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Chapter 1

Introduction and Background

1.1 Introduction1

1.1.1 Introduction

This project aims to accurately detect the pitches and instruments of a signal. To accomplish this, we intend
to record and analyze the entire range of a few instruments, and then use this analysis to decompose mono-
phonic, or one instrument, and polyphonic, or multiple instrument, signals into their component instruments
and pitches. To keep the program managable, we will limit the polyphonic signals to three instruments.

The applications of this project are far reaching, at least within the realm of musical instrument sig-
nal processing. A better understanding of musical timbre and tone is to be gained from the analysis of
each instrument, and more speci�cally by comparing the signals produced by di�erent instruments on the
same pitch. Another, more practical goal of the musical instrument recognition project is automatic music
transcription, or music to MIDI conversion.

1.2 Mathematics of Music Theory2

1.2.1 Simple Music Theory

For those of you unfamiliar with music, we o�er a (very) brief introduction into the technical aspects of
music.

The sounds you hear over the airwaves and in all manner of places may be grouped into 12 super�cially
disparate categories. Each category is labeled a "note" and given an alphasymbolic representation. That is,
the letters A through G represent seven of the notes and the other �ve are represented by appending either
a pound sign (#, or sharp) or something that looks remarkably similar to a lower-case b (also called a �at).

Although these notes were conjured in an age where the modern theory of waves and optics was not
dreamt of even by the greatest of thinkers, they share some remarkable characteristics. Namely, every note
that shares its name with another (notes occupying separate "octaves," with one sounding higher or lower
than the other) has a frequency that is some rational multiple of the frequency of the notes with which it
shares a name. More simply, an A in one octave has a frequency twice that of an A one octave below.

As it turns out, every note is related to every other note by a common multiplicative factor. To run the
full gamut, one need only multiply a given note by the 12th root of two n times to �nd the nth note "above"
it (i.e. going up in frequency). Mathematically:

(nth note above base frequency) = (base frequency)2
n
12

1This content is available online at <http://cnx.org/content/m13195/1.3/>.
2This content is available online at <http://cnx.org/content/m12461/1.5/>.

1



2 CHAPTER 1. INTRODUCTION AND BACKGROUND

1.2.2 Harmonics

The "note" mentioned above is the pitch you most strongly hear. Interestingly, however, there are other
notes extant in the signal your ear receives. Any non-electronic instrument actually produces many, many
notes, all of which are overshadowed by the dominant tone. These extra notes are called harmonics. They
are responsible for the various idiosyncracies of an instrument; they give each instrument its peculiar �avor.
It is, e�ectively, with these that we identify the speci�c instrument playing.

1.2.3 Duration and Volume

We will also make a quick note (no pun intended) for the other two de�ning characteristics of a musical sound.
Duration is fairly self-explanatory; notes last for a certain length of time. It is important to mention that
in standard music practices most notes last for a length of time relative to the tempo of the music. The
tempo is merely the rate as which the music is played. Thus, by arbitrarily de�ning a time span to be equal
to one form of note duration we may derive other note durations from that.

More concretely: taking a unit of time, say one minute, and dividing it into intervals, we have beats
per minute, or bpm. One beat corresponds, in common time, to a quarter note. This is one quarter of
the longest commonly-used note, the whole note. The length of time is either halved or doubled to �nd the
nearest note duration to the base duration (and so on from there). The "U.S. name" for the duration of the
notes is based on their fraction of the longest note. Other, archaic, naming conventions include the English
system replete with hemi demi semi quavers and crotchets (for more information, follow the supplemental
link on the left of the page).

Volume, on the other hand, is based on the signal power and is not so easily quanti�able. The terms
in music literature are always subjective (louder, softer) and volume-related styles from previous eras are
heavily debated ("but certainly Mozart wanted it to be louder than that!"). For our project, we save
the information representing the volume early on, then normalize it out of the computations to ease the
comparisons.

1.3 Common Music Terms3

Upon discussion of the implementation and general work done during the course of this project, a number
of speci�c musical terms will be used. For those with a bit of musical background, these should be very
straightforward. However, considering the steriotypical divide between the arts and the sciences, the following
is a psuedo-comprehensive list of common terms that will be referenced within this report.

• Articulation: Characteristics of the attack, duration, and decay (or envelope) of a given note.
• Intonation: Correctness of a produced pitch as compared to the accepted musical norm.
• Tone: Quality or character of a sound.
• Timbre: Combination of qualities of a sound that distinguishes it from other sounds of the same pitch

and volume.

1.4 Matched Filter Based Detection4

1.4.1 Shortcomings of the Matched Filter

Upon initial glance, one would be inclined to assume that implementing a simple matched �lter would be
a fairly straightforward, and relatively precise means of accomplishing this projects goal. This is, however
simple incorrect. There are several key issues involved with the implementation of a matched �lter that
deem it an unsatisfactory algorithm in this particular instance.

3This content is available online at <http://cnx.org/content/m13197/1.2/>.
4This content is available online at <http://cnx.org/content/m13186/1.3/>.
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Upon initial glance, one would be inclined to assume that implementing a simple matched �lter would be
a fairly straightforward, and relatively precise means of accomplishing this projects goal. This is, however
simple incorrect. There are several key issues involved with the implementation of a matched �lter that
deem it an unsatisfactory algorithm in this particular instance.

Furthermore, a second, and more key issue arises with the implementation of this algorithm. For a
matched �lter to function correctly, we must be able to match pitches precisely. Herein lies a hidden challenge,
detecting what musical pitch the player is attempting to create. This is non-trivial for two reasons. Firstly,
and most obviously, not all intonation will be the same. Variants of up to 20 cents in pitch can regularly
exist between di�erent performing groups. . . with that number drastically increasing with extraneous factors,
such as the musical maturity of the group. With that issue recognized, let's simple assume that our players
are perfectly in tune. A simple analysis of the Fourier Transform does not lead to straightforward detection
of pitch, as some have assumed in the past. Simply put, the highest spike in the frequency domain is not
necessarily the pitch the artist played, there are a number of instruments, such as the trumpet, where the
played pitch is represented by the 3rd (or even higher) harmonics, depending on various conditions. For
these reasons, it is very obvious that pitch detection is a non-trivial process, with even the best algorithms
incurring some degree of error.

Hence, for these two key reasons, recording variants and pitch detection, along with several other minor
issues, it becomes quite obvious that matched �ltering is an unacceptable means of implementing instrument
recognition.
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Chapter 2

Implementation and Results

2.1 System Overview1

Pitch and Instrument Recognition System Diagram

Figure 2.1: System Flowchart.

The system takes some training songs and creates an output vector of features that characterize the sig-
nal. A Gaussian mixture model (GMM) is trained to identify patterns and predict an output instrument
classi�cation given a set of features.

Each digitized signal was windowed into smaller chunks for feature processing. In training, features were
calculated for each window and concatenated into a single vector to be fed into the GMM for training. In
testing, features were calculated for each window and fed into the GMM for classi�cation. If multiple notes
were to be detected, we recurred on the same window until we found the maximum number of notes or until
a note could no longer be detected (as evaluated using a cuto� threshold for what constitutes silence).

From a user standpoint, the user must input a set of training songs, which includes a wav �le and the
instrument that produced the sound at speci�c times. Once the system is trained, the user can then input
a new song, and our algorithm will output the song in �piano roll� format, i.e. the pitch and instrument of
notes plotted over time.

1This content is available online at <http://cnx.org/content/m13200/1.1/>.
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6 CHAPTER 2. IMPLEMENTATION AND RESULTS

2.2 Pitch Detection2

2.2.1 Pitch Detection

Detecting the pitch of an input signal seems deceptively simple. Many groups have tackled this challenge by
simply taking the Fourier transform of the signal, and then �nding the frequency with the highest spectral
magnitude. As elegant as it may seem, this approach does not work for many musical instruments. Instead,
we have chosen to approach the problem from a more expandable point of view.

One of the problems with �nding the fundamental frequency lies in simple de�nition. In our case, we will
de�ne this as being the frequency that the human ear recognizes as being dominate. The human auditory
system responds most sensitively to the equivalent of the lowest common denominator of the produced
frequencies. This can be modeled by �nding the strongest set of frequencies amplitudes, and taking the
lowest frequency value of that group. This process is quite e�ective, though it does rely on the condition that
the fundamental frequency actually exists, and isn't just simulated via a combination of higher harmonics.
The following example illustrates this more concretely.

Figure 2.2: Frequence vs. Time for Trumpet playing a concert 'A'=440 Hz

2This content is available online at <http://cnx.org/content/m13204/1.2/>.
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In the above waveform, we want to �nd the frequency heard by the human ear as being the fundamental
pitch. To do this, we �rst look at the �ve highest peaks, which occur at 440, 880, 1320, 1760, and 2640 Hz.
From this set of values, we grab the lowest occurring frequency. Hence, the fundamental frequency of the
above signal would be stated as being 440 Hz, or a concert 'A'... which is, in fact, the pitch that was played.

2.3 Sinusoidal Harmonic Modeling3

2.3.1 Sinusoid Harmonic Modeling

We would like to capture the �typical� spectrum for each instrument, independent of the pitch being produced.
This allows us to classify a signal using our model without providing the pitch as another parameter to the
model. (We note that this method is not without consequences, as the frequency response of the instrument
changes the spectrum depending on the note being played. For example, very low and very high notes are
more likely to vary than notes at mid-range. We decided to go with this approach to save time in model
training and hopefully reduce the dimensionality of our problem.)

Sinusoidal harmonic modeling (SHM) captures the harmonic envelope of a signal (as opposed to its
spectral envelope) and is ideal for tonal sounds produced by wind instruments, as most of the spectral energy
is captured in the harmonics. Given a spectrum, SHM �nds the fundamental frequency and estimates the
harmonics and the harmonic amplitudes, eventually producing a amplitude versus harmonic graph.

3This content is available online at <http://cnx.org/content/m13206/1.1/>.
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Figure 2.3: Average Harmonic Envelope for Clarinet (Blue), Tenor Sax (Green), and Trumpet (Red)

From this representation, we can then determine characteristic features of the instrument. For example,
qualitatively, we can tell that the spectrum of a clarinet declines rather fast, and that most of the energy is
in the odd harmonics. Similarly, we can tell that the saxophone declines slower, and that the trumpet has
its harmonic energies relatively distributed among the odd and even indices.

2.4 Audio Features4

How do we decide what parts of the spectrum are important? The CUIDADO project(2) (p. 9) provided a
set of 72 audio features, and research1 has shown that some of the features are more important in capturing
the signal characteristics. We therefore decided to implement a small subset of these features:

Cepstral Features

• Mel-Frequency Cepstrum Coe�cients (MFCC), k = 2:13

Spectral Features

• Slope

4This content is available online at <http://cnx.org/content/m13188/1.3/>.



9

• Roll-O�
• Centroid
• Spread
• Skew
• Kurtosis
• Odd-to-Even Harmonic Energy Ratio (OER)
• Tristimulus

2.4.1 De�nitions

Cepstral coe�cients have received a great deal of attention in the speech processing community, as they try
to extract the characteristics of the �lter and model it independently of the signal being produced. This is
ideal, as the �lter in our case is the instrument that we are trying to recognize. We work on a Mel scale
because it more accurately models how the human auditory system perceives di�erent frequencies, i.e. it
gives more weight to changes at low frequencies as humans are more adept at distinguishing low frequency
changes.

The centroid correlates to the �brightness� of the sound and is often higher than expected due to the
energy from harmonics above the fundamental frequency. The spread, skew, and kurtosis are based on the
2nd, 3rd, and 4th moments and, along with the slope, help portray spectral shape.

Odd-to-even harmonic energy ratio simply determines whether a sound consists primarily of odd harmonic
energy, of even harmonic energy, or whether the harmonic energy is equally spread.

The tristimulus measure energy as well and were introduced as the timbre equivalent to the color at-
tributes of vision. Like the OER, it provides clues regarding the distribution of harmonic energy, this time
focusing on low, mid, and high harmonics rather than odd and even harmonics. This gives more weight to
the �rst few harmonics, which are perceptually more important.

2.4.2 How We Chose Features

MFCC have shown to work very well in monophonic environments, as they capture the shape of the spectrum
very e�ectively. Unfortunately, they are of less use in polyphonic recordings, as the MFCC captures the shape
of a spectrum calculated from multiple sources. Most of the work we have seen on this subject uses MFCC
regardless, however. They are particularly useful if only one instrument is playing or is relatively quite
salient.

Most wind instruments have their harmonics evenly spread among the odd and even indices, but the
clarinet is distinct in that it produces spectra consisting predominantly of odd ratios, with very little even
harmonics appearing at all. This makes sense from a physics standpoint, as when played, the clarinet
becomes a closed cylinder at one end, therefore allowing only the odd harmonics to resonate. This feature
was thus chosen primarily with clarinet classi�cation in mind.

We chose the roll-o� and tristimulus as our energy measures, as they were both easy to implement and
judged to be important(1) (p. 9). Finally, the �rst four spectral moments and the spectral slope, in both
perceptual and spectral models, were shown to be the top ten most important features in the same study
and were therefore some of the �rst features added to our classi�cation system. We note that we had hoped
to implement a perceptual model and thereby nearly double our features, but we could not �nd an accurate
�lter model for the mid-ear and thus decided to forgo any features based on perceptual modeling.

For further discussion of these features, along with explicit mathematical formulas, please refer to (1) (p.
9).

2.4.3 References

1. A.A. Livshin and X. Rodet. �Musical Instrument Identi�cation in Continuous Recordings,� in Proc.
of the 7th Int. Conference on Digital Audio E�ects, Naples, Italy, October 5-8, 2004.
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2. G. Peeters. �A large set of audio features for sound description (sim-
ilarity and classi�cation) in the CUIDADO project,� 2003. URL:
http://www.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf.

2.5 Problems in Polyphonic Detection5

The techniques we used for our recognition system have for the most part been applied to monophonic
recordings. In moving to polyphonic recordings, we have to subtract out the portion of the sound signal
due to the �rst note and repeat the pitch detection and instrument recognition algorithm for each successive
note. We implemented a simple masking function to remove the portions of the spectrum contributed by the
detected note. Our �rst trial used a simple binary mask and removed all the harmonics given a fundamental
frequency, but this has the problem of removing potentially signi�cant information if the next note is a
harmonic of the �rst, as their spectrum would therefore overlap. We thus decided to use a more intelligent
mask and remove parts of the spectrum using knowledge about the instrument that produced the note. The
mask was constructed from the average harmonic envelope and fundamental frequency in a process similar
to the inverse of sinusoidal harmonic modeling. However, we only work with the spectral amplitude and not
with phase. Because the spectral amplitude of multiple notes is not linear, however, the harmonic peaks in
a polyphonic tune cannot simply be subtracted as we have done. We note that accounting for the phase
di�erences is a non-trivial problem, and the simplifying assumption of linearity in spectral amplitude is often
used in polyphonic systems.

2.6 Experimental Data and Results6

2.6.1 Experimental Data

2.6.1.1 Training

For our training set, we used purely monophonic recordings to ease manual classi�cation. One full chromatic
scale was recorded for each of our three instruments. We note that our training is weak, as we only provided
one recording for each instrument. By covering the full range of the instrument, we give roughly equal
weights to every note, whereas most instruments have a standard playing range and rarely play in the lower
or upper limits or their range. Since the spectrum is more apt to skewing e�ects in the extreme ranges, our
average spectral envelope and training features are also negatively a�ected.

Finally, if we wanted our training set to perform better with polyphonic recordings, we would in practice
also provide a few polyphonic recordings as part of our training set. This would allow features unique to
polyphonic environments to be modeled as well. For example, a clarinet and trumpet usually cover the
melody and are therefore more predominant than a tenor saxophone.

2.6.1.2 Testing

One short monophonic tune per instrument was recorded, as well as two short polyphonic tunes with each
instrument combination (clarinet + saxophone, clarinet + trumpet, saxophone + trumpet, all), generating
a total of 9 recordings.

2.6.2 Results

2.6.2.1 Self-Validation

We �rst tested our GMM with the training set to determine how accurate it would be at classifying the data
that trained it. The confusion matrix is shown below. (Our confusion matrix shows the actual classi�cation

5This content is available online at <http://cnx.org/content/m13207/1.1/>.
6This content is available online at <http://cnx.org/content/m13201/1.1/>.
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at the left, and the predicted classi�cation at the top.)

Clarinet Saxophone Trumpet

Clarinet 90.0% 7.5% 2.5%

Saxophone 2.9% 92.3% 4.9%

Trumpet 0.9% 11.5% 87.5%

Table 2.1: Table 1: Confusion matrix for instrument recognition with training data.

2.6.2.2 Monophonic Recordings

Satis�ed that our GMM could classify the training data accurately, we then tested it on a new set of
monophonic recordings.

Clarinet Saxophone Trumpet

Clarinet 67.0% 15.1% 17.9%

Saxophone 19.7% 73.0% 7.3%

Trumpet 1.0% 14.9% 84.1%

Table 2.2: Table 2: Confusion matrix for instrument of single notes from monophonic recordings.

Average instrument identi�cation using our GMM was 75%, whereas pure guessing would land us at
33.3%. We also see that in our test data, the clarinet and saxophone are confused the most often and can
therefore be considered the most similar. This makes sense as both belong to the same instrument family
(woodwinds), whereas a trumpet is a brass instrument. In contrast, the clarinet and the trumpet were
confused the least often, which is also as expected since their spectrum represent the two extremes within
our tested instruments. We are unsure of why the clarinet is often mistaken as a trumpet, but a trumpet
is not mistaken as a clarinet, but we believe part of the problem may lie again in our training data, as the
self-validation tests showed that the clarinet and trumpet were almost exclusive of one another, and our
GMM may have started to memorize the training data.

The following �gures show the performed piece of music and the results of our detection and classi�cation
algorithm. We note that some discrepancies are due to player error (key fumbles, incorrect rhythmic counting,
etc). We follow our coloring scheme of blue representing clarinet, green saxophone, and red trumpet.
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(a)

(b)

Figure 2.4: Original score versus output from our algorithm for a monophonic trumpet tune.

2.6.2.3 Polyphonic Recordings

Finally, we input some polyphonic recordings and compared the experimental outputs to the input music.
Quantitative validation is not provided, as it would require us to manually feed into the validation program
which instruments at what time. Visually however, we can clearly see that our algorithm correctly separates
the melody line, as played by the clarinet, from the lower harmony line, as played by the tenor saxophone.
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(a)

(b)

Figure 2.5: Original score versus output from our algorithm for a polyphonic piece.

2.7 Gaussian Mixture Model7

2.7.1 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) was used as our classi�cation tool. As our work focused mainly on signal
processing, we forgo a rigorous treatment of the mathematics behind the model in favor of a brief description
of GMMs and its application to our system.

GMMs belong to the class of pattern recognition systems. They model the probability density function
of observed variables using a multivariate Gaussian mixture density. Given a series of inputs, it re�nes the
weights of each distribution through expectation-maximization algorithms.

In this respect, GMMs are very similar to Support Vector Machines8 and Neural Networks9 , and all
of these models have been used in instrument classi�cation (1) (p. 15). Reported success (2) (p. 15) with
GMMs prompted us to use this model for our system.

2.7.2 Recognizing Spectral Patterns

We use 9 features in our recognition program and relied on the GMM to �nd patterns that would associate
these features to the correct instrument. Some of our features consist of a vector (we used 12 MFCC, and

7This content is available online at <http://cnx.org/content/m13205/1.1/>.
8http://cnx.rice.edu/content/m13131/latest/
9http://cnx.rice.edu/content/m11667/latest/
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tristimulus has 3 components), so we are actually working in 22 dimension space. For convenience, we focus
here on recognizing a pattern between the instrument and two of these dimensions, using the �rst two MFCC
coe�cients as an example.

Looking at the distribution of features for the three instruments in �gure 1, we clearly see that there are
some feature di�erences based on instrument.

Distribution of First Two MFCC Coe�cients for Three Instruments

Figure 2.6: Despite the heavy overlap, we see that each instrument dominates di�erent sections of the
cepstral space.

GMM detects the patterns in these features and gives us a nice decision rule, as pictured in �gure 2.
Based on these two features alone, the GMM tells us which instrument most likely played the note, visually
represented by the highest peak in the three-dimensional representation.
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Two-Parameter Gaussian Mixture Model for Three Instruments

Figure 2.7: Gaussian Mixture Model for Clarinet (blue), Saxophone (green), and Trumpet (red).
Signals with features falling in a colored area are classi�ed as a particular instrument. (Gray represents
indeterminate instrument.)

Finally, we note that GMMs have been shown to be useful if features are particularly weak or missing
(2) (p. 15). This is of particular importance in polyphonic environments, as harmonics may overlap, thus
causing some features to be unreliable measures of the instrument.

2.7.3 References

1. A. Brenzikofer. �Instrument Recognition and Transcription in Polyphonic Music.� Term Project. Ecole
Polytechnique Federale de Lausanne, June 2004. URL: http://www.brenzi.ch/data/murec-report-
web.pdf

2. J. Eggink and G.J. Brown. �A Missing Feature Approach to Instrument Identi�cation in Polyphonic
Music,� in IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong,
April 2003, 553-556.

3. D. Ellis. Musical Content Analysis: A Practical Investigation of Singing Detection. URL:
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Chapter 3

Wrap-Up and The Team

3.1 Future Work in Musical Recognition1

A number of changes and additions to this project would help it to scale better and be more statistically
accurate. Such changes should help the project to handle more complex signals and operate over a larger
number of musical instruments.

3.1.1 Improving the Gaussian Mixture Model

To improve the statistical accuracy, the Gaussian Mixture Model used in this project must improve. The
features of this model help determine its accuracy, and choosing appropriate additional features is a step
towards improving the project. These features may include modeling additional temporal, spectral, harmonic
and perceptual properties of the signals, and will help to better distinguish between musical instruments.
Temporal features were left out of this project, as they are di�cult to analyze in polyphonic signals. However,
these features are useful in distinguishing between musical instruments. Articulation, in particular, is useful
in distinguishing a trumpet sound, and articulation is by its very nature a temporal feature.

Additionally, more analysis of what features are included in the Gaussian Mixture Model is necessary
to improve the statistical accuracy. Too many features, or features that do not adequately distinguish
between the instruments, can actually diminish the quality of the output. Such features could respond to
the environment noise in a given signal, or to di�erences between players on the same instrument, more easily
than they distinguish between instruments themselves, and this is not desirable. Ideally, this project would
involve retesting the sample data with various combinations of feature sets to �nd the optimal Gaussian
Mixture Model.

3.1.2 Improving training data

As training data for this experiment, we used chromatic scales for each instrument over its entire e�ective
range, taken in a single recording session in a relatively low noise environment. To improve this project, the
GMM should be trained with multiple players on each instrument, and should include a variety of music
- not just the chromatic scale. It should also inlude training data from a number of musical environments
with varying levels of noise, as the test data that later is passed through the GMM can hardly be expected
to be recorded under the same conditions as the training recordings.

Additionally, the training of the GMM would be improved if it could be initially trained on some poly-
phonic signals, in addition to the monophonic signals that it is currently trained with. Polyphonic training
data was left out of this project due to the complexity of implementation, but it could improve the statistical
accuracy of the GMM when decomposing polyphonic test signals.

1This content is available online at <http://cnx.org/content/m13196/1.3/>.
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3.1.3 Increasing the scope

In addition to training the GMM for other players on the three instruments used in this project, to truly
decode an arbitrary musical signal, additional instruments must be added. This includes other woodwinds
and brass, from �utes and double reeds to french horns and tubas, to strings and percussion. The GMM
would likely need to extensively train on similar instruments to properly distinguish between them, and it is
unlikely that it would ever be able to distinguish between the sounds of extremely similar instruments, such
as a trumpet and a cornet, or a baritone and a euphonium. Such instruments are so similar that few humans
can even discern the subtle di�erences between them, and the sounds produced by these instruments vary
more from player to player than between, say, a trumpet and a cornet.

Further, the project would need to include other families of instruments not yet taken into consideration,
such as strings and percussion. Strings and tuned percussion, such as xylophones, produce very di�erent
tones than wind instruments, and would likely be easy to decompose. Untuned percussion, however, such
as cymbals or a cowbell, would be very di�cult to add to this project without modifying it, adding features
speci�cally to detect such instruments. Detecting these instruments would require adding temporal features
to the GMM, and would likely entail adding an entire beat detection system to the project.

3.1.4 Improving Pitch Detection

For the most part, and especially in the classical genre, music is written to sound pleasing to the ear.
Multiple notes playing at the same time will usually be harmonic ratios of one another, either thirds, or
�fths, or octaves. With this knowledge, once we have determined the pitch of the �rst note, we can determine
what pitch the next note is likely to be. Our current system detects the pitch at each window without any
dependence on the previously detected note. A better model would track the notes and continue detecting
the same pitch until the note ends. Furthermore, Hidden Markov Models have been shown useful in tracking
melodies, and such a tracking system could also be incorporated for better pitch detection.

3.2 Acknowledgements and Inquiries2

The team would like to thank the following people and organizations.

• Department of Electrical and Computer Engineering, Rice University
• Richard Baraniuk, Elec 301 Instructor
• William Chan, Elec 301 Teaching Assistant
• Music Classi�cation by Genre. Elec 301 Project, Fall 2003. Mitali Banerjee, Melodie Chu, Chris

Hunter, Jordan Mayo
• Instrument and Note Identi�cation. Elec 301 Project, Fall 2004. Michael Lawrence, Nathan Shaw,

Charles Tripp.
• Auditory Toolbox.3 Malcolm Slaney
• Netlab.4 Neural Computing Research Group. Aston University

For the Elec 301 project, we gave a poster5 presentation on December 14, 2005. We prefer not to provide
our source code online, but if you would like to know more about our algorithm, we welcome any questions
and concerns. Finally, we ask that you reference us if you decide to use any of our material.

2This content is available online at <http://cnx.org/content/m13203/1.3/>.
3http://rvl4.ecn.purdue.edu/∼malcolm/interval/1998-010/
4http://www.ncrg.aston.ac.uk/netlab/intro.php
5http://cnx.org/content/m13203/latest/poster.pdf
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3.3 Patrick Kruse6

3.3.1 Patrick Alan Kruse

Figure 3.1: Patrick Kruse

Patrick is a junior Electrical Engineering major from Will Rice College at Rice University. Originally from
Houston, Texas, Patrick intends on specializing in Computer Engineering and pursuing a career in industry
after graduation, as acadamia frightens him.

6This content is available online at <http://cnx.org/content/m13189/1.1/>.
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3.4 Kyle Ringgenberg7

3.4.1 Kyle Martin Ringgenberg

Figure 3.2: Kyle Ringgenberg

Originally from Sioux City, Iowa... Kyle is currently a junior electrical engineering major at Rice University.
Educational interests rest primarily within the realm of computer engineering. Future plans include either
venturing into the work world doing integrated circuit design or remaining in academia to pursue a teaching
career.

Outside of academics, Kyle's primary interests are founded in the musical realm. He's performs regularly
on both tenor saxophone and violin under the genres of jazz, classical, and modern. He also has a strong
interest in 3d computer modeling and animation,which has remained a self-taught hobby of his for years.
Communication can be established via his personal website, www.KRingg.com8 , or by the email address
listed under this Connections course.

7This content is available online at <http://cnx.org/content/m13185/1.2/>.
8http://www.KRingg.com/
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3.5 Yi-Chieh Jessica Wu9

Figure 3.3: Jessica Wu

Jessica is currently a junior electrical engineering major from Sid Richardson College at Rice University. She
is specializing in systems and is interested in signal processing applications in music, speech, and bioengi-
neering. She will probably pursue a graduate degree after Rice.

9This content is available online at <http://cnx.org/content/m13202/1.1/>.
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Musical Instrument Recognition

To detect the pitch and instrument of a monophonic signal. To decompose polyphonic signals into their
component pitches and instruments by analyzing the waveform and spectra of each instrument. Elec 301
Project Fall 2005.
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