UNIVERSITY OF BOTSWANA

2007/2008 SEMESTER ONE EXAMS

FRONT PAGE

Course No

:BIO 111

Duration

2 hours

Date

:November/December 2007

Title of Paper

:PRINCIPLES OF BIOLOGY

Subject

:BIOLOGICAL SCIENCES

Morning/ Afternoon

INSTRUCTIONS:

Answer ALL questions in sections A, B and C and ONE question from Section D.

NO. OF PAGES INCLUDING THIS ONE [15]

DO NOT OPEN THIS PAPER UNTIL YOU HAVE BEEN TOLD TO DO SO BY THE INVIGILATOR

DEPARTMENT OF BIOLOGICAL SCIENCES

2007/2008 SEMESTER ONE EXAMINATIONS

Course Code: BIO 111 Course Name: PRINCIPLES OF BIOLOGY

Duration: 2 hours

November/December 2007

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION (0.5 mark for each question; Total 18 marks).

- 1. Which of the following states of development is defined by the three embryonic tissue layers (ectoderm, mesoderm, and endoderm)?
 - a. The gastrula
 - b. The zygote
 - c. The embryo
 - d. The blastula
 - e. The ovum
- 2. What is happening to a cell during differentiation?
 - a. It is taking on its specialized function by becoming a specific cell type.
 - b. It is dividing to produce a cell with one-half the number of original chromosomes
 - c. It is dividing to produce a cell with the same number of chromosomes.
 - d. Material is moving across the cell's membrane as it goes from a region of high concentration to a region of low concentration.
 - e. It is mutating.
- 3. Mangoes belong to the genus "mangifera" Species "indica", what is the correct bionomial nomenclature for the mango?
 - a. Mangifera indica
 - b. mangifera Indica
 - c. Mangifera Indica
 - d. mangifera indica
 - e. Indica mangifera
- 4. Prokaryotes differ from eukaryotes by absence of:
 - a. Mitochondria
 - b. Chloroplasts
 - c. Golgi apparatus.
 - d. Endoplasmic reticulum
 - e. All the above.
- 5. Which of the following represent the correct order in stages of development?

- a. Fertilization → growth → determination → differentiation → morphogenesis
- b. Fertilization \rightarrow growth \rightarrow differentiation \rightarrow determination \rightarrow morphogenesis
- c. Fertilization→ differentiation → growth → differentiation → morphogenesis
- d. Fertilization→ determination → differentiation → growth → morphogenesis
- e. Fertilization \rightarrow gastrulation \rightarrow differentiation \rightarrow growth \rightarrow oogenesis
- 6. What is the most abundant polysaccharide on Earth?
 - a. Starch
 - b. Peptidoglycan
 - c. Glygogen
 - d. Sucrose
 - e. Cellulose
- 7. Cells are small in order to:
 - a. maintain osmotic balance
 - b. maximize surface area-volume ratio
 - c. maximize volume-surface area ratio
 - d. minimize surface area-volume ratio
 - e. reduce gas exchange
- 8. Which of the following statements best describes the logic of the scientific method?
 - a. If I generate a testable hypothesis, tests and observations will support it.
 - b. If my prediction is correct, it will lead to a testable hypothesis.
 - c. If my observations are accurate, they will support my hypothesis.
 - d. If my hypothesis is correct, I can expect certain test results.
 - e. If my controlled experiments are set up right, I will be able to generate a testable hypothesis.
- 9. Anabolic reactions:
 - a. generate free energy
 - b. break down complex molecules
 - c. convert nucleotides to amino acids
 - d. are energy-demanding
 - e. occur singly
- 10. Which of the following is *not* a function of polysaccharides in organisms:
 - a. energy storage
 - b. storage of hereditary material
 - c. formation of cells walls
 - d. structural support
 - e. formation of exoskeletons
- 11. Proteins differ from one another because:

- a. the peptide bonds linking amino acids differ from protein to protein
- b. the sequence of amino acids in the polypeptide chain differs from protein to protein
- c. each protein molecule contains it own unique sequence of sugars
- d. the number of nucleotides in each protein varies from molecule to molecule
- e. the number nitrogen atoms in each amino acid differs from the number on all the others
- 12. Which of the following information can we not derive from fossils?
 - a. Radioisotope dating of major evolutionary events.
 - b. Changes in biodiversity with time.
 - c. Paleoenvironments.
 - d. Interbreeding potential of the species.
 - e. a. and d.
- 13. The biological species concept is defined in terms of:
 - a. morphology
 - b. binomial nomenclature
 - c. reproductive isolation
 - d. cladistic divergence
 - e. mode of speciation
- 14. The science of biological classification is known as
 - a. nomenclature
 - b. classification
 - c. systematics
 - d. taxonomy
- Biodiversity is highest in ecosystems:
 - a. with deep fertile soils
 - b. with marked seasonality
 - c. with few predators
 - d. on the equator
 - e. at higher latitudes
- 16. Okazaki fragments are joined by
 - a. DNA ligase
 - b. nucleotide synthase
 - c. DNA helicase
 - d. RNA primase

17.	Which a. b.	of these biomes has been increased in area by human activities? Temperate rain forests Tropical rain forests
	c.	Grasslands
	d.	Deserts
	e.	Savannah
18.	Which of	the following are true?
	a.	Heterotrophs are organisms which require preformed inorganic compounds as a source of carbon
	b.	Heterotrophs are organisms which require preformed organic compounds as a source of carbon and light as a source of energy
	c.	Heterotrophs are organisms which require preformed organic compounds as a source of energy
	d.	Heterotrophs are organisms which require preformed organic compounds as a source of carbon but not energy
	e.	a. and b.
19.	Which of	the following is a bacterial disease?
	a.	Influenza
	b.	Anthrax
	c. d.	AIDS Malaria
	e.	None of these.
20.	The cytosl	keleton is found in
	a.	all plant cells
	b.	all eukaryotic cells
	c.	prokaryotic cells
	d.	in all bacteria
	e.	in all animal cells
21.		of the following is <i>not</i> a function of proteins in organisms?
	a.	composition of ribosomes
	b.	supporting structures for DNA
	c. d.	supporting material for plant cell walls
	e.	components of the cell membrane enzymes
	C.	citzyines
22.	β-shee	ts contribute to the structure of proteins.
	a.	primary
	b.	secondary
	C.	tertiary
	d.	quaternary
	e.	prosthetic

17.

23	Any two s	tructures derived from a common ancestral trait are said to be
	a)	homologous
	b)	analogous
	c)	homeostasis
	ď)	homoplastic
24.	Aneup	ploidy is usually caused by:
	a.	Nondisjunction
	b.	Segregation distortion
	c.	Linkage
	d.	Errors during crossing over
	e.	Frameshift mutations
25.	Pattern fo	ormation is necessary for
	a)	differentiation
	b)	morphogenesis
	c)	metamorphosis
	d)	development
	e)	fertilization
26.	Lysosome	es originate from and contain
	a)	endoplasmic reticulum/protein targeting ribosomes
	b)	nucleus/help mRNA to move to the cytoplasm
	c)	golgi apparatus/digestive enzymes
	d)	cell membrane/a piece of DNA
27.	The molec	cules which are responsible for DNA replication in the cell are
	a)	RNA polymerases
	b)	DNAses
	c)	DNA polymerases
	d)	nucleoside polymerases
	u)	nacicoside porymerases
20		
28.	One of the	e following is <u>NOT</u> a function of carotinoids
28.	a)	serve as vitamins
28.	a) b)	serve as vitamins help plants capture light energy
28.	a)	serve as vitamins

29.		leads to genetic constancy and to
genet	ic dive	·
	a)	meiosis/mitosis
	b)	cytokinesis/mitosis
	c)	mitosis/meiosis
	d)	mitosis/cytokinesis
30.		quence of DNA with the following bases 5'ACCGTGAATCG3' will have a
		cription template of base sequences in mRNA as
	a)	5'-ATCCGTTUCGC-3'
	b)	
	c)	5`-UGGCACUUAGC-3`
	d)	5`-TGGCAUUAGC-3`
31.	The	cell wall of fungi mainly consists of
	a)	peptidoglycan
	b)	chitin
	c)	cellulose
	d)	collagen
32.	The	enzyme known as ribulose bisphosphate carboxylase/oxygenase (rubisco)
	a)	brings about fixation of carbon dioxide in plants
	b)	brings about condensation of amino acids
	c)	is the most common protein found only in microorganisms
	d)	is catalytically activated by zinc
33.	Whie	ch of the following compounds have functional groups?
	a)	alkanes and ethane
	b)	ethanol and aldehyde
	c)	methane and nitrogen
	ď)	carbon and hydrogen
34.	Evol	ution leads to and
	a)	constancy/maintenance of organism
		growth/development
	b)	growth/development
	b) c)	biodiversity/speciation

- 35. Protistan fungi differ from eumycota (true moulds) by
 - a. True fungi spores are motile while protistan fungi spores are not
 - b. Protistan fungal spores are motile while true fungi spores are not
 - c. Protistan fungi lack a cell wall
 - d. True fungi are eukaryotic while protistan fungi are not
- 36. The elements found in chlorophyll and haemoglobin, respectively, are
 - a) magnesium and sulphur
 - b) iron and magnesium
 - c) magnesium and iron
 - d) molybdenum and cobalt

SECTION B. FILL IN BLANKS. ANSWER ALL QUESTIONS (Total 45 marks)

	(1 mark)
The enzyme RNA polymerase us	es a single-stranded	template
to synthesize a complementary st	rand of	
	The second secon	(2 marks)
	is an ecological intera	ction in which bot
participants benefit. (1 mark)		
Some autotrophs can derive energ	gy from elements; these are	
termed	(1 ma	rk)
The end products of meiosis are		
		. (
mark)		
The only force bringing about ad	aptation is	(1

_	
List 3	main characteristics of DNA: (3 marks)
a	
b.	
0.	
c.	
	ur ways in which microorganisms are beneficial to humans? (4 ma
List fo	ur ways in which microorganisms are beneficial to humans? (4 ma
List fo	ur ways in which microorganisms are beneficial to humans? (4 ma
List fo	ur ways in which microorganisms are beneficial to humans? (4 ma
List fo	ur ways in which microorganisms are beneficial to humans? (4 ma
List fo	ur ways in which microorganisms are beneficial to humans? (4 ma
List fo	ur ways in which microorganisms are beneficial to humans? (4 ma
List fo	ur ways in which microorganisms are beneficial to humans? (4 ma
List fo	ur ways in which microorganisms are beneficial to humans? (4 ma
List fo	ur ways in which microorganisms are beneficial to humans? (4 ma

43.

	e three biological macron ture? (9 marks)	nolecules. What are their cor	inponents and run
	Macromolecule	Components	Functio
a)			
b)			
		rs which operate after matin	
		rs which operate after matin	
a			
a			

				_ ha
	omosomes while			
	have h	aploid chromosor	mes. (4 marks)	
	speciation is the de	velopment of rep	roductive isolation an	101
members of	f a continuous populat	ion in the absence	e of geographic barrie	τV
	is the r	esult of polyploid	dy. (2 marks)	
·				
The	and	are equal	in terms of nucleus	
contribution	n but unequal in terms	of	of th	e
			(4 marks)	
TION C.	SHORT ANSW	VER QUESTI	ONS. ANSWER	ΑI
	QUESTIONS ((Total 23 marl	ks).	
What are tr	iglycerides composed	of? (3 marks)		

	hat type of virus is HIV and how does it integrate its genome into its host NA? (4 marks)
	hat is the advantage of aerobic respiration over anaerobic respiration or mentation? (2 marks)
f th	e base composition of double stranded DNA was 15% Thymine (T) how
	osine (C) in percent does the double stranded DNA contain? Give reasons
Cyto	osine (C) in percent does the double stranged DNA contain? Give reasons

58.	Compare the function of meiosis and mitosis.	(3 marks)
59.	Describe the four events which occur before and during	g cell division.
		(4 marks)
		

SEC	CTION D. ESSAY. ANSWER ONLY ONE QUESTION FROM THIS SECTION (15 MARKS)
61.	Suggest a hypothesis to explain the observation that female long-tailed widow-birds prefer to mate with the males that have the longest tails. How could you test the hypothesis?
62.	Water has a unique structure and special properties. Discuss any 5 (five) of these properties.
63.	Discuss the outstanding problems encountered by the "biological species concept".

_ _				
		 		
_ 				
				
				
		· · · · · · · · · · · · · · · · · · ·		
				
				

END OF EXAMINATION