
IBM XL C/C++ for Linux, V12.1 (Technology preview)

Getting Started with XL C/C++
Version 12.1

SC14-7339-00

���

IBM XL C/C++ for Linux, V12.1 (Technology preview)

Getting Started with XL C/C++
Version 12.1

SC14-7339-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 55.

First edition

This edition applies to IBM XL C/C++ for Linux, V12.1 (Technology preview) (Program 5765-J03; 5725-C73) and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

© Copyright IBM Corporation 1996, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Conventions v
Related information ix

IBM XL C/C++ information ix
Standards and specifications x
Other IBM information. xi
Other information xi

Technical support xi
How to send your comments xi

Chapter 1. Introducing XL C/C++ 1
Commonality with other IBM compilers 1
Hardware and operating system support 1
A highly configurable compiler 2
Language standards compliance 3

Compatibility with GNU 3
Source-code migration and conformance checking 4

Libraries 4
Tools, utilities, and commands 5
Program optimization 7
64-bit object capability 7
Shared memory parallelization 8
Diagnostic listings 8
Symbolic debugger support 9

Chapter 2. What's new for IBM XL
C/C++ for Linux, V12.1 (Technology
preview) 11
Operating system support 11
New C++0x features 11
C1X features 13
OpenMP 3.1 15
Performance and optimization 15
New diagnostic reports 15
New built-in functions. 17
New or changed compiler options and pragma
directives 17

Chapter 3. Migrating from earlier
versions 21
Enhancements added in Version 11.1 21

Operating system support 21
Support for POWER7 processors 21
New C++0x features 23

Performance and optimization 26
New diagnostic reports 27
Utilization tracking and reporting tool 29
New or changed compiler options and directives 30
Built-in functions new for this release 33

Enhancements added in Version 10.1 34
Operating system support 34
New C++0x features 35
Other XL C/C++ language-related updates . . . 36
OpenMP 3.0 36
Performance and optimization 37
New or changed compiler options and directives 38

Enhancements added in Version 9.0 39
C/C++ language-related updates 39
Architecture and processor support 40
Performance and optimization 40
Other new or changed compiler options 42

Chapter 4. Setting up and customizing
XL C/C++. 45
Using custom compiler configuration files 45
Configuring compiler utilization tracking and
reporting 45

Chapter 5. Developing applications
with XL C/C++ 47
The compiler phases 47
Editing C/C++ source files 47
Compiling with XL C/C++ 47

Invoking the compiler 48
Compiling parallelized XL C/C++ applications 48
Specifying compiler options 49
XL C/C++ input and output files 50

Linking your compiled applications with XL C/C++ 50
Dynamic and static linking 51

Running your compiled application 51
XL C/C++ compiler diagnostic aids 52

Debugging compiled applications 52
Determining what level of XL C/C++ is installed 53

Notices 55
Trademarks and service marks 57

Index 59

© Copyright IBM Corp. 1996, 2012 iii

iv XL C/C++: Getting Started

About this document

This document contains overview and basic usage information for the IBM® XL
C/C++ for Linux, V12.1 (Technology preview) compiler.

Who should read this document

This document is intended for C and C++ developers who are looking for
introductory overview and usage information for XL C/C++. It assumes that you
have some familiarity with command-line compilers, a basic knowledge of the C
and C++ programming languages, and basic knowledge of operating system
commands. Programmers new to XL C/C++ can use this document to find
information on the capabilities and features unique to XL C/C++.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in “Conventions.”

Throughout this document, the xlc and xlc++ compiler invocations are used to
describe the actions of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage will remain the same unless otherwise specified.

While this document covers information on configuring the compiler environment,
and compiling and linking C or C++ applications using the XL C/C++ compiler, it
does not include the following topics:
v Compiler installation: see the XL C/C++ Installation Guide for information on

installing XL C/C++.
v Compiler options: see the XL C/C++ Compiler Reference for detailed information

on the syntax and usage of compiler options.
v The C or C++ programming languages: see the XL C/C++ Language Reference for

information on the syntax, semantics, and IBM implementation of the C or C++
programming languages.

v Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information on developing applications with XL C/C++, with a focus
on program portability and optimization.

Conventions
Typographical conventions

© Copyright IBM Corp. 1996, 2012 v

The following table explains the typographical conventions used in the IBM XL
C/C++ for Linux, V12.1 (Technology preview) information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only, or C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only, or C++ only
begins

C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

vi XL C/C++: Getting Started

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

C1X, or C1X begins
C1X

C1X

C1X ends

The text describes a feature that is introduced into standard C
as part of C1X.

C++0x, or C++0x begins
C++0x

z/OSC++0x

C++0x ends

The text describes a feature that is introduced into standard
C++ as part of C++0x.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
will help you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a command, directive, or statement.
The ───� symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The �─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───�� symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword
optional_argument

��

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

�� keyword required_argument1
required_argument2

��

If choosing one of the items is optional, the entire stack is shown below the
main path.

About this document vii

�� keyword
optional_argument1
optional_argument2

��

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

�� �

,

keyword repeatable_argument ��

v The item that is the default is shown above the main path.

�� keyword
default_argument
alternate_argument ��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.

��
(1) (2) (3) (4) (5) (9) (10)

pragma comment (compiler)
date
timestamp

(6)
copyright
user (7) (8)

, " token_sequence "

��

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

viii XL C/C++: Getting Started

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information

The following sections provide related information for XL C/C++:

IBM XL C/C++ information

XL C/C++ provides product information in the following formats:
v README files

README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory and in the root directory of the installation CD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux, V12.1 Installation Guide.

v Information center
The information center of searchable HTML files can be launched on a network
and accessed remotely or locally. Instructions for installing and accessing the
online information center are provided in the IBM XL C/C++ for Linux, V12.1
Installation Guide.
The information center is viewable on the web at http://
publib.boulder.ibm.com/infocenter/lnxpcomp/v121v141/index.jsp.

v PDF documents
PDF documents are located by default in the /opt/ibmcmp/vacpp/12.1/doc/
LANG/pdf/ directory, where LANG is one of en_US, zh_CN, or ja_JP. The PDF
files are also available on the web at http://www.ibm.com/software/awdtools/
xlcpp/linux/library/.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for Linux,
V12.1 Installation Guide,
GC14-7340-00

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

About this document ix

http://publib.boulder.ibm.com/infocenter/lnxpcomp/v121v141/index.jsp
http://publib.boulder.ibm.com/infocenter/lnxpcomp/v121v141/index.jsp
http://www.ibm.com/software/awdtools/xlcpp/linux/library/
http://www.ibm.com/software/awdtools/xlcpp/linux/library/

Table 3. XL C/C++ PDF files (continued)

Document title
PDF file
name Description

Getting Started with IBM
XL C/C++ for Linux, V12.1,
SC14-7339-00

getstart.pdf Contains an introduction to the XL C/C++
product, with information on setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for Linux,
V12.1 Compiler Reference,
SC14-7341-00

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions,
including those used for parallel processing.

IBM XL C/C++ for Linux,
V12.1 Language Reference,
SC14-7342-00

langref.pdf Contains information about the C and C++
programming languages, as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards.

IBM XL C/C++ for Linux,
V12.1 Optimization and
Programming Guide,
SC14-7343-00

proguide.pdf Contains information on advanced
programming topics, such as application
porting, interlanguage calls with Fortran code,
library development, application optimization
and parallelization, and the XL C/C++
high-performance libraries.

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader,
you can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++ including IBM Redbooks® publications,
white papers, tutorials, and other articles, is available on the web at:

http://www.ibm.com/software/awdtools/xlcpp/linux/library/

For more information about boosting performance, productivity, and portability,
see the C/C++ café at http://www.ibm.com/software/rational/cafe/community/
ccpp.

Standards and specifications

XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003(E), also

known as Standard C++.
v Information Technology - Programming languages - Extensions for the programming

language C to support new character data types, ISO/IEC DTR 19769. This draft
technical report has been accepted by the C standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1040.pdf.

x XL C/C++: Getting Started

http://www.adobe.com
http://www.ibm.com/software/awdtools/xlcpp/linux/library/
http://www.ibm.com/software/rational/cafe/community/ccpp
http://www.ibm.com/software/rational/cafe/community/ccpp
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf

v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft
technical report has been submitted to the C++ standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.1, available at

http://www.openmp.org

Other IBM information
v ESSL for AIX V4.4 - ESSL for Linux on POWER V4.4 Guide and Reference available

at the Engineering and Scientific Subroutine Library (ESSL) and Parallel ESSL
web page.

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support

Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/software/awdtools/xlcpp/linux/support/. This page
provides a portal with search capabilities to a large selection of Technotes and
other support information.

If you cannot find what you need, you can send email to compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/awdtools/xlcpp/linux/.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments by email to compinfo@ca.ibm.com.

Be sure to include the name of the information, the part number of the
information, the version of XL C/C++, and, if applicable, the specific location of
the text you are commenting on (for example, a page number or table number).

About this document xi

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/software/awdtools/xlcpp/linux/support/
http://www.ibm.com/software/awdtools/xlcpp/linux/

xii XL C/C++: Getting Started

Chapter 1. Introducing XL C/C++

IBM XL C/C++ for Linux, V12.1 (Technology preview) is an advanced,
high-performance compiler that can be used for developing complex,
computationally intensive programs, including interlanguage calls with C and
Fortran programs.

This section discusses the features of the XL C/C++ compiler at a high level. It is
intended for people who are evaluating the compiler, and for new users who want
to find out more about the product.

Commonality with other IBM compilers
IBM XL C/C++ for Linux, V12.1 (Technology preview) is part of a larger family of
IBM C, C++, and Fortran compilers.

XL C/C++, together with XL Fortran, comprise the family of XL compilers.

These compilers are derived from a common code base that shares compiler
function and optimization technologies for a variety of platforms and
programming languages. Programming environments include IBM AIX®, IBM Blue
Gene®/L, IBM Blue Gene®/P, the Cell Broadband Engine architecture, IBM i,
selected Linux distributions, IBM z/OS®, and IBM z/VM®. The common code base,
along with compliance with international programming language standards, helps
support consistent compiler performance and ease of program portability across
multiple operating systems and hardware platforms.

Hardware and operating system support
This section describes the operating systems that IBM XL C/C++ for Linux, V12.1
(Technology preview) supports.

IBM XL C/C++ for Linux, V12.1 (Technology preview) supports the following
operating systems:
v SUSE Linux Enterprise Server 10 Service Pack 4 (SLES 10 SP4)
v SUSE Linux Enterprise Server 11 Service Pack 2 (SLES 11 SP2)
v Red Hat Enterprise Linux 5.7 (RHEL 5.7)
v Red Hat Enterprise Linux 6.2 (RHEL 6.2)

See the README file and "Before installing XL C/C++" in the XL C/C++
Installation Guide for a complete list of requirements.

The compiler, its libraries, and its generated object programs will run on POWER4,
POWER5, POWER5+, POWER6®, POWER7®, PowerPC®, and PowerPC 970 systems
with the required software and disk space.

To exploit the various supported hardware configurations, the compiler provides
options to tune the performance of applications specific to the type of hardware
that will be used to execute the compiled applications.

© Copyright IBM Corp. 1996, 2012 1

A highly configurable compiler
You can use a variety of compiler invocation commands and options to tailor the
compiler to your unique compilation requirements.

Compiler invocation commands
XL C/C++ provides several different commands that you can use to invoke
the compiler, for example, xlC, xlc++, and xlc. Each invocation command is
unique in that it instructs the compiler to tailor compilation output to meet
a specific language level specification. Compiler invocation commands are
provided to support all standardized C/C++ language levels, and many
popular language extensions as well.

The compiler also provides corresponding "_r" versions of most invocation
commands, for example, xlc_r and xlC_r. The "_r" invocations instruct the
compiler to link and bind object files to thread safe components and
libraries, and produce thread safe object code for compiler-created data and
procedures.

For more information about XL C/C++ compiler invocation commands, see
"Invoking the compiler" in the XL C/C++ Compiler Reference .

Compiler options
You can choose from a large selection of compiler options to control
compiler behavior. Different categories of options help you to debug your
applications, optimize and tune application performance, select language
levels and extensions for compatibility with non-standard features and
behaviors supported by other C or C++ compilers, and perform many
other common tasks that would otherwise require changing the source
code.

XL C/C++ lets you specify compiler options through a combination of
environment variables, compiler configuration files, command line options,
and compiler directive statements embedded in your program source.

For more information about XL C/C++ compiler options, see "Compiler
options reference" in the XL C/C++ Compiler Reference.

Custom compiler configuration files
The installation process creates a default compiler configuration file
containing stanzas that define compiler option default settings.

Your compilation needs may frequently call for specifying compiler option
settings other than the default settings provided by XL C/C++. If so, you
can use makefiles to define your compiler option settings, or alternatively,
you can create custom configuration files to define your own sets of
frequently used compiler option settings.

For more information about using custom compiler configuration files, see
“Using custom compiler configuration files” on page 45.

Utilization tracking configuration file
The utilization tracking and reporting feature of the compiler has its own
configuration file. The main compiler configuration file contains an entry
that points to this file. The different installations of the compiler product
can use a single utilization tracking configuration file to centrally manage
the functionality of the utilization tracking and reporting feature. This
utilization and reporting tool can be used to detect whether your
organization's use of the compiler exceeds your license entitlements. For

2 XL C/C++: Getting Started

detailed information about the utilization tracking and reporting feature,
see "Tracking and reporting compiler usage" in the XL C/C++ Compiler
Reference.

Language standards compliance
IBM XL C/C++ for Linux, V12.1 (Technology preview) supports a number of C
language specifications and extensions.

The compiler supports the following programming language specifications for
C/C++:

v ISO/IEC 9899:1999 (C99)
v ISO/IEC 9899:1990 (referred to as C89)
v ISO/IEC 14882:2003 (referred to as Standard C++)
v ISO/IEC 14882:1998, the first official specification of the language (referred

to as C++98)

In addition to the standardized language levels, XL C/C++ supports language
extensions, including:

v OpenMP Application Program Interface V3.1
v Language extensions to support vector programming
v A subset of GNU C and C++ language extensions
v C++0x

See C++0x in the Getting Started with XL C/C++ for Linux for more details.

See "Language levels and language extensions" in the XL C/C++ Language Reference
for more information about C/C++ language specifications and extensions.

Compatibility with GNU
XL C/C++ supports a subset of the GNU compiler command options to facilitate
porting applications developed with gcc and g++ compilers.

This support is available when the gxlc or gxlc++ invocation command is used
together with select GNU compiler options. Where possible, the compiler maps
GNU options to their XL C/C++ compiler option counterparts before invoking the
compiler.

These invocation commands use a plain text configuration file to control
GNU-to-XL C/C++ option mappings and defaults. You can customize this
configuration file to better meet the needs of any unique compilation requirements
you may have. See "Reusing GNU C/C++ compiler options with gxlc and gxlc++"
in the XL C/C++ Compiler Reference for more information.

XL C/C++ uses GNU C and GNU C++ header files together with the GNU C and
C++ runtime libraries to produce code that is binary-compatible with that
produced by the GNU Compiler Collection (GCC). Portions of an application can
be built with XL C/C++ and combined with portions built with GCC to produce
an application that behaves as if it had been built solely with GCC.

To achieve binary compatibility with GCC-compiled code, a program compiled
with XL C/C++ includes the same headers as those used by a GNU compiler

Chapter 1. Introducing XL C/C++ 3

residing on the same system. To ensure that the proper versions of headers and
runtime libraries are present on the system, the prerequisite GCC compiler must be
installed before installing XL C/C++.

Some additional noteworthy points about this relationship are:
v IBM built-in functions coexist with GNU C built-ins.
v Compilation of C and C++ programs uses the GNU C and GNU C++

header files.
v Compilation uses the GNU assembler for assembler input files.
v Compiled C code is linked to the GNU C runtime libraries.
v Compiled C++ code is linked to the GNU C and GNU C++ runtime

libraries.
v Debugging uses the GNU debugger, gdb

Source-code migration and conformance checking
XL C/C++ helps protect your investment in your existing C/C++ source code by
providing compiler invocation commands that instruct the compiler to compile
your application code to a specific language level.

You can also use the -qlanglvl compiler option to specify a given language level,
and the compiler will issue warnings, errors, and severe error messages if language
or language extension elements in your program source do not conform to that
language level.

See "qlanglvl" in the XL C/C++ Compiler Reference for more information.

Libraries
XL C/C++ includes a runtime environment containing a number of libraries.

Mathematical Acceleration Subsystem library

The Mathematical Acceleration Subsystem (MASS) library consists of scalar and
vector mathematical intrinsic functions tuned specifically for optimum performance
on supported processor architectures. You can choose a MASS library to support
high-performance computing on a broad range of processors, or you can select a
library tuned to support a specific processor family.

The MASS library functions support both 32-bit and 64-bit compilation modes, are
thread-safe, and offer improved performance over the default libm math library
routines. They are called automatically when you request specific levels of
optimization for your application. You can also make explicit calls to MASS library
functions regardless of whether optimization options are in effect or not.

See "Using the Mathematical Acceleration Subsystem" in the XL C/C++ Optimization
and Programming Guide for more information.

Basic Linear Algebra Subprograms

The Basic Linear Algebra Subprograms (BLAS) set of high-performance algebraic
functions are shipped in the libxlopt library. These functions let you:
v Compute the matrix-vector product for a general matrix or its transpose.

4 XL C/C++: Getting Started

v Perform combined matrix multiplication and addition for general matrices or
their transposes.

For more information about using the BLAS functions, see "Using the Basic Linear
Algebra Subprograms" in the XL C/C++ Optimization and Programming Guide.

Other libraries

The following are also shipped with XL C/C++:
v The SMP runtime library supports both explicit and automated parallel

processing. See "SMP Runtime Library" in the XL C/C++ Optimization and
Programming Guide.

v XL C++ Runtime Library contains support routines needed by the compiler.

Support for Boost libraries

XL C/C++ for Linux, V12.1 partially supports the Boost V1.47.0 libraries. A patch
file is available that modifies the Boost 1.47.0 libraries so that they can be built and
used with XL C/C++ applications. The patch or modification file does not extend
nor provide additional functionality to the Boost libraries.

To access the patch file for building the Boost libraries, go to this page at
http://www.ibm.com/support/docview.wss?uid=swg27006911 and follow the link
in the download required Boost modification file section.

You can download the latest Boost libraries at http://www.boost.org/.

For more information on support for libraries, search on the XL C/C++ Compilers
support page at http://www.ibm.com/software/awdtools/xlcpp/linux/support/.

Tools, utilities, and commands
This topic introduces the main tools, utilities, and commands that are included
with XL C/C++. It does not contain all compiler tools, utilities, and commands.

Tools

Utilization reporting tool

The utilization reporting tool generates a report describing your
organization's utilization of the compiler. These reports help determine
whether your organization's use of the compiler matches your compiler
license entitlements. The urt command contains options that can be used to
customize the report. For more information, see Tracking and reporting
compiler usage in the XL C/C++ Compiler Reference.

Utilities

gxlc and gxlc++ utilities
The gxlc and gxlc++ utilities translate GNU C and GNU C++ invocation
commands into corresponding xlc and xlc++ commands before invoking
the XL C/C++ compiler. The purpose of these utilities is to minimize the
number of changes to makefiles used for existing applications built with
the GNU compilers and to facilitate the transition to the XL C/C++
compiler. For more information, see Reusing GNU C/C++ compiler
options with gxlc and gxlc++ in the XL C/C++ Compiler Reference.

Chapter 1. Introducing XL C/C++ 5

http://www.ibm.com/support/docview.wss?uid=swg27006911
http://www.boost.org/
http://www.ibm.com/software/awdtools/xlcpp/linux/support/

new_install
The new_install utility configures IBM XL C/C++ for Linux, V12.1
(Technology preview) for use on your system, after you install the
compiler.

vac_configure
The vac_configure utility creates additional compiler configuration files to
contain your own custom sets of compiler option default settings. For more
information, see Running the vac_configure utility directly (for advanced
users) in the XL C/C++ Installation Guide.

Commands

genhtml command
The genhtml command converts an existing XML diagnostic report
produced by the -qlistfmt option. You can choose to produce XML or
HTML diagnostic reports by using the -qlistfmt option. The report can
help with finding optimization opportunities. For more information about
how to use this command, see genhtml command in the XL C/C++
Compiler Reference.

Profile-directed feedback (PDF) related commands

cleanpdf command
The cleanpdf command removes all profiling information from the
directory to which profile-directed feedback data is written.

mergepdf command
The mergepdf command provides the ability to weigh the
importance of two or more PDF records when combining them into
a single record. The PDF records must be derived from the same
executable.

resetpdf command
The current behavior of the cleanpdf command is the same as the
resetpdf command, and is retained for compatibility with earlier
releases on other platforms.

showpdf command
The showpdf command displays the following types of profiling
information for all the procedures executed in a PDF run
(compilation under the -qpdf1 option):
v Block-counter profiling
v Call-counter profiling
v Value profiling
v Cache-miss profiling, if you specified the -qpdf1=level=2 option

during the -qpdf1 phase.

You can view the first two types of profiling information in either
text or XML format. However, you can view value profiling and
cache-miss profiling information only in XML format.

For more information, see -qpdf1, -qpdf2 in the XL C/C++ Compiler
Reference.

6 XL C/C++: Getting Started

Program optimization
XL C/C++ provides several compiler options that can help you control the
optimization and performance of your programs.

With these options, you can perform the following tasks:
v Select different levels of compiler optimizations.
v Control optimizations for loops, floating point, and other types of operations.
v Optimize a program for a particular class of machines or for a very specific

machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall execution
performance. XL C/C++ provides a portfolio of optimizing transformations
tailored to various supported hardware. These transformations offer the following
benefits:
v Reducing the number of instructions executed for critical operations
v Restructuring generated object code to make optimal use of the Power

Architecture®

v Improving the usage of the memory subsystem
v Exploiting the ability of the architecture to handle large amounts of shared

memory parallelization

For more information, see these related topics:
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

v "Optimizing and tuning options" in the XL C/C++ Compiler Reference

v "Compiler built-in functions" in the XL C/C++ Compiler Reference

64-bit object capability
The XL C/C++ compiler's 64-bit object capability addresses increasing demand for
larger storage requirements and greater processing power.

The Linux operating system provides an environment that allows you to develop
and execute programs that exploit 64-bit processors through the use of 64-bit
address spaces.

To support larger executables that can be fit within a 64-bit address space, a
separate 64-bit object format is used. The linker binds these objects to create 64-bit
executables. Objects that are bound together must all be of the same object format.
The following scenarios are not permitted and will fail to load, execute, or both:
v A 64-bit object or executable that has references to symbols from a 32-bit library

or shared library
v A 32-bit object or executable that has references to symbols from a 64-bit library

or shared library
v A 64-bit executable that explicitly attempts to load a 32-bit module
v A 32-bit executable that explicitly attempts to load a 64-bit module

XL C/C++ supports 64-bit mode mainly through the use of the -q64 and -qarch
compiler options. This combination determines the bit mode and instruction set for
the target architecture.

Chapter 1. Introducing XL C/C++ 7

For more information, see "Using 32-bit and 64-bit modes" in the XL C/C++
Optimization and Programming Guide.

Shared memory parallelization
XL C/C++ supports application development for multiprocessor system
architectures.

You can use any of the following methods to develop your parallelized
applications with XL C/C++:

v Directive-based shared memory parallelization
v Instructing the compiler to automatically generate shared memory

parallelization
v Message passing based shared or distributed memory parallelization (MPI)

For more information, see "Parallelizing your programs" in the XL C/C++
Optimization and Programming Guide.

OpenMP directives

OpenMP directives are a set of API-based commands supported by XL C/C++ and
many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a
particular loop. The existence of the directives in the source removes the need for
the compiler to perform any parallel analysis on the parallel code. OpenMP
directives require the presence of Pthread libraries to provide the necessary
infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:
1. Clauses and directives are available for scoping variables. Frequently,

variables should not be shared; that is, each processor should have its
own copy of the variable.

2. Work sharing directives specify how the work contained in a parallel
region of code should be distributed across the processors.

3. Directives are available to control synchronization between the processors.

As of XL C/C++ for Linux, V10.1, XL C/C++ supports the OpenMP API Version
3.1 specification. See “OpenMP 3.1” on page 15 for an overview of the support
provided by this feature.

For more information about program performance optimization, see:
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

v www.openmp.org

Diagnostic listings
The compiler output listing and XML or HTML reports can provide important
information to help you develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or
omit. For more information about the applicable compiler options and the listing
itself, see "Compiler messages and listings" in the XL C/C++ Compiler Reference.

8 XL C/C++: Getting Started

http://www.openmp.org

It is also possible to get information from the compiler in XML or HTML format
about some of the optimizations that the compiler was able to perform and also
which optimization opportunities were missed. This information can be used to
reduce programming effort when tuning applications, especially high-performance
applications. The report is defined by an XML schema and is easily consumable by
tools that you can create to read and analyze the results. For detailed information
about this report and how to use it, see "Using reports to diagnose optimization
opportunities" in the XL C/C++ Optimization and Programming Guide.

Symbolic debugger support
You can instruct XL C/C++ to include debugging information in your compiled
objects.

The debugging information can be examined by gdb or any other symbolic
debugger to help you debug your programs.

Chapter 1. Introducing XL C/C++ 9

10 XL C/C++: Getting Started

Chapter 2. What's new for IBM XL C/C++ for Linux, V12.1
(Technology preview)

This section describes features and enhancements added to the compiler in IBM XL
C/C++ for Linux, V12.1 (Technology preview).

Operating system support
This section contains information about the newly supported operating systems.

From this release, IBM XL C/C++ for Linux, V12.1 starts to support Red Hat
Enterprise Linux 6.0 (RHEL 6.0) on IBM Power Systems™ servers.

For a complete list of the supported operating systems, see “Hardware and
operating system support” on page 1.

New C++0x features
C++0x is the working draft of the new C++ programming language standard. In
addition to the existing C++0x features, new C++0x features are supported in this
release of XL C/C++.

Note: C++0x is a new version of the C++ programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C++0x standard is
complete, including the support of a new C++ standard library, the implementation
may change from release to release. IBM makes no attempt to maintain
compatibility with earlier releases, in source, binary, or options, of IBM's
implementation of the new features of the C++0x standard and therefore they
should not be relied on as a stable programming interface.

Note: C++0x has been ratified and published as ISO/IEC 14882:2011. All references
to C++0x in this document are equivalent to the ISO/IEC 14882:2011 standard.
Corresponding information, including programming interfaces, will be updated in
a future release.

The following features are introduced in XL C/C++ V12.1:
v Explicit conversion operators
v Generalized constant expressions
v Reference collapsing
v Right angle brackets
v Rvalue references
v Scoped enumerations
v Trailing return type

You can use the -qlanglvl=extended0x option to enable most of the C++ features
and all the currently-supported C++0x features. For details, see -qlanglvl in the XL
C/C++ Compiler Reference.

© Copyright IBM Corp. 1996, 2012 11

Explicit conversion operators

The explicit conversion operators feature supports the explicit function specifier
being applied to the definition of a user-defined conversion function. You can use
this feature to inhibit implicit conversions from being applied where they might be
unintended, and thus program more robust classes with fewer ambiguity errors.

You can use the -qlanglvl=explicitconversionoperators option to enable this
feature.

For more information, see "Explicit Conversion Operators (C++0x)" in the XL
C/C++ Language Reference.

Generalized constant expressions

The generalized constant expressions feature extends the expressions permitted
within constant expressions. A constant expression is one that can be evaluated at
compile time.

You can use the -qlanglvl=constexpr option to enable this feature.

Note: In XL C/C++ V12.1, this feature is a partial implementation of what is
defined in the C++0x standard.

Reference collapsing

With the reference collapsing feature, you can form a reference to a reference type
using one of the following contexts:
v A decltype specifier
v A typedef name
v A template type parameter

You can use the -qlanglvl=referencecollapsing option to enable this feature.

For more information, see "Reference collapsing (C++0x)" in the XL C/C++
Language Reference.

Right angle brackets

In the C++ language, two consecutive closing angle brackets (>) must be separated
with a white space, because they are otherwise parsed as the bitwise right-shift
operator (>>). The right angle bracket feature removes the white space requirement
for consecutive right angle brackets, thus making programming more convenient.

You can use the -qlanglvl=rightanglebracket option to enable this feature.

For more information, see Class templates (C++ only) in the XL C/C++ Language
Reference.

Rvalue references

With the rvalue references feature, you can overload functions based on the value
categories of arguments and similarly have lvalueness detected by template
argument deduction. You can also have an rvalue bound to an rvalue reference
and modify the rvalue through the reference. This enables a programming

12 XL C/C++: Getting Started

technique with which you can reuse the resources of expiring objects and therefore
improve the performance of your libraries, especially if you use generic code with
class types, for example, template data structures. Additionally, the value category
can be considered when writing a forwarding function.

You can use the -qlanglvl=rvaluereferences option to enable this feature.

For more information, see "Using rvalue references (C++0x)" in the XL C/C++
Optimization and Programming Guide.

Scoped enumerations

With the scoped enumeration feature, you can get the following benefits:
v The ability to declare a scoped enumeration type, whose enumerators are

declared in the scope of the enumeration.
v The ability to declare an enumeration without providing the enumerators. The

declaration of an enumeration without providing the enumerators is referred to
as forward declaration.

v The ability to specify explicitly the underlying type of an enumeration.
v Improved type safety with no conversions from the value of an enumerator (or

an object of an enumeration type) to an integer.

You can use the -qlanglvl=scopedenum option to enable this feature.

For more information, see Enumeration in the XL C/C++ Language Reference.

Trailing return type

The trailing return type feature is useful when declaring the following types of
templates and functions:
v Function templates or member functions of class templates with return types

that depend on the types of the function arguments
v Functions or member functions of classes with complicated return types
v Perfect forwarding functions

You can use the -qlanglvl=autotypededuction option to enable this feature.

For more information, see "Trailing return type (C++0x)" in the XL C/C++ Language
Reference.

Related information in the XL C/C++ Compiler Reference

-qlanglvl

C1X features
This release introduces support for selected features of C1X. C1X is the working
draft of the new C programming language standard and has not yet been officially
adopted.

Note: C1X is a new version of the C programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C1X standard is
complete, including the support of a new C standard library, the implementation

Chapter 2. What's new for IBM XL C/C++ for Linux, V12.1 (Technology preview) 13

may change from release to release. IBM makes no attempt to maintain
compatibility with earlier releases, in source, binary, or options, of IBM's
implementation of the new features of the C1X standard and therefore they should
not be relied on as a stable programming interface.

The following features are introduced in IBM XL C/C++ for Linux, V12.1:
v Anonymous structures
v Complex type initialization
v New language level - extc1x

v The _Noreturn function specifier
v Static assertions

Anonymous structures

This feature enables the declaration of anonymous structures under the extc1x
language level. For more information, see Anonymous structures in the XL C/C++
Language Reference.

Complex type initialization

Macros CMPLX, CMPLXF, and CMPLXL are defined inside the standard header
file complex.h to enable the initialization of complex types under the extc1x
language level. For more information, see Initialization of complex types (C1X) in
the XL C/C++ Language Reference.

New language level - extc1x

A new suboption has been added to the -qlanglvl option in this release. You can
use -qlanglvl=extc1x to enable C1X features that are currently supported by XL
C/C++.

The _Noreturn function specifier

The _Noreturn function specifier declares that a function does not return to its
caller. You can define your own functions that do not return using this function
specifier. The compiler can produce better code by ignoring what would happen if
the function returns. For more information, see The _Noreturn function specifier in
the XL C/C++ Language Reference.

Static assertions

The addition of static assertions to the C language has the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C Standard Library can detect and diagnose common

usage errors, improving usability.

You can declare static assertions to check important program invariants at compile
time.

For more information, see _Static_assert declaration (C1X) in the XL C/C++
Language Reference.

14 XL C/C++: Getting Started

OpenMP 3.1
IBM XL C/C++ for Linux, V12.1 (Technology preview) supports the OpenMP
Application Program Interface Version 3.1 specification. The XL C/C++
implementation is based on IBM's interpretation of the OpenMP Application
Program Interface Version 3.1.

Version 3.1 makes the following updates to Version 3.0:
v Adds final and mergeable clauses to the task construct to support optimization.
v Adds the taskyield construct to allow users to specify where in the program

can perform task switching.
v Adds the omp_in_final runtime library function to support specialization of final

task regions.
v Extends the atomic construct to include read, write, and capture forms; adds

the update clause to apply the existing form of the atomic construct.
v Adds two reduction operators: min and max.
v Allows const-qualified types to be specified on the firstprivate clause.
v Adds the OMP_PROC_BIND environment variable to control whether OpenMP

threads are allowed to move between processors.
v Extends the OMP_NUM_THREADS environment variable to specify the number of

threads to use for nested parallel regions.

Related information
v "OpenMP environment variables" in the XL C/C++ Compiler Reference

v "Pragma directives for parallel processing" in the XL C/C++ Compiler Reference

v www.openmp.org

Performance and optimization
Additional features and enhancements assist with performance tuning and
application optimization.

Reports about compiler optimizations

There are a number of enhancements to the listing reports to give you more
information about how the compiler optimized your code. You can use this
information to get further benefits from the optimization capabilities of the
compiler. For more details about these enhanced reports, see “New diagnostic
reports.”

For additional information about performance tuning and program optimization,
see "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide.

New diagnostic reports
The new diagnostic reports can help you identify opportunities to improve the
performance of your code.

Compiler reports in HTML format

It is now possible to get information in XML or HTML format about the
optimizations that the compiler was able to perform and also which optimization

Chapter 2. What's new for IBM XL C/C++ for Linux, V12.1 (Technology preview) 15

http://www.openmp.org

opportunities were missed. This information can be used to reduce programming
effort for tuning applications, especially high-performance applications.

The -qlistfmt option and its associated suboptions can be used to generate the
XML or HTML report. By default, this option now generates all the available
content if you do not specify the type of content.

To view the HTML version of an XML report that has been already generated, you
can now use the genhtml tool. For more information about how to use this tool,
see genhtml command in the XL C/C++ Compiler Reference.

For detailed information about this report and how to use it, see "Using reports to
diagnose optimization opportunities" in the XL C/C++ Optimization and
Programming Guide.

Enhancements to profiling reports

New sections have been added to your listing file to help you analyze your
programs. When using the -qreport option with the -qpdf2 option, you can get the
following sections added to the listing file in the section entitled PDF Report:

Relevance of profiling data
This section shows the relevance of the profiling data to the source code
during the -qpdf1 phase. The relevance is indicated by a number in the
range of 0 - 100. The larger the number is, the more relevant the profiling
data is to the source code, and the more performance gain can be achieved
by using the profiling data.

Missing profiling data
This section might include a warning message about missing profiling
data. The warning message is issued for each function for which the
compiler does not find profiling data.

Outdated profiling data
This section might include a warning message about outdated profiling
data. The compiler issues this warning message for each function that is
modified after the -qpdf1 phase. The warning message is also issued when
the optimization level changes from the -qpdf1 phase to the -qpdf2 phase.

For detailed information about profile-directed feedback, see "Using
profile-directed feedback" in the XL C/C++ Optimization and Programming Guide.

For additional information about the listing files, see "Compiler listings" in the XL
C/C++ Compiler Reference.

Enhancements to showpdf reports

In addition to block-counter and call-counter profiling information currently
provided, you can also use the showpdf utility to view cache-miss profiling and
value profiling information. Value profiling and cache-miss profiling information
can be displayed only in XML format. However, all the other types of profiling
information can be displayed in either text or XML format. In this release, the
profile-directed feedback (PDF) information is saved in two files. One is a PDF
map file that is generated during the -qpdf1 phase, and the other is a PDF file that
is generated during the execution of the resulting application. You can run the
showpdf utility to display the PDF information contained in these two files. For
more information, see "Viewing profiling information with showpdf" in the XL

16 XL C/C++: Getting Started

C/C++ Optimization and Programming Guide.

New and enhanced diagnostic options

The entries in the following table describe new or changed compiler options and
directives that give you control over compiler listings.

The information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Listings, messages and
compiler information" in the XL C/C++ Compiler Reference.

Table 4. Listings-related compiler options and directives

Option/directive Description

-qlistfmt The -qlistfmt option has been enhanced to generate
HTML reports as well as XML reports, containing
information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of this option has changed. Now,
if you do not specify a particular type of content, the
option generates all the available content, rather than
generating none.

New built-in functions
This section lists built-in functions that are new for this release.

GCC atomic memory access built-in functions

New XL C/C++ built-in functions for atomic memory access, whose behavior
corresponds to that provided by GNU Compiler Collection (GCC), are added in
this release. In a program with multiple threads, you can use these functions to
atomically and safely modify data in one thread without interference from another
thread.

For details about these functions, see GCC atomic memory access built-in
functions.

For more information about built-in functions provided by XL C/C++, see
Compiler built-in functions in the XL C/C++ Compiler Reference.

New or changed compiler options and pragma directives
This section describes new and changed compiler options and pragma directives.

You can specify compiler options on the command line. You can also modify
compiler behavior through pragma directives embedded in your application source
files. See the XL C/C++ Compiler Reference for detailed descriptions and usage
information for these and other compiler options.

New or changed compiler options

-g The -g option is extended to control how the program state is available to
the debugging session at selected source locations. You can view or
possibly modify accessible variables at those selected locations in the
debugger.

Chapter 2. What's new for IBM XL C/C++ for Linux, V12.1 (Technology preview) 17

-qhaltonmsg
The -qhaltonmsg option is now supported by XL C. It stops compilation
before producing any object files, executable files, or assembler source files
if a specified error message is generated. The negative form
-qnohaltonmsg has also been added.

-qinfo -qinfo=all now enables all diagnostic messages for all groups except als
and ppt

-qinitauto
The -qinitauto option is enhanced to be able to perform word initialization
for automatic variables.

-qkeyword
C++0x The new suboption -q[no]keyword=constexpr enables or disables

the constexpr keyword.

-qlanglvl
The following suboptions are added or updated:

C++0x -qlanglvl=autotypededuction
This suboption can now enable the trailing return type feature in
addition to the auto type deduction feature.

C++ -qlanglvl=c1xnoreturn
This suboption enables support for the _Noreturn function
specifier.

C++ IBM -qlanglvl=compatrvaluebinding
This suboption instructs the compiler to allow a non-const lvalue
reference to bind to an rvalue of a user-defined type where an
initializer is not required.

C++0x -qlanglvl=constexpr
This suboption enables the generalized constant expressions
feature, which extends the expressions permitted within constant
expressions.

Note: In XL C/C++ V12.1, this feature is a partial implementation
of what is defined in the C++0x standard.

C++0x -qlanglvl=explicitconversionoperators
This suboption enables the explicit conversion operators feature,
which allows you to inhibit unintended implicit conversions
through the user-defined conversion function.

C1X -qlanglvl=extc1x
This suboption enables all the currently supported C1X features
and other implementation-specific language extensions.

C++0x -qlanglvl=referencecollapsing
This suboption enables the reference collapsing feature, with which
you can form a reference to a reference type using a decltype
specifier, a typedef name, or a template type parameter.

C++0x -qlanglvl=rightanglebracket
This suboption enables the right angle bracket feature, which
removes the white space requirement for consecutive right angle
brackets.

C++0x -qlanglvl=rvaluereferences
This suboption enables the rvalue references feature.

18 XL C/C++: Getting Started

C++0x -qlanglvl=scopedenum
This suboption enables the scoped enumeration feature, with
which you can declare a scoped enumeration type or an
enumeration without providing the enumerators.

C++ IBM -qlanglvl=tempsaslocals
This suboption extends the lifetime of temporaries to reduce
migration difficulty.

IBM -qlanglvl=textafterendif
This suboption suppresses the warning message that is emitted
when you are porting code from a compiler that allows extra text
after #endif or #else to IBM XL C/C++ compiler.

See the “New C++0x features” on page 11 section for more information
about the new C++0x features.

See the “C1X features” on page 13 section for more information about the
C1X features.

-qlistfmt
The -qlistfmt option is enhanced to generate HTML reports as well as
XML reports, containing information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of -qlistfmt has changed. Now, if you do not specify
a particular type of content, the option generates all the available content,
rather than generating none.

-qnamemangling
The v12 namemangling scheme is added. The v12 fix preserves the
cv-qualifiers, so the function parameters that are cv-qualified and not
cv-qualified are handled differently.

-qoptfile
The new option -qoptfile specifies a file containing a list of additional
command line options to be used for the compilation.

-qpic -qpic=large now enables large TOC access and prevents TOC overflow
conditions when the Table of Contents is larger than 64 Kb.

-qshowpdf
The default value is changed from -qnoshowpdf to -qshowpdf.

New or changed pragma directives

#pragma ibm independent_loop
The independent_loop pragma is added. It explicitly states that the
iterations of the chosen loop are independent, and that the iterations can
be executed in parallel.

#pragma ibm iterations
The iterations pragma is added. It specifies the approximate number of
loop iterations for the chosen loop.

#pragma ibm max_iterations
The max_iterations pragma is added. It specifies the approximate
maximum number of loop iterations for the chosen loop.

#pragma ibm min_iterations
The min_iterations pragma is added. It specifies the approximate
minimum number of loop iterations for the chosen loop.

Chapter 2. What's new for IBM XL C/C++ for Linux, V12.1 (Technology preview) 19

#pragma simd_level
The simd_level pragma is added. It controls the compiler code generation
of vector instructions for individual loops.

20 XL C/C++: Getting Started

Chapter 3. Migrating from earlier versions

By migrating to the latest version of the compiler, you are able to use the latest
features of the compiler to boost the performance of the applications being
compiled.

A later version of the compiler usually includes a set of new features. These
features can provide the following benefits:
v They can better optimize applications being compiled and increase their

performance.
v They support new language standards.
v They utilize the functionality of the latest supported hardware and operating

systems.

Migrating to the latest version of the compiler gives you the capability of using
these new features and enjoy the benefits that they provide.

In general, a new version of the compiler is compatible with its earlier versions.
However, there could be exceptions. For example, different diagnostic messages
could be generated. Always back up your source code and other important data
before migrating the compiler.

When you’ve finished migrating the compiler, you can recompile your application
and make sure everything goes well.

The following sections list the enhancements added to the compiler in earlier
versions, which can assist you in migrating to a later version of the compiler.

Enhancements added in Version 11.1
This section describes features and enhancements added to the compiler in Version
11.1.

Operating system support
This section contains information about the newly supported operating systems.

From V11.1, XL C/C++ starts to support the following operating systems on IBM
Power Systems servers:
v SUSE Linux Enterprise Server 11 Service Pack 1 (SLES 11 SP1)
v Red Hat Enterprise Linux 5.5 (RHEL 5.5)

For a complete list of the supported operating systems, see “Hardware and
operating system support” on page 1.

Support for POWER7 processors
XL C/C++, V11.1 supports POWER7 processors.

The new features and enhancements introduced in support for the POWER7
processors, fall under the following four categories:
v Vector scalar extension data types and intrinsic functions

© Copyright IBM Corp. 1996, 2012 21

v MASS libraries for POWER7 processors
v Built-in functions for POWER7 processors
v Compiler options for POWER7 processors

Vector scalar extension data types and intrinsic functions

This release of the compiler supports the Vector Scalar eXtension (VSX) instruction
set in the POWER7 processors. New data types and intrinsic functions are
introduced to support the VSX instructions. With the VSX intrinsic functions and
the original Vector Multimedia eXtension (VMX) intrinsic functions, you can
efficiently manipulate vector operations in your application.

For more information about the VSX data types and intrinsic functions, see Vector
types in the XL C/C++ Language Reference and Vector built-in functions in the XL
C/C++ Compiler Reference.

Mathematical Acceleration Subsystem (MASS) libraries for
POWER7 processors

Vector libraries

The vector MASS library libmassvp7.a contains vector functions that have
been tuned for the POWER7 architecture. The functions can be used in
either 32-bit mode or 64-bit mode.

Functions supporting previous POWER® processors, either single-precision
or double-precision, are included for POWER7 processors.

The following new functions are added, in both single-precision and
double-precision function groups:
v exp2
v exp2m1
v log21p
v log2

For more information about the vector libraries, see Using the vector
libraries in the XL C/C++ Optimization and Programming Guide.

SIMD libraries

The MASS SIMD library libmass_simdp7.a contains an accelerated set of
frequently used math intrinsic functions that provide improved
performance over the corresponding standard system library functions.

For more information about the SIMD libraries, see Using the SIMD library
for POWER7 in the XL C/C++ Optimization and Programming Guide.

POWER7 hardware intrinsics

New hardware intrinsics are added to support the following POWER7 processor
features:
v New POWER7 prefetch extensions and cache control
v New POWER7 hardware instructions

For more information, see “Built-in functions new for this release” on page 33.

22 XL C/C++: Getting Started

New compiler options for POWER7 processors

New arch and tune compiler options

The -qarch compiler option specifies the processor architecture for which
code is generated. The -qtune compiler option tunes instruction selection,
scheduling, and other architecture-dependent performance enhancements
to run best on a specific hardware architecture.

-qarch=pwr7 produces object code containing instructions that will run on
the POWER7 hardware platforms. With -qtune=pwr7, optimizations are
tuned for the POWER7 hardware platforms.

For more information, see -qarch in the XL C/C++ Compiler Reference and
-qtune in the XL C/C++ Compiler Reference.

New C++0x features
C++0x is the working draft of the new C++ programming language standard.
Additional C++0x features are supported in this release of XL C/C++.

Note: C++0x is a new version of the C++ programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C++0x standard is
complete, including the support of a new C++ standard library, the implementation
may change from release to release. IBM makes no attempt to maintain
compatibility with earlier releases, in source, binary, or options, of IBM's
implementation of the new features of the C++0x standard and therefore they
should not be relied on as a stable programming interface.

The following features are introduced in XL C/C++, V11.1:
v Auto type deduction
v C99 long long

v C99 preprocessor features adopted in C++0x
v Decltype
v Delegating constructors
v Explicit instantiation declarations
v Extended friend declarations
v Inline namespace definitions
v Static assertion
v Variadic templates

You can use the -qlanglvl=extended0x option to enable most of the C++ features
and all the currently-supported C++0x features. For details, see -qlanglvl in the XL
C/C++ Compiler Reference.

Auto type deduction

With the auto type deduction feature, you no longer need to specify a type while
declaring a variable. This is because auto type deduction delegates the task of
deducting the type of an auto variable to the compiler from the type of its
initializer expression.

You can use the -qlanglvl=autotypededuction option to enable this feature.

Chapter 3. Migrating from earlier versions 23

For more information, see "The auto type specifier (C++0x)" in the XL C/C++
Language Reference.

C99 long long

The C++ compiler can use the C99 long long feature, which improves source
compatibility between the C and C++ languages.

You can use the -qlanglvl=c99longlong option to enable the C99 long long feature.

IBM After this feature is enabled, if a decimal integer literal that does not
have a suffix containing u or U cannot be represented by the long long int type,
you can decide whether to use the unsigned long long int type to represent the
literal or not by specifying the -qlanglvl=[no]extendedintegersafe option.

For more information, see "Integer literals" in the XL C/C++ Language Reference.

C99 preprocessor features adopted in C++0x

With several C99 preprocessor features adopted in C++0x, C and C++ compilers
provide a more common preprocessor interface, which can ease porting C source
files to the C++ compiler, eliminate semantic differences between the C and C++
preprocessors, and avoid preprocessor compatibility issues or diverging
preprocessor behaviors.

You can use the -qlanglvl=c99preprocessor option to enable this feature.

For more information, see "C99 preprocessor features adopted in C++0x)" in the XL
C/C++ Language Reference.

Decltype

With the decltype feature, you can get a type that is based on the resultant type of
a possibly type-dependent expression.

You can use the -qlanglvl=decltype option to enable this feature.

For more information, see "The decltype(expression) type specifier (C++0x)" in the
XL C/C++ Language Reference.

Delegating constructors

With the delegating constructors feature, you can concentrate common
initializations in one constructor, which makes programs more readable and
maintainable.

You can use the -qlanglvl=delegatingctors option to enable this feature.

For more information, see "Delegating constructors (C++0x)" in the XL C/C++
Language Reference.

Explicit instantiation declarations

With the explicit instantiation declarations feature, you can suppress the implicit
instantiation of a template specialization or its members.

24 XL C/C++: Getting Started

You can use the individual suboption -qlanglvl=externtemplate or the group
options -qlanglvl=extended or -qlanglvl=extended0x to enable this feature.

For more information, see "Explicit instantiation (C++ only)" in the XL C/C++
Language Reference.

Extended friend declarations

The extended friend declarations feature relaxes the syntax rules governing friend
declarations as follows:
v Template parameters, typedef names, and basic types can be declared as friends.
v The class-key in the context for friend declarations is no longer necessary in

C++0x.

You can use the -qlanglvl=extendedfriend option to enable this feature.

For more information, see "Friends (C++ only)" in the XL C/C++ Language Reference.

Inline namespace definitions

Inline namespace definitions are namespace definitions with an initial inline
keyword. You can define or specialize the members of an inline namespace as if
they belong to the enclosing namespace that contains the inline namespace.

You can use the -qlanglvl=inlinenamespace option to enable this feature.

For more information, see "Inline namespace definitions (C++0x)" in the XL C/C++
Language Reference.

Static assertion

The static assertion feature provides you with the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C++ Standard Library can detect and diagnose common

usage errors, thus improving usability.

You can use a static_assert declaration to check important program invariants at
compile time.

You can use the -qlanglvl=static_assert option to enable this feature.

For more information, see "static_assert declaration (C++0x)" in the XL C/C++
Language Reference.

Variadic templates

With the variadic templates feature, you can define class or function templates that
have any number (including zero) of parameters.

You can use the -qlanglvl=variadic[templates] option to enable this feature.

For more information, see "Variadic templates (C++0x)" in the XL C/C++ Language
Reference.

Related information in the XL C/C++ Compiler Reference

Chapter 3. Migrating from earlier versions 25

-qlanglvl

Performance and optimization
Additional features and enhancements assist with performance tuning and
application optimization.

Enhancements to -qpdf

The use of the -qpdf option consists of two steps. First, compile your program
with the -qpdf1 option and run it with a typical set of data to generate the
profiling data. Second, compile your program again with the -qpdf2 option to
optimize the program based on the profiling data.

In previous releases, if you modify the source files and compile them with the
-qpdf2 option, the compilation stops with an error. As of XL C/C++, V11.1, the
compiler issues a list of warnings but the compilation does not stop. So you can
still use the profiling data after you modify your source files.

Some new suboptions are added to the -qpdf option. You can use these new
suboptions to get more control over performance improvements and extend -qpdf
to support multiple-pass profiling, cache-miss profiling, and extended value
profiling.

The new -qpdf suboptions are:

level Supports multiple-pass profiling, single-pass profiling, cache-miss profiling,
value profiling, block-counter profiling, and call-counter profiling. You can
compile your program with -qpdf1=level=0|1|2 to specify the type of
profiling information to be generated by the resulting application.

exename
Specifies the name of the generated PDF file according to the output file
name specified by the -o option.

defname
Reverts the PDF file to its default file name.

For detailed information about these suboptions, see -qpdf1, -qpdf2 in the XL
C/C++ Compiler Reference.

Reports about compiler optimizations

There are a number of enhancements to the listing reports to give you more
information about how the compiler optimizes your code. You can use this
information to get further benefits from the optimization capabilities of the
compiler. For more details about these enhanced reports, see “New diagnostic
reports” on page 27.

Performance-related compiler options and directives

The entries in the following table describe new or changed compiler options and
directives.

Information presented here is a brief overview. For detailed information about
these options, directives, and other performance-related compiler options, see
"Optimization and tuning options" in the XL C/C++ Compiler Reference.

26 XL C/C++: Getting Started

Table 5. Performance-related compiler options and directives

-qinline=level=number A new option is added to -qinline to provide guidance
to the compiler about the relative value of inlining in
relation to the default value of 5.number is a range of
integer values 0 - 10 that indicates the level of inlining
you want to use. For details, see -qinline in the XL
C/C++ Compiler Reference.

-qpdf -qpdf provides suboptions to give you more control
flexibility in controlling different PDF optimizations.
For more information, see the -qpdf1, -qpdf2 section in
the XL C/C++ Compiler Reference.

-qprefetch A new enhancement is added to -qprefetch for
inserting prefetch instructions automatically where
there are opportunities to improve code performance:
-qprefetch=assistthread. For details, see -qprefetch in
the XL C/C++ Compiler Reference.

For additional information about performance tuning and program optimization,
see "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide.

New diagnostic reports
The new diagnostic reports can help you identify opportunities to improve the
performance of your code.

Compiler reports in XML format

It is now possible to get information in XML format about the optimizations that
the compiler was able to perform and also which optimization opportunities were
missed. This information can be used to reduce programming effort for tuning
applications, especially high-performance applications.

The information from the compiler is produced in XML 1.0 format. The report is
defined by an XML schema and is easily consumable by tools that you can create
to read and analyze the results. A stylesheet, xlstyle.xsl, is provided to render
the report into a human readable format that can be read by anyone with a
browser which supports XSLT.

In this release, the following four optimization categories are available in the
report:
v Inlining
v Loop transformations
v Data reorganizations
v Profile-directed feedback information

The new -qlistfmt option and its associated suboptions can be used to generate the
new XML 1.0 report.

For detailed information about this report and how to use it, see "Using reports to
diagnose optimization opportunities" in the XL C/C++ Optimization and
Programming Guide.

Chapter 3. Migrating from earlier versions 27

Enhancements to profiling reports

New sections have been added to your listing file to help you analyze your
programs. When using the -qreport option with the -qpdf2 option, you can get the
following sections added to the listing file in the section entitled PDF Report:

Loop iteration count
The most frequent loop iteration count and the average iteration count, for
a given set of input data, is calculated for most loops in a program. This
information is only available when the program is compiled at
optimization level -O5.

Block and call count
This section of the report covers the call structure of the program and the
respective execution count for each called function. It also includes block
information for each function. For non-user defined functions, only
execution count is given. The total block and call coverage, and a list of the
user functions ordered by decreasing execution count are printed in the
end of this report section. In addition, the block count information is
printed at the beginning of each block of the pseudo-code in the listing
files.

Cache miss
This section of the report is printed in a single table. It reports the number
of cache misses for certain functions, with additional information about the
functions such as: cache level, cache miss ratio, line number, file name, and
memory reference.

Note: You must use the -qpdf1=level=2 option to get this report.
You can also select the level of cache to profile using the PDF_PM_EVENT
environment variable during run time.

For detailed information about profile-directed feedback, see "Using
profile-directed feedback" in the XL C/C++ Optimization and Programming Guide.

For additional information about the listing files, see "Compiler listings" in the XL
C/C++ Compiler Reference.

Report of data reorganization

The compiler can generate the following information in the listing files:
v Data reorganizations (a summary of how program variable data gets reorganized

by the compiler)
v The location of data prefetch instructions inserted by the compiler

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -O5 together with -qreport. The data reorganization messages for
program variable data are added to the data reorganization section of the listing
file with the label DATA REORGANIZATION SECTION during the IPA link pass.
Reorganizations include:
v array splitting
v array transposing
v memory allocation merging
v array interleaving
v array coalescing

28 XL C/C++: Getting Started

To generate information about data prefetch insertion locations, use the
optimization level of -qhot, or any other option that implies -qhot together with
-qreport. This information appears in the LOOP TRANSFORMATION SECTION of the
listing file.

Additional loop analysis

A new suboption has been added to -qhot to add more aggressive loop analysis.
-qhot=level=2 together with -qsmp and -qreport add information about loop nests
on which the aggressive loop analysis was performed to the LOOP TRANSFORMATION
SECTION of the listing file. This information can also appear in the XML listing file
created with the -qlistfmt option.

New and enhanced diagnostic options

The entries in the following table describe new or changed compiler options and
directives that give you control over compiler listings.

Information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Listings, messages and
compiler information" in the XL C/C++ Compiler Reference.

Table 6. Listings-related compiler options and directives

Option/directive Description

-qlistfmt Generates a report in an XML 1.0 format containing
information about optimizations performed by the
compiler and missed optimization opportunities. The
report contains information about inlining, loop
transformations, data reorganization and
profile-directed feedback.

-qreport The listing now contains a PDF report section when
used with -qpdf2. Another new section in the listing
files is a DATA REORGANIZATION section when used with
-qipa=level=2 or -O5.

-qskipsrc Determines whether the source statements skipped by
the compiler are shown in the SOURCE section of the
listing file.

Utilization tracking and reporting tool
The utilization tracking and reporting feature is a lightweight and simple
mechanism for tracking the compiler utilization within your organization. It is
disabled by default. You can use this feature to detect whether your organization's
use of the compiler exceeds your compiler license entitlements.

When utilization tracking is enabled, each invocation of the compiler is recorded in
a compiler utilization file. You can run the utilization reporting tool to generate a
report from one or more of these files to get a picture of the overall usage of the
compiler within your organization. The urt command can be used to control how
the report is generated. In particular, the report indicates the number of concurrent
users using the compiler.

The utilization tracking and reporting feature is easy to set up and manage, and
utilization tracking does not impact the usage or performance of the compiler.

Chapter 3. Migrating from earlier versions 29

For detailed information about the utilization tracking and reporting feature, see
"Tracking and reporting compiler usage" in the XL C/C++ Compiler Reference.

New or changed compiler options and directives
This section describes new and changed compiler options and directives.

You can specify compiler options on the command line or through directives
embedded in your application source files. See the XL C/C++ Compiler Reference for
detailed descriptions and usage information for these and other compiler options.

Table 7. New or changed compiler options and directives

Option or directive Description

-qarch A new suboption has been added to -qarch, specifying
-qarch=pwr7 produces object code that contains
instructions that run on the POWER7 hardware
platforms.

-qassert -qassert is a new option for XL C/C++. It is used to
provide information about the characteristics of the
files that can help to fine-tune optimizations.

-qfunctrace Traces the entry and exit points of functions in a
compilation unit or only for a specific list of functions.

-qhot A new suboption has been added for -qhot. The -qhot
compiler option is a powerful alternative to hand
tuning that provides opportunities to optimize loops
and array language.

The -qhot=fastmath option enables the replacement of
math routines with available math routines from the
XLOPT library only if -qstrict=nolibrary is enabled.
-qhot=nofastmath disables the replacement of math
routines by the XLOPT library. -qhot=fastmath is
enabled by default if -qhot is specified regardless of the
hot level.

-qinline Attempts to inline functions instead of generating calls
to those functions, for improved performance.

30 XL C/C++: Getting Started

Table 7. New or changed compiler options and directives (continued)

Option or directive Description

-qlanglvl C++0x New suboptions have been added to
-qlanglvl:

v -qlanglvl=autotypededuction: Controls whether the
auto type deduction feature is enabled. This feature
can be used to delegate the task of type deduction of
an auto variable to the compiler from the type of its
initializer expression.

v -qlanglvl=c99longlong: Controls whether the C99
long long feature is enabled. This feature improves
source compatibility between the C and C++
languages.

v -qlanglvl=c99preprocessor: Controls whether the
C99 preprocessor features adopted in C++0x are
enabled. This feature can be used to provide a more
common preprocessor interface for C and C++
compilers.

v -qlanglvl=decltype: Controls whether the decltype
feature is enabled. This feature can be used to get a
type that is based on the resultant type of a possibly
type-dependent expression.

v -qlanglvl=delegatingctors: Controls whether the
delegating constructors feature is enabled. This
feature can be used to concentrate common
initializations in one constructor.

v -qlanglvl=extendedfriend: Controls whether the
extended friend declarations feature is enabled. This
feature can be used to accept additional forms of
non-function friend declarations.

v IBM -qlanglvl=extendedintegersafe: Controls
whether or not unsigned long long int can be used
as the type for decimal integer literals that do not
have a suffix containing u or U and cannot be
represented by the long long int type. This option
takes effect only when the -qlanglvl=c99longlong
option is specified.

v -qlanglvl=externtemplate: Controls whether the
explicit instantiation declarations feature is enabled.
This feature can be used to suppress the implicit
instantiation of a template specialization or its
members.

v -qlanglvl=inlinenamespace: Controls whether the
inline namespace definitions feature is enabled. This
feature can be used to define and specialize
members of an inline namespace as if they were also
members of the enclosing namespace.

v -qlanglvl=static_assert: Controls whether the static
assertions feature is enabled. This feature can be
used to produce compile-time assertions for which a
severe error message is issued on failure.

v -qlanglvl=variadic[templates]: Controls whether the
variadic templates feature is enabled. This feature
can be used to define class or function templates that
have any number (including zero) of parameters.

Chapter 3. Migrating from earlier versions 31

Table 7. New or changed compiler options and directives (continued)

Option or directive Description

-qlibmpi Tunes code based on the known behavior of the
Message Passing Interface (MPI) functions.

-qlistfmt Generates a report in an XML 1.0 format containing
information about some optimizations performed by
the compiler and some missed optimization
opportunities for inlining, loop transformations,
profile-directed feedback, and data reorganization.

-qpdf1,-qpdf2 New suboptions have been added to -qpdf1,-qpdf2.

-qprefetch A new suboption has been added to -qprefetch. When
you work with applications that generate a high
cache-miss rate, you can use -qprefetch=assistthread to
exploit assist threads for data prefetching.

-qrestrict (C only) You can use -qrestrict to indicate to the compiler that
no other pointer can access the same memory that has
been addressed by function parameter pointers.

-qsaveopt|-qnosaveopt The existing -qsaveopt option is enhanced to also
include the user's configuration file name and the
options specified in the configuration files.

-qstackprotect Protects your applications against malicious code or
programming errors that overwrite or corrupt the
stack.

-qstaticlink Controls how shared and nonshared runtime libraries
are linked into an application.

-qstrict A new suboption has been added to the -qstrict option
to allow more control over optimizations and
transformations that violate strict program semantics.

-qstrict=vectorprecision disables vectorization in loops
where it might produce different results in vectorized
iterations than in nonvectorized ones.

-qtune A new suboption has been added to -qtune. If you
specify -qtune=pwr7, optimizations are tuned for the
POWER7 hardware platforms.

Table 8. Deprecated directives and options

Option or directive Description

-Q This option is deprecated and replaced with
-qinline.

-qenablevmx This option is deprecated and replaced with
the -qsimd=auto option.

-qhot=simd | nosimd -qhot=simd | nosimd are deprecated and
might be removed in a future release. You can
use -qsimd.

-qinfo=private -qinfo=private is deprecated and replaced
with -qreport.

-qinfo=reduction -qinfo=reduction is deprecated and replaced
with -qreport.

-qipa=inline | noinline -qipa=inline | noinline are deprecated and
might be removed in a future release. You can
use -qinline.

32 XL C/C++: Getting Started

Table 8. Deprecated directives and options (continued)

Option or directive Description

-qipa=clonearch | noclonearch -qipa=clonearch | noclonearch is no longer
supported. You can use -qtune=balanced.

-qipa=clonearch | noclonearch -qipa=cloneproc | nocloneproc is no longer
supported. You can use -qtune=balanced.

Built-in functions new for this release
This section lists built-in functions that are new for this release.

For more information about built-in functions provided by XL C/C++, see
Compiler built-in functions in the XL C/C++ Compiler Reference.

VSX built-in functions

Vector Scalar eXtension (VSX) is newly added for POWER7 processors.

For more information about VSX built-in functions, see Vector built-in functions.

POWER7 prefetch extensions and cache control

The POWER7 processor has cache control and stream prefetch extensions that
support store stream prefetch and prefetch depth control. XL C/C++ provides the
following new built-in functions to provide direct programmer access to these
instructions:
v __protected_stream_stride

v __transient_protected_stream_count_depth

v __unlimited_protected_stream_depth

v __transient_unlimited_protected_stream_depth

v __partial_dcbt

v __dcbtt

v __dcbtstt

v __dcbflp

The compiler can insert the built-in functions automatically when it optimizes the
code. You can disable automatic use of these instructions with -qnoprefetch.

For more information about the directives, see built-in functions in the XL C/C++
Compiler Reference.

POWER7 hardware built-in functions

New XL C/C++ built-in functions corresponding to each new POWER7 hardware
instruction are added in this release. With these functions, you can directly
manipulate specific hardware instructions in your code, which can improve the
performance of your application.
v __bpermd

v __cbcdtd

v __cdtbcd

v __load8r

Chapter 3. Migrating from earlier versions 33

v __store8r

v __divde

v __divdeu

v __cmpb

v __divwe

v __divweu

v __addg6s

Conversion functions

These new functions convert between Declets and Binary Coded Decimal.
v __cbcdtd

v __cdtbcd

Comparison functions

This new function compares bytes.
v __cmpb

Decimal floating-point functions

This new function adds and generates sixes.
v __addg6s

Enhancements added in Version 10.1
This section describes features and enhancements added to the compiler in Version
10.1.

Operating system support
IBM XL C/C++ for Linux, V10.1 supports these operating systems supported by
IBM Power Systems servers: Red Hat Enterprise Linux 5.2 (RHEL 5.2) and SUSE
Linux Enterprise Server 10 SP 2 (SLES10 SP2)..

Predefined macros

There are 4 new macros:

_ILP32 __ILP32__
Defined to 1 only when the compilation is for a target where long int, int
and pointers all use 32 bits. Otherwise it is not defined.

_LP64 __LP64__
Defined to 1 only when the compilation is for a target where long int and
pointers both use 64 bits and int uses 32 bits. Otherwise it is not defined

The compiler no longer supports the __C99_COMPLEX_HEADER__ macro.

For a complete list of the predefined macros for XL C/C++, see "Compiler
predefined macros" in the XL C/C++ Compiler Reference.

34 XL C/C++: Getting Started

New C++0x features
This release introduces support for a new version of the standard for the C++
programming language - specifically C++0x. This standard has not yet been
officially adopted but we are beginning to support some of its features.

Note: C++0x is a new version of the C++ programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C++0x standard is
complete, including the support of a new C++ standard library, the implementation
may change from release to release. IBM makes no attempt to maintain
compatibility with earlier releases, in source, binary, or options, of IBM's
implementation of the new features of the C++0x standard and therefore they
should not be relied on as a stable programming interface.

Specifically, in this release:
v we add a new language level
v we introduce new integer promotion rules for arithmetic conversions with long

long data types
v the C++ preprocessor now supports C99 features

New language level - extended0x

The default -qlanglvl compiler option remains extended when invoking the C++
compiler.

A new suboption has been added to the -qlanglvl option in this release.
-qlanglvl=extended0x is used to allow users to try out early implementations of
any features of C++0x that are currently supported by XL C/C++.

C99 long long under C++

With this release of XL C/C++, V10.1, compiler behavior changes when performing
certain arithmetic operations with integral literal data types. Specifically, the
integer promotion rules have changed.

Previously, in C++ (and as an extension to C89), when compiling with -qlonglong,
an unsuffixed integral literal would be promoted to the first type in this list into
which it fitted:

int

long int

unsigned long int

long long int

unsigned long long

Starting with this release and when compiling with -qlanglvl=extended0x, the
compiler now promotes unsuffixed integral literal to the first type in this list into
which it fits:

int

long int

long long int

unsigned long long

Chapter 3. Migrating from earlier versions 35

Note: Like our implementation of the C99 Standard in the C compiler, C++ will
allow promotions from long long to unsigned long long if a value cannot fit into
a long long type, but can fit in an unsigned long long. In this case, a message will
be generated.

The macro __C99_LLONG has been added for compatibility with C99. This macro is
defined to 1 with -qlanglvl=extended0x and is otherwise undefined.

For more information, see "Integral and floating-point promotions" in the XL
C/C++ Language Reference.

Preprocessor changes

The following changes to the C++ preprocessor make it easier to port code from C
to C++:
v Regular string literals can now be concatenated with wide-string literals.
v The #line <integer> preprocessor directive has a larger upper limit. It has been

increased from 32767 to 2147483647 for C++ .
v C++ now supports _Pragma operator.
v These macros now apply to C++ as well as C:

– __C99_MACRO_WITH_VA_ARGS (also available with -qlanglvl=extended)
– __C99_MAX_LINE_NUMBER (also available with -qlanglvl=extended)
– __C99_PRAGMA_OPERATOR
– __C99_MIXED_STRING_CONCAT

Note: Except as noted, these C++ preprocessor changes are only available when
compiling with -qlanglvl=extended0x.

For additional information about the language standards supported by XL C/C++,
see "Language levels and extensions" in the XL C/C++ Language Reference.

Other XL C/C++ language-related updates
This section describes language-related updates: changes to vector data types.

Vector data types

Vector data types can now use some of the operators that can be used with base
data types such as:.
v unary operators
v binary operators
v relational operators

OpenMP 3.0
IBM XL C/C++ for Linux, V10.1, supports the OpenMP API Version 3.0
specification. The XL C/C++ implementation is based on IBM's interpretation of
the OpenMP Application Program Interface Draft 3.0 Public Comment.

The main differences between Version 2.5 and Version 3.0 are:
v Addition of task level parallelization. The new OpenMP constructs TASK and

TASKWAIT give users the ability to parallelize irregular algorithms, such as pointer
chasing or recursive algorithms for which the existing OpenMP constructs were
not adequate.

36 XL C/C++: Getting Started

v for loops can now contain var values of unsigned int and pointer type as well
as signed int.

v Stack size control. You can now control the size of the stack for threads created
by the OMP runtime library using the new environment variable OMP_STACKSIZE.

v Users can give hints to the expected behavior of waiting threads using new
environment variables OMP_WAIT_POLICY and OMP_SET_POLICY.

v Storage reuse. Some restrictions on the PRIVATE clause have been removed. A list
item that appears in the reduction clause of a parallel construct can now also
appear in a private clause on a work-sharing construct.

v Scheduling. A new SCHEDULE attribute, auto, allows the compiler and runtime
system to control scheduling.

v Consecutive loop constructs with STATIC schedule can now use nowait.
v Nesting support - a COLLAPSE clause has been added to the DO, FOR, PARALLEL

FOR, and PARALLEL DO directives to allow parallelization of perfect loop nests.
This means that multiple loops in a nest can be parallelized.

v THREADPRIVATE directives can now apply to variables at class scope in addition to
file and block scope.

v Parallelization of iterator loops of canonical form including those with random
access iterators.

For more information, see:
v "Using OpenMP directives" in the XL C/C++ Optimization and Programming Guide

v www.openmp.org

Performance and optimization
Some features and enhancements can assist with performance tuning and
optimization of your application.

Enhancements to -qstrict

Many suboptions have been added to the -qstrict option to allow more
fine-grained control over optimizations and transformations that violate strict
program semantics. In previous releases, the -qstrict option disabled all
transformations that violate strict program semantics. This is still the behavior if
you use -qstrict without suboptions. Likewise, in previous releases -qnostrict
allowed transformations that could change program semantics. Because a higher
level of optimizations might require relaxing strict program semantics, the addition
of the suboptions relaxes selected rules to get specific benefits of faster code
without turning off all semantic verifications.

You can use 16 new suboptions separately or use a suboption group. Here is a list
of suboption groups:

all Disables all semantics-changing transformations, including those controlled
by the other suboptions.

ieeefp
Controls whether individual operations conform to IEEE 754 semantics.

order Controls whether individual operations can be reordered in a way that
violate program language semantics.

precision
Controls optimizations and transformations that can affect the precision of
program results.

Chapter 3. Migrating from earlier versions 37

http://www.openmp.org

exceptions
Controls optimizations and transformations that can affect the runtime
exceptions generated by the program.

For detailed information about these suboptions, see "-qstrict" in the XL C/C++
Compiler Reference.

Performance-related compiler options and directives

The entries in the following table describe new or changed compiler options and
directives.

Information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Optimization and
tuning options" in the XL C/C++ Compiler Reference.

Table 9. Performance-related compiler options and directives

Option/directive Description

-qstrict Many new suboptions have been added to give you
more control over the relaxation of program semantic
rules in order to gain some performance benefits.

-qfloat Some -qfloat suboptions are affected by the new
suboptions for -qstrict.

-qreport The listing now contains information about how many
streams are created for each loop and which loops
cannot be SIMD vectorized due to non-stride-one
references. You can use this information to improve the
performance of your applications.

-qsmp When -qsmp=omp is in effect, the additional
functionality of OpenMP API 3.0 is now available. For
more information, see “OpenMP 3.0” on page 36.

For additional information about performance tuning and program optimization,
see "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide.

New or changed compiler options and directives
This section describes new and changed compiler options and directives.

You can specify compiler options on the command line or through directives
embedded in your application source files. See the XL C/C++ Compiler Reference for
detailed descriptions and usage information for these and other compiler options.

Table 10. New or changed compiler options and directives

Option or directive Description

-qstrict Many suboptions have been added to the -qstrict option to
allow more control over optimizations and transformations
that violate strict program semantics. See “Performance and
optimization” on page 26 for more information.

-qshowmacros When used in conjunction with the -E option, the
-qshowmacros option replaces preprocessed output with
macro definitions. There are suboptions provided to control
the emissions of predefined and user-defined macros more
precisely.

38 XL C/C++: Getting Started

Table 10. New or changed compiler options and directives (continued)

Option or directive Description

-qreport When used together with compiler options that enable
automatic parallelization or vectorization, the -qreport
option now reports the number of streams in a loop and
produces information when loops cannot be SIMD
vectorized due to non-stride-one references.

-qsmp When -qsmp=omp is in effect, the additional functionality
of OpenMP API 3.0 is now available. For more information,
see “OpenMP 3.0” on page 36.

-qtimestamps This option can be used to remove timestamps from
generated binaries.

-qtls The thread local storage support has been enhanced to
include __attribute__((tls-model("string"))) where
string is one of local-exec, initial-exec, local-dynamic, or
global-dynamic.

-qinfo The suboptions als and noals have been added to the
qinfo option to report (or not report) possible violations of
the ANSI aliasing rule.

Enhancements added in Version 9.0
This section describes features and enhancements added to the compiler in Version
9.0.

C/C++ language-related updates
The default language level for C compilations changed, and new behavior was
introduced when doing arithmetic conversions with long long data types.

Default language level changed for C - extc99

The default -qlanglvl compiler option setting is extc99 when invoking the C
compiler with the xlc invocation. This change allows you to use C99 features and
headers without having to explicitly specify the extc99 suboption.

You might encounter issues with the following when compiling with the new
default -qlanglvl=extc99 setting:
v Pointers can be qualified with restrict in C99, so restrict can not be used as

an identifier.
v C99 treatment of long long data differs from the way long long data is handled

in C89.
v C99 header files define new macros: LLONG_MAX in limits.h, and va_copy in

stdarg.h.
v The value of macro __STDC_VERSION__ changes from 199409 to 19990.

To revert to previous xlc behavior, specify -qlanglvl=extc89 when invoking the
compiler.

Arithmetic conversions with long long data types

With XL C/C++ Version 9.0, compiler behavior changes when performing certain
arithmetic operations with long long data types.

Chapter 3. Migrating from earlier versions 39

Assume an arithmetic expression where:
v One operand has type long long int or long long, and,
v The other operand has type unsigned long int, but its value cannot be

represented in a long long int or long long.

Previous releases of XL C/C++ converted both operands to type long long.

The compiler now converts both operands into type unsigned long long int or
unsigned long long. This new behavior is consistent with GCC compiler behavior.

For more information, see "Integral and floating-point promotions" in the XL
C/C++ Language Reference.

Architecture and processor support
The -qarch and -qtune compiler options control the code generated by the
compiler. These compiler options adjust the instructions, scheduling, and other
optimizations to give the best performance for a specified target processor or range
of processors.

New default setting for -qtune

The new default -qtune setting is:
v -qtune=balanced

The -qtune=balanced suboption is new for this release, and becomes the default
-qtune setting when certain -qarch settings are specified. Using -qtune=balanced
instructs the compiler to tune generated code for optimal performance across a
range of recent processor architectures, including POWER6.

New support for POWER6 processors

XL C/C++ Version 9.0 expanded the list of -qarch and -qtune suboptions to
support the newly-available POWER6 processors.

The following -qarch and -qtune options are now available:
v -qarch=pwr6
v -qarch=pwr6e
v -qtune=pwr6

Performance and optimization
Many enhancements were made to assist with performance tuning and program
optimization.

Performance-related compiler options and directives

The entries in the following table describes new or changed compiler options and
directives.

Information presented here is just a brief overview. For more information about
these and other performance-related compiler options, refer to "Optimization and
tuning options" in the XL C/C++ Compiler Reference.

40 XL C/C++: Getting Started

Table 11. Performance-related compiler options and directives

Option or directive Description

-qalias= global|noglobal These new -qalias suboptions enable or disable the
application of language-specific aliasing rules across
compilation units during link time optimization.

-qalias= restrict|norestrict These new -qalias suboptions enable or disable
optimization for restrict qualified pointers. Specifying
-qalias=restrict will usually improve performance for
code that uses restrict qualified pointers. You can use
-qalias=norestrict to preserve compatibility with code
compiled with versions of the compiler previous to
V9.0.

-qnofdpr|-qfdpr Specifying the -qfdpr option instructs the compiler to
store optimization information in the created object file.
This information is used by the Feedback Directed
Program Restructuring (FDPR) performance-tuning
utility.

-qfloat= fenv|nofenv These new -qfloat suboptions inform the compiler if
code has a dependency on the floating-point hardware
environment, such as explicitly reading or writing the
floating-point status and control register. Specifying
-qfloat=nofenv indicates that there is no dependency
on the hardware environment, allowing the compiler to
perform aggressive optimizations.

-qfloat=
gcclongdouble|nogcclongdouble

These new -qfloat suboptions have effect only when
the -qldbl128 option is in effect. They instruct the
compiler to use either GCC-supplied or IBM-supplied
library functions for 128-bit long double operations.

-qfloat= hscmplx|nohscmplx Specifying -qfloat=hscmplx improves optimization of
operations involving complex division and complex
absolute values.

-qfloat= rngchk|norngchk Specifying -qfloat=rngchk enables range checking on
input arguments for software divide and inlined sqrt
operations. Specifying -qfloat=norngchk instructs the
compiler to skip range checking, allowing for better
performance in certain circumstances. Specifying the
-qnostrict compiler option sets -qfloat=norngchk.

-qipa=threads=
[auto|noauto|number]

This new -qipa suboption lets you specify how many
threads the compiler will assign to code generation
during the second IPA pass.

-qnoldbl128|-qldbl128 Specifying -qldbl128 increases the size of long double
types from 64 bits to 128 bits.

-qpdf The -qpdf option can now be used to provide
profile-directed feedback on specific objects. See "Object
level profile-directed feedback" in the XL C/C++
Optimization and Programming Guide for more
information.

-qsmp= threshold=n When -qsmp=auto is in effect, this new suboption lets
you specify the amount of work required in a loop
before the compiler will consider it for automatic
parallelization.

Chapter 3. Migrating from earlier versions 41

Table 11. Performance-related compiler options and directives (continued)

Option or directive Description

#pragma expected_value(param,
value)

Use the #pragma expected_value directive to specify a
value that a parameter passed in a function call is most
likely to take at run time. The compiler can use this
information to perform certain optimizations, such as
function cloning and inlining.

Built-in functions in Version 9.0
Some built-in functions were added in Version 9.0.

For more information on built-in functions provided by XL C/C++, see "Compiler
built-in functions" in the XL C/C++ Compiler Reference.

Conversion functions

These new functions convert long double data types from IBM style to GCC style.
v long double __ibm2gccldbl (long double);

v _Complex long double __ibm2gccldbl_cmplx (_Complex long double);

.

PowerPC cache control

The PowerPC architecture specifies the dcbst and dcbf cache copy instructions.
The following new built-in functions provide direct programmer access to these
instructions.
v void __dcbst(const void* addr); /* Data Cache Block Store */

v void __dcbf(const void* addr); /* Data Cache Block Flush */

POWER6 prefetch extensions and cache control

The POWER6 processor has cache control and stream prefetch extensions with
support for store stream prefetch and prefetch depth control. XL C/C++ provides
the following new built-in functions to provide direct programmer access to these
instructions.
v void __dcbfl(const void* addr); /* pwr6 - Data Cache Block Flush from

L1 data cache only */

v void __protected_unlimited_stream_set(unsigned int direction, const void*
addr, unsigned int ID); /* Supported by pwr5 and pwr6 */

v void __protected_unlimited_store_stream_set(unsigned int direction, const
void* addr, unsigned int ID); /* Supported by pwr6 */

v void __protected_store_stream_set(unsigned int direction, const void*
addr, unsigned int ID); /* Supported by pwr6 */

v void __protected_stream_count_depth(unsigned int unit_cnt, unsigned int
prefetch_depth, unsigned int ID); /* Supported by pwr6 */

Other new or changed compiler options
This section describes new and changed compiler options.

42 XL C/C++: Getting Started

You can specify compiler options on the command line or through directives
embedded in your application source files. See the XL C/C++ Compiler Reference for
detailed descriptions and usage information for these and other compiler options.

Table 12. Other new or changed compiler options

Option or directive Description

-C! Specifying the -C! compiler option removes comments from
preprocessed output.

-qcommon | -qnocommon With -qcommon in effect, uninitialized global variables are
allocated in the common section of the object file. When
-qnocommon is in effect, uninitialized global variables are
initialized to zero and allocated in the data section of the
object file.

-qoptdebug|-qnooptdebug When used with optimization levels of -O3 or higher, the
new -qoptdebug option instructs the compiler to produce
optimized pseudocode that can be read by a symbolic
debugger.

-qpack_semantic= ibm|gnu The -qpack_semantic option is a portability option that
instructs the compiler to use either IBM or GCC syntax and
semantics for the #pragma pack directive.

-qreport When used together with compiler options that enable
automatic parallelization or vectorization, the -qreport
option produces a pseudo-code listing showing how
program loops are parallelized and vectorized. The report
also provides diagnostic information if the compiler is not
able to parallelize or vectorize a given loop.

-qsaveopt|-qnosaveopt In previous releases, the -qsaveopt option stored the
command line options used to compile a file into the
resulting object file. In Version 9.0, the information stored in
the object file expanded to also include version and level
information for each compiler component invoked during
compilation.

-qsmp=stackcheck This new -qsmp suboption instructs the compiler to check
for stack overflow by slave threads at run time, and issue a
warning if the remaining stack size is less than the number
of bytes specified by the stackcheck option of the
XLSMPOPTS environment variable.

-qtemplatedepth=number -qtemplatedepth specifies the maximum number of
recursively-instantiated template specializations that the
compiler will process.

-qversion=verbose The -qversion option adds a new verbose suboption.
Specifying -qversion=verbose instructs the compiler to
display the version and level information for each compiler
component invoked during compilation.

Chapter 3. Migrating from earlier versions 43

44 XL C/C++: Getting Started

Chapter 4. Setting up and customizing XL C/C++

For complete prerequisite and installation information for XL C/C++, refer to
"Before installing" in the XL C/C++ Installation Guide.

Using custom compiler configuration files
You can customize compiler settings and options by modifying the default
configuration file or by creating your own.

You have the following options to customize compiler settings:
v The XL C/C++ compiler installation process creates a default compiler

configuration file. You can directly modify this configuration file to add default
options for specific needs. However, if you later apply updates to the compiler,
you must reapply all of your modifications to the newly installed configuration
file.

v You can create your own custom configuration file that either overrides or
complements the default configuration file. The compiler can recognize and
resolve compiler settings you specify in your custom configuration files together
with compiler settings specified in the default configuration file. Compiler
updates that might later affect settings in the default configuration file does not
affect the settings in your custom configuration files.

For more information, see "Using custom compiler configuration files" in the XL
C/C++ Compiler Reference.

Configuring compiler utilization tracking and reporting
In addition to the compiler configuration file, there is a separate configuration file
for the utilization tracking and reporting feature. Utilization tracking is disabled by
default, but you can enable it by modifying an entry in this configuration file.
Various other aspects of utilization tracking can also be configured using this file.

Although the compiler configuration file is separate from the utilization tracking
configuration file, it contains an entry that specifies the location of the utilization
tracking configuration file so that the compiler can find this file.

For more information about how to configure the utilization tracking and reporting
feature, see Tracking and reporting compiler usage in the XL C/C++ Compiler
Reference.

© Copyright IBM Corp. 1996, 2012 45

46 XL C/C++: Getting Started

Chapter 5. Developing applications with XL C/C++

C/C++ application development consists of repeating cycles of editing, compiling
and linking (by default a single step combined with compiling), and running.

Notes:

1. Before you can use the compiler, you must first ensure that XL C/C++ is
properly installed and configured. For more information, see the XL C/C++
Installation Guide.

2. To learn about writing C/C++ programs, refer to the XL C/C++ Language
Reference.

The compiler phases
A typical compiler invocation executes some or all of these activities in sequence.
For link time optimizations, some activities will be executed more than once
during a compilation. As each program runs, the results are sent to the next step in
the sequence.
1. Preprocessing of source files
2. Compilation, which may consist of the following phases, depending on what

compiler options are specified:
a. Front-end parsing and semantic analysis
b. High-level optimization
c. Low-level optimization
d. Register allocation
e. Final assembly

3. Assemble the assembly (.s) files, and the unpreprocessed assembler (.S) files
after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when
you compile your application. To see the amount of time the compiler spends in
each phase, specify -qphsinfo.

Editing C/C++ source files
To create C/C++ source programs, you can use any text editor available to your
system.

Source programs must be saved using a recognized file name suffix. See the “XL
C/C++ input and output files” on page 50 for a list of suffixes recognized by XL
C/C++.

For a C or C++ source program to be a valid program, it must conform to the
language definitions specified in the XL C/C++ Language Reference.

Compiling with XL C/C++
XL C/C++ is a command-line compiler. Invocation commands and options can be
selected according to the needs of a particular C/C++ application.

© Copyright IBM Corp. 1996, 2012 47

Invoking the compiler
The compiler invocation commands perform all necessary steps to compile C or
C++ source files, assemble any .s and .S files, and link the object files and libraries
into an executable program.

To compile a source program, use the basic invocation syntax shown below:

��
(1)

xlc
(2)

xlC
xlc++

� � input_file
compiler_option

��

Notes:

1 Basic invocation to compile C source code

2 Basic invocations to compile C++ source code

For most applications, you should compile with xlc, xlc++, or a thread safe
counterpart. You can use xlc++ to compile either C or C++ program source, but
compiling C++ files with xlc may result in link or run time errors because libraries
required for C++ code are not specified when the linker is called by the C
compiler.

Additional invocation commands are available to meet specialized compilation
needs, primarily to provide explicit compilation support for different levels and
extensions of the C or C++ language. See "Invoking the compiler" in the XL C/C++
Compiler Reference for more information about compiler invocation commands
available to you, including special invocations intended to assist developers
migrating from a GNU compilation environment to XL C/C++.

Compiling parallelized XL C/C++ applications
XL C/C++ provides thread-safe compiler invocation commands that you can use
when compiling parallelized applications for use in multiprocessor environments.

These invocations are similar to their corresponding base compiler invocations,
except that they link and bind compiled objects to thread-safe components and
libraries. The generic XL C/C++ thread-safe compiler invocations include:

v xlC_r
v xlc++_r
v xlc_r

XL C/C++ provides additional thread-safe invocations to meet specific compilation
requirements. See "Invoking the compiler" in the XL C/C++ Compiler Reference for
more information.

Note: Using any of these commands alone does not imply parallelization. For the
compiler to recognize OpenMP directives and activate parallelization, you must
also specify -qsmp compiler option. In turn, you should specify the -qsmp option
only in conjunction with one of these thread-safe invocation commands. When you
specify -qsmp, the driver links in the libraries specified on the smp libraries line in
the active stanza of the configuration file.

48 XL C/C++: Getting Started

For more information on parallelized applications see "Parallelizing your
programs" in the XL C/C++ Optimization and Programming Guide.

Specifying compiler options
Compiler options perform a variety of functions, such as setting compiler
characteristics, describing the object code to be produced, controlling the diagnostic
messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command-line with command-line compiler options
v In your source code using directive statements
v In a makefile
v In the stanzas found in a compiler configuration file
v Or by using any combination of these techniques

It is possible for option conflicts and incompatibilities to occur when multiple
compiler options are specified. To resolve these conflicts in a consistent fashion, the
compiler usually applies the following general priority sequence to most options:

1. Directive statements in your source file override command-line settings
2. Command-line compiler option settings override configuration file settings
3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a
command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options do not follow the priority sequence described above.

For example, the -I compiler option is a special case. The compiler searches any
directories specified with -I in the vac.cfg file before it searches the directories
specified with -I on the command-line. The option is cumulative rather than
preemptive.

See the XL C/C++ Compiler Reference for more information about compiler options
and their usage.

Other options with cumulative behavior are -R and -l (lowercase L).

You can also pass compiler options to the linker, assembler, and preprocessor. See
"Compiler options reference" in the XL C/C++ Compiler Reference for more
information about compiler options and how to specify them.

Reusing GNU C/C++ compiler options with gxlc and gxlc++
XL C/C++ includes various features to help you transition from GNU C/C++
compilers to XL C/C++, including the gxlc and gxlc++ commands.

Each of the gxlc and gxlc++ utilities accepts GNU C or C++ compiler options and
translates them into comparable XL C/C++ options. Both utilities use the XL
C/C++ options to create an xlc or xlc++ invocation command, which is then used
to invoke the compiler. These utilities are provided to help you reuse makefiles
created for applications previously developed with GNU C/C++. However, to fully
exploit the capabilities of XL C/C++, you should use the XL C/C++ invocation
commands and their associated options.

Chapter 5. Developing applications with XL C/C++ 49

The actions of gxlc and gxlc++ are controlled by the configuration file gxlc.cfg.
The GNU C/C++ options that have an XL C/C++ counterpart are shown in this
file. Not every GNU option has a corresponding XL C/C++ option. gxlc and
gxlc++ return warnings for input options that were not translated.

The gxlc and gxlc++ option mappings are modifiable. For information on using the
gxlc or gxlc++ configuration file, see "Reusing GNU C/C++ compiler options with
gxlc and gxlc++ " in the XL C/C++ Compiler Reference .

XL C/C++ input and output files
These file types are recognized by XL C/C++.

For detailed information about these and additional file types used by the
compiler, see "Types of input files" in the XL C/C++ Compiler Reference and "Types
of output files" in the XL C/C++ Compiler Reference.

Table 13. Input file types

Filename extension Description

.c C source files

.C, .cc, .cp, .cpp, .cxx, .c++ C++ source files

.i Preprocessed source files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

.so Shared object or library files

Table 14. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.d Make dependency file

.i Preprocessed source files

.lst Listing files

.o Object files

.s Assembler files

.so Shared object or library files

Linking your compiled applications with XL C/C++
By default, you do not need to do anything special to link an XL C/C++ program.
The compiler invocation commands automatically call the linker to produce an
executable output file.

For example, running the following command:
xlc++ file1.C file2.o file3.C

compiles file1.C and file3.C to produce the object files file1.o and file3.o,
then all object files (including file2.o) are submitted to the linker to produce one
executable.

50 XL C/C++: Getting Started

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.
xlc++ -c file1.C # Produce one object file (file1.o)
xlc++ -c file2.C file3.C # Or multiple object files (file1.o, file3.o)
xlc++ file1.o file2.o file3.o # Link object files with default libraries

For more information about compiling and linking your programs, see:
v "Linking" in the XL C/C++ Compiler Reference

v "Constructing a library" in the XL C/C++ Optimization and Programming Guide

Dynamic and static linking
XL C/C++ allows your programs to take advantage of the operating system
facilities for both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and
loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default. Dynamically linked programs take up less disk space and less virtual
memory if more than one program uses the routines in the shared libraries. During
linking, they do not require any special precautions to avoid naming conflicts with
library routines. They may perform better than statically linked programs if several
programs use the same shared routines at the same time. They also allow you to
upgrade the routines in the shared libraries without relinking.

Because this form of linking is the default, you need no additional options to turn
it on.

Static linking means that the code for all routines called by your program becomes
part of the executable file.

Statically linked programs can be moved to run on systems without the XL C/C++
runtime libraries. They may perform better than dynamically linked programs if
they make many calls to library routines or call many small routines. They do
require some precautions in choosing names for data objects and routines in the
program if you want to avoid naming conflicts with library routines. They also
may not work if you compile them on one level of the operating system and run
them on a different level of the operating system.

Running your compiled application
To run a program, enter the name of the program executable file together with any
run time arguments on the command line.

The default file name for the program executable file produced by the XL C/C++
compiler is a.out. You can select a different name with the -o compiler option.

You should avoid giving your program executable file the same name as system or
shell commands, such as test or cp, as you could accidentally execute the wrong
command. If you do decide to name your program executable file with the same
name as a system or shell command, you should execute your program by
specifying the path name to the directory in which your executable file resides,
such as ./test.

Chapter 5. Developing applications with XL C/C++ 51

Canceling execution

To suspend a running program, press the Ctrl+Z key while the program is in the
foreground. Use the fg command to resume running.

To cancel a running program, press the Ctrl+C key while the program is in the
foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and
behaviors of applications created with the XL C/C++ compiler. Other environment
variables do not control actual runtime behavior, but can have an impact on how
your applications will run.

For more information on environment variables and how they can affect your
applications at run time, see the XL C/C++ Installation Guide.

Running compiled applications on other systems

If you want to run an application developed with the XL C/C++ compiler on
another system that does not have the compiler installed, you will need to install a
runtime environment on that system.

You can obtain the latest XL C/C++ Runtime Environment PTF images, together
with licensing and usage information, from the XL C/C++ Support page at:

www.ibm.com/software/awdtools/xlcpp/support

XL C/C++ compiler diagnostic aids
XL C/C++ issues diagnostic messages when it encounters problems compiling
your application. You can use these messages and other information provided in
compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that
can help you resolve problems with your application, see the following topics in
the XL C/C++ Compiler Reference:
v "Compiler messages and listings"
v "Error checking and debugging options"
v "Listings, messages, and compiler information options"

Debugging compiled applications
You can use a symbolic debugger to debug applications compiled with XL C/C++.

Specifying the -g or -qlinedebug compiler options at compile time instructs the XL
C/C++ compiler to include debugging information in compiled output. For more
information debugging options, see "Error checking and debugging" in the XL
C/C++ Compiler Reference.

You can then use gdb or any other symbolic debugger to step through and inspect
the behavior of your compiled application.

Optimized applications pose special challenges when debugging. When debugging
highly optimized applications, you should consider using the -qoptdebug compiler

52 XL C/C++: Getting Started

 http://www.ibm.com/software/awdtools/xlcpp/support

option. For more information about optimizing your code, see "Optimizing your
applications" in the XL C/C++ Optimization and Programming Guide.

Determining what level of XL C/C++ is installed
When contacting software support for assistance, you will need to know what level
of XL C/C++ is installed on a particular machine.

To display the version and release level of the compiler you have installed on your
system, invoke the compiler with the -qversion compiler option.

For example, to obtain detailed version information, enter the following at the
command line:

xlc++ -qversion=verbose

Chapter 5. Developing applications with XL C/C++ 53

54 XL C/C++: Getting Started

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2012 55

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

56 XL C/C++: Getting Started

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2012. All rights reserved.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 57

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

58 XL C/C++: Getting Started

Index

Special characters
.a files 50
.c and .C files 50
.i files 50
.lst files 50
.mod files 50
.o files 50
.s files 50
.S files 50
.so files 50

Numerics
64-bit environment 7

A
archive files 50
assembler

source (.s) files 50
source (.S) files 50

B
basic example, described ix
built-in functions 17, 33, 42

C
C++0x

auto type deduction 23
C99 long long 23
C99 preprocessor features adopted in

C++0x 23
decltype 23
delegating constructors 23
explicit conversion operators 11
explicit instantiation declarations 23
extended friend declarations 23
inline namespace definitions 23
reference collapsing 11
rvalue references 11
scoped enumerations 11
static assertion 23
trailing return type 11
variadic templates 23

C1X
_Static_assert 13

code optimization 7
compilation

sequence of activities 47
compiler

controlling behavior of 49
invoking 48
running 48

compiler directives
new or changed 17, 30

compiler options
conflicts and incompatibilities 49

compiler options (continued)
new or changed 17, 30
specification methods 49

compiling
SMP programs 48

customization
for compatibility with GNU 3

D
debugger support 52

output listings 52
symbolic 9

debugging 52
debugging compiled applications 52
debugging information, generating 52
dynamic linking 51

E
editing source files 47
executable files 50
executing a program 51
executing the linker 51

F
files

editing source 47
input 50
output 50

G
GNU

compatibility with 3

I
input files 50
invocation commands 48
invoking a program 51
invoking the compiler 48

L
language standards 3
language support 3
level of XL C/C++, determining 53
libraries 50
linking

dynamic 51
static 51

linking process 50
listings 50

M
migrate 21
migration 21

source code 49
mod files 50
multiprocessor systems 8, 36

O
object files 50

creating 51
linking 51

OMP directives 36
OpenMP 8
optimization

programs 7
output files 50

P
parallelization 8, 36
performance

optimizing transformations 7
problem determination 52
programs

running 51

R
running the compiler 48
runtime

libraries 50
runtime environment 52
runtime options 52

S
shared memory parallelization 8, 36
shared object files 50
SMP

programs, compiling 48
SMP programs 8
source files 50
source-level debugging support 9
static linking 51
symbolic debugger support 9

T
tools 5

cleanpdf utility 6
configuration file utility 6
gxlc and gxlc++ utilities 5
mergepdf utility 6
new install configuration utility 6
new_install utility 6
resetpdf utility 6
showpdf utility 6

© Copyright IBM Corp. 1996, 2012 59

tools (continued)
xlc_configure 6

U
utilities 5

cleanpdf 6
gxlc and gxlc++ 5
mergepdf 6
new_install 6
resetpdf 6
showpdf 6
xlc_configure 6

V
vac.cfg file 49

X
xlc_configure 6

60 XL C/C++: Getting Started

����

Product Number: 5765-J03; 5725-C73

Printed in USA

SC14-7339-00

	Contents
	About this document
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL C/C++
	Commonality with other IBM compilers
	Hardware and operating system support
	A highly configurable compiler
	Language standards compliance
	Compatibility with GNU
	Source-code migration and conformance checking

	Libraries
	Tools, utilities, and commands
	Program optimization
	64-bit object capability
	Shared memory parallelization
	Diagnostic listings
	Symbolic debugger support

	Chapter 2. What's new for IBM XL C/C++ for Linux, V12.1 (Technology preview)
	Operating system support
	New C++0x features
	C1X features
	OpenMP 3.1
	Performance and optimization
	New diagnostic reports
	New built-in functions
	New or changed compiler options and pragma directives

	Chapter 3. Migrating from earlier versions
	Enhancements added in Version 11.1
	Operating system support
	Support for POWER7 processors
	New C++0x features
	Performance and optimization
	New diagnostic reports
	Utilization tracking and reporting tool
	New or changed compiler options and directives
	Built-in functions new for this release

	Enhancements added in Version 10.1
	Operating system support
	New C++0x features
	Other XL C/C++ language-related updates
	OpenMP 3.0
	Performance and optimization
	New or changed compiler options and directives

	Enhancements added in Version 9.0
	C/C++ language-related updates
	Architecture and processor support
	Performance and optimization
	Built-in functions in Version 9.0

	Other new or changed compiler options

	Chapter 4. Setting up and customizing XL C/C++
	Using custom compiler configuration files
	Configuring compiler utilization tracking and reporting

	Chapter 5. Developing applications with XL C/C++
	The compiler phases
	Editing C/C++ source files
	Compiling with XL C/C++
	Invoking the compiler
	Compiling parallelized XL C/C++ applications
	Specifying compiler options
	Reusing GNU C/C++ compiler options with gxlc and gxlc++

	XL C/C++ input and output files

	Linking your compiled applications with XL C/C++
	Dynamic and static linking

	Running your compiled application
	XL C/C++ compiler diagnostic aids
	Debugging compiled applications
	Determining what level of XL C/C++ is installed

	Notices
	Trademarks and service marks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	X

