

Paint Shop Pro X

Scripting for Script Authors

Revision 7
March 10, 2006

 Page 2

Contents
Introduction... 4

Anatomy of a script... 4
Anatomy of a preset .. 6

The App Object... 8
The Do method ... 8

GeneralSettings ... 8
The Documents collection .. 10
The Document object.. 11
The Constants object... 11
The Commands collection .. 13

Tips ... 13
Start by recording.. 13
Think in terms of PSP operations ... 13
Use a Python editor like Idle or PythonWin ... 13
Use the output window for debugging.. 14
Use stepping for debugging .. 14
Use exception handlers if a command might fail.. 14
Omit parameters you don’t care about.. 15
Use ExecutionMode sensibly.. 15
Script save option – Save Dialog Positions .. 16
Script save option – Save Materials.. 16
Script save option – Remove Undone Commands ... 17
Scripts and Threads... 17
Scripts with Dialogs.. 18
Scripts and Batch Processing .. 18
Using Scriptlets... 19
Improving Script Performance.. 20

Common operations .. 21
Selecting a layer.. 21
Iterating layers .. 23
Selecting a different document ... 24
Iterating documents... 25
Saving/Restoring a selection... 25
Checking for a selection.. 25
Testing Image/Layer Attributes .. 26
Requiring a Document .. 26
Promoting To True Color.. 27
Processing all the files in a directory .. 27

Getting information from Paint Shop Pro... 29
Commands for Scripting ... 30

Command: SelectNextLayer... 30
Command: SelectPreviousLayer .. 31
Command: GetNextObject ... 31
Command: GetPrevObject.. 31
Command: HasVectorSelection.. 32

 Page 3

Command: GetVectorSelectionRect... 32
Command: GetRasterSelectionRect ... 32
Command: SaveMaterialSwatch .. 33
Command: SetMaterial... 33
Command: SetMaterialStyle... 33
Command: ShowSwatchView.. 34
Command: EnableMaterialTexture .. 34
Command: GetMaterial .. 34
Command: GetVersionInfo .. 35
Command: ReturnImageInfo .. 35
Command: ReturnFileLocations... 36
Command: ReturnLayerProperties ... 36
Command: ReturnVectorObjectProperties... 38
Command: AddGroupsAndObjects.. 40
Command: NodeEditAddPath .. 41
Command: DeleteEXIF .. 41
Command: ReturnGeneralPreferences ... 41
Command: GetCommandInfo .. 42
Command: EventNotify.. 44
Command: StartForeignWindow.. 45
Command: MsgBox.. 46
Command: GetString.. 47
Command: GetNumber... 48
Command: ScriptWndAutoShow ... 49
Command: ScriptWndClear.. 50
Command: DumpScriptOutputPalette .. 50
Command: ScrollScriptOutputPaletteToEnd.. 50
Command: SelectDocument ... 50
Command: SelectTool .. 52
Command: SelectPreviousTool .. 52
Command: SelectNextTool .. 53

 Page 4

Introduction
Most users of PSP will never need to look at the source code of a script. The script
recording features inside PSP are such that many scripts can be created using nothing
more than the script recorder.

However, in order to write scripts that make decisions, that use data from an open
document, or that prompt the user for data, it is necessary to delve deeper into scripting.

PSP Scripts are written in the Python programming language. There are a number of
books written about Python, but you can also find a number of Python tutorials at
www.python.org.

Before writing or editing a script you should have at least minimal familiarity with
Python. It will be hard to understand what is happening in a script if you are struggling
to understand the syntax in which it is presented.

Anatomy of a script
All scripts created by the PSP script recorder have an identical format. A simple script is
shown below. Don’t be intimidated by the length, all it does is execute 4 commands:

• Float the selection
• Apply the inner bevel command
• Apply the drop shadow command
• Promote the selection to a layer

This is a simple script that was created entirely from the script recorder.

from PSPApp import *

def ScriptProperties():
 return {
 'Author': u'Corel Corporation',
 'Copyright': u'Copyright (C) 2005, Corel Corporation, All Rights Reserved.',
 'Description': u'Bevel and cast a shadow from a selection',
 'Host': u'Paint Shop Pro X',
 'Host Version': u'10.00'
 }

def Do(Environment):

 # FloatSelection
 App.Do(Environment, 'FloatSelection', {
 'ClearSource': None,
 'BackupSelection': None,
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }
 })

 # Inner Bevel
 App.Do(Environment, 'InnerBevel', {
 'Ambience': 0,
 'Angle': 315,
 'Bevel': 0,
 'Color': (255,255,255),
 'Depth': 20,

 Page 5

 'Elevation': 30,
 'Intensity': 50,
 'Shininess': 0,
 'Smoothness': 0,
 'Width': 8,
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }
 })

 # Drop Shadow
 App.Do(Environment, 'DropShadow', {
 'Blur': 5,
 'Color': (0,0,0),
 'Horizontal': 10,
 'NewLayer': False,
 'Opacity': 50,
 'Vertical': 10,
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }
 })

 # SelectPromote
 App.Do(Environment, 'SelectPromote', {
 'KeepSelection': None,
 'LayerName': None,
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }
 })

The first line of the script says “from PSPApp import *”. PSP implements the PSPApp
module, and all communication from the script to PSP is by means of methods and
objects exposed by the PSPApp module. Though it is possible to write a script that does
not make use of PSPApp, as a practical matter all scripts will import PSPApp.

Next, there is the ScriptProperties method. This serves as documentation for the script
(author/copyright/description), as well as fields that PSP can use to ensure that the
version of the script is compatible with the version of PSP (Host/Host Version). The
ScriptProperties method can be omitted and the script will still run, but it should be
included so that the data in it can be extracted by PSP.

Next comes the Do method. When PSP runs a script, it does so by loading the script into
memory and invoking the Do method. The Do method takes a single parameter, by
convention called Environment. This parameter exists to help coordination between the
script and PSP, and will need to be passed back to PSP on all calls to App.Do. Do not
modify the environment variable.

For all scripts created by the PSP script recorder, the Do method will be nothing more
than a series of calls to App.Do. App is a member of the PSPApp module, and could also
be written as PSPApp.App

The App.Do method is used to call a PSP command (i.e. open a file, run an effect, create
a layer, put down a paint stroke). The App.Do command takes four parameters, though
the last two are optional:

 Page 6

1. The first parameter is the Environment variable passed to the script’s Do method.
2. The second parameter is the name of the command to run (e.g. FloatSelection)
3. The third parameter is a dictionary that contains all the parameters needed by the

command. This is frequently referred to as the parameter repository.
4. The fourth parameter (always omitted by the script recorder) is the document on

which the command should be run. When omitted, commands are always run on
the target document, which is the document that was active when the script was
started.

The script shown above is 68 lines long, including whitespace. However, virtually all of
it is the specification of the parameter repositories. Without the repositories it would
only be 16 lines long:

from PSPApp import *

def ScriptProperties():
 return {
 'Author': u'Corel Corporation',
 'Copyright': u’Copyright (C) 2005, Corel Corporation, All Rights Reserved.',
 'Description': u'Bevel and cast a shadow from a selection',
 'Host': u’Paint Shop Pro X',
 'Host Version': u’10.00’
 }

def Do(Environment):
 App.Do(Environment, 'FloatSelection', {})
 App.Do(Environment, 'InnerBevel', {})
 App.Do(Environment, 'DropShadow', {})
 App.Do(Environment, 'SelectPromote', {})

Since the parameter repositories specify precisely how each command should behave, it
is proper that they consume the majority of the script. It is also worth noting that the
shorter script above is perfectly valid and would run without error – any parameters not
specified will default to the last used value.

All scripts recorded by PSP will follow the canonical format shown in the initial example
– the single import statement, a script properties method, and a Do method containing
calls to App.Do.

Anatomy of a preset
PSP supports presets for just about every command it implements. As shown below,
these are just a specialized form of a script:

from PSPApp import *

def ScriptProperties():
 return {
 'Author': u'Corel Corporation',
 'Copyright': u'Copyright (C) 2004 Corel Corporation, All Rights Reserved.',
 'Description': u'800x600 greyscale, transparent, raster',
 'Host': u’Paint Shop Pro X',
 'Host Version': u’10.00’
 }

def Preset_NewFile():
 return {
 'Width': 800,
 'Height': 600,
 'ColorDepth': App.Constants.Colordepth.Greyscale,
 'DimensionUnits': App.Constants.DimensionType.Pixels,
 'ResolutionUnits': App.Constants.ResolutionUnits.PixelsPerIn,

 Page 7

 'Resolution': 300,
 'FillMaterial': {
 'Color': (0,0,0),
 'Pattern': None,
 'Gradient': None,
 'Texture': None,
 'Art': None
 },
 'Transparent': True,
 'LayerType': App.Constants.NewLayerType.Raster,
 'ArtMediaTexture': {
 'Category': u'Art Media',
 'Name': u'Canvas coarse',
 'EnableFill': True,
 'FillColor': (255,255,255)
 },
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }
 }

def Do(Environment):
 # FileNew
 App.Do(Environment, 'NewFile', Preset_NewFile())

Looking at the sample shown above, you can see that the only difference between a script
and a preset is that the preset has an additional method defined, in this case
Preset_NewFile().

Preset method names are defined by the command that creates them, but as a rule are of
the form Preset_CommandName.

When the preset is loaded, the preset method is called instead of the Do method. The
method returns the parameters for the command (in this case NewFile), which are then
loaded without actually executing the command.

Note also that the preset includes a Do method as well. The Do method just calls App.Do
with the associated command (NewFile), and for the third parameter, it passes the return
value of the preset method. Since the third parameter to App.Do is the parameters of the
command, the net result is that executing a preset as a script runs the proper command
using the parameters specified in the preset.

 Page 8

The App Object
The App object is the core structure exposed by the PSPApp module. Though mostly
you will interact with it by calling commands with App.Do, other methods and members
are useful to the script author.

The Do method
The Do method is the primary interface between a script and PSP. The Do method can
execute any of the approximately 650 different commands that exist in PSP.

The general form of the do command is:
result = App.Do(Environment, command, parameter_repository, TargetDocument)

The Environment parameter is required, and should always be the Environment
parameter that was provided to the script as a parameter to the Do method of the script.
This is used by PSP to keep track of which script is executing a command, and does not
contain any information that is useful to the script.

The command parameter is just what it implies – the name of the command you want to
execute, such as ‘FileClose’ or ‘SelectNone’. This is a required parameter.

The parameter repository parameter is a Python dictionary containing all of the
parameters required by the command. With the exception of the general settings
subrepository described below, the contents of this dictionary will be different for each
command. This is an optional parameter – if not specified, the last used parameters of the
command are used.

The target document parameter controls which document the command is executed
against. The script recorder always omits this parameter, and unless changed by
executing a command that selects a different document, the target document will be the
document that was active when the script was invoked.

GeneralSettings
All commands support a sub repository called GeneralSettings. These parameters are
common to many different commands. Not every command will use every value, but all
commands support ExecutionMode and AutoActionMode at a minimum.

An example of a GeneralSettings repository is shown below:
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'DialogPlacement': {
 'ShowMaximized': False,
 'Rect': ((639,417),634,517)
 },
 'PreviewVisible': True,
 'AutoProof': True,
 'RandomSeed': 55042743,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }

 Page 9

The execution mode value controls whether or not the command will display a dialog.
You can specify three different values in a script:

• Silent – the command is run without showing a dialog. Any errors will cause a
message to be written to the output window.

• Interactive – the command will load the parameters from the script into its dialog,
and allow the user to edit the parameters before continuing. Errors will be shown
in a message box. Specifying interactive mode on a command that has no dialog
is not an error.

• Default – use the execution mode of the calling command, or if there is no calling
command, use the execution mode of PSP itself. When a script runs from PSP the
user can specify that the execution mode should be either silent or interactive, and
any command with a default execution mode will use that mode.

An execution mode of Default is indeterminate – at the time the command is run it will
use the execution mode of the parent command to determine an effective execution mode,
which is always either Silent or Interactive.

The Version parameter indicates the version of the program that the script was recorded
under, (major, minor, micro), followed by the command version.

The AutoActionMode value controls the behavior of auto actions (also known as fixups).
Auto actions are actions that PSP will take to enable a command to run. The simplest
example is attempting to run an effect that requires a true-color image on a paletted
image. When the command is run, PSP will execute the “Convert image to 16-million
colors” auto action before running the effect.

Auto actions in turn have 3 different states:

• Always execute the action without prompting the user
• Never execute the command (any command depending on this auto action will be

disabled)
• Ask the user for permission to execute the auto action.

Commands can override the default auto action behavior by setting the AutoActionMode
value in the GeneralSettings.

There are six possible auto action modes:

1. Match – if the effective execution mode is silent, equivalent to PromoteAsk. If
the effective execution mode is interactive, equivalent to Default

2. AllNever – assume all auto actions are set to “Never”
3. DemoteAsk – all auto actions set to “Ask” are demoted to “Never”
4. Default – use the auto actions as specified in the preferences
5. PromoteAsk – all auto actions set to “Ask” are promoted to “Always”
6. AllAlways – all auto actions are set to “Always”

 Page 10

Many commands in PSP execute other commands as subcommands, and frequently set
the AutoActionMode to control fixup behavior. The parameter is available to a script,
but you should err on the side of respecting the users preferences.

The DialogPlacement dictionary (as this illustrates, dictionaries can be nested) contains
information about the size and placement of the dialog on screen. It is only written to a
recorded script if the “save dialog positions” box is checked when a script is recorded,
and will be present only for commands that use a dialog. The Rect tuple contains the size
and position of the dialog on screen. PSP always encodes rectangles as ((x,y), dx, dy).

The PreviewVisible and AutoProof flags are present only for effect dialogs, and capture
whether the preview windows are shown or hidden, and the state of the auto-proof toggle.
Like DialogPlacement, these members are only written if dialog positions are being
saved.

The RandomSeed parameter is only present for commands that make use of random
numbers, such as the Add Noise dialog or the Brush Strokes effect. If a random seed is
specified, repeated runs of the command on the same input would produce exactly the
same output. If the random seed is omitted, a new seed value will be generated for each
run of the command, leading to different results for each run.

The Documents collection
PSP maintains a list of all the currently open documents. This order of the list is the
order in which the documents were opened.

Note that the list returned by App.Documents is a snapshot of the current state of PSP,
not a pointer to the internal state of PSP – operations done on the list have no effect on
PSP.

In addition to the Documents collections, PSP exposes two other document objects:

• App.ActiveDocument is the document active in the GUI. This will have the
active title bar, and be represented in the layer palette and overview window.

• App.TargetDocument is the document that commands will be applied to. In most
cases, it is the document that was active when the script was launched, though
opening or closing documents will change the target document, as will the
SelectDocument command.

Be very careful in using App.ActiveDocument. This is completely dynamic, and can
change while your script is running. For instance, the following code tries to blur the
active image 5 times – if the user switches documents while the script is running, the
script will follow the currently active document.

for x in range(5):
 App.Do(Environment, 'Blur', {}, App.ActiveDocument)

 Page 11

The simplest alternative is to use App.TargetDocument rather than App.ActiveDocument.
However, if you want to use App.ActiveDocument, capture its current value before
entering the loop:

DocToBlur = App.ActiveDcoument
for x in range(5):
 App.Do(Environment, 'Blur', {}, DocToBlur)

The Document object
The objects in the documents collection are document objects. Document objects expose
the following members:

• Height – height of the image in pixels
• Width – width of the image in pixels
• Size – tuple of (width, height)
• Title – title of the document. For an unsaved image, this will be something like

“Image1”. For a saved document, it will be the filename and extension, without
the path.

• Name – the complete pathname of the document. If the document is unsaved this
will be an empty string.

def Do(Environment):
 print App.ActiveDocument.Width
 print App.ActiveDocument.Height
 print App.ActiveDocument.Size
 print App.ActiveDocument.Title
 print App.ActiveDocument.Name

The members of the Document object are simply present for convenience and are not
intended to be a comprehensive list of all of the properties of an image. For more in-
depth information you need to use the ReturnImageInfo and ReturnLayerProperties
commands.

If no document is opened the Active and Target documents will be “None”. If you try to
access an attribute on a “None” object you will receive an error. You can check for the
existence of a document by checking for the “None” value. Example:

 if App.TargetDocument is None:
 print 'No document'
 else:
 print 'We have a document'

The Constants object
In the few snippets of sample code given, you have probably noticed such torturous
constructs as App.Constants.ExecutionMode.Silent.

These are simply constants that are defined by the PSPApp module. Though to Python
they are simply integers, using the symbolic names serves two purposes:

• They make the script easier to read – App.Constants.Blendmode.Normal makes
more sense for defining a blend mode than a value of 0.

 Page 12

• They improve portability across versions. While we won’t guarantee that
App.Constants.Blendmode.Normal will always have a value of zero, we will
guarantee that so long as we have a normal blend mode,
App.Constants.Blendmode.Normal will be a valid identifier for it.

• The biggest problem with constants is to know which constants exist and what the
symbolic names are. The simplest way to get information on a constant is to run
the ExploreConstants script that is included with the script authoring materials.
This will tell you all of the names and values for any constant in the system. The
blend mode display is shown below:

This script is possible because PSP exposes information about constants through the App
object. App.Constants is the complete pool of all constants, and it has a method called
All(), which returns a list of all the constants in the system.

Each constant object has further methods for extracting the name, description, and values
defined by that constant.

• Name() returns the name of the constant, such as BlendMode
• Description() returns the description string associated with the constant. This is

purely for documentation purposes and has no meaning to PSP.
• Values() returns a list of tuples describing the possible values of the constant.

Each tuple has 3 elements: (name, integer_value, description).

The methods described above are what the ExploreConstants script uses to fill in the list
box it shows the user. A simpler example is shown below:

 # iterate over the constants collection
 for EachConstant in App.Constants.All():
 # print the constant name and description
 print '%s - %s' % (EachConstant.Name(), EachConstant.Description())

 # now print the values of the constant
 # Values returns a list of tuples of the form (name, integer value, description)
 for Value in EachConstant.Values():
 print ' %s (%d) - %s' % Value

 # put a blank line at the end
 print

For Boolean values you can use either the Python values True and False or the constants
App.Constants.Boolean.true and App.Constants.Boolean.false.

 Page 13

The Commands collection
App.Commands returns a list of all the command names that are known to PSP. This
has little utility in and of itself, but when combined with the GetCommandInfo command
makes it possible to write scripts that report information for all of the commands in PSP
itself. The fragment shown below prints the command name and associated description
for all of the commands in PSP:

def Do(Environment):
 for cmdName in App.Commands:
 try:
 Info = App.Do(Environment, 'GetCommandInfo', { 'TargetCmd': cmdName })
 # print command name and descriptions
 print '%s: %s' % (cmdName, Info['Description'])

 except:
 print >> sys.stderr, 'Error getting info on command ', cmdName
 pass

Tips
Writing a PSP script is really nothing more than writing a program in Python, and
everyone will have their favorite tricks and methods. However, if you are new to the
game, consider the following pearls of wisdom.

Start by recording
In almost every case, it is simplest to start by recording a script that does some or all of
what you want. You can be sure that PSP will record a command using the proper syntax
and will properly specify all members of the parameter repository.

Even when working on an existing script you should make things easier for yourself – as
you need to add a command to an existing script, just record something close to what you
want and cut and paste the App.Do calls into your script.

Think in terms of PSP operations
If you are not a programmer then this tip is likely obvious; if you are a programmer it
may require a different mindset.

Remember that scripting in PSP is intended as a way to drive PSP from a program. It is
not intended as a graphics API or toolkit. When trying to script something, think in terms
of how you would accomplish the same task by using PSP interactively. The commands
available in a script are all things that are available using the menus and tools present in
PSP.

For example, if you want to paint on a given area of the canvas, think in terms of making
a selection and using the flood fill tool, not looking for a command that fills a rectangle.

Use a Python editor like Idle or PythonWin
Python source code can be edited with any text editor you like, but you will find it much
easier to use a Python aware editor such as Idle, PythonWin, or Komodo.

 Page 14

Python editors offer syntax coloring, smart indenting, access to Python manuals, and
usually an interactive window so that you can try out code as you are writing it.
PythonWin even includes the TabNanny module, which will check your code for syntax
errors for you. Both PythonWin and Idle can be downloaded from www.python.org.

Use the output window for debugging
You can’t use a debugger inside PSP, so the output window is your friend. When
working on scripts, use print statements to send text to the script output window in PSP.

If you send text to the error stream it will show up in red in the output window – this is an
easy way to draw attention to any errors. Unless you override it, PSP will automatically
display the script output window whenever any text is written to the error stream.

To write to the normal output stream just use a regular print statement:
print ‘Hello world’

To write to the error stream use the redirect form (you will need to import the sys module
as well)
print >> sys.stderr, ‘Hello world’

Just don’t forget to clean up your print statements when you are done and everything is
working properly.

Use stepping for debugging
Paint Shop Pro has the added ability to single step scripts. This option can be found in
the script menu under the File menu. When enabled, you are prompted just before the
script executes its next PSP command. You have the option to “Continue”, “Skip the
Command”, or “Stop Scripts”.

Use exception handlers if a command might fail
If a command can’t run, it will throw an exception. If not caught, the exception will abort
the script. In many cases this is appropriate – if any of the commands in the script fail
you may not be able to continue.

However, in some cases you should be prepared for failures, and for that you need an
exception handler. In Python, exceptions are done with try/except. You put the
command that might fail in the try block, and on any error you end up in the exception
handler.

 Page 15

A simple example is shown below:

def Do(Environment):
 try:
 for x in range(10): # zoom in 10 steps
 App.Do(Environment, 'ZoomIn1', {
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Silent,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }
 })
 except:
 print 'Max zoom reached'

One thing you do have to be aware of is that execution mode affects error handling. If a
command fails in interactive mode, PSP will display a message box with the failure text,
as well as writing the error information to the output window. If a command fails in
silent mode, it will send the message to the output window only, without using a message
box.

Omit parameters you don’t care about
All parameters of the parameter repository are optional. You can leave out any parameter
you want and the last used value will be substituted. Because of this, it is generally not a
good idea to omit parameters from the parameter repository, since you can’t predict what
values will be used. However, unless you can control the system your script will be run
on, you should always omit the DialogPlacement section of the GeneralSettings
repository. You can’t make any assumptions about the screen layout used by the person
running the script, so it is better to leave DialogPlacement unspecified and let windows
come up where they want them.

Use ExecutionMode sensibly
The execution mode parameter controls whether a command is done interactively (i.e.
with a dialog) or silently (with no UI). There are three relevant values for execution
mode:

• Default – use whatever mode was specified in the run script command
• Interactive – display a dialog even if the script is run silently.
• Silent – do not display a dialog, even if the script is run interactively.

PSP records all commands as Default, and in many cases this is a good choice – it gives
the user the ability to run it quickly and silently, or to run it interactively and fine-tune the
settings.

However, in many cases you will find that a number of commands are needed just to get
the script working, and the user shouldn’t or has no interest in changing the parameters of
these commands. Set these commands to silent so that the user is not bothered by dialogs
that add nothing to your script.

 Page 16

Script save option – Save Dialog Positions
When a script is saved, one of the checkboxes on the save dialog is called “Save Dialog
Positions”. If you are writing a script that you intend to share with others, you should not
check this option.

PSP saves the on-screen position of virtually all dialogs, and will display them in that
position on the next run. For standard effect dialogs this also includes whether the
window was maximized, the setting of auto-proof, and whether previews were hidden.

All of these settings can be represented in a script, and will be if “Save Dialog Positions”
is checked. While on your system you may not notice any difference because of this
setting, anyone who runs your script will get the dialog positions from your system. In
some cases there may be a reason to do that, but in the absence of a specific reason you
should not include dialog positions in a script. Since anything not specified in a script
defaults to the last used values, windows will always appear in the correct position on the
local system.

The dialog position data is stored in the GeneralSettings repository, as shown below:
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'DialogPlacement': {
 'ShowMaximized': False,
 'Rect': ((1154.000,108.000),402.000,534.000)
 },
 'PreviewVisible': True,
 'AutoProof': True,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }

Script save option – Save Materials
Another checkbox on the save script dialog is the “Save materials” setting. Materials
refer to the settings on the materials palette.

This affects how tools (and only tools) are recorded. Consider a paintbrush. As a paint
stroke is made, it uses either or both of the foreground and background materials set in
the materials palette. Changes to the materials palette are not recorded; instead the tool
records the materials that were used.

Materials have a special attribute however. If a material repository is None (which is a
special object in Python), it will be replaced with the material currently set on the
materials palette.

If “Save materials” is checked when a script is saved, the tool commands will include the
materials used, and the playback of the script is independent of the materials palette.

If the box is not checked, the tool commands will be recorded with all material
repositories set to None.

 Page 17

Consider the following sequence:

1. Select a blue foreground on the materials palette
2. Paint with the left mouse button
3. Select a red foreground on the materials palette
4. Paint with the left mouse button

When you record this operation, the output is 2 paint strokes, one red and one blue.

If recorded with materials saved, when the script is played back it will draw one red and
one blue stroke, just as it was recorded.

If recorded without materials, when the script is played back it will draw two strokes,
both in the current foreground material.

By not including materials in a script you can let the user control the behavior by setting
the materials palette before the script is run, but you need to ensure that the same set of
materials can be used everywhere.

As a script author you can mix the modes – use explicit materials for commands where
the user has no need to select the precise material, but set the material to None for
anything that you want the user to be able to override. By making judicious use of both
foreground and background materials, you can effectively parameterize your script with
two different materials.

Script save option – Remove Undone Commands
If you chose to undo any actions while recording a script, you can choose to retain (by
not marking) or remove (by marking) the undone commands via the Remove Undone
Commands check box located toward the bottom of the Save As dialog. Allowing the
script recorder to remove the undone commands can greatly simplify the script. It also
allows the script recorder to insert the EnableOptimizedScriptUndo command into the
script, which can make the script run much more efficiently. For more info, see
Improving Script Performance.

Scripts and Threads
Python supports creation of threads, but PSP itself is not thread safe. Though a script can
use multiple threads, only the first thread in a script is allowed to communicate with PSP.
This includes accessing anything exposed from PSPApp (certainly including the App.Do
method), and also access to stdout and stderr. Since PSP captures these streams and
redirects them to its own windows, only the initial thread in a script is allowed to use a
print statement.

Though threads are nominally supported, the restrictions are severe enough that Corel
recommends that you not make use of threads in script files.

 Page 18

Scripts with Dialogs
One of the more powerful features of scripts is that they can contain their own GUI. This
makes it possible to write scripts that gather complex data from the user. However, the
interaction of a script dialog and PSP is rather problematic.

1. Since the dialog is not properly a child of PSP, PSP is perfectly happy if the
dialog ends up behind PSP.

2. While the dialog is up the PSP UI is not running, so menu items and toolbars
don’t update properly.

3. If PSP attempts to start a new script while a dialog window is running, the Python
interpreter will be in an undefined state and the program will crash.

To deal with these issues, PSP implements a command called StartForeignWindow. This
takes a parameter, which is the window handle of the dialog window. For a Tkinter
dialog, the window handle is obtained by calling winfo_id() on the dialog window or one
of its parents. In the sample below, assume that ExploreConstants is a class that
implements a dialog:

 # just show the dialog
 Wnd = ExploreConstants()
 App.Do(Environment, 'StartForeignWindow', { 'WindowHandle': int(Wnd.winfo_id()) })
 Wnd.mainloop()
 App.Do(Environment, 'StartForeignWindow', { 'WindowHandle': 0 })

So long as the window identified in the call to StartForeignWindow exists, PSP will
ensure that it remains on top of the application, and it will keep the PSP UI updating.
While a foreign window is running, PSP will disable running scripts, loading presets, and
loading brush tips.

PSP will automatically terminate the foreign window state as soon as the identified
window is destroyed. You can also manually terminate the state by calling
StartForeignWindow again with a window handle of zero.

Scripts and Batch Processing
The batch processing command in PSP gives the ability to apply a script to an arbitrary
set of images.

For performance reasons, opening an image in batch processing is not the same as
opening an image interactively. No window is created (so the image is never visible),
and the script being run does not have access to any other currently open documents.

When run from batch processing, the App.Documents collection will consist only of the
document currently being processed, and App.ActiveDocument and
App.TargetDocument will be the same.

 Page 19

Most users will never be aware of these restrictions, but if there is a need to access
multiple files during a batch operation, the logic to open and save the files will need to be
moved from the batch process dialog to the script.

See the section on Processing All Files in a Directory for more information.

Using Scriptlets
The command line for Paint Shop Pro now supports the ability to drop images onto a
shortcut (referred to as a "Scriptlet") that calls PSPX and a script to be applied to the
dropped images.

The procedure for making a PSP Scriptlet is:

1. Create a desktop shortcut.
2. Right-click the shortcut icon, and choose Properties.
3. In the Shortcut tab’s Target field (shown below), enter the path for Paint Shop

Pro X, followed by the switch /Script, and then enter the path for the desired
script you want executed against the image(s) you drop onto the shortcut.

Here is an example of what you could enter into the Target field:

"C:\Program Files\Corel\Corel Paint Shop Pro X\Paint Shop Pro X.exe" /Script
"C:\Documents and Settings\<InsertYourNameHere>\My Documents\My PSP Files\Scripts-
Restricted\<ScriptName>.PspScript"

(where <InsertYourNameHere> represents your login name, and <ScriptName> represents
the name of the script you want the shortcut to run.)

When you drop image files on the shortcut, Paint Shop Pro X will open and run the
specified script on the files.

Scriptlet Limitations
Be aware of the following limitations when using Scriptlets:

 Page 20

� Due to Microsoft Windows command line length limitations, there is a limit to the
number of files you can drop on the Scriptlet. The limit is approximately 22 files
if they have 8.3 format filenames, less if they have long file names.

� A workaround to this limitation is to drop a folder of files onto the Scriptlet,
which will open and process all of the files in the folder.

� Be aware, however, that PSP will open all the files at once, and then process
them. Thus if you do not want a large number of files opened all at once in PSP,
don't drop a folder containing many images onto a Scriptlet.

� Folders are only processed one level deep. Folders within folders will not be
processed.

� The script is responsible for saving and closing the files, or you can do it
manually after they've all been processed.

Improving Script Performance
From an undo perspective, PSP treats a script as an atomic operation – a single undo will
undo all of the operations done by the script.

Internally however, a script is a sequence of commands, each of which manages its own
undo data. For example, a blur command has to save the state of the data before it is
blurred, so it saves a copy of the data it is about to modify. If a script does 10 operations,
each of those operations might save a copy of the active layer for undo purposes.

But when the script is undone it is always undone as a whole, so only the initial state of
the image is significant. Hence the undo data of all the intervening commands is
irrelevant and needn’t be saved.

But like just about everything else in PSP, undo is a scriptable operation. If a script
includes undo commands as part of its processing, all of the intermediate undo data must
be preserved.

When a script is recorded, PSP will check to see if the script contains any embedded
undo operations. If it does not, it will insert a call to ‘EnableOptimizedScriptUndo’ at the
start of the script.

With optimized undo on, the amount of data that has to be saved during the execution of
the script can be (possibly dramatically) reduced, improving the performance and
decreasing the footprint of the script.

When hand writing a script, you can add the call to EnableOptimizedScriptUndo so long
as your script does not perform any undo commands, (UndoLastCmd or SelectiveUndo).

 # EnableOptimizedScriptUndo
 App.Do(Environment, 'EnableOptimizedScriptUndo')

Optimized script undo can be turned on at any point, but you should do it at the beginning
of the script. Optimized script undo is automatically turned off at the end of the script.

 Page 21

Common operations
A number of operations come up over and over, and are worthy of dedicated descriptions.
For any given task there are likely to be a number of possible solutions; if you don’t care
for the methods described here feel free to roll your own.

Selecting a layer
Many operations in PSP will involve selecting a layer. When you do this task
interactively it is simple – see the layer you want and click on it in the layer palette.

From a script this is a more complicated operation, since the script needs to define the
layer to be selected in a logical way, one that is portable across different documents.

Most commands operate on the active layer so do not need to specify the target layer in
any way. However, commands that operate on an arbitrary layer need a means of
specifying the target. Layer selection is the most obvious example of this – to select a
new layer we have to have a means of specifying which layer to select.

Layer names are both useless and undesirable – useless because they do not have to be
unique, and undesirable since it should be possible to run a script that selects a layer
without having a dependency on the layer names in the image.

The answer is a layer select tuple. A Python tuple is simply an ordered set of values.
Syntactically it is represented by a set of values separated by commas and enclosed in
parentheses.

The layer select tuple describes how to get from the current layer to any other layer in the
document.

• The first element is how many levels to go out in the layer hierarchy. A value of
1 means to go to the parent’s level, a value of 2 to the grandparent level, etc.

• The second element is the number of siblings to traverse. Positive numbers go up
in the z-order, negative numbers go down in the z-order

• The third element is a list of children to traverse. A list is a variable length set of
ordered elements separated by commas and enclosed in brackets.

• The fourth element is a boolean that specifies whether strict or loose interpretation
of the tuple should be used. If true, the tuple must be specified exactly or an error
will result. If false, the tuple will be followed as closely as possible, and an error
will be returned only if a non-empty tuple resulted in navigating to the active
layer.

Everything is numbered with the bottom of the z-order as 0, and counts up in the layer
palette. This means that selecting the first thing in a group actually selects the
bottommost element.

 Page 22

The logic is rather torturous, so perhaps some examples will help. Consider the
following layer arrangement:

Using this arrangement, how do we navigate from the active layer (Vector Layer 1) to the
layer named ‘Top’?

Think of layer navigation in terms of out/in, and up/down. The current layer of ‘Vector
Layer 1’ is at the same level as the layer group named ‘Group containing nested mask’,
so the first element of the tuple is zero. Now we must go down to ‘Group containing
nested mask’. This is one layer below ‘Vector Layer 1’, so the second parameter is -1.
Now we need to go in to find layer ‘Top’. First, we have to get to ‘Nested Group’, which
is the first (bottommost) child of ‘Group containing nested mask’. From there, we need
to get to its first child, ‘Top’. Therefore the third element of the tuple is [1,1].

In this particular case, the strict parameter doesn’t matter because we have defined the
precise path we want. When recording scripts, PSP always sets the strict parameter to
false, so we will assume that. The resulting layer select tuple is then:
(0, -1, [1,1], False)

Now assume that the active layer is ‘Top’ and that we want to navigate to the layer
named ‘Bottom’.

To get from ‘Top’ to ‘Bottom’, we have to first find a parent of ‘Top’ that is a sibling of
‘Bottom’ (or a sibling to one of Bottom’ s ancestors). That is the graphic, so we go out 2
levels. Now we are at ‘Group containing nested mask’, which is two layers above
‘Bottom’, so the up/down parameter is -2. We don’t need to go into any group, so the in
parameter is empty. The resulting layer select tuple is then:
(2, -2, [], False)

The strict parameter is useful in creating a select tuple that should always select a logical
element, regardless of what the layer configuration of the document is. It also permits a

 Page 23

script to run without error even if the layer configuration is not an exact match of the
configuration that existed when the script was recorded.

To select the bottommost layer: (9999, -9999, [], False)
To select the topmost layer: (9999, 9999, [], False)
To select the topmost element of the current group: (0, 9999, [], False)
To select the topmost child of the current layer (0, 0, [9999], False)
To select the next layer up: (0, 1, [], False)
To select the next layer down: (0, -1, [], False)
To select the parent layer: (1, 0, [], False)

In non-strict mode, it will process as much of the tuple as it can. Attempting to go out
9999 levels in the layer hierarchy will reach the graphic (the container of all the layers).
PSP realizes that it can’t go any further in that direction and moves on to the next
element.

Processing an over element of 9999 will reach either the top or the bottom of the group,
so again it stops and moves on to the next element.

Iterating layers
The layer select tuple provides a means of selecting any layer in an image, but it does not
help much with the problem of doing something to every layer of a document.

For scripts, two dedicated commands are provided for iterating the layers:

SelectNextLayer goes up in the z-order (towards the top of the layer palette), and
SelectPreviousLayer goes down in the z-order (towards the bottom of the layer
palette).

These commands return a Boolean value – true if they successfully selected a new layer,
false if there are no more layers in the indicated direction.

Layer groups are also layers, and are included in the traversal by SelectNextLayer and
SelectPreviousLayer. When traversing groups, the group layer itself is visited first, then
its lowest child next. So for the layer arrangement shown below, the numbers to the right
list the order visited (assuming SelectNextLayer).

Vector Layer 1 10
Group Layer 1 4
 Raster Layer 1 9
 Group Layer 2 6

 Mask Layer 1 8
 Raster Layer 2 7
 Vector Layer 2 5
Mask Layer 1 3
Raster Layer 3 2
Background 1

 Page 24

The following code fragment will save the current layer position, then iterate all layers
from the bottom up, and finally restore the active layer.

def Do(Environment):
 # get the path from the bottom from the active layer so we can restore it when done
 Props = App.Do(Environment, 'ReturnLayerProperties')
 PathBack = Props['Path']

 # start by selecting the bottommost layer in the image.
 App.Do(Environment, 'SelectLayer',
 { 'Path': (9999,-9999, [], False) })

 FoundLayer = True
 while FoundLayer == True:

 # *** Insert useful code here

 # go to the next layer
 FoundLayer = App.Do(Environment, 'SelectNextLayer')

 # now that the loop is done, select the bottom layer and then
 # use the pathback to restore the layer that was active when we started
 App.Do(Environment, 'SelectLayer',
 { 'Path': (9999,-9999, [], False) })
 App.Do(Environment, 'SelectLayer',
 { 'Path': PathBack })

Selecting a different document
The select document command is used to switch between documents. It takes a
parameter that selects a document relative to the target document.

Documents are referenced in the order in which they were opened. Suppose you have
four opened documents, which were opened in the order A, B, C, D. Assume that the
target document is C.

To get to document B we need to select the previously opened document. This is always
document -1 (remember that document selection is relative):

 App.Do(Environment, 'SelectDocument', {
 'SelectedImage': -1,
 'Strict': False,
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }
 })

Likewise document C to D would be 1, and C to A would be -2.

Like layer selection, document selection supports a strict parameter, and it is interpreted
the same way – if strict is false the SelectedImage parameter can be out of range and the
command will stop when it reaches the first or last document.

Scripts in PSP have the notion of a target document (always available as
App.TargetDocument). The target document is set when the script starts, and won’t
change unless a call to SelectDocument is used.

 Page 25

When recording a script, PSP will include calls to SelectDocument with a
‘SelectedImage’ parameter of 0. This simply sets the target document to match the
currently active document.

Iterating documents
The app object in PSP maintains a collection of all the open documents, called
App.Documents. This is a Python list object, and can be iterated like any list. To do
something to all open documents is as simple as:

for Doc in App.Documents:
 App.Do(Environment, 'Flip', {}, Doc)

This makes use of the fact that the fourth parameter to App.Do is the target document to
use for the command.

Saving/Restoring a selection
There is a class in PSPUtils.py that can be used to save a selection to disk and restore it
later. Using it is quite simple:

import PSPUtils

backup a selection if one exists
SelSaver = PSPUtils.SaveSelection(Environment, App.TargetDocument)

do something

SelSaver.RestoreSelection()

PSPUtils can be used in restricted scripts.

The SaveSelection class just saves the current selection to disk and does a select none.
When RestoreSelection is called, it just checks to see SaveSelection actually did a save
operation, and if so restores it.

The save selection class uses a fixed filename (__$TempSavedSelection$__), so you
can’t have multiple selections saved in this manner. The document whose selection will
be saved is specified in the call to SaveSelection.

If given a floating selection, the SaveSelection function will promote it to a layer before
removing the selection.

Checking for a selection
Some scripts won’t work properly with a selection, and may not be able to use the
SaveSelection class to back it up (for instance doing a deform or a resize makes saving a
selection rather pointless).

The GetRasterSelectionRect command will return information on the position type of
selection. The following fragment tests for the presence of a raster selection and gives
the user the opportunity to cancel the script if one is present.

 Page 26

 # We use a selection, meaning that any existing selection will be destroyed.
 # ask the user if this is OK to do.
 SelectionInfo = App.Do(Environment, 'GetRasterSelectionRect')
 if SelectionInfo['Type'] != App.Constants.SelectionType.None:
 Result = App.Do(Environment, 'MsgBox', {
 'Buttons': App.Constants.MsgButtons.YesNo,
 'Icon': App.Constants.MsgIcons.Question,
 'Text': 'This script will remove any existing selection. OK?',
 })
 if Result == 0: # they pressed no in the message box, so abort
 return
 else:
 App.Do(Environment, 'SelectNone') # get the selection out of the way now

Testing Image/Layer Attributes
The module PSPUtils.py implements a number of utility functions for checking the type
of layer or image. These are:

IsFlatImage(Environment, Doc) – returns true if image consists of a single background
layer
IsPaletted(Environment, Doc) – returns true if image is a paletted format. This function
does not consider greyscale to be paletted.
IsTrueColor(Environment, Doc) - returns true if the image is 16 million colors.
IsGreyScale(Environment, Doc) – returns true if the image is greyscale.
LayerIsArtMedia (Environment, Doc) – returns true if the active layer is an Art media
layer.
LayerIsRaster(Environment, Doc) – returns true if the active layer is a raster layer. This
is a strict test. Even though adjustment layers, floating selections and mask layers
contain raster data, they are not raster layers.
LayerIsVector(Environment, Doc) – return true if the active layer is a vector layer.
LayerIsBackground(Environment, Doc) – return true if the current layer is the
background layer.
GetLayerCount(Environment, Doc) – returns the number of layers in the image.
GetCurrentLayerName(Environment, Doc) – returns the name of the current layer.

All of these functions are passed a document parameter. To use the target document
simply pass App.TargetDocument as the second parameter.

Requiring a Document
Most scripts will require that a document be open when they are run. Since this is such a
common requirement, a test for it is implemented in PSPUtils.

import PSPUtils

if PSPUtils.RequireADoc(Environment) == False:
 return

If no document is open when RequireADoc is called, it will display a message box telling
the user that a document is required, and will return false. Otherwise it will just return
true.

 Page 27

Promoting To True Color
Many scripts are going to need to work with true color images. PSPUtils implements a
method for testing the image type and automatically doing a promotion if necessary.
True color and greyscale images are left alone, paletted images are promoted to true
color. Calling it is simple:

import PSPUtils

PSPUtils.PromoteToTrueColor(Environment, Doc)

Processing all the files in a directory
The short answer on this is to use the batch conversion functions on the file menu – that
dialog lets you select an arbitrary collection of images, and run a script before saving
them.

However, there may be cases where you want to do operations on multiple files inside of
a single script. Beware that this will not work from a restricted path, and since PSP has
to actually open each document and create a window for it this will likely run slower than
the batch conversion method.

Iterating a directory is just straight Python code, but it comes up often enough that it is
worth a quick sample. The following script iterates all files matching a particular pattern,
opens each one, and then calls a function that you can change to do whatever processing
you like.

from PSPApp import *
import os.path
import fnmatch
import sys
import glob

Template script to process files in a given directory tree. You can specify
the tree to search, the files to open, and whether they should be saved or not.
The ProcessFile method is called for each file opened, and then the file is
optionally saved

Areas you are expected to modify are marked with ***

*** Set this to the directory tree you want to process
DirectoryToUse = 'C:\\WorkFiles'

*** Include all of the extensions or patterns you care about - or just make it *.*
DirectorySearchString = ['*.jpg', '*.PspImage', '*.png']

*** Set this to true to search subdirectories of DirectoryToUse
set it to false to search only in the specified directory
#SearchSubDirectories = False
SearchSubDirectories = True

*** Set this value to true to save the file before closing it. If false, the file
is not saved, meaning that the ProcessFile method is responsible for doing something
with the files
#SaveFileAfterProcessing = False
SaveFilesAfterProcessing = True

def ScriptProperties():
 return {
 'Author': 'Corel Corporation',
 'Copyright': 'Copyright 2004 Corel Corporation, all rights reserved.',
 'Description': 'Open and process an entire directory of files.',
 'Host': 'Paint Shop Pro X',

 Page 28

 'Host Version': '10.00'
 }

def ProcessFile(Environment, FileName):
 ' *** Process a single file - put your code here'
 print 'Processing File %s' % FileName
 App.Do(Environment, 'Flip')

def SearchDir(OutList, CurrentDir, FilesInDir):
 ''' Called by os.path.walk for each directory we encounter. Gets passed the
 list of files we are building up (OutList), the directory we are visiting
 (CurrentDir), and a list of all the filenames (without path) in the current
 directory. We need to strip out anything that is a directory or doesn't
 match our search string.
 '''
 for File in FilesInDir:
 for SearchPattern in DirectorySearchString:
 if fnmatch.fnmatch(File, SearchPattern):
 FullPath = os.path.join(CurrentDir, File)
 # make sure what we have is a file and not a subdirectory
 if not os.path.isdir(FullPath):
 OutList.append(FullPath)

def Do(Environment):
 # iterate through the search strings and glob all the results into one big list
 CandidateFiles = [] # this will be a list of all the files we find

 if SearchSubDirectories == True:
 # walk the directory tree, calling SearchDir on each directory visited.
 os.path.walk(DirectoryToUse, SearchDir, CandidateFiles)
 else:
 # just glob the path provided rather than walk a tree
 for Search in DirectorySearchString:
 # concatenate the dir and file spec together
 SearchPath = os.path.join(DirectoryToUse, Search)
 GlobbedFiles = glob.glob(SearchPath) # glob will return a list of files
 for File in GlobbedFiles: # now iterate the list
 CandidateFiles.append(File) # and add each one to candidate list

 # going to have a problem if there aren't any files.
 if len(CandidateFiles) == 0:
 print >>sys.stderr, "No files found to process"
 return

 # now process the list of files
 for File in CandidateFiles:
 print 'Opening file ', File
 # open the file
 try:
 App.Do(Environment, 'FileOpen', {
 'FileList': [File],
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Silent,
 'AutoActionMode': App.Constants.AutoActionMode.Match,
 'Version': ((10,0,0),1)
 }
 })

 # set the newly opened doc as the TargetDocument
 App.Do(Environment, 'SelectDocument', {
 'SelectedImage': 0,
 'Strict': True,
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'AutoActionMode': App.Constants.AutoActionMode.Match
 }
 })
 except:
 print >>sys.stderr, 'Error opening file %s - skipping' % File

 # for simplicity, place your code in the ProcessFile method
 ProcessFile(Environment, File)

 # save the file
 try:
 if SaveFilesAfterProcessing == True:
 App.Do(Environment, 'FileSave')

 Page 29

 # close the file before going on to the next
 App.Do(Environment, 'FileClose')
 except:
 print >>sys.stderr, 'Error on save/close of file %s - aborting' % File

Getting information from Paint Shop Pro
Scripts that do nothing but execute an unconditional sequence of commands can be done
with the script recorder. However, many operations are going to require that a script
have access to the current data in a document – color depth, presence of a selection,
number of layers, type of layers, etc.

The members of the Python document object such as Width and Height only scratch the
surface of this information, but there are dedicated commands for returning data from the
application or a document.

The following commands can be used to return data about an image to a script. This
allows scripts to make decisions based on data found in the document. These commands
are all described in the “Commands for Scripting” section:

• ReturnImageInfo
• ReturnLayerProperties
• GetRasterSelectionRect
• ReturnGeneralPreferences
• ReturnFileLocations
• ReturnVectorObjectProperties

 Page 30

Commands for Scripting
The script recorder captures most everything done interactively to PSP, and the simplest
method to create scripts is to record something close to what you want and then modify it
as needed.

In addition to the commands that are accessible through the script recorder, there are a
number of commands that are only available via a script, and exist to make scripts easier
to write. These are detailed below.

Command: SelectNextLayer
Parameters
None

This command returns a Boolean value. If a new layer is selected, it returns true. If there
is no next layer it returns false.

Sample Script
iterate all layers of the current document and print out their layer
name and opacity

def Do(Environment):
 # start by selecting the bottommost layer in the image. This needs to be
 # in a try block because if we are already on the bottomost layer we will
 # throw an error
 try:
 App.Do(Environment, 'SelectLayer',

 { 'Path': (9999,-9999, [], False) })
 except:
 pass # error is OK - just ignore and keep going

 LayerNum = 1

 # now iterate all of the layers in the document with SelectNextLAyer
 FoundLayer = True
 while FoundLayer == True:
 Props = App.Do(Environment, 'ReturnLayerProperties')
 print '%3d: %s (%d%% Opacity)' % (LayerNum,
 Props['General']['Name'],
 Props['General']['Opacity'])
 LayerNum += 1

 FoundLayer = App.Do(Environment, 'SelectNextLayer')

Description
Select the next layer up in the z-order. This command treats the layer hierarchy as if it
were flat, so that all layers can be traversed in a single loop.

When traversing groups, the group layer itself is visited first, then its lowest child next.
So for the layer arrangement shown below, the numbers to the right list the order visited

Vector Layer 1 10
Group Layer 1 4
 Raster Layer 1 9
 Group Layer 2 6

 Mask Layer 1 8

 Page 31

 Raster Layer 2 7
 Vector Layer 2 5
Mask Layer 1 3
Raster Layer 3 2
Background 1

Command: SelectPreviousLayer
Parameters
None

This command returns a Boolean value. If a new layer is selected, it returns true. If there
is no previous layer, it returns false.

Sample Script
 FoundLayer = App.Do(Environment, 'SelectPreviousLayer')

Description
This command is identical to SelectNextLayer except that it hunts down in the z-order
instead of up.

Command: GetNextObject
Parameters
None

Sample Script
 Result = App.Do(Environment, 'GetNextObject')
 if Result['HaveObject'] == 0 :
 print 'We do not have a next object'

Description
Used to get the next selection object on a vector layer. If there is no object selected on
the vector layer it will get the first object created on the layer.

Command: GetPrevObject
Parameters
None

Sample Script
 Result = App.Do(Environment, 'GetPrevObject')
 if Result['HaveObject'] == 1 :
 print 'We have a prev object'

Description
Gets the previous object on the vector layer. If there is no object selected on the vector
layer it will get the most recently added object.

 Page 32

Command: HasVectorSelection
Parameters
None

The return value is a Boolean – true if a vector selection exists, false otherwise.

Sample Script

Result = App.Do(Environment, 'HasVectorSelection')
 if Result == True:
 print 'Found a vector selection'

Description
Returns whether or not a vector selection exists.

Command: GetVectorSelectionRect
Parameters
None

Sample Script
 Result = App.Do(Environment, 'GetVectorSelectionRect')
 if Result['VectorRect'] :
 print 'Selection rect is ', Result['VectorRect']

Description
Gets the current vector selection rectangle if one exists.

Command: GetRasterSelectionRect
Parameters
None
The return value of the command is a dictionary with two elements:
Type – the type of the selection
Rect – if a selection exists, the bounding box of the selection in document coordinates.

Sample Script

Result = App.Do(Environment, 'GetRasterSelectionRect', {})
if Result['Type'] == App.Constants.SelectionType.Floating:
 print 'Document has a floating selection'
 print 'Selection rect is ', Result['Rect']
elif Result['Type'] == App.Constants.SelectionType.NonFloating:
 print 'Document has a non-floating selection'
 print 'Selection rect is ', Result['Rect']
else: # Result == App.Constants.SelectionType.None:
 print 'Document has no selection'

Description
This command retrieves information about the type of raster selection (floating, non-
floating or none), and if a selection exists it returns the bounding box of the selection.

If there is no selection an empty rectangle is returned.

The rectangle is defined as a tuple consisting of ((top, left), width, height).

 Page 33

Command: SaveMaterialSwatch
Parameters
SwatchMaterial - The material to use for the swatch
SwatchName - A string to use for the swatch name

Sample Script

App.Do(Environment, 'SaveMaterialSwatch', {
 'SwatchMaterial': {
 'Color': (0,0,0),
 'Pattern': None,
 'Gradient': None,
 'Texture': None
 },
 'SwatchName': 'foo'
 })

Description
This command saves a material to a swatch file. If no material is supplied, the current
foreground material is used. If executed interactively, the user is prompted for a swatch
name. The above script will create a swatch file named "foo" that contains a black solid
color.

Command: SetMaterial
Parameters
IsPrimary - Boolean that determines if we are setting the foreground/stroke material, or
the background/fill material.
NewMaterial - Material to be used

Sample Script

App.Do(Environment, 'SetMaterial', {
 'IsPrimary': True,
 'NewMaterial': {
 'Color': (0,0,0),
 'Pattern': None,
 'Gradient': None,
 'Texture': None
 }
 })

Description
Set the specified material into the material palette. In the above example, the
foreground/stroke material would get set to solid black.

Command: SetMaterialStyle
Parameters
Style - An enumeration that specifies the material style to use, can currently be Color,
Pattern or Gradient.
IsPrimary - A boolean value that determines if the command is to be applied to the
foreground/stroke material or the background/fill material.

Sample Script

App.Do(Environment, 'SetMaterialStyle', {
 'Style': App.Constants.MaterialStyle.Color,
 'IsPrimary': True

 Page 34

 })

Description
Set the style type of the specified material in the material palette. The material palette
uses the values that were previously used for that particular style.

Command: ShowSwatchView
Parameters
Show - Boolean value, if true, the swatch view is shown on the material palette,
otherwise the rainbow tab is shown.

Sample Script

App.Do(Environment, 'ShowSwatchView', {
 'Show': True
 })

Description
Simple command that toggles the visibility of the swatch tab on the material palette.

Command: EnableMaterialTexture
Parameters
IsEnabled - Boolean that determines if the texture is on or off.
IsPrimary - Boolean that determines if this command is to operate on the primary
(foreground/stroke) material or the secondary (background/fill).

Sample Script

App.Do(Environment, 'EnableMaterialTexture', {
 'IsEnabled': True,
 'IsPrimary': True
 })

Description
Simple command that turns the texture on or off for the primary or secondary material in
the material palette.

Command: GetMaterial
Parameters
IsPrimary - Boolean that determines which material is to be retrieved; the primary
(foreground/stroke) or the secondary (background/fill).

Sample Script

Material = App.Do(Environment, 'GetMaterial', {
 'IsPrimary': True
 })

Description
This command retrieves the current primary or secondary material from the material
palette.

 Page 35

If the execution mode is silent, the current material is retrieved. If the execution mode is
interactive then the material picker is brought up, and the user can select a new material
to use.

Command: GetVersionInfo
Parameters
None

Sample Script

def Do(Environment):
 Version = App.Do(Environment, 'GetVersionInfo')
 for key in Version:
 print '%s - %s' % (key, Version[key])

Description
This command returns a dictionary containing version information from the program.

The version is given both as a string that contains the version, build type, and
buildnumber, as well as individual components. The version number is given in 3
components, the major, minor and micro version. For a version of 9.01, the major
number is 9, the minor version is 0, and the micro version is 1.

Command: ReturnImageInfo
Parameters
This command has no parameters.

Sample Script

def Do(Environment):
 ImageInfo = App.Do(Environment, 'ReturnImageInfo',)
 for key in ImageInfo:
 print '%-30s: %s' % (key, ImageInfo[key])

Description
This command will return the same information about the current image that is displayed
in the “Current Image Information” dialog inside the application. This includes both
basic image information such as file name, width, height, and EXIF data. The following
keys/data will be returned:

'FileName', 'Width', 'Height', 'PixelsPerUnit', 'Unit', 'BitDepth', 'Modified',
'Selection', 'LayerNum', 'AlphaNum', 'UndoMem', 'UndoDisk', 'MemoryUsage', 'Title',
'ArtistName', 'CopyrightHolder', 'Description', 'CreatedDate', ‘ModifedDate', 'ExifMake',
'ExifModel', 'ExifSoftware', 'ExifVersion', 'ExifFlashVersion', 'ExifCameraNotes',
'ExifDateTime', 'ExifSubSecond', 'ExifOriginalDate', 'ExifOriginalSubSecond',
'ExifDigitizedDate', 'ExifDigitizedSubSecond', 'ExifExposureProgram', 'ExifSceneType',
'ExifExposureIndex', 'ExifExposureBias', 'ExifBrightness', 'ExifExposureTime',
'ExifFNumber', 'ExifLensAperture', 'ExifMaxAperture', 'ExifShutterSpeed',
'ExifFocalLength', 'ExifFlash', 'ExifFlashEnergy', 'ExifFocalPlaneWidth',
'ExifFocalPlaneHeight', 'ExifISOSpeed', 'ExifOECF', 'ExifSpectralFrequencyTable',
'ExifLightSource', 'ExifMeterMode', 'ExifSensorType', 'ExifImageSource',
'ExifCFAPattern', 'ExifArtistName', 'ExifCopyright', 'ExifComments', 'ExifTitle',
'ExifWidth', 'ExifHeight', 'ExifSamplesPerPixel', 'ExifPlanerConfiguration',
'ExifOrientation', 'ExifPhotometricInterpretation', 'ExifXResolution', 'ExifYResolution',
'ExifResolutionUnit', 'ExifPixelWidth', 'ExifPixelHeight', 'ExifComponentConfig',
'ExifCompressedBPP', 'ExifColorSpace', 'ExifReferenceBlackWhite', 'ExifWhitePoint',
'ExifPrimaryChromaticities', 'ExifYCbCrProperties', 'ExifSoundFile',
'ExifSpectralSensitivity', 'ExifJPEGBytesSize', 'ExifJPEGOffset', 'ExifCompression',
'ExifFocalPlaneResUnit', 'ExifGPSVersion', 'ExifLatitude', 'ExifLatitudeRef',
'ExifLongitude', 'ExifLongitudeRef', 'ExifAltitude', 'ExifAltitudeRef', 'ExifGPSTime',

 Page 36

'ExifGPSSatellites', 'ExifGPSStatus', 'ExifGPSMeasureMode', 'ExifGPSDegreeOfPrecision',
'ExifGPSSpeed', 'ExifGPSSpeedRef', 'ExifGPSDirectionOfGPS', 'ExifGPSDirectionOfGPSRef',
'ExifGPSImageDirection', 'ExifGPSImageDirectionRef', 'ExifGPSGeodeticSurveyData',
'ExifGPSDestinationLatitude', 'ExifGPSDestinationLatitudeRef',
'ExifGPSDestinationLongitude', 'ExifGPSDestinationLongitudeRef', 'ExifGPSDestinationPt',
'ExifGPSDestinationPtRef', 'ExifGPSDestinationDistance', 'ExifGPSDestinationDistanceRef'

In addition to the data described above, which is all data that duplicates the contents of
the Image Info dialog, the following data is returned:
'PaletteColorList' – a list of color values that describe the palette of the image. For true
color images this list will be empty.
'AlphaChannelList' – list of strings containing the name of each alpha channel in the
image.
'PixelFormat' – an enumeration describing the canvas pixel format. Possible values are:
Grey, GreyA, BGR, BGRA, Index1, Index4, and Index8.

Command: ReturnFileLocations
Parameters
None

Sample Script
 ListOfDirectories = ['Temp', 'Tubes', 'Patterns', 'Textures', 'Gradients', 'Brushes',
 'Frame', 'Shape', 'StyledLines', 'Plugins', 'RestrictedScripts',

 'TrustedScripts', 'Presets', 'Swatches', 'SampleImages', 'Cache',
 'Masks', 'Selections', 'CMYKProfiles', 'PrintTemplates',
 'Workspaces', 'Palettes', 'DeformationMaps',
 'EnvironmentMaps', 'BumpMaps', 'PythonSourceEditor',

 'DisplacementMaps', 'CategoryDatabase', 'MixerPages']

 DirInfo = App.Do(Environment, 'ReturnFileLocations',)

 # Print out all the directories for each location
 for DirName in ListOfDirectories:
 DirCntName = DirName + 'Num'
 DirCnt = DirInfo[DirCntName]
 print "\nNumber of directories defined for '", DirName, "' is ", DirCnt
 Cnt = 0
 while Cnt < DirCnt:
 print " ", DirInfo[DirName][Cnt]
 Cnt = Cnt + 1

Description
This command will return all defined file location information. The file locations are
defined in the application with the file location dialog under preferences. This command
simply allows scripts to access that information in a read only fashion. The number and
full paths of each type of directory is returned (0 based). For example: If there are 3
plug-in directories defined then ‘PluginsNum’ will equal 3, and ‘Plugins’ 0 to 2 will be
valid. Referring to the sample code above the following code would print the remaining
plug-in directories:

print 'Plugins Dir 1: ', ImageInfo['Plugins'][1]
print 'Plugins Dir 2: ', ImageInfo['Plugins'][2]

Note: The first directory returned for each type is the default write directory for that type.

Command: ReturnLayerProperties
Parameters

 Page 37

This command has no parameters.

It does have a large return value. It returns a dictionary, which is all of the repositories
from the LayerProperties command, plus three additional values:

Path – A layer select tuple to select this layer starting from the bottommost layer
of the application.
LayerType – an enumerated value that gives the type of layer.
LayerRect – the bounding box of the visible data on the layer. This is the actual
size, regardless of whether or not the layer is expanded.

Sample Script

def Do(Environment):
 # start by selecting the bottommost layer in the image. This needs to be
 # in a try block because if we are already on the bottomost layer we will
 # throw an error
 try:
 # get the path from the bottom from the active layer

 # so we can restore it when done
 Props = App.Do(Environment, 'ReturnLayerProperties')
 PathBack = Props['Path']
 App.Do(Environment, 'SelectLayer',
 { 'Path': (9999,-9999, [], False) })
 except:
 pass # error is OK - just ignore and keep going

 FoundLayer = True
 LayerNum = 1
 while FoundLayer == True:
 Props = App.Do(Environment, 'ReturnLayerProperties')
 print Props['Path']
 print '%3d: %s (%d%% Opacity)' % (LayerNum,

 Props['General']['Name'],
 Props['General']['Opacity'])

 LayerNum += 1

 FoundLayer = App.Do(Environment, 'SelectNextLayer')

 # now that the loop is done, select the bottom layer and then
 # use the pathback to restore the layer that was active when we started
 App.Do(Environment, 'SelectLayer',

{ 'Path': (9999,-9999, [], False) })
 App.Do(Environment, 'SelectLayer', { 'Path': PathBack })

Description
This command permits programmatic access to everything in the layer properties dialog.
The return value is the same set of repositories that is the input to the LayerProperties
command.

In comparison to simple command recording, this command makes it possible to write
scripts that make decisions based on the properties of a layer. For example, this
command would make it easy to write a script that increases the opacity of all layers by
10%.

The layer properties command doesn’t explicitly have a value for the layer type, so an
enumerated value is included in the return type to identify the layer. The possible values
(assuming App.Constants.Layertype) are:

• Raster

 Page 38

• Vector
• Group
• Mask
• ColorBalance
• ChannelMixer
• Curves
• HueSatLum
• Posterize
• Threshold
• Invert
• Levels
• BrightnessContrast
• Selection
• FloatingSelection
• ArtMedia

The path in the return value is the path to select this layer starting from the bottommost
layer in the image. This makes it possible to write scripts that save the active layer,
perform a set of operations and then restore the active layer.

The layer rectangle is the bounding box of visible data on the layer. In the case of vector
and group layers it is the bounding box of the children on the layer. Masks and
adjustment layers may well contract to an empty rectangle even though they affect the
whole canvas. In those cases this will return the actual rectangle, not the effective
rectangle.

Command: ReturnVectorObjectProperties
Parameters
None
The return value is a list of all the selected vector objects.

Sample Script
The sample shown below will dump all the properties of an object to the output window:

from PSPApp import *
import pprint

def Do(Environment):
 # get the vector object properties
 Result = App.Do(Environment, 'ReturnVectorObjectProperties')

 # use the pretty printer to send it to the output window
 pp = pprint.PrettyPrinter()
 pp.pprint(Result)
 return

Description
This command returns the properties of all the selected vector objects. If a group is
selected, the properties of both the group and the members of the group are returned.

 Page 39

Vector objects can be nested many levels deep, but the returned list is always flat. So to
properly encode groups, the list entry for a group includes the number of children in the
group. The children will immediately follow the group. If a group is a child of another
group, then only the group object itself is included in the child count. The nested group
will have its own children, and those children will not count against the parent group’s
child count.

For example, assume the following arrangement:

Group 1
 Circle
 Triangle
 Group 2
 Square
 Pentagon
 Hexagon
 Octagon
Dodecagon

The order of objects in the returned list would be
[(Group 1, 4 children), (Circle), (Triangle), (Group 2, 3 children), (Square), (Pentagon),
(Hexagon), (Octagon), (Dodecagon)]

Each element in the list is a dictionary containing eight elements.

• Child Count – number of children of this object. For a group, this is the number
of members of the group. For all other objects this is 1.

• ObjectType – one of ‘Path, ‘Group’, ‘TextEx’, ‘Rectangle’, ‘Ellipse’ or
‘SymmetricShape’.

• GroupName – Name of the Group, or None if ObjectType is not Group.
• ObjectData – Properties of a Path object, or None if ObjectType is not Path.
• TextExData – Properties of a Text object, or None if ObjectType is not TextEx.
• RectangleData – Properties of a Rectangle object, or None if ObjectType is not

Rectangle.
• EllipseData - Properties of an Ellipse object, or None if ObjectType is not Ellipse.
• SymmetricShapeData - Properties of a SymmetricShape object, or None if

ObjectType is not SymmetricShape.

The properties returned for Path, Rectangle, Ellipse and Symmetric Shape objects are the
same set of properties that are displayed in the vector properties dialog. For Path and
Symmetric Shape objects, a list of nodes that make up the path is also returned. Each
node is defined by a tuple containing a type and zero or more points. The makeup of the
tuple varies with the type:

• App.Constants.PathEntryType.MoveTo – the second element of the tuple is the
point to move to

• App.Constants.PathEntryType.LineTo – the second element of the tuple is the end
point of the line

 Page 40

• App.Constants.PathEntryType.CurveTo – the second and third elements of the
tuple are the bezier control points, and the fourth member of the tuple is the end
point.

• App.Constants.PathEntryType.ClosePath – this is the only member of the tuple.

The properties returned for each type of object can be used as input to the
AddGroupsAndObjects command, as well as the specific command that is normally used
to create that type of object. For example, EllipseData properties as returned by the
ReturnVectorObjectProperties command can be used as input to the CreateEllipseObject
command. The Path property of a Path object can also be used as input for the
NodeEditAddPath command.

Command: AddGroupsAndObjects
Parameters
ListOfObjects – a list of objects to create, using the same format as the data returned by
ReturnVectorObjectProperties. See that command for a description of the parameters.

Sample Script
The script shown below uses the AddGroupsAndObjects command to replicate all of the
selected objects onto a new document.

from PSPApp import *

def Do(Environment):
 # get all the selected objects
 Result = App.Do(Environment, 'ReturnVectorObjectProperties')

 # make a new document
 App.Do(Environment, 'NewFile', {
 'Width': App.TargetDocument.Width,
 'Height': App.TargetDocument.Height,
 'ColorDepth': App.Constants.Colordepth.SixteenMillionColor,
 'DimensionUnits': App.Constants.DimensionType.Pixels,
 'ResolutionUnits': App.Constants.ResolutionUnits.PixelsPerIn,
 'Resolution': 100,
 'Transparent': True,
 'VectorBackground': True,
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Silent,
 'AutoActionMode': App.Constants.AutoActionMode.Match
 }
 })

 # SelectDocument
 App.Do(Environment, 'SelectDocument', {
 'SelectedImage': 0,
 'Strict': False,
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default,
 'AutoActionMode': App.Constants.AutoActionMode.Match
 }
 })

 # create all those objects on the new document?
 App.Do(Environment, 'AddGroupsAndObjects', {
 'ListOfObjects': Result['ListOfObjects']
 })

Description
The AddGroupsAndObjects command is the inverse of the ReturnVectorObjectProperties
command. The list of objects that it takes is in exactly the same format as that returned
by ReturnVectorObjectProperties.

 Page 41

AddGroupsAndObjects always creates new objects. To add path data to an existing Path
object, use NodeEditAddPath instead.

Command: NodeEditAddPath
Parameters
Path – an object path using the same form as ReturnVectorObjectProperties.
WindPath - Boolean - if True, nested objects are wound to become cutouts.
ReplacePath - Boolean - if True, replaces the existing data of the active shape rather than
adding to it.

Sample Script
The sample VectorMerge scripts that ship with Paint Shop Pro X are good examples of
the use of the NodeEditAddPath command.

Description
NodeEditAddPath adds the contours of an object to the currently active shape. It is used
to add path data to an existing Path object - not to Rectangle, Ellipse, SymmetricShape,
or Text objects.

Command: DeleteEXIF
Parameters
None

Sample Script

def Do(Environment):
 # Delete all EXIF information
 App.Do(Environment, 'DeleteEXIF', { })

Description
The DeleteEXIF command strips all EXIF data from the target image. Since EXIF data
can be as much as 65K bytes, stripping it from images can result in a significant size
savings. This is especially true for small images such as thumbnails or anything intended
for a web page.

Command: ReturnGeneralPreferences
Parameters
None

Sample Script

def Do(Environment):
GeneralPrefs = App.Do(Environment, 'ReturnGeneralPreferences',)
for key in GeneralPrefs:

print '%-30s: %s' % (key, GeneralPrefs[key])

Description
Returns all information from the “General Preferences” dialog.

 Page 42

Command: GetCommandInfo
Parameters
TargetCmd – the name of the command to retrieve
ParamInfo – enumerated value that controls retrieval of either last used or default
parameter repository. Choices are:
App.Constants.ParamInfo.None – no repository is returned
App.Constants.ParamInfo.Default – factory default settings are returned
App.Constants.ParamInfo.LastUsed – last used settings from the registry are returned

If default or last used is specified a copy of the command will be instantiated. For many
commands this will fail if no document is open at the time.

Sample Script
from PSPApp import *
import sys

def DumpAttributes(AttribList):
 ' print out the list of attribs, one per line.'
 for attrib in AttribList:
 if attrib[1] == 1:
 print '\t\t', attrib[0], ': true'
 else:
 print '\t\t', attrib[0], ': ', attrib[1]

def FormatCommandInfo(cmdName, Info):
 ''' Take the output of GetCmdInfo and send it to the output with
 minimal formatting. Unlike DumpCommandInfo, this command has
 knowledge of all the expected keys in the repository, so will
 not react well to the implementation of GetCommandInfo changing'''
 print 'Command Info for:\t', cmdName
 print 'Name:\t\t', Info['Name']
 print 'Local Name:\t', Info['LocalName']
 print 'Library:\t\t', Info['Library']
 print 'Description:\t', Info['Description']
 print 'Status bar text:\t', Info['StatusBarText']
 print 'Tool tip text:\t', Info['ToolTipText']
 print 'Undo text:\t', Info['UndoText']
 print 'Menu path:\t', Info['MenuPath']
 print 'Menu text:\t', Info['MenuText']
 print 'Command Attributes:'
 DumpAttributes(Info['CommandAttributes'])
 print 'Resource Attributes:'
 DumpAttributes(Info['ResourceAttributes'])
 print 'Parameter Repository:'
 paramDict = Info['ParameterList']
 for key in paramDict:
 print '\t\t', key[0], ' - ', key[1]
 print

def Do(Environment):
 for cmdName in App.Commands:
 try:
 Info = App.Do(Environment, 'GetCommandInfo',
 { 'TargetCmd': cmdName,
 'ParamInfo': App.Constants.ParamInfo.Default })
 FormatCommandInfo(cmdName, Info)
 except:
 print >> sys.stderr, 'Error getting info on command ', cmdName
 pass

Description
This command is used to get information about any command in the system.

 Page 43

The return value is in 3 parts. The first part is the basics of the command and resource
data class, including:

• Name – the script name of the command. This is not localized
• LocalName – the localized version of the command name. This is used in the UI,

but not in the script.
• Library – the command DLL that contains the command (e.g.

CmdNonGraphic.dll)
• Description – the description of the command that was entered when it was

created.
• Status bar text – the help text shown on the status bar for the command
• Tool tip text – the tooltip text shown when the mouse hovers over the toolbar

button for the command.
• Undo text – the text shown in the edit menu and command history when the

command is on the undo stack.
• Menu path – Nominally, the path to the command in the standard menu tree.

Submenus are separated by ~ characters. For example, the gaussian blur
command has a menu path of ‘Effec&ts~&Blur’. Since the effect browser is the
only thing that looks at menu path it may well be incorrect for anything that is not
on the effects menu.

• Menu text – Nominally, the text shown on the menu for this item. In PSP this
value is not used since menus are defined in the application rather than being built
dynamically.

• CommandAttributes – the complete set of command attributes. This is a list of
tuples, where each tuple consists of (‘attribute name’, value). The set of
command attributes changes as new ones are defined, but the currently defined set
is listed below

• ResourceAttributes – the complete set of resource data attributes. This is identical
in format to the command attributes.

The defined command attributes are:

• IsUndoable
• IsExternal
• HasSideEffects
• NoScriptRedo
• NoCommandHistory
• NoDocumentNeeded
• DisallowNullMaterial
• ScriptCommand
• AvailableScanning
• Has Random Seed
• FinalizeTransient
• ProcessChanges
• ProcessChangesOnSubCommand
• NoRepeat
• keCANoAnnotationErase

 Page 44

• NoScriptRecord
• NoIsValidCache
• ShowInEffectsBrowser
• SaveSettings
• NoProtectedMode
• EditRequiresGraphic
• Obsolete Command
• UsesCachedMaterials
• NoModeToggle

The defined resource data attributes are:

• HasWinPlacement
• IsPreviewable
• IsProofable
• Has Dialog
• HelpID
• ExclusionMask
• DynamicType
• DlgHasPresets
• DlgHasRandomize
• IsEditable

The second part is a copy of the parameter repository used by the command. The output
will be the last used values for the command. This is a dictionary object.

The third part is a dictionary that contains information about each parameter in the
repository. For each parameter it includes:

• Localized name
• Description
• Type identifier
• Default value
• Minimum and maximum values (numeric types only)
• Constant object pointer (enumerated types only)
• Parameter path. This is used to resolve names that are possibly duplicated in

subrepositories. It describes the complete path to a parameter, as in
‘GeneralSettings.ExecutionMode’

• Flags – is none, supports none, available in preset, etc.
• Name

Command: EventNotify
Parameters
EventType – an enumeration describing the event that occurred.

Sample Script

 Page 45

def Do(Environment):
 # tell PSP we just invalidated the pattern cache
 App.Do(Environment, 'EventNotify', {

'EventType': App.Constants.Event.PatternCache
})

Description
To speed access to commonly used resource files such as patterns and gradients, PSP
builds cache files. When it checks for the existence of the resource file, it usually just
checks if the file exists in the cache.

Interactively, PSP will refresh the cache file whenever the user goes to choose a resource.
But when running from a script, the refresh code will not be reached because the picker
dialog is not displayed.

The solution is to use the EventNotify command to tell PSP that a cache has been
invalidated. This will force PSP to reload the affected cache file.

The supported events are:

• PictureTubeCache
• PatternCache
• TextureCache
• GradientCache
• BrushCache
• PictureFrameCache
• StyledLineCache
• PluginCache
• ScriptCache
• PresetCache
• SwatchesCache
• MaskCache
• SelectionCache
• CMYKCache
• PrintTemplateCache
• WorkspaceCache
• PaletteCache
• DeformationMapCache
• EnvironmentMapCache
• BumpMapCache
• DisplacementMapCache
• PresetShapeCache

Command: StartForeignWindow
Parameters
WindowHandle – an integer containing the Win32 window handle of a dialog created by
a script.

 Page 46

Sample Script
 # just show the dialog
 Wnd = ExploreConstants()
 App.Do(Environment, 'StartForeignWindow', {
 'WindowHandle': int(Wnd.winfo_id())
 })
 Wnd.mainloop()
 App.Do(Environment, 'StartForeignWindow', { 'WindowHandle': 0 })

Description
One of the more powerful features of scripts is that they can contain their own GUI. This
makes it possible to write scripts that gather complex data from the user. However, the
interaction of a script dialog and PSP is rather problematic. Since the dialog is not
properly a child of PSP, PSP is perfectly happy if the dialog ends up behind PSP. Also,
while the dialog is up the PSP UI is not running, so menu items and toolbars don’t update
properly.

Finally, if PSP attempts to start a new script while a dialog window is running, the
Python interpreter will be in an undefined state and the program will crash.

This command exists to deal with these issues. The parameter is the Win32 window
handle of the dialog being displayed. For a Tkinter dialog, this is returned by the
winfo_id() method. For a wxWindow, use the GetHandle() method.

So long as the window identified in the call to StartForeignWindow exists, PSP will
ensure that it remains on top of the application, and it will keep the PSP UI updating.
While a foreign window is running, PSP will disable running scripts, loading presets, and
loading brush tips.

PSP will automatically terminate the foreign window state as soon as the identified
window is destroyed. You can also manually terminate the state by calling
StartForeignWindow again with a window handle of zero.

If dialogs are not bracketed by calls to StartForeignWindow, PSP will allow a second
script to be launched, which will usually crash the application.

Command: MsgBox
Parameters
Buttons – a constant (App.Constants.MsgButtons) with the values OK, OKCancel or
YesNo
Icon – a constant (App.Constants.MsgIcons) with the values Info, Question, or Stop.
Text – the text displayed in the box.

The return value is the button pressed. OK/Yes = 1, No/Cancel = 0

Sample Script
from PSPApp import *

def Do(Environment):

 Page 47

 ButtonTypes = ('Cancel/No','OK/Yes')
 result = App.Do(Environment, 'MsgBox', {
 'Buttons': App.Constants.MsgButtons.OK,
 'Icon': App.Constants.MsgIcons.Info,
 'Text': 'This is an OK button with an informational icon.'
 })
 print 'You pressed ', ButtonTypes[result]
 print

 result = App.Do(Environment, 'MsgBox', {
 'Buttons': App.Constants.MsgButtons.OKCancel,
 'Icon': App.Constants.MsgIcons.Question,
 'Text': 'These are OK and Cancel buttons with a question mark icon.'
 })
 print 'You pressed ', ButtonTypes[result]
 print

 result = App.Do(Environment, 'MsgBox', {
 'Buttons': App.Constants.MsgButtons.YesNo,
 'Icon': App.Constants.MsgIcons.Stop,
 'Text': 'These are Yes and No buttons with a stop sign icon.'
 })
 print 'You pressed ', ButtonTypes[result]
 print

Description
This command just provides a simple way of displaying a message box. The user can
control the text, the caption, the icon and the buttons displayed. The return value is the
button that was pressed. Here is an example from Paint Shop Pro 9.

Command: GetString
Parameters
DefaultText – the text that is initially shown in the dialog
DialogTitle – text shown in the title bar of the dialog
Prompt – a string shown above the edit box
MaxLength – the maximum length of the string allowed. If this is shorter than the
DefaultText then it is automatically increased to be as long as the default text.

Sample Script
from PSPApp import *

def Do(Environment):
 Result = App.Do(Environment, 'GetString', {
 'DefaultText': 'Hello World',
 'DialogTitle': 'This should be the title',
 'Prompt': 'This is a fairly long prompt string that will probably wrap
around to a second line',
 'MaxLength': 25
 })
 print Result['OKButton']
 print Result['EnteredText']

 Page 48

 Result = App.Do(Environment, 'GetString', {
 'DefaultText': 'Silent Mode',
 'DialogTitle': 'Foobar',
 'Prompt': 'Short entry',
 'MaxLength': 25,
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Silent
 }
 })
 print Result['OKButton']
 print Result['EnteredText']

Description
This command brings up a simple dialog box that contains an edit box and prompt. The
user types in a string and presses OK or Cancel.

The return is a dictionary containing two keys:
OKButton – True if the OK button was pressed.
EnteredText – the text entered by the user. If the user pressed cancel then the input text
will be returned unchanged.

If the execution mode is set to silent then the dialog is suppressed and the default string is
returned unchanged.

Command: GetNumber
Parameters
DefaultValue – the initial value in the JNE (between –1,000,000 and 1,000,000, default
1)
MinValue – the minimum value allowed (between –1,000,000 and 1,000,000, default 0)
MaxValue - the maximum value allowed (between –1,000,000 and 1,000,000, default
100)
DialogTitle – text shown in the title bar of the dialog (default is “Enter a Number”)
Prompt – text shown above the JNE (default is “Number:”)
GetInteger – boolean, true if input is limited to integers. (defaults to true)
LogarithmicSlider – boolean, true if the popout slider should use a logarithmic scale.
(defaults to false)

Sample Script
from PSPApp import *

def Do(Environment):

 Page 49

 Result = App.Do(Environment, 'GetNumber', {
 'DefaultValue': 25.3,
 'MinValue': 1,
 'MaxValue': 202,
 'DialogTitle': 'GetNumber - foobar',
 'Prompt': 'Prompt from script',
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default
 }
 })
 print Result['OKButton']
 print Result['EnteredNumber']

 Result = App.Do(Environment, 'GetNumber', {
 'DefaultValue': 2318,
 'MinValue': 100,
 'MaxValue': 125000,
 'DialogTitle': 'Get a large number',
 'GetInteger': True,
 'LogarithmicSlider': True,
 'Prompt': 'Enter a floating point number that has no bearing on
absolutely anything',
 'GeneralSettings': {
 'ExecutionMode': App.Constants.ExecutionMode.Default
 }
 })
 print Result['OKButton']
 print Result['EnteredNumber']

Description
This displays a dialog box containing a JNE and a user defined prompt:

Like the GetString command, it returns a dictionary that contains the returned number
and which button was pressed. This does some sanity checking on parameters – if min is
greater than max the two parameters are inverted. Logarithmic sliders are automatically
turned off if either min or max is less than zero.

Command: ScriptWndAutoShow
Parameters
Enable – a boolean value. True to enable auto show, false to disable it.

Sample Script
 Result = App.Do(Environment, 'ScriptWndAutoShow',
 { 'Enable': True })
 print 'Script window auto show enabled, previous value was ', Result

Description

 Page 50

By default the script output window turns on its visibility whenever any data is written to
sys.stderr. The assumption is that script errors are something that the user needs to know
about, so displaying the window is a good thing. However, there are cases where errors
are expected and handled normally. In these cases it is desirable to disable the auto show
capability.

The parameter is a boolean that controls whether auto show is on or off. The return of
the command is the previous state of the flag.

Command: ScriptWndClear
Parameters
None

Sample Script
 App.Do(Environment, 'ScriptWndClear')

Description
This command simply clears the script output window. There are no parameters.

Command: DumpScriptOutputPalette
Parameters
None

Sample Script
 App.Do(Environment, 'DumpScriptOutputPalette' {
 ‘OutputFile’: ‘c:\\SOPDump.txt’,
 ‘OverwriteFile’: False
 })

Description
This command saves the current contents of the Script Output palette to a text file. There
are no parameters.

Command: ScrollScriptOutputPaletteToEnd
Parameters
None

Sample Script
 App.Do(Environment, 'ScrollScriptOutputPaletteToEnd')

Description
This command can be used when you want to ensure that the last line of the Script Output
palette is visible. There are no parameters.

Command: SelectDocument
Parameters

 Page 51

SelectedImage – The relative index of the document to select, or zero to select the
currently active document. The index of the document is relative to the current target
document in opening sequence. For example: Say you opened four documents in the
following order: “Doc A”, “Doc B”, “Doc C”, and “Doc D”. Now let’s say “Doc C” was
active when you executed a script. “Doc C” would be the current target document for the
script. To set “Doc A” to be the target you would set the parameter to –2. Setting the
parameter to 1 would set “Doc D” as the target. Note: this index is relative to the scripts
current target document. The following flow shows this using the documents opened in
the example above:

Script started with “Doc C” active. So “Doc C” is the script’s target document.
 “SelectDocument” called with a parameter of -2. “Doc A” becomes the target.
 “SelectDocument” called with a parameter of 3. “Doc D” becomes the target.
 “SelectDocument” called with a parameter of -2. “Doc B” becomes the target.
 “SelectDocument” called with a parameter of 1. “Doc C” becomes the target.

Strict – Boolean value of True / False. If set to true and the requested document can’t be
found an error will be returned stopping the script. If set to false and the requested
document can not be found then the script’s target document will remain unchanged, no
error will reported, and the script will continue to execute.

Sample Script

Set the currently active document to be the script new target document
App.Do(Environment, 'SelectDocument', {
 'SelectedImage': 0,
 'Strict': False })

Set the document opened after the current target document to be the
new target document
App.Do(Environment, 'SelectDocument', {
 'SelectedImage': 1,
 'Strict': False })

Description
This command will select a new document for the script to operate on. Whatever
document was active (had focus) when a script is executed, becomes the “target”
document for the script. Any commands that are executed in the script are applied to the
script's target document. A script can change its target document by using the
“SelectDocument” command.

Active document vs. Target document. The active document is the document that is
active or currently has input focus. The target document is the same as the active
document at the moment the script is executed. Once the script is running the active and
target documents can be different. For example: If the user has two documents opened
and executes a script on the 1st document, and then clicks on the 2nd document, the script
will continue to operate on the 1st document. “SelectDocument” can also be used to
select the currently active document as the script’s target document by passing a 0 for the
“SelectedImage” parameter.

When a script is used in batch processing, only the image being processed is accessible,
so this command will not succeed in selecting any other document.

 Page 52

Command: SelectTool
Parameters
Tool – the name of the tool to select
The return value is the name of the tool that was previously selected

Sample Script
def Do(Environment):
 ListOfTools = ['Airbrush','ArtEraserTool','BackgroundEraser','Burn',
 'ChalkTool','ChangeToTarget','CloneBrush','ColoredPencilTool',
 'ColorReplacer','CrayonTool','Crop','Dodge','EllipseTool',
 'EmbossTool', 'Eraser','Eyedropper','Fill','FreehandSelection',
 'Hue','LightenDarken','MagicWand','Makeover','MarkerTool',
 'MeshWarping','Mover','OilBrushTool','PaintBrush','PaletteKnifeTool',
 'Pan','PatternFill','PastelTool','PenTool','PerspectiveTransform',
 'Pick','PictureTube','PresetShapes','PushBrush', 'RectangleTool',
 'Redeye','Saturation','ScratchRemover','Selection', 'SharpenBrush',
 'SmearTool','SmudgeBrush','SoftenBrush','Straighten',
 'SymmetricShapeTool','TextEx', 'WarpingBrush','Zoom']

 for Tool in ListOfTools:
 try:
 LastTool = App.Do(Environment, 'SelectTool', { 'Tool': Tool })
 print 'Tool was %s, just selected %s' % (LastTool, Tool)
 except:
 print 'Error selecting tool %s, presumably IsValid failed' % (Tool)

 CurrentTool = App.Do(Environment, 'SelectTool', { 'Tool': '' })
 print 'The current tool is ', CurrentTool
 print '----------------------------'

Description
This command allows a script to change the active tool. Tool changes are not recorded,
but for blueprints, GUI automation or tutorial purposes it is desirable to allow setting a
tool via script.

The return value is the name of the tool active before the command was executed. This
name can be used to restore the active tool via another call to SelectTool. (Though calling
SelectPreviousTool will do the same thing without having to track it manually).

If the tool name passed in is blank, the current tool is returned without selecting a new
one.

Command: SelectPreviousTool
Parameters
None

Sample Script
 NewTool = App.Do(Environment, 'SelectPreviousTool')
 print ‘After previous tool, tool is %s’ % (NewTool)

Description
This command selects the previous tool in the history list. It is valid only when a
document is open and there is a previous tool to select. It returns the name of the tool
that was active before the command was executed.

 Page 53

Next tool/previous tool act like undo redo on tool selects. PSP stores the ID of the last
100 tools used in a FIFO list. You can move forward and backwards through the list until
such time as you select a new tool by means of something other than previous/next. At
that point any tools forward in history (i.e. redo) are purged.

As an example, suppose you select tools A, B, C, D, E, F through the GUI.

You then press previous tool three times, stepping backwards through E and D, to C.
Your history list is still ABCDEF, but the current location is C. Stepping forward takes
you to D.

If you manually select tool G, everything forward of D is discarded from the history list,
so the history is now ABCDG. Selecting previous tool will take you to D, but E and F
have been removed.

This command is not normally present on the menus but can be customized in. If on a
menu it will display the name of the tool to be selected as part of its menu text when
enabled.

Command: SelectNextTool
Parameters
None

Sample Script
 NewTool = App.Do(Environment, 'SelectNextTool')
 print ‘After Next tool, tool is %s’ % (NewTool)

Description
This command selects the previous tool in the history list. It is valid only when a
document is open and there is a next tool to select. It returns the name of the tool that
was active before the command was executed.

See the description of SelectPreviousTool for more details.

