
Iterative Development Using
the UML and Microsoft®

Visio® 2000 Enterprise Edition
White Paper

Frank Sternberg, Ph.D.,
Integrated Software Specialists, Inc.

Published: April 2000Published: April 2000Published: April 2000Published: April 2000Published: April 2000

Table of Contents

Introduction .. 2

An Iterative, Incremental Development Life Cycle .. 2

Communicating through Diagrams ... 2

Benefits of Communicating Visually Using Models ... 3

Unified Modeling Language (UML) and Visio 2000 Enterprise Edition ... 3

Scenario Showing Visio 2000 Enterprise Edition UML Diagrams .. 4

Recommendations for Getting Started with Visual UML Modeling .. 9

Working in Visio 2000 Enterprise Edition ... 10

Conclusion ... 10

Further Resources ... 11

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 22222

Introduction

Information technology departments that develop high-quality software on a timely basis share common

characteristics. One of these is the use of diagrams and models to visually enhance communication

among team members, and between the development team and the user community. Communication of

business and system requirements and design is more effective when diagrams and pictures augment

written text. The Unified Modeling Language (UML) provides a common language for creating visual

models of software requirements and architecture.

Most IT organizations are already familiar with Microsoft
®
 Visio

®
 2000 software and its broad range of

uses within an organization. With the release of Microsoft

Visio

2000 Enterprise Edition, it has become

much more practical and affordable to model an application before building or buying software.

In this paper, we ll describe some of the ways to use Enterprise Edition to help you deliver higher quality

and more maintainable software. We ll briefly discuss the value of iterative development, visual

modeling, and the UML. Then, we ll walk you through a case study that explains the UML diagrams

typically drawn during a software development project and how they are beneficial.

An Iterative, Incremental Development Life Cycle

An iterative process stands in contrast to a waterfall process. In a waterfall process, the entire system

under development moves forward through the process activities as a whole, from modeling the

business and gathering requirements through analysis, design, coding, testing, and deployment. Users

don t see anything running until the product is completed.

With an iterative and incremental process, the product is developed and delivered in stages, with each

stage adding functionality. As you can see in the diagram below, the output of one iteration becomes the

input to the next. The word iterative means that the process activities are repeated during each stage

of the cycle. The word incremental refers to the functionality added at each iteration.

Communicating through Diagrams

A picture is worth a thou-

sand words. Microsoft Visio

2000 Enterprise Edition

makes it easy for business

and technical users to

communicate more effec-

tively using models. A model

is a simplified visual

representation of your

business or the software

needed to support your

business. A model focuses

on the most relevant entities

and interactions while

ignoring unnecessary

details. For example, a map

is a model of a piece of the

earth s surface. A road map

focuses on details needed

to drive a car, while a contour

map may focus on details

needed for cross-country

skiing.

Like a map, a visual model of a business or software facilitates communication. Users and developers

can rely on the visual model with its series of diagrams and related text to effectively communicate how

software should function. Since most businesses have processes that are used to their competitive

An Iterative Software Development

Life Cycle. Increasingly, developers

are moving toward an iterative and

incremental process. See the sidebar

on page 3 for more information

about the benefits of this trend.

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 33333

advantage, these models also represent corporate assets. These models become the foundation upon

which future business architecture and related software development projects should be constructed.

Because models drawn and stored in Enterprise Edition can be used for communications throughout the

organization, they become even more valuable. The visual model (or any piece of it) can be easily pub-

lished on a Web site for interested parties to browse or can be inserted into a Microsoft Word document.

In this way, Enterprise Edition allows workers to efficiently discuss evolving business requirements and

architectural decisions by referring to the same model. This speeds up the process of disseminating

information and gaining consensus, thereby making the iterative software development process run more

smoothly.

Benefits of communicating visually using models

Here are some specific ways that visual modeling facilitates communication.

By visualizing the system to be built:

Developers and users can better agree on what should be designed and built.

The system s architecture is made explicit and unambiguous.

By specifying the structure and behavior of the system:

Programmers can write code that easily tracks changing business conditions.

QA experts and testers can obtain their testing specifications from the model.

A programmer can use tools to generate code from the model.

By communicating the intent of the system to various groups:

A project manager can use the model to coordinate and synchronize the team and to bring new

developers up-to-speed quickly.

Users are kept involved through continually evaluating and contributing at each iterative step.

Technical writers can build the documentation and online Help from the model.

By documenting the system and the decisions made:

Programmers can allow the finished system to evolve during future maintenance efforts

without violating the integrity of the system.

Experts can achieve widespread systemic re-use (politics and culture willing).

Unified Modeling Language (UML) and

Visio 2000 Enterprise Edition

Over the past few years, the industry has standardized on the UML as the visual language for modeling

software systems. The UML is independent of tools and methodologies. The Object Management Group,

a consortium of industry organizations, currently manages the UML.

The UML is used to create models in the form of diagrams. Enterprise Edition includes all of the

diagram types in the UML, and thus supports the complete life cycle of a development project.

Although the UML s strength is its ability to convey information visually, a UML model also stores

critical textual information behind the elements of the diagrams.

Using Enterprise Edition, technical developers can print and customize reports that lay out the state of

the model.

Enterprise Edition also allows you to import from, and export to, Microsoft Repository a fairly universal

format for converting and sharing UML models.

Microsoft Visio 2000 Enterprise Edition also supports many other OO notations besides the UML such

as the Booch and OMT notations. These are both precursors to the UML and are still widely used.

Benefits of an Iterative

and Incremental Software Devel-

opment Process

Deliverables meet business needs

and user expectations. Because

functionality is added incremen-

tally, users understanding of the

system is more tangible, thereby

enabling them to provide higher

quality feedback for each subse-

quent iteration.

Changing conditions during

development can be accommo-

dated in response to new or dif-

ferent requirements. Because

assessment and planning are

routinely done between itera-

tions, the process is designed to

accommodate change.

Higher quality software is pro-

duced. The software is tested at

the completion of each iteration,

rather than all at once at the end.

With each iteration, there s the

option to improve or modify the

internal architecture built in the

previous iteration.

Development projects are more

likely to succeed. High-risk fea-

tures can be scheduled for early

iterations and resolved quickly.

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 44444

Scenario Showing Visio 2000 Enterprise Edition

UML Diagrams

Let s explore the use of the UML through a fictitious scenario Lucy s Lemonade business. This scenario

will depict how to approach a business problem iteratively using the UML and Microsoft Visio 2000

Enterprise Edition.

Lucy s Lemonade is an emerging small business whose owner, Lucy, has a vision for her company. She

has some stores and an established brand name. Much unnecessary work is being done manually, and

Lucy knows that she needs to automate. She hopes to be selling products over the Web before long.

To increase the quality of management information, Lucy decides first to automate her time-tracking

system. Employees will enter their daily work into a daily work log that captures, for each unit of work,

the time spent and the task performed. The employee s manager must approve the daily work log. This

captured information will be organized and fed into management reports and into payroll processing.

In our iterative process, we will keep repeating certain activities whose results we need to communi-

cate. Some of the critical activities occupy the first column of Table 1. As the table shows, we ll describe

the time-tracking scenario by showing and interpreting the UML diagrams drawn with Enterprise Edition

during each activity.

Communication is one of the great challenges in a project like Lucy s. How long the project takes, its

probability of success, and the quality of the final product depend to a great degree on how well everyone

involved communicates. While reading this scenario, please note how well the UML diagrams communi-

cate the business requirements and the structure and behavior of the system.

Neither this list of activities, nor the list of UML diagrams in the table, is exhaustive.

Each of the following sections corresponds to one of the activities in Table 1. Each section contains:

An overview of the activity

Reference to the corresponding UML diagram

A basic interpretation of the diagram

Benefits obtained by performing this activity and drawing/capturing the corresponding diagram

A final section describes a prototype screen drawn with Visio 2000 Enterprise Edition for the first use

case (a screen displaying the user interaction for the first functionality delivered).

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 55555

1. Discover and document business processes

Overview: From a strategic business

perspective, graphical modeling provides an

excellent way to represent how a business

or business process is functioning today.

More importantly, it will ultimately show

how a business should be functioning, and

how its processes should be improved.

Such initiatives typically drive Information

Technology (IT) projects.

Knowledge of critical business processes

usually resides only in the heads of key

workers. This step captures those

processes in a model that visually

communicates the important steps.

Interpretation of Diagram 1, Activity

Diagram: After filling out the daily work

log, the employee sends it to her manager,

who approves it. The manager sends it to

the payroll clerk, who uses the incoming

daily work logs to prepare for payroll. The

payroll clerk enters the appropriate credits

into the Accounts Payable system, and

sends the payroll input report to the payroll

service company, which computes the

payroll. The payroll service company sends

checks to the employees and sends the payroll report to the payroll clerk, who then debits the Accounts

Payable system.

Benefits: It behooves a business or an application development group to expose and understand the

relevant business processes as the first step in a development effort. Capturing the business processes

in a UML visual process model using Enterprise Edition can help expose inefficiencies, which can

suggest ways to improve the processes.

2. Define external functional requirements

Overview: The UML approach to require-

ments gathering goes beyond simply listing

a set of requirements. Rather, it lists the

different kinds of users of the business or

software, and then lists the kinds of

functionality that the system will deliver to

each kind of user. At the highest level, a use

case diagram describes this step.

(See also Figure 1, which is the prototype

screen for this use case.)

Interpretation of Diagram 2, Use Case

diagram: Employees, managers, and the

payroll clerk use the system. Employees

use the system to fill out the daily log.

Managers use the system to approve daily

logs. The payroll clerk uses the system to

send payroll information to the payroll

service company and to record payments in the accounts payable system. Two of the high-level use cases

make use of the lower-level reusable use case Set Date.

Diagram 2: Use Case diagram

Diagram 1: Activity diagram

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 66666

Benefits: Use cases have proven to be an excellent means of communicating with users about require-

ments. Non-technical users understand and relate to use cases because they see themselves in the use

case diagrams (as actors) exercising their slices of functionality. The increased involvement of users in

defining requirements with Enterprise Edition increases their level of support for the product and the process.

3. Capture the primary abstractions of the problem domain

Overview: Listen to people who work in the same business domain (say, telecommunications or order

processing) talk to each other, and you will hear them using certain words specific to their domain (e.g.,

switcher or line item). You need to use these words to specify what the system will accomplish. For an

accurate specification, you need precise definitions of these words that everyone can agree on. Besides

providing a verbal definition of each word, object methodologies take another huge step forward by

embedding these words (these primary abstractions) as classes, attributes, associations, and roles in a

class diagram. The class diagram precisely depicts the relationship of the words to each other.

Interpretation of Diagram 3, Class Diagram of Domain Model: Every employee works for one

employer a company. A company has one or more employees. Every employee is authorized to perform

one or more tasks. Employees record work in a daily work log, which contains one or more time entries.

A time entry consists of the hours worked and the task performed.

Benefits: The importance of performing this activity derives from the Golden Rule of Object Orientation.

The domain classes that we used to describe the problem domain become software classes that form

the basic building blocks of the software. Basing the software architecture on business entities enables

the finished software system to gracefully evolve and adapt to future changing business requirements.

If you already own Visio Professional 5.0, you can immediately start practicing OO modeling with that

tool, because it enables you to draw class diagrams. Just by sharing classes visually and consistently

within a development project, team members can rest assured that they are all working with the same

set of basic building blocks.

From class diagrams, Visio 2000 Enterprise Edition will generate class definitions in Java, C++, or

Microsoft Visual Basic®. You can also use the UML solution in Enterprise Edition to reverse engineer

projects in order to document system architecture.

Diagram 3: Class Diagram of

Domain Model

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 77777

4. Describe how objects and roles interact to realize the functionality

Overview: So far, we have:

Given an external description of the system s functionality.

Represented the principal abstractions in the domain by software classes.

Each software class is like a template for a potentially large number of objects. When the time-tracking

application runs, the various classes spawn different kinds of objects: employees, tasks, daily logs, a

calendar, and so on. Each object, say, Penelope Power s daily log for 6-Sept-1999, carries around its internal

data. But each object is also intelligent because it performs services for other objects. For example,

Penelope s 6-10-1999 daily log object, when asked, enters time entries into itself. (See Figure 3.)

In an object-oriented system, interacting objects do all work. So we now determine how the business

objects will interact with each other to realize the functionality described in the use case. Objects

interact by sending messages to each other. For each use case, we use an interaction diagram to

describe:

The objects involved in the interaction

and

The sequence of inter-object messages that realize the use case.

There are two kinds of interaction diagrams: collaboration diagrams and sequence diagrams.

Interpretation of Diagram 4a, Collabora-

tion Diagram for use case Set Date and

Diagram 4b, Sequence Diagram for use

case Set Date: Diagrams 4a and 4b

contain exactly the same information:

When the employee filling out the daily

work log sets a date, here is the behavior

that makes it happen. The employee actor

(Penelope) selects a date from the

calendar. The calendar notifies the

controller that a new date was selected.

The controller asks the daily log manager

to get (create, if needed) the daily log for

that date. The returned daily log asks the

calendar if the date is a holiday. If so, then

the daily log enters eight hours of the

holiday task into itself.

Benefits: Good carpenters use the maxim

Measure twice; cut once. The diagrams

tell a programmer how to code the use

case. The algorithm can be tested from

the diagrams, before any code is written.

Errors caught during the modeling and

design activities with Visio 2000 Enter-

prise Edition are easier, cheaper, and

faster to correct than those that are

allowed to creep into the code.

Diagram 4a: Collaboration Diagram

for use case Set Date

Diagram 4b: Sequence Diagram for

use case Set Date

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 88888

5. Divide and conquer: carve up the system into subsystems

Overview: An oft-used and powerful

problem-solving technique is to break up a

hard problem into simpler problems. In

UML modeling, we can decompose our

system into lower-level subsystems and

show the dependencies among these

subsystems.

Interpretation of Diagram 5, Package

diagram: The top-level system breaks

down into three subsystems:

Timetracking, HR_Personnel, and Payroll.

Payroll depends on (uses the services of)

both Timetracking and HR_Personnel.

Timetracking depends on HR_Personnel.

The labeling in Diagram 4 shows that the

Timetracking package contains classes DailyWorkLog and TimeEntry, while the HR_Personnel package

contains Employee and Task.

Benefits: Once subsystems have been identified and documented with package diagrams, it is common

practice to parcel them out to small teams to model and develop. Each team can focus on its subsystem

while largely ignoring the rest of the system. This also allows specialized developer expertise to be

applied to subsystems where the expertise is needed.

Historically, many systems have resisted up-scaling because dependencies were not identified and

controlled during development; small changes in one part of the system forced cascading changes and

recompiles in far-reaching parts of the system. To enable graceful evolution of a system, it is imperative

that subsystem dependencies be identified and minimized early in the process. Package diagrams

drawn with Enterprise Edition do that.

6. Deploy components to computers

Overview: All the prior activities model logical aspects of the system; however, this activity models

physical aspects executables, libraries, files, tables, documents all referred to as components by

UML. Basically, the diagrams identify the system s physical components and the computers on which

these components should reside.

Interpretation of Diagram 6, Deployment diagram:

Lucy s time-tracking system uses two kinds of computers: OfficeComputer and EmployeeStation. The

executable component SoftwareToFillOutDailyLog runs on EmployeeStation, while executable compo-

nent TimetrackingServerSoftware runs on OfficeComputer. The two computers talk to each other.

Benefits: These diagrams drawn with Enterprise Edition are useful for identifying runtime elements for

potential re-use. They help you plan and schedule deployments.

Diagram 5: Package diagram

Diagram 6: Deployment diagram

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 99999

7. Draw a prototype screen

Overview: When

designing the system, a

good initial rule-of-

thumb is to design one

window for each

use case.

Interpretation of

Figure 1, Visio 2000-

drawn prototype

screen for use case

Fill Out Daily Log:

The screen shows

Penelope Power filling

out her daily log for October 6, 1999. She has entered seven hours of the Sell Lemonade task and is just

choosing Order Supplies from a list of authorized tasks for the remaining one hour.

Benefits: For most users, the visual screen brings the use case down to earth. Users can look at the

prototype screen and imagine what it would feel like to run the use case. This enables you to get quality

suggestions from them regarding the functionality of the evolving application, as well as its look and feel.

Recommendations for Getting Started with Visual

UML Modeling

If you are new to object modeling and to the UML, then a staged introduction might work well for you. In

your initial exploration or project, start with a whiteboard to diagram and capture your first model. This

allows you to separate learning how to model from learning how to use a tool. When your model

becomes so large that you really can t keep track of things anymore using just whiteboards or scraps

of paper (it won t take long), then switch to an easy-to-use UML visual modeling tool like Microsoft Visio

2000 Enterprise Edition.

You don t need to use all the diagrams at once. Start with the most critical diagrams. We recommend

the following:

1. Use case diagrams to capture and gain agreement on system requirements.

2. Class diagrams to describe the structure of the business and to define the building blocks of

the software.

3. Sequence (or collaboration) diagrams to describe how objects get the work done.

If you are just getting started, you should probably get some training relative to the UML and object modeling.

Microsoft Visio 2000 Enterprise Edition is “methodology neutral.” Thus, you can acquire your early OO modeling
and development experience without committing to an OO methodology. After your initial experience, you will be
in a much better position to understand the issues involved in choosing a methodology that is right for your team.

Enterprise Edition checks your model for you as you build it, identifying and pointing out UML errors. This is an
invaluable teaching aid, which also helps you create well-formed models.

Modeling supports rapid application development, with the model getting extended and refined with each
iteration. This is not to be confused with “rabid application development,” where visual modeling is neglected in
a misguided effort to save time. Model-free development leads, at best, to working applications that are difficult
and expensive to maintain, extend, or scale up to meet changing business requirements.

Figure 1. Visio 2000-drawn Proto-

type Screen for Use Case Fill Out

Daily Log

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 1010101010

Working in Visio 2000 Enterprise Edition

This section contains a few figures that

illustrate how Microsoft Visio 2000

Enterprise Edition supports you in defining

and capturing a UML visual model.

In the drawing page (on the right half of

the screen) you see the diagram built

using UML model elements displayed in

the stencil window (in the center of the

screen). The stencil window is displaying

the UML elements needed for static

structure diagrams. Other UML elements

appear in the stencil window when one of

the other seven UML stencil title bars is

clicked. Thus, the tool allows modelers to

draw the full suite of the eight generic

kinds of UML diagrams.

The UML Navigator (on the left) displays the models, packages, diagrams, and most model elements

being built by the modeler in the drawing page. As new UML model elements are defined in the drawing

page, they appear automatically in the UML Navigator. Modeling elements (e.g., classes) can be dragged

into the drawing page from either the UML Navigator or the stencil window. The drawing is intelligent; as

a class icon is dragged to better position it, any attached lines and labels follow the class.

This screen illustrates how use case

documentation was captured behind the

use case diagram, in the UML Use Case

Properties dialog box. Semantic informa-

tion can be captured behind virtually every

model element.

Conclusion

These examples have illustrated the many benefits of UML modeling with a visual communication tool

like Microsoft Visio 2000 Enterprise Edition.

Aligning a software solution to the business requirement is the key to success for every project. When

needs and requirements are visually documented with models, communication between sponsors,

business users, customers, and developers is optimized. Visual models facilitate interactive and

iterative architecture development, making development projects more likely to succeed.

Visio 2000 Enterprise Edition is ideal for creating the diagrams and models needed to visually commu-

nicate how software must function. Using this iterative and incremental development approach

throughout the project life cycle maximizes the business value and impact of the software delivered. It

also provides a foundation on which a business can create new solutions that take advantage of market

opportunities and better use technology as a competitive advantage.

Figure 2. How Enterprise Edition

was used to construct Diagram 4

Figure 3. Documenting the use

case Fill Out Daily Log

Iterative DevelopmentIterative DevelopmentIterative DevelopmentIterative DevelopmentIterative Development 1111111111

The information contained in this document represents the current view of Visio Corporation and Microsoft Corporation on the issues

discussed as of the date of publication. Because Visio Corporation and Microsoft must respond to changing market conditions, it should not

be interpreted to be a commitment on the part of Visio Corporation or Microsoft Corporation, and neither Visio Corporation nor Microsoft

Corporation can guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. VISIO CORPORATION AND MICROSOFT CORPORATION MAKE NO WARRANTIES, EXPRESS

OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document

may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,

photocopying, recording, or otherwise), or for any purpose, without the express written permission of Visio Corporation or Microsoft Corporation.

Microsoft Corporation may have patents, patent applications, trademarks, copyrights, or other intellectual-property rights covering subject

matter in this document. Except as expressly provided in any written license agreement from Visio Corporation or Microsoft Corporation, the

furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company,

organization, product, person, or event is intended or should be inferred.

©2000 Microsoft Corporation. All rights reserved. Visio Corporation is a wholly owned subsidiary of Microsoft Corporation.

Microsoft, the Four Shapes logo, the Office logo, Visio, and Visual Basic are either registered trademarks or trademarks of Microsoft Corpo-

ration in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners. Part No. 098-88443

Further Resources

For the Visio Developer Network, visit www.microsoft.com/office/visio and then click Explore Visio

on the Web and choose Visio Developer Network.

For other modeling methodologies, visit www.orm.net.

For product information, visit www.microsoft.com/office/visio.

To find out more about how to get started, contact Integrated Software Specialists, Inc. (ISS), or

the Visio division of Microsoft Corporation. ISS offers a popular one-day seminar where students

learn the prerequisite concepts required to apply object technology effectively. Additionally, ISS

offers a four-day boot camp to help people learn how to apply object thinking to analyze, model,

and design basic business applications. You can contact ISS at 847.706.6797 or

info@issintl.com, or visit www.issintl.com.

