Upsizing Paradox Applications: Strategies and Techniques

Introduction

If you’ve worked with ObjectPAL for any length of time, you’ve probably noticed a progression in your development style, one that correlates directly with your knowledge of Paradox, the way the package works, and the techniques for leveraging that knowledge into database applications. For example, compare your first Paradox application with one you’re currently working on. In doing so, you’ll probably notice that your current efforts contain marked improvements in performance, sophistication, and usability. In a general sense, this is true of any programming language or environment. This is certainly true of client-server computing, where the development environment consists of at least two products, the client front-end (Paradox) and the database server (Oracle, Sybase, InterBase, whatever). The keys to upsizing Paradox applications lie in understanding both products, they way they work individually, and the way they work together.

This paper helps you with this process by:

 o	Introducing the conceptual differences between Paradox and remote servers.

 o	Suggesting techniques for converting existing local-table applications into effective client-server applications.

 o	Outlining development strategies for working with remote tables to provide the features your users have become accustomed to.

 o	Describing techniques that may not be optimal for remote tables, as well as providing ideas for better ones.

 o	Providing tips and ideas that help you design new applications that are easier to migrate into a client-server environment.

Overview of Paradox client server computing

The client/server model is one of the most widely discussed and debated topics in the business computing industry today. Because of this, it's appropriate to review the model and Paradox's role in that model. This provides common ground for the topics covered in this paper and also presents an introduction for those new to the discussion.

The evolution of data use

In a way, client/server computing can be thought of as an evolutionary process. It provides many solutions to the problems that develop as a company begins using databases and database packages to keep track of information. To clarify this, let’s look at how database management often works its way into a business’s operational processes:

1.	First, someone begins using a database on their local machine to keep track of information needed by the company. This data can be something simple, like a customer table or complex like an inventory management system.

2.	More users begin working with the data entered by the first user. So, the tables and applications are moved into a local area network or some other file server storage device. Generally, existing applications are reworked for network access and new applications are developed to provide information needs to everyone on the network.

3.	More departments or branch locations in the company become interested in the data, so they need a way to access it. Hence, the data is moved to a more global storage device suitable for distributed access, such as a database server. This also solves performance problems on the network that appear as multiple users begin performing queries, editing tables, analyzing the data, and so forth.

4.	Company wide applications are developed to access the data on the servers and provide global solutions that are common to many (if not all) of the data’s "clients" (users). Additionally, specific applications and business rules are developed to provide global data use in consistent ways.

This is a simplistic view, admittedly, yet it summarizes the overall process that you might see if you take a historic view toward your company’s use of data. Your job as a developer is to facilitate the third and forth steps of the evolution.

What client/server computing offers

The client-server model combines the high power strengths of a server database with the visual design and ease of use provided by a client front end (like Paradox). Server database packages (like Oracle, Sybase, InterBase, and so on) are highly optimized for high-volume and complex data processing; they also provide advanced data integrity and security measures than no PC database can hope to match using today's hardware and operating system tools. By moving data to a server database, you gain speed and security benefits and reduce the amount of traffic on your local area networks. However, you also lose the "friendliness" and conveniences built-into local database packages. For example, very few database servers let you "browse" a table or perform ad-hoc queries without a lot of training or data risk.

To be fair, it is possible to provide and design the advantages of one tool in the other. For example, there are ways to perform ad-hoc queries on database servers and there are ways to enable high volume processing in client products. However, the cost involved in doing so can be prohibitive. If you want to avoid high training costs, you end up with a team of developers working madly to reduce an "application back-log." (Anyone who's worked in an MIS department fully appreciates these problems.)

The client server model embodies the statement "Use the right tool for the job" and combines the advantages of both tools into solutions that serve everyone's needs. Users gain the conveniences and performance they want and management gains the data security and integrity they need. (They also enjoy seeing lower operating costs.) Paradox fits into this model using Borland SQL Link to act a bit like a traffic cop. It converts a Paradox user's data requests into a SQL query appropriate for the server, hands the request off the server for processing, and then presents the results returned by the server for management by Paradox, which in turn presents them to the user.

Client server computing is not a solution for everybody, though. After all, Paradox's database management abilities let it work handily with tables consisting of hundreds of thousands or even millions of records. You can have several hundred users working with a well designed ObjectPAL application and design techniques for providing data access, integrity, and security benefits that let managers sleep at night. However, when you want to deploy an application that simply pushes the limits of today's PC technology, then you should consider a client server technology.

Paradox’s role in the client/server model

Paradox accesses remote tables through aliases. However, unlike aliases pointing to local file directories, aliases pointing to remote tables can only refer to tables; that is, you can't set your working directory to the location of your remote tables. This isn't as much of a problem, though, as you might expect, for Paradox lets you work with remote tables with a degree of flexibility approaching that of local tables. The following list shows some ways you can uses remote tables, once you've defined an alias for them:

 o Table views and forms let you browse and edit the underlying tables.

 o	Queries can access, display, and modify data in remote tables.

 o	The SQL Editor lets you execute SQL statements against your remote (and local) data.

 o	Data models and queries can link remote tables to each other, to local tables, and to tables from different server types, provided there is a valid field to link on.

 o	Most ObjectPAL methods work with remote tables, though some restrictions may apply.

 o	ObjectPAL provided SQL-specific constructs, including passthrough SQL, transaction support, and so on.

 o	Paradox respects and responds to the errors raised by your server's stored procedures, triggers, and other business rules on your tables.

As you can see, Paradox goes to some length to make remote tables as accessible as local tables. This reduces the amount of work you have to go through to upsize existing applications and lets you use many of the techniques you're comfortable with, though certain techniques may not be ideal for remote tables. (Specific examples are provided later in the paper.)

Conceptual Differences

One of the most important concepts behind client-server computing also introduces many of the design aspects behind migrating existing Paradox applications to this environment. Remember that the process is one of using a front-end to access and present data stored on a remote server. Your remote server was designed with certain needs in mind (security, high volume, rapid performance, and so forth.) While these concepts were also used to build Paradox, the fact that Windows development issues were also taken into account means that Paradox was built from a different perspective and uses different techniques for managing data. As an ObjectPAL developer (or Paradox user), you've probably become accustomed to certain concepts and techniques that are usually not available on a database server. This section describes some of the major differences. Later in the paper, you'll see how you can adapt your development style to account for those difference and find, along the way, that you gain some advantages for developing applications that use local tables exclusively.

Table type differences

As a Paradox for Windows developer, you're probably familiar with differences between dBASE and Paradox tables. Each table type has strengths, but forces you to follow certain rules. For example, the Paradox 5.0 table format supports different field types than the dBASE 5.0 table type. This doesn't mean that the Paradox table type is "better," just different. (After all, there are times when the indexing advantages of dBASE tables are very useful for certain application needs.) Along the same vein, server tables support different features and conventions than the Paradox table type. Some of the most important differences include:

 o	Different table naming conventions. While Paradox limits table names to eight characters (due to the file naming conventions of DOS), most database servers let you use longer names for your tables, which can help you devise more descriptive table names. Servers can also use different naming techniques. For example, some servers append a username to a table name and force you to use the username to refer to the table. Additionally, some servers use different character casing rules than when the typical Paradox user is accustomed to. For example, you can use "customer", "CUSTOMER", and even "CuStOmeR" to open a single table in Paradox, but on many servers, these names would refer to three separate tables.

 o	Different field naming conventions. In the same way that dBASE tables have different requirements for naming fields than Paradox tables do, database servers also support different field naming conventions. Some limit the number of characters, other limit the casing of field names, still others limit the names themselves. For example, an Oracle table cannot use a reserved word. Thus, if your local table contains a field called Date, you'll need to rename it before you can successfully move your data to an Oracle server. (You may also have to change some bits of code to match the new field name.)

 o	Different field types. As you might expect, each database server supports a different range of field types than are available to Paradox 5.0 tables. While each server generally provides some way of supporting the same data values, the name of data types and the range of data types are different.

	This causes your data to be converted to the appropriate data type when copied to a database server. While SQL Link does a good job of choosing appropriate data types during this process, you may not always be able to get the immediate results you want. For example, Paradox and dBASE tables support OLE field types; but (because this is a Windows-only construct), few database servers support OLE as a unique data type. Thus, your OLE data is converted to a server's binary data type, such as Sybase's image type. (As you'll see later in the paper, there are techniques for working with this.)

 o	Different character casing conventions. While this has been discussed a little, it's important to recognize that Paradox provides a number of features and ObjectPAL techniques that aren't case-sensitive. If you're server is strongly case-sensitive, this may force you to use consistent techniques when referring to tables, fields, and objects on your server.

 o	Different indexing capabilities. As you are probably aware of, dBASE indexes behave differently than Paradox indexes. Similarly, your database server probably puts indexes to different use or provides different indexing possibilities. For example, primary indexes in Paradox tables serve two functions, they prevent duplicate values and they order the records in the table. Most database servers, though provide indexes that order the table and permit duplicate values. Server indexes may also prevent duplicate values without rearranging the order of the records in a table. There are a number of ObjectPAL application techniques that use primary indexes to provide a number of solutions; when you migrate an application to client-server, you should revisit these areas of your application to see whether or not you need to rework some areas of code to use your server's indexing capabilities.

	You should also note that most servers has some restrictions on index names. For example, some will only let you use an index name only once while others will let you use the same index name for different tables.

 o	Different sort orders. If you work with international data, you've probably learned which Paradox sort orders and Windows-configuration settings you need to fully support the characters appropriate for your country. These are also issues that have been faced and solved (hopefully) by server database, though there may be different techniques used in the solutions. Take time to learn these solutions and determine whether or not they are something you need to work with. Doing so will also help avoid potentially embarrassing surprises.

While this list seems daunting at first glance, it's important to remember that none of these issues are difficult to work with. They simply mean that you may have to be more careful in your applications to make sure you're getting the results you want. Before starting work on any upsizing project, you should be fully aware of the differences between the supported features of the local table type you're using and the remote table type you want to use. The Connecting To... manual provided with Borland SQL Link 2.0 contains an overview of the major differences, including a matrix of field types and field conversions, but you should use your database server's documentation for complete details.

If you take the time to fully research these issues before you start an upsizing project, you'll be able to plan and execute your migration more efficiently. You may find you need to change some of your tables or some of your code, but this will be time well spent, as it will help you get the most out of your migration project.

Data Security and Integrity

One of the most significant differences between server databases and Paradox for Windows (along with other PC-based database packages) lies in the way they implement data security and data integrity. Server databases use several techniques to protect the data in their tables, including transactions, access rights, and views.

Transactions

Transactions are an important concept in server database handling. They group a number of operations together where each operation must succeed before data changes are saved (committed) to the underlying tables. If any operation in the transaction fails, then the effects of the transaction are "rolled back" and the tables are restored to their states and contents before the transaction started. For example, suppose you want to verify several values before allowing a new record to be posted to your server tables. If the first validations succeed, but the last one doesn't, then the entire operation is canceled and no changes are saved to the underlying table.

The classic example of why transactions are used focuses around a mythical ATM transaction. Suppose you need to transfer some money from your savings account to your checking account. In database terms, this requires two operations: subtracting the funds from your savings and then adding the same amount to your checking account. Now, suppose the power goes out after the first action. Without transactions, it might be very easy to "lose" the money you withdrew from savings. With transactions, though, your savings account is untouched because both operations weren't able to be completed, which force the entire "transaction" to be rolled back and your account balances to be restored to their earlier levels.

Paradox supports transaction handling in two ways. You can explicitly declare transactions within ObjectPAL code or you can use the implied transactions that SQL Link uses to communicate with your database server. (Because almost every remote server uses transactions to protect the data in your tables, SQL Link performs each of its operations inside a transaction.) Implied transactions can help you upsize an application quickly, but explicit transactions provide more control and let you take advantage of features unique to your server. In the long run, you'll build better performing client-server applications using explicitly-declared transactions.

Data Access Rights

Another area where database servers provide data security is access rights. Each server can restrict the amount of access that users have against certain tables. (In Paradox terms, this is similar to password a table with different passwords that permit different table and field level access.) This is a concern in an upsizing application because you have to make sure that the users of your client server application can actually work with the tables in the applications. You can control this in several ways, including:

 o	Granting rights to tables using SQL statements

 o	Using server views to restrict users to certain tables, fields, or relations.

 o	Using consistent user account names to access certain tables. For example, some companies create different accounts for different applications. This isn't necessarily the preferred solution, but it is one to keep in mind.

Views

Many servers also provide the ability to protect data by only surfacing particular fields or relationships. Typically, this is done by creating a view (or virtual table) that only displays certain fields of the underlying table. For example, suppose you have a table describing your employees, including their addresses, phone numbers, extensions, social security numbers, birthdates, salary, and so forth. While your Human Resources department needs access to all of this information, someone working on the company address book certainly doesn't. Yet, it doesn't make sense to create a separate table that might get out of date easily. To solve this problem, you can create a view of your employee table. In general, views can be used like tables, though you may encounter certain editing restrictions, depending on the type of view you've created or the server you're working with.

Data validation

Another area where database servers act differently than Paradox lies in the way data is validated. While Paradox tables have lookup tables, validity checks, and referential integrity to help validate the data stored in tables, these are functions of the table format itself and are usually not supported in a similar manner on database servers.

Instead, database servers use triggers, stored procedures, and other business rules to validate and control the data placed into tables. You can use these in Paradox applications, provided you've defined them correctly using the tools available to the database server.

When a database server fails an operation, for any reason, it triggers an error that is returned to Borland SQL Link, which in turn returns the error to Paradox. Thus, you need to ensure your applications use error checking routines to verify why a server transaction failed and react accordingly. For example, if you have a stored procedure that enforces referential integrity, make sure it returns an error code, so Paradox can know if and why something went wrong.

Individual Record processing vs. set orientation

The biggest conceptual different between Paradox and server database lies in the way tables are treated by the database itself. Paradox provides many tools for navigating records, moving to the end of the table, and so forth. Server databases, on the other hand, tend to be optimized for sets of records. SQL Link provides tools that simulates record-oriented actions, such as move to the end of the table, but does so by sending SQL statements that locate (fetch) the desired records.

For most Paradox applications, this can lead to performance degradation, when you begin working with remote tables, due to the navigational model built into Paradox. Consider the need to move from one detail record to another. When this happens with remote tables, you're essentially performing a query (SQL select) each time you do this. When the detail table is very large or is being used heavily, this slows performance considerably. There are ways, discussed later, you can counteract and minimize this--primarily using TCursors and unbound table frames or multi-record objects (MRO's). For the moment, begin thinking about the areas in your application where you provide navigational tools that may hinder the set orientation of your server.

Note:	InterBase 4.0 reduces many of these problems by providing support for the navigational model.

Optimistic locking

Another major difference between the Paradox table format and remote tables lies in the way records are locked while you're editing them. In a Paradox table, a record is locked as soon as you begin editing it. This prevents other users and applications from making changes while you're entering your work. This process, called pessimistic or deterministic locking essentially gives you complete control over a record until you're done with it. If someone else tries to edit "your" record while you have it locked, they receive an error message and have to wait until you've completed your work.

While this process works well for local tables, most remote servers implement a different locking strategy called optimistic locking. When you lock a remote record, you get a copy of it to work with. When you try to save your changes, this copy is compared to the data that's in the underlying table. If the comparison doesn't find any changes, then your edits are posted to the table. However, if your copy of the record is different than the one currently in the underlying table, then your changes are ignored and you receive an error indicating that someone else modified or deleted the record while you were working on it.

This affects your application development style because it means you need to be careful to make sure that a dataUnlockRecord (or dataPostRecord) action actually succeeds, even if you're not editing a table's key fields. Because Paradox surfaces error messages for situations like this, you can react to them using standard error handling techniques. In a simple case, you might simply have a user reenter their changes. A more complex solution, however, might determine which data changed and (optionally) let the user choose to commit the unchanged portions of their edits.

The differences between the locking strategies also surfaces a new situation called deadlock, which is a situation where two users tried to update the key value of the same record at the same time. When this happens, one of the users will be allowed to change the record while the other will receive a deadlock error. (The specific user granted access depends on the server being worked with and the circumstances surrounding the deadlocked situation. Generally, it's unpredictable.)

Upsizing existing applications

The process of upsizing an existing application can be broken down into a discrete series of steps:

 1.	Plan your approach. As you’ll see, there are a number of considerations to keep in mind while you migrate an application. By planning your approach on paper, you’ll identify areas that need some work and save yourself some implementation time. You’ll probably also identify some areas where you can improve your application’s performance by rewriting sections of code to take advantage of business rules on your server.

 2.	Move your local data to the server. This involves creating the tables your application uses and the indexes used in your links. Also, you need to move the data into the new tables and should also verify that the appropriate rights are granted (or revoked).

 3.	Change your document data models. Next, you need to change your forms and reports so they refer to the tables on your remote server.

 4.	Change application elements. Finally, you need to verify that your code is opening the correct series of tables (if you’re using TCursors and so forth) and taking advantage of server capabilities.

These steps assume, of course, that you’ve already installed and configured the appropriate software (Paradox, SQL Link, your database server, and the relevant communication tools). If you can readily access tables on your server, then you’re ready to begin upsizing an application. As a test, you might consider trying to display your database server’s system tables from within Paradox. Not only will this test your connection, it’ll also introduce you to some of the tools and documentation materials you have available.

�
Step 1: Planning your approach

The success of any software project, no matter how large or how focused, depends on the amount of time taken to plan its design and process. For example, try to think of a time when you started work on something, got several hours (or days) into it, and then had to revisit all you’d done because you forgot a key need or design. If you can find one, then you may want to consider investing a little more design time into your development schedule. Plans help you identify key elements and potential problems in advance.

With regard to upsizing existing applications, your plan should document the tables, indexes, integrity features, and relationships used in your application. You can compare this information to the conventions and features on your server and may discover, in advance, some things you need to change because of certain rules already on your system.

Make a list of the potential issues and then use that list to work with the initial issue. Later, use your list as a reference for other issues you might face during other steps of the process. For example, suppose you have to change the name of a field in a table because it violates a keyword convention on your server. If you keep that information after renaming the field, you can use it to remember to change references to that field during Step 4 of the migration (in this case, you can see whether or not you have any TCursors placing data into the renamed field).

This is a good time to choose and define the aliases you want to use to access your remote data, if you haven't done so already.

Step 2: Moving data to the server

There are several techniques available for moving data from a local table to a server. You can create the tables and move the data in one step, later creating the indexes and business rules. Or, you can create the tables and the business rules before moving the data itself. More specifically, you can use:

 o	SQL Tools to copy the data (which will, in many cases, also create a primary index for your remote table).

 o	Use ObjectPAL copy() methods to create the table and move the data in a single operation. (You’ll have to create your indexes in a separate operation.)

 o	Create the table and relevant indexes using ObjectPAL or passthrough SQL and then use Insert queries or add() to move the actual data.

Each of these approaches has strengths and weaknesses, so choose the one that fits into your own development style. Remember that there are several different issues to think about with any upsizing effort. So, there are times when copy() will be the best approach and there are times when you’ll want to use passthrough SQL (via the SQL window or ObjectPAL) to create the tables.

Regardless of the process you choose, make sure that you’ve taken care of the following steps:

 1.	Create the tables

 2.	Create the indexes

 3.	Move the data

 4.	Grant and revoke appropriate rights

Tip:	On most servers, Paradox Date fields are converted to a DateTime format, which contain time as well as date information. When you display these values in Paradox, your default DateTime format is used, which means that you may see times associated with your date values. If you want to view these values as dates only, then create a new permanent DateTime format containing %D as the specification. (Be sure to change the Time System to 24 hour.)

Step 3: Changing data models

After moving your data to the server, you need to change the data models of your forms and reports to use the server data. If you used explicit aliases when you designed your documents, then this is a relatively simple process. If, on the other hand, you used implied aliases (e.g. tables in the working directory) or hard-coded directory paths (e.g. \data), then you’ll need to add aliases to your data models.

Changing alias references in data models

If you’ve designed your data models using explicit aliases, you can incorporate your remote tables into your documents by changing the definition of the alias. To do this:

 1.	From the Desktop menu (preferably without your documents being run), choose File | Aliases.

 2.	Choose the name of your alias from the drop-down list.

 3.	Change your alias’s Driver Type from STANDARD to your server’s type.

 4.	Configure the other options appropriately. The relevant options and settings vary from server to server. Remember, though, that you can use different settings for different aliases. Thus, you can have an alias for read-only access and another for read/write access. (Read-only operations can be faster on some servers.)

 5.	Save your changes.

If you run the appropriate documents at this point, they’ll use the server data, instead of the local data.

Adding aliases to data models

If you didn’t use explicit aliases when you created your documents, you need to add them to your documents’ data models. In Paradox 4.5, the only way to do this easily (without rebinding the data objects) was to move the form to a new directory or remove the local tables and then try to open your document. Paradox would then display error dialogs noting that the tables no longer exist and provide an opportunity to choose new tables. While this approach still works in Paradox 5.0, some new features make this approach unnecessary.

If you worked with remote tables in Paradox 4.5, you’re probably familiar with the read-only data model property (which prevents tables from being edited from within the document). Paradox 5.0 added a new data model property called a table alias (also known as a moniker), which is an alternate name for a table in your data model. The table alias provides a way to refer to tables without being tied to the table’s actual name on the storage device. In many ways, table aliases are similar to object names. You define and use both types of names in the same way, as we’ll see in a moment.

To define a table name in a document’s data mode:

 1.	Begin by opening the document in a Design window.

 2.	Open the document’s Data Model dialog box (by clicking the Data Model toolbar button or by choosing Data Model from the Form or Report menu.)

 3.	Inspect the table’s reference in the data model diagram.

 4.	When the table’s data model properties menu appears, click the name of the table (the first item on the menu) or press Enter. This displays the Table Alias dialog box.

 5.	Enter the name you want to use for the table alias and then choose OK.

When you do this, you’ll notice that the table’s icon in the data model diagram now contains the moniker you entered. If you choose OK (to accept the changes) and browse the layout of your form, you’ll also notice that the moniker also appears as the default name of table frames and MRO’s previously used default (noise) names. If you open the Layout dialog box or the Define Field dialog box, you’ll also notice that the field lists in these dialogs also use the table alias to refer to the table. As you’ll see in a moment, monikers provide a number of interesting possibilities for application development, for they make it possible to redefine aliases while an application is running, without having to worry about the design of a form or it’s objects.

Note:	Paradox caches some data model information when it first loads a document. Because monikers change the default names of objects on your documents, it’s a good idea to perform an action that refreshes the cache after adding monikers to an existing data model, especially if you plan to make additional changes to the document or its data model. You can do this by running the document and then returning to Design mode, saving and reopening the document, or opening the Layout dialog box and then choosing OK.

Table aliases also make it possible to easily add alias references to a data model. This is done by replacing that data model and its table references with "monikered" table references using aliases. For example, suppose you have a form referring to two local tables and you want to upsize that form to use tables on your InterBase server. To do this:

 1.	Begin by creating the alias you want to use. (For best results, initially, define as a STANDARD alias pointing to the directory containing your local tables.)

 2.	Open the form in a Design window.

 3.	Open the Data Model dialog box and then define a moniker for each table you want to add your alias to.

 4.	Choose OK to save the new monikers.

 5.	Choose Form | Page | Layout and then choose OK to refresh the cached data model information.

 6.	Use the Data Model Designer to create (and save) a version of your data model that uses directory aliases to refer to the tables in your existing data model. Be sure to apply the same table aliases (monikers) you used in Step 2.

 7.	Open the document’s data model dialog and then choose Data models from the Types list and then choose your saved data model from the File list.

 8.	Choose OK.

While this process seems a little convoluted, it’s actually harder to describe than it is to perform and it quickly becomes second nature. (Remember that you could’ve avoided this by using aliases in the first place.) Once your documents; data models contain aliases, you have something you can redefine to point to your server tables.

Step 4: Changing application elements

Once your data models refer to the remote table, you may need to change portions of your applications that explicitly refer to the local tables. For example, if you have a form that opens a TCursor on customer.db, you’ll need to change this to refer to the remote alias and table. Following is a brief list of things to watch out for:

 o	Table name issues. Table, TCursor and Query variables that open tables directly need to be changed to refer to your remote tables. If you use string constants (or variables) for the names of tables in your ObjectPAL applications, you can reduce this work significantly. Also, using aliases other than :WORK: can help.

 o	Field name issues. Because certain servers have different naming conventions, some of your field names may have changed. Be sure to verify the structure of queries and the field names used to update TCursors.

	When working with TCursors, you can avoid these issues by using field number syntax instead of field name syntax. For example, many developers use something like this to add data to a new TCursor record:

	

customerTC."First Name" = "Frank"

customerTC."Last Name" = "Borland"

customerTC.Title = "Prospector"

	But, if you had to change the names of the first two fields (as you would on many servers, because they don’t permit spaces in field names), then you’d have to scan for all references to the "First Name" and "Last Name" fields in your code (and calculations) and then edit them. The following example shows how you can minimize this type of work:

customerTC.(1) = "Frank"

customerTC.(2) = "Borland"

customerTC.(3) = "Prospector"

	Another advantage of this approach is that it’s faster, for Paradox doesn’t have to parse your string field name reference before knowing what you’re trying to accomplish. Incidentally, you can gain even better performance by combining the field number syntax with the update() method, as shown in the following example:

customerTC.update(1, "Frank", 2, "Borland", 3, "Prospector")

	The performance benefits of update() improve with the number of fields you include in the operation. If you use only one field, you’ll only gain minor benefit, but if you include several fields, then you’ll enjoy significant performance improvements.

 o	Data Type issues. Because remote servers support different table types, you may need to change certain application elements that depend on specific data types. For example, suppose you have a table containing a date field and need to define a due date 30 days in advance. Using Paradox tables, you might devise a calculation like:

	[Orders.OrderDate] + 30

	However, because date fields are generally converted to DateTime equivalents when transferred to remote tables, this won't give you the results you expect. (Remember that adding numbers to DateTime values results in the DateTime value being increased by a number of milliseconds.) To achieve the results you need, cast the DateTime value to a date value:

	Date([Orders.OrderDate]) + 30

	In general, you should review all calculations your application uses and verify that the calculations are appropriate for the field types in your remote tables.

 o	Object reference issues. There are several development techniques in Paradox that refer to objects and their names. If your code is using default names of table frame, MRO's or field objects and you add table aliases to the tables in your data model, you may need to edit references to the former object names.

 o	Operation validation. When you're designing applications for Paradox tables, it's very easy to count on specific behavior. For example, it's well documented that tc.insertRecord() inserts a record and then locks it. Thus, it's very easy to forget to verify that the operation itself succeeded. On server tables, this becomes more of an issue because the locking mechanism is very different. You should review your record-management techniques and verify that they are testing for success and use specific error recovery techniques.

	If you're not already doing so, you should consider using error() methods to detect and react to errors generically. While this was difficult in earlier versions of Paradox, much effort went into improving this in 5.0 and it's much easier to develop consistent, generic error handling routines in the current version.

 o	Table-type specific behavior. The Paradox table type provides a number of conveniences that aren't generally available on remote databases in the same way they're available on Paradox table. This doesn't mean that these features (such as table lookups, RI, certain validity checks, and so on) can't be implemented on a server, just that the implementation is done differently. (Remember, servers are designed for many of these features.) Thus, you'll probably have to change the way you surface these features in your client/server applications. (Specific examples are shown in the next section.)

None of these issues are difficult problems. In fact, many of them can be minimized or avoided completely by following careful development techniques as you design an application. As you migrate applications to client/server, you should find your development style automatically incorporating certain techniques. Eventually, you'll find yourself able to design new applications that can be upsized simply be changing an alias (and maybe a library reference or two). In the long run, you'll find yourself designing more robust, more sophisticated, and easier to maintain applications than ever before.

Using a server's data integrity features

As noted earlier, certain features of the Paradox table type aren't surfaced in the same way on remote tables. For example, Paradox lets you define validity checks, table lookups and referential integrity within the table's structure. Remote servers support the same integrity features; however, they are surfaced in different ways. For example, triggers, stored procedures, and other business rules provide several alternative methods for validating data stored in remote tables. Thus, you may need to change certain elements of your applications that depend on the Paradox implementation, though perhaps not by much. (In some cases, you might even be able to remove code from your Paradox application, due to the power available in your server's tools.)

As you know, will trigger an error condition if you try to post a record that violates a valcheck or RI constraint. You can detect these conditions and provide context-sensitive messages to your users for handling and reacting to these problems. The techniques used for this can be used with equal success with remote tables, especially if your business rules "raise" (surface) an error for Paradox to react to.

This section shows some simple examples of how to use business rules to protect the integrity of your data by presenting ideas for implementing validity checks, table lookups, and referential integrity for your remote tables. As you review it, though, remember that these are simple examples of one way to solve a problem. Remote servers often provide ways to define even more elegant or sophisticated solutions.

Implementing simple validity checks

Paradox validity checks are quite powerful and can significantly reduce the amount of code in an application. For example, if you have your table use default validity checks that set a date field to today's date, you know that the field will have an acceptable starting value and don't have to worry about providing code for that. Database servers let you gain similar advantages using the server's business rules. For example, triggers can perform many simple validity checks, as shown in the following code sample:

create trigger default_sale_date for myorders

after insert as

begin

 update myorders

 set SALEDATE = "NOW"

 where ORDER_NO = NEW.ORDER_NO ;

end

This particular example is taken from an InterBase 4 trigger that provides behavior similar to the Default validity check in Paradox. In this case, the current date is assigned to a date field as soon as it's entered. You could also implement this from ObjectPAL, as shown in the following code sample:

method action(var eventInfo ActionEvent)

 If eventInfo.id() = dataInsertRecord then

 doDefault

 DateWritten.Value = today()

 endIf

endMethod

The difference between these approaches lies in when data is stored into the table. When you use a trigger, the value is placed into the underlying table. With ObjectPAL, the value is placed into the unsaved record buffer until you commit the new record. Both approaches have their strengths and you will probably find the server approach useful in some cases while the ObjectPAL approach will be useful in others.

Implementing table lookups

One of the most interesting (to users, at least) features of the Paradox format is the ability to restrict a field to values contained in other tables, using table lookups. While Paradox doesn't contain a built-in construct for implementing this using remote tables, it's fairly easy to do. The process itself is one of getting the source data and then presenting this to the user in some fashion. In some cases, your server may provide features that can help implement this using remote tables. For example, views can help a great deal, for they provide one way you can help users enter existing values while letting them add new ones.

To demonstrate this, begin by creating a view that selects the distinct values from a field from one of your tables using a SQL statement like the one shown below:

CREATE VIEW CHECKCAT AS

SELECT DISTINCT CATEGORY FROM CHECKS

This creates a virtual table on your server that you can open like any other remote table. (Many views have restrictions on editing, though.) In this case, you can open CHECKCAT in a TCursor, as shown in the following code sample:

�
method arrive(var eventInfo MoveEvent)

	doDefault

	If not lookupTC.isAssigned() then

		lookupTC.open(viewName)

	endIf

endmethod

When you do this, your server runs the select query before presenting the values.

Note:	If you use a SQL window to create the view, be sure your alias's sqlpassthrough mode is set to one of the shared settings; otherwise, you'll will have to disconnect and reconnect to the server in order to open your view interactively.

Once you've opened the remote table, you can use its data to populate the mechanism you want to use in order to provide lookup help with. For example, the following code shows a simple mechanism:

method action(var eventInfo ActionEvent)

var

 actionID SmallInt

 lookMenu PopupMenu

 response String

endVar

 actionID = eventInfo.id()

 If actionID = editProperties or actionID = dataLookup then

 eventInfo.setErrorCode(userError)

 scan lookupTC :

 lookMenu.addText(lookupTC.(1))

 endScan

 response = lookMenu.show()

 If response <> "" then

 self.Value = response

 endIf

 endIf

endmethod

For more production intensive systems, you'll probably want to use a form containing an unbound table frame and then refresh and resync() the TCursor to the table frame before presenting the lookup information to the user. Even so, the above samples show that lookup help is a task that can be as easy or complex as you care to make it.

�
Implementing referential integrity

For Paradox tables, referential integrity (RI) performs a number of data integrity functions. For example, they restrict the values in a detail table to those contained in the master table and they also cascade changes to a master record's linking key values to all appropriate details. In client server, this can also be accomplished using standard business rules, such as triggers, stored procedures and so on. (Some servers let you implement part of this when you create the table.)

As an example, consider the following Sybase trigger, which verifies that new orders are assigned to existing customers:

create trigger trig_insert

on orders

for insert as

if (select count(*)

 from customer, inserted

 where customer.CustomerNo = inserted.CustomerNo) = 0

begin

 raiserror 21111 "Customer number not found; insert canceled."

 rollback transaction

end

If you try to post an order record that contains an invalid customer number, this trigger raises an error and rolls the transaction back. You can detect this in Paradox using standard editing techniques. For example, the following code detects errors triggered on the server and displays an error dialog with a relevant hint message:

If errorCode() = peGeneralSQL then

 If errorHasNativeErrorCode(errorNativeCode()) then

 errorShow("An error was triggered on the server...")

 endIf

endIf

When errors result from operations on the server, the first error code on the stack is peGeneralSQL. You can either pop that error off the stack to discover the cause of the problem (via its error code and error message) or you can search the stack for specific error codes, such as the 21111 used in the above trigger. To retain the contents of the error stack, you need to save the error code and messages before trying to react to the error. One way to do this is shown in the following code sample:

errorDyn[errorCode()] = errorMessage()

while errorPop()

 errorDyn[errorCode()] = errorMessage()

endWhile

forEach element in errorDyn

 constantValueToName("Errors", int(element), stringVariable)

 errorDyn[element] = "[" + stringVariable + "] " +

 errorDyn[element]

endForEach

errorDyn.View("Error stack for this problem")

You can also implement referential integrity and similar features from within ObjectPAL itself. For example, you can cascade deletes (delete related detail records) using the following code:

method action(var eventInfo ActionEvent)

var

 answerTC TCursor

 sqlQuery SQL

 sqlValue,

 keyField,

 keyValue String

endVar

 If not activeDB.isAssigned() then

 activeDB.open()

 endIf

 If eventInfo.id() = dataDeleteRecord then

 sqlTable = ":IB_TEST:CHECKS"

 keyField = "MEMBERID"

 keyValue = "'" + memberID.Value + "'"

 sqlQuery = SQL

 DELETE FROM ~sqlTable

 WHERE ~keyField = ~keyValue

 endSQL

 If not sqlQuery.executeSQL(activeDB, answerTC) then

 errorShow("Can't delete detail records...")

 eventInfo.setErrorCode(userError)

 endIf

 endIf

endMethod

Before implementing RI using ObjectPAL, you should carefully weigh whether or not you should do this on the server. (After all, one advantage of Paradox's RI is that it's in effect, no matter how the tables are being used. Server implementations of RI can offer that security.) The general rule of thumb can be expressed in terms of when the user needs to see the results of your validations immediately (before the record is posted), then you'll want to implement the security measures locally. If the user can wait until the record is posted and then fix "problems" on the entire record (which is closer to the server model), then you should implement the measures on the server. The scope of your validations should also be taken into account. If you need business rules to be applied to your remote tables, regardless of the way they're access by client front-ends, then you should implement your constraints on the server. On the other hand, if you only need validations for a specific application, then implement them using ObjectPAL.

Designing business rules effectively

When designing business rules for data validation, use care to include mechanisms that let your client applications know when a business rule denies an update (or changes the data). This can be done by raising errors, which are returned to Paradox and placed onto the ObjectPAL error stack. Then, you can use. you should include some mechanism for that returns errors to Paradox when the rule fails. This lets you (and other developers) know why something failed and provides an opportunity for designing appropriate countermeasures.

Improving performance of applications

When migrating applications to client/server, it's important to consider whether or not your application is using techniques or features that are optimal for use with remote tables. (This is true of any front-end that also works with local tables.) As an example, consider a simple order entry system, using the following data model:

customer -->> orders -->> lineitem

Now, imagine that the main data entry for this system is done from a form like the one shown below:

; screen shot

Note that the Count field at the bottom is a special field that returns the number of records in the table frame. The Total field at the bottom is a calculated field using the following calculation:

Sum(Items.Price * Items.Qty)

Paradox makes this easy to create and handles it without a problem. In fact many applications use data entry screen like this. Yet, when the same screen is migrated to remote tables, performance slows to a crawl. If you think about what's happening behind the scenes, then it's easy to understand why performance becomes an issue.

Remember that SQL Link is translating your user requests into SQL statements understood by your servers and then returning the results to Paradox. Now, think about the amount of work that's needed to present the data shown above. Each time you change the master customer record, you tell SQL Link to fetch:

 o	The appropriate information from the customer table.

 o	All orders associated with the customer.

 o	The items associated with each order

 o	Filter the items to the correct order

 o	Calculate the value of each price and qty in the current order's items

 o	Total the results of the previous calculation

While SQL optimizes this as much as it can, it can only do so much. You can optimize this in a number of different ways. For example, consider changing the data model to:

ORDERS -->> LINEITEM

 |

 +------> CUSTOMER

This provides an immediate benefit. If you do nothing else, your performance improves. (One application sped up 25%.) Additionally, this data model is closer to what you're really trying to present to the user at this point (the items associated with a particular order). If you need to provide the ability to change the customer data, that really should be handled in a different form, perhaps called from a button on this form.

This does, change, however, the navigational behavior of your form. For example, if you click the Next Record toolbar button at this point, you'll notice that the "visual detail" record changes. You can work with this behavior in a number of ways, including changing the role of the form in the application. For example, changing this form to act as a "browser" for a single order will help. (To do this in the form, filter it's data model to the key value of the master customer.) You can also override the default navigational behavior.

There are some other performance enhancements you can make to the form, though. Specifically, consider the Total field. Regardless of the data model used, this field is going to require a separate operation from SQL Link in order to have a value to present. You can minimize this by moving the request into a separate module, again called by a button. (After all, just how often is that information really used during the course of an order.)

If this isn't possible, you can still improve performance by changing they way the required information is calculated and presented. For example, consider the following custom method:

�

method myCalcSum(sqlAlias String, sqlTable String,

 sqlField String, keyField String,

 keyValue String) Anytype

var

	answerTC TCursor

	retValue Anytype

	sqlQuery SQL

endVar

	if not activeDB.isAssigned() then

		activeDB.open()

	endIf

	; Provide a way for using this method to summarize all

 ; records in a detail table, not just a restricted view.

	If sqlField = "" then

		sqlQuery = SQL

			SELECT SUM(~sqlField)

			FROM ~sqlAlias~sqlTable

		endSQL

	else

		sqlQuery = SQL

			SELECT SUM(~sqlField)

			FROM ~sqlAlias~sqlTable

			WHERE ~keyField = ~keyValue

		endSQL

	endIf		

;	sqlQuery.writeSQL("C:\\LAST_SQL.SQL")

	If not sqlQuery.executeSQL(activeDB, answerTC) then

		errorShow()

		retValue = -1 ; blanknum

	else

		retValue = answerTC.(1)

	endIf

	return retValue

endmethod

This code sample uses a SQL passthrough query to count the number of detail records associated with a given master value. (There are certainly other approaches and SQL queries you could use.) As you probably know, SQL queries generally return answer sets similar to the way Paradox queries do. In this case, we're optimizing the process by returning the answer set to an in-memory TCursor and then using the field number syntax to place results greater than 0 into an unbound field object called numItems.

The advantage of using a custom method to calculate summaries is two-fold. First, you gain access to your servers SQL dialect, which may be more robust that the ANSI standard SQL statements used by SQL Link. Secondly, you gain control over when the summary value is actually calculated. Thus, you could call this method from the arrive of a table frame or from a record object when record changes are posted. (In the latter case, you can also use recordStatus() to further limit the calls to the custom method.)

Performance hindering techniques may not be limited to the design of your documents; they may also lurk in your code itself. For example, you may have noticed that nRecords() can, on some servers, be a time consuming process. (In extreme cases, SQL Link may have to read and count each record from the underlying table.) However, you can use a SQL query to do this, as shown in the following code sample:

method recCount(sqlAlias String, sqlTable String) LongInt

var

	sqlQuery SQL

	answerTC TCursor

	retValue LongInt

endVar

	If not activeDB.isAssigned() then

		activeDB.open()

	endIf

	sqlQuery = SQL

		SELECT COUNT(*)

		FROM ~sqlAlias~sqlTable

	endSQL

	If not sqlQuery.executeSQL(activeDB, answerTC) then

		retValue = -1

	else

		retValue = answerTC.(1)

	endIf

	return retValue

endMethod

While similar to the previous example, this one is slightly different in that it doesn't immediately present an Error dialog when something goes wrong. Instead, it returns a -1 to the calling process. This lets you use code to react to the problem. Also note that the method's arguments are used to fill in the blanks of the SQL statement using tilde variables. This is good practice, for it lets you design generic solutions that can be used in more than application. For example, you could save this particular routine (or one like it) into a library and then use that library with many (if not all) of your client/server applications. (By the way, this particular method reduced one machine's attempt at finding this information from roughly 35 seconds to slightly over one second, a significant performance improvement.)

There are other techniques commonly used in Paradox applications that may not be optimal for remote tables. For example, to locate a record, it's common practice to use the locate() methods from the TCursor or UIObject type. However, because this is a record-oriented, navigational action that requires each record in the table to be examined, it can take more time than necessary to achieve the results. By implementing this in a slightly different way, one more suited to the set-oriented nature of your remote server, you can improve performance significantly. The following table lists some different approaches for this and shows how long each approach took to perform on one machine:

	Technique used			 Time to process

	TCursor.locate()				18 seconds, 680 ms

	TCursor.qLocate()				0 seconds, 168 ms

	TCursor.setGenFilter()			1 second, 110 ms

	TCursor.setRange()				0 seconds, 220 ms

	QBE query to Answer table		0 seconds, 990 ms

	QBE query to TCursor			0 seconds, 390 ms

	SQL query to Answer table		0 seconds, 770 ms

	SQL query to TCursor			0 seconds, 390 ms

These times show the amount of time it took to locate the last value in the key field of a relatively small remote table (5000 records). Even so, the relative comparison of the times themselves are interesting. As you might expect, qLocate() and setRange() are much faster than their counterpart methods that do not use indexes. Sending the results of queries to a TCursor, instead of an answer table, improves performance as well. (It's important to note that these times reflect only the amount of time required to actually find the record, opening the TCursor itself was not timed in the locate(), qLocate(), or setRange() tests.) In each case, the only difference between the code was in the location mechanism. The timing code, calculations, and reporting mechanisms were exactly the same.)

Scan loops are another construct that can hinder performance with remote tables, as they force Paradox (and SQL Link) to fetch each record in the underlying table and then force additional queries to save changes to those records. Replacing routines that depend on scan loops take a little more thought than other elements, primarily because of the set oriented nature of most remote servers. (Remember that they work with sets of records, not individual records. For example, you may have noticed that the recCount() method shown above returns an answer table.)

In order to improve the performance of routines that currently depend on scan loops, you need to redesign the process so it can either be avoided (by providing more data control in other places of the application) or be performed as a batch operation (using Changeto queries or SQL equivalents). An example of a scan loop operation that can be controlled in other ways is the loop that changes the case of character values. Remember that you can use field pictures (pictures on field objects) to control the format of data entered into a field object and that you can use display formats to control the presentation of data (in a report, for example).

In some cases, you can improve performance by hiding the field object bound to the underlying table and then using a calculated field that formats the value of the hidden field. Because this works with "display" properties, it doesn't cause a server query. For example, suppose you have a customer name field saved in upper case on your server and you want to print mailing labels that present the name in proper case. If you set the font color of the bound field object to White (effectively hiding it) and add a calculated field using:

Format("EP", BoundFieldObject.Value)

This prevents you from using a scan loop to convert the data to the relevant case.

Of course, other approaches are equally valid. Given the same example, you could query the records to be printed to an answer table, use a scan loop on the results of the query, and then print your report without using calculated fields. The key, here, is avoiding unnecessary work on the server and on the client.

In cases where a scan loop is absolutely necessary, consider filtering the underlying table and then scanning the filtered set. You can improve performance further by querying the data set to an in-memory TCursor, performing the scan, and then updating the underlying data with the modified values (again, using Changeto queries or SQL statements).

In general, you should take a hard look at the design of your applications before you start upsizing them, generally during the planning phase. As you've just seen, your application may be using techniques that work well for local tables, but aren't suited for remote tables. If you upsize an application and performance seems to be a significant problem, then you're probably using a technique that can be more efficiently designed for your remote server, perhaps as stored procedure or other business rule. Try to locate the operations that are slowing things down and then see if you can't redesign the functionality they provide to fit into the model used by your server. When you do, you'll see significant performance improvements.

�
Additional Techniques

Earlier, it was noted that the most successful client/server applications are the ones that let each package perform the work it's designed for. For example, using a server's business rules to define referential integrity guarantees the integrity of your data regardless of the way it's accessed. Similarly, performing scan loops on local tables and then updating the remote data on the server improves the overall performance of the final operation. Yet, it isn't enough to use the two products separately, you also need to use both products cooperatively. This section demonstrates techniques for doing this.

Using unbound table frames for details

As shown earlier, one key to providing the best possible performance in a client/server application lies in minimizing the amount of data retrieval needed to present your data. You can help this by performing some of the work yourself, thus saving the amount of work that SQL Link does for you. For example, you know that in order to present a record, SQL Link executes a SQL query like:

SELECT * FROM TABLENAME

If you have a large table, this take time to process on the server and on the client (as it creates an answer set on disk or in memory). When working with linked data, displaying a different master record also results in a query like:

SELECT * FROM DetailTable

WHERE DetailKeyValue = MasterKeyValue

In some cases, you can improve overall performance by using an unlinked table frame (or MRO) and performing the selects from within ObjectPAL. For example, consider the following code from the action method of a master table's record object:

case eventInfo.id() = dataArriveRecord then

 sqlQuery = SQL

 SELECT * FROM detailTableName

 WHERE detailKeyField = ~masterKeyField.Value

 endSQL

 If not sqlQuery.executeSQL(activeDB, answerTC) then

 errorShow("Can't get detail records...")

 else

 If not local_TC.isEmpty() then

 local_TC.empty()

 endIf

 If not answerTC.add(local_TC, Yes, Yes)then

 errorShow("Can't add detail records to local table...")

 endIf

 endIf

In this example, the detail records are retrieved in a single query and then added to an unlinked local table included in the form. (The code also assumes that you have a record object for the master record, generally from an MRO, and that you've declared the appropriate variables.)

The advantage of this approach is that you gain the "navigational" behavior and aspects that your users (and perhaps your development techniques) have become accustomed to. The disadvantage, of course, is that you have to update the remote table with any changes. Specifically, you have to ensure that any user's modifications are reflected on the server. Because other users are probably working with the same data, you should maintain this data integrity on a record by record basis, which means you'll want to place your update code in the action method of the detail table's record objects.

Additionally, there are three basic actions a user can perform: inserting a new record, updating an existing one, and deleting a record. Each action requires a different type of update process. The following code sample shows one way to handle this:

actionID = eventInfo.id()

switch

 case actionID = dataUnlockRecord :

 Switch

 case self.recordStatus("Modified") and

 not self.recordStatus("New") : detailUpdate()

 case self.recordStatus("New") : detailInsert()

 endSwitch

 case actionID = dataDeleteRecord : detailDelete()

 ; other cases for actions you want to detect

endSwitch

In each case, custom methods are used to update the remote table. Each custom method creates a different SQL statement designed to update the remote table. If you use copyToArray and strings to construct the queries, you can design generic routines suitable for more than one application.

Communicating between servers and Paradox

If you develop several business rules that test different conditions and perform different actions depending on the results, you can detect, use and even control this behavior from your ObjectPAL applications. To do this, have your business rules raise different error codes that indicate different conditions. Then, look for these different error codes from within ObjectPAL. For example, the following code from an error method shows one way to use this behavior:

If eventInfo.reason() = errorWarning then

 error_No = eventInfo.errorCode()

 If error_No = peGeneralSQL then

 If errorHasNativeErrorCode(warningErrorConstant) then

 activeDB.commitTransaction()

 Message("Warning: Be careful...")

 errorClear()

 else

 activeDB.rollBackTransaction()

 Message("Operation canceled...")

 endIf

 endIf

endIf

Storing and retrieving OLE data from a remote server

For example, suppose you have an Paradox table containing OLE data and you want to migrate that table to a remote server. You can do this easily, but there’s a limitation built into the current model, one that stems from technical limitations of today's servers. As you know, OLE is a purely Windows construct, one that isn’t used by any other operating system. Because of this, no major server database has a field type for OLE data; however, most database servers support some form of binary (or image) data. Thus, your Paradox OLE data is mapped (translated) to the server’s binary data type during the migration. This is expected, documented behavior. Additionally, most server binary fields are mapped to Paradox Binary (BLOB) types. Again, this is documented, expected behavior.

The problem surfaces when you want to retrieve your server binary data and retain its OLE nature. Because OLE is a very specific data type, containing Windows application specific header information and links, Paradox contains few tools for converting raw binary data to OLE data. Thus, there appears to be no way to use remote tables to hold OLE data--because you can’t get it back as OLE data.

In reality, this can be done, using Paradox’s designed (and documented) behavior. The real problem lies in field compatibility. As you probably know, Paradox lets you add data from one table to another, provided the structures of the two tables are compatible; that is, the data in the source table can be expressed in the fields of the target table. (You also probably know that the ObjectPAL add() methods are less restrictive than the File | Utilities | Add command in this regard; ObjectPAL lets your target table be less similar to the source table than the menu command does.) For example, you can use TCursor add() to add binary data to a table containing OLE data.

Thus, the solution to the "problem" is to retrieve remote data into TCursors and then add the TCursor data into an appropriate table structure, as shown in the following code sample:

�

method pushButton(var eventInfo Event)

var

 sourceTC,

 targetTC TCursor

 tv Tableview

endVar

 Message("Adding remote data to local table...")

 sourceTC.open(":otest:ramtap.otest")

 targetTC.open(":work:ole_test")

 If not sourceTC.add(target, True, True) then

 errorShow("Problem encountered during add()")

 return

 endIf

 Message("Opening Paradox table...")

 tv.open(":work:ole_test")

 tv.wait()

 tv.close()

endmethod

If take this approach, you've solved your problem because the results are exactly what you wanted. In this case, the ability to store and retrieve OLE data from a remote server. Naturally, the success of this particular code sample ranges from server to server. (This example was developed for a Sybase server and works admirably.) You may need to make certain changes for your server.

The technique itself is similar to a one used in Paradox/DOS applications to display forms and print reports on different table structures than the ones used to actually store the data. The general idea behind the concept is to manage the data and the structure of the tables containing the table. There are many techniques available for creating the appropriate target structure. For example, you can user Create..endCreate to create the table on the fly, you can copy an existing table structure from a "holding area," or you can maintain the target table structures as part of the application. Use the techniques that best match your development style.

You might wonder about the performance of such as process. After all, you're essentially creating and using yet another table to achieve the results you want. In fact, this approach can be faster than others, primarily because of the speed benefits to querying to TCursors. (Add operations are very fast, especially if you're using primary indexes).

�
Summary and conclusion

Client/server computing offers many solutions for today's corporate data needs an Paradox helps you build these solutions. As you've seen during the course of this paper, developing client server applications doesn't have to be difficult. Yes, you have to be careful in some situations and may even need to devise some new techniques for achieving certain results, but by combining the strengths of Paradox with the strengths of your remote server, you'll be able to develop applications that are robust, secure, and (perhaps more importantly) fast.

The upsizing process doesn't have to be painful or difficult, especially if you take care when first designing your applications. Each of the code techniques presented in this paper can also help improve the quality of your local table applications. Thus, client/server computing is not so much as new concept as it is the next step in your evolution as a database developer.

�PAGE �

�PAGE �1�

