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Chapter 1

Introduction to Concise Signal Models1

1.1 Overview

In characterizing a given problem in signal processing, one is often able to specify a model for the signals
to be processed. This model may distinguish (either statistically or deterministically) classes of interesting
signals from uninteresting ones, typical signals from anomalies, information from noise, etc.

Very commonly, models in signal processing deal with some notion of structure, constraint, or conciseness.
Roughly speaking, one often believes that a signal has �few degrees of freedom� relative to the size of the
signal. This notion of conciseness is a very powerful assumption, and it suggests the potential for dramatic
gains via algorithms that capture and exploit the true underlying structure of the signal.

In these modules, we survey three common examples of concise models: linear models, sparse nonlinear
models, and manifold-based models. In each case, we discuss an important phenomenon: the conciseness
of the model corresponds to a low-dimensional geometric structure along which the signals of interest tend
to cluster. This low-dimensional geometry again has important implications in the understanding and the
development of e�cient algorithms for signal processing.

We discuss this low-dimensional geometry in several contexts, including projecting a signal onto the
model class (i.e., forming a concise approximation to a signal), encoding such an approximation (i.e., data
compression), and reducing the dimensionality of signals and data sets. We conclude with an important and
emerging application area known as Compressed Sensing (CS), which is a novel method for data acquisition
that relies on concise models and builds upon strong geometric principles. We discuss CS in its traditional,
sparsity-based context and also discuss extensions of CS to other concise models such as manifolds.

1.2 General Mathematical Preliminaries

1.2.1 Signal notation

We will treat signals as real- or complex-valued functions having domains that are either discrete (and �nite)
or continuous (and either compact or in�nite). Each of these assumptions will be made clear as needed. As
a general rule, however, we will use x to denote a discrete signal in RN and f to denote a function over a
continuous domain D. We also commonly refer to these as discrete- or continuous-time signals, though the
domain need not actually be temporal in nature.

1This content is available online at <http://cnx.org/content/m18720/1.5/>.
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2 CHAPTER 1. INTRODUCTION TO CONCISE SIGNAL MODELS

1.2.2 Lp and lp norms

As measures for signal energy, �delity, or sparsity, we will employ the Lp and `p norms. For continuous-time
functions, the Lp norm is de�ned as

‖ f ‖Lp(D) =
(∫
D|f |

p)1/p
, p ∈ (0,∞) , (1.1)

and for discrete-time functions, the `p norm is de�ned as

‖ x ‖`p = {

(∑N
i=1 |x (i) |p

)1/p

, p ∈ (0,∞) ,

max
i=1,··· ,N

|x (i) |, p =∞,∑N
i=1 1x(i) 6=0, p = 0,

(1.2)

where 1 denotes the indicator function. (While we often refer to these measures as �norms,� they actually
do not meet the technical criteria for norms when p < 1.)

1.2.3 Linear algebra

Let A be a real-valued M ×N matrix. We denote the nullspace of A as N (A) (note that N (A) is a linear
subspace of RN ), and we denote the transpose of A as AT .

We call A an orthoprojector from RN to RM if it has orthonormal rows. From such a matrix we

call A
T

A the corresponding orthogonal projection operator onto the M -dimensional subspace of RN
spanned by the rows of A.



Chapter 2

Signal Dictionaries and Representations1

For a wide variety of signal processing applications (including analysis, compression, noise removal, and so
on) it is useful to consider the representation of a signal in terms of some dictionary [80]. In general, a
dictionary Ψ is simply a collection of elements drawn from the signal space whose linear combinations can
be used to represent or approximate signals.

Considering, for example, signals in RN , we may collect and represent the elements of the dictionary Ψ
as an N × Z matrix, which we also denote as Ψ. From this dictionary, a signal x ∈ RN can be constructed
as a linear combination of the elements (columns) of Ψ. We write

x = Ψα (2.1)

for some α ∈ RZ . (For much of our notation in this section, we concentrate on signals in RN , though the
basic concepts translate to other vector spaces.)

Dictionaries appear in a variety of settings. The most common may be the basis, in which case Ψ
has exactly N linearly independent columns, and each signal x has a unique set of expansion coe�cients
α = Ψ−1x. The orthonormal basis (where the columns are normalized and orthogonal) is also of particular

interest, as the unique set of expansion coe�cients α = Ψ−1x = Ψ
T

x can be obtained as the inner products
of x against the columns of Ψ. That is, α (i) =< x,ψi >, i = 1, 2, · · · , N , which gives us the expansion

x =
N∑
i=1

< x,ψi > ψi. (2.2)

We also have that ‖x‖22 =
∑N
i=1< x,ψi >

2.
Frames are another special type of dictionary [75]. A dictionary Ψ is a frame if there exist numbers A

and B, 0 < A ≤ B <∞ such that, for any signal x

A‖x‖22 ≤
∑
z

< x,ψz >
2 ≤ B‖x‖22. (2.3)

The elements of a frame may be linearly dependent in general (see Figure 2.1), and so there may exist
many ways to express a particular signal among the dictionary elements. However, frames do have a useful
analysis/synthesis duality: for any frame Ψ there exists a dual frame Ψ̃ such that

x =
∑
z

< x,ψz > ψ̃z =
∑
z

< x, ψ̃z > ψz. (2.4)

In the case where the frame vectors are represented as columns of the N x Z matrix Ψ, the matrix Ψ̃
containing the dual frame elements is simply the transpose of the pseudoinverse of Ψ. A frame is called

1This content is available online at <http://cnx.org/content/m18724/1.5/>.
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4 CHAPTER 2. SIGNAL DICTIONARIES AND REPRESENTATIONS

tight if the frame bounds A and B are equal. Tight frames have the special properties of (i) being their

own dual frames (after a rescaling by 1/A) and (ii) preserving norms, i.e.,
∑N
i=1< x,ψi >

2 = A‖x‖22. The
remainder of this section discusses several important dictionaries.

x(1)

x(2)

ψ ψ

ψ

23

1

Figure 2.1: A simple, redundant frame Ψ containing three vectors that span R2.

2.1 The canonical basis

The standard basis for representing a signal is the canonical (or �spike�) basis. In RN , this corresponds to a
dictionary Ψ = IN (the N × N identity matrix). When expressed in the canonical basis, signals are often
said to be in the �time domain.�

2.2 Fourier dictionaries

The frequency domain provides one alternative representation to the time domain. The Fourier series and
discrete Fourier transform are obtained by letting Ψ contain complex exponentials and allowing the expansion
coe�cients α to be complex as well. (Such a dictionary can be used to represent real or complex signals.) A
related �harmonic� transform to express signals in RN is the discrete cosine transform (DCT), in which Ψ
contains real-valued, approximately sinusoidal functions and the coe�cients α are real-valued as well.

2.3 Wavelets

Closely related to the Fourier transform, wavelets provide a framework for localized harmonic analysis
of a signal [80]. Elements of the discrete wavelet dictionary are local, oscillatory functions concentrated
approximately on dyadic supports and appear at a discrete collection of scales, locations, and (if the signal
dimension D > 1) orientations.

2.3.1 Scale

In wavelet analysis and other settings, we will frequently refer to a particular scale of analysis for a sig-
nal. Consider, for example, continuous-time functions f de�ned over the domain D = [0, 1]D. A dyadic
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hypercube Xj ⊆ [0, 1]D at scale j ∈ N is a domain that satis�es

Xj =
[
β12−j , (β1 + 1) 2−j

]
× · · · ×

[
βD2−j , (βD + 1) 2−j

]
(2.5)

with β1, β2, · · · , βD ∈ {0, 1, · · · , 2j − 1}. We call Xj a dyadic interval when D = 1 or a dyadic square
when D = 2 (see Figure 2.2). Note that Xj has sidelength 2−j .

j=0 j=1 j=2

1/41/21

Figure 2.2: Dyadic partitioning of the unit square at scales j = 0, 1, 2. The partitioning induces a
coarse-to-�ne parent/child relationship that can be modeled using a tree structure.

For discrete-time functions the notion of scale is similar. We can imagine, for example, a �voxelization�
of the domain [0, 1]D (�pixelization� when D = 2), where each voxel has sidelength 2−B , B ∈ N, and it takes

2BD voxels to �ll [0, 1]D. The relevant scales of analysis for such a signal would simply be j = 0, 1, · · · , B,
and each dyadic hypercube Xj would refer to a collection of voxels.

2.3.2 Wavelet fundamentals

The wavelet transform o�ers a multiscale decomposition of a function into a nested sequence of scaling spaces
V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · ·. Each scaling space Vj is spanned by a discrete collection of dyadic translations of
a lowpass scaling function ϕj , and the di�erence between adjacent scaling spaces Vj and Vj+1 is spanned by
a discrete collection of dyadic translations of a bandpass wavelet function ψj . Figure 2.3 shows an example
of this multiscale organization in the case of the Haar wavelet dictionary. Each wavelet function at scale j is
concentrated approximately on some dyadic hypercube Xj , and between scales, both the wavelets and scaling
functions are �self-similar,� di�ering only by rescaling and dyadic dilation. When D > 1, the di�erence spaces
are partitioned into 2D − 1 distinct orientations (when D = 2 these correspond to vertical, horizontal, and
diagonal directions). The wavelet transform can be truncated at any scale j. We then let the basis Ψ consist
of all scaling functions at scale j plus all wavelets at scales j and �ner.
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(a)

(b)

(c)

(d)

Figure 2.3: Multiscale wavelet representations on the interval [0, 1]. (a) Haar scaling functions spanning
Vj with j = 2. (b) Haar wavelet functions spanning the di�erence space between Vj and Vj+1. (c) Haar
scaling functions spanning Vj+1. (d) Two example functions belonging to the spaces (left) Vj and (right)
Vj+1.
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Wavelets are essentially bandpass functions that detect abrupt changes in a signal. The scale of a
wavelet, which controls its support both in time and in frequency, also controls its sensitivity to changes in
the signal. This is made more precise by considering the wavelet analysis of smooth signals. Wavelet are
often characterized by their number of vanishing moments; a wavelet basis function is said to have H
vanishing moments if it is orthogonal to (its inner product is zero against) any H-degree polynomial. Sparse
(Nonlinear) models (Section 4.2: Sparse (nonlinear) models) discusses further the wavelet analysis of smooth
and piecewise smooth signals.

The dyadic organization of the wavelet transform lends itself to a multiscale, tree-structured organization
of the wavelet coe�cients. Each �parent� function, concentrated on a dyadic hypercube Xj of sidelength 2−j ,
has 2D �children� whose supports are concentrated on the dyadic subdivisions of Xj . This relationship can
be represented in a top-down tree structure, as demonstrated in Figure 2.2. Because the parent and children
share a location, they will presumably measure related phenomena about the signal, and so in general, any
patterns in their wavelet coe�cients tend to be re�ected in the connectivity of the tree structure. Figure 2.4
and Figure 2.5 show an example of the wavelet transform applied to the Cameraman test image; since the
dimension D = 2, each scale is partitioned into vertical, horizontal, and diagonal wavelet analysis, and each
parent coe�cient has 2D = 4 children.
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Figure 2.4: Cameraman test image (size 256×256) for use in wavelet decomposition and approximation
examples.
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Figure 2.5: Wavelet analysis of the Cameraman test image. (a) One-level wavelet transform, where the
N -pixel image is transformed into four sets of N/4 coe�cients each. The top left quadrant represents
the scaling coe�cients at the next coarser scale (relative to the scale of pixelization). The remaining
quadrants represent the wavelet coe�cients from the di�erence spaces, partitioned into the vertical,
horizontal, and diagonal subbands. (b) Three-level wavelet transform, where the wavelet decomposition
has been iterated twice more on the scaling coe�cients. The multiple scales of wavelet coe�cients exhibit
a parent-child dependency. The largest coe�cients tend to concentrate at the coarsest scales and around
high-frequency features such as edges in the image.

In addition to their ease of modeling, wavelets are computationally attractive for signal processing; using
a �lter bank, the wavelet transform of an N -voxel signal can be computed in just O (N) operations.

2.4 Other dictionaries

A wide variety of other dictionaries have been proposed in signal processing and harmonic analysis. As
one example, complex-valued wavelet transforms have proven useful for image analysis and modeling [72],
[73], [94], [65], [102], [91], [66], thanks to a phase component that captures location information at each
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scale. Just a few of the other harmonic dictionaries popular in image processing include wavelet packets [80],
Gabor atoms [80], curvelets [29], [18], and contourlets [50], [51], all of which involve various space-frequency
partitions. We mention additional dictionaries in Compression (Chapter 6) .
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Chapter 3

Manifolds1

As we will soon discuss, manifold models can provide an alternative to signal dictionaries as a framework
for concise signal modeling. In this module, we present a minimal set of de�nitions and terminology from
di�erential geometry and topology that serve as an introduction to manifolds. We refer the reader to the
introductory and classical texts [90], [86], [68], [11] for more depth and technical precision.

3.1 General terminology

A K-dimensional manifoldM is a topological space2 that is locally homeomorphic3 to RK [68]. This means
that there exists an open cover of M with each such open set mapping homeomorphically to an open ball
in RK . Each such open set, together with its mapping to RK is called a chart; the set of all charts of a
manifold is called an atlas.

The general de�nition of a manifold makes no reference to an ambient space in which the manifold lives.
However, as we will often be making use of manifolds as models for sets of signals, it follows that such �signal
manifolds� are actually subsets of some larger space (for example, of L2 (R) or RN ). In general, we may
think of a K-dimensional submanifold embedded in RN as a nonlinear, K-dimensional �surface� within RN .

3.2 Examples of manifolds

One of the simplest examples of a manifold is simply the circle in R2. A small, open-ended segment cut
from the circle could be stretched out and associated with an open interval of the real line (see Figure 3.1).
Hence, the circle is a 1-D manifold. (We note that at least two charts are required to form an atlas for the
circle, as the entire circle itself cannot be mapped homeomorphically to an open interval in R1.)

1This content is available online at <http://cnx.org/content/m18722/1.4/>.
2A topological space is simply a set X, together with a collection T of subsets of X called open sets, such that: (i) the

empty set belongs to T , (ii) X belongs to T , (iii) arbitrary unions of elements of T belong to T , and (iv) �nite intersections of
elements of T belong to T .

3A homeomorphism is a function between two topological spaces that is one-to-one, onto, continuous, and has a continuous
inverse.

11



12 CHAPTER 3. MANIFOLDS

U U1 2ϕ 21ϕ

Figure 3.1: A circle is a manifold because there exists an open cover consisting of the sets U1, U2, which
are mapped homeomorphically onto open intervals in the real line via the functions ϕ1, ϕ2. (It is not
necessary that the intervals intersect in R.)

We refer the reader to [92] for an excellent overview of several manifolds with relevance to signal process-
ing, including the rotation group SO (3), which can be used for representing orientations of objects in 3-D
space, and the Grassman manifold G (K,N), which represents all K-dimensional subspaces of RN . (Without
working through the technicalities of the de�nition of a manifold, it is easy to see that both types of data
have a natural notion of neighborhood.)

3.3 Tangent spaces

A manifold is di�erentiable if, for any two charts whose open sets on M overlap, the composition of the
corresponding homeomorphisms (from RK in one chart toM and back to RK in the other) is di�erentiable.
(In our simple example, the circle is a di�erentiable manifold.)

To each point x in a di�erentiable manifold, we may associate a K-dimensional tangent space Tanx.
For signal manifolds embedded in L2 or RN , it su�ces to think of Tanx as the set of all directional derivatives
of smooth paths onM through x. (Note that Tanx is a linear subspace and has its origin at 0, rather than
at x.)

3.4 Distances

One is often interested in measuring distance along a manifold. For abstract di�erentiable manifolds, this
can be accomplished by de�ning a Riemannian metric on the tangent spaces. A Riemannian metric is a
collection of inner products <,>x de�ned at each point x ∈ M. The inner product gives a measure for
the �length� of a tangent, and one can then compute the length of a path onM by integrating its tangent
lengths along the path.

For di�erentiable manifolds embedded in RN , the natural metric is the Euclidean metric inherited from
the ambient space. The length of a path γ : [0, 1] 7→ M can then be computed simply using the limit

length (γ) = lim
j→∞

j∑
i=1

‖γ (i/j)− γ ((i− 1) /j) ‖2. (3.1)

The geodesic distance dM (x, y) between two points x, y ∈M is then given by the length of the shortest
path γ onM joining x and y.
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3.5 Condition number

To establish a �rm footing for analysis, we �nd it helpful assume a certain regularity to the manifold beyond
mere di�erentiability. For this purpose, we adopt the condition number de�ned recently by Niyogi et al. [87].

De�nition 3.1:

[87] Let M be a compact submanifold of RN . The condition number of M is de�ned as 1/τ ,
where τ is the largest number having the following property: The open normal bundle aboutM of
radius r is imbedded in RN for all r < τ .

The open normal bundle of radius r at a point x ∈M is simply the collection of all vectors of length < r
anchored at x and with direction orthogonal to Tanx.

In addition to controlling local properties (such as curvature) of the manifold, the condition number has
a global e�ect as well, ensuring that the manifold is self-avoiding. These notions are made precise in several
lemmata, which we repeat below for completeness.

Lemma 3.1:

[87] If M is a submanifold of RN with condition number 1/τ , then the norm of the second
fundamental form is bounded by 1/τ in all directions.

This implies that unit-speed geodesic paths on M have curvature bounded by 1/τ . The second lemma
concerns the twisting of tangent spaces.

Lemma 3.2:

[87] LetM be a submanifold of RN with condition number 1/τ . Let p, q ∈M be two points with
geodesic distance given by dM (p, q). Let θ be the angle between the tangent spaces Tanp and Tanq
de�ned by cos (θ) = minu∈Tanpmaxv∈Tanq | < u, v > |. Then cos (θ) > 1− 1

τ dM (p, q).
The third lemma concerns self-avoidance ofM.

Lemma 3.3:

[87] Let M be a submanifold of RN with condition number 1/τ . Let p, q ∈ M be two points
such that ‖p− q‖2 = d. Then for all d ≤ τ/2, the geodesic distance dM (p, q) is bounded by

dM (p, q) ≤ τ − τ
√

1− 2d/τ .
From Lemma 3.3, p. 13 we have an immediate corollary.

Corollary 3.1:

LetM be a submanifold of RN with condition number 1/τ . Let p, q ∈M be two points such that

‖p− q‖2 = d. If d ≤ τ/2, then d ≥ dM (p, q)− (dM(p,q))2

2τ .
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Chapter 4

Low-Dimensional Signal Models1

We now survey some common and important models in signal processing, each of which involves some notion
of conciseness to the signal structure. We see in each case that this conciseness gives rise to a low-dimensional
geometry within the ambient signal space.

4.1 Linear models

Some of the simplest models in signal processing correspond to linear subspaces of the ambient signal
space. Bandlimited signals are one such example. Supposing, for example, that a 2π-periodic signal f has
Fourier transform F (ω) = 0 for |ω| > B, the Shannon/Nyquist sampling theorem [81] states that such signals
can be reconstructed from 2B samples. Because the space of B-bandlimited signals is closed under addition
and scalar multiplication, it follows that the set of such signals forms a 2B-dimensional linear subspace of
L2 ([0, 2π)).

Linear signal models also appear in cases where a model dictates a linear constraint on a signal.
Considering a discrete length-N signal x, for example, such a constraint can be written in matrix form as

Ax = 0 (4.1)

for some M ×N matrix A. Signals obeying such a model are constrained to live in N (A) (again, obviously,
a linear subspace of RN ).

A very similar class of models concerns signals living in an a�ne space, which can be represented for a
discrete signal using

Ax = y. (4.2)

The class of such x lives in a shifted nullspace
^
x +N (A), where

^
x is any solution to the equation A

^
x= y.

Revisiting the dictionary setting (see Signal Dictionaries and Representations (Chapter 2)), one last
important linear model arises in cases where we select K speci�c elements from the dictionary Ψ and then
construct signals using linear combinations of only these K elements; in this case the set of possible signals
forms a K-dimensional hyperplane in the ambient signal space (see Figure 4.1(a)).

1This content is available online at <http://cnx.org/content/m18726/1.4/>.
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x(1)

x(2)

ψ ψ

ψ

23

1

(a)

x(1)

x(2)

ψ ψ

ψ

23

1

(b)

x(1)

x(2)

M

(c)

Figure 4.1: Simple models for signals in R2. (a) The linear space spanned by one element of the
dictionary Ψ. The bold vectors denote the elements of the dictionary, while the dashed line (plus the
corresponding dictionary element) denotes the subspace spanned by that dictionary element. (b) The
nonlinear set of 1-sparse signals that can be built using Ψ. (c) A manifoldM.

For example, we may construct low-frequency signals using combinations of only the lowest frequency si-
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nusoids from the Fourier dictionary. Similar subsets may be chosen from the wavelet dictionary; in particular,
one may choose only elements that span a particular scaling space Vj . As we have mentioned previously, har-
monic dictionaries such as sinusoids and wavelets are well-suited to representing smooth2 signals. This can be
seen in the decay of their transform coe�cients. For example, we can relate the smoothness of a continuous
1-D function f to the decay of its Fourier coe�cients F (ω); in particular, if

∫
|F (ω) |

(
1 + |ω|H

)
dω < ∞,

then f ∈ CH [81]. In order to satisfy
∫
|F (ω) |

(
1 + |ω|H

)
dω < ∞, a signal must have a su�ciently fast

decay of the Fourier transform coe�cients |F (ω) | as ω grows. Wavelet coe�cients exhibit a similar decay
for smooth signals: supposing f ∈ CH and the wavelet basis function has at least H vanishing moments,
then as the scale j → ∞, the magnitudes of the wavelet coe�cients decay as 2−j(H+1/2) [81]. (Recall that
f ∈ CH implies f is well-approximated by a polynomial, and so due the vanishing moments this polynomial
will have zero contribution to the wavelet coe�cients.)

Indeed, these results suggest that the largest Fourier or wavelet coe�cients of smooth signals tend to
concentrate at the coarsest scales (lowest-frequencies). In Linear Approximation from Approximation (Sec-
tion 5.1: Linear approximation) , we see that linear approximations formed from just the lowest frequency
elements of the Fourier or wavelet dictionaries (i.e., the truncation of the Fourier or wavelet representation
to only the lowest frequency terms) provide very accurate approximations to smooth signals. Put di�erently,
smooth signals live near the subspace spanned by just the lowest frequency Fourier or wavelet basis functions.

4.2 Sparse (nonlinear) models

Sparse signal models can be viewed as a generalization of linear models. The notion of sparsity comes from
the fact that, by the proper choice of dictionary Ψ, many real-world signals x = Ψα have coe�cient vectors
α containing few large entries, but across di�erent signals the locations (indices in α) of the large entries
may change. We say a signal is strictly sparse (or �K-sparse�) if all but K entries of α are zero.

Some examples of real-world signals for which sparse models have been proposed include neural spike
trains (in time), music and other audio recordings (in time and frequency), natural images (in the wavelet
or curvelet dictionaries [81], [49], [96], [78], [107], [59], [31], [19]), video sequences (in a 3-D wavelet dictio-
nary [85], [95]), and sonar or radar pulses (in a chirplet dictionary [5]). In each of these cases, the relevant
information in a sparse representation of a signal is encoded in both the locations (indices) of the signi�cant
coe�cients and the values to which they are assigned. This type of uncertainty is an appropriate model for
many natural signals with punctuated phenomena.

Sparsity is a nonlinear model. In particular, let ΣK denote the set of all K-sparse signals for a given
dictionary. It is easy to see that the set ΣK is not closed under addition. (In fact, ΣK + ΣK = Σ2K .) From
a geometric perspective, the set of all K-sparse signals from the dictionary Ψ forms not a hyperplane but
rather a union of K-dimensional hyperplanes, each spanned by K vectors of Ψ (see Figure 4.1(b)). For a

dictionary Ψ with Z entries, there are
(
Z
K

)
such hyperplanes. (The geometry of sparse signal collections

has also been described in terms of orthosymmetric sets; see [58].)
Signals that are not strictly sparse but rather have a few �large� and many �small� coe�cients are known

as compressible signals. The notion of compressibility can be made more precise by considering the rate
at which the sorted magnitudes of the coe�cients α decay, and this decay rate can in turn be related to the
`p norm of the coe�cient vector α. Letting α̃ denote a rearrangement of the vector α with the coe�cients

2Lipschitz smoothness We say a continuous-time function of D variables has smoothness of order H > 0, where H = r+ν,
r is an integer, and ν ∈ (0, 1], if the following criteria are met [81], [49]:

• All iterated partial derivatives with respect to the D directions up to order r exist and are continuous.
• All such partial derivatives of order r satisfy a Lipschitz condition of order ν (also known as a Hölder condition).(A

function d ∈ Lip (ν) if |d (t1 + t2)− d (t1) | ≤ C ‖ t2‖ν for all D-dimensional vectors t1, t2.)

We will sometimes consider the space of smooth functions whose partial derivatives up to order r are bounded by some constant
Ω. With somewhat nonstandard notation, we denote the space of such bounded functions with bounded partial derivatives by
CH , where this notation carries an implicit dependence on Ω. Observe that r = dH − 1e, where d·e denotes rounding up. Also,
when H is an integer CH includes as a subset the space traditionally denoted by the notation �CH � (the class of functions that
have H = r + 1 continuous partial derivatives).
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ordered in terms of decreasing magnitude, then the reordered coe�cients satisfy [46]

α̃k ≤ ‖ α ‖`pk
−1/p. (4.3)

As we discuss in Nonlinear Approximation from Approximation (Section 5.2: Nonlinear approximation),
these decay rates play an important role in nonlinear approximation, where adaptive, K-sparse repre-
sentations from the dictionary are used to approximate a signal.

We recall from Section 4.1 (Linear models) that for a smooth signal f , the largest Fourier and wavelet
coe�cients tend to cluster at coarse scales (low frequencies). Suppose, however, that the function f is piece-
wise smooth; i.e., it is CH at every point t ∈ R except for one point t0, at which it is discontinuous. Naturally,
this phenomenon will be re�ected in the transform coe�cients. In the Fourier domain, this discontinuity will
have a global e�ect, as the overall smoothness of the function f has been reduced dramatically from H to
0. Wavelet coe�cients, however, depend only on local signal properties, and so the wavelet basis functions
whose supports do not include t0 will be una�ected by the discontinuity. Coe�cients surrounding the sin-
gularity will decay only as 2−j/2, but there are relatively few such coe�cients. Indeed, at each scale there
are only O (1) wavelets that include t0 in their supports, but these locations are highly signal-dependent.
(For modeling purposes, these signi�cant coe�cients will persist through scale down the parent-child tree
structure.) After reordering by magnitude, the wavelet coe�cients of piecewise smooth signals will have the
same general decay rate as those of smooth signals. In Nonlinear Approximation from Approximation (Sec-
tion 5.2: Nonlinear approximation), we see that the quality of nonlinear approximations o�ered by wavelets
for smooth 1-D signals is not hampered by the addition of a �nite number of discontinuities.

4.3 Manifold models

Manifold models generalize the conciseness of sparsity-based signal models. In particular, in many situations
where a signal is believed to have a concise description or �few degrees of freedom,� the result is that the
signal will live on or near a particular submanifold of the ambient signal space.

4.3.1 Parametric models

We begin with an abstract motivation for the manifold perspective. Consider a signal f (such as a natural
image), and suppose that we can identify some single 1-D piece of information about that signal that could
be variable; that is, other signals might rightly be called �similar� to f if they di�er only in this piece of
information. (For example, this 1-D parameter could denote the distance from some object in an image to
the camera.) We let θ denote the variable parameter and write the signal as fθ to denote its dependence
on θ. In a sense, θ is a single �degree of freedom� driving the generation of the signal fθ under this simple
model. We let Θ denote the set of possible values of the parameter θ. If the mapping between θ and fθ is
well-behaved, then the collection of signals {fθ : θ ∈ Θ} forms a 1-D path in the ambient signal space.

More generally, when a signal hasK degrees of freedom, we may model it as depending on some parameter
θ that is chosen from aK-dimensional manifold Θ. (The parameter space Θ could be, for example, a subset of
RK , or it could be a more general manifold such as SO(3).) We again let fθ denote the signal corresponding
to a particular choice of θ, and we let F = {fθ : θ ∈ Θ}. Assuming the mapping f is continuous and
injective over Θ (and its inverse is continuous), then by virtue of the manifold structure of Θ, its image F
will correspond to a K-dimensional manifold embedded in the ambient signal space (see Figure 4.1(c)).

These types of parametric models arise in a number of scenarios in signal processing. Examples include:
signals of unknown translation, sinusoids of unknown frequency (across a continuum of possibilities), linear
radar chirps described by a starting and ending time and frequency, tomographic or light �eld images with
articulated camera positions, robotic systems with few physical degrees of freedom, dynamical systems with
low-dimensional attractors [13], [15], and so on.

In general, parametric signals manifolds are nonlinear (by which we mean non-a�ne as well); this can
again be seen by considering the sum of two signals fθ0 +fθ1 . In many interesting situations, signal manifolds
are non-di�erentiable as well.
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4.3.2 Nonparametric models

Manifolds have also been used to model signals for which there is no known parametric model. Examples
include images of faces and handwritten digits [101], [9], which have been found empirically to cluster near
low-dimensional manifolds. Intuitively, because of the con�gurations of human joints and muscles, it may be
conceivable that there are relatively �few� degrees of freedom driving the appearance of a human face or the
style of handwriting; however, this inclination is di�cult or impossible to make precise. Nonetheless, certain
applications in face and handwriting recognition have bene�tted from algorithms designed to discover and
exploit the nonlinear manifold-like structure of signal collections. Manifold Learning from Dimensionality
Reduction (Section 7.1: Manifold learning) discusses such methods for learning parametrizations and other
information from data living along manifolds.

Much more generally, one may consider, for example, the set of all natural images. Clearly, this set has
small volume with respect to the ambient signal space � generating an image randomly pixel-by-pixel will
almost certainly produce an unnatural noise-like image. Again, it is conceivable that, at least locally, this
set may have a low-dimensional manifold-like structure: from a given image, one may be able to identify
only a limited number of meaningful changes that could be performed while still preserving the natural look
to the image. Arguably, most work in signal modeling could be interpreted in some way as a search for this
overall structure.
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Chapter 5

Approximation1

To this point, we have discussed signal representations and models as basic tools for signal processing. In
the following modules, we discuss the actual application of these tools to tasks such as approximation and
compression, and we continue to discuss the geometric implications.

5.1 Linear approximation

One common prototypical problem in signal processing is to �nd the best linear approximation to a signal
x. By �best linear approximation,� we mean the best approximation to x from among a class of signals
comprising a linear (or a�ne) subspace. This situation may arise, for example, when we have a noisy
observation of a signal believed to obey a linear model. If we choose an `2 error criterion, the solution to
this optimization problem has a particularly strong geometric interpretation.

To be more concrete, suppose S is a K-dimensional linear subspace of RN . (The case of an a�ne subspace
follows similarly.) If we seek

s∗ := argmin
s∈S
‖s− x‖2, (5.1)

standard linear algebra results state that the minimizer is given by

s∗ = A
T

Ax, (5.2)

where A is a K ×N matrix whose rows form an orthonormal basis for S. Geometrically, one can easily see
that this solution corresponds to an orthogonal projection of x onto the subspace S (see Figure 5.1(a)).

1This content is available online at <http://cnx.org/content/m18727/1.5/>.
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Figure 5.1: Approximating a signal x ∈ R2 with an `2 error criterion. (a) Linear approximation
using one element of the dictionary Ψ corresponds to orthogonal projection of the signal onto the linear
subspace. (b) Nonlinear approximation corresponds to orthogonal projection of the signal onto the
nearest candidate subspace. In this case, we choose the best 1-sparse signal that can be built using Ψ.
(c) Manifold-based approximation, �nding the nearest point onM.
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The linear approximation problem arises frequently in settings involving signal dictionaries. In some
settings, such as the case of an oversampled bandlimited signal, certain coe�cients in the vector α may be
assumed to be �xed at zero. In the case where the dictionary Ψ forms an orthonormal basis, the linear
approximation estimate of the unknown coe�cients has a particularly simple form: rows of the matrix A in
(5.2) are obtained by selecting and transposing the columns of Ψ whose expansion coe�cients are unknown,
and consequently, the unknown coe�cients can be estimated simply by taking the inner products of x against
the appropriate columns of Ψ.

For example, in choosing a �xed subset of the Fourier or wavelet dictionaries, one may rightfully choose
the lowest frequency (coarsest scale) basis functions for the set S because, as discussed in Linear Models
from Low-Dimensional Signal Models (Section 4.1: Linear models) , the coe�cients generally tend to decay
at higher frequencies (�ner scales). For smooth functions, this strategy is appropriate and e�ective; functions
in Sobolev smoothness spaces are well-approximated using linear approximations from the Fourier or wavelet
dictionaries [82]. For piecewise smooth functions, however, even the wavelet-domain linear approximation
strategy would miss out on signi�cant coe�cients at �ne scales. Since the locations of such coe�cients
are unknown a priority, it is impossible to propose a linear wavelet-domain approximation scheme that
could simultaneously capture all piecewise smooth signals. As an example, Figure 5.2(a) shows the linear
approximation of the Cameraman test image obtained by keeping only the lowest-frequency scaling and
wavelet coe�cients. No high-frequency information is available to clearly represent features such as edges.
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Figure 5.2: Linear versus nonlinear approximation in the wavelet domain. (a) Linear approximation
of the Cameraman test image obtained by keeping the K = 4096 lowest-frequency wavelet coe�cients
from the �ve-level wavelet decomposition. The MSE with respect to the original image is 353. (b)
Nonlinear approximation of the Cameraman test image obtained by keeping the K = 4096 largest
wavelet coe�cients from the �ve-level wavelet decomposition. The MSE with respect to the original
image is 72. Compared with linear approximation, more high frequency coe�cients are included, which
allows better representation of features such as edges.

5.2 Nonlinear approximation

A related question often arises in settings involving signal dictionaries. Rather than �nding the best ap-
proximation to a signal f using a �xed collection of K elements from the dictionary Ψ, one may often seek
the best K-term representation to f among all possible expansions that use K terms from the dictionary.
Compared to linear approximation, this type of nonlinear approximation [45], [39] utilizes the ability of the
dictionary to adapt: di�erent elements may be important for representing di�erent signals.
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The K-term nonlinear approximation problem corresponds to the optimization

s∗K,p := argmin
s∈ΣK

‖ s− f ‖p. (5.3)

(For the sake of generality, we consider general Lp and `p norms in this section.) Due to the nonlinearity of
the set ΣK for a given dictionary, solving this problem can be di�cult. Supposing Ψ is an orthonormal basis
and p = 2, the solution to (5.3) is easily obtained by thresholding: one simply computes the coe�cients α
and keeps the K largest (setting the remaining coe�cients to zero). The approximation error is then given
simply by the coe�cients that are discarded:

‖ s∗K,2−f ‖2 =

(∑
k>K

α̃2
k

)1/2

. (5.4)

When Ψ is a redundant dictionary, however, the situation is much more complicated. We mention more on
this below (see also Figure 5.1(b)).

5.2.1 Measuring approximation quality

One common measure for the quality of a dictionary Ψ in approximating a signal class is the �delity of its
K-term representations. Often one examines the asymptotic rate of decay of the K-term approximation
error as K grows large. De�ning

σK(f)p := ‖ s∗K,p − f ‖p, (5.5)

for a given signal f we may consider the asymptotic decay of σK(f)p as K →∞. (We recall the dependence

of (5.3) and hence (5.5) on the dictionary Ψ.) In many cases, the function σK(f)p will decay as K−r for
some r, and when Ψ represents a harmonic dictionary, faster decay rates tend to correspond to smoother
functions. Indeed, one can show that when Ψ is an orthonormal basis, then σK(f)2 will decay as K−r if and
only if α̃k decays as k−r+1/2 [47].

5.2.2 Nonlinear approximation of piecewise smooth functions

Let f ∈ CH be a 1-D function. Supposing the wavelet dictionary has more than H vanishing moments, then
f can be well approximated using its K largest coe�cients (most of which are at coarse scales). As K grows
large, the nonlinear approximation error will decay2 as σK(f)2 . K−H .

Supposing that f is piecewise smooth, however, with a �nite number of discontinuities, then (as discussed
in Sparse (Nonlinear) Models from Low-Dimensional Signal Models (Section 4.2: Sparse (nonlinear) models))
f will have a limited number of signi�cant wavelet coe�cients at �ne scales. Because of the concentration of
these signi�cant coe�cients within each scale, the nonlinear approximation rate will remain σK(f)2 . K−H

as if there were no discontinuities present [82].
Unfortunately, this resilience of wavelets to discontinuities does not extend to higher dimensions. Suppose,

for example, that f is a CH smooth 2-D signal. Assuming the proper number of vanishing moments, a
wavelet representation will achieve the optimal nonlinear approximation rate σK(f)2 . K−H/2 [37], [82].
As in the 1-D case, this approximation rate is maintained when a �nite number of point discontinuities are
introduced into f . However, when f contains 1-D discontinuities (edges separating the smooth regions), the
approximation rate will fall to σK(f)2 . K−1/2 [82]. The problem actually arises due to the isotropic, dyadic
supports of the wavelets; instead of O (1) signi�cant wavelets at each scale, there are now O

(
2j
)
wavelets

overlapping the discontinuity. We revisit this important issue in Compression (Chapter 6).
Despite the limited approximation capabilities for images with edges, nonlinear approximation in the

wavelet domain typically o�ers a superior approximation to an image compared to linear approximation in
the wavelet domain. As an example, Figure 5.2(b) shows the nonlinear approximation of the Cameraman

2We use the notation f (α) . g (α), or f (α) = O (g (α)), if there exists a constant C, possibly large but not dependent on
the argument α, such that f (α) ≤ Cg (α).
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test image obtained by keeping the largest scaling and wavelet coe�cients. In this case, a number of
high-frequency coe�cients are selected, which gives an improved ability to represent features such as edges.
Better concise transforms, which capture the image information in even fewer coe�cients, would o�er further
improvements in terms of nonlinear approximation quality.

5.2.3 Finding approximations

As mentioned above, in the case where Ψ is an orthonormal basis and p = 2, the solution to (5.3) is easily
obtained by thresholding: one simply computes the coe�cients α and keeps the K largest (setting the
remaining coe�cients to zero). Thresholding can also be shown to be optimal for arbitrary `p norms in
the special case where Ψ is the canonical basis. While the optimality of thresholding does not generalize
to arbitrary norms and bases, thresholding can be shown to be a near-optimal approximation strategy for
wavelet bases with arbitrary Lp norms [47].

In the case where Ψ is a redundant dictionary, however, the expansion coe�cients α are not unique, and
the optimization problem (5.3) can be much more di�cult to solve. Indeed, supposing even that an exact

K-term representation exists for f in the dictionary Ψ, �nding that K-term approximation is NP-hard in

general, requiring a combinatorial enumeration of the
(
Z
K

)
possible sparse subspaces [26]. This search can

be recast as the optimization problem

^
α= argmin‖ α ‖0 s.t. f = Ψα. (5.6)

While solving (5.6) is prohibitively complex, a variety of algorithms have been proposed as alternatives.
One approach convexi�es the optimization problem by replacing the `0 �delity criterion by an `1 criterion

^
α= argmin‖ α ‖1 s.t. f = Ψα. (5.7)

This problem, known as Basis Pursuit [34], is signi�cantly more approachable and can be solved with
traditional linear programming techniques whose computational complexities are polynomial in Z. The `1
criterion has the advantage of yielding a convex optimization problem while still encouraging sparse solutions
due to the polytope geometry of the `1 unit ball (see for example [55] and [61]). Iterative greedy algorithms
such as Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP) [82] have also been suggested
to �nd sparse representations α for a signal f . Both MP and OMP iteratively select the columns from Ψ
that are most correlated with f , then subtract the contribution of each column, leaving a residual. OMP
includes an additional step at each iteration where the residual is orthogonalized against the previously
selected columns.

5.3 Manifold approximation

We also consider the problem of �nding the best manifold-based approximation to a signal (see Figure 5.1(c)).
Suppose that F = {fθ : θ ∈ Θ} is a parametrized K-dimension manifold and that we are given a signal I that
is believed to approximate fθ for an unknown θ ∈ Θ. From I we wish to recover an estimate of θ. Again, we
may formulate this parameter estimation problem as an optimization, writing the objective function (here
we concentrate solely on the L2 or `2 case)

D (θ) = ‖fθ − I‖22 (5.8)

and solving for
θ∗ = argmin

θ∈Θ
D (θ) . (5.9)

We suppose that the minimum is uniquely de�ned.
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Standard nonlinear parameter estimation [8] tells us that, if D is di�erentiable, we can use Newton's
method to iteratively re�ne a sequence of guesses θ(0), θ(1), θ(2), · · · to θ∗ and rapidly convergence to the true
value. Supposing that F is a di�erentiable manifold, we would let

J = [∂D/∂θ0 ∂D/∂θ1 · · · ∂D/∂θK−1]T (5.10)

be the gradient of D, and let H be the K×K Hessian, Hij = ∂2D
∂θi∂θj

. Assuming D is di�erentiable, Newton's

method speci�es the following update step:

θ(k+1) ← θ(k) +
[
H
(
θ(k)

)]−1

J
(
θ(k)

)
. (5.11)

To relate this method to the structure of the manifold, we can actually express the gradient and Hessian in
terms of signals, writing

D (θ) =‖ fθ − I ‖22=
∫

(fθ − I)2
dx =

∫
f2
θ − 2Ifθ + I2 dx. (5.12)

Di�erentiating with respect to component θi, we obtain

∂D
∂θi

= Ji = ∂
∂θi

(∫
f2
θ − 2Ifθ + I2 dx

)
=

∫
∂
∂θi

(
f2
θ

)
− 2I ∂

∂θi
fθ dx

=
∫

2fθτ iθ − 2Iτ iθ dx

= 2 < fθ − I, τ iθ >,

(5.13)

where τ iθ = ∂fθ
∂θi

is a tangent signal. Continuing, we examine the Hessian,

∂2D
∂θi∂θj

= Hij = ∂
∂θj

(
∂D
∂θi

)
=

∫
∂
∂θj

(
2fθτ iθ − 2Iτ iθ

)
dx

=
∫

2τ iθτ
j
θ + 2fθτ

ij
θ − 2Iτ ijθ dx

= 2 < τ iθ, τ
j
θ > +2 < fθ − I, τ ijθ >,

(5.14)

where τ ijθ = ∂2fθ
∂θi∂θj

denotes a second-derivative signal. Thus, we can interpret Newton's method geometri-

cally as (essentially) a sequence of successive projections onto tangent spaces on the manifold.
Again, the above discussion assumes the manifold to be di�erentiable. Many interesting parametric signal

manifolds are in fact nowhere di�erentiable � the tangent spaces demanded by Newton's method do not
exist. However, in [105] we have identi�ed a type of multiscale tangent structure to the manifold that permits
a coarse-to-�ne technique for parameter estimation.
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Chapter 6

Compression1

6.1 Transform coding

In Nonlinear Approximation from Approximation (Section 5.2: Nonlinear approximation), we measured the
quality of a dictionary in terms of its K-term approximations to signals drawn from some class. One reason
that such approximations are desirable is that they provide concise descriptions of the signal that can be
easily stored, processed, etc. There is even speculation and evidence that neurons in the human visual system
may use sparse coding to represent a scene [89].

For data compression, conciseness is often exploited in a popular technique known as transform coding.
Given a signal f (for which a concise description may not be readily apparent in its native domain), the
idea is simply to use the dictionary Ψ to transform f to its coe�cients α, which can then be e�ciently and
easily described. As discussed above, perhaps the simplest strategy for summarizing a sparse α is simply
to threshold, keeping the K largest coe�cients and discarding the rest. A simple encoder would then just
encode the positions and quantized values of these K coe�cients.

6.2 Metric entropy

Suppose f is a function and let
^
fR be an approximation to f encoded using R bits. To evaluate the quality

of a coding strategy, it is common to consider the asymptotic rate-distortion (R-D) performance, which

measures the decay rate of ‖ f−
^
fR ‖Lp as R → ∞. The metric entropy [74] for a class F gives the best

decay rate that can be achieved uniformly over all functions f ∈ F . We note that this is a true measure for
the complexity of a class and is tied to no particular dictionary or encoding strategy. The metric entropy
also has a very geometric interpretation, as it relates to the smallest radius possible for a covering of 2R balls
over the set F .

Metric entropies are known for certain signal classes. For example, the results of Clements [36] (extending
those of Kolmogorov and Tihomirov [74]) regarding metric entropy give bounds on the optimal achievable
asymptotic rate-distortion performance for D-dimensional CH -smooth functions f (see also [38]):

‖f−
^
fR ‖Lp .

(
1
R

)H
D

. (6.1)

Rate-distortion performance measures the complexity of a representation and encoding strategy. In the
case of transform coding, for example, R-D results account for the bits required to encode both the values
of the signi�cant coe�cients and their locations. Nonetheless, in many cases transform coding is indeed an

1This content is available online at <http://cnx.org/content/m18729/1.3/>.
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e�ective strategy for encoding signals that have sparse representations [40]. For example, in [38] Cohen et
al. propose a wavelet-domain coder that uses a connected-tree structure to e�ciently encode the positions
of the signi�cant coe�cients and prove that this encoding strategy achieves the optimal rate

‖f−
^
fR ‖Lp .

(
1
R

)H
D

. (6.2)

6.3 Compression of piecewise smooth images

In some cases, however, the sparsity of the wavelet transform may not re�ect the true underlying structure
of a signal. Examples are 2-D piecewise smooth signals with a smooth edge discontinuity separating the
smooth regions. As we discussed in Nonlinear Approximation from Approximation (Section 5.2: Nonlinear
approximation), wavelets fail to sparsely represent these functions, and so the R-D performance for simple
thresholding-based coders will su�er as well. In spite of all of the bene�ts of wavelet representations for
signal processing (low computational complexity, tree structure, sparse approximations for smooth signals),
this failure to e�ciently represent edges is a signi�cant drawback. In many images, edges carry some of the
most prominent and important information [84], and so it is desirable to have a representation well-suited
to compressing edges in images.

To address this concern, recent work in harmonic analysis has focused on developing representations
that provide sparse decompositions for certain geometric image classes. Examples include curvelets [30], [20]
and contourlets [52], slightly redundant tight frames consisting of anisotropic, �needle-like� atoms. In [77],
bandelets are formed by warping an orthonormal wavelet basis to conform to the geometrical structure in
the image. A nonlinear multiscale transform that adapts to discontinuities (and can represent a �clean�
edge using very few coarse scale coe�cients) is proposed in [3]. Each of these new representations has been
shown to achieve near-optimal asymptotic approximation and R-D performance for piecewise smooth images
consisting of CH regions separated by discontinuities along CH curves, with H = 2 (H ≥ 2 for bandelets).
Some have also found use in specialized compression applications such as identi�cation photos [1].

In [33], we have presented a scheme that is based on the simple yet powerful observation that geometric
features can be e�ciently approximated using local, geometric atoms in the spatial domain, and that the
projection of these geometric primitives onto wavelet subspaces can therefore approximate the corresponding
wavelet coe�cients. We prove that the resulting dictionary achieves the optimal nonlinear approximation
rates for piecewise smooth signal classes. To account for the added complexity of this encoding strategy,
we also consider R-D results and prove that this scheme comes within a logarithmic factor of the optimal
performance rate. Unlike the techniques mentioned above, our method also generalizes to arbitrary orders
of smoothness and arbitrary signal dimension.



Chapter 7

Dimensionality Reduction1

Recent years have seen a proliferation of novel techniques for what can loosely be termed �dimensionality
reduction.� Like the tasks of approximation and compression discussed above, these methods involve some
aspect in which low-dimensional information is extracted about a signal or collection of signals in some
high-dimensional ambient space. Unlike the tasks of approximation and compression, however, the goal of
these methods is not always to maintain a faithful representation of each signal. Instead, the purpose may
be to preserve some critical relationships among elements of a data set or to discover information about a
manifold on which the data lives.

In this section, we review two general methods for dimensionality reduction. Section 7.1 (Manifold learn-
ing) begins with a brief overview of techniques for manifold learning. Section 7.2 (The Johnson-Lindenstrauss
lemma) then discusses the Johnson-Lindenstrauss (JL) lemma, which concerns the isometric embedding of
a cloud points as it is projected to a lower-dimensional space. Though at �rst glance the JL lemma does not
pertain to any of the low-dimensional signal models we have previously discussed, we later see in Connections
with dimensionality reduction (Section 8.6: Connections with dimensionality reduction) that the JL lemma
plays a critical role in the core theory of CS, and we also employ the JL lemma in developing a theory for
isometric embeddings of manifolds.

7.1 Manifold learning

Several techniques have been proposed for solving a problem known as manifold learning in which certain
properties of a manifold are inferred from a discrete collection of points sampled from that manifold. A
typical manifold learning setup is as follows: an algorithm is presented with a set of P points sampled from a
K-dimensional submanifold of RN . The goal of the algorithm is to produce an mapping of these P points into
some lower dimension RM (ideally, M = K) while preserving some characteristic property of the manifold.
Example algorithms include ISOMAP [98], Hessian Eigenmaps (HLLE) [60], and Maximum Variance Un-
folding (MVU) [106], which attempt to learn isometric embeddings of the manifold (thus preserving pairwise
geodesic distances in RM ); Locally Linear Embedding (LLE) [93], which attempts to preserve local linear
neighborhood structures among the embedded points; Local Tangent Space Alignment (LTSA) [108], which
attempts to preserve local coordinates in each tangent space; and a method for charting a manifold [12] that
attempts to preserve local neighborhood structures.

The internal mechanics of these algorithms di�ers depending on the objective criterion to be preserved,
but as an example, the ISOMAP algorithm operates by �rst estimating the geodesic distance between each
pair of points on the manifold (by approximating geodesic distance as the sum of Euclidean distances between
pairs of the available sample points). After the P ×P matrix of pairwise geodesic distances is constructed, a
technique known as multidimensional scaling uses an eigendecomposition of the distance matrix to determine

1This content is available online at <http://cnx.org/content/m18732/1.5/>.
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the properM -dimensional embedding space. An example of using ISOMAP to learn a 2-dimensional manifold
is shown in Figure 7.1.

(θ
1
, θ

2
)

(a) (b) (c) (d)

Figure 7.1: Manifold learning demonstration. (a) As input to the manifold learning algorithm, 1000
images of size 64 × 64 are created, where each image consists of a white disk translated to a random
position (θ1, θ2). It follows that the images represent a sampling of 1000 points from a 2-dimensional
submanifold of R4096. (b) Scatter plot of the true values for the (θ1, θ2) positions. For visibility in each
plot, the color of each point indicates the true θ1 value. (c) ISOMAP embedding learned from original
data points in R4096. From the low-dimensional embedding coordinates we can infer the relative positions
of the original high-dimensional images. (d) ISOMAP embedding learned from a random projection of
the data set to RM , where M = 15.

These algorithms can be useful for learning the dimension and parametrizations of manifolds, for sorting
data, for visualization and navigation through the data, and as preprocessing to make further analysis more
tractable; common demonstrations include analysis of face images and classi�cation of and handwritten
digits. A related technique, the Whitney Reduction Network [14], [16], seeks a linear mapping to RM that
preserves ambient pairwise distances on the manifold and is particularly useful for processing the output of
dynamical systems having low-dimensional attractors.

Other algorithms have been proposed for characterizing manifolds from sampled data without construct-
ing an explicit embedding in RM . The Geodesic Minimal Spanning Tree (GMST) [42] models the data as
random samples from the manifold and estimates the corresponding entropy and dimensionality. Another
technique [88] has been proposed for using random samples of a manifold to estimate its homology (via the
Betti numbers, which essentially characterize its dimension, number of connected components, etc.). Persis-
tence Barcodes [32] are a related technique that involves constructing a type of signature for a manifold (or
simply a shape) that uses tangent complexes to detect and characterize local edges and corners.

Additional algorithms have been proposed for constructing meaningful functions on the point samples
in RN . To solve a semi-supervised learning problem, a method called Laplacian Eigenmaps [10] has been
proposed that involves forming an adjacency graph for the data in RN , computing eigenfunctions of the
Laplacian operator on the graph (which form a basis for L2 on the graph), and using these functions to
train a classi�er on the data. The resulting classi�ers have been used for handwritten digit recognition,
document classi�cation, and phoneme classi�cation. (The M smoothest eigenfunctions can also be used to
embed the manifold in M , similar to the approaches described above.) A related method called Di�usion
Wavelets [41] uses powers of the di�usion operator to model scale on the manifold, then constructs wavelets
to capture local behavior at each scale. The result is a wavelet transform adapted not to geodesic distance
but to di�usion distance, which measures (roughly) the number of paths connecting two points.
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7.2 The Johnson-Lindenstrauss lemma

7.2.1 Fundamentals

As with the above techniques in manifold learning, the Johnson-Lindenstrauss (JL) lemma [70], [2], [43],
[69] provides a method for dimensionality reduction of a set of data in RN . Unlike manifold-based methods,
however, the JL lemma can be used for any arbitrary set Q of points in RN ; the data set is not assumed to
have any a priori structure.

Despite the apparent lack of structure in an arbitrary point cloud data set, the JL lemma suggests that
there does exist a method for dimensionality reduction of that data set that can preserve key information
while mapping the data to a lower-dimensional space RM . In particular, the original formulation of the JL
lemma [70] states that there exists a Lipschitz mapping Φ : RN 7→ RM with M = O (log (#Q)) such that all
pairwise distances between points in Q are approximately preserved. This fact is useful for solving problems
such as Approximate Nearest Neighbor [69], in which one desires the nearest point in Q to some query
point y ∈ RN (but a solution not much further than the optimal point is also acceptable). Such problems
can be solved signi�cantly more quickly in RM than in RN .

Recent reformulations of the JL lemma propose random linear operators that, with high probability, will
ensure a near isometric embedding. These typically build on concentration of measure results such as the
following.

Lemma 7.1:

[2], [43] Let x ∈ RN , �x 0 < ε < 1, and let Φ be a matrix constructed in one of the following two
manners:

1. Φ is a random M ×N matrix with i.i.d. N
(
0, σ2

)
entries, where σ2 = 1/N , or

2. Φ is random orthoprojector from RN to RM .

Then with probability exceeding

1− 2exp

(
−
M
(
ε2/2− ε3/3

)
2

)
, (7.1)

the following holds:

(1− ε)
√
M

N
≤
‖Φx‖2
‖x‖2

≤ (1 + ε)

√
M

N
. (7.2)

The random orthoprojector referred to above is clearly related to the �rst case (simple matrix multipli-
cation by a Gaussian Φ) but subtly di�erent; one could think of constructing a random Gaussian Φ, then
using Gram-Schmidt to orthonormalize the rows before multiplying x. We note also that simple rescaling of

Φ can be used to eliminate the
√

M
N in (7.2); however we prefer this formulation for later reference.

By using the union bound over all
(

#Q
2

)
pairs of distinct points inQ, Lemma "The Johnson-Lindenstrauss

lemma" (Lemma 7.2, Johnson-Lindenstrauss, p. 33) can be used to prove a randomized version of the
Johnson-Lindenstrauss lemma.

Lemma 7.2: Johnson-Lindenstrauss
Let Q be a �nite collection of points in RN . Fix 0 < ε < 1 and β > 0. Set

M ≥
(

4 + 2β
ε2/2− ε3/3

)
ln (#Q) . (7.3)

Let Φ be a matrix constructed in one of the following two manners:

1. Φ is a random M ×N matrix with i.i.d. N
(
0, σ2

)
entries, where σ2 = 1/N , or
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2. Φ is random orthoprojector from RN to RM .

Then with probability exceeding 1− (#Q)−β , the following statement holds: for every x, y ∈ Q,

(1− ε)
√
M

N
≤
‖Φx− Φy‖2
‖x− y‖2

≤ (1 + ε)

√
M

N
. (7.4)

Indeed, [2] establishes that both Lemma 7.1, p. 33 and Lemma 7.2, Johnson-Lindenstrauss, p. 33 also
hold when the elements of Φ are chosen i.i.d. from a random Rademacher distribution (±σ with equal
probability 1/2) or from a similar ternary distribution (±

√
3σ with equal probability 1/6; 0 with probability

2/3). These can further improve the computational bene�ts of the JL lemma.

7.2.2 Connections with compressed sensing

In the following module on Compressed Sensing we will discuss further topics in dimensionality reduction that
relate to the JL lemma. In particular, as discussed in Connections with dimensionality reduction (Section 8.6:
Connections with dimensionality reduction), the core mechanics of Compressed Sensing can be interpreted
in terms of a stable embedding that arises for the family of K-sparse signals when observed with random
measurements, and this stable embedding can be proved using the JL lemma. Furthermore, as discussed
in Stable embeddings of manifolds (Section 8.7: Stable embeddings of manifolds), one can ensure a stable
embedding of families of signals obeying manifold models under a su�cient number of random projections,
with the theory again following from the JL lemma.



Chapter 8

Compressed Sensing1

A new theory known as Compressed Sensing (CS) has recently emerged that can also be categorized as a
type of dimensionality reduction. Like manifold learning, CS is strongly model-based (relying on sparsity in
particular). However, unlike many of the standard techniques in dimensionality reduction (such as manifold
learning or the JL lemma), the goal of CS is to maintain a low-dimensional representation of a signal x from
which a faithful approximation to x can be recovered. In a sense, this more closely resembles the traditional
problem of data compression (see Compression (Chapter 6)). In CS, however, the encoder requires no a
priori knowledge of the signal structure. Only the decoder uses the model (sparsity) to recover the signal.
We justify such an approach again using geometric arguments.

8.1 Motivation

Consider a signal x ∈ RN , and suppose that the basis Ψ provides a K-sparse representation of x

x = Ψα, (8.1)

with ‖ α ‖0 = K. (In this section, we focus on exactly K-sparse signals, though many of the key ideas
translate to compressible signals [28], [54]. In addition, we note that the CS concepts are also extendable to
tight frames.)

As we discussed in Compression (Chapter 6), the standard procedure for compressing sparse signals,
known as transform coding, is to (i) acquire the full N -sample signal x; (ii) compute the complete set of
transform coe�cients α; (iii) locate the K largest, signi�cant coe�cients and discard the (many) small
coe�cients; (iv) encode the values and locations of the largest coe�cients.

This procedure has three inherent ine�ciencies: First, for a high-dimensional signal, we must start with
a large number of samples N . Second, the encoder must compute all N of the transform coe�cients α,
even though it will discard all but K of them. Third, the encoder must encode the locations of the large
coe�cients, which requires increasing the coding rate since the locations change with each signal.

8.2 Incoherent projections

This raises a simple question: For a given signal, is it possible to directly estimate the set of large α (n)'s that
will not be discarded? While this seems improbable, Candès, Romberg, and Tao [23], [28] and Donoho [54]
have shown that a reduced set of projections can contain enough information to reconstruct sparse signals.
An o�shoot of this work, often referred to as Compressed Sensing (CS) [22], [28], [24], [25], [21], [54], [57],
has emerged that builds on this principle.

1This content is available online at <http://cnx.org/content/m18733/1.5/>.
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In CS, we do not measure or encode the K signi�cant α (n) directly. Rather, we measure and encode
M < N projections y (m) =< x, φm

T > of the signal onto a second set of functions {φm},m = 1, 2, ...,M .
In matrix notation, we measure

y = Φx, (8.2)

where y is an M × 1 column vector and the measurement basis matrix Φ is M ×N with each row a basis
vector φm. Since M < N , recovery of the signal x from the measurements y is ill-posed in general; however
the additional assumption of signal sparsity makes recovery possible and practical.

The CS theory tells us that when certain conditions hold, namely that the functions {φm} cannot sparsely
represent the elements of the basis {ψn} (a condition known as incoherence of the two dictionaries [28],
[23], [54], [99]) and the number of measurements M is large enough, then it is indeed possible to recover the
set of large {α (n)} (and thus the signal x) from a similarly sized set of measurements y. This incoherence
property holds for many pairs of bases, including for example, delta spikes and the sine waves of a Fourier
basis, or the Fourier basis and wavelets. Signi�cantly, this incoherence also holds with high probability
between an arbitrary �xed basis and a randomly generated one.

8.3 Methods for signal recovery

Although the problem of recovering x from y is ill-posed in general (because x ∈ RN , y ∈ RM , and M < N),
it is indeed possible to recover sparse signals from CS measurements. Given the measurements y = Φx,
there exist an in�nite number of candidate signals in the shifted nullspace N (Φ) + x that could generate
the same measurements y (see Linear Models from Low-Dimensional Signal Models (Section 4.1: Linear
models)). Recovery of the correct signal x can be accomplished by seeking a sparse solution among these
candidates.

8.3.1 Recovery via combinatorial optimization

Supposing that x is exactly K-sparse in the dictionary Ψ, then recovery of x from y can be formulated as
the `0 minimization

^
α= argmin‖ α ‖0 s.t. y = ΦΨα. (8.3)

Given some technical conditions on Φ and Ψ (see Theorem Section 8.3.1 (Recovery via combinatorial
optimization)below), then with high probability this optimization problem returns the proper K-sparse
solution α, from which the true x may be constructed. (Thanks to the incoherence between the two bases,
if the original signal is sparse in the α coe�cients, then no other set of sparse signal coe�cients α' can yield
the same projections y.) We note that the recovery program (8.3) can be interpreted as �nding a K-term
approximation to y from the columns of the dictionary ΦΨ, which we call the holographic basis because
of the complex pattern in which it encodes the sparse signal coe�cients [54].

In principle, remarkably few incoherent measurements are required to recover a K-sparse signal via `0
minimization. Clearly, more than K measurements must be taken to avoid ambiguity; the following theorem
(which is proved in [7]) establishes that K + 1 random measurements will su�ce. (Similar results were
established by Venkataramani and Bresler [103].)

Theorem 8.1:

Let Ψ be an orthonormal basis for RN , and let 1 ≤ K < N . Then the following statements hold:

1. Let Φ be an M × N measurement matrix with i.i.d. Gaussian entries with M ≥ 2K. Then
with probability one the following statement holds: all signals x = Ψα having expansion
coe�cients α ∈ RN that satisfy ‖ α ‖0 = K can be recovered uniquely from theM -dimensional
measurement vector y = Φx via the `0 optimization (8.3).

2. Let x = Ψα such that ‖ α ‖0 = K. Let Φ be an M × N measurement matrix with i.i.d.
Gaussian entries (notably, independent of x) with M ≥ K+ 1. Then with probability one the
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following statement holds: x can be recovered uniquely from theM -dimensional measurement
vector y = Φx via the `0 optimization (8.3).

3. Let Φ be anM ×N measurement matrix, whereM ≤ K. Then, aside from pathological cases
(speci�ed in the proof), no signal x = Ψα with ‖ α ‖0 = K can be uniquely recovered from
the M -dimensional measurement vector y = Φx.

The second statement of the theorem di�ers from the �rst in the following respect: when K < M < 2K,
there will necessarily exist K-sparse signals x that cannot be uniquely recovered from the M -dimensional
measurement vector y = Φx. However, these signals form a set of measure zero within the set of allK-sparse
signals and can safely be avoided if Φ is randomly generated independently of x.

Unfortunately, as discussed in Nonlinear Approximation from Approximation (Section 5.2: Nonlinear
approximation), solving this `0 optimization problem is prohibitively complex. Yet another challenge is
robustness; in the setting of Theorem "Recovery via ` 0 optimization" (Section 8.3.1: Recovery via combi-
natorial optimization), the recovery may be very poorly conditioned. In fact, both of these considerations
(computational complexity and robustness) can be addressed, but at the expense of slightly more measure-
ments.

8.3.2 Recovery via convex optimization

The practical revelation that supports the new CS theory is that it is not necessary to solve the `0-
minimization problem to recover α. In fact, a much easier problem yields an equivalent solution (thanks
again to the incoherency of the bases); we need only solve for the `1-sparsest coe�cients α that agree with
the measurements y [23], [22], [28], [24], [25], [21], [54], [57]

^
α= argmin‖ α ‖1 s.t. y = ΦΨα. (8.4)

As discussed in Nonlinear Approximation from Approximation (Section 5.2: Nonlinear approximation), this
optimization problem, also known as Basis Pursuit [35], is signi�cantly more approachable and can be
solved with traditional linear programming techniques whose computational complexities are polynomial in
N .

There is no free lunch, however; according to the theory, more than K + 1 measurements are required
in order to recover sparse signals via Basis Pursuit. Instead, one typically requires M ≥ cK measurements,
where c > 1 is an oversampling factor. As an example, we quote a result asymptotic in N . For simplicity,
we assume that the sparsity scales linearly with N ; that is, K = SN , where we call S the sparsity rate.

Theorem 8.2:

[27], [56], [53] Set K = SN with 0 < S � 1. Then there exists an oversampling factor c (S) =
O (log (1/S)), c (S) > 1, such that, for a K-sparse signal x in the basis Ψ, the following statements
hold:

1. The probability of recovering x via Basis Pursuit from (c (S) + ε)K random projections,
ε > 0, converges to one as N →∞.

2. The probability of recovering x via Basis Pursuit from (c (S)− ε)K random projections,
ε > 0, converges to zero as N →∞.

In an illuminating series of recent papers, Donoho and Tanner [53], [56], [62] have characterized the
oversampling factor c (S) precisely (see also "The geometry of Compressed Sensing" (Section 8.5: The
geometry of Compressed Sensing)). With appropriate oversampling, reconstruction via Basis Pursuit is also
provably robust to measurement noise and quantization error [23].

We often use the abbreviated notation c to describe the oversampling factor required in various settings
even though c (S) depends on the sparsity K and signal length N .

A CS recovery example on the Cameraman test image is shown in Figure 8.1. In this case, with M = 4K
we achieve near-perfect recovery of the sparse measured image.
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Figure 8.1: Compressive sensing reconstruction of the nonlinear approximation Cameraman image from
Figure 5.2(b). Using M = 16384 random measurements of the K-term nonlinear approximation image
(where K = 4096), we solve an `1-minimization problem to obtain the reconstruction shown above. The
MSE with respect to the measured image is 0.08, so the reconstruction is virtually perfect.

8.3.3 Recovery via greedy pursuit

At the expense of slightly more measurements, iterative greedy algorithms such as Orthogonal Matching
Pursuit (OMP) [99], Matching Pursuit (MP) [83], and Tree Matching Pursuit (TMP) [64], [76] have also been
proposed to recover the signal x from the measurements y (see Nonlinear Approximation from Approximation
(Section 5.2: Nonlinear approximation)). In CS applications, OMP requires c ≈ 2ln (N)[99] to succeed with
high probability. OMP is also guaranteed to converge within M iterations. We note that Tropp and Gilbert
require the OMP algorithm to succeed in the �rst K iterations [99]; however, in our simulations, we allow
the algorithm to run up to the maximum of M possible iterations. The choice of an appropriate practical
stopping criterion (likely somewhere between K and M iterations) is a subject of current research in the CS
community.

8.4 Impact and applications

CS appears to be promising for a number of applications in signal acquisition and compression. Instead of
sampling a K-sparse signal N times, only cK incoherent measurements su�ce, where K can be orders of
magnitude less than N . Therefore, a sensor can transmit far fewer measurements to a receiver, which can
reconstruct the signal and then process it in any manner. Moreover, the cK measurements need not be ma-
nipulated in any way before being transmitted, except possibly for some quantization. Finally, independent
and identically distributed (i.i.d.) Gaussian or Bernoulli/Rademacher (random ±1) vectors provide a useful
universal basis that is incoherent with all others. Hence, when using a random basis, CS is universal in the
sense that the sensor can apply the same measurement mechanism no matter what basis the signal is sparse
in (and thus the coding algorithm is independent of the sparsity-inducing basis) [28], [54], [4].

These features of CS make it particularly intriguing for applications in remote sensing environments that
might involve low-cost battery operated wireless sensors, which have limited computational and communi-
cation capabilities. Indeed, in many such environments one may be interested in sensing a collection of
signals using a network of low-cost signals.
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Other possible application areas of CS include imaging [97], medical imaging [23], [79], and RF environ-
ments (where high-bandwidth signals may contain low-dimensional structures such as radar chirps) [63]. As
research continues into practical methods for signal recovery (see Section 8.3 (Methods for signal recovery)),
additional work has focused on developing physical devices for acquiring random projections. Our group has
developed, for example, a prototype digital CS camera based on a digital micromirror design [97]. Additional
work suggests that standard components such as �lters (with randomized impulse responses) could be useful
in CS hardware devices [100].

8.5 The geometry of Compressed Sensing

It is important to note that the core theory of CS draws from a number of deep geometric arguments. For
example, when viewed together, the CS encoding/decoding process can be interpreted as a linear projection
Φ : RN 7→ RM followed by a nonlinear mapping ∆ : RM 7→ RN . In a very general sense, one may naturally
ask for a given class of signals F ∈ RN (such as the set ofK-sparse signals or the set of signals with coe�cients
‖ α ‖`p ≤ 1), what encoder/decoder pair Φ,∆ will ensure the best reconstruction (minimax distortion) of

all signals in F . This best-case performance is proportional to what is known as the Gluskin n-width [71],
[67] of F (in our setting n = M), which in turn has a geometric interpretation. Roughly speaking, the
Gluskin n-width seeks the (N − n)-dimensional slice through F that yields signals of greatest energy. This
n-width bounds the best-case performance of CS on classes of compressible signals, and one of the hallmarks
of CS is that, given a su�cient number of measurements this optimal performance is achieved (to within a
constant) [54], [48].

Additionally, one may view the `0/`1 equivalence problem geometrically. In particular, given the mea-
surements y = Φx, we have an (N −M)-dimensional hyperplane Hy = {x' ∈ RN : y = Φx'} = N (Φ) + x of
feasible signals that could account for the measurements y. Supposing the original signal x is K-sparse, the
`1 recovery program will recover the correct solution x if and only if ‖ x'‖1 > ‖ x ‖1 for every other signal
x' ∈ Hy on the hyperplane. This happens only if the hyperplane Hy (which passes through x) does not �cut
into� the `1-ball of radius ‖ x ‖1. This `1-ball is a polytope, on which x belongs to a (K − 1)-dimensional
�face.� If Φ is a random matrix with i.i.d. Gaussian entries, then the hyperplane Hy will have random
orientation. To answer the question of how M must relate to K in order to ensure reliable recovery, it
helps to observe that a randomly generated hyperplane H will have greater chance to slice into the `1 ball as
dim (H) = N−M grows (or asM shrinks) or as the dimension K−1 of the face on which x lives grows. Such
geometric arguments have been made precise by Donoho and Tanner [53], [56], [62] and used to establish a
series of sharp bounds on CS recovery.

8.6 Connections with dimensionality reduction

We have also identi�ed [4] a fundamental connection between the CS and the JL lemma. In order to make
this connection, we considered the Restricted Isometry Property (RIP), which has been identi�ed as a
key property of the CS projection operator Φ to ensure stable signal recovery. We say Φ has RIP of order
K if for every K-sparse signal x,

(1− ε)
√
M

N
≤
‖Φx‖2
‖x‖2

≤ (1 + ε)

√
M

N
. (8.5)

A random M × N matrix with i.i.d. Gaussian entries can be shown to have this property with high
probability if M = O (Klog (N/K)).

While the JL lemma concerns pairwise distances within a �nite cloud of points, the RIP concerns isometric
embedding of an in�nite number of points (comprising a union ofK-dimensional subspaces in RN ). However,
the RIP can in fact be derived by constructing an e�ective sampling of K-sparse signals in RN , using the
JL lemma to ensure isometric embeddings for each of these points, and then arguing that the RIP must hold
true for all K-sparse signals. (See [4] for the full details.)
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8.7 Stable embeddings of manifolds

Finally, we have also shown that the JL lemma can also lead to extensions of CS to other concise signal models.
In particular, while conventional CS theory concerns sparse signal models, it is also possible to consider
manifold-based signal models. Just as random projections can preserve the low- dimensional geometry (the
union of hyperplanes) that corresponds to a sparse signal family, random projections can also guarantee a
stable embedding of a low-dimensional signal manifold. We have the following result, which states that an
RIP-like property holds for families of manifold-modeled signals.

Theorem 8.3:

LetM be a compact K-dimensional Riemannian submanifold of RN having condition number 1
τ

, volume V , and geodesic covering regularity R. Fix 0 < ε < 1and0 < ρ < 1. Let Φ be a random
M × N orthoprojector with

M = O

Klog
(
NV Rτ−1ε−1

)
log
(

1
ρ

)
ε2

 (8.6)

If M ≤ N , then with probability at least 1 − ρ the following statement holds: For every pair of
points x1, x2 ∈M,

(1− ε)
√
M

N
≤
‖Φx1 − Φx2‖2
‖x1 − x2‖2

≤ (1 + ε)

√
M

N
(8.7)

The proof of this theorem appears in [6] and again involves the JL lemma. Due to the limited complexity
of a manifold model, it is possible to adequately characterize the geometry using a su�ciently �ne sampling
of points drawn from the manifold and its tangent spaces. In essence, manifolds with higher volume or with
greater curvature have more complexity and require a more dense covering for application of the JL lemma;
this leads to an increased number of measurements. The theorem also indicates that the requisite number of
measurements depends on the geodesic covering regularity of the manifold, a minor technical concept which
is also discussed in [6].

This theorem establishes that, like the class of K-sparse signals, a collection of signals described by a
K-dimensional manifold M ⊂ RN can have a stable embedding in an M -dimensional measurement space.
Moreover, the requisite number of random measurements M is once again linearly proportional to the in-
formation level (or number of degrees of freedom) K in the concise model. This has a number of possible
implications for manifold-based signal processing. Manifold-modeled signals can be recovered from compres-
sive measurements (using a customized recovery algorithm adapted to the manifold model, in contrast with
sparsity-based recovery algorithms) [44], [104]; unknown parameters in parametric models can be estimated
from compressive measurements; multi-class estimation/classi�cation problems can be addressed [44] by con-
sidering multiple manifold models; and manifold learning algorithms may be e�ciently executed by applying
them simply to the projection of a manifold-modeled data set to a low-dimensional measurement space [17].
(As an example, Figure 7.1(d) shows the result of applying the ISOMAP algorithm on a random projection
of a data set from R4096 down to R15; the underlying parameterization of the manifold is extracted with little
sacri�ce in accuracy.) In all of this it is not necessary to adapt the sensing protocol to the model; the only
change from sparsity-based CS would be the methods for processing or decoding the measurements. In the
future, more sophisticated concise models will likely lead to further improvements in signal understanding
from compressive measurements.
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