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Chapter 1

Introduction

1.1 Abstraction1

1.1.1 Introduction

Abstraction is the process of hiding the details and exposing only the essential features of a particular concept
or object. Computer scientists use abstraction to understand and solve problems and communicate their
solutions with the computer in some particular computer language. We illustrate this process by way of
trying to solve the following problem using a computer language called Java.

Problem: Given a rectangle 4.5 ft wide and 7.2 ft high, compute its area.
We know the area of a rectangle is its width times its height. So all we have to do to solve the above

problem is to multiply 4.5 by 7.2 and get the the answer. The question is how to express the above solution
in Java, so that the computer can perform the computation.

1.1.2 Data Abstraction

The product of 4.5 by 7.2 is expressed in Java as: 4.5 * 7.2. In this expression, the symbol * represents
the multiplication operation. 4.5 and 7.2 are called number literals. Using DrJava, we can type in the
expresssion 4.5 * 7.2 directly in the interactions window and see the answer.

Now suppose we change the problem to compute the area of a rectangle of width 3.6 and height 9.3. Has
the original problem really change at all? To put it in another way, has the essence of the original problem
changed? After all, the formula for computing the answer is still the same. All we have to do is to enter 3.6
* 9.3. What is it that has not change (the invariant)? And what is it that has changed (the variant)?

1.1.2.1 Type Abstraction

The problem has not changed in that it still deals with the same geometric shape, a rectangle, described in
terms of the same dimensions, its width and height. What vary are simply the values of the width and the
height. The formula to compute the area of a rectangle given its width and height does not change:

width * height

It does not care what the actual speci�c values of width and height are. What it cares about is that the
values of width and height must be such that the multiplication operation makes sense. How do we express
the above invariants in Java?

We just want to think of the width and height of a given rectangle as elements of the set of real numbers.
In computing, we group values with common characteristics into a set and called it a type. In Java, the

1This content is available online at <http://cnx.org/content/m11785/1.21/>.
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2 CHAPTER 1. INTRODUCTION

type double is the set of real numbers that are implemented inside the computer in some speci�c way. The
details of this internal representation is immaterial for our purpose and thus can be ignored. In addition
to the type double, Java provides many more pre-built types such as int to represent the set of integers
and char to represent the set of characters. We will examine and use them as their need arises in future
examples. As to our problem, we only need to restrict ourselves to the type double.

We can de�ne the width and the height of a rectangle as double in Java as follows.

double width;

double height;

The above two statements are called variable de�nitions where width and height are said to be variable
names. In Java, a variable represents a memory location inside the computer. We de�ne a variable by
�rst declare its type, then follow the type by the name of the variable, and terminate the de�nition with a
semi-colon. This a Java syntax rule. Violating a syntax rule constitutes an error. When we de�ne a variable
in this manner, its associated memory content is initialized to a default value speci�ed by the Java language.
For variables of type double, the default value is 0.

note: Use the interactions paneof DrJava to evaluate width and height and verify that their values
are set to 0.

Once we have de�ned the width and height variables, we can solve our problem by writing the expression
that computes the area of the associated rectangle in terms of width and height as follows.

width * height

Observe that the two variable de�nitions together with the expression to compute the area presented in
the above directly translate the description of the problem -two real numbers representing the width and the
height of a rectangle- and the high-level thinking of what the solution of the problem should be -area is the
width times the height. We have just expressed the invariants of the problem and its solution. Now, how do
we vary width and height in Java? We use what is called the assignment operation. To assign the value
4.5 to the variable width and the value 7.2 to the variable height, we write the following Java assignment
statements.

width = 4.5;

height = 7.2;

The syntax rule for the assignment statement in Java is: �rst write the name of the variable, then follow
it by the equal sign, then follow the equal sign by a Java expression, and terminate it with a semi-colon.
The semantic (i.e. meaning) of such an assignment is: evaluate the expression on the right hand side of the
equal sign and assign the resulting value into the memory location represented by the variable name on the
left hand side of the equal side. It is an error if the type of the expression on the right hand side is not a
subset of the type of the variable on the left hand side.

Now if we evaluate width * height again (using the Interactions Window of DrJava), we should get
the desired answer. Life is good so far, though there is a little bit of inconvenience here: we have to type
the expression width * height each time we are asked to compute the area of a rectangle with a given width
and a given height. This may be OK for such a simple formula, but what if the formula is something much
more complex, like computing the length of the diagonal of a rectangle? Re-typing the formula each time is
quite an error-prone process. Is there a way to have the computer memorize the formula and perform the
computation behind the scene so that we do not have to memorize it and rewrite it ourselves? The answer
is yes, and it takes a little bit more work to achieve this goal in Java.

What we would like to do is to build the equivalent of a black box that takes in as inputs two real numbers
(recall type double) with a button. When we put in two numbers and depress the button, "magically" the
black box will compute the product of the two input numbers and spit out the result, which we will interpret
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as the area of a rectangle whose width and height are given by the two input numbers. This black box is in
essence a specialized calculator that can only compute one thing: the area of a rectangle given a width and
a height. To build this box in Java, we use a construct called a class, which looks like the following.

class AreaCalc {

double rectangle(double width, double height) {

return width * height;

}

}

What this Java code means is something like: AreaCalc is a blue print of a specialized computing machine
that is capable of accepting two input doubles , one labeled width and the other labeled height, computing
their product and returning the result. This computation is given a name: rectangle. In Java parlance, it
is called a method for the class AreaCalc.

Here is an example of how we use AreaCalc to compute area of a rectanglee of width 4.5 and height 7.2.
In the Interactions pane of DrJava, enter the following lines of code.

AreaCalc calc = new AreaCalc();

calc.rectangle(4.5, 7.2)

The �rst line of code de�nes calc as a variable of type AreaCalc and assign to it an instance of the class
AreaCalc. new is a keyword in Java. It is an example of what is called a class operator. It operates on a
class and creates an instance (also called object) of the given class. The second line of code is a call to the
object calc to perform the rectangle task where width is assigned the value 4.5 and height is assigned
the value 7.2. To get the area of a 5.6 by 8.4 rectangle, we simply use the same calculator calc again:

calc.rectangle(5.6, 8.4);

So instead of solving just one proble -given a rectangle 4.5 ft wide and 7.2 ft high, compute its area- we
havebuilt a "machine" that can compute the area of any given rectangle. But what about computing the
area of a right triangle with height 5 and base 4? We cannot simply use this calculator. We need another
specialized calculator, the kind that can compute the area of a circle.

There are at least two di�erent designs for such a calculator.

• create a new class called AreaCalc2 with one method called rightTriangle with two input parame-
tersof type double. This corresponds to designing a di�erent area calculator with one button labeled
rightTriangle with two input slots.

• add to AreaCalc a method called rightTriangle with two input parameters of type double. This
corresponds to designing an area calculator with two buttons: one labeled rectangle with two input
slots and the other labeled rightTriangle, also with two input slots.

In either design, it is the responsibility of the calculator user to pick the appropriate calculator or press the
appropriate button on the calculator to correctly obtain the area of the given geometric shape. Since the two
computations require exactly the same number of input parameters of exactly the same type, the calculator
user must be careful not get mixed up. This may not be too much of an inconvenience if there are only two
kinds of shape to choose from: rectangle and right triangle. But what if the user has to choose from hundreds
of di�erent shapes? or better yet an open-ende number of shapes? How can we, as programmers, buid a
calculator that can handle an in�nite number of shapes? The answer lies in abstraction. To motivate how
conceptualize the problem, let us digress and contemplate the behavior of a child!

1.1.2.2 Modeling a Person

For the �rst few years of his life, Peter did not have a clue what birthdays were, let alone his own birth
date. He was incapable of responding to your inquiry on his birthday. It was his parents who planned for
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his elaborate birthday parties months in advance. We can think of Peter then as a rather "dumb" person
with very little intelligence and capability. Now Peter is a college student. There is a piece of memory in his
brain that stores his birth date: it's September 12, 1985! Peter is now a rather smart person. He can �gure
out how many more months till his next birthday and e-mail his wish list two months before his birth day.
How do we model a "smart" person like Peter? Modeling such a person entails modeling

• a birth date and
• the computation of the number of months till the next birth day given the current month.

A birth date consists of a month, a day and a year. Each of these data can be represented by an integer, which
in Java is called a number of type int. As in the computation of the area of a rectangle, the computation
of the number of months till the next birth day given the current month can be represented as a method
of some class. What we will do in this case that is di�erent from the area calculator is we will lump both
the data (i.e. the birth date) and the computation involving the birth date into one class. The grouping of
data and computations on the data into one class is called encapsulation. Below is the Java code modeling
an intelligent person who knows how to calculate the number of months before his/her next birth day. The
line numbers shown are there for easy referencing and are not part of the code.

1 public class Person {

2 /**

3 * All data fields are private in order to prevent code outside of this

4 * class to access them.

5 */

6 private int _bDay; // birth day

7 private int _bMonth; // birth month; for example, 3 means March.

8 private int _bYear; // birth year

9 /**

10 * Constructor: a special code used to initialize the fields of the class.

11 * The only way to instantiate a Person object is to call new on the constructor.

12 * For example: new Person(28, 2, 1945) will create a Person object with

13 * birth date February 28, 1945.

14 */

15 public Person(int day, int month, int year) {

16 _bDay = day;

17 _bMonth = month;

18 _bYear = year;

19 }

20 /**

21 * Uses "modulo" arithmetic to compute the number of months till the next

22 * birth day given the current month.

23 * @param currentMonth an int representing the current month.

24 */

25 public int nMonthTillBD(int currentMonth) {

26 return (_bMonth - currentMonth + 12) % 12;

27 }

28 }

(Download the above code2 ) We now explain what the above Java code means.

2http://cnx.org/content/m11785/latest/Person.java
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• line 1 de�nes a class called Person. The opening curly brace at the end of the line and the matching
closing brace on line 28 delimit the contents of class Person. The key word public is called an access
speci�er and means all Java code in the system can reference this class.

• lines 2-5 are comments. Everything between /* and */ are ingored by the compiler.
• lines 6-8 de�ne three integer variables. These variables are called �elds of the class. The key word

private is another access speci�er that prevents access by code outside of the class. Only code inside
of the class can access them. Each �eld is followed by a comment delimited by // and the end-of-line.
So there two ways to comment code in Java: start with /* and end with */ or start with // and end
with the end-of-line.

• lines 9-14 are comments.
• lines 15-19 constitute what is called a constructor. It is used to initialize the �elds of the class to

some particular values. The name of the constructor should spell exactly like the class name. Here
it is public, menaing it can be called by code outside of the class Person via the operator new. For
example, new Person(28, 2, 1945) will create an instance of a Person with _bDay = 28, _bMonth
= 2 an d_bYear = 1945.

• lines 20-24are comments.
• line 23 is a special format for documenting the parameters of a metod. This format is called the javadoc

format. We will learn more about javadoc in another module.
• lines 25-27 constitute the de�nition of a method in class Person.
• line 26 is the formula for computing the number of months before the next birthday using the remainder

operator %. x % y gives the remainder of the integer division between the dividend x and the divisor
y.

1.2 Objects and Classes3

1.2.1 Objects

In the "real" world, objects are the entities of which the world is comprised. Everything that happens in
the world is related to the interactions between the objects in the world. Just as atoms, which are objects,
combine to form molecules and larger objects, the interacting entities in the world can be thought of as
interactions between and among both singular ("atomic") as well as compound ("composed") objects. The
real world consists of many, many objects interacting in many ways. While each object may not be overly
complex, their myriad of interactions creates the overall complexity of the natural world. It is this complexity
that we wish to capture in our software systems.

In an object-oriented software system,objects are entities used to represent or model a particular piece
of the system.

Objects are the primary units used to create abstract models.

There are a number of schools of object-oriented programming, which di�er slightly on how they view
objects. Here, we will take a "behaviorist" (our term) stance:

An object is characterized solely by it behaviors.

Essentially this de�nes an object by the way it interacts with its world. An object that does not interact
with anything else e�ectively does not exist. Access to internally stored data is necessarily through some
sort of de�ned behavior of the object. It is impossible for an outside entity to truly "know" whether or not
a particular piece of data is being stored inside of another object.

Seeing vs. Being: A beautiful example of a model that exhibits a particular behavior but
without exactly replicating the mechanics we expect to produce that behavior is the "Dragon"

3This content is available online at <http://cnx.org/content/m11708/1.7/>.
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optical illusion. A printout to create this simple folded paper display can be found at the web site
of the Grand Illusions Toy Shop in England4 .

This does not mean however, that an object may not contain data (information) in �elds. The essence of
the object is in how the object behaves in relationship to or as a result of its data, should it contain any.

The existence of data in an object is an implementation technique used to generate

the required behavior of that object.

1.2.2 Classes

Many objects di�er from each other only in the value of the data that they hold. For example, both a
red crayon and a blue crayon are crayons; they di�er only in the value of the color attribute, one has a red
color and the other a blue color. Our object-oriented system needs a way to capture the abstraction of a
crayon, independent of the value of its color. That is, we want to express that a set of objects are abstractly
equivalent, di�ering only in the values of their attributes and perhaps, thus di�ering in the behaviors that
result from those values.

Many objects are similar in many overall, generalized ways, di�ering only in smaller, more speci�c details.
In biology and other �elds, scientists organize objects into taxonomies, which are classi�cation hierarchies
used to express these similarities. For instance, a butter�y and a lobster are quite di�erent, yet they share
the common characteristics of all Arthropods, such as a jointed exoskeleton. The notion of an Arthropod
enables us to understand and deal with butter�ies and lobsters in an abstract, uni�ed manner. So once again
we are trying to express abstract equivalence.

Object-oriented systems use classes to express the above notions of abstract equivalence.

A class is an abstract description of a set of objects.

A class thus contain the descriptions of all the behaviors of the objects that it represents. In computer science
parlance, we call the individual behaviors of a class its methods. In addition, a class may, but not always,
contain descriptions of the internal data held by the objects, called its �elds, as well as implementation
details about its methods and �elds.

Turning the description around, we can say that a class is a template or recipe for the creation of
a particular type of object. That is, one can use a class to create ("instantiate") objects of the type
described by the class. Be careful not to make the very beginner's common mistake of equating classes and
objects. A class is a speci�cation of an set of objects, it is not the actual object.

In technical terms, a class de�nes a new type in the system. Types are identi�es used to di�erentiate
di�erent kinds of data. For instance, integers, characters, strings and arrays are all types of data.

1.2.2.1 Implementation in Java

Classes are the fundamtental building blocks of Java programs. De�ning a class is basically a matter of
specifying a name for the class, its relationship to other classes and what sort of behaviors the class exhibits
as well as what data it may contain.

SuppSuppose we wanted to de�ne a class to describe a household pet. We could do it as such:

class Pet {

}

The word class above is called a keyword and can only be used to state that the following code is the
de�nition of a class. The class keyword is immediately followed by the desired name of the class, Pethere.
The curly braces, {...}, indicate the extent of the de�nition of the class. That is, any de�nitions of the
class's behaviors and data will be found between the curly braces. Curly braces must therefore always appear
as a matched set.

4http://www.grand-illusions.com/opticalillusions/dragon_illusion/
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In general, in Java, curly braces mark the extent of a de�nition.

Java style note: The accepted typographic standard in the Java community is that the opening
curly brace is at the end of a line and the ending curly brace is at the beginning of its own line.
Any code between the curly braces is indented.

Well, our class for pets is simple, but not very interesting because it doesn't do anything. We could say
that our pet has a name, but personally, I have found that the behavior of most pets is not a�ected by the
particular name we give them. That is, we can give our pet a name but that doesn't change the way they
behave. Let's try something else.

Pets eat a certain amount of food per day. Pets have a certain weight. Let's create a model, that states
that the number of hours that a pet sleeps per day is related to the amount of food they eat and their weight.
Thus we could say that a pet has a behavior of sleeping a certain number of hours depending on its weight
and the amount of food eaten.

/**

* A class that models a household pet

*/

class Pet{

/**

* The weight of the pet in lbs

*/

double weight;

/**

* The number of hours the pet will sleep after eating

* the given lbs of food.

* @param lbsOfFood The number of lbs of food eaten.

* @return The number of hours slept after eating the food.

*/

double hoursSlept(double lbsOfFood) {

return 24.0*lbsOfFood/weight;

}

}

But what about the pet's owner (a person, supposedly)? A person is not such a simple thing as a weight.
Assigning a number to every possible person in the world is possible but not necessarily the most practical
technique. There are many ways to represent people: the Registrar likes to think of you as a number with
credit hours and unpaid bills, The CS department sees you as a 8-character login and un�nished graduation
requirements, your doctor sees you as a collection of pulsating blood vessels, cells and bones, and your
parents see you as this sweet little thing just out of diapers. A person is still a person, but the way that we
choose to represent them may di�er from situation to situation.

But here's the crux of the issue: does your pet care how you are internally represented? Or does your
pet just want something that is a person to be their owner?

/**

* A class that models a household pet

*/

class Pet{

/**
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* The weight of the pet in lbs

*/

double weight;

/**

* The pet's owner

*/

Person owner;

/**

* The number of hours the pet will sleep after eating

* the given lbs of food.

* @param lbsOfFood The number of lbs of food eaten.

* @return The number of hours slept after eating the food.

*/

double hoursSlept(double lbsOfFood) {

return 24.0*lbsOfFood/weight;

}

/**

* Determines whether or not this pet is happy to see a

* particular person.

* @param p The person who the pet sees.

* @return true if the Person is their owner, false otherwise.

*/

boolean isHappyToSee(Person p) {

return p == owner;

}

}

Here we've added a �eld of type Person, which is a class used to represent people. It doesn't matter
how Person is implemented, just that it is a representation of a person. We could use the class de�nition of
Person that was created in the module on Abstraction (Section 1.1), or perhaps one that is �xed up a little
bit, or perhaps a completely new one. The Pet doesn't care.

Thus we see that objects can contain objects. What does this say about the possible complexity of a
system of objects?

1.2.3 Download code

To download a zipped �le containing the code above, click one of the following links:

• DrJava Elementary Language Level code: DrJava_Code.zip5

• Standard Java code: Std_Java_Code.zip6

Both of the above codebases include a DrJava project �le (.pjt) that can be opened from DrJava to easily
manage all the code and test �les.

5See the �le at <http://cnx.org/content/m11708/latest/DrJava_Code.zip>
6See the �le at <http://cnx.org/content/m11708/latest/Std_Java_Code.zip>
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1.3 Object Relationships7

An object-oriented system can be characterized as a system of cooperating objects. Some objects interact
only with certain other objects or perhaps only with a certain set of objects. Sometimes objects are treated as
equivalent even though there may be speci�c di�erences between them, for instance a situation may call for a
"fruit" whereupon an "apple" will do just as well as an "orange". That is, apples and oranges are treated as
abstractly equivalent. Conversely, the system designer may want to express the commonality between apples
and oranges. An OO system has two distinct mechanisms to express these relationship notions: "is-a" which
is technically referred to as "inheritance" and "has-a" which is technically referred to as "composition".

1.3.1 "Is-a" or "Inheritance"

"Is-a" or "inheritance" (sometimes also called "generalization") relationships capture a hierarchal relation-
ship between classes of objects. For instance, a "fruit" is a generalization of "apple", "orange", "mango"
and many others. We say that fruit is an abstraction of apple, orange, etc. Conversely, we can say that since
apples are fruit (i.e. an apple "is-a" fruit), that they inherit all the properties common to all fruit, such as
being a �eshy container for the seed of a plant.

UML Class Diagram Showing Inheritance

Figure 1.1: The above diagram shows the "is-a" relationship between Apple, Orange and Mango
subclasses and the more abstract Fruit superclass.

note: Classes are represented by boxes with the class name separated at the top by a horizontal
line.

note: Inheritance ("is-a") lines are represented by solid lines with solid arrowheads. The arrow
points from the subclass to the superclass (think "a subclass object is-a superclass object")

In Java, inheritance relationships are declared using the extends keyword when declaring a class. A subclass
"extends" a superclass, which means that the subclass is a concrete example of the more abstract superclass.
For instance, the class Apple would extend the class Fruit.

7This content is available online at <http://cnx.org/content/m11709/1.5/>.
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public class Apple extends Fruit {

...

}

In Java, a subclass is allowed to extend only a single superclass (no "multiple inheritance"). This restricts
the interpretation of a hierarchal taxomony. A subclass is an embodiment of its superclass. It is useful to
think of the subclass as not inheriting its superclass's behaviors but rather possessing these behaviors simply
because it is the superclass (this is polymorphism). Extend really models what an object intrinsically is�
its true "being" as it were. This is particularly useful when the superclass has particular concrete behaviors
that all the subclasses should exhibit.

However, "is-a" can really be more of an "acts-like-a" relationship. This stems from the perspective
that all objects are de�ned soley by their behaviors. We can never truly know what an object truly is,
only how it acts. If two objects behave identically (at some abstract level) then we say that they are
abstractly equivalent. What we need is a way to express the pure behavioral aspects of an object. Java
has a the keyword implements which is used to show generalization of a pure behavioral abstraction called
an interface. An interface has a similar syntax to a class, but only speci�es behaviors in terms of the
"signatures" (the input and output types) of the methods. For example we could have

public interface ISteerable {

public abstract void turnLeft();

public abstract void turnRight();

}

public class Truck implements ISteerable {

public void turnLeft() {

// turn the tires to the left

}

public void turnRight() {

// turn the tires to the right

}

}

public class Boat implements ISteerable {

public void turnLeft() {

// turn the rudder to the left

}

public void turnRight() {

// turn the rudder to the right

}

}

note: A public class, method or �eld can be seen and used by anyone. Contrasts with private
(seen and used only by that class) and package (seen and used only by classes in the same package).
We'll talk more about these later. An abstract class or method is a purely abstract de�nition in
that it speci�es the existence of a behavior without specifying exactly what that behavior is. A
void return type declares a non-existent return value, that is, no return value at all.

Above, Trucks and Boats are not taxonomically related, but yet they both embody the behaviors of steer-
ability, such as the ability to turn left or right. A person can pilot either a boat or a truck based soley on the
fact that they both support turning left or right and not based on what sort of entity they are fundamentally.
Note that as per the above de�nition, a class can implement multiple interfaces at the same time.
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UML Class Diagram Showing Implementation

Figure 1.2: The above diagram shows the "acts-like-a" relationships between ISteerable, Boat, and
Truck classes

note: Implementation ("acts-like-a") lines are represented by dotted lines with solid
arrowheads. The arrow points from the subclass to the interface (think "a subclass object acts-
like-a interface")

1.3.2 "Has-a" or "Composition"

"Has-a" or "composition" (sometimes referred to as an "associative") relationships capture the notion that
one object has a distinct and persistant communication relationship with another object. for instance, we
can say a car "has-a" motor. The car and the motor are not related in a hierarchal manner, but instead
we need to be able to express that this pair of objects has a particular working relationship. The car gives
gas to the motor and the the motor will propel the car along. Compositional relationships can be one-way,
where one object can, in a persistant manner, talk to (i.e. call methods of) a second object but the second
object cannot, in a persistent manner, talk back to the �rst object. Compositional relationships can also be
two-way, where both objects can talk to each other in a persistent manner.
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UML Class Diagram Showing Composition

Figure 1.3: The above diagram shows the "has-a" relationships between the Car, Motor and Wheel
classes

note: Composition ("has-a") lines are represented by solid lines with open arrowheads.
The arrow points from the owner ("composite") to the ownee ("composee"). Think "a composite
has a composee". The number at the arrowhead tells how many composees there are, e.g. 1, 2, etc.
"*" means an limited number, so "0...* means zero or more and "1..*" means at least one.

The emphasis made above with regards to persistent communication is deliberate and important. It is indeed
possible for an object to communicate with another object in a non-persistent manner. Such non-persistent
communication is generally not thought of as a compositional relationship, but rather as a dependency
relationship where the action of one object depends on that of another. An object can tell a second object
that it (the second object) needs to talk to a speci�c, perhaps third object. The second object does not know
with whom it will be communicating until the �rst object tells it. The second object may not "remember" the
object it is supposed to communicate with for any length of time after the communication was accomplished
and the second object merely waits for the �rst object to tell it with whom to communicate next. This
non-persistent communication is normally established by simply passing the third target object as an input
parameter to the method call made on the second object by the �rst. Note that the third object could
actually be the �rst object, creating a non-persistent two-way communication from an initially one-way
communication.

1.4 UML Diagrams8

Uni�ed Modeling Language ("UML") is the industry standard "language" for describing, visualizing, and
documenting object-oriented (OO) systems. UML is a collection of a variety of diagrams for di�ering
purposes. Each type of diagram models a particular aspect of OO design in an easy to understand, visual
manner. The UML standard speci�es exactly how the diagrams are to be drawn and what each component
in the diagram means. UML is not dependent on any particular programming language, instead it focuses
one the fundamental concepts and ideas that model a system. Using UML enables anyone familiar with its
speci�cations to instantly read and understand diagrams drawn by other people. There are UML diagram
for modeling static class relationships, dynamic temporal interactions between objects, the usages of objects,
the particulars of an implementation, and the state transitions of systems

In general, a UML diagram consists of the following features:

8This content is available online at <http://cnx.org/content/m11658/1.3/>.
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• Entities: These may be classes, objects, users or systems behaviors.
• Relationship Lines that model the relationships between entities in the system.

· Generalization � a solid line with an arrow that points to a higher abstraction of the present
item.

· Association � a solid line that represents that one entity uses another entity as part of its
behavior.

· Dependency � a dotted line with an arrowhead that shows one entity depends on the behavior
of another entity.

1.4.1 Class Diagrams

UML class diagrams model static class relationships that represent the fundamental architecture of the
system. Note that these diagrams describe the relationships between classes, not those between speci�c
objects instantiated from those classes. Thus the diagram applies to all the objects in the system.

A class diagram consists of the following features:

• Classes: These titled boxes represent the classes in the system and contain information about the
name of the class, �elds, methods and access speci�ers. Abstract roles of the class in the system can
also be indicated.

• Interfaces: These titled boxes represent interfaces in the system and contain information about the
name of the interface and its methods.

• Relationship Lines that model the relationships between classes and interfaces in the system.

· Generalization

* Inheritance: a solid line with a solid arrowhead that points from a sub-class to a superclass
or from a sub-interface to its super-interface.

* Implementation: a dotted line with a solid arrowhead that points from a class to the
interface that it implement

· Association � a solid line with an open arrowhead that represents a "has a" relationship. The
arrow points from the containing to the contained class. Associations can be one of the following
two types or not speci�ed.

* Composition: Represented by an association line with a solid diamond at the tail end. A
composition models the notion of one object "owning" another and thus being responsible
for the creation and destruction of another object.

* Aggregation: Represented by an association line with a hollow diamond at the tail end. An
aggregation models the notion that one object uses another object without "owning" it and
thus is not responsible for its creation or destruction.

· Dependency � a dotted line with an open arrowhead that shows one entity depends on the
behavior of another entity. Typical usages are to represent that one class instantiates another or
that it uses the other as an input parameter.

• Notes that are used to provide further details or explanations of particular parts of the diagram.
Notes are boxes with a little "dog-ear" on one corner.

Here is an example of a UML class diagram that holds most of the more common features:
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UML Class Diagram

Figure 1.4: The above diagram contains classes, interfaces, inheritance and implementation lines,
aggregation lines, dependency lines and notes.



Chapter 2

Polymorphism in Action

2.1 Union Design Pattern: Inheritance and Polymorphism1

Inheritance and polymorphism (discussed below) are two sides of the same coin and represent very foun-
dational concepts in object-oriented programming. The union design pattern is an expression of these
relationships and enables us to talk about them in a more tangible manner.

2.1.1 Union Design Pattern

Consider the following "is-a" or inheritance relationships between "concrete" entities Coca Cola, sulfuric
acid, milk and the "abstract" liquid (named "ALiquid" by convention since it is an abstract entity):

Union of Liquids

Figure 2.1: ALiquid is the union of CocaCola, SulfuricAcid and Milk

The UML diagram shows us that Coca Cola, sulfuric acid and milk are all liquids. Conversely, the
diagram tells us that a liquid could be either Coca Cola, sulfuric acid or milk. Note of course, that liquids
are not constrained to these 3 entities but that doesn't a�ect the discussion here�in fact, this will be an
important feature later on.

Another way that we can express the notions depicted by the diagram is to say that the abstract ALiquid
superclass represents the union of Coca Cola, sulfuric acid and milk. That is,

1This content is available online at <http://cnx.org/content/m11796/1.11/>.
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a superclass represents the union of allof its subclasses.

or in other words

a superclass represents all that is abstractly equivalent about its subclasses.

For instance, the notion of an abstract liquid embodies all the behaviors and attributes such as having no
de�nite shape, randomized atomic positions, freezing and boiling points that are common to Coca Cola,
sulphuric acid and milk. Note the �ne distinction between having a value and having the same value.

note: In general, an interface can be substituted for the abstract superclass discussed here with
no loss of generality.

The above diagram illustrating the relationship betwen a superclass and its subclasses is called theUnion
Design Pattern. The union pattern shows us inheritance in how the Coca Cola, sulfuric acid and milk
will all inherit the abstract behaviors of liquids, such as the lack of a de�nite shape and freezing/boiling
points. Conversely, it also shows that if a situation utilizes a liquid, either Coca Cola, milk or sulphuric
acid can be used as they are all abstractly equivalent as liquids. Note that this does not imply that all
three will act identically! For instance, the human throat can swallow any liquid because it is made to work
with �uids that can �ow. However, the reaction of the throat to sulphuric acid is markedly di�erent than it
reaction to milk! This ability to substitute any subclass for its superclass and get di�erent behavior is called
polymorphism.

2.1.1.1 Abstraction vs. Commonality

A subtle but extremely important point is that

Commonality does not imply abstract equivalence.

Just because a feature is common to every item in a set, does not necessarily mean that it represents some
sort of abstract feature of those elements. For instance, cats, dogs, humans, and rats are all mammals where
a mammal is de�ned as an animal that produces milk to feed its young. One could thus make a class model
where a superclass Mammal has subclasses Cat, Dog, Human and Rat. One common feature is behavior is
that cats, dogs, humans and rats all give live birth of their young. So it is tempting to say that the Mammal
class should also embody the "live birth" behavior. However, as one wanders the world discovering new
mammals, in the backwaters of Australia one �nds the duck-billed platypus2 which produces milk and is
therefore clearly a mammal. However, the duck-billed platypus also lays eggs. Thus the "live birth" behavior
does not belong in the Mammal superclass as it was only a coincidence that it was common to our initial set
of subclasses. More importantly, being able to give live birth was never part of the abstract de�nition of a
mammal and thus should never have been included in the Mammal superclass in the �rst place.

Cats, monkeys and whales, while diverse creatures, are all mammals. Hence to model such a system in
the computer, it makes sense to make Cat, Monkey and Whale all subclasses of an abstract Mammal superclass.
Each species has many behaviors (methods) but I will only concentrate on 3 in particular:

1. boolean givesMilk() : returns true if the animal can give milk to feed its young, false otherwise
2. String makeSound() : returns a String represenation of a common sound the animal makes.
3. boolean givesLiveBirth(): returns true if the animal bears live young.

In the table below are the methods and what happens when each species executes that method:

2http://www.creationscience.com/onlinebook/LifeSciences13.html
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Mammal
Method

boolean givesMilk() String makeSound() boolean

givesLiveBirth()

Cat true "Meow" true

Monkey true "Screech" true

Whale true "[whale song]" true

Table 2.1

We could start out with the following class implemenation (Mammal0.java3 ):

Model of Mammals

Figure 2.2: No common methods de�ned in the superclass.

note: Italics signify abstract methods or classes

note: return_value : method_name(parameter_type_#1 parameter_name_#1,

parameter_type_#2 parameter_name_#2, etc)

Let's start our analysis:

• A mammal is de�ned by the fact that it gives milk to feed its young. It is thus not surprising that
all the givesMilk() methods in the subclasses return true. The givesMilk() method is a prime
candidate for "hoisting" up into the Mammal superclass ("hoisting" = moving the method upwards
from the subclass to the superclass).

• makeSound() returns a di�erent value for each species, but intrisically, we expect any animal, which
includes mammals, to be able to make some sort of sound. Thus Mammals should have a makeSound()

method, but since, at the Mammals level, we don't know exactly how that sound will be made, the
method at that level must be abstract. The makeSound() method at the concrete Cat, Monkey and
Whale level however, would be concrete because each animal makes its own unique sound.

3http://cnx.org/content/m11796/latest/Mammal0.java
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• givesLiveBirth() returns exactly the same value for all of our rather diverse selection of animals
here. It seems like a �ne candidate for hoisting. Or is it....? Let's go ahead an hoist it anyway.

This is what we have so far (Mammal1.java4 ):

Model of Mammals

Figure 2.3: Abstract and common methods hoisted to the superclass.

Before we go charging ahead, let's stop for a moment and review what we've done: Cats, monkeys, and
whales do represent a wide spectrum of mammals, but remember, the abstract Mammal class is a representation
of ALL mammals, not just the ones we have so far. The correlation of like behavior with all our represented
animals does not imply its inclusion in their abstract representation!

For instance, one day, in our wanderings through Australia, we encounter a Duckbilled Platypus5 . Let's
see how it behaves with respect to our 3 methods:

Mammal
Method

boolean givesMilk() String makeSound() boolean

givesLiveBirth()

Duckbilled Platypus true "growl" false

Table 2.2

Duckbilled platypus lay eggs!!
Giving live birth is not part of the de�nition of a mammal. On the other hand, the question of whether

or not the animal gives live birth can always be asked of any animal, including all mammals. The result may
be true or false however, so the method must be abstract at the Mammal level.

Our class structure should look like this (Mammal2.java6 ):

4http://cnx.org/content/m11796/latest/Mammal0.java
5http://en.wikipedia.org/wiki/Duckbilled_platypus
6http://cnx.org/content/m11796/latest/Mammal0.java
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Model of Mammals

Figure 2.4: Properly abstracted model.

Hoisting does not guarantee proper abstraction. Hoisting should be driven by a need for abstrac-
tion, not by coincidence.

Another key notion that the union pattern emphasizes is levels of abstraction. What we see is that
the concept of a liquid is more abstract than milk. In turn, the general concept of milk is more abstract
than "2% milk" or "skim milk" which would be subclasses of milk. In general we can see that a superclass
is a distinctly higher level of abstraction than any of its subclasses. One of the key tools we use to help
us design and build high quality object-oriented systems is careful attention to the abstraction level at any
given moment.

Good OOP code always maintains a consistent level of abstraction.

Abstraction levels are links in a chain. A chain is only as strong as its weakest link. A program is only as
abstract as its lowest abstraction level.

Levels of abstraction illustrate another important aspect of an OO program. Since a superclass represents
the union of the subclasses or conversely, that the superclass can be represented by any of its subclasses,
we see that the superclass is an embodiment of all the invariant aspects of the subclasses. That is, the
superclass's de�nition is all that is abstractly equivalent about the subclasses�all that does not change from
subclass to subclass. Note that this does not imply that the values of common �elds are necesarily the
same, just that, perhaps, that the �eld exists. Not does it imply that what is common to all the subclasses
is necessarily what is abstractly equivalent about them (see the note above). The di�erences between the
subclasses is what creates the variations in how the program behaves when any given subclass is used in
place of the superclass. We call this the variant aspects of the system.

The total behavior of a program is the combination of its variant and invariant behaviors.

2.1.2 Inheritance and Polymorphism

Inheritance and polymorphism are really just two ways of looking at the same class relationship.

Inheritance is looking at the class hierarchy from the bottom up. A subclass inherits behaviors and
attributes from its superclass. A subclass automatically possesses certain behaviors and/or attributes simply
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because it is classi�ed as being a subclass of an entity that possesses those behaviors and/or attributes. That
is, a cherry can be said to automatically contain a seed because it is a subclass of Fruit and all fruit contain
seeds.

Inheritance is useful from a code reuse perspective. Any (non-private) code in the superclass does not
have to be replicated in any of the subclasses because they will automatically inherit those behaviors and
attributes. However, one must be very careful when transferring common code from the subclasses to the
superclass (a process called "hoisting"), as the proper abstraction represented by the superclass may be
broken (see note above).

Polymorphism, on the other hand, is looking at the class hierarchy from the top down. Any subclass
can be used anywhere the superclass is needed because the subclasses are all abstractly equivalent to the
superclass. Di�erent behaviors may arise because the subclasses may all have di�erent implementations
of the abstract behaviors de�ned in the superclass. For instance, all liquids have a boiling temperature.
They may have di�erent values for that boiling temperature which leads to di�erent behaviors at any given
temperature.

Polymorphism is arguably the more useful perspective in an object-oriented programming paradigm.
Polymorphism describes how an entity of a lower abstraction level can be substituted for an entity of a
higher abstraction level and in the process, change the overall behavior of the original system. This will be
the cornerstone that enables us to build OO systems that are �exible, extensible, robust and correct.

2.1.3 Exploring Polymorphism

Let's explore some di�erent ways in which polymorphism presents itself. Consider the following example of
the union design pattern:

/**

* An interface that represents an operation on two doubles

*/

public interface IBinaryOp {

double apply( double x, double y); // all interface methods are public and abstract by default

}

/**

* An IBinaryOp that adds two numbers

*/

public class AddOp implements IBinaryOp {

public double apply( double x, double y) {

return x+y;

}

}

/**

* An IBinaryOp that multiplies two numbers

*/

public class MultOp implements IBinaryOp {

public double apply( double x, double y) {

return x*y;

}

public String getDescription() {

return "MultOp is a multiplying function.";

}
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}

Exercise 2.1.1 (Solution on p. 35.)

Is the following legal code? IBinaryOp bop = new IBinaryOp();

Exercise 2.1.2 (Solution on p. 35.)

Is the following legal code? IBinaryOp bop = new AddOp();

Exercise 2.1.3 (Solution on p. 35.)

Given the above declaration and assignment of bop, is the following assignment then possible? bop

= new MultOp();

Exercise 2.1.4 (Solution on p. 35.)

Suppose we have bop = new AddOp(); , what is the result of bop.apply(5,3) ?

Exercise 2.1.5 (Solution on p. 35.)

Suppose we now say bop = new MultOp(), what is the result of bop.apply(5,3) now?

Exercise 2.1.6 (Solution on p. 35.)

Suppose we have some variable, called myOp of type IBinaryOp what is the result of
myOp.apply(5,3)?

Exercise 2.1.7 (Solution on p. 35.)

Suppose we have bop = new MultOp(), is it legal to call bop.getDescription() ?

Exercise 2.1.8 (Solution on p. 35.)

Is the following legal code? AddOp aop = new AddOp()

Exercise 2.1.9 (Solution on p. 35.)

Given the declaration in the previous exercise, is the following legal? aop = new MultOp()

Exercise 2.1.10 (Solution on p. 35.)

Suppose we have de�nitions of aop and bop from above. Is the following legal? That is, can we
compile and run the folowing statement without error? bop = aop;

Exercise 2.1.11 (Solution on p. 35.)

Is the converse legal as well? That is, using the above de�nitions, can we compile and run the
following statement? aop = bop;

2.2 Ballworld, inheritance-based7

In this module we will explore many OOP concepts by examining the program "Ballworld". Download the
code for Ballworld here8 (Link Temporarily Disabled. Please contact the authors for the code.).

7This content is available online at <http://cnx.org/content/m11806/1.8/>.
8See the �le at <http://cnx.org/content/m11806/latest/>
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UML class diagram of Ballworld

Figure 2.5: Note the union design pattern w.r.t. ABall and its subclasses.

To run Ballworld, load the �les into DrJava and right-click the BallControl �le. Select "Run Document's
Main Method" to run the program. From the command line, go to the uppermost Ballworld directory
and compile all the �les in both the directories ("javac ballworld/*.java" and "javac command/*.java") and
then run the program as such: "java ballworld.BallControl". The Make Ball button creates an instance of
whatever ABall class is typed into the text �eld on the left. The "Clear All" button clears any balls o� of
the screen.

In a nutshell, the way Ballworld works is akin to a �ip-book animation: The BallControl class contains
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a Timer that "ticks" every 50 milliseconds. Every time the timer ticks, the panel in the BallGUI upon which
the balls are to be drawn is requested to repaint itself. When the panel repaints, it also tells the Dispatcher
to notify every ABall in the system to update itself. When an ABall updates, it updates any internal
values it has (its "state") such as its color, radius, and/or velocity. It then moves its position by an amount
corresponding to its velocity and draws ("paints") itself onto the panel. Since this is happening 20 times a
second, the balls appear to be moving and/or changing and thus the animation is acheived. The ILambda

interface3 enables the BallGUI to communicate in a generic, decoupled manner to the BallControl and
the Randomizer class is a utility class that provides methods to produce various random values needed by
the system. Much of the code in Ballworld is signi�cantly more sophisticated than what has been covered
in the course so far�it will be covered soon, don't worry!

2.2.1 Abstract Classes

First, we will focus on the union design pattern between ABall, WanderBall, CurveBall and StraightBall.
In a union design pattern, we see that the superclass represents an abstraction of the union of its subclasses.
For instance, a fruit is an abstraction of speci�c concrete classes such as apple and pear. A fruit embodies
the common characteristics of its subclasses even if it doesn't completely describe the exact nature of those
characteristics. In a fruit, there is a seed. However, the notion of "fruit" doesn't specify exactly the number,
size, color or shape of its seed(s). It only speci�es that it does indeed have a seed. Likewise, a fruit has the
behavior of ripening. Apples, oranges, and bananas all ripen di�erently and at di�erent rates. The abstract
fruit notion does not specify the speci�c nature of the ripening behavior, just simply that it does have that
behavior. In such, we see that we can never have a fruit that is not a speci�c class of fruit, such as an orange
or grape.

Corresponding to the above notions, abstract classes in Java cannot be instantiated. Abstract classes are
denoted by the abstract keyword in the class de�nition:

public abstract class AFruit {...}

By convention, the classnames of abstract classes always begin with "A".
In Ballworld, ABall is an abstract class representing a circular ball that has a number of properties: a

color, a position, a velocity, etc. The abstract ball also has some de�ning behaviors, such as that all balls
should paint a �lled, colored circle when requested to display themselves on a graphics context (a panel).
Likewise all balls know how to bounce o� the walls of the container. These concrete behaviors are called
"default behaviors" because all subclasses of ABall, such as StraightBall and CurveBall, automatically
get these behaviors by default. One of the most common and useful reasons for using an abstract class is to
be able to de�ne the default behaviors for all the subclasses.

2.2.1.1 Abstract Methods

But what about the abstract behaviors that abstract classes exhibit? For instance the abstract "ripening"
behavior of a fruit? At the abstraction level of a fruit, the exact implentation of ripening cannot be speci�ed
because it varies from one concrete subclass to another. In Java, this is represented by using the keyword
abstract as part of the signature of a method which has no code body:

public abstract class AFruit {

// rest of the code

public abstract void ripen();

}

There is no code body because it cannot be speci�ed at this abstraction level. All that the above code says
is that the method does exist in all AFruit. The speci�c implmentation of method is left to the subclasses,
where the method is declared identically except for the lack of the abstract keyword:
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public class Mango extends AFruit {

// rest of code

public void ripen() {

// code to ripen a mango goes here

}

}

public class Tomato extends AFruit {

// rest of code

public void ripend() {

// code to ripen a tomato goes here

}

}

The technical term for this process is called overriding. We say that the concrete methods in the subclasses
override the abstract method in the superclass.

Note that if a class has an abstract method, the class itself must be declared abstract. This simply
because the lack of code in the abstract method means that the class connot be instantiated, or perhaps more
importantly, it says that in order for a class to represent abstract behavior, the class itse� must represent
an abstract notion.

Overriding is not limited to abstract methods. One can override any concrete method not declared with
the final keyword. We will tend to avoid this technique however, as the changing of behavior as one changes
abstraction levels leads to very unclear symantics of what the classes are actually doing.

In Ballworld we see the abstract method updateState. Abstract methods and classes are denoted in
UML diagrams by italic lettering. This method is called by the update method as part of the invariant
process of updating the condition of the ball every 50 milliseconds. The update method does 4 things:

1. Update the state of the ball by calling the abstract updateState method.
2. Move (translate) the position of the ball by adding the velocity to it.
3. Check if the ball needs to bound o� a wall.
4. Paint the ball up on the screen.

This technique of calling an abstract method from inside of a concrete method is called the template
method design pattern�which we will get to later in the course.

ABall.updateState() is abstract because at the abstraction level of ABall, one only knows that the
ball will de�nitely do something with regards to modifying (perhaps) its internal �eld values(its "state").
Each subclass will do it di�erently however. The StraightBall will do nothing in its updateState method
because a ball with a constant (unchanging) velocity will travel in a straight line. Remember, doing nothing
is doing something! The CurveBall's updateState method uses sines and cosines to turn the velocity
by a �xed (though randomly chosen) angle at every update event. You can imagine that other possible
subclassses could do things such as randomly change the velocity or change the radius of the ball or change
the color of the ball.

There is no code in the entire Ballworld system that explicitly references any of the concrete ABall

subclasses. All of the code runs at the level of abstraction of an abstract ball. The di�erences in behavior of
the various balls made on the screen using the di�erent concrete subclasses is strictly due to polymorphism.
New types of balls can be added to the system without recompiling any of the existing code. In fact, new
types of balls can be added without even stopping the Ballworld program!
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2.2.2 Abstract classes vs. Interfaces

Subclasses have a di�erent relationship between interfaces and abstract superclasses. A subclass that imple-
ments an interface is saying simply that it "acts like" that speci�ed by the interface. The class makes no
statements however about fundamentally what it actually is. An actor implements a �ercesome alien from a
distant plantet in one movie and a �ckle feline in another. But an actor is actually neither. Just because the
actor protrayed a interplanetary alien, doesn't mean that the actor fundamentally possessed all the abilities
of such an alien. All it says is that in so far the context in which the actor was utilized as the alien, the
actor did implement all the necessary behaviors of the alien.

A subclass is fundamentally an example of its superclass. A subclass automatically contains all the
behaviors of its superclass because it fundamentally is the superclass. The subclass doesn't have to implement
the behaviors of its superclass, it already has them. An actor is a human and by that right, automatically
possesses all that which makes a human: one head, two arms, 10 toes, etc. Note that this is true even if the
abstract class has 100% abstract methods�it still enforces a strict taxonomical hierarchy.

implements is about behaving, extends is about being.

2.2.3 Variant vs. Invariant Behaviors

A crucial observation is that the the Ballworld code that manages the GUI (BallGUI) and the ball man-
agement (BallControl, Dispatcher, etc.) only deal with the abstract ball, ABall. That is, they represent
invariant behavior at the abstract ball level. The display, creation and managment of the balls is indepen-
dent of the particular kinds of concrete balls that is being handled. The main Ballworld framework can thus
handle any type of ABall, past, present and future.

StraightBall, CurveBall and WanderBall are thus concrete variants of ABall. They represent the
variant behaviors of the system. Other than in their constructors (which will prove to be a signi�cant
point when this inheritance-based model is compared to a more advanced composition-based model), these
concrete subclasses only code the abstract variant behavior associated with a ball, namely the updateState
method. Inheritance gives any instantiation of these classes both the invariant behaviors from the ABall

superclass plus the variant behaviors from the subclass.
The Ballworld code demonstrates the importance of the concept of separation of variant and invariant

behaviors.

Clearly and cleanly separating the variant and invariant behaviors in a program is crucial for
achieving �exible, extensible, robust and correct program execution.

Where and how to separate the variant and invariant behaviors is arguably the most important design
consideration made in writing god software.

2.2.4 Java Syntax Issues

2.2.4.1 Packages

Packages are way that Java organizes related classes together. Packages are simply directories that contain
the related code �les. Each class �le in a package directory should have the line package XXX; at its top,
where the XXX matches with the directory. name. If neither public nor private (nor protected � i.e. a
blank speci�er) is used to specify the visibility level of a class or method, then that method can be seen by
other members of the package but not by those outside of the package. To use the public classes in a package,
the import myPackage.*; syntax is used. This tells the Java compiler to allow all the public classes in the
myPackage directory. Packages can be nested, though each level must be imported separately.
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2.2.4.2 Static �elds and methods

Static �elds and methods, denoted by the static keyword in their declarations, are �elds and methods that
can be accessed at a class level, not just an object level. In general these are values or behaviors that one
wishes for all instances of a class to have access to. These values and behaviors are necessarily independent
of the state of any particular instance. Static �elds and methods are often referred to as "class variables"
and "class methods".

An examples of a class variables are Math.PI and Color.BLUE or Color.RED. These are universal values
associated with math and color respectively and thus do not need an object instance to be viable. By
convention, all static �eld names are in all capitol letters. A static �eld is referenced simply by writing the
class name followied by a period and then by the �eld name. No instantiations are necessary.

The Randomizer class contains numerous static methods. This is because each of the methods to produce
various random values is independent of each other and that the process in each method does not a�ect nor
is a�ected by the state of the rest of the class. Essentially, this entails that the class contain no non-static
�elds. A class as such is referred to as being "stateless". Just like a static �eld, a static method is invoked
in the same manner as the static �elds: ClassName.staticMethodName(...) Classes with static methods
are usually utility classes that are used to hold a set of related functional processes, e.g. Randomizer holds
a collection of random value generators. Likewise, Math holds a combination of static values, such as PI

and static methods such as sin() and cos().
There is one very special static method with the following exact signature:

public static void main(String[] args)

This method, found in BallControl, is the method that Java uses to start programs up. Since OO programs
are systems of interacting objects, this static "main" method is used to create the �rst object(s) and get the
program up and running. So when Java starts a program, it looks for this and only this method.

2.2.4.3 Calling methods of the superclass

When concrete methods or the constructor of a superclass are overriden, sometimes it is necessary or desirable
to call the original superclass behavior from the subclass. A common reason for this is that the subclass's
behavior is simple an addition to the superclass behavior. One does not want to replicate the superclass
code, so a call to the superclass's original methods is required at some point in the subclasses overriding
method. To accomplish this, Java uses the super keyword. super refers to the superclass instance, just
as this refers to the class instance itself (the subclass here). Note that technically, super and this are
the same object � think of it as the di�erence between the id and the ego. (Does that mean that a coding
mistake wiith respect to super and this is a Freudian slip?)

Suppose the superclass has a method called myMethod() which the subclass overides. For the subclass
to call the superclass's myMethod, it simply needs to say super.myMethod(). Contrast this to the subclass
calling its own myMethod: this.myMethod() (note: Java syntax rules allow for the this to be omitted).

To make a call to the superclass's constructor the subclass simply says super(...), supplying wahtever
parameters the superclass constructor requires. This is a very common scenario as the the subclass almost
always needs to superclass to initialize itself before it can perform any additional initializations. Thus the
super(...) call must be the �rst line in the subclass's constructor. If the no-parameter constructor of the
superclass is required, the call to super can be omitted as it will be automatically performed by the Java
run-time engine. This of course presumes that the superclass's no-parameter constructor exists, which it
does not if a parameterized constructor has been declared without explicitly declaring the no-parameter
constructor.
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2.3 Ballworld, composition-based9

In this module we will explore what is gained by modifying the inheritance-based Ballworld system (Sec-
tion 2.2) into a composition-based system.

In the inheritance-based Ballworld system, we were able to generate quite a bit of �exibility and extensi-
bility. For instance, we could develop new kinds of balls and add them into the system without recompiling
the rest of the code. This was accomplished by having the invariant ball creation and management code deal
only with the abstract ball while the variant behaviors were encapsulated into the concrete subclasses.

2.3.1 The Problem with Inheritance

Inheritance seems to work quite well, but suppose we want to do more than just put di�erent kinds of balls
on the screen? What if we wanted to be able to change how a ball behaves, after it has been created? What
if we want create balls that do a multiple of di�erent behaviors, such as change color and radius? While
working solutions using an inheritance-based system do exist, they are cumbersome, ine�cient and most
importantly, inconsistent with any sort of clear abstract model of what balls should be like.

The problem lies in the very nature of inheritance. When we attempted to separate the variant from the
invariant behaviors, we overlooked a crucial aspect of inheritance. In our model, the superclass represented
the invariant behaviors of a ball while the subclasses represented the variant behaviors. The separation
seemed clear enough in the UML diagram, except that when one has an actual object instance, both the
superclass and subclass behaviors are bound into a single entity. A ball object cannot change its variant
updateState behavior because it is inextricably bound with to the invariant behaviors. A ball object cannot
be composed of multiple updateState behaviors because that code cannot be isolated from the rest of the
ball's code. If you want a curving behavior, you have to get it packaged in a whole ball object�you can't get
just the behavior.

A clear sympton of this problem is the common code to call the superclass constructor found in all the
subclasses' constructors. This tells us that the superclass is really right there in the subclass with everything
else. The fact that the code is repeated from class to class says that it is invariant code in the middle of
what we want to be variant code.

The inheritance-based model of Ballworld does not separate the variant and the invariant at the
proper place. There is invariant code mixed together with the variant code.

That's why they can't be separated and the invariant behaviors are dragged along with the variant behaviors.
This is what makes dynamically changing behaviors and multiply composed behaviors so di�cult in this
system.

2.3.2 Pizzas and Shapes

To understand what we can do to remedy the problems with our inheritance-based model, let's digress for
a bit and consider a simple model of pizzas. Here, we have a pizza which has a price and has a shape. A
shape, be it a circle, square, rectangle of triangle, is capable of determining its own area. A pizza, when
requested to calculate its price per square inch, simply takes its price and divides it by the area of its shape.
To obtain that area, the Pizza delegates to the IShape, since it is the shape that knows how to calculate
its area, not the pizza.

9This content is available online at <http://cnx.org/content/m11816/1.6/>.
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Pizzas and Shapes

Figure 2.6: A pizza has-a shape, which is able to calculate its area.

Delegation is the handing of a calculation o� to another object for it process. Here, the pizza is only
interested in the result of the area calculation, not how it is performed.

To the pizza, the shape represents an abstract algorithm to calculate the area.

The Pizza and the IShape classes represent the invariant processes involved with calculating the price
per square inch ration, while the concrete Circle, Square, Triangle and Rectangle classes represent the
variant area calculations for di�erent shapes. What wee see from this example is that

objects can be used to represent pure behavior, not just tangible entities.

Interfaces are particularly useful here as they are expressly designed to represent pure, abstract behavior.

2.3.3 From Inheritance to Composition

Coming back to Ballworld, we see that the updateState method in ABall is an abstract algorithm to
update the state of the ball. So, just as in the pizza example, we can represent this algorithm, and just
this algorithm, as an object. We can say that a ball has an algorithm to update its state. Another wa
of saying this is to say that the ball has a strategy to update its state. We can represent this by using
composition. Instead of having an abstract method to update the state, we model a ball as having a reference
to an IUpdateStrategy object. The code for update thus becomes

public void update(Observable o, Object g)

{

_strategy.updateState(this); // update this ball's state using the strategy
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location.translate (velocity.x, velocity.y); // move the ball

bounce(); // bounce the ball off the wall if necessary

paint((Graphics) g); // paint the ball onto the container

}

The ball hands a reference to itself, this, to the strategy so that the strategy knows which ball to update.
The variant updating behaviors are now represented by concrete implementations of the IUpdateStrategy
interface.

Composition-based Ballworld

Figure 2.7: Ball is now a concrete class and its subclasses have been eliminated in favor of being
composed with an abstract strategy.

(Note that the Randomizer class has been redesigned to eliminate its static methods. One new method
has been added as well.)

There are a number of very important points to notice about this new formulation:

• The modi�ed ABall class now contains 100% concrete code and thus should not be abstract anymore.

· ABall has been renamed to simply Ball.
· Accessor methods for the strategy (getStrategy and setStrategy) have been added.
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· The Ball class is still 100% invariant code.

• The CurveBall, StraightBall, etc. subclasses are no longer needed as their variant behaviors have
been moved to the IUpdateStrategy subclasses.

· E�ectively what has happened is that the updateState method has been moved from the ABall
subclasses and embodied into their own classes.

· The IUpdateStrategy subclasses do not inherit anything from Ball, hence they do not contain
any invariant code.

· The strategies are thus 100% variant code.

• The reference to the ball during the updating process has gone from a peristent communication link
(implicitly, this), to a transient communication link (host).

• This composition-based model divides the code exactly between the variant and invariant behaviors�
this is the key to the power and �exibility it generates.

This new composition-based model of Ballworld is an example of the Strategy Design Pattern10 . The
strategy design pattern allows us to isolate variant behaviors on a much �ner level than simple inheritance
models.

2.3.3.1 Composing Behaviors

So far, all of our redesigning has resulted in a system that behaves exactly as it did when we started. But
what one �nds very often in developing systems is that in order to make two steps forward, one must �rst
make one step backwards in order to fundmentally change the direction in which they are going. So, even
though it looks like our system has not progressed because it still does exactly the same thing, we are indeed
in a very di�erent position, architecturally. By freeing the variant behaviors from the invariant ones, we
have generated a tremendous amount of �exibility.

2.3.3.1.1 Balls that change their strategies

Let's consider a the notion of a ball that changes its behavior. Since we have modeled a ball as having a
strategy, we can simply say that in some manner, it is the ball's strategy that changes. We could say that
the ball changes its strategy, but since the ball doesn't know which strategy it has to begin with, it really
doesn't know one strategy from another. One could argue that it therefore can't know when or if it should
ever change its strategy. Therefore, the ball cannot be coded to change its own strategy! So, whose baliwick
is the changing of the strategy?

Since the changing of a strategy is a strategy for updating the ball, it is the strategy that determines the
change. The strategy changes the strategy! Let's consider the following strategy:

package ballworld;

import java.awt.*;

public class Change1Strategy implements IUpdateStrategy {

private int i = 500; // initial value for i

public void updateState(Ball context) {

if(i==0) context.setStrategy(new CurveStrategy()); // change strategy if i reaches zero

else i--; // not yet zero, so decrement i

}

}

10http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/StrategyPattern.htm
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This strategy acts just like a StraightStrategy for 500 updates and then it tells the ball (its context)
to switch to a CurveStrategy. Once the CurveStrategy is installed, the ball becomes curving, without
the need for any sort of conditionals to decide what it should do. The context ball fundamentally and
permanently becomes curving.

Exercise 2.3.1 (Solution on p. 35.)

What would happen if you had two strategies like the one above, but instead of replacing themselves
with CurveStrategy's , they instead instantiated each other?

A key notion above is that a strategy can contain another strategy. In the above example, the
Change1Strategy could have easily pre-instantiated the CurveStrategy and saved it in a �eld for use
when it was needed. But the does it matter exactly which concrete strategy is being used? If not, why
not work at a higher abstraction level and let one strategy hold a reference to an abstract strategy? For
instance, consider the following code:

package ballworld;

import java.awt.*;

public class SwitcherStrategy implements IUpdateStrategy {

private IUpdateStrategy _strategy = new StraightStrategy();

public void updateState(Ball context) {

_strategy.updateState(context);

}

public void setStrategy(IUpdateStrategy newStrategy) {

_strategy = newStrategy;

}

}

This strategy doesn't look like it does much, but looks are deceiving. All the SwitcherStrategy does is to
delegate the updateState method to the _strategy that it holds. This does not seem much in of itself,
but consider the fact that the SwitcherStrategy also has a settor method for _strategy. This means
that the strategy held can be changed at run time! More importantly, suppose a ball is instantiated with
a SwitcherStrategy. The behavior of the ball would be that of whatever strategy is being held by the
SwitcherStrategy since the switcher just delegates to the held strategy. If one were to have a reference to
that SwitcherStrategy instance from somewhere else, one could then change the internal strategy. The ball
is none the wiser because all it has is a reference to the SwitcherStrategy instance, which hasn't changed
at all! However, since the held strategy is now di�erent, the ball's behavior has completely changed! This
is an example of the Decorator Design Pattern11 , where the SwitcherStrategy class is formally called the
decorator and the held strategy is formally called the decoree. In theoretical terms, the decorator is what
is known as an indirection layer, which is like a bu�er between two enities that enables them to depend
on each other but yet still be free to move and change with respect to each other. A very useful analogy
for indirection layers is like the thin layer of oil that will enable two sheets of metal to slide easily past each
other.

2.3.3.1.2 Balls with multiple, composite behaviors

Now that we can dynamically change a ball's behavior, let's tackle another problem:

11http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/DecoratorPattern.htm
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Exercise 2.3.2 (Solution on p. 35.)

How can we have balls with multiple behaviors but yet not duplicate code for each one of those
behaviors?

Let's start with a very straightforward solution:

package ballworld;

import java.awt.*;

public class DoubleStrategy implements IUpdateStrategy {

private IUpdateStrategy _s1 = new CurveStrategy();

private IUpdateStrategy _s2 = new BreathingStrategy();

public void updateState(Ball context) {

_s1.updateState(context);

_s2.updateState(context);

}

}

Ta da! No problem. The DoubleStrategy simply holds two strategies and delegates to each of them in turn
when asked to updateState. So why stop here?

package ballworld;

import java.awt.*;

public class TripleStrategy implements IUpdateStrategy {

private IUpdateStrategy _s1 = new CurveStrategy();

private IUpdateStrategy _s2 = new BreathingStrategy();

private IUpdateStrategy _s3 = new BreathingStrategy();

public void updateState(Ball context) {

_s1.updateState(context);

_s2.updateState(context);

_s3.updateState(context);

}

}

We're on a roll now! We could go on and on, making as complex a strategy as we'd like, making a new
class for each combination we want. But somewhere around the 439'th combination, we get mightly tired of
writing classes. Isn't there an easier way?

Abstraction is the key here. We want to write code that represents that abstraction of multiple, composite
strategies. Does what we were doing above depend on the particular concrete strategies that we were using?
No? Then we should eliminate the concrete classes, raise the abstraction level and use the abstract superclass
(interface) instead. For a combination of two behaviors, we end up with the following:

package ballworld;

import java.awt.*;

public class MultiStrategy implements IUpdateStrategy {
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private IUpdateStrategy _s1;

private IUpdateStrategy _s2;

public MultiStrategy(IUpdateStrategy s1, IUpdateStrategy s2) {

_s1 = s1;

_s2 = s2;

}

public void updateState(Ball context) {

_s1.updateState(context);

_s2.updateState(context);

}

}

Notice how we have added a constructor that enables us to initialize the two abstract strategy �elds. All we
have to do is to construct a MultiStrategy object with the two desired strategies, and we're good to go!

Exercise 2.3.3 (Solution on p. 35.)

So if we want three behaviors, all we have to do is to make the same sort of thing but with 3
abstract strategy �elds, right?

Thus, with just a Multistrategy we are capable of composing arbitrarily complex behaviors!

2.3.3.1.3 Composite Patterns

So what have we wrought here? Let's take a look at the UML diagram of our to most abstract strategies.

SwitcherStrategy and MultiStrategy

Figure 2.8: Note that the subclasses hold references to their own superclasses!

The key to the power that lies in the SwitcherStrategy and the MultiStrategy lies in the fact that
they hold references to their own superclass, IUpdateStrategy. This is what enables them to be create
any behavior they want, including combinations of behaviors and dynamic modi�cations of behaviors. This
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self-referential class structure is known as the Composite Design Pattern12 (The Decorator pattern can be
considered to be specialized form of the Composite pattern). The massive power, �exibility and extensiblility
that this pattern generates warrants further, more formal study, which is where we're heading next. Stay
tuned!

12http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/composite.htm
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Solutions to Exercises in Chapter 2

Solution to Exercise 2.1.1 (p. 21)
No, it won't compile. IBinaryOp is an interface and does not specify any actual executable code, so it
cannot be instantiated.
Solution to Exercise 2.1.2 (p. 21)
Yes! AddOp is an concrete class and can be instantiated. AddOp is an IBinaryOp (technically, AddOp

implements the IBinaryOpinterface), so bop can reference it.
Solution to Exercise 2.1.3 (p. 21)
Yes, for the same reasons as the previous exercise! MultOp is an concrete class and can be instantiated.
MultOp is an IBinaryOp, so bop can reference it.
Solution to Exercise 2.1.4 (p. 21)
The result is 8 because bop refers to an AddOp instance, whose apply method adds its two input values.
Solution to Exercise 2.1.5 (p. 21)
The result is 15 because bop now refers to an MultOp instance, whose apply method multiplies its two input
values.
Solution to Exercise 2.1.6 (p. 21)
It is impossible to tell because it depends on the exact type of the object instance to which myOp refers.
Solution to Exercise 2.1.7 (p. 21)
No, because bop is a variable of type IBinaryOp , which is not de�ned as having a getDescription

method. This is true even if bop references an object of type MultOp. This is because the static typing
of bop tells the compiler that it references an IBinaryOp, not the particular concrete type of the object
it currently references. If we had MultOp mop = new MultOp(), then mop.getDescription() is perfectly
legal.
Solution to Exercise 2.1.8 (p. 21)
Yes, because aop is a variable of type AddOp, and thus can reference an instance of the same type.
Solution to Exercise 2.1.9 (p. 21)
No, because aop is a variable of type AddOp , and MultIOp is not an AddOp, so aop cannot reference an
instance of MultOp.
Solution to Exercise 2.1.10 (p. 21)
Yes! bop is a variable of type IBinaryOp, and aop is de�ned as referencing an AddOp object, which is an
IBinaryOp .
Solution to Exercise 2.1.11 (p. 21)
Not as written, because bop is a variable of type IBinaryOp (i.e. staticly typed as such), which and does
not necessarily reference an object of type AddOp. to which aop must reference. That is, a variable of the
type of the superclas can always reference an object of the type of any subclass, but a variable of the type
of a particular subclass cannot necessarily reference something of the type of its superclass. Another way
of saying this is that a superset contains its subsets but not the other way around. The above assignment
will cause a compile time error because the compiler cannot know if the assignment is possible. An explicit
cast is required to supress the compile time error (aop = (AddOp) bop), but may trigger a run-time error if
indeed the instance referred to by bop is not of type AddOp.
Solution to Exercise 2.3.1 (p. 31)
Try it!
Solution to Exercise 2.3.2 (p. 31)
Use the same techniques as before: strategies that hold strategies.
Solution to Exercise 2.3.3 (p. 33)
But isn't a MultiStrategy an IUpdateStrategy iteself? That is, since a MultiStrategy holds

IUpdateStrategy's, couldn't a Multistrategy hold a Multistrategy , which is holding a Multistrategy

(or two) which is hold a Multistrategy , which is holding.....?
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Chapter 3

Immutable List Structure

3.1 List Structure and the Composite Design Pattern1

3.1.1 Going Shopping

Before I go to the groceries store, I make a list of what I want to buy. Note how I build my shopping list: I
start with a blank sheet of paper then I add one item at a time.

When I get to the store, I start buying things by going down my list. For each item I buy, I mark it o�
the list.

After I am done shopping, I go to the cashier and check out my items.
The cashier scans my items one item at a time. Each time, the cash register prints one line showing the

item just scanned together with its price. Again, note how the cash register builds the list: it start with a
blank sheet of paper and then add one item at a time. After all items have been scanned, the cashier press
a key and "poof", the cash register prints a subtotal, then a tax amount for all the taxable items, then a
total amount, and �nally a total number of items bought.

At di�erent store, the cash register not only prints out all of the above, but also a total amount of
"savings" due to the fact that I have a "member-plus" card. Some other stores don't care to print the total
number of items bought at all. Whatever the store, wherever I go, I see "lists" and "list processing" all over.

The check out cash register uses a program to enter the items and print the receipt. At the heart of
the program is a container structure to hold data (data structure) and a few algorithms to manipulate the
structure and the data it holds. The simplest way to organize data is to structure them in a linear fashion;
that is, intuitively, if we can get hold of one data element, then there is exactly one way to get to the next
element, if any. We call this linear organization of data the list structure. In order to write program to
process lists, it is necessary to de�ne what lists are and express their de�nitions in terms of code.

3.1.2 What is a list?

Analogous to the notion of a shape, a list is an abstract notion. Recall how I built my list of groceries items?
I started with a blank list: an empty list! The empty set!

An empty list is a list that has no element.

It is obvious that there are non-empty lists. But what do we mean by a non-empty list? How can we
articulate such an obvious notion? Consider for example the following list consisting of three elements.

• milk
• bread

1This content is available online at <http://cnx.org/content/m15111/1.1/>.
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• butter

In the above, we organize the items in a linear fashion with milk being the �rst element, bread being the next
element following milk and butter being the next element following bread. Is there any item that follows
butter?

Is

• bread
• butter

a list?
Is

• butter

a list?
Is there a list that follows butter in the above?

A non-empty list is a list that has an element called �rst and a list called rest.

Note that in the above formulation, the rest of a list is itself a list! The de�nition of a list is an example
of what we call a recursive de�nition: the list contains a substructure that is isomorphic to itself.

3.1.3 List Design and the Composite Design Pattern

The UML diagram below captures the recursive data de�nition of the list data structure.
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UML diagram of a list

Figure 3.1: A list can be represented using the composite design pattern

This de�nition translates into Java code as follows.

/** * Represents the abstract list structure. */ public interface IList { }

/**

* Represents empty lists.

*/

public class MTList implements IList {

}

/**

* Represents non-empty lists.

*/

public class NEList implements IList {

private Object _first;

private IList _rest;

}
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Table 3.1

The above is an example of what is called the composite design pattern. The composite pattern is a
structural pattern that prescribes how to build a container object that is composed of other objects whose
structures are isomorphic to that of the container itself. In this pattern, the container is called a composite.
In the above, IList is called the abstract component, MTList is called the basic component and NEList is
called the composite. The composite design pattern embodies the concept of recursion, one of the most
powerful thinking tool in computing. (There is a subject in theoretical computer science and mathematics
called "recursive function theory," which studies the meaning of what computing means and in e�ect de�nes
in the most abstract form what a computer is and what it can and cannot do.)

3.1.4 List Creation

Now that we have de�ned what a list is, we ask ourselves how we can process it? What can we do with a
list? The above code makes it clear that there is not a whole lot we can do with a list besides instantiating
a bunch of MTList objects via the call new MTList() (why?). Now that we are using the full Java language,
we need to write a constructor for NEList in order to instantiate non-empty list objects with appropriate
�rst and rest. The Java code for NEList now looks as follows (note how the comments are written).

/**

* Represents non-empty lists.

*/

public class NEList implements IList {

private Object _first;

private IList _rest;

/**

* Initializes this NEList to a given first and a given rest.

* @param f the first element of this NEList.

* @param r the rest of this NEList.

*/

public NEList(Object f, IList r) {

_first = f;

_rest = r;

}

}

The list structure as coded in the above is completely encapsulated, that is, all internal components (if
any) of a list are private and cannot be accessed by any external code. Using the appropriate constructors,
we can make a bunch of lists to store data but we cannot retrieve data nor do anything with these lists. In
Object-Oriented Programming (OOP) parlance, the list is said to have no behavior at all. As such they are
of no use to us.

3.1.5 List Processing

In order to perform any meaningful list processing at all, we need to program more "intelligence" into the list
structure by adding appropriate methods to the list to provide the desired behaviors. So instead of asking
what we can do with a list, the right question to ask in OOP is "what can a list do for us?" Let us start by
presenting a few simple tasks that we want a list to perform and try to �gure out how an "intelligent" list
would carry out such tasks via some role acting.
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3.1.5.1 In class role-acting exercises:

• Compute the length of a list.
• Compute the sum of a list that holds integers.

3.2 List Structure and the Interpreter Design Pattern2

3.2.1 List Processing

In the previous lecture, we de�ne what a list is and implement it using the composite design pattern. This list
structure is fully encapsulated and does not expose any of its internal components. In order to manipulate
such a list without having to make public its internals, we need to add methods to the structure. This lecture
discusses the structure of the algorithms on the list.

3.2.1.1 What can a list do?

3.2.1.1.1 Length of a list

Suppose we are given a list L and asked to �nd out how many elements it has. What should we do? The
temptation here is to start thinking about "traversing" the list and keep a count as we go along, and when
we encounter the "end" of the list, the count should be the number of elements in the list. But how do we
know that that's the right answer? In order to determine whether or not the result obtained by counting as
one traverses the list from beginning to end is correct, we have to de�ne what it means to be the number of
elements in the list. The number of elements in a list is an abstract notion, isn't it? In order to de�ne such
a quantity, we need to go back to the de�nition of what a list is.

• A list is an abstract notion of a container structure.
• An empty list is a list that has no element
• A non-empty list is a list that has an element called �rst and a list called rest.

To de�ne the notion of the number of elements in a list, we need to de�ne what we mean by the number of
elements in an empty list and what we mean by the number of elements in a non-empty list.

• The number of elements in a list is an abstract notion because the list is an abstract notion.
• The number of elements of an empty list is 0.
• The number of elements in a non-empty list that contains �rst and rest is 1 plus the number of elements

in rest.

The de�nition of the number of elements in a list is thus recursive. The recursive characteristic of this
de�nition arises naturally from the recursive characteristic of the list structure. What ever approach we use
to compute the number of elements in a list, in order to prove correctness, we must show that the result
satis�es the above de�nition.

Here is the code for the above computation.

2This content is available online at <http://cnx.org/content/m15110/1.1/>.
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package listFW; /** * Represents the abstract list structure. */ public interface

IList { /** * Abstract notion of the number of elements in this IList. */ public int

getLength(); }

package listFW;

/**

* Represents empty lists.

*/

public class MTList implements IList {

/**

* The number of elements in an empty list is zero.

*/

public int getLength() {

return 0;

}

}

package listFW;

/**

* Represents non-empty lists.

*/

public class NEList implements IList {

private Object _first;

private IList _rest;

// Constructor ommitted.

/**

* The number of elements in a non-empty list is

* the number of elements of its rest plus 1.

*/

public int getLength() {

return 1 + _rest.getLength();

}

}

continued on next page
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Table 3.2

The above coding pattern is an example of what is called the interpreter design pattern: we are inter-
preting the abstract behavior of a class (or interface) in each of the concrete subclasses (or implementations).
The composite pattern is a pattern to express the structure of a system, while the interpreter pattern is used
to express the behaviors (i.e. methods) of the system. The interpreter pattern is usually applied to coding
methods in a composite structure. In a later lecture, we shall see another way of expressing the behavior of
a composite structure without having to add new methods and interpret them.

3.2.1.2 Code Template

Whenever we want the IList to perform a task, we add a method to IList and write appropriate concrete
implementations in MTList and NEList. The following table illustrates the code template for writing the
concrete code in MTList and NEList.

interface IList

public abstract returnType methodName(parameter list); // returnType may be 'void'

MTList

// no data

NEList

Object _first;

IList _rest;

public returnType methodName(parameter list) {

/*

This is in general the base case of a recursive call.

Write the (non-recursive) code to solve the problem.

*/

}

public returnType methodName(parameter list) {

/*

This is in general a recursive method.

The code here can refer to _first and _rest, and all the methods in NEList

When referencing _rest, one usually makes the recursive call:

_rest.methodName(appropriate parameters).

*/

}

continued on next page
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Table 3.3

3.2.1.2.1 In Class Exercises (Role-Acting)

• Find a number in a list and return "Found it!" if the number is in the list otherwise return "Not found!"
• Append a list B to a given list A and return a new list consisting of A and B concatenated together.

3.3 Recursion3

3.3.1 Recursive Data Structures

A recursive data structure is an object or class that contains an abstraction of itself.

In mathematical terms, we say that the object is "isomorphic" to itself. The basic embodiment of a
recursive data structure is the Composite Design pattern4 . Recursive data structures enable us to represent
repetitive abstract patterns. In such, they enable us to generate or represent complexity from simplicity.

Characteristics of a recursive data structure:

• Abstract representation : Since the actual total structure of the data is not known until run-time,
the data must be represented by an abstraction, such as an abstract class or interface.

• Base case(s) : These represent the "end" of the pattern. They are the termination point(s) of the
data structure.

• Inductive case(s) : These represent the on-going, "interior" portion of the repetitive pattern. They
embody the ability to represent the data structure as a a simple connection between abstractly equiv-
alent entities.

Recursive data structures are arguably the most important data structure in computer science as they are
able to represent arbitrarily complex data. Indeed, if one looks across all the sciences, one sees that one of
the fundamental modeling tools used is to attempt to

3.3.2 Recursive Algorithms

In order to process a recursive data structure, it makes sense that any such algorithm should re�ect the
recursive nature of the data structure:

A recursive algorithm is a process that accomplishes its task, in part, by calling an abstraction
of itself

Recursion is thus a special case of delegation.
In light of the above de�nition, it is not surprising that recursive algorithms and recursive data structures

share common characteristics:
Characteristics of a recursive algorithm:

• Abstract representation : Since the actual total process needed to process the recursive dataas-
tructure of the data is not known until run-time, the algorithm must be represented by an abstraction,
such as an abstract method (this is not the only way).

• Base case(s) : These represent the "end" of the algorithm. They are the termination point(s) of the
algorithm.

3This content is available online at <http://cnx.org/content/m17306/1.2/>.
4http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/composite.htm
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• Inductive case(s) : These represent the on-going, "interior" portion of the algorithm. They embody
the ability to process the recursive data structure by calling the same abstract process on the composed
elements of the structure.

The similarity between recursive algorithms and recursive data structures is because in an OO system, the
structure drives the algorithm. That is, it is the form of the data structure that determines the form
if the algorithm. In an OO system, objects are asked to perform algorithms as they pertain to that object�
that is, an algorithm on an object is a method of that object. The data has the behavior. The data
is intelligent. This is in contrast to procedural or functional programming, where data is handed to the
behavior. That is, stand-alone functions are used to process non-intelligent data. (Caveat: With all that
said, in more advanced designs, we will show the algorithm can be decoupled from its data structure and
thus be removed as a method of the data. This will not change the above principles however.)

The basic notions of creating a recursive algorithm on a composite design pattern structure are

• The abstract superclass or interface of the data structure has the invariant abstract behavior of being
able to perform the algorithm (and thus the computations associated with it).

• Each concrete subclass has its own implementation of that abstract behavior, which is just the variant
part of the algorithm that pertains to that particular subclass.

This is the Interpreter Design pattern.5 Notice that no checks of the type of data being processed (e.g. base
case or inductive case) are necessary. Each data object knows intrinsically what it is and thus what it should
do. This is called "polymorphic dispatching" when an abstract method is called on an abstract data object,
resulting in a particular concrete behavior corresponding to the concrete object used. In other words, we
call a method on a list, but get the behavior of an empty list if that what the list is, or we get the behavior
of a non-empty list if that is what the list is.

In order to prove that a recursive algorithm will eventually complete, one must show that every time
the recursive call is made, the "problem" is getting "smaller". The "problem" is usually the set of possible
objects that the recursive call could be called upon. For instance, when recursively processing a list, every
call to the rest of the list is calling on a list that is getting progessively shorter. At times, one cannot prove
that the problem is de�nitely getting smaller. This does not mean that the algorithm will never end, it just
means that there is a non-zero probability that it will go on forever.

One of the key aspects of a recursive algorithm is that in the inductive case, the inductive method makes
the recursive call to another object's method. But in doing so, it has to wait for the called method to return
with the needed result. This method that is waiting for the recursive call to return is called a "pending
operation". For instance, at the time the empty list (base case) is reached during a recursive algorithm on
a list, every non-empty node in that list has a pending operation.

Example 3.1: Animated Recursion Demo
Below is an example of generally what is happening in four linked objects during the call to the
recursive method of the �rst object:

This media object is a Flash object. Please view or download it at
<recursion_demo.swf>

3.3.3 Tail Recursion

Consider the problem of �nding the last element in a list. Again we need to interpret what it means to be
the last element of (a) the empty list and (b) a non-empty list.

• Last element of the empty list: the empty list has no element; so there is no such thing as the last
element for the empty list. How do we represent the non-existence of an object? For now, we use a

5"Interpreter Design Pettern" <http://cnx.org/content/m16877/latest/>
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key word in Java called null. null is a special value in Java that can be assigned to any variable of
Object type to signify that the variable is not referencing any Object at all.

• Last element of a non-empty list with �rst and rest: it all depends on rest! rest has the capability to
tell whether or not �rst is the last element of the current list. When rest is empty, then �rst is the last
element. When rest is not empty, the �rst is certainly not the last element. rest has its own �st in this
case, and it's up to the rest of rest to determine whether or not this new �rst is the last element! It's
recursion again, isn't it?

To recapitulate, here is how a list can �nd its own last element.

• empty list case: return null or throw an exception to signify there is no such element.
• non-empty list case: pass �rst to rest and ask rest for help to �nd the last element.

How does rest use the �rst element of the enclosing list to help �nd the last element of the enclosing list?

• empty list case: the �rst element of the enclosing list is the last element.
• non-empty list case: recur! Pass its own �rst to its rest to help �nd the last element.

Here is the code.
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/** * Represents the abstract list structure. */ public interface IList { /** * Returns

the last element in this IList. */ Object getLast(); /** * Given the first of the

preceding list, returns the last element of the preceding list. * @param acc the first

of the preceding list. */ Object getLastHelp(Object acc); }

/**

* Represents empty lists.

*/

public class MTList implements IList {

// Singleton Pattern

public static final MTList Singleton = new MTList();

private MTList() {

}

/**

* Returns null to signify there is no last element in the empty list.

*/

public Object getLast() {

return null;

}

/**

* Returns acc, because being the first element of the preceding list,

* it is the last element.

*/

public Object getLastHelp(Object acc) {

return acc;

}

}

/**

* Represents non-empty lists.

*/

public class NEList implements IList {

private Object _first;

private IList _rest;

public NEList(Object f, IList r) {

_first = f;

_rest = r;

}

/**

* Passes first to rest and asks for help to find the last element.

*/

public Object getLast() {

return _rest.getLastHelp(_first);

}

/**

* Passes first to rest and asks for help to find the last element.

*/

public Object getLastHelp(Object acc) {

return _rest.getLastHelp(_first);

}

}

Table 3.4

The above algorithm to compute the last element of a list is another example of forward accumulation.
Note that in the above, getLast is not recursive while getLastHelp is recursive. Also note that for the
NEList, the last computation in getLastHelp is a recursive call to getLastHelp on _rest. There is no other
computation after the recursive call returns. This kind of recursion is called tail recursion. Tail recursion
is important for program performance. A smart compiler can recognize tail recursion and generate code that
speeds up the computation by bypassing unnecessary setup code each time a recursive call is made.

.
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3.4 Visitor Design Pattern6

3.4.1 1. Decoupling Algorithms from Data Structures

Recall the current formulation of the immutable list structure using the composite pattern.

Figure 3.2

Each time we want to compute something new, we apply the interpreter pattern add appropriate methods
to IList and implement those methods in MTList and NEList. This process of extending the capability of

6This content is available online at <http://cnx.org/content/m16707/1.1/>.
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the list structure is error-prone at best and cannot be carried out if one does not own the source code for this
structure. Any method added to the system can access the private �elds of MTList and NEList and modify
them at will. In particular, the code can change _�st and _rest of NEList breaking the invariant immutable
property the system is supposed to represent. The system so designed is inherently fragile, cumbersome,
rigid, and limited. We end up with a forever changing IList that includes a multitude of unrelated methods.

These design �aws come of the lack of delineation between the intrinsic and primitive behavior of the
structure itself and the more complex behavior needed for a speci�c application. The failure to decouple
primitive and non-primitive operations also causes reusability and extensibility problems. The weakness
in bundling a data structure with a prede�ned set of operations is that it presents a static non-extensible
interface to the client that cannot handle unforeseen future requirements. Reusability and extensibility
are more than just aesthetic issues; in the real world, they are driven by powerful practical and economic
considerations. Computer science students should be conditioned to design code with the knowledge that it
will be modi�ed many times. In particular is the need for the ability to add features after the software has
been delivered. Therefore one must seek to decouple the data structures from the algorithms (or operations)
that manipulate it. Before we present an object-oriented approach to address this issue, let's �rst eat!

3.4.2 2. To Cook or Not To Cook

Mary is a vegetarian. She only cooks and eats vegetarian food. John is carnivorous. He cooks and eats
meat! If Mary wants to eat broccoli and cheese, she can learn how to cook broccoli and cheese. If she
wants corn of the cob, she can learn how to cook corn on the cob. The same goes for John. If he wants to
eat greasy hamburger, he can learn how to cook greasy hamburger. If he wants to eat fatty hotdog, he can
learn how to cook fatty hotdog. Every time John and Mary want to eat something new, they can learn how
to cook it. This requires that John and Mary to each have a very big head in order to learn all the recipes.

But wait, there are people out there called chefs! These are very special kinds of chefs catering only
to vegetarians and carnivores. These chefs only know how to cook two dishes: one vegetarian dish and
one meat dish. All John and Mary have to do is to know how to ask such a chef to cook their favorite
dish. Mary will only order the vegetarian dish, while John will only order the meat dish!

How do we model the vegetarian, the carnivore, the chef, the two kinds of dishes the chef cooks, and how
the customer orders the appropriate kind of dish from the chef?

3.4.2.1 The Food

To simplify the problem, let's treat food as String. (In a more sophisticated setting, we may want to
model food as some interface with veggie and meat as sub-interface.)

3.4.2.2 The Food Consumers

Vegetarians and carnivores are basically the same animals. They have the basic ingredients such as salt and
pepper to cook food. They di�er in the kind of raw materials they stock to cook their foods and in the way
they order food from a chef. Vegetarians and Carnivores can provide the materials to cook but do not know
how to cook! In order to get any cooked meal, they have to ask a chef to cook for them. We model them as
two concrete subclasses of an abstract class called AEater. AEater has two concrete methods, getSalt and
getPepper, and an abstract method called order, as shown in the table below.
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public abstract class AEater { public String getSalt() { return "salt"; } public String

getPepper() { return "pepper"; } /** * Orders n portions of appropriate food from

restaurant r. */ public abstract String order(IChef r, Integer n); // NO CODE BODY!

}

public class Vegetarian extends AEater{

public String getBroccoli() {

return "broccoli";

}

public String getCorn() {

return "corn";

}

public String order(IChef c, Object n) {

// code to be discussed later;

}

}

public class Carnivore extends AEater{

public String getMeat() {

return "steak";

}

public String getChicken() {

return "cornish hen";

}

public String getDog() {

return "polish sausage";

}

public String order(IChef c, Object n) {

// code to be discussed later;

}

}

Table 3.5

3.4.2.3 The Chef

The chef is represented as an interface IChef with two methods, one to cook a vegetarian dish and one to
cook a meat dish, as shown in the table below.
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interface IChef { String cookVeggie(Vegetarian h, Integer n); String cookMeat(Carnivore

h, Integer n); }

public class ChefWong implements IChef {

public static final ChefWong Singleton

= new ChefWong();

private ChefWong() {}

public String cookVeggie(Vegetarian h, Integer n) {

return n + " portion(s) of " +

h.getCarrot() + ", " +

h.getSalt();

}

public String cookMeat(Carnivore h, Integer n) {

return n + " portion(s) of " +

h.getMeat() + ", " +

h.getPepper();

}

}

public class ChefZung implements IChef {

public static final ChefZung Singleton

= new ChefZung();

private ChefZung() {}

public String cookVeggie(Vegetarian h, Integer n) {

return n + " portion(s) of " +

h.getCorn() + ", " +

h.getSalt();

}

public String cookMeat(Carnivore h, Integer n) {

return n + " portion(s) of " +

h.getChicken() + ", " +

h.getPepper() +

", " + h.getSalt();

}

}

Table 3.6

3.4.2.4 Ordering Food From The Chef

To order food from an IChef , a Vegetarian object simply calls cookVeggie, passing itself as one of the pa-
rameters, while a Carnivore object would call cookMeat, passing itself as one of the parameters as well. The
Vegetarian and Carnivore objects only deal with the IChef object at the highest level of abstraction and do
not care what the concrete IChef is. The polymorphism machinery guarantees that the correct method in
the concrete IChef will be called and the appropriate kind of food will be returned to the AEater caller The
table below shows the code for Vegetarian and Carnivore, and sample client code using these classes.

public class Vegetarian extends AEater {

// other methods elided

public String order(IChef c, int n) {

return c.cookVeggie(this, n);

}

}

public class Carnivore extends AEater {

// other methods elided

public String order(IChef c, int n) {

return c.cookMeat(this, n);

}

}

continued on next page
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// client code public void party(AEater e, IChef c, int n) { System.out.println(e.order(c,

n));} // blah blah blah... AEater John = new Carnivore(); AEater Mary = new

Vegetarian(); party(Mary, ChefWong.Singleton, 2); party(John,ChefZung.Singleton, 1);

Table 3.7

The above design is an example of what is called the visitor pattern.

• The abstract class AEater and its concrete subclasses are called the hosts. The method public String
order(IChef c, Object n) is called the hook method. Each concrete subclasses of AEater knows exactly
to call the appropriate method on the IChef parameter, but does know and need not how the IChef
concretely perforns its task. This allows an open-ended number of ways to cook the appropriate kinds
of food.

• The chef interface IChef and all of its concrete implementations are called visitors. When an IChef
performs cookMeat/cookVeggie, it knows that its host is a Carnivore/Vegetarian and can only call the
methods of Carnivore/Vegetarian to cook a dish. Java static type checking will �ag an error should
there be a call on the host to getCarot in the method cookMeat. This is makes the interaction between
hosts (Vegetarian and Carnivore) and visitors (IChef and all of its concrete implementations) much
more robust.

3.4.3 3. The Visitor Pattern

The visitor pattern7 is a pattern for communication and collaboration between two union patterns: a "host"
union and a "visitor" union. An abstract visitor is usually de�ned as an interface in Java. It has a
separate method for each of the concrete variant of the host union. The abstract host has a method (called
the "hook") to "accept" a visitor and leaves it up to each of its concrete variants to call the appropriate
visitor method. This "decoupling" of the host's structural behaviors from the extrinsic algorithms on the
host permits the addition of in�nitely many external algorithms without changing any of the host union
code. This extensibility only works if the taxonomy of the host union is stable and does not change. If we
have to modify the host union, then we will have to modify ALL visitors as well!

7http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/VisitorPattern.htm
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Figure 3.3



54 CHAPTER 3. IMMUTABLE LIST STRUCTURE

NOTE: All the "state-less" visitors, that is visitors that contain no non-static �elds should be single-
tons. Visitors that contain non-static �elds should not be singletons.

3.4.4 4. Fundamental Object-Oriented Design Methodology (FOODM)

1. Identify and separate the variant and the invariant behaviors.
2. Encapsulate the invariant behaviors into a system of classes.
3. Add "hooks" to this class to de�ne communication protocols with other classes.
4. Encapsulate the variant behaviors into a union of classes that comply with the above
protocols.

The result is a �exible system of co-operating objects that is not only reusable and extensible, but also easy
to understand and maintain.

Let us illustrate the above process by applying it to the design of the immutable list structure and its
algorithms.

1. Here, the invariant is the intrinsic and primitive behavior of the list structure, IList, and the variants
are the multitude of extrinsic and non-primitive algorithms that manipulate it, IListAlgo.

2. The recursive list structure is implemented using the composite design pattern and encapsulated with
a minimal and complete set of primitive structural operations: getFirst() and getRest().

3. The hook method Object execute(IListAlgo ago, Object inp) de�nes the protocols for operat-
ing on the list structure. The hook works as if a IList announces to the outside world the following
protocol: If you want me to execute your algorithm, encapsulate it into an object of type IListAlgo,
hand it to me together with its inp object as parameters for my execute(). I will send your algorithm
object the appropriate message for it to perform its task, and return you the result.

• emptyCase(...) should be the part of the algorithm that deals with the case where I am empty.
• nonEmptyCase(...) should be the part of the algorithm that deals with the case where I am not

empty.�

4. IListAlgo and all of its concrete implementations forms a union of algorithms classes that can be sent
to the list structure for execution.

Below is the UML class diagram of the resulting list design. Click here to see the full documentation.8

Click here to see the code9 .

8http://www.owlnet.rice.edu/∼comp201/08-spring/lectures/visitor/listFW/doc/
9http://www.owlnet.rice.edu/∼comp201/08-spring/lectures/lec17/listFW.zip
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Figure 3.4

The above design is nothing but a special case of the Visitor Pattern. The interface IList is called
the host and its method execute() is called a "hook" to the IListAlgovisitors. Via polymorphism,
IList knows exactly what method to call on the speci�c IListAlgo visitor. This design turns the list
structure into a (miniature) framework where control is inverted: one hands an algorithm to the structure to
be executed instead of handing a structure to an algorithm to perform a computation. Since an IListAlgo

only interacts with the list on which it operates via the list's public interface, the list structure is capable of
carrying out any conforming algorithm, past, present, or future. This is how reusability and extensibility is
achieved.

3.4.5 5. List Visitor Examples
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/** * Computes the length of the IList host. */ public class GetLength implements

IListAlgo { /** * Singleton Pattern. */ public static final GetLength Singleton = new

GetLength(); private GetLength() { }

/**

* Returns Integer(0).

* @param nu not used

* @return Integer(0)

*/

public Object emptyCase(MTList host, Object... nu) {

return 0;

}

/**

* Return the length of the host's rest plus 1.

* @param nu not used.

* @return Integer > 0.

*/

public Object nonEmptyCase(NEList host, Object... nu) {

Object restLen = host.getRest().execute(this);

return 1 + (Integer)restLen);

}

Table 3.8

package listFW; /** * Computes a String reprsentation of IList showing a left

parenthesis followed * by elements of the IList separated by commas, ending with with

a right parenthesis. * @stereotype visitor */ public class ToStringAlgo implements

IListAlgo { public static final ToStringAlgo Singleton = new ToStringAlgo(); private

ToStringAlgo() { }

/**

* Returns "()".

*/

public Object emptyCase(MTList host, Object... inp) {

return "()";

}

/**

* Passes "(" + first to the rest of IList and asks for help to complete the computation.

*/

public Object nonEmptyCase(NEList host, Object... ~inp) {

return host.getRest().execute(ToStringHelper.Singleton, "(" + host.getFirst());

}

}

Table 3.9
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/** * Helps ToStringAlgo compute the String representation of the rest of the list.

*/ class ToStringHelper implements IListAlgo { public static final ToStringHelper

Singleton = new ToStringHelper(); private ToStringHelper() { }

/**

~* Returns the accumulated String + ")".

~* At end of list: done!

~*/

public Object emptyCase(MTList host, Object... acc) {

return~ acc[0] + ")";

}

/**

* Continues accumulating the String representation by appending ", " + first to acc

* and recurse!

*/

public Object nonEmptyCase(NEList host, Object... acc) {

return host.getRest().execute(this, acc[0] + ", " + host.getFirst());

}

}

Table 3.10

We now can use to ToStringAlgo to implement the toString() method of an IList.
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package listFW;

public class MTList implements IList {

/**

* Singleton Pattern

*/

public final static MTList Singleton = new MTList();

private MTList() { }

/**

* Calls the empty case of the algorithm algo,

* passing to it itself as the host parameter

* and the given input inp as the input parameter.

* This method is marked as final to prevent all

* subclasses from overriding it.

* Finalizing a method also allows the compiler to

* generate more efficient calling code.

*/

public final Object execute(IListAlgo algo, Object... inp) {

return algo.emptyCase(this, inp);

}

public String toString() {

return (String)ToStringAlgo.Singleton.emptyCase(this);

}

}

package listFW;

public class NEList implements IList {

/**

* The first data element.

*/

private Object _first;

/**

* The rest or "tail" of this NEList.

* Data Invariant: _rest != null;

*/

private IList _rest;

/**

* Initializes this NEList to a given first and a given rest.

* @param f the first element of this NEList.

* @param r != null, the rest of this NEList.

*/

public NEList(Object f, IList r) {

_first = f;

_rest = r;

}

/**

* Returns the first data element of this NEList.

* This method is marked as final to prevent all subclasses

* from overriding it.

* Finalizing a method also allows the compiler to generate

* more efficient calling code.

*/

public final Object getFirst() {

return _first;

}

/**

* Returns the first data element of this NEList.

* This method is marked as final to prevent all

* subclasses from overriding it.

* Finalizing a method also allows the compiler

* to generate more efficient calling code.

*/

public final IList getRest() {

return _rest;

}

/**

* Calls the nonEmptyCase method of the IListAlgo parameter,

* passing to the method itself as the host parameter and the

* given input as the input parameter.

* This method is marked as final to prevent all subclasses from

* overriding it. Finalizing a method also allows the compiler

* to generate more efficient calling code.

*/

public final Object execute(IListAlgo algo, Object... inp) {

return algo.nonEmptyCase(this, inp);

}

public String toString() {

return (String)ToStringAlgo.Singleton.nonEmptyCase(this);

}

}



59

Table 3.11

Download the above code here10 .

3.5 Abstract Factory Design Pattern11

3.5.1 1. Information Hiding

Information hiding is a tried-and-true design principle that advocates hiding all implementation details of
software components from the user in order to facilitate code maintenance. It was �rst formulated by David
L. Parnas (in 1971-1972) as follows.

• One must provide the intended user with all the information needed to use the module correctly and
nothing more.

· translation to OOP: the user should not know anything about how an interface or abstract class
is implemented. For example, the user need not and should not know how IList is implemented
in order to use it. The user should only program to the abstract speci�cation.

• One must provide the implementor with all the information needed to complete the module and nothing
more.

· translation to OOP: the implementor of a class or an interface should not know anything about
how it will be used. For example, the implementor need not and should not know how, when, or
where IList will be used. The implementor should write the implementation code based solely
on the abstract speci�cation.

By adhering to the above, code written by both users and implementors will have a high degree of �exibility,
extensibility, interoperability and interchangeability.

The list framework that we have developed so far has failed to hide MTList and NEList, which are concrete
implementations of IList, the abstract speci�cation of the list structure. In many of the list algorithms that
we have developed so far, we need to call on MTList.Singleton or the constructor of NEList to instantiate
concrete IList objects. The following is another such examples.

10http://www.owlnet.rice.edu/∼comp201/08-spring/lectures/lec17/listFW.zip
11This content is available online at <http://cnx.org/content/m16796/1.1/>.
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InsertInOrder.java

import listFW.*;

/**

* Inserts an Integer into an ordered host list, assuming the host list contains

* only Integer objects.

*/

public class InsertInOrder implements IListAlgo {

public static final InsertInOrder Singleton = new InsertInOrder();

private InsertInOrder() {

}

/**

* This is easy, don't you think?

* @param inp inp[0] is an Integer to be inserted in order into host.

*/

public Object emptyCase(MTList host, Object... inp) {

return new NEList(inp[0], host);

}

/**

* Delegate (to recur)!

* @param inp inp[0] is an Integer to be inserted in order into host.

*/

public Object nonEmptyCase(NEList host, Object... inp) {

int n = (Integer)inp[0];

int f = (Integer)host.getFirst();

return n < f ?

new NEList(inp[0], host):

new NEList(host.getFirst(), (IList)host.getRest().execute(this, inp[0]));

}

}

Table 3.12

The above algorithm to insert in order an integer into an ordered list of integers can only be used for a very
speci�c implementation of IList, namely the one that has MTList and NEList as concrete subclasses. How
can we write list algorithms that can be used for ANY implementation of the abstract speci�cation of the
list structure represented by the abstract class IList?

We can achieve our goal by

1. abstracting the behavior of MTList and NEList into interfaces with pure abstract structural behaviors.
2. applying the Abstract Factory Design Pattern12 to hide the concrete implementation from the user.

12http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/FactoryPattern.htm
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3.5.2 2. Abstract List Behaviors

The concrete empty list and non-empty list implemented as MTList and NEList are now expressed as
interfaces as follow.

package listFW; /** * Represents the abstract behavior of the immutable list structure.

* A list intrinsically "knows" how to execute an algorithm on itself. */ interface

IList { Object execute(IListAlgo algo, Object... inp); }

package listFW;

/**

* Represents the immutable empty list.

* The empty list has no well-defined structural behavior:

* it has no first and no rest.

*/

interface IMTList extends IList {

}

package listFW;

/**

* Represents the immutable non-empty list.

* An immutable non-empty list has a data object called first, and an

* isomorphic subcomponent called rest. Its structural behavior

* provides access to its internal data (first) and substructure (rest).

*/

interface INEList extends IList {

/**

* "Gettor" method for the list's first.

* @return this INElist's first element.

*/

Object getFirst();

/**

* "Gettor" method for the list's rest.

* @return this INElist's rest.

*/

IList getRest();

}

Table 3.13

3.5.3 3. Abstract List Factory

Before we describe in general what the Abstract Factory Pattern is, let's examine what we have to do
in the case of IList.

• De�ne an abstract factory interface, IListFactory, to manufacture empty and non-empty IList

objects. Put IList, IMTList, INEList, IListVistor, and IListFactory in the same pack-
age. IListFactory is speci�ed as followed.
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IListFactory.java

package listFW;

/**

* Abstract factory to manufacture IMTList and INEList.

*/

interface IListFactory {

/**

* Creates an empty list.

* @return an IMTList object.

*/

IMTList makeEmptyList();

/**

* Creates a non-empty list containing a given first and a given rest.

* @param first a data object.

* @param rest != null, the rest of the non-empty list to be manufactured.

* @return an INEList object containing first and rest

* @exception IllegalArgumentException if rest is null.

*/

INEList makeNEList(Object first, IList rest);

}

Table 3.14

IList, IListAlgo, and IListFactory prescribe aminimal and complete abstract speci�cation of what
we call a list software component. We claim without proof that we can do everything we ever want to
do with the list structure using this speci�cation.

• All algorithms (i.e. visitors) that call for the creation of concrete IList objects will need to have an
abstract factory as a parameter and use it to manufacture IList objects. We usually pass the factory
as an argument to the constructor of the visitor. The visitor is thus not a singleton.
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InsertInOrderWithFactory.java

import listFW.*;

/**

* Inserts an Integer into an ordered host list, assuming the host list contains

* only Integer objects. Has no knowledge of how IList is implemented. Must

* make use of a list factory (IListFactory) to create IList objects instead of

* calling the constructors of concrete subclasses directly.

*/

public class InsertInOrderWithFactory implements IListAlgo {

private IListFactory _listFact;

public InsertInOrderWithFactory(IListFactory lf) {

_listFact = lf;

}

/**

* Simply makes a new non-empty list with the given inp parameter as first.

* @param host an empty IList.

* @param inp inp[0] is an Integer to be inserted in order into host.

*/

public Object emptyCase(IMTList host, Object... inp) {

return _listFact.makeNEList(inp[0], host);

}

/**

* Recur!

* @param host a non-empty IList.

* @param inp inp[0] is an Integer to be inserted in order into host.

*/

public Object nonEmptyCase(INEList host, Object... inp) {

int n = (Integer)inp[0];

int f = (Integer)host.getFirst();

return n < f ?

_listFact.makeNEList(inp[0], host):

_listFact.makeNEList(host.getFirst(),

(IList)host.getRest().execute(this, inp[0]));

}

}

Table 3.15

The above algorithm only "talks" to the list structure it operates on at the highest level of abstraction
speci�ed by IList and IListFactory. It does know and does not care how IList and IListFactory are
implemented. Yet it can be proved to be correct. This algorithm can be plugged into any system that
subscribes to the abstract speci�cation prescribed by IList, IListAlgo, and IListFactory.
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• Provide a concrete implementation of the abstract factory that contains all concrete subclasses of IList
as private static classes and thus hide them from all external code.
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CompositeListFactory.java

package listFW.factory;

import listFW.*;

/**

* Manufactures concrete IMTList and INEList objects. Has only one

* instance referenced by CompositeListFactory.Singleton.

* MTList and NEList are static nested classes and hidden from all external

* client code. The implementations for MTList and NEList are the same as

* before but completely invisible to the outside of this factory.

*/

public class CompositeListFactory implements IListFactory {

/**

* Note the use of private static.

*/

private static class MTList implements IMTList {

public final static MTList Singleton = new MTList ();

private MTList() {

}

final public Object execute(IListAlgo algo, Object... inp) {

return algo.emptyCase(this, inp);

}

public String toString() {

return "()";

}

}

/**

* Note the use of private static.

*/

private static class NEList implements INEList {

private Object _first;

private IList _rest;

public NEList(Object dat, IList rest) {

_first = dat;

_rest = rest;

}

final public Object getFirst() {

return _first;

}

final public IList getRest() {

return _rest;

}

final public Object execute(IListAlgo algo, Object... inp) {

return algo.nonEmptyCase(this, inp);

}

public String toString() {

return (String)ToStringAlgo.Singleton.nonEmptyCase(this);

}

}

/**

* Singleton Pattern

*/

public static final CompositeListFactory Singleton = new CompositeListFactory();

private CompositeListFactory() {

}

/**

* Creates an empty list.

* @return an IMTList object.

*/

public IMTList makeEmptyList() {

return MTList.Singleton;

}

/**

* Creates a non-empty list containing a given first and a given rest.

* @param first a data object.

* @param rest != null, the rest of the non-empty list to be manufactured.

* @return an INEList object containing first and rest

*/

public INEList makeNEList(Object first, IList rest) {

return new NEList(first, rest);

}

}
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Table 3.16

• Pass such a concrete factory to all client code that need to make use of the abstract factory to manu-
facture concrete IList instances.

Below is an example of a unit test for the InsertInOrderWithFactory algorithm.

Test_InsertInOrderWithFactory.java

package listFW.visitor.test;

import listFW.*;

import listFW.factory.*;

import listFW.visitor.*;

import junit.framework.TestCase;

/**

* A JUnit test case class.

* Every method starting with the word "test" will be called when running

* the test with JUnit.

*/

public class Test_InsertInOrderWithFactory extends TestCase {

public void test_ordered_insert() {

IListFactory fac = CompositeListFactory.Singleton;

IListAlgo algo = new InsertInOrderWithFactory(fac);

IList list0 = fac.makeEmptyList();

assertEquals("Empty list", "()", list0.toString());

IList list1 = (IList) list0.execute(algo, 55);

assertEquals("55->()", "(55)", list1.toString());

IList list2 = (IList) list1.execute(algo, 30);

assertEquals("30->(55)", "(30, 55)", list2.toString());

IList list3 = (IList) list2.execute(algo, 100);

assertEquals("100 -> (30, 55)", "(30, 55, 100)", list3.toString());

IList list4 = (IList) list3.execute(algo, 45);

assertEquals("45->(30, 55, 100)", "(30, 45, 55, 100)", list4.toString());

IList list5 = (IList) list4.execute(algo, 60);

assertEquals("60 -> (30, 45, 55, 100)", "(30, 45, 55, 60, 100)", list5.toString());

}

}

Table 3.17
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The above design process is an example of what is called the Abstract Factory Design Pattern. The
intent of this pattern is to provide an abstract speci�cation for manufacturing a family of related objects
(for examples, the empty and non-empty IList) without specifying their actual concrete classes thus hiding
all details of implementation from the user.

Our example of the list structure framework successfully delineates speci�cation from implementation
and faithfully adheres to the principle of information hiding.

• IList, IMTList, INEList, IListAlgo, and IListFactory provide a minimal and complete abstract
speci�cation.

• InsertInOrderWithFactory is a concrete implementation of IListAlgo that performs a concrete
operation on the host list. Yet this algorithm need only communicate with the list structure and the list
factory via their public interface. It will work with any implementation of IList and IListFactory.

• CompositeListFactory is a concrete implementation of IListFactory. It uses the composite pattern
and the visitor pattern to implement IList. It only communicates with IListAlgo at and knows
nothing about any of its concrete implementation. The private static attributes provide the proper
mechanism to hide all implementation details from all code external to the class.

Click here to access the complete javadoc documentation and UML class diagram of the list component13

described in the above.
Click here to download the complete source code and documentation of the list component14 described

in the above.

3.5.4 4. Frameworks

The following is a direct quote from the Design Patterns book by Gamma, Helm, Johnson, and Vlissides
(the Gang of Four - GoF).

"Frameworks thus emphasizes design reuse over code resuse...Reuse on this level leads to an inversion
of control between the application and the software on which it's based. When you use a toolkit (or a
conventional subroutine library software for that matter), you write the main body of the application and
call the code you want to reuse. When you use a framework, you reuse the main body and write the code it
calls...."

The linear recursive structure (IList) coupled with the visitors as shown in the above is one of the
simplest, non-trivial, and practical examples of frameworks. It has the characteristic of "inversion of
control" described in the quote. It illustrates the so-called Hollywood Programming Principle: Don't call
me, I will call you. Imagine the IList union sitting in a library.

The above list framework dictates the design of all algorithms operating on the list structure:

• All algorithms must be some concrete implementation of IListAlgo.

· Algorithms that require the construction of empty and/or non-empty lists, must do so via some
abstract list factory, IListFactory.

• In order to apply an algorithm to a list, one must ask a list to "execute" that algorithm, giving it the
required input parameter.

When we write an algorithm on an IList in conformance with its visitor interface, we are writing code
for the IList to call and not the other way around. By adhering to the IList framework's protocol, all
algorithms on the IList can be developed much more quickly. And because they all have similar structures,

13http://cnx.org/content/m16796/latest/�le:///C:%5CUsers%5Cdxnguyen.ADRICE%5CDocuments%5CMy%20Web%20Sites%5CRice%5Ccomp201%5Cpublic_html%5C08-
spring%5Clectures%5Clec20%5ClistFW%5Cdoc%5C

14http://cnx.org/content/m16796/latest/�le:///C:%5CUsers%5Cdxnguyen.ADRICE%5CDocuments%5CMy%20Web%20Sites%5CRice%5Ccomp201%5Cpublic_html%5C08-
spring%5Cds%5ClistFW.zip
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they are much easier to "maintain". The IList framework puts polymorphism to use in a very e�ective
(and elegant!) way to reduce �ow control and code complexity.

We do not know anything about how the above list framework is implemented, yet we have been able to
write quite a few algorithms and test them for correctness. In order to obtain concrete lists and test an
algorithm, we call on a concrete IListFactory, called CompositeListFactory, to manufacture empty and
non-empty lists. We do not know how this factory creates those list objects, but we trust that it does the
right thing and produces the appropriate list objects for us to use. And so far, it seems like it's doing its
job, giving us all the lists we need.

3.5.5 5. Bootstrapping Along

Let's take a look back at what we've done with a list so far:

1. Created an invariant list interface with two variant concrete subclasses (Composite pattern) where
any algorithms on the list where implemented as methods of the interface and subclasses (Interpreter
pattern)

2. Extracted the variant algorithms as visitors leaving behind an invariant "execute" method. Accessor
methods for �rst and rest installed. The entire list structure now becomes invariant.

3. Abstracted the creation of a list into an invariant factory interface with variant concrete subclass
factories.

4. Separated the list framework into an invariant hierarchy of interfaces and a variant implementation
which was hidden inside of a variant factory class.

Is there something systematic going on here?
Notice that at every stage in our development of our current list framework, we have applied the same

abstraction principles to the then current system to advance it to the next stage. Speci�cally, we have
identi�ed and separated the variant and invariant pieces of the system and de�ned abstract representations
whenever needed.

This really tells us about some general characteristics of software development:

• Software development is an iterative process. You never get the right answer the �rst time and you
have to slowly "evolve" your code closer and closer to what you want.

• Every time you change your code you learn something more and/or new about your system and/or
problem. This is because every new formulation of your solution represents a new way, a new view as
it were, on the problem and this new view highlights aspects you hadn't considered before.

• The revision process is driven along by a repetitive application of the abstract decomposition techniques
such as separating the variant and invariant.

Are we done with our list re�nements? Will we ever be "done"? What do the above characteristics say
about the way we should approach software development?

Also, now that we have managed to abstract structure, behavior and construction, is there anything left
to abstract? Or is there one more piece to our abstraction puzzle (at least)?

3.6 Inner Classes15

3.6.1 1. Helpers are the Variants

Consider again the familiar problem of computing a String representation of an IList that displays a
comma-separated list of its elements delimited by a pair of matching parentheses. We have seen at least one
way to compute such a String representation using a visitor called ToStringAlgo. Below are three di�erent
algorithms, ToString1, ToString2 and ToString3, that compute the same String representation.

15This content is available online at <http://cnx.org/content/m17220/1.2/>.
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Main Visitor ToString1 Tail-recursive helper ToString1Help

package listFW.visitor;

import listFW.*;

public class ToString1 implements IListAlgo {

public static final ToString1 Singleton = new ToString1();

private ToString1() {

}

public Object emptyCase(IMTList host, Object... nu) {

return "()";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return host.getRest().execute(ToString1Help.Singleton,

"(" + host.getFirst());

}

}

/**

* Helps ToString1 compute the String representation of the rest of the list.

* It takes as input the accumulated string representation of the preceding

* list. This accumulated string contains the left most parenthesis and all

* the elements of the preceding list, each separated by a comma.

*/

class ToString1Help implements IListAlgo {

public static final ToString1Help Singleton = new ToString1Help();

private ToString1Help() {

}

public Object emptyCase(IMTList host, Object... acc) {

return acc[0] + ")";

}

public Object nonEmptyCase(INEList host, Object... acc) {

return host.getRest().execute(this, acc[0] + ", "

+ host.getFirst());

}

}

continued on next page
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Table 3.18

Main Visitor ToString2 Tail-recursive helper ToString2Help

package listFW.visitor;

import listFW.*;

public class ToString2 implements IListAlgo {

public static final ToString2 Singleton = new ToString2();

private ToString2() {

}

public Object emptyCase(IMTList host, Object... nu) {

return "()";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return host.getRest().execute(ToString2Help.Singleton,

host.getFirst().toString());

}

}

/**

* Helps ToString2 compute the String representation of the rest of the list.

*/

class ToString2Help implements IListAlgo {

public static final ToString2Help Singleton = new ToString2Help();

private ToString2Help() {

}

public Object emptyCase(IMTList host, Object... acc) {

return "(" + acc[0] + ")";

}

public Object nonEmptyCase(INEList host, Object... acc) {

return host.getRest().execute(this,

acc[0] + ", " + host.getFirst());

}

}

continued on next page
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Table 3.19

Main Visitor ToString3 Non tail-recursive helper ToString3Help

package listFW.visitor;

import listFW.*;

public class ToString3 implements IListAlgo {

public static final ToString3 Singleton = new ToString3();

private ToString3() {

}

public Object emptyCase(IMTList host, Object... nu) {

return "()";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return "(" + host.getFirst()

+ host.getRest().execute(ToString3Help.Singleton);

}

}

/**

* Helps ToString3 compute the String representation of the rest of the list.

*/

class ToString3Help implements IListAlgo {

public static final ToString3Help Singleton = new ToString3Help();

private ToString3Help() {

}

public Object emptyCase(IMTList host, Object... nu) {

return ")";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return ", " + host.getFirst()

+ host.getRest().execute(this);

}

}

continued on next page
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Table 3.20

What makes each of the above di�erent from one another is its helper visitor. Each helper de�ned in
the above will only perform correctly if it is passed the appropriate parameter. In a sense, each helper is an
implementation of the main visitor. We should hide each of them inside of its corresponding main visitor to
ensure proper usage and achieve full encapsulation of the main visitor.

3.6.2 2. Hiding Helpers

The most secure way to hide the helper visitor is to move it inside of the main visitor and make it a private
static class.

Hiding Named Helper Visitor inside of ToString1 Comments

package listFW.visitor;

import listFW.*;

public class ToString1WithHiddenHelper implements IListAlgo {

public static final

ToString1WithHiddenHelper Singleton = new ToString1WithHiddenHelper();

private ToString1WithHiddenHelper() {

}

Singleton Pattern

private static class HiddenHelper implements IListAlgo {

public static final HiddenHelper Singleton = new HiddenHelper();

private HiddenHelper() {

}

public Object emptyCase(IMTList host, Object... acc) {

return acc[0] + ")";

}

public Object nonEmptyCase(INEList host, Object... acc) {

return host.getRest().execute(this, acc[0] + ", " + host.getFirst());

}

}

The helper visitor has a name, HiddenHelper, and
is de�ned privately and globally (static) inside of
the main visitor ToString1WithHiddenHelper.

continued on next page
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public Object emptyCase(IMTList host, Object... nu) {

return "()";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return host.getRest().execute(HiddenHelper.Singleton, "(" + host.getFirst());

}

}

The main visitor calls on its hidden helper singleton
to help complete the job.

Table 3.21

Hiding Named Helper Visitor inside of ToString2 Comments

package listFW.visitor;

import listFW.*;

public class ToString2WithHiddenHelper implements IListAlgo {

public static final

ToString2WithHiddenHelper Singleton = new ToString2WithHiddenHelper();

private ToString2WithHiddenHelper() {

}

private static class HiddenHelper implements IListAlgo {

public static final HiddenHelper Singleton = new HiddenHelper();

private HiddenHelper() {

}

public Object emptyCase(IMTList host, Object... acc) {

return "(" + acc[0] + ")";

}

public Object nonEmptyCase(INEList host, Object... acc) {

return host.getRest().execute(this, acc[0] + ", " + host.getFirst());

}

}

continued on next page
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public Object emptyCase(IMTList host, Object... nu) {

return "()";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return host.getRest().execute(HiddenHelper.Singleton, host.getFirst().toString());

}

}

Table 3.22

Hiding Named Helper Visitor inside of ToString3 Comments

package listFW.visitor;

import listFW.*;

public class ToString3WithHiddenHelper implements IListAlgo {

public static final

ToString3WithHiddenHelper Singleton = new ToString3WithHiddenHelper();

private ToString3WithHiddenHelper() {

}

private static class HiddenHelper implements IListAlgo {

public static final HiddenHelper Singleton = new HiddenHelper();

private HiddenHelper() {

}

public Object emptyCase(IMTList host, Object... nu) {

return ")";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return ", " + host.getFirst() + host.getRest().execute(this);

}

}

continued on next page
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public Object emptyCase(IMTList host, Object... nu) {

return "()";

}

public Object nonEmptyCase(INEList host, Object...bu) {

return "(" + host.getFirst() + host.getRest().execute(HiddenHelper.Singleton);

}

}

Table 3.23

3.6.3 3. Anonymous Helpers

Anonymous Helper Visitor inside of ToString1 Comments

package listFW.visitor;

import listFW.*;

public class ToString1WithAnonymousHelper implements IListAlgo {

public static final

ToString1WithAnonymousHelper Singleton = new ToString1WithAnonymousHelper();

private ToString1WithAnonymousHelper() {

}

private static final IListAlgo AnonymousHelper = new IListAlgo() {

public Object emptyCase(IMTList host, Object... acc) {

return acc[0] + ")";

}

public Object nonEmptyCase(INEList host, Object... acc) {

return host.getRest().execute(this, acc[0] + ", " + host.getFirst());

}

}; // PAY ATTENTION TO THE SEMI-COLON HERE!

continued on next page
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public Object emptyCase(IMTList host, Object... nu) {

return "()";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return host.getRest().execute(AnonymousHelper, "(" + host.getFirst());

}

}

Table 3.24

Anonymous Helper Visitor inside of ToString2 Comments

package listFW.visitor;

import listFW.*;

public class ToString2WithAnonymousHelper implements IListAlgo {

public static final

ToString2WithAnonymousHelper Singleton = new ToString2WithAnonymousHelper();

private ToString2WithAnonymousHelper() {

}

private static final IListAlgo AnonymousHelper = new IListAlgo() {

public Object emptyCase(IMTList host, Object... acc) {

return "(" + acc[0] + ")";

}

public Object nonEmptyCase(INEList host, Object... acc) {

return host.getRest().execute(this, acc[0] + ", " + host.getFirst());

}

}; // PAY ATTENTION TO THE SEMI-COLON HERE!

continued on next page
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public Object emptyCase(IMTList host, Object... nu) {

return "()";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return host.getRest().execute(AnonymousHelper, host.getFirst().toString());

}

}

Table 3.25

Anonymous Helper Visitor inside of ToString3 Comments

package listFW.visitor;

import listFW.*;

public class ToString3WithAnonymousHelper implements IListAlgo {

public static final

ToString3WithAnonymousHelper Singleton = new ToString3WithAnonymousHelper();

private ToString3WithAnonymousHelper() {

}

private static final IListAlgo AnonymousHelper = new IListAlgo() {

public Object emptyCase(IMTList host, Object... nu) {

return ")";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return ", " + host.getFirst() + host.getRest().execute(this);

}

}; // PAY ATTENTION TO THE SEMI-COLON HERE!

continued on next page
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public Object emptyCase(IMTList host, Object... nu) {

return "()";

}

public Object nonEmptyCase(INEList host, Object... nu) {

return "(" + host.getFirst() + host.getRest().execute(AnonymousHelper);

}

}

Table 3.26

3.6.4 4. Factory with Anonymous Inner Classes

Comments

package listFW.factory;

import listFW.*;

public class InnerCompListFact implements IListFactory {

public static final InnerCompListFact Singleton = new InnerCompListFact();

private InnerCompListFact() {

}

private final static IListAlgo ToStrHelp = new IListAlgo() {

public Object emptyCase(IMTList host, Object... acc) {

return acc[0] + ")";

}

public Object nonEmptyCase(INEList host, Object... acc) {

return host.getRest().execute(this, acc[0] + ", " + host.getFirst());

}

}; // PAY ATTENTION TO THE SEMI-COLON HERE!

continued on next page
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private final static IMTList MTSingleton = new IMTList (){

public Object execute(IListAlgo algo, Object... inp) {

return algo.emptyCase(this, inp);

}

public String toString() {

return "()";

}

}; // PAY ATTENTION TO THE SEMI-COLON HERE!

public IMTList makeEmptyList() {

return MTSingleton;

}

public INEList makeNEList(final Object first, final IList rest) {

return new INEList() {

public Object getFirst() {

return first;

}

public IList getRest() {

return rest;

}

public Object execute(IListAlgo algo, Object... inp) {

return algo.nonEmptyCase(this, inp);

}

public String toString() {

return (String)rest.execute(ToStrHelp, "(" + first);

}

};

}

}

Note how the code inside the anonymous inner class
references �rst and rest of the parameter list. first
and rest are said to be in the closure of the anony-
mous inner class. Here is an important Java
syntax rule: For an local inner class de�ned in-
side of a method to access a local variable of the
method, this local variable must be declared as
final.

continued on next page



81

Table 3.27

Click here to download the code of all of the above16.

3.6.5 5. Classes de�ned inside of another Class

Besides �elds and methods, a Java class can also contain other classes. And just like a �eld or method
de�ned inside of a class, a class de�ned inside of another class can be static or non-static. Here is the syntax.

class X {

// fields of X ...

// methods of X ...

/**

* named class Y defined inside of class X:

*/

[public | protected | private] [static] [final] [abstract] class Y [ extends A] [implements B] {

// fields of Y ...

// methods of Y ...

// classes of Y ...

}

}

3.6.5.1 Scope Speci�er

When an embedded class is de�ned as static, it is called a nested class. The members (i.e. �elds,
methods, classes) of a (static) nested class can access only static members of the enclosing
class.

When an embedded class is non-static, it is called an inner class. The members of an inner class can
access ALL members of the enclosing class. The enclosing class (and its enclosing class, if any, and so on)
contains the environment that completely de�nes the inner class and constitutes what is called the closure
of the inner class. As all functional programmers should know, closure is a powerful concept. One of the
greatest strength in the Java programming language is the capability to express closures via classes with
inner classes. We shall see many examples that will illustrate this powerful concept in other modules.

Inner classes do not have to be anonymous as shown in the above examples. They can be named as well.

3.6.5.2 Access Speci�er

Just like any other class, a class de�ned inside of another class can be public, protected, package private,
or private.

3.6.5.3 Extensibility Speci�er

Just like a regular class, a �nal nested/inner class cannot extended.

3.6.5.4 Abstract Speci�er

Just like a regular class, an abstract nested/inner class cannot be instantiated.

16See the �le at <http://cnx.org/content/m17220/latest/listFW.zip>
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3.6.5.5 Inheritance Speci�er

Just like a regular class, an nested/inner can extend any non-�nal class and implement any number of
interfaces that are within its scope.

3.6.5.6 Usage

Nested classes are used mostly to avoid name clash and to promote and enforce information hiding. Exam-
ples?

Inner classes are used to create (at run-time) objects that have direct access to the internals of the
outer object and perform complex tasks that simple methods cannot do. Most of the time, they are de�ned
anonymously. For examples, "event listeners" for Java GUI components are implemented as inner classes.
The dynamic behavior and versatility of these "listeners" cannot be achieved by the addition of a set of �xed
methods to a GUI component. We shall study Java event handling soon!

An inner object can be thought as an extension of the outer object.

3.6.6 6. Closure

In functional programming, the closure of a function (lamdba) consists of the function itself and an environ-
ment in which the function is well-de�ned. In Java, a function is replaced by a class. An inner class is only
de�ned in the context of its outer object (and the outer object of the outer object, etc...). An inner class
together with its nested sequence of outer objects in which the inner class is well-de�ned is the equivalent
of the notion of closure in functional programming. Such a notion is extremely powerful. Just like knowing
how to e�ectively use lambda expressions and higher order functions is key to writing powerful functional
programs in Scheme, e�ective usage of anonymous inner classes is key to writing powerful OO programs in
Java.

Some important points to remember about closures and inner classes:

• An object's closure is de�ned at the time of its creation.
• An object "remembers" its closure for its entire lifetime.
• An inner object's closure includes any local variables that are declared as final, plus all �elds of the

enclosing object, including private ones.
• Every time a factory method is run, where a new anonymous object is created, a new closure for that

object is created. This is because the local variables could change between calls.
• Closures enable decoupled communication because an inner class can communicate with its outer class

through its closure.

One of the most important ways in which we will use anonymous inner classes it to take advantage of their
closure properties. Anonymous inner classes are the only objects in Java that can be instantiated in such
a manner that the variables in their environments (closures) can be dynamically de�ned. That is, since an
anonymous inner class can reference a local variable (that is declared final) and since local variables are
created every time a method is called, then every the anonymous inner class object created has a di�erent
set of dynamically created variables that it is referencing. This means that we can make unique objects with
unique behaviors at run time.

Factories are a natural partner with anonymous inner classes. With a factory that returns anonymous
inner classes, we can instantiate unique objects with unique behaviors. If the factory method takes in param-
eters, there local variables can be used to alter the resultant object's behavior, a process called "currying17

" (named after the famous mathematician/computer scientist Haskell Curry18 ). The objects made by the
factory are then sent o� to various odd and sundry di�erent parts of our OO system but all the while re-
taining their closures, which were determined at the time of their instantiation. Thus they retain the ability
to communicate back to the factory that made them even though they are being used in another part of the

17http://en.wikipedia.org/wiki/Currying
18http://www.haskell.org/bio.html
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system that knows nothing about the factory. We like to call these "spy objects" because they act like
spies from the factory. This gives us powerful communications even though the system is decoupled.

This is the last piece of our abstraction puzzle! We have

1. Abstract Structure � abstract classes, interfaces
2. Abstract Behavior � abstract methods, strategies, visitors.
3. Abstract Construction � factories
4. Abstract Environments � anonymous inner classes, closures.

3.6.6.1 Examples

Example 1: Reversing a list using factory and anonymous inner class helper
Write Reverse such that it takes one parameter, the IListFactory, but such that its helper only takes one
parameter (other than the host list) which is the accumulated list.

public class Reverse implements IListAlgo {

public static final Reverse Singleton = new Reverse();

private Reverse() {}

public Object emptyCase(IMTList host0, Object... fac) {

return ((IListFactory)fac[0]).makeEmptyList();

}

public Object nonEmptyCase(INEList host0, Object... fac) {

final IListFactory f = (IListFactory) fac[0]; // final so that the anon. inner class can access it.

return host0.getRest().execute(new IListAlgo() {

public Object emptyCase(IMTList host1, Object... acc) {

return acc[0];

}

public Object nonEmptyCase(INEList host1, Object... acc) {

return host1.getRest().execute(this,

f.makeNEList(host1.getFirst(), (IList) acc[0]));

}

},f.makeNEList(host0.getFirst(), f.makeEmptyList()));

}

}

Example 2: Ant World
Imagine a world of ants that live in a one-dimensional space. A queen ant can make a bunch of worker ants.
Each time she gives birth to a worker ant, she gives it a name. A worker ant can always tell what its name
is. A worker ant from a particular colony can always calculate its distance from its queen. A worker ant can
also move its queen to a di�erent location. Wherever the queen moves to, ALL of her workers always know
their relative distance from her. We want to keep track of all the ants in our ant world and all the ants in
each of the existing colonies. We want to model the fact that each queen produces its own worker ants, each
one which can move its queen around without telling the other ants in the same colony, yet ALL of the ants
in the same colony would know where their queen is.

The above can be modeled by a Queen class with an abstract Worker inner class as shown below. This
example illustrates the di�erences between static and non-static �elds, methods and embedded classes.
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Queen.java

/**

* Models ants living in a 1-dimensional world

*

*

* The Worker inner objects have direct access to the location of its outer

* Queen object.

*

* @author A.L. Cox

* @author D.X. Nguyen

* @author S.B. Wong

* @since 02/07/2003

*/

public class Queen {

/**

* The total number of ants (queens and workers for all the queens) that

* currently exist in our ant world.

*

* Why is this field static?

*/

private static int _ants;

/**

* The location of this Queen object with respect to 0.

*

* Why is this field non-static?

*/

private int _origin;

/**

* The total numbers of living worker ants produced by this Queen object.

*

* Why is this field non-static?

*/

private int _workers;

/**

* Is part of a Queen instance, just like the origin field and the

* makeWorker() method are parts of a Queen instance.

* Any concrete implementation of Worker must implement the getName()

* method to return the name given by its Queen at birth time.

*

* Why can't this class be static?

*/

public abstract class Worker {

/**

* The location of this Worker object.

*/

private int _location;

/**

* Increments _ants and _workers because every time a Worker is

* instantiated, a new ant is added to our ant world, a new worker ant

* is added to the colony of this outer Queen object.

* @param loc the starting location of this Worker object.

*/

public Worker(int loc) {

_location = loc;

_ants++; // The worker is an ant.

_workers++;

}

/**

* @return the relative distance between this Worker and its outer Queen

* object.

*/

public int calcDist() {

return _location - _origin;

}

/**

* The name will be given at birth. The code cannot be written at

* this point and thus must be abstract.

* @return name of the worker

*/

public abstract String getName();

/**

* Our worker has been stepped on! (No one holds a reference

* to this object anymore. It's being garbage collected.)

*/

protected void finalize() {

_ants--; // The worker is an ant.

_workers--;

}

/**

* Changes the location of this Worker object to a new location.

* @param loc the new location for this Worler object.

*/

public void moveTo(int loc) {

_location = loc;

}

/**

* Changes the origin of the outer Queen object to a new location.

* @param org the new origin for the outer Queen object.

*/

public void moveQueen(int org) {

moveTo(org);

_origin = org;

}

}

/**

* Initializes the origin of this Queen object to a given location.

* Increments _ants since this new Queen object is an ant.

* @param org the starting origin of this Queen object.

*/

public Queen(int org) {

_ants++; // The queen is an ant.

_origin = org;

}

/**

* Return the total number of all ants, including all of the

* queens and their respective workers.

*

* Why is this method static?

* Can it be non-static?

*/

public static int countAllAnts() {

return _ants;

}

/**

* @return the total number of workers that belong to this Queen object

*

* Why isn't this method static?

*/

public int countMyWorkers() {

return _workers;

}

/**

* Factory method: relegate the task of manufacturing concrete

* Worker objects to the Queen object because the Queen object

* intrinsically "knows" how to make its inner objects.

* @param name The name of the Worker.

*/

public Worker makeWorker(final String name) {

// Anonymously create a Worker object by overriding getName().

return new Worker(_origin) {

public String getName() {

return name; // requires the parameter name to be final.

}

};

}

}

Listing 3.1: Queen.java
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3.6.6.1.1 Exercise:

Write a JUnit test program for the Queen and Worker classes.

3.6.7 7. Changing "states" - progressing to non-functional programming

In the above Queen example, the locations of a Queen object and its Worker objects are subject to change.
Every time a Worker ant moves its Queen, it has the side e�ect of changing the Queen's origin. The Queen

object remains the "same". This seems like a reasonable thing to have. In the functional programming
paradigm, to move the Queen, the Worker ant would have to instantiate a new Queen object with a new
location and �nd a way to associate itself to this new Queen, which does not seem to model the "real"
ant world very well. By allowing our objects to change their internal states in appropriate situations, our
programming model becomes more "realistic", more e�cient, and in many cases "simpler".

To further illustrate the relevance of state changes, consider the problem of moving the minimum element
of a list of integers to the front of the list. Since the current IList model is immutable, we can only solve
the problem by returning a copy of the original list with its minimum at the front. Below is an algorithm
to solve the problem that makes use of an accumulator to accumulate the current minimum and internally
updates it as the list is being traversed. (Note: the list is assumed to hold no duplicate values).
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Min2Front.java

public class Min2Front implements IListAlgo {

private Integer _accMin; // accumulated min.

private IListFactory _fact;

public Min2Front(IListFactory f) {

_fact = f;

}

public Object emptyCase(IMTList mtHost, Object... nu) {

return mtHost;

}

public Object nonEmptyCase(INEList neHost, Object... nu) {

// We assign _accMin the first of L as a candidate for minimum:

_accMin = (Integer)neHost.getFirst();

/**

* Let us consider the set S of all elements in L that precede L.

* S is clearly empty. At this point we have established the following:

* _accMin is an element of L and is smaller than all elements of S.

* We now call on an anonymous helper to operate on L in order to find

* the minimum and remove it from L. This helper will recursively

* travese L to the end in order to obtain the minimum, save it in

* _accMin and reconstruct the host list L without the minimum on its way

* back from the recursive list traversal.

*/

IList withoutMin = (IList)neHost.execute(new IListAlgo() {

/**

* Note: when L executes this helper, this case is called since L is

* not empty. Thus for the first call to this method, h is L.

* We update _accMin to ensure that it is an element of L and is the

* minimum of all elements in L that precedes the rest of the host

* parameter h. Then we recursively call this helper on h.getRest()

* to save the minimum in _accMin and create a copy of h.getRest()

* that does not contain _accMin.

*/

public Object nonEmptyCase(INEList h, Object... nu) {

if ((Integer)h.getFirst() < accMin) {

_accMin = first;

}

/**

* At this point, we have established the following invariant:

* _accMin is an element of L and is the minimum of all elements

* in L that precedes h.getRest().

*/

IList accList = (IList)h.getRest().execute(this, null);

/**

* By induction, _accMin is now the minimum of the whole outer

* host list L, and accList is a copy of h.getRest() that does

* not contain _accMin.

*/

if (!first.equals(_accMin)) {

accList = _fact.makeNEList(first, accList);

}

// accList is now a copy of the host h without _accMin.

return accList;

/**

* As noted earlier, L.execute(...) calls nonEmptyCase() since

* L is not empty. Thus the first call to nonEmptyCase() is the

* call with L as the value for the host parameter h. So, when

* we return from this first call, accList is a copy of L without

* the minimum stored in _accMin.

*/

}

/**

* This method is only called from inside of the nonEmptyCase()

* method. The empty host parameter h marks the end of the outer

* host list L.

* _accmin is thus the minimum. The empty list is thus a copy of

* the outer host list L from the current list (empty) to the end

* that does not contain _accMin.

*/

public Object emptyCase(IMTList h, Object... nu) {

return h;

}

}, null); // NOTE that the input argument is null since the helper does

// not need it.

/**

* "Cons" the minimum to the front of the copy of the host that does not

* contain this minimum.

*/

return _fact.makeNEList(_accMin, withoutMin);

}

}

Listing 3.2: Min2Front.java
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In the above, the comments are longer than the code. The above code and comments can be greatly
simpli�ed if the list is mutable. What does it mean for a list to be mutable?
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Chapter 4

Mutable Data Structures

4.1 State Design Pattern1

When modeling real-life systems, we often �nd that certain objects in our system seem to change "state"
during the course of a computation.

Examples of changing state:

1. A kitten grows up into a cat
2. A car runs into a telephone pole and becomes a wreck.
3. A friend is sad one day, happy another, and grumpy on yet another day.
4. A list changes from empty to non-empty when an element is added.
5. A fractal becomes more complex when it grows
6. etc. etc.

The cat and the kitten are the same animal, but they don't act identically. A car can be driven but a wreck
cannot�yet they are the same entity fundamentally. Your friend is the same human being, no matter what
their mood. Why shouldn't a list be the same list and a fractal be the same fractal?

When something changes state, it is the same object, but yet it behaves di�erently. This
phenomenon of having an objects change its behavior as if it were suddenly belonging to a whole di�erent
class of objects is called "dynamic reclassi�cation".

So far we've been using immutable data, and to create a non-empty list from an empty one, required that
we make a whole brand-new list. With our use assignment ("=") previously, we've changed the value of
a variable, but never the behavior the object it references.

Consider this notion: We want to change the type of the object but we want to encapsulate that
change so that the outside world does not see the type change, only the behavior change.

Let's work with an example:
Remember the old arcade game, "Frogger"? That's the one where a tra�c-challenged amphibian attempts

to hop across multiple lanes of speeding cars and trucks, hopefully without being converted into the road-
kill-du-jour.

(Here's an on-line version: http://www.gamesgnome.com/arcade/frogger/2 )
Well, let's look at what a frog is here:
A live frog

• Has a well-de�ned position
• Has a green color
• Can move from place to place

1This content is available online at <http://cnx.org/content/m17225/1.5/>.
2http://www.gamesgnome.com/arcade/frogger/
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• Dies when hit by a vehicle.

On the other hand, a dead frog

• Has a well-de�ned position
• Has a decided red color.
• Cannot move from place to place
• Doesn't die when hit by a vehicle because it is already dead.

Using our trusty separation of variant and invariant, we can see that the position of a frog is an invariant but
all the other behaviors are variants. Thus we want to separate out these variants into their own subclasses
of an invariant abstract class. We then use composition to model the frog having an abstract state, which
could be either alive or dead:

Download the code here.3

Figure 4.1

Click here to download the full javadoc documentation of the above code.4

The variant behaviors are represented by the abstract AFrogState, with the DeadState and LiveState

implementing its abstract behaviors.
(Note: The IFrog interface is there simply to allow di�erent formulations of the frog to exist. See the

Question (Section 4.1.1: Question:) below.)

3See the �le at <http://cnx.org/content/m17225/latest/frog.zip>
4See the �le at <http://cnx.org/content/m17225/latest/frogDocs.zip>
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For those variant behaviors, all the main Frog does is to delegate (pass the call on to and return the
result of) to the _state that it has. If the _state is a LiveState, then the Frog will act as if were alive
because the LiveState only contains live-like behaviors. On the other hand, if the state is a DeadState, then
the delegation to the _state will produce dead-like behavior. The LiveState's getHit behavior will cause
the Frog's _state to change from referencing a LiveState instance to referencing a DeadState instance.
No conditionals are needed!!
The Frog behaves the way it does because of what it is at that moment, not because of what
it can �gure out about itself then.

This is an example of the State Design Pattern. Click here for more information on the State design
pattern.5

From the outside, nothing about the internal implementation of Frog can be seen. All one can see is
its public behavior. The implementations of the state design pattern are completely encapsulated (within
the frog package, in this formulation).. For instance, if one is moving a live Frog, it will dutifully move as
directed, but if in the middle somewhere, the Frog is hit, then it will immediately stop moving, no matter
how much it is asked to do so. If one is checking its color, the live Frog is a healthy green but right after its
accident, it will report that it is deathly red.

Notice how the Frog changes its behavior and always behaves correctly for its situation, with no con-
ditional statements whatsoever.

4.1.1 Question:

A very nice technique, when it is possible, is to implement the State pattern using anonymous inner classes.
Can you write an IFrog implementation that encapsulates the states using nested class(es)and anonymous
inner class(es)?

• It can be done using only one publicly visible class and no package visible classes at all.
• The only methods needed are those speci�ed by IFrog.
• How does using anonymous inner class(es) reduce the number of parameters passed to the state?
• How does using the anonymous inner class(es) reduce the number of non-public methods?

4.1.2 Onward!

Looking way back to the beginning of the semester, we now have to ask, "Can we use this technology to
create a mutable list? How will this a�ect the visitors and their execute function?" Hmmmm.....

4.2 Mutable Linear Recursive Structure6

4.2.1 1. State Pattern and Dynamic Reclassi�cation

In programming, it is often necessary to have objects with which one can store data, retrieve data when
needed, and remove data when no longer needed. Such objects are instances of what we call container
structures.

A mutable container structure is a system that may change its state from empty to non-empty, and
vice-versa. For example, an empty container changes its state to non-empty after insertion of an object; and
when the last element of a container is removed, its changes its state to empty. Figure 1 below diagrams the
state transition of a container structure.

5"State Design Pattern" <http://cnx.org/content/m17047/latest/>
6This content is available online at <http://cnx.org/content/m17265/1.3/>.
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Figure 4.2: State transition diagram for container structures

For each distinct state, the algorithms to implement the methods di�er. For example, the algorithm for
the retrieve method is trivial in the empty state -it simply returns null- while it is more complicated in the
non-empty state. The system thus behaves as if it changes classes dynamically. This phenomenon is called
�dynamic reclassi�cation.� The state pattern is a design solution for languages that do not directly support
dynamic reclassi�cation. This pattern can be summarized as follow.

• De�ne an abstract class for the states of the system. This abstract state class should provide all the
abstract methods for all the concrete subclasses.

• De�ne a concrete subclass of the above abstract class for each state of the system. Each concrete state
must implement its own concrete methods.

• Represent the system by a class, called the context, containing an instance of a concrete state. This
instance represents the current state of the system.

• De�ne methods for the system to return the current state and to change state.
• Delegate all requests made to the system to the current state instance. Since this instance can change

dynamically, the system will behave as if it can change its class dynamically.

Below is the UML class diagram for the state design pattern7.

7"State Design Pattern" <http://cnx.org/content/m17047/latest/>
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Figure 4.3: UML class diagram for the state design pattern

4.2.2 2. Mutable Linear Recursive Structure Framework

A mutable linear recursive structure (LRStruct) can be in the empty state or in a non-empty state. If it
is empty, it contains no object. Otherwise, it contains an object called �rst, and a LRStruct object called
rest. When we insert a data object into an empty LRStruct, it changes it state to non-empty. When we
remove the last element from an non-empty LRStruct, it changes its state to empty. We model a LRStruct

using the state pattern, and as in the case of the immutable list, (Section 3.4) we also apply the visitor
pattern to obtain a framework. Below is the UML class diagram of the LRStruct framework. Because of
the current limitation of our diagramming tool, we are using the Object[] input notation to represent the
variable argument list Object... input. Click here to download the code8. Click here to download the
javadoc documentation.9. We will study the implementation code in the next lecture.

8See the �le at <http://cnx.org/content/m17265/latest/lrs.zip>
9See the �le at <http://cnx.org/content/m17265/latest/lrsdocs.zip>



94 CHAPTER 4. MUTABLE DATA STRUCTURES

Figure 4.4: State and Visitor Patterns for Mutable Linear Recursive Structure

The public constructor:

• LRStruct()

and the methods:

• insertFront(...)

• removeFront(...)

• getFirst()

• setFirst(...)

• getRest()

• setRest(...)

of LRStruct expose the structure of an LRStruct to the client and constitute the intrinsic structural
behavior of an LRStruct. They form a minimal and complete set of methods for manipulating an
LRStruct. Using them, a client can create an empty LRStruct, store data in it, and remove/retrieve data
from it at will.

The method,
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• Object execute(IAlgo algo, Object inp)

is called the extensibility "hook". It allows the client to add an open-ended number of new application-
dependent behaviors to the data structure LRStruct, such as computing its length or merging one LRStruct
with another, without modifying any of the existing code. The application-dependent behaviors of LRStruct
are extrinsic behaviors and are encapsulated in a union represented by a visitor interface called IAlgo.

When a client programs with LRStruct, he/she only sees the public methods of LRStruct and IAlgo . To
add a new operation on an LRStruct, the client writes appropriate concrete classes that implements IAlgo.
The framework dictates the overall design of an algorithm on LRStruct: since an algorithm on LRStruct

must implement IAlgo , there must be some concrete code for emptyCase(...) and some concrete code for
nonEmptyCase(...). For example,

public class DoSomethingWithLRS implements IAlgo {

// fields and constructor code...

public Object emptyCase(LRStruct host, Object... inp) {

// some concrete code here...

return some Object; // may be null.

}

public Object nonEmptyCase(LRStruct host, Object... inp) {

// some concrete code here...

return some Object; // may be null.

}

}

As illustrated in the above, an algorithm on LRStruct is "declarative" in nature. It does not involve
any conditional to �nd out what state the LRStruct is in in order to perform the appropriate task. It simply
"declares" what needs to be done for each state of the host LRStruct, and leaves it to the polymorphism
machinery to make the correct call. Polymorphism is exploited to minimize �ow control and reduce code
complexity.

To perform an algorithm on an LRStruct, the client must "ask" the LRStruct to "execute" the algorithm
and passes to it all the inputs required by the algorithm.

LRStruct myList = new LRStruct(); // an empty list

// code to call on the structural methods of myList, e.g. myList.insertFront(/*whatever*/)

// Now call on myList to perform DoSomethingWithLRS:

Object result = myList.execute(new DoSomethingWithLRS(/* constructor argument list */), -2.75, "abc");

Without knowing how LRStruct is implemented, let us look an example of an algorithm on an LRStruct
.

4.2.3 3. Example

Consider the problem of inserting an Integer object in order into a sorted list of Integers. Let us contrast
the insert in order algorithms between IList, the immutable list, and LRStruct, the mutable list.
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Insert in order using factory Insert in order using mutation

import listFW.*;

public class InsertInOrder implements IListAlgo {

private IListFactory _fact;

public InsertInOrder(IListFactory lf) {

_fact = lf;

}

/**

* Simply makes a new non-empty list with the given

* parameter n as first.

* @param host an empty IList.

* @param n n[0] is an Integer to be inserted in order into host.

* @return INEList.

*/

public Object emptyCase(IEmptyList host, Object... n) {

return _fact.makeNEList(n[0], host);

}

/**

* Based on the comparison between first and n,

* creates a new list or recur!

* @param host a non-empty IList.

* @param n an Integer to be inserted in order into host.

* @return INEList

*/

public Object nonEmptyCase(INEList host, Object... n) {

return (Integer)n[0] < (Integer)host.getFirst() ?

_fact.makeNEList(n[0], host):

_fact.makeNEList(host.getFirst(),

(IList)host.getRest().execute(this, n[0]));

}

}

import lrs.*;

public class InsertInOrderLRS implements IAlgo {

public static final InsertInOrderLRS Singleton

= new InsertInOrderLRS();

private InsertInOrderLRS() {

}

/**

* Simply inserts the given parameter n at the front.

* @param host an empty LRStruct.

* @param n n[0] isan Integer to be inserted in order into host.

* @return LRStruct

*/

public Object emptyCase(LRStruct host, Object... n) {

return host.insertFront(n[0]);

}

/**

* Based on the comparison between first and n,

* inserts at the front or recurs!

* @param host a non-empty LRStruct.

* @param n n[0] is an Integer to be inserted in order into host.

* @return LRStruct

*/

public Object nonEmptyCase(LRStruct host, Object... n) {

if ((Integer)n[0] < (Integer)host.getFirst()) {

return host.insertFront(n[0]);

}

else {

return host.getRest().execute(this, n[0]);

}

}

}

continued on next page
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Note that the insert in order algorithm for LRStruct need not create any new list and thus needs no
factory.Download the above code: lrs.zip10

Table 4.1

4.3 Binary Tree Structure11

Up until now, we have been organizing data in a "linear" fashion: one item after another. The corresponding
data structures are the immutable scheme list (IList) and the mutable linear recursive structure (LRStruct).
Now, suppose we want to model something like the following organization chart.

Figure 4.5

A structure of data such as the above is called a tree. We �rst design a special kind of mutable tree
structure called binary trees.

4.3.1 1. Binary Tree Object Model

De�nition 4.1: Binary Tree
A (mutable) binary tree, BiTree, can be in an empty state or a non-empty state:

• When it is empty, it contains no data.
• When it is not empty, it contains a data object called the root element, and 2 distinct BiTree

objects called the left subtree and the right subtree.

10See the �le at <http://cnx.org/content/m17265/latest/lrs.zip>
11This content is available online at <http://cnx.org/content/m17289/1.2/>.
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We implement the above object structure with a combination of state/composite/visitor patterns, in a
manner analogous to LRStruct12 .

Below is the public interface of the binary tree framework. Click here for javadoc documentation.13

Figure 4.6

The implementation details are given in the following UML class diagram. Click here for javadoc docu-
mentation.14

12http://cnx.org/content/m17289/latest/lrs-javadocs.zip
13http://cnx.org/content/m17289/latest/brs-javadocs.zip
14http://cnx.org/content/m17289/latest/brs-javadocs.zip



99

Figure 4.7
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4.3.2 2. Implementation Details

note: Click here for source code.15

The code for BiTree is trivial, as it simply delegates most calls to its state, the root node. The real work is
done in the state. The code for EmptyNode and DatNode for the most part are equally trivial. The insertion
and removal of the root data of a BiTree require some work and need some explanation. When does it make
sense to remove the root node from a (binary) tree? That is, when can one unambiguously remove the root
node from a binary tree?

Clearly, when both subtrees of a root node are non-empty, then removing the root node is problematic.
However, it makes sense to allow root removal when at least one of the subtrees is empty. Suppose one of
the subtrees is empty, then BiTree.remRoot() will change the state of this BiTree to the state of the other
subtree. For example, when the left subtree is empty, root removal of the parent tree will set the parent tree
to its right subtree.

(a)
Emp-
tyN-
ode

(b)
DatN-
ode

Figure 4.8: (a) EmptyNode (b) DatNode

4.3.3 3. The Best Tree Printing Algorithm in Texas

Consider the binary tree displayed in the following "horizontal" manner:

62

_______________|_________________

| |

20 7

_____|____________ ______|______

| | | |

[ ] 18 [ ] [ ]

_________|______

| |

39 [ ]

_____|_____

| |

[ ] [ ]

Such horizontal display of a tree is not very convenient when the tree is wide. It is more convenient to
display the tree in a "vertical" manner.

The following visitor and its helper print the above tree "vertically" as shown below:

62

15http://cnx.org/content/m17289/latest/brs.zip
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|_ 20

| |_ []

| |_ 18

| |_ 39

| | |_ []

| | |_ []

| |_ []

|_ 7

|_ []

|_ []

Let's study the algorithm.

(a) (b)

Figure 4.9

4.4 Binary Search Tree16

4.4.1 Binary Search Tree

4.4.1.1 1. Binary Search Tree Property (BSTP)

Consider the following binary tree of Integer objects.

-7

|_ -55

| |_ []

| |_ -16

| |_ -20

| | |_ []

| | |_ []

| |_ -9

| |_ []

| |_ []

|_ 0

|_ -4

| |_ []

| |_ []

|_ 23

|_ []

|_ []

Notice the following property:

• all elements in the left subtree are less than the root element,

16This content is available online at <http://cnx.org/content/m32616/1.1/>.
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• and the root element is less than all elements in the right subtree.

Moreover, this property holds recursively for all subtrees. It is called the binary search tree (BST)
property.

In general, instead of Integer objects, suppose we have a set of objects that can be compared for equality
with "equal to" and "totally ordered" with an order relation called "less or equal to" . De�ne "less than" to
mean "less or equal to" AND "not equal to". Let T be a BiTree structure that stores such totally ordered
objects.

4.4.1.1.1 De�nition of Binary Search Tree Property

The binary search tree property(BSTP) is de�ned on the binary tree structure as follows.

• An empty binary tree satis�es the BSTP.
• A non-empty binary tree T satis�es the BSTP if and only if

· the left and right subtrees of T both satisfy BSTP, and
· all elements in the left subtree of T are less than the root of T, and
· the root of T is less than all elements in the right subtree of T.

We can take advantage of this property when looking up for a particular ordered object in the tree. Instead
of scanning the whole tree for the search target, we can compare the search target against the root element
and narrow the search to the left subtree or the right subtree if necessary. So in the worst possible case,
the number of comparisons is proportional to the height of the binary tree. This is a big win if the tree is
balanced. It can be proven that when a tree containing N elements is balanced, its height is at most a
constant multiple of logN. For example, the height of a balanced tree containing 106 elements is at most a
�xed multiple of 6. Here is the de�nition of what a balanced tree is.

4.4.1.1.2 De�nition of Balanced Tree

• An empty tree is balanced.
• A non-empty tree is balanced if and only if

· its subtrees are balanced and
· the heights of the subtrees di�er by a �xed constant or by a �xed constant factor.

A binary tree with the BST property is called a binary search tree. It can serve as an e�cient way for
storage/retrieval of data. We are lead to the following question: how to create and maintain a binary search
tree?

4.4.1.2 2. Binary Search Tree Insertion

Suppose we start with an empty binary tree T and a Comparator that models a total ordering in a given
set of objects S. Then T clearly has the BST property with respect the Comparator ordering of S. The
following algorithm (visitor on binary trees) will allow us to insert elements of S into T and at the same time
maintain the BST property for T. This algorithm also works for binary search tree containing Comparable
objects.

package brs.visitor;

import brs.*;

import java.util.*;

/**

* Inserts an Object into the host maintaining the host's binary search
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* tree property via a given Comparator.

* Can also be used for Comparable objects.

* Duplication is not allowed: replaces old data object with the new one.

*/

public class BSTInserter implements IVisitor {

private Comparator _order;

/**

* Used when the items in the tree are Comparable objects.

*/

public BSTInserter() {

_order = new Comparator() {

public int compare(Object x, Object y) {

return ((Comparable)x).compareTo(y);

}

};

}

/**

* Used to order the items according to a given Comparator.

* @param order a total ordering on the items to be stored in the tree.

*/

public BSTInserter (Comparator order) {

_order = order;

}

/**

* Returns the host tree where the input is inserted as the root.

* @param host an empty binary tree, which obviously satisfies BSTP.

* @param input[0] new data to be inserted.

* @return host (which is no longer empty).

*/

public Object emptyCase(BiTree host, Object... input) {

host.insertRoot (input[0]);

return host;

}

/**

* If the input is equal to host.getRootDat) then the old root data

* is replaced by input. Equality here is implicitly defined by the

* total ordering represented by the Comparator _order.

* @param host non-empty and satisfies BSTP.

* @param input[0] new data to be inserted.

* @return the tree where input[0] is inserted as the root.

*/

public Object nonEmptyCase(BiTree host, Object... input) {

Object root = host.getRootDat();

if (_order.compare(input[0], root) < 0) {

return host.getLeftSubTree().execute(this, input[0]);

}

if (_order.compare(input[0], root) > 0) {
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return host.getRightSubTree().execute(this, input[0]);

}

host.setRootDat(input[0]);

return host;

}

}

4.4.1.3 3. Binary Search Tree Lookup

Suppose we have a binary search tree based on a given Comparator ordering. The following algorithm will
allow us to lookup and retrieve a particular data object from the tree. This algorithm also works for binary
search tree containing Comparable objects.

package brs.visitor;

import brs.*;

import java.util.*;

/**

* Finds a data object in a binary host tree that satisfies the

* Binary Search Tree Property.

* The algorithm is similar to that of insertion.

*/

public class BSTFinder implements IVisitor {

private Comparator _order;

/**

* Used when the items in the tree are Comparable objects.

*/

public BSTFinder() {

_order = new Comparator() {

public int compare(Object x, Object y) {

return ((Comparable)x).compareTo(y);

}

};

}

/**

* Used when the items are ordered according to a given Comparator.

* @param order a total ordering on the items stored in the tree.

*/

public BSTFinder(Comparator order) {

_order = order;

}

/**

* Returns the empty host tree itself.

* @param host an empty binary (which obviously satisfies the

* Binary Search Tree Property).

* @param nu not used

* @return BiTree the empty host tree.
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*/

public Object emptyCase(BiTree host, Object... nu) {

return host;

}

/**

* Returns the tree such that whose root, if it exists, is equal to input

* via the given Comparator _order.

* @param host non empty and satisfies BSTP.

* @param input[0] object to be looked up.

* @return BiTree

*/

public Object nonEmptyCase(BiTree host, Object... input) {

Object root = host.getRootDat();

if (_order.compare(input[0], root) < 0) {

return host.getLeftSubTree().execute(this, input[0]);

}

if (_order.compare(input[0], root) > 0) {

return host.getRightSubTree().execute(this, input[0]);

}

return host;

}

}

4.4.1.4 4. Binary Search Tree Deletion

The algorithm to remove a particular data object from a binary search tree is more involved. When the
element to be removed is not at a leaf node, we can replace it with the largest element of the left subtree (if
it's not empty) or the smallest element of the right subtree (if it's not empty). In preparation, we write a
visitor to �nd the subtree containing the largest element at the root.

package brs.visitor;

import brs.*;

import ordering.*;

/**

* Returns the subtree of the host with the max value in the root if the tree

* is not empty, otherwise returns the host itself, assuming the tree satisfies

* the BST property.

* @author DXN

*/

public class MaxTreeFinder implements IVisitor {

public static final MaxTreeFinder Singleton = new MaxTreeFinder ();

private MaxTreeFinder () {

}

/**

* The host tree is empty: the tree containing the max is the host itself.

* @param host satisfies the binary search tree property.

* @param nu not used.

* @return BiTree the empty host itself.
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*/

public Object emptyCase(BiTree host, Object... nu) {

return host;

}

/**

* Asks the right subtree of the host to find the max via an

* anomymous helper, passing to it the host as a parameter.

* @param host satisfies the binary search tree property.

* @param nu not used.

* @return BiTree the subtree with maximum root.

*/

public Object nonEmptyCase (BiTree host, Object... nu) {

return host.getRightSubTree().execute (new IVisitor () {

/**

* The BST parent of an empty right subtree contains the max

* at the root.

* @param hp[0] a Bitree, the parent of h.

*/

public Object emptyCase (BiTree h, Object... hp) {

return hp[0];

}

/**

* Keep going to the right looking for the max.

* @param hp[0] a Bitree, the parent of h.

*/

public Object nonEmptyCase (BiTree h, Object... hp) {

return h.getRightSubTree ().execute (this, h);

}

}, host);

}

}

We are now ready to write the deletion algorithm for a binary search tree ordered according to a given
Comparator. This algorithm also works for binary search tree containing Comparable objects.

package brs.visitor;

import brs.*;

import java.util.*;

/**

* Deletes the given input from the host tree. Returns TRUE if the input is in

* the host tree, otherwise return FALSE.

Invariant: host contains unique objects and satisfies the BST property.

Post: host does not contains the input.

Algorithm:

Case host is empty:

returns FALSE because there is nothing to remove.

Case host is not empty:

if input < root

return the result of asking the left subtree to delete the input;
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else if root < input

return the result of asking the right subtree to delete the input;

else if host's left subtree is empty (at this point, input == root)

ask host to remove its root (and become its right subtree)

returns TRUE

else {

ask host to replace the root with the maximum value of its left subtree;

the subtree that contains the maximum must have an empty right subtree;

thus it is safe to ask this subtree to remove its root;

return TRUE

}

NOTE:

As you have been indoctrinated, it is "uncouth" do ask something for what it

is. Instead of checking a subtree for emptiness, we should ask the subtree to

help carry out the deletion.

*/

public class BSTDeleter implements IVisitor {

private Comparator _order;

/**

* Used when the items in the tree are Comparable objects.

*/

public BSTDeleter() {

_order = new Comparator() {

public int compare(Object x, Object y) {

return ((Comparable)x).compareTo(y);

}

};

}

/**

* Used when the items are ordered according to a given Comparator.

* @param order a total ordering on the items stored in the tree.

*/

public BSTDeleter (Comparator order) {

_order = order;

}

/**

* There is nothing to delete.

* @param host is empty and obviously satisfies the BST Property.

* @param nu not used

* @return Boolean.FALSE

*/

public Object emptyCase(BiTree host, Object... nu) {

return Boolean.FALSE;

}

/**
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if input < root

ask the host's left subtree to delete the input;

else if root < input

ask the host's right subtree to delete the input

else (at this point, input == root)

ask the left subtree for help to remove the host's root using an

anonymous helper.

* @param host non-empty and satifies BST property

* @param input[0] object to be deleted from the host.

* @return Boolean.

*/

public Object nonEmptyCase(final BiTree host, Object... input) {

Object root = host.getRootDat();

if (_order.compare(input[0], root) < 0) {

return host.getLeftSubTree().execute (this, input[0]);

}

if (_order.compare(input[0], root) > 0) {

return host.getRightSubTree().execute (this, input[0]);

}

// At this point: input is equal to root.

return host.getLeftSubTree().execute(new IVisitor() {

/**

* The outer host can safely remove its root and

* becomes its right subtree.

* @param h the left subtree of the outer host.

*/

public Object emptyCase (BiTree h, Object notUsed) {

host.remRoot();

return Boolean.TRUE;

}

/**

* Finds the maximum value in the h paramter.

* Asks the outer host parameter to set its root to this

* maximum value, and removes this maximum value from the

* subtree containing this maximum value.

* @param h the left subtree of the outer host.

*/

public Object nonEmptyCase (BiTree h, Object notUsed) {

BiTree maxTree = (BiTree)h.execute(MaxTreeFinder.Singleton);

host.setRootDat(maxTree.remRoot());

return Boolean.TRUE;

}

});

}

}

We now have all the needed ingredient to implement an e�cient container for storage/retrieval/lookup, using
the BiTree framework together with the above visitors!
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4.5 Arrays and Array Processing17

There are many ways to store data. So far, we have covered linear recursive structures, lists, and binary
recursive structures, trees. Let's consider another way of storing data, as a contiguous, numbered (indexed)
set of data storage elements:

anArray =

itemA itemB itemC itemD itemE itemF itemG itemH itemI itemJ

0 1 2 3 4 5 6 7 8 9

Table 4.2

This "array" of elements allows us to access any individual element using a numbered index value.

De�nition 4.2: array
At its most basic form, a random access data structure where any element can be accessed by
specifying a single index value corresponding to that element.
Example
anArray[4] gives us itemE. Likewise, the statement anArray[7] = 42 should replace itemH with
42.

note: Notice however, that the above de�nition is not a recursive de�nition. This will cause
problems.

4.5.1 Arrays in Java

• Arrays...

· are contiguous (in memory) sets of object references (or values, for primitives),
· are objects,
· are dynamically created (via new), and
· may be assigned to variables of type Object or primitives

• An array object contains zero or more unnamed variables of the same type. These variables are
commonly called the elements of the array.

• A non-negative integer is used to name each element. For example, arrayOfInts[i] refers to the
i+1st element in the arrayOfInts array. In computer-ese, an array is said to be a "random access"
container, because you can directly (and I suppose, randomly) access any element in the array.

• An array has a limited amount of intelligence, for instance, it does know its maximum length at all
times, e.g. arrayOfInts.length.

• Arrays have the advantage that they

· provide random access to any element
· are fast.
· require minimum amounts of memory

More information on arrays can be found in the Java Resources web site page on arrays18

note: Arrays are size and speed at a price.

17This content is available online at <http://cnx.org/content/m17258/1.2/>.
18http://www.exciton.cs.rice.edu/JavaResources/Java/declarations.htm#Arrays
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4.5.1.1 Array Types

• An array type is written as the name of an element type followed by one or more empty pairs of square
brackets.

· For example, int[] is the type corresponding to a one-dimensional array of integers.

• An array's length is not part of its type.
• The element type of an array may be any type, whether primitive or reference, including interface

types and abstract class types.

4.5.1.2 Array Variables

• Array variables are declared like other variables: a declaration consists of the array's type followed by
the array's name. For example, double[][] matrixOfDoubles; declares a variable whose type is a
two-dimensional array of double-precision �oating-point numbers.

• Declaring a variable of array type does not create an array object. It only creates the variable, which
can contain a reference to an array.

• Because an array's length is not part of its type, a single variable of array type may contain references
to arrays of di�erent lengths.

• To complicate declarations, C/C++-like syntax is also supported, for example,

double rowvector[], colvector[], matrix[][];

This declaration is equivalent to

double[] rowvector, colvector, matrix[];

or

double[] rowvector, colvector;

double[][] matrix;

Please use the latter!

4.5.1.3 Array Creation

• Array objects, like other objects, are created with new. For example, String[] arrayOfStrings =

new String[10];declares a variable whose type is an array of strings, and initializes it to hold a
reference to an array object with room for ten references to strings.

• Another way to initialize array variables is

int[] arrayOf1To5 = { 1, 2, 3, 4, 5 };

String[] arrayOfStrings = { "array",

"of",

"String" };

Widget[] arrayOfWidgets = { new Widget(), new Widget() };

• Once an array object is created, it never changes length! int[][] arrayOfArrayOfInt = {{ 1, 2

}, { 3, 4 }};

• The array's length is available as a �nal instance variable length. For example,

int[] arrayOf1To5 = { 1, 2, 3, 4, 5 };

System.out.println(arrayOf1To5.length);

would print �5�.
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4.5.1.4 Array Accesses

• Indices for arrays must be int values that are greater than or equal to 0 and less than the length of
the array. Remember that computer scientists always count starting at zero, not one!

• All array accesses are checked at run time: An attempt to use an index that is less than zero or greater
than or equal to the length of the array causes an IndexOutOfBoundsException to be thrown.

• Array elements can be used on either side of an equals sign:

· myArray[i] = aValue;

· someValue = myArray[j];

• Accessing elements of an array is fast and the time to access any element is independent of where it is
in the array.

• Inserting elements into an array is very slow because all the other elements following the insertion
point have to be moved to make room, if that is even possible.

4.5.2 Array Processing Using Loops

More information on loops can be found at the Java Resources web site page on loops19 .
The main technique used to process arrays is the for loop. A for loop is a way of processing each

element of the array in a sequential manner.
Here is a typical for loop:

// Sum the number of elements in an array of ints, myArray.

int sum = 0; // initialize the sum

for(int idx=0; idx < myArray.length; idx++) { //start idx @ 0; end idx at length-1;

//increment idx every time the loop is processed.

sum += myArray[idx]; // add the idx'th element of myArray to the sum

}

There are a number of things going on in the above for loop:

• Before the loop starts, the index idx is being declared and initialized to zero. idx is visible only
within the for loop body (between the curly braces).

• At the begnning of each loop iteration, the index idx is being tested in a "termination condition",
in this case, idx is compared to the length of the list. If the termination condition evaluates to false,
the loop will immediately terminate.

• During each loop iteration, the value of the idx's element in the array is being added to the running
sum.

• After each loop iteration, the index idx is being incremented.

One can traverse an array in any direction one wishes:

// Sum the number of elements in an array of ints, myArray.

int sum = 0; // initialize the sum

for(int idx=myArray.length-1; 0<=idx; idx--) { //start idx @ length-1; end idx at 0;

//decrement idx every time the loop is processed.

sum += myArray[idx]; // add the idx'th element of myArray to the sum

}

19http://www.exciton.cs.rice.edu/JavaResources/Java/loops.htm
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The above loop sums the list just as well as the �rst example, but it does it from back to front. Note
however, that we had to be a little careful on how we initialized the index and how we set up the termination
condition.

Here's a little more complicated loop:

// Find the index of the smallest element in an array of ints, myArray.

int minIdx = 0; // initialize the index. Must be declared outside the loop.

if(0==myArray.length) throw new NoSuchElementException("Empty array!"); // no good if array is empty!

else {

for(minIdx = 0, int j = 1; j<myArray.length; j++) { //start minIdx @ 0, start index @ 1 ;

//end index at length-1; increment index every time the loop is processed.

if(myArray[minIdx] > myArray[j])

minIdx = j; // found new minimum

}

}

Some important things to notice about this algorithm:

• The empty case must be checked explicitly � no polymorphism to help you out here!
• The desired result index cannot be declared inside the for loop because otherwise it won't be visible

to the outside world.
• Be careful about using the minIdx value if the array was indeed empty�it's an invalid value! It can't

be set to a valid value because otherwise you can't tell the di�erence between a value that was never
set and one that was.

• The for loop has two initialization statements separated by a comma.
• The loop does work correctly if the array only has one element, but only because the termination check

is done before the loop body.
• Notice that to prove that this algorithm works properly, one must make separate arguments about

the empty case, the one element case and the n-element case. Contrast this to the much simpler list
algorithm that only needs an empty and non-empty cases.

For convenience, Java 5.0 now o�ers a compact syntax used for traversing all the elements of an array or of
anything that subclasses type Iterable20 :

MyType[] myArray; // array is initialized with data somewhere

for(MyType x: myArray){

// code involving x, i.e. each element in the array

}

It is important to remember that this syntax is used when one wants to process every element in an array (or
an Iterable object) independent of order of processing because Java does not guarantee a traversal
order.

Let's look at an algorithm where we might not want to process the entire array:

// Find the first index of a given value in an array

int idx = -1; // initialize the index to an invalid value.

20http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Iterable.html



113

for(int j=0; j<myArray.length; j++) { //no initialization ; end index at length-1;

//increment index every time the loop is processed.

if(desiredValue == myArray[j]) { // found match!

idx = j; // save the index.

break; // break out of the loop.

}

}

Notes:

• The only way you can tell if the desired value was actually found or not is if the value of idx is -1 or
not. Thus the value of idx must be checked before it is ever used.

• The resultant idx variable cannot be used as the index inside the loop because one would not be able
to tell if the desired value was found or not unless one also checked the length of the array. This is
because if the desired value was never found, idx at the end of the loop would equal the length of the
array, which is only an invalid value if you already know the length of the array.

• The break statement stops the loop right away and execution resumes at the point right after end of
the loop.

There is a counterpart to break called continue that causes the loop to immediately progress to the beginning
of the next iteration. It is used much more rarely than break, usually in situations where there are convoluted
and deeply nested if-else statements.

Can you see that the price of the compact syntax of for loops is a clear understandability of the process?

4.5.2.1 While loops

for loops are actually a specialized version of while loops. while loops have no special provisions for
initialization or loop incrementing, just the termination condition.

while loops iterate through the loop body until the termination condition evaluates to a false value.
The following for loop:

for([initialization statement]; [termination expr] ; [increment statement]) {

[loop body]

}

Is exactly equivalent to the following:

{

[initialization statement];

while([termination expr]) {

[loop body]

[increment statement];

}

}
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Note the outermost curly braces that create the scoping boundary that encapsulates any variable declared
inside the for loop.

The Java compiler will automatically convert a for loop to the above while loop.
Here is the above algorithm that �nds a desired value in an array, translated from a for loop to a while

loop:

// Find the index of the first occurance of desiredValue in myArray, using a while loop.

{

idx = -1; // initialize the final result

int j = 0; // initialize the index

while(j < myArray.length) { // loop through the array

if(desiredValue == myArray[j]) { // check if found the value

idx = j; // save the index

break; // exit the loop.

}

j++; // increment the index

}

}

Basically, for loops give up some of the �exibility of a while loop in favor of a more compact syntax.
while loops are very useful when the data is not sequentially accessible via some sort of index. Another

useful scenario for while loops is when the algorithm is waiting for something to happen or for a value to
come into the system from an outside (relatively) source.

do-while loops are the same as while loops except that the conditional statement is evaluated at the
end of the loop body, not its beginning as in a for or while loop.

See the Java Resources web site page on loops21 for more information on processing lists using while
loops.

4.5.2.2 for-each loops

An exceedingly common for-loop to write is the following;

Stuff[] s_array = new Stuff[n];

// fill s_array with values

for(int i = 0; i < s_array.length; i++) {

// do something with s_array[i]

}

Essentially, the loop does some invariant processing on every element of the array.
To make life easier, Java implements the for-each loop, which is just an alternate for loop syntax:

Stuff[] s_array = new Stuff[n];

// fill s_array with values

for(Stuff s:s_array) {

// do something with s

}

21http://www.exciton.cs.rice.edu/JavaResources/Java/loops.htm
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Simpler, eh?
It turns out that the for-each loop is not simply relegated to array. Any class that implements the

Iterable interface will work. This is discussed in another module, as it involves the use of generics.

4.5.3 Arrays vs. Lists

In no particular order...

• Arrays:

· Fast access to all elements.
· Fixed number of elements held.
· Di�cult to insert elements.
· Can run into problems with uninitialized elements.
· Minimal safety for out-of-bounds indices.
· Minimal memory used
· Simple syntax
· Must use procedural techniques for processing.
· Often incompatible with OO architectures.
· Di�cult to prove that processing algorithms are correct.
· Processing algorithms can be very fast.
· Processing algorithms can be minimally memory intensive

• Lists:

· Slow access except to �rst element, which is fast.
· Unlimited number of elements held.
· Easy to insert elements.
· Encountering uninitialized elements very rare to impossible.
· Impossible to make out-of-bounds errors.
· Not optimized for memory usage.
· More cumbersome syntax.
· Can use OO and polymorphic recursive techniques for processing.
· Very compatible with OO architectures.
· Easy to prove that processing algorithms are correct.
· Processing algorithms can be quite fast if tail-recursive and using a tail-call optimizing compiler.
· Processing algorithms can be very memory intensive unless tail-recursive and using a tail-call
optimizing compiler.

note: Arrays are optimized for size and random access speed at the expense of OO design and
recursion. If you do not need speed or low memory, do not use an array. If you must use an array,
tightly encapsulate it so that it does not a�ect the rest of your system.

4.6 Design Patterns for Sorting22

The following discussion is based on the the SIGCSE 2001 paper by Nguyen and Wong, "Design Patterns
for Sorting"23.
Merritt's Thesis
In 1985, Susan Merritt proposed that all comparison-based sorting could be viewed as �Divide and Conquer�
algorithms.24 That is, sorting could be thought of as a process wherein one �rst "divides" the unsorted

22This content is available online at <http://cnx.org/content/m17309/1.4/>.
23D. Nguyen and S. Wong, �Design Patterns for Sorting,� SIGCSE Bulletin 33:1, March 2001, 263-267
24S. Merritt, "An Inverted Taxonomy of Sorting Algorithms," Comm. of the ACM, Jan. 1985, Volume 28, Number 1, pp.

96-99
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pile of whatever needs to sorted into smaller piles and then "conquers" them by sorting those smaller piles.
Finally, one has to take the the smaller, now sorted piles and recombines them into a single, now-sorted pile.

We thus end up with a recursive de�nition of sorting:

• To sort a pile:

· Split the pile into smaller piles
· Sort the smaller piles
· Join the sorted smaller piles into a single pile

We can see Merritt's recursive notion of sorting as a split-sort-join process in a pictoral manner by considering
the general sorting process as a "black box" process that takes an unsorted set and returns a sorted set.
Merritt's thesis thus contends that this sorting process can be described as a splitting followed by a sorting
of the smaller pieces followed by a joining of the sorted pieces. The smaller sorting process can thus be
similarly described. The base case of this recursive process is when the set has been reduced to a single
element, upon which the sorting process cannot be broken down any more as it is a trivial no-op.

Animation of the Merritt Sorting Thesis (Click the "Reveal More" button)

This media object is a Flash object. Please view or download it at
<split-join.swf>

Figure 4.10: Sorting can be seen as a recursive process that splits the unsorted items into multiple
unsorted sets, sorts them and then rejoins the now sorted sets. When a set is reduced to a single element
(blank boxes above), sorting is a trivial no-op.

Merritt's thesis is potentially a very powerful method for studying and understanding sorting. In addition,
Merritt's abstract characterization of sorting exhibits much object-oriented (OO) �avor and can be described
in terms of OO concepts.
Capturing the Abstraction
So, how do we capture the abstraction of sorting as described by Merritt? Fundamentally, we have to
recognize that the above description of sorting contains two distinct parts: the invariant process of splitting
into sub-piles, sorting the sub-piles and joining the sub-piles, and the variant processes of the actual splitting
and joining algorithms used.

Here, we will restrict ourselves to the process of sorting an array of objects, in-place � that is, the
original array is mutated from unsorted to sorted (as opposed to returning a new array of sorted values and
leaving the original untouched). The Comparator object used to compare objects will be given to the sorter's
constructor.
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Abstract Sorter Class

Figure 4.11: The invariant sorting process is represented as an abstract class

Here, the invariant process is represented by the concrete sort method, which performs the split-sort-
sort-join process as described by Merritt. The variant processes are represented by the abstract split and
join methods, whose exact behaviors are indeterminate at this time.

Above the methods are de�ned as following:

final void sort(Object [] A, int lo, int hi) � sorts the given unsorted array of objects, A,
de�ned from index lo to index hi, inclusive. This method is implemented here and marked final to enforce
its invariance with respect to the subclasses. It is this method that implements Merritt's split-sort-join
process.

abstract int split(Object [] A, int lo, int hi) � splits the given unsorted array of objects,
A, de�ned from index lo to index hi, inclusive, into two adjacent sub-arrays. The returned index is the
index of the �rst element of the upper sub-array. The implementation of this abstract method is in the
sub-classes.

abstract void join(Object [] A, int lo, int s, int hi) � joins two sorted adjacent sub-arrays of
objects in the array A, where the lower sub-array is from index lo to index s, inclusive, and the upper
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sub-array is from index s to index hi, inclusive. The implementation of this abstract method is in the
subclasses.

Here's the full code for the abstract ASorter class: ASorter class

package sorter;

public abstract class ASorter

{

protected AOrder aOrder;

/**

* The constructor for this class.

* @param aOrder The abstract ordering strategy to be used by any subclass.

*/

protected ASorter(AOrder aOrder)

{

this.aOrder = aOrder;

}

/**

* Sorts by doing a split-sort-sort-join. Splits the original array into two subarrays,

* recursively sorts the split subarrays, then re-joins the sorted subarrays together.

* This is the template method. It calls the abstract methods split and join to do

* the work. All comparison-based sorting algorithms are concrete subclasses with

* specific split and join methods.

* @param A the array A[lo:hi] to be sorted.

* @param lo the low index of A.

* @param hi the high index of A.

*/

public final void sort(Object[] A, int lo, int hi)

{

if (lo < hi)

{

int s = split (A, lo, hi);

sort (A, lo, s-1);

sort (A, s, hi);

join (A, lo, s, hi);

}

}

/**

* Splits A[lo:hi] into A[lo:s-1] and A[s:hi] where s is the returned value of this function.

* @param A the array A[lo:hi] to be sorted.

* @param lo the low index of A.

* @param hi the high index of A.

*/

protected abstract int split(Object[] A, int lo, int hi);

/**

* Joins sorted A[lo:s-1] and sorted A[s:hi] into A[lo:hi].

* @param A A[lo:s-1] and A[s:hi] are sorted.
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* @param lo the low index of A.

* @param hi the high index of A.

*/

protected abstract void join(Object[] A, int lo, int s, int hi);

/**

* An accessor method for the abstract ordering strategy.

* @param aOrder

*/

public void setOrder(AOrder aOrder)

{

this.aOrder = aOrder;

}

}

Java code for ASorter, the abstract superclass for all concrete sorters and the implementation of Merritt's template for sorting.

Note: AOrder is an abstract ordering operator whose concrete implementations de�ne the binary ordering
for the object being sorted. The examples below, only use the AOrder.lt(Object x, Object y) method,
which returns true if x < y. The sorting framework could easily be modi�ed to use java.util.Comparator
instead with no loss of generality.
Template Design Pattern
The invariant sorting process as described by Merritt is an example of the Template Method Design Pattern.
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Template Method Design Pattern

Figure 4.12: The Template Method Design Pattern describes an invariant concrete process in terms of
variant, abstract methods.

Here, the invariant process is represented by a concrete method of an abstract superclass. This concrete
method's implementation is in terms of abstract methods of the same class. These abstract methods represent
the variant processes and are implemented in the sub-classes. This type of class organization where the
variant processes are relegated to sub-classes is also known as a white box framework.

4.6.1 Concrete Sorters

In order to create a sorter that can actually perform a sorting operation, we need to subclass the above
ASorter class and implement the abstract split and join methods. It should be noted that in general, the
split and join methods form a matched pair. One can argue that it is possible to write a universal join
methods (a merge operation) but it would be highly ine�cent in most cases.

Example 4.1: Selection Sort
Tradionally, an in-place selection sort is performed by selecting the smallest (or largest) value in the
array and placing it in the right-most location by either swapping it with the right-most element
or by shifting all the in-between elements to the left. The selection and swapping/shifting process
then repeated with the sub-array to the left of the newly placed element. This continues until only
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one element remains in the array. A selection sort is commonly used to do something like a sort
group of people into ascending height.

Below is an animation of a traditional selection sort algorithm:

Traditional Selection Sort Algorithm

This media object is a Flash object. Please view or download it at
<selection_sort_trad.swf>

Figure 4.13: The extrema values are removed from an ever-shrinking unordered set and placed into the
resulting sorted array. Here, the smallest values are removed from the left and placed to the right in the
array.

In terms of the Merritt sorting paradigm, a selection sort can be broken down into a splitting
process that is the same as the above selection process and a trivial join process. Looking at the
above selection and swap/shift process, we see that it is describing a the splitting o� of a single
element, the smallest, from an array. The process repeats recursively until there is nothing more to
split o�. The sorting of a single element is a no-op, so after that the recursion rolls back out though
the joining process. But the joining process is trivial, a no-op, because the elements are already in
their corret positions. The beauty of Merritt's insight is the realize that by considering a no-op as
an operational part of a process, all the di�erent types of binary comparison-based sorting could
be uni�ed under a common framework.

Below is an animation of a Merritt selection sort algorithm:

Merritt Selection Sort Process

This media object is a Flash object. Please view or download it at
<selection_sort_Merritt.swf>

Figure 4.14: The splitting process splits o� one element at a time, the smallest element, from the left
and placed to the right in the array. The join process is a no-op because the elements are already in their
correct places.

The code to implement a selection sorter is straightforward. One need only implement the split
and join methods where the split method always returns the lo+1 index because the smallest value
in the (sub-)array has been moved to the index lo position. Because the bulk of the work is being
done in the splitting method, selection sort is classi�ed as an "hard split, easy join" sorting process.
SelectionSorter class

package sorter;

/**

* A concrete sorter that uses the Selection Sort technique.

*/

public class SelectionSorter extends ASorter

{
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/**

* The constructor for this class.

* @param iCompareOp The comparison strategy to use in the sorting.

*/

public SelectionSorter(AOrder iCompareOp)

{

super(iCompareOp);

}

/**

* Splits A[lo:hi] into A[lo:s-1] and A[s:hi] where s is the returned value of this function.

* This method places the "smallest" value in the lo position and splits it off.

* @param A the array A[lo:hi] to be sorted.

* @param lo the low index of A.

* @param hi the high index of A.

* @return lo+1 always

*/

protected int split(Object[] A, int lo, int hi)

{

int s = lo;

int i = lo + 1;

// Invariant: A[s] <= A[lo:i-1].

// Scan A to find minimum:

while (i <= hi)

{

if (aOrder.lt(A[i], A[s]))

s = i;

i++; // Invariant is maintained.

} // On loop exit: i = hi + 1; also invariant still holds; this makes A[s] the minimum of A[lo:hi].

// Swapping A[lo] with A[s]:

Object temp = A[lo];

A[lo] = A[s];

A[s] = temp;

return lo + 1;

}

/**

* Joins sorted A[lo:s-1] and sorted A[s:hi] into A[lo:hi].

* This method does nothing. The sub-arrays are already in proper order.

* @param A A[lo:s-1] and A[s:hi] are sorted.

* @param lo the low index of A.

* @param s

* @param hi the high index of A.

*/

protected void join(Object[] A, int lo, int s, int hi)

{

}

}

Java implementation of the SelectionSorter class. The split method splits off the extrema (minimum, here) value from the sub-array, while the join method is a no-op.

What's interesting to note here is what is missing from the above code. A tradional selection
sort aalgorithm is implemented using a nested double loop, one to �nd the smallest value and one
to repeatedly process the ever-shrinking unsorted sub-array. Notice that the above code only has a
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single loop, which coresponds to the inner loop of a traditional implementation. The outer loop is
embodied in the recursive nature of the sort template method in the ASorter superclass.

Notice also that the selection sorter implementation does not include any explicit connection
between the split and join operations nor does it contain the actual sort method. These are all
contained in the concrete sort method of the superclass. We describe the SelectionSorter class
as a component in a framework (technically a "white box" framework, as described above).
Frameworks display inverted control where the components provide services to the framework.
The framework itself runs the algorithms, here the high level, templated sorting process, and call
upon the services provided by the components to �ll in the necessary processing pieces, e.g. the
split and join procedures.

Example 4.2: Insertion Sort
Tradionally, an in-place insertion sort is performed by starting from one end of the arry, say the
left end, and performing an in-order insertion of an element into the sub-array to its left. The next
element to the right is then chosen and the insertion process repeated. At each insertion, the sorted
sub-array on the left grows until encompasses the entire array. An insertion sort is a very typical
way in which people will order a set of playing cards in their hand.

Below is an animation of a traditional insertion sort algorithm:

Traditional Insertion Sort Algorithm

This media object is a Flash object. Please view or download it at
<insertion_sort_trad.swf>

Figure 4.15: Starting from the left, elements from the immediate right are inserted into a growing
sub-array to the left.

In the Merrit paradigm, the insertion sort �rst splits the array or sub-array into two pieces
simply by separating the right-most element. Recursively, the splitting process proceeds to from
the right to the left until a single element is left in the sub-array. Sorting a one element array is a
no-op, so then the recursion unwinds with the join process. The join process combines each single
split-o� element with its sorted sub-array partner to its left by performing an in-order insertion.
This proceeds as the recusion unwinds until the entire array is fully sorted. In contrast to the
selection sort, the bulk of the work is being done in the join method, hence classifying insertion
sort as an "easy split, hard join" sorting process.

Below is an animation of a Merritt insertion sort algorithm:

Merritt Insertion Sort Process

This media object is a Flash object. Please view or download it at
<insertion_sort_Merritt.swf>

Figure 4.16: The right-most elements are �rst split-o� one by one, starting at the right and moving
left. The split-o� elements are then joined by performing an in-order insertion to the left, starting at the
left.

Here is the full code for the insertion sorter: InsertionSorter class
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package sorter;

/**

* A concrete sorter that uses the Insertion Sort technique.

*/

public class InsertionSorter extends ASorter

{

/**

* The constructor for this class.

* @param iCompareOp The comparison strategy to use in the sorting.

*/

public InsertionSorter(AOrder iCompareOp)

{

super(iCompareOp);

}

/**

* Splits A[lo:hi] into A[lo:s-1] and A[s:hi] where s is the returned value of this function.

* This simply splits off the element at index hi.

* @param A the array A[lo:hi] to be sorted.

* @param lo the low index of A.

* @param hi the high index of A.

* @return hi always.

*/

protected int split(Object[] A, int lo, int hi)

{

return (hi);

}

/**

* Joins sorted A[lo:s-1] and sorted A[s:hi] into A[lo:hi]. (s = hi)

* The method performs an in-order insertion of A[hi] into the A[lo, hi-1]

* @param A A[lo:s-1] and A[s:hi] are sorted.

* @param lo the low index of A.

* @param s

* @param hi the high index of A.

*/

protected void join(Object[] A, int lo, int s, int hi)

{

int j = hi; // remember s == hi.

Object key = A[hi];

// Invariant: A[lo:j-1] and A[j+1:hi] are sorted and key < all elements of A[j+1:hi].

// Shifts elements of A[lo:j-1] that are greater than key to the "right" to make room for key.

while (lo < j && aOrder.lt(key, A[j-1]))

{

A[j] = A[j-1];

A[j-1] = key;

j = j - 1; // invariant is maintained.

} // On loop exit: j = lo or A[j-1] <= key. Also invariant is still true.

// A[j] = key;

}
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}

Java implementation of the selection sorter. The split method simply splits off the right-most element of the sub-array. The join method performs an in-order insertion of the single split-off element into the larger sub-array to its left.

Exercise 4.6.1 (Solution on p. 124.)

The authors were once challenged that the Merritt template-based sorting paradigm could not be
used to describe the Shaker Sort process (a bidirectional Bubble or Selection sort). See for instance,
http://en.wikipedia.org/wiki/Cocktail_sort25 . However, it can be done is a very straightforward
manner. There are a number of viable solutions. Hint: think about the State Design Pattern26.

For more examples, please see download the demo code27. Please note that the ShakerSort code is disabled
due to its use as a student exercise.

25http://en.wikipedia.org/wiki/Cocktail_sort
26"State Design Pattern" <http://cnx.org/content/m17047/latest/>
27See the �le at <http://cnx.org/content/m17309/latest/Sorter.zip>
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.6.1 (p. 123)
The solution is left to the student but is available from the authors if proof of non-student status is provided.



Chapter 5

Restricted Access Containers

5.1 Restricted Access Containers1

5.1.1 Introduction

Stacks and queues are examples of containers with special insertion and removal behaviors and a special
access behavior.

Insertion and removal in a stack must be carried out in such a way that the last data inserted is the �rst
one to be removed. One can only retrieve and remove a data element from a stack by way of special access
point called the "top". Traditionally, the insertion and removal methods for a stack are called push and
pop, respectively. push inserts a data element at the top of the stack. pop removes and returns the data
element at the top of the stack. A stack is used to model systems that exhibit LIFO (Last In First Out)
insert/removal behavior.

Data insertion and removal in a queue must be carried out in such a way that the �rst one to be
inserted is the �rst one to be removed. One can only retrieve and remove a data element from a queue
by way of special access point called the "front". Traditionally, the insertion and removal methods for a
queue are called enqueue and dequeue, respectively. enqueue inserts a data element at the "end" of the
queue. dequeue removes and returns the data element at the front of the queue. A queue is used to model
systems that exhibit FIFO (First In First Out) insertion/removal behavior. For example, one can model
a movie ticket line by a queue.

We abstract the behaviors of special containers such as stacks and queues into an interface called
IRAContainer speci�ed as follows.

5.1.2 Restricted Access Containers

5.1.2.1 IRAContainer.java

package rac;

import listFW.*;

/**

* Defines the interface for a restricted access container.

*/

public interface IRAContainer {

/**

* Empty the container.

1This content is available online at <http://cnx.org/content/m17101/1.1/>.
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* NOTE: This implies a state change.

* This behavior can be achieved by repeatedly removing elements from this IRAContainer.

* It is specified here as a convenience to the client.

*/

public void clear();

/**

* Return TRUE if the container is empty; otherwise, return

* FALSE.

*/

public boolean isEmpty();

/**

* Return TRUE if the container is full; otherwise, return

* FALSE.

*/

public boolean isFull();

/**

* Return an immutable list of all elements in the container.

* @param fact for manufacturing an IList.

*/

public IList elements(IListFactory fact);

/**

* Remove the next item from the container and return it.

* NOTE: This implies a state change.

* @throw an Exception if this IRAContainer is empty.

*/

public Object get();

/**

* Add an item to the container.

* NOTE: This implies a state change.

* @param input the Object to be added to this IRAContainer.

* @throw an Exception if this IRAContainer is full.

*/

public void put(Object input);

/**

* Return the next element in this IRAContainer withour removing it.

* @throw an Exception if this IRAContainer is empty.

*/

public Object peek();

}

1. Restrict the users from seeing inside or working on the inside of the container.
2. Have simple put(data) and get() methods. Note the lack of speci�cation of how the data goes in or

comes out of the container.
3. However, a "policy" must exist that governs how data is added ("put") or removed ("get"). Examples:

• First in/First out (FIFO) ("Queue")
• Last in/First out (LIFO) ("Stack")
• Retrieve by ranking ("Priority Queue")
• Random retrieval

4. The policy is variant behavior �> abstract it.
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• The behavior of the RAC is independent of exactly what the policy does.
• The RAC delegates the actual adding ("put") work to the policy.
• The RAC is only dependent on the existence of the policy, not what it does.
• The policy is a "strategy" for adding data to the RAC. See the Strategy design pattern2 .
• Strategy pattern vs. State pattern3 � so alike, yet so di�erent!

The manufacturing of speci�c restricted access containers with speci�c insertion strategy will be done by
concrete implementations of the following abstract factory interface.

5.1.2.2 IRACFactory.java

package rac;

/**

* Abstract Factory to manufacture RACs.

*/

public interface IRACFactory {

/**

* Returns an empty IRAContainer.

*/

public IRAContainer makeRAC();

}

5.1.3 Examples

The following is an (abstract) implementation of IRACFactory using LRStruct as the underlining data
structure. By varying the insertion strategy, which is an IAlgo on the internal LRStruct, we obtain di�erent
types of RAC: stack, queue, random, etc.

2http://cnx.org/content/m17037/latest/
3http://cnx.org/content/m17047/latest/



130 CHAPTER 5. RESTRICTED ACCESS CONTAINERS

Figure 5.1: UML diagram of the abstract RAC and RAC factory de�nitions plus a few concrete RAC
factories.

The source code for the following examples can be downloaded at this link4 .

5.1.3.1 ALRSRACFactory.java

package rac;

import listFW.*;

import listFW.factory.*;

import lrs.*;

/**

* Implements a factory for restricted access containers. These

* restricted access containers are implemented using an LRStruct to

* hold the data objects.

*/

public abstract class ALRSRACFactory implements IRACFactory {

/**

* Implements a general-purpose restricted access container using

* an LRStruct. How?

*

* The next item to remove is always at the front of the list of

* contained objects. This is invariant!

*

* Insertion is, however, delegated to a strategy routine; and

4http://cnx.org/content/m17101/latest/rac.zip
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* this strategy is provided to the container. This strategy

* varies to implement the desired kind of container, e.g., queue

* vs. stack.

*

* This nested static class is protected so that classes derived from its

* factory can reuse it to create other kinds of restricted access

* container.

*/

protected static class LRSRAContainer implements IRAContainer {

private IAlgo _insertStrategy;

private LRStruct _lrs;

public LRSRAContainer(IAlgo strategy) {

_insertStrategy = strategy;

_lrs = new LRStruct();

}

/**

* Empty the container.

*/

public void clear() {

_lrs = new LRStruct();

}

/**

* Return TRUE if the container is empty; otherwise, return

* FALSE.

*/

public boolean isEmpty() {

return (Boolean)_lrs.execute(CheckEmpty.Singleton);

}

/**

* Return TRUE if the container is full; otherwise, return

* FALSE.

*

* This implementation can hold an arbitrary number of

* objects. Thus, always return false.

*/

public boolean isFull() {

return false;

}

/**

* Return an immutable list of all elements in the container.

*/

public IList elements(final IListFactory fact) {

return (IList)_lrs.execute(new IAlgo() {

public Object emptyCase(LRStruct host, Object... nu) {

return fact.makeEmptyList();

}
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public Object nonEmptyCase(LRStruct host, Object... nu) {

return fact.makeNEList(host.getFirst(),

(IList)host.getRest().execute(this));

}

});

}

/**

* Remove the next item from the container and return it.

*/

public Object get() {

return _lrs.removeFront();

}

/**

* Add an item to the container.

*/

public void put(Object input) {

_lrs.execute(_insertStrategy, input);

}

public Object peek() {

return _lrs.getFirst();

}

}

}

/**

* Package private class used by ALRSRACFactory to check for emptiness of its internal LRStruct.

*/

class CheckEmpty implements IAlgo {

public static final CheckEmpty Singleton= new CheckEmpty();

private CheckEmpty() {

}

public Object emptyCase(LRStruct host, Object... input) {

return Boolean.TRUE;

}

public Object nonEmptyCase(LRStruct host, Object... input) {

return Boolean.FALSE;

}

}

5.1.3.2 LRSStackFactory.java

package rac;

import lrs.*;



133

public class LRSStackFactory extends ALRSRACFactory {

/**

* Create a ``last-in, first-out'' (LIFO) container.

*/

public IRAContainer makeRAC() {

return new LRSRAContainer(new IAlgo() {

public Object emptyCase(LRStruct host, Object... input) {

return host.insertFront(input[0]);

}

public Object nonEmptyCase(LRStruct host, Object... input) {

return host.insertFront(input[0]);

}

});

}

}

5.1.3.3 LRSQueueFactory.java

package rac;

import lrs.*;

public class LRSQueueFactory extends ALRSRACFactory {

/**

* Create a ``first-in, first-out'' (FIFO) container.

*/

public IRAContainer makeRAC() {

return new LRSRAContainer(new IAlgo() {

public Object emptyCase(LRStruct host, Object... input) {

return host.insertFront(input[0]);

}

public Object nonEmptyCase(LRStruct host, Object... input) {

return host.getRest().execute(this, input);

}

});

}

}

5.1.3.4 RandomRACFactory.java

package rac;

import lrs.*;

/*
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* Implements a factory for restricted access containers, including a

* container that returns a random item.

*/

public class RandomRACFactory extends ALRSRACFactory {

/**

* Create a container that returns a random item.

*/

public IRAContainer makeRAC() {

return new LRSRAContainer(new IAlgo() {

public Object emptyCase(LRStruct host, Object... input) {

return host.insertFront(input[0]);

}

public Object nonEmptyCase(LRStruct host, Object input) {

/*

* Math.Random returns a value between 0.0 and 1.0.

*/

if (0.5 > Math.random())

return host.insertFront(input[0]);

else

return host.getRest().execute(this, input);

}

});

}

}

But can we push the abstraction further? Is the di�erence between a stack and a queue really anything
more than how the data is ordered?

Now, let's go on an look at the ordering object and priority queues... 5

5.2 Ordering Object and Priority Queue6

5.2.1 Order Relation

When comparing two objects, there are two ways to look at the comparison behavior, which creates a notion
of ordering between the two objects:

A. Each object knows how to compare itself � Comparison is considered intrinsic to the object and
is part of its behavior.

B. Comparison is done by an external object � A third object is introduced that contains the ability
to compare two objects.

These two di�erent outlooks on binary object ordering will be explored below in terms of the two Java
interfaces that are used to model them.

5.2.1.1 java.lang.Comparable7

There are many computing tasks that require performing some sort of comparison between data objects. A
few data types are endowed with a "natural" ordering of their values. The integers have a natural ordering
"less or equal to", labeled "<=", de�ned as follows.

5http://cnx.org/content/m17064/latest/
6This content is available online at <http://cnx.org/content/m17064/1.3/>.
7http://java.sun.com/j2se/1.4/docs/api/java/lang/Comparable.html
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n <= m i� m = n + k, for some non-negative integer k

(Note: a rigorous mathematical de�nition of the set of non-negative integers is beyond the scope of this
lecture).

The above natural order of the integers is a concrete instance of an abstract concept called an order
relation. An order relation on a set S is a boolean function R on S x S that is

• re�exive: R(x, x) is true for all x in S,
• anti-symmetric: R(x,y) and R(y,x) implies x = y, for all x, y in S, and
• transitive: R(x, y) and R(y, z) implies R(x, z), for all x, y, z in S.

To model order relations that are naturally endowed in certain types of data objects, Java provides an
interface called Comparable8 , which has exactly one method called

int compareTo(Object rhs) , de�ned abstractly as

• x.compareTo(y) < 0 means x is "less than" y,
• x.compareTo(y) == 0 means x is "equal to" y, and
• x.compareTo(y) > 0 means y is "less than" x.

For example, the Integer class implements the Comparable interface as follows. If x and y are Integer

objects then,

• x.compareTo(y) < 0 means x < y,
• x.compareTo(y) == 0 means x == y, and
• x.compareTo(y) > 0 means y < x.

Common data types that have a natural ordering among their values, such as Double, String, Character,
all implement Comparable.

Advantages and disadvantages

• Advantages

· Objects carry their ability to be compared with them and thus can be involved in comparison
operations anywhere.

· The comparison operation is invariant and thus consistent in all situations.

• Disadvantages

· Comparison operation cannot be changed to match di�erent situations.

5.2.1.2 java.util.Comparator 9

Most of the time, the ordering among the data objects is an extrinsic operation imposed on the object by
the user of the objects. For example, the Pizza objects in homework 210 have no concepts of comparing
among themselves, however, the user can impose an ordering on them by comparing their price/area ratios
or their pro�ts. To model extrinsic ordering relation, Java provides an interface in the java.util package
called Comparator11 , which has exactly two methods:

• int compare(Object x, Object y) , to model the ordering

· compare(x, y) < 0 means x is "less than" y,
· compare(x, y) == 0 means x is "equal to" y, and

8http://java.sun.com/j2se/1.4/docs/api/java/lang/Comparable.html
9http://java.sun.com/j2se/1.4/docs/api/java/util/Comparator.html

10http://www.owlnet.rice.edu/∼comp201/08-spring/assignments/hw02
11http://java.sun.com/j2se/1.4/docs/api/java/util/Comparator.html
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· compare(x, y) > 0 means yis "less than" x, and

• boolean equals(Object x) , to model equality of Comparators. Unlike the equals method of most
objects, equality of Comparators also requires that their comparison behavior be identical.

In most applications, when we implement a Comparator interface, we only need to override the compare(...)
method and simply inherit the equals(...) method from Object.

Advantages and disadvantages

• Advantages

· Object ordering can be considered variant and be rede�ned for di�erent situations.
· Creating composite comparison behavior can be easily acheived by decorating or other composite
techniques.

• Disadvantages

· Objects are not intrinsically comparable, requiring the inclusion of an otherwise disconnected
entity in the system.

Exercise 5.2.1
Implement a Comparator class that will compare Integer objects.

5.2.2 In-Order Insertion Example

Recall the problem of inserting an Integer object in order into a sorted list of Integers. Instead of writing
an algorithm that only works for Integer, we can write an algorithm that will work for any Object that can
be compared by some Comparator. The table below contrasts the insert in order algorithm for Integer and
the insert in order algorithm that uses a Comparator as a strategy (as in strategy pattern) for comparison.
Both are algorithms for LRStruct, the mutable list.

First, let's look at a regular in-order insertion algorithm that works only on Integer objects because the
comparison technique is hard-coded in:
InsertInOrderLRS Visitor class

import lrs.*;

public class InsertInOrderLRS implements IAlgo {

public static final InsertInOrderLRS Singleton = new InsertInOrderLRS();

private InsertInOrderLRS() {

}

/**

* Simply inserts the given parameter n at the front.

* @param host an empty LRStruct.

* @param n an Integer to be inserted in order into host.

* @return LRStruct

*/

public Object emptyCase(LRStruct host, Object... n) {

return host.insertFront(n[0]);

}
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/**

* Based on the comparison between first and n,

* inserts at the front or recurs!

* @param host a non-empty LRStruct.

* @param n an Integer to be inserted in order into host.

* @return LRStruct

*/

public Object nonEmptyCase(LRStruct host, Object... n) {

if (n[0] < (Integer)host.getFirst();) { // could use Integer.compareTo()

return host.insertFront(n[0]);

}

else {

return host.getRest().execute(this, n[0]);

}

}

}

A visitor to an LRStruct that performs an in-order insertion, but only for Integer objects.

Now let's look at how the simple substitution of a Comparator for the hard-coded comparison allows the
otherwise identical code to be used for any objects. All one has to do is to supply the desired Comparator

instance that matches the type of objects stored in the LRStruct:
InsertInOrder Visitor class

import lrs.*;

import java.util.*;

public class InsertInOrder implements IAlgo {

private Comparator _order;

public InsertInOrder(Comparator ord) {

_order = ord;

}

/**

* Simply inserts the given parameter n at the front.

* @param host an empty LRStruct.

* @param n an Object to be inserted in order into host,

* based on the given Comparator.

* @return LRStruct

*/

public Object emptyCase(LRStruct host, Object... n) {

return host.insertFront(n[0]);

}

/**

* Based on the comparison between first and n,

* inserts at the front or recurs!

* @param host a non-empty LRStruct.

* @param n an Object to be inserted in order into host,

* based on the given Comparator.
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* @return LRStruct

*/

public Object nonEmptyCase(LRStruct host, Object... n) {

if (_order.compare(n[0], host.getFirst()) < 0) {

return host.insertFront(n[0]);

}

else {

return host.getRest().execute(this, n[0]);

}

}

}

A visitor to an LRStruct that performs an in-order insertion, for any objects that are comparable with the given Comparator.

5.2.3 3. Priority Queue

The InsertInOrder algorithm given in the above can be used as part of a strategy for a Restricted Access
Container (Section 5.1) ("RAC") called priority queue. In the code below, it is assumed that "smaller"
objects have higher priority, i.e. will be retrieved from the RAC before "larger" objects. The code also
shows how, if the RAC elements are Comparable objects, that a Comparator could be used to provide their
ordering in the RAC, even to the point of reversing their order if desired.
PQComparatorRACFactory priority queue implementation

package rac;

import lrs.*;

import lrs.visitor.*;

import java.util.*;

/*

* Implements a factory for restricted access containers that

* return the ``highest priority'' item.

*/

public class PQComparatorRACFactory extends ALRSRACFactory {

private Comparator _comp;

/**

* Used when the items in the container are Comparable objects.

*/

public PQComparatorRACFactory() {

_comp = new Comparator() {

public int compare(Object x, Object y) {

/*

* Intentionally reverse the ordering so that the

* largest item will be first, just to show that it can be done.

*/

return ((Comparable)y).compareTo(x);

}

};

}

/**
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* Used when we want to prioritize the items according to a given Comparator.

* @param comp the item that is smallest according to comp has the highest

* priority.

*/

public PQComparatorRACFactory(Comparator comp) {

_comp = comp;

}

/**

* Create a container that returns the item with the highest priority

* according to a given Comparator.

*/

public IRAContainer makeRAC() {

return new LRSRAContainer(new InsertInOrder(_comp));

}

}

A priority queue can easily be implemented from a RAC by using a Comparator.
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Chapter 6

GUI Programming

6.1 Graphical User Interfaces in Java1

6.1.1 Graphical User Interfaces in Java

In Java Graphical User Interface (GUI) programming, we do not build GUI components from scratch.
Instead we use GUI components provided to us by the JDK. Java has two types of GUI applications: stand-
alone GUI applications and applets. We �rst study how to build stand-alone GUI applications (GUI app
for short).

Every GUI app uses what is called a JFrame that comes with the JDK. A JFrame is a window with
borders, a title bar, and buttons for closing and maximizing or minimizing itself. It also knows how to resize
itself. Every GUI app subclasses JFrame in some way to add more functionality to the window frame. One
common task is to tell the system to terminate all "threads" of the GUI app when the user clicks on the exit
(close) button of the main GUI window. We encapsulate this task in an abstract frame class called AFrame

described below.

6.1.2 0. Abstract Frame (AFrame.java)

note: The source code for AFrame is available in the glossary.

6.1.2.1 Event

When the user interacts with a GUI component such as clicking on it or holding the mouse down on it and
drag the mouse around, the Java Virtual Machine (JVM) �res appropriate "events" and delivers them to
the GUI component. It is up to the GUI component to respond to an event. The abstract notion of events is
encapsulated in an abstract class called AWTEvent provided by Java. Speci�c concrete events are represented
by appropriate concrete subclasses of AWTEvent.

For example, when the user clicks on the close button of a JFrame, the JVM �res a window event
represented by the class WindowEvent and delivers it to the JFrame. By default, the JFrame simply hides
itself from the screen while everything else that was created and running before the JFrame disappears from
the screen is still alive and running! There is no way the user can redisplay the frame again. In the case
when the JFrame is the main window of a GUI app, we should terminate everything when this main frame is
closed. The best way to ensure this action is to "register" a special window event "listener" with the JFrame
that will call the System class to terminate all threads related to the current program and exit the program.
The code looks something like this:

1This content is available online at <http://cnx.org/content/m17185/1.3/>.
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addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

});

Every time we write the constructor for a main frame of a GUI app, we invariably �nd ourselves writing
the above lines of code to exit the program plus some additional application speci�c code to initialize the
frame. So, instead of "copy-and-paste" the above code ("opportunistic" re-use), we capture this invari-
ant task in the constructor of an abstract class called AFrame and reuse the code by subclassing from it.
The application speci�c code to initialize the main frame is relegated to the speci�c concrete subclass of
AFrame and is represented by an abstract method called initialize(). The constructor for AFrame calls
initialize(), which, at run-time, is the concrete initialization code of the concrete subclass of AFrame that
is being instantiated, as shown below.

public AFrame(String title) {

// Always call the superclass's constructor:

super(title);

addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent e) {

System.exit(0);

}

});

initialize();

}

note: See the full code listing for more information

6.1.2.2 Template Method Pattern: Expressing Invariant Behavior in terms of Variant Behaviors

note: The code for the classes AFrame, FrameA, FrameAB, and FrameAC are available in
the glossary.

The code for AFrame is an example of what is called the Template Method Pattern2. This design pattern
is used to expresses an invariant and concrete behavior that consists of calls to one or more abstract
methods. An abstract method represents a variant behavior. In other words, the template design pattern
is a means to express an invariant behavior in terms of variant behaviors. We shall see this pattern used
again in expressing sorting algorithms.

6.1.2.2.1 Caveat

As stated earlier, the call to initialize() in the constructor of AFrame will only invoke the concrete
initialize() method of the concrete descendant class of AFrame that is being instantiated. Because
initialize() is polymorphic, care must taken to ensure proper initialization of descendant classes that are

2"Template Design Pattern" <http://cnx.org/content/m17188/latest/>
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more than one level deep in the inheritance hierarchy of AFrame. Consider the following inheritance tree as
illustrated by the following UML class diagram. Click here to see the code.

Figure 6.1

In overriding the initialize() method of FrameA, a direct subclass of AFrame, we should not
invoke the initialize() method of the superclass AFrame via the call super.initialize() because
super.initialize() is abstract. However, the initialize() method of any subclass of FrameA and below
should make a call to the initialize() method of its direct superclass in order to ensure proper initialization.
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For example, in the above diagram, new FrameAB("ab") calls the constructor FrameAB, which calls the
constructor FrameA, which calls the constructor AFrame, which calls

• the constructor JFrame and then calls
• initialize(), which is the initialize() method of FrameAB which calls

· super.initialize(), which should properly initialize FrameA, and then calls
· the additional initialization code for FrameAB.

Exercise 6.1.1
What is the chain of calls when we instantiate a FrameAC

6.1.3 1. Simple JFrame (Frame0.java)

note: Frame0App.java is available in the source code archive �le3 .

Frame0App.java represents one of the simplest GUI application in Java: it simply pops open an Frame0

object. Frame0 is subclass of AFrame that does nothing in its concrete initialize() method.

6.1.4 2. JFrame with JButtons but no event handlers (Frame1.java)

note: Frame1.java is available in the source code archive �le4 .

To display other GUI components on a JFrame, we �rst need to get the content pane of the JFrame and then
add the desired GUI components to this content pane.

If we want to arrange the added GUI components in certain ways, we need to add an appropriate "layout
manager" to the JFrame. The task of laying out the GUI component inside of a container GUI component
is speci�ed by an interface called LayoutManager. In Frame1, we add the FlowLayout that arranges all
GUI components in a linear fashion. If we do not add any layout manager to the JFrame, it has no layout
manager and does a very bad job of arranging GUI components inside of it. As an exercise, comment out
the code to add the FlowLayout to Frame1 and see what happens!

6.1.4.1 Strategy Pattern

JFrame is not responsible for arranging the GUI components that it contains. Instead it delegates such
a task to its layout manager, LayoutManager. There are many concrete layout managers: FlowLayout,
BorderLayout, GridLayout, etc. that arrange the internal components di�erently. There are said to be
di�erent strategies for layout. The interaction between JFrame and its layout manager is said to follow the
Strategy Pattern5.

The strategy pattern is powerful and important design pattern. It is based on that principle of delegation
that we have been applying to model many of the problems so far. It is a mean to delineate the invariant
behavior of the context (e.g. JFrame) and the variant behaviors of a union of algorithms to perform certain
common abstract task (e.g. LayoutManager). We shall see more applications of the strategy design pattern
in future lessons.

At this point the only the buttons in the Frame1 example do not perform any task besides "blinking"
when they are clicked upon. The example in the next lecture will show how to associate an action to the
click event.

Click here to download code samples.6

3http://cnx.org/content/m17185/latest/GUI1.zip
4http://cnx.org/content/m17185/latest/GUI1.zip
5"Strategy Design Pattern" <http://cnx.org/content/m17037/latest/>
6http://cnx.org/content/m17185/latest/GUI1.zip
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6.2 More Java GUI Programming7

6.2.1 1. JFrame with JButtons and event handlers (Frame2.java)

note: Click here to view Frame2.java, or download the entire archive8

6.2.1.1 Command Design Pattern

When a user clicks on a button, an ActionEvent object is delivered to the button. In order for the button to
perform an application speci�c task, we must register an ActionEventListener to the button and program
this event listener to perform the task we want. The ActionListener class is an example of what is called a
"command" from the Command Design Pattern9 . The code to add an ActionListener to a button looks
like:

myButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

// code to perform a task goes here...

}

});

The example Frame2 shows how to dynamically change the layout manager for a JFrame by calling its
setLayout(...) method resulting in a dynamic re-arrangement of the GUI components in the JFrame.

6.2.2 2. JFrame with JButtons and Adapters (Frame3.java)

note: Click here to view Frame3.java, or download the entire archive10

Frame3 illustrates how to decouple the view from the rest of the world by having the view communicate
to an interface called "adapter". A controller object, Frame3Controller connects the view Frame3 to the
world by installing a concrete adapter into the view. The adapter is instantiated as anonymous inner object
and has access to all of its outer object. The view does not and should not know anything about the world
to which it is connected. This adds �exibility to the design.

7This content is available online at <http://cnx.org/content/m17186/1.2/>.
8http://cnx.org/content/m17186/latest/GUI2.zip
9http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/command.htm

10http://cnx.org/content/m17186/latest/GUI2.zip



146 CHAPTER 6. GUI PROGRAMMING

Figure 6.2

6.2.2.1 Null-Object Pattern

In much of the current programming practice, the special value null is often used as a �ag to represent a
gamut of di�erent and often disconnected concepts such as emptiness and falseness. This can result in a lot
of confusion and complex control structures in the code. In our view, null should only be used to denote the
non-existence of an object. null is not an object and has no "intelligence" (i.e. behavior) for other objects
to interact with. Therefore, whenever we work with a union of objects and discover that one or more of
these objects may be referencing a null value, we almost always have to write code to distinguish null as
a special case. To avoid this problem, we should think of adding a special object, called the null object,
to the union with appropriate behavior that will allow us to treat all object references in a consistent and
uniform way, devoid of special case consideration. This design pattern is called the null object pattern. We
have used the null object pattern in one occasion: the EmptyNode to represent the empty state of a (mutable)
list (LRStruct).
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In Frame3 the view adapter, _v2wAdapter, is initialized to an (anonymous) IView2World object. It
is there to guarantee that _v2wAdapter is always referencing a concrete IView2World object, and , since
setV2WAdapter(...) only allows a non-null assignment, we can always call on _v2WAdapter to perform
any method without checking for null.
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Chapter 7

Labs

7.1 DrJava1

DrJava is a lightweight pedagogical environment for Java development created by the Programming Lan-
guages Team (PLT)2 at Rice University. DrJava provides a way to edit and save java code with key words
highlighting, curly brace matching, and an interactive environment to manipulate objects and test code
without having to write the main method. It can be freely downloaded from the web. Please see the DrJava
home page3

Dr Java Tutorials
On the main DrJava web site4 , one can �nd documentation and tutorials on its use:

• Quick Start Guide5 : This guide covers the most important aspects of using DrJava, such as opening
and saving �les, compiling, testing, debugging and setting preferences.

• Full Documentation6 : This is the full documentation for DrJava, covering all aspects of the system.
• FAQ7 : This Frequently Asked Questions list covers many of the common issues that come up when

running DrJava.
• Video Tutorials8 : Some short introductory Flash vidoes on installing Java and DrJava and running

DrJava. This is a good place to start for beginnings to get a feel for what can be done with DrJava.
Note: The videos may not run in Internet Explorer, if not, please try accessing the videos using another
browser, such as Firefox.

Below are some short descriptions of the various parts of DrJava.

7.1.1 Editing

De�nitions Pane: When you run DrJava you will see a window appear. This window (GUI) consists
of four subwindows. The top half of the GUI constitutes the De�nitions pane. You type in all the class
de�nitions here. After you type in some code, you need to click on the save button before you can compile
your code. All the classes in the De�nitions pane will be saved in a single �le. There should only be one
public class in the De�nitions window, and the saved �le should have the same name as that of the public
class with the extension .java.

1This content is available online at <http://cnx.org/content/m11659/1.6/>.
2http://www.cs.rice.edu/CS/PLT/
3http://www.drjava.org
4http://www.drjava.org
5http://www.drjava.org/docs/quickstart/
6http://www.drjava.org/docs/user/
7http://www.drjava.org/faq.shtml
8http://www.drjava.org/videos/videos.shtml
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7.1.2 Compiling

Compiler Output Pane: You compile your Java code by clicking on the Compile All button in the
menu bar at the top. Every time you compile your code, DrJava will display all compile error messages
here. Clicking on an error message will highlight the line where the error is suspected to take place in the
De�nitions pane. If there is no compile error, DrJava will declare success in this pane.

7.1.3 Running

Interactions pane: There are several ways to run your Java code. For now, we will restrict ourselves
to the Interaction pane at the bottom of the main GUI window. This is where you can type in any valid
Java statement. Usually, you would type in code to instantiate objects of classes de�ned in the De�nitions
window, and call their methods to check whether or not they perform correctly. Typing a valid Java
expression terminated with a semi-colon and then pressing the Return (Enter) key, will cause DrJava to
evaluate the expression but NOT printing the result. If you want DrJava to print the value of the result
in the Interactions window, you should press Return without terminating the expression with a semi-colon.
There is a menu item to reset (i.e. clear) the Interactions window. Another way to clear the Interactions
window is to force a re-compile by editing the De�nitions pane. If your code has printing statements, the
output will be displayed in the Console Output pane.

7.1.4 Testing

There are many ways to test your code. The most formal way is to use JUnit testing facilities, which is
covered in a separate module: Unit Testing with JUnit in DrJava (Section 7.2). For simple tests, you can
test your code by directly interacting with it in the Interactions pane.

7.1.5 Debugging

To debug a program in DrJava, �rst put DrJava into Debugging Mode by setting the check box under
the Debugger on the main menu. This will enable all the other debugging features. When debugging mode
is active, the debugging pane will appear near the bottom of the DrJava window. This pane contains the
Watch window and tabs that show the current Stack and Threads status. The debugging pane also has
buttons for Resume debugging, Step Into, Step Over and Step Out. These features are described in
detail below.

The basic technique for debugging is to set breakpoints on lines of code that are of interest/problematic
and then to either step slowly through the code execution from that point and/or to examine the values of
various variables.

Breakpoints: Under debugging mode, DrJava will stop the execution of a program whenever a break-
point is encountered. Execution stops before the breakpoints line of code is run. To set or clear a breakpoint,
place the cursor on the desired line of code and either use the Debugger/Toggle Breakpoint on Current
Line or by simply pressing Ctrl-B or by right-clicking the desired line and selecting Toggle Breakpoint.
Note that it only makes sense to put a breakpoint on a line of code that actually executes, which excludes

• Blank lines
• Comments
• Method signature lines
• Lines with a single curly brace on them.
• Field/attribute declarations that have no initialization code.

To clear a breakpoint, follow the same procedure used to set the breakpoint.
Whenever the program execution is stopped on a line of code, the Interactions pane can be used to

examine the value of any variable that is in scope or even to execute methods on those variables (if they are
objects). You can even set the values of any available variables by assigning a new value to them. This is
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useful if they have the wrong value for some reason and you want to check if the rest of your code will run
properly if the correct value is present.

Clear All Breakpoints: Clicking on Debugger/Clear All Breakpoints will clear all breakpoints
that have been set in your program.

Clicking on Debugger/Breakpoints or pressing Ctrl+Shift+B will bring up a tabbed pane at the
bottom of the DrJava window that enables you to conveniently examine, navigate to, delete, or disble
(without deleting) all of the breakpoints in your program.

Step Into: When execution has stopped on a line of code, clicking on the Step Into button in the
debugging pane or selecting the menu item Debugger/Step Into or pressing F12 will cause the current
line of code (highlighted in blue) to be executed. If the current line of code involves the invocation of a
method, then the current line of code will be advanced into the �rst method to be called, as per Java's order
of execution rules. If the current line of code is the last line in a method, the current line of code will become
the next executable line of code in the method that called the current method. Note that if the caller's line
of code involved multiple method calls, then the current line of code will return to that line of code in the
caller and then execution will advance into the next method to be called, or if the current method was the
last method to be called, the current line of code will be the next line of code in the caller.

Step Over: When execution has stopped on a line of code, clicking on the Step Over button in the
debugging pane or selecting the menu item Debugger/Step Over or pressing F11 will cause the current
line of code to be executed. This is very similar to Step Into, but if the the execution will not stop inside
of any methods called in the current line of code. Thus the new current line of code will always be in the
same method, unless the executed line was the last line in the method, upon which execution will stop in the
calling method as usual. This feature is very useful when you are con�dent that the methods being called
work properly and you are not interested in their detailed execution.

Step Out: When execution has stopped on a line of code, clicking on the Step Out button in the
debugging pane or selecting the menu item Debugger/Step Out or pressing Shift+F12 will cause the
execution to resume until the current method exits. Excution will stop at the next executable line in the
calling method. This is very useful to quickly exit a method whose detailed execution no longer interests
you (for instance, if you accidentally stepped into a method that you wanted to step over).

Resume Debugging: When execution has stopped on a line of code, clicking on the Resume button in
the debugging pane or selecting the menu item Debugger/Resume Debugging or pressing F7 will cause
the program execution to resume and continue until the next breakpoint is encountered. This is useful when
you are no longer interested in the detailed execution of the code until the next breakpoint.

Watches: Watches are used when you want to continuously monitor the value of a particular variable.
Simply type the name of the variable or �eld into the Watch pane and when code execution has paused, if
that variable name is in scope, its value will be displayed.

Stack: The stack contains an ordered list of all methods with pending operations at any given point of a
program's execution. That is, when the program execution has stopped at a particular line of code, the stack
contains the method that line of code is in, the method that called that method, the method that called
that method, etc. In DrJava, the Stack tab will show the stack with the current method at the top and
the calling method below it. Looking at the stack is very useful for determining where in your program you
actually are, as often a method is called from locations that are unintended or one discovers that a method
is not being called from where you wish it to be called.

Threads: A Java program run on many simultaneous execution paths or "threads", each performing
di�erent tasks necessary for the total operation of a Java application. A simple program written by a
programmer may have a single thread that runs the code written by that programmer, but may also have
many other threads performing such tasks as managing the graphical user interface ("GUI") or managing
the memory allocated to the program. It is also possible for a programmer to write code that utilizes multiple
threads of execution to accomplish the desired goals. The Threads tab is most useful for debugging these
multi-threaded programs by enabling the developer to better understand which threads are accessing which
objects.
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7.2 Unit Testing with JUnit in DrJava9

Object oriented systems derive great complexity through the interactions between the objects in the system.
It is often impossible to test the entire range of the total complex behavior that a system is designed to
exhibit. What one can say however is that if any given part of the system does not perform as desired, then
one can make no assurances whatsoever about the integrity of the system as a whole. Thus the testing of
these smaller parts, or "units" is a crucial element of developing any large-scale OO system. A unit test is
a complete test of a small, atomic sub-system. Note that this is not the same from a partial test of some
aspect of the whole system!

Unit tests are often performed at the individual class level, meaning that a test class that runs all the
complete battery of tests on the tested class, is written for each class to be tested. In some cases however,
certain systems of classes are not divisible into isolated, atomic units and in such must be tested as a whole.
The key is to test as small a piece of the system as possible and to test it as thoroughly as possible.

7.2.1 Using JUnit in DrJava

Suppose we have a class such as the following that we wish to test. Note that class is public and that the
method we wish to test is also public.

Sample Code To Be Tested

Figure 7.1: Some example code to be tested.

9This content is available online at <http://cnx.org/content/m11707/1.4/>.
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In DrJava, select "File/New JUnit Test Case...". Enter a name that is descriptive of the test(s) you
wish to make. A recommendation is to use the class name being tested prepended with "Test_", such as
"Test_MyClass". This enables all your test classes to be easily identi�ed, DrJava will then automatically
create a valid JUnit test class, such as below. (Note that DrJava does not initially name the new class �le,
but the default name suggested by DrJava when you attempt to save it will be correct.)

Autogenerated Unit Test Class

Figure 7.2: Test class autogenerated by DrJava.

Rename the auto-generated "testX()" method to something more descriptive of the particular test
you'd like to perform. The new name must start with "test" and must return void and take no input
parameters. You can create as many test methods as you wish to test your code. JUnit will automatically
run all methods that begin with "test" as test methods. Typically, a single test method will test a single
method on the class under test. There are situations however where a single method under test may require
several test methods to properly test its full range of operation. In the code that follows, the testX()

method has been renamed to "test_myMethod1()".

7.2.1.1 assertEquals(...)

There are a number of ways in which one can test that the proper result is produced. The simplest method
is to compare a single output value to an expected value. For instance, suppose you are testing a method
that returns a result. One can compare the actual returned value to the value one expects for the given
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inputs. There are two methods supplied by the junit.framework.TestCase class, which is the superclass of the
test class generated by DrJava. The �rst is void assertEquals(String failResponse, Object actual,

Object expected). The actual input parameter is the actual result of the method under test. The expected
parameter is the expected result. failResponse is a String that JUnit/DrJava will display if the actual value
does not "equal" the expected value. The assertEquals(...) method is overridden such that actual and
expected values can be either Objects or primitives. assertEquals(...) uses the equals(...) method
of Object to makes it determination. For primitives, the usual == is used. For instance, we could write the
test case below. If the actual value does not equal the expected value, assertEquals throws a exception
that is caught by the JUnit framework and an error message will result. To test the code, �rst compile all
the code then select the test class. Right-click the test class and select "Test Current Document "or click
on "Tools/Test Current Document." The following result will be displayed, given the test code we wrote to
purposely fail:

Using assertEquals(...) in a test case

Figure 7.3: assertEquals(...) displays the error string as well as comparative information if the
actual and expected values are not equal.

As shown on the screen shot, DrJava clearly indicates in red the test method that failed and the di�erence
between the expected and actual values. It also highlights the line of code in the test method where the
failure occured.
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There is one exception to the syntax of assertEquals, and that is when the values being compared are
doubles. This is because round-o� errors in calculating �oating point values means that it is almost always
impossible to generate the same value from two di�erent calculations, even if mathematically they are the
same. For instance, compate 2.3*2.3 and 5.29. Mathematically identical, but on a PC running Windows,
Java calculates them to be di�erent by approximately 0.00000000000000089 (or 8.9e-16 in Java syntax).
Thus, if the expected and actual values are to be of type double, then a 4'th input parameter is required.
This last parameter is a tolerance value, a plus-or-minus amount within which one considers the expected
and actual values to be equal. For instance:

assertEquals("Testing doubles: 5.29 vs. 2.3*2.3", 5.29, 2.3*2.3, 9e-16);

should pass, but

assertEquals("Testing doubles: 5.29 vs. 2.3*2.3", 5.29, 2.3*2.3, 8e-16);

should fail. Note that the tolerance value should always be a positive value.

7.2.1.2 assertTrue(...)

Another method provided by TestCase is void assertTrue(String failResponse, boolean result).
This is a simpli�ed version of assertEquals(...) used when the result can be expressed as a boolean

true or false. Note that any test using assertTrue can also be written as assertEquals(failResponse,
result, true). For instance we could write another test method to test the myMethod2() method of
MyClass. The test class now has two test methods and JUnit will run both ot them when we click on "Test
Current Document." Here, the second test method passes as shown in green below. The �rst method still
fails and its error messages are still shown. Clicking on the error message will highlight the line where the
error occured. Correcting the code in myMethod1(...) would result in all the test methods being listed in
green with no error messages.
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Using assertTrue(...) in a test method

Figure 7.4: assertTrue(...) is used in test_myMethod2(...) above and does not generate an error
because it is executed with a boolean true value.

7.2.1.3 fail(...)

For more complex testing, TestCase provides the void fail(String failResponse) method. Calling this
method will immediately cause the test method to fail and the failResponse string will be displayed. Since
this method does not know the actual or expected results, the failResponse string should contain more
detailed information about what exactly failed and how it failed. In the next screen shot is an example of
using fail(...) where the test code was written such that it would fail:
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Using fail(...) in a test method

Figure 7.5: The fail(...) method immediately throws an error exception when it is executed.

7.2.1.4 Additional Capabilities

Note that any test method can call other methods if needed . This is useful when the testing procedure is
complex and needs to be broken down into smaller pieces. Do not name these helper methods starting with
"test" or they will be run separately as test cases! Using helper methods is also useful when certain types of
tests are performed only under certain conditions. assertEquals(...), assertTrue(...) and fail(...)

can be called from anywhere, but the DrJava will only highlight the line in the main test method that
generated the error, i.e. the line that called the helper method. It will not highlight the line in the helper
method where the actual call to assertEquals(...), assertTrue(...) or fail(...)was made.

Sometimes in complex testing scenarios, there is a signi�cant amount of initialization work required to
set up the system to be tested. This is often the case when testing a system of interdependent objects where
the entire system must be set up before any single object can be tested. If the initialization code is the
same for all the tests being conducted, the method protected void setup() can be declared and be used
to execute the necessary initializations. To insure "clean" test runs, JUnit/DrJava re-instantiates the test
class before running each test method. The setup() method, if it exists, is called before any test method
is executed. This means that the test class cannot utilize any internal �eld values that one test method
modi�es and another test method expects to use as modi�ed.

Likewise, in the event that after a test is run that signi�cant amounts of common "clean-up" code is



158 CHAPTER 7. LABS

required, one can declare the method protected void tearDown(). This method runs after each test method
and is useful for insuring, for instance, that �les and network connections are properly closed and thus keep
them from interfering with other tests.

The help system in DrJava has more detailed information on testing with JUnit, including how to create
a test suite of multiple tests.
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Resources

8.1 Java Syntax Primer1

8.1.1 General:

A Java program consists of one or more classes one of them must be public and must have a method with
the following signature:

public static void main (String[] args)

Basically, the main() method will instantiate appropriate objects and send them "messages" (by calling
their methods) to perform the desired tasks. The main() method should not contain any complicated
program logic nor program �ow control. In the example shown below, PizzaClient is the main class with
the main() method.

1This content is available online at <http://cnx.org/content/m11791/1.2/>.
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Figure 8.1: UML Class Diagram of a Java program

Example:

public class PizzaClient {

/**

* Prints the answer to the problem stated in the above..

*/

public void run() {

Pizza round = new Pizza (3.99, new Circle (2.5));

Pizza rect = new Pizza (4.99, new Rectangle (6, 4));

PizzaDeal pd = new PizzaDeal();
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System.out.println(round + " is a better deal than " + rect + ": " +

pd.betterDeal(round, rect));

}

/**

* Main entry to the program to find the better deal.

* Instantiates an instance of PizzaClient and tells it to run.

* This is what all main() should do: instantiates a bunch of objects and

* "turn them loose"!

* There should be no complicated logic and/or control in main().

* @param nu not used

*/

public static void main (String[] nu) {

new PizzaClient().run();

}

}

public class Rectangle implements IShape {

private double _width;

private double _height;

/**

* Initializes this Rectangle width a given width and a given height

* @param w width of this Rectangle, >= 0.

* @param h height of this Rectangle, >= 0.

*/

public Rectangle(double w, double h) {

_height = h;

_width = w;

}

/**

* @returns this Rectangle's area.

*/

public double getArea() {

return _height * _width;

}

/**

* Overrides the inherited method from class Object.

* @returns a String describing a Rectangle with its width and height.

*/

public String toString() {

return "Rectangle(h = " + _height + ", w = " + _width + ")";

}

}

Notes on the toString() method:
toString() is a method that is inherited all the way from the base class, Object. It is the method
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that the Java system calls by default whenever a string representation of the class is needed. For instance,
"This is "+ myObject is equivalent to "This is " + myObject.toString(). DrJava will call an object's
toString() method if you type the object's name in the interaction window, without terminating the line
with a semicolon. The return value of toString() is what prints out on the next line.

8.1.2 Comments syntax:

// Line-oriented - comment goes to end of the current line.

/*

block-oriented

can span several lines.

*/

8.1.3 Class de�nition syntax:

[. . .] means optional.

[public] class class-name [inheritance-specification] {

[field-list;]

[constructor-list;]

[method-list;]

}
Inheritance Speci�cation looks like
[extends SomeClass] [implements Interface1,..., InterfaceN]

We will discuss the meaning of inheritance in due time.

8.1.4 Java Statement syntax:

note: Each Java statement must terminate with a semi-colon.

8.1.5 Field list syntax:

A �eld list consists of zero or more �eld declarations of the form
[static] [final] [public | private | protected] field-type field-name [assignment];

8.1.6 Constructor list syntax:

A constructor list consists of zero or more constructor de�nitions of the form

[public | private | protected] class-name ([parameter-list]){

[statement-list;]

}

note: The constructor's name must the same as the class name. Constructors are used for initial-
ization of the object during the object's instantiation only.
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8.1.7 Method list syntax:

A method list consists of zero or more method de�nitions of the form

[static] [final] [public | private | protected]

return-type method-name ([param-list]) {

[statement-list;]

}

A return type void means the method does not return any value.
param-list can be:

• empty;

for example,

public double getArea() {

// code ...

}

• of a �xed number of parameters

type1 param1, type2 param2, ... , typeN paramN

for example,

private void doSomethingWith(int n, double x, Pizza p) {

// code ...

}

• of a variable number of parameters (this is a new feature for Java 5.0 and upward)

type1 param1, type2 param2, .., typeN... params

In the above, typeN... params is called a variable argument list. It must appear at the end of the whole
parameter list.

for example,

private void doSomethingWith(int n, double x, Pizza... p) {

// code ...

}

The variable argument list can have zero or more arguments. Here is a simple example: use DrJava to
de�ne the following class in the de�nition pane.

public class VarArgExample {

/**

* returns the number of arguments in the variable argument list.

*/

int argNum(int... nums) {

return nums.length; // the var arg list is viewed as an array

}

}



164 CHAPTER 8. RESOURCES

Compile the above class and in the interactions pane, type the following:

VarArgExample vae = new VarArgExample(); // creates a VarArgExample object

vae.argNum() // returns 0

vae.argNum(42) // returns 1

vae.argNum(34, -99) // returns 2

8.2 Design Patterns Resources2

8.2.1 Links

Connexions lens on Design Patterns3

This collection of modules covers most of the design patterns used in introductory and intermediate level
object-oriented programming and design. This lens was created as a resource for the CNX "Principles of
Object-Oriented Design" course4. The modules are separate from the course materials and contain reference
and supplemental information.
Research papers by D. X. Nguyen and S. Wong5

These are the research papers upon which much of the CNX "Principles of Object-Oriented Design" course6

is based. Some of the papers cover more advanced material however. All of the papers are in Java.

8.2.2 Books

Design Patterns, Elements Of Reusable Object-Oriented Software, by Gamma, Helm, Johnson,
and Vlissides, Addison-Wesley, 1995. ISBN 0201633612
This is the bible of the pattern community. It predates Java. The authors are a�ectionately referred to
as the Gang of Four (GoF). All examples are written in C++ and/or Smalltalk. It can be hard to read if
you are not familiar with these two languages, though the ideas are language independent. The "pattern
language" used in this book also requires a lot of getting used to. We have learned so much from this book,
and we are still reading it and learning from it. There is a version on CD-ROM which is cheaper (and
perhaps, more versatile). We strongly recommend it, especially to any student considering further work in
object-oriented programming.
Head First Design Patterns, First Edition, by Eric Freeman and Elizabeth Freeman, O'Reilly,
2004. ISBN 0-596-00712-4
A very approachable, easy-reading book on design patterns for beginners that is written in Java. highly
recommended for anyone just starting out with design patterns.

8.3 Connexions

8.3.1 Viewing Connexions Content7

note: Each piece of content has two major components available for viewing: the actual content
itself, and the metadata page, containing information about the content, author, and more. When
you �rst browse to a module or collection, you will be taken to the content page. To see the meta-
data, select the metadata link at the bottom of the page. Metadata are non-content information

2This content is available online at <http://cnx.org/content/m32615/1.1/>.
3http://cnx.org/lenses/swong/design-patterns
4Principles of Object-Oriented Programming <http://cnx.org/content/col10213/latest/>
5http://www.bandgap.cs.rice.edu/personal/adrice_swong/public/WebPages/research/default.htm
6Principles of Object-Oriented Programming <http://cnx.org/content/col10213/latest/>
7This content is available online at <http://cnx.org/content/m11837/1.15/>.
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about a module, such as the module ID, license type, version number, creation date, revision date,
authors, maintainers, copyright holders, module name, keywords, and abstract.

All Connexions content is located in the content repository, which can always be navigated to by clicking
the Content tab at the top of the page. To allow you to easily access other parts of Connexions while
viewing content (e.g. your MyCNX page8 or our Help9 documentation) the blue Connexions logo will always
be located above the content you are viewing, including many of the links also on the home page10.
What's in this module?
This module �rst describes the basic layout of the "Viewing Content" pages. There are additional features
added to the page when you are viewing content in the context of a collection or a lens. Those extra features
are described in the second and third sections of this module.

Jump to:

1. Basic Layout (Section 8.3.1.1: Basic Layout)
2. Collection Context (Section 8.3.1.2: Collection Context)
3. Lens Context (Section 8.3.1.3: Lens Context)

8.3.1.1 Basic Layout

The components of the content viewing page include:

• Content Actions Bar (Section 8.3.1.1.1: Content Action Bar)
• Content Title Bar (Section 8.3.1.1.2: Content title bar)
• Featured Links (Section 8.3.1.1.3: Featured Links)
• Sidebar Portlets (Section 8.3.1.1.4: Sidebar Portlets)
• Footer (Section 8.3.1.1.5: Footer)

8.3.1.1.1 Content Action Bar

The Content Action (Figure 8.2) bar is a white horizontal bar above the module or collection title that
includes a series of dropdown menus. All actions in the Content Action bar are also available as plain
hyperlinks in the footer (Section 8.3.1.1.5: Footer) of the page.

8http://cnx.org/mycnx
9http://cnx.org/help

10"Introduction to Connexions" <http://cnx.org/content/m10884/latest/>
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Figure 8.2: Content Action bar with the "Downloads" dropdown shown.

Add to My Favorites
The Add to my favorites dropdown allows you to quickly add content to your My Favorites11 lens. In
addition to bookmarking content of personal interest, the My Favorites lens also allows readers to start
reading from where they last left o�12 within a bookmarked collection.
Add to a Lens
The Add to a lens dropdown allows you to quickly add content to a lens13 you own.
Reuse/Edit
The Reuse/Edit dropdown menu allows you to quickly checkout the content to a Work Area (if you have
permissions to edit the content) or derive a copy14 of the content to create an adaptation(if you don't have
permissions).
Download
The Downloads dropdown menu allows you to quickly access PDF and EPUB versions of the module and/or
collection. The link to More downloads... will take you to all available downloads15 for the content on its
metadata page.
Print this Page
Click the Print this page button to print a printer-friendly version of the HTML page.

8.3.1.1.2 Content title bar

Title, Author, and Summary
The content title bar (Figure 8.3) displays the title, author(s), and summary provided by the author(s) for

11http://cnx.org/help/accounts/myfavorites
12http://cnx.org/help/accounts/trackprogress
13"Using Lenses" <http://cnx.org/content/m37415/latest/>
14"Creating Adaptations of Published Content": Section Creating Adaptations

<http://cnx.org/content/m11804/latest/#createderive>
15"Viewing Metadata": Section Downloads <http://cnx.org/content/m37413/latest/#downloads>



167

the content. More detailed metadata is on the Metadata16 page, which you can access through a link in the
footer (Section 8.3.1.1.5: Footer) of the page.

Figure 8.3: Content title bar.

Facebook and Twitter
Connexions has rolled out Facebook "Like" and Twitter "Tweet" buttons on all of our content. If you are
reading a module or collection that you like, you can like or tweet it directly from that page.

note: Facebook gives much less feedback than Twitter. You won't see a con�rmation message
after clicking "like", but it will show up on Facebook wall nonetheless.

Figure 8.4: Twitter and Facebook buttons in the content title bar.

Buttons exist in the content title bar (Figure 8.4) at the upper right corner the page, and also down at
the bottom (Figure 8.5) in the footer. To like an entire collection of modules, go back to the START page
of the collection by clicking the collection title. The description at the bottom of the page will say "Share
collection" instead of "Share module", as it does on the module pages.

16"Viewing Metadata" <http://cnx.org/content/m37413/latest/>
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(a)

(b)

Figure 8.5: Twitter and Facebook buttons in the footer.

The Facebook and Twitter buttons give direct feedback to authors by letting them see instantly how
many people have liked or tweeted their content.

8.3.1.1.3 Featured Links

In the Featured Links (Figure 8.6) portlet that appears to the right of the module content you can view links
to examples, supplemental material, or prerequisite material provided by the module author. The
importance of the links are shown by the number of bars in the box to the left of the link name. These links
can be to material within Connexions, to included �les, or to a website outside of Connexions. Featured
Links are only included in the online views of content; the PDF and EPUB downloads17 will not include
these.

Figure 8.6: Featured Links portlet.

17"Viewing Metadata": Section Downloads <http://cnx.org/content/m37413/latest/#downloads>
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8.3.1.1.4 Sidebar Portlets

Related Material
You can view content related to the content you are displaying using the links in the Related Material
(Figure 8.7) portlet that appears on the left side of the page. The links inside this box are speci�c to the
content you are viewing at the time.

Figure 8.7: Links to related material

Included in the portlet are:

"Similar content": a list of similar content generated by the Rhaptos18 platform underlying Connexions.
Click a title to display that content. Browsing the content listed here is a great way to �nd similar
learning materials on a related subject.

"Collections using this material": lists any other collections that contain the current module. (This
header only appears if you are viewing a module which is included in at least one collection.) You can
click on the names of the listed collections to be taken to the start page of that collection.

Recently Viewed
Unless this is your �rst time viewing Connexions content on this computer or under this account, the Recently
Viewed (Figure 8.8) portlet will be populated with modules, collections, and lenses you have recently
browsed, so that you can easily jump back to them. This portlet can be collapsed by clicking on the triangle
next to the title of the portlet.

18http://rhaptos.org/
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Figure 8.8: "Recently Viewed" portlet.
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Lenses
If the content you are viewing is included in any public lenses, then the "Lenses" (Figure 8.9) portlet will
appear on the left side of the page. This portlet lists all the various lenses which include the content being
viewed.

Figure 8.9: Display lens information in a popup.

Hover over the name of a lens to see more information about it, including who created it, and the comment
(if any) they wrote in their lens about the content. Clicking on the name of a lens will take you to the lens
page19 with the full list of content included in the lens.

Clicking on the tag item next to any of the lens names in the Lenses (Figure 8.10) portlet will expand
the portlet to show all the tags the lens creator has associated with this piece of content.

19"Using Lenses", Figure 1 <http://cnx.org/content/m37415/latest/#lensPage>
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Figure 8.10: Expand tags in the "Lenses" portlet.

Click one of these tags to view all other content within this lens associated with this tag. The link will
take you to a view of the lens page with results �ltered to show only the content associated with this tag.
Tags
If the content you are viewing is included in any public lenses, then you will also see a Tags (Figure 8.11)
portlet on the left side of the page. This portlet lists a combination of all of the tags associated with this
content from all the lenses it is included in.
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Figure 8.11: Tags portlet.

Click on a tag here to see a listing of all the content in the Connexions repository that is included in a
lens and has this tag associated with it. note: Because only content contained in a lens can have a tag
associated with it, this only �nds content that an individual or organization has highlighted with this tag in
a lens.

8.3.1.1.5 Footer

If you scroll to the bottom of the page, you will reach the content footer (Figure 8.12), which contains links
to all the various actions in the Content Action bar (Section 8.3.1.1.1: Content Action Bar), plus more.

Figure 8.12: Content action links in the footer.

There is one further footer section (Figure 8.13), with links to various components of the metadata20

page (circled here in red).

20"Viewing Metadata" <http://cnx.org/content/m37413/latest/>
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Figure 8.13: Metadata links in the footer.

8.3.1.2 Collection Context

How is a collection context set?
When you �rst open a Collection, the collection title page (Figure 8.14) displays. When you land on this
page, your browser saves a cookie that lets it know you are viewing that collection. After that, whenever you
view a module that is included in the collection, you will view that module in the context of the collection,
explained below. This is true until you land on a di�erent collection's start page, at which point your browser
will only display collection context information for modules in that second collection. Even if a module is
actually included in 50 di�erent collections by di�erent authors, your browser will only show it in the context
of the collection you are viewing. note: To view collections correctly, make sure that you have enabled
cookies in your browser.
Collection start page
Many portions of the collection start page are analogous to those when viewing a module, but some parts
are new.
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Figure 8.14: Collection start page.

In addition to containing information about the collection itself, such as the title, authors, and summary,
the center of the page displays a large Start � link. Click Start � to begin reading the collection from
start to �nish, module by module. Or, use the Table of Contents (Figure 8.15) portlet on the left side of the
page to jump to any module within the collection.
Table of Contents
The Table of Contents (Figure 8.15) is shown on the collection start page itself, and on any module viewed
within the context of that collection. Click a module name to jump to that module. You can use the triangles
next to each subgrouping to open and close sections of the table of contents, or you can collapse the entire
Table of Contents to save space by clicking the small triangle at the top of the portlet.
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Figure 8.15: Table of Contents portlet

Collection Context bar
When you view a module in the context of a collection, there will be a collection context bar (Figure 8.16)
above the module title bar to remind you that you are inside a collection. Analogous to the module title
bar, this contains the collection title, authors, and summary.

Figure 8.16: Collection context bar.

Previous or Next Modules
Once you display a module from within a collection, you can move to the previous module or to the next
module in the collection by clicking the �Previous or Next� links that appear in the upper right corner
just below the collection context bar (Figure 8.16).

8.3.1.3 Lens Context

How is a lens context set?
When you �rst land on a lens page21, your browser saves a cookie that lets it know you are viewing that lens.
After that, whenever you view a module or collection that is included in the lens, you will view that content
in the context of the lens, explained below. This is true until you land on a di�erent lens's start page, at

21"Using Lenses", Figure 1 <http://cnx.org/content/m37415/latest/#lensPage>
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which point your browser will only display lens context information for content that is in that second lens.
Even if a module or collection is actually included in 50 di�erent lens by di�erent creators, your browser will
only show it in the context of the lens you are viewing. note: To view lenses correctly, make sure that you
have enabled cookies in your browser.

Figure 8.17: Lens context when viewing content.

Lens logo
The logo or image uploaded by the lens creator will appear above the Table of Contents (Figure 8.15) on
the left side of the page, to remind you that you are viewing content within that lens.
Branding bar
Additionally, just underneath the breadcrumbs at the top of the page, you will see a colored bar associated
with the lens which will print the lens name. Click the name of the lens to return to the lens page.
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Glossary

A AFrame.java

package view;

import javax.swing.*; // to use JFrame.

/**

* Minimal reusable code to create a JFrame with a title and a window event

* listener to call on System.exit() and force termination of the main

* application that creates this JFrame.

* @author D.X. Nguyen

*/

public abstract class AFrame extends JFrame {

public AFrame(String title) {

// Always call the superclass's constuctor:

super(title);

/**

* Add an anonymous WindowAdapter event handler to call System.exit to

* force termination of the main application when the Frame closes.

* Without it, the main application will still be running even after

* the frame is closed.

* For illustration purpose, we use the full package name for

* WindowAdpater and WindowEvent.

* We could have imported java.awt.event.* and avoid using the full

* package names.

*/

addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent e) {

System.out.println(e); // For illustration purpose only.

System.exit(0);

}

});

/**

* Subclasses are to do whatever is necessary to initialize the frame.

* CAVEAT: At run-time, when a concrete descendant class of AFrame is

* created, only the (concrete) initialize() method of this descendant

* class is called.

*/

initialize();

}

/**

* Relegates to subclasses the responsibility to initialize the system to

* a well-defined state.

*/

protected abstract void initialize();

}

array

At its most basic form, a random access
data structure where any element can be
accessed by specifying a single index
value corresponding to that element.

Example: anArray[4] gives us itemE.
Likewise, the statement anArray[7] =

42 should replace itemH with 42.

assignment

To set a variable to a particular data value.

B Binary Tree

A (mutable) binary tree, BiTree, can be
in an empty state or a non-empty state:

• When it is empty, it contains no
data.

• When it is not empty, it contains a
data object called the root element,
and 2 distinct BiTree objects called
the left subtree and the right subtree.

C Class

1. An abstract de�nition of a set of related
objects. A class de�nition speci�es all the
invariant behaviors and other attributes
common to all the objects in the set.

2. In Java, the keyword class denotes the
beginning of a class de�nition.

D De�nitions pane

The pane at the upper right of the DrJava
window where one edits class de�nitions.
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F Frame2.java

package view;

import java.awt.*; // to use Container.

import java.awt.event.*; // to use WindowAdpater and WindowEvent.

import javax.swing.*; // to use JFrame.

/**

* A subclass of AFrame containing two JButtons that have event handler called

* "commands" to dynamically switch layout managers when the buttons are clicked

* upon.

* @author D.X. Nguyen

*/

public class Frame2 extends AFrame {

public Frame2(String title) {

super(title);

}

protected void initialize() {

Container cp = getContentPane();

cp.setLayout(new FlowLayout());

JButton jb1 = new JButton("Grid Layout");

JButton jb2 = new JButton("Flow Layout");

cp.add(jb1);

cp.add(jb2);

pack();

/**

* Registers an anonymous event handler for the clicking of button jb1.

* When jb1 is clicked upon, this event handler will respond by

* executing its actionPerformed(...) method.

*/

jb1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

jb1Clicked(e);

}

});

/**

* Same as the above.

*/

jb2.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

jb2Clicked(e);

}

});

}

/**

* Dynamically changes to a GridLayout with 2 rows and 1 column.

*/

protected void jb1Clicked(ActionEvent e) {

System.out.println("Set GridLayout...");

getContentPane().setLayout(new GridLayout(2,1));

validate(); // forces this frame to re-layout.

}

/**

* Dynamically changes to FlowLayout.

*/

protected void jb2Clicked(ActionEvent e) {

System.out.println("Set FlowLayout...");

getContentPane().setLayout(new FlowLayout());

validate(); // forces this frame to re-layout.

}

}

Frame2App.java

package app;

import javax.swing.*;

import view.*;

public class Frame2App {

public static void main(String[] args) {

JFrame f = new Frame2("A JFrame with 2 JButtons with event listeners");

f.setVisible(true);

f.setSize(300, 100); // Guess what this does!

f.setLocation(200, 200); // Guess what this does!

// Forces the frame to re-layout its components:

f.validate();

}

}

Frame3.java

package view;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/**

* Same functionality as Frame2 but uses an adapter interface to communicate

* with the outside world instead. This design allows varying the communication

* with the outside world. How the outside world reacts to the events that

* happen to the view is a variant behavior!
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* Uses the Null-Object Pattern to initialize the adapter avoiding checking for

* null.

* @author DXN

*/

public class Frame3 extends Frame2 {

// Initializes the adapter to a null object:

private IView2World _v2wAdapter = new IView2World() {

public Object button1Clicked (ActionEvent e) {

return null; // does nothing!

}

public Object button2Clicked (ActionEvent e) {

return null; // does nothing!

}

};

public Frame3(String title) {

super(title);

}

public void setV2WAdapter(IView2World v2w) {

if (null == v2w) {

throw new IllegalArgumentException("Argument cannot be null!");

}

_v2wAdapter = v2w;

}

/**

* Tells _v2wAdapter the button click event happens on jb1.

*/

protected void jb1Clicked(ActionEvent e) {

_v2wAdapter.button1Clicked(e);

}

/**

* Tells _v2wAdapter the button click event happens on jb2.

*/

protected void jb2Clicked(ActionEvent e) {

_v2wAdapter.button2Clicked(e);

}

}

Frame3App.java

package app;

import view.*;

import controller.*;

/**

* Instantiates the controller and builds the frame!

*/

public class Frame3App {

public static void main(String[] args) {

new Frame3Controller().constructFrame().validate();

}

}

Frame3Controller.java

package controller;

import view.*;

import java.awt.event.*;

import javax.swing.JFrame;

import java.awt.*; // For layout managers.

/**

* The controller that instantiates a concrete IView2World object and connects

* the world outside of Frame3 (the view) to Frame3.

* The concrete adapter is implemented as an anonymous inner classe.

*/

public class Frame3Controller {

public JFrame constructFrame() {

// Local variable needs to be final so that the local inner class

// can access it:

final Frame3 frame = new Frame3("View and Controller");

/**

* Install as concrete anonymous IView2World adapter in frame, without

* frame knowing what the adapter does.

*/

frame.setV2WAdapter(new IView2World() {

public Object button1Clicked (ActionEvent e) {

frame.getContentPane().setLayout(new GridLayout(2,1));

frame.validate();

return null;

}

public Object button2Clicked (ActionEvent e) {

frame.getContentPane().setLayout(new FlowLayout());

frame.validate();

return null;

}

});

frame.setVisible(true);

return frame;

}

}
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FrameA.java

package view;

/**

* A direct concrete subclass of AFrame with its own initializaion code.

*/

public class FrameA extends AFrame {

/**

* Calls AFrame constructor, which calls the cocnrete inititialize() method

* of this FrameA. This is done dynamically at run-time when a FrameA

* object is instantiated.

*/

public FrameA(String title) {

super(title);

}

/**

* The superclass initialize() method is abstract: don't call it here!

* Just write application specific initialization code for this FrameA here.

*/

protected void initialize() {

// Application specific intialization code for FrameA goes here...

}

}

FrameAB.java

package view;

/**

* A second level descendant class of AFrame

* that initializes itself by calling the

* initialize() method of its direct superclass

* in addition to its own initialization code.

*/

public class FrameAB extends FrameA {

/**

* Calls the superclass constructor, FrameA,

* which in turns calls its superclass constructor,

* AFrame, which first calls its superclass

* constructor, JFrame, and then executes the

* initialize() method of this FrameAB.

*/

public FrameAB(String title) {

super(title);

}

/**

* At run-time, when the constructor AFrame is

* executed, it calls this FrameAB initialize()

* method and NOT the initialize() method of the

* superclass FrameA. In order to reuse the

* initialization code for FrameA, we must make

* the super call to initialize().

*/

protected void initialize() {

// Call initialize() of FrameA:

super.initialize();

/**

* Additional application specific intialization

* code for FrameAB goes here...

*/

}

}

FrameAC.java

package view;

/**

* A second level descendant class of AFrame

* that bypasses the initialize() method of

* its direct superclass in its own

* initialization code. Since proper

* initialization of a subclass depends on

* proper initialization of the super class,

* bypassing the initialization code of the

* superclass is a BAD idea!

*/

public class FrameAC extends FrameA {

/**

* Calls the superclass constructor, FrameA,

* which in turns calls its superclass constructor,

* AFrame, which first calls its superclass

* constructor, JFrame, and then executes the

* initialize() method of this FrameAC.

*/

public FrameAC(String title) {

super(title);

}

/**
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* At run-time, when the constructor AFrame is

* executed, it calls this initialize() method and

* NOT the initialize() method of the superclass

* FrameA. This method does not call the super

* class's initialize() method. As a result, the

* initialization done in the superclass is

* bypassed completely. This is a BAD idea!

*/

protected void initialize() {

/**

* Application specific intialization code for

* FrameAC goes here...

*/

}

}

I Instantiate

To create an object based on the
speci�cations de�ned in a class de�nition.
The object created is called an instance
of that class.

Interactions pane

The pane at the lower edge of the DrJava
window where one can interactively
execute Java statements.

invariant

The parts of a probram, such as values or
programmatic behaviors, that do not
vary from one invocation to the next.
Note that while a value may be variant,
an abstraction of that value may be
invariant.

IView2World.java

package view;

import java.awt.event.*;

/**

* Adapter connecting Frame3 (the View) to the outside world.

*/

public interface IView2World {

/**

* Called by Frame3 when its button 1 is clicked.

*/

public Object button1Clicked (ActionEvent e);

/**

* Called by Frame3 when its button 2 is clicked.

*/

public Object button2Clicked (ActionEvent e);

}

L literal

An explicit, concrete textual
reprepresentation of a value of a given
type. Literals are often used to set the
values for variables.

T type

A set of values with certain common
characteristics. In Java, all data values
must be of some type.

Example: int is a type that is used to
represent integer number values. double
is a type that is used to represent real
number values. String is a type that is
used to represent a string of characters.

U UML

Uni�ed Modeling Language, developed by
the Object Management Group ("OMG")

Unit Test

The testing of a single class or small
collection of classes (a "unit") to verify
correct behavior at a �ne-grained level.

V variable

A memory location to hold a particular
value of a given type. In a strongly-typed
language such as Java, all variables must
have a type. This is not true in all
languages however. In a Java program,
variables have names called indenti�ers,
which are sequences of characters put
together according to the following rule.
A must begin with an alphabet character
(e.g. 'a', 'b', 'X', 'Y', etc.) and may be
followed by zero or more alphabet
characters and/or digit characters (e.g.
'0', '1', etc.) and/or the underscore
character ('_'). For examples, cp3PO is a
valid variable name while Darth Vader is
not because it has a blank character
between the 'h' and the 'V'.

variant
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The parts of a program, such as values or
programmatic behaviors, that vary from

one invocation to the next. Note that
while a value may be variant, its
abstraction may be invariant.
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Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A abstract, � 2.3(27), � 3.5(58), 80
Abstract Behavior, 82
abstract classes, � 2.2(21)
Abstract Construction, 82
Abstract Environments, 82
Abstract Factory Design Pattern, 66
Abstract Factory Pattern, 60
Abstract Structure, 82
abstraction layers, � 1.1(1)
access speci�er, 5
adaptation, 164
AFrame, 139, 140, 140, 141
Algorithm, � 3.4(47)
algorithms, � 4.3(95)
annotation, � 8.3.1(162)
anonymous, � 3.6(67)
Applet, � 6.1(139)
applets, 139
array, 107, 107
array processing, � 4.5(107)
arrays, � 4.5(107)

B balanced, 100, 100, 100, 100
balanced tree, 100
Ballworld, � 2.2(21), � 2.3(27)
behavioral abstraction, � 1.1(1)
Binary, � 4.4(99)
Binary Tree, 95
binary trees, � 4.3(95)
breakpoints, 148, 148

C change, � 4.2(89)
char, 2
class, � 1.2(5)
classes, 6, � 2.3(27)
Clear All Breakpoints, 149
closure, � 3.6(67), 79, 80
code listing, 140
collections, 167
command, � 6.2(143), 143
command design pattern, � 6.2(143)
Comparator, 100, 100

component, � 3.5(58), 121
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