
IBM XL C/C++ Advanced Edition for Linux, V9.0

Getting Started with XL C/C++

GC23-5891-00

���

IBM XL C/C++ Advanced Edition for Linux, V9.0

Getting Started with XL C/C++

GC23-5891-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

23.

First Edition

This edition applies to IBM XL C/C++ Advanced Edition for Linux, V9.0 (Program number 5724-S73) and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document v

Who should read this document v

How to use this document v

Conventions used in this document v

Related information viii

IBM XL C/C++ publications viii

Other IBM publications ix

Other publications ix

Technical support ix

How to send your comments x

Chapter 1. Introducing XL C/C++ 1

Commonality with other IBM compilers 1

Hardware and operating system support 1

A highly configurable compiler 1

Language standards compliance 2

Compatibility with GNU 2

Source-code migration and conformance checking 3

Libraries 3

Mathematical Acceleration Subsystem library . . 4

Basic Linear Algebra Subprograms 4

Tools and utilities 4

Program optimization 5

64-bit object capability 5

Shared memory parallelization 6

OpenMP directives 6

Diagnostic listings 6

Symbolic debugger support 7

Chapter 2. What’s new for IBM XL C/C++

Advanced Edition for Linux, V9.0 9

C/C++ language-related updates 9

Default language level changed for C - extc99 . . 9

Arithmetic conversions with long long data types 9

Architecture and processor support 10

New default setting for -qtune 10

New support for POWER6 processors 10

Performance and optimization 10

Performance-related compiler options and

directives 10

Built-in functions new for this release 12

Other new or changed compiler options 12

Chapter 3. Setting up and customizing

XL C/C++ 15

Using custom compiler configuration files 15

Determining what level of XL C/C++ is installed . . 15

Chapter 4. Developing applications

with XL C/C++ 17

The compiler phases 17

Editing C/C++ source files 17

Compiling with XL C/C++ 18

Invoking the compiler 18

Compiling parallelized XL C/C++ applications 18

Specifying compiler options 19

XL C/C++ input and output files 20

Linking your compiled applications with XL C/C++ 20

Compiling and linking in separate steps 21

Dynamic and static linking 21

Running your compiled application 21

Canceling execution 21

Setting runtime options 22

Running compiled applications on other systems 22

XL C/C++ compiler diagnostic aids 22

Debugging compiled applications 22

Notices 23

Trademarks and service marks 25

Industry standards 25

Index 27

© Copyright IBM Corp. 1998, 2007 iii

iv Getting Started with XL C/C++

About this document

This document contains overview and basic usage information for the IBM® XL

C/C++ Advanced Edition for Linux®, V9.0 compiler.

Who should read this document

This document is intended for C and C++ developers who are looking for

introductory overview and usage information for XL C/C++. It assumes that you

have some familiarity with command-line compilers, a basic knowledge of the C

and C++ programming language, and basic knowledge of operating system

commands. Programmers new to XL C/C++ can use this document to find

information on the capabilities and features unique to the XL C/C++ compiler.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and

C++ languages. Where there are differences between languages, these are indicated

through qualifying text and icons, as described in “Conventions used in this

document.”

Throughout this document, the xlc and xlc++ compiler invocations are used to

describe the actions of the compiler. You can, however, substitute other forms of

the compiler invocation command if your particular environment requires it, and

compiler option usage will remain the same unless otherwise specified.

While this document covers information on configuring the compiler environment,

and compiling and linking C or C++ applications using the XL C/C++ compiler, it

does not include the following topics:

v Compiler installation: see the XL C/C++ Installation Guide for information on

installing XL C/C++.

v Compiler options: see the XL C/C++ Compiler Reference for detailed information

on the syntax and usage of compiler options.

v The C or C++ programming languages: see the XL C/C++ Language Reference for

information on the syntax, semantics, and IBM implementation of the C or C++

programming languages.

v Programming topics: see the XL C/C++ Programming Guide for detailed

information on developing applications with XL C/C++, with a focus on

program portability and optimization.

Conventions used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

© Copyright IBM Corp. 1998, 2007 v

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable

names, compiler options and

directives.

If you specify -O3, the compiler

assumes -qhot=level=0. To prevent

all HOT optimizations with -O3, you

must specify -qnohot.

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

Make sure that you update the size

parameter if you return more than

the size requested.

monospace Programming keywords and

library functions, compiler built-in

functions, examples of program

code, command strings, or

user-defined names.

If one or two cases of a switch

statement are typically executed

much more frequently than other

cases, break out those cases by

handling them separately before the

switch statement.

Icons

All features described in this document apply to both C and C++ languages.

Where a feature is exclusive to one language, or where functionality differs

between languages, the following icons are used:

C

The text describes a feature that is supported in the C language only; or

describes behavior that is specific to the C language.

C++

The text describes a feature that is supported in the C++ language only; or

describes behavior that is specific to the C++ language.

Syntax diagrams

Throughout this document, diagrams illustrate XL C/C++ syntax. This section will

help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

vi Getting Started with XL C/C++

�� keyword

optional_argument
 ��

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma

comment directive.

��
 (1) (2) (3) (4) (5) (9) (10)

#

pragma

comment

(

compiler

)

date

timestamp

(6)

copyright

user

(7)

(8)

,

"

token_sequence

"

��

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

About this document vii

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:

compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an

optional character string.

8 A character string must follow the comma. The character string must be

enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct

according to the diagram shown above:

 #pragma

 comment(date)

 #pragma comment(user)

 #pragma comment(copyright,"This text will appear in the module")

Examples

The examples in this document, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

Related information

The following sections provide information on documentation related to XL

C/C++:

v “IBM XL C/C++ publications”

v “Other IBM publications” on page ix

v “Other publications” on page ix

IBM XL C/C++ publications

XL C/C++ provides product documentation in the following formats:

v README files

README files contain late-breaking information, including changes and

corrections to the product documentation. README files are located by default

in the XL C/C++ directory and in the root directory of the installation CD.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the XL C/C++ Installation Guide.

v Information center

The information center of searchable HTML files can be launched on a network

and accessed remotely or locally. Instructions for installing and accessing the

online information center are provided in the XL C/C++ Installation Guide. The

information center is also viewable on the Web at http://
publib.boulder.ibm.com/infocenter/lnxphelp/v9v111/index.jsp.

v PDF documents

viii Getting Started with XL C/C++

http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp
http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp

PDF documents are located by default in the /opt/ibmcmp/vac/9.0/doc/
LANG/pdf/ directory, where LANG is one of en_US, zh_CN, or ja_JP. The PDF

files are also available on the Web at http://www.ibm.com/software/awdtools/
xlcpp/library.

The following files comprise the full set of XL C/C++ product manuals:

 Table 2. XL C/C++ PDF files

Document title

PDF file

name Description

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Installation Guide,

GC23-5893-00

install.pdf Contains information for installing XL C/C++

and configuring your environment for basic

compilation and program execution.

Getting Started with IBM

XL C/C++ Advanced

Edition for Linux, V9.0,

GC23-5891-00

getstart.pdf Contains an introduction to the XL C/C++

product, with information on setting up and

configuring your environment, compiling and

linking programs, and troubleshooting

compilation errors.

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Compiler Reference,

SC23-5889-00

compiler.pdf Contains information about the various

compiler options, pragmas, macros,

environment variables, and built-in functions,

including those used for parallel processing.

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Language Reference,

SC23-5892-00

langref.pdf Contains information about the C and C++

programming languages, as supported by IBM,

including language extensions for portability

and conformance to non-proprietary standards.

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Programming Guide,

SC23-5890-00

proguide.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls with Fortran code,

library development, application optimization

and parallelization, and the XL C/C++

high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe

Reader, you can download it (subject to license terms) from the Adobe Web site

at http://www.adobe.com.

More documentation related to XL C/C++ including redbooks, white papers,

tutorials, and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/xlcpp/library

Other IBM publications

v ESSL for Linux on POWER V4.2 Guide and Reference, SA22-7904, available at

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

Other publications

v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support

Additional technical support is available from the XL C/C++ Support page at

http://www.ibm.com/software/awdtools/xlcpp/support. This page provides a

portal with search capabilities to a large selection of technical support FAQs and

other support documents.

About this document ix

http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.adobe.com
http://www.ibm.com/software/awdtools/xlcpp/library
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/software/awdtools/xlcpp/support

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at

http://www.ibm.com/software/awdtools/xlcpp.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

C/C++ documentation, send your comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the document, the part number of the document,

the version of XL C/C++, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

x Getting Started with XL C/C++

http://www.ibm.com/software/awdtools/xlcpp

Chapter 1. Introducing XL C/C++

IBM XL C/C++ Advanced Edition for Linux, V9.0 is an advanced,

high-performance compiler that can be used for developing complex,

computationally intensive programs, including interlanguage calls with Fortran

programs.

This section discusses the features of the XL C/C++ compiler at a high level. It is

intended for people who are evaluating the compiler, and for new users who want

to find out more about the product.

Commonality with other IBM compilers

XL C/C++, together with XL C and XL Fortran, comprise the family of XL

compilers.

IBM XL C/C++ Advanced Edition for Linux, V9.0 is part of a larger family of IBM

C, C++, and Fortran compilers.

These compilers are derived from a common code base that shares compiler

function and optimization technologies on a variety of platforms and programming

languages, such as AIX®, i5/OS®, selected Linux distributions, z/OS®, and z/VM®

operating systems. The common code base, along with compliance with

international programming language standards, helps support consistent compiler

performance and ease of program portability across multiple operating systems

and hardware platforms.

Hardware and operating system support

V9.0 of XL C/C++ supports several Linux distributions. See the README file and

"Before installing XL C/C++" in the XL C/C++ Installation Guide for a complete list

of requirements.

The compiler, its libraries, and its generated object programs will run on

POWER3™, POWER4™, POWER5™, POWER5+™, POWER6™, PowerPC®, and

PowerPC 970 systems with the required software and disk space.

To take maximum advantage of the various supported hardware configurations,

the compiler provides options to performance-tune applications specifically to the

type of hardware that will be used to execute your compiled applications.

A highly configurable compiler

XL C/C++ offers you a wealth of features to let you tailor the compiler to your

own unique compilation requirements.

Compiler invocation commands

XL C/C++ provides several different commands that you can use to invoke

the compiler, for example, xlC, xlc++, and xlc. Each invocation command is

unique in that it instructs the compiler to tailor compilation output to meet

a specific language level specification. Compiler invocation commands are

provided to support all standardized C/C++ language levels, and many

popular language extensions as well.

© Copyright IBM Corp. 1998, 2007 1

The compiler also provides corresponding ″_r″ versions of most invocation

commands, for example, xlc_r and xlC_r. The ″_r″ invocations instruct the

compiler to link and bind object files to thread safe components and

libraries, and produce thread safe object code for compiler-created data and

procedures.

 For more information about XL C/C++ compiler invocation commands, see

″Invoking the compiler″ in the XL C/C++ Compiler Reference.

Compiler options

You can choose from a large selection of compiler options to control

compiler behavior. Different categories of options help you to debug your

applications, optimize and tune application performance, select language

levels and extensions for compatibility with non-standard features and

behaviors supported by other C or C++ compilers, and perform many

other common tasks that would otherwise require changing the source

code.

 XL C/C++ lets you specify compiler options through a combination of

environment variables, compiler configuration files, command line options,

and compiler directive statements embedded in your program source.

 For more information about XL C/C++ compiler options, see ″Compiler

options reference″ in the XL C/C++ Compiler Reference.

Custom compiler configuration files

The installation process creates a default compiler configuration file

containing stanzas that define compiler option default settings.

 Your compilation needs may frequently call for specifying compiler option

settings other than the default settings provided by XL C/C++. If so, you

can use makefiles to define your compiler option settings, or alternatively,

you can create custom configuration files to define your own sets of

frequently used compiler option settings.

 See “Using custom compiler configuration files” on page 15 for more

information.

Language standards compliance

The compiler supports the following programming language specifications for

C/C++:

v ISO/IEC 9899:1999 (C99)

v ISO/IEC 9899:1990 (referred to as C89)
v ISO/IEC 14882:2003 (referred to as Standard C++)

v ISO/IEC 14882:1998, the first official specification of the language (referred

to as C++98)

In addition to the standardized language levels, XL C/C++ supports language

extensions, including:
v OpenMP V2.5 extensions to support portable parallelized programming

v Language extensions to support vector programming

v A subset of GNU C and C++ language extensions

Compatibility with GNU

XL C/C++ supports a subset of the GNU compiler command options to facilitate

porting applications developed with gcc and g++.

2 Getting Started with XL C/C++

This support is available when the gxlc or gxlc++ invocation command is used

together with select GNU compiler options. Where possible, the compiler maps

GNU options to their XL C/C++ compiler option counterparts before invoking the

compiler.

These invocation commands use a plain text configuration file to control

GNU-to-XL C/C++ option mappings and defaults. You can customize this

configuration file to better meet the needs of any unique compilation requirements

you may have. See ″Reusing GNU C/C++ compiler options with gxlc and gxlc++″

in the XL C/C++ Compiler Reference for more information.

XL C/C++ uses GNU C and GNU C++ header files together with the GNU C and

C++ runtime libraries to produce code that is binary-compatible with that

produced by the GNU Compiler Collection (GCC). Portions of an application can

be built with XL C/C++ and combined with portions built with GCC to produce

an application that behaves as if it had been built solely with GCC.

To achieve binary compatibility with GCC-compiled code, a program compiled

with XL C/C++ includes the same headers as those used by a GNU compiler

residing on the same system. To ensure that the proper versions of headers and

runtime libraries are present on the system, the prerequisite GCC compiler must be

installed before installing XL C/C++.

Some additional noteworthy points about this relationship are:
v IBM built-in functions coexist with GNU C built-ins.

v Compilation of C and C++ programs uses the GNU C and GNU C++

header files.

v Compilation uses the GNU assembler for assembler input files.

v Compiled C code is linked to the GNU C runtime libraries.

v Compiled C++ code is linked to the GNU C and GNU C++ runtime

libraries.

v Debugging uses the GNU debugger, gdb

Source-code migration and conformance checking

XL C/C++ helps protect your investment in your existing C/C++ source code by

providing compiler invocation commands that instruct the compiler to compile

your application to a specific language level. You can also use the -qlanglvl

compiler option to specify a given language level, and the compiler will issue

warnings, errors, and severe error messages if language or language extension

elements in your program source do not conform to that language level.

See "-qlanglvl" in the XL C/C++ Compiler Reference for more information.

Libraries

XL C/C++ ships with the following libraries:

v SMP Runtime Library supports both explicit and automated parallel processing.

v Mathematical Acceleration Subsystem (MASS) library of tuned mathematical

intrinsic functions, for 32-bit and 64-bit modes.

v Basic Linear Algebra Subprograms (BLAS) library of tuned algebraic functions.

v

C++

C++ Runtime Library contains support routines needed by the

compiler.

Chapter 1. Introducing XL C/C++ 3

Mathematical Acceleration Subsystem library

The Mathematical Acceleration Subsystem (MASS) library consists of scalar and

vector mathematical intrinsic functions tuned specifically for optimum performance

on supported processor architectures. You can choose a MASS library to support

high-performance computing on a broad range of processors, or you can select a

library tuned to support a specific processor family.

The MASS library functions support both 32-bit and 64-bit compilation modes, are

thread safe, and offer improved performance over the default libm math library

routines. They are called automatically when you request specific levels of

optimization for your application. You can also make explicit calls to MASS library

functions regardless of whether optimization options are in effect or not.

See "Using the Mathematical Acceleration Subsystem" in the XL C/C++

Programming Guide for more information.

Basic Linear Algebra Subprograms

The Basic Linear Algebra Subprograms (BLAS) set of high-performance algebraic

functions are shipped in the libxlopt library. These functions let you:

v Compute the matrix-vector product for a general matrix or its transpose.

v Perform combined matrix multiplication and addition for general matrices or

their transposes.

For more information about using the BLAS functions, see "Using the Basic Linear

Algebra Subprograms" in the XL C/C++ Programming Guide.

Tools and utilities

new_install

After you install IBM XL C/C++ Advanced Edition for Linux, V9.0,

running this utility will configure the compiler for use on your system.

vac_configure

Use this utility to create additional compiler configuration files that you

can then modify to contain your own custom sets of compiler option

default settings.

cleanpdf command

A command related to profile-directed feedback (PDF), cleanpdf removes

all profiling information from the directory to which profile-directed

feedback data is written.

mergepdf command

A command related to profile-directed feedback (PDF), mergepdf provides

the ability to weight the importance of two or more PDF records when

combining them into a single record. The PDF records must be derived

from the same executable.

resetpdf command

The current behavior of the cleanpdf command is the same as the resetpdf

comman,d and is retained for compatibility with earlier releases on other

platforms.

showpdf command

The showpdf command displays the call and block counts for all

procedures executed in a profile-directed feedback training run

(compilation under the options -qpdf1 and -qshowpdf).

4 Getting Started with XL C/C++

gxlc and gxlc++ utilities

The gxlc and gxlc++ invocations translate GNU C or GNU C++ invocation

commands into corresponding xlc or xlc++ commands before invoking the

IBM XL C/C++ Advanced Edition for Linux, V9.0 compiler. The purpose

of these utilities is to minimize the number of changes to makefiles used

for existing applications built with the GNU compilers and to facilitate the

transition to IBM XL C/C++ Advanced Edition for Linux, V9.0.

Program optimization

XL C/C++ provides several compiler options that can help you control the

optimization of your programs. With these options, you can:

v Select different levels of compiler optimizations

v Control optimizations for loops, floating point, and other types of operations

v Optimize a program for a particular class of machines or for a very specific

machine configuration, depending on where the program will run

Optimizing transformations can give your application better overall execution

performance. C/C++ provides a portfolio of optimizing transformations tailored to

various supported hardware. These transformations can:

v Reduce the number of instructions executed for critical operations.

v Restructure generated object code to make optimal use of the PowerPC

architecture.

v Improve the usage of the memory subsystem.

v Exploit the ability of the architecture to handle large amounts of shared memory

parallelization.

Significant performance improvements are possible with relatively little

development effort because the compiler is capable of sophisticated program

analysis and transformation. Moreover, XL C/C++ enables programming models,

such as OpenMP, which allow you to write high-performance parallel code.

For more information, see:

v "Optimizing your applications" in the XL C/C++ Programming Guide

v ″Optimization and tuning options″ in the XL C/C++ Compiler Reference

v ″Compiler built-in functions″ in the XL C/C++ Compiler Reference

64-bit object capability

The XL C/C++ compiler’s 64-bit object capability addresses increasing demand for

larger storage requirements and greater processing power. The Linux operating

system provides an environment that allows you to develop and execute programs

that exploit 64-bit processors through the use of 64-bit address spaces.

To support larger executables that can be fit within a 64-bit address space, a

separate 64-bit object form is used. The linker binds these objects to create 64-bit

executables. Objects that are bound together must all be of the same object format.

The following scenarios are not permitted and will fail to load, or execute, or both:

v A 64-bit object or executable that has references to symbols from a 32-bit library

or shared library

v A 32-bit object or executable that has references to symbols from a 64-bit library

or shared library

v A 64-bit executable that explicitly attempts to load a 32-bit module

Chapter 1. Introducing XL C/C++ 5

v A 32-bit executable that explicitly attempts to load a 64-bit module

XL C/C++ supports 64-bit mode mainly through the use of the -q64 and -qarch

compiler options. This combination determines the bit mode and instruction set for

the target architecture.

For more information, see "Using 32-bit and 64-bit modes" in the XL C/C++

Programming Guide.

Shared memory parallelization

XL C/C++ supports application development for multiprocessor system

architectures. You can use any of the following methods to develop your

parallelized applications with XL C/C++:
v Directive-based shared memory parallelization

v Instructing the compiler to automatically generate shared memory

parallelization

v Message passing based shared or distributed memory parallelization (MPI)

For more information, see Parallelizing your programs in the XL C/C++

Programming Guide.

OpenMP directives

 OpenMP directives are a set of API-based commands supported by XL C/C++ and

many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a

particular loop. The existence of the directives in the source removes the need for

the compiler to perform any parallel analysis on the parallel code. OpenMP

directives requires the presence of Pthread libraries to provide the necessary

infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:
1. Clauses and directives are available for scoping variables. Frequently,

variables should not be shared; that is, each processor should have its

own copy of the variable.

2. Work sharing directives specify how the work contained in a parallel

region of code should be distributed across the SMP processors.

3. Directives are available to control synchronization between the processors.

XL C/C++ supports the OpenMP API Version 2.5 specification.

For more information, see:

v "Optimizing your applications" in the XL C/C++ Programming Guide

v www.openmp.org

Diagnostic listings

The compiler output listing can provide important information to help you

develop and debug your applications more efficiently.

6 Getting Started with XL C/C++

http://www.openmp.org

Listing information is organized into optional sections that you can include or

omit. For more information about the applicable compiler options and the listing

itself, refer to ″Compiler messages and listings″ in the XL C/C++ Compiler Reference.

Symbolic debugger support

You can instruct XL C/C++ to include debugging information in your compiled

objects. That information can be examined by gdb or any other symbolic debugger

to help you debug your programs.

Chapter 1. Introducing XL C/C++ 7

8 Getting Started with XL C/C++

Chapter 2. What’s new for IBM XL C/C++ Advanced Edition for

Linux, V9.0

This section describes new features and enhancements in IBM XL C/C++

Advanced Edition for Linux, V9.0.

C/C++ language-related updates

This release changes the default language level for C compilations, and introduces

new behavior when doing arithmetic conversions with long long data types.

Default language level changed for C - extc99

The default -qlanglvl compiler option setting is now extc99 when invoking the C

compiler with the xlc invocation. This change will allow you to use C99 features

and headers without having to explicitly specify the extc99 suboption.

You might encounter issues with the following when compiling with the new

default -qlanglvl=extc99 setting:

v Pointers can be qualified with restrict in C99, so restrict can not be used as an

identifier.

v C99 treatment of long long data differs from the way long long data is handled

in C89.

v C99 header files define new macros: LLONG_MAX in limits.h, and va_copy in

stdarg.h.

v The value of macro __STD_VERSION__ changes from 199409 to 19990.

To revert to previous xlc behavior, specify -qlanglvl=extc89 when invoking the

compiler.

Arithmetic conversions with long long data types

With this release of XL C/C++ V9.0, compiler behavior changes when performing

certain arithmetic operations with long long data types.

Assume an arithmetic expression where:

v One operand has type long long int or long long, and,

v The other operand has type unsigned long int, but its value cannot be

represented in a long long int or long long.

Previous releases of XL C/C++ will convert both operands to type long long.

Starting with this release, the compiler will now convert both operands into type

unsigned long long int or unsigned long long. This new behavior is consistent

with GCC compiler behavior.

For more information, see Integral and floating-point promotions in the XL C/C++

Language Reference.

© Copyright IBM Corp. 1998, 2007 9

Architecture and processor support

The -qarch and -qtune compiler options control the code generated by the

compiler. These compiler options adjust the instructions, scheduling, and other

optimizations to give the best performance for a specified target processor or range

of processors.

New default setting for -qtune

The new default -qtune settings is:
v -qtune=balanced

The -qtune=balanced suboption is new for this release, and becomes the default

-qtune setting when certain -qarch settings are specified. Using -qtune=balanced

instructs the compiler to tune generated code for optimal performance across a

range of recent processor architectures, including POWER6.

New support for POWER6 processors

XL C/C++ 9.0 expands the list of -qarch and -qtune suboptions to support the

newly-available POWER6 processors.

The following -qarch and -qtune options are now available:
v -qarch=pwr6

v -qarch=pwr6e

v -qtune=pwr6

The -qipa compiler option also adds a new architecture cloning suboption to

support interprocedural analysis (IPA) optimizations on POWER6 processors:

v -qipa=clonearch=pwr6

Performance and optimization

Many new features and enhancements fall into the category of performance and

optimization tuning.

Performance-related compiler options and directives

The entries in the following table describes new or changed compiler options and

directives.

Information presented here is just a brief overview. For more information about

these and other performance-related compiler options, refer to Optimization and

tuning options in the XL C/C++ Compiler Reference.

 Table 3. Performance-related compiler options and directives

Option/directive Description

-qalias= global|noglobal These new -qalias suboptions enable or disable the

application of language-specific aliasing rules across

compilation units during link time optimization.

10 Getting Started with XL C/C++

Table 3. Performance-related compiler options and directives (continued)

Option/directive Description

-qalias= restrict|norestrict These new -qalias suboptions enable or disable

optimization for restrict qualified pointers. Specifying

-qalias=restrict will usually improve performance for

code that uses restrict qualified pointers. You can use

-qalias=norestrict to preserve compatibility with code

compiled with versions of the compiler previous to

V9.0.

-qnofdpr|-qfdpr Specifying the -qfdpr option instructs the compiler to

store optimization information in the created object file.

This information is used by the Feedback Directed

Program Restructuring (FDPR) performance-tuning

utility.

-qfloat= fenv|nofenv These new -qfloat suboptions inform the compiler if

code has a dependency on the floating-point hardware

environment, such as explicitly reading or writing the

floating-point status and control register. Specifying

-qfloat=nofenv indicates that there is no dependency

on the hardware environment, allowing the compiler to

perform aggressive optimizations.

-qfloat=

gcclongdouble|nogcclongdouble

These new -qfloat suboptions have effect only when

the -qldbl128 option is in effect. They instruct the

compiler to use either GCC-supplied or IBM-supplied

library functions for 128-bit long double operations.

-qfloat= hscmplx|nohscmplx Specifying -qfloat=hscmplx improves optimization of

operations involving complex division and complex

absolute values.

-qfloat= rngchk|norngchk Specifying -qfloat=rngchk enables range checking on

input arguments for software divide and inlined sqrt

operations. Specifying -qfloat=norngchk instructs the

compiler to skip range checking, allowing for better

performance in certain circumstances. Specifying the

-qnostrict compiler option sets -qfloat=norngchk.

-qipa=clonearch=pwr6 The -qipa=clonearch compiler option now includes a

new pwr6 suboption to support interprocedural

analysis (IPA) optimizations on POWER6 processors.

-qipa=threads=

[auto|noauto|number]

This new -qipa suboption lets you specify how many

threads the compiler will assign to code generation

during the second IPA pass.

-qnoldbl128|-qldbl128 Specifying -qldbl128 increases the size of long double

types from 64 bits to 128 bits.

-qpdf The -qpdf option can now be used to provide

profile-directed feedback on specific objects. See "Object

level profile-directed feedback" in the XL C/C++

Programming Guide for more information.

-qsmp= threshold=n When -qsmp=auto is in effect, this new suboption lets

you specify the amount of work required in a loop

before the compiler will consider it for automatic

parallelization.

#pragma expected_value(param,

value)

Use the #pragma expected_value directive to specify a

value that a parameter passed in a function call is most

likely to take at run time. The compiler can use this

information to perform certain optimizations, such as

function cloning and inlining.

Chapter 2. What’s new for IBM XL C/C++ Advanced Edition for Linux, V9.0 11

Built-in functions new for this release

This section lists built-in functions that are new for this release. For more

information on built-in functions provided by XL C/C++, see "Compiler built-in

functions" in the XL C/C++ Compiler Reference.

Conversion functions

These new functions convert long double data types from IBM style to GCC style.

v long double __ibm2gccldbl (long double);

v _Complex long double __ibm2gccldbl_cmplx (_Complex long double);

PowerPC cache control

The PowerPC architecture specifies the dcbst and dcbf cache copy instructions.

The following new built-in functions provide direct programmer access to these

instructions.

v void __dcbst(const void* addr); /* Data Cache Block Store */

v void __dcbf(const void* addr); /* Data Cache Block Flush */

POWER6 prefetch extensions and cache control

The POWER6 processor has cache control and stream prefetch extensions with

support for store stream prefetch and prefetch depth control. XL C/C++ provides

the following new built-in functions to provide direct programmer access to these

instructions.

v void __dcbfl(const void* addr); /* pwr6 - Data Cache Block Flush from

L1 data cache only */

v void __protected_unlimited_stream_set(unsigned int direction, const void*

addr, unsigned int ID); /* Supported by pwr5 and pwr6 */

v void __protected_unlimited_store_stream_set(unsigned int direction, const

void* addr, unsigned int ID); /* Supported by pwr6 */

v void __protected_store_stream_set(unsigned int direction, const void*

addr, unsigned int ID); /* Supported by pwr6 */

v void __protected_stream_count_depth(unsigned int unit_cnt, unsigned int

prefetch_depth, unsigned int ID); /* Supported by pwr6 */

Other new or changed compiler options

Compiler options can be specified on the command line or through directives

embedded in your application source files. See the XL C/C++ Compiler Reference for

detailed descriptions and usage information for these and other compiler options.

 Table 4. Other new or changed compiler options

Option/directive Description

-C! Specifying the -C! compiler option removes comments from

preprocessed output.

-qcommon | -qnocommon With -qcommon in effect, uninitialized global variables are

allocated in the common section of the object file. When

-qnocommon is in effect, uninitialized global variables are

initialized to zero and allocated in the data section of the

object file.

12 Getting Started with XL C/C++

Table 4. Other new or changed compiler options (continued)

Option/directive Description

-qoptdebug|-qnooptdebug When used with optimization levels of -O3 or higher, the

new -qoptdebug option instructs the compiler to produce

optimized pseudocode that can be read by a symbolic

debugger.

-qpack_semantic= ibm|gnu The -qpack_semantic option is a portability option that

instructs the compiler to use either IBM or GCC syntax and

semantics for the #pragma pack directive.

-qreport When used together with compiler options that enable

automatic parallelization or vectorization, the -qreport

option now produces a pseudo-code listing showing how

program loops are parallelized and vectorized. The report

also provides diagnostic information if the compiler is not

able to parallelize or vectorize a given loop.

-qsaveopt|-qnosaveopt In previous releases, the -qsaveopt option stored the

command line options used to compile a file into the

resulting object file. In this release, the information stored

in the object file is expanded to also include version and

level information for each compiler component invoked

during compilation.

-qsmp=stackcheck This new -qsmp suboption instructs the compiler to check

for stack overflow by slave threads at run time, and issue a

warning if the remaining stack size is less than the number

of bytes specified by the stackckeck option of the

XLSMPOPTS environment variable.

-qtemplatedepth=number -qtemplatedepth specifies the maximum number of

recursively-instantiated template specializations that the

compiler will process.

-qversion=verbose The -qversion option adds a new verbose suboption.

Specifying -qversion=verbose instructs the compiler to

display the version and level information for each compiler

component invoked during compilation.

Chapter 2. What’s new for IBM XL C/C++ Advanced Edition for Linux, V9.0 13

14 Getting Started with XL C/C++

Chapter 3. Setting up and customizing XL C/C++

For complete prerequisite and installation information, refer to the XL C/C++

Installation Guide.

Using custom compiler configuration files

A default compiler configuration file is created during XL C/C++ compiler

installation, and you can directly modify this configuration file to add default

options for specific needs. However, if you later apply updates to the compiler,

you will also need to reapply all of your modifications to the newly installed

configuration file.

You can avoid this by creating your own custom compiler configuration files. The

compiler now has the ability to recognize and resolve compiler settings you specify

in your custom configuration files together with compiler settings specified in the

default configuration file.

If you instruct the compiler to use a custom configuration file, the compiler will

examine and process the settings in that custom configuration file before looking at

settings in the default system configuration file. Compiler updates that may later

affect settings in the default configuration file will not affect the settings in your

custom configuration files.

See "Using custom compiler configuration files" in the XL C/C++ Compiler Reference

for more information.

Determining what level of XL C/C++ is installed

If contacting software support for assistance, you will need to know what level of

XL C/C++ is installed on a particular machine.

To display the version and release level of the compiler you have installed on your

system, invoke the compiler with the -qversion compiler option.

For example, to obtain detailed version information, enter the following at the

command line:
xlc++ -qversion=verbose

© Copyright IBM Corp. 1998, 2007 15

16 Getting Started with XL C/C++

Chapter 4. Developing applications with XL C/C++

Basic C/C++ application development consists of repeating cycles of editing,

compiling and linking (by default a single step combined with compiling), and

running.

Note:

1. Before you can use the compiler, you must first ensure that XL C/C++ is

properly installed and configured. For more information see the XL C/C++

Installation Guide.

2. To learn about writing C/C++ programs, refer to the XL C/C++ Language

Reference.

The compiler phases

A typical compiler invocation executes some or all of the following activities in

sequence. For link time optimizations, some activities will be executed more than

once during a compilation. As each program runs, the results are sent to the next

step in the sequence.

1. Preprocessing of source files

2. Compilation, which may consist of the following phases, depending on

what compiler options are specified:

a. Front-end parsing and semantic analysis

b. High-level optimization

c. Low-level optimization

d. Register allocation

e. Final assembly
3. Program assembly for .s files and for .S files after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when

you compile your application. To see the amount of time the compiler spends in

each phase, specify -qphsinfo.

Editing C/C++ source files

To create C/C++ source programs, you can use any text editor available to your

system. Source programs must be saved using a recognized file name suffix. See

the “XL C/C++ input and output files” on page 20 for a list of suffixes recognized

by XL C/C++.

For a C or C++ source program to be a valid program, it must conform to the

language definitions specified in the XL C/C++ Language Reference.

© Copyright IBM Corp. 1998, 2007 17

Compiling with XL C/C++

Invoking the compiler

To compile a source program, use the basic invocation syntax shown below:

��

(1)

xlc

(2)

xlC

xlc++

�

�

input_file

compiler_option

��

Notes:

1 Basic invocation to compile C source code.

2 Basic invocations to compile C++ source code

The compiler invocation commands perform all necessary steps to compile C or

C++ source files, assemble any .s and .S files, and link the object files and libraries

into an executable program.

For new C or C++ application work, you should compile with xlC, xlc++, or a

thread safe counterpart. Both xlC and xlc++ will compile either C or C++ program

source, but compiling C++ files with xlc may result in link or run time errors

because libraries required for C++ code are not specified when the linker is called

by the C compiler.

Additional invocation commands are available to meet specialized compilation

needs, primarily to provide explicit compilation support for different levels and

extensions of the C or C++ language. See ″Invoking the Compiler″ in the XL C/C++

Compiler Reference for more information about compiler invocation commands

available to you, including special invocations intended to assist developers

migrating from a GNU compilation environment to XL C/C++.

Compiling parallelized XL C/C++ applications

XL C/C++ provides thread safe compiler invocation commands that you can use

when compiling parallelized applications for use in multiprocessor environments.

These invocations are similar to their corresponding base compiler invocations,

except that they link and bind compiled objects to thread safe components and

libraries.

The generic XL C/C++ thread safe compiler invocations include:
v xlC_r

v xlc++_r

v xlc_r

XL C/C++ provides additional thread safe invocations to meet specific compilation

requirements. See ″Invoking the Compiler″ in the XL C/C++ Compiler Reference for

more information.

Note: Using any of these commands alone does not imply parallelization. For the

compiler to recognize OpenMP directives and activate parallelization, you

18 Getting Started with XL C/C++

must also specify -qsmp compiler option. In turn, you should specify the

-qsmp option only in conjunction with one of these thread safe invocation

commands. When you specify -qsmp, the driver links in the libraries

specified on the smp libraries line in the active stanza of the configuration

file.

Specifying compiler options

Compiler options perform a variety of functions, such as setting compiler

characteristics, describing the object code to be produced, controlling the diagnostic

messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command-line with command-line compiler options

v In your source code using directive statements

v In a makefile

v In the stanzas found in a compiler configuration file

v Or by using any combination of these techniques

It is possible for option conflicts and incompatibilities to occur when multiple

compiler options are specified. To resolve these conflicts in a consistent fashion, the

compiler usually applies the following general priority sequence to most options:
1. Directive statements in your source file override command-line settings

2. Command-line compiler option settings override configuration file settings

3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a

command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options do not follow the priority sequence described above.

For example, the -I compiler option is a special case. The compiler searches

any directories specified with -I in the vac.cfg file before it searches the

directories specified with -I on the command-line. The option is cumulative

rather than preemptive.

See the XL C/C++ Compiler Reference for more information about compiler

options and their usage.

Other options with cumulative behavior are -R and -l (lowercase L).

You can also pass compiler options to the linker, assembler, and preprocessor. See

″Compiler options reference″ in the XL C/C++ Compiler Reference for more

information about compiler options and how to specify them.

Reusing GNU C/C++ compiler options with gxlc and gxlc++

XL C/C++ includes various features to help you transition from GNU C/C++

compilers to XL C/C++. Among these features are the gxlc and gxlc++ utilities.

Each of the gxlc and gxlc++ utilities accepts GNU C or C++ compiler options and

translates them into comparable XL C/C++ options. Both utilities use the XL

C/C++ options to create an xlc or xlc++ invocation command, which is then used

to invoke the compiler. These utilities are provided to help you reuse makefiles

Chapter 4. Developing applications with XL C/C++ 19

created for applications previously developed with GNU C/C++. However, to fully

exploit the capabilities of XL C/C++, you should use the XL C/C++ invocation

commands and their associated options.

The actions of gxlc and gxlc++ are controlled by the configuration file gxlc.cfg.

The GNU C/C++ options that have an XL C/C++ counterpart are shown in this

file. Not every GNU option has a corresponding XL C/C++ option. gxlc and

gxlc++ return warnings for input options that were not translated.

 The gxlc and gxlc++ option mappings are modifiable. For information on using the

gxlc or gxlc++ configuration file, see Reusing GNU C/C++ compiler options with

gxlc and gxlc++ in the XL C/C++ Compiler Reference.

XL C/C++ input and output files

The file types listed below are recognized by XL C/C++. For detailed information

about these and additional file types used by the compiler, see ″Types of input

files″ and ″Types of output files″ in the XL C/C++ Compiler Reference.

 Table 5. Input file types

Filename extension Description

.c C source files

.C, .cc, .cp, .cpp, .cxx, .c++ C++ source files

.i Preprocessed source files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

.so Shared object or library files

 Table 6. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.d Make dependency file

.i Preprocessed source files

.lst Listing files

.o Object files

.s Assembler files

.so Shared object or library files

Linking your compiled applications with XL C/C++

By default, you do not need to do anything special to link an XL C/C++ program.

The compiler invocation commands automatically call the linker to produce an

executable output file. For example, running the following command:

xlc++ file1.C file2.o file3.C

compiles and produces the object files file1.o and file3.o, then all object files

(including file2.o) are submitted to the linker to produce one executable.

20 Getting Started with XL C/C++

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.

xlc++ -c file1.C # Produce one object file (file1.o)

xlc++ -c file2.C file3.C # Or multiple object files (file1.o, file3.o)

xlc++ file1.o file2.o file3.o # Link object files with default libraries

Dynamic and static linking

XL C/C++ allows your programs to take advantage of the operating system

facilities for both dynamic and static linking:

v Dynamic linking means that the code for some external routines is located and

loaded when the program is first run. When you compile a program that uses

shared libraries, the shared libraries are dynamically linked to your program by

default.

Dynamically linked programs take up less disk space and less virtual memory if

more than one program uses the routines in the shared libraries. During linking,

they do not require any special precautions to avoid naming conflicts with

library routines. They may perform better than statically linked programs if

several programs use the same shared routines at the same time. They also allow

you to upgrade the routines in the shared libraries without relinking.

Because this form of linking is the default, you need no additional options to

turn it on.

v Static linking means that the code for all routines called by your program

becomes part of the executable file.

Statically linked programs can be moved to and run on systems without the XL

C/C++ runtime libraries. They may perform better than dynamically linked

programs if they make many calls to library routines or call many small

routines. They do require some precautions in choosing names for data objects

and routines in the program if you want to avoid naming conflicts with library

routines. They also may not work if you compile them on one level of the

operating system and run them on a different level of the operating system.

For more information about compiling and linking your programs, see:

v ″Linking″ in the XL C/C++ Compiler Reference

v "Constructing a library" in the XL C/C++ Programming Guide

Running your compiled application

The default file name for the program executable file produced by the XL C/C++

compiler is a.out. You can select a different name with the -o compiler option.

To run a program, enter the name of the program executable file together with any

run time arguments on the command line.

You should avoid giving your program executable file the same name as system or

shell commands, such as test or cp, as you could accidentally execute the wrong

command. If you do decide to name your program executable file with the same

name as a system or shell command, you should execute your program by

specifying the path name to the directory in which your program executable file

resides, such as ./test.

Canceling execution

To suspend a running program, press the Ctrl+Z key while the program is in the

foreground. Use the fg command to resume running.

Chapter 4. Developing applications with XL C/C++ 21

To cancel a running program, press the Ctrl+C key while the program is in the

foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and

behaviors of applications created with the XL C/C++ compiler. Other environment

variables do not control actual runtime behavior, but can have an impact on how

your applications will run.

For more information on environment variables and how they can affect your

applications at run time, see the XL C/C++ Installation Guide.

Running compiled applications on other systems

If you want to run an application developed with the XL C/C++ compiler on

another system that does not have the compiler installed, you will need to install a

runtime environment on that system.

You can obtain the latest XL C/C++ Runtime Environment PTF images, together

with licensing and usage information, from the XL C/C++ Support page at:

www.ibm.com/software/awdtools/xlcpp/support

XL C/C++ compiler diagnostic aids

XL C/C++ issues diagnostic messages when it encounters problems compiling

your application. You can use these messages and other information provided in

compiler output listings to help identify and correct such problems.

The XL C/C++ runtime will also issue messages for certain unsupported

operations, particularly I/O-related, when you run your application.

For more information about listing, diagnostics, and related compiler options that

can help you resolve problems with your application, see the following topics in

the XL C/C++ Compiler Reference:

v ″Compiler messages and listings″

v ″Error checking and debugging options″

v ″Listings, messages, and compiler information options″

Debugging compiled applications

Specifying the -g or -qlinedebug compiler options at compile time instructs the XL

C/C++ compiler to include debugging information in compiled output.

You can then use gdb or any other symbolic debugger to step through and inspect

the behavior of your compiled application.

Optimized applications pose special challenges when debugging. When debugging

highly optimized applications, you should consider using the -qoptdebug compiler

option. For more information about debugging, see "Optimizing your applications"

in the XL C/C++ Programming Guide.

22 Getting Started with XL C/C++

http://www.ibm.com/software/awdtools/xlcpp/support

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2007 23

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

24 Getting Started with XL C/C++

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2007. All rights reserved.

Trademarks and service marks

Company, product, or service names identified in the text may be trademarks or

service marks of IBM or other companies. Information on the trademarks of

International Business Machines Corporation in the United States, other countries,

or both is located at http://www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries

in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Industry standards

The following standards are supported:

v The C language is consistent with the International Standard for Information

Systems-Programming Language C (ISO/IEC 9899-1990).

v The C language is also consistent with the International Standard for

Information Systems-Programming Language C (ISO/IEC 9899-1999 (E)).

v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).

v The C++ language is also consistent with the International Standard for

Information Systems-Programming Language C++ (ISO/IEC 14882:2003 (E)).

v The C and C++ languages are consistent with the OpenMP C and C++

Application Programming Interface Version 2.5.

Notices 25

http://www.ibm.com/legal/copytrade.shtml

26 Getting Started with XL C/C++

Index

Special characters
.a files 20

.c and .C files 20

.i files 20

.lst files 20

.mod files 20

.o files 20

.s files 20

.S files 20

.so files 20

Numerics
64-bit environment 5

A
archive files 20

assembler
source (.s) files 20

source (.S) files 20

C
code optimization 5

compilation
sequence of activities 17

compiler
controlling behavior of 19

invoking 18

running 18

compiler options
conflicts and incompatibilities 19

specification methods 19

compiling
SMP programs 18

customization
for compatibility with GNU 2

D
debugger support 22

output listings 22

symbolic 7

debugging 22

debugging compiled applications 22

debugging information, generating 22

dynamic linking 21

E
editing source files 17

executable files 20

executing a program 21

executing the compiler 18

executing the linker 21

F
files

editing source 17

input 20

output 20

G
GNU

compatibility with 2

I
input files 20

invoking a program 21

invoking the compiler 18

L
language support 2

level of XL C/C++, determining 15

libraries 20

linking
dynamic 21

static 21

linking process 20

listings 20

M
migration

source code 19

mod files 20

multiprocessor systems 6

O
object files 20

creating 21

linking 21

OpenMP 6

optimization
programs 5

output files 20

P
parallelization 6

performance
optimizing transformations 5

problem determination 22

programs
running 21

R
running the compiler 18

runtime
libraries 20

runtime environment 22

runtime options 22

S
shared memory parallelization 6

shared object files 20

SMP
programs, compiling 18

SMP programs 6

source files 20

source-level debugging support 7

static linking 21

symbolic debugger support 7

T
tools 4

cleanpdf utility 4

configuration file utility 4

gxlc and gxlc++ utilities 4

mergepdf utility 4

new install configuration utility 4

new_install utility 4

resetpdf utility 4

showpdf utility 4

xlc_configure 4

U
utilities 4

cleanpdf 4

gxlc and gxlc++ 4

mergepdf 4

new_install 4

resetpdf 4

showpdf 4

xlc_configure 4

V
vac.cfg file 19

X
xlc_configure 4

© Copyright IBM Corp. 1998, 2007 27

28 Getting Started with XL C/C++

���

Program Number: 5724-S73

GC23-5891-00

	Contents
	About this document
	Who should read this document
	How to use this document
	Conventions used in this document
	Related information
	IBM XL C/C++ publications
	Other IBM publications
	Other publications

	Technical support
	How to send your comments

	Chapter 1. Introducing XL C/C++
	Commonality with other IBM compilers
	Hardware and operating system support
	A highly configurable compiler
	Language standards compliance
	Compatibility with GNU
	Source-code migration and conformance checking

	Libraries
	Mathematical Acceleration Subsystem library
	Basic Linear Algebra Subprograms

	Tools and utilities
	Program optimization
	64-bit object capability
	Shared memory parallelization
	OpenMP directives

	Diagnostic listings
	Symbolic debugger support

	Chapter 2. What's new for IBM XL C/C++ Advanced Edition for Linux, V9.0
	C/C++ language-related updates
	Default language level changed for C - extc99
	Arithmetic conversions with long long data types

	Architecture and processor support
	New default setting for -qtune
	New support for POWER6 processors

	Performance and optimization
	Performance-related compiler options and directives
	Built-in functions new for this release
	Conversion functions
	PowerPC cache control
	POWER6 prefetch extensions and cache control

	Other new or changed compiler options

	Chapter 3. Setting up and customizing XL C/C++
	Using custom compiler configuration files
	Determining what level of XL C/C++ is installed

	Chapter 4. Developing applications with XL C/C++
	The compiler phases
	Editing C/C++ source files
	Compiling with XL C/C++
	Invoking the compiler
	Compiling parallelized XL C/C++ applications
	Specifying compiler options
	Reusing GNU C/C++ compiler options with gxlc and gxlc++

	XL C/C++ input and output files

	Linking your compiled applications with XL C/C++
	Compiling and linking in separate steps
	Dynamic and static linking

	Running your compiled application
	Canceling execution
	Setting runtime options
	Running compiled applications on other systems

	XL C/C++ compiler diagnostic aids
	Debugging compiled applications

	Notices
	Trademarks and service marks
	Industry standards

	Index

