
Fall 2009 ELEC301 Group Project Report:
Video Stabilization

By:
Jeffrey Bridge

Robert Brockman
Stamatios Mastrogiannis

Fall 2009 ELEC301 Group Project Report:
Video Stabilization

By:
Jeffrey Bridge

Robert Brockman
Stamatios Mastrogiannis

Online:
< http://cnx.org/content/col11152/1.1/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Je�rey Bridge, Robert Brockman, Stama-

tios Mastrogiannis. It is licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: December 21, 2009

PDF generated: February 6, 2011

For copyright and attribution information for the modules contained in this collection, see p. 23.

Table of Contents

1 Introduction . 1
2 Background . 3
3 Procedures . 5
4 Results . 7
5 Sources . 9
6 The Team . 11
7 Code . 13
8 Future Work . 21
Index . 22
Attributions . 23

iv

Chapter 1

Introduction1

Introduction
A common problem in dealing with Unmanned Aerial Vehicles (UAVs) is image stabilization. If an operator
wishes to control the craft in real-time, a camera mounted on the UAV is often a good solution. This video
feed, if left in its original state, has varying amounts of jitter, which in turn makes operating the craft more
di�cult and makes the footage of the �ight much less pleasant to watch. We decided that we could stabilize
the video without using any additional hardware-based assistance (such as gyroscopes) with the digital
signal processing techniques we've learned over the semester. Our �rst approach to solving this problem
was to correlate each video frame with the previous one, but this proved to be less than optimal ; there
exists a faster, more accurate technique. Enter KLT feature tracking and Serial A�ne Transformation. We
used a freely-available KLT feature tracker from Stan Birch�eld, then prototyped our a�ne transformation
techniques in MATLAB. We have started porting our work to C, and in the future we expect this sort of
solution to be fully implemented on GPUs for real-time processing.

1This content is available online at <http://cnx.org/content/m33246/1.1/>.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Background1

Background
Image stabilization can be done in many di�erent ways. Kanade-Lucas-Tomasi (KLT) feature tracking2 is
one of the computationally inexpensive ways, in comparison to 2-D correlation and even SIFT. We chose
Stan Birch�eld's implementation because it is written in C and we found it easy to interface to in comparison
with other open-source implementations.

When we have a set of common features between two images, we can 'undo' the transformation that
makes the second image's features reside in a di�erent location than the �rst, creating a new image whose
features have similar locations to those in the �rst image.

In order to accomplish this, we use a series of least-squares a�ne transformations on the set of features to
determine the `best' values for the un-a�ne we perform to correct the later image. After this, we then �lter
the resulting a�ne transformation, keeping the low-frequency movement (such as panning) and removing
the high-frequency jitter.

Pictorally, the process is as such:

1This content is available online at <http://cnx.org/content/m33247/1.1/>.
2http://en.wikipedia.org/wiki/Kanade-Lucas-Tomasi_Feature_Tracker

3

4 CHAPTER 2. BACKGROUND

Chapter 3

Procedures1

3.1 A�ne Transform Estimation

We wish to approximate the movement of the feature points by an a�ne transform, because it can account
for rotation, zooming, and panning, all of which are common features in videos. The coordinates of a feature
in the old frame are written as (x0, y0) and in the new frame as (x1, y1). Then an a�ne transform can be
written as:  x1

y1

 =

 a b

c d

  x0

y0

+

 e

f

 (3.1)

However, this form needs some modi�cation to deal with multiple point pairs at once, and needs rearranging
to �nd a, b, c, d, e, and f . It can be easily veri�ed that the form below is equivalent to the one just given:

 x0 y0 0 0 1 0

0 0 x0 y0 0 1





a

b

c

d

e

f


=

 x1

y1

 (3.2)

With this form, it is easy to add multiple feature points by stacking two additional rows on the left

and on the right. Denoting the pairs of points as
((

x
(1)
0 , y

(1)
0

)
,
(
x

(1)
1 , y

(1)
1

))
,
((

x
(2)
0 , y

(2)
0

)
,
(
x

(2)
1 , y

(2)
1

))
,

1This content is available online at <http://cnx.org/content/m33251/1.1/>.

5

6 CHAPTER 3. PROCEDURES((
x

(3)
0 , y

(3)
0

)
,
(
x

(3)
1 , y

(3)
1

))
, etc, the matrices will now look like:

x
(1)
0 y

(1)
0 0 0 1 0

0 0 x
(1)
0 y

(1)
0 0 1

x
(2)
0 y

(2)
0 0 0 1 0

0 0 x
(2)
0 y

(2)
0 0 1

x
(3)
0 y

(3)
0 0 0 1 0

0 0 x
(3)
0 y

(3)
0 0 1

...
...

...
...

...
...





a

b

c

d

e

f


=



x
(1)
1

y
(1)
1

x
(2)
1

y
(2)
1

x
(3)
1

y
(3)
1

...


(3.3)

So long as there are more than three points, the system of equations will be overdetermined. Therefore the
objective is to �nd the solution [a, b, c, d, e, f] in the least squares sense. This is done using the pseudoinverse
of the matrix on the left.

3.2 Filtering

The a�ne transforms produced above only relate one video frame to the one immediately after it. The
problem with this is that if the video is jerky, it will take several consecutive frames to have a good idea of
what the average position of the camera is during this time. Then the di�erence between the current location
and the moving-average location can be used to correct the current frame to be in this average position.

When the features are tracked frame-to-frame, it constitutes an implicit di�erentiation in terms of mea-
suring the overall movement of the camera. In order to track changes across many frames, we sequentially
accumulate the frame-to-frame di�erences. This is akin to an integral operator. Unfortunately, when inte-
grating imperfect data, errors will build up linearly in time, and that is true here. However, since the stream
of integrated a�ne transforms is not used directly, these errors are not as important.

Once the stream of integrated a�ne transforms is generated, the goal is to undo high-frequency motions,
while leaving the low-frequency motions intact. This is done by treating the coe�cients of the stream
of integrated a�ne transforms as independent, and applying six high pass �lters, one for each stream of
coe�cients. Although this technique works, it is hoped that a more elegant way of handling the �ltering
may be developed in the future.

Since a high pass �lter is being used, it is important to not have large phase o�sets created by the �lter.
If the transform which ideally stabilized frame #5 was instead applied to frame #10, and so forth, the delay
would wholly invalidate the o�sets, and the resulting video would be more jerky than before, instead of less.
Therefore, we decided to use the zero phase �ltering technique of applying a �lter in both the forward and
reverse time directions sequentially. This is handled by the Matlab function �lt�lt.

Initially, we tried various order-4 to order-8 IIR �lters with cuto� frequencies around 0.1 pi. However,
the unit step response of nearly all IIR �lters involves a signi�cant amount of overshoot and ringing. Since
our signal is best viewed as a time-domain signal instead of a frequency-domain signal, we sought to avoid
this overshoot. Therefore, we switched to a truncated Gaussian FIR �lter, which averages across a bit more
than one second worth of video at a time. This removed the overshoot and ringing which had been visible
with the IIR �lters.

In the algorithm we used, the high pass �lter is implicitly generated by using a low pass �lter, then
subtracting the low-pass version from the original. It would be mathematically equivalent to simply change
the impulse response of the �lter and skip the subtraction step.

The last wrinkle is that for a�ne transforms, the identity transform has the a and d coe�cients equal to
one, instead of zero. The high pass �lter will create a stream of transforms which are centered around having
all the coe�cients zero. Therefore, after the high pass �lter, we added 1 back to the a and d coe�cients of
the stream of a�ne transforms, so they would be centered on the identity transform.

Chapter 4

Results1

Results: Output Quality
We successfully used Stan Birchfeld's KLT tracker with our implementation of a�ne transforms in MATLAB
to stabilize the sample UAV video that Aswin provided us. The video is of six cars at the end of a runway
with the plane slowly circling them. There is some jitter, and evidence of a couple of dropped frames. Our
�lter completely removes these, but it also eliminates the perspective change caused by the movement of the
plane. This introduces considerable distortion after more than about 10 seconds. High pass �ltering of the
a�ne transformation series does remove the jitter while preserving the overall motion.

UAV Footage Stabilized with KLT + A�ne Transforms

This media object is a video �le. Please view or download it at<uav_source.avi>
(a)

This media object is a video �le. Please view or download it at<uav_stable.avi>
(b)

Figure 4.1: Source footage provided by Aswin Sankaranarayanan.

We wanted a more serious test of the jitter reduction, with more sudden motion. To do this we wrote
some MATLAB code that takes an individual frame and generates a sequence of frames based on it, each
with a random displacement from the original. The e�ect is that of a VERY jerky camera. The KLT-a�ne
transform combination undoes this severe jitter quite nicely. We then superimposed a circular motion on
top of the jitter to see if the �ltered a�ne transformation series would preserve it while still removing the
jitter. It does an acceptable job at this, although there are a few visible kinks.

Shifted Image Sequence Stabilized with KLT + Filtered A�ne Transforms

This media object is a video �le. Please view or download it at<owl_source.avi>
(a)

This media object is a video �le. Please view or download it at<owl_stable.avi>
(b)

Figure 4.2

1This content is available online at <http://cnx.org/content/m33248/1.1/>.

7

8 CHAPTER 4. RESULTS

Additional testing revealed that although the KLT tracker we used does a good job on tracking features
through sudden translations, it cannot e�ectively deal with large sudden rotations. It loses track of all
features in these cases. Hopefully this will not be an issue for our ultimate application, or we will be able to
compensate for the rotation using additional input from gyros.

We also experimented with stabilizing jerky footage from movies, such as the opening scene to Saving
Private Ryan. This works quite well! We invite you to test out our code on DVD-quality video and see what
you think of the results. (At some point we plan to �stabilize� The Blair Witch Project so those of us prone
to motion sickness can watch it without becoming ill.) Of course the output needs to be cropped somewhat
to eliminate the black border caused by shifting the image: we cannot create data from nothing!
Results: Speed
Our code is not nearly fast enough for real-time use. Greyscale output at 640x480 resolution runs at about
one-third of realtime, whereas color output at the same resolution is about one-tenth real time, on the 2GHz
Intel Core2 Duo laptop used for testing. The biggest bottleneck right now seems to be in the interpolation
used to assign pixel intensity values for the corrected frames. The KLT tracker itself is the next slowest
component. Hopefully converting the code to C and/or o�oading some of the work to the GPU will improve
performance.

Chapter 5

Sources1

We'd like to thank Aswin Sankaranarayanan at Rice DSP for pointing us in the correct direction early in
our work and steering us away from trouble. Also, a key piece of the project required using Stan Birchfeld's
KLT feature tracker2 and the interface code he wrote to easily move the table of features into MATLAB.

1This content is available online at <http://cnx.org/content/m33249/1.1/>.
2http://www.ces.clemson.edu/∼stb/klt/

9

10 CHAPTER 5. SOURCES

Chapter 6

The Team1

Je�rey A. Bridge
Studying for a BS Electrical Engineering at Rice University in 2011. I am interested in space�ight and hope
to do more aerospace related research in the future.
Robert T. Brockman II
Rice University Computer Science, Lovett '11. I'm interested in arti�cial intelligence and neuroscience and
hope to do graduate work in one of those �elds.
Stamatios Mastrogiannis
Rice University ECE, Brown '11. I'm interested in bionics, cybernetics, and anything that brings man and
machine closer together. I plan on going into medical research to further these �elds.

1This content is available online at <http://cnx.org/content/m33250/1.1/>.

11

12 CHAPTER 6. THE TEAM

Chapter 7

Code1

The main pieces of code used to accomplish the stabilization are shown below. There are several addition
�les needed for the complete program, which are available for download instead of being shown inline:

• tracker.c2

• im2_jpeg.c3

• imload_bw.m4

• write_jpeg_bw.m5

• write_jpeg_col.m6

l2a�.m

% Least Squares Affine Transformation

% ELEC 301 Group Project

% 11/29/2009

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

%

% Calculate the least squares affine transformation for two corresponding

% sets of pixel locations.

% px inputs are of the form:

%[x_1 y_1

% x_2 y_2

% : :

% x_N y_N]

%

% [x'] = [a, b] * [x] + [e]

% [y'] [c, d] [y] [f]

function Aff = l2aff(pxold, pxnew)

b = reshape(pxnew.', [], 1);

A = makenice(pxold);

x = pinv(A) * b; % Was psinv, our version of computing the pseudoinv

Aff = [x(1), x(2), x(5); ...

x(3), x(4), x(6)];

1This content is available online at <http://cnx.org/content/m33253/1.1/>.
2See the �le at <http://cnx.org/content/m33253/latest/tracker.c>
3See the �le at <http://cnx.org/content/m33253/latest/im2_jpeg.c>
4See the �le at <http://cnx.org/content/m33253/latest/imload_bw.m>
5See the �le at <http://cnx.org/content/m33253/latest/write_jpeg_bw.m>
6See the �le at <http://cnx.org/content/m33253/latest/write_jpeg_col.m>

13

14 CHAPTER 7. CODE

return

function A = makenice(pxold)

[r, c] = size(pxold);

A = zeros(2*r, 6);

for k=1:r

x = pxold(k,1);

y = pxold(k,2);

%correspond to a, b, c, d, e, f

A(2*k-1, :) = [x, y, 0, 0, 1, 0];

A(2*k , :) = [0, 0, x, y, 0, 1];

end

return

a�_mul.m

% ELEC 301 Group Project

% 2009 December 12

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

%

% Combine two affine transforms into one

%

% Aff = [a b e

% c d f]

%

% [x'] = [a, b] * [x] + [e]

% [y'] [c, d] [y] [f]

function Aff = aff_mul(Aff2, Aff1)

a1 = Aff1(1,1);

b1 = Aff1(1,2);

c1 = Aff1(2,1);

d1 = Aff1(2,2);

e1 = Aff1(1,3);

f1 = Aff1(2,3);

a2 = Aff2(1,1);

b2 = Aff2(1,2);

c2 = Aff2(2,1);

d2 = Aff2(2,2);

e2 = Aff2(1,3);

f2 = Aff2(2,3);

Aff = [...

a2*a1 + b2*c1, ...

a2*b1 + b2*d1, ...

a2*e1 + e2; ...

c2*d1 + c2*a1, ...

c2*b1 + d1*d2, ...

d2*f1 + f2];

return

stabilize.m

15

% Perform video stabilization on a set of jpeg images

% ELEC 301 Group Project

% 11/29/2009

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

%

% Uses KLT features generated via track_destabilize.sh

% or track_movie.sh

% Reads destabilized stream of jpegs from stabilize_input

% Outputs stabilized stream of jpegs to stabilize_output

%

% Use view_stabilize.sh to play back results

%

function stabilize()

% Read feature table. x and y contain coordinates of each feature

% for each frame. val is used to determine whether a feature has been

% replaced.

[x,y,val] = klt_read_featuretable('stabilize_input/features.txt');

% x, y are sets of column vectors, which we like.

% Extract number of features and frames from feature table.

[nFeatures, nFrames] = size(x);

invalid_inds = [];

% Each frame will have an affine transformation which allows it

% to be transformed back into the coordinates of the original frame.

% (These transforms will then be filtered to keep low-speed drift.)

Affs = zeros(nFrames,6);

% Affine transformation starts out as the identity transformation.

myAff = [1 0 0; 0 1 0];

% Iterate over all input frames

for n = 2:nFrames

fprintf('processing features for frame %d...', n);

% Position of features in previous frame.

pxold = [x(:,n-1) y(:,n-1)];

% Position of features in new frame.

pxnew = [x(:,n) y(:,n)];

% Features which have replaced those that have left the scene

% have non-zero values in the feature table. These must be excluded

% from computing our affine transformation

ind = find(val(:,n) ∼= 0);

invalid_inds = ind;

% These are the indices of valid rows in our feature table

valid_inds = setdiff([1:nFeatures].', invalid_inds);

fprintf(' only %d features left\n', length(valid_inds));

16 CHAPTER 7. CODE

% Extract valid features.

valid_pxold = pxold(valid_inds,:);

valid_pxnew = pxnew(valid_inds,:);

% Compute affine transformation which minimizes least squares

% difference in distances between features in the previous frame

% vs. the new frame transformed back to the original coordinates.

aff = l2aff(valid_pxold, valid_pxnew);

% Combine this "frame-by-frame" transformation with those from

% all previous frames to get an affine transformation that will

% transform the current frame into the coordinate system of the

% FIRST frame.

myAff = aff_mul(aff, myAff);

% Make the resulting transform into a vector for ease of filtering

% and add it to the array of transforms for each frame.

Affs(n,:) = reshape(myAff,1,[]);

end

% High-pass filter the series of affine transformations to allow low

% frequency movement (panning, etc.) to show up in the final output.

%

% We do this by first low-pass filtering the series and then subtracting

% the result from the original.

%%{

switch 2 % Choose a filter

case 1 % Butterworth filter

[b, a] = butter(4,.05);

case 2 % Gaussian filter

b = exp(-linspace(-3,3,41).^2/2);

b = b / sum(b);

a = [1];

otherwise

error('Bad filter number');

end

filter_a = a;

filter_b = b;

% Pad beginning of transformation series with identity transforms

% to eliminate startup distortion.

eyeAff = [1 0 0 1 0 0];

prepCount = 1;

filtinAffs = [eyeAff(ones(prepCount,1),:); Affs(2:end,:)];

% LFP the affine transforms TWICE, the second time in time-reversed

% sequence. This eliminates phase distortion caused by the filter.

LpAffs = filtfilt(filter_b, filter_a, filtinAffs);

LpAffs = LpAffs(prepCount:end,:); % Remove padding

17

% HPF by subtracting LPF'd series from original.

Affs = Affs - LpAffs;

% Add back 1's in corners of rotation matrix component of transform

% removed by LPF. (Add back in identity transform)

Affs(:,1) = Affs(:,1) + 1;

Affs(:,4) = Affs(:,4) + 1;

%}

% Apply affine transforms to each frame to provide video stabilization.

%%{

for n = 2:nFrames

% Get transform back into matrix form.

aff = reshape(Affs(n,:),2,3);

fprintf('interpolating image %d...\n', n);

disp(aff);

filename = sprintf('stabilize_input/D%08d.jpg', n);

% Black and white output is 3x faster to compute.

if 1

A = imread(filename);

Ar = single(A(:,:,1));

Ag = single(A(:,:,2));

Ab = single(A(:,:,3));

%B is image in coordinate system of first frame.

Br = im_unaff(Ar, aff);

Bg = im_unaff(Ag, aff);

Bb = im_unaff(Ab, aff);

B = cat(3,Br,Bg,Bb);

write_jpeg_col(B,sprintf('stabilize_output/S%08d.jpg',n));

else

A = imload_bw(filename);

B = im_unaff(A, aff);

write_jpeg_bw(B,sprintf('stabilize_output/S%08d.jpg',n));

end

end

%}

return

destabilize.m

% Generate Synthetic unstable test data

% ELEC 301 Group Project

% 11/29/2009

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

function destabilize()

18 CHAPTER 7. CODE

% Load a big source image, and split it into colors

filename = 'destabilize_input.jpg';

A = imread(filename);

Ar = single(A(:,:,1));

Ag = single(A(:,:,2));

Ab = single(A(:,:,3));

% Size of output image to generate, a subset of the source image

output_w = 560;

output_h = 400;

% Center of source image

[r,c] = size(Ar);

center_row = r/2;% - 50;

center_col = c/2;

% Number of output frames to generate

N = 300;

% Standard deviation of jerky movement in pixels

dev = 5;

% Parameters controlling slow drift

drift_radius = 10;

drift_period = 100;

for n = 1:N

fprintf('Generating destabilized image %d...\n', n);

% Add in slow drift of the image center

drift_rows = drift_radius * sin(n*2*pi/drift_period);

drift_cols = drift_radius * cos(n*2*pi/drift_period);

% Add in fast random jerky movements

offset_rows = floor(randn(1) * dev);

offset_cols = floor(randn(1) * dev);

% Calculate current image boundaries

left = floor(center_col + drift_cols - output_w/2 + offset_cols);

right = left + output_w - 1;

top = floor(center_row + drift_rows - output_h/2 + offset_rows);

bottom = top + output_h - 1;

% Grab an offset portion of the larger image

Br = Ar(top:bottom, left:right);

Bg = Ag(top:bottom, left:right);

Bb = Ab(top:bottom, left:right);

% Save it to its own file

B = cat(3,Br,Bg,Bb);

write_jpeg_col(B,sprintf('destabilize_output/D%08d.jpg',n));

19

% Play back with view_destabilize.sh

end

return

im_una�.m

% IMage UNdo an AFFine transformation

% ELEC 301 Group Project

% 11/29/2009

% Jeffrey Bridge, Robert Brockman II, Stamatios Mastrogiannis

%

% --- INPUTS ---

% Z = image matrix (2D grid of intensities)

% Aff = affine transformation

% [a b e

% c d f]

% [x'] = [a b]*[x] + [e]

% [y'] [c d] [y] [f]

%

% --- OUTPUTS ---

% ZI = output image matrix

function ZI = im_unaff(Z, Aff)

% Extract size of image.

[r,c] = size(Z);

% Extract affine transformation coefficients.

Aa = Aff(1,1);

Ab = Aff(1,2);

Ac = Aff(2,1);

Ad = Aff(2,2);

Ae = Aff(1,3);

Af = Aff(2,3);

% generate new sets of grid points

[X0,Y0] = meshgrid(1:c, 1:r);

% XI(c,r) and YI(c,r) contain where to look in Z for the correct

% intensity value to place in the new image ZI at coordinates (r,c).

XI = Aa*X0 + Ab*Y0 + Ae;

YI = Ac*X0 + Ad*Y0 + Af;

% Since XI and YI contain non-integer values, a simple lookup will not

% suffice. We must perform interpolation.

ZI = interp2(Z, XI, YI);

return

20 CHAPTER 7. CODE

Chapter 8

Future Work1

Future Work
Now that we basic algorithms down, the focus should be on improving the speed so we can get real-time
stabilized video feed while operating our UAV. This means converting the code to C. It may also be necessary
to use KLT trackers that use the video card GPU, as well as writing an equivalent of the MATLAB interp2
that does the same.

While taking the �rst steps towards this conversion, we realized that our video stabilizer would make
a pretty cool GStreamer plugin. GStreamer2 is a media framework for the open-sourse Gnome desktop
environment. With it, we will be able route video sources of many kinds through our stabilizer and then on
to our choice of video sinks. We have already �gured out how to implement a "null" plugin that just copies
frames from the source to the sink already, so once our algorithms are in C using GStreamer should be easy.

If these improvements can be made, the next step will be to test the code out with live footage from our
own UAV.

1This content is available online at <http://cnx.org/content/m33254/1.1/>.
2http://gstreamer.freedesktop.org/

21

22 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A a�ne, � 7(13)
a�ne transform, � 3(5)

F �lter, � 7(13)

I image stabilization, � 1(1)

K Kanade-Lucas-Tomasi, � 3(5)

L least squares, � 3(5)

M motion tracking, � 3(5)

S stabilization, � 7(13)

ATTRIBUTIONS 23

Attributions

Collection: Fall 2009 ELEC301 Group Project Report: Video Stabilization

Edited by: Je�rey Bridge, Robert Brockman, Stamatios Mastrogiannis
URL: http://cnx.org/content/col11152/1.1/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction"
By: Robert Brockman
URL: http://cnx.org/content/m33246/1.1/
Page: 1
Copyright: Robert Brockman
License: http://creativecommons.org/licenses/by/3.0/

Module: "Background"
By: Stamatios Mastrogiannis
URL: http://cnx.org/content/m33247/1.1/
Pages: 3-4
Copyright: Stamatios Mastrogiannis
License: http://creativecommons.org/licenses/by/3.0/

Module: "Procedures"
By: Je�rey Bridge
URL: http://cnx.org/content/m33251/1.1/
Pages: 5-6
Copyright: Je�rey Bridge
License: http://creativecommons.org/licenses/by/3.0/

Module: "Results"
By: Robert Brockman, Je�rey Bridge, Stamatios Mastrogiannis
URL: http://cnx.org/content/m33248/1.1/
Pages: 7-8
Copyright: Robert Brockman, Je�rey Bridge, Stamatios Mastrogiannis
License: http://creativecommons.org/licenses/by/3.0/

Module: "Sources"
By: Robert Brockman
URL: http://cnx.org/content/m33249/1.1/
Page: 9
Copyright: Robert Brockman
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Team"
By: Stamatios Mastrogiannis
URL: http://cnx.org/content/m33250/1.1/
Page: 11
Copyright: Stamatios Mastrogiannis
License: http://creativecommons.org/licenses/by/3.0/

24 ATTRIBUTIONS

Module: "Code"
By: Je�rey Bridge
URL: http://cnx.org/content/m33253/1.1/
Pages: 13-19
Copyright: Je�rey Bridge
License: http://creativecommons.org/licenses/by/3.0/

Module: "Future Work"
By: Robert Brockman
URL: http://cnx.org/content/m33254/1.1/
Page: 21
Copyright: Robert Brockman
License: http://creativecommons.org/licenses/by/3.0/

Fall 2009 ELEC301 Group Project Report: Video Stabilization
The �nal report for the Rice University Fall 2009 ELEC301 Group Project on video stabilization, by Je�
Bridge, Robert Brockman II, and Stamatios Mastrogiannis.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

