

Microsoft® SQL Server�Technology and Architecture

��

�embed PBrush \s * mergeformat ���

��

�
�

Microsoft® SQL Server�Technology and Architecture

Microsoft SQL Server is an advanced relational database management system for distributed client-server computing. Microsoft SQL Server delivers line-of-business solutions on today’s corporate networks, all within a powerful, scalable, and open client-server architecture that builds on your computing investment.

�

Contents

�toc \o "2-3"�Overview	� GOTOBUTTON _Toc288530415 � PAGEREF _Toc288530415 �1��

A new design based on proven technology	� GOTOBUTTON _Toc288530416 � PAGEREF _Toc288530416 �1��

System Design Goals	� GOTOBUTTON _Toc288530417 � PAGEREF _Toc288530417 �2��

Part of a system for client-server computing	� GOTOBUTTON _Toc288530418 � PAGEREF _Toc288530418 �2��

A New Approach to Scalability	� GOTOBUTTON _Toc288530419 � PAGEREF _Toc288530419 �3��

Increased system capacity	� GOTOBUTTON _Toc288530420 � PAGEREF _Toc288530420 �3��

The importance of a scalable architecture	� GOTOBUTTON _Toc288530421 � PAGEREF _Toc288530421 �3��

A native multithreaded DBMS	� GOTOBUTTON _Toc288530422 � PAGEREF _Toc288530422 �4��

SQL Server threading: Contrasting OS/2 and Windows NT	� GOTOBUTTON _Toc288530423 � PAGEREF _Toc288530423 �4��

SQL Server threading With Windows NT	� GOTOBUTTON _Toc288530424 � PAGEREF _Toc288530424 �6��

Benefits of native multithreading	� GOTOBUTTON _Toc288530425 � PAGEREF _Toc288530425 �7��

Enhancing DBMS Performance	� GOTOBUTTON _Toc288530426 � PAGEREF _Toc288530426 �8��

Optimizer and cache-management enhancements	� GOTOBUTTON _Toc288530427 � PAGEREF _Toc288530427 �8��

I/O and transaction log subsystem improvements	� GOTOBUTTON _Toc288530428 � PAGEREF _Toc288530428 �8��

Improved data transfer and network operations	� GOTOBUTTON _Toc288530429 � PAGEREF _Toc288530429 �9��

Tempdb in RAM	� GOTOBUTTON _Toc288530430 � PAGEREF _Toc288530430 �10��

New performance statistics	� GOTOBUTTON _Toc288530431 � PAGEREF _Toc288530431 �10��

Achieving a new price/performance standard	� GOTOBUTTON _Toc288530432 � PAGEREF _Toc288530432 �11��

Enhancing Manageability and Operational Control	� GOTOBUTTON _Toc288530433 � PAGEREF _Toc288530433 �12��

Close integration with Windows NT	� GOTOBUTTON _Toc288530434 � PAGEREF _Toc288530434 �12��

Integrated security	� GOTOBUTTON _Toc288530435 � PAGEREF _Toc288530435 �13��

Visual database administration tools	� GOTOBUTTON _Toc288530436 � PAGEREF _Toc288530436 �14��

Improving Reliability and Availability	� GOTOBUTTON _Toc288530437 � PAGEREF _Toc288530437 �16��

Online, scheduled, and unattended backups	� GOTOBUTTON _Toc288530438 � PAGEREF _Toc288530438 �16��

Structured exception handling	� GOTOBUTTON _Toc288530439 � PAGEREF _Toc288530439 �16��

Log threshold management	� GOTOBUTTON _Toc288530440 � PAGEREF _Toc288530440 �16��

Automatic server restart	� GOTOBUTTON _Toc288530441 � PAGEREF _Toc288530441 �16��

Terminate a sleeping process	� GOTOBUTTON _Toc288530442 � PAGEREF _Toc288530442 �17��

Improved error handling	� GOTOBUTTON _Toc288530443 � PAGEREF _Toc288530443 �17��

Exploiting Features Unique to Windows NT	� GOTOBUTTON _Toc288530444 � PAGEREF _Toc288530444 �18��

Extended stored procedures	� GOTOBUTTON _Toc288530445 � PAGEREF _Toc288530445 �18��

Extending SQL Server for mail workgroup computing	� GOTOBUTTON _Toc288530446 � PAGEREF _Toc288530446 �19��

Dynamic protocol support	� GOTOBUTTON _Toc288530447 � PAGEREF _Toc288530447 �20��

Open Interoperability and Compatibility	� GOTOBUTTON _Toc288530448 � PAGEREF _Toc288530448 �21��

Platform support	� GOTOBUTTON _Toc288530449 � PAGEREF _Toc288530449 �21��

Support for open, industry-standard APIs	� GOTOBUTTON _Toc288530450 � PAGEREF _Toc288530450 �21��

Microsoft Open Data Services	� GOTOBUTTON _Toc288530451 � PAGEREF _Toc288530451 �21��

Enterprise gateway support	� GOTOBUTTON _Toc288530452 � PAGEREF _Toc288530452 �21��

Microsoft SQL Bridge	� GOTOBUTTON _Toc288530453 � PAGEREF _Toc288530453 �22��

Simple migration for OS/2 users	� GOTOBUTTON _Toc288530454 � PAGEREF _Toc288530454 �22��

Open network integration	� GOTOBUTTON _Toc288530455 � PAGEREF _Toc288530455 �22��

SQL Server toolkits	� GOTOBUTTON _Toc288530456 � PAGEREF _Toc288530456 �22��

�

�
Overview

Technologies such as client-server networks and graphical computing have created new ways to develop applications while promising greater productivity at lower cost. Early client-server database systems promised such cost savings through “downsizing” or “rightsizing.” While this was sometimes achieved for small- or medium-sized applications, lack of scalability limited the number of serious applications that actually benefited. And software complexity and lack of management tools introduced new costs, often offsetting the advantages of downsizing in the first place.

Microsoft® SQL Server for the Microsoft Windows NT ™ operating system addresses these needs. This powerful, scalable relational database platform offers greater ease of use and manageability for distributed client-server applications. Part of a family of Microsoft client-server products, SQL Server meets the needs of organizations that are reengineering line-of-business systems to take advantage of open, standards-based computing.

�embed MSDraw * mergeformat ���

With Microsoft SQL Server, client-server systems are powerful to meet growth needs, reliable to support mission-critical applications, manageable to reduce operational costs, and open to protect legacy investments.

A new design based on proven technology

Building on the industry’s leading architecture for client-server computing, Microsoft SQL Server has been significantly reengineered for the Windows NT operating system, and incorporates enhancements and performance improvements unavailable in previous versions. Designed for mission-critical database applications, SQL Server also makes extensive use of the Microsoft Windows ™ user interface to improve ease of use and manageability.

SQL Server for Windows NT preserves application and data compatibility with Microsoft SQL Server for the OS/2® operating system. In addition, interoperability with SYBASE® SQL Server environments is enhanced, providing a true cross-platform database solution for client-server applications.

This backgrounder discusses the architectural approach, technical features, and new capabilities offered by Microsoft SQL Server for Windows NT. It is not meant to be an overview of SQL Server in general; it is helpful if you are already familiar with other versions of SQL Server from Microsoft or Sybase.

System Design Goals

In order to be successful, every major software project needs a set of central design goals. Conflicts and trade-offs are inevitable in software development, but when such conflicts arise, consideration of the impact on the design goals leads to the “correct” choice. When goals are in conflict, the one of greatest importance wins.

�

For SQL Server for Windows NT, we had an opportunity to completely reexamine how a database server should interact with the operating system. We knew we had to make it fast and scalable to exploit the multiprocessing architecture of Windows NT. But we also wanted to make the system much easier to install, manage, and use. Complex back-end database software of this caliber had never been designed to work in a graphical computing environment before.

Therefore, we chose the following design goals, to which we’ve paid careful attention:

1.	Release a high-quality product as soon as possible after the shipment of Microsoft Windows NT.

2.	Maximize performance and scalability using native Windows NT facilities for threading, scheduling, asynchronous I/O, and other system functions wherever possible. In other words, leverage the strengths of the operating system rather than re�create them.

3.	Tightly integrate with Windows NT to improve manageability and ease of use so that SQL Server works like a natural extension of the operating system.

4.	Exploit services unique to Windows NT to offer new database capabilities and to extend SQL Server for new tasks such as workgroup and collaborative computing.

�

A prerequisite of these goals was to preserve application and data compatibility to the greatest extent possible with SQL Server version 4.2 for OS/2, both to protect customers’ existing application investments and to make it easy for customers to migrate to the Windows NT platform. However, as will be evident, SQL Server for Windows NT is a thoroughly new version of SQL Server that includes features and enhancements not found in other versions.

Part of a system for client-server computing

Microsoft SQL Server is the foundation for a unified system of related components, including gateways, interfaces, system management tools, and networking components that together provide a rich platform for client-server computing. The design approach taken with SQL Server was therefore extended to the other components that make up the Microsoft SQL Server family.

In addition, because Microsoft and Sybase share a common architecture, there is broad interoperability between the two product lines. Customers are assured of a range of choices for implementing SQL Server–based client-server applications that can span operating systems.

A New Approach to Scalability

Perhaps the most notable difference in SQL Server for Windows NT is scalability. With SQL Server for OS/2, the performance ceiling is essentially the fastest single processor Intel®-based hardware system available. Windows NT changes that—SQL Server for Windows NT runs on a state-of-the-art operating system that is scalable from notebook computers to symmetric multiprocessor super servers, with support for Intel and RISC hardware architectures.

Windows NT is an ideal platform for a database server because it provides a fully protected, secure 32�bit environment on which to base mission-critical applications. Preemptive scheduling, virtual paged memory management, symmetric multiprocessing, and asynchronous I/O are the foundations needed for a great database server platform. Windows NT provides these foundations, and Microsoft SQL Server uses them fully.

Increased system capacity

With Windows NT, the system capacity and scalability of SQL Server is increased in several ways:

�symbol 110 \f "Wingdings" \s 8 \h��	A full 32-bit implementation, SQL Server supports up to 2 gigabytes of cache memory and terabytes of storage, offering significant capacity and performance improvements. The maximum number of user connections is now 32,767, increased from 255 on other platforms.

�symbol 110 \f "Wingdings" \s 8 \h��	Symmetric multiprocessing (SMP) support allows SQL Server to scale to powerful multiprocessing hardware systems such as the COMPAQ® ProLiant, Sequent® WinServer, and the NCR® 3450. Because these systems can run tasks simultaneously across multiple processors, SQL Server can offer performance equivalent to that of minicomputers at a much lower cost.

�symbol 110 \f "Wingdings" \s 8 \h��	Support for RISC hardware systems allows SQL Server to run on a wide variety of hardware platforms based on new-generation processors, including the MIPS® R4xxx and DEC® Alpha AXP ™. SQL Server delivers the portability and openness of UNIX®-based systems while benefiting from the consistency of a single binary operating system standard.

The importance of a scalable architecture

As an example of the importance of scalability, consider that in high transaction environments, SQL Server under OS/2 eventually becomes CPU-bound. Without the scalability offered by symmetric multiprocessing, there is little alternative but to attack the problem using multiple servers—which is difficult unless the data is easy to partition. While multiprocessor computers such as the COMPAQ ProLiant exist, they are of limited benefit for OS/2, because there is no way to use all processors effectively. With SQL Server for Windows NT, additional processors provide a significant boost in performance, which translates to larger applications, greater numbers of users, and higher capacity.

Platform independence, high capacity, and scalability allow SQL Server to meet a broad range of enterprise computing requirements. It is especially suitable for applications that require high levels of performance and capacity.

A native multithreaded DBMS

Microsoft SQL Server for Windows NT approaches multiprocessor scalability differently than other SMP database systems. Two characteristics separate the approach from other implementations:

�symbol 110 \f "Wingdings" \s 8 \h��	Single-process architecture. SQL Server maintains a single-process, multithreaded architecture that reduces system overhead and memory usage.

�symbol 110 \f "Wingdings" \s 8 \h��	Native thread-level multiprocessing. SQL Server supports multiprocessing using operating system (OS) threads rather than multiple OS processes, allowing preemptive operations and dynamic load balancing across multiple CPUs.

�embed MSDraw * mergeformat ���

On operating systems without a single binary standard, such as UNIX, DBMS vendors have had to build a number of operating system functions into their products in order to deliver consistent operation across hardware platforms. For example, because few UNIX implementations support threading, a typical approach to SMP requires the database server to have multiple DBMS processes, each bound to a specific CPU. These processes communicate with each other using shared memory, which is used to maintain the cache, locks, task queues, and user context information. The DBMS must include complex logic for scheduling user tasks, simulating threads, coordinating multiple processes, and so on. Since processes are bound to specific CPUs, dynamic load balancing can be difficult.

Because Windows NT provides a consistent set of services across all hardware platforms, SQL Server is able to exploit those services in a tightly integrated way, handing off much of its work to Windows NT. Rather than use multiple processes, SQL Server uses a single process and multiple operating system threads. Because all threads belong to the same process with a single address space, there is no need to coordinate work through shared memory.

By using native operating system threads, task scheduling within SQL Server is preemptive, providing smoother operation and greater fault isolation. Because Windows NT schedules threads on the most available CPU dynamically, SQL Server automatically achieves optimum load balancing across multiple CPUs.

It is notable that with Windows NT, the very same SQL Server binary supports both single-processor and multiprocessor systems: No special configuration is necessary.

SQL Server threading: Contrasting OS/2 and Windows NT

To understand this approach further, it is helpful to delve deeper into the threading implementations of SQL Server for OS/2 and SQL Server for Windows NT.

Although OS/2 is a multithreaded operating system, the threading approach in SQL Server is quite different. With OS/2, limits on the number of threads per process requires SQL Server to simulate its own threads. SQL Server manages each simulated thread using its own nonpreemptive scheduler. (This is also how SQL Server works on nonthreaded operating systems such as UNIX or Novell® NetWare®.)

On OS/2, a single OS worker thread actually manages and services all simulated user threads. This thread does an extraordinary amount of work. It manages the network interface, listening for new connections and establishing them when detected. That task alone is intensive, but it also services all client requests. If 50 connections are using SQL Server simultaneously, one thread manages and services them all.

SQL Server employs a simple, nonpreemptive scheduling algorithm to “round robin” between the simulated client threads. Each client runs until either it blocks (by waiting for a resource such as a lock) or until a specified period of time has elapsed (the length of which is controlled by the “timeslice” configuration parameter). If a client runs without being blocked for the entire timeslice, the client is expected to yield and another client is serviced. Because each user connection needs to maintain its own separate context of execution, a separate stack is maintained for each. Every time a different connection is serviced, the thread must switch stacks as well.

Although this implementation is fine given the constraints of OS/2, there are some drawbacks. First, this approach has a tendency to fool the operating system. Both OS/2 and Windows NT seek to run the highest-priority thread that is currently “runnable” (not blocked waiting for a resource or event). If multiple threads of the same priority are all runnable, they all get their turns. However, OS/2 does not know that one SQL Server worker thread is doing the work of 50 clients. As a simplistic example, suppose there are 50 other runnable threads of the same (normal) priority as this worker thread. The worker thread gets scheduled only about 2 percent (1/51) of the time, though it is doing the work of many. Because of these scheduling difficulties, it can be difficult to use other applications on the same system as SQL Server for OS/2.

A second drawback results if a page fault occurs. If the thread performs some instruction that causes the OS/2 virtual memory manager to address memory that is not currently in real (physical) memory, a page fault is generated. This triggers the OS/2 memory manager to read the page from disk. The thread is frozen until the operating system succeeds in swapping the memory from disk back into physical RAM. However, because one thread is servicing all the clients, they are all suspended while the page fault is handled.

Finally, what if the thread doesn’t voluntarily yield? A hardware or software failure can result in a runaway situation in which control never returns. For this reason, another OS/2 thread exists simply as a “watchdog.” If a client doesn’t yield its timeslice, the watchdog thread “infects” the worker thread by lowering its priority to idle and takes over the worker thread functions. (If you have ever seen an “infected process” or “timeslice” error in the SQL Server error log, this is what has happened.) Although the runaway task is at idle priority where it cannot do any harm, you must stop and restart SQL Server to solve the problem fully.

Because OS/2 lacks true asynchronous I/O capabilities, SQL Server simulates these capabilities using threads. Each SQL Server disk device uses one thread to do synchronous I/O for that device. Using multiple disk devices allows for some overlapping of I/O, provided the data is spread manually over the multiple disk devices.

�
SQL Server threading with Windows NT

With Windows NT, SQL Server makes greater use of the native thread services of the operating system. Instead of one “worker thread” there are many—separate threads handle each of the networks that SQL Server simultaneously supports, another thread handles database checkpoints, and a pool of threads handles all users. The operating system schedules all threads preemptively and selects the most available CPU for each thread automatically.

Worker thread pool

Think of each user as having a separate OS thread, which in a majority of cases is true. However, the solution is a bit more sophisticated than that. It is inefficient to use hundreds of separate OS threads to support hundreds of users, so SQL Server establishes a pool of worker threads.

When a client issues a command, the network handler places the command in a queue, and the next available thread from the worker pool takes the request and services it. If no idle worker thread is available when a request arrives, SQL Server creates a new thread dynamically, until it reaches the maximum thread limit. As the workload decreases, SQL Server gradually eliminates idle threads to improve memory usage.

�

Under this scheme, a worker thread runs each user request to completion. Because each thread has its own stack, there is no need for stack switching. If a given thread performs an operation that causes a page fault, only that thread, and hence only that one client, is blocked.

The maximum number of threads in the worker pool is configurable. The default value is generally the same as the number of user connections. However, for very large numbers of users, overall throughput can be increased by setting the maximum number of worker threads to a lower value, which reduces task switching within the system. You can set the maximum number of threads available in the worker pool by using a new sp_configure parameter.

Better system usage

Windows NT does all scheduling of the threads. Because the number of SQL Server threads is much more representative of the true work going on in the system, scheduling is more equitable. In the example cited for OS/2, one thread supported 50 clients but competed with 50 other threads on the system for scheduling, which resulted in SQL Server being scheduled only 2 percent of the time. With Windows NT, SQL Server will commonly have 50 separate threads supporting those 50 clients; on average, a thread might be scheduled 50 percent (50/100) of the time.

Because threads are no longer expected to yield, but rather are preemptively scheduled, there is no need for a watchdog thread. Even if a thread becomes a runaway, no other clients are affected. The concept of a timeslice or infected process error no longer exists with SQL Server for Windows NT.

Because Windows NT supports true asynchronous I/O, it is now more efficient for each user thread simply to issue its own I/O requests asynchronously and get called by the OS on completion, so there are no longer separate threads for each SQL Server disk device. Using the asynchronous I/O capabilities of Windows NT allows SQL Server to make much better use of hardware technology such as intelligent disk arrays. With data striping and RAID support in Windows NT and Windows NT Advanced Server, you can achieve overlapped I/O without manually spreading the data within SQL Server.

Benefits of native multithreading

In this section we have compared the multithreaded approach of earlier SQL Server implementations with the approach of SQL Server for Windows NT, which makes extensive use of native operating system threads. These are the benefits of a native multithreading approach:

�symbol 110 \f "Wingdings" \s 8 \h��	Reduced system complexity. This design relieves SQL Server of the need to duplicate operating system functionality such as scheduling, memory allocation, queuing, and so on. This results in a more efficient and stable system architecture.

�symbol 110 \f "Wingdings" \s 8 \h��	Smoother, preemptive operation. SQL Server and Windows NT schedule user tasks preemptively, providing for smoother operation and improved resource use.

�symbol 110 \f "Wingdings" \s 8 \h��	Dynamic load balancing. SQL Server’s workload is dynamically and automatically balanced across multiple CPUs. For example, a thread that begins executing on CPU 1 might be switched to CPU 2 by Windows NT if that switch achieves better system load balancing. This results in more symmetric operation on SMP hardware.

�symbol 110 \f "Wingdings" \s 8 \h��	Greater robustness and reliability. User tasks executing on separate threads are protected from one another and can be terminated gracefully by SQL Server in case of error. For example, with SQL Server it is possible to terminate a sleeping process and to isolate protection violations to a single thread rather than affect the whole server.

�symbol 110 \f "Wingdings" \s 8 \h��	An appropriate foundation for scalability. Multithreading lends itself to greater parallelism in the code path. For example, in the future it will be possible to spread single tasks across multiple threads to achieve faster queries through parallel joins, sorts, and so on.

Enhancing DBMS Performance

A major design goal of Microsoft SQL Server for Windows NT is increased performance even on single-processor hardware. In implementing the changes necessary for a native multithreaded architecture, Microsoft also incorporated many internal enhancements that improve performance. These enhancements fall into the following areas:

�symbol 110 \f "Wingdings" \s 8 \h��	Optimizer and cache-management enhancements

�symbol 110 \f "Wingdings" \s 8 \h��	I/O subsystem enhancements

�symbol 110 \f "Wingdings" \s 8 \h��	Enhancements to network and data transfer operations

This section discusses each of these areas in detail.

�

Optimizer and cache-management enhancements

The changes made to the optimizer and the cache-management subsystem improve index selection, optimize memory utilization, and increase transaction throughput.

Improved index selection

The optimizer has been enhanced to perform more accurate costing of physical I/Os for nonclustered indexes. In addition, the optimizer now uses a nonclustered index for queries containing an ORDER BY clause if the index covers the sort column. Previously, only clustered indexes were used to optimize an ORDER BY—if no clustered index was available, SQL Server would sort the data in temporary work space. The use of nonclustered indexes significantly improves ORDER BY processing and reduces sorting and temporary table creation.

Asynchronous checkpoint

A checkpoint is an I/O-intensive process that flushes all changed database pages from memory cache to disk. In previous versions of SQL Server, a checkpoint interrupts the processing of new transactions while all pages are flushed. However, SQL Server now spawns a thread to perform checkpoints asynchronously, writing pages in the background via a lazy-write scenario. This substantially reduces the impact of checkpoints on system throughput.

“Free page scan” limit

Whenever a new page must be added to cache, SQL Server scans the cache from front to back searching for free space. Previously, if the cache was full, SQL Server would scan the entire page chain before it decided to flush a page to make room for the new page in memory. With a very large memory cache, it could take longer to do a full scan than simply to flush a page. A new “free page scan” limit restricts how much of the cache SQL Server scans before electing to flush a page. This optimizes performance for large memory caches.

I/O and transaction log subsystem improvements

Significant changes have been made to the I/O and transaction log subsystems to take advantage of multithreaded, parallel operation.

True asynchronous I/O	

Windows NT has a sophisticated asynchronous I/O subsystem. SQL Server makes extensive use of the facilities provided by the operating system to achieve a high level of parallelism in I/O processing. SQL Server performs all reads and writes asynchronously, supporting efficient use of intelligent disk controllers. This approach is optimal for all types of hardware.

SQL Server also now writes multiple pages in a single I/O operation rather than a page at a time. This approach is optimized for SMP and array disk technology. The administrator can “tune” the number of pages SQL Server passes to Windows NT in each write request.

More efficient log allocation

�

Because changes to the transaction log cannot be cached, log writes are the most I/O-intensive operations performed by a DBMS, with new pages allocated and deallocated all the time. Microsoft has enhanced SQL Server so that all log page allocation and deallocation occurs one extent (eight pages) at a time. This reduces overhead and increases performance.

Update “in place”

Previously, an UPDATE affecting columns that contained variable-length data or nulls would resolve to a combined DELETE and INSERT, even if the physical length of the data were unchanged. SQL Server for Windows NT now performs all UPDATEs that do not change the physical length of the data “in place,” regardless of the datatypes affected. This greatly improves throughput for many types of transactions.

Automatic data striping

To achieve the best performance, it has always been possible to partition data in SQL Server across multiple physical disks using devices and segments. However, partitioning the data manually is a complex process requiring significant expertise. Now, using the built-in RAID support in Windows NT, you can achieve the benefits of data partitioning in SQL Server automatically and transparently. This approach also simplifies database restoration because segment mapping is eliminated.

Improved lock manager

Microsoft has completely rewritten the lock manager to operate in a preemptive multithreaded environment. Now fully reentrant and thread-safe, it makes use of finer-granularity lock acquisition for cache buffers, page chains, and other items, to reduce internal resource contention. This enhancement allows SQL Server to support higher internal transaction rates and greater numbers of concurrent users without blocking.

Improved data transfer and network operations

Data transfer operations have been significantly enhanced in SQL Server.

Faster CREATE DATABASE

To ensure valid data structures, SQL Server “zeroes” out every byte on disk when creating databases. Previous versions of SQL Server performed this one page (2K) at a time, resulting in long CREATE DATABASE times for large databases. With Windows NT, SQL Server performs this operation in 60K blocks, dramatically reducing the time it takes to process a CREATE DATABASE request.

Faster backup and restore

To improve backup and restore processing with very large databases, SQL Server now performs DUMP and LOAD operations in 60K blocks rather than one page at a time. This significantly reduces the time it takes to back up and restore large databases.

Negotiated packet size

SQL Server now allows you to increase the size of the network packets used to communicate between client and server from 512 bytes to 32K for named pipes networks. For large data transfers, increasing the network packet size to an optimal value (usually 4 or 8K) can dramatically increase network throughput and double the performance of bulk load operations using BCP. New command-line switches are available in ISQL and BCP, and a new DB�Library function call allows programmers to request larger packet sizes for applications. BCP operations with Windows NT now default to the larger network packet size for best performance. All changes are forward-compatible with SYBASE System 10 and backward-compatible with existing SQL Server platforms.

Tempdb in RAM

SQL Server uses the special temporary database, tempdb, as work space for sorting and for creation of temporary tables in some join operations. Creating tempdb in RAM can substantially speed up these operations. Because SQL Server re�creates tempdb every time it is restarted, this is a safe operation even if an unexpected shutdown, such as a power failure, occurs. Not all sites will want to create tempdb in RAM because it makes less memory available for SQL Server’s data cache; however, this is one more important tuning option a site can choose. Using tempdb in RAM can be valuable for applications that do not get high hit ratios from the data cache or that perform operations demanding substantial access to tempdb.

Administrators can establish tempdb in RAM through a new sp_configure option, tempdb_in_ram. Once configured, the next time SQL Server is started it creates a device called IN_RAM (actually allocated memory) and moves tempdb to that device. If you enlarge tempdb while it is in RAM (using ALTER DATABASE), SQL Server adds the new space to the DEFAULT device. The new space moves to the IN_RAM device the next time you stop and restart the server.

When tempdb is in RAM and you want to move it back to the MASTER device, simply set the tempdb_in_ram option again using sp_configure (sp_configure 'tempdb_in_ram', 0). When switching back to the MASTER device, tempdb starts with 2 MB, regardless of what its size was in RAM. To increase it again, use ALTER DATABASE.

New performance statistics

SQL Server offers administrators many new performance statistics for more intelligent tuning and configuration. A new DBCC command, SQLPERF, provides a wealth of information, such as page reads and writes, cache hit ratio, log writes, instantaneous transaction rate, and so on. SQL Server also exports this information to the Windows NT Performance Monitor (discussed more fully later in this paper), which provides a graphical view of system performance.

Achieving a new price/performance standard

As a result of this performance craftsmanship, Microsoft SQL Server has achieved transaction rates previously available only from minicomputer- and mainframe-class computing platforms, while setting new price/performance records.

A comparison of published DBMS transaction performance (TPC-B) on various hardware and operating systems reveals that Microsoft SQL Server delivers exceptional performance at significantly lower cost than traditional platforms.

DBMS�
Hardware�
OS�
TPS�
$/TPS�
�
SYBASE 4.8.1�
SPARC®server 2 c/s�
SunOS 4.1.2�
62.1�
$2,294�
�
Microsoft SQL Server �
COMPAQ ProLiant 486-50 c/s�
Windows NT 3.1�
93.8�
$563�
�
DB2®/6000�
RISC System 6000 550L�
AIX 3.2.5�
98.5�
$1,484�
�
SYBASE 4.8.1�
SPARCserver 690MP�
SunOS 4.1.2�
134.9�
$2,764�
�
ORACLE®7�
RISC 6000 980B�
AIX 3.2.3�
160.9�
$2,646�
�
SYBASE 4.8.1�
Sequent Symmetry 2000/250�
DYNIX 1.3�
173.1�
$2,770�
�
ALLBASE F0.41�
HP® 9000 Series 800 Model G30�
HP-UX 9.0�
202.3�
$1,235�
�
Microsoft SQL Server �
COMPAQ ProLiant dual P5/66 c/s�
Windows NT 3.1�
226.3�
$441�
�
SYBASE 4.8�
VAX® 9000/420 �
VMS 5.4�
261.0�
$13,250�
�
In audited transaction results published by the Transaction Processing Performance Council (TPC), Microsoft SQL Server for Windows NT, running on a COMPAQ ProLiant 2000 dual-Pentium server, achieved a performance rate of 226 transactions per second (tpsB) at a cost of $440.88 per transaction. These tests, which were independently audited by Tom Sawyer of Performance Metrics, Inc., set a new price/performance standard for relational database management systems on the TPC-B benchmark. Previously, a cost of $2,500–$5,000 per transaction was typical for this level of performance. The following chart compares published TPC-B price/performance for DBMS software on a variety of typical platforms and operating systems.

�

A open approach to benchmarking

Benchmarks are informative only if they are practiced in an open fashion. Microsoft has taken the unusual step of making its benchmarking software available in the public domain so that customers can test the performance of SQL Server using their own hardware and network configurations.

The Microsoft SQL Server Benchmark Kit contains the complete TPC�B software suite in both binary and source code form, along with a full report disclosing hardware configurations and testing procedures used to achieve the published results. This kit is available for download as file BENCH.ZIP in section 2 of the Microsoft SQL Server forum on the CompuServe(Information Service (GO MSSQL).

Enhancing Manageability and Operational Control

Microsoft SQL Server is fast and scalable to exploit the multiprocessing architecture of Windows NT. An equally important design goal was to make the overall system much easier to manage and use. Complex back-end software of this caliber had never been engineered to work in a distributed, graphical computing environment before. We’ve paid careful attention to feedback from customers who have been using client-server systems on distributed networks. Many of the features of SQL Server are designed to improve operational control and manageability, particularly in distributed environments.

�

Close integration with Windows NT

SQL Server for Windows NT is a full 32-bit implementation using the Microsoft Win32™ APIs and runs completely within the protected Win32 subsystem. In addition to the server, all other components in the SQL Server family are now 32�bit and, when appropriate, multithreaded, including administration tools, programming interfaces, and utilities. SQL Server itself ships with an integrated set of management tools that make extensive use of the Windows user interface to improve ease of use. SQL Server also integrates directly with Windows NT management facilities, such as the Performance Monitor (shown at left), allowing remote monitoring and troubleshooting of system performance.

Service control management (SCM)

To improve manageability, SQL Server and related components, such as SQL Monitor, run as integrated operating-system services under the control of Windows NT. The administrator can start, stop, and pause SQL Server from the Windows NT Control Panel or from the SQL Service Manager. These operations can also be performed remotely, making centralized administration of multiple servers easier. The SQL Service Manager displays the current status of SQL Server even while minimized. The administrator can start many instances of the SQL Service Manager, each controlling a separate server, to get an instant visual reading of the status of each server.

Pausing SQL Server is a new capability with Windows NT. While paused, SQL Server will deny new connections but will continue to process current client requests. This is useful for performing an orderly shutdown of the system—you might want to limit new connections but allow existing clients to complete their work.

Windows NT Registry

SQL Server maintains startup parameters in the Windows NT Registry, eliminating the need to manage multiple operating-system configuration files. This approach also keeps the server configuration secure and protected from accidental modification. The SQL Server Setup program provides easy modification of startup options and shields the administrator from having to modify the Registry directly.

Easy installation and migration

SQL Server includes a graphical Setup program that simplifies installation and allows the setting of system configuration options in an intuitive and dynamic manner. The administrator can run Setup locally, or over the network to install SQL Server on remote computers. The Setup program also functions as an automated migration tool for existing SQL Server for OS/2 installations (version 1.1 or 4.2). Setup installs the Windows NT binaries into the same directory tree as the OS/2-based server without disturbing the existing installation. When upgrading from SQL Server 4.2 for OS/2, there are no structural changes made to the database, making it possible to go back and forth during a trial period simply by rebooting the computer between Windows NT and OS/2.

�

Graphical Performance Monitor

SQL Server integrates with the Windows NT Performance Monitor, which lets administrators and database designers quickly and easily view and tune server performance characteristics, even from a remote Windows NT–based computer. Many of these statistics are also available by using a new DBCC extension, DBCC SQLPERF. New statistics include statistics about the cache hit ratio, buffer usage, and I/O activity. Other statistics include information by user, such as CPU and I/O usage, and many levels of granularity regarding locks currently being held.

Event logging

The Windows NT event log provides a single repository for information, warning, and error messages for the entire system. Windows NT uses the event log to post messages about the system, the network, and security violations. Administrators can use the Event Viewer administration tool to view the event log of any servers on the network. Applications can also use the services of the event log through a provided API. SQL Server exploits this system-wide capability by posting all of its messages to the Windows NT event log as well as to the standard SQL Server error log file. The Event Viewer provides options to filter certain events, as well as options for how long to retain logs and whether to overwrite them. The Event Viewer operates across the network, making it easy for a single administrator to monitor multiple SQL Servers simultaneously.

�

Integrated security

Microsoft SQL Server now supports an integrated security option that provides a single logon to both the network and database server for named pipes networks. With integrated security, access to SQL Server is controlled through privileges established for users and groups of Windows NT. The administrator does not need to maintain a separate set of logon accounts and passwords in SQL Server.

Integrated security in SQL Server provides administrators with:

�symbol 110 \f "Wingdings" \s 8 \h��	A single unified logon model for both network and database

�symbol 110 \f "Wingdings" \s 8 \h��	Centralized control of access to multiple SQL Servers in a Windows NT domain

�symbol 110 \f "Wingdings" \s 8 \h��	Centralized password management with password encryption, aging, and minimum-length restrictions

�symbol 110 \f "Wingdings" \s 8 \h��	Auditing of database access attempts

�symbol 110 \f "Wingdings" \s 8 \h��	Tools for managing multilevel security access privileges to SQL Server for network users and groups

A mixed-mode option provides additional flexibility for both trusted and nontrusted connections.

Visual database administration tools

As mentioned earlier, Microsoft SQL Server ships with an integrated set of management tools that make extensive use of the Windows user interface to improve ease of use. All administration tools are available in both 32�bit and 16�bit Windows-based versions, allowing many administration functions to be performed from workstations running the Windows version 3.1 operating system.

SQL Administrator

For Windows NT, Microsoft has enhanced the graphical administration tool that premiered with SQL Server version 4.2 for OS/2. It is now fully 32�bit and uses multiple threads for long-running operations, which greatly improves its responsiveness and puts an end to long waits. Because SQL Administrator takes advantage of the Windows graphical interface, tasks such as adding users or managing disk space become a simple point-and-click activity. SQL Administrator can manage multiple SQL Servers (both Windows NT and OS/2) across the network.

�

SQL Object Manager

SQL Object Manager is a new graphical tool that provides database change management functions and supports easier creation and maintenance of all SQL Server database objects, such as tables, indexes, triggers, views, rules, and defaults. SQL Object Manager provides an interactive data transfer function, permitting easy and rapid import and export of data. In addition, SQL Object Manager can “reverse engineer” the schema from an existing database into a Transact�SQL™ DDL script so that the database structure can be re�created on another server. Like SQL Administrator, there is a version of SQL Object Manager for Windows 3.1 and a full 32�bit, multithreaded version for Windows NT.

SQL Transfer Manager

SQL Transfer Manager is a copy management tool that allows the administrator to move entire databases or collections of database objects between servers in a single-step operation. SQL Transfer Manager automates the process of duplicating databases onto multiple servers and eliminates the laborious manual steps of loading and unloading tables, rebuilding indexes, and so on. In a mixed hardware environment, SQL Transfer Manager provides the ability to move databases between RISC- and Intel-based servers without concern for binary incompatibilities in dump/load file formats.

All SQL Server for Windows NT platforms are supported as both source and destination servers. In addition, SQL Transfer Manager supports SYBASE SQL Server as a source server, allowing single-step migration of databases and database objects from UNIX or NetWare servers into a Windows NT–based server environment.

ISQL/W

The interactive SQL query interface shared by SQL Administrator and SQL Object Manager has been redesigned and also made available as a standalone tool, ISQL/W. The query facility is now much faster and has been enhanced to support very large result sets. New features include a graphical display of SHOWPLAN output, with color coding to highlight table access methods (red = table scan, green = clustered index, and so on). The tool can also display I/O statistics in graphical form. These features can help programmers optimize and tune queries.

Client network configuration

SQL Server client software can communicate over multiple networks using installable Net�Libraries. It is now much easier to set up network support for workstations running Windows and Windows NT using an enhanced client configuration utility. You can easily change the client’s default Net�Library from named pipes, IPX/SPX, or Banyan® VINES® IP. It is also a point-and-click operation to set up an alternate Net�Library connection for specific servers.

Improving Reliability and Availability

Microsoft SQL Server has been enhanced in a number of ways to improve reliability and availability, issues particularly important for production database platforms. We’ve also paid careful attention to the area of fault recovery, ensuring that SQL Server can be brought back online without operator intervention. This capability is particularly important in a system designed for distributed operation.

Online, scheduled, and unattended backups

SQL Server supports dynamic backup of databases and transaction logs while users are updating the database, providing the highest level of system availability. Scheduled backup capabilities are provided by SQL Monitor, a separate service that works in conjunction with SQL Server. Using SQL Monitor, it is possible for automatic backups to occur on a regular basis—weekly, daily, hourly, or any combination thereof. SQL Server now supports more than 50 types of popular tape drives, and the list is growing.

SQL Server can also back up multiple database and logs to the same tape. Combined with scheduled backup, it is now possible to perform fully unattended backups without operator intervention. SQL Server provides a tool for scanning tape headers if the DBMS is offline in a disaster recovery situation.

Structured exception handling

A server should never crash, and SQL Server has always been highly reliable. Yet, as in all complex software environments, unforeseen errors can occur. In these cases the server may generate a protection violation (known as a “trap”). Under other protected operating systems, including OS/2, UNIX, and VMS®, if a client issues some obscure command that causes SQL Server to trap, the operating system will terminate the entire SQL Server process. (This is an important feature of protected operating systems, because in an unprotected system the results are much worse—corruption of system integrity and, at least, the need to cold boot the computer.)

However, Windows NT and SQL Server uniquely go an important step farther. By using a feature of Windows NT called structured exception handling, SQL Server can recover gracefully from protection violations by terminating only the thread of the client that issued the offending command. All other users can continue safely and unaware. Structured exception handling provides superior reliability and ensures the highest availability of the system in mission-critical environments.

Log threshold management

It is now possible to monitor how full a SQL Server database log has become and to automatically dump the log or alert the administrator if log use reaches a specific threshold. SQL Server makes this possible by exporting a new “log % full” statistic to the Windows NT Performance Monitor. The administrator can establish events, such as running a batch script to dump the log, that are automatically triggered whenever this statistic reaches a certain limit. This capability can substantially reduce the risk of downtime due to a full log.

Automatic server restart

The administrator can configure SQL Server to start automatically when the system is powered on, enabling SQL Server to come back online automatically in case of power failure or other hardware fault. As before, database recovery is automatic. In addition, should the SQL Server process ever fail for any reason and the server continue to run, SQL Monitor can attempt to automatically restart SQL Server without operator intervention.

Terminate a sleeping process

For Windows NT, Microsoft has enhanced the Transact-SQL KILL command so that even a “sleeping” process can be terminated. Because SQL Server client connections use real Windows NT threads, all resources the user may have held (such as locks) are gracefully released to maintain system integrity.

Improved error handling

SQL Server now handles various common errors in a simpler manner than before. For example, if a previous version of SQL Server was configured for fifty clients and a fifty�first tried to connect, that client would get a message stating that “SQL Server is unavailable,” which the user would normally interpret to mean that the DBMS is offline. Now, a specific message states that there are no additional configured connections available. Another example deals with recovery with a full master database log. Previously, SQL Server would not start if the transaction log was full. SQL Server will now start even in this situation. Network errors are better propagated to both the SQL Server and SQL Server clients. Many other error messages have also been improved.

Microsoft has also developed a new Microsoft SQL Server Troubleshooting Guide that is now included with SQL Server. This book provides solutions for most common problems and is a valuable addition to the SQL Server documentation.

Exploiting Features Unique to Windows NT

One of Microsoft’s goals was to exploit the unique features of Windows NT to extend SQL Server’s database management capabilities. In particular, SQL Server needed to be extensible by the developer and to integrate well with the Microsoft Windows Open Services Architecture (WOSA) and workgroup computing frameworks.

Extended stored procedures

SQL Server for can dynamically load and execute code in external dynamic-link libraries (DLLs) in a manner identical to a stored procedure. This capability provides unparalleled power to extend SQL Server in a seamless manner. Actions external to SQL Server can be easily triggered and information returned. Return status codes and output parameters identical to their counterparts in regular stored procedures are also supported.

Extended stored procedures offer a useful way to add new functions required for a particular application but which are otherwise not available. For example, a financial information system might require currency analysis functions such as internal rate of return (IRR) or net present value (NPV). Extended stored procedures can be used to add these functions to the SQL Server working environment.

Several useful extended stored procedures are supplied with SQL Server. For example, xp_cmdshell allows any Windows NT command or process to be executed from within SQL Server. This provides considerable power. For example, you can use xp_cmdshell from within a trigger to send a broadcast on the network about data changes:

create trigger broadcast on inventory for update �	as exec master..xp_cmdshell�	"net send johndoe 'Inventory Updated'"

Extended stored procedure security

SQL Server safeguards itself from fault in an extended stored procedure. Only the system administrator can add extended stored procedures to the system. Once an extended stored procedure is fully tested, the system administrator can then grant EXEC privilege to use it just like any other stored procedure. Should a poorly designed procedure escape this safeguard, an exception handler within SQL Server prevents the system from being stopped should a protection violation occur. Any active transactions are gracefully rolled back just as they would be if the protection violation had occurred in the SQL Server code. Because the extended procedures are DLLs, there is no need to stop and restart the server to add the new capability.

SQL Server includes these three new system stored procedures to add, drop, or list extended stored procedures:

sp_addextendedproc 'function_name', 'dll_name'

sp_dropextendedproc 'function_name'

sp_helpextendedproc ['function_name']

Extended stored procedures are developed with the Microsoft Open Data Services library, now available as part of the Microsoft SQL Server Programmer’s Toolkit.

Extended stored procedures greatly extend the programmable architecture of SQL Server and simplify the task of integrating SQL Server–based applications into the existing enterprise information infrastructure.

Extending SQL Server for mail workgroup computing

Microsoft SQL Server can function as a powerful database platform for workgroup-enabled applications. Through built-in sendmail functions, SQL Server is easily integrated with MAPI, Microsoft Mail, and other workgroup computing technologies.

Integrated MAPI and mail support

SQL Server includes a series of mail-enabled extended stored procedures that integrate SQL Server into an existing electronic mail system, making it possible to synchronize activities throughout an organization.

Through extensions such as xp_sendmail, developers can now send database-linked email messages from within database triggers and stored procedures. This facility can be used to send a query result set, message, or mail attachment to one or more recipients within an organization. In conjunction with external mail gateways, the same information can be forwarded to persons outside the organization via the Internet or other public mail service.

The xp_sendmail extended stored procedure offers rich capabilities that can be inferred from its usage:

xp_sendmail @recipients {[, @message] [, @query] [, @attachments]}�	[, @copy_recipients] [, @blind_copy_recipients]�	[, @subject] [, @type] [, @attach_results]�	[, @no_output] [, @no_header] [, @width]

For example, the following command sends the results of the specified query to a user whose alias is “batman.”

xp_sendmail 'batman', @query = 'select * from authors',�	@subject = 'list of authors on file'

A practical example of how this capability can be used is found in an inventory management system: A trigger tests if inventory has fallen below a certain level, and if so, executes a reorder transaction, at the same time sending an electronic mail message to the purchasing manager alerting him or her to the reorder request. This powerful feature provides a simple way to implement a just-in-time inventory process. Extending this example, a more sophisticated database trigger could initiate multiple simultaneous mail messages that coordinate the activities of many groups crucial to a particular process—a purchasing manager receives a message to initiate the purchase order, a parts supplier is notified to prepare an invoice, and a warehouse agent is instructed to prepare the order for delivery. The possibilities are limited only by the imagination and skill of the developer.

Dynamic protocol support

�

Microsoft SQL Server is capable of supporting clients communicating on multiple network protocols simultaneously without the need for add-on products such as SQL Bridge. Server-based Net�Libraries, implemented as DLLs, handle connections concurrently over multiple transports. Several Net�Libraries can be active at once, allowing SQL Server to “listen” on multiple connection types (such as sockets or named pipes) over multiple transports (such as NetBEUI, TCP/IP, or IPX/SPX).

In its initial release, SQL Server supports named pipes connections using a variety of network transport protocols, including NetBEUI, TCP/IP and IPX. In NetWare environments, MS�DOS(–, Windows-, and OS/2–based clients are fully supported over native IPX/SPX protocols and require no special network software. SQL Server also simultaneously supports the TCP/IP sockets API for communication with Macintosh®, UNIX, or VMS clients running SYBASE Open Client software. Additional Macintosh client support using ODBC (Open Database Connectivity) will be provided in 1994. SQL Server also supports native Banyan VINES IP connections.

Open Interoperability and Compatibility

Microsoft SQL Server is an open platform, designed to integrate well with all major computing environments.

Platform support

SQL Server is available for a broad base of hardware platforms. The Intel-based product is binary compatible with 80386, 80486, and Pentium-based computers, both single and multiprocessor. Versions of SQL Server that support the MIPS R4xxx and DEC Alpha AXP RISC microprocessors are also available. As Windows NT moves to other popular hardware platforms you should expect SQL Server also to move.

SQL Server runs with equal levels of performance on either Windows NT or Windows NT Advanced Server. Windows NT Advanced Server provides additional fault tolerance, multiserver security features, and support for greater-than-two processor hardware systems. Remote Access Service, built into Windows NT Advanced Server, allows dial-in capability to SQL Server over standard phone lines.

Support for open, industry-standard APIs

SQL Server supports industry-standard APIs at both the client and server to ensure an open, extensible database platform. SQL Server includes drivers to support ODBC (Open Database Connectivity) applications, extending access to a wide variety of client software. In addition, hundreds of commercial tools and applications support SQL Server’s native DB-Library interface, ensuring broad choice for customers. SQL Server also supports applications developed with the SYBASE Open Client interface.

Microsoft Open Data Services

Microsoft SQL Server is one of the few DBMS platforms to offer an open API for developing server�based gateway and connectivity applications that work in conjunction with SQL Server. Microsoft Open Data Services is an event-driven API that provides a programmable gateway platform for server applications that can access any data source. It uses the same multithreaded architecture as SQL Server. Customers and systems integrators can use Open Data Services to develop custom database gateways, data-driven event alerters, external program triggers, request auditing, and more.

�

Open Data Services–based applications can function as standalone gateways or data-access servers supporting connections from the same client platforms as SQL Server. They can also integrate with SQL Server directly through remote stored procedure calls. For the Windows NT platform, customers can also use Open Data Services for developing extended stored procedure DLLs.

Enterprise gateway support

Microsoft licenses Open Data Services to many third parties who provide SQL Server–compatible gateways to popular host computing platforms. Microsoft maintains cooperative development and support relationships with these vendors to ensure broad compatibility and tight integration with the SQL Server platform.

Gateways based on Microsoft Open Data Services are available for a wide variety of host platforms including IBM® DB2, IBM SQL/DS(, CICS ™, Pick, IBM AS/400®, DEC RdB, and Teradata®.

Microsoft SQL Bridge

Microsoft SQL Bridge provides transparent routing of SQL Server requests across different networks, transports, and operating-system platforms. SQL Bridge can function as a gateway to SYBASE platforms when the customer prefers not to install host-based network protocols on each client. For example, SQL Bridge allows a client application on a NetWare LAN to access a SYBASE server on UNIX over standard IPX/SPX protocols—SQL Bridge automatically routes the request over TCP/IP. SQL Server for Windows NT also supports native TCP/IP sockets connections at the server, further increasing interoperability with SYBASE environments.

Simple migration for OS/2 users

Microsoft SQL Server for Windows NT is completely compatible and interoperable with Microsoft SQL Server for OS/2. Migrating from OS/2 is easy because the format and structure of the database files is unchanged. The Setup program handles the upgrade automatically and it is possible to go back and forth with SQL Server version 4.2 for OS/2 during an evaluation period without re�creating or reloading databases.

Existing client applications for MS�DOS, Windows, and OS/2 work unmodified with SQL Server. Not even a recompile or a relink is required. Windows NT–based client applications can also work with Microsoft OS/2–based servers or with SYBASE SQL Server for UNIX and VMS platforms.

Open network integration

Microsoft SQL Server operates in all major network environments over native protocols. SQL Server integrates directly with Novell NetWare, Microsoft LAN Manager, Banyan VINES, IBM LAN Server, and Microsoft Windows NT–based networks. It can also interoperate with SYBASE SQL Server clients and servers over TCP/IP-based networks. SQL Server supports native protocols such as IPX/SPX and VINES/IP without requiring special network software to be installed on each client.

SQL Server toolkits

SQL Server supports direct call-level and embedded SQL application development in popular programming languages, including C, C++, the Microsoft Visual Basic programming system, and COBOL.

Microsoft SQL Server Programmer’s Toolkit

This toolkit contains development libraries and tools for writing client applications using the native DB-Library interface, and for writing server applications and extended stored procedures using the Open Data Services interface. Client applications can be written in C and C++ for MS�DOS, Microsoft Windows, Windows NT, and OS/2 with popular compilers from Microsoft and Borland®. Applications can be developed with Visual Basic for both MS�DOS and Windows. The Programmer’s Toolkit also includes Microsoft Open Data Services development libraries for Windows NT.

The Microsoft SQL Server Programmer’s Toolkit provides client software support for Intel, MIPS R4xxx, and DEC Alpha AXP microprocessors.

Precompiler support and development libraries for writing traditional SQL applications in C using an embedded SQL approach is expected in 1994. Please consult your Microsoft reseller for additional information.

�
© 1993–1994 Microsoft Corporation. all rights reserved.

Information in this document represents the current view of Microsoft Corporation on the issue discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft and Microsoft cannot guarantee the accuracy of any information presented after the date of publication. This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. Companies, names and/or data used in screens and output are fictitious.

Microsoft, Access, FoxPro, MS�DOS, Visual Basic, Visual C++, Win32, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the U.S. and/or other countries. OS/2 is a registered trademark licensed to Microsoft Corporation.

Macintosh is a registered trademark of Apple Computer, Inc. Banyan and VINES are registered trademarks of Banyan Systems, Inc. Borland is a registered trademark of Borland International, Inc. COMPAQ and COMPAQ SystemPro are registered trademarks of Compaq Computer Corporation. CompuServe is a registered trademark of CompuServe, Inc. DEC, VAX, and VMS are registered trademarks and Alpha AXP is a trademark of Digital Equipment Corporation. SQLBase is a registered trademark of Gupta Technologies, Inc. HP is a registered trademark of Hewlett-Packard Company. Informix is a registered trademark of Informix Software, Inc. Ingres is a trademark of Ingres Corporation. Intel is a registered trademark and Pentium is a trademark of Intel Corporation. AS/400, DB2, and IBM are registered trademarks and CICS and SQL/DS are trademarks of International Business Machines Corporation. MD is a registered trademark of Micro Decisionware, Inc. MIPS and R4000 are registered trademarks of MIPS Computer Systems, Inc. NCR is a registered trademark of NCR Corp. NetWare and Novell are registered trademarks of Novell, Inc. ORACLE is a registered trademark of Oracle Corporation. Sequent is a registered trademark of Sequent Computer Systems, Inc. SPARC is a trademark of Sun Microsystems, Inc. SYBASE is a registered trademark and Transact-SQL is a trademark of Sybase, Inc. Teradata is a registered trademark of Teradata Corporation. UNIX is a registered trademark of UNIX System Laboratories.

0394 Part No. 098-54884

�page �1�

	Microsoft SQL Server for Windows NT: An Overview of Technical Enhancements

�page �1�

	Microsoft SQL Server for Windows NT: An Overview of Technical Enhancements

�page �ii�

	Microsoft SQL Server Technology and Architecture

�page �22�

	Microsoft SQL Server Technology and Architecture

