
SubVI Specifications for "Communication
Systems Projects with LabVIEW"

By:
Ed Doering

SubVI Specifications for "Communication
Systems Projects with LabVIEW"

By:
Ed Doering

Online:
< http://cnx.org/content/col10608/1.2/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Ed Doering. It is licensed under the

Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: January 5, 2010

PDF generated: February 5, 2011

For copyright and attribution information for the modules contained in this collection, see p. 70.

Table of Contents

1 General-Purpose Utilities

1.1 Bitstream sources . 1
1.2 Bitstream conversion . 3
1.3 Channel noise . 7
1.4 Performance metrics . 10
1.5 Miscellaneous . 12

2 Baseband Modulation and Pulse Amplitude Modulation (PAM)

2.1 Pulse shapes . 17
2.2 Transmitter components . 22

3 Bandpass Modulation

3.1 bpm_EnvelopeDetector.vi . 27
3.2 bpm_ProductModulator.vi . 28
3.3 bpm_ReceiverFilter.vi . 30

4 Demodulation and Bitstream Regeneration

4.1 Synchronization . 33
4.2 Preamble processing . 38
4.3 Coherent detection . 41
4.4 Sampling . 42

5 Hamming Block Coding

5.1 hamming_DetectorCorrector.vi . 49
5.2 hamming_GeneratorMatrix.vi . 50
5.3 hamming_HammingCodeParameters.vi . 51
5.4 hamming_Mod2MatrixMultiply.vi . 53
5.5 hamming_ParityCheckMatrix.vi . 55
5.6 hamming_SyndromeTable.vi . 56

6 Speaker - Air - Microphone (SAM) Channel

6.1 sam_GrabAudio.vi . 59
6.2 sam_GrabAudioDynamic.vi . 60
6.3 sam_ListenForAudio.vi . 62

7 Caller ID Decoder
7.1 cid_Demodulator.vi . 65
7.2 cid_DetectStartBit.vi . 67

Index . 69
Attributions . 70

iv

Chapter 1

General-Purpose Utilities

1.1 Bitstream sources

1.1.1 util_BitstreamFromRandom.vi1

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide2 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.1

note: Visit LabVIEW Setup3 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

1.1.1.1 LabVIEW SubVI: util_BitstreamFromRandom.vi

• Description: Generate a bitstream from a random number generator. The probability of generating
a 1 can be controlled, as can the value of the random number seed.

• Category: General-purpose utility ("util" pre�x)

1.1.1.2 Inputs (Controls)

1. length (128) � I32
2. ones probability (0.5) � DBL
3. seed (-1) � I32

Parentheses () indicate default value; square brackets [] designate units.

1This content is available online at <http://cnx.org/content/m18528/1.1/>.
2"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
3"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

1

2 CHAPTER 1. GENERAL-PURPOSE UTILITIES

1.1.1.3 Outputs (Indicators)

1. bitstream out � 1-D Boolean array

1.1.1.4 Required Behavior

• The bitstream length defaults to 128 bits.
• A "seed" value of -1 indicates that a new set of random bits should be generated each time the subVI is

called. Positive seed values will cause the same pattern to be generated each time, with the particular
seed value selecting a di�erent pattern.

1.1.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW4 to learn the mechanics of subVIs.
Refer to the Figure 1.1 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 1.1: [video] LabVIEW coding tips and techniques for util_BitstreamFromRandom.vi

1.1.2 util_BitstreamFromText.vi5

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide6 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.2

note: Visit LabVIEW Setup7 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
5This content is available online at <http://cnx.org/content/m18631/1.1/>.
6"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
7"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

3

1.1.2.1 LabVIEW SubVI: util_BitstreamFromText.vi

• Description: Generate a bitstream from a sequence of text characters. Framing bits (start bit and
stop bit) may optionally be added to the bitstream. The bitstream is also available in the form of a
wordstream.

• Category: General-purpose utility ("util" pre�x)

1.1.2.2 Inputs (Controls)

1. text � string
2. insert framing bits (F) � Boolean
3. start bit value (T) � Boolean

Parentheses () indicate default value; square brackets [] designate units.

1.1.2.3 Outputs (Indicators)

1. bitstream out � 1-D Boolean array
2. wordstream out � 2-D Boolean array

1.1.2.4 Required Behavior

• Converted text follows the indexing schemes imposed by the LabVIEW built-in nodes "String to Byte
Array" and "Number to Boolean Array."

• When requested, the "start bit value" will be prepended to the 8-bit Boolean value, and the complement
of the "start bit value" will be appended to the 8-bit Boolean value.

• The wordstream is an Nx8 2-D version of the 1-D bitstream (Nx10 if framing bits have been inserted),
where "N" is the number of characters in the text control.

1.1.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW8 to learn the mechanics of subVIs.
Refer to the Figure 1.2 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 1.2: [video] LabVIEW coding tips and techniques for util_BitstreamFromText.vi

1.2 Bitstream conversion

1.2.1 util_BitsToWords.vi9

8"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
9This content is available online at <http://cnx.org/content/m18596/1.1/>.

4 CHAPTER 1. GENERAL-PURPOSE UTILITIES

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide10 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.3

note: Visit LabVIEW Setup11 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

1.2.1.1 LabVIEW SubVI: util_BitsToWords.vi

• Description: Convert a bitstream into a wordstream (sequence of k-bit words) by reshaping a 1-D
Boolean array into a 2-D Boolean array.

• Category: General-purpose utility ("util" pre�x)

1.2.1.2 Inputs (Controls)

1. bitstream in � 1-D Boolean array
2. k, word size � I32

Parentheses () indicate default value; square brackets [] designate units.

1.2.1.3 Outputs (Indicators)

1. wordstream out � 2-D Boolean array

1.2.1.4 Required Behavior

• The inbound bitstream of length N produces an outbound wordstream (2-D array) of dimension (N/k)
by k, where k is the wordsize.

• When N is not an integer multiple of k, the wordstream will be padded with Boolean "False" value.

1.2.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW12 to learn the mechanics of subVIs.
Refer to the Figure 1.3 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

10"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
11"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>
12"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

5

Figure 1.3: [video] LabVIEW coding tips and techniques for util_BitsToWords.vi

1.2.2 util_WordsToBits.vi13

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide14 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.4

note: Visit LabVIEW Setup15 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

1.2.2.1 LabVIEW SubVI: util_WordsToBits.vi

• Description: Convert a wordstream (sequence of k-bit words) into a bitstream by reshaping a 2-D
Boolean array into a 1-D Boolean array.

• Category: General-purpose utility ("util" pre�x)

1.2.2.2 Inputs (Controls)

1. wordstream in � 2-D Boolean array

Parentheses () indicate default value; square brackets [] designate units.

1.2.2.3 Outputs (Indicators)

1. bitstream out � 1-D Boolean array

1.2.2.4 Required Behavior

• The inbound wordstream (2-D array) of dimension (N/k) by k, where k is the wordsize, produces an
outbound bitstream of length N.

13This content is available online at <http://cnx.org/content/m18551/1.1/>.
14"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
15"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

6 CHAPTER 1. GENERAL-PURPOSE UTILITIES

1.2.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW16 to learn the mechanics of subVIs.
Refer to the Figure 1.4 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 1.4: [video] LabVIEW coding tips and techniques for util_WordsToBits.vi

1.2.3 util_BitstreamToText.vi17

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide18 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.5

note: Visit LabVIEW Setup19 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

1.2.3.1 LabVIEW SubVI: util_BitstreamToText.vi

• Description: Interpret a bitstream as a sequence of text characters. Framing bits (start bit and stop
bit) may optionally have been added to the bitstream, and are removed. Framing errors (mismatch
between expected and actual values of framing bits) are indicated.

• Category: General-purpose utility ("util" pre�x)

1.2.3.2 Inputs (Controls)

1. bitstream in � Boolean 1-D array
2. includes framing bits (F) � Boolean
3. start bit value (T) � Boolean

Parentheses () indicate default value; square brackets [] designate units.

16"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
17This content is available online at <http://cnx.org/content/m18629/1.1/>.
18"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
19"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

7

1.2.3.3 Outputs (Indicators)

1. text out � string
2. framing error? � 1-D Boolean array

1.2.3.4 Required Behavior

• The bitstream must follow the indexing schemes imposed by the LabVIEW built-in nodes "Boolean
Array to Number" and "Byte Array to String."

• When includes framing bits is true, the start bit leading the 8-element Boolean subarray (a single
text character) and the trailing stop bit will be removed from the bitstream before converting to text.
In addition, the start bit will be compared to the expected value start bit value; the same holds
true for the stop bit, which is assumed to be the complement of start bit value. Any mismatch is
to be �agged as a framing error by setting framing error? true.

1.2.3.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW20 to learn the mechanics of subVIs.
Refer to the Figure 1.5 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 1.5: [video] LabVIEW coding tips and techniques for util_BitstreamToText.vi

1.3 Channel noise

1.3.1 util_BinarySymmetricChannel.vi21

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide22 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.6

note: Visit LabVIEW Setup23 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

20"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
21This content is available online at <http://cnx.org/content/m18537/1.1/>.
22"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
23"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

8 CHAPTER 1. GENERAL-PURPOSE UTILITIES

1.3.1.1 LabVIEW SubVI: util_BinarySymmetricChannel.vi

• Description: A binary symmetric channel (BSC) simulates a digital communication channel
with a simple probabilistic model. The simple model makes two assumptions: (1) bit errors occur
independently for each bit transmitted through the channel, and (2) a bit error transforming a 0 to a
1 is equally likely as an error transforming a 1 to a 0, i.e., the channel is symmetric. Create a subVI
that accepts an input bitstream to produce an output bitstream in which errors are inserted according
to a speci�ed bit error rate (or probability of error).

• Category: General-purpose utility ("util" pre�x)

1.3.1.2 Inputs (Controls)

1. bitstream in � 1-D Boolean array
2. bit error rate � DBL

Parentheses () indicate default value; square brackets [] designate units.

1.3.1.3 Outputs (Indicators)

1. bitstream out � 1-D Boolean array

1.3.1.4 Required Behavior

• Introduce bit errors into the bitstream according to the speci�ed bit error rate.
• Bit errors from one bit to the next are independent of one another.
• Transforming a "True" to a "False" is equally likely to transforming a "False" to a "True."

1.3.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW24 to learn the mechanics of subVIs.
Refer to the Figure 1.6 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Two distinct approaches are demonstrated, one based on the "Random Number (0-1)" built-in LabVIEW
node and another based on the "Bernoulli Noise" built-in subVI.

Figure 1.6: [video] LabVIEW coding tips and techniques for util_BinarySymmetricChannel.vi

1.3.2 util_AWGNchannel_PtByPt.vi25

24"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
25This content is available online at <http://cnx.org/content/m18515/1.1/>.

9

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide26 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.7

note: Visit LabVIEW Setup27 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

1.3.2.1 LabVIEW SubVI: util_AWGNchannel_PtByPt.vi

• Description: Simulate an additive white Gaussian noise-impaired channel. This subVI works on a
point-by-point basis and is intended to operated within a for-loop or while-loop structure.

• Category: General-purpose utility ("util" pre�x)

1.3.2.2 Inputs (Controls)

1. signal in � DBL
2. Eb, energy per bit [J/bit] (1) � DBL
3. Eb/No, SNR per bit [dB] (10) � DBL
4. fs [Hz] (1000) � DBL

Parentheses () indicate default value; square brackets [] designate units.

1.3.2.3 Outputs (Indicators)

1. signal out � DBL
2. sigma � DBL
3. Eb/No � DBL

1.3.2.4 Required Behavior

• A new sample of a Gaussian white noise process is determined and added to signal in each time the
subVI runs to produce signal out.

• The standard deviation parameter of the Gaussian white noise generator is calculated as σ =√
Ebfs

2·10Eb/N0[dB]/10 and is reported by the sigma indicator.

• Eb/No indicates the SNR per bit converted from the decibel form of the corresponding control.

The equation used to convert Eb/No to standard deviation is derived in the screencast video of Figure 1.7.

26"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
27"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

10 CHAPTER 1. GENERAL-PURPOSE UTILITIES

Figure 1.7: [video] Convert Eb/No to standard deviation

1.3.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW28 to learn the mechanics of subVIs.
Refer to the Figure 1.8 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 1.8: [video] LabVIEW coding tips and techniques for util_AWGNchannel_PtByPt.vi

1.4 Performance metrics

1.4.1 util_MeasureBER.vi29

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide30 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.8

note: Visit LabVIEW Setup31 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

28"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
29This content is available online at <http://cnx.org/content/m18547/1.1/>.
30"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
31"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

11

1.4.1.1 LabVIEW SubVI: util_MeasureBER.vi

• Description: Measure the bit error rate (BER) between two bitstreams. This subVI is commonly
used to compare a transmitted bitstream to a received bitstream after passing through a noisy channel.

• Category: General-purpose utility ("util" pre�x)

1.4.1.2 Inputs (Controls)

1. bitstream A � 1-D Boolean array
2. bitstream B � 1-D Boolean array

Parentheses () indicate default value; square brackets [] designate units.

1.4.1.3 Outputs (Indicators)

1. error bitstream � 1-D Boolean array
2. BER, bit error rate � DBL
3. error count � I32
4. array size mismatch � Boolean

1.4.1.4 Required Behavior

• A bit error is de�ned as any discrepancy between bitstream A and bitstream B at each array index.
The output error count indicates the total number of bit errors.

• The error bitstream output indicates T (true) at each index value where a bit error occurred. Absence
of bit errors is indicated by F (false).

• The bit error rate (BER) is calculated as the total number of bit errors divided by the bitstream length.
The bit error rate is reported as NaN ("Not a Number") if the two inbound bitstreams do not have the
same length.

• The output array size mismatch will be active (T) when the two bitstreams do not have the same
length.

1.4.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW32 to learn the mechanics of subVIs.
Refer to the Figure 1.9 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 1.9: [video] LabVIEW coding tips and techniques for util_MeasureBER.vi

32"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

12 CHAPTER 1. GENERAL-PURPOSE UTILITIES

1.5 Miscellaneous

1.5.1 util_EdgeDetector.vi33

33This content is available online at <http://cnx.org/content/m18606/1.1/>.

13

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide34 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.9

note: Visit LabVIEW Setup35 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

1.5.1.1 LabVIEW SubVI: util_EdgeDetector.vi

• Description: Detect edges (transitions) in a bitstream, and indicate rising edge, falling edge, or either
edge as three distinct outputs.

• Category: General-purpose utility ("util" pre�x)

1.5.1.2 Inputs (Controls)

1. bitstream in � 1-D array of Boolean

Parentheses () indicate default value; square brackets [] designate units.

1.5.1.3 Outputs (Indicators)

1. rising edge � 1-D array of Boolean
2. falling edge � 1-D array of Boolean
3. either edge � 1-D array of Boolean

1.5.1.4 Required Behavior

• Each of the three Boolean output indicators is an array of the same size as the input bitstream.
• rising edge is T whenever the the input bitstream sequence changes from F to T.
• falling edge is T whenever the the input bitstream sequence changes from T to F.
• either edge is the logical "OR" of the previous two indicator outputs.

1.5.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW36 to learn the mechanics of subVIs.
Refer to the Figure 1.10 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

34"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
35"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>
36"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

14 CHAPTER 1. GENERAL-PURPOSE UTILITIES

Figure 1.10: [video] LabVIEW coding tips and techniques for util_EdgeDetector.vi

1.5.2 util_GetAudio.vi37

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide38 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.10

note: Visit LabVIEW Setup39 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

1.5.2.1 LabVIEW SubVI: util_GetAudio.vi

• Description: Retrieve audio from a .wav �le, speci�cally the left channel, and return as a monaural
waveform.

• Category: General-purpose utility ("util" pre�x)

1.5.2.2 Inputs (Controls)

1. path � �le path

Parentheses () indicate default value; square brackets [] designate units.

1.5.2.3 Outputs (Indicators)

1. audio � waveform

1.5.2.4 Required Behavior

• Retrieve a .wav audio �le which can be either monaural (single channel) or stereo (two-channel), extract
the left channel, and return as a waveform data type.

37This content is available online at <http://cnx.org/content/m18532/1.1/>.
38"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
39"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

15

1.5.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW40 to learn the mechanics of subVIs.
Refer to the Figure 1.11 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 1.11: [video] LabVIEW coding tips and techniques for util_GetAudio.vi

1.5.3 util_Qfunction.vi41

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide42 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 1.11

note: Visit LabVIEW Setup43 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

1.5.3.1 LabVIEW SubVI: util_Qfunction.vi

• Description: Evaluate the Q-function Q(x), the area under the right-side tail of a zero-mean unit-
variance Gaussian probability density function from x to positive in�nity. The Q-function is widely
used in communication systems for probability-of-error calculations.

• Category: General-purpose utility ("util" pre�x)

1.5.3.2 Inputs (Controls)

1. x � DBL

Parentheses () indicate default value; square brackets [] designate units.

40"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
41This content is available online at <http://cnx.org/content/m18545/1.1/>.
42"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
43"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

16 CHAPTER 1. GENERAL-PURPOSE UTILITIES

1.5.3.3 Outputs (Indicators)

1. Q(x) � DBL

1.5.3.4 Required Behavior

• Given the parameter value x, return the area under the right-side tail of a zero-mean unit-variance
Gaussian probability density function from x to positive in�nity.

1.5.3.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW44 to learn the mechanics of subVIs.
Refer to the Figure 1.12 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 1.12: [video] LabVIEW coding tips and techniques for util_Qfunction.vi

44"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

Chapter 2

Baseband Modulation and Pulse
Amplitude Modulation (PAM)

2.1 Pulse shapes

2.1.1 pam_RaisedCosinePulse.vi1

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide2 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 2.1

note: Visit LabVIEW Setup3 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

2.1.1.1 LabVIEW SubVI: pam_RaisedCosinePulse.vi

• Description: Create a raised cosine pulse shape suitable for a pulse amplitude modulation (PAM)
transmitter.

• Category: Pulse amplitude modulation (PAM) ("pam" pre�x)

2.1.1.2 Inputs (Controls)

1. Tb, bit interval (0.01) [s] � DBL

1This content is available online at <http://cnx.org/content/m18566/1.1/>.
2"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
3"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

17

18
CHAPTER 2. BASEBAND MODULATION AND PULSE AMPLITUDE

MODULATION (PAM)

2. alpha, excess bandwidth factor (0.5) � DBL
3. N, bit intervals for support (4) � DBL
4. fs, sampling frequency (1000) [Hz] � DBL

Parentheses () indicate default value; square brackets [] designate units.

2.1.1.3 Outputs (Indicators)

1. pulse shape � 1-D DBL array

2.1.1.4 Required Behavior

• "pulse shape" is an array containing the raised cosine pulse shape de�ned by the equation

p (t) = sinc (2B0t)

(
cos (2παB0t)
1− 16(αB0t)

2

)

• B0 = Nyquist bandwidth, the minimum possible transmit bandwidth achieved by a sinc pulse
• B0 = 1

2Tb
, where Tb is the bit interval

• α = roll-o� factor (also called excess bandwidth factor), 0 ≤ α ≤ 1 (alpha = 0 creates an unmodi�ed
sinc pulse, and alpha = 1 creates a fully damped sinc pulse with twice the Nyquist bandwidth).

• The "alpha" control value must be limited to the range 0 to 1 and be incrementable by steps of 0.1.

The raised cosine pulse shape is fundamental to digital communication systems. Its name derives from its
frequency-domain shape. Refer to the Figure 2.1 screencast video to learn more about the raised cosine
pulse.

Figure 2.1: [video] Explanation of raised cosine pulse

2.1.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW4 to learn the mechanics of subVIs.
Refer to the Figure 2.2 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 2.2: [video] LabVIEW coding tips and techniques for pam_RaisedCosinePulse.vi

4"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

19

2.1.2 pam_RectanglePulse.vi5

5This content is available online at <http://cnx.org/content/m18454/1.1/>.

20
CHAPTER 2. BASEBAND MODULATION AND PULSE AMPLITUDE

MODULATION (PAM)

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide6 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 2.2

note: Visit LabVIEW Setup7 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

2.1.2.1 LabVIEW SubVI: pam_RectanglePulse.vi

• Description: Create a rectangle pulse shape suitable for pulse amplitude modulation (PAM) trans-
mitters.

• Category: Pulse amplitude modulation (PAM) ("pam" pre�x)

2.1.2.2 Inputs (Controls)

1. Tb, bit interval [s] � DBL
2. fs, sampling frequency [Hz] � DBL

Parentheses () indicate default value; square brackets [] designate units.

2.1.2.3 Outputs (Indicators)

1. pulse shape � 1-D DBL array

2.1.2.4 Required Behavior

• pulse shape is an array of constant unit value.
• The array length is one bit interval Tb times the sampling frequency fs.

2.1.2.5 LabVIEW Coding Tips

Review the LabVIEW help page for "Programming | Array | Initialize Array."

2.1.3 pam_ManchesterPulse.vi8

6"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
7"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>
8This content is available online at <http://cnx.org/content/m18466/1.1/>.

21

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide9 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 2.3

note: Visit LabVIEW Setup10 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

2.1.3.1 LabVIEW SubVI: pam_ManchesterPulse.vi

• Description: Create a prototype Manchester pulse shape. The Manchester pulse is a polar NRZ (non
return to zero) that is 1 during the �rst half of the bit interval and -1 during the second half of the bit
interval.

• Category: Pulse amplitude modulation ("pam" pre�x)

2.1.3.2 Inputs (Controls)

1. Tb, bit interval [s] (1) � DBL
2. fs, sampling frequency [Hz] (10) � DBL

Parentheses () indicate default value; square brackets [] designate units.

2.1.3.3 Outputs (Indicators)

1. pulse shape � 1-D array of DBL

2.1.3.4 Required Behavior

• pulse shape contains Tb times fs sample points.
• The �rst half of the output array contains +1, while the second half of the output array contains -1.

2.1.3.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW11 to learn the mechanics of subVIs.
Refer to the Figure 2.3 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

9"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
10"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>
11"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

22
CHAPTER 2. BASEBAND MODULATION AND PULSE AMPLITUDE

MODULATION (PAM)

Figure 2.3: [video] LabVIEW coding tips and techniques for pam_ManchesterPulse.vi

2.2 Transmitter components

2.2.1 pam_SignalPointMapper.vi12

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide13 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 2.4

note: Visit LabVIEW Setup14 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

2.2.1.1 LabVIEW SubVI: pam_SignalPointMapper.vi

• Description: Map a bitstream onto two di�erent levels.
• Category: Pulse amplitude modulation (PAM) ("pam" pre�x)

2.2.1.2 Inputs (Controls)

1. bitstream in � 1-D Boolean array
2. T level (1) � DBL
3. F level (0) � DBL

Parentheses () indicate default value; square brackets [] designate units.

2.2.1.3 Outputs (Indicators)

1. signal level � 1-D DBL array

12This content is available online at <http://cnx.org/content/m18570/1.1/>.
13"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
14"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

23

2.2.1.4 Required Behavior

• Each element of the bitstream maps to one of two possible signal levels: T values convert to the value
speci�ed by T level and F values convert to the value speci�ed by F level.

2.2.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW15 to learn the mechanics of subVIs.
Refer to the Figure 2.4 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 2.4: [video] LabVIEW coding tips and techniques for pam_SignalPointMapper.vi

2.2.2 pam_TransmitFilter.vi16

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide17 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 2.5

note: Visit LabVIEW Setup18 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

2.2.2.1 LabVIEW SubVI: pam_TransmitFilter.vi

• Description: Convert a sequence (array) of signal levels to a signal waveform with a user-de�ned
pulse shape. Each element of the signal levels array generates one "analog" pulse (a sampled-value
discrete-time waveform). This device is commonly called a "transmit �lter" since it is implemented by
an impulse train driving an FIR �lter.

• Category: Pulse amplitude modulation (PAM) ("pam" pre�x)

15"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
16This content is available online at <http://cnx.org/content/m18472/1.1/>.
17"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
18"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

24
CHAPTER 2. BASEBAND MODULATION AND PULSE AMPLITUDE

MODULATION (PAM)

2.2.2.2 Inputs (Controls)

1. signal levels in � 1-D DBL array
2. pulse shape � 1-D DBL array
3. Tb, bit interval [s] � DBL
4. fs, sampling frequency [Hz] � DBL

Parentheses () indicate default value; square brackets [] designate units.

2.2.2.3 Outputs (Indicators)

1. waveform out � waveform
2. samples per bit � 1-D DBL array

2.2.2.4 Required Behavior

• Each element of signal levels in indicates the amplitude of a user-de�ned pulse shape, which is
assumed to have a unit amplitude.

• Pulses are generated once each bit interval de�ned by Tb. The �nished waveform waveform out is the
superposition (sum) of all individual time-shifted pulse waveforms.

• The prototype waveform waveform out may extend beyond a single bit interval.

2.2.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW19 to learn the mechanics of subVIs.
Refer to the Figure 2.5 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 2.5: [video] LabVIEW coding tips and techniques for pam_TransmitFilter.vi

2.2.3 pam_TransmitSync.vi20

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide21 module for tutorials and
documentation that will help you:

continued on next page

19"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
20This content is available online at <http://cnx.org/content/m18478/1.1/>.

25

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 2.6

note: Visit LabVIEW Setup22 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

2.2.3.1 LabVIEW SubVI: pam_TransmitSync.vi

• Description: Create transmitter sync pulses to indicate the start and end of a bit interval. Also
report the samples per bit interval.

• Category: Pulse amplitude modulation ("pam" pre�x)

2.2.3.2 Inputs (Controls)

1. message length (10) � I32
2. Tb, bit interval [s] (1) � DBL
3. fs, sampling frequency [Hz] (10) � DBL

Parentheses () indicate default value; square brackets [] designate units.

2.2.3.3 Outputs (Indicators)

1. start bit interval � 1-D array of Boolean
2. end bit interval � 1-D array of Boolean
3. samples per bit interval � I32

2.2.3.4 Required Behavior

• samples per bit interval indicates Tb times fs sample points.
• start bit interval and end bit interval each contain message length times samples per bit

interval elements in which T indicates the boundary of a bit interval.
• The �rst element of start bit interval is T. The remaining elements for the bit interval are F.
• end bit interval is similar to start bit interval, except the T element occurs at the end of a bit

interval.

21"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
22"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

26
CHAPTER 2. BASEBAND MODULATION AND PULSE AMPLITUDE

MODULATION (PAM)

2.2.3.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW23 to learn the mechanics of subVIs.
Refer to the Figure 2.6 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 2.6: [video] LabVIEW coding tips and techniques for pam_TransmitSync.vi

23"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

Chapter 3

Bandpass Modulation

3.1 bpm_EnvelopeDetector.vi1

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide2 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 3.1

note: Visit LabVIEW Setup3 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

3.1.1 LabVIEW SubVI: bpm_EnvelopeDetector.vi

• Description: Demodulate an amplitude shift keyed (ASK) signal using envelope detection, a type
of noncoherent detection. The envelope detector is a "square-law" device (actually an absolute value
operator) followed by a lowpass �lter.

• Category: Bandpass modulation ("bpm" pre�x)

3.1.2 Inputs (Controls)

1. modulated signal in � waveform
2. LPF corner frequency [Hz] (100) � DBL
3. LPF order (2) � I32

Parentheses () indicate default value; square brackets [] designate units.

1This content is available online at <http://cnx.org/content/m18420/1.1/>.
2"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
3"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

27

28 CHAPTER 3. BANDPASS MODULATION

3.1.3 Outputs (Indicators)

1. baseband signal out � waveform

3.1.4 Required Behavior

• The absolute value of modulated signal in is �ltered by a Butterworth lowpass �lter to produce
baseband signal out

• The Butterworth �lter corner frequency and order may be adjusted.

3.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW4 to learn the mechanics of subVIs.
Refer to the Figure 3.1 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 3.1: [video] LabVIEW coding tips and techniques for bpm_EnvelopeDetector.vi

3.2 bpm_ProductModulator.vi5

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide6 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 3.2

note: Visit LabVIEW Setup7 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
5This content is available online at <http://cnx.org/content/m18556/1.1/>.
6"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
7"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

29

3.2.1 LabVIEW SubVI: bpm_ProductModulator.vi

• Description: Modulate a baseband signal by a sinusoidal carrier wave that has unit energy as mea-
sured over a single bit interval.

• Category: Bandpass modulation ("bpm" pre�x)

3.2.2 Inputs (Controls)

1. waveform in � waveform
2. Tb, bit interval [s] � DBL
3. fc, carrier frequency [Hz] � DBL
4. fs, sampling frequency [Hz] � DBL

Parentheses () indicate default value; square brackets [] designate units.

3.2.3 Outputs (Indicators)

1. waveform out � waveform
2. carrier � waveform

3.2.4 Required Behavior

• waveform out is the product of waveform in and the sinusoidal carrier signal

Accos (2πfct)

, where
Ac

is the carrier amplitude and
fc

is the carrier frequency in Hz.
• The carrier sinusoid amplitude must be

Ac =
√

2
Tb

in order to achieve the "unit energy per bit interval" criterion. The Figure 3.2 screencast video explains
the origin of this equation.

• carrier is the output of the sinusoidal oscillator used to modulate the inbound signal.

Figure 3.2: [video] Explanation of the "unit energy per bit" amplitude equation

30 CHAPTER 3. BANDPASS MODULATION

3.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW8 to learn the mechanics of subVIs.
Refer to the Figure 3.3 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 3.3: [video] LabVIEW coding tips and techniques for bpm_ProductModulator.vi

3.3 bpm_ReceiverFilter.vi9

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide10 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 3.3

note: Visit LabVIEW Setup11 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

3.3.1 LabVIEW SubVI: bpm_ReceiverFilter.vi

• Description: Remove out-of-band signals at the front end of a receiver using a bandpass �lter tuned
to the carrier frequency and with a bandwidth that matches the bandwidth of the transmitted signal.

• Category: Bandpass modulation ("bpm" pre�x)

3.3.2 Inputs (Controls)

1. signal in � waveform
2. center frequency [Hz] (1000) � DBL
3. bandwidth [Hz] (100) � DBL
4. order (10) � I32

Parentheses () indicate default value; square brackets [] designate units.

8"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
9This content is available online at <http://cnx.org/content/m18436/1.1/>.

10"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
11"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

31

3.3.3 Outputs (Indicators)

1. signal out � waveform

3.3.4 Required Behavior

• signal in is �ltered by an elliptic bandpass �lter to produce signal out

• The elliptic �lter characteristics (center frequency, bandwidth, and order) may be adjusted.

3.3.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW12 to learn the mechanics of subVIs.
Refer to the Figure 3.4 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 3.4: [video] LabVIEW coding tips and techniques for bpm_ReceiverFilter.vi

12"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

32 CHAPTER 3. BANDPASS MODULATION

Chapter 4

Demodulation and Bitstream
Regeneration

4.1 Synchronization

4.1.1 regen_BitClock.vi1

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide2 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 4.1

note: Visit LabVIEW Setup3 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4.1.1.1 LabVIEW SubVI: regen_BitClock.vi

• Description: Create a bit clock signal based on a free-running oscillator with a sync input. The bit
clock signal is a square wave oscillating at a nominal frequency. The oscillator phase resets when the
synchronizing input pulse is active.

• Category: Bitstream regeneration ("regen" pre�x)

1This content is available online at <http://cnx.org/content/m18612/1.1/>.
2"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
3"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

33

34 CHAPTER 4. DEMODULATION AND BITSTREAM REGENERATION

4.1.1.2 Inputs (Controls)

1. restart bit interval � 1-D Boolean array
2. nominal frequency [Hz] � DBL
3. fs [Hz] � DBL

Parentheses () indicate default value; square brackets [] designate units.

4.1.1.3 Outputs (Indicators)

1. bit clock � 1-D Boolean array

4.1.1.4 Required Behavior

• bit clock is the output of a square wave oscillator represented as a Boolean array. The nominal
oscillation frequency is determined by the inputs nominal frequency in Hz and the system sampling
frequency fs, also in Hz.

• The bit clock output array is the same length as the input array restart bit interval.
• The oscillator phase resets anytime that restart bit interval is T, thereby synchronizing the bit

clock to the beginning of a bit interval as detected by another system.

4.1.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW4 to learn the mechanics of subVIs.
Refer to the Figure 4.1 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 4.1: [video] LabVIEW coding tips and techniques for regen_BitClock.vi

4.1.2 regen_BitSync.vi5

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide6 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

continued on next page

4"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
5This content is available online at <http://cnx.org/content/m18627/1.1/>.

35

• Obtain a fully-functional evaluation edition of LabVIEW

Table 4.2

note: Visit LabVIEW Setup7 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4.1.2.1 LabVIEW SubVI: regen_BitSync.vi

• Description: Recover a bitstream synchronization signal from a polar NRZ baseband signal as an
array of sampling instants.

• Category: Bitstream regeneration ("regen" pre�x)

4.1.2.2 Inputs (Controls)

1. signal in � waveform
2. bit rate [Hz] � DBL

Parentheses () indicate default value; square brackets [] designate units.

4.1.2.3 Outputs (Indicators)

1. sampling instants � Boolean 1-D array
2. intermediate signals � cluster of three waveforms: (1) absolute value, (2) bandpass �lter, and (3)

thresholded BPF

4.1.2.4 Required Behavior

• Pass signal in through a "square-law" device (square the waveform), and then through a narrowband
bandpass �lter tuned to the bit rate.

• Detect locations of negative-going zero crossings of the bandpass �lter output and return as the Boolean
array sampling instants.

• Bundle the intermediate signals (square-law device output, bandpass �lter output, and thresholded
bandpass �lter output) as the cluster intermediate signals.

4.1.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW8 to learn the mechanics of subVIs.
Refer to the Figure 4.2 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 4.2: [video] LabVIEW coding tips and techniques for regen_BitSync.vi

6"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
7"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>
8"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

36 CHAPTER 4. DEMODULATION AND BITSTREAM REGENERATION

4.1.3 regen_FrameSync.vi9

9This content is available online at <http://cnx.org/content/m18576/1.1/>.

37

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide10 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 4.3

note: Visit LabVIEW Setup11 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4.1.3.1 LabVIEW SubVI: regen_FrameSync.vi

• Description: Establish frame sync on a message containing a standard preamble, and then return the
message portion of the bitstream. The bitstream must satisfy the following requirement: (1) Message
frame size = 10 bits (start bit, 8-bit character, and stop bit), (2) start bit = F, stop bit = T , and (3)
message is preceded by one frame containing the 8-bit value 0xFF. Requirement (3) can equivalently
be restated as the preamble must end with 9 consecutive T values.

• Category: Bitstream regeneration ("regen" pre�x)

4.1.3.2 Inputs (Controls)

1. bitstream in � 1-D Boolean array

Parentheses () indicate default value; square brackets [] designate units.

4.1.3.3 Outputs (Indicators)

1. bitstream out � 1-D Boolean array
2. message detected? � Boolean

4.1.3.4 Required Behavior

• Search bitstream in for 9 consecutive T values, and return the remaining array as bitstream out.
Return an empty array if the required pattern is not found.

• Set message detected? to T if the required pattern is found.

10"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
11"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

38 CHAPTER 4. DEMODULATION AND BITSTREAM REGENERATION

4.1.3.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW12 to learn the mechanics of subVIs.
Refer to the Figure 4.3 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 4.3: [video] LabVIEW coding tips and techniques for regen_FrameSync.vi

4.2 Preamble processing

4.2.1 regen_ExtractPreamble.vi13

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide14 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 4.4

note: Visit LabVIEW Setup15 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4.2.1.1 LabVIEW SubVI: regen_ExtractPreamble.vi

• Description: Detect and extract the preamble from a baseband signal. A preset number of alternating
1s and 0s (also designated as marks and spaces) typically starts the preamble to "wake up" the
receiver's carrier sync and bit sync subsystems. This subVI assumes the received signal is quiet
(nominally zero) prior to the preamble.

• Category: Bitstream regeneration ("regen" pre�x)

12"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
13This content is available online at <http://cnx.org/content/m18585/1.1/>.
14"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
15"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

39

4.2.1.2 Inputs (Controls)

1. signal in � waveform
2. Tb [s] � DBL
3. bit intervals to skip (4) � I32
4. bit intervals to keep (32) � I32
5. threshold (0.1) � DBL

Parentheses () indicate default value; square brackets [] designate units.

4.2.1.3 Outputs (Indicators)

1. preamble out � waveform
2. preamble detected? � Boolean

4.2.1.4 Required Behavior

• signal in is scanned from the beginning to detect when the signal amplitude exceeds threshold. If
the input signal never exceeds the threshold, preamble out returns an empty waveform and preamble

detected? returns F.
• Once a valid threshold crossing is detected, preamble out extracts a portion of signal in of duration

bit intervals to keep times the bit interval Tb; the extracted signal begins at the location of the
�rst threshold crossing plus bit intervals to skip times the bit interval. The Boolean indicator
preamble detected? is set to T.

4.2.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW16 to learn the mechanics of subVIs.
Refer to the Figure 4.4 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 4.4: [video] LabVIEW coding tips and techniques for regen_ExtractPreamble.vi

4.2.2 regen_NormalizeToPreamble.vi17

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide18 module for tutorials and
documentation that will help you:

continued on next page

16"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
17This content is available online at <http://cnx.org/content/m18483/1.1/>.

40 CHAPTER 4. DEMODULATION AND BITSTREAM REGENERATION

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 4.5

note: Visit LabVIEW Setup19 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4.2.2.1 LabVIEW SubVI: regen_NormalizeToPreamble.vi

• Description: Normalize a received baseband signal according to the DC and RMS values of the
preamble portion of the signal. The preamble is assumed to be a region of alternating 1s and 0s
(marks and spaces) that approximates a sinusoid. The DC o�set and RMS values of the preamble are
measured, and then used to normalize the entire signal.

• Category: Bitstream regeneration ("regen" pre�x)

4.2.2.2 Inputs (Controls)

1. signal in � waveform
2. preamble � waveform

Parentheses () indicate default value; square brackets [] designate units.

4.2.2.3 Outputs (Indicators)

1. normalized signal out � waveform
2. preamble DC value � DBL
3. preamble RMS value � DBL

4.2.2.4 Required Behavior

• Measure the DC (average) value of preamble.
• Measure the RMS (root mean square) value of preamble.
• Produce normalized signal out by (1) subtracting the DC value from signal in, (2) dividing by

the RMS value, and (3) multiplying by the square root of 2. The resulting signal has approximately
zero average value and lies approximately in the range ±.

• Return the measured DC and RMS values as indicators.

18"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
19"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

41

4.2.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW20 to learn the mechanics of subVIs.
Refer to the Figure 4.5 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 4.5: [video] LabVIEW coding tips and techniques for regen_NormalizeToPreamble.vi

4.3 Coherent detection

4.3.1 regen_Correlator.vi21

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide22 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 4.6

note: Visit LabVIEW Setup23 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4.3.1.1 LabVIEW SubVI: regen_Correlator.vi

• Description: Demodulate a pulse-amplitude modulated (PAM) signal using a correlator. The cor-
relator multiples the received signal by the same pulse shape used by the transmitter and integrates
the product over the bit interval. A Boolean control indicates when to clear the integrator and restart
the pulse. This subVI is intended for point-by-point operation within a repeating structure such as a
for-loop or while-loop.

• Category: Bitstream regeneration ("regen" pre�x)

20"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
21This content is available online at <http://cnx.org/content/m18579/1.1/>.
22"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
23"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

42 CHAPTER 4. DEMODULATION AND BITSTREAM REGENERATION

4.3.1.2 Inputs (Controls)

1. signal in � DBL
2. fs [Hz] � DBL
3. start integrating � Boolean
4. pulse � 1-D array of DBL

Parentheses () indicate default value; square brackets [] designate units.

4.3.1.3 Outputs (Indicators)

1. signal out � DBL

4.3.1.4 Required Behavior

• signal out is the time integral of the product of signal in and the pulse shape pulse. The integra-
tion is computed on a point-by-point basis, so each call to the subVI calculates only a single output
value. The integrator output and position (index) within the pulse signal is preserved from one subVI
call to the next.

• When start integrating is T the integrator is reset and the pulse signal index is reset to zero, i.e.,
the beginning of the pulse shape array.

4.3.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW24 to learn the mechanics of subVIs.
Refer to the Figure 4.6 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 4.6: [video] LabVIEW coding tips and techniques for regen_Correlator.vi

4.4 Sampling

4.4.1 regen_SampleHold.vi25

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide26 module for tutorials and
documentation that will help you:

continued on next page

24"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
25This content is available online at <http://cnx.org/content/m18621/1.1/>.

43

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 4.7

note: Visit LabVIEW Setup27 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4.4.1.1 LabVIEW SubVI: regen_SampleHold.vi

• Description: Sample a signal on demand and hold the signal value across multiple calls to the subVI.
This subVI is intended for point-by-point processing within a for-loop or while-loop structure.

• Category: Bitstream regeneration ("regen" pre�x)

4.4.1.2 Inputs (Controls)

1. signal in � DBL
2. sample now � Boolean

Parentheses () indicate default value; square brackets [] designate units.

4.4.1.3 Outputs (Indicators)

1. signal out � DBL

4.4.1.4 Required Behavior

• signal out takes on one of two possible values: if sample now is T the output value is signal in,
otherwise it is the value of signal out from the previous call to the subVI.

4.4.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW28 to learn the mechanics of subVIs.
Refer to the Figure 4.7 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 4.7: [video] LabVIEW coding tips and techniques for regen_SampleHold.vi

26"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
27"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>
28"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

44 CHAPTER 4. DEMODULATION AND BITSTREAM REGENERATION

4.4.2 regen_Sampler.vi29

29This content is available online at <http://cnx.org/content/m18593/1.1/>.

45

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide30 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 4.8

note: Visit LabVIEW Setup31 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4.4.2.1 LabVIEW SubVI: regen_Sampler.vi

• Description: Sample a signal at selected instants in time. The signal input is a discrete-time sampled
signal that represents an "analog" signaling waveform. The sampling instants are indicated by a
Boolean array of the same length as the signal input. A user-de�ned delay can be applied to shift the
sampling instants by a �xed amount.

• Category: Bitstream regeneration ("regen" pre�x)

4.4.2.2 Inputs (Controls)

1. signal in � waveform
2. sampling instants � 1-D Boolean array
3. delay [samples] (0) � I32

Parentheses () indicate default value; square brackets [] designate units.

4.4.2.3 Outputs (Indicators)

1. sampling signal out � 1-D array of DBL
2. actual sampling instants � 1-D Boolean array

4.4.2.4 Required Behavior

• sampled signal out contains the subset of values from signal in that match the index values of the
T-valued elements of sampling instants. sampling instants is assumed to be of the same length
as signal in. Expressed another way, the Boolean array sampling instants contains T (true) values
at each time that signal in is to be sampled. The output sampled signal out therefore contains
the resulting samples.

• The delay value adds a constant shift to the position of the sampling instants. The delay amount
defaults to zero; a positive value delays the sampling instants and a negative value advances the
sampling instants.

• The actual sampling instants is a copy of the input sampling instants with the delay value
applied.

30"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
31"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

46 CHAPTER 4. DEMODULATION AND BITSTREAM REGENERATION

4.4.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW32 to learn the mechanics of subVIs.
Refer to the Figure 4.8 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 4.8: [video] LabVIEW coding tips and techniques for regen_Sampler.vi

4.4.3 regen_BitstreamBu�er.vi33

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide34 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 4.9

note: Visit LabVIEW Setup35 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4.4.3.1 LabVIEW SubVI: regen_BitstreamBu�er.vi

• Description: Build a bitstream by accumulating bits on demand. This subVI is intended for point-
by-point processing within a for-loop or while-loop structure.

• Category: Bitstream regeneration ("regen" pre�x)

4.4.3.2 Inputs (Controls)

1. bit in � Boolean
2. save bit � Boolean

Parentheses () indicate default value; square brackets [] designate units.

32"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
33This content is available online at <http://cnx.org/content/m18494/1.1/>.
34"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
35"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

47

4.4.3.3 Outputs (Indicators)

1. bitstream out � 1-D array of Boolean

4.4.3.4 Required Behavior

• The bitstream out array is empty on the �rst call to the subVI.
• The bitstream out array values are retained from one subVI call to the next.
• When save bit is T the bit in value is appended to the bitstream out array, otherwise the array

returned unchanged.

4.4.3.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW36 to learn the mechanics of subVIs.
Refer to the Figure 4.9 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 4.9: [video] LabVIEW coding tips and techniques for regen_BitstreamBu�er.vi

36"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

48 CHAPTER 4. DEMODULATION AND BITSTREAM REGENERATION

Chapter 5

Hamming Block Coding

5.1 hamming_DetectorCorrector.vi1

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide2 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 5.1

note: Visit LabVIEW Setup3 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

5.1.1 LabVIEW SubVI: hamming_DetectorCorrector.vi

• Description: Implement (n,k) Hamming linear block code error detection and correction using the
"table lookup syndrome decoder" method. The syndrome calculated from a received stream of code-
words is used as an index into the syndrome table to retrieve the most-likely error pattern, which
subsequently is added (modulo-2 addition) to the received codeword to generate the corrected code-
word output. Checkbits may optionally be removed from the output wordstream. Detected errors
(single and double bit errors) are indicated separately.

• Category: Hamming (n,k) block code ("hamming" pre�x)

5.1.2 Inputs (Controls)

1. uncorrected wordstream � Boolean 2-D array

1This content is available online at <http://cnx.org/content/m18427/1.1/>.
2"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
3"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

49

50 CHAPTER 5. HAMMING BLOCK CODING

2. syndrome � Boolean 2-D array
3. syndrome table � Boolean 2-D array
4. remove checkbits (F) � Boolean

Parentheses () indicate default value; square brackets [] designate units.

5.1.3 Outputs (Indicators)

1. corrected wordstream � Boolean 2-D array
2. error detected � Boolean 1-D array

5.1.4 Required Behavior

Refer to the description above.

5.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW4 to learn the mechanics of subVIs.
Refer to the Figure 5.1 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 5.1: [video] LabVIEW coding tips and techniques for hamming_DetectorCorrector.vi

5.2 hamming_GeneratorMatrix.vi5

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide6 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 5.2

note: Visit LabVIEW Setup7 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

4"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
5This content is available online at <http://cnx.org/content/m18563/1.1/>.
6"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
7"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

51

5.2.1 LabVIEW SubVI: hamming_HammingCodeParamters.vi

• Description: Create the generator matrix (G matrix) for the (n,k) Hamming linear block code, as
well as the parity matrix (P matrix), given the number of checkbits "q" and the message length "k".

• Category: Hamming (n,k) block code ("hamming" pre�x)

5.2.2 Inputs (Controls)

1. q, checkbits (3) � I32
2. k, message length (4) � I32

Parentheses () indicate default value; square brackets [] designate units.

5.2.3 Outputs (Indicators)

1. G matrix, k by n � Real Matrix
2. P matrix, k by q � Real Matrix

5.2.4 Required Behavior

1. "P" is a k by q matrix of q-bit words containing two or more 1s arranged in any order (or, equivalently,
the minimum Hamming weight of each row of the "P" matrix is 2).

2. "G" is de�ned as [I | P], where I is the k by k identity matrix.

5.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW8 to learn the mechanics of subVIs.
Refer to the Figure 5.2 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 5.2: [video] LabVIEW coding tips and techniques for hamming_GeneratorMatrix.vi

5.3 hamming_HammingCodeParameters.vi9

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide10 module for tutorials and
documentation that will help you:

continued on next page

8"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
9This content is available online at <http://cnx.org/content/m18441/1.1/>.

52 CHAPTER 5. HAMMING BLOCK CODING

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 5.3

note: Visit LabVIEW Setup11 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

5.3.1 LabVIEW SubVI: hamming_HammingCodeParameters.vi

• Description: Generate the (n,k) parameters for a Hamming linear block code given the exponent q.
Also calculate the coding rate.

• Category: Hamming (n,k) block code ("hamming" pre�x)

5.3.2 Inputs (Controls)

1. q, checkbits (3) � I32

Parentheses () indicate default value; square brackets [] designate units.

5.3.3 Outputs (Indicators)

1. n, codeword length � I32
2. k, message length � I32
3. Rc, code rate � DBL

5.3.4 Required Behavior

1. n = 2q − 1
2. k = n− q
3. Rc = k

n

5.3.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW12 to learn the mechanics of subVIs.
Refer to the Figure 5.3 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 5.3: [video] LabVIEW coding tips and techniques for hamming_HammingCodeParameters.vi

10"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
11"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>
12"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

53

5.4 hamming_Mod2MatrixMultiply.vi13

13This content is available online at <http://cnx.org/content/m18562/1.1/>.

54 CHAPTER 5. HAMMING BLOCK CODING

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide14 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 5.4

note: Visit LabVIEW Setup15 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

5.4.1 LabVIEW SubVI: hamming_Mod2MatrixMultiply.vi

• Description: Multiply two matrices A and B under modulo-2 arithmetic.
• Category: Hamming (n,k) block code ("hamming" pre�x)

5.4.2 Inputs (Controls)

1. A � Real Matrix
2. B � Real Matrix

Parentheses () indicate default value; square brackets [] designate units.

5.4.3 Outputs (Indicators)

1. A*B � Real Matrix

5.4.4 Required Behavior

The subVI produces the matrix product of A and B subject to modulo-2 arithmetic. Since this subVI
is intended for use on matrices populated only by the values 0 and 1, multiplication follows the standard
arithmetic rules, while sums are computed using modulo-2 addition.

5.4.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW16 to learn the mechanics of subVIs.
Refer to the Figure 5.4 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 5.4: [video] LabVIEW coding tips and techniques for hamming_Mod2MatrixMultiply.vi

14"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
15"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>
16"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

55

5.5 hamming_ParityCheckMatrix.vi17

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide18 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 5.5

note: Visit LabVIEW Setup19 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

5.5.1 LabVIEW SubVI: hamming_ParityCheckMatrix.vi

• Description: Create the parity check matrix (H matrix) for the (n,k) Hamming linear block code,
given the parity matrix (P matrix). Since the matrix is de�ned in terms of its transpose, the subVI
actually produces HT (the transpose of H).

• Category: Hamming (n,k) block code ("hamming" pre�x)

5.5.2 Inputs (Controls)

1. P matrix, k by q � Real Matrix

Parentheses () indicate default value; square brackets [] designate units.

5.5.3 Outputs (Indicators)

1. HT matrix, q by n � Real Matrix

5.5.4 Required Behavior

1. The transpose of the parity check matrix is

HT ,

[
P

Iq

]
, where

Iq

is the q by q identity matrix, and P is the parity matrix associated with Hamming code generator (G)
matrix.

17This content is available online at <http://cnx.org/content/m18460/1.1/>.
18"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
19"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

56 CHAPTER 5. HAMMING BLOCK CODING

5.5.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW20 to learn the mechanics of subVIs.
Refer to the Figure 5.5 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 5.5: [video] LabVIEW coding tips and techniques for hamming_ParityCheckMatrix.vi

5.6 hamming_SyndromeTable.vi21

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide22 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 5.6

note: Visit LabVIEW Setup23 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

5.6.1 LabVIEW SubVI: hamming_SyndromeTable.vi

• Description: Create the syndrome table for the Hamming block code channel decoder. The table
contains the most likely error patterns indexed by syndrome number.

• Category: Hamming (n,k) block code ("hamming" pre�x)

5.6.2 Inputs (Controls)

1. HT matrix, n by q � Real Matrix

Parentheses () indicate default value; square brackets [] designate units.

20"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
21This content is available online at <http://cnx.org/content/m18618/1.1/>.
22"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
23"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

57

5.6.3 Outputs (Indicators)

1. syndrome table � Boolean 2-D array

5.6.4 Required Behavior

• Determine the number of checkbits "q" from the dimensions of matrix HT.
• "Most likely" error patterns are the no-error pattern and all possible single-bit error patterns.
• Syndrome table is an array of most likely error patterns indexed according to the associated syndrome

number. For example, suppose the error pattern FFTFFFF was found to produce a syndrome value
TTF. Retrieving the array value of syndrome table at index "3" will then produce the Boolean array
FFTFFFF. Note that the syndrome pattern is converted to an integer using the built-in LabVIEW node
"Boolean Array to Number" which assumes the �rst element in the Boolean array is the least signi�cant
bit.

5.6.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW24 to learn the mechanics of subVIs.
Refer to the Figure 5.6 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 5.6: [video] LabVIEW coding tips and techniques for hamming_SyndromeTable.vi

24"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

58 CHAPTER 5. HAMMING BLOCK CODING

Chapter 6

Speaker - Air - Microphone (SAM)
Channel

6.1 sam_GrabAudio.vi1

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide2 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 6.1

note: Visit LabVIEW Setup3 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

6.1.1 LabVIEW SubVI: sam_GrabAudio.vi

• Description: Wait for audio to exceed a user-de�ned threshold, and then record audio for a speci�ed
time interval. This subVI depends on sam_ListenForAudio.vi.

• Category: Speaker-air-microphone (SAM) channel ("sam" pre�x)

6.1.2 Inputs (Controls)

1. duration [s] (1) � DBL
2. threshold level (0.1) � DBL
3. fs [Hz] (22050) � DBL

1This content is available online at <http://cnx.org/content/m18499/1.1/>.
2"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
3"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

59

60 CHAPTER 6. SPEAKER - AIR - MICROPHONE (SAM) CHANNEL

4. error in (no error) � error cluster

Parentheses () indicate default value; square brackets [] designate units.

6.1.3 Outputs (Indicators)

1. waveform out � waveform
2. error out � error cluster

6.1.4 Required Behavior

• Use sam_ListenForAudio.vi to continually acquire audio samples in 1024-sample blocks. Once
"sam_ListenForAudio" completes execution (i.e., then the audio level exceeds threshold level),
record audio for duration seconds at the sampling frequency fs.

• The audio output of sam_ListenForAudio.vi serves as the beginning of the audio signal waveform out.
• The sound-card must be cleaned up using "Graphics and Sound | Sound | Input | Sound Input Clear"

once the audio has been recorded.

6.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW4 to learn the mechanics of subVIs.
Refer to the Figure 6.1 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 6.1: [video] LabVIEW coding tips and techniques for sam_GrabAudio.vi

6.2 sam_GrabAudioDynamic.vi5

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide6 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 6.2

4"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>
5This content is available online at <http://cnx.org/content/m18641/1.1/>.
6"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>

61

note: Visit LabVIEW Setup7 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

6.2.1 LabVIEW SubVI: sam_GrabAudioDynamic.vi

• Description: Wait for audio level to exceed a user-de�ned threshold, and then record audio until
the audio level drops below the threshold again or recording duration reaches a maximum value. This
subVI depends on sam_ListenForAudio.vi (Section 6.3). In addition, sam_GrabAudio.vi (Section 6.1)
should be constructed before attempting the dynamic-stop version of this module.

• Category: Speaker-air-microphone (SAM) channel ("sam" pre�x)

6.2.2 Inputs (Controls)

1. frame length [s] (0.1) � DBL
2. max duration [s] (10) � DBL
3. threshold level (0.1) � DBL
4. fs [Hz] (22050) � DBL
5. error in (no error) � error cluster

Parentheses () indicate default value; square brackets [] designate units.

6.2.3 Outputs (Indicators)

1. signal out � waveform
2. error out � error cluster

6.2.4 Required Behavior

• Use sam_ListenForAudio.vi (Section 6.3) to continually acquire audio samples in blocks (frames) of size
frame length. Once "sam_ListenForAudio" completes execution (i.e., when the audio level exceeds
threshold level), record and store audio frames until either of two possible conditions occurs: (1)
maximum audio level within a frame is lower than the threshold level, or (2) total number of stored
audio frames would exceed max duration.

• The audio output of sam_ListenForAudio.vi (Section 6.3) serves as the beginning of the audio signal
signal out. The last audio frame containing silence must be excluded from signal out.

• The sound-card must be cleaned up using "Graphics and Sound | Sound | Input | Sound Input Clear"
once the audio has been recorded.

6.2.5 Free LabVIEW Code

This subVI is rather complex to build and debug, so feel free to download the �nished subVI
sam_GrabAudioDynamic.vi8 .

You may �nd it helpful to test the subVI with the demo sam_GrabAudioDynamic_demo.vi9 .

7"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>
8http://cnx.org/content/m18641/latest/sam_GrabAudioDynamic.vi
9http://cnx.org/content/m18641/latest/sam_GrabAudioDynamic_demo.vi

62 CHAPTER 6. SPEAKER - AIR - MICROPHONE (SAM) CHANNEL

6.3 sam_ListenForAudio.vi10

10This content is available online at <http://cnx.org/content/m18598/1.1/>.

63

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide11 module for tutorials and
documentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 6.3

note: Visit LabVIEW Setup12 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

6.3.1 LabVIEW SubVI: sam_ListenForAudio.vi

• Description: Monitor an audio input and detect when the audio level exceeds a user-de�ned threshold.
Execution �ow remains within the VI until the threshold is exceeded, at which time the subVI exits
and returns the most recent block of audio.

• Category: Speaker-air-microphone (SAM) channel ("sam" pre�x)

6.3.2 Inputs (Controls)

1. task ID � U32
2. threshold (0.1) � DBL
3. number of samples/ch (1024) � I32
4. error in (no error) � error cluster

Parentheses () indicate default value; square brackets [] designate units.

6.3.3 Outputs (Indicators)

1. task ID out � U32
2. first block � waveform
3. error out � error cluster

6.3.4 Required Behavior

• Continually acquire audio samples (as in a while-loop structure) in blocks of size number of

samples/ch for each of the two stereo channels. The subVI exits when the maximum value of an
audio block exceeds the value of threshold.

• The output first block contains the most recent block of audio, i.e., the block containing the audio
sample that exceeds the threshold. The output is provided to subsequent subVIs that would consider
this waveform to be the �rst block of useful (non-silent) audio.

• The value of task ID out is identical to task ID in and facilitates clean block diagram layout for
sound-related subVIs.

11"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
12"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

64 CHAPTER 6. SPEAKER - AIR - MICROPHONE (SAM) CHANNEL

6.3.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW13 to learn the mechanics of subVIs.
Refer to the Figure 6.2 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 6.2: [video] LabVIEW coding tips and techniques for sam_ListenForAudio.vi

13"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

Chapter 7

Caller ID Decoder

7.1 cid_Demodulator.vi1

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide2 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 7.1

note: Visit LabVIEW Setup3 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

7.1.1 LabVIEW SubVI: cid_Demodulator.vi

• Description: Demodulate a Caller ID FSK (frequency shift keying) signal using a PLL (phase-locked
loop) from the LabVIEW Modulation Toolkit. The subVI accepts an signal that can include ringer
pulses (the FSK signal itself occurs between the �rst and second ringer pulses), and demodulates the
signal to baseband. A "PLL locked" output signal indicates the portion of the baseband signal that
should be considered useable for further decoding.

• Category: Caller ID decoding ("cid" pre�x)

7.1.2 Inputs (Controls)

1. FSK signal � waveform
2. VCO carrier frequency [Hz] � DBL

1This content is available online at <http://cnx.org/content/m18638/1.1/>.
2"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
3"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

65

66 CHAPTER 7. CALLER ID DECODER

3. VCO gain [degrees/V] � DBL
4. phase error LPF cutoff frequency [Hz] � DBL
5. comparator threshold for PLL lock � DBL

Parentheses () indicate default value; square brackets [] designate units.

7.1.3 Outputs (Indicators)

1. baseband signal � waveform
2. phase error magnitude � waveform
3. PLL locked � 1-D Boolean array

7.1.4 Required Behavior

• FSK signal should contain an audio recording of the Caller ID FSK message sent by the telephone
company central o�ce (CO). The signal should lie in the range ±1; ringer pulses will be clipped, and
the FSK signal amplitude should occupy as much of the ±1 range as possible without clipping.

• The baseband signal output contains the demodulated baseband signal produced by the LabVIEW
Modulation Toolkit "MT Phase Locked Loop.vi" phase error output.

• The Boolean array PLL locked indicates the region in which the PLL is locked onto the FSK signal;
this indicator serves to distinguish between the valid FSK signal and any other portion of the original
recorded signal.

• The VCO carrier frequency and gain are two controls for the PLL.
• phase error LPF cutoff frequency sets the cuto� frequency of the lowpass �lter applied to the

magnitude of the PLL phase error. The phase error magnitude is a rapidly changing and relatively
large amplitude signal value when the PLL is out of lock, and a relatively low amplitude signal in
lock. The lowpass �lter removes the rapid variation. The phase error magnitude output is the
lowpass-�ltered absolute value of the PLL phase error.

• comparator threshold sets the threshold level for the comparator that generates the PLL locked

Boolean output.

The LabVIEWModulation Toolkit PLL is introduced and demonstrated in the screencast video of Figure 7.1.

Figure 7.1: [video] Demonstration of the LabVIEW Modulation Toolkit PLL

7.1.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW4 to learn the mechanics of subVIs.
Refer to the Figure 7.2 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

4"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

67

Figure 7.2: [video] LabVIEW coding tips and techniques for cid_Demodulator.vi

7.2 cid_DetectStartBit.vi5

This module refers to LabVIEW, a software development environment that features a graphical
programming language. Please see the LabVIEW QuickStart Guide6 module for tutorials and doc-
umentation that will help you:

• Apply LabVIEW to Audio Signal Processing

• Get started with LabVIEW

• Obtain a fully-functional evaluation edition of LabVIEW

Table 7.2

note: Visit LabVIEW Setup7 to learn how to adjust your own LabVIEW environment to match
the settings used by the LabVIEW screencast video(s) in this module. Click the "Fullscreen" button
at the lower right corner of the video player if the video does not �t properly within your browser
window.

7.2.1 LabVIEW SubVI: cid_DetectStartBit.vi

• Description: Detect the �rst start bit in the Caller ID message bitstream, and return only the
remaining bits in the bitstream. The Caller ID message consists of three distinct regions: (1) channel
seizure (alternating pattern of T and F values), (2) steady mark (constant T values), and (3) data block
containing the message payload. This subVI detects the steady mark region and then identi�es the
array index (time point) at which the input bitstream �rst changes to F.

• Category: Caller ID decoding ("cid" pre�x)

7.2.2 Inputs (Controls)

1. bitstream in � 1-D Boolean array

Parentheses () indicate default value; square brackets [] designate units.

7.2.3 Outputs (Indicators)

1. datablock bitstream � 1-D Boolean array
2. start bit index � I32

5This content is available online at <http://cnx.org/content/m18432/1.1/>.
6"NI LabVIEW Getting Started FAQ" <http://cnx.org/content/m15428/latest/>
7"LabVIEW Setup for "Communication Systems Projects with LabVIEW"" <http://cnx.org/content/m17319/latest/>

68 CHAPTER 7. CALLER ID DECODER

7.2.4 Required Behavior

• The bitstream in input should contain a complete Caller ID message bitstream as generated by other
demodulating and bit synchronization and sampling subsystems.

• The datablock bitstream output contains only the data block portion of the input bitstream, begin-
ning with the �rst start bit of the �rst character, i.e., the �rst frame. If no data block is detected then
datablock bitstream will return empty.

• start bit index is the index (location) of the data block detected in the input message. If no data
block is detected then start bit index will return -1.

7.2.5 LabVIEW Coding Tips

View the screencast video in Create a SubVI in LabVIEW8 to learn the mechanics of subVIs.
Refer to the Figure 7.3 screencast video for LabVIEW coding tips and techniques speci�c to this subVI.

Figure 7.3: [video] LabVIEW coding tips and techniques for cid_DetectStartBit.vi

8"Create a SubVI in LabVIEW" <http://cnx.org/content/m14767/latest/>

INDEX 69

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

B BER, 11
binary symmetric channel, 8
bit error, 11
bit error rate, 11

M marks, 38

S spaces, 38
syndrome table, 56

70 ATTRIBUTIONS

Attributions

Collection: SubVI Speci�cations for "Communication Systems Projects with LabVIEW"
Edited by: Ed Doering
URL: http://cnx.org/content/col10608/1.2/
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_BitstreamFromRandom.vi"
By: Ed Doering
URL: http://cnx.org/content/m18528/1.1/
Pages: 1-2
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_BitstreamFromText.vi"
By: Ed Doering
URL: http://cnx.org/content/m18631/1.1/
Pages: 2-3
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_BitsToWords.vi"
By: Ed Doering
URL: http://cnx.org/content/m18596/1.1/
Pages: 3-5
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_WordsToBits.vi"
By: Ed Doering
URL: http://cnx.org/content/m18551/1.1/
Pages: 5-6
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_BitstreamToText.vi"
By: Ed Doering
URL: http://cnx.org/content/m18629/1.1/
Pages: 6-7
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_BinarySymmetricChannel.vi"
By: Ed Doering
URL: http://cnx.org/content/m18537/1.1/
Pages: 7-8
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

ATTRIBUTIONS 71

Module: "util_AWGNchannel_PtByPt.vi"
By: Ed Doering
URL: http://cnx.org/content/m18515/1.1/
Pages: 8-10
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_MeasureBER.vi"
By: Ed Doering
URL: http://cnx.org/content/m18547/1.1/
Pages: 10-11
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_EdgeDetector.vi"
By: Ed Doering
URL: http://cnx.org/content/m18606/1.1/
Pages: 12-14
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_GetAudio.vi"
By: Ed Doering
URL: http://cnx.org/content/m18532/1.1/
Pages: 14-15
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "util_Qfunction.vi"
By: Ed Doering
URL: http://cnx.org/content/m18545/1.1/
Pages: 15-16
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "pam_RaisedCosinePulse.vi"
By: Ed Doering
URL: http://cnx.org/content/m18566/1.1/
Pages: 17-18
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "pam_RectanglePulse.vi"
By: Ed Doering
URL: http://cnx.org/content/m18454/1.1/
Pages: 18-20
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "pam_ManchesterPulse.vi"
By: Ed Doering
URL: http://cnx.org/content/m18466/1.1/
Pages: 20-22
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

72 ATTRIBUTIONS

Module: "pam_SignalPointMapper.vi"
By: Ed Doering
URL: http://cnx.org/content/m18570/1.1/
Pages: 22-23
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "pam_TransmitFilter.vi"
By: Ed Doering
URL: http://cnx.org/content/m18472/1.1/
Pages: 23-24
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "pam_TransmitSync.vi"
By: Ed Doering
URL: http://cnx.org/content/m18478/1.1/
Pages: 24-26
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "bpm_EnvelopeDetector.vi"
By: Ed Doering
URL: http://cnx.org/content/m18420/1.1/
Pages: 27-28
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "bpm_ProductModulator.vi"
By: Ed Doering
URL: http://cnx.org/content/m18556/1.1/
Pages: 28-30
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "bpm_ReceiverFilter.vi"
By: Ed Doering
URL: http://cnx.org/content/m18436/1.1/
Pages: 30-31
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "regen_BitClock.vi"
By: Ed Doering
URL: http://cnx.org/content/m18612/1.1/
Pages: 33-34
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "regen_BitSync.vi"
By: Ed Doering
URL: http://cnx.org/content/m18627/1.1/
Pages: 34-35
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

ATTRIBUTIONS 73

Module: "regen_FrameSync.vi"
By: Ed Doering
URL: http://cnx.org/content/m18576/1.1/
Pages: 35-38
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "regen_ExtractPreamble.vi"
By: Ed Doering
URL: http://cnx.org/content/m18585/1.1/
Pages: 38-39
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "regen_NormalizeToPreamble.vi"
By: Ed Doering
URL: http://cnx.org/content/m18483/1.1/
Pages: 39-41
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "regen_Correlator.vi"
By: Ed Doering
URL: http://cnx.org/content/m18579/1.1/
Pages: 41-42
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "regen_SampleHold.vi"
By: Ed Doering
URL: http://cnx.org/content/m18621/1.1/
Pages: 42-43
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "regen_Sampler.vi"
By: Ed Doering
URL: http://cnx.org/content/m18593/1.1/
Pages: 43-46
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "regen_BitstreamBu�er.vi"
By: Ed Doering
URL: http://cnx.org/content/m18494/1.1/
Pages: 46-47
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "hamming_DetectorCorrector.vi"
By: Ed Doering
URL: http://cnx.org/content/m18427/1.1/
Pages: 49-50
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

74 ATTRIBUTIONS

Module: "hamming_GeneratorMatrix.vi"
By: Ed Doering
URL: http://cnx.org/content/m18563/1.1/
Pages: 50-51
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "hamming_HammingCodeParameters.vi"
By: Ed Doering
URL: http://cnx.org/content/m18441/1.1/
Pages: 51-52
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "hamming_Mod2MatrixMultiply.vi"
By: Ed Doering
URL: http://cnx.org/content/m18562/1.1/
Pages: 53-55
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "hamming_ParityCheckMatrix.vi"
By: Ed Doering
URL: http://cnx.org/content/m18460/1.1/
Pages: 55-56
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "hamming_SyndromeTable.vi"
By: Ed Doering
URL: http://cnx.org/content/m18618/1.1/
Pages: 56-57
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "sam_GrabAudio.vi"
By: Ed Doering
URL: http://cnx.org/content/m18499/1.1/
Pages: 59-60
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "sam_GrabAudioDynamic.vi"
By: Ed Doering
URL: http://cnx.org/content/m18641/1.1/
Pages: 60-61
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "sam_ListenForAudio.vi"
By: Ed Doering
URL: http://cnx.org/content/m18598/1.1/
Pages: 62-64
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

ATTRIBUTIONS 75

Module: "cid_Demodulator.vi"
By: Ed Doering
URL: http://cnx.org/content/m18638/1.1/
Pages: 65-67
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

Module: "cid_DetectStartBit.vi"
By: Ed Doering
URL: http://cnx.org/content/m18432/1.1/
Pages: 67-68
Copyright: Ed Doering
License: http://creativecommons.org/licenses/by/2.0/

SubVI Speci�cations for "Communication Systems Projects with LabVIEW"
"Communication Systems Projects with LabVIEW" features ten projects that draw upon a library of over
40 subVIs constructed as part of the project activities. Each module in this manual completely describes the
input/output requirements as well as the required behavior of a subVI. In addition, each module features a
narrated screencast video of the LabVIEW program in action to demonstrate relevant coding techniques to
successfully build and test the subVI. Use the Connexions "Table of Contents" viewer to quickly browse for
subVIs of interest. Download the manual as a single PDF document (see "Content Actions") as a convenient
way to access all modules in a single �le; the PDF includes an index.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

