Intro to Computational Engineering: Elec
220 Labs

Collection Editors:

Matthew Johnson
Chris Stevenson






Intro to Computational Engineering: Elec
220 Labs

Collection Editors:

Matthew Johnson
Chris Stevenson

Authors:

Joseph Cavallaro
Matthew Johnson
Chris Stevenson
Weiwei Wu
Translated By:

Weiwei Wu

Online:
< http://cnx.org/content/col11405/1.1/ >

CONNEXIONS

Rice University, Houston, Texas



This selection and arrangement of content as a collection is copyrighted by Matthew Johnson, Joseph Cavallaro, Chris
Stevenson. It is licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).
Collection structure revised: January 19, 2012

PDF generated: January 23, 2012

For copyright and attribution information for the modules contained in this collection, see p. 75.



Table of Contents

Introduction to Quartus and Circuit Diagram Design .......... .. .. .. .. ... . ... 1
A Quartus Project from Start to Finish: 2 Bit Mux Tutorial .................................. 3
Lab 1-1: 4-Bit Mux and all NAND/NOR MuxX ........c.oouiiiiiiiiiiiiiiiiiiiiiiiiaaaennn. 17
Lab 3-1 Basic MSP430 Assembly from Roots in LC-3 ... .. ... ... . ... ... ... ... ... ..... 19
Lab 3-2 Digital Input and Output with the MSP430 .......... ... . ... 27
Lab 4-1 Interrupt Driven Programming in MSP430 Assembly ................ .. .. ... . ... 33
Lab 4-2 Putting It All Together ... ... ... . i e e 39
Lab 5-1 C Language Programming through the ADC and the MSP430 ...................... 43
Lab 5-2 Using C and the ADC for "Real World" Applications with the MSP430
.................. 49
1 Helpful General Information
1.1 MSP430 LaunchPad Test Circuit Breadboarding Instructions ............... ... .. .. .. ... 53
1.2 A Student to Student Intro to IDE Programming and CCS4 ........... ... ... oo 70
GlOSS ALY ..ottt e e e e 73
IndeX oo e 74

At Ut OIS ... 75



iv



Introduction to Quartus and Circuit
Diagram Design'

Circuit Design in ELEC 220

For the first lab and first project of ELEC 220 we will be focusing on the creation of circuit diagrams using
Altera’s Quartus II Web Edition? . In addition to simulating these circuits on a computer, we will also be
configuring Field-Programmable Gate Arrays (FPGAs) from these diagrams. Our target platform will be
Terasic’s DEO Development and Education Board® which uses Altera’s Cyclone III FPGA chip.

FPGAs

An FPGA is an integrated circuit, composed of many logic elements, which can be reconfigured by the user to
reproduce a variety of circuits. Each logic element contains several different logic gates and memory elements
which can be used to recreate a wide variety of circuit components. The DEQ board we will be using has over
15,000 logic elements although we will only be using less than 1% of these, even for the calculator project.
Hopefully, after completing this project you will have a better understanding of the power and versatility of
FPGAs.

FPGA Configuration

In order for an FPGA to emulate a desired circuit, it must first be set to the proper configuration specified
in a data file uploaded to the board. This data file is created, and often uploaded to the board, using FPGA
design software such as Altera’s Quartus II. By providing Quartus with information regarding the specific
FPGA to be configured, a Quartus project can be easily replicated on an FPGA, shortening delays between
concept, and protype stages in designing circuits.

HDL vs. Schematic Diagrams

There are two ways to specify the intended function of a Quartus project. The more straightforward method
is to simply create a schematic diagram of the desired circuit as though you were drawing it out on paper or
building it on a breadboard. This has the advantage of being very easy to grasp, however, it requires you to
work out the logic for the entire circuit and lay out all the components. The other more abstracted method
is to use a Hardware Description Language (HDL) such as Verilog. Writing using this specification language
allows you to specifiy the intended function of the circuit from which Quartus creates an optimized circuit
layout. Although this method does not give you as much individual control over the design, it allows you
to more easily go from concept to end product by tasking your computer with the bulk of the design work.

I This content is available online at <http://cnx.org/content/m42303,/1.1/>.
2http://www.altera.com/products/software/quartus-ii/web-edition /qts-we-index.html
3http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English& CategoryNo=56&No=364



However, for simplicities sake, we will be using schematic diagrams for the majority of this course, with HDL
files provided to you for use in later designs.

Course Overview

The first few labs are designed to give you practice in using Quartus to create schematic diagrams by tasking
you with creating schematics for circuits you are already familiar with. They also provide a brief review of
the inner workings of components which will be used extensively in later designs. We will then move onto
more complex circuits when we introduce the idea of a clock signal as an input to a circuit and design finite
state machines. Finally, this section of the lab will culminate in the design of a simple calculator, though
it’s not quite like most simple calculators you may be used to. This will draw on previous lessons on circuit
design, finite state machines, and clock signals while also providing an introduction to simple computers that
will carry on into the next protion of the lab section.



A Quartus Project from Start to Finish:
2 Bit Mux Tutorial’

Building Projects in Quartus

This section is intended to provide an in-depth introduction to creating projects in Quartus, laying out
a circuit diagram, simulating the circuit, and finally using the project to configure an FPGA through an
example project showcasing a 2-bit MUX. Altera has made a very nice tutorial for Quartus as well which
you can find here® . Altera’s tutorial is meant for a different board than the DEO we will be using so make
sure to account for that. Also, they have a slightly different method for connecting inputs and outputs to
the FPGA. Either method works and you can use whichever one you prefer, however, the method set forth
in this section will likely be more straightforward and user-friendly. Additionally, you can access another
tutorial from within Quartus at any time by clicking on Tutorial in the Help menu.

Starting a Quartus Project

A Quartus project acts as a support structure for a collection of design files. It serves to bring them together
in a common working environment, define their relationships both within the project to each other and to
the FPGA, and define common characteristics. All work in Quartus starts with a project.

e Begin by opening Quartus II Web Edition. A screen titled “Getting Started with Quartus 11 Software”
should open from which you can select Create a New Project. Otherwise select File->New Project
Wizard. Make sure you select this and not simply New, which would instead create a new file.

e In the working directory field specify the folder,”"My Quartus_Projects” for the purpose of this exam-
ple, to save your project in. While you can make this folder on your U: drive, Quartus will generally
run faster if working on projects in the C: drive. It is recommended to make temporary folder on the
C: drive to put your projects in and transfer them to your U: drive for safe keeping. Note that Quartus
will not create a folder for the project files in this location, it will merely save the files here so make
sure the lowest level folder is somewhere set aside for this particular project. This will make it easier
to locate files in the project and to transfer the project between different computers. Finally, enter
the desired name for your project, the final field for the top level design file name will fill itself in as
you name the project. It is recommended for simplicities sake that the project and the folder it’s in
have the same name. Also note that Quartus will not let you use spaces in your naming, underscores
or dashes are recommended instead. The name “2_bit _mux” will be used for the purposes of this
example.

4This content is available online at <http://cnx.org/content/m42302/1.3/>.
Shttp://cnx.org/content /m42302/1atest /ftp:/ /ftp.altera.com/up/pub/Tutorials/DE2/Digital Logic/tut_quartus_intro_schem.pdf



ra New Project Wizard Mﬂ

Directory, Name, Top-Level Entity [page 1 of 5]
What is the working directory for this project?

C:/My_Quartus_Projects/2_bit_mux E]
What is the name of this project?

2_bit_mu]

£l

What is the name of the top-evel design entity for this project? This name is case sensitive and must exactly match the entity name in the design file.

2_bit_mux E]

[Use Existing Project Settings...

[ < Back ] [ Mext = ] [ Finish ] [ Cancel ] [ Help ]

e —————————————————————————————————————

Figure 1: Specifiying a Project Location and Name

Next you will see the Add Files screen. All of the labs and projects you will be working on will either
have all necessary files included or be started from scratch so we won’t be using this feature for now.
It is also possible to add files whenever you open a file or save as and we will want to do this during
this tutorial in order to ensure our project works as expected.

After this you will have to specify your target FPGA. The FPGA in the DEO board we will be using is
a Cyclone IIT EP3C16F484C6. You can also find this information by looking at the specification
printed on the chip itself.



o
@ New Project Wizard

Family & Device Settings [page 3 of 5]

Select the family and device you want to target for compilation.

Show in ‘Available devices' list

() Auto device selected by the Fitter
@ Speific device selected in 'Available devices' list

Other: nfa

Available devices:

Device family

Family: |Cydone IIT A Package:
Devices: |All hd Pin count:

Target device

(Any

(Any

Speed grade: [.Arly

Show advanced devices

HardCopy compatible only =]

Name Core Voltage LEs UserIf0s Memeory Bits Embedded multiplier 9-bit elements PLL |d =
EP3C16E144C8 1.2V 15408 35 516096 112 4 20
EP3C16E14417 1.2y 15408 85 516096 112 4 Zﬂlj
EP3C16F256C5 1.2V 15408 1589 516096 112 4 20
EP3C16F256CT7 1.2V 15408 168 516096 112 4 20
EP3C16F256C3 1.2V 15408 169 516096 112 4 20
EP3C16F25617 1.2y 15408 169 516096 112 4 20
EP3C 16F 484C6 515096 e R T
i}y P — e oo | : v
Companion device )

HardCopy: -

Limit DSP & RAM to HardCopy device resources

[ <Back |[ mMext> || Finsh |[ cancel |[ Hep |

Figure 2: Selecting the correct FPGA

e The next screen allows you to specify other programs to use with this project in addition to Quartus.
We won’t be using any of these so just click next. After reviewing everything on the final screen to

make sure it’s set up as you want it and you’re ready to begin laying out your circuit.

Building a Circuit in Quartus

e Although we specified a name for our top level design file, we still need to create it. Go to File->New
or hit Ctrl+N and select Block Diagram/Schematic File under Design Files. Once it’s open go ahead
and Save As, Quartus should automatically give it the same title as the project. Make sure that the
box titled “Add file to current project” is checked before saving and that the file is being saved into

the project folder.

e You should now see a grid of dots and just at the top of it a toolbar. This is where most of our work

in Quartus will take place.

e ———————————




Rotate
Place Symbol  Orthogonal Node Flip Horizontally Counterclockwise

(FRATACL-O11INN%00 -~ ~ 55 A < &

Place /O Pin Freeform Node Flip Vertically

Figure 3: The toolbar and some of the tools which will be frequently used.

In the upper left corner of the window is the project navigator. Since we only have one file in our
project, there’s not much to see here, but if we had more we would be able to easily keep track of the
hierarchy of all the files within the project. Additionally, we can easily open up files associated with
this project by double clicking them within this box.

We’ll start by adding symbols to our schematic. Normally you would want to first plan out your circuit
design by using Karnaugh maps to write logical functions for the operation of your circuit, however,
we’ll proceed as though this step has already been completed.

Click on the place symbol tool to open up the library of available symbols. This can include the default
symbols included with Quartus as well as any user created symbols. Within the Quartus library, the
majority of the symbols we’ll be using will come from the “primitives” folder. Start by finding a two
input AND gate. You can either navigate to the “logic” folder under primitives and find the gate
labeled “and2” or simply search for this symbol using the name box below the browser. Note that the
name typed here has to exactly match the symbol name for Quartus to find it. Before you click okay,
make sure that the box labeled repeat-insert mode is checked as shown below.



5] Symbol
Libraries:

4 & ofalteraf11.0 fquartus/libraries, -
> B3 megafunctions |:|
> 23 others |
4 [& primitives

> 23 buffer
4 [ logic
tF and12
£ and2
£ and3
£ and4
£ ands a2
¥ o
4 ¥
Mame:
= =)

Repeat-insert mode
Insert symbol as block

Launch MegaWizard Plug-In

[ MegaWizard Plug-In Manager. ..

Figure 4: The Quartus symbol browser

Place two AND gates onto the grid. Although their relative position isn’t that important since we can
remotely connect symbols, it always helps to have a neat circuit layout so for now place them relatively
close together. Once you’re done, hit escape to exit from placement mode.

Continuing on, go back to the symbol browser and select an “or2” gate, also located in primitives->logic.
Place one of these gates to the right of your two AND gates.

Next we’ll add an inverter to implement the select logic for the MUX. In the symbol browser find the
“not” gate. Place this close to the input of one of the AND gates. Note that it shouldn’t be a problem
at this point, but if you ever find yourself running out of room on the grid, drag a component to the
edge of the screen to expand the available area.

Now we’ll add in I/O pins. This is where signals will enter and leave the schematic. They can be
connected to other schematics in the project or connected to inputs and outputs on the board, though
we’ll define these connections later. For now, go to the drop-down menu on the Pin Tool and choose
input. Again, you can place your pins anywhere due to remote wiring, but for now, place two pins to
the left of your logic gates for the inputs to the MUX and one above them for the select signal. Go
back to the symbol tool, select output, and place one output pin to the right of your circuit for the
output of the MUX. Right click on your I/O pins and select properties. From here give each pin a
representative name, which will help out in the later I/O assignment phase.



Figure 5: One possible way to layout your gates and pins on the grid

The final step will be to connect all our components together. As previously mentioned, we can run
wires directly between components or make wireless connections.

To make a wired connection, either select the orthogonal node tool or move your mouse over one of the
ports on a symbol, the pointer should change to the look like the node tool. Then click and drag from
the origin port to the port you wish to reach and release. Be careful not to intersect any other ports
as this will cause them to be joined to the wire, although crossing over other wires will not create a
connection. You can tell if a wire is connected to something by the large dot, the typical indicator of
connections in circuit diagrams. Go ahead and connect up the inputs to the two AND gates so that
they will function as the beginning of a MUX.



VEE
BB L R

R i i ,-*-HEE ..................
® 5

....................................................................... Lo R S :
data1 INPUT b 5
Voo " iinst i

Figure 6: Possible circuit wiring for the first stage of the MUX

While this method is fairly straightforward, it has its disadvantages such as possible unintended con-
nections and vast webs of wiring on more complicated circuits. We can simplify the process with
wireless connections.

Unfortunately, you cannot directly name ports. Instead we will connect a small piece of wire to the
ports and name this wire. Any wires on the grid which share the same name are connected together.
Begin by placing short bits of wire at all the remaining ports in the circuit. A length of one on the
grid is sufficient though a length of two may be easier to work with. Once placed, right click on the
wire and select properties.

Under the General tab you can enter a name for the selected wire. As with project names, Quartus
won’t allow for spaces so either remove them or use underscores. To connect any other wire with this
named one, simply repeat the procedure. Using this wireless method, connect the remainder of the
MUX together.



10

Figure 7: Example wireless connections

e The final step before we get to pin connections is to make sure our circuit is functional. On the left side
of the screen is the Tasks menu where we can find a variety of commands to create a finished design
file. Eventually we will want to compile our whole design, though for now we can simply go through
the Anaylsis & Synthesis step. Double click on Analysis & Synthesis for Quartus to check over the
circuit for any potential issues such as unconnected ports. If Quartus finds something wrong it will
halt the process and display the error in the message box at the bottom of the screen.

Task =
ap

[*

=]

ompile Design

Analysis & Synthesis

Fitter (Place & Route)

Assembler (Generate programming fih

m

TimeQuest Timing Analysis
EDA Netlist Writer £

YFYYIYYy

[»
>
[
=
W
e

4

Type Message
' é,) Info: Found 1 design units, including 1 entities, in source file 2 bit mux.bdf
j') Info: Elaborating entity "2 bit mux" for the top level hierarchy
ﬁ Warning: Pin "data2" not connected
Error: Node "instl™ is missing source

> @ Error: Quartus II Analysis & Synthesis was unsuccessful. 1 error, 2 warnings

Figure 8: An unsuccessful analysis & synthesis process due to an unconnected port

Defining I/0O Connections

e Once we've successfully performed Analysis & Synthesis we are ready to move on to defining pin
connections. In order to do this we first need to know the pin addresses of the input and output



11

devices on our DEO board. These can be found in the DEO User Manual® on pages 24-29, pages 27-32
of the PDF. For now we will only be looking at the switch and LED pin assignments.

e For each entry in the assignment table, the signal name corresponds to the identifier printed on the
board next to the relavent device and the pin name tells us where we should connect to in order to
access that device.

e To specify these connections we will use the Pin Planner located under Assignments->Pin Planner.
By performing Analysis and Synthesis earlier, we gave Quartus information on how many I/0O pins we
had on our circuit diagram and what their names were. Now we just need to connect these with pins
on the board. By putting in the name of a physical pin under the Location column in the Pin Planner,
we tie that point on our board to the specified point on our circuit.

e Although we’ll be using a particular pin layout here, you can setup your pin assignments in whatever
way you feel works best for you. On future labs/projects pin layouts will already be setup so the labbies
and in particular the project graders will be expecting a particular board setup and you should leave
assignments as they are.

e For this example we’ll use the rightmost slider switch, SW[0], for our select signal. Since we can see in
the user manual that SW[0] is tied to PIN J6, we simply type this, or even just J6 and it will fill in
the name, into the Location column next to the “select” listing under the Node Name column. We’ll
continue in this fashion, assigning “datal” to SW[1] at PIN H5, “data2” to SW[2] at PN_H6, and
assigning “out” to the rightmost LED, LEDG[0] at PIN _J1.

Shttp://www.terasic.com.tw/cgi-bin/page/archive download.pl?Language=English&No=364&FID=0c266381d75ef92a8291c5bbdd5b07eb



12

i B
@ Pin Planner - U:/documents/220 Lab Transfer/My_Quartus_Projects/2_bit_mux/2_bit_mux - 2_bit_mux E@g
File Edit View Processing Tools Window Help &)
Groups = ES Top View- Wire Bond
Mamed: = - Cydone Ill -EP3C16F 434C6
g Node MName
<<new group>>
"s]
Cu
El
=
™ »
% X Named: * - Edit: X \/l |Fi|ber:[Pins: all -
=
E Node Name Direction Location I/ Bank WREF Group 1/O Standard Reserved
¥ datal Input PIN_H5 1 B1 MND 2.5V (default)
¥ data? Input PIN_HB 1 B1_MD 2,5V (default)
£ out Output PIN_J1 i B1 N1 2.5V (default)
I select Input 1 B1_MO 2.5V (default)
F <<new node >>
LA
AL
o
v | = 1] T ] 3

0% 00:00:00

——————————————————————

Figure 9: Example pin assignments in the Pin Planner

e Now that we have finished assigning pins, we can go back and run the complete compilation process.
Double click on Compile Design in the Tasks menu of the Project Navigator to run all of the sub tasks.
Inevitably, you will get warnings about some features not being available without a subscription and
there not being a clock, since we didn’t need one. Also, you will get critical warnings telling you that a
specific design file is needed for the Timing Analyzer. These extra features are not required and these
warnings can be ignored.

Waveform Simulation

e Before actually programming the FPGA on the board, it is a good idea to simulate a variety of inputs
to our circuit and check the responses. Although the ability to simulate inputs to circuits was removed
from Quartus I beginning with version 10.0 , these features can still be used with the Altera University
Program Simulator” .

“http://www.altera.com/education /univ/software/qsim/unv-gsim.html



13

e Opening the Altera U.P. Simulator should open two windows, the U.P simulator and Qsim. Go to
Qsim, select File->Open Project, and select your .gpf project file for the 2 bit mux. Next go to
File->New Simulation Input File to open up the Simulation Waveform Editor.

e Right click in the white space under the Name heading and select Insert Node or Bus. From this
window click the Node Finder button. Finally, click the List button to have the Waveform Editor
import the I/0 ports from the project file. Move all of these nodes over to the Selected Nodes box and
return to the Waveform Editor Window which should now list these I/O ports along the left side. By
clicking and dragging the name of a signal you can rearrange the order they are displayed in, useful
for separating the input and output signals. Go ahead and save the waveform file in the project folder
for the 2 bit mux.

a. Simulation Waveform Editer - [Waveform.wwf]* =anen X

File Edit View Help 3
(R 5 0 & Z 00 0E 8 2 6 [E)R%

Master Time Bar: 0 ps E E] Pointer: 642,29 ns Interval: 642,29 ns Start: End:

bt Ops 80.0ns 160.0ns 240.0ns 320.0ns 400.0ns 480.0ns 560.0ns 640.0ns 720.0ns 800.0ns 880.0ns 980.0ns
\ \ \ \ \ \ | | \ \ | \

Ops ps
B idatalt B0
1] data2 BO
Lo g out BX
[ ] select BO

4 [ 4| 1 |

0% 00:00:00

Figure 10: Simulation Waveform Editor Window

e To begin with, all inputs are set to a constant value of 0 and the output is undefined since we have not
yet run the simulation. Note the timing intervals displayed along the top. These are not as important
now, but will be very useful once we start building project with clocks.

e To change the value of an input, click and drag along a waveform to select one or more intervals. Once
selected, you can change the highlighted interval with buttons in the toolbar to set intervals low, high,
undefined, opposite of their current value and several other options. For the purposes of testing all
possible input combinations, we can either manually set the intervals or use the “Overwrite Clock”
button to set up several alternating signals of differing periods.

e For starters select the entire datal signal by clicking the name and then click the Overwrite Clock
button. The Waveform Editor should have defaulted to a total time of 1000ns so set the period of this
signal to be 250ns. Select the data2 signal and give it a signal with a period of 500ns and then a signal
with period of 1000ns for select. Over the 1000ns of the simulation, this will test all the possible input
combinations. Once finished save this waveform file and return to Qsim.



14

s B
Q Simulation Waveform Editor - [2_bit_muwcvwf] l == g
Fle FEdit View Help &
D& % h Z 0T M W E 8 2 6 %
Master Time Bar: 0 ps E] E] Pointer: £45.83ns Interval: 545,88 ns Startt 0ps End: 1.0us
Ops 380.0ns 160.0ns 240.0ns 320.0ns 400.0ns 480.0ns 560.0ns &40.0ns 720.0ns 300.0ns 880.0ns 960.0nms °
Value at ' ' ' ' ' ' ' ' ' ' ' '
Mame
Ops Ps
g
[ datal BO
B daa2  |BO [ | [
[T A clect [ |
Lo 4 out BX
4 SIK (11 | |-
0% 00:00:00
\

Figure 11: Waveforms to test all input combinations

e Go to Assign->Simulation Settings. The Waveform Simulator supports two modes: Functional, where
only the logic of the system is tested and timing is not considered, and Timing, where delays and
other timing constraints are taken into account. In order to perfom Functional simulation you must
first go to Processing->Generate Simulation Netlist, but for now we’ll just do a Timing simulation. In
the Simulation Settings box make sure Timing is selected and then browse for the waveform file you
created.

Finally go to Processing->Start Simulation or click the blue arrow over the waveform. The simulator
will run and once finished it will open up waveform window containing your specified input waveforms
and the resulting output. Once you are satisfied with the results or have made the necessary changes,
we can move to the final step, programming the board.

[ @& Simulation Waveform Editor - [2_bit_mux simvwf] (Read-Only) [E=EER)
Fle Edt Vew Help &
(BI& & o N & T E B 0 )6 2 6 (&8
Master Time Bar: (0 ps E] E] Pointer:  215.98 ns Interval: 215.98 ns Start: End:
0 ps 80.0ns 160.0 ns 240.0ns 320.0ns 400.0 ns 480.0ns 560.0 ns 640.0ns 720.0ns 800.0 ns 880.0ns 980.0ns  *
Name Value at v ' ' ' ' i v ' ' ' v v
ops ! Ps
B e 6o L e e
B dataz  [BO [ | I
= select BO [
D o oo i eseenn iR snnnnn |
4 4 [ J v~
0% 00:00:00
A

Figure 12: Simulation Output




15

Programming the Board

e Now that we are certain our project will function as intended, we can program our FPGA. Make sure
that the DEQ board is plugged into the computer and powered on. The DEQ offers two modes of
programming: one which retains the program in volatile memory only as long as the board is powered
on and another which stores the program in non-volatile memory to be retrieved when the board is
powered on. For our purposes the volatile memory storage will be sufficient. To set the board for this
programming method, make sure the switch next to the 7 segment display is set to RUN.

e In the Tasks menu below the Analysis & Synthesis and Compile Design commands we used earlier,
click on Program Device. Next to Hardware Setup should be listed USB-Blaster [USB-0]. If not, click
on Hardware Setup and select USB Blaster from the drop down menu. Make sure that Mode is set to
JTAG and that the Program/Configure box next to the .sof file is checked.

e Once ready click Start and wait for the board to be programmed. You can see the state of the
programming process in the message bar where it will inform you once it’s finished. If you followed
the same structure as the tutorial, SWO0 should serve as the select switch with SW1 and SW2 toggling
the two data inputs high or low. With select in a low state, the mux will take the value from SW1 and
in a high state the value from SW2, either of which will be output on LEDGO.

e This concludes the tutorial on Quartus projects. It should now be a simple matter to create a 4-bit
mux and move on to the rest of the projects.



16



Lab 1-1: 4-Bit Mux and all
NAND/NOR Mux'

Lab 1-1
4-Bit Mux

For the first part of Lab 1 you will first design a 4-bit mux, similar to the 2-bit mux covered in the tutorial
on Quartus projects found here (Section ). An already started Quartus project complete with I/O pins and
pin assignments for the DEQO board can be found on OWL Space. This will provide a helpful starting point
and ensure a common board setup, making it easier for the labbies to check your circuits’ functionality.
Download the .zip file and extract it to a temporary working directory on the C: drive, making sure to move
it over to your U: drive before you leave the lab.

NAND or NOR only Mux

Create a new version of your original 4-bit mux using only NAND or only NOR gates. A useful tutorial for
NAND/NOR conversion can be found here’. Do not use inverters (NOT gate) or gates with inverted inputs
in your design.

8This content is available online at <http://cnx.org/content/m42304/1.3/>.
9" An algorithm to implement a boolean function using only NAND’s or only NOR’s."
<http://cnx.org/content /m13240/latest />

17



18



Lab 3-1 Basic MSP430 Assembly from
Roots in LC-3"

An Intro to the MSP430 from the LC-3

This week you will go over the basic differences between the MSP430’s assembly ISA and the LC-3’s, and
learn how to write a basic assembly program for the MSP-430 using TI’s Code Composer Studio. You have
two main tasks ahead of you:

1. Following the breadboard assembly instructions (Section 1.1), put together a basic I/O package for
the MSP430 launchpad. Once you have everything (hopefully) wired correctly, the pre-flashed test
program should run correctly. If it doesn’t, work with the labbies to troubleshoot your board!

2. Coding in MSP430 Assembly, implement a Fibonacci sequence calculator. This should be done
with a loop and run infinitely. Step through, explain, and demonstrate the code, using the CCS4
Debugger. Be sure to view the registers while stepping through the program. Observe the amount
of CPU cycles each of the instructions takes to complete. Detailed Instructions (Section : Part I
Assignment Detail)

Some Background Information

Main Differences Between MSP430 and LC-3

e The MSP430 has a larger assembly instruction set than the LC-3

MSP430 assembly includes some task specific instructions (Such as inc and dec) to simplify
reading the language
Some MSP430 assembly instructions are interpreted instructions (Such as pop and push)

Definition 1: Interpreted Instructions

An instruction that is decomposed by the assembler into several smaller/ more basic
fundamental instructions.

Example

pop R3 contains two implicit instructions: mov @SP, R3 and add #0x02, SP

Math and logical instructions are similar, but do not have a specific destination.
° MSP430 instructions come in two flavors, dual operand and single operand. Neither type has an
explicit destination register, rather, the last operand serves as the destination too.
For Example: add R4, R5 in MSP430 assembly corresponds to add R5, R4, R5 in LC-3

10This content is available online at <http://cnx.org/content/m37151/1.4/>.

19



20

WARNING: Be careful to not overwrite data you wish to keep! If you need to preserve
the values in both operand registers, you will need to save one of them first using a mov
instruction.

MSP430 Supports some byte as well as word instructions

Some MSP430 instructions allow you to address and write/read from a specific 8 bit byte in
memory instead of the entire 16 bit word. The MSP430 memory has byte level addressability,
but word instructions only operate on even numbered memory addresses (implicitly modifying
the next odd numbered memory byte too). In many cases, especially when working with memory
mapped I/O registers, you may need to operate on one specific byte only. To do so, just add a .b
onto the end of the assembly instruction
For example: mov.b #0, &P1DIR sets 8 bit length P1DIR register to zero without accidentally
modifying the registers around it.

ASIDE: MSP430 assembly specifies .w for executing word length instructions as well as

.b for bit length instructions. The assembler by default assumes word length, so you

the programmer don’t have to explicitly write mov.w R5, R14 although you should be

conscious that mov R5, R14 means the same thing.

The MSP430 has 16 CPU registers

The MSP430 has twice as many CPU registers as the LC-3. Like in the LC-3 though, some of
the MSP430’s registers are reserved for the MSP430 runtime environment. Registers R0-R3 are
reserved (Program Counter, Stack Pointer, Status Register, and a Constant Generation Register
respectively), leaving registers R4 through R15 available for general purpose use as defined by the
programmer.

In your assembly programs you have 12 general purpose registers at your disposal, but you also
must manage and keep track of the additional options.



21

MSP430 Register Usage Diagram

MDE - Memory Data Bus Memary Address Bus - MAB
e

<— RO/FC Program Counter
[ |
R1/SF Peinter Stack

1| 11
i‘; Rz/SA Slatus Register >

K \ R3/CG2 Constant Generalor

s"'l—lJ ns General Purposs _>
[ 1 ]

:LI—{_, RE General Furpase j:}
L |

r;: ~ AT Zeneral Furpose '\‘)
1L L1

(1—/ RE Genaral Furpose —>
L L 1]

\{11—;\" =] General Furpose j:‘_)
Ll Ll

SR General Furposa ::>
| | |

———" A11 General Furposa —>
L Ll

r\:—‘ A1z General Furposa >
L 11 ’

<:: AR12 General Purposa _>
LI |

4 » LIC Genaral Purposs >
L1 1

< —> A15 Gieneral Furpose ™

-+l 1L JL |20

Carry, C
Owerflow W
Megative N

16/20-kit ALY

Figure 1

Indirect, relative, and absolute addressing occurs differently

Instead of different indirect and direct load and store instructions (LD, LEA, LDI, etc...), the
MSP430 uses one versatile mov instruction with different operand addressing modes.

mov can both read and write from memory— it acts like both a load and store. (mov R4, &0x0200
corresponds to a ST while mov &0x0200, R4 corresponds to a LD) Be careful though, unlike in
LC-3, mov does NOT update the condition register.

Differentiate between the various direct and indirect modes by using special syntax to specify
the type of operand you want. This allows you to mix addressing types (read indirect and store



22

direct, etc...) even though everything is in one mov instruction.

x Direct register access: Rn (where n is the number of a general purpose register) Example:

R4 refers directly to R4

* Immediate Values: #x (where X is an immediate numerical value or label) Example: #02h

refers to the literal hex number 2

* Indirect Access From a Register: @Rn (where n is the number of a general purpose register)
@R6 refers indirectly to the data stored in the memory location in R6
* Indirect Offset Access: x(Rn) (where n is the number of a general purpose register and x is

either an literal offset or a label) Example:

Example:

in memory pointed to by R7

NOTE: This has the same end result as @R7. By TI code convention though, @Rn
cannot be used to specify the destination of an operation, so if you wish to store a
result indirectly, you must use the 0(Rn) syntax.

TIP: In this example R7 essentially contained the address while the literal offset was
a small number. Offset Access can be very powerful when looked at the other way:
where the literal contains a starting location in memory (potentially a label) and
the register contains a small offset value incremented to access a series of locations

in memory.

Table 3-3. Source/Destination Operand Addressing Modes

0(RT)

refers to the data stored in the location

MSP430 Addressing Modes

Az/Ad  Addressing Mode Syntax Desgecription

00/0 Register mode Rn Register contents are operand

o1n Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

011 Symbolic mode ADDR  (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

0N Absolute mode &ADDR  The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/- Indirect register @Rn Rn is used as a pointer to the

mode operand.

1/- Indirect @Rn+  Rnis used as a pointer to the

autoincrement operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for W instructions.

11/- Immediate mode #N The word following the instruction
contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

Figure 2

You can also perform indirect or relative operand addressing with operations other than loads



23

and stores

Example
add @R4, R5 takes the data stored in the address pointed to by R4 and adds it with
R5, storing the result in R5.

For more information, see the summary chart Figure 2 (MSP430 Addressing Modes) or the com-
prehensive MSP430 users guide'! section 3.3.0 through 3.3.7

The MSP430 has two types of memory
° The MSP430 has both traditional RAM and non-volatile Flash memory. On a power reset, all

values in RAM are cleared, so your program will be stored in Flash. The Flash write process is
fairly involved, so we won’t be writing to it in this class during run time (Code Composer will
take care of loading your programs). In a nutshell, your program must store any temporary or
changing values to RAM memory, although it can read your instructions and any preset constants
from flash
Important Memory Locations:

0x0200 : The Lowest Address in RAM

0x0280 : The Highest Address in RAM

0xF800 : The Beginning of Flash Memory

O0xFFEOQ : The Beginning of the Interrupt Vector Table

MSP430 Memory Map

Figure 1-2. Memory Map

AcCcess
OFFFFh
Interrupt Vector Table Word/Byte
OFFEOh
OFFDFh
Flash/ROM Word/Byte

!

* Word/Byte
0200h AAM eyt
01FFh

16-Bit Peripheral Modules word
0100h
OFFh
8-Bit Peripheral Modules Byte
010h
OFh
o Special Function Registers Byte

Figure 3

ISee the file at <http://cnx.org/content/m37151 /latest /MSP430 User Guide-slaul4de.pdf>



24

The MSP430 Uses Memory Mapped I/O Peripherals

These devices function independently of the main processor, and use memory mapped registers
to communicate with the program executing on the main CPU.

Peripherals free up CPU resources and also allow more usage of low power CPU suspend modes.
You’ll learn more about peripherals in Lab 5

MSP430 Architecture Block Diagram

r |
|
i S?ils(;g:n :QSLCKLK ?%sﬂ/ RAM Peripheral ] Peripheral | Peripheral i
| MCLK /\ /\ F r -~ |
| w |
T e — 1
| |misccru| |8 |
|| 1eBit S |
| = |
= 2| wmDBieBt Jus, MDB &-Bit > |
: ‘ |
JTAG |
' ALY ] 4 4 |
| ACLK —] ] - | |
: SMCLK —M™ Watchdog| | Peripheral Peripheral| —|Peripheral| |Peripheral I
L J
Figure 4
Example Code Translations
LC-3 Assembly LC-3 Pseudocode MSP430 Assembly MSP430
Pseudocode
AND R4,R5,R6; R4 <- R5 & R6 mov.w R5,R4; R4 <- R5
and.w R6,R4; R4 <- R4 & R6
BRz R4,Loop; if R4 == 0, tst R4; load the attributes
branch to label jz Loop; of R4 into the SR
"Loop" jump to label
"Loop" if the zero
bit is flagged

Table 1



25

Other Useful Information

The code composer debugger actually runs on the real MSP430 hardware through a JTAG interface. To
debug code, you have to have the launchpad board plugged into the computer.

The debugger controls the CPU’s clock (and therefore can monitor it). To see how many clock cycles
something takes, go to Target -> Clock -> Enable, and look in the bottom right corner of the
screen for a small counter with a clock next to it.

Part I Assignment Detail

Your task is to create a simple MSP430 assembly program using CCS4 and the MSP430 launchPad to
calculate a Fibonacci sequence. You do not need to explicitly display the sequence, but rather use the Code
Composer register view tools to watch the sequence progress as you step through your program.

To view the registers in Code Composer Studio v4, first start a debug session. Once you are in the debug
perspective, you can go to View—> Registers to open the register dialog. From there, expand the section
"Core Registers" to see your CPU registers, or the section "Port 1 2" to see the raw data from the input
pins.

Enable the clock cycle monitor (Target—>Clock—>Enable) and you will see a yellow clock icon at the
very bottom of your screen. This tells you how many actual CPU clock cycles have passed since you enabled
it. Observe the different amounts of time that different instructions take.

Definition 2: The Fibonacci Sequence
The sequence of numbers starting with 0 , 1 in which N= (N-1) + (N-2) 0, 1, 1, 2, 3, 5, 8, 13, 21,
34...

ASIDE: The Fibonacci sequence plays an important role in the natural world. It appears in many
biological sequences, and is fundamentally linked to the famed "golden ratio." For more "fun" info
about Leonardo Fibonacci, see the ever reliable Wikipedia '2

Diagrams courtesy of TI document slaul44e "MSP430 User’s Guide"
The LC-3 was developed by Yale N. Patt (University of Texas at Austin) and Sanjay J. Patel (University
of Illinois at Urbana-Champaign) and is used in their book Introduction to Computing Systems.

2http:/ /en.wikipedia.org/wiki/Fibonacci



26



Lab 3-2 Digital Input and Output with
the MSP430"

Basic Digital I/0 in the Real World

In this lab you’ll go over the basics of how to setup and use the GPIO on the MSP430. This will allow you to
get data from the outside world, run some processing on it, and then output it again as useful information.
You only have one task this week:

1. Coding in MSP430 assembly, write a simple I/O echo program. Setup the GPIO pins and poll
the input switches for any changes. On a change, take the input and display it to the output. Step
through this program to observe how it behaves. Assignment Details (Section : Assignment Details)

Digital I/0O Basics
GPIO

Philosophy

e The MSP430 uses a limited number of GPIO hardware pins that are assignable to several functions
depending on your specific model and your program’s needs. Our version, the MSP430G2231, can have
the Port 1 pins act as digital output, digital input, or ADC input.

e The pins are organized into ports, with each port usually one byte (8 bits/pins) wide. On larger
versions of the processor (different format chips with physically many more pins...) you can encounter
several ports, but in this lab you will only be using Port 1 and Port_ 2

e You can set each pin’s function independently (input or output) by modifying some memory mapped
I/0 registers. Since we want to do both, we will divide P1 into half inputs and half outputs as needed.

Usage

e The I/O ports are memory mapped into the top of the MSP430 address space.
e There are several registers associated with each port. For now, you only need to worry about four
(P1IN, P10UT, P1DIR, and P1REN).

P1IN

The P1IN register is located at address 0x0020 in memory, which you can also refer to using the
C symbol &P1IN
The register holds the values the MSP430 sees at each pin, regardless of the pin direction setting.
To read the register, it is good practice to use a mov.b instruction to avoid accidentally reading
adjacent registers

13This content is available online at <http://cnx.org/content/m40643/1.1/>.

27



28

TIP: If you are looking to test or read just the pins set to input, you will have to mask
the P1IN register to zero out the other unwanted/output pins. Reading P1IN reads the
entire port, regardless of pin direction.

P10OUT

The P1OUT register is located at address 0x0021 in memory, which you can also refer to using
the C symbol &P10UT

If their direction bits in P1DIR, are set to output/ "1", the corresponding pins will output the
values set in P1IOUT.

If a pin’s direction bits are set to input in P1DIR, and its resistors are enabled in PIREN, P10UT
controls the pin’s connection to the pull-up resistor. Setting P1IOUT to "1" enables the pull-up,
while setting it to "0" leaves the input to float in a high impedance state.

To set P1OUT, use a mov.b instruction to set several pins at once. To set individual bits to "1",
you can use an or.b instruction with a "1" in the positions you want to set. To clear individual
bits/ set them to zero, use an and.b instruction with mostly "1"s except for a "0" for the bits
you want to clear.

P1DIR

The P1DIR register is located at address 0x0022 in memory, which you can also refer to using
the C symbol &P1DIR

The value of the bits in PIDIR determines whether the MSP430 hardware leaves the pin in a high
impedance state where it responds to external voltage changes (which you can read at P1IN), or in
a low impedance state where the MSP430 drives the output voltage to a certain value determined
by P10OUT.

To set the bit directions all at once, use a mov.b instruction, but to change individual bits
regardless of the others, use an and.b or a or.b

Set the corresponding bits to "0" to set pins to input mode, or to "1" to set them
to output mode.

P1REN

The P1REN register is located at address 0x0027 in memory, which you can also refer to using
the C symbol &P1REN

P1REN controls whether the MSP430 Launchpad enables the integrated pull-up resistor for a
given pin.

The pull-up resistors allow the use of single pole switches. They prevent the input signals from
floating randomly while the switches are open by loosely tying the inputs to Vcc. When the switch
is closed though, the much stronger connection to ground wins out, pulling the inputs down to
GND.

Set the corresponding bits to "1" to enable a pin’s pull-up resistor, or to "0" to
disable it (disabled by default).

So What?

In this lab we’re going to use the MSP430’s GPIO pins, combined with some external switches and an LED
display, to build a basic I/O system for our board. Because of how things fit together on the board, it makes
sense to use P1.0-P1.3 (the first three Port 1 GPIO Pins) to read the input switches and P1.4-P1.7 for the
output signals.

Outputs

Setting up the outputs is easy— simply set the upper four bits (bits 4-7) of &P1DIR to "1", and then write
the output to the upper four bits of &P10UT. That means you’ll have to shift your data left 4 positions before
output, but you should already know a simple technique to do so!



29

ASIDE: You’ll notice that when you change the output, the corresponding input bits also change.
This happens because the input hardware always reads the status of the line, regardless if it is set
to input our output. Changing the &P1DIR values only connects or disconnects the driving circuitry
built into the MSP430. In advanced applications this can be used to analyze potential faults in the
circuitry outside the chip.

Inputs
Inputs are also "easy," but there are a few hardware concepts you’ll need before you understand how they
work!

A Little Bit About Wires

As mentioned briefly in class, binary digital logic has two valid states, plus one third mystery state. That
third state, "The High Impedance State," (High-Z) just means that the wire isn’t connected to anything.
You’ve already talked about using so called tri-state buffers to negotiate who can talk on a shared bus— the
listening components enter the high impedance state, allowing the transmitting component’s signal to drive
the bus with no conflicts.

ASIDE: Impedance is a generalized form of the classical Resistance concept. Impedances can be
real or complex valued, and apply too signals expressed in complex exponential form (whether
constant or variable!). To learn more about impedance, check out Dr. Johnson’s sections from
the Elec 241 course notes.'*

A Basic Switch

Qi

Figure 1

In order to read useful input from your switches, you need them to be "0" in one state, and "1" in
the other. Yet knowing what you know about the third state, the switch shown above will actually give
a "0"/"1" (depending on what you connect it to) when closed and "High-Z" when open. Because there’s
nothing else driving the sensor input besides our switch, the input value will be random when the
switch is open. In digital logic this is called floating, and it is a very very bad thing.

One simple solution is the Pull-Up (or Pull-Down) Resistor. Connecting the floating side of the
switch to a logic level through a large resistor will tie down the floating input when the switch is open, but
won’t effect the read value much when the switch is closed.

LMnThe Tmpedance Concept" <http://cnx.org/content/m0024/latest/>



30

+3.3V (V)

A Simple Pullup Configuration

Hardware Switch Large Resistance

Controller
Input
0.0V (Gnd)

Figure 2: As you can see, when the switch is closed, the input is shorted to ground and reads zero.
When the switch is open, the pull-up resistor holds the previously floating end at Vce.

Pull-Ups in the MSP430

For better or for worse, the MSP430 actually has pull up resistors already built into the chip’s hardware.
Configuring them takes several steps, but once setup they provide all the functionality above without the
extra external connections.

* Set the Pin Direction for P1.0-P1.3 to input. (Set bits 0-3 of &P1DIR to "0")
* Enable the resistors themselves. (Set bits 0-3 of &P1REN to "1")
* Configure the resistors to be pull-up. (Set bits 0-3 of &P10UT to "1")

IMPORTANT: The most confusing part of the whole process is the double function of P10UT. Be-
cause of the hardware implementation on the MSP430, &P10UT controls the outputs as well as the
connections to the pull up resistors. You will need to ensure that every time you output a
value, you KEEP the lower four bits "1". The easiest way to do this is just by ORing your
raw output with the constant #0Fh before you write to P10UT. The MSP430 does not have a specific
"or" instruction by name, but bis does the same thing. For more info on bis and its inverse bic,
see next week’s lab.!?

LBhttp://cnx.org/content /m40643 /latest /



31

MSP 430 Microcontroller

A Model of the Pull Up Resistors and

GPIO Pin Configuration on the MSP 430 P1DIR|| P1REN
0

0.0V (Gnd)

~35K Q (Large) “Pull

External Switch Pack Up/Down Resistor”

MSP430
“High Impedence”
Input Port

0.0V (Gnd)

Figure 3: Notice that configured this way, the MSP430 GPIO pin takes the form of the simplified
Pull-Up figure above.

Polling
Philosophy

e A traditional single threaded polling scheme consists of a main loop that runs continuously. Within
that loop, the processor periodically checks for changes, and if there are none, continues looping. Once
a change is detected, the program moves to a new section of code or calls a new subroutine to deal
with the changes.

e Polling has advantages and disadvantages— it keeps program execution linear and is very easy to code
and implement, but it also is not incredibly responsive. Since polling only checks values at certain
points in the main run loop, if the loop is long or changes occur quickly, a polling scheme can miss
input data. For now though it will suffice.

Assignment Details

Your task is to code a simple input to output echo program for the MSP430. Your program should consist
of:

A setup section that runs once and configures the GPIO pins

A main loop that runs infinitely

Code inside your loop to read the state of the GPIO input pins

A separate section of code to write the changes to the output pins and then return to the main loop



32

TIP: You should already know the basics of masking from class, but it becomes very important
when dealing with I/O. Since different pins do different things in the same port (P1), you the
programmer will have to be careful not to accidentally modify the wrong bits even though your
instructions will operate on the entire register.

All images drawn by Matt Johnson, Rice ECE



Lab 4-1 Interrupt Driven Programming
in MSP430 Assembly"

MSP430 Interrupts and Subroutines: Your Tasks

This week you will learn more about the philosophy of interrupt driven programming and specifically how
interrupts work on the MSP430. To test out your knowledge, you’ll write another simple I/O echo program
that builds off the code from the last lab.

1. Coding in MSP430 Assembly, create an interrupt driven I/O echo program. The program should
read the values of the input pins when pin 4 (P1.3) triggers an interrupt, and then output the read
value to the 7 segment display. Details (Section : Interrupt Assignment Detail)

Background Information

A Few More Instructions

Like you saw in the GPIO Lab, the MSP430 (even though it’s a RISC Reduced Instruction Set Computing
processor) has a fair number of instructions in addition to those you learned for the LC-3. The extra
instructions help programmers simplify code readability and streamline program execution.

You'’ve already seen how the MSP430 uses memory access modifiers and the general purpose mov instruc-
tion to implement all the functionality of the LC-3’s plethora of load and store instructions. Two other very
useful MSP430 instructions are bis (Bit Set) and bic (Bit Clear). These instructions take an operand with
"1"s in the bits you wish to set or clear, and then a destination upon which to do the operation. This comes
in handy when you need to modify a few specific configuration bits out of a whole register (like the GIE bit
in the SR for interrupts... see below!). The header file has pre-defined masks you can use with bic and bis
to make bit operations much more readable.

NOTE: The bis and bic instructions actually emulate functionality you already had with and,
inv, and or.

NN N N N N N N N N N N 1N 1N N (N N 1N 1N 1N N N N N 1N 1N 1N N 1N N N 1N N (N N 1N N 1N 1N 1N 1N N N 1N N N N (N N 1 N (N N N N N N (N (N N N N N N N N N

bis opl, op2 corresponds to
or opl, op2

NN N N D N N N N N 1 1 1N N N N N 1 1N 1N 1N N N (N 1 1N 1N N N N 1 1N 1N N N 1 1 1N 1N 1N (N N 1 1N (N N N N N 1N N 1N N N N N N N N N N N N N N N N

bic opl, op2 corresponds to

16This content is available online at <http://cnx.org/content/m37217/1.2/>.

33



34

inv opl
and opl, op2

Directives

Assembler and Compiler Directives sound intimidating, but they are nothing more than bits of code intended
for the assembler/compiler itself. Directives allow you to specify how the assembler/compiler handles your
code and how it all finally comes together into the executable binary file.

The skeleton file has included several directives all along— . cdecls C,LIST, "msp430g2231.h" tells your
.asm file to include the ¢ code header aliases from the generic MSP430G2231 configuration file. .text tells
the assembler to place your program in the main flash memory section, and .sect "reset" defines where
to start the program after a processor restart.

In this lab, you’ll have to use directives to place your ISR vectors into the vector table. (p. 36)

Basic Interrupts

Problems with polling

Continuously polling a pin for input wastes useful CPU cycles and consequently uses more power
The CPU must check the pin often enough to detect a change— when trying to catch a rapidly
changing digital signal (a small pulse or transient, etc.), polling may not be sufficient.

In conclusion, polling is easy to understand and implement, but is generally ineffi-
cient.

The solution... interrupts
Interrupts use dedicated hardware to detect input changes or hardware events (button pushes,
timer intervals, etc...)
When a change is detected, the interrupt logic interrupts the CPU execution.

x The CPU stops what it is doing and calls a special section of code determined beforehand in
the interrupt vector table. This section of code is known as the Interrupt Service Routine,
or ISR for short.

* Once the interrupt has been serviced and the ISR is complete, the CPU returns to what it
was doing before.

The way the main program pauses execution and then branches to a new section of code works
in a similar way to the LC3’s Traps.

Advantages to Interrupts
Interrupts will catch quickly changing inputs (within reason) that polling might have missed.
The CPU is allowed a level of freedom to multitask without needing to "worry" about explicitly
catching input changes. The CPU can do other tasks safely while waiting for an interrupt to fire.
NOTE: Programs can be "interrupt driven," meaning that the program is just a collection
of different interrupt service routines for different tasks.
«The CPU is only active while servicing an ISR, allowing it to go into low power
mode between interrupts. Programs that spend a large percentage of their run time
waiting on outside events can be made much more power efficient.

Basic Interrupt Implementation
Discrete hardware detects interrupt conditions and then triggers the appropriate interrupt in the
CPU if it is high enough priority.
The interrupt vector table maps each interrupt to the memory address of its interrupt service
routine. Like with traps, the CPU first goes to this table to find the address of the ISR and then
jumps to the actual ISR code.



CPUs contain several different interrupts to handle different external events uniquely.

MSP430 Interrupt Call Procedure

Memory
—_———-'-'-.---_--H

Save
Context

Main Program

Restore
Context

Vector Table

--._________.-'-'-'—-_-

Figure 1

Interrupts on the MSP430
On the MSP430, there are two types of interrupts: maskable and non-maskable.

Definition 1: Maskable Interrupt

Most interrupts are maskable. Maskable interrupts can be enabled or disabled as a group
by setting the GIE (General Ineterrupt Enable) bit in the status register. The interrupts
must also be enabled individually, but masking allows delicate code (For example, if you
are running a precisely timed output routine that must execute all at once) to run in a
near interrupt free state by disabling only one bit. Enabling All Maskable Interrupts

bis.w #GIE, SR

Definition 2: Non-Maskable Interrupt

Non-Maskable interrupts will trigger an interrupt at any point in code execution— they
cannot be enabled or disabled on a line by line basis, and they will execute even if the
processor is "stuck". Non-maskable interrupts mainly deal with recovering from errors

35



36

and resets (illegal memory accesses, memory faults, watchdog expiration, or a hardware
reset will trigger non-maskable interrupts).

In the MSP430, GPIO interrupt capability must be enabled at the masking level as
well as the individual pin enable level.
Interrupts should be enabled during the program initialization (before the main code loop or
entering low power mode), but after any initialization steps vital to the ISR
There are four main steps to enabling interrupts on the MSP430’s GPIO pins.
* Enable interrupts on the individual input pin (in this example pin P1.4) using the port’s
interrupt enable register.
bis.b #010h, &P1IE
P1IE= Port One Interrupt Enable
* Select whether the interrupt triggers on a transition from low->high ("0") or high->low ("1")
using the port’s edge select register
bis.b #010h, &P1IES
P1IES=Port One Interrupt Edge Select
* Clear the interrupt flag on the pin in the port’s interrupt flag register.
bic.b #010h, &P1IFG
P1IFG=Port One Interrupt FlaG
NOTE: Flags are important. For one, if you forget to clear the flag at the end of your
ISR, you will just trigger another interrupt as soon as you return. Also, all of the
GPIO pins trigger the same port one ISR. If you have multiple interrupt triggering
pins, flags can allow you to determine which pins triggered the interrupt.
x And lastly, only after all of your other important setup, enable all the maskable interrupts in
the overall CPU status register.
bis.w #GIE, SR

Writing an MSP430 Interrupt Service Routine

The ISR needs to be a section of code outside of the normal main loop.
Your ISR must begin with a label and end with a reti instruction.

Pinl_ ISR
<YOUR ISR CODE>
bic.b #001h, &P1IFG
reti
At the end of your .asm program, you need to tell the assembler to write the starting address
of your ISR to the correct section of the interrupt vector table. The label at the beginning of
your ISR allows you to find this address.
ASIDE: CCS4 uses a separate file to define different sections of your controller’s
memory. This extra layer of abstraction makes it easier to port code between dif-
ferent microcontrollers, but means that you the programmer can’t write directly to
a specific memory address in your program. To fill your vector table, you’ll need to
use the following syntax:
.sect MEMORYSECTION
.word DATATOPLACE/LABEL
The port one interrupt vector for the MSP430 G2231 is defined as 0xFFE4. If you look in the
file "Lnk msp430g2231.cmd" (in the file browser for your lab 4 project), you will see that
address 0xFFE4 has been assigned to INT02. In the second half of the linker file, the section
.int02 has been assigned to memory addresses > INT02. When you want to write to the
GPIO entry of the interrupt vector table, you need write to code section ".int02"
in your assembly file. Setting the GPIO vector in the interrupt vector table



37

.sect ".int02"

.word Pinl_ISR

The .sect instruction directs the linker to put the code that follows into a specific code
section. (You have been using this all along, just putting your code into the main program
".text" section.)

The .word instruction directs the linker to write a word length data value into memory.

For more information on interrupts, see the Interrupt section of TT’s Microcontroller and Embedded Systems
Laboratory.'”

Subroutines

Subroutine Basics

Subroutines have a lot in common with interrupt service routines (in fact, many programmers use ISR
interchangably between Interrupt Sub Routine and interrupt service routine).
Subroutines are sections of code you use repeatedly during a program— they allow you to keep repetitive
program sizes smaller by re-using the same code section instead of repeating it everywhere you need
it.
To go to a subroutine, use the call #SubroutineLabel instruction. call is analogous to triggering
an interrupt. Call works in practice a lot like just jumping to the label, but it also pushes the PC onto
the stack (like an ISR) so you can return to wherever you may have left off (since multiple places in
code can call the same subroutine).
At the end of your subroutine, use a ret (return) instruction to pop the PC off the stack and go back
to the original execution point of the main program. This is analogous to the reti instruction at the
end of an ISR.
WARNING: Calling a subroutine on the MSP430 ONLY saves the PC, not the status register
like an ISR. You can use subroutines to encapsulate complicated logic, and then examine the
conditions afterwords in your main program.
There is a slight performance trade off when using subroutines from the overhead involved with storing
the PC and moving to a new section in memory, so use them intelligently.
A simple subroutine to demonstrate call and return:

<Your Other Code...>
call #Sub220
<Your Other Other Code...>

Sub220 add R4, RS
inv R5
ret

Interrupt Assignment Detail

Your task is to create a simple MSP430 assembly program using CCS4 and the MSP430 LaunchPad to
output a stored value to the 7-segment display. Your program should be interrupt driven, and triggering
an interrupt on switch 4 (Pin 1.3/LaunchPad Pushbutton S2) should store and output a new output value
corresponding to the state of switches 1-3. Changing switches 1-3 should not effect the output until
toggling switch 4. Your program should consist of:

1T Interrupts" <http://cnx.org/content/m12321 /latest/>



38

e A setup section that configures the GPIO pins and enables interrupts.
e An infinite main loop that does nothing (the No Operation instruction nop could come in handy).
e An ISR that takes the new inputs and writes them to the output before returning to the main loop.

Interrupt Diagrams Courtesy of TT document slaul44e, "MSP430 User’s Guide."



Lab 4-2 Putting It All Together”

A More Complicated Assembly Program

By now you already have all of the tools you need to complete this assignment. Remember what you have
learned about MSP430 assembly language (Section ), setting up GPIO (Section ), and using interrupts
(Section ).

1. Coding in MSP430 assembly, implement an interrupt driven number sequence recorder. You
will use the same input configuration from last week (get data from pins 1-3 on an interrupt from pin
4), but now will output a readable loop of the last 5 received numbers in order. Assignment Details
(Section : Part IT Assignment Detail)

Part IT Assignment Detail

Your task is to write an assembly program to display a programmable sequence of 5 numbers on the MSP430
LaunchPad.

You should use five slots to store the input numbers.

Since our simple LaunchPad setup only has one display, you will have to rotate through each of the
five numbers after a "short" (in human terms) delay.

Use an ISR to store a new number in the "next" slot. (Next not necessarily meaning what is currently
being displayed). The input should go from slot 1 to 2 to 3... etc. regardless of which slot is currently
being output.

The program should only display a slot after a number has been input into it. You will need to keep
track of which slots have been filled.

18This content is available online at <http://cnx.org/content/m40645,/1.1/>.

39



40

o N O

X0 X1 X2

X0 X1 X2 X3
X0 1 s X3 X
x5 x1 X2 X3 x4

Figure 1: Ounly grey boxes are output to the display. Also, notice how after filling all five slots, the ISR,
loops back and starts filling from the beginning.

Your program should consist of:

e A setup routine that readies all the components of your program.
e A main loop that displays the stored numbers one after the other with a readable delay in between.
e An ISR that stores each new input number to the appropriate slot.

A Few Hints:

The MSP430 operates at ~13MHz, which may seem slow in terms of computers, but is much too fast
for the human eye to process (~30Hz). You will have to implement a very significant delay in between
number changes.

One way to generate a naive delay is a long loop which does nothing. You may even need to use a
nested loop depending on how long of a delay you need. Nested Loop Example in C:

int i=0;
int j=0;
for (i=0; i<bigNumber; i=i+1)
{
for(j=bigNumber; j>0; j=j-1)
{
<!--This code will run ixj times-->;
}



41

You may find it convenient to put your five slots in RAM instead of using registers. You can then
store a memory address in the register, and then increment it or set it as needed. You will need to use
indirect addressing mode though.

mov R4, O(R15); moves the contents of R4 to the address in R15

mov 0(R15), R4; moves the contents of the address in R15 into R4
mov &0x0200, R4; moves the contents of memory address 0x0200 into R4

Consider where it may be useful to implement parts of your program in subroutines

Wrapup

Congratulations on completing lab 4! Your program sophistication has dramatically increased. You under-
stand the basics of interrupt driven programming, and know how to use assembly level subroutines.
You have had to keep track of data as well as design a responsive I/O interface to the outside world. Keep
up the good work!

Labs based on the original Elec 220 labs maintained by Michael Wu.

Images from original lab documents by Yang Sun. Modified by Matt Johnson.



42



Lab 5-1 C Language Programming
through the ADC and the MSP430"

The C Language and Analog Interfacing: Your Task

This lab covers the basic principals behind Analog to Digital Conversion, as well as the basics of programming
in C. You are expected to have some background in C from class, but if you are confused, see this basic
reference?’.
1. Using Code Composer Studio 4, write a C language program turning your MSP430 LaunchPad into
a simple 10 level voltmeter. Your program should divide the 0-3.3V input range of the ADC into 10
zones, and then output from a 0 to a 9 on the LED display depending on the input voltage. DO
NOT EXCEED AN INPUT VOLTAGE OF 3.3V. You will damage your circuits and destroy
your MSP430. Assignment Details (Section : Assignment Details)

The ADC and "C" Through a Practical Example

Interfacing with the Analog World: The ADC

ADC’s play an incredibly important role in digital electronics and DSP. ADC stands for Analog to Digital
Converter, and it does exactly what you would expect it to. It samples an external voltage, and then converts
that voltage to a binary number compared to the reference voltage range from Vdd to Vss. (In plain English
terms, the ADC samples what fraction the input is of some maximum allowed reference voltage.) The ADC’s
result gets written to a memory mapped register, where the programmer can access it and use it in his or
her code.

An ADC has a finite voltage range it can safely convert (usually related to its power supply range,
but not always). The precision of the converted sample is related to the number of bits used by the ADC.
More bits means more precision (more finite "slots" into which the infinitely variable analog single can
be quantized) and a lower "quantization error." To learn more about error and ADC, see this except from
the Introduction to Electrical Engineering course notes?!. ADC’s also have a maximum sampling rate
specification (how frequently the ADC can make a conversion), but in this course we will be sampling very
low frequency signals, so we won’t need to worry about it.

The MSP430 ADC

The MSP430 G2231 has one 12 channel 10 bit 200Khz ADC. ADC channels allow the single ADC to select
between several different signals (such as two different analog inputs on different GPIO pins) like an analog
multiplexer. In the G2231, channels 1-8 are connected to the 8 P1 GPIO pins, and channel 10 is connected to

19This content is available online at <http://cnx.org/content/m37386,/1.3/>.
20PROGRAMMING FUNDAMENTALS IN C++ <http://cnx.org/content/col10788 /latest />
21" Amplitude Quantization" <http://cnx.org/content/m0051 /latest/>

43



44

the chip’s internal temperature sensor. You can select which channel to convert by setting the ADC10CTL1
register’s (10 bit ADC Control 1) INCH property (Input Channel).
For this lab, we will configure the ADC to use the internal 3.3 Vdd as the reference voltage.

e A voltage of 3.3V would result in the ADC register holding 11 1111 1111 (0x03FF)

e A voltage of 0.0V would result in the ADC register reading 00 0000 0000 (0x0000)

e A voltage of 1.65V would result in the ADC register reading 01 1111 1111 (0x01FF)

e The ADC will have a sample resolution of 3.3V /1024 [Voltage Range/27Bs] or .0032 Volts.

The ADC is a peripheral device, so it operates independently from the CPU. It has several operation
modes (configured by writing to its control registers).

Definition 1: Peripheral

A device that can operate independently from direct CPU support and control. Peripherals often
rely on interrupts to notify the CPU when they have completed some given task or need attention,
and use independent control registers for configuration. The ADC 10 is a peripheral, as well as the
MSP430’s UART (serial controller) and timers.

ADC10 Operation Modes

e Single Sample and Hold- the ADC10 will start a conversion when triggered by the CPU. After that
conversion, it will hold the converted value in the ADC10MEM register and automatically go into sleep
mode until signaled to begin another conversion. We will mostly use this mode.

e Sequence of Channels Sample and Hold— the ADC10 will convert a series of different channels once,
and store the result to ADC10MEM.

e Repeat Single Channel Mode- it will continuously sample on channel, continuously updating the
ADC10MEM register.

e Repeat Sequence of Channels Mode— the ADC will continuously sample through a series of channels.

The MSP430’s ADC 10 also has a built in memory controller. We won’t be using it, but it becomes
important when using the repeat modes. The memory controller can automatically write the ADC data into
main memory as conversions finish, bypassing the CPU.

The G2231’s ADC can run off of one of several available clock signals of varying speeds. The ADC10 also
has a clock divider that can further slow the conversion speed by up to a factor of 8. Once a sample has been
captured, it is held ready in the ADC10MEM register for a defined number of clock cycles. Since we are
concerned with a low frequency signal, we will want to slow down the ADC10 as much as possible. (Students
who have had Elec241 will notice some fundamental flaws in the assumptions made regarding high-frequency
noise, but in practice this has very little effect on the final results). Even in its slowest mode, the ADC10
will still sample too quickly, so the use of some kind of moving average will help stabilize its DC readings.

Controlling the ADC10 in C
C Basics

Your C program will be structured similarly to its assembly language counterparts, but with a much different
syntax. Like before, the register names are all pre-defined in the "msp430x20x2.h" header file. To set a
register, now just use an equals sign and set it like any other variable. For example, you will want to disable
the watchdog timer in the first line of your program. WDTCTL=WDTPW+WDTHOLD; The compiler will execute
the void main(void) function first. From that function, you can call any other functions or run any loops
that you would like.

C Skeleton Program

#include '"msp430x20x2.h"



45

//Global Variable Declarations

//Global Function Declarations

void main(void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

//0ther Setup

//Your Program Here

//Can call other helper functions, loops, etc.
}

Configuring the ADC10

The ADC10 has two main control registers ADC10CTLO and ADC10CTL1, and two analog input enable registers
ADC10AEO and ADC10AE1 (10bit ADC Analog Enable 0/1). These registers control all the timing and
conversion aspects of the ADC.

ADC10CTLO

ADC10CTLO, ADC10 Control Register 0

15 14 13 12 1 10 9 8
SREFx ADC10SHTx ADC10SR REFOUT | REFBURST
rw—(0) rw—(0) rw—(0) w—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 o
MsC REF2_sV REFON ADC100N ADC10IE ADC10IFG ENC ADC10SC
w—(0) rw—(0) w—{0) rw—(0) rw—(0) rw—(0) rw—(0) rw—{0)

Madifiable only when ENC = 0

Figure 1

In the first control register (ADC10CTLO), we only need to change two parameters,

e ADCI10SHTx-10bit ADC Sample Hold Time— a higher value means each sample will be held for a
longer period of time. We want to set this at the max value of ADC10SHT_3 .



46
e ADCI00N-10bit ADC ON/OFF-setting this bit to "1" (denoted by the label ADC100N) turns on the

ADC, a vital step to performing any conversion!

To actually do this in C, just use addition and an equals sign:

ADC10CTLO = ADC10SHT_3 + ADC100N ;

ADC10CTL1

ADC10CTL1, ADC10 Control Register 1

15 14 13 12 11 10 9 8
INCHx SHSx ADC10DF ISSH
rw—(0) rw—(0) w—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 [ 5 4 3 2 1 0
ADC10DIVx ADC10SSELx CONSEQx ADCY
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) r-0
Modifiable only when ENC =0
Figure 2

In the second control register (ADC10CTL1), we want to again set two parameters, but we will need to use

4 alias labels instead of just two.

e ADCI10DIVx-10bit ADC clock Divider bit x— for "more flexibility", you set each bit individually in
the three bit ADC10DIVx section of the register. Since we want the maximum divider, we will set all
the bits.

ASIDE: Since some of the bit labeling is inconsistent (ADC10DIV is bit-wise while ADC10SHT
is not), it is always good to examine the header file for a controller to see how its aliases are
defined before using them in your code.

e INCHx-Input Channel #— this 4 bit section determines which of the possible input channels the ADC
will actually convert in single convert mode. In series mode, this determines the highest channel to be

converted in the series (all channels below this number will also be converted).

ADC10CTL1 = ADC10DIVO + ADC10DIV1 + ADC10DIV2 + INCH_X;



47

Lastly, the ADC10 has the ADCI10AEQ/1 registers that enable analog input on the different pins. These
act as gates to prevent leakage current from flowing from a pin set as an output through the ADC to ground-
a substantial waste of power. To enable the ADC for your desired GPIO pin, just set the corresponding bit
in ADC10AEO0 to "1".

ADC10AEO |= BIT#;

For more info about the ADC10’s configuration options, see the MSP430 manual starting on page 609.

Using the ADC
To read a sample from the ADC, just read from the ADC10MEM register after the sample has completed.

my_var= ADC10MEM;

Remember that we have setup the ADC for single conversion and hold, so if you want another value, you
will have to tell it to sample and convert again. You do so by modifying two values in ADC10CTLO:

e ENC-Enable Conversion— locks in the ADC settings and stabilizes it for conversion.
e ADC10SC-10bit ADC Start Conversion— setting this bit to one actually triggers the ADC’s conversion
cycle.

ADC10CTLO |= ENC + ADC10SC;

NOTE: Be sure to use OR equal (|=) so that the configuration bits you set before don’t get
overridden.

NOTE: Also, don’t forget to configure P1 as usual. You will need to set the pins you wish to use
as ADC inputs to input mode at the P1DIR register as well as the ADC10AEO register. You can
configure the P1 registers using aliases and variable assignments just like with the ADC registers.

Assignment Details

Using Code Composer Studio 4, write a C language program turning your MSP430 LaunchPad into a simple
10 level voltmeter. Your program should divide the 0-3.3V input range of the ADC into 10 zones, and then
output from a 0 to a 9 on the LED display depending on the input voltage. Don’t worry about a value
landing on the boundary between two zones, just deal with it consistently. Test your volt meter by attaching
it to some of the variable power supplies around the room. DO NOT EXCEED AN INPUT VOLTAGE
OF 3.3V. You will damage your circuits and destroy your MSP430.

Your Program should consist of:

e A "void main(void)" function that drives your program
e A successful setup routine that properly configures the ADC10
e An output routine that successfully re-scales the 1024 ADC possibilities to 10 zones



48



Lab 5-2 Using C and the ADC for "Real
World" Applications with the MSP430"

A Real World Situation

On some level, every signal and every interface starts out analog. In this lab you will learn a simple two
point calibration routine and how to use it to get accurate data from the physical world. This assignment
is less about new programming principals and more about applying what you already know. You have one
main task:

1. Using Code Composer Studio 4, write a C language program to drive a precise 3 digit volt meter. Use
the ADC to read the voltage and display back the actual voltage value. Write an interrupt driven
calibration routine for your volt meter and an output routine that will allow you to display the three
output digits. Assignment Details (Section : Full Range Voltmeter Assignment Details)

Analog Signals Background

Simple Analog Sensing

The analog voltmeter may seem simple, but the ability to measure and quantify an analog voltage allows
the MSP430 to interface with a whole range of analog sensors. Ultimately, any real world signal starts out
analog, so at the heart of every interface lies some kind of analog system..

Analog sensors use the physical properties of some electronic device (or a system of many devices) to
modify an analog voltage or current signal. The MSP430’s ADC allows it to use that signal in computations
(as long as the signal’s maximum frequency is less than 100khz- the nyquist sampling frequency of the 200khz
ADC). In simple terms, the ADC can’t accurately measure signals that change too quickly for it to see. Not
only that, but the ADC can pickup unwanted distortion from those higher frequency signal components,
making even the low frequency parts inaccurate.

Example : A simple analog device

A photodiode is just one of many such devices. When kept in reverse voltage bias, the photodiode
allows an amount of current through it proportional to the amount of light shining onto it. By
attaching a photodiode in series with a resistor, we can examine the voltage across the resistor to
find that current (v=i*R), and therefore the relative amount of light!

Definition 1: Photodiode

A P-N diode specifically constructed to allow a large amount of light to enter the diode’s depletion
region. This excess light generates free electron and hole pairs in the depletion region, allowing
current, to flow. Photodiodes are surprisingly linear, meaning the light flux is almost 1:1 proportional
to the amount of current output. To learn more about photodiodes and electronic devices in general,
look forward to ELEC 305.

22This content is available online at <http://cnx.org/content/m40646,/1.1/>.

49



30

A Simple Photodiode Circuit

Voltage to read

+3.3V (Vcc)

N

Resistor of Known Resistance

Reverse Biased Photodiode 0.0V (Gnd)

Variable Current Flow

Figure 1

Our Simple Circuit

For simplicity, we’re going to continue using the voltage sources in the lab to simulate an analog
device. As you continue to take more courses and learn more about analog electronics, you will be able to
design your own analog circuits to capture and condition the information you want.

In this last lab you’ll be using the full repertoire of I/O options available to you. You’ll use the ADC to
read an analog voltage, the pushbuttons and interrupts to control a calibration routine, and the 7-segment
display to output one digit of a measured number at a time.

Calibration

Like anything in the real world, your sensors and devices won’t necessarily work perfectly all the time. Many
analog semiconductor devices are light, temperature, and pressure sensitive, so your actual readings can
vary depending on outside conditions. Also, while sensors are usually manufactured to within pretty tight
tolerances, every sensor has some finite error that you will need to account for to get maximum performance.

Some kind of calibration routine can help alleviate many of these concerns. By calibrating your sensors
against a trusted source, you can correct a lot of the skew caused by outside conditions. Calibration will
also eliminate any steady state error caused by the device itself.

A calibration routine collects a set of known data points and scales the input signal to fit the calibration
data. Since we are calibrating a linear ADC, we only need two data points to determine its operating curve.
To get the most out of the calibration, you should use two data points that are as far from each other as
possible. In the case of the MSP430 G2231, that is Ov and 3.3v.

Calibration Routine Pseudocode (NOT IN C SYNTAX)

flag=0;
interrupt function: calibrate()
returns: lowMeasured, highMeasured



51

{
if flag=0:
set low and set flag=1

if flag=1:
set high

return

}

Interrupts in C

Code Composer Studio has a special way of handling interrupts in C. It uses "compiler directives" (special
instructions to the compiler, assembler, and linker) to specify which functions should go in the interrupt
vector table. ISRs in C are written like any other function, except that they can take and return no values.
This fits with the convention that ISRs don’t interfere with or depend on the code around them.
Formatting an Interrupt in Code Composer C

#pragma vector=PORT1_VECTOR
//compiler directive saying that this function should correspond with the portl interrupt vector
interrupt void interruptHandle()

{
//your ISR CODE

}

void main()
{
. all setup

__enable_interrupt();
//Enables general maskable interrupts

... the rest of your program
}
Other Concerns

Even though interrupts should work in isolation, you often need to get or modify data inside them. This
can be done using volatile global variables. A global variable simply means a variable that any function in
your code can see and modify. Using global variables is generally discouraged (they can be easily abused
and lead to problems if you repeat common variable names), but in this case they allow you to interface
with your ISR. Volatile is a directive that tells the processor to never cache the variable’s value. When
dealing with ISRs, cached variables could lead to problems if the ISR updates the cached data while another
function is using it. Be careful using the volatile keyword excessively though— the lack of caching slows down
performance.

Full Range Voltmeter Assignment Details

Using Code Composer Studio 4, write a C language program to drive a precise 3 digit volt meter. Use the
ADC to read the voltage and display back the actual voltage value. Write a calibration routine for your volt
meter and an output routine that will allow you to display each of the output digits.



92

Your program should include:

e A setup section to setup the GPIO, configure the ADC, and enable interrupts

e An ISR that runs the calibration routine and keeps track of what has been calibrated so far (so it will
only run once)

e A main loop that continuously samples, filters, and scales the ADC input to the 0-3.3 volt range as
determined by your calibration.



Chapter 1

Helpful General Information

1.1 MSP430 LaunchPad Test Circuit Breadboarding Instructions’

1.1.1 Breadboard Basics

The solder-less breadboard is a convenient way to setup simple circuits and make connections quickly between
electronic components. Each hole in the breadboard has a spring clip that makes a connection to the wire/
IC lead you put into it. The breadboard connects each vertical row of holes in the main secion,
giving you five holes where you can tie together parts of an electrical circuit. Any time there is a gap between
two adjacent holes, they are not automatically connected together.

You will notice some red and blue horizontal lines of holes in the top, bottom, and middle of the bread-
board. These are your busses. In most simple breadboards you will use these for power (VCC and GND)
as we do here. The bus sections are not automatically connected together. If you want power to all of the
busses, you need to connect them all together as shown below.

Lastly, notice the divided channel down the middle of the breadboard. This channel is specifically sized
for DIP packaged integrated circuits. You can put a chip across the channel, and have access to each of
its pins using the vertical rows above and below. Always put chips across the channel, otherwise you will
connect the opposite side pins together and your circuits won’t work as expected.

WARNING: If you use your bare hands to try and remove a chip from the breadboard (you will
notice it can be difficult, especially with components with lots of pins), there is a good chance you
will end up with the chip plugged into your finger afterwords. You hand has a natural tendency
to rotate things when you are pulling hard, so watch out. There are some IC removing tools
around the lab, use one of them or ask your labbies to help you if you accidentally
misplace a chip.

LThis content is available online at <http://cnx.org/content/m37152/1.3/>.

53



54 CHAPTER 1. HELPFUL GENERAL INFORMATION

The Connection Scheme in a Typical Breadboard

Figure 1.1: An illustration of how the breadboard holes are connected together in the breadboards
used for the lab. Notice that no connections cross the center channel and that the busses are connected
horizontally while the main face of the board is vertical.

1.1.2 Steps for Assembling the Breadboard for Elec 220

WARNING: Make all connections with the MSP430 disconnected from USB power.

WARNING: See above for explanation. Use an IC removal tool or ask your labbies for help.

Tinkerers:

The wiring below is suggested and works well, but if you have any ideas on how to improve the circuit, feel
free to implement them in your breadboard. Just be sure that you can successfully run the test program at
the end.

1.1.2.1 1) Get Your Materials

You will need:

e 1 MSP430 Launchpad



55

1 Double Width Breadboard

1 Breadboard Wire Kit

1 MC14511B Binary to Decimal Converter
1 Kingbright Green 7-segment display

1 4 Switch SPST DIP Switch Pack

2 470 ohm isolated resistor arrays

1.1.2.2 2) Attach the Circuit Components to the Breadboard

Most of the breadboards should already have their components pre-inserted in the correct places by the
labbies. This section is included for completeness and so you can double check their work if necessary.

The MSP430 launchpad goes in the middle right hand side of the board. Its upperleftmost pin goes
in hole H47, and the chip sits across both halves of the breadboard. Once it’s in, put in the 4 toggle dip
switch across the channel above the Launchpad. The switch’s top leftmost pin goes into hole E52.

The MSP430 and DIP Toggle Switches

Figure 1.2: Connecting the switch to GPIO pins 0-3

Now insert the decoder IC (the 16 pin chip MC14511BCP) into the board. The top leftmost pin goes
into hole E21 across the lower breadboard channel.

Then put the 7-segment display across the same channel, with its top leftmost pin in hole C36.

Take one of your resistor arrays (the long black sticks with a rubberized coating) and place it with the
leftmost pin in hole B28, connecting it to the top right pin of the decoder by doing so.

Lastly, put the other resistor array with its leftmost pin in hole I21 of the upper half of the
breadboard.



96 CHAPTER 1. HELPFUL GENERAL INFORMATION

Main Display Components

sssss  ssese sesss

Figure 1.3: The components are close together to prevent long wire runs and simplify the connections
between them (taking advantage of the breadboard connections whenever possible).

1.1.2.3 3) Wire Your Power Busses Together
To give some additional flexibility, the breadboard busses aren’t automatically connected together. In our
applications, we will want to run all circuits off of the same power used by the MSP430 itself, so we need to

tie all the different bus sections together.
Using the orange wires in the wiring kit, connect each half of all the horizontal bus strips.

The wide gaps in the middle of the strips indicate that there is a gap we need to bridge with an external

jumper wire.



57

Lengthwise Bus Connections

Figure 1.4: Notice how the orange and red wires in your kits are sized to exactly bridge the respective
gaps in the breadboard.

Since the lab setup only needs one power level, for convenience tie all the power busses together. This
will allow shorter runs from the chips to whichever bus is closest. Using the red wires, connect all three
red and all three blue busses together. Put the connections off to the far left hand side of the board
out of the way of your main circuit.



58

CHAPTER 1. HELPFUL GENERAL INFORMATION

Vertical Bus Connections

Figure 1.5: Notice how the orange and red wires in your kits are sized to exactly bridge the respective
gaps in the breadboard.




59

Bus Wiring Overall

Figure 1.6: Check your work once you are done— now there should be one continuous connection
between all of the red busses and a separate one between all of the blue busses.

1.1.2.4 4) Connect Power to Busses

We already wired the busses together, but now we need to connect the +3.3v and GND provided by the
MSP430 Launchpad’s USB connection and voltage regulators. Connect the blue bus strip to GND
(lower F-J column 56) using a green wire and the red bus strip to Vcc (upper F-J column 56)
using a blue wire. You will need to use a small orange jumper to cross the upper channel as shown

in the picture below.



60 CHAPTER 1. HELPFUL GENERAL INFORMATION

USB Power to Busses

ees smess sesss -p--- .
Waes sssss sesss wees

113 18 17 19 2 28 25 27 29 A

EEEE
[

sass sssas
Waas mesas seses ew

Figure 1.7: Notice the color choice of wires. For the rest of the construction process, the short green
and blue wires are only used for connections to GND and Vcc respectively.

1.1.2.5 5) Connect Your Switches to GND

Use the green jumper wires to connect the other side of your switches to GND (the blue bus).
Yes, the switch pack is upside down. This is an intentional design decision that has to do with the
pull-up configuration of the MSP430 Launchpad Hardware. With the switch pack upside down, flipping the
switch "up" will register a "1" and flipping them "down" will register a "0" like you would expect. See the
explanation below for more information, or just take it on faith that it works this way.



61

Switches to GND

JoelBesss seses ssses

8 31 33 35 37 39 41 43 45 47 49 51
Pesssvssssssssssssssses
(R R R R R R N RN NN N Y
®sssssssssssssssae

ses s
LR )
LR Y
LR R R R RN
LR
30 32 34 36
..

Figure 1.8

ASIDE: You may notice that turning the switch on connects it to GND, but turning it off connects
it to nothing! This can be really bad in a circuit- the values read from the GPIO pins will be
essentially random! Ideally, you would want your switches to be "1" when up and "0" when down.
To accomplish this, you can either use more expensive dual pole switches that switch between two
connections instead of closing or breaking just one, or use what’s called a pull up (or pull down)
resistor. This is a resistor of large resistance connected to the rail you want the switch to read
when it is open. The GPIO sees most of the connected voltage when the switch is on (and in digital
applications most is enough), but sees the other rail when the switch is open.

"But I see no resistors in the picture"— you’re right! The MSP430 has pull up resistors built in- we
just have to enable them when we configure the GPIO pins. You’ll learn more about that in part
IT of the lab.

1.1.2.6 6) Connect Vcc and Ground to ICs

The BCD decoder is an active piece of circuitry, so it needs a power connection to work properly. Connect
Vcc to pin 16 (lower A-E column 21) and GND to pin 8 (lower F-J column 28).

The display also needs a common connection to ground (since it is common cathode type). Connect pin
3 (lower F-J column 38) to GND. The display is just a package of individual LED’s in parallel connected
to one common ground point.

Lastly, there are some options (dealing with latching and enabling) on the decoder we want to permanently
set in our circuit. Connect Vcc to pins 3 and 4 (lower F-J columns 23 and 24) and GND to pin
5 (lower F-J column 25).



62 CHAPTER 1. HELPFUL GENERAL INFORMATION

Power Connections for Circuit Components

HssBoflosssssnssnssnns LR

| sepoflocccscsnccnnsns - sesenee

Jsshoflocscscsnccs sesene sesssss s
246 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

.................... D
be sssss sesss DEEEW Se e s can s es ou ol

23 25 27 20 21 33 35 37 59 48
sesscencenee

moom>

e—Tom

sese
Sssssssssessane
6 8 10 12 14 16 18 20 22

Figure 1.9: Notice how the color scheme of blue jumpers for Vcc and green jumpers for GND continues
here. It’s good practice to use a consistent color scheme for Vec and GND since they can fry your chips
if mis-applied.

1.1.2.7 7) Connect the Decoder to the Resistor Arrays

NOTE: The resistor arrays used in this class contain 4 isolated 470 ohm resistors. We could have
just as easily used individual resistors, but this keeps the breadboard clean and prevents accidental
shorting from the uninsulated resistor leads. Every pair of pins in the strip works as if there is a 470
ohm resistor in between them, but each pair exists on its own. LE. there is a resistor in between
pins 1 and 2 but nothing between 2 and 3.

Connect the first four outputs of the decoder to the upper resistor array. Decoder pins 12-15 (lower A-E
columns 22-25) fan out to every other pin in the upper array (upper F-J columns 21, 23, 25,
27) (white wires in image below).

The lower resistor array already has one connection made for us (the decoder pin 9 and pin 1 of the
resistor array share the same column). Run a wire from decoder pin 10 (lower A-E column 27) to
resistor array pin 4 (lower A-E column 31). Then connect decoder pin 11 (lower A-E column
26) to resistor pin 6 (lower A-E column 37).



63

Decoder Connections

R R R I I A I U A
®essssessssenne Ssssssssnnnnn
AR AR R RN Seescsccnns

LR R ) Sessssssnnnnn
8

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Seeee eesse se e seseCEmmmOPEEE 9
eseees scsse e sesscamneees e E

18 17 19 BN E) 27 29 31 33 35 37 39 48

J L

< amm—
P R )

Figure 1.10: Resistors have no direction- this layout "skips" pin 3 of the array because of how the wire
lengths worked out, but we just connect the "output" side to pin 3 instead.

1.1.2.8 8) Connect the Resistor Arrays to the Display

Since this is the most complicated step, it is broken down into individual sub-steps. Each picture shows one
additional route, eventually connecting all of the resistor array outputs to their respective display inputs. If
you prefer to work on the circuit as one block and would like to see the end result, just skip ahead to step
10.

Connect the upper resistor pack pin 4 (upper F-J column 24) to column 31. Then connect
column 31 to display pin 10 (lower A-E column 36).



64 CHAPTER 1. HELPFUL GENERAL INFORMATION

Display Pin 10

IR R R R R R R R R R R R R R R R R R R R R R R R R R R R R
R R R R
.. . . 900 sssssssssssssssssssesstene

.
[EREEEEEEREE] ..
0 12 14 16 18 20

it e 15 17 19
bessssssssns
-

EF

EEE

.,27293133
J.-c---on..'---.

.
) 12 14 16 18 20

Figure 1.11

Connect the upper resistor pack pin 2 (upper F-J column 22) to column 32. Then connect
column 32 to display pin 9 (lower A-E column 37).

Display Pin 9

se s s BB
I

CE R RN

peesssssssssnse
ERE R R EREEEENEER]
ERE R EE R R R R R

Figure 1.12: Notice the use of different length horizontal jumpers so the lines going to the display don’t
Cross.

Connect the upper resistor pack pin 6 (upper F-J column 26) to column 34. Then connect
column 34 to display pin 7 (lower A-E column 39).



65

Display Pin 7

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

e —rr———
Peaesee H_-o-.

D

Figure 1.13: Display pin 8 is a redundant ground (for circuit placement flexibility). It is the exact
same connection as pin 3 (which is already grounded), so it can be ignored.

Connect the upper resistor pack pin 8 (upper F-J column 28) to column 35. Then connect
column 35 to display pin 6 (lower A-E column 40).

Display Pin 6

SBBse sesess A 8b Besecs

il 18l 15 17 18

Figure 1.14

Now start working with the bottom resistor array. Jump the lower resistor pack pin 2 (lower A-E
column 29) to column 29 F-J on the other side of the channel. Then connect lower F-J column

29 to display pin 1 (lower F-J column 36).



66

Again, jump the lower resistor pack pin 3 (lower A-E column 30) to column 30 F-J on the
other side of the channel. Then connect lower F-J column 30 to display pin 2 (lower F-J column

37).

CHAPTER 1. HELPFUL GENERAL INFORMATION

Display Pin 1

—— —

@8 ee seeee 9 e ees
@8 se eseceos ee e

i 8 16 17 19
feseessnnoee

I....‘..IO.....O. {
(s sssssscess oS aNess s

(se e e e e e e e e o PN
R RN y
EEEEREEREENRNEN]
e s ess0enen
s ss0s000000 0
e 12 14 16 18 20 22 30 32 34 35

%’;.O sssse o8 . -._‘:

|f@m@sese sssss s * sscecmmes

Figure 1.15

Display Pin 2

@ sessss sesss ss Es saesc
* esssse sssse ® ee sase

23 2 27 29 31 33 W

n . .
sssssssssssssnne o0  ——
8 10 12 14 16 18 20 22 26 ;
® Bsess sssss s o ociiinodVer sesss seses ol

® sssse sssss sw ® sssscaunesse sssss sesse ssens

Figure 1.16

Finally, jump the lower resistor pack pin 5 (lower A-E column 32) to column 32 F-J on the
other side of the channel. Then connect lower F-J column 32 to display pin 4 (lower F-J column

39).



67

Display Pin 4

Figure 1.17: Now the display should have 7 data connections and 1 common ground connection.

1.1.2.9 9) Connect the GPIO Outputs to the Decoder

NOTE: These last wire runs are the messiest in the entire circuit. Try and keep the wires as straight
and flat as possible, but know that these are long wire runs and the sizes will not match exactly.

Start with the longest runs from GPIO pins P1.4 and P1.5 on the MSP430 Launchpad (breadboard channels
50 and 51). Use a long yellow wire to go from GPIO P1.4 (upper A-E channel 51) to decoder
pin 7 (lower F-J channel 27). Then use a long green wire to go from GPIO P1.5 (upper A-E
channel 50) to decoder pin 1 (lower F-J channel 21).



68 CHAPTER 1. HELPFUL GENERAL INFORMATION

Overall Run from GPIO to Decoder

ses 1w s sese
se e

..
..

L R R R N N -
Persssnes

Figure 1.18: The yellow wire is barely long enough, so it has to go at a bit of a diagonal.

Closeups on Both Connections

27 29 31 33 \\j
...'.....F

ex ]
G- ® 091
Q "N e
- e

(a) GPIO Connection Closeup (b)  Decoder Connection
Closeup

Figure 1.19

Now use two of the long orange wires to connect GPIO 1.7 (lower F-J column 51) to decoder
pin 6 (lower F-J column 26) and GPIO 1.6 (lower F-J column 50) to decoder pin 2 (lower F-J
column 22). Be careful not to accidentally cross the connections! See below for one way to bed the wires
so they fit the length of the wire run.



69

The GPIO to Decoder Connections

Figure 1.20

Connecting GPIO Pins 6 and 7 to the Decoder

(a) GPIO Connection Closeup (b)  Decoder Connection
Closeup

Figure 1.21

1.1.2.10 10) Test Your Circuit

Now that you’ve completed your breadboard, you are ready to begin! It is strongly recommended that
you run the provided test program to make sure all of you connections have been made correctly. Knowing
that there are no issues with your underlying hardware will make troubleshooting down the road much less

frustrating.



70 CHAPTER 1. HELPFUL GENERAL INFORMATION

Completed Circuit

—

i
A
B
Coaw
us
N
Fe
G .
He
[T
Je

Figure 1.22

1.2 A Student to Student Intro to IDE Programming and CCS4’

Firstly, this is by no means a comprehensive guide, but a few basics for students who have not been
exposed to working in an IDE before. To look more closely at CCS4, see the help docs on ti.com
(http://processors.wiki.ti.com /index.php/Category:Code Composer_Studio_ v43 )

1.2.1 What is an IDE:

IDE stands for “Integrated Development Environment,” and the philosophy behind creating an IDE is to
combine all of the separate tools you would need to write, debug, and deploy code into one consistent
program. Basically, CCS4 allows you to write code (in C, C++, or assembly) and push a single button to
compile, assemble, link, and upload your code to the device (in our case the MSP430). CCS4 also has a
built in debugger that launches when you run in debug mode, interfacing in real time with the hardware
(through JTAG) and allowing you to see if your code does what you think it should do. Ultimately though,
a sophisticated IDE is only a tool that allows you to write clean code more quickly—it will not code for you
and relies on you the programmer to use it and take advantage of its potential.

1.2.1.1 CCS4 and Eclipse:

CCS4 is TI’s embedded specialty version of the eclipse framework. The eclipse IDE was developed open
source for Java, and you will most likely see it again if you pursue higher level programming courses. Code
Composer takes the framework given by Eclipse and tailors it to TI’s embedded processors and the real time
needs of DSP. The things you learn about working in an Eclipse based work environment (or any sophisticated
IDE) should help you efficiently write and debug code in the future. Eclipse is highlycustomizable. You
can create different perspectives (see control buttons upper right hand corner) with different information
views. Check out the “view” and “window” menus to explore different panes you can use.

2This content is available online at <http://cnx.org/content/m37154/1.2/>.
3http://processors.wiki.ti.com/index.php/Category:Code Composer Studio v4



71

1.2.1.2 Licenses

When you first open CCS4 on a computer, you will have to add the license server information (if you are a
student using a university network license) or specify the location of the individual license file.

1.2.1.3 Workspaces and Projects:

When you first start up CCS4, it will ask you to specify a workspace. This file directory is where CCS4 will
save all of your raw C and asm files, as well as the compiled and linked executables before uploading them to
the hardware. Inside your workspace, the Eclipse environment divides your files into projects. Each project
has its own independent source files and configuration properties. In general, each lab you will complete for
this class will be setup as a new project. One project at a time can be set as the “Active project” (by default
it is the most recently created one. You can view and edit files from any project at any time, but pressing
the debug button will compile and load the code for the active project, not necessarily what you think you
are working on!).

1.2.1.4 Setting up a new project:

To start setting up a new project, go to the New project wizard (file— new — CCS Project). The first step
asks you for a project name—enter one you like! In the next window, it asks to select a project type. In this
lab we will be using the MISP430, so select it from the drop down menu and click next. (Don’t worry about
the build configurations, the defaults are fine). The next window asks about project dependencies. .. in
other words, does your project need to reference functions and files already in another project. Most likely
for this class you won’t have any, so again, leave this as is and click next. Now you have arrived at the
most important section. This page configures the device specific compiler and assembler. For the “Device
Variant,” select our chip, the MSP430G2231. Lastly, If you are working on one of the earlier labs with
only assembly code, be sure to continue to the next menu and select the "Empty Assembly Only
Project" template. This tells the IDE not to invoke the compiler and skip straight to assembling and
linking. If you forget to set this option, the compiler will throw an error that it cannot find the required ¢
function “void main()” in your assembly code. Don’t worry— if you mess something up, you can create a
new project and just copy your code straight over.

1.2.2 The code perspective and writing code

Code Composer supports assembly code, “classic” C, and C++. For this class we will focus on assembly
code and standard C. Most of your coding will happen in the coding perspective, a view where the screen
is dominated by a massive text editing window. Code Composer’s editor can be setup in a range from
straight forward wyswig to auto-tabbing, auto-highlighting, and auto-completing. Again, explore the options
(window—preferences) and find what works best for you and your lab partner.

1.2.2.1 Writing Assembly:

To write assembly in Code Composer, you first need to create a new project following the steps above (be
sure to select “Empty Assembly-only Project”!). Once you have your empty project, insert a new file
(file — new — file). When you input the file name, be sure to give it an “.asm” extension. Now that you
have your freshly created asm file, you can start writing code in the code window (the big blank white space
in the middle of the screen). In assembly mode, code composer parses the column most left as labels, so
any non-label code must be indented at least one tab (and conversely labels cannot be indented). You will
learn more about the specific components required for a functional assembly file in your specific labs, but
in general, you need five common lines. The first, “.cdecls C, LIST, “msp430g2231.1h"” defines all of your
programming constants (such as P1IN, WDTCTL, etc.). The second “.text” tells the assembler where your
actual code begins. The label “RESET” goes at the start of your program so the hardware knows where to
begin code execution after a power reset. At the end of your code, you need to leave the memory address of



72 CHAPTER 1. HELPFUL GENERAL INFORMATION

your reset label. To do this, use the command [.sect “.reset”] to tell the compiler you are in the reset section,
and then [.word RESET] to place the address of the RESET label into memory.

1.2.2.2 Writing C:

Code composer really shines writing C and C++. Like in assembly, you will need to create a new project
for your new program. This time leave “treat as an assembly-only project” unchecked. Now you will create
a new “c source file” (file— new — source file). When you input the file name this time, be sure to give it
a “.c” extension. In ¢ mode, you don’t have to worry about line spacing or tabbing for the functionality of
the program, just your own sanity and code readability. To include the file you used in the .asm projects
that defined all the hardware constants, put the line “#include “msp430g2231.h” ” at the top of your
code. You won’t have to worry about the reset vector or anything like that—the ¢ compiler will take care of
it all for you. The only thing actually required in your ¢ program is the function “ void main() {...YOUR
CODE. ..} ”. Other more advanced operations (like interrupts) require special ¢ syntax, but you will cover
that in the specific labs when it comes up.

1.2.2.3 Debug Mode, Stepping, Breakpoints, and Watches

Debug mode differentiates an IDE like CCS4 from simpler command line tools. For better or for worse,
simply pressing the debug button magically translates your source code into a running program on your
attached MSP430. You will notice that after the debugger finally starts up though, your code will not
actually be running. This is because the debugger starts in step mode with the first line of your code
highlighted. In other words, the hardware is waiting for you to let it execute that one line of code, so your
slow human reflexes can process and verify what it can do in a fraction of a second. Stepping through your
code one line at a time helps you find subtle errors and see exactly where a program goes off track. Yes, as
you can imagine, simply stepping through a real world multi-thousand line program (or the larger programs
you will write later in this course) is inefficient and unfeasible. Breakpoints allow you to tell the debugger
to stop if/when the processor gets to a certain point in your code, letting you run quickly through the code
you trust and only stop at certain problematic sections you want to look into more closely. You can set
several breakpoints at once, and once the program has broken, you will be able to actively see all register
and memory values and step through line by line just as if you had started step mode at your break point.
Watches are a little bit more abstract and more useful for larger programs, but they allow you to set a
watch on a particular variable (in ¢) or memory location /register (in asm) and only break the program when
it tries to change that particular value. This can help you find where exactly where and when a value changes
into an erroneous state.

Using a combination of breakpoints, watches, and careful stepping, you can pick apart any complicated
program to hunt down errors and really understand what goes on during the program’s execution.



GLOSSARY 73

Glossary

I Interpreted Instructions (illegal memory accesses, memory faults,

An instruction that is decomposed by the
assembler into several smaller/ more
basic fundamental instructions.

Ezample: pop R3 contains two implicit
instructions: mov @SP, R3 and add
#0x02, SP

M Maskable Interrupt

Most interrupts are maskable. Maskable
interrupts can be enabled or disabled as a
group by setting the GIE (General
Ineterrupt Enable) bit in the status
register. The interrupts must also be
enabled individually, but masking allows
delicate code (For example, if you are
running a precisely timed output routine
that must execute all at once) to run in a
near interrupt free state by disabling only
one bit. Enabling All Maskable

Interrupts

bis.w #GIE, SR

N Non-Maskable Interrupt

Non-Maskable interrupts will trigger an
interrupt at any point in code execution—
they cannot be enabled or disabled on a
line by line basis, and they will execute
even if the processor is "stuck".
Non-maskable interrupts mainly deal
with recovering from errors and resets

watchdog expiration, or a hardware reset
will trigger non-maskable interrupts).

P Peripheral

A device that can operate independently
from direct CPU support and control.
Peripherals often rely on interrupts to
notify the CPU when they have
completed some given task or need
attention, and use independent control
registers for configuration. The ADC 10
is a peripheral, as well as the MSP430’s
UART (serial controller) and timers.

Photodiode

A P-N diode specifically constructed to
allow a large amount of light to enter the
diode’s depletion region. This excess light
generates free electron and hole pairs in
the depletion region, allowing current to
flow. Photodiodes are surprisingly linear,
meaning the light flux is almost 1:1
proportional to the amount of current
output. To learn more about photodiodes
and electronic devices in general, look
forward to ELEC 305.

T The Fibonacci Sequence

The sequence of numbers starting with 0 ,
1in which N= (N-1) + (N-2) 0, 1, 1, 2, 3,
5,8, 13,21, 34...



74

=

-

INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, § 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

ADC, § (43), § (49) loop, § (19)
:slsf;?k;li (§1 )(712)(3)7 o M Maskable Interrupt, 35

Memory Mapped, § (27)

Assembly language, § (33) microcontroller, § (49)

Breadboard, § 1.1(53) mov, § (19)

MSP 430, § 1.1(53), § 1.2(70)
C,§43) MSP430, § (19), § (27), § (33), § (39), § (43),
C programming, § (49) § (49)
Cavallaro, § (39), § (49) multiplexor, § (3), § (17)
CCSv4, § 1.2(70) mux, § (3), § (17)
Code Composer Studio, § 1.2(70)
Cycle, § (39) N NAND, § (17)

Non-Maskable Interrupt, 35
Display, § (39) NOR, § (17)
ECE, § (33) P Peripheral, 44
Echo, § (27) photodiode, § (49), 49
ELEC 220, § (17), § (27), § (33), § (39), § (43), polling, § (19), § (27)
§ (49), § 1.1(53), § 1.2(70) Project, § (39)
filtering, § (43) Q Quartus, § (1), § (3), § (17)

FPGA, § (1), § (3), § (17)
R Rice, § (33), § (43), § 1.1(53)

GPIO, § (27), § (39)
S str, § (19)
1/0, § 1.1(53) Subroutine, § (33)
IDE, § 1.2(70)
Interpreted Instructions, 19 T The Fibonacci Sequence, 25

Interrupt, § (33), § (39) V' Vector Table, § (33)

lab, § (19), § (33) Voltmeter, § (43)
LaunchPad, § 1.1(53)



ATTRIBUTIONS
Attributions

Collection: Intro to Computational Engineering: Elec 220 Labs
Edited by: Matthew Johnson, Chris Stevenson

URL: http://cnx.org/content /col11405/1.1/

License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction to Quartus and Circuit Diagram Design"
By: Joseph Cavallaro, Chris Stevenson, Matthew Johnson

URL: http://cnx.org/content /m42303/1.1/

Pages: 1-2

Copyright: Joseph Cavallaro, Chris Stevenson, Matthew Johnson
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Quartus Project from Start to Finish: 2 Bit Mux Tutorial"
By: Chris Stevenson, Joseph Cavallaro, Matthew Johnson

URL: http://cnx.org/content/m42302/1.3/

Pages: 3-15

Copyright: Chris Stevenson, Joseph Cavallaro, Matthew Johnson
License: http://creativecommons.org/licenses,/by/3.0/

Module: "Lab 1-1: 4-Bit Mux and all NAND/NOR Mux"
By: Chris Stevenson, Joseph Cavallaro

URL: http://cnx.org/content,/m42304,/1.3/

Page: 17

Copyright: Chris Stevenson, Joseph Cavallaro

License: http://creativecommons.org/licenses,/by/3.0/

Module: "A "Real-World" Microprocessor: Basic MSP430 Assembly from Roots in LC-3"

Used here as: "Lab 3-1 Basic MSP430 Assembly from Roots in LC-3"
By: Matthew Johnson

URL: http://cnx.org/content/m37151/1.4/

Pages: 19-25

Copyright: Matthew Johnson

License: http://creativecommons.org/licenses/by/3.0/

Module: "Digital Input and Output with the MSP430"

Used here as: "Lab 3-2 Digital Input and Output with the MSP430"
By: Matthew Johnson

URL: http://cnx.org/content /m40643/1.1/

Pages: 27-32

Copyright: Matthew Johnson

License: http://creativecommons.org/licenses/by/3.0/

Module: "Interrupt Driven Programming in MSP430 Assembly"

Used here as: "Lab 4-1 Interrupt Driven Programming in MSP430 Assembly"
By: Matthew Johnson

URL: http://cnx.org/content,/m37217/1.2/

Pages: 33-38

Copyright: Matthew Johnson

License: http://creativecommons.org/licenses,/by/3.0/

75



76 ATTRIBUTIONS

Module: "Putting It All Together: An Interrupt Driven MSP430 Project"
Used here as: "Lab 4-2 Putting It All Together"

By: Matthew Johnson

URL: http://cnx.org/content,/m40645,/1.1/

Pages: 39-41

Copyright: Matthew Johnson

License: http://creativecommons.org/licenses/by/3.0/

Module: "C Language Programming through the ADC and the MSP430"

Used here as: "Lab 5-1 C Language Programming through the ADC and the MSP430"
By: Matthew Johnson

URL: http://cnx.org/content /m37386,/1.3/

Pages: 43-47

Copyright: Matthew Johnson

License: http://creativecommons.org/licenses/by/3.0/

Module: "Using C and the ADC for "Real World" Applications with the MSP430"

Used here as: "Lab 5-2 Using C and the ADC for "Real World" Applications with the MSP430"
By: Matthew Johnson

URL: http://cnx.org/content/m40646,/1.1/

Pages: 49-52

Copyright: Matthew Johnson

License: http://creativecommons.org/licenses/by/3.0/

Module: "MSP430 LaunchPad Test Circuit Breadboarding Instructions"
By: Matthew Johnson

URL: http://cnx.org/content/m37152/1.3/

Pages: 53-70

Copyright: Matthew Johnson

License: http://creativecommons.org/licenses/by/3.0/

Module: "A Student to Student Intro to IDE Programming and CCS4"
By: Matthew Johnson, Weiwei Wu

URL: http://cnx.org/content/m37154,/1.2/

Pages: 70-72

Copyright: Matthew Johnson, Weiwei Wu

License: http://creativecommons.org/licenses/by/3.0/



Intro to Computational Engineering: Elec 220 Labs

This collection houses all the documentation for the lab component of Rice Universities Elec 220 lab com-
ponent. The labs cover topics such as gates, simulation, basic digital I/O, interrupt driven embedded
programming, C language programming, and finally a/d interfacing and touch sensors.

About Connexions

Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions’s modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.



