

��
Microsoft® Word for Windows™

Creating Custom Solutions Using Microsoft Word 6.0�
�

�

To order this product or for more �information, see your reseller today.�To find a reseller near you, or to order by phone, inside the U.S. call (800) 426�9400. Outside the U.S. contact your Microsoft subsidiary. Additional comments or questions: �	�	�	�Submitted by Microsoft Field �Representative:	�Phone:	

�
Introduction	3

Template Model: Word Architecture	4

� TOC \o "2-3" \t "Header,1" �Word’s Layered Architecture	� GOTOBUTTON _Toc277388681 � PAGEREF _Toc277388681 �4��

Global vs. Local Templates	� GOTOBUTTON _Toc277388682 � PAGEREF _Toc277388682 �5��

Making Templates Global	� GOTOBUTTON _Toc277388683 � PAGEREF _Toc277388683 �5��

Customizing Word 6.0	6

Building A Personalized Word Processor	� GOTOBUTTON _Toc277388684 � PAGEREF _Toc277388684 �6��

Automating Routine Tasks With Macros	� GOTOBUTTON _Toc277388685 � PAGEREF _Toc277388685 �6��

Building Custom Solutions Using Word 6.0	8

Document Automation	� GOTOBUTTON _Toc277388686 � PAGEREF _Toc277388686 �8��

Information Fields	� GOTOBUTTON _Toc277388687 � PAGEREF _Toc277388687 �8��

Mail Merge Fields	� GOTOBUTTON _Toc277388688 � PAGEREF _Toc277388688 �9��

Document Automation Fields	� GOTOBUTTON _Toc277388689 � PAGEREF _Toc277388689 �10��

Online and Printed Forms	� GOTOBUTTON _Toc277388690 � PAGEREF _Toc277388690 �11��

WordBasic Enhancements	� GOTOBUTTON _Toc277388691 � PAGEREF _Toc277388691 �12��

WordBasic Language Enhancements	� GOTOBUTTON _Toc277388692 � PAGEREF _Toc277388692 �12��

Word’s Improved Template Model	� GOTOBUTTON _Toc277388693 � PAGEREF _Toc277388693 �14��

Increased Speed	� GOTOBUTTON _Toc277388694 � PAGEREF _Toc277388694 �14��

Better Memory Management	� GOTOBUTTON _Toc277388695 � PAGEREF _Toc277388695 �14��

Dynamic Dialog Boxes	� GOTOBUTTON _Toc277388696 � PAGEREF _Toc277388696 �14��

Word’s New Macro Editing Environment	� GOTOBUTTON _Toc277388697 � PAGEREF _Toc277388697 �15��

Creating Custom Wizards with WordBasic	16

WordBasic Extensions	� GOTOBUTTON _Toc277388699 � PAGEREF _Toc277388699 �16��

Messaging Application Programming Interface (MAPI)	� GOTOBUTTON _Toc277388700 � PAGEREF _Toc277388700 �16��

Open Database Connectivity (ODBC)	� GOTOBUTTON _Toc277388701 � PAGEREF _Toc277388701 �17��

Microsoft Word Application Programming Interface	� GOTOBUTTON _Toc277388702 � PAGEREF _Toc277388702 �19��

Applications Programmability	� GOTOBUTTON _Toc277388703 � PAGEREF _Toc277388703 �19��

Using Word 6.0 and OLE Automation	� GOTOBUTTON _Toc277388704 � PAGEREF _Toc277388704 �19��

Dynamic Data Exchange	� GOTOBUTTON _Toc277388705 � PAGEREF _Toc277388705 �22��

Building Solutions For The Macintosh	� GOTOBUTTON _Toc277388706 � PAGEREF _Toc277388706 �22��

Where Does Word Fit Into a Custom Solution? 	23

Single-Application Solutions	� GOTOBUTTON _Toc277388707 � PAGEREF _Toc277388707 �24��

Multiple-Application Solutions: OLE Automation	� GOTOBUTTON _Toc277388708 � PAGEREF _Toc277388708 �24��

Multiple-Application Solutions: DDE	� GOTOBUTTON _Toc277388709 � PAGEREF _Toc277388709 �24��

Where Do You Get More Information? 	24

The Microsoft Word Developer’s Kit	� GOTOBUTTON _Toc277388710 � PAGEREF _Toc277388710 �25��

Domestic Order Information	� GOTOBUTTON _Toc277388711 � PAGEREF _Toc277388711 �25��

International Order Information	� GOTOBUTTON _Toc277388712 � PAGEREF _Toc277388712 �25��

Solution Providers Channel	� GOTOBUTTON _Toc277388713 � PAGEREF _Toc277388713 �25��

�

�
�
�
�
�

�
T

he release of Microsoft Word 6.0 brings a new era of application ease-of-use and built-in program intelligence for word processing users on Windows, Windows NT and the Macintosh. Word 6.0 includes new features that are designed to intelligently assist you as you perform your daily word-processing tasks — features such as AutoCorrect which automatically corrects typos and spelling mistakes as you type. In addition, Word 6.0 includes new enhancements that let you quickly and easily create custom solutions that automate everyday word-processing tasks. This paper examines the many options and technologies to create a customized word-processing environment that are available to every Word 6.0 user.

The discussion begins with a description of Word’s template-based architecture, followed by a description of the many ways to customize the Word 6.0 interface. The remainder of this paper discusses how to build custom solutions with Word 6.0. This section begins with the new enhancements made to the WordBasic macro language and document automation techniques. Then the focus shifts to the new extensions to WordBasic that provide access to other technologies, such as MAPI and ODBC. This section ends with using OLE Automation, DDE (Dynamic Data Exchange), and AppleScript™ to create custom solutions.

�
T

he key to customizing or building “real world” solutions with Word 6.0 is a clear understanding of Word’s architecture. This discussion begins and ends with a single concept — templates. Every document in Word is based on a template. The template establishes how the Word interface looks and the document’s settings when you first create the �document. For example, templates can include:

Standard text and graphics, such as a company’s name and logo.

Default document formatting, such as font types, font sizes, styles, �margin settings, and page orientation.

Specialized AutoText entries (boilerplate text and graphics) that contain frequently used text and graphics.

Customized menus, toolbars, and keyboard assignments that include frequently used commands to automate routine tasks.

Macros that automate complex or repetitive tasks.

Using templates to customize toolbars, menus, and document styles means that you can easily design unique work environments that meet your �specific work needs. For example, you could create a report template that automatically uses your company’s standard fonts, styles, and layout �settings each time someone starts a new report. Or you could create a template for beginning users that steps them through a new or complicated business process by prompting them to perform specific actions or answer certain questions.

Word’s Layered Architecture

Templates play a fundamental role in how documents are created, as well as how Word 6.0 operates and appears to the user. Looking at Word’s layered architecture, it is easy to see why templates play such a vital role.

�IMPORT \\\\UEPUB\\RADAR\\RESOURCE\\EPS\\WRK1901.EPS * mergeformat���

Figure � SEQ Figure * ARABIC �1�: Word's layered architecture enables users to customize the user interface and create custom solutions that can be distributed among PCs.

Word’s architecture (� REF _Ref275966534 * MERGEFORMAT �Figure 1�) includes three layers: documents, templates, and the executable file (winword.exe). The top level is comprised of the documents that users create. These documents are based on templates, the second level of the structure. Templates, in turn, rely upon the executable file winword.exe. This executable file is the core of Word 6.0, containing the unchangeable code and routines that ultimately control actions such as centering a paragraph or underlining text.

Templates let you combine and alter the way these core routines affect your documents and custom �applications. For example, you can have two documents open at the same time. One is based on a FAX template and the other on the MEMO template. Since the documents are based on different templates, each provides a unique array of styles and macros for creating specific types of documents.

�
In addition, you can include custom macros with a template that allow you to modify the behavior of built-in commands. For example, you could create a macro in the FAX template with the name FilePrint (the name of a built-in Word command) that lets you send a fax instead of printing it. This macro would be specific to the FAX template. When you switch back to a document based on the NORMAL template, you revert back to the built-in FilePrint macro that prints a document instead of sending it as a fax.

Global vs. Local Templates

Templates in Word 6.0 can be global or local. If a template is global, all of the macros, AutoText entries, and other customizable options are available in documents based on that template, as well as any other template. The NORMAL template (normal.dot) is an example of a global template. A macro that is saved in normal.dot is accessible from any document, regardless of the template the document is based upon. If a template is local, the macros, AutoText entries, and other customizable options are available only to those documents based on that template.

Making Templates Global

�

Figure � SEQ Figure * ARABIC �2�: Templates can be loaded as “global” by using the Templates And Add-ins dialog box by choosing Template from the File menu.

There are two ways to make a template global. The first is to use the Templates and Add-ins dialog box (� REF _Ref275941812 * MERGEFORMAT �Figure 2�). This dialog box allows you to easily create global templates by choosing the Add button. The Templates and Add-ins dialog box can also be used to install custom Word Add-in libraries. For more information on creating Word add-in libraries, see “� REF _Ref275941944 * MERGEFORMAT �Microsoft Word Application Programming Interface�,” on page � PAGEREF _Ref275941944 �19�.

The other way to load a template globally is to place a copy of the template file in the STARTUP directory (this is a subdirectory in the Word 6.0 program directory). For more information about global templates, see Chapter 10, “Document Templates,” in the Microsoft Word User’s Guide.

�
T

he real question for users who are working with Microsoft Word that want to get the most out of their word processor is to ask, “what are the tasks that I do everyday that can be streamlined or automated?” Since no two individuals use their computer in the same way, Word provides users with a tremendous variety of easy-to-use customization tools that you can use to create a truly personalized word-processing environment.

Building a Personalized Word Processor

�

Figure � SEQ Figure * ARABIC �3�: Microsoft Word enables you to easily attach one of over 575 internal Word commands or user macros to any toolbar, menu item, or key assignment using the Customize dialog box.

Microsoft Word 6.0 lets you modify almost every aspect of the user interface, including menus, key assignments, and toolbars. You can even use the toolbar button editor to modify existing buttons or create your own from scratch. The interface for customizing menus, key assignments, and toolbars is identical throughout the program, making the process of customizing the user interface in Word 6.0 very simple.

Using the Customize dialog box (� REF _Ref275942692 * MERGEFORMAT �Figure 3�), you can add menu, keyboard, or toolbar access to macros, fonts, styles, AutoText entries, and any of the hundreds of built-in Word commands. In fact, there are well over 575 built-in Word commands that can be accessed via the Customize dialog box.

�

Figure � SEQ Figure * ARABIC �4�: Word 6.0 users can easily customize Word’s toolbars or create their own custom toolbars.

For example, if you are responsible for merging revisions from multiple editors, you could place the ToolsReviewRevisions command on a custom editing toolbar (� REF _Ref275942894 * MERGEFORMAT �Figure 4�). Or if you create index entries or cross-reference a long document, you might add the InsertCrossReference command to the “Text” shortcut menu. For more information on customizing Word 6.0, see Chapter 31, “Customizing and Optimizing Word,” in the Microsoft Word User’s Guide.

Automating Routine Tasks with Macros

Customizing toolbar buttons and menu items to create a personalized word processing environment with Word 6.0 is easy. But when the discussion of customizing Word shifts to creating macros, some people may think that it is too complicated or requires a degree in Computer Science to comprehend. This section shows how easy it is to create powerful macros that automate routine tasks using Word 6.0—without the degree.

�

Figure � SEQ Figure * ARABIC �5�: The Record Macro dialog box lets users name their macros and provides them with an easy-to-use interface for applying them to any toolbar, menu item, or key assignment.

A Word macro is simply a set of instructions written in the WordBasic programming language that perform a series of Word commands. What is most impressive about Word is that you don’t have to know anything about programming to create macros that streamline complex word-processing tasks. You can easily record a series of steps in a complex process using Word’s macro recorder. You access the macro recorder by choosing the Macro command from the Tools menu and choosing the Record button. You name the macro and then choose to assign it to a toolbar, menu, or key sequence. The macro recorder is like a tape recorder: You start the recorder, perform a series of actions to complete a task in Word, and then choose Stop. Now you have recorded a macro that can be used to perform the same operation in a single step.

Here is an example of how you could use a recorded macro to automate a routine task. Imagine you are responsible for creating a monthly sales forecast that is distributed for review to a specific group of individuals. Every time you create the monthly report, you manually select the group of individuals to receive the document. This process is time consuming and is better if left up to the computer instead.

To automate this process, you display the Record Macro dialog box, name the macro, and add it to a toolbar button (Figure 5). Then you perform the steps of selecting your groups of reviewers. Once you complete this �process, the macro recorder generates a macro that looks something like � REF _Ref275943714 * MERGEFORMAT �Example 1� below.

Sub MAIN

	FileRoutingSlip .ClearRecipients

	FileRoutingSlip .Address = "Lee Sanchez", .AddRecipient

	FileRoutingSlip .Address = "Sandy Brown", .AddRecipient

	FileRoutingSlip .Address = "Chris Lakes", .AddRecipient

	FileRoutingSlip .Subject = "Routing: Monthly Sales Forecast", 	.Message = "Please review sales figures by Friday.", 	.AllAtOnce = 0, .ReturnWhenDone = 1, .TrackStatus = 1, 	.Protect = 1, .RouteDocument, .Address = ""

End Sub

Example � SEQ Example * ARABIC �1�: Automating routine tasks in Word is easy using the macro recorder. Simply record a series of operations and Word automatically generates WordBasic macro code that can easily be added to any toolbar button, menu item, or key assignment.

The sample macro code in � REF _Ref275943714 * MERGEFORMAT �Example 1� shows that you chose the Routing Slip command (File menu), added the group members to the distribution list, typed a brief message and subject text, and then routed the document via electronic mail. What is important in this example is that Word has taken care of all of the underlying macro programming issues automatically. In many cases, you don’t even have to look at the macro code once it has been recorded. For more information about recording macros, see Chapter 33, “Recording and Running Macros,” in the Microsoft Word User’s Guide.

�
W

ord’s customization capabilities described so far are only the tip of the iceberg when it comes to creating custom solutions. Word 6.0 gives you a sophisticated macro programming environment that is unmatched in the word-processing industry.

This section focuses on the new capabilities of Word 6.0 and WordBasic that provide you with the best tools for creating document-based custom solutions. Specific attention is given to document automation, WordBasic enhancements and extensions, applications programmability, and support for the Macintosh.

Document Automation

There are a number of technologies built into Word 6.0 that give users the ability to dynamically build documents based upon a series of pre-defined fields. Fields in Word 6.0 can be broken down into four categories: information fields, mail merge fields, document automation fields, and form fields.

Information Fields

In general, fields are special codes that instruct Word to insert specific types of information into a document. Using fields, you can add and automatically update text, graphics, page numbers, and other information in a document.

Typically, you see the text or a graphic that the field generates instead of the actual field codes. However, it is possible to display the field codes via the Options command on the Tools menu. When the field codes are visible, the underlying coding information is displayed rather than the resulting text or graphic.

�

Figure � SEQ Figure * ARABIC �6�: The Database command gives Word 6.0 users an easy-to-use three-step process for retrieving and querying information from any ODBC database.

You can use fields to dynamically build the contents of a document. For example, you can use a DATABASE field to insert data from a database using ODBC (Open Database Connectivity). Using the Database command (Insert menu), Word 6.0 enables you to query the database based on specific criteria and then insert the query results into your document as a field (� REF _Ref275966992 * MERGEFORMAT �Figure 6�). What is even more exciting is that Word 6.0 automatically generates the query statement and field code information for you. In fact, the code in � REF _Ref275967025 * MERGEFORMAT �Example 2� is the code generated by Word automatically when a database query is inserted into a document as a field.

There are a number of situations where inserting a database as a field can be very useful. For instance, consider a situation where a company needs to generate a weekly report that tracks the status of all the sales for the past week that were greater than $10,000. If the document is created with data inserted as fields, every time it is opened, this information is automatically updated to display the most recent sales figures. This dramatically reduces the amount of work required to collect this information and present it in a report.

In � REF _Ref275967025 * MERGEFORMAT �Example 2�, Word automatically inserted a DATABASE field with the database location and selected the appropriate ODBC driver for Microsoft Access® (RedISAM). The remainder of the code is the SQL (Structured Query Language) statement for retrieving the recent sales greater than $10,000. For more information on using ODBC with Word 6.0, see “� REF _Ref275944107 * MERGEFORMAT �Open Database Connectivity (ODBC)�,” on page � PAGEREF _Ref275944107 �17�.

{DATABASE \d "C:\\ACCESS\\SALES.MDB" \c "DSN=Corporate Sales Database; DBQ=C:\\ACCESS\\SALES.MDB;FIL=RedISAM;" \s "SELECT \"Order ID\", \"Customer ID\", \"Ship Name\", \"Shipped Date\", \"Order Amount\" FROM \"ORDERS\" WHERE ((\"Order Amount\" >= 10000)) ORDER BY \"Order Amount\" DESC" \h}

Example � SEQ Example * ARABIC �2�: When Word 6.0 users insert a database into a document as a field, the query statement and syntax are generated automatically. This provides users with a highly effective and easy-to-use tool for creating documents that automatically retrieve information from a database.

Again, it is important to note that Word 6.0 automatically generated all of the necessary database query code and syntax. This is another example of how Word 6.0 simplifies the process of customizing and automating routine tasks and complex operations. For more information on using fields with Word 6.0, see Chapter 32, “Inserting Information with Fields,” in the Microsoft Word User’s Guide.

Mail Merge Fields

Microsoft Word has pioneered the development of easy-to-use tools for performing sophisticated mail merge operations. Mail merge fields are codes that instruct Word to insert information from a data source into a form letter. You can also use special Word fields to further personalize form letters, contracts, or other merged documents. Examples of these �special fields are:

IF (If...Then...Else) fields enable you to print information in a merge document only if the merged data record meets conditions you specify.

�

Figure � SEQ Figure * ARABIC �7�: Creating sophisticated mail merge documents is easy using the new Insert Word Field button on the Mail Merge toolbar.

ASK and FILLIN fields can be used to prompt the user for information that is not listed in the data source.

An enhancement in Word 6.0 that makes the process of creating sophisticated merge documents easier is the ability to insert conditional merge fields via the Mail Merge toolbar (� REF _Ref275944262 * MERGEFORMAT �Figure 7�). For example, if a company needs to send out a form letter to its entire customer base, a conditional mail merge field can be used to create personalized letters. Now, customers that specialize in a particular line of business will receive a letter with information on that line of products.

You can easily automate the process of inserting specialized text into a merge document using AutoText in Word 6.0. As described earlier, AutoText allows you to create a library of custom boilerplate text or �graphics, complete with formatting, that can be easily inserted into a �document. In � REF _Ref275967259 * MERGEFORMAT �Example 3�, a field is used to insert specific AutoText entries in a form letter.

{IF {MERGEFIELD Primary_Business} = "strings" "{AUTOTEXT GuitarOffer}" "{IF {MERGEFIELD Primary_Business} = "keyboards" "{AUTOTEXT �PianoOffer}" "{AUTOTEXT StandardOffer}" }" }

Example � SEQ Example * ARABIC �3�: Using conditional merge field control structures, you can easily create very sophisticated form letters that offer high levels of customization.

In � REF _Ref275967259 * MERGEFORMAT �Example 3�, the IF field uses the classic If...Then...Else control structure, found in almost every structured programming language. Describing the logic in � REF _Ref275967259 * MERGEFORMAT �Example 3� using “pseudo code” it could be interpreted as:

If Primary_Business = "strings" Then

	Insert AutoText "GuitarOffer"

ElseIf Primary_Business = "keyboards" Then

	Insert AutoText "PianoOffer"

Else

	Insert AutoText "StandardOffer"

End If

The first IF field tests the merge field Primary_Business to determine whether the customer specializes in “strings.” If so, then an AutoText entry named “GuitarOffer” is inserted automatically. If the first IF condition is false, then a second IF field is used to determine whether or not the merge field Primary_Business is “keyboards.” If so, then an AutoText entry named “PianoOffer” is inserted automatically. If not, then an AutoText entry named “StandardOffer” is inserted.

The IF field is just one of many conditional fields that can be inserted into a merged document with Word 6.0. The depth and variety of special Word fields give you the necessary tools to create very sophisticated mail merge operations. For more information on using Mail Merge with Word 6.0, see Chapter 30, “Mail Merge: Advanced Techniques,” in the Microsoft Word User’s Guide.

Document Automation Fields

Microsoft Word includes a special collection of fields that can be used to create documents that automatically respond to user input. Examples of document automation fields include the following:

The GOTOBUTTON field allows users to easily switch between predefined bookmarks in a document.

The MACROBUTTON field enables users to attach any macro or Word command to a graphic or a selection of text in a document.

For example, imagine a company that has a large online hardware maintenance service manual created in Word. The service manual has a simple opening page that describes the contents of the individual sections covering specific hardware service topics. To make the manual easier to use, the opening page contains a series of GOTOBUTTON fields, represented as icons, that allow the user to easily switch between the different sections of the service manual.

�
An example of how a GOTOBUTTON field would appear in this service manual is provided in � REF _Ref275944411 * MERGEFORMAT �Example 4�. Note that the GOTOBUTTON is first displayed as a field code to show the underlying field code information. Beside the field code is a representation of the GOTOBUTTON field as it would appear to the user reading the service manual.

Field Code View:	Result:

{GOTOBUTTON General_Maintenance {EMBED Pbrush}}	�

Example � SEQ Example * ARABIC �4�: Using a GOTOBUTTON field in a Word document allows users to create “hot spots” that move the cursor to pre-defined locations in a document. The field codes show that the toolbox icon is an embedded Paintbrush object.

In � REF _Ref275944411 * MERGEFORMAT �Example 4�, the GOTOBUTTON field was inserted into the service �manual through using the Field command (Insert menu). The underlying code indicates that the GOTOBUTTON field is set up to go to a bookmark called “General_Maintenance.” The GOTOBUTTON field is represented by a toolbox icon that is inserted as an embedded object. When the user double-clicks on the toolbox icon, the insertion point automatically moves to the location of the bookmark. For more information on using document automation fields, see Chapter 9, “More WordBasic Techniques,” in the Microsoft Word Developer’s Kit. For more information on the Microsoft Word Developer’s Kit, see page � PAGEREF _Ref275944469 �25�.

Online and Printed Forms

�

Figure � SEQ Figure * ARABIC �8�: Using the Form Field dialog box, Word 6.0 users can easily create customized printed forms that include three types of document controls: text boxes, check boxes, and drop-down list boxes.

Every year, over $6 billion worth of forms are printed, yet over $2 billion worth are not used or are thrown away. To minimize the cost of printing and storing forms, Word 6.0 includes the ability to easily create online and printed forms. You can create forms that are specifically intended to be filled out online and then printed or sent through electronic mail.

You can insert text boxes, check boxes, and drop-down list boxes using the Forms toolbar or the Form Fields dialog box (� REF _Ref275944520 * MERGEFORMAT �Figure 8�). The text box field lets users type in information such as a name or address. Check boxes provide users with a set of options that they choose to accept or decline by simply clicking in the check box. Finally, the drop-down list box gives �users a predefined list of options to choose from.

�

�

Figure � SEQ Figure * ARABIC �9�: Word 6.0 provides users with the ability to create sophisticated printed forms such as this sample invoice. Note that forms in Word support a number of special form features including drop-down list boxes.

An excellent example of an automated form would be an online invoice that is filled out by a salesperson taking an order from a customer (� REF _Ref275944561 * MERGEFORMAT �Figure 9�). The form would have text box form fields for customer information such as name and address. Check boxes could be used for establishing certain conditions such as “New Customer” or “Add to Mailing List.” Finally, a drop-down list box might be used to list the different shipping options that are available to the customer such as Surface, 2nd Day Express, or Overnight Delivery.

OnEntry and OnExit macros can be associated with form fields. This allows you to run WordBasic macros automatically when the user moves to or away from a form field. For instance, after you select one of the items from the ShipVia drop-down list box (� REF _Ref275944561 * MERGEFORMAT �Figure 9�) and move to the Notify Local Representative check box, an OnExit macro checks to see what means of transportation was selected and updates the Freight Charges field automatically.

WordBasic Enhancements

Developers have been using WordBasic since 1989 to develop a wide range of custom business solutions ranging from simplifying routine word-processing tasks to creating full-feature workflow applications that streamline complex business procedures. In fact, an entire industry of third-party WordBasic developers and book authors has emerged around Word for Windows, further validating the power and the need for a macro programming language like WordBasic.

WordBasic has been significantly improved for Word 6.0, providing developers with even better tools for building effective and powerful business solutions. Many of the enhancements found in WordBasic for Word 6.0 are the direct result of customer feedback. These enhancements range from increased speed to greater extensibility to other technologies.

WordBasic Language Enhancements

The WordBasic programming language has been significantly enhanced, growing from 483 commands in Word 2.0 for Windows to 840 for Word 6.0. Many of the new commands are a direct result of the new capabilities, as well as the enhanced user interface in Word 6.0. However, a significant number of the new commands are designed to make WordBasic a more flexible programming language, providing developers with better tools for creating custom solutions. These new commands fall into eight categories. Each category, along with a few examples, is listed below:

Application Control Statements and Functions provide WordBasic developers with a full complement of tools for controlling and retrieving information on other applications. Examples include AppGetNames, which fills an array with the names of all open application windows. AppShow makes visible and activates an application previously hidden with AppHide and restores the application’s window name to the Task List.

Date and Time Functions give macro programmers access to a wide variety of tools for retrieving time and date information. TimeSerial() returns the serial number of a time specified in the format Hour, Minute, Second. Now() returns a serial number that represents the current date and time.

Disk Access Statements and Functions enable macros to retrieve disk information and set file attributes. GetDirectory$() returns the name of a subdirectory within specified directory. PathFromMacPath$() converts an Apple® Macintosh® path and filename to a valid path and filename for the current operating system. This is particularly useful now that WordBasic will be available with Word 6.0 for Windows, Windows NT(, and the Macintosh.�

Menu Customization Statements and Functions allow macro developers to completely customize the user interface from within a macro. ToolsCustomizeMenuBar allows developers to easily add or remove top-level menus. ToolbarButtonMacro$() returns the name of the built-in command, macro, font, style, or AutoText entry assigned to any toolbar button.

Selection Statements and Functions give macro developers more powerful tools for selecting text and returning information about the selection. For instance, GetSelStartPos() returns the character position of start of a selection relative to the start of the document. SelectCurAlignment extends the selection forward until text with different alignment settings is encountered.

String Functions give macro programmers a full array of string manipulation tools with the addition of the new commands such as LTrim$() and RTrim$(), which automatically shave blank spaces that appear before and after a string variable.

Window Control Statements and Functions enable macro developers to set the size and location of open application windows. AppWindowHeight and AppWindowPosLeft are examples of WordBasic commands that control the size and location of a specific application window.

Miscellaneous Statements and Functions is a grab bag of highly requested commands for Word 6.0. ScreenUpdating can be used to turn off screen updates, thereby increasing the speed of a macro that manipulates screen information regularly. GetPrivateProfileString$() greatly simplifies the process of retrieving information from any Windows *.INI file without having to call the Windows API (Application Programming Interface). SortArray sorts the elements in a specified numeric or string array alphanumerically. This command is particularly useful for sorting arrays that fill list boxes in a custom dialog box.

Word’s Improved Template Model

�

Figure � SEQ Figure * ARABIC �10�: The Organizer provides Word 6.0 users with a single tool for exchanging styles, AutoText entries, toolbars, and macros between templates.

Word 6.0’s template model has been �enhanced significantly, providing macro �developers with more flexibility for creating and distributing custom solutions. In previous versions of Word, only the NORMAL template could be global. Now in Word 6.0, any template can be loaded as a global template. This means that you can access the macros stored in a template without having to attach it to a document. In addition, the Organizer dialog box makes it much easier to create and distribute macros, toolbars, styles, or AutoText entries among users (� REF _Ref275944727 * MERGEFORMAT �Figure 10�).

Increased Speed

Enhancements to the WordBasic language have significantly increased the execution performance in Word 6.0. In previous versions of Word for Windows, WordBasic was compiled as an interpreted language. This meant that every time a WordBasic command was executed, it had to be interpreted first. In Word 6.0, the WordBasic language is no longer compiled as an interpreted language, meaning that the extra step for interpreting WordBasic commands has been removed, resulting in 23% greater performance overall.

Better Memory Management

WordBasic’s memory management model has been improved. In previous versions of Word for Windows, macros could not be greater than 64K in size. In Word 6.0, the only limit to the size of WordBasic macros is how much memory is available on your system. Additionally, WordBasic’s memory management “house-cleaning” routines have been enhanced, thereby providing more memory for other macros to use.

Dynamic Dialog Boxes

Word 6.0 enables macro developers to create sophisticated dialog boxes that are designed respond to the actions of the user. For example, when you choose the Open command (File menu) in any Windows application, the dialog box that is launched is designed to respond to your actions. So when you select a different directory, drive letter, or view a different file type, the dialog box changes to reflect the new information that you requested. This functionality is now possible with WordBasic dialog boxes. Other ways to use dynamic dialog boxes include the following:

Changing button names or text labels. Button text and text labels can change when a user performs an action — for example, changing a button that says “Start” to “Stop” when a users chooses it.

Show or hide parts of the dialog box. Sections of a dialog box can be selectively displayed or hidden based upon a user’s actions. For example, tabbed dialog boxes in Word 6.0 behave in a similar manner.

Enable or disable controls. Depending on what the user is doing, certain controls in a dialog box can be disabled (grayed out) or enabled.

�

Figure � SEQ Figure * ARABIC �11�: Dynamic dialog boxes like this one created in WordBasic are designed to respond to the actions of the user. This enables WordBasic macro developers to create intelligent user interfaces that are easier to use and provide users with more information.

An excellent example where dynamic dialog boxes are useful is a macro that automates the process of inserting a custom watermark in a Word document (� REF _Ref275944839 * MERGEFORMAT �Figure 11�). The macro could include a custom dialog box that dynamically displays a preview of the watermark selected from a list of available clipart files. For more information about creating dynamic dialog boxes with WordBasic, see Chapter 5, “Working with Custom Dialog Boxes,” in the Microsoft Word Developer’s Kit. For more information on the Microsoft Word Developer’s Kit, see page � PAGEREF _Ref275944469 �25�.

Word’s New Macro Editing Environment

�Figure � SEQ Figure * ARABIC �12�: The new Macro toolbar in Word 6.0 includes a full complement of point-and-click programming tools that make it easier for macro developers to create custom applications with WordBasic.

Word 6.0 includes an enhanced macro editing environment that provides macro developers with a full complement of point-and-click macro programming tools on the Macro toolbar (Figure 12).

The Macro toolbar includes tools for starting, pausing, and stopping macros, as well as debugging tools that allow macro developers to view variables and step through each line in a macro. The Macro toolbar also includes six new macro creation tools and a drop-down list box that you can use to select any open macro to run. These new toolbar buttons correspond to new features that were not accessible from the Macro toolbar in earlier versions of Word:

Click�
Toolbar button command�
�
��
Display the Record Macro dialog box�
�
��
Record the next command you perform�
�
��
Step through subroutines and functions in other open macros�
�
��
Add or remove “REM” from the beginning of selected lines�
�
��
Display the Macro dialog box (Tools menu)�
�
��
Opens the Dialog Editor�
�

�
Creating Custom Wizards with WordBasic

Wizards are custom dialog boxes that are used extensively throughout almost every Microsoft application. Wizards guide users step-by-step through a complex series of tasks such as creating a legal brief, resume, memo, or a fax cover sheet (� REF _Ref275945171 * MERGEFORMAT �Figure 13�).

�

Figure � SEQ Figure * ARABIC �13�: WordBasic macro developers can create wizards like this one to guide users step-by-step through complex tasks.

With Word 6.0, macro developers can now create their own wizards to assist users in performing complex tasks. For example, a company could easily create a custom wizard that steps new employees through the complex process of filling out Social Security and health insurance forms. Once the new employee has completed the wizard, Word 6.0 could automatically print out the completed forms for the employee’s records. Additionally, the company would also have an online copy of the information for its records.

The Microsoft Word Developer’s Kit includes a detailed discussion on creating wizards using WordBasic. One of the tools included with the Microsoft Word Developer’s Kit is a wizard that actually steps macro developers through the process of creating their own wizards. For more information about creating wizards with WordBasic, see Chapter 9, “More WordBasic Techniques,” in the Microsoft Word Developer’s Kit. For more information on the Microsoft Word Developer’s Kit, see page � PAGEREF _Ref275944469 �25�.

WordBasic Extensions

WordBasic provides a very rich programming language that enables macro developers to easily automate routine tasks and build custom solutions. But to create highly sophisticated line-of-business solutions, WordBasic macro developers need to be able to access a broader set of industry-standard workgroup and data access technologies. This section previews the new tools for building workgroup and data access solutions using WordBasic. Also included is a discussion on the new Microsoft Word API, which �allows third-party developers to build custom add-in libraries to be used with Word 6.0.

Messaging Application Programming Interface (MAPI)

WordBasic now has the ability to access the Microsoft workgroup extensions known as MAPI (Messaging Application Programming Interface) on Windows and Windows NT. MAPI enables macro developers to create workgroup solutions that help users to collaborate and work together more effectively.

Using MAPI, WordBasic developers can integrate electronic mail into their custom applications. For example, now WordBasic developers can create solutions that allow the following:

send and receive messages, along with attached files, to and from �multiple users

search for and read messages delivered to the message inbox

delete or save messages in the inbox

�

Figure � SEQ Figure * ARABIC �14�: Using WordBasic and MAPI, macro developers can create custom applications that exchange information among users using electronic mail.

An example of a custom WordBasic solution that uses MAPI to increase the level of collaboration between Word users is a corporate business plan management tool. Using WordBasic, an application could be created that delegates specific sections of the business plan to individuals in the organization based upon their job responsibility. A section template could be �distributed via electronic mail with individualized recommendations to assist each section author (� REF _Ref275945501 * MERGEFORMAT �Figure 14�). Once the individual sections were completed, they could be sent back to the business plan manager, who could merge them back into the master document. Other components of a solution such as this one could include automatic status report messages and reminders. Additionally, many of Word 6.0’s workgroup features such as revision marks and document routing could be included. The following WordBasic macro code (� REF _Ref275967798 * MERGEFORMAT �Example 5�) illustrates part of the solution just described.

Sub MAIN

	MAPI_LOGON_UI = 1

	Session = MAPILogon(0, "", "", MAPI_LOGON_UI, 0)

	AttachFile$="c:\b_plan\intlsale.doc"

	NoteText$ = "Pat, please include International sales figures!"

	result = MAPISetRecipient(1, "Pat Crenshaw", "")

	result = MAPISetAttachment("INTLSALE.DOC", AttachFile$, -1, 0, 0)

	result = MAPISendMail(Session, 0, "Business Plan", NoteText$, 0, 0)

	result = MAPILogoff(Session, 0, 0, 0)

End Sub

Example � SEQ Example * ARABIC �5�: WordBasic macro developers can now create full-featured workgroup applications that are designed to help users collaborate and work together more effectively using MAPI.

� REF _Ref275967798 * MERGEFORMAT �Example 5� uses the WordBasic Extensions to MAPI to select a document (c:\b_plan\intlsale.doc) and attach it to a message that is being sent to Pat Crenshaw. Additionally, a personalized message to the recipient is added to increase the usefulness of the information provided. To build �custom solutions using the WordBasic Extensions to MAPI, you need the Microsoft Word Developer’s Kit. For more information on the Microsoft Word Developer’s Kit, see page � PAGEREF _Ref275944469 �25�.

Open Database Connectivity (ODBC)

Further enhancements to WordBasic also provide direct access to any database management system (DBMS) that supports the ODBC application programming interface (API) standard running under Windows or Windows NT. Using the WordBasic extensions to ODBC, WordBasic macro programmers can do the following:

Update data or add new data to a DBMS data source. For example, employees can update personnel records in a DBMS by filling in a form in Word. Or you can add a table of data created in Word as a new data source in an existing database.

Retrieve data for use as a mail merge data source and insert tables of data in a document. With the ODBC extensions, you can access data directly from a DBMS through Structured Query Language (SQL) �statements. If you are retrieving large amounts of data or retrieving data from large databases, bypassing the Word command interface can speed up data access.�

Retrieve data for use in calculations by other WordBasic functions. For example, you can create a macro to retrieve the daily price of commodities and interest rates from your company’s database and then use the values as variables in calculating projected expenses.

One of the distinct advantages of using ODBC to access information from a database is that it provides WordBasic with a single interface to a wide range of popular databases. Examples of major ODBC databases are ORACLE®, Paradox®, dBASE®, Microsoft Access, Microsoft FoxPro®, and Btrieve® among others. This provides WordBasic macro developers with a lot of flexibility when implementing custom solutions that require data access from heterogeneous data stores.

�

Figure � SEQ Figure * ARABIC �15�: WordBasic macro developers can use ODBC to retrieve information from a database. This example shows information that is placed into a dynamic dialog box.

An example of a custom WordBasic solution that uses ODBC to retrieve data from a database is an online order entry system (� REF _Ref275946459 * MERGEFORMAT �Figure 15�). Using WordBasic, a custom dialog box could be created that dynamically queries a database to obtain customer-specific information using ODBC.

ODBC is used to query and gather all of the available company names from a database. The list of company names is inserted into the Company: drop-down list box. Then, depending on the name the user selects from the list box, another query retrieves specific �information about that company.

Sub MAIN

	Q$=Chr$(34)

	connect_num = SQLOpen("DSN=sales.mdb", output_ref$, 0)

	return = SQLExecQuery(connect_num, "SELECT" + Q$ + "Company" 	+ Q$ + "FROM" + Q$ + "CUSTOMERS" + Q$)

	row = SQLRetrieveRows(connect_num)

	Dim item$(row - 1)

	For i = 1 to row

		item$(i - 1) = SQLRetrieveItem$(connect_num, 1, i)

	next i

	DlgListBoxArray "dlbCompanyName", item$()

	return = SQLClose(connect_num)

End Sub

�

Figure � SEQ Figure * ARABIC �16�: WordBasic macro developers can create dialog boxes with drop-down list boxes that are dynamic populated with information retrieved from any ODBC database.

Example � SEQ Example * ARABIC �6�: Using WordBasic and ODBC, macro developers can create custom applications that retrieve and manipulate information from a wide variety of databases.

Example 6 shows WordBasic code that uses ODBC to query an Access database for every company name in the Sales database. Each record is placed into an array variable called item$(). Finally, item$() is placed into the Company: drop-down list box, which is assigned the identifier dlbCompanyName, using the DlgListBoxArray command (� REF _Ref275946542 * MERGEFORMAT �Figure 16�). To build custom solutions using the WordBasic Extension to ODBC, you will need the Microsoft Word Developer’s Kit. For more information on the Microsoft Word Developer’s Kit, see page � PAGEREF _Ref275944469 �25�.

�

Microsoft Word Application Programming Interface

The Microsoft Word Application Programming Interface (Word API) �provides a doorway to the internal functionality of Microsoft Word 6.0. Using a lower-level compiled language like Microsoft C and the Word API, developers can create custom add-in libraries that interact directly with Microsoft Word.

While WordBasic can access every aspect of Word 6.0’s functionality and even call Windows API functions, it does not offer the speed and flexibility provided by the Word API. There are few limitations to the complexity or sophistication of external interfaces that you can design and create for Word. However, the level of programming knowledge and experience needed to create an add-in library that uses the Word API is greater than that needed to use WordBasic.

An example of a custom solution using the Word API might be a sophisticated document management tool for a law office. The tool could keep track of all documents created with Word 6.0 in a database that would be accessible to users from Word 6.0 via a menu item or a toolbar button. Users looking for a specific document could search for a document in the database based upon a group of keywords or dates. To build in security, confidential documents could be password-protected. To build custom solutions using the Word API, you will need the Microsoft Word Developer’s Kit. For more information on the Microsoft Word Developer’s Kit, see page � PAGEREF _Ref275944469 �25�.

Applications Programmability

Research conducted by Microsoft indicates that users are looking for ways to make their applications work together more effectively. They also want increased consistency and integration across applications to make them easier to use and decrease the amount of time required to learn how to use new programs.

Microsoft’s commitment to integration and consistency across its products has made it possible for programmers to combine components of different applications into cross-application custom solutions. And the Microsoft Office suite is a powerful platform. Now, rather than creating entire solutions from scratch, developers can use the Microsoft Office applications as components of an integrated solution.

An example of a custom, line-of-business solution might combine a �familiar spreadsheet, database manager, and word processor into a single application. By integrating modules from various applications that users are already familiar with, you are making the solution easier to learn and use. Microsoft Word 6.0 provides two primary tools for applications programmability: OLE Automation and DDE (Dynamic Data Exchange).

�
Using Word 6.0 and OLE Automation

OLE Automation is a key enabling technology for applications programmability. It provides an easy means for applications to control each other and exchange information. OLE Automation has two main elements:

Exposed Programmable Objects. OLE 2.0-compliant applications can expose their components as a OLE objects which can be accessed by other applications.

Controlling Programmable Objects. Through Visual Basic(for �Applications, one application can control or “drive” another application by manipulating the other application’s exposed OLE objects.

OLE Automation provides developers with a consistent means of communicating between applications using Visual Basic for Applications. Because OLE Automation has an open architecture, anyone can create programmable objects to be controlled by other applications using Visual Basic for Applications. Additionally, because OLE Automation and Visual Basic for Applications will be available in Windows, Windows NT, and the Macintosh, it will allow developers to create true cross-platform solutions.

�

Figure � SEQ Figure * ARABIC �17�: The WordBasic macro language has been exposed as an OLE object. This means that any other application that uses Visual Basic for Applications as a programming language can drive Word 6.0 as a component of a larger OLE Automation solution.

To support OLE Automation, Word 6.0 has exposed the entire WordBasic programming language as an OLE object. This means that any application that uses Visual Basic for Applications as a programming language will be able to control Word 6.0 via OLE Automation. This is graphically depicted in � REF _Ref275946778 * MERGEFORMAT �Figure 17�. Therefore, all of the WordBasic enhancements described earlier are now available to developers using Visual Basic for Applications to create custom solutions. In addition, Visual Basic for Applications macros can call WordBasic macros, thereby leveraging existing investments already made in WordBasic solutions.

Word 6.0 does not currently use the Visual Basic for Applications programming language to access other applications’ exposed OLE objects. This means that Word 6.0 is not capable of controlling programmable objects via OLE Automation. In other words, while Word 6.0 can be driven via OLE Automation, it can’t drive other applications via OLE Automation. Microsoft Word 7.0 will use Visual Basic for Applications as its primary macro programming language and will be able to control other applications via OLE Automation.

�

Figure � SEQ Figure * ARABIC �18�: Microsoft Word 6.0 plays a vital role in any OLE Automation solution that requires consolidation of information or creation of documents.

So where does Word 6.0 fit into a Visual �Basic for Applications solution? The best way to describe Word’s role in a Visual Basic for Applications solution is to observe how Word’s strengths complement other �applications within the context of the overall solution. For example, the upcoming versions of Microsoft Excel and Microsoft Project will be able to use Visual Basic for Applications to control Word 6.0 via OLE Automation. Both applications are designed to manipulate and analyze data. However, neither of them is optimized for collecting and reporting information in a document (� REF _Ref275946819 * MERGEFORMAT �Figure 18�). But, consolidating information and reporting data in a document is precisely Word 6.0’s strength. This makes Word 6.0 an essential component of any Visual Basic for Applications solution that needs to collect information and generate high-impact documents.

An example of using Word 6.0 in an OLE Automation solution with Microsoft Excel 5.0 is an automated sales report generator. Microsoft Excel retrieves the year’s worldwide sales results via a query to an ODBC �database. This information is then manipulated and analyzed in Microsoft Excel to determine how each region is performing with respect to forecasts generated the year before. Once this information has been compiled, �Microsoft Excel controls Word 6.0 via OLE Automation to create the worldwide sales report.

Dim ms_word As Object

Sub create_report()

	Set ms_word = CreateObject("word.basic")

	Worksheets("ww sales sheet").Range("c5:r29").Copy

	With ms_word

		.FileNew "Normal"

		.AppMaximize

		.EditPasteSpecial Class:="excel.sheet.5", DataType:="Object"

	End With

	Worksheets("ww sales sheet").DrawingObjects("chart 1").Copy

	ms_word.EditPasteSpecial Class:="excel.chart.5", .DataType:="Object"

End Sub

Example � SEQ Example * ARABIC �7�: Microsoft Word 6.0 is the best tool available for OLE Automation solutions that need to collect information from various sources and generate output to a document.

� REF _Ref275968127 * MERGEFORMAT �Example 7� illustrates how Microsoft Excel 5.0 can drive Word 6.0 to create a report via OLE Automation. Microsoft Excel first creates an object variable ms_word that is used to identify the WordBasic object, created inside the create_report() subroutine. Next, Microsoft Excel selects and copies a range of cells from a worksheet called “ww sales sheet.” Then, a new document is created in Word and the previously copied range of cells is inserted as an OLE object. Microsoft Excel is using a convenient new control structure known as a With clause, which allows developers to abbreviate their code. Finally, Microsoft Excel selects and copies a chart on the same worksheet and inserts it as an OLE object in Word 6.0. For more information about using Word 6.0 with OLE Automation, see Chapter 8, “Communicating with Other Applications,” in the Microsoft Word Developer’s Kit. For more information on the Microsoft Word Developer’s Kit, see page � PAGEREF _Ref275944469 �25�.

Dynamic Data Exchange

Microsoft Word also supports an older inter-application communication protocol known as DDE (Dynamic Data Exchange). DDE is a mechanism supported by Microsoft Windows that enables two applications to “talk” to each other. DDE automates the process of cutting and pasting data between applications, providing a faster vehicle for updating information.

More specifically, DDE provides three capabilities:

You can request information from an application. For example, in a DDE conversation with Microsoft Excel, a Word macro can request the contents of a cell or range of cells in a Microsoft Excel worksheet.

You can send information to an application. In a DDE conversation with Microsoft Excel, a Word macro can send text to a cell or range of cells.

You can send commands to an application. For example, in a DDE conversation with Microsoft Excel, a Word macro can send a command to open a worksheet from which it wants to request information. Commands sent to an application must be in a form the application can recognize.

Although OLE Automation and Visual Basic for Applications provide greater flexibility and programming ease-of-use, DDE is still a viable solutions development tool. This is particularly true given the many Windows applications supporting DDE conversations. However, as more and more applications move to OLE Automation and Visual Basic for Applications, the importance of DDE will begin to diminish as newer technologies gain broad-scale support. For more information about using Word 6.0 with DDE, see Chapter 8, “Communicating with Other Applications,” of the Microsoft Word Developer’s Kit. For more information on the Microsoft Word Developer’s Kit, see page � PAGEREF _Ref275944469 �25�.

Building Solutions for the Macintosh

Word 6.0 for the Macintosh will have the same level of customization and applications programmability as Word 6.0 for Windows. This includes all of the enhancements to WordBasic and support for OLE Automation. Thus, Word 6.0 will provide macro developers with a true cross-platform environment for developing word-processing solutions on Windows, Windows NT and the Macintosh.

Word 6.0 will also support AppleScript and the core set of Apple’s Object Suites. This means that Word developers will be able to use Apple’s common macro language to control Word and other applications that support AppleScript, such as Microsoft Excel 5.0 for Macintosh.

Much of Word’s functionality is not exposed directly to AppleScript because the standard suites are meant to be a common interface for objects across many applications. However, Word 6.0 lets developers combine their AppleScript and WordBasic macros, creating a strong team for customizing the Macintosh. This means that Word developers can take advantage of any compiled AppleScript scripts without leaving Word.

�
For example, here is a simple WordBasic macro:

Sub MAIN

	FileOpen "Hard Drive:Microsoft Word:Sample Document"

	EditFindStyle .Style = "Heading 2"

	EditReplaceStyle .Style = "Heading 3"

	EditReplace .Direction = 0, .ReplaceAll, .Format = 1, .Wrap = 1

	FileClose 1

End Sub

In AppleScript, scripting commands and objects could be used to duplicate the functionality of the original WordBasic macro, as follows:

tell application "Microsoft Word"

	open "Hard Drive:Microsoft Word:Sample Document"

	set countpara to count paragraphs of document "Sample Document"

	repeat with n from 1 to countpara

		if paragraph style of paragraph n = "Heading 2" then

			set paragraph style of paragraph n to "Heading 3"

		end if

	end repeat

	save document "Sample Document"

	close document "Sample Document"

end tell

However, an AppleScript script can use a single Do Script event to take the most advantage of the internal functionality of Word to duplicate the original macro:

tell application "Microsoft Word"

	Do Script (

		"FileOpen \"Hard Drive:Microsoft Word:Sample Document\"

		EditFindStyle .Style = \"Heading 2\"

		EditReplaceStyle .Style = \"Heading 3\"

		EditReplace .Direction = 0, .ReplaceAll, .Format = 1, .Wrap = 1

		FileClose 1"

end tell

For more information about using Word 6.0 and AppleScript, see Appendix D, “AppleScript,” of the Microsoft Word Developer’s Kit. For more information on the Microsoft Word Developer’s Kit, see page � PAGEREF _Ref275944469 �25�.�

�
T

his white paper has examined the new customization and programming technologies that enable every Word 6.0 user to create a personalized word-processing environment and to automate routine tasks. Given the broad scope of Word’s feature set and capabilities, it can be difficult to keep track of what tools are best suited for a given situation. The following approach may be helpful when deciding how to use Word 6.0 in a custom solution.

The scope of the solution must be determined first. Is there a need to integrate other applications into the solution or can it be accomplished entirely in WordBasic and the extensions for MAPI and ODBC? If so, your decision is easy. However, if your solution requires integration among multiple applications you have to decide between using OLE Automation and DDE.

Single-Application Solutions

Word 6.0 provides macro developers with the richest, most flexible �programming language in the word-processing industry. Word 6.0 is well suited for developing document-based solutions that do not depend on services provided by other applications. Again, it is important to remember that the Microsoft Word Developer’s Kit comes with the workgroup and data access extensions that can be easily integrated into your Word �solution.

Multiple-Application Solutions: OLE Automation

Using Word 6.0 with OLE Automation is ideal for data-centric solutions. If your solution focuses on data analysis followed by report generation, then OLE Automation is the best choice. Also, choosing to create an OLE Automation solution means your solution will be taking advantage of the next generation of solutions development technology.

Multiple-Application Solutions: DDE

If your solution is entirely document-based and requires services from other applications, such as a chart from Microsoft Excel, then creating your solution using WordBasic and DDE may be your best option until Microsoft Word includes Visual Basic for Applications (in version 7.0).

Multiple-Application Solutions: AppleScript

If you are developing a custom solution on the Macintosh platform that is entirely document-based and requires services or reusable scripts from other applications, then a combination of AppleScript and WordBasic is the best choice.

�
T

o help you develop your own custom applications using Word 6.0, Microsoft offers a number of support products and services, �described below.

The Microsoft Word Developer’s Kit

The Microsoft Word Developer’s Kit includes a complete discussion of using WordBasic to customize Word 6.0 to work the way you do, streamline routine tasks, and build cross-application solutions. The Microsoft Word Developer’s Kit also includes the WordBasic function and statement reference and sample macros on diskette as well as advanced programming topics on using the Word API, Microsoft Messaging API (MAPI), and Open Database Connectivity (ODBC) with Word 6.0.

Domestic Order Information

To order the Microsoft Word Developer’s Kit in the USA and Canada, call Microsoft Press(at (800) MSPRESS, between 8:00 A.M. and 5:00 P.M., Central time. In Alaska and Hawaii, call (615) 793-5090. The Microsoft Word Developer’s Kit is also available through the Microsoft Press online bookstore located on CompuServe® (GO MSP) and through bookstores and software stores carrying advanced computer books.

International Order Information

The Microsoft Word Developer’s Kit is available worldwide wherever computer books are sold. For information on how to obtain a copy, contact your local Microsoft subsidiary. CompuServe members may place credit card orders through GO MSP, the Microsoft Press electronic bookstore.

Solution Providers Channel

Microsoft Solution Providers are independent organizations that provide consulting, integration, customization, development, technical support and training, or other services with Microsoft products. These companies are called Solution Providers because they apply technology and provide high-quality services to help solve real-world business problems.

To find a Microsoft Solution Provider that can help you, in the USA, call (800) 426-9400; in Canada, call (800) 563-9048. Outside North America, contact your local Microsoft subsidiary.

If your organization develops custom solutions using Microsoft Word or Microsoft Office, or if you design, integrate, train, support, or provide other services for Microsoft products, the Microsoft Solution Provider program is for you. Solution Providers receive business development assistance, access to the latest information and technology, and membership in a powerful development/support community.

To find out more about becoming a Microsoft Solution Provider, in the USA call (800) 426-9400; in Canada, call (800) 563-9048. Outside North America, contact your local Microsoft office.

�

�PAGE�3� Microsoft Word for Windows—November 1993

		STRATEGIC WHITE PAPER

�

�aCONTENTScCONTENTS

INTRODUCTION

�PAGE�23� Microsoft Word for Windows—November 1993

�aCONTENTScINTRODUCTION

� PAGE �25� Microsoft Word for Windows(November 1993

�aCONTENTScTEMPLATE MODEL: WORD ARCHITECTURE

�aCONTENTScCUSTOMIZING WORD 6.0

�aCONTENTScBUILDING CUSTOM SOLUTIONS USING WORD 6.0

�aCONTENTScWHERE DOES WORD FIT INTO A CUSTOM SOLUTION?

�aCONTENTScWHERE DO YOU GET MORE INFORMATION?

�aCONTENTSc

©1993 Microsoft Corporation. All rights reserved. Printed in the United States of America.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This technical overview is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Companies, names, and data used in screens and diagrams are fictitious unless otherwise noted.

Microsoft, Access, FoxPro, and Microsoft Press are registered trademarks and Visual Basic, Windows, and Windows NT are trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation.

Paradox is a registered trademark of Ansa Software, a Borland Company. dBASE is a registered trademarks of Borland International, Inc.

Btrieve is a registered trademark of Novell, Inc.

Apple and Macintosh are registered trademarks and System 7.0 Pro and AppleScript are trademarks of Apple Computer, Inc.

CompuServe is a registered trademark of CompuServe, Inc.

11/93 Part. No. 098-53101

�PAGE \# "'Page: '#'�'" ��Make certain that the trademarking for NT is correct

�PAGE \# "'Page: '#'�'" ��Check out the trademark status for AppleEvents and for System 7 Pro.

