk]; r = [r rk]; c = [c ck]; Q = [Q Qk]; Qt = [Qt Qtk];

end

end

[g,C1] = cgc(Q,r,c,length(Q));

ADDS = ADDS + C1;

Mk = prod(r);

BEG = int2str(a+2); FIN = int2str(a+1+L);

XX = ['x(',BEG,':',FIN,')']; YY = 'v';

kpi(d,g,r,c,length(Q),YY,XX,fid);

S1 = ['v = v.*u(',int2str(MULTS+1),':',int2str(MULTS+Mk),');'];

fprintf(fid,'%-40s\n',S1);
[g,C2] = cgc(Qt,c,r,length(Q));

ADDS = ADDS + C2;

XX = 'v'; YY = ['y(',BEG,':',FIN,')'];

kpit(d,g,c,r,length(Q),YY,XX,fid);

end

c = [];

r = [];

lq = length(q);

for j = 1:lq

[fk,rk,ck] = C_data(q(j),t(j));
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r = [r rk]; c = [c ck];

end

f = (q-1).*(q.^(t-1));

temp = Kcrot(q,t,lq,h(a+1:a+L));

temp = KFt(f,r,c,temp);

u = [u; temp(:)];

a = a + L;

MULTS = MULTS + Mk;

end

u(1) = u(1)-1;

fprintf(fid,'%% %s\n',SLINE);
S1 = sprintf('y(2) = y(1)+y(2);');

S2 = sprintf('%% DC term calculation\n');
fprintf(fid,'%-50s%s',S1,S2);

S1 = sprintf(['y(2:%d) = tKRED(',Pstr,',',Estr,',%d,y(2:%d));'],P,K,P);

S2 = sprintf('%% transpose reduction operations\n');
fprintf(fid,'%-50s%s',S1,S2);

S1 = sprintf('y = y(op);');

S2 = sprintf('%% output permutation\n');
fprintf(fid,'%-50s%s',S1,S2);

fprintf(fid,'\n');

MULTS = 2 * MULTS;

ADDS = 2* ADDS;

fprintf(fid,'%% For complex data - \n');
fprintf(fid,'%% Total Number of Real Multiplications : %d\n',MULTS);
fprintf(fid,'%% Total Number of Real Additions: %d\n\n',ADDS);
fclose(fid);

%%%%%%%%%%%%%%%%%%%% COMPUTE INPUT AND OUTPUT PERMUTATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%

id = 1:P; % identity permutation

ip = rp(P,pr,id);

ip(2:P) = pfp(p.^e,K,ip(2:P));

op = id;

op(2:P) = pfpt(p.^e,K,op(2:P));

op(2:P) = op(P:-1:2);

op = rpt(P,ipr,op);

%%%%%%%%%%%%%%%%% PUT MULTIPLICATIVE CONSTANTS AND PERMUTATIONS IN A FILE %%%%%%%%%%%%%%

CFS = sprintf('cap%d.m',P);

fid = fopen(CFS,'w');

fprintf(fid,'\n%% The multiplicative constants for the %d point FFT\n\n',P);
fprintf(fid,'I = sqrt(-1);\n');
fprintf(fid,'u = [\n');
for k = 1:MULTS/2

if abs(real(u(k))) < 0.000001

fprintf(fid,'%25.15f*I\n',imag(u(k)));
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elseif abs(imag(u(k))) < 0.00001

fprintf(fid,'%25.15f\n',real(u(k)));
else

fprintf(fid,'%25.15f + %25.15f*I\n',real(u(k)),imag(u(k)));
end

end

fprintf(fid,'];\n\n');
fprintf(fid,'\n%% The input permutation for the %d point FFT\n\n',P);
fprintf(fid,'ip = [\n');
for k = 1:P

fprintf(fid,' %d\n',ip(k));
end

fprintf(fid,'];\n\n');
fprintf(fid,'\n%% The output permutation for the %d point FFT\n\n',P);
fprintf(fid,'op = [\n');
for k = 1:P

fprintf(fid,' %d\n',op(k));
end

fprintf(fid,'];\n\n');
fclose(fid);

The following programs print the program statements that carry out the operation I⊗Dk⊗I and I⊗Dt
k⊗I.

They are modeled after kpi in the text.

function kpi(d,g,r,c,n,Y,X,fid)

% kpi(d,g,r,c,n,Y,X,fid);

% Kronecker Product : A(d(1)) kron ... kron A(d(n))

% g : permutation of 1,...,n

% r : [r(1),...,r(n)]

% c : [c(1),..,c(n)]

% r(i) : rows of A(d(i))

% c(i) : columns of A(d(i))

% n : number of terms

for i = 1:n

a = 1;

for k = 1:(g(i)-1)

if i > find(g==k)

a = a * r(k);

else

a = a * c(k);

end

end

b = 1;

for k = (g(i)+1):n

if i > find(g==k)

b = b * r(k);

else

b = b * c(k);

end

end

% Y = (I(a) kron A(d(g(i))) kron I(b)) * X;

if i == 1

S1 = sprintf([Y,' = ID%dI(%d,%d,',X,'); '],d(g(i)),a,b);
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S2 = sprintf(['%% ',Y,' = (I(%d) kron D%d kron I(%d)) * ',X],a,d(g(i)),b);

fprintf(fid,'%-35s%s\n',S1,S2);
elseif d(g(i)) ∼= 1

S1 = sprintf([Y,' = ID%dI(%d,%d,',Y,'); '],d(g(i)),a,b);

S2 = sprintf(['%% ',Y,' = (I(%d) kron D%d kron I(%d)) * ',Y],a,d(g(i)),b);

fprintf(fid,'%-35s%s\n',S1,S2);
end

end

function kpit(d,g,r,c,n,Y,X,fid)

% kpit(g,r,c,n,Y,X,fid);

% (transpose)

% Kronecker Product : A(d(1))' kron ... kron A(d(n))'

% g : permutation of 1,...,n

% r : [r(1),...,r(n)]

% c : [c(1),..,c(n)]

% r(i) : rows of A(d(i))'

% c(i) : columns of A(d(i))'

% n : number of terms

for i = 1:n

a = 1;

for k = 1:(g(i)-1)

if i > find(g==k)

a = a * r(k);

else

a = a * c(k);

end

end

b = 1;

for k = (g(i)+1):n

if i > find(g==k)

b = b * r(k);

else

b = b * c(k);

end

end

% x = (I(a) kron A(d(g(i)))'' kron I(b)) * x;

if i == n

S1 = sprintf([Y,' = ID%dtI(%d,%d,',X,'); '],d(g(i)),a,b);

S2 = sprintf(['%% ',Y,' = (I(%d) kron D%d'' kron I(%d)) * ',X],a,d(g(i)),b);

fprintf(fid,'%-35s%s\n',S1,S2);
elseif d(g(i)) ∼= 1

S1 = sprintf([X,' = ID%dtI(%d,%d,',X,'); '],d(g(i)),a,b);

S2 = sprintf(['%% ',X,' = (I(%d) kron D%d'' kron I(%d)) * ',X],a,d(g(i)),b);

fprintf(fid,'%-35s%s\n',S1,S2);
end

end
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13.1 Programs for Computing Multiplicative Constants

The following programs carry out the operation of Fd1 ⊗ · · · ⊗ FdK
where F is the reconstruction matrix in

a linear convolution algorithm. See the appendix, `Bilinear Forms for Linear Convolution.'

function u = KFt(f,r,c,u)

% u = (F^t kron ... kron F^t)*u

% (transpose)

% f = [f(1),...,f(K)]

% r : r(i) = rows of F(i)

% c : c(i) = columns of F(i)

% u : length(u) = prod(c);

K = length(f);

for i = 1:K

m = prod(c(1:i-1));

n = prod(r(i+1:K));

u = IFtI(f(i),r(i),c(i),m,n,u);

end

function y = IFtI(s,r,c,m,n,x);

% y = (I(m) kron F(s)^t kron I(n))*x

% (transpose)

% r : rows of F(s)

% c : columns of F(s)

v = 0:n:n*(c-1);

u = 0:n:n*(r-1);

for i = 0:m-1

for j = 0:n-1

y(v+i*c*n+j+1) = Ftop(s,x(u+i*r*n+j+1));

end

end

function y = Ftop(k,x)

if k == 1, y = x;

elseif k == 2, y = F2t(x);

elseif k == 3, y = F3t(x);

elseif k == 4, y = F4t(x);

elseif k == 6, y = F6t(x);

elseif k == 8, y = F8t(x);

elseif k == 18, y = F18t(x);

end

The following programs carry out the operation of Gpe1
1
⊗ · · · ⊗GpeK

K
were G is given by Equation 13 (3.13)

and Equation 14 from Bilinear Forms for Circular Convolution (3.14).

function x = Kcrot(p,e,K,x)

% Kronecker product of Cyclotomic Reduction Operations.

% x = (G(p(1)^e(1)) kron ... kron G(p(K)^(K)))^t*x

% (transpose)

% p : p = [p(1),...,p(K)];

% e : e = [e(1),...,e(K)];

a = (p-1).*((p).^(e-1));
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r = a; % r(i) = number of rows of G(i)

c = 2*a-1; % c(i) = number of columns of G(i)

m = 1;

n = prod(r);

for i = 1:K

n = n / r(i);

x = IcrotI(p(i),e(i),m,n,x);

m = m * c(i);

end

function y = IcrotI(p,e,m,n,x)

% y = (eye(m) kron G(p^e)^t kron eye(n))*x

% (transpose)

a = (p-1)*(p^(e-1));

c = a;

r = 2*a-1;

y = zeros(r*m*n,1);

v = 0:n:(r-1)*n;

u = 0:n:(c-1)*n;

for i = 0:m-1

for j = 0:n-1

y(v+i*r*n+j+1) = crot(p,e,x(u+i*c*n+j+1));

end

end

function y = crot(p,e,x)

% y = crot(p,x)

% cyclotomic reduction matrix (transpose)

% length(x) == 2*n-1

% length(y) == n

% where n = (p-1)*(p^(e-1))

n = (p-1)*(p^(e-1));

y = zeros(2*n-1,1);

if p == 2

n = p^(e-1);

y(1:n) = x;

y(n+1:2*n-1) = -x(1:n-1);

else

y(1:n) = x;

L = p^(e-1);

y(n+1:n+L) = -x(1:L);

a = L;

for k = 2:p-1

y(n+1:n+L) = y(n+1:n+L) - x(a+1:a+L);

a = a + L;

end

b = 2*n-1 - p*(p^(e-1));

y(p*L+1:p*L+b) = x(1:b);

end

The following programs tell the programs for code generation relevant information about the bilinear forms
for cyclotomic convolution. Speci�cally, they indicates the linear convolution out of which these cyclotomic
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convolution are composed, and the dimensions of the corresponding matrices. See the appendix Bilinear
Forms for Linear Convolution (Chapter 9).

function [d,r,c,Q,Qt] = A_data(n)

% A : A matrix in bilinear form for cyclotomic convolution

% d : linear convolution modules used

% r : rows

% c : columns

% Q : Q(i) = cost associated with D(d(i))

% Qt : Qt(i) = cost associated with D(d(i))'

if n == 2, d = [1];

elseif n == 4, d = [2];

elseif n == 8, d = [2 2];

elseif n == 16, d = [2 2 2];

elseif n == 3, d = [2];

elseif n == 9, d = [2 3];

elseif n == 27, d = [2 3 3];

elseif n == 5, d = [2 2];

elseif n == 7, d = [2 3];

end

r = []; c = []; Q = []; Qt = [];

for k = 1:length(d)

[rk, ck, Qk, Qtk] = D_data(d(k));

r = [r rk]; c = [c ck]; Q = [Q Qk]; Qt = [Qt Qtk];

end

function [r,c,Q,Qt] = D_data(d);

% D : D matrix in bilinear form for linear convolution

% r : rows

% c : columns

% Q : cost associated with D(d)

% Qt : cost associated with D(d)'

if d == 1, r = 1; c = 1; Q = 0; Qt = 0;

elseif d == 2, r = 3; c = 2; Q = 1; Qt = 2;

elseif d == 3, r = 5; c = 3; Q = 7; Qt = 9;

end

function [f,r,c] = C_data(p,e)

% f : length of linear convolution

% r : rows

% c : columns

f = prod((p-1).*(p.^(e-1)));

% (Euler Totient Function)

r = 2*f-1;

c = F_data(f);

function c = F_data(n)

% c : columns of F matrix

if n == 1, c = 1;

elseif n == 2, c = 3;

elseif n == 4, c = 9;
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elseif n == 8, c = 27;

elseif n == 3, c = 5;

elseif n == 6, c = 15;

elseif n == 18, c = 75;

end

13.1.1 Programs for Inverse Transpose Reduction Operations

function x = itKRED(P,E,K,x)

% x = itKRED(P,E,K,x);

% (inverse transpose)

% P : P = [P(1),...,P(K)];

% E : E = [E(K),...,E(K)];

for i = 1:K

a = prod(P(1:i-1).^E(1:i-1));

c = prod(P(i+1:K).^E(i+1:K));

p = P(i);

e = E(i);

for j = e-1:-1:0

x(1:a*c*(p^(j+1))) = itRED(p,a,c*(p^j),x(1:a*c*(p^(j+1))));

end

end

function y = itRED(p,a,c,x)

% y = itRED(p,a,c,x);

% (inverse transpose)

y = zeros(a*c*p,1);

for i = 0:c:(a-1)*c

for j = 0:c-1

A = x(i*p+j+1);

for k = 0:c:c*(p-2)

A = A + x(i*p+j+k+c+1);

end

y(i+j+1) = A;

for k = 0:c:c*(p-2)

y(i*(p-1)+j+k+a*c+1) = p*x(i*p+j+k+1) - A;

end

end

end

y = y/p;

13.2 Programs for Permutations

The permutation of Equation 18 from Preliminaries (2.18) is implemented by pfp . It calls the function
pfp2I . The transpose is implemented by pfpt and it calls pfpt2I .

function x = pfp(n,K,x)

% x = P(n(1),...,n(K)) * x

% n = [n(1),...,n(K)];

% length(x) = prod(n(1),...,n(K))
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a = prod(n);

s = 1;

for i = K:-1:2

a = a / n(i);

x = pfp2I(a,n(i),s,x);

s = s * n(i);

end

function y = pfp2I(a,b,s,x)

% y = kron(P(a,b),I(s)) * x;

% length(x) = a*b*s

n = a * b;

y = zeros(n*s,1);

k1 = 0;

k2 = 0;

for k = 0:n-1

i1 = s * (k1 + b * k2);

i2 = s * k;

for i = 1:s

y(i1 + i) = x(i2 + i);

end

k1 = k1 + 1;

k2 = k2 + 1;

if k1 >= b

k1 = k1 - b;

end

if k2 >= a

k2 = k2 - a;

end

end

function x = pfpt(n,K,x)

% x = P(n(1),...,n(K))' * x

% (tanspose)

% n = [n(1),...,n(K)];

% length(x) = prod(n(1),...,n(K))

% a = prod(n);

a = n(1);

s = prod(n(2:K));

for i = 2:K

s = s / n(i);

x = pfpt2I(a,n(i),s,x);

a = a * n(i);

end

function y = pfpt2I(a,b,s,x)

% y = P(a,b)' kron I(s) * x;

% (transpose)

% length(x) = a*b*s

n = a * b;

y = zeros(n*s,1);
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k1 = 0;

k2 = 0;

for k = 0:n-1

i1 = s * (k1 + b * k2);

i2 = s * k;

for i = 1:s

y(i2 + i) = x(i1 + i);

end

k1 = k1 + 1;

k2 = k2 + 1;

if k1 >= b

k1 = k1 - b;

end

if k2 >= a

k2 = k2 - a;

end

end

The following Matlab programs implement Rader's permutation and its transpose. They require the primitive
root to be passed to them as an argument.

function y = rp(p,r,x)

% Rader's Permutation

% p : prime

% r : a primitive root of p

% x : length(x) == p

a = 1;

y = zeros(p,1);

y(1) = x(1);

for k = 2:p

y(k) = x(a+1);

a = rem(a*r,p);

end

function y = rpt(p,r,x)

% Rader's Permutation

% (transpose)

% p : prime

% r : a primitive root of p

% x : length(x) == p

a = 1;

y = zeros(p,1);

y(1) = x(1);

for k = 2:p

y(a+1) = x(k);

a = rem(a*r,p);

end

function [R, R_inv] = primitive_root(N)

% function [R, R_inv] = primitive_root(N)

% Ivan Selesnick
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% N is assumed to be prime. This function returns R,

% the smallest primitive root of N, and R_inv, the

% inverse of R modulo N.

R = 'Not Found';

m = 0:(N-2);

for x = 1:(N-1)

if ( 1:(N-1) == sort(rem2(x,m,N)) )

R = x;

break

end

end

R_inv = 'Not Found';

for x = 1:N

if rem(x*R,N) == 1

R_inv = x;

break

end

end
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