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Chapter 1

Compression Members

1.1 Deriving Euler's equation1

1.1.1 Derivation of Euler's equation

Start with the di�erential equation giving the de�ected shape of an elastic member subjected to bending.

M = −
(
EI dyd

)
= Py

(1.1)

Set equal to zero.

EI
dy

d
+ Py = 0 (1.2)

Divide everything by EI.

dy

d
+

P

EI
y = 0 (1.3)

Set the variable, α2

α2 =
P

EI
(1.4)

then, plug that in to get:

dy

d
+ α2y = 0 (1.5)

Since this is a second order, linear, ordinary di�erential equation with constant coe�cients, it solves to:

y = Asin (αx)

= Bcos (αx)
(1.6)

Take the boundary condition that x = 0 and y = 0 to solve for B

y (0) = 0

= A (0)

= B (1)

(1.7)

1This content is available online at <http://cnx.org/content/m10688/2.3/>.
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2 CHAPTER 1. COMPRESSION MEMBERS

B = 0 (1.8)

Now, take the boundary conditions x = L and y = 0.

y (L) = 0

= Asin (αL)
(1.9)

Since A cannot equal zero:

sin (αL) = 0 (1.10)

Take the sine inverse of both sides, and αL can be 0, π, 2π, etc. So...

αL = nπ (1.11)

Solve for α2

α2 =
n2π2

L2
(1.12)

Set the two α2's equal and solve for P .

Pcr =
n2π2 (EI)

L
(1.13)

Assume that n = 1
Now we can solve for Fcr using this equation.

Fcr = Pcr
Ag

= π2E
L2

I
A

= π2Er2

(kL)2

(1.14)

where:

r =

√
I

A
(1.15)

1.2 Example �nding Fcr2

1.2.1 Problem

A W12 X 72 is used as a column. It is 10 feet long and the steel strength is 50 ksi. Find the maximum
compressive load it can hold.

2This content is available online at <http://cnx.org/content/m10709/2.2/>.
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1.2.2 Givens

The �rst section of the Manual will give the properties for the W12 X 72 column. Ag, Ix, and Iy are found
on page 1-20 and 1-21.

• W12 X 72
• 1 = 10ft
• Fy = 50ksi
• Ag = 21.2
• Ix = 597
• Iy = 195
• take K = 1

1.2.3 Solution

The equations and AISC guidelines for solving this and other columns and compression member problems
can be found in the Manual starting on page 16.1-27.

1. First, �nd r (governing radius of gyration about the axis of buckling, in.):

r = ry

=
√

195
21.1

= 3.04

(1.16)

2. Section E2 of the Speci�cations section gives the equations to �nd the design compressive strength.

• Ag = gross area of member, square inches
• Fy = speci�ed minimum yield stress, ksi
• E = modulus of elasticity, ksi
• K = e�ective length factor
• l = laterally unbraced length of member, in.

3. Next �nd the design compressive strength by �rst �nding the value for λc.

λc = Kl
rπ

√
Fy

E

= 0.519
(1.17)

4. Since this is less than 1.5 the equation:

Fcr = 0.658λc
2
Fy (1.18)

can be used for Fcr (Section 1.1) and the column is considered short and stocky.
5. Therefore,

Fcr = 44.7ksi (1.19)

1.2.4 Answer

Now we can use the equation

φPn = φFcrAg

= 802
(1.20)
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where

φ = 0.85 (1.21)

So 802 k is the maximum load the column can sustain.
needs �gure and help on question

1.3 Example �nding capacity3

1.3.1 Problem

Find the capacity of a W14 X 74 column of A36 steel and a length of 20 feet.

1.3.2 Givens

The �rst section of the Manual will give the properties for the W14 X 74 column. Ag, Ix, Iy, ry, and rx
are found on pages 1-18 and 1-19.

• W14 X 74
• l = 20ft
• Fy = 36ksi
• Ag = 21.8
• Ix = 795
• Iy = 134
• rx = 6.04
• ry = 2.48

1.3.3 Solution

The equations and AISC guidelines for solving this and other columns and compression member problems
can be found in the Manual starting on page 16.1-27.

1. First �nd the slenderness ratio to determine about which axis the bending will occur.

Kl
rx

= 1×20×12
6.04

= 39.7
(1.22)

Kl
ry

= 1×20×12
2.48

= 96.77
(1.23)

2. Since Kl
ry

is greater than Kl
ry

, the Fcry will be less than Fcrx and Fcry will be the governing factor. The

bending will be about the y-axis. Now, we can solve for Fcr and Pn.
3. Section E2 of the Speci�cations section gives the equations to �nd the design compressive strength.

• Ag = gross area of member, square inches
• Fy = speci�ed minimum yield stress, ksi
• E = modulus of elasticity, ksi
• k = e�ective length factor
• l = laterally unbraced length of member, in.

3This content is available online at <http://cnx.org/content/m10711/2.2/>.
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4. Next �nd the design compressive strength by �rst �nding the value for λc.

λc = Kl
rπ

√
Fy

E

= 1.085
(1.24)

5. Since this is less than 1.5 the equation:

Fcr = 0.658λc
2
Fy (1.25)

can be used for Fcr.
6. Therefore,

Fcr = 21.99ksi (1.26)

1.3.4 Answer

Now we can use the equation

φPn = φFcrAg

= 408
(1.27)

where
φ = 0.85 (1.28)

So 408 k is the maximum load the column can sustain.

1.4 Width Thickness Ratio4

In order to use section E2 (page 16.1-27) of the Manual, the width-thickness ratios must be less than λr
This means the member is slender.

1.4.1 Width Thickness Ratio

For compact members: b
t ≤ λp . For non-compact members: λp ≤ b

t ≤ λr.

In this case, b
t is the Width Thickness Ratio. The speci�cations for the widths of di�erent shaped

members, b can be found on page 16.1-12 of theManual. The t refers to the thickness of the member. Also,
on pages 16.1-14 and 16.1-15, you will �nd the Limiting Width-Thickness Ratios for Compression Elements
tables. These tables will give the an equation for λp (compact) and for λr (non-compact) depending on a
description of the element.

1.4.2 Sti�ness

"Two types of elements must be considered: unsti�ened elements, which are unsupported along one edge
parallel to the direction of the load, and sti�ened elements, which are supported along both edges." LRFD
Steel Design Second Edition: William T. Segui, 1999

For example, an L-shaped member has two unsti�ened elements because each member is only supported
(or connected) at one end. Also, a C-shaped member has two unsti�ened elements and one sti�ened element.
The web is sti�ened because it is supported on both sides as opposed to the �anges which are unsti�ened .

Exercise 1.1 (Solution on p. 16.)

How many unsti�ened and sti�ened elements would an I-shaped member have?

4This content is available online at <http://cnx.org/content/m10722/2.3/>.
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1.4.3 B5: Local Buckling

One example of using the section B5: LOCAL BUCKLING 1. Classi�cation of Steel Sections on page 16.1-12
in the AISC Steel Manual is with an I-shaped member. Since the �anges are unsti�ed, and it is I-shaped, use
a width, b, from part (a). Therefore, b can be taken as half the full-�ange width, bf . This means the Width

Thickness Ratio is:
bf

t . Then, since the web is a sti�ened element, use part (a) of the sti�ened elements

section and use the distance h for the "width." This gives the Width Thickness Ratio as: h
t .

1.4.4 Values for Width Thickness Ratio

An easy way of �nding values for b
t can be found on page 16.1-150. Here, Table 6: Slenderness Ratios of

Elements as a Function of Fy From Table B5.1, gives values for the ratios that are given in formula form in
Table B5.1 (16.1-14). This is useful in cutting back on calculating errors.

For example, the �anges of I-shaped sections in pure compression with Fy = 50ksi, Table 6 gives the
value of 15.9 for:

λr = 0.56
√

E
Fy

= 15.9
(1.29)

note: Values for the ratios
bf

2tf
and h

tw
are tabulated in the dimensions and properties tables in

Part 1 of the Manual

1.5 E�ective Length5

1.5.1 De�ne e�ective length

The equations for critical buckling load include the variable KL which is the e�ective length. K is the
e�ective length factor. Values for K vary depending on the load and type of supports of a member. A
listing of the values can be found in the Manual on page 16.1-189 in Table C-C2.1. For instance, the value
for K with the condition that both ends of a column are rotation free and translation �xed (pinned) is 1.0.

1.5.2 Technical vs. recommended values of K

"Two values for K are given: a theoretical value and a recommended design value to be used when the ideal
end condition is approximated. Hence, unless a '�xed' end is perfectly �xed, the more conservative design
values are to be used. Only under the most extraordinary circumstances would the use of the theoretical
values be justi�ed. Note, however, that the theoretical and recommended design values are the same for
conditions (d) and (f) in the Commentary Table C-C2.1. The reason is that any deviation from a perfectly
frictionless hinge or pin introduces rotational restraint and tends to reduceK. Therefore use of the theoretical
values in these two cases is conservative." LRFD Steel Design Second Edition: William T. Segui, 1999

note: The larger the e�ective length, the less strength there is in a column. So, if there is a choice
of e�ective lengths, the larger value will give the more conservative strength value.

5This content is available online at <http://cnx.org/content/m10730/2.3/>.
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1.5.3 Actual length vs. e�ective length

Sometimes the actual length of a member di�ers from the e�ective length. This is true when a member is
supported somewhere in the middle in addition to at the two ends. The e�ective length then, is the length
from one support to another. Also, a member can be supported two di�erent ways in two di�erent axes.
For example, a column can be supported at the top in the bottom while looking at it in the x-direction, but
braced in the middle when looking at it from the y-direction. We refer to the distance between the supports
in the y-direction and the x-direction as Ly and Lx , respectively.

1.5.4 Using KL(x)

The design strengths given in the column load tables beginning on page 4-21 are based on the e�ective length
with respect to the y-axis. A procedure was developed (as follows) to use KxL in the tabulated values.

The tablulated values in chapter 4 of the Manual are in terms of the y-axis being the stong axis. This
means they are based on the values of KL being equal to KyL. However, if a situation occurs where one
would need the values of KL with respect to the x-axis, the following procedure can be used.

The KL as tabulated is equal to either KyL or KxL
rx
ry

. We can obtain KxL
rx
ry

by:

1. KLy
ry

2. y = ry

rx

3. KLy = KL ry

rx

4. KxL
rx
ry

= KLy

1.6 Example with di�erent e�ective lengths6

1.6.1 Problem

A W12 X 65 column, 24 feet long, is pinned at both ends in the strong direction, and pinned at the midpoint
and the ends in the weak direction. The column has A36 steel.

1.6.2 Method 1 - with column tables

1.6.2.1 Number 1 - Find e�ective length

Since the x-direction is the strong one and the y-direction is the weak one, then:

Lx = 24 (1.30)

Ly = 12 (1.31)

Notice that the e�ective length in the y-direction is half the total length of the member because there is
a lateral support at the midpoint.

Looking at the Manual on page 16.1-189 shows that the K value for a column pinned at both ends is
1.0. Since the column is pinned at the ends and at the middle,

Kx = 1 (1.32)

Ky = 1 (1.33)

6This content is available online at <http://cnx.org/content/m10732/2.3/>.



8 CHAPTER 1. COMPRESSION MEMBERS

Now we can say that:

KxLx = 1× 24

= 24
(1.34)

KyLy = 1× 12

= 12
(1.35)

1.6.2.2 Number 2 - Finding the capacity

Since, the steel is A36, you cannot use the column tables from Chapter 4 of the Third Edition Manual as
the values are all given in terms of Fy = 50ksi. However, in the Second Edition, in Chapter 3, the column
tables give information for terms of Fy = 36ksi.

From page 3-24 of the Second Edition Manual, the capacity for a W12 X 65 column with KyLy = 12 is
519 kips.

Then to �nd KxLx in terms of ry , KxLx must be divided by: rx

ry
. This gives:

KxLx
rx
ry

= 24
1.75

= 13.71
(1.36)

This is close enough to 14, that we can then look in the tables for the KL value of 14, or interpolate for
13.71) and �nd the capacity for the W12 X 65 member. The capacity is 497kips.

1.6.3 Method 2 - with buckling formulas

If you do not have the tables for A36 steel, you must use the formulas on page 16.1-27 of the Manual.

1.6.3.1 Number 1 - Show the width-thickness ratio

In order for the equations in section E2 of the Manual to apply, the width-thickness ratio must be λr.

bf
2tf

< λr (1.37)

The value for
bf

2tf
(9.92) can be found on page 16.1-21, as well as the value for h

tw
(24.9). The formula

for λr can be found on page 16.1-14/15. Then, the value for that formula can be found on page 16.1-150.
The �anges are unsti�ened and in pure compression, so the formula is:

bf
2tf

= 9.92 < 0.56

√
E

Fy
= 15.9 (1.38)

The web is sti�ened and in compression, so the formula is:

h

tw
= 24.9 ≤ 1.49

√
E

Fy
= 42.3 (1.39)

Another way to easily �nd the formulas for λr is to go to page 16.1-183 and look at the picture of the
I-shaped member. The arrows point to either the �ange or the web and formulas correspond to the arrows
giving the axial compression formulas that you need for that element of the member.
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1.6.3.2 Number 2 - Compute slenderness ratios

The slenderness ratios can be found for both the x-axis and the y-axis. We know K, and L, and r can be
found in the properties section of the Manual on page 1-20.

KxLx

rx
= 24×12×1

5.28

= 54.54
(1.40)

KyLy

rx
= 12×12×1

3.02

= 47.68
(1.41)

Then, using Table 3-36 on page 16.1-143 of the Manual and interpolation, we can determine that
φcFcr = 26.21 , and that φcPn = φcFcrAg = 500k

1.6.4 Answer

The capacity of the W12 X 65 column is 500 kips.

1.7 Slenderness Ratio7

1.7.1 De�nition

De�nition 1.1: Slenderness ratio
The ratio of the e�ective length of a column to the radius of gyration of the column, both with
respect to the same axis of bending

Manual of Steel Construction Third Edition � AISC, 2001.
In algebra form, the slenderness ratio is:

KL

r
(1.42)

1.7.2 More on the topic

The variable that governs Fcr is the slenderness ratio. The larger the slenderness ratio, the less strength
there is in a column. This means the capacity decreases as the slenderness ratio increases.

The AISC recommendation from section B7 are:

KL

r
≤ 200 (1.43)

1.7.3 Where you see slenderness ratio

The slenderness ratio shows up when comparing the strength of columns and more speci�cally in the design
strength formula variable, λc:

λc =
KL

rπ

√
Fy
E

(1.44)

7This content is available online at <http://cnx.org/content/m10737/2.3/>.



10 CHAPTER 1. COMPRESSION MEMBERS

1.8 Equations for P8

1.8.1 What is P?

The abbreviation, P , is used to describe the axial load on a member.

1.8.2 Basic requirements

The basic requirements for compression members are covered in Chapter E of the AISC Speci�cation (page
16.1-27). The relationship between loads and strength takes the form:

Pu ≤ φcPn (1.45)

where:

• Pu = sum of factored loads
• Pn = nominal compressive strength AgFcr

• Fcr = critical buckling stress
• φc = resistance factor for compression members = 0.85

1.8.3 Design strength equation

The design strength equation,
Pn = AgFcr (1.46)

has the variable Fcr which is a function of λc , the slenderness parameter. The equation for λc is:

λc =
Kl

rπ

√
Fy
E

(1.47)

The equation for Fcr , then depends on the value of λc . For instance:

• For λc ≤ 1.5
Fcr = 0.658λc

2
Fy (1.48)

• For λc > 1.5

Fcr =
0.877
λc

2 Fy (1.49)

1.8.4 Slenderness parameter

The slenderness parameter incorporates the material properties. If it is less than 1.5, the compression
member is said to be elastic. Then, if the value is over 1.5, Fcr must be reduced to account for the e�ects of
initial crookedness.

Put in �gure p96.

8This content is available online at <http://cnx.org/content/m10741/2.3/>.
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1.9 E�ective Length and Frames9

1.9.1 A di�erent e�ective length for frames

E�ective length can be found easily on isolated columns by using Table C-C2 in the Commentary of the
Speci�cation Section of theManual. However, this table will not work very well with rigid frames. Columns
in a frame are not independent, they are continuous. The buckling of one member will a�ect all the members
around it. Therefore, the end conditions necessary for using Table C-C2 are not su�cient. It is important
to account for the degree of restraint by connecting members of a column in a frame.

A frame can be unbraced or braced, where unbraced means horizontal displacement in possible. A frame
can also have sidesway.

"The rotational restraint provided by beams, or girders, at the end of a column is a function of rotational
sti�nesses of the members intersecting at the joint." LRFD Steel Design Second Edition � William T. Segui,
1999. The restraint is proportional to EI

L .

G =
P EcIc

LcP EgIg
Lg

=
P Ic

LcP Ig
Lg

(1.50)

K, then depends on the ratio of column sti�ness to the girder sti�ness at each end.

1.9.2 G and K relationships

K is relatively small when a slender column is connected to a girder of large cross section. This is because
the girder e�ectively prevents rotation and acts as a �xed end. The G value for this case is rather small too.
K (or G) is relatively large when the ends of very sti� columns are connected to rather �exible beams. This
is because the ends of the column can more freely rotate and approach the pinned condition.

"The relationship between G and K has been quanti�ed in the Jackson-Mooreland Alignment Charts
(Johnston, 1796), which are reproduced in Figure C-C2.2 in the Commentary. To obtain a value of K from
one of the nomograms, �rst calculate the value of G at each end of the column, letting one value be GA
and the other be GB . Connect GA and GB with a straight line, and read the value of K on the middle
scale. The e�ective length factor obtained in this manner is with respect to the axis of bending, which is
the axis perpendicular to the plane of the frame. A separate analysis must be made for buckling about the
other axis. Normally the beam-to-column connections in this direction will not transmit moment, sidesway
is prevented by bracing, and K can be taken as 1.0.

1.9.3 Value of G for pinned support

G can be taken as 10 at a pinned support because at a pin connection, the situation is just like a very sti�
column attached to in�nitely �exible girders. This means the girders have zero sti�ness. Then, the ratio of
column sti�ness to girder sti�ness would be in�nite for a perfectly frictionless hinge. This end condition can
only be approximated in practice, so the discussion accompanying the alignment chart recommends that G
be taken as 10.

1.10 Example �nding K for frames10

1.10.1 Problem

Find the K-value for all columns of the following frame. All columns are oriented with the web in the plane
of the paper, (the plane of buckling).

9This content is available online at <http://cnx.org/content/m10743/2.3/>.
10This content is available online at <http://cnx.org/content/m10746/2.3/>.
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Figure 1.1: (not drawn to scale)

1.10.2 Section Properties

The section properties can be found in the Dimensions and Properties section of the Manual. The lengths
are found on Figure 1.1.

W8 X 31

• I = 110in.4

• L = 15ft

W14 X 30

• I = 291in.4

• L = 20ft

W18 X 50
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• I = 800in.4

• L = 30ft and L = 20ft

1.10.3 Solution

Since the columns and beams are oriented with the web as the plane of buckling, the axis of bending is the
x-axis. Therefore, all values of I, above, are with respect to the x-axis.

Figure 1.2: An example of a column bending in the x-direction.

For each column:

1. First we must determine the G values for each corner of the frame with the equation:

G =

∑ Ic

Lc∑ Ig

Lg

(1.51)

where, c is for column and g is for girder or beam.
2. Then we use Fig. C-C2.2a and Fig. C-C2.2b in the Manual to �nd the K values for each column. If

a column is sidesway inhibited, it is braced against any sideways movement; if a column is sidesway
uninhibited, it is not braced in the sideways direction.

Column AB

• GA = 10 because it is a pinned support.

• GB =
110
15
800
30

= 0.274
• AB is sidesway inhibited (the support at J braces any sideways motion of the column) so lining up

the value of GA and GB on 16.1-191 gives: K = 0.77

Column CD

• GC = 10 because it is a pinned support.

• GD =
110
15 + 110

12
800
30 + 800

20
= 0.2475

• CD is sidesway inhibited (the support at J braces any sideways motion of the column) so lining up
the value of GC and GD on 16.1-191 gives: K = 0.76



14 CHAPTER 1. COMPRESSION MEMBERS

Column GF

• GF = 1 because it is a pinned support that cannot move sideways, so it is like a �xed support (?check
on this).

• GG =
110
15 + 110

12
800
20 + 800

20
= 0.206

• GF is sidesway inhibited (the support at J braces any sideways motion of the column) so lining up
the value of GG and GF on 16.1-191 gives: K = 0.67

Column ED

• GD = 0.2475 from before.

• GE =
110
12
291
20

= 0.63
• ED is sidesway uninhibited (there is no sideways bracing for the top portion of the frame) so lining

up the value of GE and GD on 16.1-192 gives: K = 1.15

Column GH

• GG = 0.206 from before.
• GH = 0.63 from before.
• GH is sidesway uninhibited (there is no sideways bracing for the top portion of the frame) so lining

up the value of GG and GH on 16.1-192 gives: K = 1.14

1.11 Flexural-Torsional Buckling11

1.11.1 De�nitions

There are three ways a compression member can buckle, or become unstable. These are �exural buckling,
torsional buckling, and �exural-torsional buckling.

De�nition 1.2: Flexural buckling
This type of buckling can occur in any compression member that experiences a de�ection caused
by bending or �exure. Flexural buckling occurs about the axis with the largest slenderness ratio,
and the smallest radius of gyration.

De�nition 1.3: Torsional buckling
This type of buckling only occurs in compression members that are doubly-symmetric and have very
slender cross-sectional elements. It is caused by a turning about the longitudinal axis. Torsional
buckling occurs mostly in built-up sections, and almost never in rolled sections.

De�nition 1.4: Flexural-torsional buckling
This type of buckling only occurs in compression members that have unsymmetrical cross-section
with one axis of symmetry. Flexural-torsional buckling is the simultaneous bending and twisting
of a member. This mostly occurs in channels, structural tees, double-angle shapes, and equal-leg
single angles.

1.11.2 Where to �nd information for �exural-torsional information

The Manual provides speci�cations for �exural-torsional buckling in the Speci�cation section, Section E3
(p. 16.1-28), and Appendix E3 (p. 16.1-94. Section E3 is speci�cally for double-angles and tee-shaped
compression member whose elements have width-thickness ratios less than λr.

Torsional variables can be found in the Dimensions and Properties section of the Manual in the �rst
section. Torsional properties start on page 1-89 and Flexural-torsional properties on page 1-96.

11This content is available online at <http://cnx.org/content/m10750/2.2/>.
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1.11.3 Center of Gravity and Shear Center

De�nition 1.5: Shear center
"The shear center is that point through which the loads must act if there is to be no twisting, or
torsion, of the beam." LRFD Steel Design Second Edition � William T. Segui

The shear center is always located on the axis of symmetry, therefore, if a member has two axes of
symmetry, the shear center will be the intersection of the two axes. Channels have a shear center that is
not located on the member; the value, e0 , tabulated in the Manual is the distance from the channel to the
shear center.

De�nition 1.6: Center of gravity
The center of gravity is the point at which all moments generated from the mass of the element
equal zero.

For members like an I-shaped member, the center of gravity and the shear center are the exact same
point where the two axes of symmetry intersect. for channels, the shear center and the center of gravity are
di�erent, which creates a couple and makes the twisting that causes torsional buckling.

1.11.4 Design strength for double-angle and tee-shaped compression members

Double-angles and tee-shaped members with a width-thickness ratio less than λr should use the formula:

φc = 0.85 (1.52)

Pn = AgFcrft (1.53)

where the "ft" of Fcrft stands for "�exural-torsional," and is expressed as:

Fcrft =
Fcry + Fcrz

2H

(
1−

√
1− 4FcryFcrzH

(Fcry + Fcrz)
2

)
(1.54)

Here, Fcrz is expressed as:

Fcrz =
GJ

A(r0∗)
2 (1.55)

where

• r0
∗ = the polar radius of gyration about the shear center, in.

• G = E
2×(1+ϑ)

• J = torsional sti�ness
• H = 1− y0

2

(r0∗)
2

• y0 = distance between shear center and centroid, in.
• Fcry = equation given in Section E2 for �exural buckling about the y-axis of symmetry.
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Solutions to Exercises in Chapter 1

Solution to Exercise 1.1 (p. 5)
Four unsti�ened elements (the �anges) and one sti�ened element (the web). In this case, each half of one
of the �anges consists of two elements joined at the web.



Chapter 2

Tension

2.1 Introduction to Tension Members1

2.1.1 Tension

Tension refers to the tensile force that can act on a member.

Figure 2.1: An example of a member under tension.

In order to design tension members, it is important to analyze how the member would fail under both
yielding and fracture. These are the limit states. The limit state that produces the smallest design strength
is considered the controlling limit state.

1This content is available online at <http://cnx.org/content/m10785/2.3/>.
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2.1.2 Where to �nd information about tension members

The AISC Manual of Steel Construction lists the requirements for designing tension members in Chapter D
of the Speci�cations Section (page 16.1-24).

2.2 Yielding Limit State2

2.2.1 Introduction to Yielding

The limit state of yielding must be considered in tension members to prevent failure from deformation. "To
prevent excessive deformation, initiated by yielding, the load on the gross section must be small enough that
the stress on the gross section is less than the yield stress Fy."

2.2.2 Equations for Yielding

φt = 0.90 (2.1)

Pn = FyAg (2.2)

Here the design strength of the tension members is φtPn where:

• Ag = gross area of member, in.2

• Fy = speci�ed minimum yield stress, ksi

2.3 Fracture Limit State3

2.3.1 Introduction to Fracture

The limit state of fracture must be considered in tension members to prevent failure from breaking. "To
prevent fracture, the stress on the net section must be less than the tensile strength Fu."

2.3.2 Equations for Fracture

φt = 0.75 (2.3)

Pn = FuAe (2.4)

The resistance factor is smaller for fracture than it was for yielding because failure in fracture is more sudden
and serious than in yielding. Here the design strength of the tension members is φtPn where:

• Ae = e�ective net area, in.2

• Fu = speci�ed minimum tensile stress, ksi

2This content is available online at <http://cnx.org/content/m10787/2.3/>.
3This content is available online at <http://cnx.org/content/m10789/2.3/>.
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2.4 Staggered Holes4

2.4.1 Failure due to Staggered Holes

When a member has staggered bolt holes, a di�erent approach to �nding Ae for the fracture limit state is
taken. This is because the e�ective net area (t x wn ) is di�erent as the line of fracture changes due to
the stagger in the holes. The test for the yielding limit state remains unchanged (the gross area is still the
same).

2.4.2 Failure Lines

The net width now must account for the change in direction of the line of fracture. First, look at di�erent
ways a tension member with staggered holes can fracture. These pictures depict the di�erent lines of failure.
When analyzing a member like this, it is important to �nd all the lines of failure and then determine which
line of failure is the weakest cross section. That cross section will be taken as the net width, wn.

Figure 2.2

4This content is available online at <http://cnx.org/content/m10792/2.3/>.
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2.4.3 Net Width

In order to �nd the net width, �rst the variables s and g must be known. They are shown in Figure 2.3.

Figure 2.3

wn = wg −Nφd +
s2

4g
(2.5)

where:

• wn = net width
• wg = gross width
• φd = φb + 1

16 + 1
16 where: φb = diameter of the bolt

• N = number of bolts in cross section
• s = longitudinal center-to-center spacing of any two consecutive holes, in.
• g = transverse center-to-center spacing between fastener gage lines, in.

• The term s2

4g is added for every non-straight segment

2.5 E�ective Net Area With Shear Lag5

2.5.1 Why use the factor U?

"Shear lag occurs when some elements of the cross section are not connected, as when only one leg of an
angle is bolted to a gusset plate. The consequence of this partial connection is that the connected element
becomes overloaded and the unconnected part is not fully stressed. Lengthening the connected region will
reduce this e�ect. Research by Munse and Chesson (1963) suggests that shear lag be accounted for by using
a reduced, or e�ective, net area. Because shear lag a�ects both bolted and welded connections, the e�ective
net area concept applies to both types of connections." LRFD Steel Design Second Edition � William T.
Segui

5This content is available online at <http://cnx.org/content/m10800/2.3/>.
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Figure 2.4: An L-shaped member that is only bolted on one side. This type of member will have shear
lag.

2.5.2 Bolted Sections

The equation for the e�ective net area is:
Ae = AnU (2.6)

U = 1− x∗

`
≤ 0.9 (2.7)

where:

• Ae = e�ective area, in.2

• An = net area, in.2

• U = reduction coe�cient
• x∗ = connection eccentricity, in.

Figure 2.5: An example of the connection eccentricity for an L-shaped member.
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• ` = length of the connection in the direction of loading, in.

2.5.3 Welded sections

The equation for the e�ective net area depends on the type of weld

1. When the tension is transmitted only by a longitudinal weld connecting the member to something
other than a plate, or the weld is both longitudinal and transverse:

Ae = AgU (2.8)

U = 1− x∗

`
≤ 0.9 (2.9)

2. When the tension is transmitted only by a transverse weld:

Ae = AU (2.10)

U = 1.0 (2.11)

3. When the tension is transmitted to a plate only by longitudinal welds along both edges at the end of
the plate:

Ae = AgU (2.12)

where

• For ` ≥ 2w ........................... U = 1.00
• For 2w > ` > 1.5w .................. U = 0.87
• For 1.5w > ` > w .................... U = 0.75

where:

• Ae = e�ective area, in.2

• Ag = gross area, in.2

• A = area of directly connected elements, in.2

• U = reduction coe�cient
• x∗ = connection eccentricity, in.
• ` = length of the longest weld, in.



Chapter 3

Beams

3.1 Introduction to Beams1

3.1.1 Introduction

In order to design a beam in accordance with the AISC code for steel design, 6 limit states must be considered.
These are yielding, Lateral-Torsional Buckling, Web Local Buckling, Flange Local Buckling, Shear Capacity,
and Serviceability. Only when a beam satis�es these limit states can it be considered safe for public use.

3.1.2 The six limit states

• Yielding is the most common limit state and the �rst to address. It refers to the strength of the beam
to resist the largest possible moment that can be applied to the beam. Basically, it limits the beam
from bending. Yielding depends on the load, the supports, the span of the beam, and the strength of
the steel.

• Lateral-Torsional Buckling, the second limit state refers to the beam's ability to hold up against
torsion, or twisting in the lateral direction. This limit state compares the lateral bracing to a maximum
allowable bracing length. With adequate bracing, the beam will not twist into failure.

• The third limit state, Web Local Buckling refers to the strength of the web of a member in a beam
to resist failure. Basically, the width and thickness of the web must be large enough to withstand the
loading conditions. This means the width-thickness ratio must fall between certain limits so the web
does not collapse or fail.

• The fourth limit state, Flange Local Buckling, is just like Web Local Buckling, except the limits
are for the �anges of a member in a beam. It refers to the strength of the �ange of a member to
resist failure. The width and thickness of the �ange must be large enough to withstand the loading
conditions. This means the width-thickness ratio must fall between certain limits so the �ange does
not collapse or fail.

• Shear Capacity, the �fth limit state, usually is not the controlling limit state, except for beams with
very small lateral spans. The shear in the web of a beam must be limited so it does not exceed the
maximum allowable shear.

• Serviceability, the �nal limit state, refers to the beam's de�ection. The beam must be serviceable
and not de�ect so much that vibrations can be a problem and should not de�ect to a noticeable angle
that people can detect and feel uncomfortable with.

1This content is available online at <http://cnx.org/content/m10777/2.3/>.
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3.2 Yielding2

3.2.1 Introduction to Yielding

The �rst limiting state to check in a beam is that of yielding. The yielding equations take in to account the
stress on a member and the bending moment.

3.2.2 Equations to determine yielding

3.2.2.1 The �exural design strength as determined by the yielding limiting state is:

φbMn (3.1)

where:
φb = 0.90 (3.2)

Mn = Mp (3.3)

3.2.2.2 the plastic moment corresponds to:

Mp = FyZ ≤ 1.5My (3.4)

where, the moment corresponding to onset of yielding at the extreme �ber from an elastic stress distribution
is:

My = FyS (3.5)

note: Z and S are given in Part 1 of the Manual for each member.

3.3 Flange Local Buckling3

3.3.1 Introduction to Flange Local Buckling

The fourth limit state for beams is Flange Local Buckling, or FLB for short. It is exactly the same as Web
Local Buckling, except the width-thickness ratio is in terms of the �ange and not the web. This type of
buckling occurs when the width-thickness ratio is not large enough to withstand the moment on the beam.
The way to prevent this type of buckling is to limit the with-thickness ratio.

The limits can be computed for �ange local buckling. The width-thickness ratio is compared to λp and
λr . Then the maximum moment can be calculated.

2This content is available online at <http://cnx.org/content/m10753/2.3/>.
3This content is available online at <http://cnx.org/content/m10761/2.4/>.
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3.3.2 Equations to determine FLB

Figure 3.1: The graph illustrates the options for FLB

When,
b

t
< λp (3.6)

there is no FLB and the cross section is compact because,

Mn = Mp (3.7)

Mp = FyZ ≤ 1.5My (3.8)

from the yielding state.
When,

λp <
b

t
< λr (3.9)

the graph is linear, and therefore a linear interpolation between Mp and My is used for the maximum
moment.
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And �nally, when b
t > λr the graph is non-linear, the �ange is non-slender, and there is an equation to

�nd the maximum moment in Appendix F of the Speci�cation section of the Manual (page 16.1-96).

3.4 Web Local Buckling4

3.4.1 Introduction to Web Local Buckling

The third limit state for beams is Web Local Buckling, or WLB for short. This type of buckling occurs when
the width-thickness ratio is not large enough to withstand the moment on the beam. The way to prevent
this type of buckling is to limit the with-thickness ratio.

The limits can be computed for web local buckling. The width-thickness ratio is compared to λp and λr
. Then the maximum moment can be calculated.

3.4.2 Equations to determine WLB

Figure 3.2: The graph illustrates the options for WLB

4This content is available online at <http://cnx.org/content/m10758/2.2/>.
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When,
b

t
< λp (3.10)

there is no WLB and the cross section is compact because,

Mn = Mp (3.11)

Mp = FyZ ≤ 1.5My (3.12)

from the yielding state.
When,

λp <
b

t
< λr (3.13)

the graph is linear, and therefore a linear interpolation between Mp and My is used for the maximum
moment.

And �nally, when b
t > λr the graph is non-linear, the web is non-slender, and there is an equation to �nd

the maximum moment in Appendix F of the Speci�cation section of the Manual (page 16.1-96).

3.5 Lateral Torsional Buckling5

3.5.1 Introduction to Lateral Torsional Buckling

The second limit state for beams is Lateral Torsional Buckling, LTB for short. LTB occurs when the
compression portion of a cross section is restrained by the tension portion and the de�ection due to �exural
buckling is accompanied by torsion or twisting. The way to prevent LTB is to have adequate lateral bracing
at adequate intervals along the beam. The limit state is the interval of the bracing.

For each cross section, it is possible to compute limits for LTB. The laterally unbraced length, Lb , is
compared to two limit states, Lp and Lr . Depending on which limit state Lb sits at, the maximum moment
for the beam can be calculated.

5This content is available online at <http://cnx.org/content/m10756/2.2/>.
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3.5.2 Equations to determine LTB

Figure 3.3: This graph illustrates the LTB options

• When,
Lb < Lp (3.14)

there is no LTB because
Mn = Mp (3.15)

Mp = FyZ ≤ 1.5My (3.16)

from the yielding limit state.

• When
Lp < Lb < Lr (3.17)

the graph is linear, and therefore a linear interpolation between Mp and My is used for the maximum
moment:

Mn = Cb

(
Mp − (Mp −Mr)

Lb − Lp
Lr − Lp

)
≤Mp (3.18)
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• And �nally, when
Lb > Lr (3.19)

the graph is non-linear, and there is an equation to �nd the maximum moment in Chapter F of the
Speci�cation section of the Manual (page 16.1-34):

Mn = Mcr ≤Mp (3.20)

3.6 Serviceability6

3.6.1 Introduction to Serviceability

The �nal limit state for beams is serviceability. "A serviceable structure is one that performs satisfactorily,
not causing any discomfort or perceptions of unsafety for the occupants or users of the structure" LRFD
Steel Design Second Edition � William T. Segui. A beam is serviceable when it satis�es certain de�ection
limits. This is so there are no visible sags or de�ections that lead to a �exible beam. If the beam is too
�exible, it could have a problem with vibrations.

3.6.2 De�ection limits

The de�ection of a beam depends on the loading and support conditions. A list of de�ection formulas can be
found in Part 5 of theManual starting on page 5-162. After �nding the de�ection for the beam in question,
compare it to the maximum allowable total (service dead load plus service live load) de�ections. These are
dependent on the function of the beam.

• Plastered construction:
L

360
(3.21)

• Unplastered �oor construction:
L

240
(3.22)

• Unplastered roof construction:
L

180
(3.23)

where, L is the span length.

6This content is available online at <http://cnx.org/content/m10763/2.4/>.
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Figure 3.4: An example of a de�ection on a simply supported beam. Here, ∆ = PL3

48EI
at the point of

the load.

3.7 Shear Capacity7

3.7.1 Introduction to Shear Capacity

The �fth limit state for beams is Shear Capacity. The shear capacity of a beam is the maximum amount
of shear the beam can withstand before failure. Usually the shear capacity is the controlling limit state on
short spans with large loads.

3.7.2 Equations for Shear Capacity

The shear strength relationship is:
Vu ≤ φvVn (3.24)

where

• Vu = maximum shear based on the controlling combination of factored loads
• φv = 0.9 = resistance factor for shear
• Vn = nominal shear strength

The design shear strength then can be found depending, �rst, on whether or not the web is sti�ened.
If the web of a singly or doubly symmetric beam is unsti�ened and h

tw
≤ 260 , then Chapter F2 in the

Speci�cation Section of the Manual (page 16.1-35) can be used to de�ne Vn , otherwise, Appendix F2 in
the Manual (page 16.1-102) can be used.

As long as the shear strength, Vu , of a beam satis�es the maximum shear strength, φvVn , value, shear
is not a limiting factor of the beam design. If the shear strength, does exceed the maximum allowable shear,
a di�erent load or a di�erent cross-section must be chosen.

7This content is available online at <http://cnx.org/content/m10762/2.3/>.
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3.8 The Modi�cation Factor, Cb8

3.8.1 Introduction to Cb

Cb is a modi�cation factor used in the equation for nominal �exural strength when determining Lateral-
Torsional Buckling. The reason for this factor is to allow for non-uniform moment diagrams when the ends
of a beam segment are braced. The conservative value for Cb can be taken as 1.0 as according to Chapter
F2a of the Speci�cation Section of the Manual (page 16.1-32) for all cases. Also, the Manual gives a table
of values for Cb for some loading conditions of simply supported beams. This is located in Section 5 of the
Manual (page 5-35) and is named, Table 5-1.

3.8.2 Equation for Cb

If the value of Cb is not given in Table 5-1, the equation in Chapter F2a of the Speci�cation Section of the
Manual (page 16.1-32), given here, can be used to �nd Cb.

Cb =
12.5Mmax

2.5Mmax + 3MA + 4MB + 3MC
(3.25)

where:

• Mmax = absolute value of maximum moment in the unbraced segment, kip-in.
• MA = absolute value of maximum moment at quarter point of the unbraced segment, kip-in.
• MB = absolute value of maximum moment at centerline of the unbraced segment, kip-in.
• MC = absolute value of maximum moment at three-quarter point of the unbraced segment, kip-in.

8This content is available online at <http://cnx.org/content/m10779/2.2/>.
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Glossary

C Center of gravity

The center of gravity is the point at
which all moments generated from the
mass of the element equal zero.

F Flexural buckling

This type of buckling can occur in any
compression member that experiences a
de�ection caused by bending or �exure.
Flexural buckling occurs about the axis
with the largest slenderness ratio, and
the smallest radius of gyration.

Flexural-torsional buckling

This type of buckling only occurs in
compression members that have
unsymmetrical cross-section with one axis
of symmetry. Flexural-torsional buckling
is the simultaneous bending and twisting
of a member. This mostly occurs in
channels, structural tees, double-angle
shapes, and equal-leg single angles.

S Shear center

"The shear center is that point through
which the loads must act if there is to be
no twisting, or torsion, of the beam."
LRFD Steel Design Second Edition �
William T. Segui

Slenderness ratio

The ratio of the e�ective length of a
column to the radius of gyration of the
column, both with respect to the same
axis of bending

T Torsional buckling

This type of buckling only occurs in
compression members that are
doubly-symmetric and have very slender
cross-sectional elements. It is caused by a
turning about the longitudinal axis.
Torsional buckling occurs mostly in
built-up sections, and almost never in
rolled sections.
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Steel Design (CIVI 306)
Design of steel members, connections, and assemblies. Behavior of steel members as related to design.
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