
A Brief Introduction to Engineering
Computation with MATLAB

By:
Serhat Beyenir

A Brief Introduction to Engineering
Computation with MATLAB

By:
Serhat Beyenir

Online:
< http://cnx.org/content/col11371/1.8/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Serhat Beyenir. It is licensed
under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).
Collection structure revised: December 1, 2011
PDF generated: January 4, 2012
For copyright and attribution information for the modules contained in this collection, see p. 154.

Table of Contents

Preface . 1

Study Guide . 3

1 Introduction
1.1 What is MATLAB? . 5
1.2 Problem Set . 19
Solutions . 21

2 Getting Started
2.1 Essentials . 27
2.2 Problem Set . 46
Solutions . 49

3 Graphics
3.1 Plotting in MATLAB . 55
3.2 Problem Set . 73
Solutions . 77

4 Introductory Programming
4.1 Writing Scripts to Solve Problems . 87
4.2 Problem Set . 97
Solutions . 100

5 Interpolation
5.1 Interpolation . 107
5.2 Problem Set . 111
Solutions . 114

6 Numerical Integration
6.1 Computing the Area Under a Curve . 119
6.2 Problem Set . 126
Solutions . 128

7 Regression Analysis
7.1 Linear Regression . 133

8 Publishing with MATLAB
8.1 Generating Reports with MATLAB . 143

9 Postscript . 151
Index . 152
Attributions . 154

iv

Preface1

IN MY TENTH YEAR AT THE INSTITUTE, I DEDICATE THIS BOOK TO THE BCIT COMMUNITY.

The primary purpose of writing a book and distributing it free-of-charge is to extend my gratitude
to BCIT2 . I am particularly thrilled to do it with this textbook because it is a product of many
learning opportunities BCIT has offered me over a period of several years. What follows is a brief
background on how this book came to be.

My post-secondary teaching career began on 22 January 2001 at the Pacific Marine Training Cam-
pus of BCIT when I logged on to a Unix workstation to instruct in the Propulsion Plant Simulator.
That has been a major milestone in many ways in my professional life. While learning inner
workings of Unix operating system (OS), I also made a discovery and that discovery profoundly
changed my view on how I thought the world operated. The discovery was the GNU/Linux OS
and open source software (OSS) movement through several books, most notably Just for Fun: The
Story of an Accidental Revolutionary3 and The Cathedral and the Bazaar4. I was convinced that
the collective power of connected individuals around the world and the global infrastructure of the
Internet had the potential to change the ways the world functioned.

In the last 10 years, BCIT has allowed me to study various subjects through its Professional De-
velopment (PD) programs for which I am very grateful. I learned a great deal in PD courses and
in one of the recent ones, I had two déjà vu moments similar to my discovery of OSS movement.
The first one occurred when I began reading The Wealth of Networks5 and the second one when
I found about Connexions6 . The former was a confirmation of my 10-year old discovery and the
latter is what I am using to write this book. Connexions is a web-based curricular content author-
ing and publishing technology that I believe has a growing potential for writing and distributing
free-of-charge learning materials.

Thus, motivation for this book stems from the notions that were generated by the OSS movement.

1This content is available online at <http://cnx.org/content/m41458/1.6/>.
2http://www.bcit.ca/
3Just for Fun: The Story of an Accidental Revolutionary by L. Torvalds and D. Diamond, New York: HarperCollins

Publishers. ©2001
4The Cathedral and the Bazaar by E. S. Raymond, Sebastopol: O’Reilly Media. ©1999
5The Wealth of Networks by Y. Benkler, New Haven: Yale University Press. ©2006
6http://cnx.org/

1

2

The book was written to pay a small token of appreciation to BCIT and I hope it will be a contri-
bution to the open educational resources repository.

Serhat Beyenir
North Vancouver, B. C.
25 October 2011

Study Guide7

MATLAB, a sub-course of Computer Technology 1 and this text are specifically designed for
students with no programming experience. However, students are expected to be proficient in First
Year Mathematics and Sciences and access to good reference books are highly recommended. I
also assume that students have a working knowledge of the Mac OS X or Microsoft Windows
operating systems.

The strategic goal of the course and book is to provide learners with an appreciation for the role
computation plays in solving engineering problems. The MATLAB specific skills that I would like
students to acquire are as follows:

• Write scripts to solve engineering problems including interpolation, numerical integration
and regression analysis,

• Plot graphs to visualize, analyze and present numerical data,
• Publish reports.

The best way to learn about engineering computation is to actually do it. We will therefore solve
many engineering problems mainly using a recent version of MATLAB in this book. Since the
primary focus is engineering computation, we will concentrate on the mathematical solutions and,
to a limited extent, the graphical user interface (GUI) features of MATLAB.

Learning a new skill, especially a computer program, can be an overwhelming experience. To
make the best of this process, students are encouraged to observe the following guidelines that
have proven to work well:

• Plan to study 2 hours outside of class for every hour inside of class,
• Practice, practice, practice: As the old saying goes, practice makes one perfect or perhaps

we should modify that statement: Good practice makes one perfect,
• Buddy system: Study with a classmate. Helping one another drastically improves your

understanding of the material. Particularly, students are advised to work the problem sets in
this fashion,

• Muddy points: Make a note of muddy points as they may occur during lectures and email
your notes to me. I will address those issues at the beginning of the next class,

• Open book exam: Do not try to memorize commands, functions or their syntax but learn
where and how to find that information. Through many exercises and problem sets you will

7This content is available online at <http://cnx.org/content/m41459/1.2/>.

3

4

have solved by the end of the course, most computational routines will become second nature
to you. The exam is open book, so keep your learning materials and m-files well organized.

Chapter 1

Introduction

1.1 What is MATLAB?1

MATLAB stands for MATrix LABoratory (see wikipedia2) and is a commercial software appli-
cation written by The MathWorks, Inc.3 When you first use MATLAB, you can think of it as

1This content is available online at <http://cnx.org/content/m41403/1.2/>.
2http://en.wikipedia.org/wiki/MATLAB
3http://www.mathworks.com/

5

6 CHAPTER 1. INTRODUCTION

a glorified calculator allowing you to perform engineering calculations and plot data. However,
MATLAB is more than an advanced scientific calculator, for example MATLAB’s sophisticated
numerical computation environment also allows us to analyze data, simulate engineering systems,
document and share our code with others.

1.1.1 Why Use MATLAB?
MATLAB has become a defacto standard in many fields of engineering and science. Even a ca-
sual exploration of MATLAB should unveil its computational power however a closer look at
MATLAB’s graphics and data analysis tools as well as interaction with other applications and
programing languages prove why MATLAB is a very strong application for technical computing.

The standard MATLAB installation includes graphics features to visualize engineering and scien-
tific data in 2-D and 3-D plots. We can interactivity build graphs and generate MATLAB command
output that can be saved for use in the future. The saved-instructions can be called again with dif-
ferent data set to build new plots. The plots created with MATLAB can be exported in various file
formats (e.g. .jpg, .png) to embed in Microsoft Word documents or PowerPoint slideshows.

MATLAB also contains interactive tools to explore and analyze data. For example, we can visu-
alize data with one of the many plotting routines, zoom in to plots to take measurements, perform
statistical calculations, fit curves to data and evaluate the obtained expression for a desired value.

MATLAB interacts with other applications (e.g. Microsoft Excel) and can be called from C code,
C++ or Fortran programming language.

1.1.2 Running MATLAB
To use MATLAB, it must be installed on your computer and you can start it just like you start any
application on your system or you must have access to a network where it is available.

In POWR 3307, we will use MATLAB by accessing the BCIT network. The network access
is platform independent, that is, we can run MATLAB under Mac OS X or Microsoft Windows
operating systems through a web browser. The following links provide instructions on how to
access and use BCIT’s AppsAnywhere service:

How to access AppsAnywhere with Safari on a Macintosh Computer4

How to open and save files in AppsAnywhere when logging in from a Macintosh5

How to access AppsAnywhere using Firefox6

How to open and save files in AppsAnywhere when logging in from Windows7

4https://helpdesk.bcit.ca/fsr/sr/appsanywhere/750.html
5https://helpdesk.bcit.ca/fsr/sr/appsanywhere/807.html
6https://helpdesk.bcit.ca/fsr/sr/appsanywhere/701.html
7https://helpdesk.bcit.ca/fsr/sr/appsanywhere/806.html

7

A trial version of MATLAB can be obtained from the mathworks website.8

1.1.3 The MATLAB Desktop
When you start the MATLAB program, it displays the MATLAB desktop. The desktop is a set of
tools (graphical user interfaces or GUIs) for managing files, variables, and applications associated
with MATLAB. The first time you start MATLAB, the desktop appears with the default layout, as
shown in the following illustration.

Figure 1.1: The MATLAB Desktop.

1.1.3.1 Command Window

The Command Window is where we execute MATLAB commands. We enter statements at the
Command Window prompt. The prompt can be any one of the following:

8http://www.mathworks.com/products/matlab/tryit.html

8 CHAPTER 1. INTRODUCTION

• Trial� indicates that the Command Window is in normal mode and the MATLAB license
will expire after the trial period ends.

• EDU� indicates that the Command Window is in normal mode, in MATLAB Student Ver-
sion.

• � indicates that the Command Window is in normal mode.

Figure 1.2: The Command Window.

1.1.3.2 Command History

The Command History is a log of the commands we have executed in the command window.

9

Figure 1.3: The Command History.

1.1.3.3 Workspace

The workspace consists of a set of variables stored in memory during a MATLAB session. To open
the Workspace browser, select Desktop > Workspace in the MATLAB desktop, or type

� workspace

at the Command Window prompt.

10 CHAPTER 1. INTRODUCTION

Figure 1.4: Workspace.

1.1.3.4 Current Folder

The Current Folder is like the Finder in Mac OS X or Windows Explorer in Windows operating
systems and allows us to browse through the files and folders. The Current Folder also displays
details about files in your current directory and within the hierarchy of the folders it contains.

Figure 1.5: Current Folder.

11

Figure 1.6: Current Folder docked on the desktop.

1.1.3.5 Start Button

The MATLAB Start button is located at the lower left corner of the MATLAB desktop and provides
and easy access to tools, demos, and documentation for the MATLAB installation.

Figure 1.7: Start Button.

12 CHAPTER 1. INTRODUCTION

1.1.3.6 Menu Bar

The menu bar contains commands for creating, opening, printing, editing, viewing, and manipu-
lating desktop items.

Figure 1.8: Menu Bar.

1.1.3.7 Toolbar

The MATLAB toolbar provides on-screen buttons to access frequently used features such as, copy,
paste, undo and redo.

Figure 1.9: Toolbar.

1.1.3.8 Keyboard shortcuts

MATLAB provides keyboard shortcuts for viewing a history of commands and listing contextual
help.

1. The up arrow key,
2. The tab key,
3. The semicolon symbol.

1.1.3.8.1 The Up Arrow Key

Suppose we want to enter the following equation:

� y=sin(45)

But we mistakenly entered

13

� y=sine(45)

MATLAB returns the following prompt:

??? Undefined function or method 'sine' for input arguments of type 'double'.

Instead of retyping the equation, press the up arrow key, the mistakenly entered line is displayed.
Using the left arrow key, move the cursor to the misspelled letter. Make the correction and press
Return or Enter to execute the command.

Pressing the up arrow key repeatedly recalls the previously entered commands. Likewise, typ-
ing the first characters of previously entered line and pressing the up arrow key displays the full
command line. To execute that line, simply press the Return or Enter key.

1.1.3.8.2 The Tab Key

Suppose you forgot how to enter the square root command. Begin typing y=sq in the command
prompt:

� y=sq

Then press the tab key and scroll down to sqrt. Select it and press Return or Enter key.

� y=sqrt

1.1.3.8.3 The Semicolon Symbol

The semicolon symbol at the end of a line suppresses the screen output. This is useful when you
want to keep your command window clean.

Type the following entry and press the Return key:

� y=2+2

The following output is displayed:

y =

4

Now, press the up arrow key to recall our initial entry

� y=2+2

And insert a semicolon as follows:

� y=2+2;

No numerical result is displayed however MATLAB stores the value of y in the memory. We can
recall the value y by simply typing y and pressing Return.

14 CHAPTER 1. INTRODUCTION

1.1.4 MATLAB Help
MATLAB comes with three forms of online help: help, doc and demos.

1.1.4.1 Help

Typing help in the Command Window lists all primary help topics. You can display a topic by
clicking on the link.

� help

Figure 1.10: Help.

Or if you know the command or function you need help with, you can type help followed by the
command or function. For example to learn about clc command, type help clc at the command
prompt:

� help clc

15

Figure 1.11: The output of � help clc command.

Also try the following command: � help clear

16 CHAPTER 1. INTRODUCTION

Figure 1.12: The output of � help clear command.

To learn about sine function, type help sin at the command prompt:

� help sin

1.1.4.2 Doc

Obviously, to use help effectively, you need to know what you are looking for. Often times, espe-
cially when you first start learning an application, it is usually difficult to ask the right questions.
In the case of MATLAB, doc command is generally better than help. If you type doc in the
command prompt, MATLAB opens a browser from where you can obtain help easier:

� doc

17

Figure 1.13: Built-in MATLAB Documentation.

Like using help sin, try typing doc sin in the command prompt:

� doc sin

1.1.4.3 Demos

You can learn more about MATLAB through demos by typing demo in the command prompt, a list
of links to demos will open in Help Browser. Demos and online seminars are available at product
demos and online seminars9 .

� demo

9http://www.mathworks.com/products/matlab/demos.html

18 CHAPTER 1. INTRODUCTION

Figure 1.14: Built-in MATLAB Demos.

1.1.5 Useful Commands and Functions
For a detailed explanation and examples for each of the following type ‘help function’ (without
quotes) at the MATLAB prompt.

19

Command/Function Meaning

clc Clear Command Window

clear Remove items from workspace

who, whos List variables in workspace

workspace Display Workspace browser

cd Change working directory

pwd Display current directory

computer Identify information about computer on which MATLAB is running

ver Display version information for MathWorks products

quit Terminate MATLAB

exit Terminate MATLAB (same as quit)

Table 1.1: Useful commands and functions

1.1.6 Summary of Key Points
1. MATLAB is a popular technical computing application and MathWorks offers a trial version

of MATLAB on their website,
2. The MATLAB Desktop consists of Command Window, Command History, Workspace, Cur-

rent Folder and Start Button,
3. The up/down arrow keys, the tab key and the semicolon are convenient tools to use the

Command Window,
4. MATLAB features an online help, doc and demo,
5. Various commands and functions make MATLAB experience easier, for example, clc,

clear and exit.

1.2 Problem Set10

Exercise 1.2.1 (Solution on p. 21.)
Learn about the following terms using help command:

1. workspace
2. plot
3. clear

10This content is available online at <http://cnx.org/content/m41463/1.2/>.

20 CHAPTER 1. INTRODUCTION

4. format
5. roots

Exercise 1.2.2 (Solution on p. 22.)
List the items found in START button.

Exercise 1.2.3 (Solution on p. 22.)
List the items found under DESKTOP menu.

Exercise 1.2.4 (Solution on p. 23.)
List the items found under HELP menu.

Exercise 1.2.5 (Solution on p. 24.)
Use Function Browser to learn about natural logarithm. (hint: Help Menu > Function

Browser > Mathematics > Elementary Math > Exponential)

21

Solutions to Exercises in Chapter 1
Solution to Exercise 1.2.1 (p. 19)

1.

� help workspace

WORKSPACE Open Workspace browser to manage workspace

WORKSPACE Opens the Workspace browser with a view of the variables

in the current Workspace. Displayed variables may be viewed,

manipulated, saved, and cleared.

See also whos, openvar, save.

Reference page in Help browser

doc workspace

�

2.

� help plot

PLOT Linear plot.

PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix,

then the vector is plotted versus the rows or columns of the matrix,

whichever line up. If X is a scalar and Y is a vector, disconnected

line objects are created and plotted as discrete points vertically at

X.

3.

� help clear

CLEAR Clear variables and functions from memory.

CLEAR removes all variables from the workspace.

CLEAR VARIABLES does the same thing.

CLEAR GLOBAL removes all global variables.

CLEAR FUNCTIONS removes all compiled M- and MEX-functions.

CLEAR ALL removes all variables, globals, functions and MEX links.

CLEAR ALL at the command prompt also removes the Java packages import

list.

......

4.

22 CHAPTER 1. INTRODUCTION

� help format

FORMAT Set output format.

FORMAT with no inputs sets the output format to the default appropriate

for the class of the variable. For float variables, the default is

FORMAT SHORT.

......

5.

� help roots

ROOTS Find polynomial roots.

ROOTS(C) computes the roots of the polynomial whose coefficients

are the elements of the vector C. If C has N+1 components,

the polynomial is C(1)*X^N + ... + C(N)*X + C(N+1).

......

Solution to Exercise 1.2.2 (p. 20)
Following figure illustrates the item found in START button:

Figure 1.15: Start Button

Solution to Exercise 1.2.3 (p. 20)
Following figure illustrates the item found under DESKTOP menu:

23

Figure 1.16: Desktop menu items

Solution to Exercise 1.2.4 (p. 20)
Following figure illustrates the item found under HELP menu:

24 CHAPTER 1. INTRODUCTION

Figure 1.17: Help menu items

Solution to Exercise 1.2.5 (p. 20)
Following figure shows the solution:

25

Figure 1.18: Information about natural logarithm displayed with Search for Functions.

26 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

2.1 Essentials1

Learning a new skill, especially a computer program in this case, can be overwhelming. However,
if we build on what we already know, the process can be handled rather effectively. In the preceding
chapter we learned about MATLAB Graphical User Interface (GUI) and how to get help. Knowing

1This content is available online at <http://cnx.org/content/m41409/1.1/>.

27

28 CHAPTER 2. GETTING STARTED

the GUI, we will use basic math skills in MATLAB to solve linear equations and find roots of
polynomials in this chapter.

2.1.1 Basic Computation
2.1.1.1 Mathematical Operators

The evaluation of expressions is accomplished with arithmetic operators as we use them in scien-
tific calculators. Note the addtional operators shown in the table below:

Operator Name Description

+ Plus Addition

- Minus Subtraction

* Asterisk Multiplication

/ Forward Slash Division

\ Back Slash Left Matrix Division

^ Caret Power

.* Dot Asterisk Array multiplication (element-wise)

./ Dot Slash Right array divide (element-wise)

.\ Dot Back Slash Left array divide (element-wise)

.^ Dot Caret Array power (element-wise)

Table 2.1: Operators

NOTE: The backslash operator is used to solve linear systems of equations, see Sec-
tion 2.1.5 (Linear Equations).

IMPORTANT: Matrix is a rectangular array of numbers and formed by rows and columns.

For example A =


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

. In this example A consists of 4 rows and 4

columns and therefore is a 4x4 matrix. (see Wikipedia2).

2http://en.wikipedia.org/wiki/Matrix_%28mathematics%29

29

IMPORTANT: Row vector is a special matrix that contains only one row. In other words,
a row vector is a 1xn matrix where n is the number of elements in the row vector. B =(

1 2 3 4 5
)

IMPORTANT: Column vector is also a special matrix. As the term implies, it contains only
one column. A column vector is an nx1 matrix where n is the number of elements in the

column vector. C =



1

2

3

4

5



NOTE: Array operations refer to element-wise calculations on the arrays, for example if x
is an a by b matrix and y is a c by d matrix then x.*y can be performed only if a=c and
b=d. Consider the following example, x consists of 2 rows and 3 columns and therefore it
is a 2x3 matrix. Likewise, y has 2 rows and 3 columns and an array operation is possible.

x =

 1 2 3

4 5 6

 and y =

 10 20 30

40 50 60

 then x.∗y =

 10 40 90

160 250 360


Example 2.1
The following figure illustrates a typical calculation in the Command Window.

30 CHAPTER 2. GETTING STARTED

Figure 2.1: Basic arithmetic in the command window.

2.1.1.2 Operator Precedence

MATLAB allows us to build mathematical expressions with any combination of arithmetic op-
erators. The order of operations are set by precedence levels in which MATLAB evaluates an
expression from left to right. The precedence rules for MATLAB operators are shown in the list
below from the highest precedence level to the lowest.

1. Parentheses ()
2. Power (^)
3. Multiplication (*), right division (/), left division (\)
4. Addition (+), subtraction (-)

2.1.2 Mathematical Functions
MATLAB has all of the usual mathematical functions found on a scientific calculator including
square root, logarithm, and sine.

31

IMPORTANT: Typing pi returns the number 3.1416. To find the sine of pi, type in sin(pi)
and press enter.

IMPORTANT: The arguments in trigonometric functions are in radians. Multiply degrees
by pi/180 to get radians. For example, to calculate sin(90), type in sin(90*pi/180).

WARNING: In MATLAB log returns the natural logarithm of the value. To find the ln of
10, type in log(10) and press enter, (ans = 2.3026).

WARNING: MATLAB accepts log10 for common (base 10) logarithm. To find the log of
10, type in log10(10) and press enter, (ans = 1).

Practice the following examples to familiarize yourself with the common mathematical functions.
Be sure to read the relevant help and doc pages for functions that are not self explanatory.

Example 2.2
Calculate the following quantities:

1. 23

32−1 ,
2. 50.5−1
3. π

4 d2 for d=2

MATLAB inputs and outputs are as follows:

1. 23

32−1 is entered by typing 2^3/(3^2-1) (ans = 1)
2. 50.5−1 is entered by typing sqrt(5)-1 (ans = 1.2361)
3. π

4 d2 for d=2 is entered by typing pi/4*2^2 (ans = 3.1416)

Example 2.3
Calculate the following exponential and logarithmic quantities:

1. e2

2. ln
(
510)

3. log105

MATLAB inputs and outputs are as follows:

1. exp(2) (ans = 7.3891)
2. log((5^10)) (ans = 16.0944)
3. log10(10^5) (ans = 5)

32 CHAPTER 2. GETTING STARTED

Example 2.4
Calculate the following trigonometric quantities:

1. cos
(

π

6

)
2. tan(45)
3. sin(π)+ cos(45)

MATLAB inputs and outputs are as follows:

1. cos(pi/6) (ans = 0.8660)
2. tan(45*pi/180) (ans = 1.0000)
3. sin(pi)+cos(45*pi/180) (ans = 0.7071)

2.1.3 The format Function
The format function is used to control how the numeric values are displayed in the Command
Window. The short format is set by default and the numerical results are displayed with 4 digits
after the decimal point (see the examples above). The long format produces 15 digits after the
decimal point.

Example 2.5
Calculate θ = tan

(
π

3

)
and display results in short and long formats.

The short format is set by default:

� theta=(pi/3)

theta =

1.0472

�

And the long format is turned on by typing format long:

� theta=(pi/3)

theta =

1.0472

� format long

� theta

33

theta =

1.047197551196598

�

2.1.4 Variables
In MATLAB, a named value is called a variable. MATLAB comes with several predefined vari-
ables. For example, the name pi refers to the mathematical quantity π , which is approximately pi

ans = 3.1416

WARNING: MATLAB is case-sensitive, which means it distinguishes between upper- and
lowercase letters (e.g. data, DATA and DaTa are three different variables). Command and
function names are also case-sensitive. Please note that when you use the command-line
help, function names are given in upper-case letters (e.g., CLEAR) only to emphasize
them. Do not use upper-case letters when running functions and commands.

2.1.4.1 Declaring Variables

Variables in MATLAB are generally represented as matrix quantities. Scalars and vectors are
special cases of matrices having size 1x1 (scalar), 1xn (row vector) or nx1 (column vector).

2.1.4.1.1 Declaration of a Scalar

The term scalar as used in linear algebra refers to a real number. Assignment of scalars in MAT-
LAB is easy, type in the variable name followed by = symbol and a number:

Example 2.6
a = 1

Figure 2.2: Assignment of a scalar quantity.

34 CHAPTER 2. GETTING STARTED

2.1.4.1.2 Declaration of a Row Vector

Elements of a row vector are separated with blanks or commas.

Example 2.7
Let’s type the following at the command prompt:

b = [1 2 3 4 5]

Figure 2.3: Assignment of a row vector quantity.

We can also use the Variable Editor to assign a row vector. In the menu bar, select File
> New > Variable. This action will create a variable called unnamed which is displayed
in the workspace. By clicking on the title unnamed, we can rename it to something more
descriptive. By double-clicking on the variable, we can open the Variable Editor and type
in the values into spreadsheet looking table.

35

Figure 2.4: Assignment of a row vector by using the Variable Editor.

2.1.4.1.3 Declaration of a Column Vector

Elements of a column vector is ended by a semicolon:

Example 2.8
c = [1;2;3;4;5;]

36 CHAPTER 2. GETTING STARTED

Figure 2.5: Assignment of a column vector quantity.

Or by transposing a row vector with the ’ operator:

c = [1 2 3 4 5]'

Figure 2.6: Assignment of a column vector quantity by transposing a row vector with the ’
operator.

Or by using the Variable Editor:

37

Figure 2.7: Assignment of a column vector quantity by using the Variable Editor.

2.1.4.1.4 Declaration of a Matrix

Matrices are typed in rows first and separated by semicolons to create columns. Consider the
examples below:

Example 2.9
Let us type in a 2x5 matrix:

d = [2 4 6 8 10; 1 3 5 7 9]

38 CHAPTER 2. GETTING STARTED

Figure 2.8: Assignment of a 2x5 matrix.

Figure 2.9: Assignment of a matrix by using the Variable Editor.

Example 2.10
This example is a 5x2 matrix:

39

Figure 2.10: Assignment of a 5x2 matrix.

2.1.5 Linear Equations
Systems of linear equations are very important in engineering studies. In the course of solving
a problem, we often reduce the problem to simultaneous equations from which the results are
obtained. As you learned earlier, MATLAB stands for Matrix Laboratory and has features to
handle matrices. Using the coefficients of simultaneous linear equations, a matrix can be formed
to solve a set of simultaneous equations.

Example 2.11
Let’s solve the following simultaneous equations:

x+ y = 1 (2.1)

2x−5y = 9 (2.2)

First, we will create a matrix for the left-hand side of the equation using the coefficients,
namely 1 and 1 for the first and 2 and -5 for the second. The matrix looks like this: 1 1

2 −5

 (2.3)

The above matrix can be entered in the command window by typing A=[1 1; 2 -5].

Second, we create a column vector to represent the right-hand side of the equation as
follows:  1

9

 (2.4)

40 CHAPTER 2. GETTING STARTED

The above column vector can be entered in the command window by typing B= [1;9].

To solve the simultaneous equation, we will use left division operator and issue the fol-
lowing command: C=A\B. These three steps are illustrated below:

� A=[1 1; 2 -5]

A =

1 1

2 -5

� B= [1;9]

B =

1

9

� C=A\B

C =

2

-1

�

The result C indicating 2 and 1 are the values for x and y, respectively.

2.1.6 Polynomials
In the preceding section, we briefly learned about how to use MATLAB to solve linear equations.
Equally important in engineering problem solving is the application of polynomials. Polynomials
are functions that are built by simply adding together (or subtracting) some power functions. (see
Wikipedia3).

ax2 +bx+ c = 0 (2.5)

f(x) = ax2 +bx+ c (2.6)

3http://en.wikipedia.org/wiki/Polynomial

41

The coeffcients of a polynominal are entered as a row vector beginning with the highest power
and including the ones that are equal to 0.

Example 2.12
Create a row vector for the following function: y = 2x4 +3x3 +5x2 + x+10

Notice that in this example we have 5 terms in the function and therefore the row vector
will contain 5 elements. p=[2 3 5 1 10]

Example 2.13
Create a row vector for the following function: y = 3x4 +4x2−5

In this example, coefficients for the terms involving power of 3 and 1 are 0. The row vector
still contains 5 elements as in the previous example but this time we will enter two zeros
for the coefficients with power of 3 and 1: p=[3 0 4 0 -5].

2.1.6.1 The polyval Function

We can evaluate a polynomial p for a given value of x using the syntax polyval(p,x) where p
contains the coefficients of polynomial and x is the given number.

Example 2.14
Evaluate f(x) at 5.

f(x) = 3x2 +2x+1 (2.7)

The row vector representing f(x) above is p=[3 2 1]. To evaluate f(x) at 5, we type in:
polyval(p,5). The following shows the Command Window output:

� p=[3 2 1]

p =

3 2 1

� polyval(p,5)

ans =

86

�

42 CHAPTER 2. GETTING STARTED

2.1.6.2 The roots Function

Consider the following equation:

ax2 +bx+ c = 0 (2.8)

Probably you have solved this type of equations numerous times. In MATLAB, we can use the
roots function to find the roots very easily.

Example 2.15
Find the roots for the following:

0.6x2 +0.3x−0.9 = 0 (2.9)

To find the roots, first we enter the coefficients of polynomial in to a row vector p with
p=[0.6 0.3 -0.9] and issue the r=roots(p) command. The following shows the com-
mand window output:

� p=[0.6 0.3 -0.9]

p =

0.6000 0.3000 -0.9000

� r=roots(p)

r =

-1.5000

1.0000

�

2.1.7 Splitting a Statement
You will soon find out that typing long statements in the Command Window or in the the Text
Editor makes it very hard to read and maintain your code. To split a long statement over multiple
lines simply enter three periods "..." at the end of the line and carry on with your statement on the
next line.

Example 2.16
The following command window output illustrates the use of three periods:

43

� sin(pi)+cos(45*pi/180)-sin(pi/2)+cos(45*pi/180)+tan(pi/3)

ans =

2.1463

� sin(pi)+cos(45*pi/180)-sin(pi/2)...

+cos(45*pi/180)+tan(pi/3)

ans =

2.1463

�

2.1.8 Comments
Comments are used to make scripts more "readable". The percent symbol % separates the com-
ments from the code. Examine the following examples:

Example 2.17
The long statements are split to make it easier to read. However, despite the use of de-
scriptive variable names, it is hard to understand what this script does, see the following
Command Window output:

t_water=80;

t_outside=15;

inner_dia=0.05;

thickness=0.006;

Lambda_steel=48;

AlfaInside=2800;

AlfaOutside=17;

thickness_insulation=0.012;

Lambda_insulation=0.03;

r_i=inner_dia/2

r_o=r_i+thickness

r_i_insulation=r_o

r_o_insulation=r_i_insulation+thickness_insulation

AreaInside=2*pi*r_i

AreaOutside=2*pi*r_o

AreaOutside_insulated=2*pi*r_o_insulation

44 CHAPTER 2. GETTING STARTED

AreaM_pipe=(2*pi*(r_o-r_i))/log(r_o/r_i)

AreaM_insulation=(2*pi*(r_o_insulation-r_i_insulation)) ...

/log(r_o_insulation/r_i_insulation)

TotalResistance=(1/(AlfaInside*AreaInside))+ ...

(thickness/(Lambda_steel*AreaM_pipe))+(1/(AlfaOutside*AreaOutside))

TotalResistance_insulated=(1/(AlfaInside*AreaInside))+ ...

(thickness/(Lambda_steel*AreaM_pipe))+(thickness_insulation ...

/(Lambda_insulation*AreaM_insulation))+(1/(AlfaOutside*AreaOutside_insulated))

Q_dot=(t_water-t_outside)/(TotalResistance*1000)

Q_dot_insulated=(t_water-t_outside)/(TotalResistance_insulated*1000)

PercentageReducttion=((Q_dot-Q_dot_insulated)/Q_dot)*100

Example 2.18
The following is an edited version of the above including numerous comments:

% Problem 16.06

% Problem Statement

% Calculate the percentage reduction in heat loss when a layer of hair felt

% is wrapped around the outside surface (see problem 16.05)

format short

% Input Values

t_water=80; % Water temperature [C]

t_outside=15; % Atmospheric temperature [C]

inner_dia=0.05; % Inner diameter [m]

thickness=0.006; % [m]

Lambda_steel=48; % Thermal conductivity of steel [W/mK]

AlfaInside=2800; % Heat transfer coefficient of inside [W/m2K]

AlfaOutside=17; % Heat transfer coefficient of outside [W/m2K]

% Neglect radiation

% Additional layer

thickness_insulation=0.012; % [m]

Lambda_insulation=0.03; % Thermal conductivity of insulation [W/mK]

% Output Values

% Q_dot=(t_water-t_outside)/TotalResistance

% TotalResistance=(1/(AlfaInside*AreaInside))+(thickness/(Lambda_steel*AreaM))+ ...

(1/(AlfaOutside*AreaOutside)

% Calculating the unknown terms

r_i=inner_dia/2 % Inner radius of pipe [m]

r_o=r_i+thickness % Outer radius of pipe [m]

45

r_i_insulation=r_o % Inner radius of insulation [m]

r_o_insulation=r_i_insulation+thickness_insulation % Outer radius of pipe [m]

AreaInside=2*pi*r_i

AreaOutside=2*pi*r_o

AreaOutside_insulated=2*pi*r_o_insulation

AreaM_pipe=(2*pi*(r_o-r_i))/log(r_o/r_i) % Logarithmic mean area for pipe

AreaM_insulation=(2*pi*(r_o_insulation-r_i_insulation)) ...

/log(r_o_insulation/r_i_insulation) % Logarithmic mean area for insulation

TotalResistance=(1/(AlfaInside*AreaInside))+(thickness/ ...

(Lambda_steel*AreaM_pipe))+(1/(AlfaOutside*AreaOutside))

TotalResistance_insulated=(1/(AlfaInside*AreaInside))+(thickness/ ...

(Lambda_steel*AreaM_pipe))+(thickness_insulation/(Lambda_insulation*AreaM_insulation)) ...

+(1/(AlfaOutside*AreaOutside_insulated))

Q_dot=(t_water-t_outside)/(TotalResistance*1000) % converting into kW

Q_dot_insulated=(t_water-t_outside)/(TotalResistance_insulated*1000) % converting into kW

PercentageReducttion=((Q_dot-Q_dot_insulated)/Q_dot)*100

2.1.9 Basic Operations

Command Meaning

sum Sum of array elements

prod Product of array elements

sqrt Square root

log10 Common logarithm (base 10)

log Natural logarithm

max Maximum elements of array

min Minimum elements of array

mean Average or mean value of arrays

std Standard deviation

Table 2.2: Basic operations.

46 CHAPTER 2. GETTING STARTED

2.1.10 Special Characters

Character Meaning

= Assignment

() Prioritize operations

[] Construct array

: Specify range of array elements

, Row element separator in an array

; Column element separator in an array

... Continue statement to next line

. Decimal point, or structure field separator

% Insert comment line into code

Table 2.3: Special Characters

2.1.11 Summary of Key Points
1. MATLAB has the common functions found on a scientific calculator and can be operated in

a similar way,
2. MATLAB can store values in variables. Variables are case sensitive and some variables are

reserved by MATLAB (e.g. pi stores 3.1416),
3. Variable Editor can be used to enter or manipulate matrices,
4. The coefficients of simultaneous linear equations and polynomials are used to form a row

vector. MATLAB then can be used to solve the equations,
5. The format function is used to control the number of digits displayed,
6. Three periods "..." at the end of the line is used to split a long statement over multiple lines,
7. The percent symbol % separates the comments from the code, anything following % symbol

is ignored by MATLAB.

2.2 Problem Set4

Determine the value of each of the following.
Exercise 2.2.1 (Solution on p. 49.)
6×7+42−24

4This content is available online at <http://cnx.org/content/m41464/1.5/>.

47

Exercise 2.2.2 (Solution on p. 49.)
32+23

45−54 + 640.5−52

45+56+78

Exercise 2.2.3 (Solution on p. 49.)
log102 +105

Exercise 2.2.4 (Solution on p. 49.)
e2 +23− ln

(
e2)

Exercise 2.2.5 (Solution on p. 49.)
sin(2π)+ cos

(
π

4

)
Exercise 2.2.6 (Solution on p. 49.)
tan
(

π

3

)
+ cos(270)+ sin(270)+ cos

(
π

3

)
Exercise 2.2.7 (Solution on p. 49.)
Solve the following system of equations:

2x+4y = 1
x+5y = 2
Exercise 2.2.8 (Solution on p. 49.)
Evaluate y at 5.

y = 4x4 +3x2− x
Exercise 2.2.9 (Solution on p. 50.)
Given below is Load-Gage Length data for a type 304 stainless steel that underwent a

tensile test. Original specimen diameter is 12.7 mm. 5

5Introduction to Materials Science for Engineers by J. F. Shackelford, Macmillan Publishing Company. ©1985,
(p.304)

48 CHAPTER 2. GETTING STARTED

Load [kN] Gage Length [mm]

0.000 50.8000

4.890 50.8102

9.779 50.8203

14.670 50.8305

19.560 50.8406

24.450 50.8508

27.620 50.8610

29.390 50.8711

32.680 50.9016

33.950 50.9270

34.580 50.9524

35.220 50.9778

35.720 51.0032

40.540 51.816

48.390 53.340

59.030 55.880

65.870 58.420

69.420 60.960

69.670 (maximum) 61.468

68.150 63.500

60.810 (fracture) 66.040 (after fracture)

Table 2.4

The engineering stress is defined as σ = P
A , where P is the load [N] on the sample with an

original cross-sectional area A [m2] and the engineering strain is defined as ε = ∆l
l , where

∆l is the change in length and l is the initial length.

Compute the stress and strain values for each of the measurements obtained in the
tensile test.

49

Solutions to Exercises in Chapter 2
Solution to Exercise 2.2.1 (p. 46)
� (6*7)+4^2-2^4 (ans = 42)

Solution to Exercise 2.2.2 (p. 46)
� ((3^2+2^3)/(4^5-5^4))+((sqrt(64)-5^2)/(4^5+5^6+7^8)) (ans = 0.0426)

Solution to Exercise 2.2.3 (p. 47)
� log10(10^2)+10^5 (ans = 100002)

Solution to Exercise 2.2.4 (p. 47)
� exp(2)+2^3-log(exp(2)) (ans = 13.3891)

Solution to Exercise 2.2.5 (p. 47)
� sin(2*pi)+cos(pi/4) (ans = 0.7071)

Solution to Exercise 2.2.6 (p. 47)
� tan(pi/3)+cos(270*pi/180)+sin(270*pi/180)+cos(pi/3) (ans = 1.2321)

Solution to Exercise 2.2.7 (p. 47)

� A=[2 4; 1 5]

A =

2 4

1 5

� B=[1; 2]

B =

1

2

� Solution=A\B

Solution =

-0.5000

0.5000

Solution to Exercise 2.2.8 (p. 47)

� p=[4 0 3 -1 0]

50 CHAPTER 2. GETTING STARTED

p =

4 0 3 -1 0

� polyval(p,5)

ans =

2570

�

Solution to Exercise 2.2.9 (p. 47)
First, we need to enter the data sets. Because it is rather a large table, using Variable Editor is

more convenient. See the figures below:

Figure 2.11: Load in Newtons

51

Figure 2.12: Extension length in mm.

Next, we will calculate the cross-sectional area.

Area=pi/4*(0.0127^2)

Area =

1.2668e-004

Now, we can find the Stress values with the following, note that we are obtaining results in MPa:

Sigma=(Load_N./Area)*10^(-6)

Sigma =

0

38.6022

77.1964

115.8065

154.4086

193.0108

218.0351

232.0076

257.9792

52 CHAPTER 2. GETTING STARTED

268.0047

272.9780

278.0302

281.9773

320.0269

381.9955

465.9888

519.9844

548.0085

549.9820

537.9830

480.0403

For strain calculation, we will first find the change in length:

Delta_L=Length_mm-50.800

Delta_L =

0

0.0102

0.0203

0.0305

0.0406

0.0508

0.0610

0.0711

0.1016

0.1270

0.1524

0.1778

0.2032

1.0160

2.5400

5.0800

7.6200

10.1600

10.6680

12.7000

15.2400

Now we can determine Strain with the following:

53

Epsilon=Delta_L./50.800

Epsilon =

0

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0020

0.0025

0.0030

0.0035

0.0040

0.0200

0.0500

0.1000

0.1500

0.2000

0.2100

0.2500

0.3000

The final results can be tabulated as foolows:

[Sigma Epsilon]

ans =

0 0

38.6022 0.0002

77.1964 0.0004

115.8065 0.0006

154.4086 0.0008

193.0108 0.0010

218.0351 0.0012

232.0076 0.0014

257.9792 0.0020

54 CHAPTER 2. GETTING STARTED

268.0047 0.0025

272.9780 0.0030

278.0302 0.0035

281.9773 0.0040

320.0269 0.0200

381.9955 0.0500

465.9888 0.1000

519.9844 0.1500

548.0085 0.2000

549.9820 0.2100

537.9830 0.2500

480.0403 0.3000

Chapter 3

Graphics

3.1 Plotting in MATLAB1

A picture is worth a thousand words, particularly visual representation of data in engineering is
very useful. MATLAB has powerful graphics tools and there is a very helpful section devoted to
graphics in MATLAB Help: Graphics. Students are encouraged to study that section; what follows

1This content is available online at <http://cnx.org/content/m41442/1.2/>.

55

56 CHAPTER 3. GRAPHICS

is a brief summary of the main plotting features.

3.1.1 Two-Dimensional Plots
3.1.1.1 The plot Statement

Probably the most common method for creating a plot is by issuing plot(x, y) statement where
function y is plotted against x.

Example 3.1
Type in the following statement at the MATLAB prompt:

x=[-pi:.1:pi]; y=sin(x); plot(x,y);

After we executed the statement above, a plot named Figure1 is generated:

Figure 3.1: Graph of sin(x)

57

Having variables assigned in the Workspace, x and y=sin(x) in our case, we can also select x and
y, and right click on the selected variables. This opens a menu from which we choose plot(x,y).
See the figure below.

Figure 3.2: Creating a plot from Workspace.

3.1.1.2 Annotating Plots

Graphs without labels are incomplete and labeling elements such as plot title, labels for x and
y axes, and legend should be included. Using up arrow, recall the statement above and add the
annotation commands as shown below.

x=[-pi:.1:pi];y=sin(x);plot(x,y);title('Graph of y=sin(x)');xlabel('x');ylabel('sin(x)');grid on

Run the file and compare your result with the first one.

58 CHAPTER 3. GRAPHICS

Figure 3.3: Graph of sin(x) with Labels.

ASIDE: Type in the following at the MATLAB prompt and learn additional commands to
annotate plots:

help gtext

help legend

help zlabel

3.1.1.3 Superimposed Plots

If you want to merge data from two graphs, rather than create a new graph from scratch, you can
superimpose the two using a simple trick:

59

% This script generates sin(x) and cos(x) plot on the same graph

% initialize variables

x=[-pi:.1:pi]; %create a row vector from -pi to +pi with .1 increments

y0=sin(x); %calculate sine value for each x

y1=cos(x); %calculate cosine value for each x

% Plot sin(x) and cos(x) on the same graph

plot(x,y0,x,y1);

title('Graph of sin(x) and cos(x)'); %Title of graph

xlabel('x'); %Label of x axis

ylabel('sin(x), cos(x)'); %Label of y axis

legend('sin(x)','cos(x)'); %Insert legend in the same order as y0 and y1 calculated

grid on %Graph grid is turned

Figure 3.4: Graph of sin(x) and cos(x) in the same plot with labels and legend.

60 CHAPTER 3. GRAPHICS

3.1.1.4 Multiple Plots in a Figure

Multiple plots in a single figure can be generated with subplot in the Command Window. How-
ever, this time we will use the built-in Plot Tools. Before we initialize that tool set, let us create the
necessary variables using the following script:

% This script generates sin(x) and cos(x) variables

clc %Clears command window

clear all %Clears the variable space

close all %Closes all figures

X1=[-2*pi:.1:2*pi]; %Creates a row vector from -2*pi to 2*pi with .1 increments

Y1=sin(X1); %Calculates sine value for each x

Y2=cos(X1); %Calculates cosine value for each x

Y3=Y1+Y2; %Calculates sin(x)+cos(x)

Y4=Y1-Y2; %Calculates sin(x)-cos(x)

Note that the above script clears the command window and variable workspace. It also closes
any open Figures. After running the script, we will have X1, Y1, Y2, Y3 and Y4 loaded in the
workspace. Next, select File > New > Figure, a new Figure window will open. Click "Show Plot
Tools and Dock Figure" on the tool bar.

61

Figure 3.5: Plot Tools

Under New Subplots > 2D Axes, select four vertical boxes that will create four subplots in one
figure. Also notice, the five variables we created earlier are listed under Variables.

62 CHAPTER 3. GRAPHICS

Figure 3.6: Creating four sub plots.

After the subplots have been created, select the first supblot and click on "Add Data". In the
dialog box, set X Data Source to X1 and Y Data Source to Y1. Repeat this step for the remaining
subplots paying attention to Y Data Source (Y2, Y3 and Y4 need to be selected in the subsequent
steps while X1 is always the X Data Source).

63

Figure 3.7: Adding data to axes.

Next, select the first item in "Plot Browser" and activate the "Property Editor". Fill out the fields
as shown in the figure below. Repeat this step for all subplots.

64 CHAPTER 3. GRAPHICS

Figure 3.8: Using "Property Editor".

Save the figure as sinxcosx.fig in the current directory.

65

Figure 3.9: The four subplots generated with "Plot Tools".

66 CHAPTER 3. GRAPHICS

Figure 3.10: The four subplots in a single figure.

3.1.2 Three-Dimensional Plots
3D plots can be generated from the Command Window as well as by GUI alternatives. This time,
we will go back to the Command Window.

67

3.1.2.1 The plot3 Statement

With the X1,Y1,Y2 and Y2 variables still in the workspace, type in plot3(X1,Y1,Y2) at the
MATLAB prompt. A figure will be generated, click "Show Plot Tools and Dock Figure".

Figure 3.11: A raw 3D figure is generated with plot3.

Use the property editor to make the following changes.

68 CHAPTER 3. GRAPHICS

Figure 3.12: 3D Property Editor.

The final result should look like this:

69

Figure 3.13: 3D graph of x, sin(x), cos(x)

Use help or doc commands to learn more about 3D plots, for example, image(x), surf(x) and
mesh(x).

3.1.3 Generate Code
A code can be generated to reproduce the plots. To initialize this process, recall sinxcosx.fig
and select File > Generate Code.

70 CHAPTER 3. GRAPHICS

Figure 3.14: Generating code to reproduce a plot.

71

Figure 3.15: M-Code generation in progress.

function createfigure2(X1, Y1, Y2, Y3, Y4)

%CREATEFIGURE2(X1,Y1,Y2,Y3,Y4)

% X1: vector of x data

% Y1: vector of y data

% Y2: vector of y data

% Y3: vector of y data

% Y4: vector of y data

% Auto-generated by MATLAB on 05-Oct-2011 12:43:49

% Create figure

figure1 = figure;

% Create axes

axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',...

'Position',[0.13 0.791155913978495 0.775 0.11741935483871]);

box(axes1,'on');

hold(axes1,'all');

% Create title

title('Graph of sin(x)');

% Create xlabel

xlabel('x');

72 CHAPTER 3. GRAPHICS

% Create ylabel

ylabel('Sin(x)');

% Create plot

plot(X1,Y1,'Parent',axes1,'DisplayName','Y1 vs X1');

% Create axes

axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on',...

'Position',[0.13 0.572069892473118 0.775 0.11741935483871]);

box(axes2,'on');

hold(axes2,'all');

% Create title

title('Graph of cos(x)');

% Create xlabel

xlabel('x');

% Create ylabel

ylabel('Cos(x)');

% Create plot

plot(X1,Y2,'Parent',axes2,'DisplayName','Y2 vs X1');

% Create axes

axes3 = axes('Parent',figure1,'YGrid','on','XGrid','on',...

'Position',[0.13 0.352983870967742 0.775 0.11741935483871]);

box(axes3,'on');

hold(axes3,'all');

% Create title

title('Graph of sin(x)+cos(x)');

% Create xlabel

xlabel('x');

% Create ylabel

ylabel('Cos(x)+Sin(x)');

% Create plot

plot(X1,Y3,'Parent',axes3,'DisplayName','Y3 vs X1');

73

% Create axes

axes4 = axes('Parent',figure1,'YGrid','on','XGrid','on',...

'Position',[0.13 0.133897849462366 0.775 0.11741935483871]);

box(axes4,'on');

hold(axes4,'all');

% Create title

title('Graph of sin(x)-cos(x)');

% Create xlabel

xlabel('x');

% Create ylabel

ylabel('Sin(x)-Cos(x)');

% Create plot

plot(X1,Y4,'Parent',axes4,'DisplayName','Y4 vs X1');

As you can see, the file assumes you are using the same variables originally used to create the
graph, therefore the variables need to be passed as arguments in the future executions of the gen-
erated code.

3.1.4 Summary of Key Points
1. plot(x, y) and plot3(X1,Y1,Y2) statements create 2- and 3-D graphs respectively,
2. Plots at minimum should contain the following elements: title, xlabel, ylabel and

legend,
3. Annotated plots can be easily generated with GUI Plot Tools,
4. MATLAB can generate code to reproduce plots.

3.2 Problem Set2

Exercise 3.2.1 (Solution on p. 77.)
Plot y = a+bx, using the specified coefficients and ranges (use increments of 0.1):

a. a = 2, b = 0.3 for 0≤ x≤ 5
b. a = 3, b = 0 for 0≤ x≤ 10
c. a = 4, b =−0.3 for 0≤ x≤ 15

Exercise 3.2.2 (Solution on p. 77.)
Plot the following functions, using increments of 0.01 and a = 6, b = 0.8, 0≤ x≤ 5:

2This content is available online at <http://cnx.org/content/m41466/1.6/>.

74 CHAPTER 3. GRAPHICS

a. y = a+ xb

b. y = axb

c. y = asin(x)

Exercise 3.2.3 (Solution on p. 79.)
Plot function y = sin(x)

x for π

100 ≤ x≤ 10π using increments of π

100
Exercise 3.2.4 (Solution on p. 80.)
Data collected from Boyle’s Law experiment are as follows:

Volume [cm^3] Pressure [Pa]

7.34 100330

7.24 102200

7.14 103930

7.04 105270

6.89 107400

6.84 108470

6.79 109400

6.69 111140

6.64 112200

Table 3.1

Plot a graph of Pressure vs Volume, annotate your graph.
Exercise 3.2.5 (Solution on p. 81.)
The original data collected from Boyle’s 3 experiment are as follows:

Volume [tube-inches] Pressure [inches-Hg]

12 29.125

10 35.000

8 43.688

6 58.250

5 70.000

4 87.375

3 116.500

3Introduction to Engineering: Modeling and Problem Solving by J. B. Brockman, John Wiley and Sons, Inc.
©2009, (p.246)

75

Table 3.2

Plot a graph of Pressure vs Volume, annotate your graph.
Exercise 3.2.6 (Solution on p. 82.)
Display the two plots created earlier in one plot.

Exercise 3.2.7 (Solution on p. 83.)
A tensile test of SAE 1020 steel produced the data below 4 experiment are as fol-

lows:

Extension [mm] Load [kN]

0.00 0.0

0.09 1.9

0.31 6.1

0.47 9.4

2.13 11.0

5.05 11.7

10.50 12.0

16.50 11.9

23.70 10.7

27.70 9.3

34.50 8.1

Table 3.3

Plot a graph of Load vs Extension, annotate your graph.
Exercise 3.2.8 (Solution on p. 84.)
Given below is Stress-Strain data for a type 304 stainless steel. 5 experiment are as

follows:

4Introduction to Materials Science for Engineers | Instructor’s Manual by J. F. Shackelford, Macmillan Publishing
Company. ©1992, (p.440)

5Introduction to Materials Science for Engineers by J. F. Shackelford, Macmillan Publishing Company. ©1985,
(p.304)

76 CHAPTER 3. GRAPHICS

Stress [MPa] Strain [mm/mm]

0.0 0.0000

38.6 0.0002

77.2 0.0004

115.8 0.0006

154.4 0.0008

193.0 0.0010

218.0 0.0012

232.0 0.0014

258.0 0.0020

268.0 0.0025

273.0 0.0030

278.0 0.0035

282.0 0.0040

320.0 0.0200

382.0 0.0500

466.0 0.1000

520.0 0.1500

548.0 0.2000

550.0 0.2100

538.0 0.2500

480.0 0.3000

Table 3.4

Plot a graph of Stress vs Strain, annotate your graph.

77

Solutions to Exercises in Chapter 3
Solution to Exercise 3.2.1 (p. 73)

a.

a=2; b=.3; x=[0:.1:5]; y=a+b*x;

plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid

b.

a=3; b=.0; x=[0:.1:10]; y=a+b*x;

plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid

c.

a=2; b=.3; x=[0:.1:5]; y=a+b*x;

plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid

Solution to Exercise 3.2.2 (p. 73)

a.

a=6; b=.8; x=[0:.01:5]; y=a+x.^b;

plot(x,y),title('Graph of y=a+x^b'),xlabel('x'),ylabel('y'),grid

78 CHAPTER 3. GRAPHICS

b.

a=6; b=.8; x=[0:.01:5]; y=a*x.^b;

plot(x,y),title('Graph of y=ax^b'),xlabel('x'),ylabel('y'),grid

c.

a=6; x=[0:.01:5]; y=a*sin(x);

plot(x,y),title('Graph of y=a*sin(x)'),xlabel('x'),ylabel('y'),grid

79

Solution to Exercise 3.2.3 (p. 74)

x = pi/100:pi/100:10*pi;

y = sin(x)./x;

plot(x,y),title('Graph of y=sin(x)/x'),xlabel('x'),ylabel('y'),grid

80 CHAPTER 3. GRAPHICS

Figure 3.16: Graph of y = sin(x)
x

Solution to Exercise 3.2.4 (p. 74)

Pressure=[100330,102200,103930,105270,107400,108470,109400,111140,112200];

Volume=[7.34,7.24,7.14,7.04,6.89,6.84,6.79,6.69,6.64];

plot(Volume, Pressure),title('Pressure Volume Graph'),xlabel('Volume'),ylabel('Pressure'),grid

81

Solution to Exercise 3.2.5 (p. 74)

� P=[29.125,35,43.688,58.25,70,87.375,116.5];

� V=[12,10,8,6,5,4,3];

� plot(V,P),title('Pressure Volume Graph'),xlabel('Volume'),ylabel('Pressure'),grid

82 CHAPTER 3. GRAPHICS

83

Solution to Exercise 3.2.6 (p. 75)

Solution to Exercise 3.2.7 (p. 75)

Extension=[0.00,0.09,0.31,0.47,2.13,5.05,10.50,16.50,23.70,27.70,34.50];

Load=[0.0,1.9,6.1,9.4,11.0,11.7,12.0,11.9,10.7,9.3,8.1];

plot(Extension, Load),title('Load versus Extension Curve'),xlabel('Extension'),ylabel('Load'),grid

84 CHAPTER 3. GRAPHICS

Solution to Exercise 3.2.8 (p. 75)
The data can be entered using Variable Editor:

Then execute the following:

plot(Strain,Stress),title('Stress versus Strain Curve'),xlabel('Strain [mm/mm]'),ylabel('Stress [mPa]'),grid

85

86 CHAPTER 3. GRAPHICS

Chapter 4

Introductory Programming

4.1 Writing Scripts to Solve Problems1

MATLAB provides scripting and automation tools that can simplify repetitive computational tasks.
For example, a series of commands executed in a MATLAB session to solve a problem can be saved
in a script file called an m-file. An m-file can be executed from the command line by typing the

1This content is available online at <http://cnx.org/content/m41440/1.2/>.

87

88 CHAPTER 4. INTRODUCTORY PROGRAMMING

name of the file or by pressing the run button in the built-in text editor tool bar.

4.1.1 Script Files
A script is a file containing a sequence of MATLAB statements. Script files have a filename
extension of .m. By typing the filename at the command prompt, we can run the script and obtain
results in the command window.

Figure 4.1: Number of m-files are displayed in the Current Folder sub-window.

A sample m-file named ThermalConductivity.m is displayed in Text Editor below. Note the
triangle (in green) run button in the tool bar, pressing this button executes the script in the command
window.

89

Figure 4.2: The content of ThermalConductivity.m file is displayed in Text Editor.

Now let us see how an m-file is created and executed.

Example 4.1
A cylindrical acetylene bottle with a radius r=0.3 m has a hemispherical top. The height
of the cylindrical part is h=1.5 m. Write a simple script to calculate the volume of the
acetylene bottle.

To solve this problem, we will first apply the volume of cylinder equation (4.1). Using the
volume of sphere equation (4.2), we will calculate the volume of hemisphere (4.3). The
total volume of the acetylene bottle is found with the sum of volumes equation (4.4).

Vcylinder = πr2h (4.1)

Vsphere =
4
3

πr3 (4.2)

Vtop =
2
3

πr3 (4.3)

90 CHAPTER 4. INTRODUCTORY PROGRAMMING

Vacetylene bottle = Vcylinder +Vtop (4.4)

To write the script, we will use the built-in text editor. From the menu bar select File >
New > Script. The text editor window will open in a separate window. First save this
file as AcetyleneBottle.m. In that window type the following code paying attention to
the use of percentage and semicolon symbols to comment out the lines and suppress the
output, respectively.

% This script computes the volume of an acetylene bottle with a radius r=0.3 m,

% a hemispherical top and a height of cylindrical part h=1.5 m.

r=0.3; % Radius [m]

h=1.5; % Height [m]

Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]

Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]

Vol_total=Vol_top+Vol_cyl % Calculating the total volume of acetylene bottle [m3]

Figure 4.3: Script created with the built-in text editor.

91

After running the script by pressing the green button in the Text Editor tool bar, the output
is displayed in the command window as shown below.

Figure 4.4: The MATLAB output in the command window.

4.1.2 The input Function
Notice that the script we have created above (Example 4.1) is not interactive and computes the
total volume only for the variables defined in the m-file. To make this script interactive we will
make some changes to the existing AcetyleneBottle.m by adding input function and save it as
AcetyleneBottleInteractive.m.

The syntax for input is as follows:

userResponse = input('prompt')

Example 4.2
Now, let’s incorporate the input command in AcetyleneBottleInteractive.m as
shown below and the subsequent figure:

92 CHAPTER 4. INTRODUCTORY PROGRAMMING

% This script computes the volume of an acetylene bottle

% user is prompted to enter

% a radius r for a hemispherical top

% a height h for a cylindrical part

r=input('Enter the radius of acetylene bottle in meters ');

h=input('Enter the height of cylindrical part of acetylene bottle in meters ');

Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]

Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]

Vol_total=Vol_top+Vol_cyl % Calculating the total volume of acetylene bottle [m3]

Figure 4.5: Interactive script that computes the volume of acetylene cylinder.

The command window upon run will be as follows, note that user keys in the radius and
height values and the same input values result in the same numerical answer as in example
(Example 4.1) which proves that the computation is correct.

93

Figure 4.6: The same numerical result is obtained through interactive script.

4.1.3 The disp Function
As you might have noticed, the output of our script is not displayed in a well-formatted fashion.
Using disp, we can control how text or arrays are displayed in the command window. For example,
to display a text string on the screen, type in disp('Hello world!'). This command will return
our friendly greeting as follows: Hello world!

disp(variable) can be used to display only the value of a variable. To demonstrate this, issue
the following command in the command window:

b = [1 2 3 4 5]

We have created a row vector with 5 elements. The following is displayed in the command window:

� b = [1 2 3 4 5]

b =

94 CHAPTER 4. INTRODUCTORY PROGRAMMING

1 2 3 4 5

Now if we type in disp(b) and press enter, the variable name will not be displayed but its value
will be printed on the screen:

� disp(b)

1 2 3 4 5

The following example demonstrates the usage of disp function.

Example 4.3
Now, let’s open AcetyleneBottleInteractive.m file and modify it by using the disp

command. First save the file as AcetyleneBottleInteractiveDisp.m, so that we don’t
accidentally introduce errors to a working file and also we can easily find this particular
file that utilizes the disp command in the future. The new file should contain the code
below:

% This script computes the volume of an acetylene bottle

% user is prompted to enter

% a radius r for a hemispherical top

% a height h for a cylindrical part

clc % Clear screen

disp('This script computes the volume of an acetylene bottle')

r=input('Enter the radius of acetylene bottle in meters ');

h=input('Enter the height of cylindrical part of acetylene bottle in meters ');

Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]

Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]

Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]

disp(' ') % Display blank line

disp('The volume of the acetylene bottle is') % Display text

disp(Vol_total) % Display variable

Your screen output should look similar to the one below:

This script computes the volume of an acetylene bottle

Enter the radius of acetylene bottle in meters .3

Enter the height of cylindrical part of acetylene bottle in meters 1.5

The volume of the acetylene bottle is

0.4807

95

4.1.4 The num2str Function
The num2str function allows us to convert a number to a text string. Basic syntax is str =

num2str(A) where variable A is converted to a text and stored in str. Let’s see how it works in
AcetyleneBottleInteractiveDisp.m. Remember to save the file with a different name before
editing it, for example, AcetyleneBottleInteractiveDisp1.m.

Example 4.4
Add the following line of code to your file:

str = ['The volume of the acetylene bottle is ', num2str(Vol_total), ' cubic meters.'];

Notice that the three arguments in str are separated with commas. The first argument is
a simple text that is contained in ’ ’. The second argument is where the number to string
conversion take place. And finally the third argument is also a simple text that completes
the sentence displayed on the screen. Using semicolon at the end of the line suppresses
the output. In the next line of our script, we will call str with disp(str);.

AcetyleneBottleInteractiveDisp1.m file should look like this:

% This script computes the volume of an acetylene bottle

% user is prompted to enter

% a radius r for a hemispherical top

% a height h for a cylindrical part

clc % Clear screen

disp('This script computes the volume of an acetylene bottle:')

disp(' ') % Display blank line

r=input('Enter the radius of acetylene bottle in meters ');

h=input('Enter the height of cylindrical part of acetylene bottle in meters ');

Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]

Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]

Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]

disp(' ') % Display blank line

str = ['The volume of the acetylene bottle is ', num2str(Vol_total), ' cubic meters.'];

disp(str);

Running the script should produce the following:

This script computes the volume of an acetylene bottle:

Enter the radius of acetylene bottle in meters .3

Enter the height of cylindrical part of acetylene bottle in meters 1.5

The volume of the acetylene bottle is 0.48066 cubic meters.

96 CHAPTER 4. INTRODUCTORY PROGRAMMING

4.1.5 The diary Function
Instead of writing a script from scratch, we sometimes solve problems in the Command Window
as if we are using a scientific calculator. The steps we perform in this fashion can be used to create
an m-file. For example, the diary function allows us to record a MATLAB session in a file and
retrieve it for review. Reviewing the file and by copying relevant parts of it and pasting them in to
an m-file, a script can be written easily.

Typing diary at the MATLAB prompt toggles the diary mode on and off. As soon as the diary
mode is turned on, a file called diary is created in the current directory. If you like to save that
file with a specific name, say for example problem16, type diary ('problem16'). A file named
problem16 will be created. The following is the content of a diary file called problem16. Notice
that in that session, the user is executing the four files we created earlier. The user’s keyboard input
and the resulting display output is recorded in the file. The session is ended by typing diary which
is printed in the last line.

AcetyleneBottle

Vol_total =

0.4807

AcetyleneBottleInteractive

Enter the radius of acetylene bottle in meters .3

Enter the height of cylinderical part of acetylene bottle in meters 1.5

Vol_total =

0.4807

AcetyleneBottleInteractiveDisp

This script computes the volume of an acetylene bottle

Enter the radius of acetylene bottle in meters .5

Enter the height of cylinderical part of acetylene bottle in meters 1.6

The volume of the acetylene bottle is

1.5184

AcetyleneBottleInteractiveDisp1

This script computes the volume of an acetylene bottle:

Enter the radius of acetylene bottle in meters .9

Enter the height of cylinderical part of acetylene bottle in meters 1.9

97

The volume of the acetylene bottle is 6.3617 cubic meters.

diary

4.1.6 Style Guidelines
Try to apply the following guidelines when writing your scripts:

• Share your code or programs with others, consider adopting one of Creative Commons2 or
GNU General Public License3 schemes

• Include your name and contact info in the opening lines
• Use comments liberally
• Group your code and use proper indentation
• Use white space liberally
• Use descriptive names for your variables
• Use descriptive names for your m-files

4.1.7 Summary of Key Points
1. A script is a file containing a sequence of MATLAB statements. Script files have a filename

extension of .m.
2. Functions such as input, disp and num2str can be used to make scripts interactive,
3. diary function is useful to record a MATLAB command window session from which an

m-file can be easily created,
4. Various style guidelines covered here help improve our code.

4.2 Problem Set4

Exercise 4.2.1 (Solution on p. 100.)
Write a script that will ask for pressure value in psi and display the equivalent pressure in
kPa with a statement, such as "The converted pressure is: ..."
Exercise 4.2.2 (Solution on p. 100.)
Write a script that generates a table of conversions from Fahrenheit to Celsius tempera-

tures for a range and increment entered by the user, such as

Enter the beginning temperature in F:
Enter the ending temperature in F:

2http://creativecommons.org/
3http://www.gnu.org/licenses/gpl-3.0.html
4This content is available online at <http://cnx.org/content/m41536/1.2/>.

98 CHAPTER 4. INTRODUCTORY PROGRAMMING

Enter the increment value:

Test your script with 20 the beginning Fahrenheit value, 200 the ending Fahrenheit
value and 20 the increment.
Exercise 4.2.3 (Solution on p. 101.)
Pascal’s Law states that pressure is transmitted undiminished in all directions throughout

a fluid at rest. (See the illustration below). An initial force of 150 N is transmitted from
a piston of 25 mm^2 to a piston of 100 mm^2. This force is progressively increased up
to 200 N. Write a script that computes the corresponding load carried by the larger piston
and tabulate your results.

Figure 4.7: A simple hydraulic system.

Exercise 4.2.4 (Solution on p. 102.)
Modify your script in previous problem (Exercise 4.2.3) so that the user provides the

following input:

Enter the initial force in N:
Enter the final force in N:
Enter the increment value:
Enter the area of small piston in mm^2:
Enter the area of big piston in mm^2:

99

Test your script with 150, 200, 10, 25 and 100 with respect to each input variable.
Exercise 4.2.5 (Solution on p. 103.)
Write a script to solve the Stress-Strain problem in the Problem Set (Problem 2.2.9)

Exercise 4.2.6 (Solution on p. 104.)
Modify the script, you wrote above (Exercise 4.2.5)and plot an annotated Stress-Strain

graph.

100 CHAPTER 4. INTRODUCTORY PROGRAMMING

Solutions to Exercises in Chapter 4
Solution to Exercise 4.2.1 (p. 97)

% This script converts pressures from psi to kPa

% User is prompted to enter pressure in psi

clc % Clear screen

disp('This script converts pressures from psi to kPa:')

disp(' ') % Display blank line

psi=input('What is the pressure value in psi? ');

kPa=psi*6.894757; % Calculating pressure in kPa

disp(' ') % Display blank line

str = ['The converted pressure is: ', num2str(kPa), ' kPa.'];

disp(str);

The script output is as follows:

This script converts pressures from psi to kPa:

What is the pressure value in psi? 150

The converted pressure is: 1034.2135 kPa.

Solution to Exercise 4.2.2 (p. 97)

% This script generates a table of conversions

% From Fahrenheit to Celsius temperatures

clc % Clear screen

disp('This script generates a table of conversions from Fahrenheit to Celsius')

disp(' ') % Display blank line

lowerF=input('Enter the beginning temperature in F: ');

upperF=input('Enter the ending temperature in F: ');

increment=input('Enter the increment value: ');

Fahrenheit=[lowerF:increment:upperF]; % Creating a row vector with F values

Celsius=5/9*(Fahrenheit-32); % Converting from F to C

disp(' ') % Display blank line

str = ['Fahrenheit Celsius '];% Displaying table header

disp(str);

% Tabulating results in two columns, ' is being used to transpose row to column

disp([Fahrenheit' Celsius'])

101

The script output is as follows:

This script generates a table of conversions from Fahrenheit to Celsius

Enter the beginning temperature in F: 20

Enter the ending temperature in F: 200

Enter the increment value: 20

Fahrenheit Celsius

20.0000 -6.6667

40.0000 4.4444

60.0000 15.5556

80.0000 26.6667

100.0000 37.7778

120.0000 48.8889

140.0000 60.0000

160.0000 71.1111

180.0000 82.2222

200.0000 93.3333

Solution to Exercise 4.2.3 (p. 98)

% This script computes the load carried by the larger piston in a hydraulic system

clc % Clear screen

disp('This script computes the load carried by the larger piston in a hydraulic system')

disp(' ') % Display blank line

initialF=150;

finalF=200;

increment=10;

area1=25;

area2=100;

F1=[initialF:increment:finalF]; % Creating a row vector with F1 values

F2=F1*area2/area1; % Calculating F2 values

disp(' ') % Display blank line

str = [' F1 F2 '];% Displaying table header

disp(str);

disp([F1' F2']) % Tabulating results in two columns, ' is being used to transpose row to column

The script output is as follows:

102 CHAPTER 4. INTRODUCTORY PROGRAMMING

This script computes the load carried by the larger piston in a hydraulic system

F1 F2

150 600

160 640

170 680

180 720

190 760

200 800

Solution to Exercise 4.2.4 (p. 98)

% This script computes the load carried by the larger piston in a hydraulic system

clc % Clear screen

disp('This script computes the load carried by the larger piston in a hydraulic system')

disp(' ') % Display blank line

initialF=input('Enter the initial force in N: ');

finalF=input('Enter the final force in N: ');

increment=input('Enter the increment value: ');

area1=input('Enter the area of small piston in mm^2: ');

area2=input('Enter the area of big piston in mm^2: ');

F1=[initialF:increment:finalF]; % Creating a row vector with F1 values

F2=F1*area2/area1; % Calculating F2 values

disp(' ') % Display blank line

str = [' F1 F2 '];% Displaying table header

disp(str);

disp([F1' F2']) % Tabulating results in two columns, ' is being used to transpose row to column

The script output is as follows:

This script computes the load carried by the larger piston in a hydraulic system

Enter the initial force in N: 150

Enter the final force in N: 200

Enter the increment value: 10

Enter the area of small piston in mm^2: 25

Enter the area of big piston in mm^2: 100

F1 F2

150 600

103

160 640

170 680

180 720

190 760

200 800

Solution to Exercise 4.2.5 (p. 99)
The m-file contains the following:

% This script uses readings from a Tensile test and

% Computes Strain and Stress values

clc % Clear screen

disp('This script uses readings from a Tensile test and')

disp('Computes Strain and Stress values')

disp(' ') % Display a blank line

Specimen_dia=12.7; % Specimen diameter in mm

% Load in kN

Load_kN=[0;4.89;9.779;14.67;19.56;24.45;...

27.62;29.39;32.68;33.95;34.58;35.22;...

35.72;40.54;48.39;59.03;65.87;69.42;...

69.67;68.15;60.81];

% Gage length in mm

Length_mm=[50.8;50.8102;50.8203;50.8305;...

50.8406;50.8508;50.8610;50.8711;...

50.9016;50.9270;50.9524;50.9778;...

51.0032;51.816;53.340;55.880;58.420;...

60.96;61.468;63.5;66.04];

% Calculate x-sectional area im m2

Cross_sectional_Area=pi/4*((Specimen_dia/1000)^2);

% Calculate change in length, initial lenght is 50.8 mm

Delta_L=Length_mm-50.8;

% Calculate Stress in MPa

Sigma=(Load_kN./Cross_sectional_Area)*10^(-3);

% Calculate Strain in mm/mm

Epsilon=Delta_L./50.8;

str = ['Specimen diameter is ', num2str(Specimen_dia), ' mm.'];

disp(str);

Results=[Load_kN Length_mm Delta_L Sigma Epsilon];

% Tabulated results

disp(' Load Length Delta L Stress Strain')

disp(Results)

After executed, the command window output is:

104 CHAPTER 4. INTRODUCTORY PROGRAMMING

This script uses readings from a Tensile test and

Computes Strain and Stress values

Specimen diameter is 12.7 mm.

Load Length Delta L Stress Strain

0 50.8000 0 0 0

4.8900 50.8102 0.0102 38.6022 0.0002

9.7790 50.8203 0.0203 77.1964 0.0004

14.6700 50.8305 0.0305 115.8065 0.0006

19.5600 50.8406 0.0406 154.4086 0.0008

24.4500 50.8508 0.0508 193.0108 0.0010

27.6200 50.8610 0.0610 218.0351 0.0012

29.3900 50.8711 0.0711 232.0076 0.0014

32.6800 50.9016 0.1016 257.9792 0.0020

33.9500 50.9270 0.1270 268.0047 0.0025

34.5800 50.9524 0.1524 272.9780 0.0030

35.2200 50.9778 0.1778 278.0302 0.0035

35.7200 51.0032 0.2032 281.9773 0.0040

40.5400 51.8160 1.0160 320.0269 0.0200

48.3900 53.3400 2.5400 381.9955 0.0500

59.0300 55.8800 5.0800 465.9888 0.1000

65.8700 58.4200 7.6200 519.9844 0.1500

69.4200 60.9600 10.1600 548.0085 0.2000

69.6700 61.4680 10.6680 549.9820 0.2100

68.1500 63.5000 12.7000 537.9830 0.2500

60.8100 66.0400 15.2400 480.0403 0.3000

Solution to Exercise 4.2.6 (p. 99)
Edited script contains the plot commands:

% This script uses readings from a Tensile test and

% Computes Strain and Stress values

clc % Clear screen

disp('This script uses readings from a Tensile test and')

disp('Computes Strain and Stress values')

disp(' ') % Display a blank line

Specimen_dia=12.7; % Specimen diameter in mm

% Load in kN

Load_kN=[0;4.89;9.779;14.67;19.56;24.45;...

27.62;29.39;32.68;33.95;34.58;35.22;...

35.72;40.54;48.39;59.03;65.87;69.42;...

105

69.67;68.15;60.81];

% Gage length in mm

Length_mm=[50.8;50.8102;50.8203;50.8305;...

50.8406;50.8508;50.8610;50.8711;...

50.9016;50.9270;50.9524;50.9778;...

51.0032;51.816;53.340;55.880;58.420;...

60.96;61.468;63.5;66.04];

% Calculate x-sectional area im m2

Cross_sectional_Area=pi/4*((Specimen_dia/1000)^2);

% Calculate change in length, initial lenght is 50.8 mm

Delta_L=Length_mm-50.8;

% Calculate Stress in MPa

Sigma=(Load_kN./Cross_sectional_Area)*10^(-3);

% Calculate Strain in mm/mm

Epsilon=Delta_L./50.8;

str = ['Specimen diameter is ', num2str(Specimen_dia), ' mm.'];

disp(str);

Results=[Load_kN Length_mm Delta_L Sigma Epsilon];

% Tabulated results

disp(' Load Length Delta L Stress Strain')

disp(Results)

% Plot Stress versus Strain

plot(Epsilon,Sigma)

title('Stress versus Strain Curve')

xlabel('Strain [mm/mm]')

ylabel('Stress [mPa]')

grid

In addition to Command Window output, the following plot is generated:

106 CHAPTER 4. INTRODUCTORY PROGRAMMING

Chapter 5

Interpolation

5.1 Interpolation1

Linear interpolation is one of the most common techniques for estimating values between two
given data points. For example, when using steam tables, we often have to carry out interpolations.
With this technique, we assume that the function between the two points is linear. MATLAB has a

1This content is available online at <http://cnx.org/content/m41455/1.2/>.

107

108 CHAPTER 5. INTERPOLATION

built-in interpolation function.

5.1.1 The interp1 Function
Give an x-y table, y_new = interp1(x,y,x_new) interpolates to find y_new. Consider the fol-
lowing examples:

Example 5.1
To demonstrate how the interp1 function works, let us create an x-y table with the fol-
lowing commands;

x = 0:5;

y = [0,20,60,68,77,110];

To tabulate the output, we can use

[x',y']

The result is

ans =

0 0

1 20

2 60

3 68

4 77

5 110

Suppose we want to find the corresponding value for 1.5 or interpolate for 1.5. Using
y_new = interp1(x,Y,x_new) syntax, let us type in:

y_new=interp1(x,y,1.5)

y_new =

40

Example 5.2
The table we created above has only 6 elements in it and suppose we need a more detailed
table. In order to do that, instead of a single new x value, we can define an array of new x
values, the interp1 function returns an array of new y values:

109

new_x = 0:0.2:5;

new_y = interp1(x,y,new_x);

Let’s display this table

[new_x',new_y']

The result is

ans =

0 0

0.2000 4.0000

0.4000 8.0000

0.6000 12.0000

0.8000 16.0000

1.0000 20.0000

1.2000 28.0000

1.4000 36.0000

1.6000 44.0000

1.8000 52.0000

2.0000 60.0000

2.2000 61.6000

2.4000 63.2000

2.6000 64.8000

2.8000 66.4000

3.0000 68.0000

3.2000 69.8000

3.4000 71.6000

3.6000 73.4000

3.8000 75.2000

4.0000 77.0000

4.2000 83.6000

4.4000 90.2000

4.6000 96.8000

4.8000 103.4000

5.0000 110.0000

Example 5.3
Using the table below, find the internal energy of steam at 215 ˚C and the temperature if
the internal energy is 2600 kJ/kg (use linear interpolation).

110 CHAPTER 5. INTERPOLATION

Temperature [C] Internal Energy [kJ/kg]

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6

Table 5.1: An extract from Steam Tables

First let us enter the temperature and energy values

temperature = [100, 150, 200, 250, 300, 400, 500];

energy = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];

[temperature',energy']

returns

ans =

1.0e+003 *

0.1000 2.5067

0.1500 2.5828

0.2000 2.6581

0.2500 2.7337

0.3000 2.8104

0.4000 2.9679

0.5000 3.1316

issue the following for the first question:

new_energy = interp1(temperature,energy,215)

returns

new_energy =

2.6808e+003

111

Now, type in the following for the second question:

new_temperature = interp1(energy,temperature,2600)

returns

new_temperature =

161.4210

5.1.2 Summary of Key Points
1. Linear interpolation is a technique for estimating values between two given data points,
2. Problems involving steam tables often require interpolated data,
3. MATLAB has a built-in interpolation function.

5.2 Problem Set2

Exercise 5.2.1 (Solution on p. 114.)
Determine the saturation temperature, specific liquid enthalpy, specific enthalpy of evap-

oration and specific enthalpy of dry steam at a pressure of 2.04 MPa.

Pressure [MN/m2] Saturation Temperature [C] hf [kJ/kg] hfg [kJ/kg] hg [kJ/kg]

2.1 214.9 920.0 1878.2 2798.2

2.0 212.4 908.6 1888.6 2797.2

Table 5.2: An extract from steam tables

Exercise 5.2.2 (Solution on p. 114.)
The following table gives data for the specific heat as it changes with temperature for a

perfect gas. 3

2This content is available online at <http://cnx.org/content/m41624/1.1/>.
3Thermodynamics and Heat Power by Kurt C. Rolle, Pearson Prentice Hall. ©2005, (p.19)

112 CHAPTER 5. INTERPOLATION

Temperature [F] Specific Heat [BTU/lbmF]

25 0.118

50 0.120

75 0.123

100 0.125

125 0.128

150 0.131

Table 5.3: Change of specific heat with temperature

Using interp1 function calculate the specific heat for 30 F, 70 F and 145 F.
Exercise 5.2.3 (Solution on p. 115.)
For the problem above (Exercise 5.2.2), create a more detailed table in which temperature
varies between 25 and 150 with 5 F increments and corresponding specific heat values.
Exercise 5.2.4 (Solution on p. 116.)
During a 12-hour shift a fuel tank has varying levels due to consumption and transfer

pump automatically cutting in and out to maintain a safe fuel level. The following table of
fuel tank level versus time is missing readings for 5 and 9 AM. Using linear interpolation,
estimate the fuel level at those times.

Time [hours, AM] Tank level [m]

1:00 1.5

2:00 1.7

3:00 2.3

4:00 2.9

5:00 ?

6:00 2.6

7:00 2.5

8:00 2.3

9:00 ?

10:00 2.0

11:00 1.8

12:00 1.3

113

Table 5.4: Fuel tank level versus time

114 CHAPTER 5. INTERPOLATION

Solutions to Exercises in Chapter 5
Solution to Exercise 5.2.1 (p. 111)
MATLAB solution is as follows;

� pressure=[2.1 2.0];

� sat_temp=[214.9 212.4];

� h_f=[920 908.6];

� h_fg=[1878.2 1888.6];

� h_g=[2798.2 2797.2];

� sat_temp_new=interp1(pressure,sat_temp,2.04)

sat_temp_new =

213.4000

� h_f_new=interp1(pressure,h_f,2.04)

h_f_new =

913.1600

� h_fg_new=interp1(pressure,h_fg,2.04)

h_fg_new =

1.8844e+003

� h_g_new=interp1(pressure,h_g,2.04)

h_g_new =

2.7976e+003

Solution to Exercise 5.2.2 (p. 111)
MATLAB solution is as follows:

� temperature=[25;50;75;100;125;150]

temperature =

25

115

50

75

100

125

150

� specific_heat=[.118;.120;.123;.125;.128;.131]

specific_heat =

0.1180

0.1200

0.1230

0.1250

0.1280

0.1310

� specific_heatAt30=interp1(temperature,specific_heat,30)

specific_heatAt30 =

0.1184

� specific_heatAt70=interp1(temperature,specific_heat,70)

specific_heatAt70 =

0.1224

� specific_heatAt145=interp1(temperature,specific_heat,145)

specific_heatAt145 =

0.1304

Solution to Exercise 5.2.3 (p. 112)
MATLAB solution is as follows:

� new_temperature=25:5:150;

� new_specific_heat=interp1(temperature,specific_heat,new_temperature);

� [new_temperature',new_specific_heat']

ans =

116 CHAPTER 5. INTERPOLATION

25.0000 0.1180

30.0000 0.1184

35.0000 0.1188

40.0000 0.1192

45.0000 0.1196

50.0000 0.1200

55.0000 0.1206

60.0000 0.1212

65.0000 0.1218

70.0000 0.1224

75.0000 0.1230

80.0000 0.1234

85.0000 0.1238

90.0000 0.1242

95.0000 0.1246

100.0000 0.1250

105.0000 0.1256

110.0000 0.1262

115.0000 0.1268

120.0000 0.1274

125.0000 0.1280

130.0000 0.1286

135.0000 0.1292

140.0000 0.1298

145.0000 0.1304

150.0000 0.1310

Solution to Exercise 5.2.4 (p. 112)

� time=[1 2 3 4 6 7 8 10 11 12];

� tank_level=[1.5 1.7 2.3 2.9 2.6 2.5 2.3 2.0 1.8 1.3];

� tank_level_at_5=interp1(time,tank_level,5)

tank_level_at_5 =

2.7500

� tank_level_at_9=interp1(time,tank_level,9)

117

tank_level_at_9 =

2.1500

118 CHAPTER 5. INTERPOLATION

Chapter 6

Numerical Integration

6.1 Computing the Area Under a Curve1

This chapter essentially deals with the problem of computing the area under a curve. First, we
will employ a basic approach and form trapezoids under a curve. From these trapezoids, we can
calculate the total area under a given curve. This method can be tedious and is prone to errors, so in

1This content is available online at <http://cnx.org/content/m41454/1.3/>.

119

120 CHAPTER 6. NUMERICAL INTEGRATION

the second half of the chapter, we will utilize a built-in MATLAB function to carry out numerical
integration.

6.1.1 A Basic Approach
There are various methods to calculating the area under a curve, for example, Rectangle Method2

, Trapezoidal Rule3 and Simpson’s Rule4 . The following procedure is a simplified method.

Consider the curve below:

Figure 6.1: Numerical integration

Each segment under the curve can be calculated as follows:

1
2

(y0 + y1)∆x+
1
2

(y1 + y2)∆x+
1
2

(y2 + y3)∆x (6.1)

Therefore, if we take the sum of the area of each trapezoid, given the limits, we calculate the total
area under a curve. Consider the following example.

Example 6.1
Given the following data, plot an x-y graph and determine the area under a curve between
x=3 and x=30

2http://en.wikipedia.org/wiki/Rectangle_method
3http://en.wikipedia.org/wiki/Trapezoidal_rule
4http://en.wikipedia.org/wiki/Simpson%27s_rule

121

Index x [m] y [N]

1 3 27.00

2 10 14.50

3 15 9.40

4 20 6.70

5 25 5.30

6 30 4.50

Table 6.1: Data Set

First, let us enter the data set. For x, issue the following command
x=[3,10,15,20,25,30];. And for y, y=[27,14.5,9.4,6.7,5.3,4.5];. If yu type
in [x',y'], you will see the following tabulated result. Here we transpose row vectors
with ’ and displaying them as columns:

ans =

3.0000 27.0000

10.0000 14.5000

15.0000 9.4000

20.0000 6.7000

25.0000 5.3000

30.0000 4.5000

Compare the data set above with the given information in the question (Table 6.1).

To plot the data type the following:

plot(x,y),title('Distance-Force Graph'),xlabel('Distance[m]'),ylabel('Force[N]'),grid

The following figure is generated:

122 CHAPTER 6. NUMERICAL INTEGRATION

Figure 6.2: Distance-Force Graph

To compute dx for consecutive x values, we will use the index for each x value, see the
given data in the question (Table 6.1).:

dx=[x(2)-x(1),x(3)-x(2),x(4)-x(3),x(5)-x(4),x(6)-x(5)];

dy is computed by the following command:

dy=[0.5*(y(2)+y(1)),0.5*(y(3)+y(2)),0.5*(y(4)+y(3)),0.5*(y(5)+y(4)),0.5*(y(6)+y(5))];

dx and dy can be displayed with the following command: [dx',dy']. The result will look
like this:

[dx',dy']

ans =

7.0000 20.7500

5.0000 11.9500

5.0000 8.0500

5.0000 6.0000

5.0000 4.9000

123

Our results so far are shown below

x [m] y [N] dx [m] dy [N]

3 27.00

10 14.50 7.00 20.75

15 9.40 5.00 11.95

20 6.70 5.00 8.05

25 5.30 5.00 6.00

30 4.50 5.00 4.90

Table 6.2: x, y and corresponding differential elements

If we multiply dx by dy, we find da for each element under the curve. The differential
area da=dx*dy, can be computed using the ’term by term multiplication’ technique in
MATLAB as follows:

da=dx.*dy

da =

145.2500 59.7500 40.2500 30.0000 24.5000

Each value above represents an element under the curve or the area of trapezoid. By taking
the sum of array elements, we find the total area under the curve.

sum(da)

ans =

299.7500

The following (Table 6.3) illustrates all the steps and results of our MATLAB computation.

x [m] y [N] dx [m] dy [N] dA [Nm]

3 27.00

10 14.50 7.00 20.75 145.25

15 9.40 5.00 11.95 59.75

20 6.70 5.00 8.05 40.25

25 5.30 5.00 6.00 30.00

30 4.50 5.00 4.90 24.50

299.75

124 CHAPTER 6. NUMERICAL INTEGRATION

Table 6.3: Computation of the approximate area under a curve

6.1.2 The Trapezoidal Rule
Sometimes it is rather convenient to use a numerical approach to solve a definite integral. The
trapezoid rule allows us to approximate a definite integral using trapezoids.

6.1.2.1 The trapz Command

Z = trapz(Y) computes an approximation of the integral of Y using the trapezoidal method.

Now, let us see a typical problem.
Example 6.2
Given Area =

∫ 5
2 x2dx, an analytical solution would produce 39. Use trapz command and

solve it

1. Initialize variable x as a row vector, from 2 with increments of 0.1 to 5: x=2:.1:5;
2. Declare variable y as y=x^2;. Note the following error prompt: ??? Error

using ==> mpower Inputs must be a scalar and a square matrix.

This is because x is a vector quantity and MATLAB is expecting a scalar input for
y. Because of that, we need to compute y as a vector and to do that we will use the
dot operator as follows: y=x.^2;. This tells MATLAB to create vector y by taking
each x value and raising its power to 2.

3. Now we can issue the following command to calculate the first area, the output will
be as follows:

area1=trapz(x,y)

area1 =

39.0050

Notice that this numerical value is slightly off. So let us increase the number of increments
and calculate the area again:

x=2:.01:5;

y=x.^2;

area2=trapz(x,y)

area2 =

39.0001

125

Yet another increase in the number of increments:

x=2:.001:5;

y=x.^2;

area3=trapz(x,y)

area3 =

39.0000

Example 6.3
Determine the value of the following integral:∫

π

0 sin(x)dx

1. Initialize variable x as a row vector, from 0 with increments of pi/100 to pi:
x=0:pi/100:pi;

2. Declare variable y as y=sin(x);
3. Issue the following command to calculate the first area, the output will be as follows:

area1=trapz(x,y)

area1 =

1.9998

let us increase the increments as above:

x=0:pi/1000:pi;

y=sin(x);

area2=trapz(x,y)

area2 =

2.0000

6.1.3 Summary of Key Points
1. In its simplest form, numerical integration involves calculating the areas of segments that

make up the area under a curve,
2. MATLAB has built-in functions to perform numerical integration,
3. Z = trapz(Y) computes an approximation of the integral of Y using the trapezoidal

method.

126 CHAPTER 6. NUMERICAL INTEGRATION

6.2 Problem Set5

Exercise 6.2.1 (Solution on p. 128.)
Let the function y defined by y = cos(x). Plot this function over the interval [-pi,pi]. Use

numerical integration techniques to estimate the integral of y over [0, pi] and over [-pi,pi].
Exercise 6.2.2 (Solution on p. 128.)
Let the function y defined by y = 0.04x2− 2.13x + 32.58. Plot this function over the

interval [3,30]. Use numerical integration techniques to estimate the integral of y over
[3,30].
Exercise 6.2.3 (Solution on p. 129.)
A 2000-liter tank is full of lube oil. It is known that if lube oil is drained from the tank,

the mass flow rate will decrease from the maximum when the tank level is at the highest.
The following data were collected when the tank was drained.

Time [min] Mass Flow [kg/min]

0 50.00

5 48.25

10 46.00

15 42.50

20 37.50

25 30.50

30 19.00

35 9.00

Table 6.4: Data

Write a script to estimate the amount of oil drained in 35 minutes.
Exercise 6.2.4 (Solution on p. 130.)
A gas is expanded in an engine cylinder, following the law PV1.3=c. The initial pressure

is 2550 kPa and the final pressure is 210 kPa. If the volume at the end of expansion is 0.75
m3, compute the work done by the gas. 6

Exercise 6.2.5 (Solution on p. 130.)
A force F acting on a body at a distance s from a fixed point is given by F = 3s+ 1

s2 . Write
a script to compute the work done when the body moves from the position where s=1 to
that where s=10. 7

5This content is available online at <http://cnx.org/content/m41541/1.7/>.
6Applied Heat for Engineers by W. Embleton and L Jackson, Thomas Reed Publications. ©1999, (p. 80)
7O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. ©1969, (p. 213)

127

Exercise 6.2.6 (Solution on p. 131.)
The pressure p and volume v of a given mass of gas are connected by the relation(
p+ a

v2

)
(v−b) = k where a, b and k are constants. Express p in terms of v, and write a

script to compute the work done by the gas in expanding from an initial volume to a final
volume. 8

Test your solution with the following input:
a: 0.01
b: 0.001
The initial pressure [kPa]: 100
The initial volume [m3]: 1
The final volume [m3]: 2

8O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. ©1969, (p. 212)

128 CHAPTER 6. NUMERICAL INTEGRATION

Solutions to Exercises in Chapter 6
Solution to Exercise 6.2.1 (p. 126)

1. Plotting:

x=-pi:pi/100:pi;

y=cos(x);

plot(x,y),title('Graph of y=cos(x)'),xlabel('x'),ylabel('y'),grid

2. Area calculation 1:

� x=0:pi/100:pi;

� y=cos(x);

� area1=trapz(x,y)

area1 =

1.1796e-016

3. Area calculation 2:

� x=-pi:pi/100:pi;

� y=cos(x);

� area2=trapz(x,y)

area2 =

1.5266e-016

Solution to Exercise 6.2.2 (p. 126)

1. Plotting:

� x=3:.1:30;

� y=0.04*(x.^2)-2.13.*x+32.58;

� plot(x,y), title('Graph of ...

y=.04*(x^2)-2.13*x+32.58'),xlabel('x'),ylabel('y'),grid

2. Area calculation:

� area=trapz(x,y)

area =

290.3868

129

Solution to Exercise 6.2.3 (p. 126)

clc

t=linspace(0,35,8) % Data entry for time [min]

m=[50 48.25 46 42.5 37.5 30.5 19 9] % Data entry for mass flow [kg/min]

% Calculate time intervals

dt=[t(2)-t(1),t(3)-t(2),t(4)-t(3),...

t(5)-t(4),t(6)-t(5),t(7)-t(6),t(8)-t(7)]

% Calculate mass out

dm=[0.5*(m(2)+m(1)),0.5*(m(3)+m(2)),0.5*(m(4)+m(3)),0.5*(m(5)+...

m(4)),0.5*(m(6)+m(5)),0.5*(m(7)+m(6)),0.5*(m(8)+m(7))]

% Calculate differential areas

da=dt.*dm;

% Tabulate time and mass flow

[t',m']

% Tabulate time intervals, mass out and differential areas

[dt',dm',da']

% Calculate the amount of oil drained [kg] in 35 minutes

Oil_Drained=sum(da)

The output is:

ans =

0 50.0000

5.0000 48.2500

10.0000 46.0000

15.0000 42.5000

20.0000 37.5000

25.0000 30.5000

30.0000 19.0000

35.0000 9.0000

ans =

5.0000 49.1250 245.6250

5.0000 47.1250 235.6250

5.0000 44.2500 221.2500

5.0000 40.0000 200.0000

5.0000 34.0000 170.0000

5.0000 24.7500 123.7500

130 CHAPTER 6. NUMERICAL INTEGRATION

5.0000 14.0000 70.0000

Oil_Drained =

1.2663e+003

Solution to Exercise 6.2.4 (p. 126)

clc

disp('A gas is expanded in an engine cylinder, following the law PV^1.3=c')

disp('The initial pressure is 2550 kPa and the final pressure is 210 kPa.')

disp('If the volume at the end of expansion is 0.75 m3,')

disp('Compute the work done by the gas.')

disp(' ') % Display blank line

n=1.3;

P_i=2550; % Initial pressure

P_f=210; % Final pressure

V_f=.75; % Final volume

V_i=(P_f*(V_f^n)/P_i)^(1/n); % Initial volume

c=P_f*V_f^n;

v=V_i:.001:V_f; % Creating a row vector for volume, v

p=c./(v.^n); % Computing pressure for volume

WorkDone=trapz(v,p) % Integrating p*dv

The output is:

A gas is expanded in an engine cylinder, following the law PV^1.3=c

The initial pressure is 2550 kPa and the final pressure is 210 kPa.

If the volume at the end of expansion is 0.75 m3,

Compute the work done by the gas.

WorkDone =

409.0666

Solution to Exercise 6.2.5 (p. 126)

clc

disp('A force F acting on a body at a distance s from a fixed point is given by')

131

disp('F=3*s+(1/(s^2)) where s is the distance in meters')

disp('Compute the total work done in moving')

disp('From the position where s=1 to that where s=10.')

disp(' ') % Display blank line

s=1:.001:10; % Creating a row vector for distance, s

F=3.*s+(1./(s.^2)); % Computing Force for s

WorkDone=trapz(s,F) % Integrating F*ds over 1 to 10 meters.

The output is:

A force F acting on a body at a distance s from a fixed point is given by

F=3*s+(1/(s^2)) where s is the distance in meters

Compute the total work done in moving

From the position where s=1 to that where s=10.

WorkDone =

149.4000

Solution to Exercise 6.2.6 (p. 126)

clc % Clear screen

disp('This script computes the work done by')

disp('The gas in expanding from volume v1 to v2')

disp(' ') % Display blank line

a=input('Enter the constant a: ');

b=input('Enter the constant b: ');

p_i=input('Enter the initial pressure [kPa]: ');

v_i=input('Enter the initial volume [m3]: ');

v_f=input('Enter the final volume [m3]: ');

k=(p_i+(a/(v_i^2))*(v_i-b)); % Calculating constant k

v=v_i:.001:v_f; % Creating a row vector for volume

p=(k./(v-b))-(a./(v.^2)); % Computing pressure for volume

WorkDone=trapz(v,p); % Integrating p*dv

disp(' ') % Display blank line

str = ['The work done by the gas in expanding from ', num2str(v_i),...

' m3 to ' num2str(v_f), ' m3 is ', num2str(WorkDone), ' kW.'];

disp(str);

The output is:

This script computes the work done by

The gas in expanding from volume v1 to v2

132 CHAPTER 6. NUMERICAL INTEGRATION

Enter the constant a: .01

Enter the constant b: .001

Enter the initial pressure [kPa]: 100

Enter the initial volume [m3]: 1

Enter the final volume [m3]: 2

The work done by the gas in expanding from 1 m3 to 2 m3 is 69.3667 kW.

Chapter 7

Regression Analysis

7.1 Linear Regression1

1This content is available online at <http://cnx.org/content/m41448/1.2/>.

133

134 CHAPTER 7. REGRESSION ANALYSIS

7.1.1 What is Regression Analysis?
Suppose we calculate some variable of interest, y, as a function of some other variable x. We
call y the dependent variable and x the independent variable. For example, consider the data set
below, taken from a simple experiment involving a vehicle, its velocity versus time is tabulated. In
this case, velocity is a function of time, thus velocity is the dependent variable and the time is the
independent variable.

Time [s] Velocity [m/s]

0 20

10 39

20 67

30 89

40 111

50 134

60 164

70 180

80 200

Table 7.1: Vehicle velocity versus time.

In its simplest form regression analysis involves fitting the best straight line relationship to explain
how the variation in a dependent variable, y, depends on the variation in an independent variable, x.
In our example above, once the relationship (in this case a linear relationship) has been estimated
we can produce a linear equation in the following form:

y = mx+n (7.1)

And once an analytic equation such as the one above has been determined, dependent variables at
intermediate independent values can be computed.

7.1.2 Performing Linear Regression
Regression analysis with MATLAB is easy. The MATLAB Basic Fitting GUI allows us to inter-
actively to do "curve fitting" which is a method to arrive at the best "straight line" fit for linear
equations or the best curve fit for a polynomial up to the tenth degree. The procedure to perform a
curve fitting with MATLAB is as follows:

1. Input the variables,
2. Plot the data,

135

3. Initialize the Basic Fitting GUI,
4. Select the desired regression analysis parameters.

Example 7.1
Using the data set above, determine the relationship between velocity and time.

First, let us input the variables (Workspace > New variable) as shown in the following
figures.

Figure 7.1: A new variable is created in the Workspace.

136 CHAPTER 7. REGRESSION ANALYSIS

Figure 7.2: New variables are entered in the Variable Editor.

Second, we will plot the data by typing in plot(time,velocity) at the MATLAB
prompt. The following plot is generated, select Tools > Basic Fitting:

137

Figure 7.3: A plot is generated in Figure 1. The Basic Fitting tool can be initialized from Tools
> Basic Fitting.

In the "Basic Fitting" window, select "linear" and "Show equations". The best fitting linear
line along with the corresponding equation are displayed on the plot:

138 CHAPTER 7. REGRESSION ANALYSIS

Figure 7.4: Basic Fitting window is used to select the desired regression analysis parameters.

Now let us do another curve fitting and obtain an equation for the function. Using that equation,
we can evaluate the function at a desired value with polyval.

Example 7.2
The following is a collection of data for an iron-constantan thermocouple. 2

2Engineering Fundamentals and Problem Solving by Arvid R. Eide, Roland Jenison, Larry L. Northup, Steven K.
Mikelson , McGraw-Hill Higher Education. ©2007 p.114

139

Temperature [C] Voltage [mV]

50 2.6

100 6.7

150 8.8

200 11.2

300 17.0

400 22.5

500 26

600 32.5

700 37.7

800 41

900 48

1000 55.2

Table 7.2: Temperature [C] vs Voltage [mV]

a. Plot a graph with Temperature as the independent variable.
b. Determine the equation of the relationship using the Basic Fitting tools.
c. Estimate the Voltage that corresponds to a Temperature of 650 C and 1150 C.

We will input the variables first:

Temp=[50;100;150;200;300;400;500;600;700;800;900;1000]

Voltage=[2.6;6.7;8.8;11.2;17;22.5;36;32.5;37.7;41;48;55.2]

To plot the graph, type in:

plot(Temp,Voltage)

We can now use the Plot Tools and Basic Fitting settings and determine the equation:

140 CHAPTER 7. REGRESSION ANALYSIS

Figure 7.5: Basic Fitting window is used to select the desired regression analysis parameters.

By clicking the right arrow twice at the bottom right corner on the Basic Fitting window,
we can evaluate the function at a desired value. See the figure below which illustrates this
process for the temperature value 1150 C.

141

Figure 7.6: Estimating the Voltage that corresponds to a Temperature of 1150 C.

Now let us check our answer with a technique we learned earlier. As displayed on the plot,
we have obtained the following equation: y = 0.053x + 1.4 This equation can be entered
as polynomial and evaluated at 650 and 1150 as follows:

� p=[0.053,1.4]

p =

0.0530 1.4000

� polyval(p,650)

ans =

35.8500

142 CHAPTER 7. REGRESSION ANALYSIS

� polyval(p,1150)

ans =

62.3500

7.1.3 Summary of Key Points
1. Linear regression involves fitting the best straight line relationship to explain how the varia-

tion in a dependent variable, y, depends on the variation in an independent variable, x,
2. Basic Fitting GUI allows us to interactively perform curve fitting,
3. Some of the plot fits available are linear, quadratic and cubic functions,
4. Basic Fitting GUI can evaluate functions at given points.

Chapter 8

Publishing with MATLAB

8.1 Generating Reports with MATLAB1

MATLAB includes an automatic report generator called publisher. The publisher publishes a script
in several formats, including HTML, XML, MS Word and PowerPoint. The published file can
contain the following:

1This content is available online at <http://cnx.org/content/m41457/1.1/>.

143

144 CHAPTER 8. PUBLISHING WITH MATLAB

• Commentary on the code,
• MATLAB code,
• Results of the executed code, including the Command Window output and figures created by

the code.

8.1.1 The publish Function
The most basic syntax is publish('file','format') where the m-file is called and executed
line by line then saved to a file in specified format. All published files are placed in the html
directory although the published output might be a doc file.

8.1.2 Publishing with Editor
The publisher is easily accessible from the Editor toolbar and file menu:

Figure 8.1: Publish button on the Editor toolbar

Figure 8.2: Publish item on the Editor file menu.

145

Example 8.1
Write a simple script and publish it in an html file.

Select File > New > Script to create an m-file. Once the editor is opened, type in the
following code:

x = [0:6]; % Create a row vector

y = 1.6*x; % Compute y as a function of x

[x',y'] % Transpose vectors x and y

plot(x,y),title('Graph of y=f(x)'),xlabel('x'),ylabel('f(x)'),grid % Plot a graph

Save the script as publishing.m and select File > Publish. An HTML file is generated as
shown in the figure below:

146 CHAPTER 8. PUBLISHING WITH MATLAB

Figure 8.3: A script published in html

8.1.3 The Double Percentage %% Sign
The scripts sometimes can be very long and their readability might be reduced. To improve the
publishing result, sections are introduced by adding descriptive lines to the script preceded by %%.
Consider the following example.

147

Example 8.2
Edit the script created in the example above to look like the code below:

%% This file creates vectors, displays results and plots an x-y graph

x = [0:6]; % Create a row vector

y = 1.6*x; % Compute y as a function of x

%% Tabulated data

[x',y'] % Transpose vectors x and y

%% Graph of y=f(x)

plot(x,y),title('Graph of y=f(x)'),xlabel('x'),ylabel('f(x)'),grid % Plot a graph

Save the script, a new HTML file is generated as shown in the figure below:

148 CHAPTER 8. PUBLISHING WITH MATLAB

Figure 8.4: An html file with sections

8.1.4 Summary of Key Points
1. MATLAB can generate reports containing commentary on the code, MATLAB code and the

results of the executed code,

149

2. The publisher generates a script in several formats, including HTML, XML, MS Word and
PowerPoint.

3. The Double Percentage %% can be used to creates hyper-linked sections.

150 CHAPTER 8. PUBLISHING WITH MATLAB

Chapter 9

Postscript1

Dear reader:
Although I began working on this book awhile ago (c.September 2010), the current iteration of
the manuscript is still far from being complete and I anticipate it will take a few years to bring
it to a decent state. The text needs proof reading, extensive editing and more proof reading. I
would therefore appreciate readers’ suggestions, comments and sincere criticism emailed me at
sbeyenir at my dot bcit dot ca.
Thank you,
Serhat Beyenir

1This content is available online at <http://cnx.org/content/m41658/1.1/>.

151

152 INDEX

Index of Keywords and Terms
Keywords are listed by the section with that keyword (page numbers are in parentheses).
Keywords do not necessarily appear in the text of the page. They are merely associated with
that section. Ex. apples, § 1.1 (1) Terms are referenced by the page they appear on. Ex.
apples, 1

A Arithmetic Operators, § 2.1(27)
Assignment of a Matrix, § 2.1(27)
Assignment of a Scalar, § 2.1(27)
Assignment of a Vector, § 2.1(27)

B Boyle’s Law, § 3.2(73)

C cd, § 1.1(5)
clc, § 1.1(5)
clear, § 1.1(5), § 1.2(19)
Command History, § 1.1(5)
Command Window, § 1.1(5)
Comments, § 2.1(27)
computer, § 1.1(5)
Creative Commons, § 4.1(87)
Current Folder, § 1.1(5)
Curve fitting, § 7.1(133)

D diary function, § 4.1(87)
disp function, § 4.1(87)
Double percentage, § 8.1(143)

E Elementary Math, § 1.2(19)
exit, § 1.1(5)
Exponential, § 1.2(19)

F format, § 1.2(19)
format Function, § 2.1(27)
Function Browser, § 1.2(19)

G Gas Law, § 6.2(126)
GNU General Public License, § 4.1(87)
Graphics, § 3.1(55)
guide, § (3)

H HTML, § 8.1(143)

I input function, § 4.1(87)
Integration, § 6.1(119)
interp1 function, § 5.1(107)
Interpolation, § 5.1(107)

K Keyboard shortcuts, § 1.1(5)

L Labeling Graphs, § 3.1(55)
Latex, § 8.1(143)
Linear Equations, § 2.1(27), § 2.2(46)
Linear regression, § 7.1(133)

M m-file, § 4.1(87)
mass flow rate, § 6.2(126)
MATLAB Help, § 1.1(5)
Mechanical work, § 6.1(119)
MS Word, § 8.1(143)
Multiple Plots, § 3.1(55)

N num2str function, § 4.1(87)

O Operator Precedence, § 2.1(27)

P Pascal’s Law, § 4.2(97)
plot, § 1.2(19)
Polynomials, § 2.1(27), § 2.2(46)
polyval Function, § 2.1(27)
Postscript, § 9(151)
PowerPoint, § 8.1(143)
Problem Set for Graphing with
MATLAB, § 3.2(73)
Problem Set for Interpolation with

INDEX 153

MATLAB, § 5.2(111)
Problem Set for Introductory
Programming, § 4.2(97)
Problem Set for MATLAB Essentials,
§ 2.2(46)
Problem Set for Numerical Integration
with MATLAB, § 6.2(126)
Problem Set for What is MATLAB?,
§ 1.2(19)
publish function, § 8.1(143)
Publishing, § 8.1(143)
PV diagrams, § 6.1(119)
pwd, § 1.1(5)

Q quit, § 1.1(5)

R Regression analysis, § 7.1(133)
roots, § 1.2(19)
roots Function, § 2.1(27)

S script, § 4.1(87)

specific heat, § 5.2(111)
Steam tables, § 5.1(107), § 5.2(111)
Strain, § 2.2(46), § 3.2(73), § 4.2(97)
Stress, § 2.2(46), § 3.2(73), § 4.2(97)
Superimposed Plots, § 3.1(55)

T Three-Dimensional Plots, § 3.1(55)
Trapezoidal Rule, § 6.1(119)
Two-Dimensional Plots, § 3.1(55)

U Unit conversion, § 4.2(97)

V Variables, § 2.1(27)
ver, § 1.1(5)

W who, § 1.1(5)
whos, § 1.1(5)
Work done, § 6.1(119)
workspace, § 1.1(5), § 1.2(19)

X XML, § 8.1(143)

154 ATTRIBUTIONS

Attributions

Collection: A Brief Introduction to Engineering Computation with MATLAB
Edited by: Serhat Beyenir
URL: http://cnx.org/content/col11371/1.8/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Preface"
By: Serhat Beyenir
URL: http://cnx.org/content/m41458/1.6/
Pages: 1-2
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Study Guide"
By: Serhat Beyenir
URL: http://cnx.org/content/m41459/1.2/
Pages: 3-4
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is MATLAB?"
By: Serhat Beyenir
URL: http://cnx.org/content/m41403/1.2/
Pages: 5-19
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is MATLAB? | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41463/1.2/
Pages: 19-20
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "MATLAB Essentials"
Used here as: "Essentials"
By: Serhat Beyenir
URL: http://cnx.org/content/m41409/1.1/
Pages: 27-46
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 155

Module: "MATLAB Essentials | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41464/1.5/
Pages: 46-48
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Graphing with MATLAB"
Used here as: "Plotting in MATLAB"
By: Serhat Beyenir
URL: http://cnx.org/content/m41442/1.2/
Pages: 55-73
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Graphing with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41466/1.6/
Pages: 73-76
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introductory Programming with MATLAB"
Used here as: "Writing Scripts to Solve Problems"
By: Serhat Beyenir
URL: http://cnx.org/content/m41440/1.2/
Pages: 87-97
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introductory Programming with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41536/1.2/
Pages: 97-99
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

156 ATTRIBUTIONS

Module: "Interpolation with MATLAB"
Used here as: "Interpolation"
By: Serhat Beyenir
URL: http://cnx.org/content/m41455/1.2/
Pages: 107-111
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Interpolation with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41624/1.1/
Pages: 111-113
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Numerical Integration with MATLAB"
Used here as: "Computing the Area Under a Curve"
By: Serhat Beyenir
URL: http://cnx.org/content/m41454/1.3/
Pages: 119-125
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Numerical Integration with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41541/1.7/
Pages: 126-127
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Regression Analysis with MATLAB"
Used here as: "Linear Regression"
By: Serhat Beyenir
URL: http://cnx.org/content/m41448/1.2/
Pages: 133-142
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 157

Module: "Publishing with MATLAB"
Used here as: "Generating Reports with MATLAB"
By: Serhat Beyenir
URL: http://cnx.org/content/m41457/1.1/
Pages: 143-149
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Postscript"
By: Serhat Beyenir
URL: http://cnx.org/content/m41658/1.1/
Page: 151
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

A Brief Introduction to Engineering Computation with MATLAB
An Engineering Computation Primer.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course
materials and make them fully accessible and easily reusable free of charge. We are a Web-based
authoring, teaching and learning environment open to anyone interested in education, including
students, teachers, professors and lifelong learners. We connect ideas and facilitate educational
communities.

Connexions’s modular, interactive courses are in use worldwide by universities, community col-
leges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many lan-
guages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese,
and Thai. Connexions is part of an exciting new information distribution system that allows for
Print on Demand Books. Connexions has partnered with innovative on-demand publisher QOOP
to accelerate the delivery of printed course materials and textbooks into classrooms worldwide at
lower prices than traditional academic publishers.

