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Chapter 1. Background issues in statistics
1.1. Statistical terminologyi

Important definitions in statistics

It is not unusual for students to forget important concepts learned in an earlier course.
This set of definitions is intended to stir memories of those wonderful times when you
were learning statistics and econometrics. It is not intended to replace a statistics course
but to provide you with a handy guide to the denfinition of some important terms in the
statistical tools used by economists.

Random variables
Random experiment

A random experiment is an experiment whose outcome is uncertain.

Outcome space
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The outcome space (also sometimes referred to as the sample space) is the list of all
possible outcomes of a random experiment.

Example 1.1. Single toss of a coin.

Consider the toss of a coin. Since the outcome is uncertain, tossing the coin is an example
of a random experiment. The outcome space consists of a heads and a tails. If we let X be
0 if the outcome is a heads and let X equal 1 if the outcome is a tails, then X is a random
variable. Since X only can take on integer values (0 or 1), it is a discrete random variable.

Random variable

A random variable is a number that can be assigned to an outcome of a random
experiment. A discrete random variable has a finite number of possible values while a
continuous random variable has an infinite number of potential values.

Non-stochastic variable

A non-stochastic variable is any variable that is not a random variable; i.e., does not
represent the outcome of a random experiment.




Example 1.2. Multiple tosses of a coin.

Let x equal the number of heads that occur when a coin is tossed n times. The tossing of
the coin n times is a random experiment. The outcome space of this random experiment
is an integar between 0 and n. Since the value x is equal represents the outcome of a
random experiment, it is a random variable.

Random sample

A random sample of size n out of a population of size N has the characteristic that every
member of the population is equally likely to be chosen.

Example 1.3. Height of college age women.

Consider a random sample of the population of college age women. The height, x, of any
woman chosen from this population is a random variable with a value somewhere in the
outcome space, where the outcome space is a number between (say) 24 and 96 inches.
Since in theory we can have as accurate a measurement as we might like, x can be
thought of as being a continuous random variable.




Probability

General terms

Probability distribution for a discrete random variable.

Consider a discrete random variable x ;that represents an outcome of the n potential
outcomes of a random experiment—that is, the set of potential outcomes is represented

by X=(xy, ... ,Xn). Prixy) Any function is a probability if and only if (1)

Pr(x) >0 forali=1, ... Pr{x; U x ;) =Pr(x)) + Prfx )

H
D Prxy)=1.

(=1 An example of a discrete distribution is in Example 4.

1 (2) for all i and j, and (3)

Example 1.4.

Discrete distribution.
Figure 1 illustrates a discrete probability distribution where x ;goes from 1 to 8. The areas
in the shaded rectangles sum to 1.




Figure 1.1. A discrete probability function
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The areas of the rectangles sum to 1.

Probability density function.

If x ;is a continuous random variable, the concept of a probability distribution is replaced
by a probility density function (pdf). A function, f( x ), is a pdf for the continuous random




o0

[ fdx=1:

variable x if and only if (1) f{ x ) 20 for — oo < x < 00; (2) —® and (3)f{x) has a
b
Pria<x<b)= [ f(xdx.
finite number of discontinuities. By definition a Example 5 offers

an example of a pfd.

Example 1.5. Probability distribution function for a continuous random variable.

Figure 1.2.
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The red line is the pdf for the random variable x. The shaded in area under the pdf is
equal to the probability that x falls between a and b. The total area under the pdf is equal
to 1.




Cumulative distribution function (cdf).

The cumulative distribution function is given by F( x ) = Pr( X < x ). For a discrete variable
Y

W :
Flxw) = Y, flx)). Foo= [ fondw.
the cdf is =1 For a continuous distribution, the cdf is —oo
Example 6 illustrates the calculation of the cumulative distribution function for a
continuous random variable.

Example 1.6. The cumulative distributon function.

Let f( x ) = x 2 be the pdf for the random variable x defined between 0 and 1. The
[
2, 139 a?
Fla) —fA dx =3 o=F
cumulative distribution function for any a is 0

Mathematical expectation

Mathematical expectation for a function.



Elg(0)= [ gt0f(x)dx
The mathematical expectation of the function g( x ) is x where xis a
random variable. Example 7 shows the calculation of the expected value of a function.

Example 1.7. Expected value calculation.

Letf(x)=xbeapdffor0<x<1landa>0.Letg(x)=x>.We can calculate
! !

Elg(x)]= {(.‘{3}1'“ dx= {x” +3dx :mx” + 4|{l] =- -1|—4'

The mean of a distribution.

The population mean, u, of a random variable, x, with a pdf of f( x ) is defined to be the

(=FE(x)= [ xf(x)dx.
expected value of x: ¢ ) f F)
population mean.

Example 8 illustrates the calculation of the

Example 1.8. Calculation of the population mean.




Assume we have the same pdf used in Example 7. The population mean for this

l l
_ R R B B a+1 o 1 a4+ 2 1_ 1
;{—E[.l]—{i.lj.l d_x_l{_x d_x_—a_i_z_x =g

distribution is

The variance of a distribution.

7 2
g =FEl(x—u)”
The population variance, o %, of a distribution is [ #) ]
shortcut way to calculate the population variance.

Example 9 shows a

Example 1.9. Calculation of the population variance using the expected value operator.

Define the variance operator, V, to be:
Vix)= E[{x — ;{jj].
Then,

El(x— w*]= [(x= 0 fxydx.




A -5 ~ "
x5 =2ux+ pu)f(x)dx=E\x" —2ux+ u-
Squaring the term in the integral gives: f( pxTH 1"': ) ( H H )-

Expand of the left-hand-side of this equality:

[ fdx = [apxfeadx+ [i® fodx=E(x) - ERpx) + E(@)
Thus, we have established that:

E[(x— w?*|=E(x?) - E2ux) + E(u?)

Evaluating the last two terms gives

E[2pux)= f 2uxf(x)dx=2p f xdx =2y

and

E(u*)= f u* f(x)dx

)

or, since ffliledx =" that E(u)= . Thus, E[(x— w?]=E(x*) - 20% + 47 or

)

E[(x— | =E() - u*.




]
M= .
For example, in Example 8 we found that a+ 2 The expected value of x % is

I 1
E[x*:]: f{x?}rfrd_\{:fxfr+’_"dx:#xﬂ+31: 1
0 0

a+3 0 a4+ 3

Thus, the variance of the distribution is

Vi =—tr ()

a+3 a+2

(@+2°—(a+3) g

Vi =it et +)
(a+3)(a+2)° (a+ 3)(a+ 2)

or

Expected value operation rules.

As shown in Example 9, the expected value operation allows several linear operations. Let
a and b be a non-stochastic variables and x be a random variable. Then we have

1. E(a)=a,




5. E(axj + bx + c'):aE(xj)—i—by +cC.

3. lax+b)=au+b,

These rules work both for discrete and continuous random variables.

Joint distributions

The joint pdf for two random variables.
Any function, f( x,y ), that has the characteristics

1. f{x,y)20forall xand y and

f flx,vidxdy =1
2 [ | |

is a joint pdf. This definition can be extended easily to include more than two random
variables.

Covariance between two random variables.



If x and y are random var'C'a'. reen the two variables, Co v( x,y

(x,v)=FE [{x — vy — ,r,f_vj].
) or oy, is defined to be Expansion gives the alternative
definition that o ,, = E(xy ) -, , .

Stochastic independence.

The random variables x and y are stochastically independent if and only if o ,,= 0. An
equivalent definition of independence is that x and y are stochastically independent if
andonlyif f{x,y ) =f( x )f(y ), or, in words, if the joint pdf of the two random variables is
equal to the product of the pdf of each random variable. From the definition of
covariance it is easy to see that if two random variables are stochastically independent

then E(xy ) =p,u,.

Correlation coefficient.

Pxyv= oo
The correlation coefficient, p, is defined to be Y The correlation coefficient is a

unitless number that varies between -1 and +1. Clearly, two random variables are
stochastically independent if and only if p ,, = 0.



Discrete distributions

Binomial distribution.

The discrete random variable x has a binomial distribution if

f,w:{c)pfn _pf' ™% x=0,1, ....n M= n!
' x! U‘.!

0 elsewhere where )" For the binomial

distribution,u=npando’=np(1-p).
Uniform distribution.

|

ifa<x<bh
f(x) {3 }
The discrete random variable x has a uniform distribution if elsewhere
a+b »_(h—a)*

A g = .
&

[ =
JL and 12

The mean and variance of the uniform distribution are

Poisson distribution.



T pEe—m " 77 has a Poisson distribution if
3 _‘4.':0,1.,...
flx)= x!
elsewhere
For the Poisson distribution u = ¢ > = m. The Poisson
distribution is used quite often in queuing theory to, among other things, describe the

arrival of customers at a cashier's station.

Continuous distributions

Expotential distribution.

The continuous random variable x has an exponential distribution if

fx) = {gf _’1'1:, forx=10

forx <0 } The cumulative exponential distribution is given by F(x) =1 -
e **, forx 2 0. The exponential distribution describes the times between events that
occur continuously and independently at a constant rate (as in a Poisson process). The
mean and variance of an exponential distribution are u=A "*and 0?=1"2.

Cauchy distribution.



A randon

) ) < oo, has a Cauchy (or Cauchy-Lorentz) distribution if
flx) = %{ —— ]
lx— .1'{:,} T+ Y
its pdf is The parameter x ( locates the peak of the pdf while y
specifies the half-width of the pdf at the half maximum. Figure 3 shows the pdf and
cumulative function for two values of these two parameters.

Figure 1.3. The Cauchy distribution.
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The two panels represent the Cauchy distribution for two sets of values of x, and y.

Normal distribution.

The continuous random variable x has a normal distribution with a mean of yu and a

~

X — i I~
a
fay=—~t_e 2
variance of o % if its pdf is oVt for — o0 < x < oo, The distribution is
symmetric around the mean.

Log normal distribution.

The continuous random variable x has log normal distribution if y has a normal

y~ N(ﬁ,ﬁzj

distribution and x = e”. Thus, if " then the pdf of a log normal distribution is



2
Inix) — p)=

- 2

v L
flx)= Ilﬂ € = , forx>0p 2
otherwise The mean and variance of xare #x= ¢ and
n ’:n
B = 24+
oy = (ﬁﬁ —1 )ﬁ f

Because the distribution is skewed downward for variances over
1, the log normal distribution is sometimes used to describe income distributions (where
there are relatively few very wealthy people and incomes generally are positive. Figure 4
shows the graphs of the pdf and cumulative functions for the log normal distributions for

two values of o.

Figure 1.4. The log-normal distribution.
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The two panels illustrate the log-normal distribution for two values of o..

Gamma distribution.

A positive random variable x has a gamma distribution if its pdf is

X
| a—1 I

Ma)p™ ¢

flx)=
for x > 0 and 0 elsewhere. I a ) is known as the gamma function

m 2
MNa) = f Y le™dy=(a- 1)
and is defined to be 0 The gamma function is often
used to model waiting times like waiting for death. Its mean and variance are given by u =

aBandc’=aB’.
Chi-square distribution.

A chi-square distribution ( x 2 ( k)) is the sum of k independent standard normal random
k
o =—_
variables and is a special case of the gamma distribution (with 2 and 8=2). The pdf



3 =
I
I
I3 et

—

f=—>t—x* e
21l
of a chi-square distribution with k degrees of freedom is - where
k a
y= Xy
x > 0. Its mean and variance are u = k and o % = 2k. If i=1  where the x;'s are

independently drawn from the standard normal distribution (N(1, 0)), theny ;~ x 2 (k).
Student's t-distribution.

Consider two random variables, x and v. Assume that x ~ N(0,1)and v~ x *(r) and are

W
f=-——
1B
stochastically independent. Then the random variable T has the t-distribution with r

degrees of freedom. The pdf and cumulative function of t are

(r+1)
F("fg 1 ) oy L2
J) =—‘_(1 + 1;_) o]
,.ﬁr(ﬂ and F(t) = ol
-
distribution are 0 forr>1and " — 2 fort> 2, respectively.m The t-distribution plays a

£)
(2 " The mean and variance of the




prominent role in hypothesis testing that is well-known to all undergraduate economics
majors.

F distribution.

Consider two stochastically independent chi-square random variable such that

f=
and ' and u,v > 0. The new random variable Z hasaF-
distribution with r ; and r , degrees of freedom. The pdf for the F-distribution is

. r(lj#ﬁxi) f%—l
slf)= (_1) (_) e

- -
ke -

w~y(ry) ~ 3 (ry)

- The F-distribution is used in testing if population
variances are equal and in performing likelihood ratio tests.

Multinomial distribution.



Consider the n randoi “ i 2\ ,X2,X,where each variable has a normal
X "\.’(; o )
. | T .
|

. N and the covariance between of the variables is
Cij= E[‘f‘ i—H *':'(-‘.f - ”.f')]

r o2 o 1inge the variances and covariances into a n-by-n
oy O " Oy
=121 ﬂ% "t O
."?I
h{:}-nl {:Fnj e {:FE -
matrix where x| — p1\ thatis known as the variance-covariance matrix.
(X—p)=[ | y
— My X—H)
) as its transpose. Then,
x— W Zx- =Y, Z (i= ;= oz
i=1j=1 | X

whereo;=0;2.If is the
determinant of the variance-covariance matrix, then the pdf for the joint distribution of



. | —',%[?i—l.l]"E[x—l_l.J
Flx X0, o sxy) = e - _

£ nt 2
these random variables is <n) 2| If the
random variables are stochastically independent the covariances are equal to 0 and the

_LE f—j[ii‘

l =1 "’I

Flxx0, uxp)=

td|—
m

pdf becomes (‘ =1 If the n random

variables are all drawn from the same normal distribution with a mean of pand a

variance of o 2, then the pdf simplifies to
_l_ Z

| "ﬁa—l

o]

(x; —J[H-

Flx X0, oo xp) =

Characteristics of an estimator of a population parameter 0



Finite estimators

Bias.

N M
B(H): E(H) — .
The bias of an estimator is defined to be An estimator is unbiased if
M
B(H) =0.

Mean square error.

and only if

N M =
MSE(H):E (H —H) .
The mean square error (MSE) of an estimator is defined to be It

M M M =
wse(3)=v(8) + (s(5))"
is relatively easy to show that Often a biased estimator

with a smaller MSE may be preferred to an unbiased estimator with a relatively larger
MSE.

Efficiency.



A -

A . V(H){ v(6)

An estimator 7 is relatively more efficient than it and only if Generally,
we would prefer to use the most efficient estimator available (if it is unbiased).

Asymtoptic estimators

plim.

X ,converges to a constant, ¢, if limp — oo Prilxy —cI> ) =0

write this relationship as plimx ,=c.

for any positive €. We can

Example 1.10.

)andn

2|

| —
Greene'? offers this example of plim: Suppose x ,equals 0 with probability (

7)

with probability (” " As n increases, the second point becomes more remote from the
first point. However, at the same time the probability of observing the second point
becomes more and more unlikely. This effect is shown in Figure 5 where as n increases
the probability distribution concentrates more and more on 1.




Figure 1.5. Example of plim.

1
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The probability x = 1 is the area of the gray box centered on 1 for n = 5; the gray area plus
the blue area for n = 10; and the sum of the gray, blue, and red areas for n = 20; the
probability x = n is the area of the box centered on n.




Consistency.

A A
The estimator ? is a consistent estimator of & if and only if plimé =0.
Asymmtotically unbiased.
A
p 1imn4mE[9]:a

An estimator 7 is an asymtotically unbiased estimator of & if
1.2. The maximum likelihood estimation method-

The Maximum Likelihood Method

Introduction

The maximum likelihood (ML) method is an alternative to ordinary least squares (OLS)
and offers a more general approach to the problem of finding estimators of unknown
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population parameters. In these notes we present an intuitive introduction to the ML
technique. We begin our discussion with a description of continuous random variables.

Continuous random variables

Assume that x is a continuous random variable over the interval — oo < x < oo, Because of
the assumption of continuity we need some special definitions.

Probability density function. Any function f( x ) that has the following characteristics is a

[ fdx=1.
probability density function (pdf): (1) f{x ) >0and (2) —= The probability that
b
Pria<x<b)= [ f(xdx.
x has a value between a and b is given by a Here are two

examples of the probability density functions (pdf) of continuous random variables.

Example 1.11. Uniform distribution




> _L
Let Fx =g for 0 < x < a and 0 elsewhere, where a > 0. A graph of the pdf for this

distribution is shown in Figure 1.

Figure 1.6. Probability distribution function of a uniform distribution.
f(x)
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The probability x falls between a and b is given by the colored in area.




.ﬂﬂ:%}ﬂ

It is easy to see from the graph that and

o0 o
Pria<x<bh)= ff{xjdx = fl,lex =1.
- 0 Moreover, as shown in Figure 1, the area under
the pdf curve between a and b is equal to the probability that x lies between a and b; that

b
7 fJ —
Pr{a*_ix*_‘ibJ:f(}I)d\_Ea b ua
iS, ol

The calculation of the mean and variance of this distribution is relatively simple. The
o )

1 ~y
[ [ XY _a
pe=EW = [xfdx  ue= [dlEpx=5-1=%.
population mean is given by 0 or 0




- V(x)=E|(x — px)*]

The population variance™ is given by Thus,

14 - i i
veo=[(v-2) (k)ix= Jr(_s ~ax+ 2 s
JJ ) or

i -

Because of the simple mathematical form of the uniform pdf, the calculations in Example
1 are relatively straight forward. While the calculations for random variables with a pdf
that has a more complicated form are generally more difficult (if algebraically possible),
the basic methodology remains the same. Example 2 considers the case of a more
complicated pdf.

Example 1.12. The Normal distribution.




A random variable with a mean of u and a variance of o 2 that has a normal distribution—

)

X — )=

)_ flx)= qu e 7
that is, has the pdf OVl A typical graph of this pdf is
given in Figure 2. The area under the curve between values of x of a and b is equal to the
probability that x falls between a and b.

-

X~ N(ru, o

Figure 1.7. Probability distribution function of a Normal distribution.
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The probability x falls between a and b is given by the shaded area.

W

Joint distributions of samples and the ML method.




Most of the statistical work that economists use involves the use of a sample of
observations. It is usual to assume that the members of the sample are drawn
independently of each other. The implication of this assumption is that the pdf of the
joint distribution is equal to the product of the pfd of each observation; i.e.,

(1.1)
F Xy o s x) = F ) F ) - flxn).

The pdf of the joint distribution shown in (1) is known as the likelihood function. If the
sample were not independently drawn, the pdf of joint distribution could not be written
in such a simple form because of the covariance among the members of the sample
would not be equal to zero. The logarithm of this function (or as it is referred to, the log
of the likelihood function) is given by the sum

i

Lixy,xq, ..., xp)=Inf(x)) +Inf(x,)+ - +1Inf(x,) = Z Inf(x;).

=1 The maximum
likelihood method involves choosing as estimators of the unknown parameters of the
distribution the values that maximize the likelihood function. However, because the
logarithm is a monotonically increasing function, maximizing the log of the likelihood
function is equivalent to maximizing the likelihood function. The following example of
this procedure illustrates how to derive ML estimators.



Example 1.13. The ML estimator of the population mean and population variance.

.,
x~N\p,o" . . . .
Assume that © (’” ? )' Consider a sample of size n drawn independently from this

distribution. The likelihood function is the product of the pdf of each observation or:

(1.2)
n A
(x;— p)° PINET R O
Tl =
2 “a
Flx) = -lq e 77 S Lxpxg, .. ,anZ—l—&ﬁ 2t
oV LT
" {lrrjj
Thus, the log of the likelihood function of this sample is
Y -2
1 -~ L ilf. - -HJII
Lix|, x5, ....xp)= — L I}“"’r — nlne — =1 - .
- 2o~ In the ML method we want to find

the estimators of the mean and variance, # and o , that maximize the log of the
likelihood function. Substituting in the parameter estimates into the log of the likelihood
function gives our problem as:




(1.3)

nln2x D |

Max Lix|,x5, ...,xp)= Max |——3~—nln 6 —
TR . o =

Setting the derivatives of the log of the likelihood function with respectto # and ¢
equal to 0 gives:

(1.4)
@L[Il!i—js e !-XH.II :Z (xil_ F’E- ]:0 and
3 i 7 2
(1.5)
OL(x|, X5, ... ,xnj: __n_. ('ﬂ-_ " F:U

Solving these two equations simultaneously gives:
(1.6)




n
_ a'; 5 2 Z (Ia' - i ]3_

=x and & “= =

—

T

=

Notice the fact that the estimator of the population mean is equal to the sample mean, a
result that is the same as the one you found in your introductory statistics course.
However, the unbiased estimator of the population variance used in that course is

f — 42
E,E_Z'r‘*.f_ H
. p—

l

Thus, one of the common "problems" with using a ML estimator is that quite often they
are biased estimators of a population parameter. On the other hand, under very general
conditions ML estimators are consistent, are asymptotically efficient, and have an
asymptotically normal distribution (these are desirable large sample size characteristics of
potential estimators and are discussed in advanced statistics courses).m

Application of the ML method to regressions




The discussion above illustrates the basics of the ML method—you form the log of the
likelihood function and then find the values of the parameter estimates that maximize
this function. In most cases the maximization will not yield answers in closed form—that
is, you cannot find a neat algebraic formula as we did for the population mean. However,
you can use computer programs to search for the values of the parameter estimates that
maximize this function. Thus, in most cases in advanced regression models you often will
treat the ML method as a “black box” and not concern yourself with the estimation
details. However, | illustrate one more example of the ML technique.

Example 1.14. The ML estimators for a simple regression.

Assume that we want to estimate the population parameters for the regression model y ;
=68 x ;+ £ ;, where we assume that

1 £~ N(‘D, (FEJ.,

2. E(E“'E-‘“-J =0 fori#j,

yi= }’ll. — lf" and xXj= X,l'

intercept term), and

3. - X (this assumption allows us to ignore the estimation of the




4. x;is a non-stochastic variable.

=y;— px;~N(0,6%)

. E;=
The assumption of a normally distributed error term implies that '

b=l
f':;*'-"[;" — 1'1 " 2
Thus, the pdf of the error term is o\ in and, thus, the likelihood
function® i
(1.7)
[}-‘-—ﬁx -:Iil - _[H —I.'iwrl,:IJ3
H-ﬂt )= 267 :( lq ) e 267
i=1 i=17 ;r o\im i=1

and the log of the likelihood function is

Lie,€q, ...,ep)=—nln\2r—nln o —




—

We find the estimators p and © inthe same manner as we did for the sample mean
and variance. Differentiating the log of the likelihood function and setting these first
derivatives equal to 0 gives the following two first-order conditions:

(1.8)

n

EZ (‘p‘,-— :E J.;,-)J;,-

0L(e, &5, ..., &p)

. _ = — =)
a !(;g 2 o
and
(1.9)
| Vi— ?f x;)
ﬂth‘l,t'j;... ,fn)": . E +,|-=1 (" ﬁ l') :'D
d o o G

Thus, the ML estimators are:




YiXi il (_'Ir" i~ E X f')j
2_i= .

n

Notice that in this simple case the ML estimator of 8 is the same as the OLS estimator of 8
. Also, notice that the ML estimator of o  is biased—the (unbiased) OLS estimator of o % is

i (—1"'1."_ :E “'a')j

) l'.=

§°=

n—2

You can use the examples in this module as the basis of your understanding of the ML
method. When you see that the ML method is used in a computer program, you can be
fairly certain that the program uses one of the many optimizing subroutines to find the
maximum of the log of the likelihood program. You can consult the help files with the
computer program to see what underlying distribution is used to set up the log of the
likelihood function. A concept related to the maximum likelihood estimation method




worth exploring is the likelihood ratio test (see the module by Don Johnson entitled The
Likelihood Ratio Test for an introduction to this key statistical test.)

Exercises

Exercise 1.2.1.

Consider the following functions. For each of them, (1) prove that the function is a pdf; (2)
calculate the mean and variance of each distribution, and (3) find the maximum
likelihood estimator of the parameter 8. Sketch a graph of each of the distributions for a
representative value of 3.

1. f{x;9)=(9+1)x°where 0<x<1andd>0.

2. flx;9)=9e **where 0 < x< oo and9>0.


http://cnx.org/content/m11234/latest/
http://cnx.org/content/m11234/latest/

[11The mean of the t-distribution is undefined for t < 1. The variance of the distribution is
oo for 1 < r <2 and undefined for r < 1.

2l Greene, William H. (1990). Econometric Analysis (New York: Macmillan Publishing
Company): 103.

BlQuite often, as in the exercises at the end of this module, it is easier to calculate the
variance of a distribution using the alternative formula for the variance:

r;_%- =Vix)=E(x— ,r,fjl2 = E(xj) — ,uj, where E(—"j)z f—‘fjﬂ-‘fﬁ't’f-‘f-

“IThe function g( y ) is monotonically increasing fory if g ' (y)>0.Because

%ln_{ = 'l‘ >0forx>0,

values of x.

the logarithm function is monotonically increasing for positive

5] Intuitively, what these concepts mean is that as the sample size increases the estimator
becomes more precise (the variance becomes smaller and an bias disappears) and the
distribution of the estimator approaches the normal distribution. The formal definitions
of these terms involve advanced statistical concepts that are reported here only in the



M
9
This estimator has an asymptotically normal distribution if

M

0% N(p. (16)) ") . o . .
An unbiased estimator is more efficient that another unbiased

estimator if it has a smaller variance than the alternative estimator. An asymptotically

efficient is an estimator whose mean square error tends to zero as the sample size

increases. The mean square error (MSE) is defined to be
M M 2 M M 2
MSE(H):E (H —H) :V(H)—l— (Bia_s-[t?]) :

M
" l;mmMSE(H ): 0.

interest of completeness. An estimator

M
plimé =6.

of the parameter & is consistent if and only if

An estimator is asymptotically efficient if

See any advanced statistics text or Statistical terminology for further
information on these concepts.

H

H-"l

I The symbol (=1 s equivalent to the product x ; X ; *-x .
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Chapter 1. Background issues in statistics
1.1. Statistical terminologyi

Important definitions in statistics

It is not unusual for students to forget important concepts learned in an earlier course. This set of definitions is intended to stir
memories of those wonderful times when you were learning statistics and econometrics. It is not intended to replace a statistics
course but to provide you with a handy guide to the denfinition of some important terms in the statistical tools used by economists.

Random variables
Random experiment

A random experiment is an experiment whose outcome is uncertain.
Outcome space

The outcome space (also sometimes referred to as the sample space) is the list of all possible outcomes of a random experiment.

Example 1.1. Single toss of a coin.

Consider the toss of a coin. Since the outcome is uncertain, tossing the coin is an example of a random experiment. The outcome
space consists of a heads and a tails. If we let X be 0 if the outcome is a heads and let X equal 1 if the outcome is a tails, then Xis a
random variable. Since X only can take on integer values (0 or 1), it is a discrete random variable.

Random variable

A random variable is a number that can be assigned to an outcome of a random experiment. A discrete random variable has a finite
number of possible values while a continuous random variable has an infinite number of potential values.
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Non-stochastic variable

A non-stochastic variable is any variable that is not a random variable; i.e., does not represent the outcome of a random
experiment.

Example 1.2. Multiple tosses of a coin.

Let x equal the number of heads that occur when a coin is tossed n times. The tossing of the coin n times is a random experiment.
The outcome space of this random experiment is an integar between 0 and n. Since the value x is equal represents the outcome of a
random experiment, it is a random variable.

Random sample

A random sample of size n out of a population of size N has the characteristic that every member of the population is equally likely
to be chosen.

Example 1.3. Height of college age women.

Consider a random sample of the population of college age women. The height, x, of any woman chosen from this population is a
random variable with a value somewhere in the outcome space, where the outcome space is a number between (say) 24 and 96
inches. Since in theory we can have as accurate a measurement as we might like, x can be thought of as being a continuous random
variable.

Probability

General terms

Probability distribution for a discrete random variable.



Consider a discrete random variable x ;that repr y _ (X{s oo 2 Xp). EPrI(x-,-J » n potential outcomes of a random experiment—that is,
the set of potential outcomes is represented by Any functi n’ " " ity if and only if (1)
. Prx,)=1.
Pr(x)>0 forali=1, ...,n,  Pi{x;Ux;)=Pr(x;) +Prx)) o
(2) for alliand j, and (3) An example of a discrete

distribution is in Example 4.

Example 1.4.
Discrete distribution.

Figure 1 illustrates a discrete probability distribution where x ;goes from 1 to 8. The areas in the shaded rectangles sum to 1.

Figure 1.1. A discrete probability function

p
P(x.)

0.3 —

02

(il

1 2345678 X

The areas of the rectangles sum to 1.

Probability density function.




If x ;is a continuous random variable, the concept of a probability distribution is replaced by a probility d¢ <~ " pdf). A
[ fax=1;
—o0

function, f( x ), is a pdf for the continuous randomvi =~ °° T T {x)20for—o0<x<o0;(2) and (3) f( x)
Pria<x<b)= [ f(dx.

ol
has a finite number of discontinuities. By definition Example 5 offers an example of a pfd.

Example 1.5. Probability distribution function for a continuous random variable.

Figure 1.2.

The red line is the pdf for the random variable x. The shaded in area under the pdf is equal to the probability that x falls between a
and b. The total area under the pdf is equal to 1.




Cumulative distribution function (cdf).

H

Flxw) = Z Flxp).
The cumulative distribution function is given by F( x ) = Pr( X < x ). For a discrete variable the cdf is i=1 Fora
X
Fi(x)= f Flwidw.
continuous distribution, the cdf is —o
for a continuous random variable.

Example 6 illustrates the calculation of the cumulative distribution function

Example 1.6. The cumulative distributon function.

Let f( x ) = x > be the pdf for the random variable x defined between 0 and 1. The cumulative distribution function for any a is

| a | 4 3
Fia,'l:fx‘dx:?x-’ =
0 )

o

’JJ|

Mathematical expectation

Mathematical expectation for a function.
Elg(x))= f g(x) f(x)dx

The mathematical expectation of the function g( x ) is x where x is a random variable. Example 7 shows the
calculation of the expected value of a function.

Example 1.7. Expected value calculation.




Letf(x)=xbeapdffor0<x<1anda>0.Lletg(x)=x>.We can calculate
| |

E[g{.ﬂ]z {(_{3)}:{# dx= {Iff +3 4y :ﬁxﬁ + 4|{l] - _li_ .

The mean of a distribution.

u=FE(x)= fxf(xjdx.

The population mean, u, of a random variable, x, with a pdf of f( x ) is defined to be the expected value of x:
Example 8 illustrates the calculation of the population mean.

Example 1.8. Calculation of the population mean.

Assume we have the same pdf used in Example 7. The population mean for this distribution is

l |
_ R PR I a+1 5 1 .fr+31_ ]
}E—E[l]—{{ljl d_x—{_x d_x——a+2_x 0T a1

The variance of a distribution.

o = E[{x — m?]_

The population variance, o 2, of a distribution is Example 9 shows a shortcut way to calculate the population

variance.

Example 1.9. Calculation of the population variance using the expected value operator.

Define the variance operator, V, to be:

Vix)= E[{x — ;fjj].




Then,
E[(x— w?*]= [(x = fodx.

A - ~ -
xT=2ux+ p-|f(x)dx=E\x~ —2ux+ p~
Squaring the term in the integral gives: f( pxTH )ﬂ ) ( H M }

Expand of the left-hand-side of this equality:

[P fdx = [apxfeodx+ [i? fodx=E(x*) - ERpx) + E@?)
Thus, we have established that:

E[(x— w?|=E(x?) - E2ux) + E(4?)

Evaluating the last two terms gives

EQux)= fﬁ_uxf(xjdx = Epzfxdx = E_ug

and
")= f u” f(x)dx

or, since f'f(xjdx =1, that E(”j): u. Thus, E[‘;x - HJE]: E(Ig)— 22 + p? or

)

E[(x— w?*]=E(x*) - u*.

1
H= :
For example, in Example 8 we found that a+2 The expected value of x % is

1

el a—+2 _ 1 ﬂ+31_ 1
{ s {h_f' dx_a-l—Sx 0 a4+ 3




Thus, the variance of the distribution is

a+3 a+ 2

@+2*—@+3) 4

Vix)= . . = + 1
(@+3)a+2%  (a+3)a+2)

or

Expected value operation rules.

As shown in Example 9, the expected value operation allows several linear operations. Let a and b be a non-stochastic variables and
x be a random variable. Then we have

1. E(a)=a,

2 N 2 ,
5. E(ax +£:rx+c)_aE(x )+by+(.
3. E(ax+b)=au+hb,

These rules work both for discrete and continuous random variables.

Lloint distributions

The joint pdf for two random variables.
Any function, f( x,y ), that has the characteristics

1. f{x,y)20forall xand yand

rff'(,x,_vjd,td_v =1
2. l )



is a joint pdf. This definition can be extended easily to include more than two random variables.
Covariance between two random variables.

If x and y are random variables, then the covariance between the two variables, Co v( x,y ) or o, is defined to be

Covix,y) = E[i‘x —HIY =4 -"J]' Expansion gives the alternative definition that o, = E(xy ) - p,u .

Stochastic independence.

The random variables x and y are stochastically independent if and only if o ,, = 0. An equivalent definition of independence is that x
and y are stochastically independent if and only if f( x,y ) = f( x )f( y ), or, in words, if the joint pdf of the two random variables is
equal to the product of the pdf of each random variable. From the definition of covariance it is easy to see that if two random
variables are stochastically independent then E(xy ) =pu,u .

Correlation coefficient.

Oxy

Pxy=g o
The correlation coefficient, p, is defined to be 7Y The correlation coefficient is a unitless number that varies between -1

and +1. Clearly, two random variables are stochastically independent if and only if p ,, = 0.

Discrete distributions

Binomial distribution.

R
The discrete random variable x has a binomial distribution if 0 elsewhere where ¥ W — )’ For
the binomial distribution,u=npandc?=np(1-p).

Uniform distribution.



|
flx)=4b—a }
The discrete randnm vnrigble X’ (b ’ a) - distribution if elsewhere The mean and variance of the uniform
a+ L _ W
I“' — T g =—

=
distribution are and

ifa<x<bh

2 12

Poisson distribution.

m X ¢ —m
y —, x=0,1, ...
flx) = {0 x! :
The discrete random variable x has a Poisson distribution if elsewhere For the Poisson distribution u = o %= m.
The Poisson distribution is used quite often in queuing theory to, among other things, describe the arrival of customers at a cashier's

station.

Continuous distributions
Expotential distribution.

¢ _’1'1:, forx=0

|
flx) = :
The continuous random variable x has an exponential distribution if forx <0 The cumulative exponential
distribution is givenby F(x)=1-e “AX forx 2 0. The exponential distribution describes the times between events that occur

continuously and independently at a constant rate (as in a Poisson process). The mean and variance of an exponential distribution
-1 2 -2
areu=A "ando“=A"".

Cauchy distribution.

) = %[ —L }
A random variable x, where - o < x < oo, has a Cauchy (or Cauchy-Lorentz) distribution if its pdf is X =Xp)" +7¥" ] The
parameter x ( locates the peak of the pdf while y specifies the half-width of the pdf at the half maximum. Figure 3 shows the pdf and
cumulative function for two values of these two parameters.



Figure 1.3. The Cauchy distribution.

|
y=1and x; =0 y=25and x,=—4

The two panels represent the Cauchy distribution for two sets of values of x, and y.

Normal distribution.



_ -]’: 1variable x has a normal distribution with a mean of u and a variance of ¢ ? if its pdf is
X —p)—

}cr x) = 1 e Eﬁj

for — oo < x < oo, The distribution is symmetric around the mean.

Log normal distribution.

y ~ N(,r,f,rfj)

The continuous random variable x has log normal distribution if y has a normal distribution and x =e”. Thus, if - " then
B (In(x) — y]j
g
flx)= ,1,1 € 2o , forx>0p 7
the pdf of a log normal distribution is otherwise The mean and variance of x are #*=¢ and

- 2 . 2
oy = (ﬁﬁ — l)ﬁ_‘“ o
Because the distribution is skewed downward for variances over 1, the log normal distribution is sometimes
used to describe income distributions (where there are relatively few very wealthy people and incomes generally are positive.
Figure 4 shows the graphs of the pdf and cumulative functions for the log normal distributions for two values of o.

Figure 1.4. The log-normal distribution.



Gamma distribution.

08 A
06 A
04 4
02

)

=

0.5 A

o 4

Fix)

1 2 3

i

Jft)
1
0.8
0.6
04
0.2
0 \ R FRR g YR : LN BN B ) : ;. : LI L : Wk '%
0 1 2 3 4 5
Fix)
.
05 T
0
0 1 2 3 4 5

u=0 and =035

u=0 and o=15

The two panels illustrate the log-normal distribution for two values of o..




X

f(x) = - lmf"‘ R P
A positive random variable xhasagammad = =~ .«"0 T ” for x > 0 and 0 elsewhere. I{ a ) is known

I'a)= /;) ye -1 ﬁ_}?d}-‘z (fa—1).

as the gamma function and is defined to be The gamma function is often used to model waiting
times like waiting for death. Its mean and variance are givenbyu=a 8ando’=a 8?.

Chi-square distribution.

A chi-square distribution ( x 2 ( k)) is the sum of k independent standard normal random variables and is a special case of the gamma

flx)=— X e -
—k 22
2 and 8 =2). The pdf of a chi-square distribution with k degrees of freedom is
k

L
distribution (with
2
Y= X
where x > 0. Its mean and variance are u = k and o > = 2k. If i
normal distribution (N(1, 0)), then y ;~ x 2 (k).

I where the x;'s are independently drawn from the standard

Student's t-distribution.

Consider two random variables, x and v. Assume that x ~ N( 0,1 ) and v ~ x 2 ( r) and are stochastically independent. Then the
W

F=—

1
random variable ' has the t-distribution with r degrees of freedom. The pdf and cumulative function of t are
(r+1)
.’"(" +1 ) b2
T A Fo=}-vir(z) | o -
2 and < <!/ The mean and variance of the distribution are O forr>1and " — < for t > 2,

respectively.m The t-distribution plays a prominent role in hypothesis testing that is well-known to all undergraduate economics
majors.

F distribution.



~1(r 2) and u,v>0. The new

~x () and '

_u_1lly independent chi-square random variable such that

-
—

Consider two sto -
yution with r; and r , degrees of freedom. The pdf for the F-distribution is

-
The F-distribution is used in testing if population variances are equal and in performing

likelihood ratio tests.
)
i N(ﬁ 9 ) and the

Multinomial distribution
,X nWhere each variable has a normal distribution—that is,

J] We can arrange the variances and covariances into a n-by-

Consider the n random variables x ; ,x 5,
ojj= E[{x,- — ru,—jl(x_f-

covariance between of the variables is
- A -
O] O3 = Oy
2
_|P21 G2 T Oy
2= : : .. : 17 H

' ] ."'! I:sx - p/:l : L[]
“n Jthat is known as the variance-covariance matrix. Define the vector *n = Hn/ and

*”.fJof'.f’

whereo =0, .If IZl is the determinant of the

matrix where L%n1 “n2
X—W'Z(x—p)= Z Z (x;—
i=1j=1

— M asits transpose. Then,
variance-covariance matrix, then the pdf for the joint distribution of these random variables is

(x
| —ﬁx—ufﬁx—uJ
l ﬁ - L
If the random variables are stochastically independent the covariances are

Flxpxn, o, x,) =
_ . 2
EEJHJ" —|E|_



1 i

Flxx0, oL xp) =

il
[Ejrjm - ( t‘)‘?]
equal to 0 and the pdf becomes = If the n random variables are all drawn
from the same normal distribution with a mean of p and a variance of o 2, then the pdf simplifies to
H
—= X @-w’

26i=1
nit 7€

o)

Flxpxa, o xp)=

| I

Characteristics of an estimator of a population parameter 0

Finite estimators

Bias.

A M M
B(H):E(H)—H. B(H):{].
The bias of an estimator is defined to be An estimator is unbiased if and only if

s )=l (é-a) |
MSE(H & &

M M M =
)=v(e)+(6(2))
Often a biased estimator with a smaller MSE may be preferred to an unbiased estimator with a
relatively larger MSE.

Mean square error.

The mean square error (MSE) of an estimator is defined to be It is relatively easy to show that

Efficiency.



A -
A . V(H){ v(6)
An estimator 7 is relatively more efficient than it and only if

estimator available (if it is unbiased).

Generally, we would prefer to use the most efficient

Asymtoptic estimators

plim.

X ,converges to a constant, c, if limp -, o Prllxy —cl> ) =0 for any positive €. We can write this relationship as plimx ,=c.

Example 1.10.

_ (L 1
Greene'? offers this example of plim: Suppose x ,equals 0 with probability (” ) and n with probability (” ) As n increases, the
second point becomes more remote from the first point. However, at the same time the probability of observing the second point

becomes more and more unlikely. This effect is shown in Figure 5 where as n increases the probability distribution concentrates
more and more on 1.

Figure 1.5. Example of plim.




Prix=1) 7]
or
Prix =n)

05—+

1

ll T T T n
> 10 20

The probability x = 1 is the area of the gray box centered on 1 for n = 5; the gray area plus the blue area for n = 10; and the sum of
the gray, blue, and red areas for n = 20; the probability x = n is the area of the box centered on n.

Consistency.

M

M
The estimator  is a consistent estimator of & if and only if plim¢ =6.

Asymmtotically unbiased.

M
A limn_.mEI:H]:H.
An estimator 7 is an asymtotically unbiased estimator of & if

1.2. The maximum likelihood estimation method-



apa.html#book.attribution.m34539

The Maximum Likelihood Method

Introduction

The maximum likelihood (ML) method is an alternative to ordinary least squares (OLS) and offers a more general approach to the
problem of finding estimators of unknown population parameters. In these notes we present an intuitive introduction to the ML
technique. We begin our discussion with a description of continuous random variables.

Continuous random variables

Assume that x is a continuous random variable over the interval — oo < x < oo, Because of the assumption of continuity we need some
special definitions.

Probability density function. Any function f( x ) that has the following characteristics is a probability density function (pdf): (1) f( x) >

oo b
[ Fwdx=1. Prla<x<b) = [ f(xdx.
Oand (2) —= The probability that x has a value between a and b is given by a Here are two

examples of the probability density functions (pdf) of continuous random variables.

Example 1.11. Uniform distribution

l

Let FxX=g for 0 < x < a and 0 elsewhere, where a > 0. A graph of the pdf for this distribution is shown in Figure 1.

Figure 1.6. Probability distribution function of a uniform distribution.




f(x)

R |+~

N\

-~

0 ¢« b « X

The probability x falls between a and b is given by the colored in area.

Prla<x<bh)= ff{rjldr_f =dx=1

It is easy to see from the graph that and Moreover, as shown in Figure 1, the
area under the pdf curve between a and b is equal to the probability that x lies between a and b; that is,

b
Pr{aEx*_ib}l:f(é)dr—(ﬂi:baﬂ_

[

flx)= —::-0

The calculation of the mean and variance of this distribution is relatively simple. The population mean is given by
i § [

-y 4
py=E(x)= fxf{ledx Hyx= fx(é}h—iﬂ :%.
0 or 0




o

Vix)= r(_r—%)j (%)dx: r(xj —ax—l—i % x

4
A
T ]
The population variance™ is given by ) [ Hoe) ]Thus, ) or
1'3 1'2 [ : f.i.'j f.i'j lr.fj { -
Ax)== _ —X — _—— — ) s
V=3 -5+ MNo=3 ~ 2t 1717

Because of the simple mathematical form of the uniform pdf, the calculations in Example 1 are relatively straight forward. While the
calculations for random variables with a pdf that has a more complicated form are generally more difficult (if algebraically possible),
the basic methodology remains the same. Example 2 considers the case of a more complicated pdf.

Example 1.12. The Normal distribution.

X~ N(,u, 03)

A random variable with a mean of u and a variance of o 2 that has a normal distribution—that is, " hasthe pdf
Cfx—p) 2
oy | 26°
flo) = € A typical graph of this pdf is given in Figure 2. The area under the curve between values of x of aand b is

OV LT
equal to the probability that x falls between a and b.

Figure 1.7. Probability distribution function of a Normal distribution.
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The probability x falls between a and b is given by the shaded area.

Joint distributions of samples and the ML method.

Most of the statistical work that economists use involves the use of a sample of observations. It is usual to assume that the

members of the sample are drawn independently of each other. The implication of this assumption is that the pdf of the joint
distribution is equal to the product of the pfd of each observation; i.e.,

(1.1)
fxpx0, oo, xp) = fla ) flxg) o flxp).

The pdf of the joint distribution shown in (1) is known as the likelihood function. If the sample were not independently drawn, the
pdf of joint distribution could not be written in such a simple form because of the covariance among the members of the sample
would not be equal to zero. The logarithm of this function (or as it is referred to, the log of the likelihood function) is given by the



n
L(x X9 ...,xp)=Inflx ) +Inflx,)+ - +Inflxy) = Z Inf(x;).
sum =1 The maximum likelihood method involves choosing as

estimators of the unknown parameters of the distribution the values that maximize the likelihood function. However, because the
logarithm is a monotonically increasing function', maximizing the log of the likelihood function is equivalent to maximizing the
likelihood function. The following example of this procedure illustrates how to derive ML estimators.

Example 1.13. The ML estimator of the population mean and population variance.

x~N(p, o’ . , . . .
Assume that = (’” ? } Consider a sample of size n drawn independently from this distribution. The likelihood function is the

product of the pdf of each observation or:

(1.2)
i -
(xi— p)2 X -pT
_—f— d _ =
A A
flx;)= Ilﬁ e 207 = L(x x5, ... ,xnjz—l—&e 20°
o\ 2n
::':”{E,rrjj
Y - p?
1n? : X = H)
Lli-xla-xja LR 5-1-!,!).': _r”’lj—bﬁ_nlng_ =1 ~ 5
< 20° In the ML method we

Thus, the log of the likelihood function of this sample is
want to find the estimators of the mean and variance, # and o , that maximize the log of the likelihood function. Substituting

in the parameter estimates into the log of the likelihood function gives our problem as:

(1.3)
— 42
Max L(xj,x5, ..., xp)= Max |- _ 1, 5 —M |
i 2 "E i

[T B, o




—

Setting the derivatives of the log of the likelihood function with respectto # and ¢ equal to 0 gives:

(1.4)
aLI’kJ‘-lﬁ-‘-j:_h--' 5-‘;“}:2('{!'_ FE j:{] ﬁnd
0 u o 2
(1.5)
OL(xX1,X3, - sXn) _ N e, — ]3_0
0 o © o 3
Solving these two equations simultaneously gives:
(1.6)
)y
X; —
R X, — M |
M :a=r1! =x and o -:Z( — i)

Notice the fact that the estimator of the population mean is equal to the sample mean, a result that is the same as the one you
found in your introductory statistics course. However, the unbiased estimator of the population variance used in that course is

{ — 12
E,E_ZH;— Mo
. p— ]

l

Thus, one of the common "problems" with using a ML estimator is that quite often they are biased estimators of a population
parameter. On the other hand, under very general conditions ML estimators are consistent, are asymptotically efficient, and have an
asymptotically normal distribution (these are desirable large sample size characteristics of potential estimators and are discussed in
advanced statistics courses).lé]




Application of the ML method to regressions

The discussion above illustrates the basics of the ML method—you form the log of the likelihood function and then find the values
of the parameter estimates that maximize this function. In most cases the maximization will not yield answers in closed form—that
is, you cannot find a neat algebraic formula as we did for the population mean. However, you can use computer programs to search
for the values of the parameter estimates that maximize this function. Thus, in most cases in advanced regression models you often
will treat the ML method as a “black box” and not concern yourself with the estimation details. However, | illustrate one more
example of the ML technique.

Example 1.14. The ML estimators for a simple regression.

Assume that we want to estimate the population parameters for the regression model y ;= 8 x ;+ £ ;, where we assume that
£ ,-~N(0, .::'IEJ,

E(E“' E-*“-J =0 foriz#j,

vi=¥;—Y and xi=X;

4. x ;is a non-stochastic variable.

-X (this assumption allows us to ignore the estimation of the intercept term), and

y=Vi— Py~ N(ﬂ’ ﬁj)'

E
The assumption of a normally distributed error term implies that Thus, the pdf of the error term is

=Py
fU—'gJ = 51,3 [ jﬁj
o\in and, thus, the likelihood function'® is:
(1.7)
(v; = px ) - ﬁ;n-]'z

2 - - " n _H L s L
Hﬁ"{-"J:H 1,1".! € ol :( 1 ) [ 20°




L(El, 1‘:'«3, “aa

and the log of the likelihood function is

—

We find the estimators

,En,:l _—

p and © inthe same manner as we did for the sample mean and variance. Differentiating the log of the

likelihood function and setting these first derivatives equal to 0 gives the following two first-order conditions:

(1.8)
I
) v — B v x
ﬂL(E‘l,E'g, €p) B .'; (‘P.u f ‘La)‘»a o
o p 27 °
and
(1.9)
. (vf'_ E “"'*')_
aL[E'l,E'j, - sfnj 1 =1
AN = - = (.
d o b o

—
and e = 7




Notice that in this simple case the ML estimator of 8 is the same as the OLS estimator of 8 . Also, notice that the ML estimator of o 2

Xli- )

-
e

'; =
is biased—the (unbiased) OLS estimator of o % is n—

You can use the examples in this module as the basis of your understanding of the ML method. When you see that the ML method is
used in a computer program, you can be fairly certain that the program uses one of the many optimizing subroutines to find the
maximum of the log of the likelihood program. You can consult the help files with the computer program to see what underlying
distribution is used to set up the log of the likelihood function. A concept related to the maximum likelihood estimation method
worth exploring is the likelihood ratio test (see the module by Don Johnson entitled The Likelihood Ratio Test for an introduction to
this key statistical test.)

Exercises

Exercise 1.2.1.

Consider the following functions. For each of them, (1) prove that the function is a pdf; (2) calculate the mean and variance of each
distribution, and (3) find the maximum likelihood estimator of the parameter 9. Sketch a graph of each of the distributions for a
representative value of 4.

1. f{x;9)=(9+1)x°where 0<x<1andd>0.

2. f{x;9)=9e **where0<x<ooand?>0.


http://cnx.org/content/m11234/latest/

[21The mean of the t-distribution is undefined for t < 1. The variance of the distribution is o for 1 < r < 2 and undefined for r < 1.
2l Greene, William H. (1990). Econometric Analysis (New York: Macmillan Publishing Company): 103.

Bl Quite often, as in the exercises at the end of this module, it is easier to calculate the variance of a distribution using the

) 2 2 a3 el g v
=Vix)=Ex—u)"=E{x")]—u-, Elx~ :fx‘ x)d x.
alternative formula for the variance: Ox ) X =) (‘ ) H where ( ) F(x)

Lne=L>0forx>0,

“IThe function g( y ) is monotonically increasing foryif g (y ) > 0. Because dx
monotonically increasing for positive values of x.

the logarithm function is

5] Intuitively, what these concepts mean is that as the sample size increases the estimator becomes more precise (the variance
becomes smaller and an bias disappears) and the distribution of the estimator approaches the normal distribution. The formal
definitions of these terms involve advanced statistical concepts that are reported here only in the interest of completeness. An
M
limé =6.

M
9
of the parameter & is consistent if and only if p This estimator has an asymptotically normal distribution if
M
0% Ne. (16" . o . . o .
An unbiased estimator is more efficient that another unbiased estimator if it has a smaller variance than the
alternative estimator. An asymptotically efficient is an estimator whose mean square error tends to zero as the sample size

wse(3 )= (3 0] |=v(3) (e ])

See any advanced statistics text or Statistical terminology for further information on

estimator

increases. The mean square error (MSE) is defined to be An estimator is

M
nlemMSE(H ): 0.
asymptotically efficient if

these concepts.

1

H-"l

I The symbol i=1 is equivalent to the product x ; X ; ***x ,,.
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Chapter 2. Advanced topics in econometrics
2.1. Logit and Probit Regressionsi

Logit and Probit models

Introduction

Consider a model that “explains” whether a wife enters the work force. It is straight
forward to think of potential explanatory variables—her potential wage rate, the income
of her partner, the number of children under the age of 6 in the household, and the
number of children in the household between the ages of 6 and 18 are candidates to be
independent variables used to explain the wife’s decision to enter the labor force. The
dependent variable, Y, however, is a dummy variable because the wife chooses either to
enter the labor force ( Y = 1) or not to enter the labor force ( Y =0 ). An OLS model of the
form:

(21)Y;=8,+8 1 x;+€;


apa.html#book.attribution.m34543

does not make sense. Figure 1 shows what the data of this model might look like when
graphed against one of the explanatory variables. Figure 1 also includes the regression
line that an OLS estimation of (1) will yield. It is easy to see one problem with this
approach—the predicted values of Y that can be greater than 1 and less than 0. In
addition, special properties must be attributed to the error term and it is the simple
properties ascribed to the error term that make the OLS model so attractive.”

Figure 2.1. Linear regression line for a discrete dependent variable

AN sw mm e
¥ Y. =5+ Bx

Income af pariner



The linear regression line can be a poor representation of a discrete dependent variable.

The logit model

There does exist another approach to the modeling problem—assume that the
dependent variable is the probability that the wife is in the labor force. For instance we
might assume that we have a linear probability model of the form

Prix)=po+ b1 x;+ &; This model can be estimated reasonably successfully if the

observed frequencies are well away from their bounds of 0 and 1. However, is more
appealing to assume that the probability varies monotonically with x and remains within
the bounds of [0,1], as shown in Figure 2. This S-shaped curve is known as the sigmoid

Pr(z)=—%—
curve and can be represented algebraically for some variable z by: I +e”

Figure 2.2. The signoid function.
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The signoid function forces the dependent variable to be between 0 and 1.

P(z)

We can simplify our analysis by using a bit of algebra. First, the inverse probability is

] —Prig)=1-——€¢ ___1
" L+e* 14 e Thus,




(2.2)

_ o2

Priz) 142 :

[—Pr(z) 1L~ ¢
1 + e

Pr(z) )
NEIEHE
Taking the natural logarithm of (2) gives I —Prz) Assuming that z is a linear
function of x (and, more generally, of other variables) gives the logit model:

(2.3)

pITk_lll.J pr— - 1
ln(m)—fju + px;+ €

We can estimate the parameters of this model using maximum likelihood methods. In the
probit model the error term is assumed to be normally distributed with a mean of zero
and a unit variance.? In the logit model the error term is assumed to have a standardized
logistic distribution. This distribution has a mean of 0 and a variance of 1 and is very
similar to a normal distribution with the same mean and variance.*” While the choice of
which model to use generally is personal, it should be noted that the ratio of the
parameter of a logit model to the parameter of a probit model (using the same data set)
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usually varies between 1.6 and 2.0. We focus on the logit model in the balance of this
discussion.

Interpretation of the logit model parameters

The interpretation of the economic meaning of the parameter values in a logit model is
not very obvious.*! One simple, but not often used, interpretation comes from taking the
first-derivative of (3) with respect to x:

(2.4)
dlnfoddsY =
ox

In(oddsY =1) =g+ f, x + €= D=p,.

Thus, in the labor force participation model one interpretation is that 8 ; is equal to the
change in the natural logarithm of the odds that the wife is in the labor force due to a one
unit change in the independent variable x. This interpretation is both awkward and not
really economically informative.

Stata offers two command for estimating a logit regression—logit and logistic. The logit
command returns the parameter estimates as shown in (3). The logistic command returns
the odds ratio rather than the parameter estimates. The odds ratio is equal to e 8 .. Thus,



one can go from the odds ratio reported by the logistic command to the parameter
estimates merely by taking the natural logarithm of the odds ratio. The interpretation of
the odds ratio is straightforward. For example, assume that y = 1 means that the birth
weight of an individual is less than 2,500 grams and y = 0 means that the birth weight is
greater than 2,500 grams. A logit parameter estimate of -0.27 is equivalent to an odds
ratio of 0.97 (i.e., e "%’ =0.97 ). An odds ratio of 0.97 means that odds of a baby being
underweight are 0.97 times those of the odds of a baby being of normal weight. To see
what is being said re-write (2.3) as:

Prix)  Po+pPx+e
[ — Pr(x) '

A one unit change in x implies that:

-PI'{I + 1 ) . f}'{) + f}'l x4+ 114
[ —Prx+ 1) °©

or

Prix+1)  fo+lix+e fy
[—Prx+1) ° ¢




or

Prix+1) Efil ( Pr(x) )
| = Prix+1) 1 —Prix)/
7|
Thus, ¢ is equal to the percent change in the odds that y equals 1 (a baby is born
5 1
underweight) due to a one unit change in x. The logistic command reports ¢ while
the logit command reports 2t Because of the ease of interpretation of the odds ratio,
Stata argues that the logistic command is the proper one to use.

Elasticities

Another route to follow is to try to find something that can be interpreted as an elasticity.
Elasticities are important enough topic in economics for us to discuss them here in some
detail. The reason they are so attractive to economists is that they have no units and,
thus, can be compared across different commodities. For instance, it is quite reasonable
to compare the demand elasticity for apples with the demand elasticity for pearl



necklaces in spite of the fact that the units of measuring apples and necklaces are
different. There are a few important ways that elasticities appear in regressions.

Linear regression elasticities

In a linear regression of the form (ignoring the subscripts and the error term)
Y=6 ot 6 1 X,
we would calculate the elasticity of Y with respect to x to be

Ny =33L=p 3.

Clearly, researchers need to choose the levels of Y and x at which to report this elasticity;
it is traditional to calculate the elasticity at the means. Thus, economists typically report

Hyx —ﬁ

~<|I~<I

Constant elasticities




Consider the following demand equation:

(25)g=ap’e’,

where q is the quantity demanded, p is the price the good is sold at, a,8 > 0, and € is an
error term. The price elasticity of demand is given by

_Padg p_ | —F-1 ¢
Hgp= =———F——\—-pap e |= —p.

Top~ p" e\
In other words, this demand curve has a constant price elasticity of demand equal to - 8.
Moreover, we can convert the estimation of this equation into a linear regression by
taking the natural logarithm of both sides of (5) to get Ing = Ina - 8Ilnp + .

The logit equation and the quasi-elasticity

It is not appropriate to use the normal formula for an elasticity with (3) because the
dependent variable is itself a number without units between 0 and 1. As an alternative it
makes more sense to calculate the quasi-elasticity, which is defined as:

(2.6)




nix)= raP;rHj.

Since

Prix;)
1“(%):% thxite

we can calculate this elasticity as follows:

Pl'[.TE'J
3(11‘1(1 — Prixy) )) —

P =P

Focusing on the left-hand-side, we get:

L dPri dPrix;)
= Pr(xp (1 = Prix) Pl 4 Pra ) S
Pr(x;) (1 = Pr(x))f’

=P

or



| @Pr{x,-)_
Prix;)(l —Prx;)) dx

Py

or

(2.7)
dPnx; _ _
5= Prix(l —Pr(x))

Thus, we see from (6) that the quasi-elasticity is given by:

(2.8)
nixy) =P x;Prix(l — Pr(xy)

The quasi-elasticity measures the percentage point change in the probability duetoa 1l
percent increase of x. Notice that it is dependent on what value of x it is evaluated at. It is
usual to evaluate (8) at the mean of x. Thus, the quasi-elasticity at the mean of x is:

n(x)=p, xPr(x)(1 — Pr(x)),

where



Po+hx
Pr(x) =—=
1 +

fo+ /1 x
e 0 l

Hypothesis testing

The researcher using the logit model (and any regression estimated by ML) has three
choices when constructing tests of hypotheses about the unknown parameter
estimates—(1) the Wald test statistic, (2) the likelihood ratio test, or (3) the Lagrange
Multiplier test. We consider them in turn.

The Wald test

The Wald test is the most commonly used test in econometric models. Indeed, it is the
one that most statistics students learn in their introductory courses. Consider the
following hypothesis test:

(2.9)
Hﬂ :J{il :ﬂ
H, f, #p.




Quite often in these test researchers are interested in the case when 8 =0 —i.e., in
testing if the independent variable’s estimated parameter is statistically different from
zero. However, 8 can be any value. Moreover, this test can be used to test multiple
restrictions on the slope parameters for multiple independent variables. In the case of a
hypothesis test on a single parameter, the t-ratio is the appropriate test statistic. The t-
statistic is given by

}Tj i ﬁ

===~ k1

sa( p ,-)

where k is the number of parameters in the mode that are estimated. The F-statistic is the
appropriate test statistic when the null hypothesis has restrictions on multiple
parameters. See Cameron and Trivedi (2005: 224-231) for more detail on this test.
According to Hauck and Donner (1977) the Wald test may exhibit perverse behavior when
the sample size is small. For this reason this test must be used with some care.

The likelihood ratio test

The likelihood ratio test is based on a comparison of the maximum log of likelihood
function for the unrestricted model with the maximum log of likelihood function for the



model with the restrictions implied by the null hypothesis. Consider the null hypothesis
given in (9). Let L( 8 ) be the value of the likelihood function when 8 ;, be the value of the

L(p

likelihood function when is restricted to being equal to 8 and P ) be the value of the
likelihood function when there is no restriction on the value of 8. Then the appropriate
test statistic is

LR= —2[InL(p)~nz( B )]

The likelihood ratio statistic has the Chi-square distribution x %> ( r ), where r is the number
of restrictions. Thus, using a likelihood ratio test involves two estimations—one with no
restrictions on the model and one with the restrictions implied by null hypothesis. Since
the likelihood ratio test does not appear to exhibit perverse behavior with small sample
sizes, it is an attractive test. Thus, we will run through an example of how to execute the
test using Stata. The example we are using is from the Stata manual, volume 2, pp. 353-
355.

Example 2.1. Underweight births.
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In this model we estimate a model that explains the likelihood that a child will be born
with a weight under 2,500 grams (low). The eight explanatory variables used in the model
are listed in Table 1. The model to be estimated is:

(2.10)

FL L& W) _ R i ) | |
(=57 | =1 Age + PoLwt + p3 RaceB + 4 RaceO

+sSmoke + ¢ Ptl + py He + pg Ui + .

Also, we want to test the null hypothesis that the coefficients on Age, Lwt, Ptl, and Ht are
all zero. The first step is to estimate the unrestricted regression using the command:

. logistic low age Iwt raceb raceo smoke ptl ht ui

Variable .
Definition

name

Age Age of mother

Lwt Weight at last menstrual period




RaceB Dummy variable =1 if mother is black; 0 otherwise

RaceO Dummy variable = 1 if mother in neither white or black; 0 otherwise

Smoke Dummy variable = 1 if mother smoked during pregnancy; 0 otherwise

Ptl Number of times mother had premature labor

Ht Dummy variable = 1 if mother has a history of hypertension; 0 otherwise

Ui Dummy variable = 1 there is presence in mother of uterine irritability; 0
otherwise

Ftv Number of visits to physician during first trimester

Table 2.1. Definition of the explanatory variables.

The results of this estimation are shown in column 2 of Table 2. Next we save the results
of this regression with the command:

. estimates store full




where “full” is the name that we will refer to when we want to recall the estimation
results from this regression. Now we estimate the logistic regression with the omitting
the variables whose parameters are to be restricted to being equal to zero:

. logistic low raceb raceo smoke ui

The results of this estimation are reported in column 3 of Table 2. Finally we run the
likelihood ratio test with the command:

. Irtest full .

Notice that we refer to the first regression with the word “full” and to the second
regression with the second period. The results of this command are as follows:

Likelihood-ratio test LR chi2(4) = 14.42
(Assumption: . nested in full) Prob > chi2 = 0.0061

The interpretation of these results is that the omitted variables are statistically significant
at the 0.6 percent level.[*2!

Explanatory variable Unrestricted Restricted




model model
Age of mother -0.9732636 -
(-0.74)
Weight at last menstrual period -0.9849634 —
(-2.19)
Dummy variable =1 if mother is black; 0 otherwise 3.534767 3.052746
(2.40) (2.27)
gt:)rtr::ry“:li:iable = 1 if mother in neither white or black; 2368079 2.922593
(1.96) (2.64)
Eruer;lrr:;\ryiZ;ri(?gii;‘l”ii\;;nother smoked during 2517698 2.945742
(2.30) (2.89)




Number of times mother had premature labor 1.719161 —
(1.56)
Y Game -
(2.64)
e e b s e
(1.65) (2.04)
Log likelihood -100.724 -107.93404
Number of observations 189 189
pseudo-R’ 0.1416 0.0801

Table 2.2. Estimation results for (2.10).

Note: Parameter estimates are odds ratios; z statistics are shown in parentheses.




The Lagrange multiplier test

The intuition behind the Lagrange multiplier (LM) test (or score test) is that the gradient
of the log of the likelihood function is equal to zero at the maximum of the likelihood
function.' If the null hypothesis in (2.9) is correct, then maximizing the log of the
likelihood function for the restricted model is equivalent to maximizing the log of the
likelihood function with the constraint specified by the null hypothesis. The LM test
measures how close the Lagrangian multipliers of this constrained maximization problem
are to zero—the closer they are to zero, the more likely that the null hypothesis can be
rejected.

Economists generally do not make use of the LM test because the test is complicated to
compute and the LR test is a reasonable alternative. Thus, as a practical matter the Wald
test and the LR test are reasonable alternative test statistics to use to test most linear
restrictions on the parameters. Moreover, since the calculations are relatively easy, it
may make sense to calculate both test statistics to be sure they produce consistent
conclusions. However, when the sample size is small, the LM test probably is preferred.




Goodness-of-fit measures

The standard measure of goodness-of-fit in the linear OLS regression model is R 2. No
such measure exists for non-linear models like the logit model. Several potential
alternatives have been developed in the literature and are known collectively as pseudo-
R%. Many of these measures are discussed in McFadden (1974), Amemiya (1981), and
Maddala (1983). In case any reader really cares about the pseudo-- R ?, a practical
approach is to report the value that the computer program reports.

One addition measure of goodness-of-fit is a measure called percentage correctly
predicted. This variable is computed in one of several ways. One way is to use the
observed values of the independent variable to forecast the probability the dependent
variable equal one. Then, if the predicted probability is above some critical value, you
assume that the predicted value of the dependent value is one. If it is below this value,
you assume the predicted value of the dependent variable is zero. Then you construct a
table that compares the predicted values of the dependent variable with the actual value
of the dependent as shown in Table 3.

Predicted




Actual Y =0 Y =1

Y=0 N oo no

Y=1 n10 niq

Table 2.3. Percent correctly predicted.

The percentage correctly predicted is equal to the sum of the diagonal elements, that is, n
oo+ N 11, over the sample size. The main problem with this measure is that the choice of
the cutoff point is arbitrary. Traditionally, a cutoff point used has been 0.5. However,
there is no reason why this cutoff is the appropriate one. Cramer (2003, 67) suggests that
Mjp+n
a more appropriate cutoff point is the sample frequency—that is, ' 00 trop ety
The bottom line is that the uncertainty about the proper choice of cutoff point is a major
problem with using the percentage correctly predicted as a measure of goodness-of-fit.

Additional notes on binary variable models




One of the key choices in the various binary variable models involves the cumulative
distribution function. The Table 4 shows the four commonly used binary outcome models
along with the cumulative distribution functions:

Marginal effects,

Model Prob?blllty ' Cumu.latlve distribution ap
density function |function 0x;
x'p , .
Logit Logistic Alx’ ﬁ):ﬁ—“ AR BiL — Al BB ;
1l +e
x'p f
Probit Normal* @(x’ ﬁ):f Pix’ Pldx P BIp ;
Linear probability Fix'B)=x'p 8;
Complementary “ _xX'p R
log-log Cx'Bj=1—-e"" ™ e Tp




Table 2.4. Commonly used binary outcome models.

* (- ) is the probability density function (pdf) of the normal distribution.

The logit, probit, and complementary log-log models are symmetric around zero and
restrict 0 < p < 1. The linear does not impose either of these restrictions. Use of the
complementary log-log regression sometimes is recommended when the sample is
skewed such that there is a high proportion of ones and zeros. In general, economists use
either the logit or probit models a majority of the time. Interestingly, there is no need to
use robust estimation techniques for the logit and probit models if they are correctly
specified. If use of the vce(robust) option produces substantially different parameter
estimates than the estimates without the robust option, then it is likely that the models
are misspecified. The linear model is inherently heteroskedastistic, implying that the
vce(robust) option should be used.

The parameter estimates are comparable across the first three models in Table 4. In
particular,

1. ﬁ Lc-g_i[ﬁ‘i ﬁ Linear



n ~DE .
2. ﬁ F'rol"ii["‘*‘"S ﬁ Linear and

3. P rLogit® 1.6 P 1ot

Example 2.2. Supplementary health insurance coverage.

These data come from wave 5 (2002) of the Health and Retirement Study (HRS), a panel
survey sponsored by the National Institute of Aging. The sample is restricted to Medicare
beneficiaries; there are 3,206 observations. The elderly can obtain supplementary
insurance coverage either by purchasing it themselves or by joining employer-sponsored
plans. The data is in the file Example.xls. The variables included are listed in Table ?.

Variable Definition

Binary variables

=1 if individual has purchased supplementary insurance from any

(ins
source




retire =1 if individual is retired

hstatusg = 1 if individual assess his/her health status either as good, very
good, or excellent

married =1 if married

hisp = 1 if hispanic

female =1 if female

white =1 if white

sretire =1 if a retired spouse is present in household

Continuous

variables

age Age of individual in years

hhincome Household income

educyear Years of education

chronic

Total number of chronic conditions




adl Number of limitations on daily activity (up to 5)

Table 2.5. Definition of the variables used in Example 2.

Stata commands

Place the data into the editor and then create a list of the independent variables. Now
create a new variable equal to the log of income:

.generate linc = In(hhinc)

[notice that 9 observations are eliminated.]

Create list of "extra" variables in order to shorten future commands:

. global extralist linc female white chronic adl sretire

Summarize the variables in order to check for obvious typos (output is suppressed):
.summarize ins retire Sxlist Sextralist

Estimate logit regression (output is shown in Figure 3):

Jogit ins retire $xlist




Figure 2.3. Stata regression output.

Iteration 0O: log likelihood = -2139.7712
Iteration 1: log likelihood = -1996.7434
Iteration 2: log likelihood = -1994.8864
Iteration 3: log likelihood = -1994.8784
Iteration 4: log likelihood = -1994.8784
Logistic regression Number of obs ] 3206
LR chi2(7) = 289.79
Prob > chi2 = 0.0000
Log likelihood = -1994.8784 Pseudo R2 = 0.0677
ins | Coef. Std. Err. z P>iz] [95% Conf. Interwvall]
——————— oo cm e ————————— - - . " - - -, - —. . . . . T ., — -
retire .1969297 .08420867 2.34 0.019 .0318875 .3619718
age -.0145955% .0112871 -1.29 0.196 -.0367178 .0075267
hstatusg .3122654 .0916739 3.41 0.001 .1325878 .491943
hhincome .0023036 - .000762 3.02 0.003 .00081 .0037972

married .578636 .0933198 6.20 0.000 .3957327 -.7615394
hisp -.8103059 .1957522 ~4.14 0.000 -1.193973 ~.4266387

|
|
|
|
educyear | .1142626 .0142012 8.05 0.000 .0864288 -1420963
i
|
_cons | -1.715578 . 7486219 -2.29 0.022 -3.18285 -.2483064




Estimate and save results from several models (the Stata command "quietly" suppresses
the output from the command):

. estimates store blogit

.quietly probit ins retire Sxlist

.estimates store bprobit

.quietly regress ins retire $xlist

.estimates store bols

.quietly logit ins retire $list, vce(robust)

. estimates store blogitr

.quietly probit ins retire $xlist, vce(robust)
.estimates store bprobitr

.quietly regress ins retire $xlist, vce(robust)
.estimates store bolsr

We can create table for comparing the models (output is suppressed):




.estimates table blogit blogitr bprobit bprobitr bols bolsr, t stats(N 1) b(%8.4f)
stfmt(%38.2f)

We now test for the presence of interaction variables:
.generate age2 = age*age

.generate agefem = age*fem

.generate agewhite = age*white

.generate agechronic = age*chronic

.global intlist age2 agefem agewhite agechronic
.quietly logit ins retire $xlist Sintlist

.test Sintlist

(1) [ins]lage2=0

(2) [ins]lagefem =0

( 3) [ins]agewhite =0

( 4) [ins]agechronic=0

chi2(4)=7.45




Prob > chi2 = 0.1141

Likelihood ratio test

.quietly logit ins retire $xlist Sintlist

.estimates store B

.quietly logit ins retire $xlist

rtest B

Likelihood-ratio test LR chi2(4) = 7.57
(Assumption: . nested in B) Prob > chi2 = 0.1088
Comparison with using the logistic command:

. logistic ins retire Sxlist

The marginal effects at the mean will yield more useful results when the model is non-
linear:

.quietly logit ins retire Sxlist
.mfx

Let’s put the table comparing parameter estimates into a cleaned up table:




Logit f:;;‘“ Probit gf:;:t oLS gt:“s"
Individual retired 0.1969 |0.1969  |0.1184 |0.1184 0.0409 |0.0409
(2.34) |(2.32) (2.31) |(2.30) (2.24) |(2:24)
Age of individual -0.0146 |-0.0146  |-0.0089 |-0.0089  |-0.0029 |-0.0029
(-1.29) |(-1.29)  |(-1.29) |(-1.32) (-1.20) |(-1.25)
Health status 03123 |0.3123  |0.1977 |0.1977 0.0656 |0.0656
(3.41) |(3.40) (3.56) |(3.57) (3.37) |(3.45)
Household income  |0.0023 |0.0023  |0.0012 |0.0012 0.0005 |0.0005
(3.02) |(2.01) (3.19) |(2.21) (3.58) |(2.63)
Yearsof education  |0.1143 0.1143  |0.0707 |0.0707 0.0234 |0.0234
(8.05) |(7.96) (8.34) |(8.33) (8.15) |(8.63)
Individual married 0.5786 |0.5786  |0.3623 |0.3623 0.1235 |0.1235




(6.20) |(6.15) (6.47) |(6.16) (6.38) |(6.62)
Individual is an .0.8103 |-0.8103  |-0.4731 |-0.4731  |-0.1210 |-0.1210
Hispanic

(-4.14) |(-4.18)  |(-4.28) |(-4.36) (-3.59) |(-4.49)
Intercept -1.7156 |-1.7156  |-1.0693 |-1.0693  |0.1271 |0.1271

(-229) [(-2.36)  |(-2.33) |(-2.40) (0.79) |(0.83)
sample size 3,206 |3,206 3,206 |3,206 3,206 |3,206
Log of the likelihood - - -
function 1994.88 | 199488 | 199362 199362 |5104.75 210475

Table 2.6. Comparison of Logit, Probit and OLS regressions with Insurance as the

dependent variable.

(t-ratio or z-values in parentheses.)

As a last exercise use the following commands to generate a graph of the predicted

values:




. quietly logit ins hhincome

. predict plogit, pr

. quietly probit ins hhincome

. predict pprobit, pr

. quietly regress ins hhincome

. predict pols, xb

. summarize ins plogit pprobit pols

. sort hhincome

.twoway (scatter ins hhincome, msize(vsmall)) (line plogit hhincome, Icolor(blue) Ipattern
> (solid)) (line pprobit hhincome, Icolor(red) Ipattern(tight_dot)) (line pols hhincome,

> |color(green) Ipattern(longdash_shortdash)), ytitle(Predicted Probability)
xtitle(Household income)

Note: save file as a .tif file if you want to insert the graph directly into a word file.




Exercises
Exercise 2.1.1.

The determinants of physician advice. Physicians are expected to give lifestyle advice as a
part of their normal interaction with their patients. Sometimes doctors choose not to
comment on a patient’s lifestyle because they do not have time for personal comments,
they feel the advice will be unwelcome, they feel that lifestyle choices are not any
business of the physician, they find the discussion of lifestyle issues to be embarrassing,
or they are not aware of the patient’s actual lifestyle choices. In this project we are
interested in understanding when physicians choose to give advice concerning the
consumption of alcohol.

The MS Excel file ktdata contains the responses to the 1990 National Health Interview
Survey core questionnaire and special supplements from 2,467 males who were current
drinkers in 1990. Individuals who are lifetime abstainers or who are former drinkers who
have not consumed any alcohol in the past year are excluded from the sample. Table 7
contains the names and definitions of the variables collected in the survey.


m34543/ktdata.xls

Variable

Definition

Drinks Total number of drinks taken in the past two weeks

Advice Did your physician give you advice about alcohol consumption? Yes =1, No=0
Income Monthly income in $1,000 (there are 5 missing values denoted by a “.”)
Age30 Dummy variable equal to 1 if 30 < Age < 40and 0 otherwise

Aged0 Dummy variable equal to 1 if 40 < Age < 50 and 0 otherwise

Age50 Dummy variable equal to 1 if 50 < Age < 60 and 0 otherwise

Age60 Dummy variable equal to 1 if 60 < Age < 70 and 0 otherwise

AgeGT70 Btuhne\:vygs\;ariable equal to 1 if individual’s age is greater than 70 and 0

Educ Number of years of schooling (0 to 18)

Black Dummy variable equal to 1 if the individual is a black and 0 otherwise

Other Dummy variable equal to 1 if the individual is non-white and non-black and 0




otherwise

Married |Dummy variable equal to 1 if the individual is married and 0 otherwise
Widow Dummy variable equal to 1 if the individual is a widow and 0 otherwise
. Dummy variable equal to 1 if the individual is either divorce or separated and
DivSep .
0 otherwise
Employed DummY variable equal to 1 if the individual is currently employed and 0
otherwise
Dummy variable equal to 1 if the individual is currently unemployed and 0
Unemploy .
otherwise
NE Dummy variable equal to 1 if the individual lives in the Northeast US and 0
otherwise
MW Dummy variable equal to 1 if the individual lives in the Midwest US and 0
otherwise
South Dummy variable equal to 1 if the individual lives in the South and 0 otherwise
Medicare | Dummy variable equal to 1 if the individual receives Medicare and 0




otherwise

Dummy variable equal to 1 if the individual receives Medicaid and 0

Medicaid .
otherwise
Dummy variable equal to 1 if the individual has military insurance and 0
Champus .
otherwise
Hithins Dummy variable equal to 1 if the individual has health insurance and 0
otherwise
Dummy variable equal to 1 if the individual has a regular source of medical
RegMed .
care and 0 otherwise
DRI Dummy variable equal to 1 if the individual sees the same doctor and 0
otherwise
MajorLim Dummy varia.ble equal to 1 if the individual has limits on major daily activity
and 0 otherwise
. Dummy variable equal to 1 if the individual has limits on some daily activity
SomelLim .
and 0 otherwise
Diabetes |Dummy variable equal to 1 if the individual has diabetes and 0 otherwise




Heart Dummy variable equal to 1 if the individual has a heart condition and 0
otherwise
Stroke Dummy variable equal to 1 if the individual has had a stroke and 0 otherwise

Table 2.7. Definition of the variables in the Excel worksheet ktdata.

m( 4 )zﬂﬂ+ Y Bixi+e,
!.

| —
You are to estimate a logit regression of the form: P where
p is the probability that a patient received advice about his level of consumption of
alcohol and x ; are the explanatory variables.

Provide the following information:
1. Make a table of the means of all of the variables.

2. Offer an economic justification for the inclusion of each explanatory variable you use
in your regression (including a prediction of its expected sign).




3. Make a table reporting the results of the estimation of (1) an OLS linear estimation, (2)
a probit estimation, and (3) a logit estimation. Also include a column with the ratio of
each of the logit parameters to the probit parameter. Do not use the abbreviated
name of the explanatory variables in the table.

4. Present a table of results of a logit model with all of the variables and with whatever
other models you feel are suggested by your empirical results. Discuss the results of
the estimation and what the estimation tells you about how physicians decide
whether to give advice on alcohol consumption to their male patients.

Exercise 2.1.2.

The Supply of Married Women in the Workforce. We are interested in understanding the
decision of married women to enter the labor force. We have available two data sets, one
using data from the United States and the other using data from Portugal. You are to
estimate a logit regression for married women for each of the two data sets.

Variable | Definition




Working

dummy variable = 1 if a married woman works during the year

Fulltime |dummy variable = 1 if a married woman works more than 1000 hours in a year
Other |[the other household income in $100 (not in $1000)

Age age of the wife

Educ education years of the wife

C0005 |number of children for ages 0 to 5

C0613 |number of children for ages 6 to 13

C1417 |number of children for ages 14 to 17

NW 1 if non-white, and 0 otherwise.

HOwn |1 if the home is owned by the household, and 0 otherwise

HMort |1 if the home is on mortgage, and 0 otherwise

Prof 1 if the husband is manager or professional, and 0 otherwise

Sales 1 if the husband is sales worker or clerical or craftsman, and 0 otherwise




Farm

1 if the husband is farm-related worker

Unem

local unemployment rate in %

Table 2.8. US Data on Married Women.

Data Set 1: The data for this project are in the MS Excel file FLABOR. These data are
observations on married females drawn from the 1987 wave of Michigan Panel Study of
Income Dynamics (PSID). The data set has observations for 3,382 individuals.

Data Set 2: These data are from Portugal. The data set is a sample from Portuguese
Employment Survey, from the interview year 1991, and has been provided by the
Portuguese National Institute of Statistics (INE). The data are in the Excel file Martins.
This file is organized into seven columns, corresponding to seven variables, with 2,339
observations.

Variable

Definition

Works

Dummy variable equal to 1 if the woman works, 0 otherwise



m34543/FLABOR.xls
m34543/Martins.xls

Child18 The number of children younger than 18 living in the family

Child03 The number of children younger than 3 living in the family
Age The woman’s age
LogWomanWageRate The log of women's hourly wage rate (measured in escudos)

The women's educational level, measured in years of

Education .
schooling

The log of the husband's monthly wage (measured in

LogHusbandMonthlyWages escudos)

Table 2.9. The Portuguese data set.

Answer the following questions:

1. What factors other than wage levels determine the number of hours that a wife will
spend in the work force? Remember to use economic theory in answering this
question.




2. Clearly, one of the major factors in determining if a wife will enter the labor force is
the wage level she can earn. The US data set does not include the wife’s wage level. Is
there any other variable in the data set that economic theory suggests will be a good
proxy for wage levels?

3. The variable Age is a proxy for the work (or life) experience of a woman. We would
expect that its effect on the probability that a woman will enter the labor force will be
non-linear—that is, its marginal impact will be positive and decreasing. This reasoning
suggests that you should use Age and Age?® as explanatory variables. Can the same
reasoning be used with the variable Education? What are your expectations about the
signs of the parameters of these two explanatory variables? The same reasoning can
be used about the number of years of education.

4. Estimate and report in a table the following two logit regressions: (1) US women enter
the labor force at all and (2) US women enter the labor force for at least 1,000 hours if
they enter the labor force,. In each of these cases, compare your results to a linear
model.

5. The Portuguese data set has a different problem. We have reported the wage rate of
women who are working, but no wage level for women who are not working. We will
get around this problem by first using the data for women who actually work to



estimate the relationship between wage rates and the age and education of the
women. We will then use this relationship to predict the wage rate for both women
who do work and women who do not work. We will then use this predicted wage rate
data series as an independent variable in a logit model explaining the probability that
a married woman will enter the labor force. When completing the logit regression be
sure that you separate all of the children in a family into those 3 and under and those
between 4 and 18. Also, include the years of education in this regression to see if a
Portuguese married woman’s taste for participation in the labor force increases or
decreases with the level of her education.

6. Is it reasonable to compare your results for the two countries?
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Introduction

This module offers a brief introduction of some of the issues that arise in the analysis of
time-series. Most of the topics covered are those that we attacked first by statisticians
and economists. As such they do not demand the more sophisticated tools used by the
more modern approaches to time-series. In spite of these shortcomings, they should give
you some understanding of the issues that arise with the use of times-series in
econometric analyses. One final note of explanation is necessary. These notes are
designed to give you a brief introduction to how Stata handles time-series data. These
notes are not a substitute for reading the Stata manual, completing a forecasting course,
or reading standard texts on the rather complicated field.

Time-series analysis in Stata

Throughout this module we work with US macroeconomic data included in the MS Excel
file Macro data.xls. The variables are real level of investments (RINV), real gross national
product (RGNP), and real interest rate (RINTRATE). The real interest rate is approximated
by the difference between the nominal interest rate and the rate of change of the price
index from the previous year. The data are for the years 1963 to 1982. You can replicate
the analysis done here by copying this data set into a Stata file.



m34544/Macro%20data.xls

The first step after entering the data set into Stata, is to declare that the data set is a
time-series. The command to do this is:

. tsset year

The data set can be broken into any number of time periods including daily, weekly,
monthly, quarterly, halfyearly, yearly and generic.[w

Assume that we want to estimate the following regression:
(211)RINV=6,+86,RGNP,+B8,RINTRATE ;+¢,;

using the data set in the appendix. Figure 1 shows this regression command and the
resultant output.

Figure 2.4.



w variable: year, 1964 to 1982

. regress rinv rgnp rintrate

Source SS df MS Numher of 19

! FC 2, ) 35.03

Model 20746 .3449 2 10373.1724 Prob > | 0.0000
lesidual 4738.62733 16 296.164208 R-squared 0.8141
| Ad) R quared 0.7908
25484.9722 18 1415.83179 Root MSE 17.209

Coef. Std. Err. t P>iti [95% Conf. Intervall
1691365 .0205665 8.22 0.000 .1255375 .2127354

-1.001439 2.368749 -0.42 0.678 -6.022963 4.020085
~-12.5336 24.91527 -0.50 0.622 -65.35161 40.28441

. predict residO1, residuals

OLS estimates for Equation (1).

On the surface the estimates seem “reasonable” because the signs on the two
explanatory variables are what theory predicts they should be and the parameter for real
GNP is statistically different from zero. However, an examination of the residuals shown
in Figure 2 suggest that the error terms might exhibit autocorrelation.



Figure 2.5.
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The residuals appear to be autocorrelated.



There are several issues that arise here. First, what sort of models can we use to account
for autocorrelation? Second, what sorts of tests exist for detecting the existence of
autocorrelation? We begin with the first of these questions by introducing the concept of
first-order autocorrelation. Consider the following model:

(2.12)yt=60+61xt+£t.

We say that this model exhibits first-order autocorrelation if the error terms can be
written as:

(2.13)e,=pet-1+ Uy,

a
where Hi HN(O’ o ) Equation (3) implies that the error terms in (2) are correlated with
each other. It is rather easy to show that, while the estimates of the unknown parameters
are unbiased, the estimates of the standard errors are biased—downward if 1 > p > 0 and
upward if - 1 < p < 0. This conclusion holds as long as the source of the autocorrelation is
due to (3). If, on the other hand, the source of autocorrelation among the error terms in
(2) is due to omitted explanatory variables (whose effects are absorbed in the error
term), we have a potentially more serious problem. In particular, if the omitted



explanatory variables are correlated with the included explanatory variables (as is often
true in time-series), then the estimates of the unknown slope parameters are also biased.

For the moment we will assume that Equations (2) and (3) are true representations of the
world. What then can we do to estimate (2)? What we need to do is find a way to
transform (2) so that the error term of whatever regression we estimate does not exhibit
autocorrelation. In time period t - 1 we have:

(214)y ;. 1=6¢0+68 1 x;_1+&,_;.
Multiply (4) by p to get:
(2.15)py:-1=pBo+pB X 1+pPE; ;.
Now subtracting (5) from (4) gives:
Vi—pYi_1=Po+ Prxi+e—(pPo+ phrx,_ 1 +pe 1)
or, equivalently,

(Ve=py,_ =Pl = p)+ B (x;—px,_ )+ (g, — pe,_ ).



Let

Yit*=Yt-1=PYVt-1,

6o*=6,(1-p),

and

Xt*=X¢1—=PX¢-1-

Remember that (3) implies that u ,= € ,- p €,_,. Thus, we have:
(2.16)y ;*=8o*+68 1 x:*+ .,

~N(0,52).
where P~ ( o ) Thus, we have a regression for which the OLS estimates will be BLUE

(Best Linear Unbiased Estimator) if we only knew the true value of p.

Cochran and Orcutt [1949] use this algebra to suggest one way to estimate (6). The
estimation entails several steps. First, you use OLS to estimate (2). Second, you estimate
(3) using the residuals from the first stage to approximate € ;. This regression gives an
estimate of p. In the third step, you use the estimate of p to construct estimates of y .*
and x .* . In the fourth step, you use the estimates of y .* and x . * to estimate (6); this will



yield new estimates of 8 ; and 8 ; . You then repeat step (2) using these new estimates of
6 , and B ; to calculate the residuals and then repeat with steps (3) and (4). You continue
the process until the estimate of p does not change anymore (i.e., until the change in the
estimate of p is less than some value chosen by the researcher). There are a multitude of
alternative ways of estimating p. [See Greene (1990): Chapter 15 for a full discussion of
these methods.] Once you have an estimator for p, there exist two major ways of
completing the estimation—the Cochran-Orcutt procedure described above and the
Prais-Winsten (1954) estimator. The latter estimation procedure does not involve
dropping the first observation (as does the Cochran-Orcutt) estimator. In large samples
these two estimation techniques are likely to be very similar. In small samples the two
techniques may produce estimates that are substantially different.

We now turn to the issue of detecting the existence of autocorrelation. In what follows
we focus mainly on the detection of first-order autocorrelation as shown in Equation (3).
We can use the Durbin-Watson test to see if our suspicions are correct. The Durbin-
Watson statistic tests the hypothesis:

(2.17)
H{:l :J{J :0
H,:p#0



Figure 2.6.
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Limiting distributions for the Durbin-Watson statistic.

The details of the test statistic can be found in any econometrics textbook and need not
detain us here. What you need to know about the DW-statistic are (1) it has a mean value
of 2; (2) because its distribution lies between two limiting distributions, we need to look
at two critical values. For this reason there are two critical values—one for each of the
limiting distributions. Figure 3 illustrates the probability distribution function (pdf) for the
Durbin-Watson statistic. The true pdf lies somewhere between the blue pdf and the red
pdf. What is shown in the figure is the point below which, say, 5 percent of the
distribution lies for each distribution. The true critical point lies somewhere between d ,
and d , These values are relevant to testing the null hypothesis of no autocorrelation
against the alternative hypothesis of positive autocorrelation (i.e.,p>0).

If d <d,, we can reject the null hypothesis of no autocorrelation; if d y<d<4-d y, we
cannot reject the null hypothesis; and if d ;< d < d ,, the results of the test are uncertain.
Moreover, since the distributions are symmetric around 2 and between 0 and 4, the
critical values for the alternative hypothesis of negative autocorrelation (i.e., p>0) are
4 minus either the upper or lower critical values, as shown in Figure 3. Critical values for



the Durbin-Watson statistic can be found in the appendices of most econometric
textbooks.

Figure 2.7.
. dustat

Durbin-VWatson d-statistic( c 19) 1.321513

Command for calculating the Durbin-Watson statistic in Stata.

The command for the test and the resultant DW-statistics for the estimate of Equation (2)
are shown in Figure 4. The 5 percent level critical values for the Durbin-Watson statistic
for a sample size of 19 with two parameters (less the intercept) estimated are 1.074 and
1.536—if the observed value of the DW-statistic is between 1.536 and 2.464, we can
accept the null hypothesis that the residuals do not exhibit autocorrelation. Our value of

1.32 falls in the uncertain region where we are not sure if we can or cannot reject the null
hypothesis.



At this point we can try the Cochran-Orcutt estimate. Figure 5 reports the results of using
the Cochran-Orcutt estimation procedure. Notice that it took 7 iterations for the estimate
of p to converge. If we use the Prais-Winsten estimation technique, we get the results
shown in Figure 6. It is reassuring to see that the two estimation techniques do not yield
estimates of the standard errors that are substantially different from each other.

Figure 2.8.
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Estimation of Equation (1) using the Cochran-Orcutt method.




Figure 2.9.
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Estimation of Equation (1) using the Prais-Winsten estimator.




Using either the Cochran-Orcutt or the Prais-Winstn estimator is dependent on the
assumption that the error terms exhibit first-order autocorrelation. Unfortunately, there
is no particular reason (from a theoretical viewpoint) to believe in this assumption. Why,
for instance, couldn't the error terms of Equation (2) exhibit second-order autocorrelation
of the form:

(2.18) e,=p1€¢-1tP2E¢2+ HU:?

There is a more troubling possible explanation for the low Durbin-Watson statistic: the
model may be misspecified. In particular, there may be important explanatory variables
omitted from the regression. These omitted explanatory variables may exhibit
autocorrelation and, thus, may be the source of autocorrelation in the error term. If the
omitted explanatory variables are correlated with the included explanatory variables,
then the parameter estimates are biased. The large difference in the estimate of
parameter for real interest rates for the OLS regression and the Cochran-Orcutt estimate
is suggestive of model misspecification.[g

More modern time-series models




ARMA models

The model we described above is assumed to have first-order autoregressive error
disturbances. Such a process is referred to as AR(1). The error structure in (8) is AR(2). If
we apply this concept to a data series, we would call the following an AR(p) process:

(2.19)
P
Yr=ag+ Z Pive_i

i=1

Another approach available to us is to think of a data as a weighted average of some
error terms that are assumed to have a mean of zero, have a fixed variance, and be
uncorrelated over time*!;

(2.20)

i
Y= E Pig;_i

i=0

A data series exhibiting this pattern is called a moving average process or MA(q). The
error tern is known in the literature as white noise. A data series that has both




autoregressive and moving average characteristics is call an autoregressive moving
average (ARMA) series; an ARMA(p, q) is:

(2.21)
p g
Vi=ag+ Z Pive_i+ Z Pig _i

i=1 i=10

It may help to show two series constructed to have different ARMA patterns. Figure 7
shows one of the potential time series generated by the ARMA(2,1) process:

(2.22) y ,=0.67y ;,_,+0.33y;_,+0.1€ ,+ 0.05¢ ,_; .

Figure 2.10.
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Figure 8 shows one potential time series generated by the ARMA(1,1) process:

(2.23)y,=0.67y ;_,+ 0.1 .+ 0.05¢ , _, .

Figure 2.11.
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Stationarity

Consider the time-series y ;. We define this stochastic process as covariance stationary if

(2.24)
E(y)=E(y;:_,)=u,
(2.25)
E[i’\_v, — ,ujlj]: E[i’\_v, = ,ujj]:c:rj, and

(2.26)
Covyny;— ) =Elly,—wly;_, — pl= E[(.Vr —j~ H](Vr —j—s" P‘}]: Vs

The last term, y , is known as the autocovariance. A time-series is defined to be
covariance stationary if its mean and all its autocovariances are unaffected by a change of
time origin. We define the autocorrelation between y ;and y ,_;as:

(2.27)

Py = }}:—{;




Quite often you can create a stationary time-series from a non-stationary time-series by
taking the first-differences of the non-stationary series. If the first difference does not
produce a stationary series, then one continues to take first differences until you find a
stationary series. For instance, the time-series shown in Figure 7 appears to be non-
stationary. The first differences of this series is shown in Figure 9. Using the imperfect
eye, it would appear that the first differences of (13) is stationary. However, we really
cannot tell anything for sure from the graph of a data set. We need to use the restrictions
of the parameters derived in advanced texts to determine if a data set is stationary.*”

Figure 2.12.
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The autocorrelation function

One of the major ways to identify the structure of a time series is to look at the
autocorrelation function. The autocorrelation function, p ;, is the correlation between y ;
and y ,_,. Stata uses the following formula to estimate it [StataCorp: p. 60] for a time-
series:

The researcher then has to compare the actual autocorrelation function with the
theoretical autocorrelation for comparable data series. To see to use the autocorrelation
function consider the following five time series™?;

| (2.28)

Z r—=Vve—s— V)
2 i

(2.29) AR(1):y :=0.7y ;1 + €,

2 5=

(2.30) AR(].): yt= - 0.7y t—1+ E ty




(2.31) MA(].): Vi=E&E+— 0.7¢ t-1»
(2.32) ARMA(2,1):y:=0.7y,_,-0.49y . _,+ €., and
(2.33) ARMA(1,2):y:=-0.7y;_1+£€:-0.7¢,_,.

Each of these functions has a theoretical autocorrelation function; graphs of these
autocorrelation functions are shown in the left column of Figure 10.12%!

Figure 2.13.
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Examples of autocorrelation and partial autocorrelation functions.

There is additional function we can use to help identify the nature of a time-series.
Consider the following regressions:

(234)y*=@uy*i-1te, Y =@uy -1+ @yt e, etc,

where Y1 =V~
Our interpretation of the ¢ ; parameters is that they are the correlation between y ;and y
¢-icontrolling for all of the y ;where j=2,...,,(i - 1). Because these correlation coefficients
control for values of y’s observed between y ;and y . _;, they are known as the partial
autocorrelations. The theoretical partial autocorrelations are shown in the right column
of Figure 10. Stata uses the command .corrgram varname to calculate the
autocorrelations and partial autocorrelations for the time-series varname. Figure 11
shows the output when using this command on the real levels of investment. The
autocorrelation function for this data set looks like the theoretical one for an AR(1)
process. However, the partial autocorrelation function does not look like any of the



partial autocorrelation functions shown in Figure 11. Thus, it would not be safe to assume
that real investment follows an AR(1) process.

Figure 2.14.
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Autocorrelation and partial autocorrelation functions for real investment.

You can generate prettier graphs of the autocorrelation functions using the .ac varname
command. For instance, the command .ac rinv generates the graph shown in Figure 12.

The .pac varname generates a graph for the partial autocorrelations as is shown in Figure
13.



Figure 2.15.
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Figure 2.16.
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There are several generalizations one can use to help identify the process underlying a
data series. Table 1 [Enders (2005): p. 85] offers a brief summary of these properties of
the autocorrelation and partial autocorrelation functions.

Process Autocorrelation function Partial autocorrelation function
White-noise |Allp,=0 Allp =0
AR(1): a ; > 0 | Direct exponential decay Q1.=p1;@Ps=0fors=2

Decays toward zero. Coefficients

AR(1): a1 >0 may oscillate

Pu=pi1;P=0fors=2

Decays toward zero; Coefficients |Spikes through lag p. All ¢ ;=0 fors >

AR(p) may oscillate p

Negative spike atlag 1. p ;=0 fors

MA(1):6>0 | >

Oscillating decay: ¢ 1,<0

MA(1): 8 <0 |Positive spikeatlagl.p,=0fors |Decay:¢ ;>0




22

ARMA(1, 1): |Exponential decay beginning at lag | oscillating decay beginning at lag 1. ¢
a,>0 1. Sign p , = sign @) +p) 1=P1

ARMA(1, 1); |Oscillating decay beginning at lag | Exponential decay beginning at lag 1. ¢
o,<0 1. Sign p , = sign () + B) w=p 1 and sign lhss) - sign @)
ARMA(p, q) Decay (either direct or oscillatory) | Decay (either direct or oscillatory)

beginning at lag g

beginning at lag p

Table 2.10. Properties of the autocorrelation and partial functions.

Estimation of ARMA models

The estimation of ARMA models are relatively easy in Stata. The basic command to

estimate an ARMA model is: .arima depvar [varlist], ar( numlist ) ma( numlist )22 The
first thing to notice in the command that this command can apply to either to a single
variable or to an equation. If [varlist] is omitted, Stata will produce an estimate of the




ARMA model for that variable; if the list is included, it will estimate the model with the
disturbances allowed to have the ARMA structure specified in the command. Figure 14
reports the estimation of an ARMA model for real investment levels. Notice that we write
AR(1/2) so that Stata knows to include both the first and second autoregressive term. A
command of AR(2) would include only the second autoregressive term. In Figure 15 we
report the ARMA (2, 1) estimation of (1).

Figure 2.17.
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Estimation of an ARMA(2, 2) model of real investment.

Figure 2.18.
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Estimation of Equation (1) using an ARMA(2, 1) model.

ARMA(1, 1) | ARMA(2, 1) | AR(1) AR(2) MA(1)
Intercept 185.307 |185.6556 |184.8208 |185.2092 [189.373

(10.06) (10.83) (9.27) (10.25)  |(18.09)
AR (L1) 0.70936 [1.76342  |0.80307 |0.95257 |—

(3.12) (5.27) (5.51) (4.47) —
AR (L2) — -0.81715 |— -0.18963 |—

(-3.21) (-0.91)

MA (L1) 0.26236  |-0.99998 | — -~ 0.87262

(0.90) (-0.00) (2.97)
Log likelihood |-86.1791 |-85.8702 |-86.47780 |-86.21224 |-88.48713




Wald x2 26.96 422.60 30.36 31.65 8.81
Probability > x2 | 0.0000 0.0000 0.0000 0.0000 0.0000
Sample size 19 19 19 19 19

(14,1) 1964-1982 |1964-1982 |1964-1982|1964-1982|1964-1982

Table 2.11. Estimation of various ARMA models of real investment.

The interpretation of these results is not obvious. We check the sensitivity of these
results by estimation some other models. The results of these estimations are reported in
Table 2 and Table 3. Based purely on ML tests, it would appear that AR(1) model in Table
2 is as good as any of the models describing the ARMA structure of real investments. On
the other hand, the results reported in Table 3 suggests that the ARMA(2, 1) appears to
be the best model to assume for the disturbance term in the estimates of Equation (1).

AR(1)

ARMA(1, 1) | ARMA(2, 1)




Intercept -14.49489 |-13.37455 |-16.89182
(-0.26) (-0.23) (-1.68)
Real GNP 0.17006 |0.16912 0.17253
(3.96) (3.78) (20.18)
Real interest rate |-0.82517 |-0.92007 -0.33692
(-0.46) (-0.33) (-0.25)
AR (L1) 0.27953 |-0.02028 |0.85619
(0.60) (-0.02) (1.46)
AR (L2) - - -0.70702
(-2.64)
MA (L1) - 0.41151 -1.00000
(0.42) (-2.98)
Log likelihood -78.7868 |-78.4279 -72.94569




Wald x? 26.30 31.86 980.18
Probability >x*> |0.0000 0.0000 0.0000

Sample size 19 19 19
Sample period 1964-1982 | 1964-1982 |1964-1982

Table 2.12. Various ARMA estimates of Equation (1).

Other time-series concepts

There are a large number of additional time-series methods and issues that are not
discussed in this module. These topics include, among others, ARCH and GARCH
estimators, unit roots, the Dickey-Fuller test, and vector autoregression (VAR) models.
There is no way to do justice to these topics in notes as short as these are. Moreover, it is
necessary to discuss difference equations (the discrete version of differential equations) if
one wants to understand many of these topic at anything more than an intuitive level.
Those interested in these topics should enroll in the forecasting course (Economics 422)




or, if they cannot, plan to read several textbooks on whatever econometric tool they
need to understand.

Exercise

Exercise 2.2.1.

This exercise is designed to be sure you know how to use Stata in analyzing time-series
data sets; there is no economic content in the exercise. The MS Excel file Rabun County
Temperature Data reports the morning temperature (MornTemp) observed in Rabun
County, Georgia for every day between March 15, 2005 to November 2, 2008. The data
set includes a variable “edate” that is the daily date in Stata notation. The data set also
includes dummy variables for the season, the month, and the year of each observation
(with the Winter, the December, and the 2008 dummy variables omitted).

a. Create a graph of (a) the data set morntemp, (2) the autocorrelations of morntemp,
and (3) the partial autocorrelations of morntemp (you will have to set the matrix size to
some number greater than 43 using the command .set matsize #).


m34544/Rabun%20County%20Temperature%20Data.xls
m34544/Rabun%20County%20Temperature%20Data.xls

b. Estimate the following models:

1. ARMA(2,2) for morntemp.

2. ARMA(2,2) for morntemp as a function of the season dummy variables.
3. ARMA(2,2) for morntemp as a function of the monthly dummy variables.

4. ARMA(2,2) for morntemp as a function of the monthly dummy variables and the
annual dummy variables.

5. ARMA(1,2) for morntemp as a function of the monthly dummy variables and the
annual dummy variables.

6. ARMA(1,1) for morntemp as a function of the monthly dummy variables and the
annual dummy variables.

c. Arrange the parameter estimates in a table and comment on them. Include the results
of estimating (6) using OLS; what is the DW-statistic for this regression?
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Panel data methods are appropriate when the researcher has available observations that
are both cross-sectional and time series. For example, one could form a panel data set
with observations on the per capita consumption of tobacco for a set of OECD countries
over the period 1960 to 2005. Usually the data is “stacked” —that is, all of the
observations for country A is listed together in order of year before the data for country
B, etc. It is also possible to stack the data by year—countries A to Z for 1960, countries A
to Z for 1961, and so on through 2005.

Let y ;. be the per capita consumption of tobacco for country i in year t. We wish to model
the per capita consumption of tobacco as a function of a set of observable independent
variables like the price of tobacco, income, restrictions on tobacco advertising, and
restrictions on tobacco consumption. Of course there are several sources of unobserved
heterogeneity in that data set. In particular, we might expect that systematic differences
in consumption patterns would exist due to differences in the customs and mores of the
various countries in the sample. It also would be reasonable to assume that these
country-level differences are be relatively stable over time. Additionally, we might expect
that there would be differences the per capita consumption of tobacco over time due to
changes in our understanding of the long run health effects of tobacco consumption.
These changes might affect both (1) the level of consumption and (2) the responsiveness
of the consumption of tobacco to changes in the explanatory variables.



In these notes we describe some of the ways of modeling panel data sets and discuss
some of the issues associated with the estimation of these models. We also discuss how
to use Stata to analyze panel data sets. We begin by considering some of the types of
panel data model specifications.

\Model specification

There are four general specifications of the panel data model available. The differences in
these models reflect differing assumptions one might make and are listed below.

1. Slope coefficients are constant and the intercept varies over the individuals:

(2.35)

k
Vi=ai+ D Bixu+epi=1, .. Nyi=1, .. ,Nyandr=1, ..., T.
Pl

2. Slope coefficients are constant and the intercept varies over the individuals and over
time:

(2.36)




k
V= + Z Pixjy+epi=1, .. ,Nandt=1, ....T.
P RS

3. All coefficients vary over individuals:

(2.37)

k
Vi=ai+ X, Bixj+epi=1, .. Nandr=1, ... ,T.
P

4. All coefficients vary over time and individuals:

(2.38)

k
Vi=au+ X PiXju+eipi=1, ... ,Nyandr=1, ... ,T.
P

These four models can be classified further, depending on whether the researcher
assumes that the coefficients of the model are fixed or random. However, most research
in economics is restricted to estimation of (1) and (2) because they strike a reasonable




balance between being general enough without introducing unnecessary assumptions
that can render estimation extremely difficult.

\Estimation issues

Hsiao (2003: 27-30) discusses a convenient example of a panel data model that illustrates
many of the important issues that arise with panel data. We make use of this example in
what follows. Assume that we want to estimate a production function for farm
production in order to determine if the farm industry exhibits increasing returns to scale.
Assume the sample consists of observations for N farms over T years, giving a total
sample size of N T . For simplicity, we assume that the Cobb-Douglas production is an
adequate description of the production process. The general form of the Cobb-Douglas
production function is:

(2.39)g=al, 61"'lk6k;

where q is output and / jis the quantity of the j-th input (for example, land, machinery,
labor, feed, and fertilizer). The parameter, 8 ;, is the output elasticity of the j-th input; the
farms exhibit constant returns to scale if the output elasticities sum to one and either
increasing or decreasing returns to scale if they sum to a value greater than or less than
one, respectively. is the quantity of the j-th input (for example, land, machinery, labor,



feed, and fertilizer). The parameter, is the output elasticity of the j-th input; the farms
exhibit constant returns to scale if the output elasticities sum to one and either increasing
or decreasing returns to scale if they sum to a value greater than or less than one,
respectively.

Taking the natural logarithm of (5) gives Ing=Ilna,+ 68 ;Inl  + --- + 8 (Inl .. We can re-
write this equation (adding an error term, as well as farm and year subscripts) giving:

(2.40) yx=B8o+ B 1 X gjt+ -+ B X i+ €,

wherey=Inq,,B80=Ina,, x=Inl, forj=1,..,kand € ;.is an error term. One way to
account for year and time effects is to assume:

(2.41) ey=AFi+nP +vUy,

where F; is a measure of the unobserved farm specific effects on productivity and P; is a
measure of the unobserved changes in productivity that are the same for all farms but

k
Yir = Uj{] +AF; + }?FF}+ Z ﬂj-“-_;’f’r + 0
vary annually. Substitution of (7) into (6) gives: j=1

or



(2.42)

k
Vi =g + Z ﬁ_jx_je'r + s
J=1

wherea;=68,+AF;+nP..Thus, (8)is equivalent to (2). Moreover, if we assume that n =
0, we get

(2.43)

k
Yp=a;+ Z ﬁ_jx_je'r + Vi
i=1

where a ;=8 + A F;. Thus, (9) is equivalent to (1).

Fixed-effects models

A natural way to make (9) operational is to introduce a dummy variable, D;, for each farm
so that the intercept term becomes:

(2.44)




il
a;=a| +a> D>+ - +apDy=a; + ZHED‘,-,

j=2

where D j=1if j = i and 0 otherwise. This substitution is equivalent to replacing the
intercept term with a dummy variable for each farm and letting the farm dummy variable
“sweep out” the farm-specific effects. In this specification the slope terms are the same
for every farm while the intercept term is given for farm jby a ; + a ;. Clearly, the
intercept term for the first farm is equal to just a , . This specification is known as the
fixed effect model and is estimated using ordinary least squared (OLS). We can extend the
fixed-effects model to fit (8) by including a dummy variable for each time period except
one.

In sum, fixed-effects models assume either (or both) that the omitted effects that are
specific to cross-sectional units are constant over time or that the effects specific to time
are constant over the cross-sectional units. This method is equivalent to including a
dummy variable for all but one of the cross-sectional units and/or a dummy variable for
all but one of the time periods.

Random-effects models




An alternative approach to treatlng the a ;in (1) as fixed constants over time is to treat it
as a random variable. ’ " intercepts vary due to individual level
Vp=o; + Z Prxpi + €
j=1
differences, we have Treating a ;as a random variable is
equivalent to setting the model up as:

(2.45)

k
Vp=a+ Z ﬁjx_‘,-,-, + (a,- + 4, + :.-',-r).
j=1
For simplicity we consider only the case when A ;= 0. Thus, the error term for (11) is
\@i + €ir) We assume that

(2.46)



Ela;)=E(e;) =0,

E(“J € =V, . = i
Ela;a;)=17" "'~/ and
' 0 ifi#]

o2 ifi=j, t=s
E(f” E..'"'J: {OE "lr ]
otherwise

We also assume that all of the elements of the error term are uncorrelated with the
explanatory variables, x ;.

The key econometric issue is that the presence of a ;in the error term means that the
correlation among the residual of the same cross-sectional unit is not zero; the error
terms for one farm, for instance, are correlated with each other. Therefore, the error
terms exhibit heteroskedasticity. The appropriate estimation technique is generalized-
least-squares, a technique that attempts to adjust the parameter estimates (and their
standard error estimates) for heteroskedasticity and autocorrelation. Alternatively one
can assume that a ;and € ;; are normally distributed and use a ML estimator. Hsiao [2003:
35-41] and Cameron and Trivedi [2005: 699-716] offer greater detail on the estimation of
the parameters of both the fixed-effects and the random-effects models. It is enough for



our purposes to accept that the econometricians have found a number of ways to
estimate these parameters.

Random-effects or fixed effect model?

Economists generally prefer to use fixed-effects models. The decision to use fixed-effects
or random-effects does not matter when T is large because the two methods will yield
the same estimates of the parameters. When the number of individual categories (N) is
large and the number of time periods (7) is small, the choice of which model to use
becomes unclear. Hsiao summarized this somewhat arcane issue with the following
observations:

If the effects of omitted variables can be appropriately summarized by a random
variable and the individual (or time) effects represent the ignorance of the
investigator, it does not see reasonable to treat one source of ignorance () as fixed
and the other source of ignorance () as random. It appears that one way to unify the
fixed-effects and random-effects models is to assume from

the outset that the effects are random. The fixed-effects model is viewed as one in
which investigators make inferences conditional on the effects that are in the
sample. The random-effects model is viewed as one in which investigators make



unconditional or marginal inferences with respect to the population of all effects.
There is really no distinction in the “nature (of the effect).” It is up to the investigator
to decide whether to make inference with respect to population characteristics or
only with respect to the effects that are in the sample. Hsiao [2003: 43]

Needless to say, Hsiao’s advice may well leave many researchers without any idea of
whether to use a random-effects or a fixed-effects model. In your own research | suggest
that you consult an econometrician for advice.

There is one problem that arises when using a fixed-effects model. Assume that you have
a sample of observations for a large number of individuals over a period of years. If you
use a fixed-effects model, you will not be able to find parameter estimates for any
variable like race or sex that do not change over the time period of the sample. The
reason for this limitation is that the time-constant variables are perfectly correlated with
the dummy variables used for the fixed-effects. A similar problem arises if the fixed-
effects are for years (rather than individuals). You cannot include a variable is constant
for all individuals in any given year. Quite often the individual-constant (or time-constant)
variable is not of interest and nothing is lost by not having the parameter estimate. On
the other hand, the random-effects model does not have this problem because the
estimation makes use of differences amongst the individuals to estimate a parameter for



the individual-constant variable.’?!! We discuss in the next section an example in which
this “problem” arises.

What would be nice is if there were a statistical test that allows us to decide if the
random-effects model is the appropriate model? The Hausman test offers such a
statistical test. The Hausman (specification) test exploits the fact that the parameters for
the random-effects model should be not be statistically different from those found using
a fixed-effects specification. If one observes a chi-squared value greater than the critical
value you can conclude that the parameter estimates for the random-effects model are
statistically different from the parameter estimates for a model using an assumption of
fixed-effects, then you can conclude that the random-effects model is misspecified.
Unfortunately, the misspecification could be due to the fact that the fixed-effects model
is appropriate or it could be due to the unobserved error terms being correlated with the
included explanatory variables. If the latter is the case, then one might consider
augmenting the model with an appropriate measure of the part of the unobserved effect
that is correlated with the error term. What we are describing is that same thing that
happens when omitted variables are correlated with the error term—the parameter
estimates are biased. We include an example of how to use Stata to perform the
Housman specification test.



Estimation of panel data models in Stata

General comments

There are three commands that matter in setting up the panel data. The first two
commands precede the regression command because they establish which variable
denotes the time period and which variable denotes the cross-sectional unit. These
commands are:

.iis [variable name]

.tis [variable name]

The command for estimating the fixed-effects model is:

. xtreg depvar [varlist], fe

The command for estimating the random-effects model is:

. Xtreg depvar [varlist], re




If the part of the command with the comma and either re or fe is omitted, Stata will
assume that you want to estimate the random-effects model.

Understanding Stata output

To understand the Stata output we need to return to the algebra of the model. Assume
that we are fitting a model of the following form:

(2.47)

k
Vi=a+ ) Pixy+viteni=1, .. Nandi=1, ..., T.
=1 7

We can sum (13) over t (holding the individual unit constant) and divide by T to get:

(2.48)

k
vi=a+ Z Pixjtuvite,
&~



T T T
Z Vit Z Xir E £
'P-:F:l — {_.F_:r=l

where ' r -/ T ’ and T " Thus, (14) uses the mean values for
each cross-sectional unit. We can subtract (14) from (13) to get:

(2.49)

PH ; Zﬁ it — .IJ (4‘-",.‘;_;,;:]-

j=1

Equations (13), (14), and (15) are the basis of Stats’s estimates of the parameters of the
model. In particular, the command xtreg, fe uses OLS to estimate (15); this is known as
the fixed-effects estimator (or the within estimator). The command xtreg, be uses OLS to
estimate (14) and is known as the between estimator. The command xtreg, re—the
random-effects estimator—is a weighted average of the between and within estimators,
where the weight is a function of the variances of and ( and respectively).m]

In general, you will not make use of the between estimator. However, these three
equations do lie at the basis of the goodness-of-fit measures that Stata reports. In
particular, Stata output reports three “R-squareds”'2!—the overall-R? the between-R® and



the within-R? These three R-squareds are derived using one of the three equations. In
particular, the overall-R? uses (13); the between-R’ uses (14); and the within-R’ uses (15).

Example 2.3. A panel data analysis using Stata

In this example we follow the example offered in the Stata manual and use a large data
set from the National Longitudinal Survey of wage data on 28,534 women who were
between 14 and 26 years of age in 1968. The women were surveyed in each of the 21
years between 1968 and 1988 except for the six years 1974, 1976, 1979, 1981, 1984, and
1986. The study is focused on the determinants of wage levels, as measured by the
natural logarithm of real wages.

Figure 2.19.




. set memory Sm
(5120k)>

. use http://www.stata-press.con/data/r8/nlswork.dta

(National Longitudinal Survey. Young Yomen 14-26 vears of age in

. describe

jontains data from http://www.stata-press.con/datas/r8/nlswork.dta
ohs: 28,534 National Longitudinal Survey.
Young Women 14-26 years of age
in 1968
21 9 Jun 2002 17:36
1,055,758 (79.9 of menorvy free)

storage display value

nane t ype format labhel variable label

int .8 . O« NLS id
hyt 8 interview year
hyte .8 birth year
hyte 48 age in current year
byt %8 . O¢ 1=white, 2=black, 3=other
byte %8 . 1 if married, spouse present
byt %8 .0 1 if never vet married
byt 8 . O« current grade completed
byte 8.0 1 if college graduate
ot_smsa byte %8 .0 1 if not SMSA
_city hyte %8 . O 1 if central city
hut %8 . Oc 1 if south
byte #8.0 industry of employment
byte %8 . Oc occupation
byt 3 . 1 if union
byte ~8.0 weeks unemploved last year
fFloat #9.0 total work experience
float 9.0 job tenure, in vears
int %8 . Og usual hours worked
int #8.0 weeks worked last year
float 9 . O In{wage/GNP deflator)

Sorted by: idcode year




Loading in the data set into Stata with a description of the data.

Figure 1 shows the commands used to put the data into Stata. The first command (set
memory 5m) increases the size of the memory that the program uses; | did this because
of the large sample size. The use command accesses that data from the Stata web site.
The describe command calls up a description of the variables. Figure 2 presents a
summary of the data using the command summerize.

Figure 2.20.




summarize
Uariable« Mean Std. Dev.

idcode 2601 .284 1487 .359
year 77 .95865 6.383879
birth_yr 48 . 08509 3.012837
age 29 .04511 6.700584

race 1.303392 .4822773

msp .6029175 .4893019
nev_mar .2296795 -4206341
grade 12.53259 2.323905

f 'l] ]'|)‘:nl .1680451 .3?39129
not_smsa .2824441 .4501961

c_city .357218 .4791882
south .4095562 .4917605
ind_code 7.692973 2.994025
occ_code 4.7?7?7672 3.065435
union .2344319 -4236542

wks_ue 2.548095 7.294463
ttl_exp 6.215316 4.652117
tenure 3.123836 3.751409
hours 36 .55956 9.869623
yks_work 53.98933 29.03232

76
28 .88461
25.91667
168
104

0
0
0
0
0
0
0
1
i
0
0
0
0
1
0
0

ln_wage 1.674907 .4780935 5.263916

Summary of the data.




There are several transformations of the variables that we will need. In particular, we
want to include the squares of several of the variables in our regression—age (age), work
experience (ttl_exp), and job tenure (tenure). The reason we want to use the square of
these variables is that we have reason to believe that wages have a non-linear
relationship with these variables. For instance, consider the number of years a worker has
been on the job, Tenure. Theory suggests that wages increase over a worker’s work-life at
a decreasing rate. Thus, if the equation we are estimatingisy=Inw=86,+68,Tenure+

av
? i @Tf—}'f: P+ 2P, Tenure >0
86,Tenure” +-, what we expect is that: enure 2 and
0%y
—— 5 =2f,<0.
0T enure~ The only way that this last equation can be true is if 8 , < 0.

Moreover, if this is true, the first-derivative impliesthat8,>-26,Tenure > 0. Also,
notice that we can determine the number of years in a job when wages reach a peak; y

dy
. W:ﬁl + 2P, Tenure =0
reaches a maximum at the age where enure - . or when




3 0%y
4 — = 24,<0

] .
b, The fact that 97 enure” guarantees that this point is indeed
a maximum.

Tenure=

Additionally, because race is a categorical variable that has three potential values—1 if
white, 2 if black, and 3 otherwise—we have to create a dummy variable in order to use
this variable. The transformations we use are shown in Figure 3.

Figure 2.21.

. generate age2 = age”2
(24 missing values generated)

generate ttl_exp2 = ttl_exp”2

generate tenure2 = tenure”2
(433 missing values generated)

generate byte black = race==2

Transformations of the variables to create new variables.




The last step before estimating the regressions is to identify the data set as a panel data.
shows the two commands that must be entered in order for Stata to know that idcode is

the individual category and that year is the time series variable. Figure 4 shows these two
commands.

Figure 2.22.

. 1is idcode

. tis year

Declaring the category and time identifiers.

We are now ready to estimate the model (the natural logarithm of wages as a function of
various variables). We begin with the random-effects model. Figure 5 shows the
command and the results of the estimation of the random-effects model. There are
several things to note here. First, in the command we are able to refer to all variables that
have age in them by using age*, the * tells Stata to use and variable that begins with the




letters age. Second, we will need to use the estimation results in the Hausman test. Thus,
we have stored these results in “random_effects” using the command estimates store
random_effects.

Figure 2.23.




. xtreg ln_w grade age* ttl_exp* tenure* black not_smsa south, re

S e gressaion Number L { 28091
(i>: idcode Number» o groups 4697

within 0.1715 0} per group: min 1
hetween 0.4784 avy 6.0
overall = 0.3708 na 35

Random effects uw_ i ™ Gaussian :hi2¢ p 9244.87
orr{u_i, %) 0 {assumed) ) p 0.0000

In_wage Coef . Std. Err. 2 >z [95% Conf. Intervall

grade .0646499 .0017811 36. .0611589 .0681408
age .036806 .0031195 11. .0306918 .0429201

age?2 -.0007133 . 00005 -14.2 .0008113 -.0006153
ttl_exp .0290207 .0024219 11. .0242737 .0337676
tel_exp2 .0003049 .0001162 2. -.0000?77 .0005327
tenure .039252 .0017555% o .0358114 .0426927?
tenure? - .0020035 .0001193 -16. -.0022373 -.0017697
black -.0530532 .0099924 -S. -.0726379 -.0334685
not_smsa ~.1308263 .0071751 ~18. -.1448891 -.1167634
south -.0868927 .0073031 -11. -.1012066 -.0725788
cons .2387209 .0494688 4. .1417639 .335678

sigma_u .25790313
sigma_e .29069544
rho .44043812 (fraction of variance due to w 1>

. estimates store random_effects

The random-effects estimation.




Notice that three R-squared values are reported in Figure 5. Also, wages reach a peak
B 25 700

when the womanis -+ ™ = years old and after 9.795857 years on

the job. The interpretation of the other variables demands a bit of algebra. For instance,

the fact that black is a dummy variable affects our interpretation; when an individual is a

black, her wage level is: Inw ;=68 o + 8 , + -:-. When she is nonblack, her wage level is Inw
W ' 3
B _ Pl = g=0.0530532_ () 94833
ng= B8 o + +--. Thus, we have: Inwg—Inw \z=68,0r VB
Thus, the wage level of a black is, everything else held constant, 94.8 percent of the wage
level of a nonblack.

If we assume that grade is a continuous variable (it really is not), we have the following

w_L P
interpretation of the parameter: Inw=8,+8 ;grad e + - implies that dgrade
Thus, in our case a increase of 1 year of schooling causes wages to increase by 6.46
percent.

We can compare the results of using the re option with using the mle option (which
directs Stata to use maximum likelihood techniques to estimate the parameters of the




system. The mle parameter estimates, shown in Figure 6, are the same as those
generated using the re command. However, the estimates of the standard errors (and,
thus, the z-values) are different.

Figure 2.24.




. xtreg In_w grade age» ttl_exp* tenure* black not_smsa south, nle

Lang consty

ration O

sation 2:

eration 3:

L
¥
yration 1:
X
L )
¥

sration 4=

;ll“ ‘! .1.
eration O:
1on
Ite
Ite

t

1
Iterat

ration 2:

2

*fation

Random~effects |

Group variahle

Random effect:

" 1
Jg 1

age
age?
ttl_exp
ttd expl
tenure
tenure?
black
not_smsa
south

cons

‘sigma_u
sigma_e

ikelihood

nnl‘,‘ r"n-::‘]T

likelihood
log likelihood
ikelihood
1ihood

1ihood

log

log

|
log like
1

i ke

likelihood
likelihood
likelihood
likelihood

» TEYgression
idcode

Gaussian

~-8853.4254

Coef .

.0646093
.0368531
-.0007132
.0288196
.000309
.0394371
.0020052
.0533394
.1323433
.0875599
.2390837

-2485556
.2918458

~13690.161
-12819.317
-12662.039
-12649.744
~-12649.614

~-8922.145
-8853.6409
-8853.4255
~-8853.4254

Err.

.0017372
.0031226
.0000501
.0024143
.0001163
0017604
.0001195
.0097338
.00?21322
.0072143
.0491902

.0035017

.001352

Number of obh:
Number of groups
Dhs per group: min
avy
nax

[ 95~

.0612044
.030733
-.0008113
.02408727?
.0000811
.0359868
-.0022395
-.0724172
-.1463221
-.1016998
.14267227

CO000CO0O00

-2416925
.289196

Cont .

28091
4697

1
6.0
15

?592.38
0.0000

Intervall

.0680142
.0429732
-.000615
.0335515
.0005369
.0428875
-.0017709
-.0342615
-.1183644
-.0734201
.335494?

.2554187
.2944956




The maximum likelihood estimation.

The estimation of the fixed-effects model is straightforward and is shown in Figure 7. The
command is the same as in the random-effects model but with the re replaced by fe.
Notice from the results that the variables grade and black are dropped from the
estimation results. They are dropped because the amount of schooling and race of an
individual is fixed over all observations. These two variables, thus, are perfectly
correlated with the dummy variables that hold constant the individual level

characteristics. The effects of education and race differences are absorbed into the
residual.

Figure 2.25.




. xtreg ln_w grade age* ttl_exp* tenure* black not_smsa south, fe

ixed-effects

sroup variable

}-sq: within
bhet ween

overall

In_wage

grade
4|'l|'

9

age s

ll] exp
ttl_exp2
tenure
tenurel
hlack
not MS a
outh

cons
Si1gna_u
sSi1gma_e

rho

that all

Cwithin? regress

(i): idcode

0.1227
0.3505
0.2625

0.1936

Coef .

(dropped>
.035998?
-.000723
.0334668
.0002163
.0357539

-.0019701

{(dropped)

-.0890108

- . 0606309

1.03732

.35562203
.29068923
.59946283

Cfraction of

FC4696,. 23386)

Number of
Number of

Ohs per gr

F(8,23386>

Probh > F

variance due to u

5.13

The fixed-effects estimation.

ob:

group

|.||p: nin
Wy

max

[95 Conf.

.0293611
-.0008274
.0276545
.0000341
.0321303
.0022151

.1076933

.0820582
.9421497

1 )

28091
4697

i
6.0
15

610.12
0.0000

Intervall

.0426362
-.0006186
.039279
.0004666
.0393775
-.0017251

-.0703282

-.0392036
1.13249

0.0000




The estimates of the parameter values for the fixed-effects model are very similar to
those found for the random-effects model with the exception for the parameters
associated with not living in an SMSA (not_smsa) and with living in the South (south). The
random-effects model suggests that the wage level for someone living outside of a SMSA
is 87.6 percent of the wage level of someone living in an SMSA,; in the fixed-effects model,
the wage level outside the SMSA is estimated to be 91.5 percent of the wage level of a
woman living in a SMSA. The random-effects model estimates wages in the South are
91.6 percent the level of wages outside the South; the fixed-effects model fixes this wage
premium at 91.6 percent.

Figure 2.26.




. estimates store fixed_effects

. hausman fixed_effects random_effects

Coefficients
‘h> (B (h-1|

xed_effe™s random_eff™s Difference

age .0359987 .036806 -.0008073 .0013177
age2 -.000723 .0007133 -9.68e-06 .0000184
ttl_exp .0334668 .029020? .0044461 .001711
tl_exp2 .0002163 .0003049 -.0000886 .000053
tenure .03572539 .039252 -.0034981 .0005797?

L

tenure? .0019701 .0020035 .0000334 .0000373
not_smsa .0890108 .1308263 .0418155 .0062745
south .0606309 .086892?7 .0262618 .0081346

b consistent under Ho and Ha; obtained from
inconsistent under Ha, efficient under Ho; obtained from

difference in coefficients not systematic
Ch=B)'[<U_bh-U_B>*(-12]1<(h-B)

149 .44
0.0000

The Hausman test results.




The final issue we discuss in this example is the Hausman specification test. If the model
is correctly specified and if v; is uncorrelated with the explanatory variables, then the
parameter estimates in the two models should not be statistically different. As shown in
Figure 8, we first must same the results of the fixed-effects estimation using the
command estimates store fixed_effects. The null hypothesis is that the the difference in
that parameter estimates is not systematic. The appropriate test statistic is the x %(8),
where the degrees of freedom are equal to the number of parameters in the model (8).
The chi-squared statistic of 149.44 is greater than the critical value and we must reject the
null hypothesis. The Stata offers this interpretation of this result:

What does this mean? We have an unpleasant choice: we can admit that our model
is misspecified—that we have not parameterized it correctly—or we can hold to our
specification

being correct, in which case the observed differences must be due to the zero-
correlation of and the assumption. [StataCorp: 202]

Exercises




Exercise 2.3.1.

Estimation of a Labor Supply Function. An important issue in labor economics is the
responsiveness of the number of hours worked to wages. Because labor supply curves
can, in theory, be backward-bending, the sign and size of the impact of wages on the
amount of labor supplied is an empirical issue. In this project you are to estimate the
demand for labor curve for a cross-section of adult males.

(2.50)
The model to be estimated is:

yi=680+8,hy+8,Age +83;Age’+B8,NCy+B8sHIl+€;
where:
y i = natural logarithm of individual i’'s wage rate in year t,
h ;; = natural logarithm of total number of hours worked by individual i in year t,

Age ;; = age of individual i in year t,



NC i; = number of children of individual i in year t, and

HI ;; = an dummy variable equal to 1 if individual i in year t has bad health and 0
otherwise.

The data are from Ziliak, James P. (1997) “Efficient Estimation with Panel Data When
Instruments Are Predetermined: An Empirical Comparison of Moment-Condition
Estimators,” Journal of Business & Economic Statistics 15(4): 419-431. Ziliak (p. 423)
describes his data as follows:

The data used to estimate the life-cycle labor-supply parameters come from Waves
XII-XXI (calendar years 1978-1987) of the PSID. The sample is selected on many
dimensions and is similar to other research studying life-cycle models of labor
supply. The sample is restricted to continuously married, continuously working,
prime-age men aged 22-51 in 1978 from the Survey Research Center random
subsample of the PSID. In addition the individual must either be paid an hourly wage
rate or must be salaried, and he cannot be a piece-rate worker or self-employed. This
selection process resulted in a balanced panel of 532 men over 10 years or 5,320
observations. The real wage rate, wit,. is the hourly wage reported by the panel
participant rather than the average wage (annual earnings over annual hours) to
minimize division bias (Borjas 1981).



The data are available in the any of the three files ,, and .

1.

Provide scatter plots among the dependent variable (Natural logarithm of hours)
against each of the explanatory variables Natural logarithm of real wages, Age,
Number of children, and Health. (Label these Figures 1 to 4.)

Present a table of the summary statistics for all of the variables in this data set (except
ID and Year).

Provide a histogram of each of the following variables: Natural logarithm of hours,
Natural logarithm of real wages, Age, and Number of children. (Label these Figures 5
to 8).

Estimate Equation (1) using (1) OLS (sometimes called a “pooled model”), (2) a
“between” model (where the observations in the regression are the averages over the
10 years of each variable for each individual, (3) a fixed effects model, (4) a MLE
random effects model and (5) a GLS random effects model. Present the results of your
estimations in a single table and offer an interpretation for each parameter you
estimate. Use Table 1 as shown below as a template for the table to present your
results.


m34551/HW%201%20Table.doc

(1)

(2)

(3) Fixed

(4) MLE

(5) GLS

Pooled |Between |Effects Random Effects Random
Effects

Natural logarithm
of real wages

() () () 0 0
Age

() () () 0 0
Age’

() () () 0 0
Number of children

() () () 0 0
Health indicator

() () () 0 0




Intercept

()

()

()

()

()

RZ

Gu -

oa -

Sample size

Table 2.13. Hours and wages: Summary of linear panel model estimations (Dependent
variable is the natural logarithm of total hours worked in a year; the observations consist

of 532 adult males over the 10 year period 1978-1987).

Exercise 2.3.2.

The Effectiveness of Advertising Bans on Smoking. Anti-smoking activists often push for a
total ban on cigarette advertisements. Indeed, one of the basic assumptions of the groups
pushing the 1996 proposed settlement with the tobacco companies is that the amount of
tobacco consumed is positively affected by the amount of tobacco advertising. There are




two mechanisms that might underlie such a relationship. The first mechanism suggests
that the advertising increases the amount of cigarettes smoked by current smokers. Many
economists doubt that the tobacco advertising increases the consumption of current
smokers, arguing that the total consumption of cigarettes is unresponsive to
advertisement. Instead, they argue that advertising is an effort by cigarette companies to
affect the brand of cigarettes that current smokers consume. The second mechanism
suggests that advertising is an effort by cigarette companies to induce non-smokers
(especially children) to try cigarettes. The main reason that cigarette companies want
non-smokers to try smoking, so the argument goes, is that some percentage of non-
smokers who try cigarettes will become addicted and will form the future demand for
cigarettes.

The effect of a total ban on advertising would be completely different if cigarette
companies advertise with the hope of increasing the number of people addicted to
cigarettes. In particular, the ban should have a small or negligible effect on current
cigarette demand. Instead, the cigarette companies would face a steadily decreasing
demand for their product. Such a decrease in demand would reduce future profits for
these companies. If future profits fell enough, some of the companies might be forced out



of business. Clearly, it is this result that anti-smoking activists have in mind with their
proposals to ban cigarette advertisements.

Finally, if advertising only induces current smokers to increase the number of cigarettes
they consume, then the total ban on advertising should cause a one-time reduction in
cigarette consumption that will reduce the profits of cigarette companies. However,
which of these three mechanisms (if any) is correct is an empirical question.

Six European countries adopted a complete ban on cigarette advertising in the period
after 1970. It this project we use annual data on smoking consumption in 22 developed
countries for the 27 years between 1964 and 1990 to test the effect of a complete
smoking ban on cigarette demand (giving us 594 observations). Moreover, since we have
no a priori reason to choose one model specification over another, we check the stability
of the estimated impact of an advertising ban on cigarette demand under several
alternative model specifications.

We estimate three types of specifications of the model — the linear model, the log-linear
model, and the log-log model. In general whether one uses a variable or the logarithm of
the variable is the main difference in these three specifications. The linear model does
not transform either the dependent or the independent variables. A variation on the
linear models allows the use of the square and product of some of the independent



variables in order to take care of any non-linearity in the data. The log-linear model takes
the same form as the linear model except that the dependent variable is the logarithm of
variable under study. Finally, in the log-log model both the dependent and independent
variables are, if possible, in logarithm form.

For example, for this problem the dependent variable in any of these specifications is
either the per capita consumption of tobacco or the logarithm of the per capita
consumption of tobacco. The dependent variables might include (1) the real price of
tobacco in each country for each year, (2) a measure of the per capita income level of the
country for each year, (3) the unemployment rate of the country for each year, (4) a
measure of the age distribution of the population to measure smoking intensity by age,
(5) a trend variable to account for the rising awareness of the health costs of smoking, (6)
a dummy variable equal to one for years that a country has a complete ban on cigarette
advertising, and (7) a set of 21 dummy variables identifying the country. Let T it be the
measure of per capita cigarette consumption in country i for year t; P it, the price of
tobacco; I it, the measure of per capita income level; U it, country i's unemployment rate
in year t; A it, country i’s age distribution in year t; Year, a trend variable; B it, the dummy
variable for the ban; and C i, the dummy variable for country i.

Examples of the three models are:



1. Linear: Ty=6,+68,P+6,1,+8U+B8,A+6Year,+B8¢3B;+¢€;

2. Log-Linear:

3. Log-Log: 1

In(Ty)=Po+ B P+ Poliy+ PUjy + PyAy + PsYear, + p By + &

n(T,-F]:ﬁ,D + P ln(F”] + P4 ln(}'”) + pU+ P A+ psYear, + po By + &

In models (1) and (2) it is possible to include additional explanatory variables that are the
square of some of the currently included explanatory variables. In all three models it is
possible to include as explanatory variables the product of the ban dummy and any of the
currently included explanatory variables. Finally, in equation (2) we cannot take the
logarithm of the unemployment rate because the data we have report zero levels of
unemployment.

The data you will use in this project are in the MS Excel file Smkdata.xls. The variables
included in the file are as follows:

Column

Variable

Definition

Country

Name of country



m34551/SMKDATA.xls

Country
ID

Integar from 1 to 22, each designating a country

Year Year of observation (1964, ..., 1990)

Tobacco |Total grams of tobacco sold per individual 15 years or older
Real price of 20 grams of tobacco in 1990 US cents (= Nominal price

Price per E 20 grams of tobacco divided by the Gross Domestic Price
deflator)

Consump | Per capita private final consumption expenditures in 1990 US dollars

Unemp |Number of unemployed persons per 1000 members of the workforce
Age distribution. This variable attempts to measure the differences in
intensity of smoking as a function of age. It is equal to the relative

AgeDist |consumption rate of tobacco in the UK observed between 1966 and
1981 by age group times the percentage of the population in the
country in that age group.

Ban Dummy variable equal to 1 if the country has a complete ban on

tobacco advertising. The six countries in the sample with a complete




ban and the first year of the ban are: Iceland (1972), Norway (1976),
Finland (1979), Portugal (1984), Italy (1984), and Canada (1989).

The number of years since the ban was put in place (if ban went into
J BanTime |effectin 1972, then years 1964-1972 are equal to 0, year 1973 equals
1, year 1974 equals 2, etc.)

Table 2.14. Definition of the cigarette consumption data set.

(a) How do these variables match the ones suggested in the discussion of equations (1),
(2), and (3)?

(b) Estimate the fixed effects models of the following versions of equations (1), (2), and

(3):
1. Equations (1), (2), and (3) as specified above.

2. Equations (1) and (2) with squared terms for the price, income, unemployment rate,
and the age distribution included. This regression is designed to test for non-linearity.




3. Equations (1) and (2) with the squared terms mentioned in 2 that are statistically
significant plus the following new variables: Ban*Time, Ban*Price, and Ban*Consump.
(You must create these variables) This regression allows for an effect of the Ban on the
slopes of the other explanatory variables.

4. Equation (3) with the following new variables: Ban*Log(Time), Ban*Log(Price), and
Ban*Log(Consump).

5. Equations (1), (2), and (3) as estimated in 3 and 4 with a variable that counts the
number of years that a total ban has been in effect (BanTime) and its square
(BanTime?). This regression allows for a changing impact of a ban the longer it is in
effect.

Report the results of your regressions in a table that allows you to comment on the
stability of your estimation results over specifications.

(c) Do these results support any of the theories suggested above?

(d) What, if any, policy conclusions would you make given your estimations?



(e) Assume for the moment that you “believe” your results you got in (5). Sketch out a
strategy you would follow to forecast the impact of a ban in a country that does not
currently have a ban.

Note: The data in this problem are from Stewart, Michael J. (1993) “The Effect on Tobacco
Consumption of Advertising Bans in OECD Countries,” International Journal of Advertising
12(2): 155-180. The data set can be downloaded from the author's website.

Bibliography

Cameron, A. Colin and Pravin K. Trivedi (2005). Microeconometrics: Methods and
Applications (New York: Cambridge University Press).

Greene, W. H. (2003). Econometric Analysis, 5™ edition (Upper Saddle River, NJ: Prentice-
Hall).

Hsiao, Cheng (2003). Analysis of Panel Data, 2" Edition (New York: Cambridge University
Press).

StataCorp (2003). Stata Statistical Software: Release8.0 (College Station, TX: Stata
Corporation).



http://www.forces.org/evidence/oecd/6ban.htm

Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data
(Cambridge, MA: MIT Press).

2.4. Sample selectivity bias-

Sample Selection Bias

Introduction

These notes discuss how to handle one of the more common problems that arise in
economic analyses—sample selection bias. Essentially, sample selection bias can arise
whenever some potential observations cannot be observed. For instance, the students
enrolled in an intermediate microeconomics course are not a random sample of all
undergraduates. Students self-select when they enroll in any class or choose a major.
While we do not know all of the reasons for this self-selection, we suspect that students
choosing to take advanced economics courses have more quantitative skills than students
choosing courses in the humanities. Since we do not observe the grades that students
who did not enroll in the intermediate microeconomics class would have made had they
enrolled, we can never observe the grades that they would have made. Under certain
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circumstances the omission of potential members of a sample will cause ordinary least
squares (OLS) to give biased estimates of the parameters of a model.

In the 1970s James Heckman developed techniques that will correct the bias introduced
by sample selection bias. Since then, most econometric computer programs include a
command that automatically used Heckman’s method. However, blind use of these
commands can lead to errors that would be avoided by a better understanding of his
correction technique. This module is intended to provide this understanding.

In the first section | discuss the sources of sample selection bias by examining the basic
economic model used to understand the problem. In the second section | present the
estimation strategy first developed by Heckman. In the third section | discuss how to
estimate the Heckman model in Stata. In the final section | examine an extended example
of the technique. An exercise is included at the end of the discussion.

The model

Assume that there is an unobserved latent variable, y ;* , and an unobserved latent index,
d;*, such that:

(2.51)
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The matrix notation above means (1) that
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Substituting (1), (2) and (3) into (4) gives:

(2.55)
xX;p+e; ife;y+v,>0
"o iy +2;<0

Note that N is the total sample size and n is the number of observations for which d ;= 1.

Since y ;* is not observed for ( N - n ), the question becomes why are these observations
missing. A concrete example of such a model is a model of female wage determination.
Equation (1) would model the wage rate earned by women in the labor force and
Equation (2) would model the decision by a female to enter the labor force. In this case, y

. . . . . . X;o
i, the wage rate woman i receives, is a function of the variables in """ however, women

not in the labor force are not included in the sample. If these missing observations are
drawn randomly from the population, there is no need for concern. Selectivity bias arises



if the ( N - n ) omitted observations have unobserved characteristics that affect the
likelihood that d ;= 1 and are correlated with the wage the woman would receive had she
entered the labor force. For instance, a mentally unstable female is likely to earn
relatively low wages and might be more unlikely to enter the labor force. In this case, the
error terms, € ;and v ;would be independent and identically distributed N( 0,3 ), where

(2.56)

2]
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and (&5 29) are independent of z ;. The selectivity bias arises because o ., # 0. In effect the
residual € ;includes the same unobserved characteristics as does the residual v ;causing
the two error terms to be correlated. OLS estimation of equation (1) would have a
missing variable—the bias created by the missing observations (due to wage data not

being available for women not in the work force). As in other cases of omitted variables,
M

the estimates of the parameters of the model, B would be biased. Heckman (1979)
notes in his seminal article on selectivity bias:



One can also show that the least squares estimator of the population variance is
downward biased. Second, a symptom of selection bias is that variables that do not
belong in the true structural equation (variables in not in may appear to be
statistically significant determinants of when regressions are fit on selected samples.
Third, the model just outlined contains a variety of previous models as special cases.
...For a more complete development of the relationship between the model
developed here and previous models for limited dependent variables, censored
samples and truncated samples, see Heckman (1976). Fourth, multivariate
extensions of the preceding analysis, while mathematically straightforward, are of
consider-able substantive interest. One example is offered. Consider migrants
choosing among K possible regions of residence. If the self selection rule is to choose
to migrate to that region with the highest income, both the self selection rule and
the subsample regression functions can be simply characterized by a direct extension
of the previous analysis. (Notation has been altered to match the notation used in
this module, see Heckman, 1979: 155)

Estimation Strategy




Heckman (1979) suggests a two-step estimation strategy. In the first step a probit
estimate of equation (2) is used to construct a variable that measures the bias. This
variable is known as the “inverse Mills ratio.” Heckman and others demonstrate that

(2.57)
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where qb(?‘“' le and (pli?‘“' T] are the probability density function and the cumulative

distribution functions, respectively, evaluated at Zi T- 29 The ratio in the brackets in
equation (7) is known as the inverse Mills ratio. We will use an estimate of the inverse
Mills ratio in the estimation of equation (5) to measure the sample selectivity bias.

The Heckman two-step estimator is relatively easy to implement. In the first step you use
N

a maximum likelihood probit regression on the whole sample to calculate T from
A

equation (2). You then use T to estimate the inverse Mills ratio:

(2.58)



In the second step, we estimate:

(2.59)

M
.F.l':xff'ﬂ + -”"1 +}F|"

Hi)-22
using OLS and where ®v  Thus, a t-ratio test of the null hypothesis Ho: u=0is
equivalent to testing the null hypothesis H,: o, = 0 and is a test of existence of the

sample selectivity bias.

An alternative approach to the sample selectivity problem is to use a maximum likelihood
estimator. Heckman (1974) originally suggested estimating the parameters of the model
by maximizing the average log likelihood function:

(2.60)
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where @ ., is the probability density function for the bivariate normal distribution.
Fortunately, Stata offers a single command for calculating either the two-step or the
maximum likelihood estimators.

Estimation in Stata

Estimation of the two versions of the Heckman sample selectivity bias models is
straightforward in Stata. The command is:

.heckman depvar [varlist], select(varlist_s) [twostep]
or
.heckman depvar [varlist], select(depvar_s = varlist_s) [twostep]

The syntax for maximum-likelihood estimates is:



.heckman depvar [varlist] [weight] [if exp] [in range], select([depvar_s =] varlist_s [,
offset(varname) noconstant]) [ robust cluster(varname) score(newvarlist|stub*)
nshazard(newvarname) mills(newvarname) offset(varname) noconstant
constraints(numlist) first noskip level(#) iterate(0) nolog maximize_options ]

The predict command has these options, among others:
xb, the default, calculates the linear predictions from the underlying regression equation.

ycond calculates the expected value of the dependent variable conditional on the
dependent variable being observed/selected; E(y | y observed).

yexpected calculates the expected value of the dependent variable (y*), where that value
is taken to be 0 when it is expected to be unobserved; y* = P(y observed) *E(y | y
observed). The assumption of 0 is valid for many cases where nonselection implies non-
participation (e.g., unobserved wage levels, insurance claims from those who are
uninsured, etc.) but may be inappropriate for some problems (e.g., unobserved disease
incidence).

Examples of these two commands are:

. heckman wage educ age, select(married children educ age)



. predict yhat

These two command would use the maximum likelihood estimate of the equations (1)
wage as a function of education and age using a selection equation that used marital
status, number of children, education level, and age to explain which individuals are
participating in the labor force. The help file in Stata provides additional information on
the structure of the Heckman command and is well worth printing out if you are dealing
with a sample selectivity bias problem.

Example 2.4. Example from Stata

We will illustrate various issues of selection bias using the data set available from the
Stata site. Retrieve the data set by entering:

. use http://www.stata-press.com/data/imeus/womenwk, clear

This data set has 2,000 observations of 15 variables. We can use the describe command
(.describe) to get a brief description of the data set:

obs: 2,000




vars: 15

9 Nov 2004 20:23

size: 142,000

(86.5% of memory free)

Variable Name |Storage Type Display Format |Value Label |Variable Label
cl double %10.0g
c2 double %10.0g
u double %10.0g
v (7,2) %10.0g
country float %9.0g
age int %8.0g
education int %8.0g
married byte %8.0g
children int %8.0g
select float %9.0g




wageful float %9.0g
wage float %9.0g
Iw float %9.0g
work float %9.0g
Iwf float %9.0g

Table 2.15. Description of variables included in the data set from http://www.stata-

press.com/data/imeus/womenwk.

We are interested in only a subset of these data. Table 2 reports the definitions of
variables that are relevant for our analysis. We can get further insight into the data set
using the summarize command. Table 3 reports the summary statistics for the data set.

Variable
name

Definition




country County of residence (categorical variable equalto 0, 1, ..., 9)
age Age of the woman
education Number of years of education of the woman
married Dummy variable equal to 1 if the woman is married and 0 otherwise
children Number of children that the woman has in their household
wage Hourly wage rate of the woman
Iw Natural logarithm of hourly wage rate
work Dummy variable equal to 1 if the individual is in the workforce and 0
otherwise

Table 2.16. Definition of the relevant variables in the data set.
Variable Obs Mean Std. Dev Min Max
Age 2000 36.208 8.28656 20 59
education 2000 13.084 3.045912 10 20




married 2000 .6705 4701492 0 1
children 2000 1.6445 1.398963 0 5
wage 1343 23.69217 6.305374 5.88497 45.80979
Iw 1343 3.126703 .2865111 1.772402 3.824498
work 2000 .6715 4697852 0 1

Table 2.17. Summary statistics of the relevant variables in the data set (using the
command: .summarize age education married children wage Iw work).

We are interested in modeling two things: (1) the decision of the woman to enter the
labor force and (2) determinants of the female wage rate. It might be reasonable to
assume that the decision to enter the labor force by a woman is a function of age, marital
status, the number of children, and her level of education. Also, the wage rate a woman
earns should be a function of her age and education.

The decision to enter the labor force

We can use a probit regression to model the decision of a woman to enter the labor
force. The results of this estimation are reported in Table 4. However, we can use the




predict command to produce some results that we can use to be sure that we understand
what the regression results mean. In particular, type in the following two commands:

.predict zbhat, xb
.predict phat, p

These two commands will predict (1) the linear prediction (zbhat) and (2) the predicted
probability that the woman will be in the workforce (phat). Table 5 reports the values of
these two variables for observations 1 through 10.

. probit work age education married children

Iteration 0: log likelihood = -1266.2225

Iteration 4: log likelihood = -1027.0616

Probit estimates Number of obs = 2000




LR chi2(4) = 478.32

Prob > chi2 = 0.0000

Log likelihood =-1027.0616
Pseudo R2 = 0.1889

work Coef. Std. Err. |z P>z |[95% Conf. Interval]
age .0347211 |.0042293|8.21 |0.000|.0264318 |.0430105
education .0583645 |.0109742|5.32 |0.000 |.0368555 |.0798735
married .4308575 |.074208 |5.81 |0.000|.2854125 |.5763025
children 4473249 | .0287417 | 15.56 | 0.000 |.3909922 |.5036576
~cons 2.467365 | 19203515 g1 | 000015 544782 | 2.089948

Table 2.18. Probit estimation of the decision to enter the labor force.




Observation zbhat phat

1 -0.68900 0.24541
2 -0.20290 0.41961
3 -0.48067 0.31538
4 -0.16818 0.43322
5 0.34859 0.63630
6 0.58758 0.72159
7 0.97357 0.83486
8 0.45978 0.67716
9 0.01799 0.50718
10 0.32628 0.62790

Table 2.19. Predicted values of zbhat and phat for observations 1 through 10.




The interpretation of the numbers in Table 5 is straightforward. Consider individual 1. The
z-value predicted for this individual is -0.68. Using the standard normal tables reported in
Table 11 it is easy to see:

(2.61) @(z <-0.69) = Pr( Individual 1 is in the labor force )

(2.62)
D(z< —0.69)=05-P(0<:<0.69)
~0.5-0.2549
~(.2451.

The difference between this number and the value reported for phat in Table 5 is due to
rounding error.

A little later we will want to calculate the inverse Mills ratio. As noted in (8), the formula
for the inverse Mills ratio is:

(2.63)
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The variable phat is equal to Stata offers an easy way to calculate

(

with the function “normden(zbhat)” as follows:

.generate imratio = normden(zbhat)/phat
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Table 6 repeats Table 5 with the estimate of the inverse Mills ratio for the first 10

observations.

Observation zbhat phat Inverse Mills Ratio
1 -0.6889973 0.2454125 1.2821240
2 -0.2029016 0.4196060 0.9313837
3 -0.4806706 0.3153753 1.1269680
4 -0.1681804 0.4332207 0.9079438
5 0.3485867 0.6363002 0.5900134
6 0.5875849 0.7215945 0.4652062




7 0.9735670 0.8348642 0.2974918
8 0.4597758 0.6771615 0.5300468
9 0.0179909 0.5071769 0.7864666
10 0.3262833 0.6278950 0.6024283

Table 2.20. Calculation of the inverse Mills ratio for the first 10 observations.

The two Heckman estimates

One of the great advantages of using an econometrics program like Stata is that the
authors quite often have created a command that does all of the work for the user. In our
case, the commands we need to run to generate the maximum likelihood estimate of the
Heckman model are:

. global wage_eqgn wage educ age




. global selegn married children age education

. heckman Swage_eqn, select($seleqn)

Notice that we have used the global command to create a shortcut for referring to each of
the two equations in the estimation. The command for the Heckman two-stage estimate

is:

.heckman Swage_eqn, select($Sseleqn) twostage

.predict mymills, mills

(2) Maximum

(3) Heckman

(4) Probit estimate of the

(1) Explanatory variable |likelihood estimate |two-step selection equation
Wage Equation
Education 0.9899537 0.9825259 —
(18.59) (18.23)
Age 0.2131294 0.2118695 —




(10.34) (9.61)
Intercept 0.4857752 0.7340391 —
(0.45) (0.59)
Selection equation
Married 0.4451721 0.4308575 0.4308575
(6.61) (5.81) (5.81)
Children 0.4387068 0.4473249 0.4473249
(15.79) (15.56) (15.56)
Age 0.0365098 0.0347211 0.0347211
(8.79) (8.21) (8.21)
Education 0.0557318 0.0583645 0.0583645
(5.19) (5.32) (5.32)
Intercept -2.491015 -2.467365 -2.467365




(-13.16) (-12.81) (-12.81)
o 0.7035061 0.67284 —
A 6.004797 5.9473529 —
( Mills )A 4.224412 4.001615 —

(6.60)

Observations 2000 2000 2000
‘I:I’t:)r::(t::gr of women not 657 657 657
":"::T::; of women 1343 1343 1343
Log likelihood -5178.304 - -1027.0616
Wald y*(2) 508.44 — _
Probability > x> 0.0000 — —
Wald x*(4) — 551.37 —




Probability > y 2 — 0.0000 —

LR test of independent

equations (p = 0)

x2(1) 61.20 — 478.32
Probability > x 0.0000 — 0.0000

Table 2.21. Comparison of Heckman Maximum-Likelihood and the Heckman Two-Step
Estimates with the Probit Estimates of the Selection Equation.

The second command reports the estimates of the inverse Mills ratio; we have retrieved
these values in order to check our earlier calculations. Table 7 reports the results of these
two estimations. Column 2 reports the maximum-likelihood estimates; Column 3 reports
the Heckman two-step estimates; and Column 3 reports the probit estimate of selection
equation as reported in Table 4. The estimates for the two methods are very similar. Of
course, the probit estimates in Column 4 exactly match the results reported for the
selection equation in Column 3. As a final check, Table 8 reports the values of the inverse
Mills ratio reported in Table 6 with the values of the inverse Mills ratio calculated in the




Heckman two-step method. The two estimates are identical except for some rounding
errors.

Observation | As calculated from probit estimate | As reported by the Heckman two-step
1 1.2821240 1.2821240
2 0.9313837 0.9313837
3 1.1269680 1.1269680
4 0.9079438 0.9079438
5 0.5900134 0.5900134
6 0.4652062 0.4652061
7 0.2974918 0.2974918
8 0.5300468 0.5300469
9 0.7864666 0.7864666
10 0.6024283 0.6024283




Table 2.22. Inverse Mills Ratio Comparison.

Exercise

Exercise 2.4.1. The supply of married women in the workforce.

We are interested in understanding the decision of married Portugese women to enter
the labor force. We have available data from Portugal. The data set is a sample from
Portuguese Employment Survey, from the interview year 1991, and has been provided by
the Portuguese National Institute of Statistics (INE). The data are in the Excel file Martins.
This file is organized in the following way. There are seven columns, corresponding to
seven variables, and 2,339 observations.

. 2 .
Wages = f (agf, age”,educa rmn)

a) Estimate the following equation using OLS: using the

observations for women actually working.



b) What is the potential source of selection bias?

c) Estimate a wage equation for the Portuguese data three ways: (1) using OLS, (2) using
the Heckman two-step method, and (3) using the ML method. Report all three estimates
in a single table. For consistency, we will assume that the appropriate explanatory
variables for wages are (1) age, (2) the square of age, and (3) the years of education.
Further, assume that women do not enter the labor force because (1) presence of
children under the age of 3, (2) presence of children between 3 and 18, (3) husband's
wage level, (4) the level of education of the woman, and (5) the age of the woman.
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Table 2.23. Normal Distribution.

z~N(0, 1).

Figure 2.27. The Normal Distribution
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2.5. Endogenous explanatory variables-

Endogenous Explanatory Variables

Introduction

One of the most common problems complicating the research of an economist is created
by the inclusion of endogenous variables as an explanatory variable. The variable on the
left-hand-side of a regression is an endogenous variable; its level is determined by the
levels of the explanatory variables—that is, the variables on the right-hand-side of the
equation. In OLS we assume that the explanatory variables are independent of the error
term. However, if the level of one of these explanatory variables is determined by the
levels of the other variables in the model, that explanatory variable actually is an
endogenous variable. In a nutshell the problem with having endogenous explanatory
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variables is that these endogenous variables cause the error term in the model to be
correlated with the explanatory variables thus causing the OLS estimator to be biased.
This problem is also known as simultaneous equation bias and it is a problem that is
subtly different from sample selection bias. See "What is the difference between
‘endogeneity' and 'sample selection bias"'?" for an excellent discussion of the difference
between these two econometric problems.

In this module we explore both the statistical and algebraic issues raised by the inclusion
of endogenous explanatory variables in a model. This introduction is too sketchy to give
you a thorough understanding of the many problems raised by simultaneous equation
bias. Hopefully, by the time you finish the module along with the problem set, you will
have an least an intuitive understanding of the problem and will be able to recognize it
when you come across the problem in your own research. If you think the model you are
estimating may have simultaneous equation bias, you should seek the advice of an
econometrician.

The Statistical Problem

Imagine we know with certainty that the following model fully describes the true state of
the supply and demand for wheat. First, the demand for wheat in any year, g, is a


http://www.stata.com/support/faqs/stat/bias.html
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function of the price of wheat, p ;" , the income of the average individual, /., and the
price of corn, p ;°. Second, in any year the price of wheat is a function of the amount of
wheat brought to market, g ;, and a weather index, W ., that is positively related to the
amount of wheat that is harvested. Third, the error terms in the supply and demand
functions are due purely to measurement errors—that is, there are no omitted variables
in the model. Thus, we have the following two equation model:

(2.64)
Demand:
gi=ao+ta,p +altasp.+e,;
and
Supply:

p:“=60+68,q.,+68, W, +n,.

We assume that the error terms each are normally distributed with a mean of zero and a
constant variance. Moreover, we assume that the two error terms are independent of
each other—that is, we are assuming that:



(2.65)
EF~N|\U,§;J.,

N~ N(U, c'.F;':), and
E(e;n)=0.

Finally, we assume that income, the price of corn, and the weather index are non-
stochastic variables—i.e., these variables are independent of the two error terms. Clearly,
the price of wheat and the quantity of wheat are stochastic variables.?*!

What we have here is an ideal model in the sense that we know and can measure all of
the variables in the model. The model as written has two endogenous variables—q ;and p
. —and three exogenous variables— I, p ;°, and W .. Equations (1) and (2) are known as
structural equations. What makes this model useful for our purposes is that there is an
endogenous explanatory variable in each of the two structural equations.

What we ultimately want to know is if we can use ordinary least squares (OLS) to obtain
unbiased estimates of the parameters in Equations (1) and (2). One of the assumptions of
OLS is that each of the explanatory variables are independent of the error term, € ,; if this
assumption is violated, OLS will produce biased estimates of the slope parameters. Thus,



what we need to do is see if the error term in each equation is independent of the
endogenous variable on the right-hand-side of that equation. That is, we want to see if

Ele,py)=0 and E(1:qs) =0.

It is convenient in answering our question to use the two structural equations to find
what are known as the reduced form equations—that is, one equation for each
endogenous variable in which the endogenous variable is written as a function solely of
exogenous variables and error terms. We can find the reduce form equations by solving
the structural equations simultaneously for the endogenous variables. Substituting (2)
into (1), we get:

gi=ag+a, o+ Pq:+ P Wr+};,}+agfr+a_~,p?+£,
g:=0o+a,80+a,8,q:+a,8,W.+an:+a,l,+az;p, +¢;
gi—a\pr1qi=lag+a o)+ a py W, +ar [+ azp; +(e,+ ayn)
or

(2.66)



ag+ay Py ay Py
4=

X~ R o Ertagn;
Lo, T1—a p, T T a g T T=a p Pt Y 1—a, B,

Substituting (1) into (2) yields:

p;”:ﬁﬂ + /7 (-::c,-l— a p;u+ a- I, +f13p§' + f,}+ﬁg W, +n,;
p:"=8¢+B8,00+a,68,p;"+a,6,1,+a368,p,"+8,€,+8,W,+n,
or

(2.67)

w_Bo+Brag | _arp, asp .. _ P Bre +n,
Pr=Ta By T ptt T=a p Pt T=ap "Vt 1= B,

Equations (4) and (5) are the reduced form equations for this model. We can use them to

W . L
calculate Ele,p)=0 and E(n1:q:) =0. In particular,

W Po+Prag  a,p apy . f- Bre +n )]
Ele. p")=E| ¢ 1 3l 1€+ 1
le:p7) [*’(1—alﬂl T e Bt T Bl T T=a 5, T —a, By
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or

(2.68)

) ot pa an f a- : /34 p !:'E—l-}l‘.l' £
Ele ”:E['(!G 170 2H1 3F] ( o [ |
(EFPF] 'l‘-'?' l_alﬂl + l—f.IlﬁlIF—l_ ].—l.’.IlﬂlpF_'_ l—l.’.Ilﬁlwr + I—Hlﬂl

Factoring out the non-stochastic terms from the expected value operators gives:

w (Bo+Prag  a.p ap, . P PrElel)  Egpe
Ele V:(J’(Cl 170 2] 3K ( 2 Ele It
le:p7) l—a p l—fllffljr—i_l—(llﬂlpr_'_l—dlﬂlwr [EF]+1—(11‘{}‘1+1—(11

E{EIFJZOE E{f??frj:{], and E(EF

“ a
| 2)=02.
Moreover, by assumption Thus, we get:

(2.69)

w__Bro:
Blegy)=TEL75 20,



A similar analysis yields:

(2.70)

_ a| oy
Enig = T—a, p, #0.

Equations (6) and (7) are what create the endogeneity problem (or simultaneous equation
bias)—using OLS to estimate the parameters of equations that have an endogenous
variable as an explanatory variable yields biased estimates of the unknown parameters.
Figure 1 illustrates the endogeneity problem. In this figure we have demand and supply
equations that have both risen due to changes in exogenous variables. What the
researcher observes are two (red) points: (1) the intersection of the old demand and
supply curves and (2) the intersection of the new demand and supply curves.

Figure 2.28.
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The simultaneous equation problem.



The thick red line shows the regression that would result from using OLS to estimate
either of the two structural equations. As illustrated, an OLS estimate of the slope
estimate will be biased. We need to use some other estimation technique than OLS.

Estimation

As noted earlier, the basic problem created by the endogeneity problem is that the
endogenous explanatory variable is correlated with the error term. The most logical
approach would be to replace this variable with one that is not correlated with the error
term but highly correlated with the endogenous variable. Consider the value of the price

predicted by the reduced form equation (5):

(2.71)
Pi=7o+ 7 1L+ 7P+ T W,
Po+pa s
— }’ﬂzlﬂ_Tlﬁﬂ, }’1=ﬁ, r2
where 7 iisthe OLS estimate of 1 F1 L1

__ b
B3TT-a

“T1—a,py

azp

and
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Clearly, Pt js correlated with p.”.Italso is true that the covariance between P
and € ,goes to zero as the sample size increasing. Thus, we can use (8) to construct a
variable that will produce a consistent estimator of a ; . It is this conclusion that underlies
the strategy of both two-stage least squares (TSLQ) and instrumental variable (1V)
estimators.

Two-stages least squares

The easiest way to understand two-stage least squares is to think of the estimation
process as being in the following two steps (although the computer programs calculate
the estimators in one step):

Stage 1: obtain a OLS predictions for any endogenous variable on the right-hand side of
the equation to be estimated using as the explanatory variables all of the exogenous
variables in the system.

Stage 2: estimate the parameters of the equation using OLS and replacing the
endogenous variable on the right-hand side of the equation by the its predictions as
obtained in step 1.




For obvious reasons he TSLS method works best when the full model is specified or when
you know and can measure all of the exogenous variables in the system.

Instrumental variables (1V)

While the use of instrumental variable (V) estimators is appropriate in a large number of
situations, the two situations where they are most commonly used are (1) in the presence
of endogenous explanatory variables and (2) in cases when errors arise in the
measurement of an explanatory variable (or the errors-in-variables problem). Since | have
already described the endogeneity problem, | now turn to a brief discussion of errors-in-
variables.

Consider the following simple model:
(272)y,= 61x,-*+£,-andx,-=x,-*+u,-.

In this model the researcher observes x ;but not the desired x ;* because of some random
measurement error. Using OLS to estimate (9) using the observable x ;instead of the
correct x ;* is equivalent to estimating:

(2.73)



Yi= ﬁl X+ (Ef' - Iﬁl M a')'

The important thing to note in estimating (10) using OLS is that the explanatory variable,

x ;, is correlated with the error term, Ei=Prui) As was the case with the endogeneity
problem, the OLS estimate of 8 , is biased. Murray (2006) summarizes the situation as
follows:

In both examples, ordinary least squares estimation is biased because an
explanatory variable in the regression is correlated with the error term in the
regression. Such a correlation can result from an endogenous explanator, a
mismeasured explanator, an omitted explanator, or a lagged dependent variable
among the explanators. I call all such explanators “troublesome.” Instrumental
variable estimation can consistently estimate coefficients when ordinary least
squares cannot—that is, the instrumental variable estimate of the coefficient will
almost certainly be very close to the coefficient’s true value if the sample is
sufficiently large—despite troublesome explanators. [Murray (2006a): 112]

Consider a regression that includes a “troublesome explanator,” like x ;* in (9). Assume
that there exists a variable z ;(or set of variables) that (1) is correlated with the
“troublesome explanator,” (2) is uncorrelated with the error term—like £ ;in (9), and (3) is



not one of the explanatory variables in the equation to be estimated. Greene (1990: 300)
offers the following example of such a variable. Self-reported income tends to be a very
“noisy” variable because sometimes people forget to report minor sources of income and
sometimes they deliberately misreport their income. If the regression you are estimating
uses income as explanatory variable of consumption, OLS will yield biased estimates. On
the other hand, the number of checks written in a month by the household head might
serve as an instrumental variable. Clearly, the number of checks written might well be
positively correlated with income and there is no reason to assume that it is correlated
with the error term in the consumption equation.@

It is usually fairly easy to identify instances when IV estimation methods are appropriate.
This is especially true when one of the explanatory variables is possibly an endogenous
variable. The real problem arises in finding an instrumental variable or a set of
instrumental variables. However, assuming you have one or more instrumental variables,
the IV method follows the same steps as described above for TSLS. In the first stage you
estimate a regression of the “troublesome variable” as a function of the instruments and
the exogenous variables in the equation—i.e., you estimate the reduced form equation.
In the second stage you use OLS to estimate the original equation with the value of the
“troublesome variable” predicted by the first stage regression substituted for the actual
values of the “troublesome variable.”



In a sense TSLS is a IV estimation. The exogenous variables not in a particular regression
play the role of the instruments. Thus, in the IV estimation of (1), the weather index is the
instrument. In the estimation of (2) the price of corn and the income level are the IVs.
Thus, in a fully specified model, the exogenous variables excluded from the regression
play the role of instrumental variables. In other situations the choice of an appropriate
instrument can be very difficult. The selection process demands creativity both in finding
the instrument and in defending the choice.

The use either of IV or TSLS comes at a cost. First, the OLS estimators are more precise
(i.e., have a smaller standard error) than the TSLS or IV estimators. Second, selecting
invalid or weak instruments can create results that are not meaningful. So how does one
know if they have chosen a good set of instruments? There is no easy answer to this
qguestion. Murray (2006a: 116-117) discusses some possible tests of the validity of an
instrumental variable. In the end, however, the “success” of your instrument may depend
more on how convincing your justifications are than any statistical test. Some
economists, like Steven Levitt, make a living coming up with and justifying the use of
some very creative instrumental variables. Murray (2006a) offers a detailed discussion of
IV and should be read by any student planning to make use either of TSLS or IV regression
estimators.



The identification problem

There is an additional issue that arises with estimating systems of equations—
identification. Essentially, identification is an algebraic problem. Consider the reduced
form equations given earlier in (4) and (5):

_ag+a Py ay P X an ¢ Ertayn;
=T ap, TT=a p, T T=a, gt Ta, 5, Pt Y 1 a, B,
and
1u:ﬂﬂ+ﬂl”ﬂ aspy i asf ¢ Pa W —I—ﬁ Er +M;
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OLS estimation of both of these equations yields unbiased estimates of the parameters in
the reduced form equations. Identification asks if we can retrieve the parameters of the
structural equations from the reduced form equations. Say, for instance, that we re-write
the reduced form equations as:

(2.74) q1=6 10+ 6 11 W+ 8151 +8 13p "+



and
(2.75)p =620+ 82111+ 6 p: +E W, +6,.

Table 1 shows each of the parameters in (11) and (12) in terms of the parameters of the
two reduced form equations. We can recover the parameters of the structural equations
by algebraic manipulation of the relationships in Table 1. (This method of estimation—
that is, estimating the reduced form equations of a model using OLS and then solving
algebraically for the parameters of the structural equations is referred to in the literature
as indirect least squares.) For instance,
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Explanatory variable

Equation (11)

Equation (12)

Intercept S1p= % 8r0= ﬁlﬂ——i_crﬂll;ﬂ
) % :lt_IlTﬁFﬁ'l %211 c—r_ﬂaﬁlﬁl
pe 27T _(:flﬁl 02257 t—rirﬁllﬂl
Error term Y| :%‘m 53:?_&::;;

Table 2.24. Parameters of the structural and reduced form equations.




One can continue in a likewise manner to find formulae for other of the structural
's. However, an interesting problem does arrive 5 5 " also true that
pr= 52
Since there is no a priori reason to believe that we have two
estimates of 8 ; . This result illustrates the point that there are three possibilities when
calculating the structural parameters from the reduced form equations—first, there may
be more than one formula for a structural parameter; second, there may be only one
formula for a structural parameter; or third, there may be no formula for a structural
parameter. We say in the first case that the equation is over-identified; is exactly
identified in the second case; and is under-identified in the third case. It turns out that in
the case of an over-identified equation we can to use TSLS to estimate the structural
parameters. However, in the case of an exactly identified equation, the TSLS estimators
are equal to the indirect-least-squares estimators that can be calculated using estimates
of the reduced form equations. Finally, an under-identified equation cannot be estimated
by any technique.
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Clearly, we need to know how to identify if an equation is either over-identified, exactly
identified, or under-identified. A necessary rule is that the number of exogenous
variables in a system of equation that are not included in a particular regression must be
greater than or equal to the number of endogenous variables on the right-hand-side of



the equation for the equation to be either exactly or over identified. Consider the
following three-equation model, where the endogenous variables arey,,y,, and y; and
the exogenous variables are represented by x ; withi=1,...,5:

(2.76) y1=6 10+ B 1y, +B 13ys+ap X1 +A X+ 05X s,
(2.77) y =6+ 8 1y 1+ 33x3,and
(2.78) y3=6830+ 831y 1+ a3 X1+ 03X+ 033 X3+ 0 3gX g+ U35X5.

The error terms in these three equations are omitted because they are irrelevant to
determining if an equation is identified—remember, identification is an algebraic
problem, not a statistical issue. There are 3 endogenous variables in the system and 3
equations in the system. Also, there are 5 exogenous variables in the system of
equations. Equation (13) is exactly identified; Equation (14) is over-identified; and
Equation (15) is under-identified. What this means is (1) Equation (13) can be estimated
directly from the reduced form equation (using indirect-least-squares) or using TSLS; (2)
Equation (14) must be estimated using TSLS; and Equation (15) cannot be estimated.
Table 2 summarizes how to determine if an equation is or is not identified. Basically, if
the number in column 2 equals the number in column 3, the equation is exactly
identified. If the number in column 2 is less than the number in column 3, the equation is



over-identified. Finally, if the number in column 2 is greater than the number in column 3,

the equation is under-identified.

[27]

Equation

Number of endogenous
variables on right-hand-
side

Number of exogenous
variables excluded from
the equation

Identification

y1=61,,+6,,y,+86

13Y3+tAuX1+QpX; |2 2 Exactly
=6 +8 +o

Y2 20 21Y1 1 4 Over

23X 3

y1=61+8,,y,+86

1BYs+topXta3xs |l 0 Under

+a15Xs5

Table 2.25. Identification of the equations in the example model.




One other thing to notice is the similarity of TSLS to IV estimation. The exogenous
variables play the role of instruments in TSLS estimation. By implication, the instruments
in an IV estimation must not include any of the exogenous variables in the equation.@]
Similarly, one of the

ways to isolate potential instruments in a regression is to think of what system of
equation the equation is and then ask what exogenous variables in that system are not
included in the equation. These excluded exogenous variables are potential instruments.

TSLS and IV in Stata

The command for estimating an equation in Stata using two-stages least squares (TSLS) is
a bit tricky. Assume that you want to estimate equations (13) and (14) in the model
discussed above.”” For simplicity assume that each variable assumes the name for it in
Table 2. Thus, in our Stata commands Y1 refers to variable Thus, in our Stata commands
Y1 refers to variable y ; and so on. The command to estimate either a TSLS or an IV
regression is the same.2” The command, ivreg, consists of three major parts—(1) the
name of the dependent variable is followed by (2) a list of the names of the exogenous
variables that are being used as explanatory variables and then followed in parentheses
by (3) the information needed to estimate the first stage (the list of the endogenous



variables that are explanatory variables along with the names of the exogenous variables
in the system that are excluded from the equation or, in the case of IV, a list of the

instruments).2

Equation to be estimated Stata command

Y1=6810+68 Yy ,+B8 13ys+ A X+ 3X3+a 15X ivreg y1 x2 x3 x5 (y2 y3 = x1 x4)

Y2=60+8y1+a3xs .ivreg y2 x3 (y1 = x1 x2 x4 x5)

Table 2.26. Stata command for estimating TSLS and IV regressions.

Example 2.5.

An example from Stata. The Stata manual offers the following example analysis. Assume
that you want to use state level data from the 1980 census to estimate the following

system of equations:
(2.79)hsngval=as+a,fainc+a,reg2+azreg3+a,regld+e




and

(2.80)rent=84,+8,hsngval+8,pcturban+y,

where hsngval is the median dollar value of owner-occupied housing; rent is the median
monthly gross rent; fainc is family income; pcturban is the percent of the state population
living in an urban area; and reg2, reg3, and reg4 are dummy variables that designate the

region of the country where the state is located. In this example we focus on estimating
(17).

We begin by loading the data set and describing the data.
. use http://www.stata-press.com/data/r8/hsng2
(1980 Census housing data)

.describe

Contains data from http://www.stata-press.com/data/r8/hsng2.dta

obs: 50 1980 Census housing data




vars: 16 3 Sep 2002 12:25
size: 3,600 (99.7% of memory free)
variable storage display value variable label
name type format label
state strl4 % 14s State
division int % 8.0g division Census division
region int % 8.0g region Region
pop long % 10.0g Population in 1980
popgrow float % 6.1f Pop. growth 1970-80
popden int % 6.1f Pop/sq. mile
pcturban float % 8.1f Percent urban
faminc long % 8.2f Median family inc.,




1979
hsng long % 10.0g Hsng units 1980
hsnggrow float % 8.1f % housing growth
hsngval long % 9.2f Median hsng value
rent long % 6.2f Median gross rent
regl float % 9.0g
reg2 float % 9.0g
reg3 float % 9.0g
regd float % 9.0g

Sorted by: state

Now we estimate equation (17) using TSLS as shown in Figure 2.

Table 2.27. Description of the Stata data set used in the example.




Figure 2.29. Two-stages least square estimate of the example.

. ivreg rent pcturban <(hsngval = faminc reg2-regd)

Instrumental variabhles (2SLS> regression

df MS of obs 50

2, ¥ 42.66

36677 .4033 2 18338.7017 bh > F 0.0000
24565.7167 522.674823 R-squared 0.5989
0.5818

61243 .12 49 1249.85959 22.862

rent Coel Sstd. Err. it 95 on Intervall

hsngual .0022398 .0003388 . .0015583 .0029213
peturban .081516 .3081528 5 ~.5384074 .701439%94

con 120.7065 15.70688 89.10834 152.3047
Instrumented: ]-.uu".’ﬂl
Instruments: :.«'Tup)\

The manual continues the example to include some testing of the model including the
Hausman test. Students using TSLS and IV should read the discussion in the Stata manual
thoroughly.




Exercises

Exercise 2.5.1.

Cigarette advertising and sales. A great deal of controversy exists over the issue of
whether advertising expenditures affect sales. This controversy is particularly sharp when
it affects policy decisions. An example of this phenomenon is the controversy over the
impact of cigarette advertising on advertising sales. While many public policy experts
advocate bans on cigarette advertising, a majority of economists caution against bans on
cigarette advertising. The economists point out that there is little theoretical reasons to
believe that cigarette advertising affects total demand for cigarettes. Instead, economists
argue that cigarette advertising only affects brand choice and not the number of
cigarettes that people smoke. Moreover, these economists point out that there is also
little empirical evidence that supports the argument that cigarette advertising affects the
demand for cigarettes. Given the negative impact advertising bans have on freedom of
speech, most economists conclude that the negative effects of cigarette advertising bans
outweigh the benefits of the bans.



In this exercise we address this issue by using data used originally by Richard
Schmalensee (1972) in his Ph.D. dissertation. You will use these data to estimate a simple
two-equation model of the cigarette advertising industry.

We use annual data for the period 1955 to 1967 to estimate the impact of cigarette
advertising on aggregate demand for cigarettes and the impact of cigarette consumption
on cigarette advertising. We begin with a model of the demand for cigarettes. We assume
that the demand for cigarettes is given by:

(2.81)
g = .f'[Pf'ra Vi Aps Dﬁﬁl},

where
g: = cigarettes consumed per person over age 15,
pc. = retail price of cigarettes,

y: = real disposable personal income per capita (1958 dollars),



A, = real advertising expenditures per individual over age 15 (1960 dollars), and
D64 = a dummy variable equal to 1 for the years 1964 through 1967 and zero otherwise.

We include the dummy variable for years after 1964 to pick up the negative impact on
cigarette sales of the 1964 report of the US Surgeon General’s Advisory Committee (1964)
announcing that the government believed that there was enough evidence available to
conclude that cigarette smoking causes cancer. We expect the signs of the parameters
with the price of cigarettes and the dummy variable to be negative. We expect that the
sign of the parameters with income and advertising to be positive.

Next we turn to a model of the supply of advertising. We assume:

(2.82)
Ar=glgppasmy),

where:
pa; = advertising price index, and

m; = gross profits as a percentage of gross sales.



The last variable needs a bit of explaining. The amount of advertising in the industry
should be a function of degree of competition in the industry. If the market were
perfectly competitive, there would be no reason for any firm to advertise. If the firm were
a monopoly, there also would be no reason to advertise. However, if the market is an
oligopoly, then a firm would advertise in an effort to gain market share by differentiating
its product from the product of its competitors.

The traditional measure of the degree of monopoly power that a firm has is the ratio of
its marginal profits to its marginal cost:

(2.83)
p —mc
mc -

m=

where p is output price, mc is marginal cost, and m is the measure of monopoly power.
Since we cannot observe the firms’ marginal costs, we approximate m by the ratio of
gross profits to gross sales. We expect the impact of the degree of monopoly to have a
non-linear impact on advertising expenditures.

The data used to estimate our two equations are listed in Table 5 and are available in the
MS Excel file Cigarette sales and advertising data.xls. These data are with the exception of



m34550/Cigarette%20sales%20and%20advertising%20data.xls

disposable personal income from Schmalensee (1972: 273-290). The disposable personal
income data are from the Department of Commerce (1975: Table F26, page 225).

Specification of the Model. Equations (18) and (19) are, as written, very general and need
further specification before they can be estimated. We will assume that the two
equations take a log-log form. In particular, we assume that we want to estimate:

(2.84)
In(g;)=ag+a;In(pc,) + asln(y,) + azln(A;) + a, D64,

and
(2.85)
In(A)=po+ pIn(g,) + frIn(pa,) + fym, + pym:.
Cigarettes .~ . |Real Disposable
Sold per Retail Price Advertising Advertising |Degree of |Personal
Year of . .
Person Over Ciearettes per Person Price Index |Monopoly |Incomein
Age 15 g Over Age 15 1958 dollars




1955 /3163.090 93.9693 0.96100 95.4775 18.595 1659
1956 |3230.517 94.7049 1.09969 94.3800 19.207 1673
1957 /3313.033 94.2535 1.22180 96.2125 20.165 1683
1958 | 3479.063 94.7712 1.40471 97.8300 21.736 1666
1959 |3584.930 98.1779 1.45816 98.2800 22.042 1735
1960 3676.912 100.0000 [1.37863 100.0000 22.04 1749
1961 3743.354 99.8677 1.31871 102.0400 22.465 1756
1962  3733.504 99.6761 1.35467 102.9725 22.226 1814
1963 |3775.886 101.3630 |1.51345 103.9525 22.848 1867
1964 |3648.211 102.3110 |1.73665 103.4775 23.168 1948
1965 3710.075 105.7510 [1.59761 103.7225 23.598 2047
1966 | 3689.386 108.0450 |1.71062 104.2200 25.085 2127
1967 |3652.016 109.2490 |1.71444 104.6125 26.310 2164




Table 2.28. Cigarette Industry Data, 1955-1967.

Answer the following six questions:
a) Which variables in the model are exogenous and which are endogenous?

b) Check and see if equations (18) and (19) are underidentified, exactly identified, or
overidentified.

c) Estimate equations (21) and (22) using ordinary least squares.

d) Estimate equations (21) and (22) using two-stage least squares. Present the results in a
table that for comparison reasons includes the results from the OLS estimation. Be sure to
include the R* and the Durbin-Watson statistic.

e) Which side of the advertising-sales controversy do your results appear to support?
f) How well-specified does your model appear to be? Why?

Exercise 2.5.2.



Exercise 2. Demand and supply of commercial loans. We are interested in estimating the
demand for commercial loans by business firms and the supply of commercial loans by
banks. We have available in Table 6 monthly data from the U. S. commercial loan market
for the period from January, 1979 through December, 1984 and available in the MS Excel
file Exercise 2.xls.2? Define:

Q . = total commercial loans (billions of dollars)

R ;. = average prime rate charged by banks

RS . = 3-month Treasury bill rate (represents an alternative rate of return for banks)
RD . = Aaa corporate bond rate (represents the price of alternative financing to firms)

X ; = industrial production index (represents firms’ expectation about future economic
activity)

y « = total bank deposits (billions of dollars) (represents a scale variable).

The demand and supply equations to be estimated, respectively, are as follows:


m34550/Exercise%202.xls

(2.86)Q;=6¢+B,R;+6,RD,+8B3 X+,
and

(2.87)Qi=ag+a;R;+a,RS;+azy.+&;.
Questions
a) What are the endogenous and exogenous variables in this model?

b) Solve for the two “reduced form” equations of this model. Estimate these two
equations using the data in Table 6.

c) Check the “order” condition for identification of each equation of the model.
d) Estimate equations (23) and (24) using ordinary least squares using the data in Table 6.

e) Estimate equations (23) and (24) using two-stage least squares. Report the results of
the estimations for part 4 and 5 in a single table. Be sure to include the t-ratios, R¥s, and
Durbin-Watson statistics for each of the equations estimated.

f) Perform the Hausman Specification Test on both equations.[ﬁl



g) When presenting this model, Maddala notes “[T]he model postulated here is not
necessarily the right model for the problem of analyzing the commercial loan market.” Is
there anything in the results reported above that suggests that the model may be mis-
specified?

N Date Q R RD X RS y

1 January-79 251.8 11.75 9.25 150.8 9.35 994.3
2 February-79 255.6 11.75 9.26 151.5 9.32 1002.5
3 March-79 259.8 11.75 9.37 152.0 9.48 994.0
4 | April-79 264.7 11.75 9.38 153.0 9.46 997.4
5 May-79 268.8 11.75 9.50 150.8 9.61 1013.2
6 |June-79 274.6 11.65 9.29 152.4 9.06 1015.6
7 July-79 276.9 11.54 9.20 152.6 9.24 1012.3
8 |August-79 280.5 11.91 9.23 152.8 9.52 1020.9




9 September-79 288.1 12.90 9.44 151.6 10.26 1043.6
10 |October-79 288.3 14.39 10.13 152.4 11.70 1062.6
11 |November-79 287.9 15.55 10.76 152.4 11.79 1058.5
12 |December-79 295.0 15.30 11.31 152.1 12.64 1076.3
13 |January-80 295.1 15.25 11.86 152.2 13.50 1063.1
14 |February-80 298.5 15.63 12.36 152.7 14.35 1070.0
15 |March-80 301.7 18.31 12.96 152.6 15.20 1073.5
16 | April-80 302.0 19.77 12.04 152.1 13.20 1101.1
17 |May-80 298.1 16.57 10.99 148.3 8.58 1097.1
18 |June-80 297.8 12.63 10.58 144.0 7.07 1088.7
19 |July-80 301.2 11.48 11.07 141.5 8.06 1099.9
20 |August-80 304.7 11.12 11.64 140.4 9.13 1111.1
21 |September-80 308.1 12.23 12.02 141.8 10.27 1122.2




22 | October-80 315.6 13.79 12.31 144.1 11.62 1161.4
23 |November-80 323.1 16.06 11.94 146.9 13.73 1200.6
24 |December-80 330.6 20.35 13.21 149.4 15.49 1239.9
25 |January-81 330.9 20.16 12.81 151.0 15.02 1223.5
26 |February-81 331.3 19.43 13.35 151.7 14.79 1207.1
27 |March-81 331.6 18.04 13.33 151.5 13.36 1190.6
28 |April-81 336.2 17.15 13.88 152.1 13.69 1206.0
29 |May-81 340.9 19.61 14.32 151.9 16.30 1221.4
30 |June-81 345.5 20.03 13.75 152.7 14.73 1236.7
31 |July-81 350.3 20.39 14.38 152.9 14.95 1221.5
32 |August-81 354.2 20.50 14.89 153.9 15.51 1250.3
33 |September-81 366.3 20.08 15.49 153.6 14.70 1293.7
34 |October-81 361.7 18.45 15.40 151.6 13.54 1224.6




35 |November-81 365.5 16.84 14.22 149.1 10.86 1254.1
36 |December-81 361.4 15.75 14.23 146.3 10.85 1288.7
37 |January-82 359.8 15.75 15.18 143.4 12.28 1251.5
38 |February-82 364.6 16.56 15.27 140.7 13.48 1258.3
39 |March-82 372.4 16.50 14.58 142.7 12.68 1295.0
40 |April-82 374.7 16.50 14.46 141.5 12.70 1272.1
41 |May-82 379.3 16.50 14.26 140.2 12.09 1286.1
42 |June-82 386.7 16.50 14.81 139.2 12.47 1325.8
43 | July-82 384.4 16.26 14.61 138.7 11.35 1307.3
44 | August-82 384.5 14.39 13.71 138.8 8.68 1321.7
45 |September-82 395.0 13.50 12.94 138.4 7.92 1335.5
46 |October-82 393.7 12.52 12.12 137.3 7.71 1345.2
47 |November-82 398.9 11.85 11.68 135.7 8.07 1358.1




48 |December-82 395.3 11.50 11.83 134.9 7.94 1409.7
49 |January-83 392.4 11.16 11.79 135.2 7.86 1385.4
50 |February-83 392.3 10.98 12.01 137.4 8.11 1412.6
51 |March-83 395.9 10.50 11.73 138.1 8.35 1419.5
52 |April-83 393.5 10.50 11.51 140.0 8.21 1411.0
53 |May-83 391.7 10.50 11.46 142.6 8.19 1413.1
54 |June-83 395.3 10.50 11.74 144.4 8.79 1443.8
55 |July-83 397.7 10.50 12.15 146.4 9.08 1438.1
56 |August-83 400.6 10.89 12.51 149.7 9.34 1461.4
57 |September-83 402.7 11.00 12.37 151.8 9.00 1448.9
58 |October-83 405.3 11.00 12.25 153.8 8.64 1459.0
59 |November-83 412.0 11.00 12.41 155.0 8.76 1499.4
60 |December-83 420.1 11.00 12.57 155.3 9.00 1508.9




61 |January-84 424.4 11.00 12.20 156.2 8.90 1504.1
62 |February-84 428.8 11.00 12.08 158.5 9.09 1499.3
63 |March-84 433.1 11.21 12.57 160.0 9.52 1494.5
64 |April-84 439.7 11.93 12.81 160.8 9.69 1501.5
65 |May-84 447.3 12.39 13.28 162.1 9.83 1541.3
66 |June-84 452.9 12.60 13.55 162.8 9.87 1532.9
67 |July-84 454.4 13.00 13.44 164.4 10.12 1535.5
68 |August-84 455.2 13.00 12.87 165.9 10.47 1539.0
69 |September-84 459.9 12.97 12.66 166.0 10.37 1549.9
70 |October-84 467.7 12.58 12.63 165.0 9.74 1578.9
71 |November-84 468.7 11.77 12.29 164.4 8.61 1578.2
72 |December-84 476.8 11.06 12.13 164.8 8.06 1631.2




Table 2.29. Monthly Data for the U.S. Commercial Loan Market, January 1979 to
December 1984.
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2.6. Replication of econometric studies-

Replication
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Introduction

One of the most important first steps in a science experiment is to replicate the results of
earlier research. For a variety of reasons (most of them practical and not theoretically
sound) economists generally do not undertake this step; what they tend to do is report
the results of earlier papers and then compare their results with the earlier results
without asking the question of whether these earlier results were reported accurately.
Omitting this step in a world of honest careful researchers might seem to be a minor
problem. However, there is enough casual evidence to suggest that a large portion of the
econometric results reported in the journals cannot be replicated because the original
researcher (1) does not have the data set used in the research because it has been lost for
a variety of reasons, (2) cannot share the data set because it is proprietory, (3) is
unwilling to share the data set because there are other issues they wish to investigate
using the data set, or (4) just are unwilling to share the data set. For this reason much of
the published econometrics research has never been replicated. In recognization of this
problem several journals like the Journal of Applied Econometrics now require that
authors submit the data set they used to the journal to be posted on the web for use by
any other researcher. Whether this effort has been successful will not be clear unless
someone undertakes to replicate the work in this journal to see if all of the data
necessary to replicate an article have been posted and if the regressions included in the



article actually can be replicated. It is very unlikely anyone would undertake such an
effort given the fact that no journal will publish results that are merely a replication of
previously published articles.

In this module we explore some of the difficulties that exist in replicating existing
research by undertaking to replicate some of the results reported in the Butler, Finegan,
and Siegfried (1998) (BFS, hereafter) article analyzing the effect of a student's calculus
background on the grade he or she earns in intermediate microeconomics or in
intermediate macroeconomics.2% The goal of this module is to (1) help students to learn
how to read in detail an article that appears in a typical economics trade journal, (2)
introduce them to ordered probit, an advanced econometrics tool, and (3) teach them
how to present and discuss the results of an estimation of a model in an economics
paper. While most of the discussion in this module focuses on using Stata in this
replication, one can use most any econometrics program they are comfortable with to
replicate some of the results reported in the BFS article.

Butler, Finegan, and Siefried (1998).

The obvious first step is to find and print a copy of the article by Butler, Finegan, and
Siefried. In fact, do not proceed any further in reading this module until you have read



the article. We will discuss in class what the authors do in the paper and how clearly they
present their conclusions. In this first pass at the article you are to pay attention to how
convincing you find their arguments to be. Since everyone in the class has completed an
intermediate microeconomics course, your discussion of their conclusions should reflect
your own experiences. Also, you need to be able to discuss in class the estimation
strategy they use in the paper. In particular, you will need to be able to identify what the
source of the data is and what equations did they estimate. Also, try to determine how
the estimations in the "first" stage are used in the estimations of the "second" stage.
Why did the authors use a two-stage estimation strategy?

Also, what do you think the authors mean in their description of their estimation strategy
by their statement about the estimation methods they use:

Estimation Methods and Expectations

To cope with the selection bias problem, we use a two-stage estimation procedure.
The first stage employs an ordered probit model to predict the highest level of
calculus attained by each student prior to taking each intermediate economic theory
course.... In the second stage, the student's grade in MICRO-2 ... (the "outcome’) is
regressed on the actual level of calculus attained, the grade earned in that calculus
course, the predicted residual in the grade equation that we would expect on the



basis of the actual level of calculus attained, and a roster of control variables
reflecting ability and motivation. Individuals are the unit of observation. Ordinary
least squares estimation is used because there are twelve categories of grades which
are commonly interpreted as cardinal measures of performance (as is implied by the
calculation of ‘grade point averages'). (Butler, Finegan, and Siegfried, 1998: 188)

The ordered-probit model

In what follows you are to “replicate” the equations the authors estimate in the paper for
the intermediate microeconomics course. In order to complete this assignment you will
need to figure out several things including (1) what an ordered-probit model is and (2)
how to use Stata to estimate an ordered-probit model. In this section of the module we
introduce the ordered-probit model. | strongly encourage you to consult Greene (1990:
703-706) for an excellent and clear discussion of the ordered-probit model. The discussion
here follows Greene closely.

It is common for surveys to have questions that require the responder to choose one of
several categories that have an innate order to them. For instance, most course
evaluations ask the respondent to choose an answer to a question that reflects their
agreement with a statement about the course. For instance, the question might read,
"The Professor was interested in the material taught in the class" where the student



completing the evaluation would choose a number from 1 to 9 where a 1 indicates
complete disagreement with the statement and a 9 reflects complete agreement with the
statement. Thus, there is an order to the potential answers. Using a logit, probit, or
multilogit model would completely ignore this order. A linear regression is inappropriate
because OLS treats the difference between answers of 1 and 2 as being the same as the
difference between a 7 and and 8, when in fact the numbers only provide a ranking.

Consider a latent variable, y*, that is not observed but where ' = P'X+ & we want to

estimate the 8 ;' s in the vector B=0po 1 - Pkl s We may not observe y* but we
do observe:

The u ;'s in (1) are parameters that must be estimated along with p. As usual, we assume
that the error term € is normally distributed (with a normalized mean and variance
arbitrarily set to 0 and 1, respectively). It is trivial to estimate the model with the error
terms having a logistic distribution, but this chance in assumptions appears to make
virtually no difference in practice).[ﬁ] With the normal distribution, we have:

(2.88)



(0ify* <0,
lif0 <y* <p,,

y=92ifu; <y* <p,,

Jifu, _, <y*.

(2.89)
Pr(y =0)=&(—p'x],
Pry=1)=®(u, — p'x) - ¢(-p'x),
Prly=2)= ‘I’(H'z —B'x)- ‘I’(Hl - p'x),

Plr[V:J:I:l ~ D, _ | — B x),

where D) is the cumulative normal function. In order for all of the probabilities to be
positive, weneed i, <u,<-:--<u,_,,as shownin Figure 1. One thing to note in Figure 1
is that the cutoff locations change when the values of the explanatory variables change.

Figure 2.30.
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Distribution of the error term in the ordered-probit model.

The estimation strategy from here follows the usual maximum likelihood method. The
computer program forms the likelihood function and then chooses the values of the
parameters (including the cutoffs) that maximize this likelihood function.

The estimated coefficients are not equal to the marginal effects of a change in one of the
explanatory variables (as is also true with the logit and probit models). Consider the



simple example Greene (1990, 704) describes. Assume that there are three categories.
Then (2) becomes:

(2.90)
Prly=0)=1 — ®p’ x)
Pry=1)=®(u — p'x) — - p’ x),
Priy=2)=1— @lu— p' x|

Figure 2 shows this situation. The solid curve shows the distribution of y and y*.
M A

Increasing one of the x's while holding the B constant (that is, changing X to P'x) is
M

the same as shifting the entire distribution of y and y* to the right with H remaining
constant. As a result the probabilities that y takes on the values of 0, 1, and 2 change.
Clearly, as shown in Figure 2, Pr(y =0 ) decreases and Pr(y =2 ) increases. The Pr(y=1),
on the other hand, may increase or decrease and, thus, the effect of an increase in one of
the explanatory variables is ambiguous. It is easy to show this result algebraically. The

marginal effects for the 3 probabilities in (3) are, assuming p>0:

(2.91)
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Figure 2.31.




A rise in one of the explanatory variables whose parameter is positive will shift the
probability distribution of the outcome to the right (from the solid line to the dashed
line).

In general, only the sign's of the change Pr(y =0 ) and Pr( y =J ) are unambiguous. Greene
(1990, 705) cautions that "“[w]e must be very careful in interpreting the coefficients in
this model.... Indeed, without a fair amount o extra calculation, it is quite unclear how
the coefficients in the ordered-probit model should be interpreted.”"

The BFS Dataset

The data used by BFS are available at the Journal of Applied Econometrics data website or
in the MS Excel file Vanderbilt data set.xls . Table 1 identifies the variables in the dataset.

Column | Code Variable definition

A Obs Observation number



http://qed.econ.queensu.ca/jae/1998-v13.2/butler-finegan-siegfried/
m34552/Vanderbilt%20data%20set.xls

B SID Student ID

C Grade Grade earned in Economics 231, A =4, A- = 3.7, etc.

D SelCorr Variable correcting for selection bias

E Soph Dummy variable = 1 if student is a sophomore

F Senior Dummy variable = 1 if student is a senior

G Same Dummy variable = 1 if student took both intermediate classes the
same year

H Ski Dummy variable = 1 if student took the intermediate classes at

P least one semester apart

| HighestMath Highest Iev¢.el of math attained (the dependent variable, 0-6
corresponding to Math 170, 171a, 172a, 171b, 172b, 221a, 221b)
Dummy variable = 1 if student's highest level of math was Math

J M170
170

K M171a Dummy variable = 1 if student's highest level of math was Math

171A




Dummy variable = 1 if student's highest level of math was Math

L M172a 172a

M M171b Dummy variable = 1 if student's highest level of math was Math
171b

N M172b Dummy variable = 1 if student's highest level of math was Math
172b

o M221a Dummy variable = 1 if student's highest level of math was Math
221a

P M221b Dummy variable = 1 if student's highest level of math was Math
221b

Q GE100 Grade in Economics 100

R GDE100 Individual instructor grade deflator in Economics 100

S GE101 Grade in Economics 101

T GDE101 Individual instructor grade deflator in Economics 101

U GDE231 Individual instructor grade deflator in Economics 231




\" Size Class size

W FGPA Freshman GPA

X Female Dummy variable =1 if student is a female
Y MSAT Score on Math section of the SAT

4 VSAT Score on Verbal section of the SAT

AA TE231 Teacher of Economics 231 (numerical code)
AB SE231 Section of Economics 231 (numerical code)
AC GM170 Grade in highest math class: Math 170

AD GM171a Grade in highest math class: Math 171a
AE GM172a Grade in highest math class: Math 172a
AF GM171b Grade in highest math class: Math 171b
AG GM172b Grade in highest math class: Math 172b
AH GM221a Grade in highest math class: Math 221a




Al GM221b Grade in highest math class: Math 221b

Al GHM Grade in highest math class

AK Foreign Dummy variable = 1 if student passed foreign language proficiency
test

AL EMEcon Dummy variable = 1 if expected major is economics

AM EMOSS Dummy variable = 1 if expected major is another social science

AN EMNS Dummy variable = 1 if expected major is a natural science

AO EMH Dummy variable = 1 if expected major is in the humanities
Dummy variable = 1 if student completed 1 year of advanced math

AP AM1 .
in high school

AQ AM2 Dumn.1y Vfarlable = 1 if student completed 2 years of advanced
math in high school
Dummy variable = 1 if student completed 3 years of advanced

AR AM3 .
math in high school

AS Phyl Dummy variable = 1 if student completed 1 course in physics in




high school

Dummy variable = 1 if student completed 2 courses in physics in

AT Phy2 high school

AU Chem1 D.ummy variable =1 if student completed 1 course in chemistry in
high school

AV Chem?2 Dummy variable = 1 if student completed 2 courses in chemistry in

high school

Table 2.30. Definition of the variables included in the Vanderbilt data set.

Replication of the Ordered Probit Regression

At this point we are ready to begin the replication. Since it is easy to get lost in the
process, | have created a list of steps that include both instructions on what to do and
guestions you need to answer. As part of this exercise you will be asked to complete
several tables of results. In order to make this effort easier, | have provided a MS Word
file, Tables for ordered probit discussion.doc, with the tables to be completed in it.

1. Load the data in Stata from Excel.



m34552/Tables%20for%20ordered%20probit%20discussion.doc

2. Convert MSAT and VSAT to MSAT/100 and VSAT/100, respectively, using the
commands:

.replace msat = msat/100
.replace vsat = vsat/100

3. Common sense dictates that we should calculate the means and standard deviations of
the variables to be sure that there are no entry errors. We need to construct a table that
compares the means and standard deviations reported in BFS with those in our dataset.
Table 2, which has the means and standard deviations reported by BFS, gives a place to
put the means and standard deviations for the variables in our dataset. Fill in the
information missing from Table 2.

Our data Butler, et al.

Variable Mean |Std. Dev. Mean |Std. Dev.

msat 6.25 0.60
foreign 0.11 0.32




female 0.39 0.49
emecon 0.34 0.48
emoss 0.17 0.38
emns 0.21 0.41
emh 0.07 0.25
aml 0.49 0.50
am2 0.45 0.50
am3 0.01 0.11
phyl 0.67 0.47
Phy2 0.02 0.14
chem1 0.82 0.39
chem2 0.12 0.32




Table 2.31. Means and standard deviations of the data.

4. Estimate the ordered probit regression using (in Stata) the commands:

.global indvar msat foreign female emecon emoss emns emh am1 am2 am3 phy1 phy2
cheml1 chem2

.oprobit highestmath Sindvar

5. Use the result of this estimation to complete Table 3.B7

highestmath |Coef. |Std. Err.|z|P>z|[95% Conf. Interval]

msatl

foreign

female

emecon




emaoss

emns

emh

aml

am2

am3

phyl

Phy2

chemi1

chem2

_cutl

_cut2




_cut3

_cut4

_cuts

_cuté

Observations

Log likelihood

LR x*(14)

Prob > )*

Pueudo-R®

Table 2.32. Results of Stata ordered-probit regression.

6. Compare your results with the table reported in the article. The table in the article is
Table Il on page 193 and is reproduced in Figure 3. What we are interested in is



comparing column 4 in Figure 3 with columns 2 and 4 in Table 3. Table 4 below offers a
model for this comparison.

Figure 2.32.
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Table I1. Ordered probit estimates of level of calculus attained®

Students taking MICRO-2 Students taking MACRO-2
. Expected Meun Coctficient Mecan Cocllicient
Vanabic® sign (SD) (r-value) (SD) (e-valuc)
Constant ~3.09 - -2:62
(5:48) (39%5)
SAT-math x 10-? + 625 0-50¢ 625 0484
(0-60) (612) (0-60) (5-23)
Forcign lang. - o011 002 009 023
proficiency [1.0) (0-32) (0-14) ©-29) (1-22)
Sex (female = 1; male = 0) ? 039 0.28¢ 036 022
(0-49) (2:59) (0-48) (1:96)
Expected major:
Economics ? 034 ~0:11 036 ~018
(0-48) (0-36) (0-48) (1-31)
Other social science ? 017 -0-29* 015 -027
(0:38) (199) (0:36) (1:59)
Natural science + 021 043¢ 020 032
(041) (3:10) (0-40) (2-05)
Humanities - 007 ~0.37" 007 ~0-39¢
(0-25) (1-78) (0-26) (1-80)
Years of HS Advanced Math (Y)
1€y, <2 + 049 024 049 ~0:00
(0-50) (1-07) (0-50) (0-02)
Y =2 + 045 093¢ 045 067"
(0-50) (4-04) (0-50) (2:83)
Y, >2 + 001 0.7 001 028
(0:11) (1:70) ©11) (0-55)
Years of HS physics (Y}
15Y,<2 + 067 0-26° 0-67 027
(047) @7 (0-47) (2:50)
Y22 + 002 0-38 0.01 ~011
(0-14) (1-07) ©-11) (0-20)
Yeurs of HS chemistry (V)
1€Y, <2 + 082 ~0-12 0-82 -0-18
(0-39) (0-69) (0-39) {0-75)
Y .22 + 012 017 013 0-20
(0-32) (0-75) (0-34) (0-75)

TRUNCATION POINTS®
e T 0.4 021¢



Results of ordered probit regression as reported in Butler, et al.

Table 4. Comparison of ordered probit estimations.

Our estimates | Butler, et al. estimates

Estimate z |Estimate t-value
msatl 0.05 6.12
foreign 0.02 0.14
female 0.25 2.59
emecon -0.11 0.86
emoss -0.29 1.99
emns 0.43 3.10
emh -0.37 1.78




aml 0.24 1.07
am2 0.93 4.04
am3 0.77 1.70
phyl 0.26 2.71
Phy2 0.38 1.07
cheml -0.12 0.69
chem2 0.17 0.75
Intercept -3.09 5.48
_cutl 0.27 7.29
_cut2 0.33 8.16
_cut3 1.52 20.32
_cutd4 1.79 23.07
_cut5 2.04 23.72




_cuté

Table 2.33. Comparison of ordered-probit estimations.

7. It is easy to see from Table 4 is that almost without exception the estimates of the
parameters and their t-ratios are very similar. The exception arises with the estimates of
the truncation points (_cut# in the Stata results). We will have to figure out what these
are estimates of in order to make sense of them. Figure 1 shows the "cutoffs" that are

being estimated. Footnote c in the BFS Table Il on page 193 (shown in Figure 3) offers a
useful observation:

In an ordered probit, an underlying, normally distributed, latent variable has a mean
which is a function of observable variables. The latent variable gives rise to a set of
observed dummy variables for ordered categories based on ranges between
unobserved but estimable truncation points which correspond to levels of effort,
ability, or other factors reflected in the explanatory variables. If L categories are
observed, there are L - 1 truncation points, of which the first is normalized to be
zero, so that L - 2 truncation points are estimated and reported in the table. The
values correspond to standard deviations of the latent normally distributed variable.



The key idea is that the values of cutoffs are relative and can be normalized around any
value. Notice that the Stata results do not report an intercept term but do report six
cutoff values. Moreover, the difference between the estimate by Stata for the first cutoff
(3.08402) and the estimate for the second cutoff (3.356916) is equal to 0.272896, which is
itself equal to the first truncation point reported by BFS (1998: 193). Use Table 5 to report
the difference between the first cutoff value and each of the cutoff points reported by
Stata.

Cutoff Estimate Estimate - _cutl BFS Truncation Points
_cutl 3.0840

_cut2 3.3569 0.27

_cut3 3.4146 0.33

_cut4 4.6013 1.52

_cuts 4.8774 1.79

_cut6 5.1202 2.04




Table 2.34. Reconciling Stata estimates of cutoff points with Butler, et al.'s truncation
points.

The second part of the reconciliation of the two sets of results is to compute the t-ratios.
To do this we need to compute the standard deviation of the estimates of the cutoff

points reported by Stata. To do this we need to retrieve the variance-covariance matrix
M

from the regression. First, let's see what we are interested in computing. Let bi be the

A N M
estimate of the i ™" cutoff point. In column 3 of Table 5 you computed “i~ Pi= Py fori=
2,...,6 . The variance of the new variable is:

(2.92)
V(Sr,-): V(;’; ,-)— ECm»‘(B,-;; 1)+ V(;; 1):53 - 20 +nf

The variance-covariance matrix will give us estimates of these variances and covariances.
When there are j parameters in a regression equation, this matrix is defined to be:



B .ﬁj M
OB CB1F T PP by
I Moy A
M (] ."!l ' ﬁ_'q - 7 ,ﬁ ,.
. fab1  Cps fin B |
A2
L%hkhy PPy T Ppy

M
If you type the command .vce, Stata will report 2 as shown in Figure 4. We need the
section of this matrix shown in Part A of Table 6. Use equation (5) to estimate the
standard errors of the estimates of the cutoff points and complete Part B of Table 6 and
compares the t-ratios with the values reported by Butler, et al. (and shown in the last
column 4 of Table 6). Are you satisfied that we have been able to come reasonably close

to the results reported in the article?

Figure 2.33.



_msat _ foreign female emecon c¢moss  emns  emh  aml  am2  am3  phyl pw2 cheml chem2 _cutl w2 ol
msat  0.007
foreign  -0.001 0020
female 0001 -0.002 0009
emecon 0.000 0000 0001 00IS
cmoss  -0.001 0000 0001 0009 0021
emns 0000 0001 0000 0009 0009 0019
emh 0000 -0002 0000 0009 0009 0009 0040
ami 0000 -0002 -0.001 0000 0001 0002 0002 0047
am2 0000 0001 -0001 0001 0000 0000 0002 0043 0048
am3 0004 0002 0000 <0003 0000 -0006 -0.007 0042 0044 0178
phyl <0001 0001 000 0001 0000 0000 0003 0000 0000 -0.002 0010
phy2 0000 0061 0000 0001 0000 -0001 0000 0001 0000 -0.006 0007 0.09)
cheml 0.000 0001 0000 0001 0000 0000 0060i 600G 0000 COM 0000 0004 0033
chem2 -0.001 0002 0000 0000 0000 -0002 0001 0000 -0.002 0006 0000 0005 0030 €047
_eutl  0.0M0 0006 0012 0010 0006 0008 0012 0043 0033 0018 0002 0009 0029 0025 0329
_cut2 0041 -0006 0012 0010 0006 0008 0012 0043 0034 0018 0002 0000 0029 002 0329 0330
cut3 0041 0006 0012 0010 0006 0008 0012 0043 0034 0018 0002 0009 0029 0026 0329 0330 0331
cud 0041 0006 0012 000 0005 0009 0011 0043 0035 0020 0003 0010 0029 0026 0332 0333 0334
_cuts 0041 0006 0012 0010 0005 0009 001 0043 0035 0020 0003 0010 0029 0026 0333 033 0334
out6 0.041 0006 0013 0010 0005 0009 00i1 0043 0035 0020 0003 0010 0029 0026 0333 033 0335



Stata estimate of the variance-covariance matrix.

Part A. Relevant portion of the variance-covariance matrix.

_cutl _cut2 _cut3 _cutd _cuts | _cutéb

_cutl |0.329

_cut2 |0.329 |0.330

_cut3 |0.329 |0.330 0.331

_cut4 |0.332 |0.333 0.334 0.341

_cut5 |0.333 |0.334 0.334 0.341 0.343

_cuté |0.333 |0.334 0.335 0.342 0.343 |0.345

Part B. Calculation of the t-ratios (with comparison of values reported in BFS)




A A
V( b ) |St. Dev.( b t-ratio | BFS t-ratio
_cut2 7.29
_cut3 8.16
_cut4 20.32
_cut5 23.07
_cuté 23.72

8. The next step in the process is to generate the term we will use in the estimation of the
grade regression to account for the potential sample selection bias. To do this we will
need to find a reference in the literature that offers a clear description of what we need
to do. As it turns out, a reasonable explanation of the appropriate estimation technique is
available in Jimenez and Kugler (1987). Since much of what follows comes directly from

Table 2.35. Calculation of the t-ratios for the cutoff estimates.

this article, | highly recommend you read it yourself.




The gist of the method suggests that the potential sample bias is accounted for by an
inverse Mills ratio for each of the categories. What we need to do is calculate:

(2.93)

for the category that the individual actually is in. What we will do is calculate (6) for all of
the categories and then sum the product of this number and a dummy variable indicating
if a course is the highest math class completed by an individual. Since the dummy
variables will equal O for math categories an individual is not in, the resulting sum will

preserve the value of (6) that is associated with the category the individual does belong
to.

It is clear from (6) that we will need to retain the 6 cutoffs. We can do this with the
commands:

. generate cutoffl = _b[_cutl]

. generate cutoff2 = _b[_cut2]



. generate cutoff3 = _b[_cut3]
. generate cutoffd = _b[_cut4]
. generate cutoff5 = _b[_cut5]
. generate cutoffé = _b[_cut6]

Technically, this step is not necessary since the parameter estimates are preserved until
the next regression is estimated; | suggest doing this purely as a precaution.

9. Preserve the predicted values of the ordered-probit using the command:
. predict zhat, xb
. predict phatl phat2 phat3 phat4 phat5 phat6 phat7, p

These two commands will generate for each observation the predicted mean category of
math classes and the probability that this individual will fall in each category. To see what
is going on we will retrieve some representative values of these variables and then graph
them for one individual. Table 7 reports these values for 10 individuals in the sample.
Now consider individual 2. Fitting a normal distribution with a mean of 4.25 and using the



critical values from our estimation yields the probabilities that the individual is in each of
the categories. For example, the probability that individual 1 will have completed no

math classes is equal to 0.1223. Figure 5 illustrates the results for individual 1. The dashed
vertical lines are the six cutoff values that are the same for each individual. The solid

vertical line is the zhat for individual 1. The heavy blue line represents the normal
probability density function for this individual. While, there is, of course, a different
probability distribution for each individual, the cutoff values are the same for all
members of the sample.

Observation ;Igi‘:gass zhat |Pr(0) |Pr(1) |[Pr(2) |Pr(3) |Pr(4) |Pr(5) |[Pr(6)

1 3 3.9657 |0.1890 | 0.0824 | 0.0194 | 0.4467 | 0.0816 | 0.0568 | 0.1241
2 0 4.2507 |0.1217 |0.0640 |0.0158 | 0.4355 | 0.0975 | 0.0731|0.1923
165 0 3.5982(0.3036 |0.1011 | 0.0225 | 0.4149|0.0575 | 0.0364 | 0.0640
166 6 4.6914 |0.0540 |0.0370 |0.0098 | 0.3633 | 0.1097 | 0.0922 | 0.3340
214 3 3.4533|0.3560 | 0.1056 | 0.0229 | 0.3900 | 0.0483 | 0.0294 | 0.0478




215 3 4.0840|0.1587|0.0749 | 0.0180 | 0.4459 | 0.0887 | 0.0637 | 0.1501
225 3 3.5250/0.3296 | 0.1036 | 0.0228 | 0.4031 | 0.0528 | 0.0328 | 0.0553
226 3 3.6990|0.2693 | 0.0969 |0.0219 | 0.4285 | 0.0641 |0.0417 | 0.0776
453 3 3.9713|0.1875|0.0820 |0.0194 | 0.4468 0.0819 |0.0571|0.1253
454 5 4.1650|0.1399 | 0.0697 |0.0170 | 0.4422 | 0.0932 | 0.0684 | 0.1697
495 3 4.4168|0.0913 | 0.0533 |0.0135|0.4151 |0.1043 | 0.0816 | 0.2409
496 0 2.9811|0.5410|0.1055|0.0212|0.2797 | 0.0236 |0.0127 | 0.0162
526 0 2.9247|0.5633 | 0.1039 |0.0207 | 0.2653 | 0.0214 |0.0114|0.0141
527 3 3.9757|0.1863 | 0.0817 |0.0193 | 0.4469  0.0822 |0.0574|0.1262

Table 2.36. Predicted values of the ordered probit regression.

Now we are ready to calculate (6). The commands are:

.generate lambda0 = (-normden(cutoffl-zhat))/(norm(cutoffl-zhat)-norm(-zhat))




.generate lambdal = (normden(cutoffl-zhat)-normden(cutoff2-zhat))/(norm(cutoff2-
zhat)-norm(cutoffl-zhat))

.generate lambda2 = (normden(cutoff2-zhat)-normden(cutoff3-zhat))/(norm(cutoff3-
zhat)-norm(cutoff2-zhat))

.generate lambda3 = (normden(cutoff3-zhat)-normden(cutoff4-zhat))/(norm(cutoff4-
zhat)-norm(cutoff3-zhat))

.generate lambda4 = (hormden(cutoff4-zhat)-normden(cutoff5-zhat))/(norm(cutoffs-
zhat)-norm(cutoff4-zhat))

.generate lambda5 = (normden(cutoff5-zhat)-normden(cutoff6-zhat))/(norm(cutoffé-
zhat)-norm(cutoff5-zhat))

.generate lambda6 = (hormden(cutoff6-zhat))/(1-norm(cutoff6)-norm(cutoff5-zhat))

.generate lambda = m170*lambda0 + m171a*lambdal + m172a*lambda2 +
ml71b*lambda3 + m172b*lambda4 + m221a*lambda5+m221b*lambda6

One thing to notice in these calculations is that cutoff0 is assumed to be - oo and cutoff7
is assumed to be oo.



Figure 2.34.






The probability distribution of math class category for individual 2.

10. Now we are ready to estimate our regression explaining the grade that each
individual received in intermediate microeconomics. Use Table 8 to report the regression
results for four specifications of the model. The first question is can the null hypothesis of
sample selection bias be rejected? How does this conclusion compare with BFS's
conclusions? (See Table 9.) Second, since many of the potential explanatory variables like
class size and scores on the SATs do not seem to be statistically significant, it is
reasonable to focus our comments on the results reported in column (4) of Table 8.

What can you conclude about the impact of calculus on how well a student will do in
intermediate microeconomics? Do the final grades earned in a majority of the math
classes impact the grade earned in intermediate microeconomics? Do the grades earned
in any of the math classes positively and significantly affect the grade earned in
intermediate microeconomics? Can you explain the impact of the freshman GPA on the
grade earned in intermediate microeconomics? What, if any, is your bottom line
conclusions about what matters in determining the grades earned in intermediate
microeconomics?



Explanatory variables

Model (1)

Model (2)

Model (3)

Model (4)

Lambda

Sophomore

Senior

Same

Skip

M171a




M172a

M171b

M172b

M221a

M221b

GE100

GDE100




GE101

GDE101

GDE231

Size

FGPA

Female




MSAT

VSAT

Grade in highest Math

class

GM170

GM171a

GM172a

GM171b




GM172b

GM221a

GM221b

Intercept

F( 28, 580)

Prob > F

F( 27, 581)

Prob > F




F( 20, 588)

Prob > F

F( 19, 589)

Prob > F

R-Squared

Root MSE

Sample Size

609

609

609

609

Table 2.37. Determinants of Final Grade in Intermediate Microeconomics.

Robust t-ratios are in parentheses.

MICRO-2

Variable®

Expected sign

Mean (SD)

Coefficient(t-value)

Intercept

-1.64




(3.48)

Selection bias correction -0.00 0.10
(Predicted residual) (0.92) (1.29)
Level of calculus attained:
Math 171A 0.08 0.39
(0.27) (1.04)
Math 172A 0.02 -0.18
(0.13) (0.21)
Math 1718 0.37 1.02°
(0.48) (3.49)
Math 1728 0.07 1.52°
(0.25) (3.53)
Math 221A 0.05 1.33°




(0.22) (2.27)

Math 221B or 222 + 0.14) 0.75°
(0.35 (1.67)

Grade in last calculus course:

Math 170 + 3.06 0.36°
(0.70) (4.36)

Math 171A + 2.22 0.26°

(0.86) (2.21)

Math 172A + 2.94 0.42
(0.80) (1.54)
Math 171B + 2.62 0.10°

(0.93) (1.85)

Math 172B + 2.63 -0.01




(0.90) (0.10)
Math 221A 3.10 -0.09
(0.77) (0.55)
Math 221B or 222 3.15 0.11
(0.76) (1.04)
termediate theory R
course (0.27) (8.28)
Taken in Sophomore year 0.32 0.07
(0.47) (0.94)
Taken in Senior year 0.06 -0.02
(0.24) (0.13)
MICRO-1 and MICRO-2 in same 0.35 0.04

academic year




(0.48) (0.46)
,:;I::e:;t_ f:ﬁ ;emester between 0.27 0.13
MICRO-2 (0.44) (1.85)
Grade in MACRO-1 2.73 0.20°
(0.73) (3.93)
Grade in MICRO-1 2.67 0.29°
(0.74) (5.93)
Instructor's grade deflator:
MACRO-1 -0.32 -0.33°
(0.20) (2.20)
MICRO-1 -0.29 -0.11
(0.16) (0.53)




Class size (intermediate theory course) |? 28.2 -0.002
(5.5) (0.45)
Freshman Grade Point Average 2.79 0.29°
(0.46) (3.04)
Sex (female = 1; male = 0) 0.39 0.13¢
(0.49) (2.09)
SAT-Math score x 10” 6.25 0.12°
(0.60) (1.75)
SAT-Verbal score x 10” 5.56 0.04
(0.67) (0.78)

OVERALL RESULTS

Mean (SD) of dependent variable




Adjusted R? 0.44

Number of observations 609

Table 2.38. Results reported in BFS (p. 195).

® Omitted reference groups in MICRO-2 regression: attained Math 170; took MICRO-2 in
Junior year; took MICRO-1 in spring, MICRO-2 next fall. b Significant at 0.01 level, one- or
two-tailed test as appropriate.  Significant at 0.05 level, one- or two-tailed test as
appropriate.

Exercises
Exercise 2.6.1.

Quite often health professionals request that a patient a report their perception of their
health status on a scale of 0 to 10, where 0 is the lowest possible health status and 10 is
the highest health status. This type of data set is best analyzed using ordered probit. In
this exercise you will analyze a data set of responses to a survey made in Germany
between 1984 and 1995. The question we are interested in analyzing is the respondent’s
perception of their own health status.




The file Riphahn, Wambach, Million data.xls is an MS Excel file that contains 27,326
observations on 25 variables, one observation per line. The data are from Riphahn,
Wambach, and Million (2003) and are also available on the web. The variables are
defined in Table 10. As a first step you will need to load these data into Stata. However,
due to the large sample size you will need to first expand the size of the memory that is
available to Stata with the command: . set memory 1G. Here | have increased the
memory to 1 gigabyte. This amount may be overkill but it seemed to be big enough on my
computer to handle the data.

Column | Variable |Variable definition

HSAT health satisfaction, coded 0 (low) - 10 (high)

A ID individual's ID number

B Female |[female=1;male=0

C Year calendar year of the observation
D Age age in years

E

F

Handdum | handicapped = 1; otherwise =0



m34552/Riphahn,%20Wambach,%20Million%20data.xls
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/

G Handper |degree of handicap in percent (0 - 100)

HhnINC | household nominal monthly net income in German marks / 1000
| HHKIDS |children under age 16 in the household = 1; otherwise =0
J Educ years of schooling
K Married |married =1; otherwise =0
L Haupts highest schooling degree is Hauptschul degree = 1; otherwise =0
M Reals highest schooling degree is Realschul degree = 1; otherwise =0
N FachHS | highest schooling degree is Polytechnical degree = 1; otherwise =0
o Abitur highest schooling degree is Abitur = 1; otherwise =0
P Univ highest schooling degree is university degree = 1; otherwise =0
Q Working |employed = 1; otherwise =0
R BlueC blue collar employee = 1; otherwise =0
S WhiteC |white collar employee = 1; otherwise =0




T Self self employed = 1; otherwise =0

U Beamt civil servant = 1; otherwise =0

\" DocVis number of doctor visits in last three months

w HospVis |number of hospital visits in last calendar year

X Public insured in public health insurance = 1; otherwise =0
Y Addon insured by add-on insurance = 1; otherwise =0

Table 2.39. Variables in the German Socioeconomic Panel Data Set.

Figure 2.35.







Distribution of responses on health status.

One of the major problems with survey indices is that the numbers seem to mean
different things to respondents. One way to reduce this problem is to collapse the index
into fewer outcomes by combining some of the responses together. However, anyway we
do this is going to be ad hoc. Figure 6 shows a histogram of the responses to this
guestion. Based on this graph, we will create 5 categories—(0) HSat =0, 1, or 2; (1) HSat =
3,4 0r5;(2) HSat =6, 7, or 8; (3) HSat = 9; and (4) HSat = 10. We can create a new
categorical variable called hsatnew with the command:

. recode hsat (0/2=0) (3/5=1) (6/8 =2) (9 = 3) (10 = 4), generate(hsatnew)

Figure 7 shows the histogram of the new variable.

Figure 2.36.






The collapsed distribution of health status responses.

. Create a table of summary statistics for (1) health status, (2) age, (3) household
income, (4) years of education, (5) marital status, and (6) number of children by year
and sex. (You might want to use the command .bysort year female, list of variables).

. Estimate an ordered probit regression for 1988 for health status (the new variable)
using age, income, education, married, and kids as the explanatory variables. Here you
might want to used the command: .oprobit hsatnew age hninc educ married hhkids if
year==1988.

. Use the predict newvariable, xb command to calculate the predicted mean values for
each individual for the 1988 observations. Compare this histogram to one using the
1988 regression parameters to estimate xb for all years.

. Estimate the ordered probit model for all of the years in the sample and put the
results into a table like Table 11. (Here you might want to make use of the command:
.bysort year: oprobit hsatnew varlist)


m34552/Tables%20for%20ordered%20probit%20discussion.doc

Variable

1984

1985

1986

1987

1988

1991

1994

age

income

education

married

kids

_cutl

_cut2

_cut3

_cut4d

Observations

LR x*(5)

Prob > x*




Log likelihood

Pseudo-R?

Table 2.40. Sample table for part (d) of Exercise 1.

t-ratios are in parentheses.
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1 For a full discussion of this model see Ladd, G. W. (1966) “Linear Probability Functions
and Discriminant Functions,” Econometrica 34: 873-888.

Bl The assumption that the variance is equal to 1 is due to technical considerations. See
[Cramer, 22].

AE—J.I’

—u)z A=Z 1814
0 The pdf of a logistic distribution is , Where v . See
Cramer, 24-26 for a fuller discussion of the logistic distribution.

flx)=

(I-I-E

[l gee Stata Library, Categorical and Count Data Analysis Utilities for useful utilities and
an excellent discussion of how to interpret categorical and count regression results at
http://www.ats.ucla.edu/stat/stata/library/longutil.htm/ (accessed July 19, 2009).



2l The phrase “(Assumption: . nested in full)” tells you the name of the regression is the
unrestricted model (full) and offers you a hyperlink to call this regression up to the
screen.

Bl The gradient is a vector of first-derivatives. In this case it is a vector of the first-

M
(i.e., b ,-)
derivatives with respect to each parameter estimate To obtain the ML
estimate, we have to set these first-derivatives equal to zero.

[ gee StataCorp [2003:119-130] for more detail on this command.

[1511£ the OLS parameter estimates are unbiased but the standard error estimates are,
then applying the Cochran-Orcutt adjustment should change the estimates of the
standard errors without changing the estimates of the equation parameters substantially.

~

g,~0,0
81 That is, we assume ' (
fee )

), where the distribution is not specified, and

foralli#j.



(171 These methods make use of the mathematics of difference equations. See advanced
texts like Enders (1995: pp. 68-77) for examples of the derivation of the conditions
necessary for an ARMA(p, q) time-series to be stationary.

51 AR(1) is the same as ARMA(1, 0)
(291 This set of graphs is from Enders (2005: p. 79).

201 ARIMA means AutoRegressive Integrated Moving Average. See Enders (2005: 67) for a
discussion of what integrated means. We can ignore it given our limited purposes.

21 Another way to think about this point is to remember that, unlike the fixed-effects
model, the random-effects does not use dummy variables to summarized the unknown
characteristics; thus, there is no problem with multicollinearity.

[22l5ee Cameron and Trivedi (2005: 705] for a detailed discussion of the random-effects
estimator.

[23] R-squared is in quotes in this line because these R-squareds do not have all the
properties of OLS R-squareds.



221 gecause the mean and variance of the standard normal distribution are 0 and 1,
respectively, its probability density function (pdf) is and the cumulative probability
function is .

2 . . . . . . . .
231 A stochastic variable is a random variable—i.e., a variable whose value is determined
as a result of a process involving an uncertain outcome.

28] Greene suggested this example in 1990 when most people paid their bills with checks.
Currently it would not be such a good example because of the development of electronic
payment of bills.

2711 these notes I discuss only what is known in the literature as the order condition for
identification. The order condition is necessary for identification. Another condition—the
rank condition—is a sufficient condition. See Greene (1990: Chapter 19, especially pp.
600-609) for a fuller discussion of simultaneous-equation models and the identification
problem.

[28] Using one of the exogenous variables in an equation as an instrument will create
perfect multicollinearity in the first stage regression.



[22l\we exclude Equation (15) from this discussion because it is under-identified and, thus,
cannot be estimated.

BYThe advantage of the ivreg command is that it allows you to estimate a single equation
of a system of equations without fully specifying the equations in the rest of the model.
Use the command reg3 if you want to specify the whole model or use Three-Stage Least
Squares.

Bl The description of the command “ivreg depvar [varlist1] (varlist2=varlist_iv)” in the
Stata help file is “ivreg fits a linear regression model using instrumental variables (or two-
stage least squares) of depvar on varlistl and varlist2 using varlist_iv (along with varlistl)
as instruments for varlist2. In the language of two-stage least squares, varlistl and
varlist_iv are the exogenous variables and varlist2 the endogenous variables.”

B2 The model and data for this problem first appeared in Maddala, G. S. (1988)
Introductory Econometrics (New York: Macmillan Publishing Company): 331-317.

B315ee Berndt, Ernst R. (1991) The Practice of Econometrics (Reading, MA: Addison-
Wesley Publishing Company): 375-380.



B4 Butler, J. S., T. Aldrich Finegan, and John J. Siegfried (1998). Does more calculus
improve student learning in Intermediate Micro- and Macroeconomic Theory? Journal of
Applied Econometrics 13(2):185-202.

31 This particular notation implies that there are k - 1 explanatory variables.
Bélsee Greene (1990): 704.

B one way to make the conversion from the Stata output to the neater table relatively
easily is to follow these steps: (1) replace each double space by a single space until there
were none left; (2) replace each space with a tab (*t); (3) convert the material into a table
using the "Insert/Table" command with a tab as the separator; and (4) clean up the table
by moving the data into an Excel file, fixing the formatting, and returning the data to the
Word file (alternatively, you can use formatting commands in Stata to control how the
output appears).



Chapter 2. Advanced topics in econometrics

2.1. Logit and Probit Regressions-

Logit and Probit models

Introduction

Consider a model that “explains” whether a wife enters the work force. It is straight forward to think of potential explanatory
variables—her potential wage rate, the income of her partner, the number of children under the age of 6 in the household, and the
number of children in the household between the ages of 6 and 18 are candidates to be independent variables used to explain the
wife’s decision to enter the labor force. The dependent variable, Y, however, is a dummy variable because the wife chooses either
to enter the labor force ( Y = 1) or not to enter the labor force ( Y =0 ). An OLS model of the form:

(21)Y;=B8,+68 1x;+¢€;

does not make sense. Figure 1 shows what the data of this model might look like when graphed against one of the explanatory
variables. Figure 1 also includes the regression line that an OLS estimation of (1) will yield. It is easy to see one problem with this
approach—the predicted values of Y that can be greater than 1 and less than 0. In addition, special properties must be attributed to
the error term and it is the simple properties ascribed to the error term that make the OLS model so attractive.™”

Figure 2.1. Linear regression line for a discrete dependent variable
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Income af partner

The linear regression line can be a poor representation of a discrete dependent variable.

The logit model

There does exist another approach to the modeling problem—assume that the dependent variable is the probability that the wife is

in the labor force. For instance we might assume that we have a linear probability model of the form Prixp=po+prxi+ & This
model can be estimated reasonably successfully if the observed frequencies are well away from their bounds of 0 and 1. However,
is more appealing to assume that the probability varies monotonically with x and remains within the bounds of [0,1], as shown in
Figure 2. This S-shaped curve is known as the sigmoid curve and can be represented algebraically for some variable z by:

Pr(z)=—¢
e Il +e*

Figure 2.2. The signoid function.
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The signoid function forces the dependent variable to be between 0 and 1.

P(z)

| —Prg=1-—¢ 1
We can simplify our analysis by using a bit of algebra. First, the inverse probability is L +e L 4+ ¢* Thus,
(2.2)
et
Priz) 4.2 — g?
I —Priz) — L~ "~
|l +e=

P \_.
T—pio)="
Taking the natural logarithm of (2) gives “

variables) gives the logit model:

Assuming that z is a linear function of x (and, more generally, of other

(2.3)



m(%)z Bo+ Bix;+ €,

We can estimate the parameters of this model using maximum likelihood methods. In the probit model the error term is assumed to
be normally distributed with a mean of zero and a unit variance.” In the logit model the error term is assumed to have a
standardized logistic distribution. This distribution has a mean of 0 and a variance of 1 and is very similar to a normal distribution
with the same mean and variance.” While the choice of which model to use generally is personal, it should be noted that the ratio
of the parameter of a logit model to the parameter of a probit model (using the same data set) usually varies between 1.6 and 2.0.
We focus on the logit model in the balance of this discussion.

Interpretation of the logit model parameters

The interpretation of the economic meaning of the parameter values in a logit model is not very obvious.* One simple, but not
often used, interpretation comes from taking the first-derivative of (3) with respect to x:

(2.4)
dln(oddsY =
dx

In(oddsY =1) = fo+ f, x + £= V=g,

Thus, in the labor force participation model one interpretation is that 8 , is equal to the change in the natural logarithm of the odds
that the wife is in the labor force due to a one unit change in the independent variable x. This interpretation is both awkward and
not really economically informative.

Stata offers two command for estimating a logit regression—logit and logistic. The logit command returns the parameter estimates
as shown in (3). The logistic command returns the odds ratio rather than the parameter estimates. The odds ratio is equal to e 6..
Thus, one can go from the odds ratio reported by the logistic command to the parameter estimates merely by taking the natural
logarithm of the odds ratio. The interpretation of the odds ratio is straightforward. For example, assume that y = 1 means that the
birth weight of an individual is less than 2,500 grams and y = 0 means that the birth weight is greater than 2,500 grams. A logit
parameter estimate of -0.27 is equivalent to an odds ratio of 0.97 (i.e., e “%* = 0.97 ). An odds ratio of 0.97 means that odds of a
baby being underweight are 0.97 times those of the odds of a baby being of normal weight. To see what is being said re-write (2.3)
as:
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pfl:;.l';l _ f}'{] + f}'l x+¢
[ —Pr(x) ¢ '

A one unit change in x implies that:

Prix+1)  fo+fx+1+e
| =Pr(ix+1)
or
pfl:;.l' —+ 1:| . f}'{] +,|'r}"l X4 & f}'l
[ —Pr(x+1) " ¢
or

Prix+1) Eﬁl ( Pr(x) )
| = Prix+1) 1 —Prix)/
5 1
Thus, ¢ is equal to the percent change in the odds that y equals 1 (a baby is born underweight) due to a one unit change in x.

7]
The logistic command reports ¢ while the logit command reports Bt Because of the ease of interpretation of the odds ratio,
Stata argues that the logistic command is the proper one to use.

Elasticities

Another route to follow is to try to find something that can be interpreted as an elasticity. Elasticities are important enough topic in
economics for us to discuss them here in some detail. The reason they are so attractive to economists is that they have no units and,
thus, can be compared across different commodities. For instance, it is quite reasonable to compare the demand elasticity for
apples with the demand elasticity for pearl necklaces in spite of the fact that the units of measuring apples and necklaces are
different. There are a few important ways that elasticities appear in regressions.



Linear regression elasticities

In a linear regression of the form (ignoring the subscripts and the error term)
Y=6,+6,x,
we would calculate the elasticity of Y with respect to x to be

}F}’_r:%: ﬁl 'f%

Clearly, researchers need to choose the levels of Y and x at which to report this elasticity; it is traditional to calculate the elasticity at
the means. Thus, economists typically report

Hyx = ﬁl =;,

Constant elasticities

Consider the following demand equation:

(2.5)g=apfe”,
where g is the quantity demanded, p is the price the good is sold at, a,8 > 0, and € is an error term. The price elasticity of demand is
given by

0 -1 &
}?quﬁﬂgz I}ﬁ l{—ﬂap g F"L): - p.

ap e’

In other words, this demand curve has a constant price elasticity of demand equal to — 8. Moreover, we can convert the estimation
of this equation into a linear regression by taking the natural logarithm of both sides of (5) to get Ing = Ina - BIlnp + &.

The logit equation and the quasi-elasticity




It is not appropriate to use the normal formula for an elasticity with (3) because the dependent variable is itself a number without
units between 0 and 1. As an alternative it makes more sense to calculate the quasi-elasticity, which is defined as:

(2.6)

dPr(x)
dx

mx)=x
Since

Pr(x;) \_ o
m(m)_ﬁﬂ + 5 x;+ €,

we can calculate this elasticity as follows:

Prix;)
o(inf )

P =p,.

Focusing on the left-hand-side, we get:

 \dPr(x)) L APr(x;)
| — Pr(x;) (1 — Per,-J) r;[:i -+ Pr{x;)- :i[:
Pr(x;) (1 = Pr(x;))?

=P

or

| dPrix;)
Prix;)(l —Prx;)) dx

P

or

(2.7)



o0Pn(x;)
ox

B Prix )l = Pr(x;)).

Thus, we see from (6) that the quasi-elasticity is given by:

(2.8)
nix;) = 1{:"1 X I,-Pl‘lz_‘{'l,-j(l - Pn:xf'.:l)'

The quasi-elasticity measures the percentage point change in the probability due to a 1 percent increase of x. Notice that it is
dependent on what value of x it is evaluated at. It is usual to evaluate (8) at the mean of x. Thus, the quasi-elasticity at the mean of
Xis:

nx)=p, xPr(x)(1 — Pr(x)),
where

Po+ P 1%

Prix) = , —
W 1+.5fm:'+“{”'1r

Hypothesis testing

The researcher using the logit model (and any regression estimated by ML) has three choices when constructing tests of hypotheses
about the unknown parameter estimates—(1) the Wald test statistic, (2) the likelihood ratio test, or (3) the Lagrange Multiplier test.
We consider them in turn.

The Wald test

The Wald test is the most commonly used test in econometric models. Indeed, it is the one that most statistics students learn in
their introductory courses. Consider the following hypothesis test:

(2.9)



Ho:p1=p
H, f, 25

Quite often in these test researchers are interested in the case when 8 = 0 —i.e., in testing if the independent variable’s estimated
parameter is statistically different from zero. However, 8 can be any value. Moreover, this test can be used to test multiple
restrictions on the slope parameters for multiple independent variables. In the case of a hypothesis test on a single parameter, the
t-ratio is the appropriate test statistic. The t-statistic is given by

B i—p

t=——
sa( p ,-) -kl

where k is the number of parameters in the mode that are estimated. The F-statistic is the appropriate test statistic when the null

hypothesis has restrictions on multiple parameters. See Cameron and Trivedi (2005: 224-231) for more detail on this test. According

to Hauck and Donner (1977) the Wald test may exhibit perverse behavior when the sample size is small. For this reason this test

must be used with some care.

The likelihood ratio test

The likelihood ratio test is based on a comparison of the maximum log of likelihood function for the unrestricted model with the
maximum log of likelihood function for the model with the restrictions implied by the null hypothesis. Consider the null hypothesis
given in (9). Let L( 8 ) be the value of the likelihood function when 8 ; be the value of the likelihood function when is restricted to

Ll p
being equal to 8 and ( f l)
appropriate test statistic is

be the value of the likelihood function when there is no restriction on the value of 8. Then the

LR= —2InL{p)~1nL( f )}

The likelihood ratio statistic has the Chi-square distribution x > ( r ), where r is the number of restrictions. Thus, using a likelihood
ratio test involves two estimations—one with no restrictions on the model and one with the restrictions implied by null hypothesis.
Since the likelihood ratio test does not appear to exhibit perverse behavior with small sample sizes, it is an attractive test. Thus, we
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will run through an example of how to execute the test using Stata. The example we are using is from the Stata manual, volume 2,
pp. 353-355.

Example 2.1. Underweight births.

In this model we estimate a model that explains the likelihood that a child will be born with a weight under 2,500 grams (low). The
eight explanatory variables used in the model are listed in Table 1. The model to be estimated is:

(2.10)

FLLOW) _ . i ) | |
1“[1 ~“PrLow) J—ﬂl Age + > Lwt + fyRaceB + p,RaceO

+psSmoke + o Ptl + 7 Ht + g Ui + e.

Also, we want to test the null hypothesis that the coefficients on Age, Lwt, Ptl, and Ht are all zero. The first step is to estimate the
unrestricted regression using the command:

. logistic low age Iwt raceb raceo smoke ptl ht ui

Variable name | Definition

Age Age of mother

Lwt Weight at last menstrual period

RaceB Dummy variable =1 if mother is black; 0 otherwise

RaceO Dummy variable = 1 if mother in neither white or black; 0 otherwise
Smoke Dummy variable = 1 if mother smoked during pregnancy; 0 otherwise

Ptl Number of times mother had premature labor

Ht Dummy variable = 1 if mother has a history of hypertension; 0 otherwise




Ui Dummy variable = 1 there is presence in mother of uterine irritability; 0 otherwise

Ftv Number of visits to physician during first trimester

Table 2.1. Definition of the explanatory variables.

The results of this estimation are shown in column 2 of Table 2. Next we save the results of this regression with the command:
. estimates store full

where “full” is the name that we will refer to when we want to recall the estimation results from this regression. Now we estimate
the logistic regression with the omitting the variables whose parameters are to be restricted to being equal to zero:

. logistic low raceb raceo smoke ui
The results of this estimation are reported in column 3 of Table 2. Finally we run the likelihood ratio test with the command:
. Irtest full .

Notice that we refer to the first regression with the word “full” and to the second regression with the second period. The results of
this command are as follows:

Likelihood-ratio test LR chi2(4) = 14.42
(Assumption: . nested in full) Prob > chi2 = 0.0061

The interpretation of these results is that the omitted variables are statistically significant at the 0.6 percent level.*2

Explanatory variable Unrestricted model | Restricted model
Age of mother -0.9732636 -

(-0.74)
Weight at last menstrual period -0.9849634 —




(-2.19)

Dummy variable =1 if mother is black; 0 otherwise 3.534767 3.052746
(2.40) (2.27)
Dummy variable = 1 if mother in neither white or black; 0 otherwise 2.368079 2.922593
(1.96) (2.64)
Dummy variable = 1 if mother smoked during pregnancy; 0 otherwise 2.517698 2.945742
(2.30) (2.89)
Number of times mother had premature labor 1.719161 -
(1.56)
Dummy variable = 1 if mother has a history of hypertension; 0 otherwise 6.249602 —_
(2.64)
Dummy variable = 1 if there is presence in mother of uterine irritability; 0 otherwise | 2.1351 2.419131
(1.65) (2.04)
Log likelihood -100.724 -107.93404
Number of observations 189 189
pseudo-R’ 0.1416 0.0801

Table 2.2. Estimation results for (2.10).

Note: Parameter estimates are odds ratios; z statistics are shown in parentheses.




The Lagrange multiplier test

The intuition behind the Lagrange multiplier (LM) test (or score test) is that the gradient of the log of the likelihood function is equal
to zero at the maximum of the likelihood function.” If the null hypothesis in (2.9) is correct, then maximizing the log of the
likelihood function for the restricted model is equivalent to maximizing the log of the likelihood function with the constraint
specified by the null hypothesis. The LM test measures how close the Lagrangian multipliers of this constrained maximization
problem are to zero—the closer they are to zero, the more likely that the null hypothesis can be rejected.

Economists generally do not make use of the LM test because the test is complicated to compute and the LR test is a reasonable
alternative. Thus, as a practical matter the Wald test and the LR test are reasonable alternative test statistics to use to test most
linear restrictions on the parameters. Moreover, since the calculations are relatively easy, it may make sense to calculate both test
statistics to be sure they produce consistent conclusions. However, when the sample size is small, the LM test probably is preferred.

Goodness-of-fit measures

The standard measure of goodness-of-fit in the linear OLS regression model is R > . No such measure exists for non-linear models like
the logit model. Several potential alternatives have been developed in the literature and are known collectively as pseudo-R*. Many
of these measures are discussed in McFadden (1974), Amemiya (1981), and Maddala (1983). In case any reader really cares about
the pseudo-- R 2, a practical approach is to report the value that the computer program reports.

One addition measure of goodness-of-fit is a measure called percentage correctly predicted. This variable is computed in one of
several ways. One way is to use the observed values of the independent variable to forecast the probability the dependent variable
equal one. Then, if the predicted probability is above some critical value, you assume that the predicted value of the dependent
value is one. If it is below this value, you assume the predicted value of the dependent variable is zero. Then you construct a table
that compares the predicted values of the dependent variable with the actual value of the dependent as shown in Table 3.

Predicted

~ )
I

Actual Y =0




Table 2.3. Percent correctly predicted.

The percentage correctly predicted is equal to the sum of the diagonal elements, that is, n oo+ n 1;, over the sample size. The main
problem with this measure is that the choice of the cutoff point is arbitrary. Traditionally, a cutoff point used has been 0.5.
However, there is no reason why this cutoff is the appropriate one. Cramer (2003, 67) suggests that a more appropriate cutoff point

nip+np

is the sample frequency—that is, 700 77201 T 7110 T 11" The hottom line is that the uncertainty about the proper choice of cutoff
point is a major problem with using the percentage correctly predicted as a measure of goodness-of-fit.

Additional notes on binary variable models

One of the key choices in the various binary variable models involves the cumulative distribution function. The Table 4 shows the
four commonly used binary outcome models along with the cumulative distribution functions:

dp

Model Probability density function | Cumulative distribution function Jx:

Marginal effects, /

i x’ﬁ (-t | (e g1
Logit Logistic Alx’ Iﬂzﬁ—w AR BiL = Alx"BIB ;
|l +e
x'p w

Probit Normal* D(x’ ﬂ):f dix’ Plix P’ BIp ;
Linear probability Flx'B)=x'p 8;




Complementary log-log Cix' Bl=1— ﬁ_fx p f_fx p exl ﬁﬁ

Table 2.4. Commonly used binary outcome models.

* (- ) is the probability density function (pdf) of the normal distribution.

The logit, probit, and complementary log-log models are symmetric around zero and restrict 0 < p < 1. The linear does not impose
either of these restrictions. Use of the complementary log-log regression sometimes is recommended when the sample is skewed
such that there is a high proportion of ones and zeros. In general, economists use either the logit or probit models a majority of the
time. Interestingly, there is no need to use robust estimation techniques for the logit and probit models if they are correctly
specified. If use of the vce(robust) option produces substantially different parameter estimates than the estimates without the
robust option, then it is likely that the models are misspecified. The linear model is inherently heteroskedastistic, implying that the
vce(robust) option should be used.

The parameter estimates are comparable across the first three models in Table 4. In particular,
1 !{j Logt ~4 ﬂ Linear
2. ﬁ Probit ~ 2.5 ﬁ Linear and

3. P rogit® 1.6 F 1ot

Example 2.2. Supplementary health insurance coverage.

These data come from wave 5 (2002) of the Health and Retirement Study (HRS), a panel survey sponsored by the National Institute
of Aging. The sample is restricted to Medicare beneficiaries; there are 3,206 observations. The elderly can obtain supplementary
insurance coverage either by purchasing it themselves or by joining employer-sponsored plans. The data is in the file Example.xls.
The variables included are listed in Table ?.




Variable

Definition

Binary variables

(ins = 1 if individual has purchased supplementary insurance from any source

retire =1 if individual is retired

hstatusg = 1 if individual assess his/her health status either as good, very good, or excellent
married =1 if married

hisp = 1 if hispanic

female =1 if female

white =1 if white

sretire = 1if a retired spouse is present in household

Continuous variables

age Age of individual in years

hhincome Household income

educyear Years of education

chronic Total number of chronic conditions

adl Number of limitations on daily activity (up to 5)

Stata commands

Table 2.5. Definition of the variables used in Example 2.




Place the data into the editor and then create a list of the independent variables. Now create a new variable equal to the log of
income:

.generate linc = In(hhinc)

[notice that 9 observations are eliminated.]

Create list of "extra" variables in order to shorten future commands:

. global extralist linc female white chronic adl sretire

Summarize the variables in order to check for obvious typos (output is suppressed):
.summarize ins retire Sxlist Sextralist

Estimate logit regression (output is shown in Figure 3):

Jogit ins retire $xlist

Figure 2.3. Stata regression output.




Iteration 0O: log likelihood = -2139.7712
Iteration 1: log likelihood = -1996.7434
Iteration 2: log likelihood = -1994.8864
Tteration 3: log likelihood = -1994.8784
Iteration 4: log likelihood = -1994.8784
Logistic regression Number of obs - 3206
LR chi2(7) = 289.79
Prob > chi2 = 0.0000
Log likelihood = -1994.8784 Pseudo R2 = 0.0677
ins | Coef Std. Err. z P>iz| [95% Conf. Interval]
————————————— *----——-—————————‘—-——--w— —————— - —— -, -~ - ————— ", . — ———— .~
retire | .1969297 .0842067 2.34 0.019 .0318875 .3619718
age | =.01459855 .0112871 -1.29 0.196 -.0367178 .0075267
hstatusg | .3122654 .0916739 3.41 0.001 .1325878 .491943
hhincome | .0023036 - .000762 3.02 0.003 .00081 .0037972
educyear | .1142626 .0142012 8.05 0.000 .0864288 -1420963
married | .578636 .0933198 6.20 0.000 .3957327 .7615394
hisp | =.8103059 .1957522 ~-4.14 0.000 -1.193973 ~.4266387
_cona | ~1.715578 . 7486219 -2.29 0.022 -3.18285 -.2483064

Estimate and save results from several models (the Stata command "quietly" suppresses the output from the command):
. estimates store blogit

.quietly probit ins retire Sxlist

.estimates store bprobit

.quietly regress ins retire $xlist

.estimates store bols

.quietly logit ins retire Slist, vce(robust)

. estimates store blogitr

.quietly probit ins retire Sxlist, vce(robust)




.estimates store bprobitr

.quietly regress ins retire $xlist, vce(robust)
.estimates store bolsr

We can create table for comparing the models (output is suppressed):
.estimates table blogit blogitr bprobit bprobitr bols bolsr, t stats(N Il) b(%8.4f) stfmt(%8.2f)
We now test for the presence of interaction variables:
.generate age2 = age*age

.generate agefem = age*fem

.generate agewhite = age*white

.generate agechronic = age*chronic

.global intlist age2 agefem agewhite agechronic
.quietly logit ins retire Sxlist Sintlist

.test Sintlist

(1) [ins]lage2=0

(2) [ins]lagefem =0

( 3) [ins]agewhite =0

( 4) [ins]agechronic =0

chi2(4) = 7.45

Prob > chi2 = 0.1141

Likelihood ratio test

.quietly logit ins retire Sxlist Sintlist

.estimates store B




.quietly logit ins retire Sxlist
Artest B
Likelihood-ratio test LR chi2(4) = 7.57

(Assumption: . nested in B) Prob > chi2 = 0.1088

Comparison with using the logistic command:

. logistic ins retire Sxlist

The marginal effects at the mean will yield more useful results when the model is non-linear:

.quietly logit ins retire $xlist

.mfx

Let’s put the table comparing parameter estimates into a cleaned up table:

Logit Robust Logit | Probit | Robust Probit | OLS Robust OLS
Individual retired 0.1969 |0.1969 0.1184 |0.1184 0.0409 |0.0409
(2.34) (2.32) (2.31) (2.30) (2.24) [(2.24)
Age of individual -0.0146 |-0.0146 -0.0089 |-0.0089 -0.0029 |-0.0029
(-1.29) |(-1.29) (-1.29) |(-1.32) (-1.20) |[(-1.25)
Health status 0.3123 |0.3123 0.1977 |0.1977 0.0656 |0.0656
(3.41) (3.40) (3.56) (3.57) (3.37) [(3.45)
Household income 0.0023 |0.0023 0.0012 |0.0012 0.0005 |0.0005
(3.02) (2.01) (3.19) (2.21) (3.58) [(2.63)
Years of education 0.1143 |0.1143 0.0707 |0.0707 0.0234 |0.0234




(8.05) (7.96) (8.34) (8.33) (8.15) [(8.63)
Individual married 0.5786 |0.5786 0.3623 |0.3623 0.1235 |0.1235
(6.20) (6.15) (6.47) (6.16) (6.38) [(6.62)
Individual is an Hispanic -0.8103 |-0.8103 -0.4731 |-0.4731 -0.1210 |-0.1210
(-4.14) |(-4.18) (-4.28) |(-4.36) (-3.59) |[(-4.49)
Intercept -1.7156 |-1.7156 -1.0693 |-1.0693 0.1271 |0.1271
(-2.29) |(-2.36) (-2.33) |(-2.40) (0.79) [(0.83)
Sample size 3,206 3,206 3,206 3,206 3,206 3,206
Log of the likelihood function |-1994.88 | -1994.88 -1993.62 |-1993.62 -2104.75 |-2104.75

Table 2.6. Comparison of Logit, Probit and OLS regressions with Insurance as the dependent variable.

As a last exercise use the following commands to generate a graph of the predicted values:

. quietly logit ins hhincome

. predict plogit, pr

. quietly probit ins hhincome

. predict pprobit, pr

. quietly regress ins hhincome

. predict pols, xb

. summarize ins plogit pprobit pols

. sort hhincome

(t-ratio or z-values in parentheses.)




twoway (scatter ins hhincome, msize(vsmall)) (line plogit hhincome, Icolor(blue) Ipattern
> (solid)) (line pprobit hhincome, Icolor(red) Ipattern(tight_dot)) (line pols hhincome,
> |Icolor(green) Ipattern(longdash_shortdash)), ytitle(Predicted Probability) xtitle(Household income)

Note: save file as a .tif file if you want to insert the graph directly into a word file.

Exercises
Exercise 2.1.1.

The determinants of physician advice. Physicians are expected to give lifestyle advice as a part of their normal interaction with their
patients. Sometimes doctors choose not to comment on a patient’s lifestyle because they do not have time for personal comments,

they feel the advice will be unwelcome, they feel that lifestyle choices are not any business of the physician, they find the discussion
of lifestyle issues to be embarrassing, or they are not aware of the patient’s actual lifestyle choices. In this project we are interested
in understanding when physicians choose to give advice concerning the consumption of alcohol.

The MS Excel file ktdata contains the responses to the 1990 National Health Interview Survey core questionnaire and special
supplements from 2,467 males who were current drinkers in 1990. Individuals who are lifetime abstainers or who are former
drinkers who have not consumed any alcohol in the past year are excluded from the sample. Table 7 contains the names and
definitions of the variables collected in the survey.

Variable |Definition

Drinks Total number of drinks taken in the past two weeks

Advice Did your physician give you advice about alcohol consumption? Yes =1, No =0
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Income Monthly income in $1,000 (there are 5 missing values denoted by a “.”)

Age30 Dummy variable equal to 1 if 30 < Age < 40and 0 otherwise

Aged0 Dummy variable equal to 1 if 40 < Age < 50 and 0 otherwise

Age50 Dummy variable equal to 1 if 50 < Age < 60 and 0 otherwise

Age60 Dummy variable equal to 1 if 60 < Age < 70 and 0 otherwise

AgeGT70 |Dummy variable equal to 1 if individual’s age is greater than 70 and 0 otherwise

Educ Number of years of schooling (0 to 18)

Black Dummy variable equal to 1 if the individual is a black and 0 otherwise

Other Dummy variable equal to 1 if the individual is non-white and non-black and 0 otherwise
Married |Dummy variable equal to 1 if the individual is married and 0 otherwise

Widow Dummy variable equal to 1 if the individual is a widow and 0 otherwise

DivSep Dummy variable equal to 1 if the individual is either divorce or separated and 0 otherwise
Employed | Dummy variable equal to 1 if the individual is currently employed and 0 otherwise
Unemploy  Dummy variable equal to 1 if the individual is currently unemployed and 0 otherwise
NE Dummy variable equal to 1 if the individual lives in the Northeast US and 0 otherwise
MW Dummy variable equal to 1 if the individual lives in the Midwest US and 0 otherwise
South Dummy variable equal to 1 if the individual lives in the South and 0 otherwise
Medicare |Dummy variable equal to 1 if the individual receives Medicare and 0 otherwise
Medicaid |Dummy variable equal to 1 if the individual receives Medicaid and 0 otherwise

Champus

Dummy variable equal to 1 if the individual has military insurance and 0 otherwise




Hlthins Dummy variable equal to 1 if the individual has health insurance and 0 otherwise

RegMed |Dummy variable equal to 1 if the individual has a regular source of medical care and 0 otherwise

DRI Dummy variable equal to 1 if the individual sees the same doctor and 0 otherwise

MajorLim |Dummy variable equal to 1 if the individual has limits on major daily activity and 0 otherwise

SomelLim |Dummy variable equal to 1 if the individual has limits on some daily activity and 0 otherwise

Diabetes |Dummy variable equal to 1 if the individual has diabetes and 0 otherwise

Heart Dummy variable equal to 1 if the individual has a heart condition and 0 otherwise

Stroke Dummy variable equal to 1 if the individual has had a stroke and 0 otherwise

Table 2.7. Definition of the variables in the Excel worksheet ktdata.

1n(1 P ):ﬂﬂ + ) Bixi+e,

. . . - pP - . - . .
You are to estimate a logit regression of the form: ! where p is the probability that a patient received
advice about his level of consumption of alcohol and x ; are the explanatory variables.

Provide the following information:
1. Make a table of the means of all of the variables.

2. Offer an economic justification for the inclusion of each explanatory variable you use in your regression (including a prediction of
its expected sign).

3. Make a table reporting the results of the estimation of (1) an OLS linear estimation, (2) a probit estimation, and (3) a logit
estimation. Also include a column with the ratio of each of the logit parameters to the probit parameter. Do not use the
abbreviated name of the explanatory variables in the table.



4. Present a table of results of a logit model with all of the variables and with whatever other models you feel are suggested by
your empirical results. Discuss the results of the estimation and what the estimation tells you about how physicians decide
whether to give advice on alcohol consumption to their male patients.

Exercise 2.1.2.

The Supply of Married Women in the Workforce. We are interested in understanding the decision of married women to enter the
labor force. We have available two data sets, one using data from the United States and the other using data from Portugal. You are
to estimate a logit regression for married women for each of the two data sets.

Variable | Definition

Working | dummy variable = 1 if a married woman works during the year

Fulltime | dummy variable = 1 if a married woman works more than 1000 hours in a year

Other |the other household income in $100 (not in $1000)

Age age of the wife

Educ education years of the wife

C0005 |number of children for ages 0 to 5

C0613 |number of children for ages 6 to 13

C1417 |number of children for ages 14 to 17

NW 1 if non-white, and 0 otherwise.

HOwn |1 if the home is owned by the household, and 0 otherwise

HMort |1 if the home is on mortgage, and 0 otherwise

Prof 1 if the husband is manager or professional, and 0 otherwise




Sales 1 if the husband is sales worker or clerical or craftsman, and 0 otherwise

Farm 1 if the husband is farm-related worker

Unem |local unemployment rate in %

Table 2.8. US Data on Married Women.

Data Set 1: The data for this project are in the MS Excel file FLABOR. These data are observations on married females drawn from
the 1987 wave of Michigan Panel Study of Income Dynamics (PSID). The data set has observations for 3,382 individuals.

Data Set 2: These data are from Portugal. The data set is a sample from Portuguese Employment Survey, from the interview year
1991, and has been provided by the Portuguese National Institute of Statistics (INE). The data are in the Excel file Martins. This file is
organized into seven columns, corresponding to seven variables, with 2,339 observations.

Variable Definition

Works Dummy variable equal to 1 if the woman works, 0 otherwise
Child18 The number of children younger than 18 living in the family
Childo3 The number of children younger than 3 living in the family

Age The woman’s age

LogWomanWageRate The log of women's hourly wage rate (measured in escudos)
Education The women's educational level, measured in years of schooling
LogHusbandMonthlyWages | The log of the husband's monthly wage (measured in escudos)

Table 2.9. The Portuguese data set.


m34543/FLABOR.xls
m34543/Martins.xls

Answer the following questions:

1.

What factors other than wage levels determine the number of hours that a wife will spend in the work force? Remember to use
economic theory in answering this question.

. Clearly, one of the major factors in determining if a wife will enter the labor force is the wage level she can earn. The US data set

does not include the wife’s wage level. Is there any other variable in the data set that economic theory suggests will be a good
proxy for wage levels?

. The variable Age is a proxy for the work (or life) experience of a woman. We would expect that its effect on the probability that a

woman will enter the labor force will be non-linear—that is, its marginal impact will be positive and decreasing. This reasoning
suggests that you should use Age and Age® as explanatory variables. Can the same reasoning be used with the variable
Education? What are your expectations about the signs of the parameters of these two explanatory variables? The same
reasoning can be used about the number of years of education.

. Estimate and report in a table the following two logit regressions: (1) US women enter the labor force at all and (2) US women

enter the labor force for at least 1,000 hours if they enter the labor force,. In each of these cases, compare your results to a linear
model.

. The Portuguese data set has a different problem. We have reported the wage rate of women who are working, but no wage level

for women who are not working. We will get around this problem by first using the data for women who actually work to
estimate the relationship between wage rates and the age and education of the women. We will then use this relationship to
predict the wage rate for both women who do work and women who do not work. We will then use this predicted wage rate
data series as an independent variable in a logit model explaining the probability that a married woman will enter the labor
force. When completing the logit regression be sure that you separate all of the children in a family into those 3 and under and
those between 4 and 18. Also, include the years of education in this regression to see if a Portuguese married woman’s taste for
participation in the labor force increases or decreases with the level of her education.

. Is it reasonable to compare your results for the two countries?
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2.2. Analysis of time series-

Analysis of Time-Series

Introduction

This module offers a brief introduction of some of the issues that arise in the analysis of time-series. Most of the topics covered are
those that we attacked first by statisticians and economists. As such they do not demand the more sophisticated tools used by the
more modern approaches to time-series. In spite of these shortcomings, they should give you some understanding of the issues that
arise with the use of times-series in econometric analyses. One final note of explanation is necessary. These notes are designed to
give you a brief introduction to how Stata handles time-series data. These notes are not a substitute for reading the Stata manual,
completing a forecasting course, or reading standard texts on the rather complicated field.

Time-series analysis in Stata



apa.html#book.attribution.m34544

Throughout this module we work with US macroeconomic data included in the MS Excel file Macro data.xls. The variables are real
level of investments (RINV), real gross national product (RGNP), and real interest rate (RINTRATE). The real interest rate is
approximated by the difference between the nominal interest rate and the rate of change of the price index from the previous year.
The data are for the years 1963 to 1982. You can replicate the analysis done here by copying this data set into a Stata file.

The first step after entering the data set into Stata, is to declare that the data set is a time-series. The command to do this is:
. tsset year

The data set can be broken into any number of time periods including daily, weekly, monthly, quarterly, halfyearly, yearly and
. [14]
generic.”—

Assume that we want to estimate the following regression:
(211)RINV,=6,+8,RGNP,+8,RINTRATE ;,+¢,

using the data set in the appendix. Figure 1 shows this regression command and the resultant output.

Figure 2.4.

w variable: year, 1964 to 1982

. regress rinv rgnp rintrate

df M of ob: 19

F 2, 35.03

20746 .3449 2 10373.1724 0.0000
4738.62733 16 296.164208 - squares 0.8141

are 0.7908
25484.97222 18 1415.83179 Roo ISE 17.209

Coef . std. Err L P>it} 75 JO1 . Intervall
1691365 .0205665 .22 0.000 .1255375 .2127354

rintrate -1.001439 2.368749 .42 0.678 -6.022963 4.020085
con ~-12.5336 24.91527 -0.50 0.622 -65.35161 40.28441

. predict residO1, residuals

OLS estimates for Equation (1).
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On the surface the estimates seem “reasonable” because the signs on the two explanatory variables are what theory predicts they

should be and the parameter for real GNP is statistically different from zero. However, an examination of the residuals shown in
Figure 2 suggest that the error terms might exhibit autocorrelation.

Figure 2.5.
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The residuals appear to be autocorrelated.



There are several issues that arise here. First, what sort of models can we use to account for autocorrelation? Second, what sorts of
tests exist for detecting the existence of autocorrelation? We begin with the first of these questions by introducing the concept of
first-order autocorrelation. Consider the following model:

(212)y,=8,+8,x,:+€,.
We say that this model exhibits first-order autocorrelation if the error terms can be written as:
(2.13)e,=pes-1tuy,

Uy ~N(ﬂ, (52)- . T . . .
where Equation (3) implies that the error terms in (2) are correlated with each other. It is rather easy to show that,
while the estimates of the unknown parameters are unbiased, the estimates of the standard errors are biased—downward if 1 >p >
0 and upward if - 1 < p < 0. This conclusion holds as long as the source of the autocorrelation is due to (3). If, on the other hand, the
source of autocorrelation among the error terms in (2) is due to omitted explanatory variables (whose effects are absorbed in the

error term), we have a potentially more serious problem. In particular, if the omitted explanatory variables are correlated with the
included explanatory variables (as is often true in time-series), then the estimates of the unknown slope parameters are also biased.

For the moment we will assume that Equations (2) and (3) are true representations of the world. What then can we do to estimate
(2)? What we need to do is find a way to transform (2) so that the error term of whatever regression we estimate does not exhibit
autocorrelation. In time period t - 1 we have:

(214)y;.1=80+68 1 x;_1+E;_1.
Multiply (4) by p to get:
(2.15)py:-1=pBo+pPB X i 1+PE; 4.
Now subtracting (5) from (4) gives:
Vi=pYi—1=Po+ P+ e —(pPo+ phix,_ 1 +pe )

or, equivalently,



(ye=py,_ =Pl = p)+ P (x;—px,_ )+ (g, — pe,_ ).
Let

Yt*=YVi-1—=PYi-1,
Bo*=6o(1-p),

and

Remember that (3) implies that u ,= € ,-p £._,. Thus, we have:

(2.16) y *=68o*+68 1 x*+ 1y,

~N(0,57).
where P~ ( e ) Thus, we have a regression for which the OLS estimates will be BLUE (Best Linear Unbiased Estimator) if we

only knew the true value of p.

Cochran and Orcutt [1949] use this algebra to suggest one way to estimate (6). The estimation entails several steps. First, you use
OLS to estimate (2). Second, you estimate (3) using the residuals from the first stage to approximate € ,. This regression gives an
estimate of p. In the third step, you use the estimate of p to construct estimates of y .* and x .* . In the fourth step, you use the
estimates of y .* and x . * to estimate (6); this will yield new estimates of 8 ; and 8 ; . You then repeat step (2) using these new
estimates of 8 ; and 8 ; to calculate the residuals and then repeat with steps (3) and (4). You continue the process until the estimate
of p does not change anymore (i.e., until the change in the estimate of p is less than some value chosen by the researcher). There
are a multitude of alternative ways of estimating p. [See Greene (1990): Chapter 15 for a full discussion of these methods.] Once you
have an estimator for p, there exist two major ways of completing the estimation—the Cochran-Orcutt procedure described above
and the Prais-Winsten (1954) estimator. The latter estimation procedure does not involve dropping the first observation (as does
the Cochran-Orcutt) estimator. In large samples these two estimation techniques are likely to be very similar. In small samples the
two techniques may produce estimates that are substantially different.



We now turn to the issue of detecting the existence of autocorrelation. In what follows we focus mainly on the detection of first-
order autocorrelation as shown in Equation (3). We can use the Durbin-Watson test to see if our suspicions are correct. The Durbin-
Watson statistic tests the hypothesis:

(2.17)
Hy:p=0
H,:p#0

Figure 2.6.
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$ ? ST
Reject Hy Reject Hyp
— —
Uncertain Uncertain
Cannot reject Hy

Limiting distributions for the Durbin-Watson statistic.



The details of the test statistic can be found in any econometrics textbook and need not detain us here. What you need to know
about the DW-statistic are (1) it has a mean value of 2; (2) because its distribution lies between two limiting distributions, we need
to look at two critical values. For this reason there are two critical values—one for each of the limiting distributions. Figure 3
illustrates the probability distribution function (pdf) for the Durbin-Watson statistic. The true pdf lies somewhere between the blue
pdf and the red pdf. What is shown in the figure is the point below which, say, 5 percent of the distribution lies for each
distribution. The true critical point lies somewhere between d ; and d ;, These values are relevant to testing the null hypothesis of no
autocorrelation against the alternative hypothesis of positive autocorrelation (i.e.,p>0).

If d <d,, we can reject the null hypothesis of no autocorrelation; if d y<d <4 - d ;, we cannot reject the null hypothesis; and if d ; <
d <d y, the results of the test are uncertain. Moreover, since the distributions are symmetric around 2 and between 0 and 4, the
critical values for the alternative hypothesis of negative autocorrelation (i. e., p > 0 ) are 4 minus either the upper or lower critical

values, as shown in Figure 3. Critical values for the Durbin-Watson statistic can be found in the appendices of most econometric
textbooks.

Figure 2.7.

. dwstat

Durbin-VWatson d-statistic( < 19> 1.321513

Command for calculating the Durbin-Watson statistic in Stata.

The command for the test and the resultant DW-statistics for the estimate of Equation (2) are shown in Figure 4. The 5 percent level
critical values for the Durbin-Watson statistic for a sample size of 19 with two parameters (less the intercept) estimated are 1.074
and 1.536—if the observed value of the DW-statistic is between 1.536 and 2.464, we can accept the null hypothesis that the
residuals do not exhibit autocorrelation. Our value of 1.32 falls in the uncertain region where we are not sure if we can or cannot
reject the null hypothesis.



At this point we can try the Cochran-Orcutt estimate. Figure 5 reports the results of using the Cochran-Orcutt estimation procedure.
Notice that it took 7 iterations for the estimate of p to converge. If we use the Prais-Winsten estimation technique, we get the
results shown in Figure 6. It is reassuring to see that the two estimation techniques do not yield estimates of the standard errors
that are substantially different from each other.

Figure 2.8.

. prais rinv rgnp intrate, rhotypelregress) corc

rho 0.0000
rho 0.2107

rho 0.2252

}:  »rho 0.2269

eration 4: rho 0.22?1
) - :

2

Iteration O:
Iteration
Iteration 2:
Iteration

It
lteration ‘ho 0.22?1
*ho 0.2271
‘.lll\ 0.22?1

sration 6:

sation 7:

Cochrane-Urcutt ARC1) regress iterated

Source SS9 MS Number of 18
t Rt 2. 15) 18.15
Model 10357 .4785 5178.73926 Prob > 1| 0.0001

Residual 4279.22606 15 285.281737 R-squared 0.7076
| Ad); R-squared 0.6687
Total 14636 .7046 17 860.982623 Root MSI] 16 .89

Coeft . Std. Err. 1 it [95%2 Conf. Intervall
.1993993 .0481569 .0967553 .3020434
~-2.542984 3.062375 -9.070283 3.984314
-33.87903 144.57671 -128.892 61.13398

rho .22?1288

Durbin-Vatson statisti« (HrlqinJl‘ 1.430541
Durbhin-Watson statistic (transformed) 1.558176

Estimation of Equation (1) using the Cochran-Orcutt method.

Figure 2.9.



. prais rinv rgnp intrate, rhotypelregress)

rration OF rho .0000
2ration 1: rho .2107
sration 2: rho .2234
eyration 3: rho .2246
ration 4:- rho .2248
eration 5: rho .2248
rration 6: rho .2248
syration 7: rho .22‘18

s-Winsten ARC1) regres

Source SS df MS Number» of obsg 19
- 2. 16) 20.33
Model 10878.6657 2 5439.33286 Prob > | 0.0000

Residual 4281.79075 16 267.611922 R-squared 0.7176
! Ad) R-squared 0.6823
Total 15160.4565 18 842.247582 Root MSI 16.359

rinv Coef. Std. Err. P>it: (95% Conf. Intervall

rgnp .1974839 .0420267 0.000 .1083913 .2865764

intrate -2.496619 2.913403 0.404 -8.672757 3.67952

cons ~31.6924 36.79096 0.402 -109.6858 46 .30096
rho .2247938

Jurbin-Watson statistic <original) 1.430541
urbhin-Watson statistic {(transformed) 1.578521

Estimation of Equation (1) using the Prais-Winsten estimator.

Using either the Cochran-Orcutt or the Prais-Winstn estimator is dependent on the assumption that the error terms exhibit first-
order autocorrelation. Unfortunately, there is no particular reason (from a theoretical viewpoint) to believe in this assumption.
Why, for instance, couldn't the error terms of Equation (2) exhibit second-order autocorrelation of the form:

(2.18)ei=p1€¢-1+P2E¢ 2+ U,?

There is a more troubling possible explanation for the low Durbin-Watson statistic: the model may be misspecified. In particular,
there may be important explanatory variables omitted from the regression. These omitted explanatory variables may exhibit
autocorrelation and, thus, may be the source of autocorrelation in the error term. If the omitted explanatory variables are



correlated with the included explanatory variables, then the parameter estimates are biased. The large difference in the estimate of
parameter for real interest rates for the OLS regression and the Cochran-Orcutt estimate is suggestive of model misspecification.[@

More modern time-series models

ARMA models

The model we described above is assumed to have first-order autoregressive error disturbances. Such a process is referred to as
AR(1). The error structure in (8) is AR(2). If we apply this concept to a data series, we would call the following an AR(p) process:

(2.19)
P
yi=dg+ Z Pive_i

i=1

Another approach available to us is to think of a data as a weighted average of some error terms that are assumed to have a mean

of zero, have a fixed variance, and be uncorrelated over time!®;

(2.20)

i
Y= Z Pig_i

i=0

A data series exhibiting this pattern is called a moving average process or MA(q). The error tern is known in the literature as white
noise. A data series that has both autoregressive and moving average characteristics is call an autoregressive moving average
(ARMA) series; an ARMA(p, q) is:

(2.21)
P i
Vi=dap+ Z ﬁe'_vr it Z Jﬁe'f?' — i

i=1 i=0



It may help to show two series constructed to have different ARMA patterns. Figure 7 shows one of the potential time series
generated by the ARMA(2,1) process:

(2.22) V= 0.67y -1+ 0-33y t-2+ 0.1¢ ¢+ 0.05¢ t-1-

Figure 2.10.
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Graph of a ARMA(2,1) process.

Figure 8 shows one potential time series generated by the ARMA(1,1) process:

(2.23) Y= 0.67y t-1t 0.1¢ ¢+ 0.05¢ t-1-



Figure 2.11.
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Graph of a ARMA(1,1) process.

Stationarity

Consider the time-series y ;. We define this stochastic process as covariance stationary if

(2.24)
E(y)=E(y;_;)=u,

(2.25)



E[{_}-‘, — ,r,fjlj]: E[{_}-‘, = ,r,fjlj]:rfj, and

(2.26)
Covly,y, _ ) =E[(y, — iy, _,— w]= E[(_Fr i #J(Fr — s H]] =7

The last term, y , is known as the autocovariance. A time-series is defined to be covariance stationary if its mean and all its
autocovariances are unaffected by a change of time origin. We define the autocorrelation between y ;and y ,_;as:

(2.27)

e = %

Quite often you can create a stationary time-series from a non-stationary time-series by taking the first-differences of the non-
stationary series. If the first difference does not produce a stationary series, then one continues to take first differences until you
find a stationary series. For instance, the time-series shown in Figure 7 appears to be non-stationary. The first differences of this
series is shown in Figure 9. Using the imperfect eye, it would appear that the first differences of (13) is stationary. However, we
really cannot tell anything for sure from the graph of a data set. We need to use the restrictions of the parameters derived in
advanced texts to determine if a data set is stationary.m]

Figure 2.12.
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First-differences of the time-series of the ARMA(2,1) data.

The autocorrelation function

One of the major ways to identify the structure of a time series is to look at the autocorrelation function. The autocorrelation
function, p , is the correlation between y ;and y ;_ . Stata uses the following formula to estimate it [StataCorp: p. 60] for a time-
series:

The researcher then has to compare the actual autocorrelation function with the theoretical autocorrelation for comparable data
series. To see to use the autocorrelation function consider the following five time series 181,

(2.28)



n—-1r

(Vr _}:'(Vr -5 ;)
i=1

Z I:Vr_ﬂj
i=1

(2.29) AR(].): Y= 0.7y t-1t+ &4,

Py =

(2.30) AR(1):y ;=-0.7y ;,_,+ €,
(2.31) MA(1): y ;= €, 0.7€ ,_4,
(2.32) ARMA(2,1):y,=0.7y,_,- 0.49y ,_,+¢£,, and
(2.33) ARMA(1,2):y:=-0.7y;_1+€:-0.7¢,_,.

Each of these functions has a theoretical autocorrelation function; graphs of these autocorrelation functions are shown in the left
column of Figure 10.12

Figure 2.13.
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Examples of autocorrelation and partial autocorrelation functions.

There is additional function we can use to help identify the nature of a time-series. Consider the following regressions:

(234)y*=@uy*i-1te, Y =@ ay i1t @y 2+e,, ete,

where Y1 =V~ V-

Our interpretation of the ¢ ; parameters is that they are the correlation between y ;and y ;_;controlling for all of the y ;where j =
2,...,(i-1). Because these correlation coefficients control for values of y’s observed between y ;and y ;_;, they are known as the
partial autocorrelations. The theoretical partial autocorrelations are shown in the right column of Figure 10. Stata uses the
command .corrgram varname to calculate the autocorrelations and partial autocorrelations for the time-series varname. Figure 11
shows the output when using this command on the real levels of investment. The autocorrelation function for this data set looks
like the theoretical one for an AR(1) process. However, the partial autocorrelation function does not look like any of the partial
autocorrelation functions shown in Figure 11. Thus, it would not be safe to assume that real investment follows an AR(1) process.

Figure 2.14.
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Autocorrelation and partial autocorrelation functions for real investment.



You can generate prettier graphs of the autocorrelation functions using the .ac varname command. For instance, the command .ac
rinv generates the graph shown in Figure 12. The .pac varname generates a graph for the partial autocorrelations as is shown in
Figure 13.

Figure 2.15.
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Another graph of the autocorrelation function for real investment.

Figure 2.16.
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There are several generalizations one can use to help identify the process underlying a data series. Table 1 [Enders (2005): p. 85]
offers a brief summary of these properties of the autocorrelation and partial autocorrelation functions.

Process Autocorrelation function Partial autocorrelation function

White-noise Allp,=0 Allp =0

AR(1):a,>0 Direct exponential decay @11=p1;P=0fors=2




AR(1):a;>0 Decays toward zero. Coefficients may oscillate @1u=p1;Ps=0fors=2

AR(p) Decays toward zero; Coefficients may oscillate Spikes through lag p. All @ ;=0 fors>p
MA(1):8>0 Negative spike atlag 1. p ,=0fors =2 Oscillating decay: ¢ 1,<0
MA(1):8<0 Positive spike atlag 1. p ,=0fors > 2 Decay: ¢ ;>0

ARMA(1, 1): a; |Exponential decay beginning at lag 1. Sign p ; = sign o o
50 (”1 + ﬁ) Oscillating decay beginning atlag 1. @ ;;,=p 1

ARMA(1, 1): a, |Oscillating decay beginning at lag 1. Sign p ; = sign | Exponential decay beginning at lag 1. ¢ 1, =p ; and sign gh ss)
<0 (‘-’11 + p) = sign @11]

Decay (either direct or oscillatory) beginning at lag

ARMA(p, q) q

Decay (either direct or oscillatory) beginning at lag p

Table 2.10. Properties of the autocorrelation and partial functions.

Estimation of ARMA models

The estimation of ARMA models are relatively easy in Stata. The basic command to estimate an ARMA model is: .arima depvar
[varlist], ar( numlist ) ma( numlist ).2% The first thing to notice in the command that this command can apply to either to a single
variable or to an equation. If [varlist] is omitted, Stata will produce an estimate of the ARMA model for that variable; if the list is
included, it will estimate the model with the disturbances allowed to have the ARMA structure specified in the command. Figure 14
reports the estimation of an ARMA model for real investment levels. Notice that we write AR(1/2) so that Stata knows to include
both the first and second autoregressive term. A command of AR(2) would include only the second autoregressive term. In Figure 15
we report the ARMA (2, 1) estimation of (1).

Figure 2.17.
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Estimation of Equation (1) using an ARMA(2, 1) model.

ARMA(1, 1) | ARMA(2, 1) | AR(1) AR(2) MA(1)
Intercept 185.307 185.6556 |184.8208 |185.2092 |189.373

(10.06) (10.83) (9.27) (10.25) (18.09)
AR (L1) 0.70936 1.76342 0.80307 |0.95257 |—

(3.12) (5.27) (5.51) (4.47) —
AR (L2) — -0.81715 |— -0.18963 |—

(-3.21) (-0.91)

MA (L1) 0.26236 -0.99998 |— - 0.87262

(0.90) (-0.00) (2.97)
Log likelihood |-86.1791 |-85.8702 |-86.47780 |-86.21224 |-88.48713
Wald x2 26.96 422.60 30.36 31.65 8.81
Probability > x2 | 0.0000 0.0000 0.0000 0.0000 0.0000
Sample size 19 19 19 19 19
(14,1) 1964-1982 |1964-1982 |1964-1982|1964-1982 | 1964-1982

Table 2.11. Estimation of various ARMA models of real investment.




The interpretation of these results is not obvious. We check the sensitivity of these results by estimation some other models. The
results of these estimations are reported in Table 2 and Table 3. Based purely on ML tests, it would appear that AR(1) model in
Table 2 is as good as any of the models describing the ARMA structure of real investments. On the other hand, the results reported
in Table 3 suggests that the ARMA(2, 1) appears to be the best model to assume for the disturbance term in the estimates of
Equation (1).

AR(1) ARMA(1, 1) |ARMA(2, 1)
Intercept -14.49489 |-13.37455 |-16.89182
(-0.26)  |(-0.23) (-1.68)
Real GNP 0.17006 [0.16912  |0.17253
(3.96) (3.78) (20.18)

Real interest rate |-0.82517 |-0.92007 -0.33692
(-0.46) (-0.33) (-0.25)

AR (L1) 0.27953 |-0.02028 |0.85619
(0.60) (-0.02) (1.46)

AR (L2) — — -0.70702
(-2.64)

MA (L1) — 0.41151  |-1.00000
(0.42) (-2.98)

Log likelihood -78.7868 |-78.4279 | -72.94569

Wald y* 26.30 31.86 980.18
Probability >x*> |0.0000 0.0000 0.0000




Sample size 19 19 19

Sample period 1964-1982 | 1964-1982 | 1964-1982

Table 2.12. Various ARMA estimates of Equation (1).

Other time-series concepts

There are a large number of additional time-series methods and issues that are not discussed in this module. These topics include,
among others, ARCH and GARCH estimators, unit roots, the Dickey-Fuller test, and vector autoregression (VAR) models. There is no
way to do justice to these topics in notes as short as these are. Moreover, it is necessary to discuss difference equations (the
discrete version of differential equations) if one wants to understand many of these topic at anything more than an intuitive level.
Those interested in these topics should enroll in the forecasting course (Economics 422) or, if they cannot, plan to read several
textbooks on whatever econometric tool they need to understand.

Exercise

Exercise 2.2.1.

This exercise is designed to be sure you know how to use Stata in analyzing time-series data sets; there is no economic content in
the exercise. The MS Excel file Rabun County Temperature Data reports the morning temperature (MornTemp) observed in Rabun
County, Georgia for every day between March 15, 2005 to November 2, 2008. The data set includes a variable “edate” that is the
daily date in Stata notation. The data set also includes dummy variables for the season, the month, and the year of each
observation (with the Winter, the December, and the 2008 dummy variables omitted).

a. Create a graph of (a) the data set morntemp, (2) the autocorrelations of morntemp, and (3) the partial autocorrelations of
morntemp (you will have to set the matrix size to some number greater than 43 using the command .set matsize #).

b. Estimate the following models:


m34544/Rabun%20County%20Temperature%20Data.xls

5.

6.

. ARMA(2,2) for morntemp.
. ARMA(2,2) for morntemp as a function of the season dummy variables.
. ARMA(2,2) for morntemp as a function of the monthly dummy variables.

. ARMA(2,2) for morntemp as a function of the monthly dummy variables and the annual dummy variables.

ARMA(1,2) for morntemp as a function of the monthly dummy variables and the annual dummy variables.

ARMA(1,1) for morntemp as a function of the monthly dummy variables and the annual dummy variables.

c. Arrange the parameter estimates in a table and comment on them. Include the results of estimating (6) using OLS; what is the
DW-statistic for this regression?
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Panel data methods are appropriate when the researcher has available observations that are both cross-sectional and time series.
For example, one could form a panel data set with observations on the per capita consumption of tobacco for a set of OECD
countries over the period 1960 to 2005. Usually the data is “stacked” —that is, all of the observations for country A is listed together
in order of year before the data for country B, etc. It is also possible to stack the data by year—countries A to Z for 1960, countries A
to Z for 1961, and so on through 2005.

Let y i: be the per capita consumption of tobacco for country i in year t. We wish to model the per capita consumption of tobacco as
a function of a set of observable independent variables like the price of tobacco, income, restrictions on tobacco advertising, and
restrictions on tobacco consumption. Of course there are several sources of unobserved heterogeneity in that data set. In particular,
we might expect that systematic differences in consumption patterns would exist due to differences in the customs and mores of
the various countries in the sample. It also would be reasonable to assume that these country-level differences are be relatively
stable over time. Additionally, we might expect that there would be differences the per capita consumption of tobacco over time
due to changes in our understanding of the long run health effects of tobacco consumption. These changes might affect both (1) the
level of consumption and (2) the responsiveness of the consumption of tobacco to changes in the explanatory variables.

In these notes we describe some of the ways of modeling panel data sets and discuss some of the issues associated with the
estimation of these models. We also discuss how to use Stata to analyze panel data sets. We begin by considering some of the types
of panel data model specifications.

Model specification

There are four general specifications of the panel data model available. The differences in these models reflect differing
assumptions one might make and are listed below.

1. Slope coefficients are constant and the intercept varies over the individuals:

(2.35)

K
Vi=ai+ 2 Bixptepi=1, . Nyi=1, .. Nyandt=1, ...,T.
PR

2. Slope coefficients are constant and the intercept varies over the individuals and over time:




(2.36)

k
V= + Z ﬁ‘,-xﬂr—i—f!-,,izl, ... .N,andr=1, ....T.
~

3. All coefficients vary over individuals:

(2.37)

k
Vip=d;+ Z ﬁﬂxﬂr—l—f#,i:l, .. N ande=1, ... .T.
=1

4. All coefficients vary over time and individuals:

(2.38)
k

Vip=a;+ ﬁﬂ-rxﬂ-;—ke'!-”i: l, ... ,N,andr=1, ... .T.
=

These four models can be classified further, depending on whether the researcher assumes that the coefficients of the model are
fixed or random. However, most research in economics is restricted to estimation of (1) and (2) because they strike a reasonable
balance between being general enough without introducing unnecessary assumptions that can render estimation extremely
difficult.

Estimation issues

Hsiao (2003: 27-30) discusses a convenient example of a panel data model that illustrates many of the important issues that arise
with panel data. We make use of this example in what follows. Assume that we want to estimate a production function for farm
production in order to determine if the farm industry exhibits increasing returns to scale. Assume the sample consists of
observations for N farms over T years, giving a total sample size of N T . For simplicity, we assume that the Cobb-Douglas production
is an adequate description of the production process. The general form of the Cobb-Douglas production function is:



(2.39)g=aol, B1“"k6k;

where q is output and / jis the quantity of the j-th input (for example, land, machinery, labor, feed, and fertilizer). The parameter, 8
, is the output elasticity of the j-th input; the farms exhibit constant returns to scale if the output elasticities sum to one and either
increasing or decreasing returns to scale if they sum to a value greater than or less than one, respectively. is the quantity of the j-th
input (for example, land, machinery, labor, feed, and fertilizer). The parameter, is the output elasticity of the j-th input; the farms
exhibit constant returns to scale if the output elasticities sum to one and either increasing or decreasing returns to scale if they sum
to a value greater than or less than one, respectively.

Taking the natural logarithm of (5) gives Ing=Ina ¢+ 8 ,In/ ; + -:- + 8 , Inl .. We can re-write this equation (adding an error term, as
well as farm and year subscripts) giving:

(240) yx=B8 o+ B 1 X gjt+ -+ B8 X i+ € ¢,

wherey=Inq,,B80=Inao, x = Inlj, forj=1,..,k and € ;;is an error term. One way to account for year and time effects is to
assume:

(2.41) ey=AFi+nP.+vuy,

where F;is a measure of the unobserved farm specific effects on productivity and P, is a measure of the unobserved changes in
productivity that are the same for all farms but vary annually. Substitution of (7) into (6) gives:

K
Yie= (ﬁ{] +AF; + ]’FPF}‘l' Z ﬁ_j-‘-_,."a'r + vy

i=1 or

(2.42)

&
Yip=a;+ Z ﬁ.j-“'ﬂr + Uy
i=1

wherea;=68,+AF;+nP..Thus, (8)is equivalent to (2). Moreover, if we assume that n =0, we get

(2.43)



K
Yp=a;+ Z ﬁ_j-r_ja'r + U
i=1

wherea ;=68 ,+ A F;. Thus, (9) is equivalent to (1).

Fixed-effects models

A natural way to make (9) operational is to introduce a dummy variable, D;, for each farm so that the intercept term becomes:
(2.44)

il
aj=a;+asDy+ - +amDp=a) + Z”fﬂﬁ

j=2

where D ;=1 if j =i and 0 otherwise. This substitution is equivalent to replacing the intercept term with a dummy variable for each
farm and letting the farm dummy variable “sweep out” the farm-specific effects. In this specification the slope terms are the same
for every farm while the intercept term is given for farm jby a ; + a ;. Clearly, the intercept term for the first farm is equal to just a ;
. This specification is known as the fixed effect model and is estimated using ordinary least squared (OLS). We can extend the fixed-
effects model to fit (8) by including a dummy variable for each time period except one.

In sum, fixed-effects models assume either (or both) that the omitted effects that are specific to cross-sectional units are constant
over time or that the effects specific to time are constant over the cross-sectional units. This method is equivalent to including a
dummy variable for all but one of the cross-sectional units and/or a dummy variable for all but one of the time periods.

Random-effects models

An alternative approach to treating the a ;in (1) as fixed constants over time is to treat it as a random variable. Returning to (1)

k
Vi=a; + Z PrXkir + €
where the intercepts vary due to individual level differences, we have J=1

equivalent to setting the model up as:

Treating a ;as a random variable is



(2.45)
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For simplicity we consider only the case when A ;= 0. Thus, the error term for (11) is it We assume that

(2.46)
Ela;)=E(e;) =0,
Ela;¢;
E{a e

* 9

= cme .
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O

otherwise

and

We also assume that all of the elements of the error term are uncorrelated with the explanatory variables, x ;.

The key econometric issue is that the presence of a ;in the error term means that the correlation among the residual of the same
cross-sectional unit is not zero; the error terms for one farm, for instance, are correlated with each other. Therefore, the error terms
exhibit heteroskedasticity. The appropriate estimation technique is generalized-least-squares, a technique that attempts to adjust
the parameter estimates (and their standard error estimates) for heteroskedasticity and autocorrelation. Alternatively one can
assume that a ;and € ;; are normally distributed and use a ML estimator. Hsiao [2003: 35-41] and Cameron and Trivedi [2005: 699-
716] offer greater detail on the estimation of the parameters of both the fixed-effects and the random-effects models. It is enough
for our purposes to accept that the econometricians have found a number of ways to estimate these parameters.

\Random-effects or fixed effect model?

Economists generally prefer to use fixed-effects models. The decision to use fixed-effects or random-effects does not matter when T
is large because the two methods will yield the same estimates of the parameters. When the number of individual categories (N) is



large and the number of time periods (T) is small, the choice of which model to use becomes unclear. Hsiao summarized this
somewhat arcane issue with the following observations:

If the effects of omitted variables can be appropriately summarized by a random variable and the individual (or time) effects
represent the ignorance of the investigator, it does not see reasonable to treat one source of ignorance () as fixed and the other
source of ignorance () as random. It appears that one way to unify the fixed-effects and random-effects models is to assume
from

the outset that the effects are random. The fixed-effects model is viewed as one in which investigators make inferences
conditional on the effects that are in the sample. The random-effects model is viewed as one in which investigators make
unconditional or marginal inferences with respect to the population of all effects. There is really no distinction in the “nature
(of the effect).” It is up to the investigator to decide whether to make inference with respect to population characteristics or
only with respect to the effects that are in the sample. Hsiao [2003: 43]

Needless to say, Hsiao’s advice may well leave many researchers without any idea of whether to use a random-effects or a fixed-
effects model. In your own research | suggest that you consult an econometrician for advice.

There is one problem that arises when using a fixed-effects model. Assume that you have a sample of observations for a large
number of individuals over a period of years. If you use a fixed-effects model, you will not be able to find parameter estimates for
any variable like race or sex that do not change over the time period of the sample. The reason for this limitation is that the time-
constant variables are perfectly correlated with the dummy variables used for the fixed-effects. A similar problem arises if the fixed-
effects are for years (rather than individuals). You cannot include a variable is constant for all individuals in any given year. Quite
often the individual-constant (or time-constant) variable is not of interest and nothing is lost by not having the parameter estimate.
On the other hand, the random-effects model does not have this problem because the estimation makes use of differences amongst
the individuals to estimate a parameter for the individual-constant variable.'”*! We discuss in the next section an example in which
this “problem” arises.

What would be nice is if there were a statistical test that allows us to decide if the random-effects model is the appropriate model?
The Hausman test offers such a statistical test. The Hausman (specification) test exploits the fact that the parameters for the
random-effects model should be not be statistically different from those found using a fixed-effects specification. If one observes a
chi-squared value greater than the critical value you can conclude that the parameter estimates for the random-effects model are
statistically different from the parameter estimates for a model using an assumption of fixed-effects, then you can conclude that the



random-effects model is misspecified. Unfortunately, the misspecification could be due to the fact that the fixed-effects model is
appropriate or it could be due to the unobserved error terms being correlated with the included explanatory variables. If the latter
is the case, then one might consider augmenting the model with an appropriate measure of the part of the unobserved effect that is
correlated with the error term. What we are describing is that same thing that happens when omitted variables are correlated with
the error term—the parameter estimates are biased. We include an example of how to use Stata to perform the Housman
specification test.

Estimation of panel data models in Stata

General comments

There are three commands that matter in setting up the panel data. The first two commands precede the regression command
because they establish which variable denotes the time period and which variable denotes the cross-sectional unit. These
commands are:

.iis [variable name]

.tis [variable name]

The command for estimating the fixed-effects model is:

. Xxtreg depvar [varlist], fe

The command for estimating the random-effects model is:
. Xtreg depvar [varlist], re

If the part of the command with the comma and either re or fe is omitted, Stata will assume that you want to estimate the random-
effects model.

Understanding Stata output




To understand the Stata output we need to return to the algebra of the model. Assume that we are fitting a model of the following
form:

(2.47)

k
Vi=a+ X Bixjy+vi+emi=1, .. ,Noandr=1, ... T.
=1

We can sum (13) over t (holding the individual unit constant) and divide by T to get:

(2.48)

K
vi=a+ Z Pixjtuvite;
~ 0

M1~
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Vit Z Xip Z Eir
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where ' r I r and T " Thus, (14) uses the mean values for each cross-sectional unit. We can subtract
(14) from (13) to get:

(2.49)
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Equations (13), (14), and (15) are the basis of Stats’s estimates of the parameters of the model. In particular, the command xtreg, fe
uses OLS to estimate (15); this is known as the fixed-effects estimator (or the within estimator). The command xtreg, be uses OLS to
estimate (14) and is known as the between estimator. The command xtreg, re—the random-effects estimator—is a weighted
average of the between and within estimators, where the weight is a function of the variances of and ( and respectively).’??

In general, you will not make use of the between estimator. However, these three equations do lie at the basis of the goodness-of-
fit measures that Stata reports. In particular, Stata output reports three ”R-squareds"@]—the overall-R’ the between-R? and the



within-R’ These three R-squareds are derived using one of the three equations. In particular, the overall-R’ uses (13); the between-
R? uses (14); and the within-R? uses (15).

Example 2.3. A panel data analysis using Stata

In this example we follow the example offered in the Stata manual and use a large data set from the National Longitudinal Survey of
wage data on 28,534 women who were between 14 and 26 years of age in 1968. The women were surveyed in each of the 21 years
between 1968 and 1988 except for the six years 1974, 1976, 1979, 1981, 1984, and 1986. The study is focused on the determinants
of wage levels, as measured by the natural logarithm of real wages.

Figure 2.19.




. set menory Sm
$5120k>

use http://www.stata-press.con/data/r8/nlswork.dta

(National Longitudinal Survey. Young Yomen 14-26 vear
. describe

jontains data from http://www.stata-press.con/datas/r8/nlswork.dta
: 28,534 National Longitudinal Survey.
Young VWomen 14-26 years of age
in 1968
21 9 Jun 2002 17:36

variable abel

NLS id
interview year
birth year
age in current year
1=white, 2=black, 3=other
1 if married, spouse present
1 if never vet married
current grade completed
1 if college graduate
1 if not SHMSA
1 if central city
1 if south
industry of employment
occupation
1 if union
weeks unemployed last year
total work experience
job tenure, in vears
usual hours worked

_wor int /8. weeks worked last year
ln_wage floa 9.0g9 In{wage/GNP deflator)

8
(8
/8
~+8
.
/8
.8
.8
R

idcode year

Loading in the data set into Stata with a description of the data.

Figure 1 shows the commands used to put the data into Stata. The first command (set memory 5m) increases the size of the
memory that the program uses; | did this because of the large sample size. The use command accesses that data from the Stata web
site. The describe command calls up a description of the variables. Figure 2 presents a summary of the data using the command
summerize.
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Figure 2.20.
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Summary of the data.

There are several transformations of the variables that we will need. In particular, we want to include the squares of several of the
variables in our regression—age (age), work experience (ttl_exp), and job tenure (tenure). The reason we want to use the square of
these variables is that we have reason to believe that wages have a non-linear relationship with these variables. For instance,
consider the number of years a worker has been on the job, Tenure. Theory suggests that wages increase over a worker’s work-life
at a decreasing rate. Thus, if the equation we are estimatingisy=Inw=8,+8,Tenure+68,Tenure?’+ -, what we expect is
dy _aj."f’

=f, + 2f3, Tenure >0 > =12p,<0.

that: ad T enure and o1 enure~

The only way that this last equation can be trueis if 8 , < 0.




Moreover, if this is true, the first-derivative implies that 8 , > - 28, Te nu r e > 0. Also, notice that we can determine the number of

dy
o ] STenur =p |+ 2p, Tenure=10
years in a job when wages reach a peak; y reaches a maximum at the age where enure ) . or when
/ 6y
Tenure= — '{ﬂl : —},,: 2p, <0
“P2 The fact that 07 enure” guarantees that this point is indeed a maximum.

Additionally, because race is a categorical variable that has three potential values—1 if white, 2 if black, and 3 otherwise—we have
to create a dummy variable in order to use this variable. The transformations we use are shown in Figure 3.

Figure 2.21.

. generate age2 = age”2
(24 missing values generated)

. generate ttl_exp2 = ttl_exp”2

. generate tenure2 = tenure”2
(433 missing values generated)

. generate byte black =

Transformations of the variables to create new variables.

The last step before estimating the regressions is to identify the data set as a panel data. shows the two commands that must be
entered in order for Stata to know that idcode is the individual category and that year is the time series variable. Figure 4 shows
these two commands.

Figure 2.22.

. 11s idcode

. tis year




Declaring the category and time identifiers.

We are now ready to estimate the model (the natural logarithm of wages as a function of various variables). We begin with the
random-effects model. Figure 5 shows the command and the results of the estimation of the random-effects model. There are
several things to note here. First, in the command we are able to refer to all variables that have age in them by using age*, the *
tells Stata to use and variable that begins with the letters age. Second, we will need to use the estimation results in the Hausman
test. Thus, we have stored these results in “random_effects” using the command estimates store random_effects.

Figure 2.23.
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The random-effects estimation.
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Notice that three R-squared values are reported in Figure 5. Also, wages reach a peak when the woman is

___ 0036806 25.7908

"j i "y —
2(-0.0007133) years old and after 9.795857 years on the job. The interpretation of the other variables demands a bit
of algebra. For instance, the fact that black is a dummy variable affects our interpretation; when an individual is a black, her wage

levelis: Inw 3= 8, + 8 ; + :--. When she is nonblack, her wage level is Inw yg= 8 o + ::-. Thus, we have: Inw z—- Inw \z= 8, or

w ' 3053 -
ﬁ:fjfﬁ'l _ o—0:0530532_ () 94833 . .
Thus, the wage level of a black is, everything else held constant, 94.8 percent of the wage level
of a nonblack.

If we assume that grade is a continuous variable (it really is not), we have the following interpretation of the parameter: Inw=6, +
1 _ow _ g4
W 5 a0 . F . . . .
6.grade+---implies that dgrade . Thus, in our case a increase of 1 year of schooling causes wages to increase by 6.46
percent.

We can compare the results of using the re option with using the mle option (which directs Stata to use maximum likelihood
techniques to estimate the parameters of the system. The mle parameter estimates, shown in Figure 6, are the same as those
generated using the re command. However, the estimates of the standard errors (and, thus, the z-values) are different.

Figure 2.24.




. xtreg ln_w grade age* ttl_exp* tenure* black not_smsa south, nle
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The maximum likelihood estimation.

The estimation of the fixed-effects model is straightforward and is shown in Figure 7. The command is the same as in the random-
effects model but with the re replaced by fe. Notice from the results that the variables grade and black are dropped from the




estimation results. They are dropped because the amount of schooling and race of an individual is fixed over all observations. These
two variables, thus, are perfectly correlated with the dummy variables that hold constant the individual level characteristics. The
effects of education and race differences are absorbed into the residual.

Figure 2.25.
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The fixed-effects estimation.

The estimates of the parameter values for the fixed-effects model are very similar to those found for the random-effects model with
the exception for the parameters associated with not living in an SMSA (not_smsa) and with living in the South (south). The
random-effects model suggests that the wage level for someone living outside of a SMSA is 87.6 percent of the wage level of




someone living in an SMSA; in the fixed-effects model, the wage level outside the SMSA is estimated to be 91.5 percent of the wage
level of a woman living in a SMSA. The random-effects model estimates wages in the South are 91.6 percent the level of wages
outside the South; the fixed-effects model fixes this wage premium at 91.6 percent.

Figure 2.26.
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The Hausman test results.

The final issue we discuss in this example is the Hausman specification test. If the model is correctly specified and if v ; is
uncorrelated with the explanatory variables, then the parameter estimates in the two models should not be statistically different.
As shown in Figure 8, we first must same the results of the fixed-effects estimation using the command estimates store
fixed_effects. The null hypothesis is that the the difference in that parameter estimates is not systematic. The appropriate test
statistic is the y %(8), where the degrees of freedom are equal to the number of parameters in the model (8). The chi-squared




statistic of 149.44 is greater than the critical value and we must reject the null hypothesis. The Stata offers this interpretation of this
result:

What does this mean? We have an unpleasant choice: we can admit that our model is misspecified—that we have not
parameterized it correctly—or we can hold to our specification

being correct, in which case the observed differences must be due to the zero-correlation of and the assumption. [StataCorp:
202]

Exercises

Exercise 2.3.1.

Estimation of a Labor Supply Function. An important issue in labor economics is the responsiveness of the number of hours worked
to wages. Because labor supply curves can, in theory, be backward-bending, the sign and size of the impact of wages on the amount
of labor supplied is an empirical issue. In this project you are to estimate the demand for labor curve for a cross-section of adult

males.

(2.50)
The model to be estimated is:

yit=60+61hit+62Ageit+63Agezit+64NCit+65Hlit+£it
where:
y i = natural logarithm of individual i’s wage rate in year t,

h i = natural logarithm of total number of hours worked by individual i in year t,

Age ;; = age of individual i in year t,




NC ;. = number of children of individual i in year t, and
HI ;; = an dummy variable equal to 1 if individual i in year t has bad health and 0 otherwise.

The data are from Ziliak, James P. (1997) “Efficient Estimation with Panel Data When Instruments Are Predetermined: An Empirical
Comparison of Moment-Condition Estimators,” Journal of Business & Economic Statistics 15(4): 419-431. Ziliak (p. 423) describes his
data as follows:

The data used to estimate the life-cycle labor-supply parameters come from Waves XlI-XXI (calendar years 1978-1987) of the
PSID. The sample is selected on many dimensions and is similar to other research studying life-cycle models of labor supply. The
sample is restricted to continuously married, continuously working, prime-age men aged 22-51 in 1978 from the Survey
Research Center random subsample of the PSID. In addition the individual must either be paid an hourly wage rate or must be
salaried, and he cannot be a piece-rate worker or self-employed. This selection process resulted in a balanced panel of 532 men
over 10 years or 5,320 observations. The real wage rate, wit,. is the hourly wage reported by the panel participant rather than
the average wage (annual earnings over annual hours) to minimize division bias (Borjas 1981).

The data are available in the any of the three files, , and .

1. Provide scatter plots among the dependent variable (Natural logarithm of hours) against each of the explanatory variables
Natural logarithm of real wages, Age, Number of children, and Health. (Label these Figures 1 to 4.)

2. Present a table of the summary statistics for all of the variables in this data set (except ID and Year).

3. Provide a histogram of each of the following variables: Natural logarithm of hours, Natural logarithm of real wages, Age, and
Number of children. (Label these Figures 5 to 8).

4. Estimate Equation (1) using (1) OLS (sometimes called a “pooled model”), (2) a “between” model (where the observations in the
regression are the averages over the 10 years of each variable for each individual, (3) a fixed effects model, (4) a MLE random
effects model and (5) a GLS random effects model. Present the results of your estimations in a single table and offer an
interpretation for each parameter you estimate. Use Table 1 as shown below as a template for the table to present your results.


m34551/HW%201%20Table.doc

(1) Pooled

(2) Between

(3) Fixed Effects

(4) MLE Random Effects

(5) GLS Random Effects

Natural logarithm of real wages

() () () () ()
Age

() () () () ()
Age’

() () () () ()
Number of children

() () () () ()
Health indicator

() () () () ()
Intercept

() () () () ()
R? — —
o, — —
o, — —
Sample size

Table 2.13. Hours and wages: Summary of linear panel model estimations (Dependent variable is the natural logarithm of total
hours worked in a year; the observations consist of 532 adult males over the 10 year period 1978-1987).




Exercise 2.3.2.

The Effectiveness of Advertising Bans on Smoking. Anti-smoking activists often push for a total ban on cigarette advertisements.
Indeed, one of the basic assumptions of the groups pushing the 1996 proposed settlement with the tobacco companies is that the
amount of tobacco consumed is positively affected by the amount of tobacco advertising. There are two mechanisms that might
underlie such a relationship. The first mechanism suggests that the advertising increases the amount of cigarettes smoked by
current smokers. Many economists doubt that the tobacco advertising increases the consumption of current smokers, arguing that
the total consumption of cigarettes is unresponsive to advertisement. Instead, they argue that advertising is an effort by cigarette
companies to affect the brand of cigarettes that current smokers consume. The second mechanism suggests that advertising is an
effort by cigarette companies to induce non-smokers (especially children) to try cigarettes. The main reason that cigarette
companies want non-smokers to try smoking, so the argument goes, is that some percentage of non-smokers who try cigarettes will
become addicted and will form the future demand for cigarettes.

The effect of a total ban on advertising would be completely different if cigarette companies advertise with the hope of increasing
the number of people addicted to cigarettes. In particular, the ban should have a small or negligible effect on current cigarette
demand. Instead, the cigarette companies would face a steadily decreasing demand for their product. Such a decrease in demand
would reduce future profits for these companies. If future profits fell enough, some of the companies might be forced out of
business. Clearly, it is this result that anti-smoking activists have in mind with their proposals to ban cigarette advertisements.

Finally, if advertising only induces current smokers to increase the number of cigarettes they consume, then the total ban on
advertising should cause a one-time reduction in cigarette consumption that will reduce the profits of cigarette companies.
However, which of these three mechanisms (if any) is correct is an empirical question.

Six European countries adopted a complete ban on cigarette advertising in the period after 1970. It this project we use annual data
on smoking consumption in 22 developed countries for the 27 years between 1964 and 1990 to test the effect of a complete
smoking ban on cigarette demand (giving us 594 observations). Moreover, since we have no a priori reason to choose one model
specification over another, we check the stability of the estimated impact of an advertising ban on cigarette demand under several
alternative model specifications.



We estimate three types of specifications of the model — the linear model, the log-linear model, and the log-log model. In general
whether one uses a variable or the logarithm of the variable is the main difference in these three specifications. The linear model
does not transform either the dependent or the independent variables. A variation on the linear models allows the use of the
square and product of some of the independent variables in order to take care of any non-linearity in the data. The log-linear model
takes the same form as the linear model except that the dependent variable is the logarithm of variable under study. Finally, in the
log-log model both the dependent and independent variables are, if possible, in logarithm form.

For example, for this problem the dependent variable in any of these specifications is either the per capita consumption of tobacco
or the logarithm of the per capita consumption of tobacco. The dependent variables might include (1) the real price of tobacco in
each country for each year, (2) a measure of the per capita income level of the country for each year, (3) the unemployment rate of
the country for each year, (4) a measure of the age distribution of the population to measure smoking intensity by age, (5) a trend
variable to account for the rising awareness of the health costs of smoking, (6) a dummy variable equal to one for years that a
country has a complete ban on cigarette advertising, and (7) a set of 21 dummy variables identifying the country. Let T it be the
measure of per capita cigarette consumption in country i for year t; P it, the price of tobacco; / it, the measure of per capita income
level; U it, country i’s unemployment rate in year t; A it, country i’s age distribution in year t; Year, a trend variable; B it, the dummy
variable for the ban; and C i, the dummy variable for country i.

Examples of the three models are:
1. Linear: Ty=6,+8,P+68,1;,+8U;+B8,A+B8sYear;,+8¢B;+¢€;

2. Log-Linear: In(Ty)=Po+ PPyt Poly+ PUy+ PyAy+ PsYear, + fe By + €5

3. Log-Log: In(Ty)=Po+ P 1n(Py)+ prlnlly)+ pU + PyA;+ PsYear, + P By + €

In models (1) and (2) it is possible to include additional explanatory variables that are the square of some of the currently included
explanatory variables. In all three models it is possible to include as explanatory variables the product of the ban dummy and any of
the currently included explanatory variables. Finally, in equation (2) we cannot take the logarithm of the unemployment rate
because the data we have report zero levels of unemployment.

The data you will use in this project are in the MS Excel file Smkdata.xls. The variables included in the file are as follows:


m34551/SMKDATA.xls

Column | Variable |Definition
A Country |Name of country
Count . .
B ";)un ry Integar from 1 to 22, each designating a country
Year Year of observation (1964, ..., 1990)
D Tobacco |Total grams of tobacco sold per individual 15 years or older
E Price Real price of 20 grams of tobacco in 1990 US cents (= Nominal price per E 20 grams of tobacco divided by the
Gross Domestic Price deflator)
Consump | Per capita private final consumption expenditures in 1990 US dollars
G Unemp |Number of unemployed persons per 1000 members of the workforce
Age distribution. This variable attempts to measure the differences in intensity of smoking as a function of age.
H AgeDist |Itis equal to the relative consumption rate of tobacco in the UK observed between 1966 and 1981 by age group
times the percentage of the population in the country in that age group.
Dummy variable equal to 1 if the country has a complete ban on tobacco advertising. The six countries in the
| Ban sample with a complete ban and the first year of the ban are: Iceland (1972), Norway (1976), Finland (1979),
Portugal (1984), Italy (1984), and Canada (1989).
] BanTime The number of years since the ban was put in place (if ban went into effect in 1972, then years 1964-1972 are

equal to 0, year 1973 equals 1, year 1974 equals 2, etc.)

Table 2.14. Definition of the cigarette consumption data set.

(a) How do these variables match the ones suggested in the discussion of equations (1), (2), and (3)?

(b) Estimate the fixed effects models of the following versions of equations (1), (2), and (3):




1. Equations (1), (2), and (3) as specified above.

2. Equations (1) and (2) with squared terms for the price, income, unemployment rate, and the age distribution included. This
regression is designed to test for non-linearity.

3. Equations (1) and (2) with the squared terms mentioned in 2 that are statistically significant plus the following new variables:
Ban*Time, Ban*Price, and Ban*Consump. (You must create these variables) This regression allows for an effect of the Ban on the
slopes of the other explanatory variables.

4. Equation (3) with the following new variables: Ban*Log(Time), Ban*Log(Price), and Ban*Log(Consump).

5. Equations (1), (2), and (3) as estimated in 3 and 4 with a variable that counts the number of years that a total ban has been in
effect (BanTime) and its square (BanTime?). This regression allows for a changing impact of a ban the longer it is in effect.

Report the results of your regressions in a table that allows you to comment on the stability of your estimation results over
specifications.

(c) Do these results support any of the theories suggested above?
(d) What, if any, policy conclusions would you make given your estimations?

(e) Assume for the moment that you “believe” your results you got in (5). Sketch out a strategy you would follow to forecast the
impact of a ban in a country that does not currently have a ban.

Note: The data in this problem are from Stewart, Michael J. (1993) “The Effect on Tobacco Consumption of Advertising Bans in OECD
Countries,” International Journal of Advertising 12(2): 155-180. The data set can be downloaded from the author's website.
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2.4. Sample selectivity bias-

Sample Selection Bias

Introduction

These notes discuss how to handle one of the more common problems that arise in economic analyses—sample selection bias.
Essentially, sample selection bias can arise whenever some potential observations cannot be observed. For instance, the students
enrolled in an intermediate microeconomics course are not a random sample of all undergraduates. Students self-select when they
enroll in any class or choose a major. While we do not know all of the reasons for this self-selection, we suspect that students
choosing to take advanced economics courses have more quantitative skills than students choosing courses in the humanities. Since
we do not observe the grades that students who did not enroll in the intermediate microeconomics class would have made had they
enrolled, we can never observe the grades that they would have made. Under certain circumstances the omission of potential
members of a sample will cause ordinary least squares (OLS) to give biased estimates of the parameters of a model.

In the 1970s James Heckman developed techniques that will correct the bias introduced by sample selection bias. Since then, most
econometric computer programs include a command that automatically used Heckman’s method. However, blind use of these
commands can lead to errors that would be avoided by a better understanding of his correction technique. This module is intended
to provide this understanding.

In the first section | discuss the sources of sample selection bias by examining the basic economic model used to understand the
problem. In the second section | present the estimation strategy first developed by Heckman. In the third section | discuss how to
estimate the Heckman model in Stata. In the final section | examine an extended example of the technique. An exercise is included
at the end of the discussion.
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The model

Assume that there is an unobserved latent variable, y ;* , and an unobserved latent index, d ;*, such that:

(2.51)
=x";p+¢;wherei=1, ... |N;

JE
¥ i

(2.52)

di =z';y+v;wherei=1, ... .N;

(2.53)

Lifd; >0
di=4 . . , and
Oifd; <0

(2.54)yi=yi*d;.

The matrix notation above means (1) that

1 11Po Po
X' p= I:H ' ﬂ:l =l x;; = xg] ﬁ:l =Po+Prxyit+ o+ Prag
1 TKid | fg ] e
Yo .
2=l z; - 2z }:l =yo+ Z Yz
) };L j=1

Substituting (1), (2) and (3) into (4) gives:

(2.55)



. X p+e; ife;y+v,>0
o iy +r;<0

Note that N is the total sample size and n is the number of observations for which d ;= 1.

Since y ;* is not observed for ( N — n ), the question becomes why are these observations missing. A concrete example of such a
model is a model of female wage determination. Equation (1) would model the wage rate earned by women in the labor force and
Equation (2) would model the decision by a female to enter the labor force. In this case, y ;, the wage rate woman i receives, is a

function of the variables in *i° however, women not in the labor force are not included in the sample. If these missing observations
are drawn randomly from the population, there is no need for concern. Selectivity bias arises if the ( N - n ) omitted observations
have unobserved characteristics that affect the likelihood that d ;= 1 and are correlated with the wage the woman would receive
had she entered the labor force. For instance, a mentally unstable female is likely to earn relatively low wages and might be more
unlikely to enter the labor force. In this case, the error terms, € ;and v ;would be independent and identically distributed N( 0,3 ),
where

(2.56

=1

Tpe O

and (&520) are independent of z ;. The selectivity bias arises because o ., # 0. In effect the residual € ;includes the same unobserved
characteristics as does the residual v ;causing the two error terms to be correlated. OLS estimation of equation (1) would have a

missing variable—the bias created by the missing observations (due to wage data not being available for women not in the work
A

force). As in other cases of omitted variables, the estimates of the parameters of the model, P would be biased. Heckman (1979)
notes in his seminal article on selectivity bias:

One can also show that the least squares estimator of the population variance is downward biased. Second, a symptom of
selection bias is that variables that do not belong in the true structural equation (variables in not in may appear to be
statistically significant determinants of when regressions are fit on selected samples. Third, the model just outlined contains a
variety of previous models as special cases. ...For a more complete development of the relationship between the model



developed here and previous models for limited dependent variables, censored samples and truncated samples, see Heckman
(1976). Fourth, multivariate extensions of the preceding analysis, while mathematically straightforward, are of consider-able
substantive interest. One example is offered. Consider migrants choosing among K possible regions of residence. If the self
selection rule is to choose to migrate to that region with the highest income, both the self selection rule and the subsample
regression functions can be simply characterized by a direct extension of the previous analysis. (Notation has been altered to
match the notation used in this module, see Heckman, 1979: 155)

Estimation Strategy

Heckman (1979) suggests a two-step estimation strategy. In the first step a probit estimate of equation (2) is used to construct a
variable that measures the bias. This variable is known as the “inverse Mills ratio.” Heckman and others demonstrate that

(2.57)
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where Plz; ") and Pz;'y) are the probability density function and the cumulative distribution functions, respectively, evaluated at

Zi T- 122 The ratio in the brackets in equation (7) is known as the inverse Mills ratio. We will use an estimate of the inverse Mills

ratio in the estimation of equation (5) to measure the sample selectivity bias.
The Heckman two-step estimator is relatively easy to implement. In the first step you use a maximum likelihood probit regression
A A

on the whole sample to calculate T from equation (2). You then use T to estimate the inverse Mills ratio:

(2.58)

In the second step, we estimate:



(2.59)
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using OLS and where “v  Thus, a t-ratio test of the null hypothesis H ; : u = 0 is equivalent to testing the null hypothesis H , :

o .,= 0 and is a test of existence of the sample selectivity bias.

An alternative approach to the sample selectivity problem is to use a maximum likelihood estimator. Heckman (1974) originally
suggested estimating the parameters of the model by maximizing the average log likelihood function:

(2.60)
N
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where @ ., is the probability density function for the bivariate normal distribution. Fortunately, Stata offers a single command for
calculating either the two-step or the maximum likelihood estimators.

Estimation in Stata

Estimation of the two versions of the Heckman sample selectivity bias models is straightforward in Stata. The command is:
.heckman depvar [varlist], select(varlist_s) [twostep]

or

.heckman depvar [varlist], select(depvar_s = varlist_s) [twostep]

The syntax for maximum-likelihood estimates is:


ch01.html#m34539

.heckman depvar [varlist] [weight] [if exp] [in range], select([depvar_s =] varlist_s [, offset(varname) noconstant]) [ robust
cluster(varname) score(newvarlist | stub*) nshazard(newvarname) mills(newvarname) offset(varname) noconstant
constraints(numlist) first noskip level(#) iterate(0) nolog maximize_options ]

The predict command has these options, among others:
xb, the default, calculates the linear predictions from the underlying regression equation.

ycond calculates the expected value of the dependent variable conditional on the dependent variable being observed/selected; E(y
| y observed).

yexpected calculates the expected value of the dependent variable (y*), where that value is taken to be 0 when it is expected to be
unobserved; y* = P(y observed) * E(y | y observed). The assumption of 0 is valid for many cases where nonselection implies non-
participation (e.g., unobserved wage levels, insurance claims from those who are uninsured, etc.) but may be inappropriate for
some problems (e.g., unobserved disease incidence).

Examples of these two commands are:
. heckman wage educ age, select(married children educ age)
. predict yhat

These two command would use the maximum likelihood estimate of the equations (1) wage as a function of education and age
using a selection equation that used marital status, number of children, education level, and age to explain which individuals are
participating in the labor force. The help file in Stata provides additional information on the structure of the Heckman command
and is well worth printing out if you are dealing with a sample selectivity bias problem.

Example 2.4. Example from Stata
We will illustrate various issues of selection bias using the data set available from the Stata site. Retrieve the data set by entering:

. use http://www.stata-press.com/data/imeus/womenwk, clear




This data set has 2,000 observations of 15 variables. We can use the describe command (.describe) to get a brief description of the
data set:

obs: 2,000

vars: 15 9 Nov 2004 20:23

size: 142,000 (86.5% of memory free)

Variable Name Storage Type Display Format Value Label Variable Label
cl double %10.0g
c2 double %10.0g
u double %10.0g
v (7,2) %10.0g
country float %9.0g
age int %8.0g
education int %8.0g
married byte %8.0g
children int %8.0g
select float %9.0g
wageful float %9.0g
wage float %9.0g
Iw float %9.0g




work float %9.0g
Iwf float %9.0g

Table 2.15. Description of variables included in the data set from http://www.stata-press.com/data/imeus/womenwk.

We are interested in only a subset of these data. Table 2 reports the definitions of variables that are relevant for our analysis. We
can get further insight into the data set using the summarize command. Table 3 reports the summary statistics for the data set.

Variable name | Definition

country County of residence (categorical variable equal to 0, 1, ..., 9)

age Age of the woman

education Number of years of education of the woman

married Dummy variable equal to 1 if the woman is married and 0 otherwise

children Number of children that the woman has in their household

wage Hourly wage rate of the woman

Iw Natural logarithm of hourly wage rate

work Dummy variable equal to 1 if the individual is in the workforce and 0 otherwise

Table 2.16. Definition of the relevant variables in the data set.

Variable Obs Mean Std. Dev Min Max

Age 2000 36.208 8.28656 20 59




education 2000 13.084 3.045912 10 20
married 2000 .6705 4701492 0 1
children 2000 1.6445 1.398963 0 5

wage 1343 23.69217 6.305374 5.88497 45.80979
Iw 1343 3.126703 .2865111 1.772402 3.824498
work 2000 .6715 4697852 0 1

Table 2.17. Summary statistics of the relevant variables in the data set (using the command: .summarize age education married
children wage Iw work).

We are interested in modeling two things: (1) the decision of the woman to enter the labor force and (2) determinants of the female
wage rate. It might be reasonable to assume that the decision to enter the labor force by a woman is a function of age, marital
status, the number of children, and her level of education. Also, the wage rate a woman earns should be a function of her age and
education.

The decision to enter the labor force

We can use a probit regression to model the decision of a woman to enter the labor force. The results of this estimation are
reported in Table 4. However, we can use the predict command to produce some results that we can use to be sure that we
understand what the regression results mean. In particular, type in the following two commands:

.predict zbhat, xb
.predict phat, p

These two commands will predict (1) the linear prediction (zbhat) and (2) the predicted probability that the woman will be in the
workforce (phat). Table 5 reports the values of these two variables for observations 1 through 10.

. probit work age education married children




Iteration 0: log likelihood = -1266.2225

Iteration 4: log likelihood = -1027.0616

Probit estimates Number of obs = 2000

LR chi2(4) = 478.32

Prob > chi2 = 0.0000

Log likelihood = -1027.0616 Pseudo R2 = 0.1889

work Coef. Std. Err. |z P>z |[95% Conf. Interval]
age .0347211 |.0042293|8.21 |0.000.0264318 |.0430105
education .0583645 |.0109742 |5.32 |0.000.0368555 |.0798735
married .4308575 |.074208 |5.81 |0.000.2854125 |.5763025
children 4473249 |.0287417 |15.56 |0.000 |.3909922 |.5036576
_cons -2.467365|.1925635|-12.81 | 0.000 | -2.844782 | -2.089948

Table 2.18. Probit estimation of the decision to enter the labor force.

Observation zbhat phat
1 -0.68900 0.24541
2 -0.20290 0.41961




3 -0.48067 0.31538
4 -0.16818 0.43322
5 0.34859 0.63630
6 0.58758 0.72159
7 0.97357 0.83486
8 0.45978 0.67716
9 0.01799 0.50718
10 0.32628 0.62790

Table 2.19. Predicted values of zbhat and phat for observations 1 through 10.

The interpretation of the numbers in Table 5 is straightforward. Consider individual 1. The z-value predicted for this individual is -
0.68. Using the standard normal tables reported in Table 11 it is easy to see:

(2.61) @(z <-0.69 ) = Pr( Individual 1 is in the labor force )

(2.62)
D(z< —0.60)=0.5—-P(0<:<0.69)
~0.5-0.2549
~0.2451.

The difference between this number and the value reported for phat in Table 5 is due to rounding error.
A little later we will want to calculate the inverse Mills ratio. As noted in (8), the formula for the inverse Mills ratio is:
(2.63)
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The variable phat is equal to Stata offers an easy way to calculate

follows:

.generate imratio = normden(zbhat)/phat

(

I'f A

Zi'v) :
with the function “normden(zbhat)” as

Table 6 repeats Table 5 with the estimate of the inverse Mills ratio for the first 10 observations.

Observation zbhat phat Inverse Mills Ratio
1 -0.6889973 0.2454125 1.2821240
2 -0.2029016 0.4196060 0.9313837
3 -0.4806706 0.3153753 1.1269680
4 -0.1681804 0.4332207 0.9079438
5 0.3485867 0.6363002 0.5900134
6 0.5875849 0.7215945 0.4652062
7 0.9735670 0.8348642 0.2974918
8 0.4597758 0.6771615 0.5300468
9 0.0179909 0.5071769 0.7864666
10 0.3262833 0.6278950 0.6024283

Table 2.20. Calculation of the inverse Mills ratio for the first 10 observations.




The two Heckman estimates

One of the great advantages of using an econometrics program like Stata is that the authors quite often have created a command
that does all of the work for the user. In our case, the commands we need to run to generate the maximum likelihood estimate of
the Heckman model are:

. global wage_eqn wage educ age
. global seleqn married children age education
. heckman $Swage_eqn, select($seleqn)

Notice that we have used the global command to create a shortcut for referring to each of the two equations in the estimation. The
command for the Heckman two-stage estimate is:

.heckman Swage_eqn, select(Sseleqn) twostage

.predict mymills, mills

(2) Maximum likelihood (3) Heckman two- (4) Probit estimate of the selection
(1) Explanatory variable estimate step equation
Wage Equation
Education 0.9899537 0.9825259 -
(18.59) (18.23)
Age 0.2131294 0.2118695 -
(10.34) (9.61)
Intercept 0.4857752 0.7340391 —_




(0.45) (0.59)
Selection equation
Married 0.4451721 0.4308575 0.4308575
(6.61) (5.81) (5.81)
Children 0.4387068 0.4473249 0.4473249
(15.79) (15.56) (15.56)
Age 0.0365098 0.0347211 0.0347211
(8.79) (8.21) (8.21)
Education 0.0557318 0.0583645 0.0583645
(5.19) (5.32) (5.32)
Intercept -2.491015 -2.467365 -2.467365
(-13.16) (-12.81) (-12.81)
o 0.7035061 0.67284 —
A 6.004797 5.9473529 —
( Mills )A 4.224412 4.001615 —
(6.60)
Observations 2000 2000 2000
Number of women not working 657 657 657
Number of women working 1343 1343 1343
Log likelihood -5178.304 — -1027.0616




Wald x2(2) 508.44 — —
Probability > y? 0.0000 — —
Wald x2(4) — 551.37 —
Probability > y 2 — 0.0000 —

LR test of independent equations (p

=0)

x*(1) 61.20 — 478.32
Probability > y 2 0.0000 — 0.0000

Table 2.21. Comparison of Heckman Maximum-Likelihood and the Heckman Two-Step Estimates with the Probit Estimates of the

Selection Equation.

The second command reports the estimates of the inverse Mills ratio; we have retrieved these values in order to check our earlier
calculations. Table 7 reports the results of these two estimations. Column 2 reports the maximum-likelihood estimates; Column 3
reports the Heckman two-step estimates; and Column 3 reports the probit estimate of selection equation as reported in Table 4.
The estimates for the two methods are very similar. Of course, the probit estimates in Column 4 exactly match the results reported
for the selection equation in Column 3. As a final check, Table 8 reports the values of the inverse Mills ratio reported in Table 6 with
the values of the inverse Mills ratio calculated in the Heckman two-step method. The two estimates are identical except for some

rounding errors.

Observation

As calculated from probit estimate

As reported by the Heckman two-step

1.2821240

1.2821240

0.9313837

0.9313837




3 1.1269680 1.1269680
4 0.9079438 0.9079438
5 0.5900134 0.5900134
6 0.4652062 0.4652061
7 0.2974918 0.2974918
8 0.5300468 0.5300469
9 0.7864666 0.7864666
10 0.6024283 0.6024283

Table 2.22. Inverse Mills Ratio Comparison.

Exercise

Exercise 2.4.1. The supply of married women in the workforce.

We are interested in understanding the decision of married Portugese women to enter the labor force. We have available data from
Portugal. The data set is a sample from Portuguese Employment Survey, from the interview year 1991, and has been provided by
the Portuguese National Institute of Statistics (INE). The data are in the Excel file Martins. This file is organized in the following way.
There are seven columns, corresponding to seven variables, and 2,339 observations.

. 2 .
Wages = f (.-:egf, age”, educa rmn)

a) Estimate the following equation using OLS: using the observations for women actually working.

b) What is the potential source of selection bias?



c) Estimate a wage equation for the Portuguese data three ways: (1) using OLS, (2) using the Heckman two-step method, and (3)
using the ML method. Report all three estimates in a single table. For consistency, we will assume that the appropriate explanatory
variables for wages are (1) age, (2) the square of age, and (3) the years of education. Further, assume that women do not enter the
labor force because (1) presence of children under the age of 3, (2) presence of children between 3 and 18, (3) husband's wage level,
(4) the level of education of the woman, and (5) the age of the woman.

Appendix A.

z |0.00 001 (0.02 |0.03 |0.04 |0.05 |0.06 |(0.07 |0.08 |0.09

0.0/ 0.0000 0.0040 |0.0080|0.01200.0160|0.0199|0.0239|0.0279 |0.0319 | 0.0359

0.1/0.03980.0438 |0.0478 |0.0517 | 0.0557 | 0.0596 | 0.0636 | 0.0675 |0.0714 | 0.0753

0.2/0.07930.0832 |0.0871 | 0.09100.0948 | 0.0987 | 0.1026 | 0.1064 |0.1103 | 0.1141

0.3/0.1179/0.1217 |0.1255|0.1293 | 0.1331 |0.1368 | 0.1406 | 0.1443 | 0.1480 | 0.1517
0.4/0.15540.1591 |0.1628 |0.1664 1 0.1700 |0.1736|0.1772 |0.1808 |0.1844 | 0.1879

0.5/0.1915|0.1950|0.1985 | 0.2019 | 0.2054 | 0.2088 | 0.2123 | 0.2157 | 0.2190 | 0.2224

0.6(0.22570.2291 | 0.2324 | 0.2357 | 0.2389 | 0.2422 | 0.2454 | 0.2486 | 0.2517 | 0.2549
0.7/0.25800.2611 | 0.2642 |0.2673 | 0.2704 | 0.2734 | 0.2764 | 0.2794 | 0.2823 | 0.2852

0.8/0.28810.2910|0.2939|0.2967 | 0.2995 | 0.3023 | 0.3051 | 0.3078 |0.3106 | 0.3133

0.9/0.31590.3186 |0.3212 |0.3238  0.3264 | 0.3289 | 0.3315 | 0.3340 | 0.3365 | 0.3389
1.0/0.3413|0.3438|0.3461  0.3485|0.3508 | 0.3531 |0.3554 | 0.3577 | 0.3599 | 0.3621

1.1/0.3643 |0.36650.3686 |0.3708 | 0.3729 | 0.3749|0.3770|0.3790 |0.3810 | 0.3830

1.2/0.3849|0.3869 |0.3888  0.3907 | 0.3925 | 0.3944 | 0.3962 | 0.3980 | 0.3997 | 0.4015
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0.4032

0.4049

0.4066

0.4082

0.4099

0.4115

0.4131

0.4147

0.4162

0.4177

1.4

0.4192

0.4207

0.4222

0.4236

0.4251

0.4265

0.4279

0.4292

0.4306

0.4319

1.5

0.4332

0.4345

0.4357

0.4370

0.4382

0.4394

0.4406

0.4418

0.4429

0.4441

1.6

0.4452

0.4463

0.4474

0.4484

0.4495

0.4505

0.4515

0.4525

0.4535

0.4545

1.7

0.4554

0.4564

0.4573

0.4582

0.4591

0.4599

0.4608

0.4616

0.4625

0.4633

1.8

0.4641

0.4649

0.4656

0.4664

0.4671

0.4678

0.4686

0.4693

0.4699

0.4706

1.9

0.4713

0.4719

0.4726

0.4732

0.4738

0.4744

0.4750

0.4756

0.4761

0.4767

2.0

0.4772

0.4778

0.4783

0.4788

0.4793

0.4798

0.4803

0.4808

0.4812

0.4817

2.1

0.4821

0.4826

0.4830

0.4834

0.4838

0.4842

0.4846

0.4850

0.4854

0.4857

2.2

0.4861

0.4864

0.4868

0.4871

0.4875

0.4878

0.4881

0.4884

0.4887

0.4890

2.3

0.4893

0.4896

0.4898

0.4901

0.4904

0.4906

0.4909

0.4911

0.4913

0.4916

2.4

0.4918

0.4920

0.4922

0.4925

0.4927

0.4929

0.4931

0.4932

0.4934

0.4936

2.5

0.4938

0.4940

0.4941

0.4943

0.4945

0.4946

0.4948

0.4949

0.4951

0.4952

2.6

0.4953

0.4955

0.4956

0.4957

0.4959

0.4960

0.4961

0.4962

0.4963

0.4964

2.7

0.4965

0.4966

0.4967

0.4968

0.4969

0.4970

0.4971

0.4972

0.4973

0.4974

2.8

0.4974

0.4975

0.4976

0.4977

0.4977

0.4978

0.4979

0.4979

0.4980

0.4981

2.9

0.4981

0.4982

0.4982

0.4983

0.4984

0.4984

0.4985

0.4985

0.4986

0.4986

3.0

0.4987

0.4987

0.4987

0.4988

0.4988

0.4989

0.4989

0.4989

0.4990

0.4990

Table 2.23. Normal Distribution.
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2.5. Endogenous explanatory variables-

Endogenous Explanatory Variables

Introduction
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One of the most common problems complicating the research of an economist is created by the inclusion of endogenous variables
as an explanatory variable. The variable on the left-hand-side of a regression is an endogenous variable; its level is determined by
the levels of the explanatory variables—that is, the variables on the right-hand-side of the equation. In OLS we assume that the
explanatory variables are independent of the error term. However, if the level of one of these explanatory variables is determined
by the levels of the other variables in the model, that explanatory variable actually is an endogenous variable. In a nutshell the
problem with having endogenous explanatory variables is that these endogenous variables cause the error term in the model to be
correlated with the explanatory variables thus causing the OLS estimator to be biased. This problem is also known as simultaneous
equation bias and it is a problem that is subtly different from sample selection bias. See "What is the difference between
‘endogeneity' and 'sample selection bias"'?" for an excellent discussion of the difference between these two econometric problems.

In this module we explore both the statistical and algebraic issues raised by the inclusion of endogenous explanatory variables in a
model. This introduction is too sketchy to give you a thorough understanding of the many problems raised by simultaneous
equation bias. Hopefully, by the time you finish the module along with the problem set, you will have an least an intuitive
understanding of the problem and will be able to recognize it when you come across the problem in your own research. If you think
the model you are estimating may have simultaneous equation bias, you should seek the advice of an econometrician.

The Statistical Problem

Imagine we know with certainty that the following model fully describes the true state of the supply and demand for wheat. First,
the demand for wheat in any year, q,, is a function of the price of wheat, p ;" , the income of the average individual, I ;, and the
price of corn, p ;°. Second, in any year the price of wheat is a function of the amount of wheat brought to market, g ;, and a
weather index, W, that is positively related to the amount of wheat that is harvested. Third, the error terms in the supply and
demand functions are due purely to measurement errors—that is, there are no omitted variables in the model. Thus, we have the
following two equation model:

(2.64)
Demand:

w [
g:=Qotoa,p; tal+taz;p, +&;

and


http://www.stata.com/support/faqs/stat/bias.html
http://www.stata.com/support/faqs/stat/bias.html

Supply:
p:“=60+68,q,+8, W, +n,.

We assume that the error terms each are normally distributed with a mean of zero and a constant variance. Moreover, we assume
that the two error terms are independent of each other—that is, we are assuming that:

(2.65)
£~ NlU, ::':;J,

=~ N(ﬂ, .::r;‘; ), and
E(e;n,)=0.

Finally, we assume that income, the price of corn, and the weather index are non-stochastic variables—i.e., these variables are
independent of the two error terms. Clearly, the price of wheat and the quantity of wheat are stochastic variables.*!

What we have here is an ideal model in the sense that we know and can measure all of the variables in the model. The model as
written has two endogenous variables—q ; and p ;" —and three exogenous variables— I, p ;“, and W ,. Equations (1) and (2) are
known as structural equations. What makes this model useful for our purposes is that there is an endogenous explanatory variable
in each of the two structural equations.

What we ultimately want to know is if we can use ordinary least squares (OLS) to obtain unbiased estimates of the parameters in
Equations (1) and (2). One of the assumptions of OLS is that each of the explanatory variables are independent of the error term, € ;;
if this assumption is violated, OLS will produce biased estimates of the slope parameters. Thus, what we need to do is see if the
error term in each equation is independent of the endogenous variable on the right-hand-side of that equation. That is, we want to

see if E(&"p;“):ﬂand E(n:q:) =0.

It is convenient in answering our question to use the two structural equations to find what are known as the reduced form
equations—that is, one equation for each endogenous variable in which the endogenous variable is written as a function solely of
exogenous variables and error terms. We can find the reduce form equations by solving the structural equations simultaneously for
the endogenous variables. Substituting (2) into (1), we get:



qr=ag+a,(Po+ 1+ P Wi+n)+a i +asp; +e
qi=ao+a,18o+a,18:q+a,68,W+ainta,l+azp,+e,
gi—a,pLqi=lag+a,po)+a, p2W,+a I, +asp; + (e, +an,)

or

(2.66)
_ag+ay py a, p, XA o ¢ Ertag i
=T ap, TTa b, T T, gt T=a g P Y 1= a by

Substituting (1) into (2) yields:
pY=Po+Plag+a pl +al,+asp; +&)+pa W, +n,

p:“=60+6 a0+a,68,p,;"+0a,8,1,+a36,p,"+B8,,+8,W+n,

or
(2.67)
W_}G{]'F}Glfﬂrﬂ {Iﬁ-ﬁl i~ .Iﬁ !jﬁ J:{j]_fir"‘}??
ol —a py R —alﬂljr—i_ —a p Pt _alﬂ1W;+ l—a by

) L - / L
Equations (4) and (5) are the reduced form equations for this model. We can use them to calculate Ele,p)=0 and E(n:q:) =0. In
particular,

w_ | (BothLa a, afy . pr Bie, +
Ele. p"\= E .(f"ﬂ 170 211 kY I 2 1€ T 1;
ecpr)=Ele\T0 5, e p T P T T=a p, T T=a, B,

) [ (Bo+ P as as Py : [ prer+n
Ele;p)|=E|e (‘{EI 1 -0 L P (PLE T
le:p7) _Er —ay p +1—alﬂljr+ ay Py +1—alﬂlwr T —ay p



or

(2.68)

w Po+Pag a f ay p . b ):I P £l + Ni€r
Ele —El e 1 3] Y it S E f !
le:py) [Er(l—alﬂl +l—ulﬂlj’—i_l—alﬁlpf—i_l—ulﬂlwf i I —a, p

Factoring out the non-stochastic terms from the expected value operators gives:

W hn+ P a A
Ele, p ]_(f{:u Prag a,p I+

asp b ) ﬂlE(f?) Ein &)
— Ele r€;
! —ap +1—ulﬂl Wi JEled +

| —a ip’ l—ay py l—fxlfi1+1—fxlfil'

Moreover, by assumption E(e)=0, Einie) =0, j 4 E(E’_): %" Thus, we get:

(2. 69)

A similar analysis yields:

(2.70)

,
_ayoy

EUFFq?’J_ — Jﬁ ?‘I‘-O

Equations (6) and (7) are what create the endogeneity problem (or simultaneous equation bias)—using OLS to estimate the
parameters of equations that have an endogenous variable as an explanatory variable yields biased estimates of the unknown
parameters. Figure 1 illustrates the endogeneity problem. In this figure we have demand and supply equations that have both risen
due to changes in exogenous variables. What the researcher observes are two (red) points: (1) the intersection of the old demand
and supply curves and (2) the intersection of the new demand and supply curves.

Figure 2.28.
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The simultaneous equation problem.

The thick red line shows the regression that would result from using OLS to estimate either of the two structural equations. As
illustrated, an OLS estimate of the slope estimate will be biased. We need to use some other estimation technique than OLS.

Estimation

As noted earlier, the basic problem created by the endogeneity problem is that the endogenous explanatory variable is correlated
with the error term. The most logical approach would be to replace this variable with one that is not correlated with the error term
but highly correlated with the endogenous variable. Consider the value of the price predicted by the reduced form equation (5):

(2.71)
Pi=7 o0+ ¥ 1L+ T o+ T W
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where ! iisthe OLS estimate of and

— W -

Clearly, Pt js correlated with p.”.Italso is true that the covariance between Pt ande +goes to zero as the sample size
increasing. Thus, we can use (8) to construct a variable that will produce a consistent estimator of a , . It is this conclusion that
underlies the strategy of both two-stage least squares (TSLQ) and instrumental variable (IV) estimators.

Two-stages least squares

The easiest way to understand two-stage least squares is to think of the estimation process as being in the following two steps
(although the computer programs calculate the estimators in one step):

Stage 1: obtain a OLS predictions for any endogenous variable on the right-hand side of the equation to be estimated using as the
explanatory variables all of the exogenous variables in the system.

Stage 2: estimate the parameters of the equation using OLS and replacing the endogenous variable on the right-hand side of the
equation by the its predictions as obtained in step 1.

For obvious reasons he TSLS method works best when the full model is specified or when you know and can measure all of the
exogenous variables in the system.

Instrumental variables (1V)

While the use of instrumental variable (V) estimators is appropriate in a large number of situations, the two situations where they
are most commonly used are (1) in the presence of endogenous explanatory variables and (2) in cases when errors arise in the
measurement of an explanatory variable (or the errors-in-variables problem). Since | have already described the endogeneity
problem, | now turn to a brief discussion of errors-in-variables.

Consider the following simple model:

(2.7Z)y,-=81x,-*+£,-andx,-=x,~*+y,-.



In this model the researcher observes x ;but not the desired x ;* because of some random measurement error. Using OLS to estimate
(9) using the observable x ;instead of the correct x ;* is equivalent to estimating:

(2.73)
V=Bt e by

The important thing to note in estimating (10) using OLS is that the explanatory variable, x ;, is correlated with the error term,

lei— pru ik As was the case with the endogeneity problem, the OLS estimate of 8 , is biased. Murray (2006) summarizes the
situation as follows:

In both examples, ordinary least squares estimation is biased because an explanatory variable in the regression is correlated
with the error term in the regression. Such a correlation can result from an endogenous explanator, a mismeasured explanator,
an omitted explanator, or a lagged dependent variable among the explanators. I call all such explanators “troublesome.”
Instrumental variable estimation can consistently estimate coefficients when ordinary least squares cannot—that is, the
instrumental variable estimate of the coefficient will almost certainly be very close to the coefficient’s true value if the sample
is sufficiently large—despite troublesome explanators. [Murray (2006a): 112]

Consider a regression that includes a “troublesome explanator,” like x ;* in (9). Assume that there exists a variable z ;(or set of
variables) that (1) is correlated with the “troublesome explanator,” (2) is uncorrelated with the error term—like € ;in (9), and (3) is
not one of the explanatory variables in the equation to be estimated. Greene (1990: 300) offers the following example of such a
variable. Self-reported income tends to be a very “noisy” variable because sometimes people forget to report minor sources of
income and sometimes they deliberately misreport their income. If the regression you are estimating uses income as explanatory
variable of consumption, OLS will yield biased estimates. On the other hand, the number of checks written in a month by the
household head might serve as an instrumental variable. Clearly, the number of checks written might well be positively correlated
with income and there is no reason to assume that it is correlated with the error term in the consumption equation.@]

It is usually fairly easy to identify instances when IV estimation methods are appropriate. This is especially true when one of the
explanatory variables is possibly an endogenous variable. The real problem arises in finding an instrumental variable or a set of
instrumental variables. However, assuming you have one or more instrumental variables, the IV method follows the same steps as
described above for TSLS. In the first stage you estimate a regression of the “troublesome variable” as a function of the instruments
and the exogenous variables in the equation—i.e., you estimate the reduced form equation. In the second stage you use OLS to



estimate the original equation with the value of the “troublesome variable” predicted by the first stage regression substituted for
the actual values of the “troublesome variable.”

In a sense TSLS is a IV estimation. The exogenous variables not in a particular regression play the role of the instruments. Thus, in
the IV estimation of (1), the weather index is the instrument. In the estimation of (2) the price of corn and the income level are the
IVs. Thus, in a fully specified model, the exogenous variables excluded from the regression play the role of instrumental variables. In
other situations the choice of an appropriate instrument can be very difficult. The selection process demands creativity both in
finding the instrument and in defending the choice.

The use either of IV or TSLS comes at a cost. First, the OLS estimators are more precise (i.e., have a smaller standard error) than the
TSLS or IV estimators. Second, selecting invalid or weak instruments can create results that are not meaningful. So how does one
know if they have chosen a good set of instruments? There is no easy answer to this question. Murray (2006a: 116-117) discusses
some possible tests of the validity of an instrumental variable. In the end, however, the “success” of your instrument may depend
more on how convincing your justifications are than any statistical test. Some economiists, like Steven Levitt, make a living coming
up with and justifying the use of some very creative instrumental variables. Murray (2006a) offers a detailed discussion of IV and
should be read by any student planning to make use either of TSLS or IV regression estimators.

The identification problem

There is an additional issue that arises with estimating systems of equations—identification. Essentially, identification is an
algebraic problem. Consider the reduced form equations given earlier in (4) and (5):

_agtapy ay P oty as e Ertapn;
=T a B, TT=a p T T=a gt T=a 5Pt Y 1= a, B,
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OLS estimation of both of these equations yields unbiased estimates of the parameters in the reduced form equations.
Identification asks if we can retrieve the parameters of the structural equations from the reduced form equations. Say, for instance,
that we re-write the reduced form equations as:

(2.74) q =6 10+ 6 11 W+ 8 121+ 8 13p "+
and
(2.75)p:"=620+8 1l 46 p: +E W, +6,.

Table 1 shows each of the parameters in (11) and (12) in terms of the parameters of the two reduced form equations. We can
recover the parameters of the structural equations by algebraic manipulation of the relationships in Table 1. (This method of
estimation—that is, estimating the reduced form equations of a model using OLS and then solving algebraically for the parameters
of the structural equations is referred to in the literature as indirect least squares.) For instance,

( a ff )
531_ | —oy —p
513_( [r )_ !
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Explanatory variable Equation (11) Equation (12)

B _PotPrag
Intercept d10= I —a,p 020= I —a, fy




I, 011= 1 flfljﬂl o21= l f::'filﬂl
P 012=1 —fffl 7, 22 =1 f'ﬂ:ﬁlﬁl
w. e L ==
Error term ¥ :%m 0= {j 1—5:1—11_;1?

Table 2.24. Parameters of the structural and reduced form equations.

One can continue in a likewise manner to find formulae for other of the structural parameters. However, an interesting problem
pr=52. 2=,
does arrive in that it is also true that 013 Since there is no a priori reason to believe that 013 9y we have two estimates of
8 . . This result illustrates the point that there are three possibilities when calculating the structural parameters from the reduced
form equations—first, there may be more than one formula for a structural parameter; second, there may be only one formula for a
structural parameter; or third, there may be no formula for a structural parameter. We say in the first case that the equation is
over-identified; is exactly identified in the second case; and is under-identified in the third case. It turns out that in the case of an
over-identified equation we can to use TSLS to estimate the structural parameters. However, in the case of an exactly identified
equation, the TSLS estimators are equal to the indirect-least-squares estimators that can be calculated using estimates of the

reduced form equations. Finally, an under-identified equation cannot be estimated by any technique.

Clearly, we need to know how to identify if an equation is either over-identified, exactly identified, or under-identified. A necessary
rule is that the number of exogenous variables in a system of equation that are not included in a particular regression must be
greater than or equal to the number of endogenous variables on the right-hand-side of the equation for the equation to be either
exactly or over identified. Consider the following three-equation model, where the endogenous variablesarey ,,y,, and y ; and
the exogenous variables are represented by x ; withi=1,...,5:



(2.76) y1=6 10+ B8 1,y 2+ B 3y3+ o X1+ X+ 05X,

(2.77) y =6+ 8 1y 1+ 0 33x3, and

(2.78) y3=630+6831y1+ a3 X1+ 03X+ A 33X3+ A3 X4+ 035X5.

The error terms in these three equations are omitted because they are irrelevant to determining if an equation is identified—
remember, identification is an algebraic problem, not a statistical issue. There are 3 endogenous variables in the system and 3
equations in the system. Also, there are 5 exogenous variables in the system of equations. Equation (13) is exactly identified;
Equation (14) is over-identified; and Equation (15) is under-identified. What this means is (1) Equation (13) can be estimated directly
from the reduced form equation (using indirect-least-squares) or using TSLS; (2) Equation (14) must be estimated using TSLS; and
Equation (15) cannot be estimated. Table 2 summarizes how to determine if an equation is or is not identified. Basically, if the
number in column 2 equals the number in column 3, the equation is exactly identified. If the number in column 2 is less than the
number in column 3, the equation is over-identified. Finally, if the number in column 2 is greater than the number in column 3, the

equation is under-identified.’?”

Number of endogenous variables on

Number of exogenous variables excluded

Equation right-hand-side from the equation Identification
Yy1=610+8y,+63ys+aq g x,+ 2 2 Exactly
A12X+Q 15X 5

Yy2=6830+8y1+0axX; 1 4 Over
Yy1=610+8 1y ,+613ys+apx,+ 1 0 Under

Ai13X3+ Q15X 5

Table 2.25. Identification of the equations in the example model.




One other thing to notice is the similarity of TSLS to IV estimation. The exogenous variables play the role of instruments in TSLS
estimation. By implication, the instruments in an IV estimation must not include any of the exogenous variables in the equation.
Similarly, one of the

[28]

ways to isolate potential instruments in a regression is to think of what system of equation the equation is and then ask what
exogenous variables in that system are not included in the equation. These excluded exogenous variables are potential instruments.

TSLS and IV in Stata

The command for estimating an equation in Stata using two-stages least squares (TSLS) is a bit tricky. Assume that you want to
estimate equations (13) and (14) in the model discussed above.’” For simplicity assume that each variable assumes the name for it
in Table 2. Thus, in our Stata commands Y1 refers to variable Thus, in our Stata commands Y1 refers to variable y ; and so on. The
command to estimate either a TSLS or an IV regression is the same.2” The command, ivreg, consists of three major parts—(1) the
name of the dependent variable is followed by (2) a list of the names of the exogenous variables that are being used as explanatory
variables and then followed in parentheses by (3) the information needed to estimate the first stage (the list of the endogenous
variables that are explanatory variables along with the names of the exogenous variables in the system that are excluded from the
equation or, in the case of IV, a list of the instruments).[ﬂ]

Equation to be estimated Stata command

Yy1=6 10+ 6 1y, +68 3ys+a X+ d3X3+ A 15X5|.ivreg yl x2 x3 x5 (y2 y3 = x1 x4)

Y2=60+6y1+a X3 .ivreg y2 x3 (y1 = x1 x2 x4 x5)

Table 2.26. Stata command for estimating TSLS and IV regressions.

Example 2.5.

An example from Stata. The Stata manual offers the following example analysis. Assume that you want to use state level data from
the 1980 census to estimate the following system of equations:




(2.79)hsngval=ao+a.fainc+a,reg2+azreg3+a,regld+e

and
(2.80)rent=68y+8,hsngval+8,pcturban+y,
where hsngval is the median dollar value of owner-occupied housing; rent is the median monthly gross rent; fainc is family income;

pcturban is the percent of the state population living in an urban area; and reg2, reg3, and reg4 are dummy variables that designate
the region of the country where the state is located. In this example we focus on estimating (17).

We begin by loading the data set and describing the data.
. use http://www.stata-press.com/data/r8/hsng2
(1980 Census housing data)

.describe

Contains data from http://www.stata-press.com/data/r8/hsng2.dta

obs: 50 1980 Census housing data

vars: 16 3 Sep 2002 12:25

size: 3,600 (99.7% of memory free)

variable name | storage type | display format | value label | variable label

state strlg % 14s State

division int % 8.0g division Census division




region int % 8.0g region Region
pop long % 10.0g Population in 1980
popgrow float % 6.1f Pop. growth 1970-80
popden int % 6.1f Pop/sq. mile
pcturban float % 8.1f Percent urban
faminc long % 8.2f Median family inc., 1979
hsng long % 10.0g Hsng units 1980
hsnggrow float % 8.1f % housing growth
hsngval long % 9.2f Median hsng value
rent long % 6.2f Median gross rent
regl float % 9.0g
reg2 float % 9.0g
reg3 float % 9.0g
regd float % 9.0g
Sorted by: state

Table 2.27. Description of the Stata data set used in the example.

Now we estimate equation (17) using TSLS as shown in Figure 2.

Figure 2.29. Two-stages least square estimate of the example.




. ivreg rent pcturban <(hsngval = faminc reg2-regd)

i ) Pegression

df MS junber of obs 50

¢ e ¥ 42 .66

36677.4033 2 18338.7017 'vob > F 0.0000
24565 .7167 4?7 522.674823 R-squared 0.5989
T R 0.5818

61243 .12 49 1249.85959 oot SE 22 .862

Coef Std. Err. t P>its 75 on Intervall

.0022398 .0003388 6.61 0.000 .0015583 .0029213
peturban .081516 .3081528 0.26 0.793 -.5384074 .701439%94
cons 120.7065 15.70688 7.68 0.000 89.10834 152.3047

Instrumented: hsngval

truments: pcturban faming

The manual continues the example to include some testing of the model including the Hausman test. Students using TSLS and IV
should read the discussion in the Stata manual thoroughly.

Exercises

Exercise 2.5.1.

Cigarette advertising and sales. A great deal of controversy exists over the issue of whether advertising expenditures affect sales.
This controversy is particularly sharp when it affects policy decisions. An example of this phenomenon is the controversy over the
impact of cigarette advertising on advertising sales. While many public policy experts advocate bans on cigarette advertising, a
majority of economists caution against bans on cigarette advertising. The economists point out that there is little theoretical
reasons to believe that cigarette advertising affects total demand for cigarettes. Instead, economists argue that cigarette advertising
only affects brand choice and not the number of cigarettes that people smoke. Moreover, these economists point out that there is
also little empirical evidence that supports the argument that cigarette advertising affects the demand for cigarettes. Given the




negative impact advertising bans have on freedom of speech, most economists conclude that the negative effects of cigarette
advertising bans outweigh the benefits of the bans.

In this exercise we address this issue by using data used originally by Richard Schmalensee (1972) in his Ph.D. dissertation. You will
use these data to estimate a simple two-equation model of the cigarette advertising industry.

We use annual data for the period 1955 to 1967 to estimate the impact of cigarette advertising on aggregate demand for cigarettes
and the impact of cigarette consumption on cigarette advertising. We begin with a model of the demand for cigarettes. We assume
that the demand for cigarettes is given by:

(2.81)
o= jﬂ.pf Vi A i Dfld-:l,

where

qg: = cigarettes consumed per person over age 15,

pc. = retail price of cigarettes,

y: = real disposable personal income per capita (1958 dollars),

A, = real advertising expenditures per individual over age 15 (1960 dollars), and

D64 = a dummy variable equal to 1 for the years 1964 through 1967 and zero otherwise.

We include the dummy variable for years after 1964 to pick up the negative impact on cigarette sales of the 1964 report of the US
Surgeon General’s Advisory Committee (1964) announcing that the government believed that there was enough evidence available
to conclude that cigarette smoking causes cancer. We expect the signs of the parameters with the price of cigarettes and the
dummy variable to be negative. We expect that the sign of the parameters with income and advertising to be positive.

Next we turn to a model of the supply of advertising. We assume:



(2.82)
Ay=glgs panmy),

where:
pa; = advertising price index, and
m, = gross profits as a percentage of gross sales.

The last variable needs a bit of explaining. The amount of advertising in the industry should be a function of degree of competition
in the industry. If the market were perfectly competitive, there would be no reason for any firm to advertise. If the firm were a
monopoly, there also would be no reason to advertise. However, if the market is an oligopoly, then a firm would advertise in an
effort to gain market share by differentiating its product from the product of its competitors.

The traditional measure of the degree of monopoly power that a firm has is the ratio of its marginal profits to its marginal cost:
(2.83)

p—mc
mc

m=

where p is output price, mc is marginal cost, and m is the measure of monopoly power. Since we cannot observe the firms’ marginal
costs, we approximate m by the ratio of gross profits to gross sales. We expect the impact of the degree of monopoly to have a non-
linear impact on advertising expenditures.

The data used to estimate our two equations are listed in Table 5 and are available in the MS Excel file Cigarette sales and
advertising data.xls. These data are with the exception of disposable personal income from Schmalensee (1972: 273-290). The
disposable personal income data are from the Department of Commerce (1975: Table F26, page 225).

Specification of the Model. Equations (18) and (19) are, as written, very general and need further specification before they can be
estimated. We will assume that the two equations take a log-log form. In particular, we assume that we want to estimate:

(2.84)
In(g,;)=ag+a;In(pc,) + asln(y,) + azln(A,) + a, D64,


m34550/Cigarette%20sales%20and%20advertising%20data.xls
m34550/Cigarette%20sales%20and%20advertising%20data.xls

and

In(A )= o+ B Inlg,) + By In(pa,) + fym, + fym;.

(2.85)

Year Cigarettes Sold per Retail Price of |Real Advertising per Advertising Degree of Disposable Personal
Person Over Age 15 Cigarettes Person Over Age 15 Price Index Monopoly Income in 1958 dollars
1955 [3163.090 93.9693 0.96100 95.4775 18.595 1659
1956 |3230.517 94.7049 1.09969 94.3800 19.207 1673
1957 |3313.033 94.2535 1.22180 96.2125 20.165 1683
1958 |3479.063 94.7712 1.40471 97.8300 21.736 1666
1959 | 3584.930 98.1779 1.45816 98.2800 22.042 1735
1960 |3676.912 100.0000 1.37863 100.0000 22.04 1749
1961 |3743.354 99.8677 1.31871 102.0400 22.465 1756
1962 |3733.504 99.6761 1.35467 102.9725 22.226 1814
1963 |3775.886 101.3630 1.51345 103.9525 22.848 1867
1964 | 3648.211 102.3110 1.73665 103.4775 23.168 1948
1965 |3710.075 105.7510 1.59761 103.7225 23.598 2047
1966 | 3689.386 108.0450 1.71062 104.2200 25.085 2127
1967 |3652.016 109.2490 1.71444 104.6125 26.310 2164

Table 2.28. Cigarette Industry Data, 1955-1967.




Answer the following six questions:

a) Which variables in the model are exogenous and which are endogenous?

b) Check and see if equations (18) and (19) are underidentified, exactly identified, or overidentified.
c) Estimate equations (21) and (22) using ordinary least squares.

d) Estimate equations (21) and (22) using two-stage least squares. Present the results in a table that for comparison reasons
includes the results from the OLS estimation. Be sure to include the R? and the Durbin-Watson statistic.

e) Which side of the advertising-sales controversy do your results appear to support?
f) How well-specified does your model appear to be? Why?
Exercise 2.5.2.

Exercise 2. Demand and supply of commercial loans. We are interested in estimating the demand for commercial loans by business
firms and the supply of commercial loans by banks. We have available in Table 6 monthly data from the U. S. commercial loan
market for the period from January, 1979 through December, 1984 and available in the MS Excel file Exercise 2.xIs.B? pefine:

Q . = total commercial loans (billions of dollars)

R . = average prime rate charged by banks

RS . = 3-month Treasury bill rate (represents an alternative rate of return for banks)

RD , = Aaa corporate bond rate (represents the price of alternative financing to firms)

X = industrial production index (represents firms’ expectation about future economic activity)

y « = total bank deposits (billions of dollars) (represents a scale variable).


m34550/Exercise%202.xls

The demand and supply equations to be estimated, respectively, are as follows:
(2.86)Q;=6¢+B8,R;+B,RD;+B8: X+,

and
(2.87)Qi=ag+aR;+a,RS;+azy.+&;.

Questions

a) What are the endogenous and exogenous variables in this model?

b) Solve for the two “reduced form” equations of this model. Estimate these two equations using the data in Table 6.

c) Check the “order” condition for identification of each equation of the model.

d) Estimate equations (23) and (24) using ordinary least squares using the data in Table 6.

e) Estimate equations (23) and (24) using two-stage least squares. Report the results of the estimations for part 4 and 5 in a single
table. Be sure to include the t-ratios, R”s, and Durbin-Watson statistics for each of the equations estimated.

f) Perform the Hausman Specification Test on both equations.@]

g) When presenting this model, Maddala notes “[T]he model postulated here is not necessarily the right model for the problem of
analyzing the commercial loan market.” Is there anything in the results reported above that suggests that the model may be mis-
specified?

N Date Q R RD X RS y

1 January-79 251.8 11.75 9.25 150.8 9.35 994.3
2 February-79 255.6 11.75 9.26 151.5 9.32 1002.5




3 March-79 259.8 11.75 9.37 152.0 9.48 994.0

4 April-79 264.7 11.75 9.38 153.0 9.46 997.4

5 May-79 268.8 11.75 9.50 150.8 9.61 1013.2
6 June-79 274.6 11.65 9.29 152.4 9.06 1015.6
7 July-79 276.9 11.54 9.20 152.6 9.24 1012.3
8 August-79 280.5 11.91 9.23 152.8 9.52 1020.9
9 September-79 288.1 12.90 9.44 151.6 10.26 1043.6
10 |October-79 288.3 14.39 10.13 152.4 11.70 1062.6
11 |November-79 287.9 15.55 10.76 152.4 11.79 1058.5
12 |December-79 295.0 15.30 11.31 152.1 12.64 1076.3
13 |January-80 295.1 15.25 11.86 152.2 13.50 1063.1
14 | February-80 298.5 15.63 12.36 152.7 14.35 1070.0
15 |March-80 301.7 18.31 12.96 152.6 15.20 1073.5
16 |April-80 302.0 19.77 12.04 152.1 13.20 1101.1
17 |May-80 298.1 16.57 10.99 148.3 8.58 1097.1
18 |June-80 297.8 12.63 10.58 144.0 7.07 1088.7
19 |July-80 301.2 11.48 11.07 141.5 8.06 1099.9
20 | August-80 304.7 11.12 11.64 140.4 9.13 1111.1
21 |September-80 308.1 12.23 12.02 141.8 10.27 1122.2
22 | October-80 315.6 13.79 12.31 144.1 11.62 1161.4




23 | November-80 323.1 16.06 11.94 146.9 13.73 1200.6
24 |December-80 330.6 20.35 13.21 149.4 15.49 1239.9
25 |January-81 330.9 20.16 12.81 151.0 15.02 1223.5
26 |February-81 331.3 19.43 13.35 151.7 14.79 1207.1
27 | March-81 331.6 18.04 13.33 151.5 13.36 1190.6
28 | April-81 336.2 17.15 13.88 152.1 13.69 1206.0
29 |May-81 340.9 19.61 14.32 151.9 16.30 1221.4
30 |June-81 345.5 20.03 13.75 152.7 14.73 1236.7
31 |July-81 350.3 20.39 14.38 152.9 14.95 1221.5
32 |August-81 354.2 20.50 14.89 153.9 15.51 1250.3
33 |September-81 366.3 20.08 15.49 153.6 14.70 1293.7
34 | October-81 361.7 18.45 15.40 151.6 13.54 1224.6
35 |November-81 365.5 16.84 14.22 149.1 10.86 1254.1
36 |December-81 361.4 15.75 14.23 146.3 10.85 1288.7
37 |January-82 359.8 15.75 15.18 143.4 12.28 1251.5
38 |February-82 364.6 16.56 15.27 140.7 13.48 1258.3
39 |March-82 372.4 16.50 14.58 142.7 12.68 1295.0
40 |April-82 374.7 16.50 14.46 141.5 12.70 1272.1
41 |May-82 379.3 16.50 14.26 140.2 12.09 1286.1
42 |June-82 386.7 16.50 14.81 139.2 12.47 1325.8




43 |July-82 384.4 16.26 14.61 138.7 11.35 1307.3
44 | August-82 384.5 14.39 13.71 138.8 8.68 1321.7
45 |September-82 395.0 13.50 12.94 138.4 7.92 1335.5
46 |October-82 393.7 12.52 12.12 137.3 7.71 1345.2
47 |November-82 398.9 11.85 11.68 135.7 8.07 1358.1
48 |December-82 395.3 11.50 11.83 134.9 7.94 1409.7
49 |January-83 392.4 11.16 11.79 135.2 7.86 1385.4
50 |February-83 392.3 10.98 12.01 137.4 8.11 1412.6
51 |March-83 395.9 10.50 11.73 138.1 8.35 1419.5
52 |April-83 393.5 10.50 11.51 140.0 8.21 1411.0
53 |May-83 391.7 10.50 11.46 142.6 8.19 1413.1
54 |June-83 395.3 10.50 11.74 144.4 8.79 1443.8
55 |July-83 397.7 10.50 12.15 146.4 9.08 1438.1
56 |August-83 400.6 10.89 12.51 149.7 9.34 1461.4
57 |September-83 402.7 11.00 12.37 151.8 9.00 1448.9
58 |October-83 405.3 11.00 12.25 153.8 8.64 1459.0
59 |November-83 412.0 11.00 12.41 155.0 8.76 1499.4
60 |December-83 420.1 11.00 12.57 155.3 9.00 1508.9
61 |January-84 424.4 11.00 12.20 156.2 8.90 1504.1
62 |February-84 428.8 11.00 12.08 158.5 9.09 1499.3




63 |March-84 433.1 11.21 12.57 160.0 9.52 1494.5
64 |April-84 439.7 11.93 12.81 160.8 9.69 1501.5
65 |May-84 447.3 12.39 13.28 162.1 9.83 1541.3
66 |June-84 452.9 12.60 13.55 162.8 9.87 1532.9
67 |July-84 454.4 13.00 13.44 164.4 10.12 1535.5
68 |August-84 455.2 13.00 12.87 165.9 10.47 1539.0
69 |September-84 459.9 12.97 12.66 166.0 10.37 1549.9
70 |October-84 467.7 12.58 12.63 165.0 9.74 1578.9
71 |November-84 468.7 11.77 12.29 164.4 8.61 1578.2
72 |December-84 476.8 11.06 12.13 164.8 8.06 1631.2

Table 2.29. Monthly Data for the U.S. Commercial Loan Market, January 1979 to December 1984.

References

Angrist, Joshua D. and Alan B. Krueger (2001). Instrumental Variables and the Search for Identification: From Supply and Demand to
Natural Experiments. Journal of Economic Perspectives 15(4): 69-85.

Berndt, Ernst R. (1991). The Practice of Econometrics (Reading, MA: Addison-Wesley Publishing Company).

Greene, William H. (1990). Econometric Analysis (New York: Macmillan Publishing Company).

Murray, Michael P. (2006a). Avoiding Invalid Instruments and Coping with Weak Instruments. Journal of Economic Perspectives

20(4): 111-132.

Murray, Michael P. (2006b). Econometrics: A Modern Introduction. (Boston: Addison-Wesley): Chapter 13.




Schmalensee, Richard (1972). The Economics of Advertising (Amsterdam: North-Holland Publishing Company).

StataCorp (2003). Stata Statistical Software: Release 8 (College Station, TX: Stata Corporation): Volume 2: Reference G-M, pages
186-194.

Stock, James H, and Mark W. Watson (2003). Introduction to Econometrics (Boston, MA: Addison-Wesley): Chapter 10.

US Department of Commerce (1975). Historical Statistics of the United States: Colonial Times to 1970 (Washington: Government
Printing Office).

US Surgeon General’s Advisory Committee (1964). Smoking and Health (Washington: Government Printing Office).
2.6. Replication of econometric studies-

Replication

Introduction

One of the most important first steps in a science experiment is to replicate the results of earlier research. For a variety of reasons
(most of them practical and not theoretically sound) economists generally do not undertake this step; what they tend to do is report
the results of earlier papers and then compare their results with the earlier results without asking the question of whether these
earlier results were reported accurately. Omitting this step in a world of honest careful researchers might seem to be a minor
problem. However, there is enough casual evidence to suggest that a large portion of the econometric results reported in the
journals cannot be replicated because the original researcher (1) does not have the data set used in the research because it has
been lost for a variety of reasons, (2) cannot share the data set because it is proprietory, (3) is unwilling to share the data set
because there are other issues they wish to investigate using the data set, or (4) just are unwilling to share the data set. For this
reason much of the published econometrics research has never been replicated. In recognization of this problem several journals
like the Journal of Applied Econometrics now require that authors submit the data set they used to the journal to be posted on the
web for use by any other researcher. Whether this effort has been successful will not be clear unless someone undertakes to
replicate the work in this journal to see if all of the data necessary to replicate an article have been posted and if the regressions
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included in the article actually can be replicated. It is very unlikely anyone would undertake such an effort given the fact that no
journal will publish results that are merely a replication of previously published articles.

In this module we explore some of the difficulties that exist in replicating existing research by undertaking to replicate some of the
results reported in the Butler, Finegan, and Siegfried (1998) (BFS, hereafter) article analyzing the effect of a student's calculus
background on the grade he or she earns in intermediate microeconomics or in intermediate macroeconomics.2 The goal of this
modaule is to (1) help students to learn how to read in detail an article that appears in a typical economics trade journal, (2)
introduce them to ordered probit, an advanced econometrics tool, and (3) teach them how to present and discuss the results of an
estimation of a model in an economics paper. While most of the discussion in this module focuses on using Stata in this replication,
one can use most any econometrics program they are comfortable with to replicate some of the results reported in the BFS article.

Butler, Finegan, and Siefried (1998).

The obvious first step is to find and print a copy of the article by Butler, Finegan, and Siefried. In fact, do not proceed any further in
reading this module until you have read the article. We will discuss in class what the authors do in the paper and how clearly they
present their conclusions. In this first pass at the article you are to pay attention to how convincing you find their arguments to be.
Since everyone in the class has completed an intermediate microeconomics course, your discussion of their conclusions should
reflect your own experiences. Also, you need to be able to discuss in class the estimation strategy they use in the paper. In
particular, you will need to be able to identify what the source of the data is and what equations did they estimate. Also, try to
determine how the estimations in the "first" stage are used in the estimations of the "second" stage. Why did the authors use a
two-stage estimation strategy?

Also, what do you think the authors mean in their description of their estimation strategy by their statement about the estimation
methods they use:

Estimation Methods and Expectations

To cope with the selection bias problem, we use a two-stage estimation procedure. The first stage employs an ordered probit
model to predict the highest level of calculus attained by each student prior to taking each intermediate economic theory
course.... In the second stage, the student's grade in MICRO-2 ... (the ‘outcome’) is regressed on the actual level of calculus
attained, the grade earned in that calculus course, the predicted residual in the grade equation that we would expect on the
basis of the actual level of calculus attained, and a roster of control variables reflecting ability and motivation. Individuals are



the unit of observation. Ordinary least squares estimation is used because there are twelve categories of grades which are
commonly interpreted as cardinal measures of performance (as is implied by the calculation of "grade point averages'). (Butler,
Finegan, and Siegfried, 1998: 188)

The ordered-probit model

In what follows you are to “replicate” the equations the authors estimate in the paper for the intermediate microeconomics course.
In order to complete this assighnment you will need to figure out several things including (1) what an ordered-probit model is and (2)
how to use Stata to estimate an ordered-probit model. In this section of the module we introduce the ordered-probit model. |
strongly encourage you to consult Greene (1990: 703-706) for an excellent and clear discussion of the ordered-probit model. The
discussion here follows Greene closely.

It is common for surveys to have questions that require the responder to choose one of several categories that have an innate order
to them. For instance, most course evaluations ask the respondent to choose an answer to a question that reflects their agreement
with a statement about the course. For instance, the question might read, "The Professor was interested in the material taught in
the class" where the student completing the evaluation would choose a number from 1 to 9 where a 1 indicates complete
disagreement with the statement and a 9 reflects complete agreement with the statement. Thus, there is an order to the potential
answers. Using a logit, probit, or multilogit model would completely ignore this order. A linear regression is inappropriate because
OLS treats the difference between answers of 1 and 2 as being the same as the difference between a 7 and and 8, when in fact the
numbers only provide a ranking.

Consider a latent variable, y*, that is not observed but where ¥ = P'X + & \We want to estimate the 8 ' s in the vector

B=ho Pr - Pxlisiye may not observe y* but we do observe:

The u ;'s in (1) are parameters that must be estimated along with p. As usual, we assume that the error term € is normally
distributed (with a normalized mean and variance arbitrarily set to 0 and 1, respectively). It is trivial to estimate the model with the
error terms having a logistic distribution, but this chance in assumptions appears to make virtually no difference in practice).[ﬁl
With the normal distribution, we have:

(2.88)



(0ify* <0,
lif0<y* <y,

y=2ifu; <y" < us,

ifp, _ <y".

(2.89)
Prly =0)= (-’ x),
Pry=1)=®(u, — p'x) - (-p'x),
Prly=2)= ‘I’(Hﬂ —p'x)- ‘I’(Hl - B'x),
Prl:‘Ir:-f:l=1 _(DIL"‘J_I —ﬂix),

where D) is the cumulative normal function. In order for all of the probabilities to be positive, weneed p,<p,<-<p,_q,as
shown in Figure 1. One thing to note in Figure 1 is that the cutoff locations change when the values of the explanatory variables
change.

Figure 2.30.




Distribution of the error term in the ordered-probit model.

The estimation strategy from here follows the usual maximum likelihood method. The computer program forms the likelihood
function and then chooses the values of the parameters (including the cutoffs) that maximize this likelihood function.

The estimated coefficients are not equal to the marginal effects of a change in one of the explanatory variables (as is also true with
the logit and probit models). Consider the simple example Greene (1990, 704) describes. Assume that there are three categories.
Then (2) becomes:

(2.90)
Prly=0)=1 — &P’ x),
Pry=1)=®(u— p'x) — P—p"x],
Prly=2)=1 - @ — p’x.

Figure 2 shows this situation. The solid curve shows the distribution of y and y*. Increasing one of the x's while holding the

M A M
constant (that is, changing B'xo to P'x) is the same as shifting the entire distribution of y and y* to the right with * remaining
constant. As a result the probabilities that y takes on the values of 0, 1, and 2 change. Clearly, as shown in Figure 2, Pr(y=0)
decreases and Pr( y = 2 ) increases. The Pr( y = 1), on the other hand, may increase or decrease and, thus, the effect of an increase in
one of the explanatory variables is ambiguous. It is easy to show this result algebraically. The marginal effects for the 3 probabilities

in (3) are, assuming p>0:
o (291)
w = —glp'xp <0,
%}_ =plu—p'xp — PP’ xP,
oPry=2)

ox =glu—p xp>0.



Figure 2.31.
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Arise in one of the explanatory variables whose parameter is positive will shift the probability distribution of the outcome to the
right (from the solid line to the dashed line).

no

In general, only the sign's of the change Pr( y =0) and Pr( y =J ) are unambiguous. Greene (1990, 705) cautions that "“[w]e must be
very careful in interpreting the coefficients in this model.... Indeed, without a fair amount o extra calculation, it is quite unclear how
the coefficients in the ordered-probit model should be interpreted.”"

The BFS Dataset

The data used by BFS are available at the Journal of Applied Econometrics data website or in the MS Excel file Vanderbilt data set.xls
. Table 1 identifies the variables in the dataset.

Column | Code Variable definition

A Obs Observation number

B SID Student ID



http://qed.econ.queensu.ca/jae/1998-v13.2/butler-finegan-siegfried/
m34552/Vanderbilt%20data%20set.xls

C Grade Grade earned in Economics 231, A =4, A-=3.7, etc.

D SelCorr Variable correcting for selection bias

E Soph Dummy variable = 1 if student is a sophomore

F Senior Dummy variable = 1 if student is a senior

G Same Dummy variable = 1 if student took both intermediate classes the same year

H Skip Dummy variable = 1 if student took the intermediate classes at least one semester apart

| HighestMath Highest level of math attained (the dependent variable, 0-6 corresponding to Math 170, 171a, 172a, 171b,
172b, 2213, 221b)

J M170 Dummy variable = 1 if student's highest level of math was Math 170

K M171a Dummy variable = 1 if student's highest level of math was Math 171A

L M172a Dummy variable = 1 if student's highest level of math was Math 172a

M M171b Dummy variable = 1 if student's highest level of math was Math 171b

N M172b Dummy variable = 1 if student's highest level of math was Math 172b

(o) M221a Dummy variable = 1 if student's highest level of math was Math 221a

P M221b Dummy variable = 1 if student's highest level of math was Math 221b

Q GE100 Grade in Economics 100

R GDE100 Individual instructor grade deflator in Economics 100

S GE101 Grade in Economics 101

T GDE101 Individual instructor grade deflator in Economics 101

U GDE231 Individual instructor grade deflator in Economics 231

\" Size Class size




w FGPA Freshman GPA

X Female Dummy variable =1 if student is a female

Y MSAT Score on Math section of the SAT

4 VSAT Score on Verbal section of the SAT

AA TE231 Teacher of Economics 231 (numerical code)

AB SE231 Section of Economics 231 (numerical code)

AC GM170 Grade in highest math class: Math 170

AD GM171a Grade in highest math class: Math 171a

AE GM172a Grade in highest math class: Math 172a

AF GM171b Grade in highest math class: Math 171b

AG GM172b Grade in highest math class: Math 172b

AH GM221a Grade in highest math class: Math 221a

Al GM221b Grade in highest math class: Math 221b

Al GHM Grade in highest math class

AK Foreign Dummy variable = 1 if student passed foreign language proficiency test
AL EMEcon Dummy variable = 1 if expected major is economics

AM EMOSS Dummy variable = 1 if expected major is another social science

AN EMNS Dummy variable = 1 if expected major is a natural science

AO EMH Dummy variable = 1 if expected major is in the humanities

AP AM1 Dummy variable = 1 if student completed 1 year of advanced math in high school




AQ AM2 Dummy variable = 1 if student completed 2 years of advanced math in high school
AR AM3 Dummy variable = 1 if student completed 3 years of advanced math in high school
AS Phyl Dummy variable = 1 if student completed 1 course in physics in high school

AT Phy2 Dummy variable = 1 if student completed 2 courses in physics in high school

AU Chem1l Dummy variable = 1 if student completed 1 course in chemistry in high school

AV Chem2 Dummy variable = 1 if student completed 2 courses in chemistry in high school

Table 2.30. Definition of the variables included in the Vanderbilt data set.

Replication of the Ordered Probit Regression

At this point we are ready to begin the replication. Since it is easy to get lost in the process, | have created a list of steps that include
both instructions on what to do and questions you need to answer. As part of this exercise you will be asked to complete several
tables of results. In order to make this effort easier, | have provided a MS Word file, Tables for ordered probit discussion.doc, with
the tables to be completed in it.

1. Load the data in Stata from Excel.

2. Convert MSAT and VSAT to MSAT/100 and VSAT/100, respectively, using the commands:
.replace msat = msat/100

.replace vsat = vsat/100

3. Common sense dictates that we should calculate the means and standard deviations of the variables to be sure that there are no
entry errors. We need to construct a table that compares the means and standard deviations reported in BFS with those in our
dataset. Table 2, which has the means and standard deviations reported by BFS, gives a place to put the means and standard
deviations for the variables in our dataset. Fill in the information missing from Table 2.



m34552/Tables%20for%20ordered%20probit%20discussion.doc

Our data Butler, et al.
Variable |Mean |Std.Dev. |Mean |Std. Dev.
msat 6.25 0.60
foreign 0.11 0.32
female 0.39 0.49
emecon 0.34 0.48
emoss 0.17 0.38
emns 0.21 0.41
emh 0.07 0.25
aml 0.49 0.50
am2 0.45 0.50
am3 0.01 0.11
phyl 0.67 0.47
Phy2 0.02 0.14
cheml 0.82 0.39
chem2 0.12 0.32

Table 2.31. Means and standard deviations of the data.

4. Estimate the ordered probit regression using (in Stata) the commands:



.global indvar msat foreign female emecon emoss emns emh am1l am2 am3 phyl phy2 chem1 chem2
.oprobit highestmath Sindvar

5. Use the result of this estimation to complete Table 3.B1

highestmath |Coef. |Std. Err.|z|P>z|[95% Conf. Interval]

msatl

foreign

female

emecon

emaoss

emns

emh

aml

am2

am3

phyl
Phy2

chem1l

chem2




_cutl

_cut2

_cut3

_cut4

_cutb

_cuté

Observations

Log likelihood

LR x*(14)

Prob > x°

Pueudo-R?

Table 2.32. Results of Stata ordered-probit regression.

6. Compare your results with the table reported in the article. The table in the article is Table Il on page 193 and is reproduced in
Figure 3. What we are interested in is comparing column 4 in Figure 3 with columns 2 and 4 in Table 3. Table 4 below offers a model
for this comparison.

Figure 2.32.
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Table I1. Ordered probit estimates of level of calculus attained*

Students taking MICRO-2 Students taking MACRO-2
) Expected Mecan Coctficient Mean Cocllicient
Varnable® agn (SD) (r-value) (SD) (t-valuc)
Constant ~3.09 — -2:62
(548) (395)
SAT-math x 10-? + 625 0-50° 625 0489
(0-60) (6:12) (0-60) (5-23)
Foreign lang. - 011 002 009 0-23
proficiency [1,0) (0-32) (0-14) 0-29) (1-22)
Sex (female = 1; male = 0) ? 0-39 0.28¢ 0-36 022
(0-49) (2:59) (0-48) (1:96)
Expected major:
Economics ? 034 ~0:11 036 ~018
(0-48) (0-86) (0-48) (1-31)
Other social science ? 017 -0-29* 015 -027
(038) (199) (0:36) (1:59)
Natural science + 0-21 043¢ 020 032
(041) (3:10) (0-40) (2-05)
Humanitics - 007 ~0.37" 007 ~0-39¢
(0-25) (1-78) (0-26) (1-80)
Years of HS Advanced Math (Y)
1€y, <2 + 049 024 049 ~0-00
(0:50) (1-07) (0-50) 0-02)
Y =2 + 0-45 093" 045 067
(0-50) (4-04) (0.50) (2:83)
Y >2 + 0.01 077 001 028
% £HS ph 011) (1:70) ©11) (0:55)
cars o ysacs (Y
15Y,<2 o + 067 0-26° 0-67 027
047) (271 (0-47) (2:50)
Y,22 + 002 038 001 ~0-11
(0-14) (1-:07) i1 (0-20)
Yeurs of HS chemistry (V)
1Y, <2 + 0-82 ~0-12 0-82 -0-18
0-39) (0-69) (0-39) 0-75)
Y. 22 + 012 017 013 020
(0-32) (0-75) (0-34) (0-75)
TRUNCATION POINTS®
()] + 0274 0214
(7:29) (5-59)
2) + 033 0-27%
(8:16) (6-46)
3) + 1.5 1.58¢
(20-32) (18.26)
) K 1.79¢ 1.889
(23-07) (20-73)
(5 kS 2044 2154
(23-72) (20-58)
OVERALL RESULTS
Log likelihood ~$86.67 —~698-09
Outcomes predicted correctly 379% 41-2%
Number of Observations 609 450

*The dependent variable is the level of calculus attained, as shown by the ordered probit ranking in the lower panel of
Table 1.

"Omitted reference groups: other or unstated expected major; less than one year advanced math, physics, and chemistry
in high school.

“In an ordered probit, an underlying, normally distributed, latent variable has & mean which is a function of observable
variables. The latent variable gives rise 10 a set of observed dummy variables for ordered categories based on ranges
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Results of ordered probit regression as reported in Butler, et al.

Table 4. Comparison of ordered probit estimations.

Our estimates | Butler, et al. estimates

Estimate z |Estimate t-value
msatl 0.05 6.12
foreign 0.02 0.14
female 0.25 2.59
emecon -0.11 0.86
emoss -0.29 1.99
emns 0.43 3.10
emh -0.37 1.78
aml 0.24 1.07
am2 0.93 4.04
am3 0.77 1.70
phyl 0.26 2.71
Phy2 0.38 1.07
cheml -0.12 0.69
chem2 0.17 0.75




Intercept -3.09 5.48
_cutl 0.27 7.29
_cut2 0.33 8.16
_cut3 1.52 20.32
_cut4 1.79 23.07
_cuts 2.04 23.72
_cuté

Table 2.33. Comparison of ordered-probit estimations.

7. It is easy to see from Table 4 is that almost without exception the estimates of the parameters and their t-ratios are very similar.
The exception arises with the estimates of the truncation points (_cut# in the Stata results). We will have to figure out what these
are estimates of in order to make sense of them. Figure 1 shows the "cutoffs" that are being estimated. Footnote c in the BFS Table
Il on page 193 (shown in Figure 3) offers a useful observation:

In an ordered probit, an underlying, normally distributed, latent variable has a mean which is a function of observable
variables. The latent variable gives rise to a set of observed dummy variables for ordered categories based on ranges between
unobserved but estimable truncation points which correspond to levels of effort, ability, or other factors reflected in the
explanatory variables. If L categories are observed, there are L - 1 truncation points, of which the first is normalized to be zero,
so that L - 2 truncation points are estimated and reported in the table. The values correspond to standard deviations of the
latent normally distributed variable.

The key idea is that the values of cutoffs are relative and can be normalized around any value. Notice that the Stata results do not
report an intercept term but do report six cutoff values. Moreover, the difference between the estimate by Stata for the first cutoff
(3.08402) and the estimate for the second cutoff (3.356916) is equal to 0.272896, which is itself equal to the first truncation point
reported by BFS (1998: 193). Use Table 5 to report the difference between the first cutoff value and each of the cutoff points
reported by Stata.



Cutoff Estimate Estimate - _cutl BFS Truncation Points
_cutl 3.0840

_cut2 3.3569 0.27

_cut3 3.4146 0.33

_cutd 4.6013 1.52

_cut5 4.8774 1.79

_cuté 5.1202 2.04

Table 2.34. Reconciling Stata estimates of cutoff points with Butler, et al.'s truncation points.

The second part of the reconciliation of the two sets of results is to compute the t-ratios. To do this we need to compute the

standard deviation of the estimates of the cutoff points reported by Stata. To do this we need to retrieve the variance-covariance
M

matrix from the regression. First, let's see what we are interested in computing. Let pi be the estimate of the i ™ cutoff point. In

A M M
column 3 of Table 5 you computed “i = Pi— b fori=2,..,6 . The variance of the new variable is:

(2.92)
v(a,)= V(ﬂ ,-) - Efmr(ﬂ y 1) + V(ﬁ 1): 62 — 26, +0°2

The variance-covariance matrix will give us estimates of these variances and covariances. When there are j parameters in a
regression equation, this matrix is defined to be:
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If you type the command .vce, Stata will report 2 as shown in Figure 4. We need the section of this matrix shown in Part A of Table
6. Use equation (5) to estimate the standard errors of the estimates of the cutoff points and complete Part B of Table 6 and
compares the t-ratios with the values reported by Butler, et al. (and shown in the last column 4 of Table 6). Are you satisfied that we

have been able to come reasonably close to the results reported in the article?

Figure 2.33.



msat__ foreign _female emccon emoss  emns cmh aml am2 am3 phvl pin2  cheml chem2 cutl cu2 cud cutd cuts culd
msat  0.007
foreign  -0.001  0.020
female 0,001 -0002 0009
emecon 0000 0000 0001 008
emoss  -0.001 0000 0001 0009 0.021
cons 0000 0001 00600 0009 0009 0019
emh 0000 0002 0000 0009 0009 0009 0040
ami 0.000 0002 -0.001 0000 0001 0002 0002 0047
am2 0000 -0001 -0001 0001 0001 0001 0002 0043 0048
amd 0004 0002 0000 <0003 0000 0006 -0.007 0042 0044 0178
phyl 0001 0001 000 0001 0000 0000 0003 0000 0000 -0.002 0010
phy2 0000 00061 0000 0001 0000 -0001 0000 0001 0001 -0.006 0007 009}
cheml 0000 0001 0000 0001 0000 0000 00601 6000 0000 COM 0000 0004 0033
chem2 -0.001 0002 0000 0000 0000 -0002 0001 0000 -0.002 0006 0000 0005 0030 0047
Ceutl 0040 0006 0012 0010 0006 0008 0012 0043 0033 0018 0002 0009 0029 0025 0329
_cut2 0041 -0006 0012 0010 0006 0008 0012 0043 0034 0018 0002 0000 0029 002 0329 0330
ewt3 0041 D006 0012 0010 0006 0008 0012 0043 0034 0018 0002 0009 0029 0026 0329 0330 0331
cud 0041 -0006 0012 00I0 0005 0009 0011 0043 0035 0020 0003 0010 0029 0026 0332 0333 033 034
_cuts 0041 -0006 0012 0010 0005 0009 001 0043 0035 0020 0003 0010 0029 0026 0333 033 0334 034 0343
cuté 0041 0006 0013 0010 0005 0009 0011 0043 0035 0020 0003 0010 0029 002 0333 0338 0335 0342 0343 0345
Stata estimate of the variance-covariance matrix.
Part A. Relevant portion of the variance-covariance matrix.
_cutl _cut2 _cut3 _cutg _cuts | _cutb
_cutl [0.329




_cut2 |0.329 0.330

_cut3 0.329 |0.330 0.331

_cut4 |0.332 |0.333 0.334 0.341

_cut5 |0.333 |0.334 0.334 0.341 0.343

_cuté |0.333 |0.334 0.335 0.342 0.343 |0.345

Part B. Calculation of the t-ratios (with comparison of values reported in BFS)

M

M
V( b ) |St. Dev.( b t-ratio | BFS t-ratio

_cut2 7.29
_cut3 8.16
_cutd 20.32
_cut5 23.07
_cuté 23.72

Table 2.35. Calculation of the t-ratios for the cutoff estimates.

8. The next step in the process is to generate the term we will use in the estimation of the grade regression to account for the
potential sample selection bias. To do this we will need to find a reference in the literature that offers a clear description of what we
need to do. As it turns out, a reasonable explanation of the appropriate estimation technique is available in Jimenez and Kugler
(1987). Since much of what follows comes directly from this article, | highly recommend you read it yourself.

The gist of the method suggests that the potential sample bias is accounted for by an inverse Mills ratio for each of the categories.
What we need to do is calculate:

(2.93)



for the category that the individual actually is in. What we will do is calculate (6) for all of the categories and then sum the product
of this number and a dummy variable indicating if a course is the highest math class completed by an individual. Since the dummy
variables will equal O for math categories an individual is not in, the resulting sum will preserve the value of (6) that is associated
with the category the individual does belong to.

It is clear from (6) that we will need to retain the 6 cutoffs. We can do this with the commands:
. generate cutoffl = _b[_cutl]
. generate cutoff2 = _b[_cut2]
. generate cutoff3 = _b[_cut3]
. generate cutoffd = _b[_cut4]
. generate cutoff5 = _b[_cut5]
. generate cutoffé = _b[_cut6]

Technically, this step is not necessary since the parameter estimates are preserved until the next regression is estimated; | suggest
doing this purely as a precaution.

9. Preserve the predicted values of the ordered-probit using the command:
. predict zhat, xb
. predict phatl phat2 phat3 phat4 phat5 phat6 phat7, p

These two commands will generate for each observation the predicted mean category of math classes and the probability that this
individual will fall in each category. To see what is going on we will retrieve some representative values of these variables and then



graph them for one individual. Table 7 reports these values for 10 individuals in the sample. Now consider individual 2. Fitting a
normal distribution with a mean of 4.25 and using the critical values from our estimation yields the probabilities that the individual
is in each of the categories. For example, the probability that individual 1 will have completed no math classes is equal to 0.1223.
Figure 5 illustrates the results for individual 1. The dashed vertical lines are the six cutoff values that are the same for each
individual. The solid vertical line is the zhat for individual 1. The heavy blue line represents the normal probability density function
for this individual. While, there is, of course, a different probability distribution for each individual, the cutoff values are the same
for all members of the sample.

Observation | Highest Math Class [zhat |Pr(0) |Pr(1) |[Pr(2) |Pr(3) |Pr(4) |Pr(5) |[Pr(6)

1 3 3.9657 |0.1890 | 0.0824 | 0.0194 | 0.4467 | 0.0816 | 0.0568 | 0.1241
2 0 4.2507 |0.1217 |0.0640 |0.0158 | 0.4355 | 0.0975 | 0.0731|0.1923
165 0 3.5982 (0.3036 |0.1011 | 0.0225 | 0.4149|0.0575 | 0.0364 | 0.0640
166 6 4.6914 0.0540|0.0370|0.0098 |0.3633 | 0.1097 |0.0922 | 0.3340
214 3 3.4533|0.3560 |0.1056 | 0.0229 | 0.3900 | 0.0483 | 0.0294 | 0.0478
215 3 4.0840|0.1587 |0.0749 |0.0180 | 0.4459 | 0.0887 | 0.0637 | 0.1501
225 3 3.5250(0.3296 | 0.1036 | 0.0228 | 0.4031 | 0.0528 | 0.0328 | 0.0553
226 3 3.6990(0.2693 | 0.0969 | 0.0219 | 0.4285|0.0641 |0.0417 | 0.0776
453 3 3.9713|0.1875|0.0820  0.0194 | 0.4468 | 0.0819 | 0.0571 | 0.1253
454 5 4.1650|0.1399 |0.0697 |0.0170 | 0.4422 | 0.0932 | 0.0684 | 0.1697
495 3 4.4168 |0.0913 |0.0533 |0.0135|0.4151 | 0.1043 | 0.0816 | 0.2409
496 0 2.9811|0.5410|0.10550.0212|0.2797 | 0.0236 | 0.0127 | 0.0162
526 0 2.9247|0.5633 0.1039|0.0207 |0.2653 | 0.0214 | 0.0114 | 0.0141




527 3

3.9757

0.1863

0.0817

0.0193

0.4469

0.0822

0.0574

0.1262

Table 2.36. Predicted values of the ordered probit regression.

Now we are ready to calculate (6). The commands are:

.generate lambda0 = (-normden(cutoffl-zhat))/(norm(cutoffl-zhat)-norm(-zhat))

.generate lambdal = (normden(cutoffl-zhat)-normden(cutoff2-zhat))/(norm(cutoff2-zhat)-norm(cutoffl-zhat))

.generate lambda2 = (normden(cutoff2-zhat)-normden(cutoff3-zhat))/(norm(cutoff3-zhat)-norm(cutoff2-zhat))

.generate lambda3 = (normden(cutoff3-zhat)-normden(cutoff4-zhat))/(norm(cutoff4-zhat)-norm(cutoff3-zhat))

.generate lambda4 = (normden(cutoff4-zhat)-normden(cutoff5-zhat))/(norm(cutoff5-zhat)-norm(cutoff4-zhat))

.generate lambda5 = (normden(cutoff5-zhat)-normden(cutoff6-zhat))/(norm(cutoff6-zhat)-norm(cutoff5-zhat))

.generate lambda6 = (normden(cutoff6-zhat))/(1-norm(cutoff6)-norm(cutoff5-zhat))

.generate lambda = m170*lambda0 + m171a*lambdal + m172a*lambda2 + m171b*lambda3 + m172b*lambda4 +

m22la*lambda5+m221b*lambda6

One thing to notice in these calculations is that cutoff0 is assumed to be - oo and cutoff7 is assumed to be oo.

Figure 2.34.
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10. Now we are ready to estimate our regression explaining the grade that each individual received in intermediate
microeconomics. Use Table 8 to report the regression results for four specifications of the model. The first question is can the null
hypothesis of sample selection bias be rejected? How does this conclusion compare with BFS's conclusions? (See Table 9.) Second,
since many of the potential explanatory variables like class size and scores on the SATs do not seem to be statistically significant, it
is reasonable to focus our comments on the results reported in column (4) of Table 8.



What can you conclude about the impact of calculus on how well a student will do in intermediate microeconomics? Do the final
grades earned in a majority of the math classes impact the grade earned in intermediate microeconomics? Do the grades earned in
any of the math classes positively and significantly affect the grade earned in intermediate microeconomics? Can you explain the
impact of the freshman GPA on the grade earned in intermediate microeconomics? What, if any, is your bottom line conclusions
about what matters in determining the grades earned in intermediate microeconomics?

Explanatory variables Model (1) |Model (2) |Model (3) |Model (4)

Lambda — —

Sophomore — —

Senior —_ —

Same

Skip — —

M171a

M172a

M171b




M172b

M221a

M221b

GE100

GDE100

GE101

GDE101

GDE231

Size

FGPA




Female

MSAT

VSAT

Grade in highest Math

class

GM170

GM171a

GM172a

GM171b

GM172b

GM221a




GM221b —

Intercept

F( 28, 580) — — —

Prob > F — — —

F( 27, 581) — — —

Prob > F — — —

F( 20, 588) — —

Prob > F — —

F( 19, 589) — — —

Prob > F -~ -~ -~

R-Squared

Root MSE
Sample Size 609 609 609 609

Table 2.37. Determinants of Final Grade in Intermediate Microeconomics.

Robust t-ratios are in parentheses.

MICRO-2

Variable® Expected sign Mean (SD) Coefficient(t-value)




Intercept _— -1.64
(3.48)
Selection bias correction -0.00 0.10
(Predicted residual) (0.92) (1.29)
Level of calculus attained:
Math 171A 0.08 0.39
(0.27) (1.04)
Math 172A 0.02 -0.18
(0.13) (0.21)
Math 1718 0.37 1.02°
(0.48) (3.49)
Math 1728 0.07 1.52°
(0.25) (3.53)
Math 221A 0.05 1.33°
(0.22) (2.27)
Math 221B or 222 0.14) 0.75¢
(0.35 (1.67)
Grade in last calculus course:
Math 170 3.06 0.36"
(0.70) (4.36)




Math 171A 2.22 0.26°
(0.86) (2.21)
Math 172A 2.94 0.42
(0.80) (1.54)
Math 171B 2.62 0.10°
(0.93) (1.85)
Math 172B 2.63 -0.01
(0.90) (0.10)
Math 221A 3.10 -0.09
(0.77) (0.55)
Math 221B or 222 3.15 0.11
(0.76) (1.04)
Grade deflator of instructor in intermediate theory -0.16 0.88b
course (0.27) (8.28)
Taken in Sophomore year 0.32 0.07
(0.47) (0.94)
Taken in Senior year 0.06 -0.02
(0.24) (0.13)
MICRO-1 and MICRO-2 in same academic year 0.35 0.04
(0.48) (0.46)




At least one semester between MICRO-1 and 0.27 0.13
MICRO-2 (0.44) (1.85)
Grade in MACRO-1 2.73 0.20°
(0.73) (3.93)
Grade in MICRO-1 2.67 0.29°
(0.74) (5.93)
Instructor's grade deflator:
MACRO-1 -0.32 -0.33°
(0.20) (2.20)
MICRO-1 -0.29 -0.11
(0.16) (0.53)
Class size (intermediate theory course) 28.2 -0.002
(5.5) (0.45)
Freshman Grade Point Average 2.79 0.29°
(0.46) (3.04)
Sex (female = 1; male = 0) 0.39 0.13°
(0.49) (2.09)
SAT-Math score x 10’ 6.25 0.12°
(0.60) (1.75)




SAT-Verbal score x 10” + 5.56 0.04
(0.67) (0.78)

OVERALL RESULTS

Mean (SD) of dependent variable

Adjusted R® 0.44

Number of observations 609

Table 2.38. Results reported in BFS (p. 195).

? Omitted reference groups in MICRO-2 regression: attained Math 170; took MICRO-2 in Junior year; took MICRO-1 in spring,
MICRO-2 next fall. ° Significant at 0.01 level, one- or two-tailed test as appropriate.  Significant at 0.05 level, one- or two-tailed test
as appropriate.

Exercises
Exercise 2.6.1.

Quite often health professionals request that a patient a report their perception of their health status on a scale of 0 to 10, where 0
is the lowest possible health status and 10 is the highest health status. This type of data set is best analyzed using ordered probit. In
this exercise you will analyze a data set of responses to a survey made in Germany between 1984 and 1995. The question we are
interested in analyzing is the respondent’s perception of their own health status.

The file Riphahn, Wambach, Million data.xls is an MS Excel file that contains 27,326 observations on 25 variables, one observation
per line. The data are from Riphahn, Wambach, and Million (2003) and are also available on the web. The variables are defined in
Table 10. As a first step you will need to load these data into Stata. However, due to the large sample size you will need to first
expand the size of the memory that is available to Stata with the command: . set memory 1G. Here | have increased the memory to
1 gigabyte. This amount may be overkill but it seemed to be big enough on my computer to handle the data.



m34552/Riphahn,%20Wambach,%20Million%20data.xls
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/

Column |Variable |Variable definition

A ID individual's ID number

B Female |female=1;male=0

C Year calendar year of the observation

D Age age in years

E HSAT health satisfaction, coded 0 (low) - 10 (high)

F Handdum | handicapped = 1; otherwise =0

G Handper |degree of handicap in percent (0 - 100)

H HhnINC | household nominal monthly net income in German marks / 1000
| HHKIDS |children under age 16 in the household = 1; otherwise =0

J Educ years of schooling

K Married |married =1; otherwise =0

L Haupts highest schooling degree is Hauptschul degree = 1; otherwise =0
M Reals highest schooling degree is Realschul degree = 1; otherwise =0

N FachHS |highest schooling degree is Polytechnical degree = 1; otherwise =0
(0] Abitur highest schooling degree is Abitur = 1; otherwise =0

P Univ highest schooling degree is university degree = 1; otherwise =0
Q Working |employed = 1; otherwise =0

R BlueC blue collar employee = 1; otherwise =0

S WhiteC |white collar employee = 1; otherwise =0




T Self self employed = 1; otherwise =0

U Beamt civil servant = 1; otherwise =0

\" DocVis number of doctor visits in last three months

W HospVis |number of hospital visits in last calendar year

X Public insured in public health insurance = 1; otherwise = 0
Y Addon insured by add-on insurance = 1; otherwise =0

Table 2.39. Variables in the German Socioeconomic Panel Data Set.

Figure 2.35.
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One of the major problems with survey indices is that the numbers seem to mean different things to respondents. One way to
reduce this problem is to collapse the index into fewer outcomes by combining some of the responses together. However, anyway
we do this is going to be ad hoc. Figure 6 shows a histogram of the responses to this question. Based on this graph, we will create 5
categories—(0) HSat =0, 1, or 2; (1) HSat = 3, 4 or 5; (2) HSat = 6, 7, or 8; (3) HSat = 9; and (4) HSat = 10. We can create a new
categorical variable called hsatnew with the command:



.recode hsat (0/2 =0) (3/5=1) (6/8 = 2) (9 = 3) (10 = 4), generate(hsatnew)

Figure 7 shows the histogram of the new variable.

Figure 2.36.

The collapsed distribution of health status responses.



. Create a table of summary statistics for (1) health status, (2) age, (3) household income, (4) years of education, (5) marital status,
and (6) number of children by year and sex. (You might want to use the command .bysort year female, list of variables).

. Estimate an ordered probit regression for 1988 for health status (the new variable) using age, income, education, married, and
kids as the explanatory variables. Here you might want to used the command: .oprobit hsatnew age hninc educ married hhkids if
year==1988.

. Use the predict newvariable, xb command to calculate the predicted mean values for each individual for the 1988 observations.
Compare this histogram to one using the 1988 regression parameters to estimate xb for all years.

. Estimate the ordered probit model for all of the years in the sample and put the results into a table like Table 11. (Here you
might want to make use of the command: .bysort year: oprobit hsatnew varlist)

Variable 1984 1985|1986 | 1987|1988 | 1991 1994

age

income

education

married

kids

_cutl

_cut2

_cut3

_cut4

Observations

LR X*(5)



m34552/Tables%20for%20ordered%20probit%20discussion.doc

Prob >y’

Log likelihood

Pseudo-R?

Table 2.40. Sample table for part (d) of Exercise 1.

t-ratios are in parentheses.
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U8 AR(1) is the same as ARMA(1, 0)
U2 This set of graphs is from Enders (2005: p. 79).
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Chapter 3. A sample Honors paper-

Traditionally, empirical research papers in economics journals have five or more sections. In the first section, unimaginatively
known as the introduction, the researcher briefly (1) describes what question he or she is attempting to answers, (2) indicates why
the reader should be interested in the answer to the questions, and (3) often summarizes what the paper's conclusions. It is
traditional in the second section for authors to discuss the instidutional background to the question and provide a theoretical model
to be used in the estimation process. Quite often it makes more sense to refer to the variables in conceptual terms in this section
and leave the actual specification of the variables in later parts of the paper. A traditional example of this is the ubiquitous
"socioeconomic variables" included in many economic models. The reason for this generality is that perfect measures of the
variables conceived in most models are not available and most researchers are forced to use proxies for the variables in the model
when completing their empirical work. For this reason it is traditional in the third section of the paper to discuss what variables are
used as proxies for the variables mentioned in the model. For instance, many papers use this section to specify what variables will
proxy the "socioeconomic variables." It is appropriate to discuss shortcoming of the data set in the third section.

Economists use the fourth section of the paper to describe the econometric model estimated along with the statistical issues
created by the shortcomings of data and the model. The fourth section of the paper also usually includes a presentation of the
empirical estimations and a discussion of the implications of the estimations for the central questions of the paper. The fifth section
of the paper usually includes a recap of the research, a discussion of the implications of the empirical work, and suggestions for
further research.

Obviously, not all economics journal articles are split into the five sections described above; every author has his or her way of
organizing their arguments. Indeed, how a paper is organized will reflect the story the author is trying to tell. It is as James Joyce
noted in Protrait of an Artist as a Young Man, in art "the whole is related to the parts and the parts are related to the whole." In a
well-crafted paper the author's message dictates the organizational structure of the paper and the material in each section must
relate back to this message. In what follows we will outline what might go into each of these sections, leaving it to you to fill in the
missing parts.

3.1. Section 1. Introduction
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In this hypothetical Honors paper we examine the impact of a law change on a desired outcome of the law. In particular, sometime
during the years leading up to 2007 all of the states adopted a 0.08 per se rule on the blood alcohol content (BAC) of determining if
a driver is drunk: after passage of the law any driver with a BAC of 0.08 or higher is presumed to be driving under the influence.
Some of the states also have "zero tolerance for underaged drinking and driving" level that applies only to drivers under age 21.
Defence of drivers accused of DUI is, not surprisingly, big business for lawyers. Table 1 reports the some of the current DUI laws by
state as reported on the website of a law firm specializing in DUI cases.

Per se BAC | Zero Tolerance |Enhanced Penalty Per se BAC | Zero Tolerance |Enhanced Penalty
State Level BAC Level BAC Level State Level BAC Level BAC Level
Alabama 0.08 0.02 N/A Montana 0.08 0.02 0.18
Alaska 0.08 0.00 0.16 Nebraska 0.08 0.02 0.15
Arizona 0.08 0.00 0.15 Nevada 0.08 0.02 0.18
Arkansas 0.08 0.02 0.15 New 0.08 0.02 0.16
Hampshire
California 0.08 0.01 0.15 New Jersey 0.08 0.01 N/A
Colorado 0.08 0.02 0.20 New Mexico |0.08 0.02 0.16
Connecticut |0.08 0.02 0.16 New York 0.08 0.02 0.18
Delaware  |0.08 0.02 0.15 g:rr;:na 0.08 0.00 0.16
DC 0.08 0.00 0.20 North Dakota |0.08 0.02 0.18
Florida 0.08 0.02 0.15 Ohio 0.08 0.02 0.17
Georgia 0.08 0.02 0.15 Oklahoma 0.08 0.00 0.15
Hawaii 0.08 0.02 0.15 Oregon 0.08 0.00 N/A




Idaho 0.08 0.02 0.20 Pennsylvania |0.08 0.02 0.16
lllinois 0.08 0.00 0.16 Rhode Island |0.08 0.02 0.15
Indiana 0.08 0.02 0.15 SOUﬂT 0.08 0.02 0.15
Carolina

lowa 0.08 0.02 0.15 South Dakota |0.08 0.02 0.17
Kansas 0.08 0.02 0.15 Tennessee 0.08 0.02 0.20
Kentucky 0.08 0.02 0.18 Texas 0.08 0.00 0.15
Louisiana 0.08 0.02 0.15 Utah 0.08 0.00 0.16
Maine 0.08 0.00 0.15 Vermont 0.08 0.02 N/A
Maryland 0.08 0.02 N/A Virginia 0.08 0.02 0.15
Massachusetts | 0.08 0.02 0.20 Washington |0.08 0.02 0.15
Michigan 0.08 0.02 N/A West Virginia | 0.08 0.02 N/A
Minnesota 0.08 0.00 0.20 Wisconsin 0.08 0.00 0.17
Mississippi 0.08 0.02 N/A Wyoming 0.08 0.02 0.15
Missouri 0.08 0.02 0.15

Table 3.1. Table 1. State drunk driving laws. (Source: http://www.totaldui.com/breathalyzers/bac/laws-by-state.aspx)

The theoretical justifications for the per se BAC level rule is (1) that it will provide a disincentive for individuals to drive after
drinking and (2) that it will reduce the cost of prosecuting DUI drivers. In terms of economics the law aims to reduce the negative
externalities created by drunk drivers. The question to be examined in this paper is whether the per se laws have reduce the
number of automobile fatalities. Persumably, if the law is successful in reducing the number of DUI drivers, it will reduce the




number of accidents they cause and, thus, reduce the number of DUI fatalities. Whether the per se BAC law does reduce the number
of automobile fatalities—and, thus, is a useful law—is the empirical issue this paper proposes to investigate.

Exercises

1. The introduction or section 2 should include a discussion of the current state of the literature. What, if anything, is written in
economics journals about the impact of DUl laws on the automobile fatality rate?

2. The introduction presented above is very "thin". How would you fill out this discussion? Is this the appropriate place to introduce
a discussion of the institutional history of the adoption of the per se BAC law?

3. How would your introduction be affected by the results you report later in the paper?

4. A priori, do you think that the per se BAC law is an effective way of reduing drunk driving or is it just a placebo for voters upset
with drunk drives (like MOM)? Does it "matter" to you as a researcher whether the per se BAC law is effective?

3.2. Theoretical issues

Any model of automobile fatalities is a function of the unit of observation. Since we are interested in the impact of state laws on
automobile fatalities, it seems reasonable that we construct a model to explain the differences in automobile fatalities at the state
level (although it is tempting to use county level data). There are interstate differences that potentially explain differences in
fatalities. First, people drive more in phyically larger states and states with larger populations than they do in other states. since
more driving increases the probability of an accident, we need to standardize our measure of fatalities by the vehicle miles driven in
the state. It is traditional in the empirical literature to measure the number of fatalities as fatalities per 100 million vehicle miles
driven rather than the number of fatalities; in the interest of simplicity we follow this tradition.

A second phyical characteristic that affects the fatality rate is the type of road used in a state. In particular, it is well-known that in
the United States perhaps the safest roads are rural interestate highways. Thus, in our model we will need to hold constant the type
of highway in the state. An additional variable that potentially affects the fatality rate is the mix of drivers. In particular, given the
propensity of insurance companies to charge higher rates to individuals under the age of 25, it is reasonable to assume that the
more young drivers in the state the higher the fatality rate. Similarly, given the tendency of the elderly to have decreased reaction
rates, it is possible that the presence of more elderly drivers would drive up the automobile accident rate.




There are several behavioral variables that might affect driving habits and, thus, automobile accident rates. First, it seems
reasonable to assume that the value of time and cost of death are higher for wealthier people than they are for less wealth drivers.
However, the direction of the effect of income on driver behavior is unclear. A person with a higher value of time might be more
willing to speed than one with a lower value of time because time spent driving is time not spent earning income or engaging in
leisure. Additionally, and here the issue is very uncertain, a wealthier person may be less willing to engage in risky driving or
drinking behavior because he or she has more income to lose than a poorer individual.

A second variable that affects the behavior of individuals is the cost of gasoline. Higher gas prices will cause individuals to drive less
and closer to the gas efficient speed. Most often driving closer to the gas efficient speed implies a slower and safer speed.
Moreover, since all drivers are driven toward the gas efficient speed, the variance in speeds on the highways should be reduced. In
either case, a higher price of gasoline should cause the number of automobile fatalities to fall. Since gasoline is purchased on the
world market, the major source of differences in state-level gasoline prices is diffences among the state gasoline taxes. Similarly, we
would expect things like state taxes on alcohol consumption and the strictness of the of the DUI laws to reduce both the amount of
alcohol comsumption and the amount of driving under the influence.

In the most general terms the model to be estimated is:
(3.1) FPVM D = f(type of roads, mix of drivers, income, cost of gasoline, state laws ),

where FPVMD is a measure of the number of automobile fatalities per vehicle mile driven annually in a state. In the next section of
the paper we will make this model useable by chosing specific variables to proxy the explanatory variables

Exercises
1. The model described is incomplete (as are almost all useful models). What, if anything, would you add to the model?

2. Often the models in economics papers involve constrained optimization models that yield the predictions that are tested in the
empirical part of the paper. Are there any optimization models implicit in the description above?

3.3. The data

Many of the states adopted the 0.08 BAC per se standard between 1994 and 2008. In fact, all states adopted this standard by 2007.
Thus, a panel data set of data from all of the 50 states and the District of Columbia should offer enough variance in the this variable




to enable us to evaluate the effectiveness of the law. The Department of Transportation and the Census Bureau provide enough
data to enable us to construct a reasonable data set for all of the states for this period. What should ensue here is a detailed
description of all of the variables in the data set along with the sources used to collect the data. However, we leave the construction
of this part of the paper to you and resort to summarizing the variables included in the data set in Table 2. The data are available in
the file the "Data set" sheet in Auto fatalities data.xls; the definition of the FIPS codes are included in a sheet named "State FIPS
codes" in the same file. Table 3 defines the variables included by column in the "Data set" sheet of Auto_fatalities_data.xls.

Care needs to be taken when gathering the data because some sources list the states in alphabetical order by the full name of the
state, the way that the FIPS codes orders the states. In this case Deleware preceeds the District of Columbia. In other sources the
states are listed in alphabetical order of the each state's abreviated title. In these cases the District of Columbia preceeds Deleware
because DC preceeds DE. This sorting of the states causes several states to appear in an order different than they appear in the FIPS
codes. A similar problem occurs with working with county level data because some government sources list all county names
beginning with Mc ahead of all other county names beginning with M while other sources list county names beginning with Mc after
county names beginning with Ma. In both cases order all of the state or county data by their FIPS code prevents confusing the order
of the observations.

Variable Source Period
. e s - 1994-
FIPS code identifying each state http://www.census.gov/datamap/fipslist/AllSt.txt 2008
- . . http://www- 1994-
Fatalities from automobile accidents fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx 2008
- - . . . 1994-
Fatalities per 100 million vehicle miles driven www-fars.nhtsa.dot.gov 2008
. . . . 1994-
State gas tax rate per gallon in dollars www.fhwa.dot.gov/policyinformation/statistics 2008

State gas tax rate per gallon in dollars divided by the CPI with a base 1994-

Real state gas tax rate per gallon in 2009 dollars year of 2009 2008



http://cnx.org/content/Auto_fatalities_data.xls/latest/
http://www.census.gov/datamap/fipslist/AllSt.txt
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www.fhwa.dot.gov/policyinformation/statistics/2008/mf205.cfm

. . State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by State, 2000- |2000-
State cigarette tax per pack in dollars,
2010 2008
State tax on sbirits State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by State, 2000- |2000-
P 2010 2008
State tax wine State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by State, 2000- |2000-
2010 2008
State tax on beer State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by State, 2000- |2000-
2010 2008
. . . . . 1994-
Vehicle miles driven on state rural interstates Table VM-202 for various years on: http://www.fhwa.dot.gov 2008
. . . . 1994-
Total vehicle miles driven on state rural roads Table VM-202 for various years on: http://www.fhwa.dot.gov 2008
. . . . . 1994-
Vehicle miles driven on state urban interstates | Table VM-202 for various years on: http://www.fhwa.dot.gov 2008
. . . . 1994-
Total vehicle miles driven on state urban roads | Table VM-202 for various years on: http://www.fhwa.dot.gov 2008
. . 1994-
Percent of the registered drivers under the age of Table VM-202 for various years on: http://www.fhwa.dot.gov 994
20 2008
P fth i i h f 1994-
ercent of the registered drivers under the age o Table DL-22 for various years on: http://www.fhwa.dot.gov 99
25 2008
. . . 1994-
Percent of the registered drivers over age 70 Table DL-22 for various years on: http://www.fhwa.dot.gov 2008
1994-

Percent of the registered drivers over age 75

Table DL-22 for various years on: http://www.fhwa.dot.gov

2008



http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm

Percent of the registered drivers over age 80

Table DL-22 for various years on: http://www.fhwa.dot.gov

1994-

2008

. . . 1994-

Percent of the registered drivers over age 85 Table DL-22 for various years on: http://www.fhwa.dot.gov 2008
- . la] 1994-

State mean family income in 2009 dollars*® http://www.census.gov 2008
Dummy variable = 1 if the state has passed the . . 1994-
0.08 per se BAC law; 0 otherwise NHTSA, Regional Office. Updated as of December 1, 2008. 2008

Table 3.2. Definitions and sources of the variables in the data set.

Column | Column title Variable

A FIPS FIPS code identifying each state

B Year Variable denoting the year and ranges from1994 to 2008
C Fatalities Fatalities from automobile accidents

D DPVM Fatalities per 100 million vehicle miles driven

E SGasTax State tax on gasoline, $/gallon

F RSGasTax Real state tax on gasoline, 2009$/gallon

G CigTax State tax on cigarettes, dollars per 20-pack

H SpTax State tax on spirits, dollars per gallon

| WineTax State tax on wine, dollars per gallon

J BeerTax State tax on beer, dollars per gallon

K RuralinterstateVMD | Vehicle-miles driven in a year on rural interstates, 100 million



http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.census.gov/did/www/saipe/data/statecounty/data/1989.html

L RuralTotalvMD Vehicle-miles driven in a year on all rural roadways, 100 million
M UrbaninterstateVMMD | Vehicle-miles driven in a year on urban interstates, 100 million
N UrbanTotalVMD Vehicle-miles driven in a year on all urban roadways, 100 million
(0] PU20 Percent of licensed under the age of 20
P PU25 Percent of licensed under the age of 25
Q PO70 Percent of licensed over the age of 70
R PO75 Percent of licensed over the age of 75
S PO80 Percent of licensed over the age of 80
T PO85 Percent of licensed over the age of 85
U BACPS Dummy variable equal to 1 if the state has adopted the 0.08 BAC per se law; 0 otherwise
Vv RMFI09 Median family income in a state in 2009 dollars
Table 3.3. Data included in dataset.
Exercises

1. At this point in your thesis you would want to point out that each of the variables in the data set are proxies for the variables
discussed in part 2 of your paper. As an exercise explain how each of the explanatory variables in Table 2 are proxies for the
explanatory variables mentioned in the theory section.

2. It would seem that the "cleanest" variable in the whole data set is "fatalities." Lookup the official definition of how a fatality
from an automobile accident is measured. Does this variable still seem to have a clear and unequivocal meaning?

3.4. Empirical estimation




Now we are almost ready to present the estimation results from the model. There are a few things we need to cover before we
move to presenting the estimation results. First, what, if any, are the econometric issues raised by the model and the data set? In
this case we are using a panel data set to estimate the regression:

(3.2)
k—1
. BAC
fpvmd; =po+ Z Pixji+ P Dy +&ip
=1

where fpvmd ;. is the number of fatalities per 100 million vehicle miles driven in state i in year t, the x j is the jth explanatory
BAC
variable in stateiin year t, and Dy is the dummy variable equal to 1 if state i has a 0.08 per se BAC law in year t. From a policy

point of view what we are interested in is the sign of 8 ,and if 8 ,is statistically different from zero. At this point it would be
appropriate to discuss whether you intend to use a fixed effects or a random effect model. In the interest is simplicity, we will use a
fixed effects model but in your own research you would need to consider using either model.

A second issue that needs to be considered is if you plan to use a linear model as specified above or if you might use the natural
logarithm of the fatality rate. Since we have no a priori reason to believe that the relationship between the fatality rate and the
explanatory variables are linear, we will estimate both log-linear and a log-log models. In this way we can test if our policy
conclusions are sensitive to the mathematical specification of our model.

Now we are ready to report the results of the estimation. The key here is to avoid writing a travelog of the estimations. Instead,
report all of the regressions in one or more tables and then discuss the results presented in each table.

Exercises

1. In our estimations we use (a) a linear model, (b) a log-linear model, and (c) a log-log linear model. What are the economic
interpretation of the estimated parameters in each of the models? Be sure to discuss both dummy variables and continuous
variables.

2. Why does it not make more sense to use an explanatory variable rather than the log of that explanatory variable when that
explanatory variable is a percentage?



3.5. Notes on the estimation of the model

Since you will find it useful to replicate the estimation of the basic results, this section consists mainly of a set instructions in Table 4
for use with Stata.

Instruction Stata commands
1 Open Stata and copy the data in Auto_fatalities_data.xls into the
" | data editor. You will have 765 observations of 22 variables.
2. |Tell Stata what variable denotes the state Jiis
3. |Tell Stata what variable denotes the year tis
a Create the new variable the percentage of the total vehicle miles .generate privmd = ruralinterstatevmd/(ruraltotalvmd +
" |driven that are on rural interstate roads urbantotalvmd)
5 Create the new variable the percent of the total vehicle miles .generate puivmd=
" | driven that are on urban interstate roads urbaninterstatevmd/(ruraltotalvmd+urbantotalvmd)
6 Create the logarithm transportation of all of the variables that are |.generate Iz = log(z), where z = dpvmd, sgastax, rsgastax,
" | not percentages and rmfi09
7 Estimate the fixed effects model for the linear model (see output in |.xtreg dpvm rsgastax pu25 po70 privmd puivmd rmfi09
" |Figure 1) bacps, fe vce(robust) vsquish
7b Estimate the fixed effects model for the log-linear model (see xtreg Idpvm rsgastax pu25 po70 privmd puivmd rmfi09
"| output in Figure 2) bacps, fe vce(robust) vsquish
7 Estimate the fixed effects model for the log-log model (see output |.xtreg Idpvm Irsgastax pu25 po70 privmd puivmd Irmfi09
" |in Figure 3) bacps, fe vce(robust) vsquish
3 Place the results into a table making it easier to compare your
" |results; Table 5 is one such table.




9a.

The results in Table 5 suggest that the per se 0.08 BAC is a
successful way to reduce automobile deaths. However the sign on
the real gasoline tax rate is the opposite of what we might
reasonably expect. Let's check the sensitivity of our results by
rerunning the same three regressions with the real gasoline tax

replaced by the nominal gasoline tax. See Table 6 for the results of
these regressions.

. xtreg dpvm sgastax pu25 po70 privmd puivmd rmfi09
bacps, re vce(robust) vsquish

o9b xtreg Idpvm sgastax pu25 po70 privmd puivmd rmfi09
] bacps, fe vce(robust) vsquis
9c Xxtreg Idpvm Isgastax pu25 po70 privmd puivmd Irmfi09

bacps, fe vce(robust) vsquish

Table 3.4. Instructions for further investigation of the stability of the regression estimates.

Figure 3.1.




Fived-effects (within) regression
Group variable: fips

R-sq: within = (.3731
between = 0,4124
overall = 0.4021

corr(u_i, Xb) = -0,2066

Number of obs
Number of groups

Obs per group: min =
avg =
max =

F(7,50)
Prob » F

765
il

15
15,0
13

3.7
0.0000

(Std. Err. adjusted for 51 clusters in fips)

Robust

dpvm Coef. Std. Err. t  p[t|  [95% Conf. Interval]
rsgastax | 1342009 7132036  1.88 0.066 -.0004422  2.774581
pu2 | .0000312 .0000865  0.36 0.720 -.0001426 0002051
por0 | -.021794 0152831 -1.43 0.160  -.0524909 008903
privd | 4.543884 1590486  2.86 0.006  1.349299  7.738469
puivad | 7504832 1375308  0.55 0.588  -2.011905  3.512871
mfi09 | -.0000076 4.63e-06 -3.80 0,000 -,0000269 -8.30e-06
bacps | -.1054154 0271799 -3.88 0.000  -.1600078  -.050823
_cons | 1.811648 3899381 4,65 0.000  1.028434  2,594861

signa_u | 30254831

signae | 1515313

rho | 79945595 (fraction of variance due to u_i)




Results of linear regression results. (t-ratios are in parentheses)

Figure 3.2.



Fixed-effects (within) regression
Group variable: fips

R-sq: within = 0,387
between = 0,4049
overall = 0,3979

corr(ui, Xo) =-0.2303

Number of obs
Nunber of groups

Obs per group: min =
avg =
fax =

F(7,50)
Prob » F

765
51

15
15.0
15

33.03
0.0000

(Std. Err. adjusted for 51 clusters in fips)

Robust

Tdpwm Coef. St Err. t  P[t]  [95% Conf, Interval)
rsgastax | .8846101 .A218378 2,10 0.041 037333 1.731905
pu2s | 3.34e-06 .0000595  0.06 0.955 -.0001161 .0001228
por0 | -.0163277 .01086%  -1.50 0,139  -.0381599 0035044
prived | 3.032937 .9629571  3.15 0.003  1.098781  4.967093
puivnd 040566 9482832  0.68 0.502 -1.264117  2.545249
mfi09 | -.0000122 2.88e-06 -4.24 0.000 -.000018 -6.45e-06
bacps | -.0692171 .0188403  -3.67 0.00L  -.107059 -.0313752
cons | 6024605 2485008 2,42 0.019 103338  1.10159%

signa_u | 1973949

signa_e | 09769547

rho | .80324527 (fraction of variance due to u_i)




Results of the log-linear regression. (t-ratios are in parentheses)

Figure 3.3.



Fixed-effects (within) regression
Group variable: fips

R-sq: within = 0.4021
between = 0,3266
overall = 0.3352

corr(u_i, Xb) =-0.2639

Number of obs = 765
Number of groups = il
0bs per group: min = 15

avg= 15,0

max = 15
F(7,50) = 6.3
Prob > F = 0,0000

(Std. Err. adjusted for 51 clusters in fips)

Robust

1dpvn coef. Std. Err. t P|t]  [95% Conf. Interval]
Irsgastax | 3209228 .0927623 3.6 0.001  .1346042  .S072414
pu2s | 8.45-06 .0000579  0.15 0.885  -.0001079  .0001248
po70 | -.0139689 .0107742 -1.30 0,201  -.0356095  .0076717
privd | 2.829003 9572117 2.9 0.005  .9063863  4.751619
puivnd 678861 9313484 073 0.469  -1,191807  2.549529
1mfi09 | -.5713826 1467621 -3.89 0.000  -.866163 -.2766022
bacps | -.0504058 .0186589 -3.18 0.003 -.0968833 -.0219283
_cons | 6.83489 1511458 452 0,000  3.799038  9.870742

signa_y | 21219893

signa_e | 09632316

rho | 82856376  (fraction of variance due to u_i)




Results of the log-log regression. (t-ratios are in parentheses)

At this point is makes some sense to compare the parameter estimates for 0.08 BAC per se law; this comparison, shown in Table 5,
suggests that the effect of the per se 0.08 BAC law was to reduce fatalities. Moreover, the estimates for each of the models is very
stable whether one uses the real price of gasoline or the nominal price of gasoline, thus giving us some more confidence in our
conclusions.

Linear Log-linear Log-log
State tax of gasoline in 2009 dollars
State has a 0.08 per se BAC law -0.1054 -0.0692 -0.0594
(-3.88) (-3.67) (-3.18)
State tax of gasoline in current dollars
State has a 0.08 per se BAC law -0.1191 -0.0778 -0.0762
(-4.83) (-4.54) (-4.52)

Table 3.5. Comparison of the parameter estimates for each model with different measures of the cost of gasoline.

The balance of this section of the paper would be devoted to further tests of the stability of our results under varying assumptions.
Among other tests one would expect to see if the choice of a fixed-effects model affects your policy conclusions.

Exercises

1. Complete the Lagrange test for random effects for each of the three models, using the nominal price of gasoline. Organize the
results of this test into a table.



2. Re-estimate the three models replacing the percent of registered drivers under the age of 25 with the percent of drivers under
20. Make the same same kind of replacement for the number of drivers over age 70 (i.e., experiment with the alternative age
cutoffs—over 75, over 80, and over 85). Do any of your major conclusions change?

3. What, if any, explanation can you give for the differences in the parameter estimates for the price of gasoline generated when
the real price of gasoline is replaced by the nominal price of gasoline?

3.6. Conclusions and further research

This section of your paper should be devoted to a careful recapping of your results and providing suggestions for further research.
Such a discussion might include some cautious guesses at why the 0.08 BAC per se standard appears to affect driver behavior. The
discussion could also include some estimates of the number of lifes saved by the introduction of a per se standard.



Chapter 3. A sample Honors paper-

Traditionally, empirical research papers in economics journals have five or more sections.
In the first section, unimaginatively known as the introduction, the researcher briefly (1)
describes what question he or she is attempting to answers, (2) indicates why the reader
should be interested in the answer to the questions, and (3) often summarizes what the
paper's conclusions. It is traditional in the second section for authors to discuss the
instidutional background to the question and provide a theoretical model to be used in
the estimation process. Quite often it makes more sense to refer to the variables in
conceptual terms in this section and leave the actual specification of the variables in later
parts of the paper. A traditional example of this is the ubiquitous "socioeconomic
variables" included in many economic models. The reason for this generality is that
perfect measures of the variables conceived in most models are not available and most
researchers are forced to use proxies for the variables in the model when completing
their empirical work. For this reason it is traditional in the third section of the paper to
discuss what variables are used as proxies for the variables mentioned in the model. For
instance, many papers use this section to specify what variables will proxy the
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"socioeconomic variables." It is appropriate to discuss shortcoming of the data set in the
third section.

Economists use the fourth section of the paper to describe the econometric model
estimated along with the statistical issues created by the shortcomings of data and the
model. The fourth section of the paper also usually includes a presentation of the
empirical estimations and a discussion of the implications of the estimations for the
central questions of the paper. The fifth section of the paper usually includes a recap of
the research, a discussion of the implications of the empirical work, and suggestions for
further research.

Obviously, not all economics journal articles are split into the five sections described
above; every author has his or her way of organizing their arguments. Indeed, how a
paper is organized will reflect the story the author is trying to tell. It is as James Joyce
noted in Protrait of an Artist as a Young Man, in art "the whole is related to the parts and
the parts are related to the whole." In a well-crafted paper the author's message dictates
the organizational structure of the paper and the material in each section must relate
back to this message. In what follows we will outline what might go into each of these
sections, leaving it to you to fill in the missing parts.

3.1. Section 1. Introduction




In this hypothetical Honors paper we examine the impact of a law change on a desired
outcome of the law. In particular, sometime during the years leading up to 2007 all of the
states adopted a 0.08 per se rule on the blood alcohol content (BAC) of determining if a
driver is drunk: after passage of the law any driver with a BAC of 0.08 or higher is
presumed to be driving under the influence. Some of the states also have "zero tolerance
for underaged drinking and driving" level that applies only to drivers under age 21.
Defence of drivers accused of DUI is, not surprisingly, big business for lawyers. Table 1
reports the some of the current DUI laws by state as reported on the website of a law
firm specializing in DUI cases.

Per Per

se Zero Enhanced se Zero Enhanced

BAC |Tolerance |Penalty BAC |Tolerance |Penalty
State Level |BAC Level |BAC Level |State Level |BAC Level |[BAC Level
Alabama 0.08 [0.02 N/A Montana 0.08 (0.02 0.18
Alaska 0.08 |0.00 0.16 Nebraska 0.08 [0.02 0.15
Arizona 0.08 |0.00 0.15 Nevada 0.08 |0.02 0.18




New

Arkansas 0.08 |0.02 0.15 Hampshire 0.08 |0.02 0.16
California 0.08 (0.01 0.15 New Jersey |0.08 |0.01 N/A
Colorado 0.08 |0.02 0.20 New Mexico (0.08 |0.02 0.16
Connecticut 0.08 [0.02 0.16 New York 0.08 |0.02 0.18
Delaware 0.08 |0.02 0.15 E':rr;:na 0.08 |0.00 0.16
DC 0.08 |0.00 0.20 g:z;a 0.08 |0.02 0.18
Florida 0.08 0.02 0.15 Ohio 0.08 0.02 0.17
Georgia 0.08 |0.02 0.15 Oklahoma 0.08 |0.00 0.15
Hawaii 0.08 0.02 0.15 Oregon 0.08 |0.00 N/A
Idaho 0.08 |0.02 0.20 Pennsylvania |0.08 |0.02 0.16
lllinois 0.08 |0.00 0.16 Rhode Island |0.08 |0.02 0.15




South

Indiana 0.08 |0.02 0.15 Carolina 0.08 [0.02 0.15
lowa 0.08 |0.02 0.15 South 0.08 |0.02 0.17
Dakota
Kansas 0.08 |0.02 0.15 Tennessee 0.08 |0.02 0.20
Kentucky 0.08 |0.02 0.18 Texas 0.08 |0.00 0.15
Louisiana 0.08 [0.02 0.15 Utah 0.08 (0.00 0.16
Maine 0.08 (0.00 0.15 Vermont 0.08 (0.02 N/A
Maryland 0.08 |0.02 N/A Virginia 0.08 |0.02 0.15
Massachusetts | 0.08 |0.02 0.20 Washington |0.08 |0.02 0.15
Michigan 0.08 |0.02 N/A \Vl‘i'f;:‘ia 0.08 |0.02 N/A
Minnesota 0.08 |0.00 0.20 Wisconsin 0.08 |0.00 0.17
Mississippi 0.08 0.02 N/A Wyoming 0.08 0.02 0.15




Missouri 0.08 (0.02 0.15

Table 3.1. Table 1. State drunk driving laws. (Source:
http://www.totaldui.com/breathalyzers/bac/laws-by-state.aspx)

The theoretical justifications for the per se BAC level rule is (1) that it will provide a
disincentive for individuals to drive after drinking and (2) that it will reduce the cost of
prosecuting DUI drivers. In terms of economics the law aims to reduce the negative
externalities created by drunk drivers. The question to be examined in this paper is
whether the per se laws have reduce the number of automobile fatalities. Persumably, if
the law is successful in reducing the number of DUI drivers, it will reduce the number of
accidents they cause and, thus, reduce the number of DUI fatalities. Whether the per se
BAC law does reduce the number of automobile fatalities—and, thus, is a useful law—is
the empirical issue this paper proposes to investigate.

Exercises




1. The introduction or section 2 should include a discussion of the current state of the
literature. What, if anything, is written in economics journals about the impact of DUI
laws on the automobile fatality rate?

2. The introduction presented above is very "thin". How would you fill out this
discussion? Is this the appropriate place to introduce a discussion of the institutional
history of the adoption of the per se BAC law?

3. How would your introduction be affected by the results you report later in the paper?

4. A priori, do you think that the per se BAC law is an effective way of reduing drunk
driving or is it just a placebo for voters upset with drunk drives (like MOM)? Does it
"matter" to you as a researcher whether the per se BAC law is effective?

3.2. Theoretical issues

Any model of automobile fatalities is a function of the unit of observation. Since we are
interested in the impact of state laws on automobile fatalities, it seems reasonable that
we construct a model to explain the differences in automobile fatalities at the state level
(although it is tempting to use county level data). There are interstate differences that
potentially explain differences in fatalities. First, people drive more in phyically larger



states and states with larger populations than they do in other states. since more driving
increases the probability of an accident, we need to standardize our measure of fatalities
by the vehicle miles driven in the state. It is traditional in the empirical literature to
measure the number of fatalities as fatalities per 100 million vehicle miles driven rather
than the number of fatalities; in the interest of simplicity we follow this tradition.

A second phyical characteristic that affects the fatality rate is the type of road used in a
state. In particular, it is well-known that in the United States perhaps the safest roads are
rural interestate highways. Thus, in our model we will need to hold constant the type of
highway in the state. An additional variable that potentially affects the fatality rate is the
mix of drivers. In particular, given the propensity of insurance companies to charge higher
rates to individuals under the age of 25, it is reasonable to assume that the more young
drivers in the state the higher the fatality rate. Similarly, given the tendency of the elderly
to have decreased reaction rates, it is possible that the presence of more elderly drivers
would drive up the automobile accident rate.

There are several behavioral variables that might affect driving habits and, thus,
automobile accident rates. First, it seems reasonable to assume that the value of time
and cost of death are higher for wealthier people than they are for less wealth drivers.
However, the direction of the effect of income on driver behavior is unclear. A person



with a higher value of time might be more willing to speed than one with a lower value of
time because time spent driving is time not spent earning income or engaging in leisure.
Additionally, and here the issue is very uncertain, a wealthier person may be less willing
to engage in risky driving or drinking behavior because he or she has more income to lose
than a poorer individual.

A second variable that affects the behavior of individuals is the cost of gasoline. Higher
gas prices will cause individuals to drive less and closer to the gas efficient speed. Most
often driving closer to the gas efficient speed implies a slower and safer speed. Moreover,
since all drivers are driven toward the gas efficient speed, the variance in speeds on the
highways should be reduced. In either case, a higher price of gasoline should cause the
number of automobile fatalities to fall. Since gasoline is purchased on the world market,
the major source of differences in state-level gasoline prices is diffences among the state
gasoline taxes. Similarly, we would expect things like state taxes on alcohol consumption
and the strictness of the of the DUI laws to reduce both the amount of alcohol
comsumption and the amount of driving under the influence.

In the most general terms the model to be estimated is:

(3.1) FPV M D = f(type of roads, mix of drivers, income, cost of gasoline, state laws ),



where FPVMD is a measure of the number of automobile fatalities per vehicle mile driven
annually in a state. In the next section of the paper we will make this model useable by
chosing specific variables to proxy the explanatory variables

Exercises

1. The model described is incomplete (as are almost all useful models). What, if anything,
would you add to the model?

2. Often the models in economics papers involve constrained optimization models that
yield the predictions that are tested in the empirical part of the paper. Are there any
optimization models implicit in the description above?

3.3. The data

Many of the states adopted the 0.08 BAC per se standard between 1994 and 2008. In fact,
all states adopted this standard by 2007. Thus, a panel data set of data from all of the 50
states and the District of Columbia should offer enough variance in the this variable to
enable us to evaluate the effectiveness of the law. The Department of Transportation and
the Census Bureau provide enough data to enable us to construct a reasonable data set
for all of the states for this period. What should ensue here is a detailed description of all



of the variables in the data set along with the sources used to collect the data. However,
we leave the construction of this part of the paper to you and resort to summarizing the
variables included in the data set in Table 2. The data are available in the file the "Data
set" sheet in Auto_fatalities data.xls; the definition of the FIPS codes are included in a
sheet named "State FIPS codes" in the same file. Table 3 defines the variables included by
column in the "Data set" sheet of Auto_fatalities_data.xls.

Care needs to be taken when gathering the data because some sources list the states in
alphabetical order by the full name of the state, the way that the FIPS codes orders the
states. In this case Deleware preceeds the District of Columbia. In other sources the states
are listed in alphabetical order of the each state's abreviated title. In these cases the
District of Columbia preceeds Deleware because DC preceeds DE. This sorting of the
states causes several states to appear in an order different than they appear in the FIPS
codes. A similar problem occurs with working with county level data because some
government sources list all county names beginning with Mc ahead of all other county
names beginning with M while other sources list county names beginning with Mc after
county names beginning with Ma. In both cases order all of the state or county data by
their FIPS code prevents confusing the order of the observations.


http://cnx.org/content/Auto_fatalities_data.xls/latest/

Variable Source Period
FIPS code 1994-
identifying each | http://www.census.gov/datamap/fipslist/AllSt.txt 2008
state
:3:::::1'3;;;;0[“ http://www- 1994-
. fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx |2008
accidents
Fatalities per 100
- . 1994-
million vehicle www-fars.nhtsa.dot.gov
. . 2008
miles driven
State gas tax rate
. . . . 1994-
per gallon in www.fhwa.dot.gov/policyinformation/statistics 2008
dollars
Real state gas tax . . . .
rate per eallon in State gas tax rate per gallon in dollars divided by the CPl with | 1994-
per g a base year of 2009 2008

2009 dollars



http://www.census.gov/datamap/fipslist/AllSt.txt
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www-fars.nhtsa.dot.gov/States/StatesFatalitiesFatalityRates.aspx
http://www.fhwa.dot.gov/policyinformation/statistics/2008/mf205.cfm

State cigarette tax

. State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by 2000-
per pack in
State, 2000-2010 2008
dollars,
State tax on State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by 2000-
spirits State, 2000-2010 2008
State tax wine State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by 2000-
State, 2000-2010 2008
State tax on beer State Sales, Gasoline, Cigarette, and Alcohol Tax Rates by 2000-
State, 2000-2010 2008
Vehicle miles 1994-
driven on state Table VM-202 for various years on: http://www.fhwa.dot.gov 2008
rural interstates
Total vehicle 1994
miles driven on Table VM-202 for various years on: http://www.fhwa.dot.gov 2008
state rural roads
Vehicle miles . 1994-
driven on state Table VM-202 for various years on: http://www.fhwa.dot.gov 2008



http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.taxfoundation.org/files/state_various_sales_rates_2000-2010.xls
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm

urban interstates

Total vehicle

miles driven on Table VM-202 for various years on: http://www.fhwa.dot.gov ;ggg-
state urban roads

Percent of the

registered drivers . ) . 1994-
under the age of Table VM-202 for various years on: http://www.fhwa.dot.gov 2008
20

Percent of the

registered drivers . ) . 1994-
under the age of Table DL-22 for various years on: http://www.fhwa.dot.gov 2008
25

Percent of the 1994-
registered drivers |Table DL-22 for various years on: http://www.fhwa.dot.gov 2008
over age 70

Perf: ent of th.e Table DL-22 for various years on: http://www.fhwa.dot.gov 1994-
registered drivers 2008



http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm

over age 75

Percent of the

registered drivers | Table DL-22 for various years on: http://www.fhwa.dot.gov ;gzg
over age 80
Percent of the 1994-
registered drivers |Table DL-22 for various years on: http://www.fhwa.dot.gov 2008
over age 85
State mean family
. . 1994-
income in 2009 http://www.census.gov

2] 2008
dollars
Dummy variable =
1 if the state has 1994-
passed the 0.08 NHTSA, Regional Office. Updated as of December 1, 2008.

2008

per se BAC law; 0
otherwise

Table 3.2. Definitions and sources of the variables in the data set.



http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm
http://www.census.gov/did/www/saipe/data/statecounty/data/1989.html

Column | Column title Variable

A FIPS FIPS code identifying each state

B Year Variable denoting the year and ranges from1994 to 2008

C Fatalities Fatalities from automobile accidents

D DPVM Fatalities per 100 million vehicle miles driven

E SGasTax State tax on gasoline, $/gallon

F RSGasTax Real state tax on gasoline, 2009$/gallon

G CigTax State tax on cigarettes, dollars per 20-pack

H SpTax State tax on spirits, dollars per gallon

| WineTax State tax on wine, dollars per gallon

J BeerTax State tax on beer, dollars per gallon

K RuralinterstateVMD Vc?h.icle-miles driven in a year on rural interstates, 100
million

L RuralTotalvMD Vehicle-miles driven in a year on all rural roadways, 100




million

Vehicle-miles driven in a year on urban interstates, 100

M UrbaninterstateVMD million

N UrbanTotalVMD Vefh.icle-miles driven in a year on all urban roadways, 100
million

(o) PU20 Percent of licensed under the age of 20

P PU25 Percent of licensed under the age of 25

Q PO70 Percent of licensed over the age of 70

R PO75 Percent of licensed over the age of 75

S PO80 Percent of licensed over the age of 80

T PO85 Percent of licensed over the age of 85

U BACPS Dummy variable equal to 1 if the state has adopted the
0.08 BAC per se law; 0 otherwise

\" RMFI09 Median family income in a state in 2009 dollars




Table 3.3. Data included in dataset.

Exercises

1. At this point in your thesis you would want to point out that each of the variables in
the data set are proxies for the variables discussed in part 2 of your paper. As an
exercise explain how each of the explanatory variables in Table 2 are proxies for the
explanatory variables mentioned in the theory section.

2. It would seem that the "cleanest" variable in the whole data set is "fatalities." Lookup
the official definition of how a fatality from an automobile accident is measured. Does
this variable still seem to have a clear and unequivocal meaning?

3.4. Empirical estimation

Now we are almost ready to present the estimation results from the model. There are a
few things we need to cover before we move to presenting the estimation results. First,
what, if any, are the econometric issues raised by the model and the data set? In this case
we are using a panel data set to estimate the regression:

(3.2)



k— 1
fpvmd; =pq+ Z P ix i + ppDHAC

i=1

+& it

where fpvmd ;. is the number of fatalities per 100 million vehicle miles driven in state i in
BAC
year t, the x j;; is the j" explanatory variable in state i in yeart,and i is the dummy

variable equal to 1 if state i has a 0.08 per se BAC law in year t. From a policy point of
view what we are interested in is the sign of 8 ,and if 8 ,is statistically different from
zero. At this point it would be appropriate to discuss whether you intend to use a fixed
effects or a random effect model. In the interest is simplicity, we will use a fixed effects
model but in your own research you would need to consider using either model.

A second issue that needs to be considered is if you plan to use a linear model as
specified above or if you might use the natural logarithm of the fatality rate. Since we
have no a priori reason to believe that the relationship between the fatality rate and the
explanatory variables are linear, we will estimate both log-linear and a log-log models. In
this way we can test if our policy conclusions are sensitive to the mathematical
specification of our model.



Now we are ready to report the results of the estimation. The key here is to avoid writing
a travelog of the estimations. Instead, report all of the regressions in one or more tables
and then discuss the results presented in each table.

Exercises

1. In our estimations we use (a) a linear model, (b) a log-linear model, and (c) a log-log
linear model. What are the economic interpretation of the estimated parameters in
each of the models? Be sure to discuss both dummy variables and continuous
variables.

2. Why does it not make more sense to use an explanatory variable rather than the log of
that explanatory variable when that explanatory variable is a percentage?

3.5. Notes on the estimation of the model

Since you will find it useful to replicate the estimation of the basic results, this section
consists mainly of a set instructions in Table 4 for use with Stata.

Instruction Stata commands




Open Stata and copy the data
in Auto_fatalities_data.xls
into the data editor. You will
have 765 observations of 22
variables.

Tell Stata what variable

dis
denotes the state

Tell Stata what variable

tis
denotes the year

Create the new variable the
percentage of the total vehicle | .generate privmd =

miles driven that are on rural |ruralinterstatevmd/(ruraltotalvmd + urbantotalvmd)
interstate roads

Create the new variable the
percent of the total vehicle .generate puivmd=

miles driven that are on urban | urbaninterstatevmd/(ruraltotalvmd+urbantotalvmd)
interstate roads




Create the logarithm
transportation of all of the

.generate Iz = log(z), where z = dpvmd, sgastax,

6. variables that are not rsgastax, and rmfi09
percentages
Estimate the f".(ed effects Xxtreg dpvm rsgastax pu25 po70 privmd puivmd
7a.  model for the linear model . ]
- rmfi09 bacps, fe vce(robust) vsquish
(see output in Figure 1)
Estimate the fixed .e fects xtreg Ildpvm rsgastax pu25 po70 privmd puivmd
7b. | model for the log-linear model . .
. rmfi09 bacps, fe vce(robust) vsquish
(see output in Figure 2)
Estimate the fixed effects xtreg Ildpvm Irsgastax pu25 po70 privmd puivmd
7c. \model for the log-log model A .
N Irmfi09 bacps, fe vce(robust) vsquish
(see output in Figure 3)
Place the results into a table
3 making it easier to compare

your results; Table 5 is one
such table.




9a.

The results in Table 5 suggest
that the per se 0.08 BAC is a
successful way to reduce
automobile deaths. However
the sign on the real gasoline
tax rate is the opposite of
what we might reasonably
expect. Let's check the
sensitivity of our results by
rerunning the same three
regressions with the real
gasoline tax replaced by the
nominal gasoline tax. See
Table 6 for the results of these
regressions.

. xtreg dpvm sgastax pu25 po70 privmd puivmd
rmfi09 bacps, re vce(robust) vsquish

9b.

Xxtreg ldpvm sgastax pu25 po70 privmd puivmd
rmfi09 bacps, fe vce(robust) vsquis

9c¢.

Xxtreg Idpvm Isgastax pu25 po70 privmd puivmd




Irmfi09 bacps, fe vce(robust) vsquish

Table 3.4. Instructions for further investigation of the stability of the regression
estimates.

Figure 3.1.




Fixed-effects (within) regression
Group variable: fips

R-sq: within = 0.3731
between = 0.4124
overall = 0.4021

corr(ui, Xb) = -0.2066

Number of obs
Number of groups

Obs per group: min =
avg =
Max

F(7,50)
Prob » F

165
il

15
15.0
15

3.1
0.0000

(Std. Err. adjusted for 51 clusters in fips)

Robust

dpvm Coef. Std. Err. t  P[t]  [95% Conf. Interval]
regastax | 1342069 7132036  1.88 0.066 -.0904422  2.774581
pu25 | .0000312 .0000865 0.3 0.720 -.0001426 0002051
po70 | -.021794 0152831 -1.43 0.160  -.0524909 008903
privad | 4.543884 1590486  2.86 0.006  1.349299  7.738469
puivad | 7504832 1.375308 0.5 0.588  -2.011905  3.512871
rmfi00 | ~.0000176 4.63e-06 -3.80 0.000 -.0000269 -8.30e-06



Results of linear regression results. (t-ratios are in parentheses)

Figure 3.2.



Fixed-effects (within) regression Number of obs = 76
Group variable: fips Number of groups = 51
R-5q: within = (,3875 0bs per group: min = 15
between = 0.4049 ag= 150
overall = 0.3979 max = 15
F(7,50) = 5.0

corr(u_i, Xb) = -0.2303 Prob > = (,0000

(Std, Err. adjusted for 51 clusters in fips)

Robust
Tdpwm Coef, Std. Err. t P[] [95% Conf, Interval]

rsgastax | .0846191 .AI8378 2.0 0.041 037333 L.731905
pudy | 3.34e-06 .0000595  0.06 0.955 -.0001161 0001228
po0 | -.0163277 .01086% -1.50 0.139  -.0381599  .0035044

privad | 3.032937 9629571  3.15 0.003  1.09781  4.967093

puivad | 640566 9482832  0.68 0.502 -1.2G41L7  2.545249
rfi00 | - 0000177 2 8R%e-0R -4 24 O OO0 - DOORNIR R A%a-NA




Results of the log-linear regression. (t-ratios are in parentheses)

Figure 3.3.



Fived-effects (within) regression Number of obs = 768
Group variable: fips Nunber of groups = i
R-sq: within = 0.4021 0bs per group: min = 15
between = 0,3266 ag= 150
overall = 0.3352 Max = 15
F(7,50) = 63.31

corr(ui, Xb) =-0.2639 Prob > F = (.0000

(Std. Err. adjusted for 51 clusters in fips)

Robust
1dpw coef. std. Err.  t  p|t]  [95% conf. Interval]

Irsgastax | 3200228 0027623  3.46 0.000 1346042 5072414
pus | §8.45e-06 .0000579  0.15 0.885  -.0002079 0001248

pof0 | -.0139689 0107742  -1.30 0.200  -.0356095 0076717
privad |~ 2.829003 9572117 2.96 0.005  .9063863  4.751619

puived | 678861 9313484  0.73  0.469 L0807 25095
Trmf00 | - 87106 1TAR7A21 280 A OAN - RARRIRY - DT7REND)




Results of the log-log regression. (t-ratios are in parentheses)

At this point is makes some sense to compare the parameter estimates for 0.08 BAC per
se law; this comparison, shown in Table 5, suggests that the effect of the per se 0.08 BAC
law was to reduce fatalities. Moreover, the estimates for each of the models is very
stable whether one uses the real price of gasoline or the nominal price of gasoline, thus
giving us some more confidence in our conclusions.

Linear Log-linear Log-log
State tax of gasoline in 2009 dollars
State has a 0.08 per se BAC law -0.1054 -0.0692 -0.0594
(-3.88) (-3.67) (-3.18)

State tax of gasoline in current dollars

State has a 0.08 per se BAC law -0.1191 -0.0778 -0.0762




(-4.83) (-4.54) (-4.52)

Table 3.5. Comparison of the parameter estimates for each model with different
measures of the cost of gasoline.

The balance of this section of the paper would be devoted to further tests of the stability
of our results under varying assumptions. Among other tests one would expect to see if
the choice of a fixed-effects model affects your policy conclusions.

Exercises

1. Complete the Lagrange test for random effects for each of the three models, using the
nominal price of gasoline. Organize the results of this test into a table.

2. Re-estimate the three models replacing the percent of registered drivers under the age
of 25 with the percent of drivers under 20. Make the same same kind of replacement
for the number of drivers over age 70 (i.e., experiment with the alternative age
cutoffs—over 75, over 80, and over 85). Do any of your major conclusions change?




3. What, if any, explanation can you give for the differences in the parameter estimates
for the price of gasoline generated when the real price of gasoline is replaced by the
nominal price of gasoline?

3.6. Conclusions and further research

This section of your paper should be devoted to a careful recapping of your results and
providing suggestions for further research. Such a discussion might include some cautious
guesses at why the 0.08 BAC per se standard appears to affect driver behavior. The
discussion could also include some estimates of the number of lifes saved by the
introduction of a per se standard.






Table 2. Standard Normal Table.

7 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 | 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319  0.0359
0.1 | 0.0398 0.0438 0.0478 0.0517  0.0557 0.0596¢ 0.0636 0.0675 0.0714  0.0753
0.2 | 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103  0.1141
03 | 0.1179  0.1217  0.1255 0.1293  0.1331 0.1368 0.1406  0.1443  0.1480  0.1517
04 | 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736  0.1772 0.1808 0.1844  0.1879
0.5 | 0.1915 0.1950 0.1985 0.2019 02054 0.2088 0.2123 02157 02190 0.2224
0.6 | 0.2257 0.2291 02324 02357 02389 0.2422 02454 0.2486 0.2517  0.2549
0.7 | 02580 02611 02642 02673 02704 02734 02764 02794 0.2823  0.2852
0.8 | 0.2881 02910 0.2939 02967 02995 03023 03051 03078 03106 0.3133
0.9 | 03159 0318 03212 03238 03264 03289 03315 03340 03365 0.3389
1.0 | 03413 03438 03461 03485 03508 03531 03554 03577 03599  0.3621
1.1 | 0.3643 0.3665 0368 03708 03729 03749 03770 03790 0.3810 0.3830
1.2 | 0.3849 03869 03888 03907 03925 03944 03962 0.3980 03997 04015
1.3 | 0.4032 0.4049 04066 0.4082 04099 04115 04131 04147 04162 04177
14 | 04192 04207 04222 04236 04251 04265 04279 04292 04306 0.4319
1.5 | 0.4332 04345 04357 04370 04382 04394 04406 04418 04429  0.4441
1.6 | 04452 04463 04474 04484 04495 04505 04515 04525 04535  0.4545
1.7 | 04554 04564 04573 04582 04591 04599 04608 04616 04625 0.4633
1.8 | 04641 04649 04656 04664 04671 04678 0.4686 04693 04699 0.4706
1.9 | 04713 04719 04726 04732 04738 04744 04750 04756 04761  0.4767
2.0 | 04772 04778 04783 04788 04793 04798 0.4803 04808 04812  0.4817
2.1 | 04821 04826 04830 0.4834 04838 04842 0.4846 04850 0.4854  0.4857
22 | 04861 0.4864 04868 04871 04875 04878 04881 04884 04887  0.4890
23 | 04893 0.4896 04898 04901 04904 04906 0.4909 04911 04913 04916
24 | 04918 04920 04922 04925 04927 04929 04931 04932 04934 0.4936
2.5 | 0.4938 0.4940 04941 04943 04945 04946 04948 04949 04951 04952
2.6 | 04953 04955 04956 04957  0.4959 04960 0.4961 04962 0.4963  0.4964
2.7 | 04965 04966 04967 04968 04969 04970 04971 04972 04973 04974
2.8 | 04974 04975 04976 04977 04977 04978 04979 04979 04980  0.4981
29 | 04981 04982 04982 04983 0.4984 04984 0.4985 04985 04986  0.4986
3.0 | 04987 0.4987 0.4987 04988  0.4983  0.4989 0.4989  0.4989 04990  0.4990




NN




. set memory Sm
{5120k2

. use http: 7 vwaw.stata-préess.consdatasrB nlswork.dta

{Hational Longitudinal Survey. Young Women 14-26 vears of age in 1968

. describe

Contains data from http:/Awww.stata-press.condatasr8/nlswork.dta
ohs: 28_.534 Mational Longitudinal Survey.
Young Women 14-26 vyears of age
in 1968
21 ? Jun 2002 17:36
1. 055 758 <79.9% of memory Fread)

storage display value
ariable mname L ype Format lahiel vartable lakel

int %8 .0y HLE id
byte %8 .0g interview year
hyte 8 . 0g hirth year

hyte #8 . Dy age in current year
hyte #*B . Dg 1=white, 2=hlack, 3I=other
byte #8 . Oy 1 if married. spouse present
eV_mar byte %8 . Oy 1 if never yet married
jrade byte #8.0g current grade completed
ollgrad byte «8.0yg 1 if college graduate
ot_smsa byte %8 .0g 1 if not SHSA
_city byte %8 .0g 1 if central city
outh byte %8 .0g 1 if south
byte %8 . Og industry of employment
B C_Ccode hyte #*8 . Dy occupation
inion hyte #*8 . Dy 1 1f union
kz_ue byte #8.0g weeks unemaploved last year
tl_exp Float =9.0g total work experience
enure Float =9.0g jobh tenure,. in years
int %8 .0g usual hours worked
ks _work int #8.0g weeks worked laszt year
fFloat x9.0g ln{wage -GHF deflator}

sorted by: ididcode year




SURARArLE e
Uariable

idcode
e A
birth_vyr
o L &

el i 2

L B

ey A
grade
collgrad

NOT_ _S/RSa

c cit (1]
south
1nd_code
occ_code
union

wks ue
ttl_exp
CEmuyae
hours
wks work

Ln_wage

Hean

2601 .284
77 .95865
48 .0850%
29 .04511
1.30331%92

6029175
2296795
12.5325%
-1680451
2824441

-357218
- 4095562
¢ 692973
4.777672
23443179

Z2.548095
b.215316
4.123836
36 .55956
53.98933

1.674907

std. Dev.

1487 .359
6.383879
3.012837
6.700584
- 4822773

- 4893019
- 4206341
2.323705
-3739129
-4501%961

4791882
- 4917605
2.974025
3.065435
- 4236542

7.294463
4.652117
3.75140%
7.869623
29.03232

-4780935

0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0

76
28 .88461
£5.71667

168
104

2.263%16




generate age2 = age®2
L2494 milssing values generated)

generate ttl_exp2 = ttl_exp™2

generate tenureZ = tenure”2

(433 missing values generated)

generate byte hlack = race==2




. 118 idcode

. tis year




. xtreg In_w grade age® ttl_exp*® tenure#*® black not_smsa south,. re

i P
L1J):

28091
4697

Mumbher» of ohs
Mumber of groups

Handom—effects
sroup variahble

regression
idcode

i-sg: within 0.1715
he tween 0.4784
oueral l 0.3708

L= mln 1

A 6.0
it X 1 5

PEI group-

Hald chi2<10>
Proh 2> chid

7244 .87
0. 0000

= Gaussian
O {azssumed)

Random effects w i
oPrriu 1. A)D

Iln_wage Coef . Std. Erer. P>izi [95 Conf. Intervall

grade
ol L2
acje 2
BR
& xpd

ttl
tel
e e
tenure 2
hlack
TS A
south

cCons

not

T 1gma_u
sigma_e
rho

0646499
036806

- .0007133
0290207
0003047
039252

= 0020035
- .0530532
-.1308263
-.0B687LS
2387209

-25790313
- 29069544
- 41043812

0017811
0031195

- 00005
0024219
L0001162
0017555
0001193
-0099924
0071751
0073031
0494688

o R e o

{fraction of variance

. estimates store random_effects

000
- 000
000
. 000
007
. 000
- 000
000
. 000
- 000
. 000

due

0611589
0306718
0008113
0242737
- Q0007
0358114

- 0022373

to w

0726379
1448891
1012066
1417639

1)

- 0681408
0429201
- .0006153
0337676
0005327
0426927
- . 0017677
- .0334685
-.1167634
- 0725788
.335678




. xtreg ln_w grade age#® ttl_exp* tenure® black not_smsa south, mle

Fit C1inYg consSCant

lteration 0O:
[teration 1:
I_!l"|"'-|=l_|_|ll 23
lteration 3:

[teration 4:

Fitting Full
[teration 0:
lteration 1:
lteration 2:
ilteration 3:

Random-effect
Lroup vardiahle

Handom seffects

L kel 1 hood

dEi e

"'.|_||,|'
AL
||I||':'I
ttl_exp
ttl_exp?
EEnuwre
tenupred
hlack
Not /S a
gouth

A51 gma_
o i_||."|.._ "

1*ho

|

| |
]

|
|
Llog 1
!

|

| |

¥
4

= ML

!

y model =
i ke :l 1 v il

ikel

a1
||||
i bl
1 bl

i
1 ke
1 }
1 ool

i ool

1 ke

i ki

]
1

ricle 1 :

ikel
1 kel 1 hood
ikelihood

i kel i hood

] .; Il'llrll
oy 1
AL ]

i

-13690.161
-12817.317
-12662.037
-12649 .744
-12647 .614

-8922.145
-8853.6409
-8853 . 4255
-8853 .4254

reqress
12

Gausz

-8853.4

Coef .

0646093
0368531
0007132
0288196
- 000307
0394371
- 0020052
0533374
-.1323433
- . 0875597
2390837

- 2485556
2918458

4204033

Likelihood=-ratio test of

1 CHI

idcode

zian

254

std.

0017372
0031256
- 0000501
0024143
0001163
0017604
0001175
0097338
00?1322
0072143
0491902

0035017
001352

0074828

S1gma_ i Lh:

chi har2 01 »

Humber of obs

Humber of growp:
min
LY
2 DL

ih= e

l.||".||_||_'|:

LR ehiZ{10>

Frah » chiZ

-

0612044
030733
-.0008113
0240877
0000811
03597868
0022375
-.0724172
1463221
1016978
1426727

2416925
289196

o0 | DO QQOOO0O00

. 4057959
7332 .84 Proh>

LYS5x Conk .

chibar?

28091
4697

i |
bL.0
15

7292.38
0. 0000

Interval l

0680142
0429732
- . 000615
0335515
0005369
0428875
0017709
- . 0342615
1183644
0734201
. 3354947

- 2554187
2944956

L ELS

0. 000




. xtreg ln_w grade agew# ttl_exp* tenure* black not_smsa south, fe

28071
4697

‘ixed-effects <within.? regression Mumber of obs

roup variahble <10z idcode Mumbeyr of groups

i-2gq: within 0.1727 Dbz per group: min |

hetween
overall

roreriu 1. &bh)

ln_wage

grade
aAge
age2
ttl_exp
ttl_exp
Lo mae
tenurel
hlack
not_smsa
south
Cons

=1 gma_il
T1gma_e
¥ ho

' test that al

0.3505
0.2625

0.1936

Coef .

Cdropped?
0359987
- 000723
0334668
0002163
0357539

- .. 0019701

{dropped>

-. 0890108

- 0606309

1.03732
39504203
- 29068923
-57946283

L w_i={:

Std. Erre.

-0033864
0000533
0029653
0001277
0018487

. 000125

-0095316
0109319

- 0485546

Aavg
M X

F(8,.2338B6>

rroh > F

[95% Conf.

0293611
- . 0008274
0276545
- 0000341
0321303
- . 0022151

- . 1076933
- . 0B20582
9421497

tfraction ot wvariance due to w12

F{4696. 23386

2.13

Praob >

6.0
15

610.12
0.0000

Interual l

0426362
- . 0006186
039279
0004666
0373775
-.0017251

-.0703282

-.03%92036
1.13249%

F 0. 0000




. estimates store fixed_effects

. hausman fixed effects random_effects

dAliyc

AYge L
ttl_exp
ttl_exps
tenure
tenures
NOt_SASA
;outh

Coefficients

{ b
Fixed _etfe s

0359987
- . 000723
0334668
0002163
0357539
- 0019701
- 0890108
- .0606309

(B>
random ettt =

036806
-.0007133
0290207
0003049
039252
- 0020035
-.1308263
- .0B6B927

{h-B>

itterence

- . 0008073
-9 .68e-06
- 0044461
- . 0000886
-.0034981
0000334
0418155
0262618

sqrt{diag<U_h-U_B>>

:.E.

0013177
0000184
001711
- 000053
0005797
0000373
0062745
0081346

ohtained from xtreyg
ohtained from xXtreqg

under Ho and Ha:
under Ho:

n

h consistent
inconsistent under Ha, efficient
difference 1n coefficients not systematic
BX'[<U b

149 .44
0. 0000

chi2{B8 Ch U_B>*<{-121<{b-B>

|'r”_|!|t"|.h'i 2




P %)
0.3

0.2

0.1

| 2 34 5678 X
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DOES MORE CALCULUS IMPROVE STUDENT LEARNING? 193

Table I1. Ordered probit estimates of level of calculus attained®

Students taking MICRO-2 Students taking MACRO-2
: Expected Meun Coetficient Mean Coefficient
Variable® sign ) {f-value) isD) {r-valuc)
Constant =309 - =262
{5-48) (395)
SAT-math = 10-7 + 625 0-30¢ 6-25 0-4%4
{0-60) (6:12) (0-60) (5:23)
Forcign lang. - o1l 002 00 023
proficiency (1.0} (©-32) (0:14) (0-29) (1-22)
Sen (female = 1; male = ) ? 039 025 0-36 o2r
0-49) (2-59) 10-48) (1-96)
Expected major:
Eoonomics ? 034 =011 0-36 -8
(0-48) {0-86) (0-4%) (1:31)
Ohther social scicnce ? 017 029 015 -027
(0-35) (1-99) (0-36) {1-59)
Mutural science o+ 021 0-43° 0-20 03r
(041} (310 (0-40) (205)
Humanities - o7 =037 007 =035
(0-25) {1-78) (0-26) (1-80)
Years of HS Advanced Math (¥}
lg¥, <2 + 049 024 049 ~000
(0-50) {1-07} {0-50) (002}
Yo=2 045 093 045 067
(0500 (4-04) {0-50) (2-83)
Yo>2 + o401 077 001 028
(-11) (1:70) o1y (0-55)
Years of HS physics (¥}
1gY, <2 + 067 0-26° 0-67 o2
(0-4T) 2:71) (0-47) (2-30)
Y,=1 + 002 0-3% 001 —0:11
(0-14) (1407) {011) {0-20)
Yeurs of HS chemistry (¥}
1Y, <32 + 082 012 052 —018
(0:39) (0-65) 0-39) {(0-75)
Y,>2 + 012 017 013 020
(0-32) {0-75) (0-34) (0-75)
TRUNCATION POINTS®
3] k! o2 o214
729 ii-%
2} + 03 0
(816} (6-46)
LB + I-5H 1584
(20-32) (18:26)
) 1794 1884
(23-07) (20-73)
5 + 2404% 8
(23-72) (20-38)
OYERALL RESULTS
Log likelihood ~ 58667 —GAR-09
Outcomes prodicted correcily 3T 41-2%
Number of Observations L 490

*The dependent variable is the level of cuilculus attained, as shown by the ordered probit ranking in the lower panel of
Table 1.

"Omitted reference groups: other or unstated expected major; less than one year advanced math, physics, and chemistry
in high school.

“In an ordered probit, an underlying, normally distributed, latent variable has o mean which is a function of observable
variables. The latent variable gives rise 10 a set of observed dummy variables for ordered categorics based on ranges
between unobserved but estimable truncation points which correspond 1o levels of effort, ability, or other factors reflected
in the explanatory variables. If [ categories are observed, there are L—1 truncation points, of which the first s
normalized to be zero, so that L—2 truncation points are estimated and reported in the table. The values correspond to
standard deviations of the latent normally distributed variable.

dGignificant at 0-01 level, one- or two-tailed test, as appropriate.

Significant at 0-05 level, one- or two-ailed test, as appropriate.

&3 1998 John Wiley & Sons, Lid. J. Appl. Econ. 13, 185-202 (1998)



msat  foreign  female  emecon  ¢ndwoss  emns  emh il am2 am3 phvl pin2  cheml chem2 _cul coi culd cutd cuts culh
msat (LT
foreign  -0.001  0.020
female 00001 -0.002 000
emecon (LK 0000 0001 0012
emoss  -0.001 0000 G001 0008 0021
emns 0000 0001 0000 00009 0009 D019
emh 0000 0002 0000 0009 0009 0009 0040
emi 0000 -0002 0001 0000 0000 0002 0002 G047
a2 0000 0000 0001 D001 0001 0001 0002 0043 0048
am} 0004 0002 0000 0003 0000 0006 0007 0042 0044 0178
phyl 00001 0001  0.001 o001 o0d0 Q000 0003 D000 GOdD 0002 D010
phy2 0000 0061 0000 0001 0000 -DODI 0000 0001 0001 -0.006 D007 0.09]
cheml 0000 0001 0000 0001 0000 0000 0060 OO0 0000 GOd 0000 0004 0033
chem2 -0001 0002 Q000 Q000 0000 -0002 000 0000 0002 0006 0000 0005 0030 0047
cutl  OM0 0006 0012 000 0006 OODOR 0012 0043 0033 0018 0002 0000 0029 0025 0329
_cui2 0041 0006 0012 0010 0006 0008 0012 0043 0034 0018 0002 0009 0029 0020 0329 0330
cwd 0041 D006 0012 0010 QO06 DO0B 0012 0M3 0034 003 0002 0009 Q029 0026 0329 0330 033
cud 0041 0006 0012 0010 0005 0009 0010 0043 0035 0020 0003 0010 0029 0026 0232 0333 033 034
_cutS 0041 0006 0012 0010 0005 0009 0010 0043 0035 0020 0003 0010 0029 0026 0331 033 0334 0341 0343
cuth 0041 0006 0013 0010 0005 0009 0011 043 0035 0020 0003 0010 0029 0026 0333 033 0335 0342 03 0345
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- 1vreg rent pcturban <hsngval = faminc reg2-regd)

Instyrrumental
S OurcCe

r"i ||:|Il'.|

Re=idual
FLES . 1 fhn A

lotal

e

hnnwv-T
pcturban

Instrumented :

Inztruments :

¥ e i &
RN -'-I"alr = ..'\.....IIJ.I 4

36677 .4033
24565 .7167

61243.12

I.:'rl 1.

0022378
081516
120.7065

o] .||'.|'.'-l-:

pcturhban §ami

pOgreEsSS1lon
af g

£Z 18B338.7017
47 522.674B23

4% 1249 85959

ot Ery
L0003 388

3081528
15.70688

“u
- VS B i

0. 000
0.793
0. 000

0015583
- . 2384074
B?.10834

0029213
7014374
152 .3047




. tEsset y
time variable: year,. 1964 to 1982

. Fregress  rinv rgnp rintrate

L

.'||II_|'|'|' 5 o l:” M HI!‘lI-r'l' ul- o Iy 19

| P{ 2. 16 35.03
Mode ] 20746 .3449 2 10373.1724 Probh > F 0. 0000
Residual 4738.62733 i6 296.164208 R-zquared 0.8141
| Ad) R-squared 0.7908

otal 20484 .7724 18 1415.83177 Root HSE 17 .207

Coef Std Frye. Pritl] [ 9%« Cont Interval ]
1691365 - 0205665 . 1255375 2127354

-1.00143% 2.368749 ; -6 . 022963 4. 020085
12.5336 24.91527 -0. -b5.35161 40.28441

- predict resid0l, residuals
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Cannot reject Hy



. dwstat

Durbin—-VWatson d-statisticK 3. ) 1.321513




- prais winv rgnp intrate. rhotypedregress) corc

Iteration
Iteration
[teration 2:
lteration
[teration
lteration
Iteration
I[teration .

1 o 0 . OO0
1*ho 0.2107
1 hin 0D.2252
1 o 0.2269
rho 0.2271
¥ o D. 2271
rho 0.2271
rho 0.2271

Cochrane-Urcutt ARC{1?> regression

Souprce

Model

Residual

Total

1 nw
Y
intrate
cons

i*ho

Durbin-Watzon
Durbhin-Watzon

o ak

iterated estimates

MS

10357 .4785 2 5178.73726
4279 .22606 15 285.281737

14636 . 7046 17 B860.782623

Coaf . Std. Ere.

-1993993
-2 .5429784

-33.87%903

0481569
3.062375
44_.57671

2271288

statistic <original)

statistic <{tranzformed)

4.14
-0.83

-0.76

-430541
.558176

Humhey of ohs 18
F{ 2. 152 18.15
Proh > F 0. 0001
R-squared 0. 7076
Ad) R-squared 0.6687
Root HMSE 16 .89

[95% Conf. Intervall

09675513
-2 .07028B3

-128.8%22

.3020434
3.984314

61.13398




. prais rinv rgnp intrate. rhotypelregressd

{teration 0: rho
i teration 1: ho
I teration 2: ¢ ho
i teration J: r*ho
{teration 4: rho
I teration 5S¢ rho
I teration b: ho
I teration 7 : i o

'rats-inzten ARC1) 210N iterated estimates

source S df MS Mumbher of ohs 19

| L. 16) 20.33

Model 10878 .6657 2 5439.33286 Prab > F 0. 0000
Residual 4281 .79075 16 267.611922 R-squared 0.7176
. Ad) R-squared 0.6823

fotal 15160.4565 18 B42.247582 Root MSE 16.359

iR Coef . Std. Err. - P>t [ 9% Conf. Intervall

rgnp .1774839 - 0420267 0.000 -1083713 -£865764
intrate -2.496619 2.913403 0.404 -8.672757 3.67952

cons -31.6%24  36.770%6 0.402 -107 .6858 46 . 30076

¥ ho _224??33

urbin-Watson statistic <original) 1.430541
mrbin-Watzon statistic {transformed) 1.578521
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0.4982
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. arima winv,., ar{l 2 malls2>

(setting optimization to BHHH>
lterati1on O L og
lteration 1: log

-87 .B09565
-87 . 447909
-87.35109
-B87 . 268753
-87.203295

ikelihood

1kelihood

lteratiom £: L oo 1 kel 1l hood

[teration 3: log likelihood

lteration 9: L oo ikelihood
(switching optimization to BFGS)»
oI i kelihood -87 . 095176
-Bb . Bb436Y
-86 .19485%6
-B6 .17/ 722
-86.176414
-86 .175405
-86.175308
-86.175249

-86.175245

lteration S5: l oy
I[teration b: | &gy
- L iy

|

likelihood
lteration & l1ikelihood
lteration B: log likelihood
[teration 9: log likelihood
Iteration 10z log likelihood
lteration 11: log likelihood
lteration 122 log likelihood
Iteration 13: log likelihood

ARIMA regression
Sample: 1964 to 1982 Number of ohs
Wald chiZ<(4)

Log likelihood -B6 . 17525 Prob > chi2

UG

Coef . 2td. Err. [95% Conf. Intervall

184.942 18 .88555 147 .927 221.9569

/sig

L
I

I
&

L2
il

M

875356
- .1040967

-4.075034
-1.411536

4.985582

19.42014
13.77821

330.1145
117.5412

376 .8707

-37.18742
-27.10889

-651.0876
-231.788

-733.6675

38.93813
26 .9007

642.9375
228 .965

743 .6386
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sation 24
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EEaci1onmn
ARIFA reg
L B 1 -
aample

likel

Log

Y =
i =

FreESS10

rgnp rintrate,

at
1l oy
I-"I
log
1oy
l o
niz
log
1 oy
1 oy
log
log
1oy
log
log
log
log
Aiz
1 gy
|'ll|
I:l'|
Loy
log

MLz

|l oy
1 v
1 oy
|.ll|
log
log
1o
1 oy

i

ion

likel

likel

1ikel

11ike

likel
Aati1on
likel
1ikel
1ikel
11kel
likel
1ikel
1ikel
11 ke )
1 kel
1ikel

b

.

1764 to 1982

1 ho ok

on to

to HHHH >

i hood
i hood
i hood
1 hood
Lllllll-;‘l
to HFGS 2

i hoo

-7

.??
=75
i
=75

73
-3
-ifd
-73
-72
.?2

i hoo

i

1

i hood

i hood

i hiovad

i]!l'\lll'!l

i hood

1 hood

1 oo

i]ll,'lll-:l

ta BHHH?>»

i hood

i hood

i hoad

|]I|I||'|

L hood

BFGE »

i hood

j1||'||'.|

i hood

i |Il-l.|:I

i hood

i hiovad
A
d

-72

72
-72
=72
=72
-72
-2
-72

1 hoo
i hoo

-72.94569

PG
Std.

Evr

17527
-.3669239
-16.8%182

.856186%
= 7070234

-. 7977976
10.05095

0085497
1.455802
10.07459

5881073
2679245

3359247

ar{l 2 madll

005844
565791
534306
.523804
518707

.518128
778113
649512
.535519

B2419

370361
114777
0443
. 963004
.752622

.945718
2. 945717
. 745715
2. 745714
745714

. 745714
. 745705
. 745701
.945688
. 745688
. 745688
. 745688
. 745688

Humbeyr of
Wald
Froh 2

Prizi

0. 000
0.801
0.094

chid

ohbsz

.5«.

[L95% Conf .

1557703
-3.220243
-36.63766

-. 2964823
-1.232146

-1.6584

Interval ]

1872855
2.486395
2.854007

2.008856
-. 181901

- . 3415788







