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Chapter 1

Introduction to Logistic Regression1

1.1 Introduction

This is an introductory module on using Logistic Regression to solve large-scale classi�cation tasks. In
the �rst section, we will digress into the statistical background behind the generalized linear modeling
for regression analysis, and then proceed to describe logistic regression, which has become something of a
workhorse in industry and academia. This module assumes basic exposure to vector/matrix notation, enough
to understand

M =

 2 2

1 0

 , x =

 3

−1

 , x1 =?,M ∗ x =? (1.1)

1.2 What is all this about?

Regression Analysis is in essence the minimization of a cost function J that models the squared di�erence
between the exact values y of a dataset, and one's estimate h of that dataset . Often, it is referred to as
�tting a curve (the estimate) to a set of points based on some quanti�ed measure of how well the curve �ts
the data. Formally, the most general form of the equation to model this process is:

minimize
x

J (θ)

subject to

hθ (x)

(1.2)

.
This minimization function models all regression analysis, but for the sake of understanding, this general

form is not the most useful. How exactly do we model the estimate? How exactly do we minimize? To
answer these questions and to be more speci�c, we shall begin by considering the simplest regression form,
linear regression.

1This content is available online at <http://cnx.org/content/m42090/1.2/>.
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2 CHAPTER 1. INTRODUCTION TO LOGISTIC REGRESSION

1.3 Linear Regression

In linear regression, we model the cost function's equation as:

J (θ) =
1

2m

m∑
i=1

(
hθ
(
xi
)
− yi

)2
(1.3)

What does this mean? Essentially, hθ (x) is a vector that models one's hypothesis, the initial guess, of
every point of the dataset. y is the exact value of every point in the dataset. Taking the squared di�erence
between these two at every point creates a new vector that quanti�es the error between one's guess and the
actual value. We then seek to minimize the average value of this vector, because if this is minimized, then
we have gotten our estimate to be as close as possible to the actual value for as many points as possible,
given our choice of hypothesis.

As the above module demonstrates, linear regression is simply about �tting to a line, whether that line
is straight or contains an arbitrary number of polynomial features. But that hasn't quite gotten us to where
we wanted to get, which is classi�cation, so we may need more tools.

1.4 Generalized Linear Model

As was stated in the beginning, there are many ways to describe the cost function. In the above description,
we used the simplest linear model that can describe the hypothesis, but there are a range of values that can
go into the hypothesis, and they can be grouped into families of functions. We can construct a Generalized
Linear Model to model these extensions systematically. We can describe the value of the estimate and the
actual points by incorporating them inside of an exponential function. In our example, we shall use the
sigmoid function, which is the following:

g (z) =
1

1 + e−z
(1.4)

Sigmoid Function

Figure 1.1: Sigmoid function for $X \in \{-10,10\}$

Why might we want to do this? If we are doing classi�cation between two di�erent items, where one
set of examples has the value 0 and one has the value 1, it doesn't make much sense to have values that
are outside of this range. With linear regression, the predictions can take on any value. In order to model
our hypothesis as being contained within the 0 to 1 range, we can use the sigmoid function. Using the
Generalized Linear Model,

J (θ) =
1

2m

m∑
i=1

(
hθ
(
xi
)
− yi

)2
(1.5)

Recall that in linear regression the hypothesis is

hθ (x) = θTx (1.6)
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In logistic regression, the hypothesis function is

hθ (x) = g
(
θTx

)
=

1
1 + e−θT x

(1.7)

Wolfram Demonstrations Logit Function

Figure 1.2: http://demonstrations.wolfram.com/ComparingBinomialGeneralizedLinearModels/

1.5 Probabilistic Interpretation

What we are essentially doing with taking least-squares regression is �tting our data, but we can go about
classifying by describing the probability boundary that one of our points is above and below a line, and
�nding the maximum likelihood estimate of a given theta.

If we de�ne the Probabilities of being de�ned as class 1 or 0 as

P (y = 1|θ) = hθ (x)

P (y = 0|θ) = 1− hθ (x)
(1.8)

Then it becomes clear that the likelihoods are described as the following:

L (θ) =
m∏
i=1

(
hθ
(
xi
))yi(

1− hθ
(
xi
))1−yi

(1.9)

From statistics, it is well-known that taking the log of a maximum likelihood estimate will still achieve the
same maximum, and calculating the log-likelihood is signi�cantly easier from a computational standpoint.
For a proof of this, see http://cnx.org/content/m11446/latest/.

We therefore take the log of the above cost function as a log-likelihood and obtain:

l (θ) =
m∑
i=1

(
yilog

(
hθ
(
xi
))

+
(
1− yi

)
log
(
1− hθ

(
xi
)))

(1.10)

1.6 Minimizing the Cost Function

Now that we understand how we would classify these datasets exactly, how do we minimize the cost function?
One simple way involves the application of Gradient Descent.

Gradient Descent is a method of approximating a cost function that gets you to converge to a �nal correct
value. This is described for our cost function above as

θj = θj − α
∂

∂θj
J (θ) (1.11)

That is, for every example, we update the theta value by subtracting (subject to some learning rate parameter
α) the partial derivative of the cost function in terms of that example, and repeat until convergence.
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If we plot the output of a gradient descent function, it will start at a random point on the contour plot,
and then after every iteration, it will move closer to the optimal value.

Gradient Descent

Figure 1.3: Gradient Descent plot showing the trend towards the optimum value

1.7 Applying Logistic Regression

In this section, we apply logistic regression described in earlier section to a simulated data set and study
how well it performs.

1.7.1 Data Generation

We simulated the case where each training example is described by two features x1 and x2. The two features
x1 and x2 are generated uniformly in the range [0, 10]. The size of the training data set is 1000. The training
examples were split into 2 classes, class 0 or class 1 based on the polynomial

(x1 − 5)4 − x3
2 + 6 = 0 (1.12)

All the training examples that are above the polynomial eq. (1.12) belong to class 1 and the training
examples below the polynomial curve belong to class 0. Notice that the true boundary that separates the
two classes is a 4th order polynomial.

The �gure below plots the training data and the actual decision boundary.

Figure 1.4: Scatter Plot of Training Data

We split the training data set into 3 separate sets, training set with 600 examples, cross-validation set
with 200 examples and test data set with 200 examples.

1.7.2 Classi�cation

This training data was then fed into a logistic regression classi�er to study the performance of the classi�er.
It is important to note that the objective of logistic regression classi�er is maximizing the accuracy of labeling
the data into two classes. Unlike linear regression, the decision boundary of the logistic regression classi�er
does not try to match the underlying true boundary which divides the data into two classes.

In addition to the two features that identify a training example, polynomial features up to a desired degree
are generated. We start o� the optimization with an initial parameter value of all 0. The optimization of
the cost function is done using the Matlab's built-in fminunc function. A function costFunctionReg.m that
outputs the regularized cost and regularized gradient, with the training data, parameter values and the
regularization parameter as inputs, is given as input along with initial parameter values to this fminunc
function.
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Now we vary the maximum degree of the polynomial features to study the decision boundary of the
classi�er. Its important to note that the values of the parameters are obtained from the training data
set, for a given value of maximum degree. The optimal values of maximum degree are determined by
the performance on the cross-validation set. Finally, the decision boundary obtained by solving for the
parameters with optimal values of maximum degree is used to evaluate the performance on a test data set,
in order to see how well the classi�er generalizes.

The decision boundary for a degree 1 polynomial is shown in below. The accuracy on the cross-validation
set was 84.50.

Figure 1.5: Logistic Regression with 1st degree features

From it is clear that 1st degree features are not su�cient to capture both classes. So the maximum degree
was increased to 2. plots the decision boundary for degree 2. The accuracy of the classi�er on cross-validation
set in this case was 98.50.

Figure 1.6: Logistic Regression with 2nd degree features

We now try the maximum degree of $3$. Fig.∼\ref{�g4} plots the decision boundary with maximum
degree $3$. The accuracy on cross-validation set is $98.00$.

Figure 1.7: Logistic Regression with 3nd degree features

Due to its lower accuracy, the logistic regression classi�er with maximum degree 2 is chosen from amongst
the 3 classi�ers. This classi�er was then evaluated on test data set to study how well it generalizes. The
accuracy of this classi�er on test set was 98.00. Hence this logistic regression classi�er generalizes very well.

To see the MATLAB code that generated these plots, download the following .rar �le: MATLAB �les for
simulated data.2 !

1.8 Conclusion

As was stated, this collection is intended to be an introduction to regression analysis, but is su�cient in
order to understand the application of logistic regression to an application. There are plenty of resources
to learn more about more nuanced views of the key components of the theory, and more resources to see
logistic regression in action!

2See the �le at <http://cnx.org/content/m42090/latest/Final_Report.rar>
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For an application of Logistic Regression to a synthetic dataset and to a real-world problem in statistical
physics, see Optimizing Logistic Regression for Particle Physics (Chapter 2) !



Chapter 2

Optimizing Logistic Regression for a

Particle Physics Application1

2.1 Motivation

High-energy particle physics experiments today usually involves colliding beams of particles accelerated to
tremendous energies and then studying the �shrapnel" that is created. The goal of such experiments often
involves the discovery of new particles that are created when two common particles from the beams collide.
Unfortunately, these new particles are so short-lived that they cannot be observed directly. Instead, the
existence of such particles is inferred from patterns in the �shrapnel" that is formed when they decay into
other particles. It is the properties of these secondary particles that are measured in detectors such as those
at the Large Hadron Collider (LHC).

To discover a new particle, physicists use computer programs that have been programmed with theoretical
models to simulate large numbers of random particle collisions. The models are tuned so as to generate two
sets of collision �events": one set is compatible with the particle existing in nature and the other is compatible
with the null hypothesis. The characteristics of the sets of simulated events are then compared with real
events from a live experimental detector.

Because of the complicated nature of the events and the large amount of data involved, machine learning
has been investigated to help with the classi�cation problem of determining what kind of particles are initially
produced for each event. If we can train classi�ers on simulated data to be e�ective at distinguishing events
that are associated with interesting particles from uninteresting background events, we will likely be able to
use such classi�ers to con�rm or deny the discovery of these particles in real data. The existence of more
e�ective classi�ers decrease the amount of real data that must be collected to obtain a statistically signi�cant
result. Given the large expense of operating particle colliders and the power of modern computers, acquiring
more e�ective classi�ers is an important problem for particle physicists.

2.2 Project Goal

The project goal is to construct a classi�er that is e�cient at verifying the existence of a top quark in a
set of simulated collision events. Top quarks are good particles for investigating classi�ers because they are
very rare and very hard to detect but have already been proven to exist. E�ciency is de�ned by the beam
luminosity needed to detect the existence of top quarks with 5σ of statistical signi�cance, the �industry
standard" for particle physics. Beam luminosity is directly proportional to the number of collisions, and
thus the operating time of the experiment, and thus the cost, so lower required luminosity is better.

1This content is available online at <http://cnx.org/content/m42088/1.1/>.
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Top quarks can be created by a number of di�erent pathways, and each pathway creates a di�erent
pattern of decay products measured by the detectors, real or simulated. This project focuses on only one
particular pathway which results in the creation of a top quark and its anti-particle in what are known as
�t-tbar" events.

Events which contain the desired t-tbar events are inevitably accompanied by a much larger number of
undesired background events. The vast majority of these events initially involve the creation of much lighter
quarks � these are called �QCD" events, named after the theory that describes the behavior of these particles,
quantum chromodynamics. QCD events are several million times more common than t-tbar events at the
energies presently used at the LHC. A minority of background events involve the creation of W bosons.
Although these W events are rarer, occurring at the rate of �only" a few hundred per t-tbar event, their
detectable features are very similar to those of t-tbar events and are thus they are harder to distinguish from
the desired t-tbar signal.

2.3 Prior Work - PHYS 491 Summer 2011

The author initially got started investigating this classi�cation problem as part of an independent study
course taken with Dr. Paul Padley. Dr. Padley works at Bonner Lab at Rice University and is manager of
the Endcap Muon Subdetector, a large component of the Compact Muon Solenoid (CMS) experiment at the
LHC. The course involved learning background about particle physics necessary to be able to understand
the classi�cation problem.

The strategy over the summer was to �gure out how to use a popular event generating program called
Pythia in conjunction with a popular machine learning toolkit called WEKA. The author wrote a small
program in C to interface with Pythia to generate a large number of t-tbar, W, and QCD events. The C
program ran the events through a simple �lter, a �trigger" in physics parlance, to quickly eliminate a large
number of events that had a relatively low probability of being t-tbar events. (The trigger �lters out 95%
of t-tbar events, but 99.9% of the QCD background events.) Su�cient data was collected to form a training
data set and a test data set; each set had 10,000 of each type of event.

2.3.1 Features

When Pythia generates an event, it makes available a wide array of information useful for generating features.
The chosen features for use in this project included how many of each type of lepton (electrons, muons, and
tau particles) were created in each event, how many �jets" corresponding to quarks were generated, and the
minimum angle between any pair of quark jets. In addition, missing transverse momentum, indicative of
an invisible neutrino, was measured. Finally, the total transverse energy (energy perpendicular to the beam
axis) of all of the quark jets was measured. A large transverse energy is strongly associated with �head-on"
collisions capable of releasing enough energy to make top quarks. �It turns out" that transverse energy is
the most important single feature for identifying top quarks.

2.3.2 Classi�ers

Because of the author's lack of experience with machine learning, a script was developed that ran each of the
classi�ers in WEKA against the training data and extracted the relevant statistics. Each of the classi�ers was
run with default parameters. For each classi�er, the number of t-tbar events that were correctly identi�ed
(true positives) was determined, as well as the number of QCD and W events that were misclassi�ed as t-tbar
events (false positives.) From the ratio of these numbers and the cross-sections of the relevant pathways, it
was possible to determine the total beam luminosity needed to con�rm the existence of top quarks in a set
of events using each classi�er.

Most of the wide variety of classi�ers performed within an order of magnitude of each other, except for
one called �Hyperpipes" which performed two orders of magnitude better than any of the others. This struck
Dr. Padley as very strange as he had never heard of the Hyperpipes algorithm before.
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2.4 Current Work - ELEC 631 Fall 2011

One interesting aspect of the behavior of the Hyperpipes algorithm on the dataset was the very low true
positive rate: less than 10% of the t-tbar events were correctly classi�ed as such. However, the false positive
rate was much, much lower � this is what accounted for its good performance. At this point the author
became suspicious that the default parameters for the WEKA machine learning algorithms were poorly
suited to this application and that some of the other algorithms could also demonstrate greatly improved
performance with a little tuning. Since logistic regression is relatively simple, and since the author now
understands a little about how the algorithm works from the on-line Stanford course, the decision was made
to try and tune it to this application.

2.4.1 Cost Matrix

The �rst stage of tuning involved adjusting the cost matrix. This followed from the observation that when
training a classi�er, we really want to penalize false positives much more harshly than false negatives.
Sacri�cing up to 50% of our true positives is acceptable if it leads to a very large decrease in background
false positive events and thus an improved signal-to-noise ratio. Keeping the true positive rate relatively
high is still important as t-tbar events are rare enough that keeping enough for statistical signi�cance is still
a problem, as we shall see a bit later.

A variety of cost matrices were created and the logistic regression classi�er in WEKA was trained on a
training data set with each one of them. The resulting classi�cation models were then tested on a cross-
validation data set. Both the training data set and the cross-validation set had 10,000 of each type of
event as before. The results are summarized in Table TODO. Note that as expected, increasing the cost of
false positives relative to other kinds of errors greatly improved the signal to noise ratio with an acceptable
decrease in the true positive rate. Note that the cost matrices are properly scaled by WEKA: only the
relative costs of the di�erent types of errors represented by the cost matrix matter. Interestingly, eliminating
the costs associated with misclassifying W background events as QCD background events and vice-versa
seems to have no e�ect on the signal-to-noise ratio.

Choosing a cost matrix which penalizes each type of false positive 300 times more than other types of
errors seemed to give good results without leading to diminishing returns in the form of decreased true
positives. Penalizing false positives caused by QCD events more than W events didn't improve the results
on the large test set.

2.4.2 Ratio of Signal to Background in Training Set

Dr. Devika Subramanian of the Rice Computer Science department suggested that classi�ers need to be
trained on data that has each type of event to be classi�ed in a ratio that is roughly the same as that in the
real test data. This suggestion indicated that the previous strategy of training classi�ers with an equal ratio
of each type of event was unsound. Unfortunately, generating training and test sets with the correct ratio
of event types is quite di�cult because of the huge backgrounds that must be generated, in this case several
million QCD events for every t-tbar event. Generating enough background for 100 t-tbar events would take
a modern cpu core over 1000 days to compute enough background.

The solution was to use the DaVinci cluster at Rice to generate the backgrounds by running up to 200
Pythia simulation runs at once. This process generated enough background for 12 t-tbar events and this
served as our test set. Unfortunately signal-to-noise ratio in the test set was so low that the logistic regression
algorithm in WEKA could not be trained against it � the resulting model failed to detect any t-tbar events
at all. Also, training logistic regression on the full test set strained the memory capabilities of the Java
virtual machine it was run on, leading to frequent crashes.

To get around this, the author decided to compromise and experiment with training the logistic regression
classi�er on much smaller training sets with di�ering ratios of t-tbar events to background events. The
performance of the resulting models were then tested on the cross-validation set containing 10,000 of each
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type of event. The model generated from a training set with a ratio of tt-bar to background events of about
50 seemed to perform the best. (See Table TODO).

2.4.3 Results

As a result of performing the above optimizations, the e�ciency of the logistic regression model at analyzing
the very large test set improved by over a factor of 30 while only halving the true positive rate, as shown
in Table TODO. It is important to note that the false positive ratio is still much too high for top quarks
to be discoverable with a data set of this size. Since we are dealing with counting statistics of independent
events, the uncertainty in the background count is approximately the square root of the background count,
corresponding to a standard deviation of about 13. Since our signal is only 6 t-tbar events, this means we
have a signal signi�cance of about 0.4σ. In order to get a statistically signi�cant result, we would need to
collect around 150 times as much raw data.

2.5 Conclusion

We have demonstrated that we can optimize our use of linear regression to exploit characteristics of a
particular particle physics data set. Existing tools like WEKA make using machine learning for this task
relatively straightforward, with no need to reinvent the wheel.

It should be noted that this project has neglected the most di�cult and computationally intensive part
of identifying new physics with particle detectors: modeling the performance of the particle detectors them-
selves. Modern particle detectors are incredibly complicated pieces of machinery and modeling their ca-
pabilities (which change often as components are upgraded) requires a measurable fraction of the planet's
computing resources. (ref Grid Computing)

2.5.1 Future Work

Dr. Subramanian also suggested that classi�er performance could be improved by combining several integer
features, namely how many of each type of lepton were found in each event, into one category feature, namely
which lepton type was found. This makes sense because the high-level trigger eliminates all events that do
not have exactly one lepton. A simple script should be able to transform all of the existing data to make
this possible.

2.6 References

WEKA Pythia Particle physics book
http : //www.readwriteweb.com/archives/cernofficiallyunveilsitsgr.php
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2.8 Directions for Using Code

Install Pythia 8 and WEKA on your UNIX machine. The included scripts and Make�le assume that the
WEKA classes are in /usr/share/java/weka.jar and that the directory containing the code and data �les is
located in the pythia directory. See the included README �le for more details.
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