
Fundamentals of Signal Processing(thu)

Collection Editor:
Phuong Nguyen

Fundamentals of Signal Processing(thu)

Collection Editor:
Phuong Nguyen

Authors:

Richard Baraniuk
Hyeokho Choi

Minh N. Do
Catherine Elder
Benjamin Fite

Anders Gjendemsjø
Michael Haag
Don Johnson

Douglas L. Jones
Stephen Kruzick
Robert Nowak

Ricardo Radaelli-Sanchez
Justin Romberg
Clayton Scott
Ivan Selesnick
Melissa Selik

Online:
< http://cnx.org/content/col10446/1.1/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Phuong Nguyen. It is licensed under the

Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: August 7, 2007

PDF generated: October 11, 2011

For copyright and attribution information for the modules contained in this collection, see p. 189.

Table of Contents

Introduction to Fundamentals of Signal Processing . 1

1 Foundations

1.1 Signals Represent Intormation(Thu) . 3
1.2 Introduction to Systems . 6
1.3 Discrete-Time Signals and Systems . 8
1.4 Linear Time-Invariant Systems . 11
1.5 Discrete Time Convolution . 11
1.6 Review of Linear Algebra . 18
1.7 Hilbert Spaces . 28
1.8 Signal Expansions . 29
1.9 Introduction to Fourier Analysis . 33
1.10 Continuous Time Fourier Transform (CTFT) . 34
1.11 Discrete Time Fourier Transform (DTFT) . 38
1.12 DFT as a Matrix Operation . 41
1.13 The FFT Algorithm . 44
Solutions . 48

2 Sampling and Frequency Analysis

2.1 Introduction . 49
2.2 Proof . 51
2.3 Illustrations . 54
2.4 Sampling and Reconstruction with Matlab . 58
2.5 Systems View of Sampling and Reconstruction . 59
2.6 Sampling CT Signals: A Frequency Domain Perspective . 60
2.7 The DFT: Frequency Domain with a Computer Analysis 63
2.8 Discrete-Time Processing of CT Signals . 73
2.9 Short Time Fourier Transform . 78
2.10 Spectrograms . 91
2.11 Filtering with the DFT . 96
2.12 Image Restoration Basics 104
Solutions . 107

3 Digital Filtering

3.1 Di�erence Equation . 109
3.2 The Z Transform: De�nition 114
3.3 Table of Common z-Transforms 119
3.4 Understanding Pole/Zero Plots on the Z-Plane . 120
3.5 Filtering in the Frequency Domain . 126
3.6 Linear-Phase FIR Filters . 130
3.7 Filter Structures 134
3.8 Overview of Digital Filter Design . 134
3.9 Window Design Method . 135
3.10 Frequency Sampling Design Method for FIR �lters . 136
3.11 Parks-McClellan FIR Filter Design . 138
3.12 FIR Filter Design using MATLAB . 145
3.13 MATLAB FIR Filter Design Exercise . 146
Solutions . 147

4 Statistical and Adaptive Signal Processing

4.1 Introduction to Random Signals and Processes . 149

iv

4.2 Stationary and Nonstationary Random Processes . 152
4.3 Random Processes: Mean and Variance 154
4.4 Correlation and Covariance of a Random Signal . 158
4.5 Autocorrelation of Random Processes 162
4.6 Crosscorrelation of Random Processes . 164
4.7 Introduction to Adaptive Filters . 166
4.8 Discrete-Time, Causal Wiener Filter . 166
4.9 Practical Issues in Wiener Filter Implementation . 169
4.10 Quadratic Minimization and Gradient Descent . 170
4.11 The LMS Adaptive Filter Algorithm . 172
4.12 First Order Convergence Analysis of the LMS Algorithm . 174
4.13 Adaptive Equalization 177
Solutions . 180

5 (Untitled)

Glossary . 182
Bibliography . 184
Index . 186
Attributions .189

Introduction to Fundamentals of Signal
Processing1

What is Digital Signal Processing?

To understand what is Digital Signal Processing (DSP) let's examine what does each of its words mean.
�Signal� is any physical quantity that carries information. �Processing� is a series of steps or operations to
achieve a particular end. It is easy to see that Signal Processing is used everywhere to extract information
from signals or to convert information-carrying signals from one form to another. For example, our brain
and ears take input speech signals, and then process and convert them into meaningful words. Finally, the
word �Digital� in Digital Signal Processing means that the process is done by computers, microprocessors,
or logic circuits.

The �eld DSP has expanded signi�cantly over that last few decades as a result of rapid developments
in computer technology and integrated-circuit fabrication. Consequently, DSP has played an increasingly
important role in a wide range of disciplines in science and technology. Research and development in DSP
are driving advancements in many high-tech areas including telecommunications, multimedia, medical and
scienti�c imaging, and human-computer interaction.

To illustrate the digital revolution and the impact of DSP, consider the development of digital cameras.
Traditional �lm cameras mainly rely on physical properties of the optical lens, where higher quality requires
bigger and larger system, to obtain good images. When digital cameras were �rst introduced, their quality
were inferior compared to �lm cameras. But as microprocessors become more powerful, more sophisticated
DSP algorithms have been developed for digital cameras to correct optical defects and improve the �nal
image quality. Thanks to these developments, the quality of consumer-grade digital cameras has now sur-
passed the equivalence in �lm cameras. As further developments for digital cameras attached to cell phones
(cameraphones), where due to small size requirements of the lenses, these cameras rely on DSP power to
provide good images. Essentially, digital camera technology uses computational power to overcome physi-
cal limitations. We can �nd the similar trend happens in many other applications of DSP such as digital
communications, digital imaging, digital television, and so on.

In summary, DSP has foundations on Mathematics, Physics, and Computer Science, and can provide the
key enabling technology in numerous applications.

Overview of Key Concepts in Digital Signal Processing

The two main characters in DSP are signals and systems. A signal is de�ned as any physical quantity
that varies with one or more independent variables such as time (one-dimensional signal), or space (2-D
or 3-D signal). Signals exist in several types. In the real-world, most of signals are continuous-time or
analog signals that have values continuously at every value of time. To be processed by a computer, a
continuous-time signal has to be �rst sampled in time into a discrete-time signal so that its values at
a discrete set of time instants can be stored in computer memory locations. Furthermore, in order to be

1This content is available online at <http://cnx.org/content/m13673/1.1/>.

1

2

processed by logic circuits, these signal values have to be quantized in to a set of discrete values, and the
�nal result is called a digital signal. When the quantization e�ect is ignored, the terms discrete-time signal
and digital signal can be used interchangeability.

In signal processing, a system is de�ned as a process whose input and output are signals. An important
class of systems is the class of linear time-invariant (or shift-invariant) systems. These systems
have a remarkable property is that each of them can be completely characterized by an impulse response
function (sometimes is also called as point spread function), and the system is de�ned by a convolution
(also referred to as a �ltering) operation. Thus, a linear time-invariant system is equivalent to a (linear)
�lter. Linear time-invariant systems are classi�ed into two types, those that have �nite-duration impulse
response (FIR) and those that have an in�nite-duration impulse response (IIR).

A signal can be viewed as a vector in a vector space. Thus, linear algebra provides a powerful
framework to study signals and linear systems. In particular, given a vector space, each signal can be
represented (or expanded) as a linear combination of elementary signals. The most important signal
expansions are provided by the Fourier transforms. The Fourier transforms, as with general transforms,
are often used e�ectively to transform a problem from one domain to another domain where it is much easier
to solve or analyze. The two domains of a Fourier transform have physical meaning and are called the time
domain and the frequency domain.

Sampling, or the conversion of continuous-domain real-life signals to discrete numbers that can
be processed by computers, is the essential bridge between the analog and the digital worlds. It is important
to understand the connections between signals and systems in the real world and inside a computer. These
connections are convenient to analyze in the frequency domain. Moreover, many signals and systems are
speci�ed by their frequency characteristics.

Because any linear time-invariant system can be characterized as a �lter, the design of such systems
boils down to the design the associated �lters. Typically, in the �lter design process, we determine the
coe�cients of an FIR or IIR �lter that closely approximates the desired frequency response speci�cations.
Together with Fourier transforms, the z-transform provides an e�ective tool to analyze and design digital
�lters.

In many applications, signals are conveniently described via statistical models as random signals. It
is remarkable that optimum linear �lters (in the sense of minimum mean-square error), so calledWiener
�lters, can be determined using only second-order statistics (autocorrelation and crosscorrelation
functions) of a stationary process. When these statistics cannot be speci�ed beforehand or change over
time, we can employ adaptive �lters, where the �lter coe�cients are adapted to the signal statistics.
The most popular algorithm to adaptively adjust the �lter coe�cients is the least-mean square (LMS)
algorithm.

Chapter 1

Foundations

1.1 Signals Represent Intormation(Thu)1

Whether analog or digital, information is represented by the fundamental quantity in electrical engineering:
the signal. Stated in mathematical terms, a signal is merely a function. Analog signals are continuous-
valued; digital signals are discrete-valued. The independent variable of the signal could be time (speech, for
example), space (images), or the integers (denoting the sequencing of letters and numbers in the football
score).

1.1.1 Analog Signals

Analog signals are usually signals de�ned over continuous independent variable(s). Speech2 is
produced by your vocal cords exciting acoustic resonances in your vocal tract. The result is pressure waves
propagating in the air, and the speech signal thus corresponds to a function having independent variables of
space and time and a value corresponding to air pressure: s (x, t) (Here we use vector notation x to denote
spatial coordinates). When you record someone talking, you are evaluating the speech signal at a particular
spatial location, x0 say. An example of the resulting waveform s (x0, t) is shown in this �gure (Figure 1.1:
Speech Example).

1This content is available online at <http://cnx.org/content/m0001/2.27/>.
2"Modeling the Speech Signal" <http://cnx.org/content/m0049/latest/>

3

4 CHAPTER 1. FOUNDATIONS

Speech Example

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de

Figure 1.1: A speech signal's amplitude relates to tiny air pressure variations. Shown is a recording
of the vowel "e" (as in "speech").

Photographs are static, and are continuous-valued signals de�ned over space. Black-and-white images
have only one value at each point in space, which amounts to its optical re�ection properties. In Fig-
ure 1.2 (Lena), an image is shown, demonstrating that it (and all other images as well) are functions of two
independent spatial variables.

5

Lena

(a) (b)

Figure 1.2: On the left is the classic Lena image, which is used ubiquitously as a test image. It
contains straight and curved lines, complicated texture, and a face. On the right is a perspective display
of the Lena image as a signal: a function of two spatial variables. The colors merely help show what
signal values are about the same size. In this image, signal values range between 0 and 255; why is that?

Color images have values that express how re�ectivity depends on the optical spectrum. Painters long ago
found that mixing together combinations of the so-called primary colors�red, yellow and blue�can produce
very realistic color images. Thus, images today are usually thought of as having three values at every point
in space, but a di�erent set of colors is used: How much of red, green and blue is present. Mathematically,
color pictures are multivalued�vector-valued�signals: s (x) = (r (x) , g (x) , b (x))T .

Interesting cases abound where the analog signal depends not on a continuous variable, such as time, but
on a discrete variable. For example, temperature readings taken every hour have continuous�analog�values,
but the signal's independent variable is (essentially) the integers.

1.1.2 Digital Signals

The word "digital" means discrete-valued and implies the signal has an integer-valued independent variable.
Digital information includes numbers and symbols (characters typed on the keyboard, for example). Com-
puters rely on the digital representation of information to manipulate and transform information. Symbols
do not have a numeric value, and each is represented by a unique number. The ASCII character code has the
upper- and lowercase characters, the numbers, punctuation marks, and various other symbols represented
by a seven-bit integer. For example, the ASCII code represents the letter a as the number 97 and the letter
A as 65. Table 1.1: ASCII Table shows the international convention on associating characters with integers.

ASCII Table

6 CHAPTER 1. FOUNDATIONS

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0A nl 0B vt 0C np 0D cr 0E so 0F si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 car 19 em 1A sub 1B esc 1C fs 1D gs 1E rs 1F us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '

28 (29) 2A * 2B + 2C , 2D - 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F 0

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [5C \ 5D] 5E ^ 5F _

60 ' 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B { 7C | 7D } 7E ∼ 7F del

Table 1.1: The ASCII translation table shows how standard keyboard characters are represented by
integers. In pairs of columns, this table displays �rst the so-called 7-bit code (how many characters in a

seven-bit code?), then the character the number represents. The numeric codes are represented in
hexadecimal (base-16) notation. Mnemonic characters correspond to control characters, some of which may

be familiar (like cr for carriage return) and some not (bel means a "bell").

1.2 Introduction to Systems3

Signals are manipulated by systems. Mathematically, we represent what a system does by the notation
y (t) = S (x (t)), with x representing the input signal and y the output signal.

De�nition of a system

System
x(t) y(t)

Figure 1.3: The system depicted has input x (t) and output y (t). Mathematically, systems operate
on function(s) to produce other function(s). In many ways, systems are like functions, rules that yield a
value for the dependent variable (our output signal) for each value of its independent variable (its input
signal). The notation y (t) = S (x (t)) corresponds to this block diagram. We term S (·) the input-output
relation for the system.

3This content is available online at <http://cnx.org/content/m0005/2.19/>.

7

This notation mimics the mathematical symbology of a function: A system's input is analogous to an
independent variable and its output the dependent variable. For the mathematically inclined, a system is a
functional: a function of a function (signals are functions).

Simple systems can be connected together�one system's output becomes another's input�to accomplish
some overall design. Interconnection topologies can be quite complicated, but usually consist of weaves of
three basic interconnection forms.

1.2.1 Cascade Interconnection

cascade

S1[•] S2[•]x(t) y(t)w(t)

Figure 1.4: The most rudimentary ways of interconnecting systems are shown in the �gures in this
section. This is the cascade con�guration.

The simplest form is when one system's output is connected only to another's input. Mathematically,
w (t) = S1 (x (t)), and y (t) = S2 (w (t)), with the information contained in x (t) processed by the �rst, then
the second system. In some cases, the ordering of the systems matter, in others it does not. For example, in
the fundamental model of communication 4 the ordering most certainly matters.

1.2.2 Parallel Interconnection

parallel

x(t)

x(t)

x(t)

+
y(t)

S1[•]

S2[•]

Figure 1.5: The parallel con�guration.

A signal x (t) is routed to two (or more) systems, with this signal appearing as the input to all systems
simultaneously and with equal strength. Block diagrams have the convention that signals going to more

4"Structure of Communication Systems", Figure 1: Fundamental model of communication
<http://cnx.org/content/m0002/latest/#commsys>

8 CHAPTER 1. FOUNDATIONS

than one system are not split into pieces along the way. Two or more systems operate on x (t) and their
outputs are added together to create the output y (t). Thus, y (t) = S1 (x (t))+S2 (x (t)), and the information
in x (t) is processed separately by both systems.

1.2.3 Feedback Interconnection

feedback

S1[•]
x(t) e(t) y(t)

S2[•]

–
+

Figure 1.6: The feedback con�guration.

The subtlest interconnection con�guration has a system's output also contributing to its input. Engineers
would say the output is "fed back" to the input through system 2, hence the terminology. The mathematical
statement of the feedback interconnection (Figure 1.6: feedback) is that the feed-forward system produces
the output: y (t) = S1 (e (t)). The input e (t) equals the input signal minus the output of some other system's
output to y (t): e (t) = x (t) − S2 (y (t)). Feedback systems are omnipresent in control problems, with the
error signal used to adjust the output to achieve some condition de�ned by the input (controlling) signal.
For example, in a car's cruise control system, x (t) is a constant representing what speed you want, and y (t)
is the car's speed as measured by a speedometer. In this application, system 2 is the identity system (output
equals input).

1.3 Discrete-Time Signals and Systems5

Mathematically, analog signals are functions having as their independent variables continuous quantities,
such as space and time. Discrete-time signals are functions de�ned on the integers; they are sequences. As
with analog signals, we seek ways of decomposing discrete-time signals into simpler components. Because
this approach leading to a better understanding of signal structure, we can exploit that structure to represent
information (create ways of representing information with signals) and to extract information (retrieve the
information thus represented). For symbolic-valued signals, the approach is di�erent: We develop a common
representation of all symbolic-valued signals so that we can embody the information they contain in a
uni�ed way. From an information representation perspective, the most important issue becomes, for both
real-valued and symbolic-valued signals, e�ciency: what is the most parsimonious and compact way to
represent information so that it can be extracted later.

1.3.1 Real- and Complex-valued Signals

A discrete-time signal is represented symbolically as s (n), where n = {. . . ,−1, 0, 1, . . . }.
5This content is available online at <http://cnx.org/content/m10342/2.15/>.

9

Cosine

n

sn

1
…

…

Figure 1.7: The discrete-time cosine signal is plotted as a stem plot. Can you �nd the formula for this
signal?

We usually draw discrete-time signals as stem plots to emphasize the fact they are functions de�ned only
on the integers. We can delay a discrete-time signal by an integer just as with analog ones. A signal delayed
by m samples has the expression s (n−m).

1.3.2 Complex Exponentials

The most important signal is, of course, the complex exponential sequence.

s (n) = ei2πfn (1.1)

Note that the frequency variable f is dimensionless and that adding an integer to the frequency of the
discrete-time complex exponential has no e�ect on the signal's value.

ei2π(f+m)n = ei2πfnei2πmn

= ei2πfn
(1.2)

This derivation follows because the complex exponential evaluated at an integer multiple of 2π equals one.
Thus, we need only consider frequency to have a value in some unit-length interval.

1.3.3 Sinusoids

Discrete-time sinusoids have the obvious form s (n) = Acos (2πfn+ φ). As opposed to analog complex
exponentials and sinusoids that can have their frequencies be any real value, frequencies of their discrete-
time counterparts yield unique waveforms only when f lies in the interval

(
− 1

2 ,
1
2

]
. This choice of frequency

interval is arbitrary; we can also choose the frequency to lie in the interval [0, 1). How to choose a unit-length
interval for a sinusoid's frequency will become evident later.

1.3.4 Unit Sample

The second-most important discrete-time signal is the unit sample, which is de�ned to be

δ (n) =

 1 if n = 0

0 otherwise
(1.3)

10 CHAPTER 1. FOUNDATIONS

Unit sample

1

n

δn

Figure 1.8: The unit sample.

Examination of a discrete-time signal's plot, like that of the cosine signal shown in Figure 1.7 (Cosine),
reveals that all signals consist of a sequence of delayed and scaled unit samples. Because the value of
a sequence at each integer m is denoted by s (m) and the unit sample delayed to occur at m is written
δ (n−m), we can decompose any signal as a sum of unit samples delayed to the appropriate location and
scaled by the signal value.

s (n) =
∞∑

m=−∞
s (m) δ (n−m) (1.4)

This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.

1.3.5 Unit Step

The unit sample in discrete-time is well-de�ned at the origin, as opposed to the situation with analog
signals.

u (n) =

 1 if n ≥ 0

0 if n < 0
(1.5)

1.3.6 Symbolic Signals

An interesting aspect of discrete-time signals is that their values do not need to be real numbers. We do
have real-valued discrete-time signals like the sinusoid, but we also have signals that denote the sequence of
characters typed on the keyboard. Such characters certainly aren't real numbers, and as a collection of pos-
sible signal values, they have little mathematical structure other than that they are members of a set. More
formally, each element of the symbolic-valued signal s (n) takes on one of the values {a1, . . . , aK} which
comprise the alphabet A. This technical terminology does not mean we restrict symbols to being mem-
bers of the English or Greek alphabet. They could represent keyboard characters, bytes (8-bit quantities),
integers that convey daily temperature. Whether controlled by software or not, discrete-time systems are
ultimately constructed from digital circuits, which consist entirely of analog circuit elements. Furthermore,
the transmission and reception of discrete-time signals, like e-mail, is accomplished with analog signals and
systems. Understanding how discrete-time and analog signals and systems intertwine is perhaps the main
goal of this course.

1.3.7 Discrete-Time Systems

Discrete-time systems can act on discrete-time signals in ways similar to those found in analog signals and
systems. Because of the role of software in discrete-time systems, many more di�erent systems can be
envisioned and "constructed" with programs than can be with analog signals. In fact, a special class of
analog signals can be converted into discrete-time signals, processed with software, and converted back into

11

an analog signal, all without the incursion of error. For such signals, systems can be easily produced in
software, with equivalent analog realizations di�cult, if not impossible, to design.

1.4 Linear Time-Invariant Systems6

A discrete-time signal s (n) is delayed by n0 samples when we write s (n− n0), with n0 > 0. Choosing n0

to be negative advances the signal along the integers. As opposed to analog delays7, discrete-time delays
can only be integer valued. In the frequency domain, delaying a signal corresponds to a linear phase shift
of the signal's discrete-time Fourier transform: s (n− n0)↔ e−(i2πfn0)S

(
ei2πf

)
.

Linear discrete-time systems have the superposition property.

Superposition
S (a1x1 (n) + a2x2 (n)) = a1S (x1 (n)) + a2S (x2 (n)) (1.6)

A discrete-time system is called shift-invariant (analogous to time-invariant analog systems) if delaying
the input delays the corresponding output.

Shift-Invariant
If S (x (n)) = y (n) , Then S (x (n− n0)) = y (n− n0) (1.7)

We use the term shift-invariant to emphasize that delays can only have integer values in discrete-time, while
in analog signals, delays can be arbitrarily valued.

We want to concentrate on systems that are both linear and shift-invariant. It will be these that allow us
the full power of frequency-domain analysis and implementations. Because we have no physical constraints
in "constructing" such systems, we need only a mathematical speci�cation. In analog systems, the di�er-
ential equation speci�es the input-output relationship in the time-domain. The corresponding discrete-time
speci�cation is the di�erence equation.

The Di�erence Equation

y (n) = a1y (n− 1) + · · ·+ apy (n− p) + b0x (n) + b1x (n− 1) + · · ·+ bqx (n− q) (1.8)

Here, the output signal y (n) is related to its past values y (n− l), l = {1, . . . , p}, and to the current and
past values of the input signal x (n). The system's characteristics are determined by the choices for the
number of coe�cients p and q and the coe�cients' values {a1, . . . , ap} and {b0, b1, . . . , bq}.

aside: There is an asymmetry in the coe�cients: where is a0 ? This coe�cient would multiply the
y (n) term in the di�erence equation (1.8: The Di�erence Equation). We have essentially divided
the equation by it, which does not change the input-output relationship. We have thus created the
convention that a0 is always one.

As opposed to di�erential equations, which only provide an implicit description of a system (we must
somehow solve the di�erential equation), di�erence equations provide an explicit way of computing the
output for any input. We simply express the di�erence equation by a program that calculates each output
from the previous output values, and the current and previous inputs.

1.5 Discrete Time Convolution8

1.5.1 Introduction

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output a system produces for a given input signal. It can be shown that a linear time invariant system is

6This content is available online at <http://cnx.org/content/m0508/2.7/>.
7"Simple Systems": Section Delay <http://cnx.org/content/m0006/latest/#delay>
8This content is available online at <http://cnx.org/content/m10087/2.27/>.

12 CHAPTER 1. FOUNDATIONS

completely characterized by its impulse response. The sifting property of the discrete time impulse function
tells us that the input signal to a system can be represented as a sum of scaled and shifted unit impulses.
Thus, by linearity, it would seem reasonable to compute of the output signal as the sum of scaled and shifted
unit impulse responses. That is exactly what the operation of convolution accomplishes. Hence, convolution
can be used to determine a linear time invariant system's output from knowledge of the input and the impulse
response.

1.5.2 Convolution and Circular Convolution

1.5.2.1 Convolution

1.5.2.1.1 Operation De�nition

Discrete time convolution is an operation on two discrete time signals de�ned by the integral

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) (1.9)

for all signals f, g de�ned on Z. It is important to note that the operation of convolution is commutative,
meaning that

f ∗ g = g ∗ f (1.10)

for all signals f, g de�ned on Z. Thus, the convolution operation could have been just as easily stated using
the equivalent de�nition

(f ∗ g) (n) =
∞∑

k=−∞

f (n− k) g (k) (1.11)

for all signals f, g de�ned on Z. Convolution has several other important properties not listed here but
explained and derived in a later module.

1.5.2.1.2 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a system input signal x we would like to compute the system output signal H (x). First, we note that the
input can be expressed as the convolution

x (n) =
∞∑

k=−∞

x (k) δ (n− k) (1.12)

by the sifting property of the unit impulse function. By linearity

Hx (n) =
∞∑

k=−∞

x (k)Hδ (n− k) . (1.13)

Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
∞∑

k=−∞

x (k)h (n− k) = (x ∗ h) (n) . (1.14)

Hence, convolution has been de�ned such that the output of a linear time invariant system is given by the
convolution of the system input with the system unit impulse response.

13

1.5.2.1.3 Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes.
Consider the convolution of two functions f, g given by

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) =
∞∑

k=−∞

f (n− k) g (k) . (1.15)

The �rst step in graphically understanding the operation of convolution is to plot each of the functions.
Next, one of the functions must be selected, and its plot re�ected across the k = 0 axis. For each real t, that
same function must be shifted left by t. The product of the two resulting plots is then constructed. Finally,
the area under the resulting curve is computed.

Example 1.1
Recall that the impulse response for a discrete time echoing feedback system with gain a is

h (n) = anu (n) , (1.16)

and consider the response to an input signal that is another exponential

x (n) = bnu (n) . (1.17)

We know that the output for this input is given by the convolution of the impulse response with
the input signal

y (n) = x (n) ∗ h (n) . (1.18)

We would like to compute this operation by beginning in a way that minimizes the algebraic
complexity of the expression. However, in this case, each possible coice is equally simple. Thus, we
would like to compute

y (n) =
∞∑

k=−∞

aku (k) bn−ku (n− k) . (1.19)

The step functions can be used to further simplify this sum. Therefore,

y (n) = 0 (1.20)

for n < 0 and

y (n) =
n∑
k=0

(ab)k (1.21)

for n ≥ 0. Hence, provided ab 6= 1, we have that

y (n) = {
0 n < 0

1−(ab)n+1

1−(ab) n ≥ 0
. (1.22)

14 CHAPTER 1. FOUNDATIONS

1.5.2.2 Circular Convolution

Discrete time circular convolution is an operation on two �nite length or periodic discrete time signals de�ned
by the integral

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) (1.23)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. It is important to

note that the operation of circular convolution is commutative, meaning that

f ∗ g = g ∗ f (1.24)

for all signals f, g de�ned on Z [0, N − 1]. Thus, the circular convolution operation could have been just as
easily stated using the equivalent de�nition

(f ∗ g) (n) =
N−1∑
k=0

^
f (n− k)

^
g (k) (1.25)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. Circular convolution

has several other important properties not listed here but explained and derived in a later module.
Alternatively, discrete time circular convolution can be expressed as the sum of two summations given

by

(f ∗ g) (n) =
n∑
k=0

f (k) g (n− k) +
N−1∑
k=n+1

f (k) g (n− k +N) (1.26)

for all signals f, g de�ned on Z [0, N − 1].
Meaningful examples of computing discrete time circular convolutions in the time domain would involve

complicated algebraic manipulations dealing with the wrap around behavior, which would ultimately be
more confusing than helpful. Thus, none will be provided in this section. Of course, example computations
in the time domain are easy to program and demonstrate. However, disrete time circular convolutions are
more easily computed using frequency domain tools as will be shown in the discrete time Fourier series
section.

1.5.2.2.1 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a �nite or periodic system input signal x we would like to compute the system output signal H (x). First,
we note that the input can be expressed as the circular convolution

x (n) =
N−1∑
k=0

^
x (k)

^
δ (n− k) (1.27)

by the sifting property of the unit impulse function. By linearity,

Hx (n) =
N−1∑
k=0

^
x (k)H

^
δ (n− k) . (1.28)

15

Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
N−1∑
k=0

^
x (k)

^
h (n− k) = (x ∗ h) (n) . (1.29)

Hence, circular convolution has been de�ned such that the output of a linear time invariant system is given
by the convolution of the system input with the system unit impulse response.

1.5.2.2.2 Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical
processes. Consider the circular convolution of two �nite length functions f, g given by

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) =

N−1∑
k=0

^
f (n− k)

^
g (k) . (1.30)

The �rst step in graphically understanding the operation of convolution is to plot each of the periodic
extensions of the functions. Next, one of the functions must be selected, and its plot re�ected across the
k = 0 axis. For each k ∈ Z [0, N − 1], that same function must be shifted left by k. The product of the two
resulting plots is then constructed. Finally, the area under the resulting curve on Z [0, N − 1] is computed.

16 CHAPTER 1. FOUNDATIONS

1.5.3 Interactive Element

Figure 1.9: Interact (when online) with the Mathematica CDF demonstrating Discrete Linear Convo-
lution. To download, right click and save �le as .cdf

17

1.5.4 Convolution Summary

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output signal of a linear time invariant system for a given input signal with knowledge of the system's unit
impulse response. The operation of discrete time convolution is de�ned such that it performs this function
for in�nite length discrete time signals and systems. The operation of discrete time circular convolution is
de�ned such that it performs this function for �nite length and periodic discrete time signals. In each case,
the output of the system is the convolution or circular convolution of the input signal with the unit impulse
response.

18 CHAPTER 1. FOUNDATIONS

1.6 Review of Linear Algebra9

Vector spaces are the principal object of study in linear algebra. A vector space is always de�ned with
respect to a �eld of scalars.

1.6.1 Fields

A �eld is a set F equipped with two operations, addition and mulitplication, and containing two special
members 0 and 1 (0 6= 1), such that for all {a, b, c} ∈ F

1. a. (a+ b) ∈ F
b. a+ b = b+ a
c. (a+ b) + c = a+ (b+ c)
d. a+ 0 = a
e. there exists −a such that a+−a = 0

2. a. ab ∈ F
b. ab = ba
c. (ab) c = a (bc)
d. a · 1 = a
e. there exists a−1 such that aa−1 = 1

3. a (b+ c) = ab+ ac

More concisely

1. F is an abelian group under addition
2. F is an abelian group under multiplication
3. multiplication distributes over addition

1.6.1.1 Examples

Q, R, C

1.6.2 Vector Spaces

Let F be a �eld, and V a set. We say V is a vector space over F if there exist two operations, de�ned
for all a ∈ F , u ∈ V and v ∈ V :

• vector addition: (u, v) → (u+ v) ∈ V
• scalar multiplication: (a,v) → av ∈ V

and if there exists an element denoted 0 ∈ V , such that the following hold for all a ∈ F , b ∈ F , and u ∈ V ,
v ∈ V , and w ∈ V

1. a. u+ (v + w) = (u+ v) + w
b. u+ v = v + u
c. u+ 0 = u
d. there exists −u such that u+−u = 0

2. a. a (u+ v) = au+ av
b. (a+ b)u = au+ bu
c. (ab)u = a (bu)
d. 1 · u = u

More concisely,

9This content is available online at <http://cnx.org/content/m11948/1.2/>.

19

1. V is an abelian group under plus
2. Natural properties of scalar multiplication

1.6.2.1 Examples

• RN is a vector space over R
• CN is a vector space over C
• CN is a vector space over R
• RN is not a vector space over C

The elements of V are called vectors.

1.6.3 Euclidean Space

Throughout this course we will think of a signal as a vector

x =


x1

x2

...

xN

 =
(
x1 x2 . . . xN

)T

The samples {xi} could be samples from a �nite duration, continuous time signal, for example.
A signal will belong to one of two vector spaces:

1.6.3.1 Real Euclidean space

x ∈ RN (over R)

1.6.3.2 Complex Euclidean space

x ∈ CN (over C)

1.6.4 Subspaces

Let V be a vector space over F .
A subset S ⊆ V is called a subspace of V if S is a vector space over F in its own right.

Example 1.2
V = R2, F = R, S = any line though the origin.

Figure 1.10: S is any line through the origin.

Are there other subspaces?

Theorem 1.1:
S ⊆ V is a subspace if and only if for all a ∈ F and b ∈ F and for all s ∈ S and t ∈ S, (as+ bt) ∈ S

20 CHAPTER 1. FOUNDATIONS

1.6.5 Linear Independence

Let u1, . . . , uk ∈ V .
We say that these vectors are linearly dependent if there exist scalars a1, . . . , ak ∈ F such that

k∑
i=1

aiui = 0 (1.31)

and at least one ai 6= 0.
If (1.31) only holds for the case a1 = · · · = ak = 0, we say that the vectors are linearly independent.

Example 1.3

1


1

−1

2

− 2


−2

3

0

+ 1


−5

7

−2

 = 0

so these vectors are linearly dependent in R3.

1.6.6 Spanning Sets

Consider the subset S = {v1, v2, . . . , vk}. De�ne the span of S

< S > ≡ span (S) ≡

{
k∑
i=1

aivi | ai ∈ F

}

Fact: < S > is a subspace of V .

Example 1.4

V = R3, F = R, S = {v1, v2}, v1 =


1

0

0

, v2 =


0

1

0

 ⇒ < S > = xy-plane.

21

Figure 1.11: < S > is the xy-plane.

1.6.6.1 Aside

If S is in�nite, the notions of linear independence and span are easily generalized:
We say S is linearly independent if, for every �nite collection u1, . . . , uk ∈ S, (k arbitrary) we have(

k∑
i=1

aiui = 0

)
⇒ ∀i : (ai = 0)

The span of S is

< S > =

{
k∑
i=1

aiui | ai ∈ F ∧ ui ∈ S ∧ (k <∞)

}
note: In both de�nitions, we only consider �nite sums.

1.6.7 Bases

A set B ⊆ V is called a basis for V over F if and only if

1. B is linearly independent
2. < B > = V

Bases are of fundamental importance in signal processing. They allow us to decompose a signal into building
blocks (basis vectors) that are often more easily understood.

22 CHAPTER 1. FOUNDATIONS

Example 1.5
V = (real or complex) Euclidean space, RN or CN .

B = {e1, . . . , eN} ≡ standard basis

ei =



0
...

1
...

0


where the 1 is in the ith position.

Example 1.6
V = CN over C.

B = {u1, . . . , uN}
which is the DFT basis.

uk =


1

e−(i2π k
N)

...

e−(i2π k
N (N−1))


where i =

√
−1.

1.6.7.1 Key Fact

If B is a basis for V , then every v ∈ V can be written uniquely (up to order of terms) in the form

v =
N∑
i=1

aivi

where ai ∈ F and vi ∈ B.

1.6.7.2 Other Facts

• If S is a linearly independent set, then S can be extended to a basis.
• If < S > = V , then S contains a basis.

1.6.8 Dimension

Let V be a vector space with basis B. The dimension of V , denoted dim (V), is the cardinality of B.

Theorem 1.2:
Every vector space has a basis.

Theorem 1.3:
Every basis for a vector space has the same cardinality.

⇒ dim (V) is well-de�ned.
If dim (V) <∞, we say V is �nite dimensional.

23

1.6.8.1 Examples

vector space �eld of scalars dimension

RN R

CN C

CN R

Table 1.2

Every subspace is a vector space, and therefore has its own dimension.

Example 1.7
Suppose (S = {u1, . . . , uk}) ⊆ V is a linearly independent set. Then

dim (< S >) =

Facts

• If S is a subspace of V , then dim (S) ≤ dim (V).
• If dim (S) = dim (V) <∞, then S = V .

1.6.9 Direct Sums

Let V be a vector space, and let S ⊆ V and T ⊆ V be subspaces.
We say V is the direct sum of S and T , written V = S ⊕ T , if and only if for every v ∈ V , there exist

unique s ∈ S and t ∈ T such that v = s+ t.
If V = S ⊕ T , then T is called a complement of S.

Example 1.8

V = C ′ = {f : R→ R|f is continuous}

S = even funcitons inC ′

T = odd funcitons inC ′

f (t) =
1
2

(f (t) + f (−t)) +
1
2

(f (t)− f (−t))

If f = g + h = g′ + h′, g ∈ S and g′ ∈ S, h ∈ T and h′ ∈ T , then g − g′ = h′ − h is odd and even,
which implies g = g′ and h = h′.

1.6.9.1 Facts

1. Every subspace has a complement
2. V = S ⊕ T if and only if

a. S ∩ T = {0}
b. < S, T > = V

3. If V = S ⊕ T , and dim (V) <∞, then dim (V) = dim (S) + dim (T)

24 CHAPTER 1. FOUNDATIONS

1.6.9.2 Proofs

Invoke a basis.

1.6.10 Norms

Let V be a vector space over F . A norm is a mapping V → F , denoted by ‖ · ‖, such that forall u ∈ V ,
v ∈ V , and λ ∈ F

1. ‖ u ‖> 0 if u 6= 0
2. ‖ λu ‖= |λ| ‖ u ‖
3. ‖ u+ v ‖≤‖ u ‖ + ‖ v ‖

1.6.10.1 Examples

Euclidean norms:
x ∈ RN :

‖ x ‖=

(
N∑
i=1

xi
2

) 1
2

x ∈ CN :

‖ x ‖=

(
N∑
i=1

(|xi|)2

) 1
2

1.6.10.2 Induced Metric

Every norm induces a metric on V
d (u, v) ≡‖ u− v ‖

which leads to a notion of "distance" between vectors.

1.6.11 Inner products

Let V be a vector space over F , F = R or C. An inner product is a mapping V × V → F , denoted < ·, · >,
such that

1. < v, v >≥ 0, and < v, v >= 0⇔ v = 0
2. < u, v >= < v, u >
3. < au+ bv, w >= a < (u,w) > +b < (v, w) >

1.6.11.1 Examples

RN over R:

< x, y >=
(
xT y

)
=

N∑
i=1

xiyi

CN over C:

< x, y >=
(
xHy

)
=

N∑
i=1

xiyi

25

If
(
x = (x1, . . . , xN)T

)
∈ C, then

xH ≡


x1

...

xN


T

is called the "Hermitian," or "conjugate transpose" of x.

1.6.12 Triangle Inequality

If we de�ne ‖ u ‖=< u, u >, then
‖ u+ v ‖≤‖ u ‖ + ‖ v ‖

Hence, every inner product induces a norm.

1.6.13 Cauchy-Schwarz Inequality

For all u ∈ V , v ∈ V ,
| < u, v > | ≤‖ u ‖‖ v ‖

In inner product spaces, we have a notion of the angle between two vectors:(
∠ (u, v) = arccos

(
< u, v >

‖ u ‖‖ v ‖

))
∈ [0, 2π)

1.6.14 Orthogonality

u and v are orthogonal if
< u, v >= 0

Notation: u ⊥ v.
If in addition ‖ u ‖=‖ v ‖= 1, we say u and v are orthonormal.
In an orthogonal (orthonormal) set, each pair of vectors is orthogonal (orthonormal).

Figure 1.12: Orthogonal vectors in R2.

1.6.15 Orthonormal Bases

An Orthonormal basis is a basis {vi} such that

< vi, vi >= δij =

 1 if i = j

0 if i 6= j

26 CHAPTER 1. FOUNDATIONS

Example 1.9
The standard basis for RN or CN

Example 1.10
The normalized DFT basis

uk =
1√
N


1

e−(i2π k
N)

...

e−(i2π k
N (N−1))



1.6.16 Expansion Coe�cients

If the representation of v with respect to {vi} is

v =
∑
i

aivi

then
ai =< vi, v >

1.6.17 Gram-Schmidt

Every inner product space has an orthonormal basis. Any (countable) basis can be made orthogonal by the
Gram-Schmidt orthogonalization process.

1.6.18 Orthogonal Compliments

Let S ⊆ V be a subspace. The orthogonal compliment S is

S⊥ = {u | u ∈ V ∧ (< u, v >= 0) ∧ ∀v : (v ∈ S)}

S⊥ is easily seen to be a subspace.
If dim (v) <∞, then V = S ⊕ S⊥.

aside: If dim (v) =∞, then in order to have V = S ⊕ S⊥ we require V to be a Hilbert Space.

1.6.19 Linear Transformations

Loosely speaking, a linear transformation is a mapping from one vector space to another that preserves
vector space operations.

More precisely, let V , W be vector spaces over the same �eld F . A linear transformation is a mapping
T : V →W such that

T (au+ bv) = aT (u) + bT (v)

for all a ∈ F , b ∈ F and u ∈ V , v ∈ V .
In this class we will be concerned with linear transformations between (real or complex) Euclidean

spaces, or subspaces thereof.

1.6.20 Image

image (T) = {w | w ∈W ∧ T (v) = wfor some v }

27

1.6.21 Nullspace

Also known as the kernel:
ker (T) = {v | v ∈ V ∧ (T (v) = 0)}

Both the image and the nullspace are easily seen to be subspaces.

1.6.22 Rank

rank (T) = dim (image (T))

1.6.23 Nullity

null (T) = dim (ker (T))

1.6.24 Rank plus nullity theorem

rank (T) + null (T) = dim (V)

1.6.25 Matrices

Every linear transformation T has a matrix representation. If T : EN → EM , E = R or C, then T is
represented by an M ×N matrix

A =


a11 . . . a1N

...
. . .

...

aM1 . . . aMN


where (a1i, . . . , aMi)

T = T (ei) and ei = (0, . . . , 1, . . . , 0)T is the ith standard basis vector.

aside: A linear transformation can be represented with respect to any bases of EN and EM ,
leading to a di�erent A. We will always represent a linear transformation using the standard bases.

1.6.26 Column span

colspan (A) =< A > = image (A)

1.6.27 Duality

If A : RN → RM , then
ker⊥ (A) = image

(
AT
)

28 CHAPTER 1. FOUNDATIONS

Figure 1.13

If A : CN → CM , then
ker⊥ (A) = image

(
AH
)

1.6.28 Inverses

The linear transformation/matrix A is invertible if and only if there exists a matrix B such that AB =
BA = I (identity).

Only square matrices can be invertible.

Theorem 1.4:
Let A : FN → FN be linear, F = R or C. The following are equivalent:

1. A is invertible (nonsingular)
2. rank (A) = N
3. null (A) = 0
4. detA 6= 0
5. The columns of A form a basis.

If A−1 = AT (or AH in the complex case), we say A is orthogonal (or unitary).

1.7 Hilbert Spaces10

1.7.1 Hilbert Spaces

A vector space S with a valid inner product11 de�ned on it is called an inner product space, which is also
a normed linear space. A Hilbert space is an inner product space that is complete with respect to the
norm de�ned using the inner product. Hilbert spaces are named after David Hilbert12 , who developed this
idea through his studies of integral equations. We de�ne our valid norm using the inner product as:

‖ x ‖=
√
< x, x > (1.32)

10This content is available online at <http://cnx.org/content/m10840/2.6/>.
11"Inner Products" <http://cnx.org/content/m10755/latest/>
12http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html

29

Hilbert spaces are useful in studying and generalizing the concepts of Fourier expansion, Fourier transforms,
and are very important to the study of quantum mechanics. Hilbert spaces are studied under the functional
analysis branch of mathematics.

1.7.1.1 Examples of Hilbert Spaces

Below we will list a few examples of Hilbert spaces13. You can verify that these are valid inner products at
home.

• For Cn,

< x, y >= yTx =
(
y0 y1 . . . yn−1

)


x0

x1

...

xn−1

 =
n−1∑
i=0

xiyi

• Space of �nite energy complex functions: L2 (R)

< f, g >=
∫ ∞
−∞

f (t) g (t)dt

• Space of square-summable sequences: `2 (Z)

< x, y >=
∞∑

i=−∞
x [i] y [i]

1.8 Signal Expansions14

1.8.1 Main Idea

When working with signals many times it is helpful to break up a signal into smaller, more manageable parts.
Hopefully by now you have been exposed to the concept of eigenvectors15 and there use in decomposing a
signal into one of its possible basis. By doing this we are able to simplify our calculations of signals and
systems through eigenfunctions of LTI systems16.

Now we would like to look at an alternative way to represent signals, through the use of orthonormal
basis. We can think of orthonormal basis as a set of building blocks we use to construct functions. We will
build up the signal/vector as a weighted sum of basis elements.

Example 1.11

The complex sinusoids 1√
T
eiω0nt for all −∞ < n <∞ form an orthonormal basis for L2 ([0, T]).

In our Fourier series17 equation, f (t) =
∑∞
n=−∞ cne

iω0nt, the {cn} are just another representa-
tion of f (t).

note: For signals/vectors in a Hilbert Space, the expansion coe�cients are easy to �nd.

13"Hilbert Spaces" <http://cnx.org/content/m10434/latest/>
14This content is available online at <http://cnx.org/content/m10760/2.6/>.
15"Eigenvectors and Eigenvalues" <http://cnx.org/content/m10736/latest/>
16"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>
17"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>

30 CHAPTER 1. FOUNDATIONS

1.8.2 Alternate Representation

Recall our de�nition of a basis: A set of vectors {bi} in a vector space S is a basis if

1. The bi are linearly independent.
2. The bi span

18 S. That is, we can �nd {αi}, where αi ∈ C (scalars) such that

∀x, x ∈ S :

(
x =

∑
i

αibi

)
(1.33)

where x is a vector in S, α is a scalar in C, and b is a vector in S.

Condition 2 in the above de�nition says we can decompose any vector in terms of the {bi}. Condition
1 ensures that the decomposition is unique (think about this at home).

note: The {αi} provide an alternate representation of x.

Example 1.12
Let us look at simple example in R2, where we have the following vector:

x =

 1

2


Standard Basis: {e0, e1} =

{
(1, 0)T , (0, 1)T

}
x = e0 + 2e1

Alternate Basis: {h0, h1} =
{

(1, 1)T , (1,−1)T
}

x =
3
2
h0 +

−1
2
h1

In general, given a basis {b0, b1} and a vector x ∈ R2, how do we �nd the α0 and α1 such that

x = α0b0 + α1b1 (1.34)

1.8.3 Finding the Coe�cients

Now let us address the question posed above about �nding αi's in general for R2. We start by rewriting
(1.34) so that we can stack our bi's as columns in a 2×2 matrix.(

x
)

= α0

(
b0

)
+ α1

(
b1

)
(1.35)

(
x
)

=


...

...

b0 b1
...

...


 α0

α1

 (1.36)

18"Linear Algebra: The Basics": Section Span <http://cnx.org/content/m10734/latest/#span_sec>

31

Example 1.13
Here is a simple example, which shows a little more detail about the above equations. x [0]

x [1]

 = α0

 b0 [0]

b0 [1]

+ α1

 b1 [0]

b1 [1]


=

 α0b0 [0] + α1b1 [0]

α0b0 [1] + α1b1 [1]

 (1.37)

 x [0]

x [1]

 =

 b0 [0] b1 [0]

b0 [1] b1 [1]

 α0

α1

 (1.38)

1.8.3.1 Simplifying our Equation

To make notation simpler, we de�ne the following two items from the above equations:

• Basis Matrix:

B =


...

...

b0 b1
...

...


• Coe�cient Vector:

α =

 α0

α1


This gives us the following, concise equation:

x = Bα (1.39)

which is equivalent to x =
∑1
i=0 αibi.

Example 1.14

Given a standard basis,


 1

0

 ,

 0

1

, then we have the following basis matrix:

B =

 0 1

1 0


To get the αi's, we solve for the coe�cient vector in (1.39)

α = B−1x (1.40)

Where B−1 is the inverse matrix19 of B.

19"Matrix Inversion" <http://cnx.org/content/m2113/latest/>

32 CHAPTER 1. FOUNDATIONS

1.8.3.2 Examples

Example 1.15
Let us look at the standard basis �rst and try to calculate α from it.

B =

 1 0

0 1

 = I

Where I is the identity matrix. In order to solve for α let us �nd the inverse of B �rst (which is
obviously very trivial in this case):

B−1 =

 1 0

0 1


Therefore we get,

α = B−1x = x

Example 1.16

Let us look at a ever-so-slightly more complicated basis of


 1

1

 ,

 1

−1

 = {h0, h1} Then

our basis matrix and inverse basis matrix becomes:

B =

 1 1

1 −1



B−1 =

 1
2

1
2

1
2

−1
2


and for this example it is given that

x =

 3

2


Now we solve for α

α = B−1x =

 1
2

1
2

1
2

−1
2

 3

2

 =

 2.5

0.5


and we get

x = 2.5h0 + 0.5h1

Exercise 1.8.1 (Solution on p. 48.)

Now we are given the following basis matrix and x:

{b0, b1} =


 1

2

 ,

 3

0


x =

 3

2


For this problem, make a sketch of the bases and then represent x in terms of b0 and b1.

33

note: A change of basis simply looks at x from a "di�erent perspective." B−1 transforms x from
the standard basis to our new basis, {b0, b1}. Notice that this is a totally mechanical procedure.

1.8.4 Extending the Dimension and Space

We can also extend all these ideas past just R2 and look at them in Rn and Cn. This procedure extends nat-
urally to higher (> 2) dimensions. Given a basis {b0, b1, . . . , bn−1} for Rn, we want to �nd {α0, α1, . . . , αn−1}
such that

x = α0b0 + α1b1 + · · ·+ αn−1bn−1 (1.41)

Again, we will set up a basis matrix

B =
(
b0 b1 b2 . . . bn−1

)
where the columns equal the basis vectors and it will always be an n×n matrix (although the above matrix
does not appear to be square since we left terms in vector notation). We can then proceed to rewrite (1.39)

x =
(
b0 b1 . . . bn−1

)
α0

...

αn−1

 = Bα

and
α = B−1x

1.9 Introduction to Fourier Analysis20

1.9.1 Fourier's Daring Leap

Fourier postulated around 1807 that any periodic signal (equivalently �nite length signal) can be built up
as an in�nite linear combination of harmonic sinusoidal waves.

1.9.1.1

i.e. Given the collection

B = {ej 2π
T nt}∞n=−∞ (1.42)

any

f (t) ∈ L2 [0, T) (1.43)

can be approximated arbitrarily closely by

f (t) =
∞∑

n=−∞
Cn e

j 2π
T nt. (1.44)

Now, The issue of exact convergence did bring Fourier21 much criticism from the French Academy of
Science (Laplace, Lagrange, Monge and LaCroix comprised the review committee) for several years after its

20This content is available online at <http://cnx.org/content/m10096/2.12/>.
21http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html

34 CHAPTER 1. FOUNDATIONS

presentation on 1807. It was not resolved for also a century, and its resolution is interesting and important
to understand from a practical viewpoint. See more in the section on Gibbs Phenomena.

Fourier analysis is fundamental to understanding the behavior of signals and systems. This is a result of
the fact that sinusoids are Eigenfunctions22 of linear, time-invariant (LTI)23 systems. This is to say that if
we pass any particular sinusoid through a LTI system, we get a scaled version of that same sinusoid on the
output. Then, since Fourier analysis allows us to rede�ne the signals in terms of sinusoids, all we need to do is
determine how any given system e�ects all possible sinusoids (its transfer function24) and we have a complete
understanding of the system. Furthermore, since we are able to de�ne the passage of sinusoids through a
system as multiplication of that sinusoid by the transfer function at the same frequency, we can convert the
passage of any signal through a system from convolution25 (in time) to multiplication (in frequency). These
ideas are what give Fourier analysis its power.

Now, after hopefully having sold you on the value of this method of analysis, we must examine exactly
what we mean by Fourier analysis. The four Fourier transforms that comprise this analysis are the Fourier
Series26, Continuous-Time Fourier Transform (Section 1.10), Discrete-Time Fourier Transform (Section 1.11)
and Discrete Fourier Transform27. For this document, we will view the Laplace Transform28 and Z-Transform
(Section 3.3) as simply extensions of the CTFT and DTFT respectively. All of these transforms act essentially
the same way, by converting a signal in time to an equivalent signal in frequency (sinusoids). However,
depending on the nature of a speci�c signal i.e. whether it is �nite- or in�nite-length and whether it is
discrete- or continuous-time) there is an appropriate transform to convert the signal into the frequency
domain. Below is a table of the four Fourier transforms and when each is appropriate. It also includes the
relevant convolution for the speci�ed space.

Table of Fourier Representations

Transform Time Domain Frequency Domain Convolution

Continuous-Time
Fourier Series

L2 ([0, T)) l2 (Z) Continuous-Time Cir-
cular

Continuous-Time
Fourier Transform

L2 (R) L2 (R) Continuous-Time Lin-
ear

Discrete-Time Fourier
Transform

l2 (Z) L2 ([0, 2π)) Discrete-Time Linear

Discrete Fourier Trans-
form

l2 ([0, N − 1]) l2 ([0, N − 1]) Discrete-Time Circular

Table 1.3

1.10 Continuous Time Fourier Transform (CTFT)29

1.10.1 Introduction

In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so,
derive the Continuous Time Fourier Transform (CTFT).

22"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>
23"System Classi�cations and Properties" <http://cnx.org/content/m10084/latest/>
24"Transfer Functions" <http://cnx.org/content/m0028/latest/>
25"Properties of Continuous Time Convolution" <http://cnx.org/content/m10088/latest/>
26"Continuous-Time Fourier Series (CTFS)" <http://cnx.org/content/m10097/latest/>
27"Discrete Fourier Transform" <http://cnx.org/content/m0502/latest/>
28"The Laplace Transform" <http://cnx.org/content/m10110/latest/>
29This content is available online at <http://cnx.org/content/m10098/2.16/>.

35

Since complex exponentials30 are eigenfunctions of linear time-invariant (LTI) systems31, calculating the
output of an LTI system H given est as an input amounts to simple multiplication, where H (s) ∈ C is the
eigenvalue corresponding to s. As shown in the �gure, a simple exponential input would yield the output

y (t) = H (s) est (1.45)

Using this and the fact that H is linear, calculating y (t) for combinations of complex exponentials is also
straightforward.

c1e
s1t + c2e

s2t → c1H (s1) es1t + c2H (s2) es2t

∑
n

cne
snt →

∑
n

cnH (sn) esnt

The action of H on an input such as those in the two equations above is easy to explain. H inde-
pendently scales each exponential component esnt by a di�erent complex number H (sn) ∈ C. As such, if
we can write a function f (t) as a combination of complex exponentials it allows us to easily calculate the
output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals
in terms of a set of simpler functions by superposition of a number of complex exponentials. Below we will
present the Continuous-Time Fourier Transform (CTFT), commonly referred to as just the Fourier
Transform (FT). Because the CTFT deals with nonperiodic signals, we must �nd a way to include all real
frequencies in the general equations. For the CTFT we simply utilize integration over real numbers rather
than summation over integers in order to express the aperiodic signals.

1.10.2 Fourier Transform Synthesis

Joseph Fourier32 demonstrated that an arbitrary s (t) can be written as a linear combination of harmonic
complex sinusoids

s (t) =
∞∑

n=−∞
cne

jω0nt (1.46)

where ω0 = 2π
T is the fundamental frequency. For almost all s (t) of practical interest, there exists cn to make

(1.46) true. If s (t) is �nite energy (s (t) ∈ L2 [0, T]), then the equality in (1.46) holds in the sense of energy
convergence; if s (t) is continuous, then (1.46) holds pointwise. Also, if s (t) meets some mild conditions (the
Dirichlet conditions), then (1.46) holds pointwise everywhere except at points of discontinuity.

The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0nt is in s (t). The formula
shows s (t) as a sum of complex exponentials, each of which is easily processed by an LTI system (since it
is an eigenfunction of every LTI system). Mathematically, it tells us that the set of complex exponentials{
∀n, n ∈ Z :

(
ejω0nt

)}
form a basis for the space of T-periodic continuous time functions.

1.10.2.1 Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve
deeper into the use of the superposition principle. Let sT (t) be a periodic signal having period T . We want
to consider what happens to this signal's spectrum as the period goes to in�nity. We denote the spectrum
for any assumed value of the period by cn (T). We calculate the spectrum according to the Fourier formula

30"Continuous Time Complex Exponential" <http://cnx.org/content/m10060/latest/>
31"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>
32http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html

36 CHAPTER 1. FOUNDATIONS

for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier
Series.)

cn =
1
T

∫ T

0

s (t) exp (−ßω0t) dt (1.47)

where ω0 = 2π
T and where we have used a symmetric placement of the integration interval about the origin

for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the
period. De�ne

ST (f) ≡ Tcn =
1
T

∫ T

0

(ST (f) exp (ßω0t) dt(1.48)

making the corresponding Fourier Series

sT (t) =
∞∑
−∞

f (t) exp (ßω0t)
1
T

(1.49)

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

lim
T→∞

sT (t) ≡ s (t) =

∞∫
−∞

S (f) exp (ßω0t) df (1.50)

with

S (f) =

∞∫
−∞

s (t) exp (−ßω0t) dt (1.51)

Continuous-Time Fourier Transform

F (Ω) =
∫ ∞
−∞

f (t) e−(iΩt)dt (1.52)

Inverse CTFT

f (t) =
1

2π

∫ ∞
−∞
F (Ω) eiΩtdΩ (1.53)

warning: It is not uncommon to see the above formula written slightly di�erent. One of the most
common di�erences is the way that the exponential is written. The above equations use the radial
frequency variable Ω in the exponential, where Ω = 2πf , but it is also common to include the more
explicit expression, i2πft, in the exponential. Click here33 for an overview of the notation used in
Connexion's DSP modules.

Example 1.17
We know from Euler's formula that cos (ωt) + sin (ωt) = 1−j

2 ejωt + 1+j
2 e−jωt.

33"DSP notation" <http://cnx.org/content/m10161/latest/>

37

1.10.3 CTFT De�nition Demonstration

Figure 1.14: Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier
Transform. To Download, right-click and save as .cdf.

1.10.4 Example Problems

Exercise 1.10.1 (Solution on p. 48.)

Find the Fourier Transform (CTFT) of the function

f (t) =

 e−(αt) if t ≥ 0

0 otherwise
(1.54)

Exercise 1.10.2 (Solution on p. 48.)

Find the inverse Fourier transform of the ideal lowpass �lter de�ned by

X (Ω) =

 1 if |Ω| ≤M
0 otherwise

(1.55)

1.10.5 Fourier Transform Summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using
a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a

38 CHAPTER 1. FOUNDATIONS

continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f (t) =
∞∑

n=−∞
cne

jω0nt (1.56)

The continuous time Fourier series analysis formula gives the coe�cients of the Fourier series expansion.

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (1.57)

In both of these equations ω0 = 2π
T is the fundamental frequency.

1.11 Discrete Time Fourier Transform (DTFT)34

1.11.1 Introduction

In this module, we will derive an expansion for arbitrary discrete-time functions, and in doing so, derive the
Discrete Time Fourier Transform (DTFT).

Since complex exponentials35 are eigenfunctions of linear time-invariant (LTI) systems36, calculating the
output of an LTI system H given eiωn as an input amounts to simple multiplication, where ω0 = 2πk

N , and
where H [k] ∈ C is the eigenvalue corresponding to k. As shown in the �gure, a simple exponential input
would yield the output

y [n] = H [k] eiωn (1.58)

Figure 1.15: Simple LTI system.

Using this and the fact that H is linear, calculating y [n] for combinations of complex exponentials is
also straightforward.

c1e
iω1n + c2e

iω2n → c1H [k1] eiω1n + c2H [k2] eiω1n

∑
l

cle
iωln →

∑
l

clH [kl] eiωln

The action of H on an input such as those in the two equations above is easy to explain. H inde-
pendently scales each exponential component eiωln by a di�erent complex number H [kl] ∈ C. As such, if
we can write a function y [n] as a combination of complex exponentials it allows us to easily calculate the
output of a system.

34This content is available online at <http://cnx.org/content/m10108/2.18/>.
35"Continuous Time Complex Exponential" <http://cnx.org/content/m10060/latest/>
36"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>

39

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals
in terms of a set of simpler functions by superposition of a number of complex exponentials. Below we will
present the Discrete-Time Fourier Transform (DTFT). Because the DTFT deals with nonperiodic
signals, we must �nd a way to include all real frequencies in the general equations. For the DTFT we simply
utilize summation over all real numbers rather than summation over integers in order to express the aperiodic
signals.

1.11.2 DTFT synthesis

It can be demonstrated that an arbitrary Discrete Time-periodic function f [n] can be written as a linear
combination of harmonic complex sinusoids

f [n] =
N−1∑
k=0

cke
iω0kn (1.59)

where ω0 = 2π
N is the fundamental frequency. For almost all f [n] of practical interest, there exists cn to

make (1.59) true. If f [n] is �nite energy (f [n] ∈ L2 [0, N]), then the equality in (1.59) holds in the sense
of energy convergence; with discrete-time signals, there are no concerns for divergence as there are with
continuous-time signals.

The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0kn is in f [n]. The formula
shows f [n] as a sum of complex exponentials, each of which is easily processed by an LTI system (since it
is an eigenfunction of every LTI system). Mathematically, it tells us that the set of complex exponentials{
∀k, k ∈ Z :

(
ejω0kn

)}
form a basis for the space of N-periodic discrete time functions.

1.11.2.1 Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve
deeper into the use of the superposition principle. Let sT (t) be a periodic signal having period T . We want
to consider what happens to this signal's spectrum as the period goes to in�nity. We denote the spectrum
for any assumed value of the period by cn (T). We calculate the spectrum according to the Fourier formula
for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier
Series.)

cn =
1
T

∫ T

0

s (t) exp (−ßω0t) dt (1.60)

where ω0 = 2π
T and where we have used a symmetric placement of the integration interval about the origin

for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the
period. De�ne

ST (f) ≡ Tcn =
1
T

∫ T

0

(ST (f) exp (ßω0t) dt(1.61)

making the corresponding Fourier Series

sT (t) =
∞∑
−∞

f (t) exp (ßω0t)
1
T

(1.62)

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

lim
T→∞

sT (t) ≡ s (t) =

∞∫
−∞

S (f) exp (ßω0t) df (1.63)

40 CHAPTER 1. FOUNDATIONS

with

S (f) =

∞∫
−∞

s (t) exp (−ßω0t) dt (1.64)

Discrete-Time Fourier Transform

F (ω) =
∞∑

n=−∞
f [n] e−(iωn) (1.65)

Inverse DTFT

f [n] =
1

2π

∫ π

−π
F (ω) eiωndω (1.66)

warning: It is not uncommon to see the above formula written slightly di�erent. One of the most
common di�erences is the way that the exponential is written. The above equations use the radial
frequency variable ω in the exponential, where ω = 2πf , but it is also common to include the more
explicit expression, i2πft, in the exponential. Sometimes DTFT notation is expressed as F

(
eiω
)
,

to make it clear that it is not a CTFT (which is denoted as F (Ω)). Click here37 for an overview of
the notation used in Connexion's DSP modules.

1.11.3 DTFT De�nition demonstration

Figure 1.16: Click on the above thumbnail image (when online) to download an interactive Mathematica
Player demonstrating Discrete Time Fourier Transform. To Download, right-click and save target as .cdf.

37"DSP notation" <http://cnx.org/content/m10161/latest/>

41

1.11.4 DTFT Summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using
a set of complex exponentials as a basis. The discrete time Fourier transform synthesis formula expresses a
discrete time, aperiodic function as the in�nite sum of continuous frequency complex exponentials.

F (ω) =
∞∑

n=−∞
f [n] e−(iωn) (1.67)

The discrete time Fourier transform analysis formula takes the same discrete time domain signal and
represents the signal in the continuous frequency domain.

f [n] =
1

2π

∫ π

−π
F (ω) eiωndω (1.68)

1.12 DFT as a Matrix Operation38

38This content is available online at <http://cnx.org/content/m10962/2.5/>.

42 CHAPTER 1. FOUNDATIONS

1.12.1 Matrix Review

Recall:

• Vectors in RN :

∀xi, xi ∈ R :

x =


x0

x1

. . .

xN−1




• Vectors in CN :

∀xi, xi ∈ C :

x =


x0

x1

. . .

xN−1




• Transposition:

a. transpose:

xT =
(
x0 x1 . . . xN−1

)
b. conjugate:

xH =
(
x0 x1 . . . xN−1

)
• Inner product39:

a. real:

xT y =
N−1∑
i=0

xiyi

b. complex:

xHy =
N−1∑
i=0

xnyn

• Matrix Multiplication:

Ax =


a00 a01 . . . a0,N−1

a10 a11 . . . a1,N−1

...
... . . .

...

aN−1,0 aN−1,1 . . . aN−1,N−1




x0

x1

. . .

xN−1

 =


y0

y1

. . .

yN−1



yk =
N−1∑
n=0

aknxn

• Matrix Transposition:

AT =


a00 a10 . . . aN−1,0

a01 a11 . . . aN−1,1

...
... . . .

...

a0,N−1 a1,N−1 . . . aN−1,N−1


39"Inner Products" <http://cnx.org/content/m10755/latest/>

43

Matrix transposition involved simply swapping the rows with columns.

AH = AT

The above equation is Hermitian transpose.

AT k,n = An,k

AHk,n = An,k

1.12.2 Representing DFT as Matrix Operation

Now let's represent the DFT40 in vector-matrix notation.

x =


x [0]

x [1]

. . .

x [N − 1]



X =


X [0]

X [1]

. . .

X [N − 1]

 ∈ CN

Here x is the vector of time samples and X is the vector of DFT coe�cients. How are x and X related:

X [k] =
N−1∑
n=0

x [n] e−(i 2π
N kn)

where

akn =
(
e−(i 2π

N)
)kn

= WN
kn

so
X = Wx

where X is the DFT vector, W is the matrix and x the time domain vector.

Wk,n =
(
e−(i 2π

N)
)kn

X = W


x [0]

x [1]

. . .

x [N − 1]


IDFT:

x [n] =
1
N

N−1∑
k=0

X [k]
(
ei

2π
N

)nk
40"Discrete Fourier Transform (DFT)" <http://cnx.org/content/m10249/latest/>

44 CHAPTER 1. FOUNDATIONS

where (
ei

2π
N

)nk
= WN

nk

WN
nk is the matrix Hermitian transpose. So,

x =
1
N
WHX

where x is the time vector, 1
NW

H is the inverse DFT matrix, and X is the DFT vector.

1.13 The FFT Algorithm41

De�nition 1.1: FFT
(Fast Fourier Transform) An e�cient computational algorithm for computing the DFT42.

1.13.1 The Fast Fourier Transform FFT

DFT can be expensive to compute directly

∀k, 0 ≤ k ≤ N − 1 :

(
X [k] =

N−1∑
n=0

x [n] e−(i2π k
N n)

)
For each k, we must execute:

• N complex multiplies
• N − 1 complex adds

The total cost of direct computation of an N -point DFT is

• N2 complex multiplies
• N (N − 1) complex adds

How many adds and mults of real numbers are required?
This " O

(
N2
)
" computation rapidly gets out of hand, as N gets large:

N 1 10 100 1000 106

N2 1 100 10,000 106 1012

Table 1.4

Figure 1.17

The FFT provides us with a much more e�cient way of computing the DFT. The FFT requires only "
O (N logN)" computations to compute the N -point DFT.

41This content is available online at <http://cnx.org/content/m10964/2.6/>.
42"Discrete Fourier Transform (DFT)" <http://cnx.org/content/m10249/latest/>

45

N 10 100 1000 106

N2 100 10,000 106 1012

N logN 10 200 3000 6× 106

Table 1.5

How long is 1012µsec? More than 10 days! How long is 6× 106µsec?

Figure 1.18

The FFT and digital computers revolutionized DSP (1960 - 1980).

1.13.2 How does the FFT work?

• The FFT exploits the symmetries of the complex exponentials WN
kn = e−(i 2π

N kn)

• WN
kn are called "twiddle factors"

Rule 1.1: Complex Conjugate Symmetry

WN
k(N−n) = WN

−(kn) = WN
kn

e−(i2π k
N (N−n)) = ei2π

k
N n = e−(i2π k

N n)

Rule 1.2: Periodicity in n and k

WN
kn = WN

k(N+n) = WN
(k+N)n

e−(i 2π
N kn) = e−(i 2π

N k(N+n)) = e−(i 2π
N (k+N)n)

WN = e−(i 2π
N)

1.13.3 Decimation in Time FFT

• Just one of many di�erent FFT algorithms
• The idea is to build a DFT out of smaller and smaller DFTs by decomposing x [n] into smaller and

smaller subsequences.
• Assume N = 2m (a power of 2)

46 CHAPTER 1. FOUNDATIONS

1.13.3.1 Derivation

N is even, so we can complete X [k] by separating x [n] into two subsequences each of length N
2 .

x [n]→

 N
2 if n = even
N
2 if n = odd

∀k, 0 ≤ k ≤ N − 1 :

(
X [k] =

N−1∑
n=0

x [n]WN
kn

)

X [k] =
∑
n=2r

x [n]WN
kn +

∑
n=2r+1

x [n]WN
kn

where 0 ≤ r ≤ N
2 − 1. So

X [k] =
∑N

2 −1
r=0 x [2r]WN

2kr +
∑N

2 −1
r=0 x [2r + 1]WN

(2r+1)k

=
∑N

2 −1
r=0 x [2r]

(
WN

2
)kr

+WN
k∑N

2 −1
r=0 x [2r + 1]

(
WN

2
)kr (1.69)

where WN
2 = e−(i 2π

N 2) = e
−
„
i 2π
N
2

«
= WN

2
. So

X [k] =

N
2 −1∑
r=0

x [2r]WN
2

kr +WN
k

N
2 −1∑
r=0

x [2r + 1]WN
2

kr

where
∑N

2 −1
r=0 x [2r]WN

2

kr is N
2 -point DFT of even samples (G [k]) and

∑N
2 −1
r=0 x [2r + 1]WN

2

kr is N
2 -point

DFT of odd samples (H [k]).

∀k, 0 ≤ k ≤ N − 1 :
(
X [k] = G [k] +WN

kH [k]
)

Decomposition of an N -point DFT as a sum of 2 N
2 -point DFTs.

Why would we want to do this? Because it is more e�cient!

note: Cost to compute an N -point DFT is approximately N2 complex mults and adds.

But decomposition into 2 N
2 -point DFTs + combination requires only(

N

2

)2

+
(
N

2

)2

+N =
N2

2
+N

where the �rst part is the number of complex mults and adds for N
2 -point DFT, G [k]. The second part is

the number of complex mults and adds for N
2 -point DFT, H [k]. The third part is the number of complex

mults and adds for combination. And the total is N2

2 +N complex mults and adds.

Example 1.18: Savings
For N = 1000,

N2 = 106

N2

2
+N =

106

2
+ 1000

47

Because 1000 is small compared to 500,000,

N2

2
+N ' 106

2

So why stop here?! Keep decomposing. Break each of the N
2 -point DFTs into two

N
4 -point DFTs, etc.,

We can keep decomposing:

N

21
=
{
N

2
,
N

4
,
N

8
, . . . ,

N

2m−1
,
N

2m

}
= 1

where
m = log2N = times

Computational cost: N -pt DFT −→ two N
2 -pt DFTs. The cost is N

2 → 2
(
N
2

)2
+N . So replacing each

N
2 -pt DFT with two N

4 -pt DFTs will reduce cost to

2

(
2
(
N

4

)2

+
N

2

)
+N = 4

(
N

4

)2

+ 2N =
N2

22
+ 2N =

N2

2p
+ pN

As we keep going p = {3, 4, . . . ,m}, where m = log2N . We get the cost

N2

2log2N
+N log2N =

N2

N
+N log2N = N +N log2N

N +N log2N is the total number of complex adds and mults.
For large N , cost ' N log2N or " O (N log2N)", since N log2N � N for large N .

Figure 1.19: N = 8 point FFT. Summing nodes Wn
k twiddle multiplication factors.

note: Weird order of time samples

Figure 1.20: This is called "butter�ies."

48 CHAPTER 1. FOUNDATIONS

Solutions to Exercises in Chapter 1

Solution to Exercise 1.8.1 (p. 32)
In order to represent x in terms of b0 and b1 we will follow the same steps we used in the above example.

B =

 1 2

3 0



B−1 =

 0 1
2

1
3

−1
6


α = B−1x =

 1
2
3


And now we can write x in terms of b0 and b1.

x = b0 +
2
3
b1

And we can easily substitute in our known values of b0 and b1 to verify our results.
Solution to Exercise 1.10.1 (p. 37)
In order to calculate the Fourier transform, all we need to use is (1.52) (Continuous-Time Fourier Transform),
complex exponentials43, and basic calculus.

F (Ω) =
∫∞
−∞ f (t) e−(iΩt)dt

=
∫∞

0
e−(αt)e−(iΩt)dt

=
∫∞

0
e(−t)(α+iΩ)dt

= 0− −1
α+iΩ

(1.70)

F (Ω) =
1

α+ iΩ
(1.71)

Solution to Exercise 1.10.2 (p. 37)
Here we will use (1.53) (Inverse CTFT) to �nd the inverse FT given that t 6= 0.

x (t) = 1
2π

∫M
−M ei(Ω,t)dΩ

= 1
2π e

i(Ω,t)|Ω,Ω=eiw

= 1
πt sin (Mt)

(1.72)

x (t) =
M

π

(
sinc

Mt

π

)
(1.73)

43"Continuous Time Complex Exponential" <http://cnx.org/content/m10060/latest/>

Chapter 2

Sampling and Frequency Analysis

2.1 Introduction1

Contents of Sampling chapter

• Introduction(Current module)
• Proof (Section 2.2)
• Illustrations (Section 2.3)
• Matlab Example (Section 2.4)
• Hold operation2

• System view (Section 2.5)
• Aliasing applet3

• Exercises4

• Table of formulas5

2.1.1 Why sample?

This section introduces sampling. Sampling is the necessary fundament for all digital signal processing and
communication. Sampling can be de�ned as the process of measuring an analog signal at distinct points.

Digital representation of analog signals o�ers advantages in terms of

• robustness towards noise, meaning we can send more bits/s
• use of �exible processing equipment, in particular the computer
• more reliable processing equipment
• easier to adapt complex algorithms

1This content is available online at <http://cnx.org/content/m11419/1.29/>.
2"Hold operation" <http://cnx.org/content/m11458/latest/>
3"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
4"Exercises" <http://cnx.org/content/m11442/latest/>
5"Table of Formulas" <http://cnx.org/content/m11450/latest/>

49

50 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.1.2 Claude E. Shannon

Figure 2.1: Claude Elwood Shannon (1916-2001)

Claude Shannon6 has been called the father of information theory, mainly due to his landmark papers on
the "Mathematical theory of communication"7 . Harry Nyquist8 was the �rst to state the sampling theorem
in 1928, but it was not proven until Shannon proved it 21 years later in the paper "Communications in the
presence of noise"9 .

2.1.3 Notation

In this chapter we will be using the following notation

• Original analog signal x (t)
• Sampling frequency Fs
• Sampling interval Ts (Note that: Fs = 1

Ts
)

• Sampled signal xs (n). (Note that xs (n) = x (nTs))
• Real angular frequency Ω
• Digital angular frequency ω. (Note that: ω = ΩTs)

2.1.4 The Sampling Theorem

note: When sampling an analog signal the sampling frequency must be greater than twice the
highest frequency component of the analog signal to be able to reconstruct the original signal from
the sampled version.

6http://www.research.att.com/∼njas/doc/ces5.html
7http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
8http://www.wikipedia.org/wiki/Harry_Nyquist
9http://www.stanford.edu/class/ee104/shannonpaper.pdf

51

2.1.5

Finished? Have at look at: Proof (Section 2.2); Illustrations (Section 2.3); Matlab Example (Section 2.4);
Aliasing applet10; Hold operation11; System view (Section 2.5); Exercises12

2.2 Proof13

note: In order to recover the signal x (t) from it's samples exactly, it is necessary to sample x (t)
at a rate greater than twice it's highest frequency component.

2.2.1 Introduction

As mentioned earlier (p. 49), sampling is the necessary fundament when we want to apply digital signal
processing on analog signals.

Here we present the proof of the sampling theorem. The proof is divided in two. First we �nd an
expression for the spectrum of the signal resulting from sampling the original signal x (t). Next we show
that the signal x (t) can be recovered from the samples. Often it is easier using the frequency domain when
carrying out a proof, and this is also the case here.

Key points in the proof

• We �nd an equation (2.8) for the spectrum of the sampled signal
• We �nd a simple method to reconstruct (2.14) the original signal
• The sampled signal has a periodic spectrum...
• ...and the period is 2× πFs

2.2.2 Proof part 1 - Spectral considerations

By sampling x (t) every Ts second we obtain xs (n). The inverse fourier transform of this time discrete
signal14 is

xs (n) =
1

2π

∫ π

−π
Xs

(
eiω
)
eiωndω (2.1)

For convenience we express the equation in terms of the real angular frequency Ω using ω = ΩTs. We then
obtain

xs (n) =
Ts
2π

∫ π
Ts

−π
Ts

Xs

(
eiΩTs

)
eiΩTsndΩ (2.2)

The inverse fourier transform of a continuous signal is

x (t) =
1

2π

∫ ∞
−∞

X (iΩ) eiΩtdΩ (2.3)

From this equation we �nd an expression for x (nTs)

x (nTs) =
1

2π

∫ ∞
−∞

X (iΩ) eiΩnTsdΩ (2.4)

10"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
11"Hold operation" <http://cnx.org/content/m11458/latest/>
12"Exercises" <http://cnx.org/content/m11442/latest/>
13This content is available online at <http://cnx.org/content/m11423/1.27/>.
14"Discrete time signals" <http://cnx.org/content/m11476/latest/>

52 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

To account for the di�erence in region of integration we split the integration in (2.4) into subintervals of
length 2π

Ts
and then take the sum over the resulting integrals to obtain the complete area.

x (nTs) =
1

2π

∞∑
k=−∞

∫ (2k+1)π
Ts

(2k−1)π
Ts

X (iΩ) eiΩnTsdΩ (2.5)

Then we change the integration variable, setting Ω = η + 2×πk
Ts

x (nTs) =
1

2π

∞∑
k=−∞

∫ π
Ts

−π
Ts

X

(
i

(
η +

2× πk
Ts

))
ei(η+ 2×πk

Ts
)nTsdη (2.6)

We obtain the �nal form by observing that ei2×πkn = 1, reinserting η = Ω and multiplying by Ts
Ts

x (nTs) =
Ts
2π

∫ π
Ts

−π
Ts

∞∑
k=−∞

1
Ts
X

(
i

(
Ω +

2× πk
Ts

))
eiΩnTsdΩ (2.7)

To make xs (n) = x (nTs) for all values of n, the integrands in (2.2) and (2.7) have to agreee, that is

Xs

(
eiΩTs

)
=

1
Ts

∞∑
k=−∞

X

(
i

(
Ω +

2πk
Ts

))
(2.8)

This is a central result. We see that the digital spectrum consists of a sum of shifted versions of the original,
analog spectrum. Observe the periodicity!

We can also express this relation in terms of the digital angular frequency ω = ΩTs

Xs

(
eiω
)

=
1
Ts

∞∑
k=−∞

X

(
i
ω + 2× πk

Ts

)
(2.9)

This concludes the �rst part of the proof. Now we want to �nd a reconstruction formula, so that we can
recover x (t) from xs (n).

2.2.3 Proof part II - Signal reconstruction

For a bandlimited (Figure 2.3) signal the inverse fourier transform is

x (t) =
1

2π

∫ π
Ts

−π
Ts

X (iΩ) eiΩtdΩ (2.10)

In the interval we are integrating we have: Xs

(
eiΩTs

)
= X(iΩ)

Ts
. Substituting this relation into (2.10) we get

x (t) =
Ts
2π

∫ π
Ts

−π
Ts

Xs

(
eiΩTs

)
eiΩtdΩ (2.11)

Using the DTFT15 relation for Xs

(
eiΩTs

)
we have

x (t) =
Ts
2π

∫ π
Ts

−π
Ts

∞∑
n=−∞

xs (n) e−(iΩnTs)eiΩtdΩ (2.12)

15"Table of Formulas" <http://cnx.org/content/m11450/latest/>

53

Interchanging integration and summation (under the assumption of convergence) leads to

x (t) =
Ts
2π

∞∑
n=−∞

xs (n)
∫ π

Ts

−π
Ts

eiΩ(t−nTs)dΩ (2.13)

Finally we perform the integration and arrive at the important reconstruction formula

x (t) =
∞∑

n=−∞
xs (n)

sin
(
π
Ts

(t− nTs)
)

π
Ts

(t− nTs)
(2.14)

(Thanks to R.Loos for pointing out an error in the proof.)

54 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.2.4 Summary

note: Xs

(
eiΩTs

)
= 1

Ts

∑∞
k=−∞X

(
i
(

Ω + 2πk
Ts

))

note: x (t) =
∑∞
n=−∞ xs (n)

sin(π
Ts

(t−nTs))
π
Ts

(t−nTs)

2.2.5

Go to Introduction (Section 2.1); Illustrations (Section 2.3); Matlab Example (Section 2.4); Hold operation16;
Aliasing applet17; System view (Section 2.5); Exercises18 ?

2.3 Illustrations19

In this module we illustrate the processes involved in sampling and reconstruction. To see how all these
processes work together as a whole, take a look at the system view (Section 2.5). In Sampling and recon-
struction with Matlab (Section 2.4) we provide a Matlab script for download. The matlab script shows the
process of sampling and reconstruction live.

2.3.1 Basic examples

Example 2.1
To sample an analog signal with 3000 Hz as the highest frequency component requires sampling
at 6000 Hz or above.

Example 2.2
The sampling theorem can also be applied in two dimensions, i.e. for image analysis. A 2D
sampling theorem has a simple physical interpretation in image analysis: Choose the sampling
interval such that it is less than or equal to half of the smallest interesting detail in the image.

2.3.2 The process of sampling

We start o� with an analog signal. This can for example be the sound coming from your stereo at home or
your friend talking.

The signal is then sampled uniformly. Uniform sampling implies that we sample every Ts seconds. In
Figure 2.2 we see an analog signal. The analog signal has been sampled at times t = nTs.

16"Hold operation" <http://cnx.org/content/m11458/latest/>
17"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
18"Exercises" <http://cnx.org/content/m11442/latest/>
19This content is available online at <http://cnx.org/content/m11443/1.33/>.

55

Figure 2.2: Analog signal, samples are marked with dots.

In signal processing it is often more convenient and easier to work in the frequency domain. So let's look
at at the signal in frequency domain, Figure 2.3. For illustration purposes we take the frequency content
of the signal as a triangle. (If you Fourier transform the signal in Figure 2.2 you will not get such a nice
triangle.)

Figure 2.3: The spectrum X (iΩ).

Notice that the signal in Figure 2.3 is bandlimited. We can see that the signal is bandlimited because

56 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

X (iΩ) is zero outside the interval [−Ωg,Ωg]. Equivalentely we can state that the signal has no angular

frequencies above Ωg, corresponding to no frequencies above Fg = Ωg
2π .

Now let's take a look at the sampled signal in the frequency domain. While proving (Section 2.2) the
sampling theorem we found the the spectrum of the sampled signal consists of a sum of shifted versions of
the analog spectrum. Mathematically this is described by the following equation:

Xs

(
eiΩTs

)
=

1
Ts

∞∑
k=−∞

X

(
i

(
Ω +

2πk
Ts

))
(2.15)

2.3.2.1 Sampling fast enough

In Figure 2.4 we show the result of sampling x (t) according to the sampling theorem (Section 2.1.4: The
Sampling Theorem). This means that when sampling the signal in Figure 2.2/Figure 2.3 we use Fs ≥ 2Fg.
Observe in Figure 2.4 that we have the same spectrum as in Figure 2.3 for Ω ∈ [−Ωg,Ωg], except for the
scaling factor 1

Ts
. This is a consequence of the sampling frequency. As mentioned in the proof (Key points

in the proof, p. 51) the spectrum of the sampled signal is periodic with period 2πFs = 2π
Ts
.

Figure 2.4: The spectrum Xs. Sampling frequency is OK.

So now we are, according to the sample theorem (Section 2.1.4: The Sampling Theorem), able to recon-
struct the original signal exactly. How we can do this will be explored further down under reconstruction
(Section 2.3.3: Reconstruction). But �rst we will take a look at what happens when we sample too slowly.

2.3.2.2 Sampling too slowly

If we sample x (t) too slowly, that is Fs < 2Fg, we will get overlap between the repeated spectra, see
Figure 2.5. According to (2.15) the resulting spectra is the sum of these. This overlap gives rise to the
concept of aliasing.

note: If the sampling frequency is less than twice the highest frequency component, then frequen-
cies in the original signal that are above half the sampling rate will be "aliased" and will appear in
the resulting signal as lower frequencies.

The consequence of aliasing is that we cannot recover the original signal, so aliasing has to be avoided.
Sampling too slowly will produce a sequence xs (n) that could have orginated from a number of signals.
So there is no chance of recovering the original signal. To learn more about aliasing, take a look at this
module20. (Includes an applet for demonstration!)

20"Aliasing Applet" <http://cnx.org/content/m11448/latest/>

57

Figure 2.5: The spectrum Xs. Sampling frequency is too low.

To avoid aliasing we have to sample fast enough. But if we can't sample fast enough (possibly due to
costs) we can include an Anti-Aliasing �lter. This will not able us to get an exact reconstruction but can
still be a good solution.

note: Typically a low-pass �lter that is applied before sampling to ensure that no components
with frequencies greater than half the sample frequency remain.

Example 2.3
The stagecoach e�ect

In older western movies you can observe aliasing on a stagecoach when it starts to roll. At �rst
the spokes appear to turn forward, but as the stagecoach increase its speed the spokes appear to
turn backward. This comes from the fact that the sampling rate, here the number of frames per
second, is too low. We can view each frame as a sample of an image that is changing continuously
in time. (Applet illustrating the stagecoach e�ect21)

2.3.3 Reconstruction

Given the signal in Figure 2.4 we want to recover the original signal, but the question is how?
When there is no overlapping in the spectrum, the spectral component given by k = 0 (see (2.15)),is

equal to the spectrum of the analog signal. This o�ers an oppurtunity to use a simple reconstruction process.
Remember what you have learned about �ltering. What we want is to change signal in Figure 2.4 into that
of Figure 2.3. To achieve this we have to remove all the extra components generated in the sampling process.
To remove the extra components we apply an ideal analog low-pass �lter as shown in Figure 2.6 As we see
the ideal �lter is rectangular in the frequency domain. A rectangle in the frequency domain corresponds to
a sinc22 function in time domain (and vice versa).

21http://�owers.ofthenight.org/wagonWheel/wagonWheel.html
22http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html

58 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.6: H (iΩ) The ideal reconstruction �lter.

Then we have reconstructed the original spectrum, and as we know if two signals are identical in
the frequency domain, they are also identical in the time domain. End of reconstruction.

2.3.4 Conclusions

The Shannon sampling theorem requires that the input signal prior to sampling is band-limited to at most
half the sampling frequency. Under this condition the samples give an exact signal representation. It is truly
remarkable that such a broad and useful class signals can be represented that easily!

We also looked into the problem of reconstructing the signals form its samples. Again the simplicity of
the principle is striking: linear �ltering by an ideal low-pass �lter will do the job. However, the ideal �lter
is impossible to create, but that is another story...

2.3.5

Go to? Introduction (Section 2.1); Proof (Section 2.2); Illustrations (Section 2.3); Matlab Example (Sec-
tion 2.4); Aliasing applet23; Hold operation24; System view (Section 2.5); Exercises25

2.4 Sampling and Reconstruction with Matlab26

2.4.1 Matlab �les

Samprecon.m27

2.4.2

Introduction (Section 2.1); Proof (Section 2.2); Illustrations (Section 2.3); Aliasing applet28; Hold operation
(Section 2.4); System view (Section 2.5); Exercises29

23"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
24"Hold operation" <http://cnx.org/content/m11458/latest/>
25"Exercises" <http://cnx.org/content/m11442/latest/>
26This content is available online at <http://cnx.org/content/m11549/1.9/>.
27http://cnx.rice.edu/content/m11549/latest/Samprecon.m
28"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
29"Exercises" <http://cnx.org/content/m11442/latest/>

59

2.5 Systems View of Sampling and Reconstruction30

2.5.1 Ideal reconstruction system

Figure 2.7 shows the ideal reconstruction system based on the results of the Sampling theorem proof (Sec-
tion 2.2).

Figure 2.7 consists of a sampling device which produces a time-discrete sequence xs (n). The reconstruc-
tion �lter, h (t), is an ideal analog sinc31 �lter, with h (t) = sinc

(
t
Ts

)
. We can't apply the time-discrete

sequence xs (n) directly to the analog �lter h (t). To solve this problem we turn the sequence into an analog
signal using delta functions32. Thus we write xs (t) =

∑∞
n=−∞ xs (n) δ (t− nT).

Figure 2.7: Ideal reconstruction system

But when will the system produce an output x̂ (t) = x (t)? According to the sampling theorem (Sec-
tion 2.1.4: The Sampling Theorem) we have x̂ (t) = x (t) when the sampling frequency, Fs, is at least twice
the highest frequency component of x (t).

2.5.2 Ideal system including anti-aliasing

To be sure that the reconstructed signal is free of aliasing it is customary to apply a lowpass �lter, an
anti-aliasing �lter (p. 57), before sampling as shown in Figure 2.8.

Figure 2.8: Ideal reconstruction system with anti-aliasing �lter (p. 57)

Again we ask the question of when the system will produce an output x̂ (t) = s (t)? If the signal is entirely
con�ned within the passband of the lowpass �lter we will get perfect reconstruction if Fs is high enough.

But if the anti-aliasing �lter removes the "higher" frequencies, (which in fact is the job of the anti-aliasing
�lter), we will never be able to exactly reconstruct the original signal, s (t). If we sample fast enough we
can reconstruct x (t), which in most cases is satisfying.

The reconstructed signal, x̂ (t), will not have aliased frequencies. This is essential for further use of the
signal.

30This content is available online at <http://cnx.org/content/m11465/1.20/>.
31http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html
32"Table of Formulas" <http://cnx.org/content/m11450/latest/>

60 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.5.3 Reconstruction with hold operation

To make our reconstruction system realizable there are many things to look into. Among them are the fact
that any practical reconstruction system must input �nite length pulses into the reconstruction �lter. This
can be accomplished by the hold operation33. To alleviate the distortion caused by the hold opeator we
apply the output from the hold device to a compensator. The compensation can be as accurate as we wish,
this is cost and application consideration.

Figure 2.9: More practical reconstruction system with a hold component34

By the use of the hold component the reconstruction will not be exact, but as mentioned above we can
get as close as we want.

2.5.4

Introduction (Section 2.1); Proof (Section 2.2); Illustrations (Section 2.3); Matlab example (Section 2.4);
Hold operation35; Aliasing applet36; Exercises37

2.6 Sampling CT Signals: A Frequency Domain Perspective38

2.6.1 Understanding Sampling in the Frequency Domain

We want to relate xc (t) directly to x [n]. Compute the CTFT of

xs (t) =
∞∑

n=−∞
xc (nT) δ (t− nT)

Xs (Ω) =
∫∞
−∞

∑∞
n=−∞ xc (nT) δ (t− nT) e(−i)Ωtdt

=
∑∞
n=−∞ xc (nT)

∫∞
−∞ δ (t− nT) e(−i)Ωtdt

=
∑∞
n=−∞ x [n] e(−i)ΩnT

=
∑∞
n=−∞ x [n] e(−i)ωn

= X (ω)

(2.16)

where ω ≡ ΩT and X (ω) is the DTFT of x [n].

note:

Xs (Ω) =
1
T

∞∑
k=−∞

Xc (Ω− kΩs)

33"Hold operation" <http://cnx.org/content/m11458/latest/>
34"Hold operation" <http://cnx.org/content/m11458/latest/>
35"Hold operation" <http://cnx.org/content/m11458/latest/>
36"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
37"Exercises" <http://cnx.org/content/m11442/latest/>
38This content is available online at <http://cnx.org/content/m10994/2.2/>.

61

X (ω) = 1
T

∑∞
k=−∞Xc (Ω− kΩs)

= 1
T

∑∞
k=−∞Xc

(
ω−2πk
T

) (2.17)

where this last part is 2π-periodic.

2.6.1.1 Sampling

Figure 2.10

Example 2.4: Speech
Speech is intelligible if bandlimited by a CT lowpass �lter to the band ±4 kHz. We can sample
speech as slowly as _____?

62 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.11

Figure 2.12: Note that there is no mention of T or Ωs!

2.6.2 Relating x[n] to sampled x(t)

Recall the following equality:

xs (t) =
∑
nn

x (nT) δ (t− nT)

63

Figure 2.13

Recall the CTFT relation:

x (αt)↔ 1
α
X

(
Ω
α

)
(2.18)

where α is a scaling of time and 1
α is a scaling in frequency.

Xs (Ω) ≡ X (ΩT) (2.19)

2.7 The DFT: Frequency Domain with a Computer Analysis39

2.7.1 Introduction

We just covered ideal (and non-ideal) (time) sampling of CT signals (Section 2.6). This enabled DT signal
processing solutions for CT applications (Figure 2.14):

39This content is available online at <http://cnx.org/content/m10992/2.3/>.

64 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.14

Much of the theoretical analysis of such systems relied on frequency domain representations. How do we
carry out these frequency domain analysis on the computer? Recall the following relationships:

x [n] DTFT↔ X (ω)

x (t) CTFT↔ X (Ω)

where ω and Ω are continuous frequency variables.

2.7.1.1 Sampling DTFT

Consider the DTFT of a discrete-time (DT) signal x [n]. Assume x [n] is of �nite duration N (i.e., an N -point
signal).

X (ω) =
N−1∑
n=0

x [n] e(−i)ωn (2.20)

where X (ω) is the continuous function that is indexed by the real-valued parameter −π ≤ ω ≤ π. The
other function, x [n], is a discrete function that is indexed by integers.

We want to work with X (ω) on a computer. Why not just sample X (ω)?

X [k] = X
(

2π
N k
)

=
∑N−1
n=0 x [n] e(−i)2π k

N n
(2.21)

In (2.21) we sampled at ω = 2π
N k where k = {0, 1, . . . , N − 1} and X [k] for k = {0, . . . , N − 1} is called the

Discrete Fourier Transform (DFT) of x [n].

Example 2.5

Finite Duration DT Signal

Figure 2.15

The DTFT of the image in Figure 2.15 (Finite Duration DT Signal) is written as follows:

X (ω) =
N−1∑
n=0

x [n] e(−i)ωn (2.22)

65

where ω is any 2π-interval, for example −π ≤ ω ≤ π.

Sample X(ω)

Figure 2.16

where again we sampled at ω = 2π
N k where k = {0, 1, . . . ,M − 1}. For example, we take

M = 10

. In the following section (Section 2.7.1.1.1: Choosing M) we will discuss in more detail how we
should choose M , the number of samples in the 2π interval.

(This is precisely how we would plot X (ω) in Matlab.)

2.7.1.1.1 Choosing M

2.7.1.1.1.1 Case 1

Given N (length of x [n]), choose M � N to obtain a dense sampling of the DTFT (Figure 2.17):

Figure 2.17

2.7.1.1.1.2 Case 2

Choose M as small as possible (to minimize the amount of computation).
In general, we require M ≥ N in order to represent all information in

∀n, n = {0, . . . , N − 1} : (x [n])

Let's concentrate on M = N :
x [n] DFT↔ X [k]

for n = {0, . . . , N − 1} and k = {0, . . . , N − 1}

numbers↔ N numbers

66 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.7.2 Discrete Fourier Transform (DFT)

De�ne

X [k] ≡ X
(

2πk
N

)
(2.23)

where N = length (x [n]) and k = {0, . . . , N − 1}. In this case, M = N .

DFT

X [k] =
N−1∑
n=0

x [n] e(−i)2π k
N n (2.24)

Inverse DFT (IDFT)

x [n] =
1
N

N−1∑
k=0

X [k] ei2π
k
N n (2.25)

2.7.2.1 Interpretation

Represent x [n] in terms of a sum of N complex sinusoids40 of amplitudes X [k] and frequencies

∀k, k ∈ {0, . . . , N − 1} :
(
ωk =

2πk
N

)
note: Fourier Series with fundamental frequency 2π

N

2.7.2.1.1 Remark 1

IDFT treats x [n] as though it were N -periodic.

x [n] =
1
N

N−1∑
k=0

X [k] ei2π
k
N n (2.26)

where n ∈ {0, . . . , N − 1}
Exercise 2.7.1 (Solution on p. 107.)

What about other values of n?

2.7.2.1.2 Remark 2

Proof that the IDFT inverts the DFT for n ∈ {0, . . . , N − 1}

1
N

∑N−1
k=0 X [k] ei2π

k
N n = 1

N

∑N−1
k=0

∑N−1
m=0 x [m] e(−i)2π k

Nmei2π
k
N n

= ???
(2.27)

Example 2.6: Computing DFT
Given the following discrete-time signal (Figure 2.18) with N = 4, we will compute the DFT using
two di�erent methods (the DFT Formula and Sample DTFT):

40"Continuous Time Complex Exponential" <http://cnx.org/content/m10060/latest/>

67

Figure 2.18

1. DFT Formula

X [k] =
∑N−1
n=0 x [n] e(−i)2π k

N n

= 1 + e(−i)2π k4 + e(−i)2π k4 2 + e(−i)2π k4 3

= 1 + e(−i)π2 k + e(−i)πk + e(−i) 3
2πk

(2.28)

Using the above equation, we can solve and get the following results:

x [0] = 4

x [1] = 0

x [2] = 0

x [3] = 0

2. Sample DTFT. Using the same �gure, Figure 2.18, we will take the DTFT of the signal and
get the following equations:

X (ω) =
∑3
n=0 e

(−i)ωn

= 1−e(−i)4ω
1−e(−i)ω

= ???

(2.29)

Our sample points will be:

ωk =
2πk

4
=
π

2
k

where k = {0, 1, 2, 3} (Figure 2.19).

68 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.19

2.7.3 Periodicity of the DFT

DFT X [k] consists of samples of DTFT, so X (ω), a 2π-periodic DTFT signal, can be converted to X [k],
an N -periodic DFT.

X [k] =
N−1∑
n=0

x [n] e(−i)2π k
N n (2.30)

where e(−i)2π k
N n is an N -periodic basis function (See Figure 2.20).

Figure 2.20

Also, recall,

x [n] = 1
N

∑N−1
n=0 X [k] ei2π

k
N n

= 1
N

∑N−1
n=0 X [k] ei2π

k
N (n+mN)

= ???

(2.31)

69

Example 2.7: Illustration

Figure 2.21

note: When we deal with the DFT, we need to remember that, in e�ect, this treats the signal as
an N -periodic sequence.

2.7.4 A Sampling Perspective

Think of sampling the continuous function X (ω), as depicted in Figure 2.22. S (ω) will represent the
sampling function applied to X (ω) and is illustrated in Figure 2.22 as well. This will result in our discrete-
time sequence, X [k].

70 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.22

note: Remember the multiplication in the frequency domain is equal to convolution in the time
domain!

2.7.4.1 Inverse DTFT of S(ω)

∞∑
k=−∞

δ

(
ω − 2πk

N

)
(2.32)

Given the above equation, we can take the DTFT and get the following equation:

N

∞∑
m=−∞

δ [n−mN] ≡ S [n] (2.33)

Exercise 2.7.2 (Solution on p. 107.)

Why does (2.33) equal S [n]?

71

So, in the time-domain we have (Figure 2.23):

Figure 2.23

72 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.7.5 Connections

Figure 2.24

Combine signals in Figure 2.24 to get signals in Figure 2.25.

Figure 2.25

73

2.8 Discrete-Time Processing of CT Signals41

2.8.1 DT Processing of CT Signals

DSP System

Figure 2.26

2.8.1.1 Analysis

Yc (Ω) = HLP (Ω)Y (ΩT) (2.34)

where we know that Y (ω) = X (ω)G (ω) and G (ω) is the frequency response of the DT LTI system. Also,
remember that

ω ≡ ΩT

So,
Yc (Ω) = HLP (Ω)G (ΩT)X (ΩT) (2.35)

where Yc (Ω) and HLP (Ω) are CTFTs and G (ΩT) and X (ΩT) are DTFTs.

note:

X (ω) =
2π
T

∞∑
k=−∞

Xc

(
ω − 2πk

T

)
OR

X (ΩT) =
2π
T

∞∑
k=−∞

Xc (Ω− kΩs)

Therefore our �nal output signal, Yc (Ω), will be:

Yc (Ω) = HLP (Ω)G (ΩT)

(
2π
T

∞∑
k=−∞

Xc (Ω− kΩs)

)
(2.36)

41This content is available online at <http://cnx.org/content/m10993/2.2/>.

74 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Now, if Xc (Ω) is bandlimited to
[
−Ωs

2 ,
Ωs
2

]
and we use the usual lowpass reconstruction �lter in the D/A,

Figure 2.27:

Figure 2.27

Then,

Yc (Ω) =

 G (ΩT)Xc (Ω) if |Ω| < Ωs
2

0 otherwise
(2.37)

75

2.8.1.2 Summary

For bandlimited signals sampled at or above the Nyquist rate, we can relate the input and output of the
DSP system by:

Yc (Ω) = Geff (Ω)Xc (Ω) (2.38)

where

Geff (Ω) =

 G (ΩT) if |Ω| < Ωs
2

0 otherwise

Figure 2.28

2.8.1.2.1 Note

Geff (Ω) is LTI if and only if the following two conditions are satis�ed:

1. G (ω) is LTI (in DT).
2. Xc (T) is bandlimited and sampling rate equal to or greater than Nyquist. For example, if we had a

simple pulse described by
Xc (t) = u (t− T0)− u (t− T1)

where T1 > T0. If the sampling period T > T1 − T0, then some samples might "miss" the pulse while
others might not be "missed." This is what we term time-varying behavior.

Example 2.8

76 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.29

If 2π
T > 2B and ω1 < BT , determine and sketch Yc (Ω) using Figure 2.29.

2.8.2 Application: 60Hz Noise Removal

Figure 2.30

Unfortunately, in real-world situations electrodes also pick up ambient 60 Hz signals from lights, computers,
etc.. In fact, usually this "60 Hz noise" is much greater in amplitude than the EKG signal shown in
Figure 2.30. Figure 2.31 shows the EKG signal; it is barely noticeable as it has become overwhelmed by
noise.

77

Figure 2.31: Our EKG signal, y (t), is overwhelmed by noise.

2.8.2.1 DSP Solution

Figure 2.32

Figure 2.33

2.8.2.2 Sampling Period/Rate

First we must note that |Y (Ω) | is bandlimited to ±60 Hz. Therefore, the minimum rate should be 120
Hz. In order to get the best results we should set

fs = 240Hz

78 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

.

Ωs = 2π ×
(

240
rad
s

)

Figure 2.34

2.8.2.3 Digital Filter

Therefore, we want to design a digital �lter that will remove the 60Hz component and preserve the rest.

Figure 2.35

2.9 Short Time Fourier Transform42

2.9.1 Short Time Fourier Transform

The Fourier transforms (FT, DTFT, DFT, etc.) do not clearly indicate how the frequency content of a signal
changes over time.

That information is hidden in the phase - it is not revealed by the plot of the magnitude of the spectrum.

note: To see how the frequency content of a signal changes over time, we can cut the signal into
blocks and compute the spectrum of each block.

To improve the result,

1. blocks are overlapping

42This content is available online at <http://cnx.org/content/m10570/2.4/>.

79

2. each block is multiplied by a window that is tapered at its endpoints.

Several parameters must be chosen:

• Block length, R.
• The type of window.
• Amount of overlap between blocks. (Figure 2.36 (STFT: Overlap Parameter))
• Amount of zero padding, if any.

80 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

STFT: Overlap Parameter

Figure 2.36

The short-time Fourier transform is de�ned as

X (ω,m) = STFT (x (n)) := DTFT (x (n−m)w (n))

=
∑∞
n=−∞ x (n−m)w (n) e−(iωn)

=
∑R−1
n=0 x (n−m)w (n) e−(iωn)

(2.39)

where w (n) is the window function of length R.

81

1. The STFT of a signal x (n) is a function of two variables: time and frequency.
2. The block length is determined by the support of the window function w (n).
3. A graphical display of the magnitude of the STFT, |X (ω,m) |, is called the spectrogram of the signal.

It is often used in speech processing.
4. The STFT of a signal is invertible.
5. One can choose the block length. A long block length will provide higher frequency resolution (because

the main-lobe of the window function will be narrow). A short block length will provide higher time
resolution because less averaging across samples is performed for each STFT value.

6. A narrow-band spectrogram is one computed using a relatively long block length R, (long window
function).

7. A wide-band spectrogram is one computed using a relatively short block length R, (short window
function).

2.9.1.1 Sampled STFT

To numerically evaluate the STFT, we sample the frequency axis ω in N equally spaced samples from ω = 0
to ω = 2π.

∀k, 0 ≤ k ≤ N − 1 :
(
ωk =

2π
N
k

)
(2.40)

We then have the discrete STFT,

Xd (k,m) := X
(

2π
N k,m

)
=

∑R−1
n=0 x (n−m)w (n) e−(iωn)

=
∑R−1
n=0 x (n−m)w (n)WN

−(kn)

= DFTN
(
x (n−m)w (n) |R−1

n=0 , 0,. . .0
) (2.41)

where 0,. . .0 is N −R.
In this de�nition, the overlap between adjacent blocks is R − 1. The signal is shifted along the window

one sample at a time. That generates more points than is usually needed, so we also sample the STFT along
the time direction. That means we usually evaluate

Xd (k, Lm)

where L is the time-skip. The relation between the time-skip, the number of overlapping samples, and the
block length is

Overlap = R− L

Exercise 2.9.1 (Solution on p. 107.)

Match each signal to its spectrogram in Figure 2.37.

82 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

(a)

(b)

Figure 2.37

83

2.9.1.2 Spectrogram Example

Figure 2.38

84 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.39

The matlab program for producing the �gures above (Figure 2.38 and Figure 2.39).

% LOAD DATA

load mtlb;

x = mtlb;

figure(1), clf

plot(0:4000,x)

xlabel('n')

ylabel('x(n)')

% SET PARAMETERS

R = 256; % R: block length

window = hamming(R); % window function of length R

N = 512; % N: frequency discretization

L = 35; % L: time lapse between blocks

fs = 7418; % fs: sampling frequency

85

overlap = R - L;

% COMPUTE SPECTROGRAM

[B,f,t] = specgram(x,N,fs,window,overlap);

% MAKE PLOT

figure(2), clf

imagesc(t,f,log10(abs(B)));

colormap('jet')

axis xy

xlabel('time')

ylabel('frequency')

title('SPECTROGRAM, R = 256')

86 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.9.1.3 E�ect of window length R

Narrow-band spectrogram: better frequency resolution

Figure 2.40

87

Wide-band spectrogram: better time resolution

Figure 2.41

Here is another example to illustrate the frequency/time resolution trade-o� (See �gures - Figure 2.40
(Narrow-band spectrogram: better frequency resolution), Figure 2.41 (Wide-band spectrogram: better time
resolution), and Figure 2.42 (E�ect of Window Length R)).

88 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

E�ect of Window Length R

(a)

(b)

Figure 2.42

2.9.1.4 E�ect of L and N

A spectrogram is computed with di�erent parameters:

L ∈ {1, 10}

N ∈ {32, 256}

• L = time lapse between blocks.
• N = FFT length (Each block is zero-padded to length N .)

In each case, the block length is 30 samples.

Exercise 2.9.2 (Solution on p. 107.)

For each of the four spectrograms in Figure 2.43 can you tell what L and N are?

89

(a)

(b)

Figure 2.43

L and N do not e�ect the time resolution or the frequency resolution. They only a�ect the 'pixelation'.

2.9.1.5 E�ect of R and L

Shown below are four spectrograms of the same signal. Each spectrogram is computed using a di�erent set
of parameters.

R ∈ {120, 256, 1024}

L ∈ {35, 250}

where

• R = block length
• L = time lapse between blocks.

Exercise 2.9.3 (Solution on p. 107.)

For each of the four spectrograms in Figure 2.44, match the above values of L and R.

90 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.44

If you like, you may listen to this signal with the soundsc command; the data is in the �le: stft_data.m.
Here (Figure 2.45) is a �gure of the signal.

91

Figure 2.45

2.10 Spectrograms43

We know how to acquire analog signals for digital processing (pre-�ltering44, sampling45, and A/D conver-
sion46) and to compute spectra of discrete-time signals (using the FFT algorithm47), let's put these various
components together to learn how the spectrogram shown in Figure 2.46 (Speech Spectrogram), which is
used to analyze speech48, is calculated. The speech was sampled at a rate of 11.025 kHz and passed through
a 16-bit A/D converter.

Point of interest: Music compact discs (CDs) encode their signals at a sampling rate of 44.1
kHz. We'll learn the rationale for this number later. The 11.025 kHz sampling rate for the speech
is 1/4 of the CD sampling rate, and was the lowest available sampling rate commensurate with
speech signal bandwidths available on my computer.

Exercise 2.10.1 (Solution on p. 107.)

Looking at Figure 2.46 (Speech Spectrogram) the signal lasted a little over 1.2 seconds. How
long was the sampled signal (in terms of samples)? What was the datarate during the sampling
process in bps (bits per second)? Assuming the computer storage is organized in terms of bytes
(8-bit quantities), how many bytes of computer memory does the speech consume?

43This content is available online at <http://cnx.org/content/m0505/2.20/>.
44"The Sampling Theorem" <http://cnx.org/content/m0050/latest/>
45"The Sampling Theorem" <http://cnx.org/content/m0050/latest/>
46"Amplitude Quantization" <http://cnx.org/content/m0051/latest/>
47"Fast Fourier Transform (FFT)" <http://cnx.org/content/m10250/latest/>
48"Modeling the Speech Signal" <http://cnx.org/content/m0049/latest/>

92 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Speech Spectrogram

Time (s)

F
re

qu
en

cy
 (

H
z)

0 0.2 0.4 0.6 0.8 1 1.2
0

1000

2000

3000

4000

5000

Ri ce Uni ver si ty

Figure 2.46

The resulting discrete-time signal, shown in the bottom of Figure 2.46 (Speech Spectrogram), clearly
changes its character with time. To display these spectral changes, the long signal was sectioned into
frames: comparatively short, contiguous groups of samples. Conceptually, a Fourier transform of each
frame is calculated using the FFT. Each frame is not so long that signi�cant signal variations are retained
within a frame, but not so short that we lose the signal's spectral character. Roughly speaking, the speech
signal's spectrum is evaluated over successive time segments and stacked side by side so that the x-axis
corresponds to time and the y-axis frequency, with color indicating the spectral amplitude.

An important detail emerges when we examine each framed signal (Figure 2.47 (Spectrogram Hanning
vs. Rectangular)).

93

Spectrogram Hanning vs. Rectangular

256

FFT (512)

Rectangular
Window

f

Hanning
Window

FFT (512)

n

f

Figure 2.47: The top waveform is a segment 1024 samples long taken from the beginning of the
"Rice University" phrase. Computing Figure 2.46 (Speech Spectrogram) involved creating frames, here
demarked by the vertical lines, that were 256 samples long and �nding the spectrum of each. If a
rectangular window is applied (corresponding to extracting a frame from the signal), oscillations appear
in the spectrum (middle of bottom row). Applying a Hanning window gracefully tapers the signal toward
frame edges, thereby yielding a more accurate computation of the signal's spectrum at that moment of
time.

At the frame's edges, the signal may change very abruptly, a feature not present in the original signal.
A transform of such a segment reveals a curious oscillation in the spectrum, an artifact directly related to
this sharp amplitude change. A better way to frame signals for spectrograms is to apply a window: Shape
the signal values within a frame so that the signal decays gracefully as it nears the edges. This shaping is
accomplished by multiplying the framed signal by the sequence w (n). In sectioning the signal, we essentially
applied a rectangular window: w (n) = 1, 0 ≤ n ≤ N − 1. A much more graceful window is the Hanning
window; it has the cosine shape w (n) = 1

2

(
1− cos

(
2πn
N

))
. As shown in Figure 2.47 (Spectrogram Hanning

vs. Rectangular), this shaping greatly reduces spurious oscillations in each frame's spectrum. Considering
the spectrum of the Hanning windowed frame, we �nd that the oscillations resulting from applying the
rectangular window obscured a formant (the one located at a little more than half the Nyquist frequency).

Exercise 2.10.2 (Solution on p. 107.)

What might be the source of these oscillations? To gain some insight, what is the length- 2N
discrete Fourier transform of a length-N pulse? The pulse emulates the rectangular window, and
certainly has edges. Compare your answer with the length- 2N transform of a length- N Hanning
window.

94 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Non-overlapping windows

n

n

Figure 2.48: In comparison with the original speech segment shown in the upper plot, the non-
overlapped Hanning windowed version shown below it is very ragged. Clearly, spectral information
extracted from the bottom plot could well miss important features present in the original.

If you examine the windowed signal sections in sequence to examine windowing's a�ect on signal ampli-
tude, we see that we have managed to amplitude-modulate the signal with the periodically repeated window
(Figure 2.48 (Non-overlapping windows)). To alleviate this problem, frames are overlapped (typically by half
a frame duration). This solution requires more Fourier transform calculations than needed by rectangular
windowing, but the spectra are much better behaved and spectral changes are much better captured.

The speech signal, such as shown in the speech spectrogram (Figure 2.46: Speech Spectrogram), is
sectioned into overlapping, equal-length frames, with a Hanning window applied to each frame. The spectra
of each of these is calculated, and displayed in spectrograms with frequency extending vertically, window
time location running horizontally, and spectral magnitude color-coded. Figure 2.49 (Overlapping windows
for computing spectrograms) illustrates these computations.

95

Overlapping windows for computing spectrograms
Lo

g
S

pe
ct

ra
l M

ag
ni

tu
de

f

n

FFT FFT FFT FFT FFT FFT FFT

Figure 2.49: The original speech segment and the sequence of overlapping Hanning windows applied
to it are shown in the upper portion. Frames were 256 samples long and a Hanning window was applied
with a half-frame overlap. A length-512 FFT of each frame was computed, with the magnitude of the
�rst 257 FFT values displayed vertically, with spectral amplitude values color-coded.

Exercise 2.10.3 (Solution on p. 107.)

Why the speci�c values of 256 for N and 512 for K? Another issue is how was the length-512
transform of each length-256 windowed frame computed?

96 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.11 Filtering with the DFT49

2.11.1 Introduction

Figure 2.50

y [n] = x [n] ∗ h [n]

=
∑∞
k=−∞ x [k]h [n− k]

(2.42)

Y (ω) = X (ω)H (ω) (2.43)

Assume that H (ω) is speci�ed.
Exercise 2.11.1 (Solution on p. 107.)

How can we implement X (ω)H (ω) in a computer?

Recall that the DFT treats N -point sequences as if they are periodically extended (Figure 2.51):

49This content is available online at <http://cnx.org/content/m11022/2.3/>.

97

Figure 2.51

2.11.2 Compute IDFT of Y[k]

∼
y [n] = 1

N

∑N−1
k=0 Y [k] ei2π

k
N n

= 1
N

∑N−1
k=0 X [k]H [k] ei2π

k
N n

= 1
N

∑N−1
k=0

∑N−1
m=0 x [m] e−(i2π k

Nm)H [k] ei2π
k
N n

=
∑N−1
m=0 x [m]

(
1
N

∑N−1
k=0 H [k] ei2π

k
N (n−m)

)
=

∑N−1
m=0 x [m]h [((n−m))N]

(2.44)

And the IDFT periodically extends h [n]:

∼
h [n−m] = h [((n−m))N]

This computes as shown in Figure 2.52:

98 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.52

∼
y [n] =

N−1∑
m=0

x [m]h [((n−m))N] (2.45)

is called circular convolution and is denoted by Figure 2.53.

Figure 2.53: The above symbol for the circular convolution is for an N -periodic extension.

2.11.2.1 DFT Pair

Figure 2.54

Note that in general:

99

Figure 2.55

Example 2.9: Regular vs. Circular Convolution
To begin with, we are given the following two length-3 signals:

x [n] = {1, 2, 3}

h [n] = {1, 0, 2}

We can zero-pad these signals so that we have the following discrete sequences:

x [n] = {. . . , 0, 1, 2, 3, 0, . . . }

h [n] = {. . . , 0, 1, 0, 2, 0, . . . }

where x [0] = 1 and h [0] = 1.

• Regular Convolution:

y [n] =
2∑

m=0

x [m]h [n−m] (2.46)

Using the above convolution formula (refer to the link if you need a review of convolution
(Section 1.5)), we can calculate the resulting value for y [0] to y [4]. Recall that because we
have two length-3 signals, our convolved signal will be length-5.

· n = 0
{. . . , 0, 0, 0, 1, 2, 3, 0, . . . }

{. . . , 0, 2, 0, 1, 0, 0, 0, . . . }

y [0] = 1× 1 + 2× 0 + 3× 0

= 1
(2.47)

· n = 1
{. . . , 0, 0, 1, 2, 3, 0, . . . }

{. . . , 0, 2, 0, 1, 0, 0, . . . }

y [1] = 1× 0 + 2× 1 + 3× 0

= 2
(2.48)

100 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

· n = 2
{. . . , 0, 1, 2, 3, 0, . . . }

{. . . , 0, 2, 0, 1, 0, . . . }

y [2] = 1× 2 + 2× 0 + 3× 1

= 5
(2.49)

· n = 3
y [3] = 4 (2.50)

· n = 4
y [4] = 6 (2.51)

Regular Convolution Result

Figure 2.56: Result is �nite duration, not periodic!

• Circular Convolution:
∼
y [n] =

2∑
m=0

x [m]h [((n−m))N] (2.52)

And now with circular convolution our h [n] changes and becomes a periodically extended
signal:

h [((n))N] = {. . . , 1, 0, 2, 1, 0, 2, 1, 0, 2, . . . } (2.53)

· n = 0
{. . . , 0, 0, 0, 1, 2, 3, 0, . . . }

{. . . , 1, 2, 0, 1, 2, 0, 1, . . . }

∼
y [0] = 1× 1 + 2× 2 + 3× 0

= 5
(2.54)

101

· n = 1
{. . . , 0, 0, 0, 1, 2, 3, 0, . . . }

{. . . , 0, 1, 2, 0, 1, 2, 0, . . . }

∼
y [1] = 1× 1 + 2× 1 + 3× 2

= 8
(2.55)

· n = 2 ∼
y [2] = 5 (2.56)

· n = 3 ∼
y [3] = 5 (2.57)

· n = 4 ∼
y [4] = 8 (2.58)

Circular Convolution Result

Figure 2.57: Result is 3-periodic.

Figure 2.58 (Circular Convolution from Regular) illustrates the relationship between circular
convolution and regular convolution using the previous two �gures:

Circular Convolution from Regular

Figure 2.58: The left plot (the circular convolution results) has a "wrap-around" e�ect due to periodic
extension.

102 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.11.2.2 Regular Convolution from Periodic Convolution

1. "Zero-pad" x [n] and h [n] to avoid the overlap (wrap-around) e�ect. We will zero-pad the two signals
to a length-5 signal (5 being the duration of the regular convolution result):

x [n] = {1, 2, 3, 0, 0}

h [n] = {1, 0, 2, 0, 0}

2. Now take the DFTs of the zero-padded signals:

∼
y [n] = 1

N

∑4
k=0X [k]H [k] ei2π

k
5n

=
∑4
m=0 x [m]h [((n−m))5]

(2.59)

Now we can plot this result (Figure 2.59):

Figure 2.59: The sequence from 0 to 4 (the underlined part of the sequence) is the regular convolution
result. From this illustration we can see that it is 5-periodic!

note: We can compute the regular convolution result of a convolution of an M -point signal
x [n] with an N -point signal h [n] by padding each signal with zeros to obtain two M + N − 1
length sequences and computing the circular convolution (or equivalently computing the IDFT of
H [k]X [k], the product of the DFTs of the zero-padded signals) (Figure 2.60).

103

Figure 2.60: Note that the lower two images are simply the top images that have been zero-padded.

2.11.3 DSP System

Figure 2.61: The system has a length N impulse response, h [n]

1. Sample �nite duration continuous-time input x (t) to get x [n] where n = {0, . . . ,M − 1}.
2. Zero-pad x [n] and h [n] to length M +N − 1.
3. Compute DFTs X [k] and H [k]
4. Compute IDFTs of X [k]H [k]

y [n] =
∼
y [n]

where n = {0, . . . ,M +N − 1}.
5. Reconstruct y (t)

104 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.12 Image Restoration Basics50

2.12.1 Image Restoration

In many applications (e.g., satellite imaging, medical imaging, astronomical imaging, poor-quality family
portraits) the imaging system introduces a slight distortion. Often images are slightly blurred and image
restoration aims at deblurring the image.

The blurring can usually be modeled as an LSI system with a given PSF h [m,n].

Figure 2.62: Fourier Transform (FT) relationship between the two functions.

The observed image is
g [m,n] = h [m,n] ∗ f [m,n] (2.60)

G (u, v) = H (u, v)F (u, v) (2.61)

F (u, v) =
G (u, v)
H (u, v)

(2.62)

Example 2.10: Image Blurring
Above we showed the equations for representing the common model for blurring an image. In
Figure 2.63 we have an original image and a PSF function that we wish to apply to the image in
order to model a basic blurred image.

(a) (b)

Figure 2.63

Once we apply the PSF to the original image, we receive our blurred image that is shown in
Figure 2.64:

50This content is available online at <http://cnx.org/content/m10972/2.2/>.

105

Figure 2.64

2.12.1.1 Frequency Domain Analysis

Example 2.10 (Image Blurring) looks at the original images in its typical form; however, it is often useful
to look at our images and PSF in the frequency domain. In Figure 2.65, we take another look at the image
blurring example above and look at how the images and results would appear in the frequency domain if we
applied the fourier transforms.

106 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.65

107

Solutions to Exercises in Chapter 2

Solution to Exercise 2.7.1 (p. 66)

x [n+N] = ???

Solution to Exercise 2.7.2 (p. 70)
S [n] is N -periodic, so it has the following Fourier Series51:

ck = 1
N

∫ N
2

−N2
δ [n] e(−i)2π k

N ndn

= 1
N

(2.63)

S [n] =
∞∑

k=−∞

e(−i)2π k
N n (2.64)

where the DTFT of the exponential in the above equation is equal to δ
(
ω − 2πk

N

)
.

Solution to Exercise 2.9.1 (p. 81)

Solution to Exercise 2.9.2 (p. 88)

Solution to Exercise 2.9.3 (p. 89)

Solution to Exercise 2.10.1 (p. 91)
Number of samples equals 1.2 × 11025 = 13230. The datarate is 11025 × 16 = 176.4 kbps. The storage
required would be 26460 bytes.
Solution to Exercise 2.10.2 (p. 93)
The oscillations are due to the boxcar window's Fourier transform, which equals the sinc function.
Solution to Exercise 2.10.3 (p. 95)
These numbers are powers-of-two, and the FFT algorithm can be exploited with these lengths. To compute
a longer transform than the input signal's duration, we simply zero-pad the signal.
Solution to Exercise 2.11.1 (p. 96)
Discretize (sample) X (ω) and H (ω). In order to do this, we should take the DFTs of x [n] and h [n] to get
X [k] and X [k]. Then we will compute

∼
y [n] = IDFT (X [k]H [k])

Does
∼
y [n] = y [n]?

51"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>

108 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Chapter 3

Digital Filtering

3.1 Di�erence Equation1

3.1.1 Introduction

One of the most important concepts of DSP is to be able to properly represent the input/output relation-
ship to a given LTI system. A linear constant-coe�cient di�erence equation (LCCDE) serves as a way
to express just this relationship in a discrete-time system. Writing the sequence of inputs and outputs,
which represent the characteristics of the LTI system, as a di�erence equation help in understanding and
manipulating a system.

De�nition 3.1: di�erence equation
An equation that shows the relationship between consecutive values of a sequence and the di�er-
ences among them. They are often rearranged as a recursive formula so that a systems output can
be computed from the input signal and past outputs.
Example

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] (3.1)

3.1.2 General Formulas for the Di�erence Equation

As stated brie�y in the de�nition above, a di�erence equation is a very useful tool in describing and calculating
the output of the system described by the formula for a given sample n. The key property of the di�erence
equation is its ability to help easily �nd the transform, H (z), of a system. In the following two subsections,
we will look at the general form of the di�erence equation and the general conversion to a z-transform directly
from the di�erence equation.

3.1.2.1 Di�erence Equation

The general form of a linear, constant-coe�cient di�erence equation (LCCDE), is shown below:

N∑
k=0

aky [n− k] =
M∑
k=0

bkx [n− k] (3.2)

1This content is available online at <http://cnx.org/content/m10595/2.6/>.

109

110 CHAPTER 3. DIGITAL FILTERING

We can also write the general form to easily express a recursive output, which looks like this:

y [n] = −
N∑
k=1

aky [n− k] +
M∑
k=0

bkx [n− k] (3.3)

From this equation, note that y [n− k] represents the outputs and x [n− k] represents the inputs. The value
of N represents the order of the di�erence equation and corresponds to the memory of the system being
represented. Because this equation relies on past values of the output, in order to compute a numerical
solution, certain past outputs, referred to as the initial conditions, must be known.

3.1.2.2 Conversion to Z-Transform

Using the above formula, (3.2), we can easily generalize the transfer function, H (z), for any di�erence
equation. Below are the steps taken to convert any di�erence equation into its transfer function, i.e. z-
transform. The �rst step involves taking the Fourier Transform2 of all the terms in (3.2). Then we use
the linearity property to pull the transform inside the summation and the time-shifting property of the
z-transform to change the time-shifting terms to exponentials. Once this is done, we arrive at the following
equation: a0 = 1.

Y (z) = −
N∑
k=1

akY (z) z−k +
M∑
k=0

bkX (z) z−k (3.4)

H (z) = Y (z)
X(z)

=
PM
k=0 bkz

−k

1+
PN
k=1 akz

−k

(3.5)

3.1.2.3 Conversion to Frequency Response

Once the z-transform has been calculated from the di�erence equation, we can go one step further to de�ne
the frequency response of the system, or �lter, that is being represented by the di�erence equation.

note: Remember that the reason we are dealing with these formulas is to be able to aid us in
�lter design. A LCCDE is one of the easiest ways to represent FIR �lters. By being able to �nd
the frequency response, we will be able to look at the basic properties of any �lter represented by
a simple LCCDE.

Below is the general formula for the frequency response of a z-transform. The conversion is simple a matter
of taking the z-transform formula, H (z), and replacing every instance of z with eiw.

H (w) = H (z) |z,z=eiw

=
PM
k=0 bke

−(iwk)PN
k=0 ake

−(iwk)

(3.6)

Once you understand the derivation of this formula, look at the module concerning Filter Design from the
Z-Transform3 for a look into how all of these ideas of the Z-transform (Section 3.2), Di�erence Equation,
and Pole/Zero Plots (Section 3.4) play a role in �lter design.

2"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>
3"Discrete Time Filter Design" <http://cnx.org/content/m10548/latest/>

111

3.1.3 Example

Example 3.1: Finding Di�erence Equation
Below is a basic example showing the opposite of the steps above: given a transfer function one
can easily calculate the systems di�erence equation.

H (z) =
(z + 1)2(

z − 1
2

) (
z + 3

4

) (3.7)

Given this transfer function of a time-domain �lter, we want to �nd the di�erence equation. To
begin with, expand both polynomials and divide them by the highest order z.

H (z) = (z+1)(z+1)

(z− 1
2)(z+ 3

4)
= z2+2z+1

z2+2z+1− 3
8

= 1+2z−1+z−2

1+ 1
4 z
−1− 3

8 z
−2

(3.8)

From this transfer function, the coe�cients of the two polynomials will be our ak and bk values
found in the general di�erence equation formula, (3.2). Using these coe�cients and the above form
of the transfer function, we can easily write the di�erence equation:

x [n] + 2x [n− 1] + x [n− 2] = y [n] +
1
4
y [n− 1]− 3

8
y [n− 2] (3.9)

In our �nal step, we can rewrite the di�erence equation in its more common form showing the
recursive nature of the system.

y [n] = x [n] + 2x [n− 1] + x [n− 2] +
−1
4
y [n− 1] +

3
8
y [n− 2] (3.10)

3.1.4 Solving a LCCDE

In order for a linear constant-coe�cient di�erence equation to be useful in analyzing a LTI system, we must
be able to �nd the systems output based upon a known input, x (n), and a set of initial conditions. Two
common methods exist for solving a LCCDE: the direct method and the indirect method, the later
being based on the z-transform. Below we will brie�y discuss the formulas for solving a LCCDE using each
of these methods.

3.1.4.1 Direct Method

The �nal solution to the output based on the direct method is the sum of two parts, expressed in the following
equation:

y (n) = yh (n) + yp (n) (3.11)

The �rst part, yh (n), is referred to as the homogeneous solution and the second part, yh (n), is referred
to as particular solution. The following method is very similar to that used to solve many di�erential
equations, so if you have taken a di�erential calculus course or used di�erential equations before then this
should seem very familiar.

112 CHAPTER 3. DIGITAL FILTERING

3.1.4.1.1 Homogeneous Solution

We begin by assuming that the input is zero, x (n) = 0. Now we simply need to solve the homogeneous
di�erence equation:

N∑
k=0

aky [n− k] = 0 (3.12)

In order to solve this, we will make the assumption that the solution is in the form of an exponential. We
will use lambda, λ, to represent our exponential terms. We now have to solve the following equation:

N∑
k=0

akλ
n−k = 0 (3.13)

We can expand this equation out and factor out all of the lambda terms. This will give us a large polynomial
in parenthesis, which is referred to as the characteristic polynomial. The roots of this polynomial will
be the key to solving the homogeneous equation. If there are all distinct roots, then the general solution to
the equation will be as follows:

yh (n) = C1(λ1)n + C2(λ2)n + · · ·+ CN (λN)n (3.14)

However, if the characteristic equation contains multiple roots then the above general solution will be slightly
di�erent. Below we have the modi�ed version for an equation where λ1 has K multiple roots:

yh (n) = C1(λ1)n + C1n(λ1)n + C1n
2(λ1)n + · · ·+ C1n

K−1(λ1)n + C2(λ2)n + · · ·+ CN (λN)n (3.15)

3.1.4.1.2 Particular Solution

The particular solution, yp (n), will be any solution that will solve the general di�erence equation:

N∑
k=0

akyp (n− k) =
M∑
k=0

bkx (n− k) (3.16)

In order to solve, our guess for the solution to yp (n) will take on the form of the input, x (n). After guessing
at a solution to the above equation involving the particular solution, one only needs to plug the solution into
the di�erence equation and solve it out.

3.1.4.2 Indirect Method

The indirect method utilizes the relationship between the di�erence equation and z-transform, discussed
earlier (Section 3.1.2: General Formulas for the Di�erence Equation), to �nd a solution. The basic idea is
to convert the di�erence equation into a z-transform, as described above (Section 3.1.2.2: Conversion to Z-
Transform), to get the resulting output, Y (z). Then by inverse transforming this and using partial-fraction
expansion, we can arrive at the solution.

Z{y (n+ 1)− y (n)} = zY (z)− y (0) (3.17)

This can be interatively extended to an arbitrary order derivative as in Equation (3.18).

Z{−
N−1∑
m=0

y (n−m)} = znY (z)−
N−1∑
m=0

zn−m−1y(m) (0) (3.18)

113

Now, the Laplace transform of each side of the di�erential equation can be taken

Z{
N∑
k=0

ak

[
y (n−m+ 1)−

N−1∑
m=0

y (n−m) y (n)

]
= Z{x (n)}} (3.19)

which by linearity results in

N∑
k=0

akZ{y (n−m+ 1)−
N−1∑
m=0

y (n−m) y (n)} = Z{x (n)} (3.20)

and by di�erentiation properties in

N∑
k=0

ak

(
zkZ{y (n)} −

N−1∑
m=0

zk−m−1y(m) (0)

)
= Z{x (n)}. (3.21)

Rearranging terms to isolate the Laplace transform of the output,

Z{y (n)} =
Z{x (n)}+

∑N
k=0

∑k−1
m=0 akz

k−m−1y(m) (0)∑N
k=0 akz

k
. (3.22)

Thus, it is found that

Y (z) =
X (z) +

∑N
k=0

∑k−1
m=0 akz

k−m−1y(m) (0)∑N
k=0 akz

k
. (3.23)

In order to �nd the output, it only remains to �nd the Laplace transform X (z) of the input, substitute the
initial conditions, and compute the inverse Z-transform of the result. Partial fraction expansions are often
required for this last step. This may sound daunting while looking at (3.23), but it is often easy in practice,
especially for low order di�erence equations. (3.23) can also be used to determine the transfer function and
frequency response.

As an example, consider the di�erence equation

y [n− 2] + 4y [n− 1] + 3y [n] = cos (n) (3.24)

with the initial conditions y' (0) = 1 and y (0) = 0 Using the method described above, the Z transform of
the solution y [n] is given by

Y [z] =
z

[z2 + 1] [z + 1] [z + 3]
+

1
[z + 1] [z + 3]

. (3.25)

Performing a partial fraction decomposition, this also equals

Y [z] = .25
1

z + 1
− .35

1
z + 3

+ .1
z

z2 + 1
+ .2

1
z2 + 1

. (3.26)

Computing the inverse Laplace transform,

y (n) =
(
.25z−n − .35z−3n + .1cos (n) + .2sin (n)

)
u (n) . (3.27)

One can check that this satis�es that this satis�es both the di�erential equation and the initial conditions.

114 CHAPTER 3. DIGITAL FILTERING

3.2 The Z Transform: De�nition4

3.2.1 Basic De�nition of the Z-Transform

The z-transform of a sequence is de�ned as

X (z) =
∞∑

n=−∞
x [n] z−n (3.28)

Sometimes this equation is referred to as the bilateral z-transform. At times the z-transform is de�ned
as

X (z) =
∞∑
n=0

x [n] z−n (3.29)

which is known as the unilateral z-transform.
There is a close relationship between the z-transform and the Fourier transform of a discrete time

signal, which is de�ned as

X
(
eiω
)

=
∞∑

n=−∞
x [n] e−(iωn) (3.30)

Notice that that when the z−n is replaced with e−(iωn) the z-transform reduces to the Fourier Transform.
When the Fourier Transform exists, z = eiω , which is to have the magnitude of z equal to unity.

3.2.2 The Complex Plane

In order to get further insight into the relationship between the Fourier Transform and the Z-Transform it
is useful to look at the complex plane or z-plane. Take a look at the complex plane:

4This content is available online at <http://cnx.org/content/m10549/2.10/>.

115

Z-Plane

Figure 3.1

The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable
z. The position on the complex plane is given by reiω , and the angle from the positive, real axis around
the plane is denoted by ω. X (z) is de�ned everywhere on this plane. X

(
eiω
)
on the other hand is de�ned

only where |z| = 1, which is referred to as the unit circle. So for example, ω = 1 at z = 1 and ω = π at
z = −1. This is useful because, by representing the Fourier transform as the z-transform on the unit circle,
the periodicity of Fourier transform is easily seen.

3.2.3 Region of Convergence

The region of convergence, known as the ROC, is important to understand because it de�nes the region
where the z-transform exists. The ROC for a given x [n] , is de�ned as the range of z for which the z-transform
converges. Since the z-transform is a power series, it converges when x [n] z−n is absolutely summable.
Stated di�erently,

∞∑
n=−∞

|x [n] z−n| <∞ (3.31)

must be satis�ed for convergence. This is best illustrated by looking at the di�erent ROC's of the z-
transforms of αnu [n] and αnu [n− 1].

Example 3.2
For

x [n] = αnu [n] (3.32)

116 CHAPTER 3. DIGITAL FILTERING

Figure 3.2: x [n] = αnu [n] where α = 0.5.

X (z) =
∑∞
n=−∞ x [n] z−n

=
∑∞
n=−∞ αnu [n] z−n

=
∑∞
n=0 α

nz−n

=
∑∞
n=0

(
αz−1

)n
(3.33)

This sequence is an example of a right-sided exponential sequence because it is nonzero for n ≥ 0.
It only converges when |αz−1| < 1. When it converges,

X (z) = 1
1−αz−1

= z
z−α

(3.34)

If |αz−1| ≥ 1, then the series,
∑∞
n=0

(
αz−1

)n
does not converge. Thus the ROC is the range of

values where
|αz−1| < 1 (3.35)

or, equivalently,
|z| > |α| (3.36)

117

Figure 3.3: ROC for x [n] = αnu [n] where α = 0.5

Example 3.3
For

x [n] = (−αn)u [(−n)− 1] (3.37)

118 CHAPTER 3. DIGITAL FILTERING

Figure 3.4: x [n] = (−αn)u [(−n)− 1] where α = 0.5.

X (z) =
∑∞
n=−∞ x [n] z−n

=
∑∞
n=−∞ (−αn)u [−n− 1] z−n

= −
∑−1
n=−∞ αnz−n

= −
∑−1
n=−∞

(
α−1z

)−n
= −

∑∞
n=1

(
α−1z

)n
= 1−

∑∞
n=0

(
α−1z

)n
(3.38)

The ROC in this case is the range of values where

|α−1z| < 1 (3.39)

or, equivalently,
|z| < |α| (3.40)

If the ROC is satis�ed, then

X (z) = 1− 1
1−α−1z

= z
z−α

(3.41)

119

Figure 3.5: ROC for x [n] = (−αn)u [(−n)− 1]

3.3 Table of Common z-Transforms5

The table below provides a number of unilateral and bilateral z-transforms (Section 3.2). The table also
speci�es the region of convergence6.

note: The notation for z found in the table below may di�er from that found in other tables. For
example, the basic z-transform of u [n] can be written as either of the following two expressions,
which are equivalent:

z

z − 1
=

1
1− z−1

(3.42)

5This content is available online at <http://cnx.org/content/m10119/2.14/>.
6"Region of Convergence for the Z-transform" <http://cnx.org/content/m10622/latest/>

120 CHAPTER 3. DIGITAL FILTERING

Signal Z-Transform ROC

δ [n− k] z−k All (z)

u [n] z
z−1 |z| > 1

−u [(−n)− 1] z
z−1 |z| < 1

nu [n] z
(z−1)2 |z| > 1

n2u [n] z(z+1)

(z−1)3 |z| > 1

n3u [n]
z(z2+4z+1)

(z−1)4 |z| > 1

(−αn)u [(−n)− 1] z
z−α |z| < |α|

αnu [n] z
z−α |z| > |α|

nαnu [n] αz
(z−α)2 |z| > |α|

n2αnu [n] αz(z+α)

(z−α)3 |z| > |α|Qm
k=1 n−k+1

αmm! αnu [n] z
(z−α)m+1

γncos (αn)u [n] z(z−γcos(α))
z2−(2γcos(α))z+γ2 |z| > |γ|

γnsin (αn)u [n] zγsin(α)
z2−(2γcos(α))z+γ2 |z| > |γ|

Table 3.1

3.4 Understanding Pole/Zero Plots on the Z-Plane7

3.4.1 Introduction to Poles and Zeros of the Z-Transform

It is quite di�cult to qualitatively analyze the Laplace transform8 and Z-transform (Section 3.2), since
mappings of their magnitude and phase or real part and imaginary part result in multiple mappings of
2-dimensional surfaces in 3-dimensional space. For this reason, it is very common to examine a plot of a
transfer function's9 poles and zeros to try to gain a qualitative idea of what a system does.

Once the Z-transform of a system has been determined, one can use the information contained in function's
polynomials to graphically represent the function and easily observe many de�ning characteristics. The Z-
transform will have the below structure, based on Rational Functions10:

X (z) =
P (z)
Q (z)

(3.43)

The two polynomials, P (z) and Q (z), allow us to �nd the poles and zeros11 of the Z-Transform.

De�nition 3.2: zeros
1. The value(s) for z where P (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function zero.

De�nition 3.3: poles
1. The value(s) for z where Q (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

7This content is available online at <http://cnx.org/content/m10556/2.12/>.
8"The Laplace Transform" <http://cnx.org/content/m10110/latest/>
9"Transfer Functions" <http://cnx.org/content/m0028/latest/>

10"Rational Functions and the Z-Transform" <http://cnx.org/content/m10593/latest/>
11"Poles and Zeros" <http://cnx.org/content/m10112/latest/>

121

Example 3.4
Below is a simple transfer function with the poles and zeros shown below it.

H (z) =
z + 1(

z − 1
2

) (
z + 3

4

)
The zeros are: {−1}
The poles are:

{
1
2 ,−

3
4

}

3.4.2 The Z-Plane

Once the poles and zeros have been found for a given Z-Transform, they can be plotted onto the Z-Plane.
The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable z.
The position on the complex plane is given by reiθ and the angle from the positive, real axis around the
plane is denoted by θ. When mapping poles and zeros onto the plane, poles are denoted by an "x" and zeros
by an "o". The below �gure shows the Z-Plane, and examples of plotting zeros and poles onto the plane can
be found in the following section.

Z-Plane

Figure 3.6

3.4.3 Examples of Pole/Zero Plots

This section lists several examples of �nding the poles and zeros of a transfer function and then plotting
them onto the Z-Plane.

Example 3.5: Simple Pole/Zero Plot

H (z) =
z(

z − 1
2

) (
z + 3

4

)

122 CHAPTER 3. DIGITAL FILTERING

The zeros are: {0}
The poles are:

{
1
2 ,−

3
4

}
Pole/Zero Plot

Figure 3.7: Using the zeros and poles found from the transfer function, the one zero is mapped to zero
and the two poles are placed at 1

2
and − 3

4

Example 3.6: Complex Pole/Zero Plot

H (z) =
(z − i) (z + i)(

z −
(

1
2 −

1
2 i
)) (

z − 1
2 + 1

2 i
)

The zeros are: {i,−i}
The poles are:

{
−1, 1

2 + 1
2 i,

1
2 −

1
2 i
}

123

Pole/Zero Plot

Figure 3.8: Using the zeros and poles found from the transfer function, the zeros are mapped to ± (i),
and the poles are placed at −1, 1

2
+ 1

2
i and 1

2
− 1

2
i

Example 3.7: Pole-Zero Cancellation

An easy mistake to make with regards to poles and zeros is to think that a function like (s+3)(s−1)
s−1 is

the same as s+3. In theory they are equivalent, as the pole and zero at s = 1 cancel each other out
in what is known as pole-zero cancellation. However, think about what may happen if this were a
transfer function of a system that was created with physical circuits. In this case, it is very unlikely
that the pole and zero would remain in exactly the same place. A minor temperature change, for
instance, could cause one of them to move just slightly. If this were to occur a tremendous amount
of volatility is created in that area, since there is a change from in�nity at the pole to zero at the
zero in a very small range of signals. This is generally a very bad way to try to eliminate a pole. A
much better way is to use control theory to move the pole to a better place.

note: It is possible to have more than one pole or zero at any given point. For instance, the
discrete-time transfer function H (z) = z2 will have two zeros at the origin and the continuous-time
function H (s) = 1

s25 will have 25 poles at the origin.

MATLAB - If access to MATLAB is readily available, then you can use its functions to easily create
pole/zero plots. Below is a short program that plots the poles and zeros from the above example onto the
Z-Plane.

% Set up vector for zeros

z = [j ; -j];

% Set up vector for poles

p = [-1 ; .5+.5j ; .5-.5j];

figure(1);

124 CHAPTER 3. DIGITAL FILTERING

zplane(z,p);

title('Pole/Zero Plot for Complex Pole/Zero Plot Example');

3.4.4 Interactive Demonstration of Poles and Zeros

Figure 3.9: Interact (when online) with a Mathematica CDF demonstrating Pole/Zero Plots. To
Download, right-click and save target as .cdf.

125

3.4.5 Applications for pole-zero plots

3.4.5.1 Stability and Control theory

Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us.
Basically what we can gather from this is that the magnitude of the transfer function will be larger when
it is closer to the poles and smaller when it is closer to the zeros. This provides us with a qualitative
understanding of what the system does at various frequencies and is crucial to the discussion of stability12.

3.4.5.2 Pole/Zero Plots and the Region of Convergence

The region of convergence (ROC) for X (z) in the complex Z-plane can be determined from the pole/zero
plot. Although several regions of convergence may be possible, where each one corresponds to a di�erent
impulse response, there are some choices that are more practical. A ROC can be chosen to make the transfer
function causal and/or stable depending on the pole/zero plot.

Filter Properties from ROC

• If the ROC extends outward from the outermost pole, then the system is causal.
• If the ROC includes the unit circle, then the system is stable.

Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero Plot (Example 3.5:
Simple Pole/Zero Plot) discussed earlier. The shaded region indicates the ROC chosen for the �lter. From
this �gure, we can see that the �lter will be both causal and stable since the above listed conditions are both
met.

Example 3.8

H (z) =
z(

z − 1
2

) (
z + 3

4

)
Region of Convergence for the Pole/Zero Plot

Figure 3.10: The shaded area represents the chosen ROC for the transfer function.

12"BIBO Stability of Continuous Time Systems" <http://cnx.org/content/m10113/latest/>

126 CHAPTER 3. DIGITAL FILTERING

3.4.5.3 Frequency Response and Pole/Zero Plots

The reason it is helpful to understand and create these pole/zero plots is due to their ability to help us easily
design a �lter. Based on the location of the poles and zeros, the magnitude response of the �lter can be
quickly understood. Also, by starting with the pole/zero plot, one can design a �lter and obtain its transfer
function very easily.

3.5 Filtering in the Frequency Domain13

Because we are interested in actual computations rather than analytic calculations, we must consider the
details of the discrete Fourier transform. To compute the length-N DFT, we assume that the signal has a
duration less than or equal to N . Because frequency responses have an explicit frequency-domain speci�ca-
tion14 in terms of �lter coe�cients, we don't have a direct handle on which signal has a Fourier transform
equaling a given frequency response. Finding this signal is quite easy. First of all, note that the discrete-time
Fourier transform of a unit sample equals one for all frequencies. Because of the input and output of linear,
shift-invariant systems are related to each other by Y

(
ei2πf

)
= H

(
ei2πf

)
X
(
ei2πf

)
, a unit-sample input,

which has X
(
ei2πf

)
= 1, results in the output's Fourier transform equaling the system's transfer

function.

Exercise 3.5.1 (Solution on p. 147.)

This statement is a very important result. Derive it yourself.

In the time-domain, the output for a unit-sample input is known as the system's unit-sample response,
and is denoted by h (n). Combining the frequency-domain and time-domain interpretations of a linear, shift-
invariant system's unit-sample response, we have that h (n) and the transfer function are Fourier transform
pairs in terms of the discrete-time Fourier transform.

h (n)↔ H
(
ei2πf

)
(3.44)

Returning to the issue of how to use the DFT to perform �ltering, we can analytically specify the frequency
response, and derive the corresponding length-N DFT by sampling the frequency response.

∀k, k = {0, . . . , N − 1} :
(
H (k) = H

(
e
i2πk
N

))
(3.45)

Computing the inverse DFT yields a length-N signal no matter what the actual duration of the unit-
sample response might be. If the unit-sample response has a duration less than or equal to N (it's a FIR
�lter), computing the inverse DFT of the sampled frequency response indeed yields the unit-sample response.
If, however, the duration exceeds N , errors are encountered. The nature of these errors is easily explained
by appealing to the Sampling Theorem. By sampling in the frequency domain, we have the potential for
aliasing in the time domain (sampling in one domain, be it time or frequency, can result in aliasing in the
other) unless we sample fast enough. Here, the duration of the unit-sample response determines the minimal
sampling rate that prevents aliasing. For FIR systems � they by de�nition have �nite-duration unit sample
responses � the number of required DFT samples equals the unit-sample response's duration: N ≥ q.

Exercise 3.5.2 (Solution on p. 147.)

Derive the minimal DFT length for a length-q unit-sample response using the Sampling Theorem.
Because sampling in the frequency domain causes repetitions of the unit-sample response in the
time domain, sketch the time-domain result for various choices of the DFT length N .

13This content is available online at <http://cnx.org/content/m10257/2.17/>.
14"Discrete-Time Systems in the Frequency Domain", (1) <http://cnx.org/content/m0510/latest/#dtsinf>

127

Exercise 3.5.3 (Solution on p. 147.)

Express the unit-sample response of a FIR �lter in terms of di�erence equation coe�cients.
Note that the corresponding question for IIR �lters is far more di�cult to answer: Consider the
example15.

For IIR systems, we cannot use the DFT to �nd the system's unit-sample response: aliasing of the unit-
sample response will always occur. Consequently, we can only implement an IIR �lter accurately in the time
domain with the system's di�erence equation. Frequency-domain implementations are restricted to
FIR �lters.

Another issue arises in frequency-domain �ltering that is related to time-domain aliasing, this time when
we consider the output. Assume we have an input signal having duration Nx that we pass through a FIR
�lter having a length-q+ 1 unit-sample response. What is the duration of the output signal? The di�erence
equation for this �lter is

y (n) = b0x (n) + · · ·+ bqx (n− q) (3.46)

This equation says that the output depends on current and past input values, with the input value q samples
previous de�ning the extent of the �lter's memory of past input values. For example, the output at index
Nx depends on x (Nx) (which equals zero), x (Nx − 1), through x (Nx − q). Thus, the output returns to zero
only after the last input value passes through the �lter's memory. As the input signal's last value occurs at
index Nx−1, the last nonzero output value occurs when n− q = Nx−1 or n = q+Nx−1. Thus, the output
signal's duration equals q +Nx.

Exercise 3.5.4 (Solution on p. 147.)

In words, we express this result as "The output's duration equals the input's duration plus the
�lter's duration minus one.". Demonstrate the accuracy of this statement.

The main theme of this result is that a �lter's output extends longer than either its input or its unit-sample
response. Thus, to avoid aliasing when we use DFTs, the dominant factor is not the duration of input or
of the unit-sample response, but of the output. Thus, the number of values at which we must evaluate the
frequency response's DFT must be at least q+Nx and we must compute the same length DFT of the input.
To accommodate a shorter signal than DFT length, we simply zero-pad the input: Ensure that for indices
extending beyond the signal's duration that the signal is zero. Frequency-domain �ltering, diagrammed in
Figure 3.11, is accomplished by storing the �lter's frequency response as the DFT H (k), computing the
input's DFT X (k), multiplying them to create the output's DFT Y (k) = H (k)X (k), and computing the
inverse DFT of the result to yield y (n).

DFT
x(n)

H(k)

IDFT
X(k) Y(k) y(n)

Figure 3.11: To �lter a signal in the frequency domain, �rst compute the DFT of the input, multiply
the result by the sampled frequency response, and �nally compute the inverse DFT of the product. The
DFT's length must be at least the sum of the input's and unit-sample response's duration minus one.
We calculate these discrete Fourier transforms using the fast Fourier transform algorithm, of course.

Before detailing this procedure, let's clarify why so many new issues arose in trying to develop a frequency-
domain implementation of linear �ltering. The frequency-domain relationship between a �lter's input and

15"Discrete-Time Systems in the Time-Domain", Example 1 <http://cnx.org/content/m10251/latest/#p0>

128 CHAPTER 3. DIGITAL FILTERING

output is always true: Y
(
ei2πf

)
= H

(
ei2πf

)
X
(
ei2πf

)
. This Fourier transforms in this result are discrete-

time Fourier transforms; for example, X
(
ei2πf

)
=
∑
n x (n) e−(i2πfn). Unfortunately, using this relationship

to perform �ltering is restricted to the situation when we have analytic formulas for the frequency response
and the input signal. The reason why we had to "invent" the discrete Fourier transform (DFT) has the
same origin: The spectrum resulting from the discrete-time Fourier transform depends on the continuous
frequency variable f . That's �ne for analytic calculation, but computationally we would have to make an
uncountably in�nite number of computations.

note: Did you know that two kinds of in�nities can be meaningfully de�ned? A countably
in�nite quantity means that it can be associated with a limiting process associated with integers.
An uncountably in�nite quantity cannot be so associated. The number of rational numbers is
countably in�nite (the numerator and denominator correspond to locating the rational by row and
column; the total number so-located can be counted, voila!); the number of irrational numbers is
uncountably in�nite. Guess which is "bigger?"

The DFT computes the Fourier transform at a �nite set of frequencies � samples the true spectrum �
which can lead to aliasing in the time-domain unless we sample su�ciently fast. The sampling interval here
is 1

K for a length-K DFT: faster sampling to avoid aliasing thus requires a longer transform calculation.
Since the longest signal among the input, unit-sample response and output is the output, it is that signal's
duration that determines the transform length. We simply extend the other two signals with zeros (zero-pad)
to compute their DFTs.

Example 3.9
Suppose we want to average daily stock prices taken over last year to yield a running weekly
average (average over �ve trading sessions). The �lter we want is a length-5 averager (as shown in
the unit-sample response16), and the input's duration is 253 (365 calendar days minus weekend days
and holidays). The output duration will be 253 + 5 − 1 = 257, and this determines the transform
length we need to use. Because we want to use the FFT, we are restricted to power-of-two transform
lengths. We need to choose any FFT length that exceeds the required DFT length. As it turns
out, 256 is a power of two (28 = 256), and this length just undershoots our required length. To use
frequency domain techniques, we must use length-512 fast Fourier transforms.

16"Discrete-Time Systems in the Time-Domain", Figure 2 <http://cnx.org/content/m10251/latest/#�g1002>

129

Trading Day (1997)

D
ow

-J
on

es
 In

du
st

ria
l A

ve
ra

ge

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

Daily Average
Weekly Average

Figure 3.12: The blue line shows the Dow Jones Industrial Average from 1997, and the red one the
length-5 boxcar-�ltered result that provides a running weekly of this market index. Note the "edge"
e�ects in the �ltered output.

Figure 3.12 shows the input and the �ltered output. The MATLAB programs that compute the
�ltered output in the time and frequency domains are

Time Domain

h = [1 1 1 1 1]/5;

y = filter(h,1,[djia zeros(1,4)]);

Frequency Domain

h = [1 1 1 1 1]/5;

DJIA = fft(djia, 512);

H = fft(h, 512);

Y = H.*X;

y = ifft(Y);

note: The filter program has the feature that the length of its output equals the length of its
input. To force it to produce a signal having the proper length, the program zero-pads the input
appropriately.

MATLAB's fft function automatically zero-pads its input if the speci�ed transform length (its
second argument) exceeds the signal's length. The frequency domain result will have a small
imaginary component � largest value is 2.2 × 10−11 � because of the inherent �nite precision
nature of computer arithmetic. Because of the unfortunate mis�t between signal lengths and
favored FFT lengths, the number of arithmetic operations in the time-domain implementation is
far less than those required by the frequency domain version: 514 versus 62,271. If the input signal
had been one sample shorter, the frequency-domain computations would have been more than a
factor of two less (28,696), but far more than in the time-domain implementation.

130 CHAPTER 3. DIGITAL FILTERING

An interesting signal processing aspect of this example is demonstrated at the beginning and
end of the output. The ramping up and down that occurs can be traced to assuming the input is
zero before it begins and after it ends. The �lter "sees" these initial and �nal values as the di�erence
equation passes over the input. These artifacts can be handled in two ways: we can just ignore the
edge e�ects or the data from previous and succeeding years' last and �rst week, respectively, can
be placed at the ends.

3.6 Linear-Phase FIR Filters17

3.6.1 THE AMPLITUDE RESPONSE

If the real and imaginary parts of Hf (ω) are given by

Hf (ω) = < (ω) + i= (ω) (3.47)

the magnitude and phase are de�ned as

|Hf (ω) | =
√

(< (ω))2 + (= (ω))2

p (ω) = arctan
(
= (ω)
< (ω)

)
so that

Hf (ω) = |Hf (ω) |eip(ω) (3.48)

With this de�nition, |Hf (ω) | is never negative and p (ω) is usually discontinuous, but it can be very helpful
to write Hf (ω) as

Hf (ω) = A (ω) eiθ(ω) (3.49)

where A (ω) can be positive and negative, and θ (ω) continuous. A (ω) is called the amplitude response.
Figure 3.13 illustrates the di�erence between |Hf (ω) | and A (ω).

17This content is available online at <http://cnx.org/content/m10705/2.3/>.

131

Figure 3.13

A linear-phase phase �lter is one for which the continuous phase θ (ω) is linear.

Hf (ω) = A (ω) eiθ(ω)

with
θ (ω) = Mω +B

We assume in the following that the impulse response h (n) is real-valued.

3.6.2 WHY LINEAR-PHASE?

If a discrete-time cosine signal
x1 (n) = cos (ω1n+ φ1)

is processed through a discrete-time �lter with frequency response

Hf (ω) = A (ω) eiθ(ω)

then the output signal is given by

y1 (n) = A (ω1) cos (ω1n+ φ1 + θ (ω1))

132 CHAPTER 3. DIGITAL FILTERING

or

y1 (n) = A (ω1) cos
(
ω1

(
n+

θ (ω1)
ω1

)
+ φ1

)
The LTI system has the e�ect of scaling the cosine signal and delaying it by θ(ω1)

ω1
.

Exercise 3.6.1 (Solution on p. 147.)

When does the system delay cosine signals with di�erent frequencies by the same amount?

The function θ(ω)
ω is called the phase delay. A linear phase �lter therefore has constant phase delay.

3.6.3 WHY LINEAR-PHASE: EXAMPLE

Consider a discrete-time �lter described by the di�erence equation

y (n) = 0.1821x (n) + 0.7865x (n− 1) − 0.6804x (n− 2) + x (n− 3) +
0.6804y (n− 1)− 0.7865y (n− 2) + 0.1821y (n− 3)

(3.50)

When ω1 = 0.31π, then the delay is −θ(ω1)
ω1

= 2.45. The delay is illustrated in Figure 3.14:

Figure 3.14

133

Notice that the delay is fractional � the discrete-time samples are not exactly reproduced in the output.
The fractional delay can be interpreted in this case as a delay of the underlying continuous-time cosine signal.

3.6.4 WHY LINEAR-PHASE: EXAMPLE (2)

Consider the same system given on the previous slide, but let us change the frequency of the cosine signal.

When ω2 = 0.47π, then the delay is −θ(ω2)
ω2

= 0.14.

Figure 3.15

note: For this example, the delay depends on the frequency, because this system does not have
linear phase.

3.6.5 WHY LINEAR-PHASE: MORE

From the previous slides, we see that a �lter will delay di�erent frequency components of a signal by the
same amount if the �lter has linear phase (constant phase delay).

134 CHAPTER 3. DIGITAL FILTERING

In addition, when a narrow band signal (as in AM modulation) goes through a �lter, the envelop will be
delayed by the group delay or envelop delay of the �lter. The amount by which the envelop is delayed
is independent of the carrier frequency only if the �lter has linear phase.

Also, in applications like image processing, �lters with non-linear phase can introduce artifacts that are
visually annoying.

3.7 Filter Structures18

A realizable �lter must require only a �nite number of computations per output sample. For linear, causal,
time-Invariant �lters, this restricts one to rational transfer functions of the form

H (z) =
b0 + b1z

−1 + · · ·+ bmz
−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n

Assuming no pole-zero cancellations, H (z) is FIR if ∀i, i > 0 : (ai = 0), and IIR otherwise. Filter structures
usually implement rational transfer functions as di�erence equations.

Whether FIR or IIR, a given transfer function can be implemented with many di�erent �lter structures.
With in�nite-precision data, coe�cients, and arithmetic, all �lter structures implementing the same transfer
function produce the same output. However, di�erent �lter strucures may produce very di�erent errors with
quantized data and �nite-precision or �xed-point arithmetic. The computational expense and memory usage
may also di�er greatly. Knowledge of di�erent �lter structures allows DSP engineers to trade o� these factors
to create the best implementation.

3.8 Overview of Digital Filter Design19

Advantages of FIR �lters

1. Straight forward conceptually and simple to implement
2. Can be implemented with fast convolution
3. Always stable
4. Relatively insensitive to quantization
5. Can have linear phase (same time delay of all frequencies)

Advantages of IIR �lters

1. Better for approximating analog systems
2. For a given magnitude response speci�cation, IIR �lters often require much less computation than an

equivalent FIR, particularly for narrow transition bands

Both FIR and IIR �lters are very important in applications.

Generic Filter Design Procedure

1. Choose a desired response, based on application requirements
2. Choose a �lter class
3. Choose a quality measure
4. Solve for the �lter in class 2 optimizing criterion in 3

18This content is available online at <http://cnx.org/content/m11917/1.3/>.
19This content is available online at <http://cnx.org/content/m12776/1.2/>.

135

3.8.1 Perspective on FIR �ltering

Most of the time, people do L∞ optimal design, using the Parks-McClellan algorithm (Section 3.11). This
is probably the second most important technique in "classical" signal processing (after the Cooley-Tukey
(radix-220) FFT).

Most of the time, FIR �lters are designed to have linear phase. The most important advantage of FIR
�lters over IIR �lters is that they can have exactly linear phase. There are advanced design techniques for
minimum-phase �lters, constrained L2 optimal designs, etc. (see chapter 8 of text). However, if only the
magnitude of the response is important, IIR �lers usually require much fewer operations and are typically
used, so the bulk of FIR �lter design work has concentrated on linear phase designs.

3.9 Window Design Method21

The truncate-and-delay design procedure is the simplest and most obvious FIR design procedure.

Exercise 3.9.1 (Solution on p. 147.)

Is it any Good?

3.9.1 L2 optimization criterion

�nd ∀n, 0 ≤ n ≤ M − 1 : (h [n]), maximizing the energy di�erence between the desired response and the
actual response: i.e., �nd

minhn

{
hn,
∫ π

−π
(|Hd (ω)−H (ω) |)2

dω

}
by Parseval's relationship22

minhn

{
hn,
∫ π
−π (|Hd (ω)−H (ω) |)2dω

}
= 2π

∑∞
n=−∞ (|hd [n]− h [n] |)2 =

2π
(∑−1

n=−∞ (|hd [n]− h [n] |)2 +
∑M−1

n=0 (|hd [n]− h [n] |)2 +
∑∞

n=M (|hd [n]− h [n] |)2
) (3.51)

Since ∀n, n < 0n ≥M : (h [n]) this becomes

minhn

{
hn,
∫ π
−π (|Hd (ω)−H (ω) |)2dω

}
=

∑−1
h=−∞ (|hd [n] |)2 +∑M−1

n=0 (|h [n]− hd [n] |)2 +
∑∞

n=M (|hd [n] |)2

note: h [n] has no in�uence on the �rst and last sums.

The best we can do is let

h [n] =

 hd [n] if 0 ≤ n ≤M − 1

0 if else

Thus h [n] = hd [n]w [n],

w [n] =

 1 if 0 ≤ n (M − 1)

0 if else

20"Decimation-in-time (DIT) Radix-2 FFT" <http://cnx.org/content/m12016/latest/>
21This content is available online at <http://cnx.org/content/m12790/1.2/>.
22"Parseval's Theorem" <http://cnx.org/content/m0047/latest/>

136 CHAPTER 3. DIGITAL FILTERING

is optimal in a least-total-sqaured-error (L2, or energy) sense!

Exercise 3.9.2 (Solution on p. 147.)

Why, then, is this design often considered undersirable?

For desired spectra with discontinuities, the least-square designs are poor in a minimax (worst-case, or L∞)
error sense.

3.9.2 Window Design Method

Apply a more gradual truncation to reduce "ringing" (Gibb's Phenomenon23)

∀n 0 ≤ n ≤ M− 1 hn = h d nwn : (n 0 ≤ n ≤ M− 1 hn = h d nwn)

note: H (ω) = Hd (ω) ∗W (ω)

The window design procedure (except for the boxcar window) is ad-hoc and not optimal in any usual sense.
However, it is very simple, so it is sometimes used for "quick-and-dirty" designs of if the error criterion is
itself heurisitic.

3.10 Frequency Sampling Design Method for FIR �lters24

Given a desired frequency response, the frequency sampling design method designs a �lter with a frequency
response exactly equal to the desired response at a particular set of frequencies ωk.

Procedure

∀k, k = [o, 1, . . . , N − 1] :

(
Hd (ωk) =

M−1∑
n=0

h (n) e−(iωkn)

)
(3.52)

note: Desired Response must incluce linear phase shift (if linear phase is desired)

Exercise 3.10.1 (Solution on p. 148.)

What is Hd (ω) for an ideal lowpass �lter, coto� at ωc?

note: This set of linear equations can be written in matrix form

Hd (ωk) =
M−1∑
n=0

h (n) e−(iωkn) (3.53)


Hd (ω0)

Hd (ω1)
...

Hd (ωN−1)

 =


e−(iω00) e−(iω01) . . . e−(iω0(M−1))

e−(iω10) e−(iω11) . . . e−(iω1(M−1))

...
...

...
...

e−(iωM−10) e−(iωM−11) . . . e−(iωM−1(M−1))




h (0)

h (1)
...

h (M − 1)

 (3.54)

or
Hd = Wh

So

h = W−1Hd (3.55)

note: W is a square matrix for N = M , and invertible as long as ωi 6= ωj + 2πl, i 6= j

23"Gibbs Phenomena" <http://cnx.org/content/m10092/latest/>
24This content is available online at <http://cnx.org/content/m12789/1.2/>.

137

3.10.1 Important Special Case

What if the frequencies are equally spaced between 0 and 2π, i.e. ωk = 2πk
M + α

Then

Hd (ωk) =
M−1∑
n=0

h (n) e−(i 2πkn
M)e−(iαn) =

M−1∑
n=0

(
h (n) e−(iαn)

)
e−(i 2πkn

M) = DFT!

so

h (n) e−(iαn) =
1
M

M−1∑
k=0

Hd (ωk) ei
2πnk
M

or

h [n] =
eiαn

M

M−1∑
k=0

Hd [ωk] ei
2πnk
M = eiαnIDFT [Hd [ωk]]

3.10.2 Important Special Case #2

h [n] symmetric, linear phase, and has real coe�cients. Since h [n] = h [M − n], there are only M
2 degrees of

freedom, and only M
2 linear equations are required.

H [ωk] =
∑M−1
n=0 h [n] e−(iωkn)

=


∑M

2 −1
n=0 h [n]

(
e−(iωkn) + e−(iωk(M−n−1))

)
if M even∑M− 3

2
n=0 h [n]

(
e−(iωkn) + e−(iωk(M−n−1))

) (
h
[
M−1

2

]
e−(iωk M−1

2)
)

if M odd

=

 e−(iωk M−1
2)2

∑M
2 −1
n=0 h [n] cos

(
ωk
(
M−1

2 − n
))

if M even

e−(iωk M−1
2)2

∑M− 3
2

n=0 h [n] cos
(
ωk
(
M−1

2 − n
))

+ h
[
M−1

2

]
if M odd

(3.56)

Removing linear phase from both sides yields

A (ωk) =

 2
∑M

2 −1
n=0 h [n] cos

(
ωk
(
M−1

2 − n
))

if M even

2
∑M− 3

2
n=0 h [n] cos

(
ωk
(
M−1

2 − n
))

+ h
[
M−1

2

]
if M odd

Due to symmetry of response for real coe�cients, only M
2 ωk on ω ∈ [0, π) need be speci�ed, with the

frequencies −ωk thereby being implicitly de�ned also. Thus we have M
2 real-valued simultaneous linear

equations to solve for h [n].

3.10.2.1 Special Case 2a

h [n] symmetric, odd length, linear phase, real coe�cients, and ωk equally spaced: ∀k, 0 ≤ k ≤ M − 1 :(
ωk = nπk

M

)
h [n] = IDFT [Hd (ωk)]

= 1
M

∑M−1
k=0 A (ωk) e−(i 2πk

M)M−1
2 ei

2πnk
M

= 1
M

∑M−1
k=0 A (k) ei(

2πk
M (n−M−1

2))
(3.57)

To yield real coe�cients, A (ω) mus be symmetric

(A (ω) = A (−ω))⇒ (A [k] = A [M − k])

138 CHAPTER 3. DIGITAL FILTERING

h [n] = 1
M

(
A (0) +

∑M−1
2

k=1 A [k]
(
ei

2πk
M (n−M−1

2) + e−(i2πk(n−M−1
2))

))
= 1

M

(
A (0) + 2

∑M−1
2

k=1 A [k] cos
(

2πk
M

(
n− M−1

2

)))
= 1

M

(
A (0) + 2

∑M−1
2

k=1 A [k] (−1)kcos
(

2πk
M

(
n+ 1

2

))) (3.58)

Simlar equations exist for even lengths, anti-symmetric, and α = 1
2 �lter forms.

3.10.3 Comments on frequency-sampled design

This method is simple conceptually and very e�cient for equally spaced samples, since h [n] can be computed
using the IDFT.

H (ω) for a frequency sampled design goes exactly through the sample points, but it may be very far
o� from the desired response for ω 6= ωk. This is the main problem with frequency sampled design.

Possible solution to this problem: specify more frequency samples than degrees of freedom, and minimize
the total error in the frequency response at all of these samples.

3.10.4 Extended frequency sample design

For the samples H (ωk) where 0 ≤ k ≤ M − 1 and N > M , �nd h [n], where 0 ≤ n ≤ M − 1 minimizing
‖ Hd (ωk)−H (ωk) ‖

For ‖ l ‖∞ norm, this becomes a linear programming problem (standard packages availble!)
Here we will consider the ‖ l ‖2 norm.

To minimize the ‖ l ‖2 norm; that is,
∑N−1
n=0 |Hd (ωk)−H (ωk) |, we have an overdetermined set of linear

equations: 
e−(iω00) . . . e−(iω0(M−1))

...
...

...

e−(iωN−10) . . . e−(iωN−1(M−1))

h =


Hd (ω0)

Hd (ω1)
...

Hd (ωN−1)


or

Wh = Hd

The minimum error norm solution is well known to be h =
(
WW

)−1
WHd;

(
WW

)−1
W is well known as

the pseudo-inverse matrix.

note: Extended frequency sampled design discourages radical behavior of the frequency response
between samples for su�ciently closely spaced samples. However, the actual frequency response
may no longer pass exactly through any of the Hd (ωk).

3.11 Parks-McClellan FIR Filter Design25

The approximation tolerances for a �lter are very often given in terms of the maximum, or worst-case,
deviation within frequency bands. For example, we might wish a lowpass �lter in a (16-bit) CD player to
have no more than 1

2 -bit deviation in the pass and stop bands.

H (ω) =

 1− 1
217 ≤ |H (ω) | ≤ 1 + 1

217 if |ω| ≤ ωp
1

217 ≥ |H (ω) | if ωs ≤ |ω| ≤ π

25This content is available online at <http://cnx.org/content/m12799/1.3/>.

139

The Parks-McClellan �lter design method e�ciently designs linear-phase FIR �lters that are optimal in
terms of worst-case (minimax) error. Typically, we would like to have the shortest-length �lter achieving
these speci�cations. Figure Figure 3.16 illustrates the amplitude frequency response of such a �lter.

Figure 3.16: The black boxes on the left and right are the passbands, the black boxes in the middle
represent the stop band, and the space between the boxes are the transition bands. Note that overshoots
may be allowed in the transition bands.

Exercise 3.11.1 (Solution on p. 148.)

Must there be a transition band?

3.11.1 Formal Statement of the L-∞ (Minimax) Design Problem

For a given �lter length (M) and type (odd length, symmetric, linear phase, for example), and a relative
error weighting function W (ω), �nd the �lter coe�cients minimizing the maximum error

argmin
h
argmax

ω∈F
|E (ω) | = argmin

h
‖ E (ω) ‖∞

where
E (ω) = W (ω) (Hd (ω)−H (ω))

140 CHAPTER 3. DIGITAL FILTERING

and F is a compact subset of ω ∈ [0, π] (i.e., all ω in the passbands and stop bands).

note: Typically, we would often rather specify ‖ E (ω) ‖∞ ≤ δ and minimize over M and h;
however, the design techniques minimize δ for a given M . One then repeats the design procedure
for di�erent M until the minimum M satisfying the requirements is found.

We will discuss in detail the design only of odd-length symmetric linear-phase FIR �lters. Even-length
and anti-symmetric linear phase FIR �lters are essentially the same except for a slightly di�erent implicit
weighting function. For arbitrary phase, exactly optimal design procedures have only recently been developed
(1990).

3.11.2 Outline of L-∞ Filter Design

The Parks-McClellan method adopts an indirect method for �nding the minimax-optimal �lter coe�cients.

1. Using results from Approximation Theory, simple conditions for determining whether a given �lter is
L∞ (minimax) optimal are found.

2. An iterative method for �nding a �lter which satis�es these conditions (and which is thus optimal) is
developed.

That is, the L∞ �lter design problem is actually solved indirectly.

3.11.3 Conditions for L-∞ Optimality of a Linear-phase FIR Filter

All conditions are based on Chebyshev's "Alternation Theorem," a mathematical fact from polynomial
approximation theory.

3.11.3.1 Alternation Theorem

Let F be a compact subset on the real axis x, and let P (x) be and Lth-order polynomial

P (x) =
L∑
k=0

akx
k

Also, let D (x) be a desired function of x that is continuous on F , andW (x) a positive, continuous weighting
function on F . De�ne the error E (x) on F as

E (x) = W (x) (D (x)− P (x))

and
‖ E (x) ‖∞ = argmax

x∈F
|E (x) |

A necessary and su�cient condition that P (x) is the unique Lth-order polynomial minimizing ‖ E (x) ‖∞ is
that E (x) exhibits at least L+ 2 "alternations;" that is, there must exist at least L+ 2 values of x, xk ∈ F ,
k = [0, 1, . . . , L+ 1], such that x0 < x1 < · · · < xL+2 and such that E (xk) = −E (xk+1) = ± (‖ E ‖∞)

Exercise 3.11.2 (Solution on p. 148.)

What does this have to do with linear-phase �lter design?

141

3.11.4 Optimality Conditions for Even-length Symmetric Linear-phase Filters

For M even,

A (ω) =
L∑
n=0

h (L− n) cos
(
ω

(
n+

1
2

))
where L = M

2 − 1 Using the trigonometric identity cos (α+ β) = cos (α− β) + 2cos (α) cos (β) to pull out
the ω

2 term and then using the other trig identities (p. 148), it can be shown that A (ω) can be written as

A (ω) = cos
(ω

2

) L∑
k=0

αkcosk (ω)

Again, this is a polynomial in x = cos (ω), except for a weighting function out in front.

E (ω) = W (ω) (Ad (ω)−A (ω))

= W (ω)
(
Ad (ω)− cos

(
ω
2

)
P (ω)

)
= W (ω) cos

(
ω
2

)(Ad(ω)

cos(ω2) − P (ω)
) (3.59)

which implies
E (x) = W ' (x)

(
A'

d (x)− P (x)
)

(3.60)

where

W ' (x) = W
(

(cos (x))−1
)

cos
(

1
2

(cos (x))−1

)
and

A'

d (x) =
Ad

(
(cos (x))−1

)
cos
(

1
2 (cos (x))−1

)
Again, this is a polynomial approximation problem, so the alternation theorem holds. If E (ω) has at least
L+ 2 = M

2 + 1 alternations, the even-length symmetric �lter is optimal in an L∞ sense.
The prototypical �lter design problem:

W =

 1 if |ω| ≤ ωp
δs
δp

if |ωs| ≤ |ω|

See Figure 3.17.

142 CHAPTER 3. DIGITAL FILTERING

Figure 3.17

3.11.5 L-∞ Optimal Lowpass Filter Design Lemma

1. The maximum possible number of alternations for a lowpass �lter is L + 3: The proof is that the

extrema of a polynomial occur only where the derivative is zero: ∂P (x)
∂x = 0. Since P ′ (x) is an

(L− 1)th-order polynomial, it can have at most L − 1 zeros. However, the mapping x = cos (ω)
implies that ∂A(ω)

∂ω = 0 at ω = 0 and ω = π, for two more possible alternation points. Finally, the
band edges can also be alternations, for a total of L− 1 + 2 + 2 = L+ 3 possible alternations.

2. There must be an alternation at either ω = 0 or ω = π.
3. Alternations must occur at ωp and ωs. See Figure 3.17.
4. The �lter must be equiripple except at possibly ω = 0 or ω = π. Again see Figure 3.17.

note: The alternation theorem doesn't directly suggest a method for computing the optimal �lter.
It simply tells us how to recognize that a �lter is optimal, or isn't optimal. What we need is an
intelligent way of guessing the optimal �lter coe�cients.

143

In matrix form, these L+ 2 simultaneous equations become

1 cos (ω0) cos (2ω0) ... cos (Lω0) 1
W (ω0)

1 cos (ω1) cos (2ω1) ... cos (Lω1) −1
W (ω1)

...
...

.
...

...
...

...
...

. . .
...

...
...

...
... ...

. . .
...

1 cos (ωL+1) cos (2ωL+1) ... cos (LωL+1) ±(1)
W (ωL+1)





h (L)

h (L− 1)
...

h (1)

h (0)

δ


=



Ad (ω0)

Ad (ω1)
...
...
...

Ad (ωL+1)


or

W

 h

δ

 = Ad

So, for the given set of L+ 2 extremal frequencies, we can solve for h and δ via (h, δ)T = W−1Ad. Using the
FFT, we can compute A (ω) of h (n), on a dense set of frequencies. If the old ωk are, in fact the extremal
locations of A (ω), then the alternation theorem is satis�ed and h (n) is optimal. If not, repeat the process
with the new extremal locations.

3.11.6 Computational Cost

O
(
L3
)
for the matrix inverse and N log2N for the FFT (N ≥ 32L, typically), per iteration!

This method is expensive computationally due to the matrix inverse.
A more e�cient variation of this method was developed by Parks and McClellan (1972), and is based on

the Remez exchange algorithm. To understand the Remez exchange algorithm, we �rst need to understand
Lagrange Interpoloation.

Now A (ω) is an Lth-order polynomial in x = cos (ω), so Lagrange interpolation can be used to exactly
compute A (ω) from L+ 1 samples of A (ωk), k = [0, 1, 2, ..., L].

Thus, given a set of extremal frequencies and knowing δ, samples of the amplitude response A (ω) can
be computed directly from the

A (ωk) =
(−1)k(1)

W (ωk)
δ +Ad (ωk) (3.61)

without solving for the �lter coe�cients!
This leads to computational savings!
Note that (3.61) is a set of L+ 2 simultaneous equations, which can be solved for δ to obtain (Rabiner,

1975)

δ =
∑L+1
k=0 γkAd (ωk)∑L+1
k=0

(−1)k(1)γk
W (ωk)

(3.62)

where

γk =
L+1∏

i=i6=k,0

1
cos (ωk)− cos (ωi)

The result is the Parks-McClellan FIR �lter design method, which is simply an application of the Remez
exchange algorithm to the �lter design problem. See Figure 3.18.

144 CHAPTER 3. DIGITAL FILTERING

Figure 3.18: The initial guess of extremal frequencies is usually equally spaced in the band. Computing
δ costs O

`
L2

´
. Using Lagrange interpolation costs O (16LL) ' O

`
16L2

´
. Computing h (n) costs O

`
L3

´
,

but it is only done once!

145

The cost per iteration is O
(
16L2

)
, as opposed to O

(
L3
)
; much more e�cient for large L. Can also

interpolate to DFT sample frequencies, take inverse FFT to get corresponding �lter coe�cients, and zeropad
and take longer FFT to e�ciently interpolate.

3.12 FIR Filter Design using MATLAB26

3.12.1 FIR Filter Design Using MATLAB

3.12.1.1 Design by windowing

The MATLAB function fir1() designs conventional lowpass, highpass, bandpass, and bandstop linear-phase
FIR �lters based on the windowing method. The command

b = fir1(N,Wn)

returns in vector b the impulse response of a lowpass �lter of order N. The cut-o� frequency Wn must be
between 0 and 1 with 1 corresponding to the half sampling rate.

The command

b = fir1(N,Wn,'high')

returns the impulse response of a highpass �lter of order N with normalized cuto� frequency Wn.
Similarly, b = fir1(N,Wn,'stop') with Wn a two-element vector designating the stopband designs a

bandstop �lter.
Without explicit speci�cation, the Hamming window is employed in the design. Other windowing

functions can be used by specifying the windowing function as an extra argument of the function. For
example, Blackman window can be used instead by the command b = fir1(N, Wn, blackman(N)).

3.12.1.2 Parks-McClellan FIR �lter design

The MATLAB command

b = remez(N,F,A)

returns the impulse response of the length N+1 linear phase FIR �lter of order N designed by Parks-McClellan
algorithm. F is a vector of frequency band edges in ascending order between 0 and 1 with 1 corresponding
to the half sampling rate. A is a real vector of the same size as F which speci�es the desired amplitude of
the frequency response of the points (F(k),A(k)) and (F(k+1),A(k+1)) for odd k. For odd k, the bands
between F(k+1) and F(k+2) is considered as transition bands.

26This content is available online at <http://cnx.org/content/m10917/2.2/>.

146 CHAPTER 3. DIGITAL FILTERING

3.13 MATLAB FIR Filter Design Exercise27

3.13.1 FIR Filter Design MATLAB Exercise

3.13.1.1 Design by windowing

Exercise 3.13.1 (Solution on p. 148.)

Assuming sampling rate at 48kHz, design an order-40 low-pass �lter having cut-o� frequency 10kHz
by windowing method. In your design, use Hamming window as the windowing function.

3.13.1.2 Parks-McClellan Optimal Design

Exercise 3.13.2 (Solution on p. 148.)

Assuming sampling rate at 48kHz, design an order-40 lowpass �lter having transition band 10kHz-
11kHz using the Parks-McClellan optimal FIR �lter design algorithm.

27This content is available online at <http://cnx.org/content/m10918/2.2/>.

147

Solutions to Exercises in Chapter 3

Solution to Exercise 3.5.1 (p. 126)
The DTFT of the unit sample equals a constant (equaling 1). Thus, the Fourier transform of the output
equals the transfer function.
Solution to Exercise 3.5.2 (p. 126)
In sampling a discrete-time signal's Fourier transform L times equally over [0, 2π) to form the DFT, the
corresponding signal equals the periodic repetition of the original signal.

S (k)↔
∞∑

i=−∞
s (n− iL) (3.63)

To avoid aliasing (in the time domain), the transform length must equal or exceed the signal's duration.
Solution to Exercise 3.5.3 (p. 127)
The di�erence equation for an FIR �lter has the form

y (n) =
q∑

m=0

bmx (n−m) (3.64)

The unit-sample response equals

h (n) =
q∑

m=0

bmδ (n−m) (3.65)

which corresponds to the representation described in a problem28 of a length-q boxcar �lter.
Solution to Exercise 3.5.4 (p. 127)
The unit-sample response's duration is q + 1 and the signal's Nx. Thus the statement is correct.
Solution to Exercise 3.6.1 (p. 132)

• θ(ω)
ω = constant

• θ (ω) = Kω
• The phase is linear.

Solution to Exercise 3.9.1 (p. 135)
Yes; in fact it's optimal! (in a certain sense)
Solution to Exercise 3.9.2 (p. 136): Gibbs Phenomenon

(a) (b)

Figure 3.19: (a) A (ω), small M (b) A (ω), large M

28"Discrete-Time Systems in the Time-Domain", Example 2 <http://cnx.org/content/m10251/latest/#ex2001>

148 CHAPTER 3. DIGITAL FILTERING

Solution to Exercise 3.10.1 (p. 136) e−(iωM−1
2) if − ωc ≤ ω ≤ ωc

0 if (−π ≤ ω < −ωc) ∨ (ωc < ω ≤ π)
Solution to Exercise 3.11.1 (p. 139)
Yes, when the desired response is discontinuous. Since the frequency response of a �nite-length �lter must
be continuous, without a transition band the worst-case error could be no less than half the discontinuity.
Solution to Exercise 3.11.2 (p. 140)
It's the same problem! To show that, consider an odd-length, symmetric linear phase �lter.

H (ω) =
∑M−1
n=0 h (n) e−(iωn)

= e−(iωM−1
2)

(
h
(
M−1

2

)
+ 2

∑L
n=1 h

(
M−1

2 − n
)

cos (ωn)
) (3.66)

A (ω) = h (L) + 2
L∑
n=1

h (L− n) cos (ωn) (3.67)

Where L
.= M−1

2 .
Using trigonometric identities (such as cos (nα) = 2cos ((n− 1)α) cos (α)−cos ((n− 2)α)), we can rewrite

A (ω) as

A (ω) = h (L) + 2
L∑
n=1

h (L− n) cos (ωn) =
L∑
k=0

αkcosk (ω)

where the αk are related to the h (n) by a linear transformation. Now, let x = cos (ω). This is a one-to-one
mapping from x ∈ [−1, 1] onto ω ∈ [0, π]. Thus A (ω) is an Lth-order polynomial in x = cos (ω)!

note: The alternation theorem holds for the L∞ �lter design problem, too!

Therefore, to determine whether or not a length-M , odd-length, symmetric linear-phase �lter is optimal in
an L∞ sense, simply count the alternations in E (ω) = W (ω) (Ad (ω)−A (ω)) in the pass and stop bands.
If there are L+ 2 = M+3

2 or more alternations, h (n), 0 ≤ n ≤M − 1 is the optimal �lter!
Solution to Exercise 3.13.1 (p. 146)

b = fir1(40,10.0/48.0)

Solution to Exercise 3.13.2 (p. 146)

b = remez(40,[1 1 0 0],[0 10/48 11/48 1])

Chapter 4

Statistical and Adaptive Signal
Processing

4.1 Introduction to Random Signals and Processes1

Before now, you have probably dealt strictly with the theory behind signals and systems, as well as look
at some the basic characteristics of signals2 and systems3. In doing so you have developed an important
foundation; however, most electrical engineers do not get to work in this type of fantasy world. In many
cases the signals of interest are very complex due to the randomness of the world around them, which leaves
them noisy and often corrupted. This often causes the information contained in the signal to be hidden
and distorted. For this reason, it is important to understand these random signals and how to recover the
necessary information.

4.1.1 Signals: Deterministic vs. Stochastic

For this study of signals and systems, we will divide signals into two groups: those that have a �xed behavior
and those that change randomly. As most of you have probably already dealt with the �rst type, we will
focus on introducing you to random signals. Also, note that we will be dealing strictly with discrete-time
signals since they are the signals we deal with in DSP and most real-world computations, but these same
ideas apply to continuous-time signals.

4.1.1.1 Deterministic Signals

Most introductions to signals and systems deal strictly with deterministic signals. Each value of these
signals are �xed and can be determined by a mathematical expression, rule, or table. Because of this, future
values of any deterministic signal can be calculated from past values. For this reason, these signals are
relatively easy to analyze as they do not change, and we can make accurate assumptions about their past
and future behavior.

1This content is available online at <http://cnx.org/content/m10649/2.2/>.
2"Signal Classi�cations and Properties" <http://cnx.org/content/m10057/latest/>
3"System Classi�cations and Properties" <http://cnx.org/content/m10084/latest/>

149

150 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Deterministic Signal

Figure 4.1: An example of a deterministic signal, the sine wave.

4.1.1.2 Stochastic Signals

Unlike deterministic signals, stochastic signals, or random signals, are not so nice. Random signals
cannot be characterized by a simple, well-de�ned mathematical equation and their future values cannot
be predicted. Rather, we must use probability and statistics to analyze their behavior. Also, because of
their randomness, average values (Section 4.3) from a collection of signals are usually studied rather than
analyzing one individual signal.

Random Signal

Figure 4.2: We have taken the above sine wave and added random noise to it to come up with a noisy,
or random, signal. These are the types of signals that we wish to learn how to deal with so that we can
recover the original sine wave.

4.1.2 Random Process

As mentioned above, in order to study random signals, we want to look at a collection of these signals rather
than just one instance of that signal. This collection of signals is called a random process.

De�nition 4.1: random process
A family or ensemble of signals that correspond to every possible outcome of a certain signal
measurement. Each signal in this collection is referred to as a realization or sample function of
the process.
Example
As an example of a random process, let us look at the Random Sinusoidal Process below. We use
f [n] = Asin (ωn+ φ) to represent the sinusoid with a given amplitude and phase. Note that the

151

phase and amplitude of each sinusoid is based on a random number, thus making this a random
process.

Random Sinusoidal Process

Figure 4.3: A random sinusoidal process, with the amplitude and phase being random numbers.

A random process is usually denoted by X (t) or X [n], with x (t) or x [n] used to represent an individual
signal or waveform from this process.

In many notes and books, you might see the following notation and terms used to describe di�erent
types of random processes. For a discrete random process, sometimes just called a random sequence, t
represents time that has a �nite number of values. If t can take on any value of time, we have a continuous
random process. Often times discrete and continuous refer to the amplitude of the process, and process or
sequence refer to the nature of the time variable. For this study, we often just use random process to refer
to a general collection of discrete-time signals, as seen above in Figure 4.3 (Random Sinusoidal Process).

152 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

4.2 Stationary and Nonstationary Random Processes4

4.2.1 Introduction

From the de�nition of a random process (Section 4.1), we know that all random processes are composed
of random variables, each at its own unique point in time. Because of this, random processes have all the
properties of random variables, such as mean, correlation, variances, etc.. When dealing with groups of signals
or sequences it will be important for us to be able to show whether of not these statistical properties hold
true for the entire random process. To do this, the concept of stationary processes has been developed.
The general de�nition of a stationary process is:

De�nition 4.2: stationary process
a random process where all of its statistical properties do not vary with time

Processes whose statistical properties do change are referred to as nonstationary.
Understanding the basic idea of stationarity will help you to be able to follow the more concrete and

mathematical de�nition to follow. Also, we will look at various levels of stationarity used to describe the
various types of stationarity characteristics a random process can have.

4.2.2 Distribution and Density Functions

In order to properly de�ne what it means to be stationary from a mathematical standpoint, one needs to
be somewhat familiar with the concepts of distribution and density functions. If you can remember your
statistics then feel free to skip this section!

Recall that when dealing with a single random variable, the probability distribution function is a
simply tool used to identify the probability that our observed random variable will be less than or equal to
a given number. More precisely, let X be our random variable, and let x be our given value; from this we
can de�ne the distribution function as

Fx (x) = Pr [X ≤ x] (4.1)

This same idea can be applied to instances where we have multiple random variables as well. There may be
situations where we want to look at the probability of event X and Y both occurring. For example, below
is an example of a second-order joint distribution function.

Fx (x, y) = Pr [X ≤ x, Y ≤ y] (4.2)

While the distribution function provides us with a full view of our variable or processes probability,
it is not always the most useful for calculations. Often times we will want to look at its derivative, the
probability density function (pdf). We de�ne the the pdf as

fx (x) =
d

dx
Fx (x) (4.3)

fx (x) dx = Pr [x < X ≤ x+ dx] (4.4)

(4.4) reveals some of the physical signi�cance of the density function. This equations tells us the probability
that our random variable falls within a given interval can be approximated by fx (x) dx. From the pdf, we
can now use our knowledge of integrals to evaluate probabilities from the above approximation. Again we
can also de�ne a joint density function which will include multiple random variables just as was done
for the distribution function. The density function is used for a variety of calculations, such as �nding the
expected value or proving a random variable is stationary, to name a few.

4This content is available online at <http://cnx.org/content/m10684/2.2/>.

153

note: The above examples explain the distribution and density functions in terms of a single
random variable, X. When we are dealing with signals and random processes, remember that
we will have a set of random variables where a di�erent random variable will occur at each time
instance of the random process, X (tk). In other words, the distribution and density function will
also need to take into account the choice of time.

4.2.3 Stationarity

Below we will now look at a more in depth and mathematical de�nition of a stationary process. As was
mentioned previously, various levels of stationarity exist and we will look at the most common types.

4.2.3.1 First-Order Stationary Process

A random process is classi�ed as �rst-order stationary if its �rst-order probability density function remains
equal regardless of any shift in time to its time origin. If we let xt1 represent a given value at time t1, then
we de�ne a �rst-order stationary as one that satis�es the following equation:

fx (xt1) = fx (xt1+τ) (4.5)

The physical signi�cance of this equation is that our density function, fx (xt1), is completely independent
of t1 and thus any time shift, τ .

The most important result of this statement, and the identifying characteristic of any �rst-order stationary
process, is the fact that the mean is a constant, independent of any time shift. Below we show the results
for a random process, X, that is a discrete-time signal, x [n].

−
X = mx [n]

= E [x [n]]

= constant (independent of n)

(4.6)

4.2.3.2 Second-Order and Strict-Sense Stationary Process

A random process is classi�ed as second-order stationary if its second-order probability density function
does not vary over any time shift applied to both values. In other words, for values xt1 and xt2 then we will
have the following be equal for an arbitrary time shift τ .

fx (xt1 , xt2) = fx (xt1+τ , xt2+τ) (4.7)

From this equation we see that the absolute time does not a�ect our functions, rather it only really depends
on the time di�erence between the two variables. Looked at another way, this equation can be described as

Pr [X (t1) ≤ x1, X (t2) ≤ x2] = Pr [X (t1 + τ) ≤ x1, X (t2 + τ) ≤ x2] (4.8)

These random processes are often referred to as strict sense stationary (SSS) when all of the distri-
bution functions of the process are unchanged regardless of the time shift applied to them.

For a second-order stationary process, we need to look at the autocorrelation function (Section 4.5) to see
its most important property. Since we have already stated that a second-order stationary process depends
only on the time di�erence, then all of these types of processes have the following property:

Rxx (t, t+ τ) = E [X (t+ τ)]

= Rxx (τ)
(4.9)

154 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

4.2.3.3 Wide-Sense Stationary Process

As you begin to work with random processes, it will become evident that the strict requirements of a SSS
process is more than is often necessary in order to adequately approximate our calculations on random
processes. We de�ne a �nal type of stationarity, referred to as wide-sense stationary (WSS), to have
slightly more relaxed requirements but ones that are still enough to provide us with adequate results. In
order to be WSS a random process only needs to meet the following two requirements.

1.
−
X= E [x [n]] = constant

2. E [X (t+ τ)] = Rxx (τ)

Note that a second-order (or SSS) stationary process will always be WSS; however, the reverse will not
always hold true.

4.3 Random Processes: Mean and Variance5

In order to study the characteristics of a random process (Section 4.1), let us look at some of the basic
properties and operations of a random process. Below we will focus on the operations of the random signals
that compose our random processes. We will denote our random process with X and a random variable from
a random process or signal by x.

4.3.1 Mean Value

Finding the average value of a set of random signals or random variables is probably the most fundamental
concepts we use in evaluating random processes through any sort of statistical method. The mean of a
random process is the average of all realizations of that process. In order to �nd this average, we
must look at a random signal over a range of time (possible values) and determine our average from this set
of values. The mean, or average, of a random process, x (t), is given by the following equation:

mx (t) = µx (t)

=
−
X

= E [X]

=
∫∞
−∞ xf (x) dx

(4.10)

This equation may seem quite cluttered at �rst glance, but we want to introduce you to the various notations
used to represent the mean of a random signal or process. Throughout texts and other readings, remember
that these will all equal the same thing. The symbol, µx (t), and the X with a bar over it are often used as a
short-hand to represent an average, so you might see it in certain textbooks. The other important notation
used is, E [X], which represents the "expected value of X" or the mathematical expectation. This notation
is very common and will appear again.

If the random variables, which make up our random process, are discrete or quantized values, such as in
a binary process, then the integrals become summations over all the possible values of the random variable.
In this case, our expected value becomes

E [x [n]] =
∑
x

αPr [x [n] = α] (4.11)

If we have two random signals or variables, their averages can reveal how the two signals interact. If the
product of the two individual averages of both signals do not equal the average of the product of the two
signals, then the two signals are said to be linearly independent, also referred to as uncorrelated.

5This content is available online at <http://cnx.org/content/m10656/2.3/>.

155

In the case where we have a random process in which only one sample can be viewed at a time, then
we will often not have all the information available to calculate the mean using the density function as
shown above. In this case we must estimate the mean through the time-average mean (Section 4.3.4: Time
Averages), discussed later. For �elds such as signal processing that deal mainly with discrete signals and
values, then these are the averages most commonly used.

4.3.1.1 Properties of the Mean

• The expected value of a constant, α, is the constant:

E [α] = α (4.12)

• Adding a constant, α, to each term increases the expected value by that constant:

E [X + α] = E [X] + α (4.13)

• Multiplying the random variable by a constant, α, multiplies the expected value by that constant.

E [αX] = αE [X] (4.14)

• The expected value of the sum of two or more random variables, is the sum of each individual expected
value.

E [X + Y] = E [X] + E [Y] (4.15)

4.3.2 Mean-Square Value

If we look at the second moment of the term (we now look at x2 in the integral), then we will have the
mean-square value of our random process. As you would expect, this is written as

−
X2 = E

[
X2
]

=
∫∞
−∞ x2f (x) dx

(4.16)

This equation is also often referred to as the average power of a process or signal.

4.3.3 Variance

Now that we have an idea about the average value or values that a random process takes, we are often
interested in seeing just how spread out the di�erent random values might be. To do this, we look at the
variance which is a measure of this spread. The variance, often denoted by σ2, is written as follows:

σ2 = Var (X)

= E
[
(X − E [X])2

]
=

∫∞
−∞

(
x−

−
X

)2

f (x) dx

(4.17)

Using the rules for the expected value, we can rewrite this formula as the following form, which is commonly
seen:

σ2 =
−
X2 −

(
−
X

)2

= E
[
X2
]
− (E [X])2

(4.18)

156 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

4.3.3.1 Standard Deviation

Another common statistical tool is the standard deviation. Once you know how to calculate the variance,
the standard deviation is simply the square root of the variance, or σ.

4.3.3.2 Properties of Variance

• The variance of a constant, α, equals zero:

Var (α) = σ (α)2

= 0
(4.19)

• Adding a constant, α, to a random variable does not a�ect the variance because the mean increases
by the same value:

Var (X + α) = σ (X + α)2

= σ (X)2
(4.20)

• Multiplying the random variable by a constant, α, increases the variance by the square of the constant:

Var (αX) = σ (αX)2

= α2σ (X)2
(4.21)

• The variance of the sum of two random variables only equals the sum of the variances if the variable
are independent.

Var (X + Y) = σ (X + Y)2

= σ (X)2 + σ (Y)2
(4.22)

Otherwise, if the random variable are not independent, then we must also include the covariance of
the product of the variables as follows:

Var (X + Y) = σ (X)2 + 2Cov (X,Y) + σ (Y)2
(4.23)

4.3.4 Time Averages

In the case where we can not view the entire ensemble of the random process, we must use time averages
to estimate the values of the mean and variance for the process. Generally, this will only give us acceptable
results for independent and ergodic processes, meaning those processes in which each signal or member of
the process seems to have the same statistical behavior as the entire process. The time averages will also
only be taken over a �nite interval since we will only be able to see a �nite part of the sample.

4.3.4.1 Estimating the Mean

For the ergodic random process, x (t), we will estimate the mean using the time averaging function de�ned
as

−
X = E [X]

= 1
T

∫ T
0
X (t) dt

(4.24)

However, for most real-world situations we will be dealing with discrete values in our computations and
signals. We will represent this mean as

−
X = E [X]

= 1
N

∑N
n=1X [n]

(4.25)

157

4.3.4.2 Estimating the Variance

Once the mean of our random process has been estimated then we can simply use those values in the following
variance equation (introduced in one of the above sections)

σx
2 =

−
X2 −

(
−
X

)2

(4.26)

4.3.5 Example

Let us now look at how some of the formulas and concepts above apply to a simple example. We will just
look at a single, continuous random variable for this example, but the calculations and methods are the same
for a random process. For this example, we will consider a random variable having the probability density
function described below and shown in Figure 4.4 (Probability Density Function).

f (x) =

 1
10 if 10 ≤ x ≤ 20

0 otherwise
(4.27)

Probability Density Function

Figure 4.4: A uniform probability density function.

First, we will use (4.10) to solve for the mean value.

−
X =

∫ 20

10
x 1

10dx

= 1
10
x2

2 |
20
x=10

= 1
10 (200− 50)

= 15

(4.28)

158 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Using (4.16) we can obtain the mean-square value for the above density function.

−
X2 =

∫ 20

10
x2 1

10dx

= 1
10
x3

3 |
20
x=10

= 1
10

(
8000

3 − 1000
3

)
= 233.33

(4.29)

And �nally, let us solve for the variance of this function.

σ2 =
−
X2 −

(
−
X

)2

= 233.33− 152

= 8.33

(4.30)

4.4 Correlation and Covariance of a Random Signal6

When we take the expected value (Section 4.3), or average, of a random process (Section 4.1.2: Random
Process), we measure several important characteristics about how the process behaves in general. This
proves to be a very important observation. However, suppose we have several random processes measuring
di�erent aspects of a system. The relationship between these di�erent processes will also be an important
observation. The covariance and correlation are two important tools in �nding these relationships. Below
we will go into more details as to what these words mean and how these tools are helpful. Note that much of
the following discussions refer to just random variables, but keep in mind that these variables can represent
random signals or random processes.

4.4.1 Covariance

To begin with, when dealing with more than one random process, it should be obvious that it would be nice
to be able to have a number that could quickly give us an idea of how similar the processes are. To do this,
we use the covariance, which is analogous to the variance of a single variable.

De�nition 4.3: Covariance
A measure of how much the deviations of two or more variables or processes match.

For two processes, X and Y , if they are not closely related then the covariance will be small, and if they
are similar then the covariance will be large. Let us clarify this statement by describing what we mean by
"related" and "similar." Two processes are "closely related" if their distribution spreads are almost equal
and they are around the same, or a very slightly di�erent, mean.

Mathematically, covariance is often written as σxy and is de�ned as

cov (X,Y) = σxy

= E

[(
X−

−
X

)(
Y−

−
Y

)]
(4.31)

This can also be reduced and rewritten in the following two forms:

σxy =
−

(xy) − −x
−
y (4.32)

6This content is available online at <http://cnx.org/content/m10673/2.3/>.

159

σxy =
∫ ∞
−∞

∫ ∞
−∞

(
X−

−
X

)(
Y−

−
Y

)
f (x, y) dxdy (4.33)

4.4.1.1 Useful Properties

• If X and Y are independent and uncorrelated or one of them has zero mean value, then

σxy = 0

• If X and Y are orthogonal, then
σxy = − (E [X]E [Y])

• The covariance is symmetric
cov (X,Y) = cov (Y,X)

• Basic covariance identity
cov (X + Y, Z) = cov (X,Z) + cov (Y, Z)

• Covariance of equal variables
cov (X,X) = Var (X)

4.4.2 Correlation

For anyone who has any kind of statistical background, you should be able to see that the idea of de-
pendence/independence among variables and signals plays an important role when dealing with random
processes. Because of this, the correlation of two variables provides us with a measure of how the two
variables a�ect one another.

De�nition 4.4: Correlation
A measure of how much one random variable depends upon the other.

This measure of association between the variables will provide us with a clue as to how well the value
of one variable can be predicted from the value of the other. The correlation is equal to the average of the
product of two random variables and is de�ned as

cor (X,Y) = E [XY]

=
∫∞
−∞

∫∞
−∞ xyf (x, y) dxdy

(4.34)

4.4.2.1 Correlation Coe�cient

It is often useful to express the correlation of random variables with a range of numbers, like a percentage.
For a given set of variables, we use the correlation coe�cient to give us the linear relationship between
our variables. The correlation coe�cient of two variables is de�ned in terms of their covariance and standard
deviations (Section 4.3.3.1: Standard Deviation), denoted by σx, as seen below

ρ =
cov (X,Y)
σxσy

(4.35)

where we will always have
−1 ≤ ρ ≤ 1

This provides us with a quick and easy way to view the correlation between our variables. If there is no
relationship between the variables then the correlation coe�cient will be zero and if there is a perfect positive

160 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

match it will be one. If there is a perfect inverse relationship, where one set of variables increases while the
other decreases, then the correlation coe�cient will be negative one. This type of correlation is often referred
to more speci�cally as the Pearson's Correlation Coe�cient,or Pearson's Product Moment Correlation.

(a) (b)

(c)

Figure 4.5: Types of Correlation (a) Positive Correlation (b) Negative Correlation (c) Uncorrelated
(No Correlation)

note: So far we have dealt with correlation simply as a number relating the relationship between
any two variables. However, since our goal will be to relate random processes to each other,
which deals with signals as a function of time, we will want to continue this study by looking at
correlation functions (Section 4.5).

4.4.3 Example

Now let us take just a second to look at a simple example that involves calculating the covariance and
correlation of two sets of random numbers. We are given the following data sets:

x = {3, 1, 6, 3, 4}

y = {1, 5, 3, 4, 3}

To begin with, for the covariance we will need to �nd the expected value (Section 4.3), or mean, of x and
y.

−
x=

1
5

(3 + 1 + 6 + 3 + 4) = 3.4

−
y=

1
5

(1 + 5 + 3 + 4 + 3) = 3.2

−
xy=

1
5

(3 + 5 + 18 + 12 + 12) = 10

161

Next we will solve for the standard deviations of our two sets using the formula below (for a review click
here (Section 4.3.3: Variance)).

σ =
√
E
[
(X − E [X])2

]
σx =

√
1
5

(0.16 + 5.76 + 6.76 + 0.16 + 0.36) = 1.625

σy =

√
1
6

(4.84 + 3.24 + 0.04 + 0.64 + 0.04) = 1.327

Now we can �nally calculate the covariance using one of the two formulas found above. Since we calculated
the three means, we will use that formula (4.32) since it will be much simpler.

σxy = 10− 3.4× 3.2 = −0.88

And for our last calculation, we will solve for the correlation coe�cient, ρ.

ρ =
−0.88

1.625× 1.327
= −0.408

4.4.3.1 Matlab Code for Example

The above example can be easily calculated using Matlab. Below I have included the code to �nd all of the
values above.

x = [3 1 6 3 4];

y = [1 5 3 4 3];

mx = mean(x)

my = mean(y)

mxy = mean(x.*y)

% Standard Dev. from built-in Matlab Functions

std(x,1)

std(y,1)

% Standard Dev. from Equation Above (same result as std(?,1))

sqrt(1/5 * sum((x-mx).^2))

sqrt(1/5 * sum((y-my).^2))

cov(x,y,1)

corrcoef(x,y)

162 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

4.5 Autocorrelation of Random Processes7

Before diving into a more complex statistical analysis of random signals and processes (Section 4.1), let us
quickly review the idea of correlation (Section 4.4). Recall that the correlation of two signals or variables
is the expected value of the product of those two variables. Since our focus will be to discover more about
a random process, a collection of random signals, then imagine us dealing with two samples of a random
process, where each sample is taken at a di�erent point in time. Also recall that the key property of these
random processes is that they are now functions of time; imagine them as a collection of signals. The expected
value (Section 4.3) of the product of these two variables (or samples) will now depend on how quickly they
change in regards to time. For example, if the two variables are taken from almost the same time period,
then we should expect them to have a high correlation. We will now look at a correlation function that
relates a pair of random variables from the same process to the time separations between them, where the
argument to this correlation function will be the time di�erence. For the correlation of signals from two
di�erent random process, look at the crosscorrelation function (Section 4.6).

4.5.1 Autocorrelation Function

The �rst of these correlation functions we will discuss is the autocorrelation, where each of the random
variables we will deal with come from the same random process.

De�nition 4.5: Autocorrelation
the expected value of the product of a random variable or signal realization with a time-shifted
version of itself

With a simple calculation and analysis of the autocorrelation function, we can discover a few important
characteristics about our random process. These include:

1. How quickly our random signal or processes changes with respect to the time function
2. Whether our process has a periodic component and what the expected frequency might be

As was mentioned above, the autocorrelation function is simply the expected value of a product. Assume we
have a pair of random variables from the same process,X1 = X (t1) andX2 = X (t2), then the autocorrelation
is often written as

Rxx (t1, t2) = E [X1X2]

=
∫∞
−∞

∫∞
−∞ x1x2f (x1, x2) dx 2dx 1

(4.36)

The above equation is valid for stationary and nonstationary random processes. For stationary processes
(Section 4.2), we can generalize this expression a little further. Given a wide-sense stationary processes, it
can be proven that the expected values from our random process will be independent of the origin of our time
function. Therefore, we can say that our autocorrelation function will depend on the time di�erence and not
some absolute time. For this discussion, we will let τ = t2 − t1, and thus we generalize our autocorrelation
expression as

Rxx (t, t+ τ) = Rxx (τ)

= E [X (t)X (t+ τ)]
(4.37)

for the continuous-time case. In most DSP course we will be more interested in dealing with real signal
sequences, and thus we will want to look at the discrete-time case of the autocorrelation function. The
formula below will prove to be more common and useful than (4.36):

Rxx [n, n+m] =
∞∑

n=−∞
x [n]x [n+m] (4.38)

7This content is available online at <http://cnx.org/content/m10676/2.4/>.

163

And again we can generalize the notation for our autocorrelation function as

Rxx [n, n+m] = Rxx [m]

= E [X [n]X [n+m]]
(4.39)

4.5.1.1 Properties of Autocorrelation

Below we will look at several properties of the autocorrelation function that hold for stationary random
processes.

• Autocorrelation is an even function for τ

Rxx (τ) = Rxx (−τ)

• The mean-square value can be found by evaluating the autocorrelation where τ = 0, which gives us

Rxx (0) =
−
X2

• The autocorrelation function will have its largest value when τ = 0. This value can appear again,
for example in a periodic function at the values of the equivalent periodic points, but will never be
exceeded.

Rxx (0) ≥ |Rxx (τ) |
• If we take the autocorrelation of a period function, then Rxx (τ) will also be periodic with the same

frequency.

4.5.1.2 Estimating the Autocorrleation with Time-Averaging

Sometimes the whole random process is not available to us. In these cases, we would still like to be able to
�nd out some of the characteristics of the stationary random process, even if we just have part of one sample
function. In order to do this we can estimate the autocorrelation from a given interval, 0 to T seconds, of
the sample function.

R̆xx (τ) =
1

T − τ

∫ T−τ

0

x (t)x (t+ τ) dt (4.40)

However, a lot of times we will not have su�cient information to build a complete continuous-time function of
one of our random signals for the above analysis. If this is the case, we can treat the information we do know
about the function as a discrete signal and use the discrete-time formula for estimating the autocorrelation.

R̆xx [m] =
1

N −m

N−m−1∑
n=0

x [n]x [n+m] (4.41)

4.5.2 Examples

Below we will look at a variety of examples that use the autocorrelation function. We will begin with a
simple example dealing with Gaussian White Noise (GWN) and a few basic statistical properties that will
prove very useful in these and future calculations.

Example 4.1
We will let x [n] represent our GWN. For this problem, it is important to remember the following
fact about the mean of a GWN function:

E [x [n]] = 0

164 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Figure 4.6: Gaussian density function. By examination, can easily see that the above statement is
true - the mean equals zero.

Along with being zero-mean, recall that GWN is always independent. With these two facts,
we are now ready to do the short calculations required to �nd the autocorrelation.

Rxx [n, n+m] = E [x [n]x [n+m]]

Since the function, x [n], is independent, then we can take the product of the individual expected
values of both functions.

Rxx [n, n+m] = E [x [n]]E [x [n+m]]

Now, looking at the above equation we see that we can break it up further into two conditions: one
when m and n are equal and one when they are not equal. When they are equal we can combine
the expected values. We are left with the following piecewise function to solve:

Rxx [n, n+m] =

 E [x [n]]E [x [n+m]] if m 6= 0

E
[
x2 [n]

]
if m = 0

We can now solve the two parts of the above equation. The �rst equation is easy to solve as we
have already stated that the expected value of x [n] will be zero. For the second part, you should
recall from statistics that the expected value of the square of a function is equal to the variance.
Thus we get the following results for the autocorrelation:

Rxx [n, n+m] =

 0 if m 6= 0

σ2 if m = 0

Or in a more concise way, we can represent the results as

Rxx [n, n+m] = σ2δ [m]

4.6 Crosscorrelation of Random Processes8

Before diving into a more complex statistical analysis of random signals and processes (Section 4.1), let us
quickly review the idea of correlation (Section 4.4). Recall that the correlation of two signals or variables
is the expected value of the product of those two variables. Since our main focus is to discover more about
random processes, a collection of random signals, we will deal with two random processes in this discussion,
where in this case we will deal with samples from two di�erent random processes. We will analyze the
expected value (Section 4.3.1: Mean Value) of the product of these two variables and how they correlate to
one another, where the argument to this correlation function will be the time di�erence. For the correlation
of signals from the same random process, look at the autocorrelation function (Section 4.5).

8This content is available online at <http://cnx.org/content/m10686/2.2/>.

165

4.6.1 Crosscorrelation Function

When dealing with multiple random processes, it is also important to be able to describe the relationship,
if any, between the processes. For example, this may occur if more than one random signal is applied to a
system. In order to do this, we use the crosscorrelation function, where the variables are instances from
two di�erent wide sense stationary random processes.

De�nition 4.6: Crosscorrelation
if two processes are wide sense stationary, the expected value of the product of a random variable
from one random process with a time-shifted, random variable from a di�erent random process

Looking at the generalized formula for the crosscorrelation, we will represent our two random processes
by allowing U = U (t) and V = V (t− τ). We will de�ne the crosscorrelation function as

Ruv (t, t− τ) = E [UV]

=
∫∞
−∞

∫∞
−∞ uvf (u, v) dvdu

(4.42)

Just as the case with the autocorrelation function, if our input and output, denoted as U (t) and V (t), are
at least jointly wide sense stationary, then the crosscorrelation does not depend on absolute time; it is just
a function of the time di�erence. This means we can simplify our writing of the above function as

Ruv (τ) = E [UV] (4.43)

or if we deal with two real signal sequences, x [n] and y [n], then we arrive at a more commonly seen formula
for the discrete crosscorrelation function. See the formula below and notice the similarities between it and
the convolution (Section 1.5) of two signals:

Rxy (n, n−m) = Rxy (m)

=
∑∞
n=−∞ x [n] y [n−m]

(4.44)

4.6.1.1 Properties of Crosscorrelation

Below we will look at several properties of the crosscorrelation function that hold for two wide sense
stationary (WSS) random processes.

• Crosscorrelation is not an even function; however, it does have a unique symmetry property:

Rxy (−τ) = Ryx (τ) (4.45)

• The maximum value of the crosscorrelation is not always when the shift equals zero; however, we can
prove the following property revealing to us what value the maximum cannot exceed.

|Rxy (τ) | ≤
√
Rxx (0)Ryy (0) (4.46)

• When two random processes are statistically independent then we have

Rxy (τ) = Ryx (τ) (4.47)

166 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

4.6.2 Examples

Exercise 4.6.1 (Solution on p. 180.)

Let us begin by looking at a simple example showing the relationship between two sequences.
Using (4.44), �nd the crosscorrelation of the sequences

x [n] = {. . . , 0, 0, 2,−3, 6, 1, 3, 0, 0, . . . }

y [n] = {. . . , 0, 0, 1,−2, 4, 1,−3, 0, 0, . . . }

for each of the following possible time shifts: m = {0, 3,−1}.

4.7 Introduction to Adaptive Filters9

In many applications requiring �ltering, the necessary frequency response may not be known beforehand, or
it may vary with time. (Example; suppression of engine harmonics in a car stereo.) In such applications,
an adaptive �lter which can automatically design itself and which can track system variations in time is
extremely useful. Adaptive �lters are used extensively in a wide variety of applications, particularly in
telecommunications.

Outline of adaptive �lter material

1. Wiener Filters - L2 optimal (FIR) �lter design in a statistical context
2. LMS algorithm - simplest and by-far-the-most-commonly-used adaptive �lter algorithm
3. Stability and performance of the LMS algorithm - When and how well it works
4. Applications of adaptive �lters - Overview of important applications
5. Introduction to advanced adaptive �lter algorithms - Techniques for special situations or faster

convergence

4.8 Discrete-Time, Causal Wiener Filter10

Stochastic L2 optimal (least squares) FIR �lter design problem: Given a wide-sense stationary (WSS) input
signal xk and desired signal dk (WSS ⇔ E [yk] = E [yk+d], ryz (l) = E [ykzk+l], ∀k, l : (ryy (0) <∞))

9This content is available online at <http://cnx.org/content/m11535/1.3/>.
10This content is available online at <http://cnx.org/content/m11825/1.1/>.

167

Figure 4.7

The Wiener �lter is the linear, time-invariant �lter minimizing E
[
ε2
]
, the variance of the error.

As posed, this problem seems slightly silly, since dk is already available! However, this idea is useful in a
wide cariety of applications.

Example 4.2
active suspension system design

Figure 4.8

note: optimal system may change with di�erent road conditions or mass in car, so an adaptive
system might be desirable.

Example 4.3
System identi�cation (radar, non-destructive testing, adaptive control systems)

168 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Figure 4.9

Exercise 4.8.1
Usually one desires that the input signal xk be "persistently exciting," which, among other things,
implies non-zero energy in all frequency bands. Why is this desirable?

4.8.1 Determining the optimal length-N causal FIR Weiner �lter

note: for convenience, we will analyze only the causal, real-data case; extensions are straightfor-
ward.

yk =
M−1∑
l=0

wlxk−l

argmin
wl

E [ε2] = E
[
(dk − yk)2] = E

[(
dk −

∑M−1
l=0 wlxk−l

)2
]

= E
[
dk

2
]
−

2
∑M−1

l=0 wlE [dkxk−l] +
∑M−1

l=0

∑M−1
m=0 (wlwmE [xk−lxk−m])

E
[
ε2
]

= rdd (0)− 2
M−1∑
l=0

wlrdx (l) +
M−1∑
l=0

M−1∑
m=0

wlwmrxx (l −m)

where
rdd (0) = E

[
dk

2
]

rdx (l) = E [dkXk−l]

rxx (l −m) = E [xkxk+l−m]

169

This can be written in matrix form as

E
[
ε2
]

= rdd (0)− 2PWT +WTRW

where

P =


rdx (0)

rdx (1)
...

rdx (M − 1)



R =



rxx (0) rxx (1) rxx (M − 1)

rxx (1) rxx (0)
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . rxx (0) rxx (1)

rxx (M − 1) rxx (1) rxx (0)


To solve for the optimum �lter, compute the gradient with respect to the top weights vector W

∇ .=


∂ε2

∂w0

∂ε2

∂w1

...

∂ε2

∂wM−1


∇ = − (2P) + 2RW

(recall d
dW

(
ATW

)
= AT , d

dW (WMW) = 2MW for symmetric M) setting the gradient equal to zero ⇒

WoptR = P ⇒Wopt = R−1P

Since R is a correlation matrix, it must be non-negative de�nite, so this is a minimizer. For R positive
de�nite, the minimizer is unique.

4.9 Practical Issues in Wiener Filter Implementation11

The weiner-�lter, Wopt = R−1P , is ideal for many applications. But several issues must be addressed to use
it in practice.

Exercise 4.9.1 (Solution on p. 180.)

In practice one usually won't know exactly the statistics of xk and dk (i.e. R and P) needed to
compute the Weiner �lter.

How do we surmount this problem?

Exercise 4.9.2 (Solution on p. 180.)

In many applications, the statistics of xk, dk vary slowly with time.
How does one develop an adaptive system which tracks these changes over time to keep the

system near optimal at all times?

11This content is available online at <http://cnx.org/content/m11824/1.1/>.

170 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Exercise 4.9.3 (Solution on p. 180.)

How can rkxx (l) be computed e�ciently?

Exercise 4.9.4
how does one choose N?

4.9.1 Tradeo�s

Larger N → more accurate estimates of the correlation values → better W opt. However, larger N leads to
slower adaptation.

note: The success of adaptive systems depends on x, d being roughly stationary over at least N
samples, N > M . That is, all adaptive �ltering algorithms require that the underlying system
varies slowly with respect to the sampling rate and the �lter length (although they can tolerate
occasional step discontinuities in the underlying system).

4.9.2 Computational Considerations

As presented here, an adaptive �lter requires computing a matrix inverse at each sample. Actually, since the
matrix R is Toeplitz, the linear system of equations can be sovled with O

(
M2
)
computations using Levinson's

algorithm, whereM is the �lter length. However, in many applications this may be too expensive, especially
since computing the �lter output itself requires O (M) computations. There are two main approaches to
resolving the computation problem

1. Take advantage of the fact that Rk+1 is only slightly changed from Rk to reduce the computation to
O (M); these algorithms are called Fast Recursive Least Squareds algorithms; all methods proposed so
far have stability problems and are dangerous to use.

2. Find a di�erent approach to solving the optimization problem that doesn't require explicit inversion
of the correlation matrix.

note: Adaptive algorithms involving the correlation matrix are called Recursive least Squares
(RLS) algorithms. Historically, they were developed after the LMS algorithm, which is the slimplest
and most widely used approach O (M). O

(
M2
)
RLS algorithms are used in applications requiring

very fast adaptation.

4.10 Quadratic Minimization and Gradient Descent12

4.10.1 Quadratic minimization problems

The least squares optimal �lter design problem is quadratic in the �lter coe�cients:

E
[
ε2
]

= rdd (0)− 2PTW +WTRW

If R is positive de�nite, the error surface E
[
ε2
]

(w0, w1, . . . , wM−1) is a unimodal "bowl" in RN .
12This content is available online at <http://cnx.org/content/m11826/1.2/>.

171

Figure 4.10

The problem is to �nd the bottom of the bowl. In an adaptive �lter context, the shape and bottom of
the bowl may drift slowly with time; hopefully slow enough that the adaptive algorithm can track it.

For a quadratic error surface, the bottom of the bowl can be found in one step by computing R−1P .
Most modern nonlinear optimization methods (which are used, for example, to solve the LP optimal IIR
�lter design problem!) locally approximate a nonlinear function with a second-order (quadratic) Taylor series
approximation and step to the bottom of this quadratic approximation on each iteration. However, an older
and simpler appraoch to nonlinear optimaztion exists, based on gradient descent.

Contour plot of ε-squared

Figure 4.11

The idea is to iteratively �nd the minimizer by computing the gradient of the error function: E∇ =
∂E[ε2]
∂wi

.

172 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

The gradient is a vector in RM pointing in the steepest uphill direction on the error surface at a given point
W i, with ∇ having a magnitude proportional to the slope of the error surface in this steepest direction.

By updating the coe�cient vector by taking a step opposite the gradient direction : W i+1 = W i−µ∇i,
we go (locally) "downhill" in the steepest direction, which seems to be a sensible way to iteratively solve a
nonlinear optimization problem. The performance obviously depends on µ; if µ is too large, the iterations
could bounce back and forth up out of the bowl. However, if µ is too small, it could take many iterations to
approach the bottom. We will determine criteria for choosing µ later.

In summary, the gradient descent algorithm for solving the Weiner �lter problem is:

Guess W 0

do i = 1,∞

∇i = − (2P) + 2RW i

W i+1 = W i − µ∇i

repeat

Wopt = W∞

The gradient descent idea is used in the LMS adaptive �tler algorithm. As presented, this alogrithm costs
O
(
M2
)
computations per iteration and doesn't appear very attractive, but LMS only requires O (M) com-

putations and is stable, so it is very attractive when computation is an issue, even thought it converges more
slowly then the RLS algorithms we have discussed so far.

4.11 The LMS Adaptive Filter Algorithm13

Recall the Weiner �lter problem

Figure 4.12

13This content is available online at <http://cnx.org/content/m11829/1.1/>.

173

{xk}, {dk} jointly wide sense stationary
Find W minimizing E

[
εk

2
]
εk = dk − yk = dk −

M−1∑
i=0

wixk−i = dk −XkTW k

Xk =


xk

xk−1

...

xk−M+1



W k =


wk0

wk1
...

wkM−1


The superscript denotes absolute time, and the subscript denotes time or a vector index.

the solution can be found by setting the gradient 0

∇k =
∂E[εk2]
∂W

= E
[
2εk
(
−Xk

)]
= E

[
−2
(
dk −XkTWk

)
Xk
]

= −
(
2E
[
dkX

k
])

+ E
[
XkT

]
W

= 2P + 2RW

(4.48)

⇒
(
Wopt = R−1P

)
Alternatively, Wopt can be found iteratively using a gradient descent technique

W k+1 = W k − µ∇k

In practice, we don't know R and P exactly, and in an adaptive context they may be slowly varying with
time.

To �nd the (approximate) Wiener �lter, some approximations are necessary. As always, the key is to
make the right approximations!

note: Approximate R and P : ⇒ RLS methods, as discussed last time.

note: Approximate the gradient!

∇k =
∂E

[
εk

2
]

∂W

Note that εk
2 itself is a very noisy approximation to E

[
εk

2
]
. We can get a noisy approximation to the

gradient by �nding the gradient of εk
2! Widrow and Ho� �rst published the LMS algorithm, based on this

clever idea, in 1960.

∇k =
∂εk

2

∂W
= 2εk

∂
(
dk −W kTXk

)
∂W

= 2εk
(
−Xk

)
= −

(
2εkXk

)
This yields the LMS adaptive �lter algorithm

Example 4.4: The LMS Adaptive Filter Algorithm

174 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

1. yk = W kTXk =
∑M−1
i=0 wki xk−i

2. εk = dk − yk
3. W k+1 = W k − µ ∇k = W k − µ

(
−2εkXk

)
= W k + 2µεkXk (wk+1

i = wki + 2µεkxk−i)

The LMS algorithm is often called a stochastic gradient algorithm, since ∇k is a noisy gradient. This is
by far the most commonly used adaptive �ltering algorithm, because

1. it was the �rst
2. it is very simple
3. in practice it works well (except that sometimes it converges slowly)
4. it requires relatively litle computation
5. it updates the tap weights every sample, so it continually adapts the �lter
6. it tracks slow changes in the signal statistics well

4.11.1 Computational Cost of LMS

To Compute ⇒ yk εk W k+1 = Total

multiplies M 0 M + 1 2M + 1

adds M − 1 1 M 2M

Table 4.1

So the LMS algorithm is O (M) per sample. In fact, it is nicely balanced in that the �lter computation
and the adaptation require the same amount of computation.

Note that the parameter µ plays a very important role in the LMS algorithm. It can also be varied with
time, but usually a constant µ ("convergence weight facor") is used, chosen after experimentation for a given
application.

4.11.1.1 Tradeo�s

large µ: fast convergence, fast adaptivity
small µ: accurate W → less misadjustment error, stability

4.12 First Order Convergence Analysis of the LMS Algorithm14

4.12.1 Analysis of the LMS algorithm

It is important to analyze the LMS algorithm to determine under what conditions it is stable, whether or
not it converges to the Wiener solution, to determine how quickly it converges, how much degredation is
su�ered due to the noisy gradient, etc. In particular, we need to know how to choose the parameter µ.

4.12.1.1 Mean of W

does W k, k →∞ approach the Wiener solution? (since W k is always somewhat random in the approximate
gradient-based LMS algorithm, we ask whether the expected value of the �lter coe�cients converge to the

14This content is available online at <http://cnx.org/content/m11830/1.1/>.

175

Wiener solution)

E
[
W k+1

]
= W k+1

= E
[
W k + 2µεkXk

]
= W k + 2µE

[
dkX

k
]

+ 2µE
[
−
((
W kTXk

)
Xk
)]

= W k + 2µP +−
(

2µE
[(
W kTXk

)
Xk
]) (4.49)

4.12.1.1.1 Patently False Assumption

Xk and Xk−i, Xk and dk−i, and dk and dk−i are statistically independent, i 6= 0. This assumption is
obviously false, since Xk−1 is the same as Xk except for shifting down the vector elements one place and
adding one new sample. We make this assumption because otherwise it becomes extremely di�cult to
analyze the LMS algorithm. (First good analysis not making this assumption: Macchi and Eweda[1]) Many
simulations and much practical experience has shown that the results one obtains with analyses based on
the patently false assumption above are quite accurate in most situations

With the independence assumption, W k (which depends only on previous Xk−i, dk−i) is statitically

independent of Xk, and we can simplify E
[(
W kTXk

)
Xk
]

Now
(
W kTXk

)
Xk is a vector, and

E
[(
W kTXk

)
Xk
]

= E




...∑M−1
i=0 wki xk−ixk−j

...




=


...∑M−1

i=0 E
[
wki xk−ixk−j

]
...



=


...∑M−1

i=0

(
wki
)
E [xk−ixk−j]
...



=


...∑M−1

i=0 wki rxx (i− j)
...


= RW k

(4.50)

where R = E
[
XkXkT

]
is the data correlation matrix.

Putting this back into our equation

−
W k+1 =

−
W k +2µP +−

(
2µR

−
W k

)
= I

−
W k +2µP

(4.51)

176 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Now if
−

W k→∞ converges to a vector of �nite magnitude ("convergence in the mean"), what does it converge
to?

If
−
W k converges, then as k →∞,

−
W k+1'

−
W k, and

−
W∞= I

−
W∞ +2µP

2µR
−

W∞= 2µP

R
−

W∞= P

or
−

Wopt= R−1P

the Wiener solution!
So the LMS algorithm, if it converges, gives �lter coe�cients which on average are the Wiener coe�cients!

This is, of course, a desirable result.

4.12.1.2 First-order stability

But does
−
W k converge, or under what conditions?

Let's rewrite the analysis in term of
−
V k, the "mean coe�cient error vector"

−
V k=

−
W k −Wopt, where Wopt

is the Wiener �lter
−

W k+1=
−
W k −2µR

−
W k +2µP

−
W k+1 −Wopt =

−
W k −Wopt +−

(
2µR

−
W k

)
+ 2µRWopt − 2µRWopt + 2µP

−
V k+1=

−
V k −2µR

−
V k +− (2µRWopt) + 2µP

Now Wopt = R−1, so

−
V k+1=

−
V k −2µR

−
V k +−

(
2µRR−1P

)
+ 2µP = (I − 2µR)

−
V k

We wish to know under what conditions
−

V k→∞→
−
0?

4.12.1.2.1 Linear Algebra Fact

Since R is positive de�nite, real, and symmetric, all the eigenvalues are real and positive. Also, we can write
R as Q−1ΛQ, where Λ is a diagonal matrix with diagonal entries λi equal to the eigenvalues of R, and Q is
a unitary matrix with rows equal to the eigenvectors corresponding to the eigenvalues of R.

Using this fact,
V k+1 =

(
I − 2µ

(
Q−1ΛQ

))
V k

multiplying both sides through on the left by Q: we get

Q
−

V k+1= (Q− 2µΛQ)
−
V k= (1− 2µΛ)Q

−
V k

177

Let V ' = QV :
V 'k+1 = (1− 2µΛ)V 'k

Note that V ' is simply V in a rotated coordinate set in Rm, so convergence of V ' implies convergence of V .
Since 1− 2µΛ is diagonal, all elements of V ' evolve independently of each other. Convergence (stability)

bolis down to whether all M of these scalar, �rst-order di�erence equations are stable, and thus → (0).

∀i, i = [1, 2, . . . ,M] :
(
V 'k+1
i = (1− 2µλi)V 'k

i

)
These equations converge to zero if |1 − 2µλi| < 1, or ∀i : (|µλi| < 1) µ and λi are positive, so we require

∀i :
(
µ < 1

λi

)
so for convergence in the mean of the LMS adaptive �lter, we require

µ <
1

λmax
(4.52)

This is an elegant theoretical result, but in practice, we may not know λmax, it may be time-varying, and
we certainly won't want to compute it. However, another useful mathematical fact comes to the rescue...

tr (R) =
M∑
i=1

rii =
M∑
i=1

λi ≥ λmax

Since the eigenvalues are all positive and real.
For a correlation matrix, ∀i, i ∈ {1,M} : (rii = r (0)). So tr (R) = Mr (0) = ME [xkxk]. We can easily

estimate r (0) with O (1) computations/sample, so in practice we might require

µ <
1

M r (0)

as a conservative bound, and perhaps adapt µ accordingly with time.

4.12.1.3 Rate of convergence

Each of the modes decays as
(1− 2µλi)

k

note: The initial rate of convergence is dominated by the fastest mode 1 − 2µλmax. This is not
surprising, since a dradient descent method goes "downhill" in the steepest direction

note: The �nal rate of convergence is dominated by the slowest mode 1 − 2µλmin. For small
λmin, it can take a long time for LMS to converge.

Note that the convergence behavior depends on the data (via R). LMS converges relatively quickly for
roughly equal eigenvalues. Unequal eigenvalues slow LMS down a lot.

4.13 Adaptive Equalization15

note: Design an approximate inverse �lter to cancel out as much distortion as possible.

15This content is available online at <http://cnx.org/content/m11907/1.1/>.

178 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Figure 4.13

In principle, WH ' z−∆, or W ' z−∆

H , so that the overall response of the top path is approximately
δ (n−∆). However, limitations on the form of W (FIR) and the presence of noise cause the equalization to
be imperfect.

4.13.1 Important Application

Channel equalization in a digital communication system.

Figure 4.14

If the channel distorts the pulse shape, the matched �lter will no longer be matched, intersymbol inter-
ference may increase, and the system performance will degrade.

An adaptive �lter is often inserted in front of the matched �lter to compensate for the channel.

179

Figure 4.15

This is, of course, unrealizable, since we do not have access to the original transmitted signal, sk.
There are two common solutions to this problem:

1. Periodically broadcast a known training signal. The adaptation is switched on only when the training
signal is being broadcast and thus sk is known.

2. Decision-directed feedback: If the overall system is working well, then the output sk−∆0 should almost
always equal sk−∆0 . We can thus use our received digital communication signal as the desired signal,
since it has been cleaned of noise (we hope) by the nonlinear threshold device!

Decision-directed equalizer

Figure 4.16

As long as the error rate in sk is not too high (say 75%), this method works. Otherwise, dk is so
inaccurate that the adaptive �lter can never �nd the Wiener solution. This method is widely used in
the telephone system and other digital communication networks.

180 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Solutions to Exercises in Chapter 4

Solution to Exercise 4.6.1 (p. 166)

1. For m = 0, we should begin by �nding the product sequence s [n] = x [n] y [n]. Doing this we get the
following sequence:

s [n] = {. . . , 0, 0, 2, 6, 24, 1,−9, 0, 0, . . . }
and so from the sum in our crosscorrelation function we arrive at the answer of

Rxy (0) = 22

2. For m = 3, we will approach it the same was we did above; however, we will now shift y [n] to the
right. Then we can �nd the product sequence s [n] = x [n] y [n− 3], which yields

s [n] = {. . . , 0, 0, 0, 0, 0, 1,−6, 0, 0, . . . }

and from the crosscorrelation function we arrive at the answer of

Rxy (3) = −6

3. For m = −1, we will again take the same approach; however, we will now shift y [n] to the left. Then
we can �nd the product sequence s [n] = x [n] y [n+ 1], which yields

s [n] = {. . . , 0, 0,−4,−12, 6,−3, 0, 0, 0, . . . }

and from the crosscorrelation function we arrive at the answer of

Rxy (−1) = −13

Solution to Exercise 4.9.1 (p. 169)
Estimate the statistics

rxx (l) ' 1
N

N−1∑
k=0

xkxk+l

rxd (l) ' 1
N

N−1∑
k=0

dkxk−l

then solve W opt=R−1 =P
Solution to Exercise 4.9.2 (p. 169)
Use short-time windowed estiamtes of the correlation functions.

note: (
rxx (l)

)k
=

1
N

N−1∑
m=0

xk−mxk−m−l

(
rdx (l)

)k
=

1
N

N−1∑
m=0

xk−m−ldk−m

and Wopt
k '

(
Rk

)−1

P k

Solution to Exercise 4.9.3 (p. 170)
Recursively!

rkxx (l) = rk−1
xx (l) + xkxk−l − xk−Nxk−N−l

This is critically stable, so people usually do

(1− α)
(
rxx

k (l) = αrk−1
xx (l) + xkxk−l

)

Chapter 5

(Untitled)

181

182 GLOSSARY

Glossary

A Autocorrelation

the expected value of the product of a random variable or signal realization with a time-shifted
version of itself

C Correlation

A measure of how much one random variable depends upon the other.

Covariance

A measure of how much the deviations of two or more variables or processes match.

Crosscorrelation

if two processes are wide sense stationary, the expected value of the product of a random variable
from one random process with a time-shifted, random variable from a di�erent random process

D di�erence equation

An equation that shows the relationship between consecutive values of a sequence and the
di�erences among them. They are often rearranged as a recursive formula so that a systems
output can be computed from the input signal and past outputs.

Example:

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] (3.1)

F FFT

(Fast Fourier Transform) An e�cient computational algorithm for computing the DFT1.

P poles

1. The value(s) for z where Q (z) = 0.

2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

R random process

A family or ensemble of signals that correspond to every possible outcome of a certain signal
measurement. Each signal in this collection is referred to as a realization or sample function
of the process.

Example: As an example of a random process, let us look at the Random Sinusoidal Process
below. We use f [n] = Asin (ωn+ φ) to represent the sinusoid with a given amplitude and phase.
Note that the phase and amplitude of each sinusoid is based on a random number, thus making
this a random process.

S stationary process

a random process where all of its statistical properties do not vary with time

1"Discrete Fourier Transform (DFT)" <http://cnx.org/content/m10249/latest/>

GLOSSARY 183

Z zeros

1. The value(s) for z where P (z) = 0.

2. The complex frequencies that make the overall gain of the �lter transfer function zero.

184 BIBLIOGRAPHY

Bibliography

[1] O. Macchi and E. Eweda. Second-order convergence analysis of stochastic adaptive linear �ltering. IEEE
Trans. on Automatic Controls, AC-28 #1:76�85, Jan 1983.

185

186 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A A/D, � 2.7(63), � 2.8(73), � 2.11(96)
adaptive, 167, 169
Aliasing, � 2.3(54)
alphabet, 10
amplitude response, � 3.6(130), 130
analog, � 2.7(63), � 2.8(73), � 3.5(126)
analog signal, � 1.1(3)
analog signals, � 3.5(126)
Applet, � 2.3(54)
autocorrelation, � 4.2(152), � 4.5(162), 162,
162
average, � 4.3(154)
average power, 155

B bandlimited, 77
basis, � 1.6(18), 21, � 1.8(29), 30
basis matrix, � 1.8(29), 31
bilateral z-transform, 114
block diagram, � 1.2(6)
blur, � 2.12(104)

C cascade, � 1.2(6)
causal, 125
characteristic polynomial, 112
circular convolution, � 2.11(96), 98
coe�cient vector, � 1.8(29), 31
complement, � 1.6(18), 23
complex, � 3.4(120)
complex exponential sequence, 9
complex exponentials, 38
computational algorithm, 182
continuous frequency, � 1.10(34), � 1.11(38)
continuous random process, 151
continuous time, � 1.9(33), � 1.10(34)
Continuous Time Fourier Transform, 34
Continuous-Time Fourier Transform, 35
control theory, 123
convolution, � 1.5(11), � 2.11(96), � 2.12(104)
correlation, 159, 159, � 4.5(162)
correlation coe�cient, 159
correlation functions, 160
countably in�nite, 128

covariance, 158, 158
Crosscorrelation, 165
crosscorrelation function, 165
CT, � 2.6(60)
CTFT, � 1.10(34), � 1.13(44), � 2.8(73)

D D/A, � 2.7(63), � 2.8(73), � 2.11(96)
deblurring, � 2.12(104), 104
decompose, � 1.8(29), 30
deconvolution, � 2.12(104)
delayed, 11
density function, � 4.2(152)
design, � 3.11(138)
deterministic, � 4.1(149)
deterministic signals, 149
DFT, � 1.12(41), � 1.13(44), � 2.7(63),
� 2.10(91), � 2.11(96), � 3.5(126)
di�erence equation, � 1.4(11), 11, 109, 109,
� 3.5(126)
digital, � 2.7(63), � 2.8(73), � 3.11(138)
digital �lter, � 3.5(126)
digital signal, � 1.1(3)
digital signal processing, � (1), � 2.10(91),
� 3.5(126)
direct method, 111
direct sum, � 1.6(18), 23
discrete fourier transform, � 2.7(63),
� 2.10(91), � 2.11(96), � 3.5(126)
Discrete Fourier Transform (DFT), 64
discrete random process, 151
discrete time, � 1.5(11), � 1.9(33), � 1.11(38),
� 3.3(119)
Discrete Time Fourier Transform, 38, � 2.7(63)
discrete-time, � 3.5(126)
discrete-time �ltering, � 3.5(126)
Discrete-Time Fourier Transform, 39
distribution function, � 4.2(152)
DSP, � 2.10(91), � 2.12(104), � 3.3(119),
� 3.5(126), � 3.9(135), � 3.10(136), � 3.11(138),
� 4.2(152), � 4.3(154), � 4.5(162)
DT, � 1.5(11)
DTFT, � 1.11(38), � 1.13(44), � 2.7(63),

INDEX 187

� 2.8(73)

E envelop delay, 134
ergodic, 156
Examples, � 2.3(54)
exercise, � 3.13(146)

F fast fourier transform, � 1.13(44)
feedback, � 1.2(6)
FFT, � 1.12(41), � 1.13(44), 44
�lter, � 3.10(136), � 3.11(138)
�lter structures, � 3.7(134)
�ltering, � 3.5(126)
�lters, � 2.11(96), � 3.9(135)
�nite, 21
�nite dimensional, � 1.6(18), 22
FIR, � 3.9(135), � 3.10(136), � 3.11(138),
� 3.12(145), � 3.13(146)
FIR �lter, � 3.8(134)
�rst order stationary, � 4.2(152)
�rst-order stationary, 153
fourier series, � 1.9(33), 36, 39
fourier transform, � 1.9(33), � 1.10(34),
� 1.11(38), � 2.8(73), � 2.10(91), � 2.11(96),
� 3.2(114), 114, � 3.5(126)
fourier transforms, � 2.6(60)
frames, 92
frequency, � 2.6(60)
frequency domain, � 1.13(44)
FT, � 2.6(60), � 2.12(104)
functional, 7

G Gibbs Phenomena, 34
gradient descent, 171
group delay, 134

H Hanning window, � 2.10(91), 93
hilbert, � 1.7(28), � 1.8(29)
Hilbert Space, � 1.6(18), 26, 28
hilbert spaces, � 1.7(28), � 1.8(29)
Hold, � 2.5(59)
homogeneous solution, 111

I identity matrix, 32
IIR Filter, � 3.8(134)
Illustrations, � 2.3(54)
image, � 2.12(104)
impulse response, � 1.5(11)
independent, 156
indirect method, 111
information, � 1.1(3)
initial conditions, 110
inner, � 1.7(28)

inner product, � 1.7(28)
inner product space, 28
input, � 1.2(6)
invertible, � 1.6(18), 28

J Java, � 2.3(54)
joint density function, � 4.2(152), 152
joint distribution function, 152

K key concepts, � (1)

L laplace transform, � 1.9(33)
linear, � 3.5(126)
linear algebra, � 1.12(41)
Linear discrete-time systems, 11
linear transformation, � 1.6(18), 26
linear-phase FIR �lters, � 3.6(130)
linearly dependent, � 1.6(18), 20
linearly independent, � 1.6(18), 20, 154
live, 54
LTI Systems, � 2.8(73)

M Matlab, � 2.4(58), � 3.12(145), � 3.13(146)
matrix, � 1.12(41)
matrix representation, � 1.6(18), 27
mean, � 4.3(154), 154
mean-square value, 155
moment, 155

N narrow-band spectrogram, 81
nonstationary, � 4.2(152), 152
normed linear space, 28
nyquist, � 2.6(60)

O optimal, 143
order, 110
orthogonal, � 1.6(18), 25, 28
orthogonal compliment, � 1.6(18), 26
orthonormal, � 1.6(18), 25, � 1.8(29)
orthonormal basis, � 1.8(29), 29
output, � 1.2(6)
Overview, � 2.1(49)

P parallel, � 1.2(6)
particular solution, 111
pdf, � 4.2(152)
Pearson's Correlation Coe�cient, 160
phase delay, 132
pole, � 3.4(120)
pole-zero cancellation, 123
poles, 120
power series, 115
probability, � 4.2(152)

188 INDEX

probability density function (pdf), 152
probability distribution function, 152
probability function, � 4.2(152)
Proof, � 2.2(51)

R random, � 4.1(149), � 4.3(154), � 4.5(162)
random process, � 4.1(149), 150, 150, 151,
� 4.2(152), � 4.3(154), � 4.5(162)
random sequence, 151
random signal, � 4.1(149), � 4.3(154)
random signals, � 4.1(149), 150, � 4.3(154),
� 4.5(162)
realization, 182
Reconstruction, � 2.2(51), � 2.4(58), � 2.5(59)
Recursive least Squares, 170
restoration, � 2.12(104)
ROC, � 3.2(114), 115

S sample function, 182
Sampling, � 2.1(49), � 2.2(51), � 2.3(54),
� 2.4(58), � 2.5(59), � 2.6(60), � 2.7(63)
second order stationary, � 4.2(152)
second-order stationary, 153
Shannon, � 2.2(51)
shift-invariant, � 1.4(11), 11, � 3.5(126)
short time fourier transform, � 2.9(78)
signal, � 1.1(3), 3, � 1.2(6)
signals, � 1.5(11), � 1.9(33)
signals and systems, � 1.5(11)
span, � 1.6(18), 20
spectrogram, 81
spectrograms, � 2.10(91)
SSS, � 4.2(152)
stable, 125
standard basis, � 1.6(18), 27, � 1.8(29)
stationarity, � 4.2(152)
stationary, � 4.2(152), � 4.5(162)
stationary process, 152
stationary processes, 152
stft, � 2.9(78)
stochastic, � 4.1(149)
stochastic gradient, 174
stochastic signals, 150
strict sense stationary, � 4.2(152)

strict sense stationary (SSS), 153
subspace, � 1.6(18), 19
superposition, � 1.4(11)
symmetries, 45
System, � 2.5(59)
system theory, � 1.2(6)
systems, � 1.9(33)

T The stagecoach e�ect, 57
time, � 2.6(60)
time-varying behavior, 75
training signal, 179
transfer function, 110, � 3.5(126), � 3.7(134)
transform pairs, � 3.3(119)
transforms, 33
twiddle factors, 45

U uncorrelated, 154
uncountably in�nite, 128
unilateral, � 3.3(119)
unilateral z-transform, 114
unique, 30
unit sample, 9, 10
unit-sample response, 126
unitary, � 1.6(18), 28

V variance, � 4.3(154), 155
vector, � 1.12(41)
vectors, � 1.6(18), 19

W well-de�ned, � 1.6(18), 22
wide sense stationary, � 4.2(152)
wide-band spectrogram, 81
wide-sense stationary (WSS), 154
window, 93
WSS, � 4.2(152)

Z z transform, � 1.9(33), � 3.3(119)
z-plane, 114, � 3.4(120)
z-transform, � 3.2(114), 114, � 3.3(119)
z-transforms, 119
zero, � 3.4(120)
zero-pad, 127
zeros, 120

ATTRIBUTIONS 189

Attributions

Collection: Fundamentals of Signal Processing(thu)
Edited by: Phuong Nguyen
URL: http://cnx.org/content/col10446/1.1/
License: http://creativecommons.org/licenses/by/2.0/

Module: "Introduction to Fundamentals of Signal Processing"
By: Minh N. Do
URL: http://cnx.org/content/m13673/1.1/
Pages: 1-2
Copyright: Minh N. Do
License: http://creativecommons.org/licenses/by/2.0/

Module: "Signals Represent Information"
Used here as: "Signals Represent Intormation(Thu)"
By: Don Johnson
URL: http://cnx.org/content/m0001/2.27/
Pages: 3-6
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction to Systems"
By: Don Johnson
URL: http://cnx.org/content/m0005/2.19/
Pages: 6-8
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time Signals and Systems"
By: Don Johnson
URL: http://cnx.org/content/m10342/2.15/
Pages: 8-11
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Systems in the Time-Domain"
Used here as: "Linear Time-Invariant Systems"
By: Don Johnson
URL: http://cnx.org/content/m0508/2.7/
Page: 11
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete Time Convolution"
By: Ricardo Radaelli-Sanchez, Richard Baraniuk, Stephen Kruzick, Catherine Elder
URL: http://cnx.org/content/m10087/2.27/
Pages: 11-17
Copyright: Ricardo Radaelli-Sanchez, Richard Baraniuk, Stephen Kruzick
License: http://creativecommons.org/licenses/by/3.0/

190 ATTRIBUTIONS

Module: "Review of Linear Algebra"
By: Clayton Scott
URL: http://cnx.org/content/m11948/1.2/
Pages: 18-28
Copyright: Clayton Scott
License: http://creativecommons.org/licenses/by/1.0

Module: "Hilbert Spaces"
By: Justin Romberg
URL: http://cnx.org/content/m10840/2.6/
Pages: 28-29
Copyright: Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Orthonormal Basis Expansions"
Used here as: "Signal Expansions"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10760/2.6/
Pages: 29-33
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction to Fourier Analysis"
By: Richard Baraniuk
URL: http://cnx.org/content/m10096/2.12/
Pages: 33-34
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Continuous Time Fourier Transform (CTFT)"
By: Richard Baraniuk, Melissa Selik
URL: http://cnx.org/content/m10098/2.16/
Pages: 34-38
Copyright: Richard Baraniuk, Melissa Selik
License: http://creativecommons.org/licenses/by/3.0/

Module: "Discrete Time Fourier Transform (DTFT)"
By: Richard Baraniuk
URL: http://cnx.org/content/m10108/2.18/
Pages: 38-41
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/3.0/

Module: "DFT as a Matrix Operation"
By: Robert Nowak
URL: http://cnx.org/content/m10962/2.5/
Pages: 41-44
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 191

Module: "The FFT Algorithm"
By: Robert Nowak
URL: http://cnx.org/content/m10964/2.6/
Pages: 44-47
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m11419/1.29/
Pages: 49-51
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/1.0

Module: "Proof"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m11423/1.27/
Pages: 51-54
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/1.0

Module: "Illustrations"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m11443/1.33/
Pages: 54-58
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/1.0

Module: "Sampling and reconstruction with Matlab"
Used here as: "Sampling and Reconstruction with Matlab"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m11549/1.9/
Page: 58
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/1.0

Module: "Systems view of sampling and reconstruction"
Used here as: "Systems View of Sampling and Reconstruction"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m11465/1.20/
Pages: 59-60
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/1.0

Module: "Sampling CT Signals: A Frequency Domain Perspective"
By: Robert Nowak
URL: http://cnx.org/content/m10994/2.2/
Pages: 60-63
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

192 ATTRIBUTIONS

Module: "The DFT: Frequency Domain with a Computer Analysis"
By: Robert Nowak
URL: http://cnx.org/content/m10992/2.3/
Pages: 63-72
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time Processing of CT Signals"
By: Robert Nowak
URL: http://cnx.org/content/m10993/2.2/
Pages: 73-78
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Short Time Fourier Transform"
By: Ivan Selesnick
URL: http://cnx.org/content/m10570/2.4/
Pages: 78-91
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0

Module: "Spectrograms"
By: Don Johnson
URL: http://cnx.org/content/m0505/2.20/
Pages: 91-95
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Filtering with the DFT"
By: Robert Nowak
URL: http://cnx.org/content/m11022/2.3/
Pages: 96-103
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Image Restoration Basics"
By: Robert Nowak
URL: http://cnx.org/content/m10972/2.2/
Pages: 104-106
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Di�erence Equation"
By: Michael Haag
URL: http://cnx.org/content/m10595/2.6/
Pages: 109-113
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "The Z Transform: De�nition"
By: Benjamin Fite
URL: http://cnx.org/content/m10549/2.10/
Pages: 114-119
Copyright: Benjamin Fite
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 193

Module: "Table of Common z-Transforms"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10119/2.14/
Pages: 119-120
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Understanding Pole/Zero Plots on the Z-Plane"
By: Michael Haag
URL: http://cnx.org/content/m10556/2.12/
Pages: 120-126
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/3.0/

Module: "Filtering in the Frequency Domain"
By: Don Johnson
URL: http://cnx.org/content/m10257/2.17/
Pages: 126-130
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Linear-Phase FIR Filters"
By: Ivan Selesnick
URL: http://cnx.org/content/m10705/2.3/
Pages: 130-134
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0

Module: "Filter Structures"
By: Douglas L. Jones
URL: http://cnx.org/content/m11917/1.3/
Page: 134
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Overview of Digital Filter Design"
By: Douglas L. Jones
URL: http://cnx.org/content/m12776/1.2/
Pages: 134-135
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Window Design Method"
By: Douglas L. Jones
URL: http://cnx.org/content/m12790/1.2/
Pages: 135-136
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

194 ATTRIBUTIONS

Module: "Frequency Sampling Design Method for FIR �lters"
By: Douglas L. Jones
URL: http://cnx.org/content/m12789/1.2/
Pages: 136-138
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Parks-McClellan FIR Filter Design"
By: Douglas L. Jones
URL: http://cnx.org/content/m12799/1.3/
Pages: 138-145
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "FIR Filter Design using MATLAB"
By: Hyeokho Choi
URL: http://cnx.org/content/m10917/2.2/
Page: 145
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "MATLAB FIR Filter Design Exercise"
By: Hyeokho Choi
URL: http://cnx.org/content/m10918/2.2/
Page: 146
Copyright: Hyeokho Choi
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction to Random Signals and Processes"
By: Michael Haag
URL: http://cnx.org/content/m10649/2.2/
Pages: 149-151
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Stationary and Nonstationary Random Processes"
By: Michael Haag
URL: http://cnx.org/content/m10684/2.2/
Pages: 152-154
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Random Processes: Mean and Variance"
By: Michael Haag
URL: http://cnx.org/content/m10656/2.3/
Pages: 154-158
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Correlation and Covariance of a Random Signal"
By: Michael Haag
URL: http://cnx.org/content/m10673/2.3/
Pages: 158-161
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 195

Module: "Autocorrelation of Random Processes"
By: Michael Haag
URL: http://cnx.org/content/m10676/2.4/
Pages: 162-164
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Crosscorrelation of Random Processes"
By: Michael Haag
URL: http://cnx.org/content/m10686/2.2/
Pages: 164-166
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction to Adaptive Filters"
By: Douglas L. Jones
URL: http://cnx.org/content/m11535/1.3/
Page: 166
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time, Causal Wiener Filter"
By: Douglas L. Jones
URL: http://cnx.org/content/m11825/1.1/
Pages: 166-169
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Practical Issues in Wiener Filter Implementation"
By: Douglas L. Jones
URL: http://cnx.org/content/m11824/1.1/
Pages: 169-170
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Quadratic Minimization and Gradient Descent"
By: Douglas L. Jones
URL: http://cnx.org/content/m11826/1.2/
Pages: 170-172
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "The LMS Adaptive Filter Algorithm"
By: Douglas L. Jones
URL: http://cnx.org/content/m11829/1.1/
Pages: 172-174
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "First Order Convergence Analysis of the LMS Algorithm"
By: Douglas L. Jones
URL: http://cnx.org/content/m11830/1.1/
Pages: 174-177
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

196 ATTRIBUTIONS

Module: "Adaptive Equalization"
By: Douglas L. Jones
URL: http://cnx.org/content/m11907/1.1/
Pages: 177-179
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Fundamentals of Signal Processing(thu)
Presents fundamental concepts and tools in signal processing including: linear and shift-invariant systems,
vector spaces and signal expansions, Fourier transforms, sampling, spectral and time-frequency analyses,
digital �ltering, z-transform, random signals and processes, Wiener and adaptive �lters.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

