
IBM XL C/C++ Advanced Edition for Linux, V9.0

Programming Guide

SC23-5890-00

���

IBM XL C/C++ Advanced Edition for Linux, V9.0

Programming Guide

SC23-5890-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

81.

First Edition

This edition applies to IBM XL C/C++ Advanced Edition for Linux, V9.0 (Program number 5724-S73) and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document v

Who should read this document v

How to use this document v

How this document is organized v

Conventions used in this document vi

Related information viii

IBM XL C/C++ publications viii

Standards and specifications documents x

Other IBM publications x

Other publications x

Technical support x

How to send your comments x

Chapter 1. Using 32-bit and 64-bit

modes 1

Assigning long values 2

Assigning constant values to long variables . . . 2

Bit-shifting long values 3

Assigning pointers 3

Aligning aggregate data 4

Calling Fortran code 4

Chapter 2. Using XL C/C++ with Fortran 5

Identifiers 5

Corresponding data types 5

Character and aggregate data 6

Function calls and parameter passing 7

Pointers to functions 7

Sample program: C/C++ calling Fortran 7

Chapter 3. Aligning data 9

Using alignment modes 9

Alignment of aggregates 10

Alignment of bit fields 11

Using alignment modifiers 12

Guidelines for determining alignment of scalar

variables 14

Guidelines for determining alignment of

aggregate variables 14

Chapter 4. Handling floating point

operations 17

Floating-point formats 17

Handling multiply-add operations 17

Compiling for strict IEEE conformance 18

Handling floating-point constant folding and

rounding 18

Matching compile-time and runtime rounding

modes 19

Handling floating-point exceptions 20

Chapter 5. Using C++ templates 21

Using the -qtempinc compiler option 21

Example of -qtempinc 22

Regenerating the template instantiation file . . . 24

Using -qtempinc with shared libraries 24

Using the -qtemplateregistry compiler option . . . 24

Recompiling related compilation units 24

Switching from -qtempinc to -qtemplateregistry 25

Chapter 6. Constructing a library . . . 27

Compiling and linking a library 27

Compiling a static library 27

Compiling a shared library 27

Linking a library to an application 27

Linking a shared library to another shared library 28

Initializing static objects in libraries (C++) 28

Assigning priorities to objects 28

Order of object initialization across libraries . . 30

Chapter 7. Optimizing your applications 33

Distinguishing between optimization and tuning . . 33

Optimization 33

Tuning 33

Steps in the optimization process 34

Basic optimization 34

Optimizing at level 0 34

Optimizing at level 2 35

Advanced optimization 36

Optimizing at level 3 37

An intermediate step: adding -qhot suboptions at

level 3 37

Optimizing at level 4 38

Optimizing at level 5 39

Tuning for your system architecture 39

Getting the most out of target machine options 40

Using high-order loop analysis and transformations 41

Getting the most out of -qhot 41

Using shared-memory parallelism (SMP) 42

Getting the most out of -qsmp 42

Using interprocedural analysis 43

Getting the most from -qipa 44

Using profile-directed feedback 45

Viewing profiling information with showpdf . . 47

Object level profile-directed feedback 48

Other optimization options 49

Chapter 8. Debugging optimized code 51

Understanding different results in optimized

programs 51

Debugging before optimization 52

Using -qoptdebug to help debug optimized

programs 53

Chapter 9. Coding your application to

improve performance 57

Find faster input/output techniques 57

Reduce function-call overhead 57

© Copyright IBM Corp. 1998, 2007 iii

Manage memory efficiently 59

Optimize variables 59

Manipulate strings efficiently 60

Optimize expressions and program logic 61

Optimize operations in 64-bit mode 61

Chapter 10. Using the high

performance libraries 63

Using the Mathematical Acceleration Subsystem

libraries (MASS) 63

Using the scalar library 63

Using the vector libraries 66

Compiling and linking a program with MASS . . 71

Using the Basic Linear Algebra Subprograms (BLAS) 71

BLAS function syntax 72

Linking the libxlopt library 74

Chapter 11. Parallelizing your programs 75

Countable loops 75

Enabling automatic parallelization 77

Using OpenMP directives 77

Shared and private variables in a parallel

environment 78

Reduction operations in parallelized loops 80

Notices 81

Trademarks and service marks 83

Industry standards 83

Index 85

iv XL C/C++ Programming Guide

About this document

This guide discusses advanced topics related to the use of the IBM® XL C/C++

Advanced Edition for Linux®, V9.0 compiler, with a particular focus on program

portability and optimization. The guide provides both reference information and

practical tips for getting the most out of the compiler’s capabilities, through

recommended programming practices and compilation procedures.

Who should read this document

This document is addressed to programmers building complex applications, who

already have experience compiling with XL C/C++, and would like to take further

advantage of the compiler’s capabilities for program optimization and tuning,

support for advanced programming language features, and add-on tools and

utilities.

How to use this document

This document uses a ″task-oriented″ approach to presenting the topics, by

concentrating on a specific programming or compilation problem in each section.

Each topic contains extensive cross-references to the relevant sections of the

reference guides in the IBM XL C/C++ Advanced Edition for Linux, V9.0

documentation set, which provide detailed descriptions of compiler options and

pragmas, and specific language extensions.

How this document is organized

This guide includes these topics:

v Chapter 1, “Using 32-bit and 64-bit modes ,” on page 1 discusses common

problems that arise when porting existing 32-bit applications to 64-bit mode, and

provides recommendations for avoiding these problems.

v Chapter 2, “Using XL C/C++ with Fortran,” on page 5 discussions

considerations for calling Fortran code from XL C/C++ programs.

v Chapter 3, “Aligning data,” on page 9 discusses the different compiler options

available for controlling the alignment of data in aggregates, such as structures

and classes, on all platforms.

v Chapter 4, “Handling floating point operations,” on page 17 discusses options

available for controlling the way floating-point operations are handled by the

compiler.

v Chapter 5, “Using C++ templates,” on page 21 discusses the different options for

compiling programs that include C++ templates.

v Chapter 6, “Constructing a library,” on page 27 discusses how to compile and

link static and shared libraries, and how to specify the initialization order of

static objects in C++ programs.

v Chapter 7, “Optimizing your applications,” on page 33 discusses the various

options provided by the compiler for optimizing your programs, and provides

recommendations for use of the different options.

v Chapter 9, “Coding your application to improve performance,” on page 57

discusses recommended programming practices and coding techniques for

enhancing program performance and compatibility with the compiler’s

optimization capabilities.

© Copyright IBM Corp. 1998, 2007 v

v Chapter 10, “Using the high performance libraries,” on page 63 discusses two

performance libraries that are shipped with XL C/C++: the Mathematical

Acceleration Subsystem (MASS), which contains tuned versions of standard

math library functions; and the Basic Linear Algebra Subprograms (BLAS),

which contains basic functions for matrix multiplication.

v Chapter 11, “Parallelizing your programs,” on page 75 provides an overview of

the different options offered by the IBM XL C/C++ Advanced Edition for Linux,

V9.0 for creating multi-threaded programs, including OpenMP language

constructs.

Conventions used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable

names, compiler options and

directives.

If you specify -O3, the compiler

assumes -qhot=level=0. To prevent

all HOT optimizations with -O3, you

must specify -qnohot.

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

Make sure that you update the size

parameter if you return more than

the size requested.

monospace Programming keywords and

library functions, compiler built-in

functions, examples of program

code, command strings, or

user-defined names.

If one or two cases of a switch

statement are typically executed

much more frequently than other

cases, break out those cases by

handling them separately before the

switch statement.

Icons

All features described in this document apply to both C and C++ languages.

Where a feature is exclusive to one language, or where functionality differs

between languages, the following icons are used:

C

The text describes a feature that is supported in the C language only; or

describes behavior that is specific to the C language.

C++

The text describes a feature that is supported in the C++ language only; or

describes behavior that is specific to the C++ language.

Syntax diagrams

Throughout this document, diagrams illustrate XL C/C++ syntax. This section will

help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

vi XL C/C++ Programming Guide

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

About this document vii

The following syntax diagram example shows the syntax for the #pragma

comment directive.

��
 (1) (2) (3) (4) (5) (9) (10)

#

pragma

comment

(

compiler

)

date

timestamp

(6)

copyright

user

(7)

(8)

,

"

token_sequence

"

��

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:

compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an

optional character string.

8 A character string must follow the comma. The character string must be

enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct

according to the diagram shown above:

 #pragma

 comment(date)

 #pragma comment(user)

 #pragma comment(copyright,"This text will appear in the module")

Examples

The examples in this document, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

Related information

The following sections provide information on documentation related to XL

C/C++:

v “IBM XL C/C++ publications”

v “Standards and specifications documents” on page x

v “Other IBM publications” on page x

v “Other publications” on page x

IBM XL C/C++ publications

XL C/C++ provides product documentation in the following formats:

v README files

viii XL C/C++ Programming Guide

README files contain late-breaking information, including changes and

corrections to the product documentation. README files are located by default

in the XL C/C++ directory and in the root directory of the installation CD.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the XL C/C++ Installation Guide.

v Information center

The information center of searchable HTML files can be launched on a network

and accessed remotely or locally. Instructions for installing and accessing the

online information center are provided in the XL C/C++ Installation Guide. The

information center is also viewable on the Web at http://
publib.boulder.ibm.com/infocenter/lnxphelp/v9v111/index.jsp.

v PDF documents

PDF documents are located by default in the /opt/ibmcmp/vac/9.0/doc/
LANG/pdf/ directory, where LANG is one of en_US, zh_CN, or ja_JP. The PDF

files are also available on the Web at http://www.ibm.com/software/awdtools/
xlcpp/library.

The following files comprise the full set of XL C/C++ product manuals:

 Table 2. XL C/C++ PDF files

Document title

PDF file

name Description

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Installation Guide,

GC23-5893-00

install.pdf Contains information for installing XL C/C++

and configuring your environment for basic

compilation and program execution.

Getting Started with IBM

XL C/C++ Advanced

Edition for Linux, V9.0,

GC23-5891-00

getstart.pdf Contains an introduction to the XL C/C++

product, with information on setting up and

configuring your environment, compiling and

linking programs, and troubleshooting

compilation errors.

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Compiler Reference,

SC23-5889-00

compiler.pdf Contains information about the various

compiler options, pragmas, macros,

environment variables, and built-in functions,

including those used for parallel processing.

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Language Reference,

SC23-5892-00

langref.pdf Contains information about the C and C++

programming languages, as supported by IBM,

including language extensions for portability

and conformance to non-proprietary standards.

IBM XL C/C++ Advanced

Edition for Linux, V9.0

Programming Guide,

SC23-5890-00

proguide.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls with Fortran code,

library development, application optimization

and parallelization, and the XL C/C++

high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe

Reader, you can download it (subject to license terms) from the Adobe Web site

at http://www.adobe.com.

More documentation related to XL C/C++ including redbooks, white papers,

tutorials, and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/xlcpp/library

About this document ix

http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp
http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.adobe.com
http://www.ibm.com/software/awdtools/xlcpp/library

Standards and specifications documents

XL C/C++ is designed to support the following standards and specifications. You

can refer to these standards for precise definitions of some of the features found in

this document.

v Information Technology – Programming languages – C, ISO/IEC 9899:1990, also

known as C89.

v Information Technology – Programming languages – C, ISO/IEC 9899:1999, also

known as C99.

v Information Technology – Programming languages – C++, ISO/IEC 14882:1998, also

known as C++98.

v Information Technology – Programming languages – C++, ISO/IEC 14882:2003(E),

also known as Standard C++.

v Information Technology – Programming languages – Extensions for the programming

language C to support new character data types, ISO/IEC DTR 19769. This draft

technical report has been accepted by the C standards committee, and is

available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1040.pdf.

v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft

technical report has been submitted to the C++ standards committee, and is

available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification

for vector data types, to support vector processing technology, is available at

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v OpenMP Application Program Interface Version 2.5, available at

http://www.openmp.org

Other IBM publications

v ESSL for Linux on POWER V4.2 Guide and Reference, SA22-7904, available at

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

Other publications

v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support

Additional technical support is available from the XL C/C++ Support page at

http://www.ibm.com/software/awdtools/xlcpp/support. This page provides a

portal with search capabilities to a large selection of technical support FAQs and

other support documents.

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at

http://www.ibm.com/software/awdtools/xlcpp.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

C/C++ documentation, send your comments by e-mail to compinfo@ca.ibm.com.

x XL C/C++ Programming Guide

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/software/awdtools/xlcpp/support
http://www.ibm.com/software/awdtools/xlcpp

Be sure to include the name of the document, the part number of the document,

the version of XL C/C++, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

About this document xi

xii XL C/C++ Programming Guide

Chapter 1. Using 32-bit and 64-bit modes

You can use XL C/C++ to develop both 32-bit and 64-bit applications. To do so,

specify -q32 (the default) or -q64, respectively, during compilation.

However, porting existing applications from 32-bit to 64-bit mode can lead to a

number of problems, mostly related to the differences in C/C++ long and pointer

data type sizes and alignment between the two modes. The following table

summarizes these differences.

 Table 3. Size and alignment of data types in 32-bit and 64-bit modes

Data type 32-bit mode 64-bit mode

Size Alignment Size Alignment

long, unsigned long 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

pointer 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

size_t (system-defined

unsigned long)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

ptrdiff_t

(system-defined long)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

The following sections discuss some of the common pitfalls implied by these

differences, as well as recommended programming practices to help you avoid

most of these issues:

v “Assigning long values” on page 2

v “Assigning pointers” on page 3

v “Aligning aggregate data” on page 4

v “Calling Fortran code” on page 4

When compiling in 32-bit or 64-bit mode, you can use the -qwarn64 option to help

diagnose some issues related to porting applications. In either mode, the compiler

immediately issues a warning if undesirable results, such as truncation or data

loss, have occurred.

For suggestions on improving performance in 64-bit mode, see “Optimize

operations in 64-bit mode ” on page 61.

Related information

v -q32/-q64 and -qwarn64 in XL C/C++ Compiler Reference

© Copyright IBM Corp. 1998, 2007 1

Assigning long values

The limits of long type integers defined in the limits.h standard library header

file are different in 32-bit and 64-bit modes, as shown in the following table.

 Table 4. Constant limits of long integers in 32-bit and 64-bit modes

Symbolic

constant

Mode Value Hexadecimal Decimal

LONG_MIN

(smallest

signed long)

32-bit –(231) 0x80000000L –2,147,483,648

64-bit –(263) 0x8000000000000000L –9,223,372,036,854,775,808

LONG_MAX

(longest signed

long)

32-bit 231–1 0x7FFFFFFFL +2,147,483,647

64-bit 263–1 0x7FFFFFFFFFFFFFFFL +9,223,372,036,854,775,807

ULONG_MAX

(longest

unsigned long)

32-bit 232–1 0xFFFFFFFFUL +4,294,967,295

64-bit 264–1 0xFFFFFFFFFFFFFFFFUL +18,446,744,073,709,551,615

Implications of these differences are:

v Assigning a long value to a double variable can cause loss of accuracy.

v Assigning constant values to long-type variables can lead to unexpected results.

This issue is explored in more detail in “Assigning constant values to long

variables.”

v Bit-shifting long values will produce different results, as described in

“Bit-shifting long values” on page 3.

v Using int and long types interchangeably in expressions will lead to implicit

conversion through promotions, demotions, assignments, and argument passing,

and can result in truncation of significant digits, sign shifting, or unexpected

results, without warning.

In situations where a long-type value can overflow when assigned to other

variables or passed to functions, you must:

v Avoid implicit type conversion by using explicit type casting to change types.

v Ensure that all functions that return long types are properly prototyped.

v Ensure that long parameters can be accepted by the functions to which they are

being passed.

Assigning constant values to long variables

Although type identification of constants follows explicit rules in C and C++, many

programs use hexadecimal or unsuffixed constants as ″typeless″ variables and rely

on a two’s complement representation to exceed the limits permitted on a 32-bit

system. As these large values are likely to be extended into a 64-bit long type in

64-bit mode, unexpected results can occur, generally at boundary areas such as:

v constant >= UINT_MAX

v constant < INT_MIN

v constant > INT_MAX

Some examples of unexpected boundary side effects are listed in the following

table.

2 XL C/C++ Programming Guide

Table 5. Unexpected boundary results of constants assigned to long types

Constant assigned to long Equivalent value 32 bit mode 64 bit mode

–2,147,483,649 INT_MIN–1 +2,147,483,647 –2,147,483,649

+2,147,483,648 INT_MAX+1 –2,147,483,648 +2,147,483,648

+4,294,967,726 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFF UINT_MAX –1 +4,294,967,295

0x100000000 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF ULONG_MAX –1 –1

Unsuffixed constants can lead to type ambiguities that can affect other parts of

your program, such as when the results of sizeof operations are assigned to

variables. For example, in 32-bit mode, the compiler types a number like

4294967295 (UINT_MAX) as an unsigned long and sizeof returns 4 bytes. In 64-bit

mode, this same number becomes a signed long and sizeof will return 8 bytes.

Similar problems occur when passing constants directly to functions.

You can avoid these problems by using the suffixes L (for long constants) or UL (for

unsigned long constants) to explicitly type all constants that have the potential of

affecting assignment or expression evaluation in other parts of your program. In

the example cited above, suffixing the number as 4294967295U forces the compiler

to always recognize the constant as an unsigned int in 32-bit or 64-bit mode.

Bit-shifting long values

Left-bit-shifting long values will produce different results in 32-bit and 64-bit

modes. The examples in the table below show the effects of performing a bit-shift

on long constants, using the following code segment:

long l=valueL<<1;

 Table 6. Results of bit-shifting long values

Initial value Symbolic

constant

Value after bit shift

32-bit mode 64-bit mode

0x7FFFFFFFL INT_MAX 0xFFFFFFFE 0x00000000FFFFFFFE

0x80000000L INT_MIN 0x00000000 0x0000000100000000

0xFFFFFFFFL UINT_MAX 0xFFFFFFFE 0x1FFFFFFFE

Assigning pointers

In 64-bit mode, pointers and int types are no longer the same size. The

implications of this are:

v Exchanging pointers and int types causes segmentation faults.

v Passing pointers to a function expecting an int type results in truncation.

v Functions that return a pointer, but are not explicitly prototyped as such, return

an int instead and truncate the resulting pointer, as illustrated in the following

example.

Although code constructs such as the following are valid in 32-bit mode:

a=(char*) calloc(25);

Chapter 1. Using 32-bit and 64-bit modes 3

Without a function prototype for calloc, when the same code is compiled in 64-bit

mode, the compiler assumes the function returns an int, so a is silently truncated,

and then sign-extended. Type casting the result will not prevent the truncation, as

the address of the memory allocated by calloc was already truncated during the

return. In this example, the correct solution would be to include the header file,

stdlib.h, which contains the prototype for calloc.

To avoid these types of problems:

v Prototype any functions that return a pointer.

v Be sure that the type of parameter you are passing in a function (pointer or int)

call matches the type expected by the function being called.

v For applications that treat pointers as an integer type, use type long or unsigned

long in either 32-bit or 64-bit mode.

Aligning aggregate data

Structures are aligned according to the most strictly aligned member in both 32-bit

and 64-bit modes. However, since long types and pointers change size and

alignment in 64-bit, the alignment of a structure’s strictest member can change,

resulting in changes to the alignment of the structure itself.

Structures that contain pointers or long types cannot be shared between 32-bit and

64-bit applications. Unions that attempt to share long and int types, or overlay

pointers onto int types can change the alignment. In general, you should check all

but the simplest structures for alignment and size dependencies.

For detailed information on aligning data structures, including structures that

contain bit fields, see Chapter 3, “Aligning data,” on page 9.

Calling Fortran code

A significant number of applications use C, C++, and Fortran together, by calling

each other or sharing files. It is currently easier to modify data sizes and types on

the C side than the on Fortran side of such applications. The following table lists C

and C++ types and the equivalent Fortran types in the different modes.

 Table 7. Equivalent C/C++ and Fortran data types

C/C++ type Fortran type

32-bit 64-bit

signed int INTEGER INTEGER

signed long INTEGER INTEGER*8

unsigned long LOGICAL LOGICAL*8

pointer INTEGER INTEGER*8

integer POINTER (8 bytes)

Related information

v Chapter 2, “Using XL C/C++ with Fortran,” on page 5

4 XL C/C++ Programming Guide

Chapter 2. Using XL C/C++ with Fortran

With XL C/C++, you can call functions written in Fortran from your C and C++

programs. This section discusses some programming considerations for calling

Fortran code, in the following areas:

v “Identifiers”

v “Corresponding data types”

v “Character and aggregate data” on page 6

v “Function calls and parameter passing” on page 7

v “Pointers to functions” on page 7

v “Sample program: C/C++ calling Fortran” on page 7 provides an example of a

C program which calls a Fortran subroutine.

Related information

v “Calling Fortran code” on page 4

Identifiers

You should follow these recommendations when writing C and C++ code to call

functions written in Fortran:

v Avoid using uppercase letters in identifiers. Although XL Fortran folds external

identifiers to lowercase by default, the Fortran compiler can be set to distinguish

external names by case.

v Avoid using long identifier names. The maximum number of significant

characters in XL Fortran identifiers is 2501.

Corresponding data types

The following table shows the correspondence between the data types available in

C/C+ and Fortran. Several data types in C have no equivalent representation in

Fortran. Do not use them when programming for interlanguage calls.

 Table 8. Correspondence of data types among C, C++

and Fortran

C and C++ data types Fortran data types

bool (C++)_Bool (C) LOGICAL(1)

char CHARACTER

signed char INTEGER*1

unsigned char LOGICAL*1

signed short int INTEGER*2

unsigned short int LOGICAL*2

signed long int INTEGER*4

unsigned long int LOGICAL*4

signed long long int INTEGER*8

1. The Fortran 90 and 95 language standards require identifiers to be no more than 31 characters; the Fortran 2003 standard requires

identifiers to be no more than 63 characters.

© Copyright IBM Corp. 1998, 2007 5

Table 8. Correspondence of data types among C, C++

and Fortran (continued)

C and C++ data types Fortran data types

unsigned long long int LOGICAL*8

float REAL REAL*4

double REAL*8 DOUBLE

PRECISION

long double REAL*8 DOUBLE

PRECISION

float _Complex COMPLEX*8 or

COMPLEX(4)

double _Complex COMPLEX*16 or

COMPLEX(8)

long double _Complex COMPLEX*16 or

COMPLEX(8)

structure or union derived type

enumeration INTEGER*4

char[n] CHARACTER*n

array pointer to type, or type

[]

Dimensioned variable

(transposed)

pointer to function Functional parameter

structure (with

-qalign=packed)

Sequence derived type

Related information

v -qldbl128 in XL C/C++ Compiler Reference

v -qalign in XL C/C++ Compiler Reference

Character and aggregate data

Most numeric data types have counterparts across C/C++ and Fortran. However,

character and aggregate data types require special treatment:

v C character strings are delimited by a ’\0’ character. In Fortran, all character

variables and expressions have a length that is determined at compile time.

Whenever Fortran passes a string argument to another routine, it appends a

hidden argument that provides the length of the string argument. This length

argument must be explicitly declared in C. The C code should not assume a null

terminator; the supplied or declared length should always be used.

v C stores array elements in row-major order (array elements in the same row

occupy adjacent memory locations). Fortran stores array elements in ascending

storage units in column-major order (array elements in the same column occupy

adjacent memory locations). Table 9 shows how a two-dimensional array

declared by A[3][2] in C and by A(3,2) in Fortran, is stored:

 Table 9. Storage of a two-dimensional array

Storage unit

C and C++ element

name

Fortran element

name

Lowest A[0][0] A(1,1)

A[0][1] A(2,1)

6 XL C/C++ Programming Guide

Table 9. Storage of a two-dimensional array (continued)

Storage unit

C and C++ element

name

Fortran element

name

A[1][0] A(3,1)

A[1][1] A(1,2)

A[2][0] A(2,2)

Highest A[2][1] A(3,2)

v In general, for a multidimensional array, if you list the elements of the array in

the order they are laid out in memory, a row-major array will be such that the

rightmost index varies fastest, while a column-major array will be such that the

leftmost index varies fastest.

Function calls and parameter passing

Functions must be prototyped identically in both C/C++ and Fortran.

In C, by default, all function arguments are passed by value, and the called

function receives a copy of the value passed to it. In Fortran, by default, arguments

are passed by reference, and the called function receives the address of the value

passed to it. You can use the Fortran %VAL built-in function or the VALUE

attribute to pass by value. Refer to the XL Fortran Language Reference for more

information.

For call-by-reference (as in Fortran), the address of the parameter is passed in a

register. When passing parameters by reference, if you write C or C++ functions

that call a program written in Fortran, all arguments must be pointers, or scalars

with the address operator.

Pointers to functions

A function pointer is a data type whose value is a function address. In Fortran, a

dummy argument that appears in an EXTERNAL statement is a function pointer.

Function pointers are supported in contexts such as the target of a call statement or

an actual argument of such a statement.

Sample program: C/C++ calling Fortran

The following example illustrates how program units written in different languages

can be combined to create a single program. It also demonstrates parameter

passing between C/C++ and Fortran subroutines with different data types as

arguments.

#include <stdio.h>

extern double add(int *, double [], int *, double []);

double ar1[4]={1.0, 2.0, 3.0, 4.0};

double ar2[4]={5.0, 6.0, 7.0, 8.0};

main()

{

int x, y;

double z;

x = 3;

y = 3;

Chapter 2. Using XL C/C++ with Fortran 7

z = add(&x, ar1, &y, ar2); /* Call Fortran add routine */

/* Note: Fortran indexes arrays 1..n */

/* C indexes arrays 0..(n-1) */

printf(“The sum of %1.0f and %1.0f is %2.0f \n”,

ar1[x-1], ar2[y-1], z);

}

The Fortran subroutine is:

C Fortran function add.f - for C/C++ interlanguage call example

C Compile separately, then link to C/C++ program

REAL*8 FUNCTION ADD (A, B, C, D)

REAL*8 B,D

INTEGER*4 A,C

DIMENSION B(4), D(4)

ADD = B(A) + D(C)

RETURN

END

8 XL C/C++ Programming Guide

Chapter 3. Aligning data

XL C/C++ provides many mechanisms for specifying data alignment at the levels

of individual variables, members of aggregates, entire aggregates, and entire

compilation units. If you are porting applications between different platforms, or

between 32-bit and 64-bit modes, you will need to take into account the differences

between alignment settings available in the different environments, to prevent

possible data corruption and deterioration in performance. In particular, vector

types have special alignment requirements which, if not followed, can produce

incorrect results. That is, vectors need to be aligned according to a 16 byte

boundary. For more information, see the AltiVec Technology Programming Interface

Manual.

Alignment modes allow you to set alignment defaults for all data types for a

compilation unit (or subsection of a compilation unit), by specifying a predefined

suboption. Alignment modifiers allow you to set the alignment for specific variables

or data types within a compilation unit, by specifying the exact number of bytes

that should be used for the alignment.

“Using alignment modes” discusses the default alignment modes for all data types

on the different platforms and addressing models; the suboptions and pragmas

you can use to change or override the defaults; and rules for the alignment modes

for simple variables, aggregates, and bit fields.

“Using alignment modifiers” on page 12 discusses the different specifiers, pragmas,

and attributes you can use in your source code to override the alignment mode

currently in effect, for specific variable declarations. It also provides the rules

governing the precedence of alignment modes and modifiers during compilation.

Related information

v AltiVec Technology Programming Interface Manual, available at

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

v -qaltivec in XL C/C++ Compiler Reference

Using alignment modes

Each data type supported by XL C/C++ is aligned along byte boundaries

according to platform-specific default alignment modes. On Linux, the default

alignment mode is linuxppc.

You can change the default alignment mode, by using any of the following

mechanisms:

Set the alignment mode for all variables in a single file or multiple files during

compilation

To use this approach, you specify the -qalign compiler option during

compilation, with one of the suboptions listed in Table 10 on page 10.

Set the alignment mode for all variables in a section of source code

To use this approach, you specify the #pragma align or #pragma options

align directives in the source files, with one of the suboptions listed in

Table 10 on page 10. Each directive changes the alignment mode in effect

© Copyright IBM Corp. 1998, 2007 9

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

for all variables that follow the directive until another directive is

encountered, or until the end of the compilation unit.

Each of the valid alignment modes is defined in Table 10, which provides the

alignment value, in bytes, for scalar variables, for all data types. Where there are

differences between 32-bit and 64-bit modes, these are indicated. Also, where there

are differences between the first (scalar) member of an aggregate and subsequent

members of the aggregate, these are indicated.

 Table 10. Alignment settings (values given in bytes)

Data type Storage

Alignment setting

linuxppc bit_packed

_Bool (C), bool (C++) 1 1 1

char, signed char, unsigned char 1 1 1

wchar_t (32-bit mode) 2 2 1

wchar_t (64-bit mode) 4 4 1

int, unsigned int 4 4 1

short int, unsigned short int 2 2 1

long int, unsigned long int (32-bit mode) 4 4 1

long int, unsigned long int (64-bit mode) 8 8 1

long long 8 8 1

float 4 4 1

double 8 8 1

long double 8 8 1

long double with -qldbl128 16 16 1

pointer (32-bit mode) 4 4 1

pointer (64-bit mode) 8 8 1

vector types 16 16 1

If you generate data with an application on one platform and read the data with

an application on another platform, it is recommended that you use the bit_packed

mode, which results in equivalent data alignment on all platforms.

Note: Vectors in a bit-packed structure may not be correctly aligned unless you

take extra action to ensure their alignment.

“Alignment of aggregates” discusses the rules for the alignment of entire

aggregates and provide examples of aggregate layouts. “Alignment of bit fields”

on page 11 discusses additional rules and considerations for the use and alignment

of bit fields, and provides an example of bit-packed alignment.

Related information

v -qalign and #pragma align in the XL C/C++ Compiler Reference

Alignment of aggregates

The data contained in Table 10 apply to scalar variables, and variables which are

members of aggregates such as structures, unions, and classes. In addition, the

following rules apply to aggregate variables, namely structures, unions or classes,

as a whole (in the absence of any modifiers):

10 XL C/C++ Programming Guide

v For all alignment modes, the size of an aggregate is the smallest multiple of its

alignment value that can encompass all of the members of the aggregate.

v

C

Empty aggregates are assigned a size of 0 bytes.

v

C++

Empty aggregates are assigned a size of 1 byte. Note that static data

members do not participate in the alignment or size of an aggregate; therefore a

structure or class containing only a single static data member has a size of 1

byte.

v For all alignment modes, the alignment of an aggregate is equal to the largest

alignment value of any of its members. With the exception of packed alignment

modes, members whose natural alignment is smaller than that of their

aggregate’s alignment are padded with empty bytes.

v Aligned aggregates can be nested, and the alignment rules applicable to each

nested aggregate are determined by the alignment mode that is in effect when a

nested aggregate is declared.

Note:

C++

The C++ compiler might generate extra fields for classes that

contain base classes or virtual functions. Objects of these types might not

conform to the usual mappings for aggregates.

For rules on the alignment of aggregates containing bit fields, see “Alignment of

bit fields.”

Alignment of bit fields

You can declare a bit field as a _Bool (C), bool (C++), char, signed char, unsigned

char, short, unsigned short, int, unsigned int, long, unsigned long, long long, or

unsigned long long data type. The alignment of a bit field depends on its base

type and the compilation mode (32-bit or 64-bit).

C

The length of a bit field cannot exceed the length of its base type. In

extended mode, you can use the sizeof operator on a bit field. The sizeof

operator on a bit field always returns the size of the base type.

C++

The length of a bit field can exceed the length of its base type, but the

remaining bits will be used to pad the field, and will not actually store any value.

However, alignment rules for aggregates containing bit fields are different

depending on the alignment mode in effect. These rules are described below.

Rules for Linux PowerPC alignment

v Bit fields are allocated from a bit field container. The size of this container is

determined by the declared type of the bit field. For example, a char bit field

uses an 8-bit container, an int bit field uses 32 bits, and so on. The container

must be large enough to contain the bit field, as the bit field will not be split

across containers.

v Containers are aligned in the aggregate as if they start on a natural boundary for

that type of container. Bit fields are not necessarily allocated at the start of the

container.

v If a zero-length bit field is the first member of an aggregate, it has no effect on

the alignment of the aggregate and is overlapped by the next data member. If a

zero-length bit field is a non-first member of the aggregate, it pads to the next

alignment boundary determined by its base declared type but does not affect the

alignment of the aggregate.

Chapter 3. Aligning data 11

v Unnamed bit fields do not affect the alignment of the aggregate.

Rules for bit-packed alignment

v Bit fields have an alignment of 1 byte, and are packed with no default padding

between bit fields.

v A zero-length bit field causes the next member to start at the next byte

boundary. If the zero-length bit field is already at a byte boundary, the next

member starts at this boundary. A non-bit field member that follows a bit field is

aligned on the next byte boundary.

Example of bit-packed alignment

For:

#pragma options align=bit_packed

struct {

 int a : 8;

 int b : 10;

 int c : 12;

 int d : 4;

 int e : 3;

 int : 0;

 int f : 1;

 char g;

 } A;

pragma options align=reset

The size of A is 7 bytes. The alignment of A is 1 byte. The layout of A is:

 Member name Byte offset Bit offset

a 0 0

b 1 0

c 2 2

d 3 6

e 4 2

f 5 0

g 6 0

Using alignment modifiers

XL C/C++ also provides alignment modifiers, which allow you to exercise even

finer-grained control over alignment, at the level of declaration or definition of

individual variables. Available modifiers are:

#pragma pack(...)

Valid application:

The entire aggregate (as a whole) immediately following the directive.

Effect: Sets the maximum alignment of the members of the aggregate to which it

applies, to a specific number of bytes. Also allows a bit-field to cross a

container boundary. Used to reduce the effective alignment of the selected

aggregate.

Valid values:

When -qpack_semantic=ibm is in effect (the default for XL C/C++), 1, 2, 4,

8, 16, nopack, pop, and empty parentheses. The use of empty parentheses

has the same functionality as nopack. When -qpack_semantic=gnu is in

12 XL C/C++ Programming Guide

effect (the default when using gxlc and gxlc++ utilities), [push,]1, [push,]2,

[push,]4, [push,]8, [push,]16, pop, and empty parentheses.

__attribute__((aligned(n)))

Valid application:

As a variable attribute, it applies to a single aggregate (as a whole), namely

a structure, union, or class; or to an individual member of an aggregate.1

As a type attribute, it applies to all aggregates declared of that type. If it is

applied to a typedef declaration, it applies to all instances of that type.2

Effect:

Sets the minimum alignment of the specified variable (or variables), to a

specific number of bytes. Typically used to increase the effective alignment

of the selected variables.

Valid values:

n must be a positive power of 2, or NIL. NIL can be specified as

either __attribute__((aligned())) or __attribute__((aligned)); this is

the same as specifying the maximum system alignment (16 bytes on all

UNIX® platforms).

__attribute__((packed))

Valid application:

As a variable attribute, it applies to simple variables, or individual members

of an aggregate, namely a structure, union or class.1 As a type attribute, it

applies to all members of all aggregates declared of that type.

Effect: Sets the maximum alignment of the selected variable, or variables, to

which it applies, to the smallest possible alignment value, namely one byte

for a variable and one bit for a bit field.

__align(n)

Effect: Sets the minimum alignment of the variable or aggregate to which it

applies to a specific number of bytes; also effectively increases the amount

of storage occupied by the variable. Used to increase the effective

alignment of the selected variables.

Valid application:

Applies to simple static (or global) variables or to aggregates as a whole,

rather than to individual members of aggregates, unless these are also

aggregates.

Valid values:

n must be a positive power of 2. XL C/C++ also allows you to specify a

value greater than the system maximum.

Notes:

1. In a comma-separated list of variables in a declaration, if the modifier is placed

at the beginning of the declaration, it applies to all the variables in the

declaration. Otherwise, it applies only to the variable immediately preceding it.

2. Depending on the placement of the modifier in the declaration of a struct, it

can apply to the definition of the type, and hence applies to all instances of that

type; or it can apply to only a single instance of the type. For details, see ″Type

Attributes″ in the XL C/C++ Language Reference.

Chapter 3. Aligning data 13

When you use alignment modifiers, the interactions between modifiers and modes,

and between multiple modifiers, can become complex. The following sections

outline precedence guidelines for alignment modifiers, for the following types of

variables:

v simple, or scalar, variables, including members of aggregates (structures, unions

or classes) and user-defined types created by typedef statements.

v aggregate variables (structures, unions or classes)

Related information

v ″The aligned variable attribute″, ″The packed variable attribute″, ″The aligned

type attribute″, ″The packed type attribute″, and ″The __align specifier″ in the

XL C/C++ Language Reference

v #pragma pack and -qpack_semantic in the XL C/C++ Compiler Reference

Guidelines for determining alignment of scalar variables

The following formulas use a ″top-down″ approach to determining the alignment,

given the presence of alignment modifiers, for both non-embedded (stand-alone)

scalar variables and embedded scalars (variables declared as members of an

aggregate):

Alignment of variable = maximum(effective type alignment , modified alignment value)

where effective type alignment = maximum(maximum(aligned type attribute value,

__align specifier value) , minimum(type alignment, packed type attribute value))

and modified alignment value = maximum(aligned variable attribute value, packed

variable attribute value)

and where type alignment is the alignment mode currently in effect when the

variable is declared, or the alignment value applied to a type in a typedef

statement.

In addition, for embedded variables, which can be modified by the #pragma pack

directive, the following rule applies:

Alignment of variable = minimum(#pragma pack value , maximum(effective type

alignment , modified alignment value))

Note: If a type attribute and a variable attribute of the same kind are both

specified in a declaration, the second attribute is ignored.

Guidelines for determining alignment of aggregate variables

The following formulas determine the alignment for aggregate variables, namely

structures, unions, and classes:

Alignment of variable = maximum(effective type alignment , modified alignment value)

where effective type alignment = maximum(maximum(aligned type attribute value,

__align specifier value) , minimum(aggregate type alignment, packed type attribute

value))

and modified alignment value = maximum (aligned variable attribute value , packed

variable attribute value)

14 XL C/C++ Programming Guide

and where aggregate type alignment = maximum (alignment of all members)

Note: If a type attribute and a variable attribute of the same kind are both

specified in a declaration, the second attribute is ignored.

Chapter 3. Aligning data 15

16 XL C/C++ Programming Guide

Chapter 4. Handling floating point operations

The following sections provide reference information, portability considerations,

and suggested procedures for using compiler options to manage floating-point

operations:

v “Floating-point formats”

v “Handling multiply-add operations”

v “Compiling for strict IEEE conformance” on page 18

v “Handling floating-point constant folding and rounding” on page 18

v “Handling floating-point exceptions” on page 20

Floating-point formats

XL C/C++ supports the following binary floating-point formats:

v 32-bit single precision, with an approximate range of 10-38 to 10+38 and precision

of about 7 decimal digits

v 64-bit double precision, with an approximate range of 10-308 to 10+308 and

precision of about 16 decimal digits

v 128-bit extended precision, with the same range as double-precision values, but

with a precision of about 29 decimal digits

Note that the long double type may represent either double-precision or

extended-precision values, depending on the setting of the -qldbl128 compiler

option. The default is 128 bits. For compatibility with older compilations, you can

use -qnoldbl128 if you need long double to be 64 bits.

Related information

v -qldbl128 in the XL C/C++ Compiler Reference

Handling multiply-add operations

By default, the compiler generates a single non-IEEE 754 compatible multiply-add

instruction for binary floating-point expressions such as a+b*c, partly because one

instruction is faster than two. Because no rounding occurs between the multiply

and add operations, this may also produce a more precise result. However, the

increased precision might lead to different results from those obtained in other

environments, and may cause x*y-x*y to produce a nonzero result. To avoid these

issues, you can suppress the generation of multiply-add instructions by using the

-qfloat=nomaf option.

Related information

v -qfloat in the XL C/C++ Compiler Reference

© Copyright IBM Corp. 1998, 2007 17

Compiling for strict IEEE conformance

By default, XL C/C++ follows most, but not all of the rules in the IEEE standard. If

you compile with the -qnostrict option, which is enabled by default at

optimization level -O3 or higher, some IEEE floating-point rules are violated in

ways that can improve performance but might affect program correctness. To avoid

this issue, and to compile for strict compliance with the IEEE standard, do the

following:

v Use the -qfloat=nomaf compiler option.

v If the program changes the rounding mode at runtime, use the -qfloat=rrm

option.

v If the data or program code contains signaling NaN values (NaNS), use the

-qfloat=nans option. (A signaling NaN is different from a quiet NaN; you must

explicitly code it into the program or data or create it by using the -qinitauto

compiler option.)

v If you compile with -O3, -O4, or -O5, include the option -qstrict after it.

Related information

v “Advanced optimization” on page 36

v -qfloat in the XL C/C++ Compiler Reference

v -qinitauto in the XL C/C++ Compiler Reference

v -qstrict in the XL C/C++ Compiler Reference

v -qinitauto in the XL C/C++ Compiler Reference

Handling floating-point constant folding and rounding

By default, the compiler replaces most operations involving constant operands

with their result at compile time. This process is known as constant folding.

Additional folding opportunities may occur with optimization or with the

-qnostrict option. The result of a floating-point operation folded at compile-time

normally produces the same result as that obtained at execution time, except in the

following cases:

v The compile-time rounding mode is different from the execution-time rounding

mode. By default, both are round-to-nearest; however, if your program changes

the execution-time rounding mode, to avoid differing results, do either of the

following:

– Change the compile-time rounding mode to match the execution-time mode,

by compiling with the appropriate -y option. For more information, and an

example, see “Matching compile-time and runtime rounding modes” on page

19.

– Suppress folding, by compiling with the -qfloat=nofold option.
v Expressions like a+b*c are partially or fully evaluated at compile-time. The

results might be different from those produced at execution time, because b*c

might be rounded before being added to a, while the runtime multiply-add

instruction does not use any intermediate rounding. To avoid differing results,

do either of the following:

– Suppress the use of multiply-add instructions, by compiling with the

-qfloat=nomaf option.

– Suppress folding, by compiling with the -qfloat=nofold option.

18 XL C/C++ Programming Guide

v An operation produces an infinite or NaN result. Compile-time folding prevents

execution-time detection of an exception, even if you compile with the -qflttrap

option. To avoid missing these exceptions, suppress folding with the

-qfloat=nofold option.

Related information

v “Handling floating-point exceptions” on page 20

v -qfloat and -qstrict in the XL C/C++ Compiler Reference

Matching compile-time and runtime rounding modes

The default rounding mode used at compile-time and runtime is round-to-nearest,

ties even. If your program changes the rounding mode at runtime, the results of a

floating-point calculation might be slightly different from those that are obtained at

compile-time. The following example illustrates this:

#include <float.h>

#include <fenv.h>

#include <stdio.h>

int main ()

{

 volatile double one = 1.f, three = 3.f; /* volatiles are not folded */

 double one_third;

 one_third = 1. / 3.; /* folded */

 printf ("1/3 with compile-time rounding = %.17f\n", one_third);

 fesetround (FE_TOWARDZERO);

 one_third = one / three; /* not folded */

 printf ("1/3 with execution-time rounding to zero = %.17f\n", one_third);

 fesetround (FE_TONEAREST);

 one_third = one / three; /* not folded */

 printf ("1/3 with execution-time rounding to nearest = %.17f\n", one_third);

 fesetround (FE_UPWARD);

 one_third = one / three; /* not folded */

 printf ("1/3 with execution-time rounding to +infinity = %.17f\n", one_third);

 fesetround (FE_DOWNWARD);

 one_third = one / three; /* not folded */

 printf ("1/3 with execution-time rounding to -infinity = %.17f\n", one_third);

 return 0;

 }

When compiled with the default options, this code produces the following results:

1/3 with compile-time rounding = 0.33333333333333331

1/3 with execution-time rounding to zero = 0.33333333333333331

1/3 with execution-time rounding to nearest = 0.33333333333333331

1/3 with execution-time rounding to +infinity = 0.33333333333333337

1/3 with execution-time rounding to -infinity = 0.33333333333333331

Because the fourth computation changes the rounding mode to round-to-infinity,

the results are slightly different from the first computation, which is performed at

compile-time, using round-to-nearest. If you do not use the -qfloat=nofold option

to suppress all compile-time folding of floating-point computations, it is

recommended that you use the -y compiler option with the appropriate suboption

to match compile-time and runtime rounding modes. In the previous example,

compiling with -yp (round-to-infinity) produces the following result for the first

computation:

Chapter 4. Handling floating point operations 19

1/3 with compile-time rounding = 0.33333333333333337

In general, if the rounding mode is changed to +infinity or -infinity, it is

recommended that you also use the -qfloat=rrm option.

Related information

v -qfloat and -y in the XL C/C++ Compiler Reference

Handling floating-point exceptions

By default, invalid operations such as division by zero, division by infinity,

overflow, and underflow are ignored at runtime. However, you can use the

-qflttrap option to detect these types of exceptions. In addition, you can add

suitable support code to your program to allow program execution to continue

after an exception occurs, and to modify the results of operations causing

exceptions.

Because, however, floating-point computations involving constants are usually

folded at compile-time, the potential exceptions that would be produced at runtime

will not occur. To ensure that the -qflttrap option traps all runtime floating-point

exceptions, consider using the -qfloat=nofold option to suppress all compile-time

folding.

Related information

v -qfloat and -qflttrap in the XL C/C++ Compiler Reference

20 XL C/C++ Programming Guide

Chapter 5. Using C++ templates

In C++, you can use a template to declare a set of related:

v Classes (including structures)

v Functions

v Static data members of template classes

Within an application, you can instantiate the same template multiple times with

the same arguments or with different arguments. If you use the same arguments,

the repeated instantiations are redundant. These redundant instantiations increase

compilation time, increase the size of the executable, and deliver no benefit.

There are four basic approaches to the problem of redundant instantiations:

Code for unique instantiations

Organize your source code so that the object files contain only one instance

of each required instantiation and no unused instantiations. This is the

least usable approach, because you must know where each template is

defined and where each template instantiation is required.

Instantiate at every occurrence

Use the -qnotempinc and -qnotemplateregistry compiler options (these are

the default settings). The compiler generates code for every instantiation

that it encounters. With this approach, you accept the disadvantages of

redundant instantiations.

Have the compiler store instantiations in a template include directory

Use the -qtempinc compiler option. If the template definition and

implementation files have the required structure, each template

instantiation is stored in a template include directory. If the compiler is

asked to instantiate the same template again with the same arguments, it

uses the stored version instead. This approach is described in “Using the

-qtempinc compiler option.”

Have the compiler store instantiation information in a registry

Use the -qtemplateregistry compiler option. Information about each

template instantiation is stored in a template registry. If the compiler is

asked to instantiate the same template again with the same arguments, it

points to the instantiation in the first object file instead. The

-qtemplateregistry compiler option provides the benefits of the -qtempinc

compiler option but does not require a specific structure for the template

definition and implementation files. This approach is described in “Using

the -qtemplateregistry compiler option” on page 24.

Note: The -qtempinc and -qtemplateregistry compiler options are mutually

exclusive.

Related information

v -qtmplinst

Using the -qtempinc compiler option

To use -qtempinc, you must structure your application as follows:

© Copyright IBM Corp. 1998, 2007 21

1. Declare your class templates and function templates in template header files,

with a .h extension.

2. For each template declaration file, create a template implementation file. This

file must have the same file name as the template declaration file and an

extension of .c or .t, or the name must be specified in a #pragma

implementation directive. For a class template, the implementation file defines

the member functions and static data members. For a function template, the

implementation file defines the function.

3. In your source program, specify an #include directive for each template

declaration file.

4. Optionally, to ensure that your code is applicable for both -qtempinc and

-qnotempinc compilations, in each template declaration file, conditionally

include the corresponding template implementation file if the __TEMPINC__

macro is not defined. (This macro is automatically defined when you use the

-qtempinc compilation option.)

This produces the following results:

v Whenever you compile with -qnotempinc, the template implementation file

is included.

v Whenever you compile with -qtempinc, the compiler does not include the

template implementation file. Instead, the compiler looks for a file with the

same name as the template implementation file and extension .c the first

time it needs a particular instantiation. If the compiler subsequently needs

the same instantiation, it uses the copy stored in the template include

directory.

Related information

v -qtempinc and #pragma implementation in the XL C/C++ Compiler Reference

Example of -qtempinc

This example includes the following source files:

v A template declaration file: stack.h.

v The corresponding template implementation file: stack.c.

v A function prototype: stackops.h (not a function template).

v The corresponding function implementation file: stackops.cpp.

v The main program source file: stackadd.cpp.

In this example:

1. Both source files include the template declaration file stack.h.

2. Both source files include the function prototype stackops.h.

3. The template declaration file conditionally includes the template

implementation file stack.c if the program is compiled with -qnotempinc.

Template declaration file: stack.h

This header file defines the class template for the class Stack.

#ifndef STACK_H

#define STACK_H

template <class Item, int size> class Stack {

 public:

 void push(Item item); // Push operator

 Item pop(); // Pop operator

 int isEmpty(){

 return (top==0); // Returns true if empty, otherwise false

22 XL C/C++ Programming Guide

}

 Stack() { top = 0; } // Constructor defined inline

 private:

 Item stack[size]; // The stack of items

 int top; // Index to top of stack

};

#ifndef __TEMPINC__ // �3�

#include "stack.c" // �3�

#endif // �3�

#endif

Template implementation file: stack.c

This file provides the implementation of the class template for the class Stack.

template <class Item, int size>

 void Stack<Item,size>::push(Item item) {

 if (top >= size) throw size;

 stack[top++] = item;

 }

template <class Item, int size>

 Item Stack<Item,size>::pop() {

 if (top <= 0) throw size;

 Item item = stack[--top];

 return(item);

 }

Function declaration file: stackops.h

This header file contains the prototype for the add function, which is used in both

stackadd.cpp and stackops.cpp.

void add(Stack<int, 50>& s);

Function implementation file: stackops.cpp

This file provides the implementation of the add function, which is called from the

main program.

#include "stack.h" // �1�

#include "stackops.h" // �2�

void add(Stack<int, 50>& s) {

 int tot = s.pop() + s.pop();

 s.push(tot);

 return;

 }

Main program file: stackadd.cpp

This file creates a Stack object.

#include <iostream.h>

#include "stack.h" // �1�

#include "stackops.h" // �2�

main() {

 Stack<int, 50> s; // create a stack of ints

 int left=10, right=20;

 int sum;

 s.push(left); // push 10 on the stack

 s.push(right); // push 20 on the stack

 add(s); // pop the 2 numbers off the stack

 // and push the sum onto the stack

 sum = s.pop(); // pop the sum off the stack

Chapter 5. Using C++ templates 23

cout << "The sum of: " << left << " and: " << right << " is: " << sum << endl;

 return(0);

 }

Regenerating the template instantiation file

The compiler builds a template instantiation file in the TEMPINC directory

corresponding to each template implementation file. With each compilation, the

compiler can add information to the file but it never removes information from the

file.

As you develop your program, you might remove template function references or

reorganize your program so that the template instantiation files become obsolete.

You can periodically delete the TEMPINC destination and recompile your

program.

Using -qtempinc with shared libraries

In a traditional application development environment, different applications can

share both source files and compiled files. When you use templates, applications

can share source files but cannot share compiled files.

If you use -qtempinc:

v Each application must have its own TEMPINC destination.

v You must compile all of the source files for the application, even if some of the

files have already been compiled for another application.

Using the -qtemplateregistry compiler option

Unlike -qtempinc, the -qtemplateregistry compiler option does not impose specific

requirements on the organization of your source code. Any program that compiles

successfully with -qnotempinc will compile with -qtemplateregistry.

The template registry uses a ″first-come first-served″ algorithm:

v When a program references a new instantiation for the first time, it is

instantiated in the compilation unit in which it occurs.

v When another compilation unit references the same instantiation, it is not

instantiated. Thus, only one copy is generated for the entire program.

The instantiation information is stored in a template registry file. You must use the

same template registry file for the entire program. Two programs cannot share a

template registry file.

The default file name for the template registry file is templateregistry, but you

can specify any other valid file name to override this default. When cleaning your

program build environment before starting a fresh or scratch build, you must

delete the registry file along with the old object files.

Related information

v -qtemplateregistry and -qtemplaterecompile in the XL C/C++ Compiler Reference

Recompiling related compilation units

If two compilation units, A and B, reference the same instantiation, the

-qtemplateregistry compiler option has the following effect:

v If you compile A first, the object file for A contains the code for the instantiation.

24 XL C/C++ Programming Guide

v When you later compile B, the object file for B does not contain the code for the

instantiation because object A already does.

v If you later change A so that it no longer references this instantiation, the

reference in object B would produce an unresolved symbol error. When you

recompile A, the compiler detects this problem and handles it as follows:

– If the -qtemplaterecompile compiler option is in effect, the compiler

automatically recompiles B during the link step, using the same compiler

options that were specified for A. (Note, however, that if you use separate

compilation and linkage steps, you need to include the compilation options in

the link step to ensure the correct compilation of B.)

– If the -qnotemplaterecompile compiler option is in effect, the compiler issues

a warning and you must manually recompile B.

Switching from -qtempinc to -qtemplateregistry

Because the -qtemplateregistry compiler option does not impose any restrictions

on the file structure of your application, it has less administrative overhead than

-qtempinc. You can make the switch as follows:

v If your application compiles successfully with both -qtempinc and -qnotempinc,

you do not need to make any changes.

v If your application compiles successfully with -qtempinc but not with

-qnotempinc, you must change it so that it will compile successfully with

-qnotempinc. In each template definition file, conditionally include the

corresponding template implementation file if the __TEMPINC__ macro is not

defined. This is illustrated in “Example of -qtempinc” on page 22.

Chapter 5. Using C++ templates 25

26 XL C/C++ Programming Guide

Chapter 6. Constructing a library

You can include static and shared libraries in your C and C++ applications.

“Compiling and linking a library” describes how to compile your source files into

object files for inclusion in a library, how to link a library into the main program,

and how to link one library into another.

“Initializing static objects in libraries (C++)” on page 28 describes how to use

priorities to control the order of initialization of objects across multiple files in a

C++ application.

Compiling and linking a library

Compiling a static library

To compile a static library:

1. Compile each source file into an object file, with no linking. For example:

xlc -c bar.c example.c

2. Use the ar command to add the generated object files to an archive library file.

For example:

ar -rv libfoo.a bar.o example.o

Compiling a shared library

To compile a shared library:

1. Compile your source files into an object file, with no linking. Note that in the

case of compiling a shared library, the -qpic compiler option is also used. For

example:

xlc -qpic -c foo.c

2. Use the -qmkshrobj compiler option to create a shared object from the

generated object files. For example:

xlc -qmkshrobj -o libfoo.so foo.o

Related information

v -qmkshrobj in the XL C/C++ Compiler Reference

Linking a library to an application

You can use the same command string to link a static or shared library to your

main program. For example:

xlc -o myprogram main.c -Ldirectory [-Rdirectory] -lfoo

where directory is the path to the directory containing the library.

By using the -l option, you instruct the linker to search in the directory specified

via the -L option (and, for a shared library, the -R option) for libfoo.so; if it is not

found, the linker searches for libfoo.a. For additional linkage options, including

options that modify the default behavior, see the operating system ld

documentation.

© Copyright IBM Corp. 1998, 2007 27

Linking a shared library to another shared library

Just as you link modules into an application, you can create dependencies between

shared libraries by linking them together. For example:

xlc -qmkshrobj -o mylib.so myfile.o -Ldirectory -Rdirectory -lfoo

Related information

v -qmkshrobj, -l, -R and -L in the XL C/C++ Compiler Reference

Initializing static objects in libraries (C++)

The C++ language definition specifies that, before the main function in a C++

program is executed, all objects with constructors, from all the files included in the

program must be properly constructed. Although the language definition specifies

the order of initialization for these objects within a file (which follows the order in

which they are declared), it does not specify the order of initialization for these

objects across files and libraries. You might want to specify the initialization order

of static objects declared in various files and libraries in your program.

To specify an initialization order for objects, you assign relative priority numbers to

objects. The mechanisms by which you can specify priorities for entire files or

objects within files are discussed in “Assigning priorities to objects.” The

mechanisms by which you can control the initialization order of objects across

modules are discussed in “Order of object initialization across libraries” on page

30.

Assigning priorities to objects

You can assign a priority number to objects and files within a single library, and

the objects will be initialized at runtime according to the order of priority.

However, because of the differences in the way modules are loaded and objects

initialized on the different platforms, the levels at which you can assign priorities

vary among the different platforms, as follows:

Set the priority level for an entire file

To use this approach, you specify the -qpriority compiler option during

compilation. By default, all objects within a single file are assigned the

same priority level, and are initialized in the order in which they are

declared, and terminated in reverse declaration order.

Set the priority level for objects within a file

To use this approach, you include #pragma priority directives in the source

files. Each #pragma priority directive sets the priority level for all objects

that follow it, until another pragma directive is specified. Within a file, the

first #pragma priority directive must have a higher priority number than

the number specified in the -qpriority option (if it is used), and subsequent

#pragma priority directives must have increasing numbers. While the

relative priority of objects within a single file will remain the order in

which they are declared, the pragma directives will affect the order in

which objects are initialized across files. The objects are initialized

according to their priority, and terminated in reverse priority order.

Set the priority level for individual objects

To use this approach, you use init_priority variable attributes in the

source files. The init_priority attribute takes precedence over #pragma

priority directives, and can be applied to objects in any declaration order.

On Linux, the objects are initialized according to their priority and

terminated in reverse priority across compilation units.

28 XL C/C++ Programming Guide

Related information

v ″The init_priority variable attribute″ in the XL C/C++ Language Reference

Using priority numbers

Priority numbers can range from 101 to 65535. The smallest priority number that

you can specify, 101, is initialized first. The largest priority number, 65535, is

initialized last. If you do not specify a priority level, the default priority is 65535.

The examples below show how to specify the priority of objects within a single

file, and across two files. “Order of object initialization across libraries” on page 30

provides detailed information on the order of initialization of objects on the Linux

platform.

Example of object initialization within a file

The following example shows how to specify the priority for several objects within

a source file.

...

#pragma priority(2000) //Following objects constructed with priority 2000

...

static Base a ;

House b ;

...

#pragma priority(3000) //Following objects constructed with priority 3000

...

Barn c ;

...

#pragma priority(2500) // Error - priority number must be larger

 // than preceding number (3000)

...

#pragma priority(4000) //Following objects constructed with priority 4000

...

Garage d ;

...

Example of object initialization across multiple files

The following example describes the initialization order for objects in two files,

farm.C and zoo.C. Both files are contained in the same shared module, and use the

-qpriority compiler option and #pragma priority directives.

 farm.C -qpriority=1000 zoo.C -qpriority=2000

...

Dog a ;

Dog b ;

...

#pragma priority(6000)

...

Cat c ;

Cow d ;

...

#pragma priority(7000)

Mouse e ;

...

...

Bear m ;

...

#pragma priority(5000)

...

Zebra n ;

Snake s ;

...

#pragma priority(8000)

Frog f ;

...

Chapter 6. Constructing a library 29

At runtime, the objects in these files are initialized in the following order:

Sequence Object

Priority

value Comment

1 Dog a 1000 Takes option priority (1000).

2 Dog b 1000 Follows with the same priority.

3 Bear m 2000 Takes option priority (2000).

4 Zebra n 5000 Takes pragma priority (5000).

5 Snake s 5000 Follows with same priority.

6 Cat c 6000 Next priority number.

7 Cow d 6000 Follows with same priority.

8 Mouse e 7000 Next priority number.

9 Frog f 8000 Next priority number (initialized last).

Order of object initialization across libraries

Each static library and shared library is loaded and initialized at runtime in reverse

link order, once all of its dependencies have been loaded and initialized. Link

order is the order in which each library was listed on the command line during

linking into the main application. For example, if library A calls library B, library B

is loaded before library A.

As each module is loaded, objects are initialized in order of priority, according to

the rules outlined in “Assigning priorities to objects” on page 28. If objects do not

have priorities assigned, or have the same priorities, object files are initialized in

reverse link order — where link order is the order in which the files were given on

the command line during linking into the library — and the objects within the files

are initialized according to their declaration order. Objects are terminated in

reverse order of their construction.

Example of object initialization across libraries

In this example, the following modules are used:

v main.out, the executable containing the main function

v libS1 and libS2, two shared libraries

v libS3 and libS4, two shared libraries that are dependencies of libS1

v libS5 and libS6, two shared libraries that are dependencies of libS2

The source files are compiled into object files with the following command strings:

xlC -qpriority=101 -c fileA.C -o fileA.o

xlC -qpriority=150 -c fileB.C -o fileB.o

xlC -c fileC.C -o fileC.o

xlC -c fileD.C -o fileD.o

xlC -c fileE.C -o fileE.o

xlC -c fileF.C -o fileF.o

xlC -qpriority=300 -c fileG.C -o fileG.o

xlC -qpriority=200 -c fileH.C -o fileH.o

xlC -qpriority=500 -c fileI.C -o fileI.o

xlC -c fileJ.C -o fileJ.o

xlC -c fileK.C -o fileK.o

xlC -qpriority=600 -c fileL.C -o fileL.o

The dependent libraries are created with the following command strings:

30 XL C/C++ Programming Guide

xlC -qmkshrobj -o libS3.so fileE.o fileF.o

xlC -qmkshrobj -o libS4.so fileG.o fileH.o

xlC -qmkshrobj -o libS5.so fileI.o fileJ.o

xlC -qmkshrobj -o libS6.so fileK.o fileL.o

The dependent libraries are linked with their parent libraries using the following

command strings:

xlC -qmkshrobj -o libS1.so fileA.o fileB.o -L. -R. -lS3 -lS4

xlC -qmkshrobj -o libS2.so fileC.o fileD.o -L. -R. -lS5 -lS6

The parent libraries are linked with the main program with the following

command string:

xlC main.C -o main.out -L. -R. -lS1 -lS2

The following diagram shows the initialization order of the shared libraries.

4 23 1

6 5

7

fileG.o fileK.ofileE.o fileI.o

fileA.o fileC.o

fileH.o fileL.ofileF.o fileJ.o

fileB.o fileD.o

libS4 libS6libS3 libS5

libS1 libS2

-qpriority=300 -qpriority=500

-qpriority=101

-qpriority=200 -qpriority=600

-qpriority=150

main.out

Objects are initialized as follows:

Sequence Object

Priority

value Comment

1 libS6 n/a libS2 was entered last on the command line when

linked with main, and so is initialized before libS1.

However, libS5 and libS6 are dependencies of

libS2, so they are initialized first. Since it was

entered last on the command line when linked to

create libS2, libS6 is initialized first. The objects in

this library are initialized according to their priority.

2 fileL 600 The objects in fileL are initialized next (lowest

priority number in this module).

3 fileK 65535 The objects in fileK are initialized next (next priority

number in this module (default priority of 65535)).

Figure 1. Object initialization order on Linux

Chapter 6. Constructing a library 31

Sequence Object

Priority

value Comment

4 libS5 n/a libS5 was entered before libS6 on the command

line when linked with libS2, so it is initialized next.

The objects in this library are initialized according to

their priority.

5 fileI 500 The objects in fileI are initialized next (lowest

priority number in this module).

6 fileJ 65535 The objects in fileJ are initialized next (next priority

number in this module (default priority of 65535)).

7 libS4 n/a libS4 is a dependency of libS1 and was entered last

on the command line when linked to create libS1, so

it is initialized next. The objects in this library are

initialized according to their priority.

8 fileH 200 The objects in fileH are initialized next (lowest

priority number in this module).

9 fileG 300 The objects in fileG are initialized next (next priority

number in this module).

10 libS3 n/a libS3 is a dependency of libS1 and was entered first

on the command line during the linking with libS1,

so it is initialized next. The objects in this library are

initialized according to their priority.

11 fileF 65535 Both fileF and fileE are assigned a default priority

of 65535. However, because fileF was listed last on

the command line when the object files were linked

into libS3, fileF is initialized first.

12 fileE 65535 Initialized next.

13 libS2 n/a libS2 is initialized next. The objects in this library

are initialized according to their priority.

14 fileD 65535 Both fileD and fileC are assigned a default priority

of 65535. However, because fileD was listed last on

the command line when the object files were linked

into libS2, fileD is initialized first.

15 fileC 65535 Initialized next.

16 libS1 libS1 is initialized next. The objects in this library

are initialized according to their priority.

17 fileA 101 The objects in fileA are initialized next (lowest

priority number in this module).

18 fileB 150 The objects in fileB are initialized next (next priority

number in this module).

19 main.out n/a Initialized last. The objects in main.out are initialized

according to their priority.

32 XL C/C++ Programming Guide

Chapter 7. Optimizing your applications

The XL compilers enable development of high performance 32-bit and 64-bit

applications for the Linux operating system by offering a comprehensive set of

performance enhancing techniques that exploit the multilayered PowerPC®

architecture. These performance advantages depend on good programming

techniques, thorough testing and debugging, followed by optimization, and tuning.

Distinguishing between optimization and tuning

You can use optimization and tuning separately or in combination to increase the

performance of your application. Understanding the difference between them is the

first step in understanding how the different levels, settings and techniques can

increase performance.

Optimization

Optimization is a compiler driven process that searches for opportunities to

restructure your source code and give your application better overall performance

at runtime, without significantly impacting development time. The XL compiler

optimization suite, which you control using compiler options and directives,

performs best on well-written source code that has already been through a

thorough debugging and testing process. These optimization transformations can:

v Reduce the number of instructions your application executes to perform critical

operations.

v Restructure your object code to make optimal use of the PowerPC architecture.

v Improve memory subsystem usage.

v Exploit the ability of the architecture to handle large amounts of shared memory

parallelization.

Consider that although not all optimizations benefit all applications, even basic

optimization techniques can result in a performance benefit. Consult the Steps in

the optimization process for an overview of the common sequence of steps you can

use to increase the performance of your application.

Tuning

Where optimization applies increasingly aggressive transformations designed to

improve the performance of any application in any supported environment, tuning

offers you opportunities to adjust characteristics of your application to improve

performance, or to target specific execution environments. Even at low

optimization levels, tuning for your application and target architecture can have a

positive impact on performance. With proper tuning the compiler can:

v Select more efficient machine instructions.

v Generate instruction sequences that are more relevant to your application.

For instructions, see Tuning for your system architecture.

© Copyright IBM Corp. 1998, 2007 33

Steps in the optimization process

As you begin the optimization process, consider that not all optimization

techniques suit all applications. Trade-offs sometimes occur between an increase in

compile time, a reduction in debugging capability, and the improvements that

optimization can provide. Learning about, and experimenting with different

optimization techniques can help you strike the right balance for your XL compiler

applications while achieving the best possible performance. Also, though it is

unnecessary to hand-optimize your code, compiler-friendly programming can be

extremely beneficial to the optimization process. Unusual constructs can obscure

the characteristics of your application and make performance optimization difficult.

Use the steps in this section as a guide for optimizing your application.

1. The Basic optimization step begins your optimization processes at levels 0 and

2.

2. The Advanced optimization step exposes your application to more intense

optimizations at levels 3 through 5.

3. The Using high-order loop analysis and transformations step can help you limit

loop execution time.

4. The Using interprocedural analysis, step can optimize your entire application at

once.

5. The Using profile-directed feedback step focuses optimizations on specific

characteristics of your application.

6. The Debugging high-performance code step can help you identify issues and

problems that can occur with optimized code.

Basic optimization

The XL compiler supports several levels of optimization, with each option level

building on the levels below through increasingly aggressive transformations, and

consequently using more machine resources. Ensure that your application compiles

and executes properly at low optimization levels before trying more aggressive

optimizations. This section discusses two optimizations levels, listed with

complementary options in the Basic optimizations table. The table also includes a

column for compiler options that can have a performance benefit at that

optimization level for some applications.

 Table 11. Basic optimizations

Optimization level Additional options

implied by default

Complementary

options

Other options with

possible benefits

-O0 None -qarch -g

-O2 -qmaxmem=8192 -qarch

 -qtune

 -qmaxmem=-1

 -qhot=level=0

Optimizing at level 0

Benefits at level 0

v Minimal performance improvement, with minimal impact on machine

resources.

v Exposes some source code problems, helping in the debugging process.

34 XL C/C++ Programming Guide

Begin your optimization process at -O0 which the compiler already specifies by

default. For SMP programs, the closest equivalent to -O0 is -qsmp=noopt. This

level performs basic analytical optimization by removing obviously redundant

code, and can result in better compile time, while ensuring your code is

algorithmically correct so you can move forward to more complex optimizations.

-O0 also includes constant folding. The option -qfloat=nofold can be used to

suppress folding floating-point operations. Optimizing at this level accurately

preserves all debug information and can expose problems in existing code, such as

uninitialized variables and bad casting.

Additionally, specifying -qarch at this level targets your application for a particular

machine and can significantly improve performance by ensuring your application

takes advantage of all applicable architectural benefits.

For more information on tuning, consult Tuning for your system architecture.

Optimizing at level 2

Benefits at level 2

v Eliminates redundant code

v Basic loop optimization

v Can structure code to take advantage of -qarch and -qtune settings

 After successfully compiling, executing, and debugging your application using

-O0, recompiling at -O2 opens your application to a set of comprehensive low-level

transformations that apply to subprogram or compilation unit scopes and can

include some inlining. Optimizations at -O2 are a relative balance between

increasing performance while limiting the impact on compilation time and system

resources. You can increase the memory available to some of the optimizations in

the -O2 portfolio by providing a larger value for the -qmaxmem option. Specifying

-qmaxmem=-1 allows the optimizer to use memory as needed without checking for

limits but does not change the transformations the optimizer applies to your

application at -O2.

In C, compile with -qlibansi unless your application defines functions with names

identical to those of library functions. If you encounter problems with -O2,

consider using -qalias=noansi rather than turning off optimization.

Also, ensure that pointers in your C code follow these type restrictions:

v Generic pointers can be char* or void*

v Mark all shared variables and pointers to shared variables volatile

Starting to tune at O2

Choosing the right hardware architecture target or family of targets becomes even

more important at -O2 and higher. Targeting the proper hardware allows the

optimizer to make the best use of the hardware facilities available. If you choose a

family of hardware targets, the -qtune option can direct the compiler to emit code

consistent with the architecture choice, but will execute optimally on the chosen

tuning hardware target. This allows you to compile for a general set of targets but

have the code run best on a particular target.

See the Tuning for your system architecture section for details on the -qarch and

-qtune options.

Chapter 7. Optimizing your applications 35

The -O2 option can perform a number of additional optimizations, including:

v Common subexpression elimination: Eliminates redundant instructions.

v Constant propagation: Evaluates constant expressions at compile-time.

v Dead code elimination: Eliminates instructions that a particular control flow

does not reach, or that generate an unused result.

v Dead store elimination: Eliminates unnecessary variable assignments.

v Graph coloring register allocation: Globally assigns user variables to registers.

v Value numbering: Simplifies algebraic expressions, by eliminating redundant

computations.

v Instruction scheduling for the target machine.

v Loop unrolling and software pipelining.

v Moves invariant code out of loops.

v Simplifies control flow.

v Strength reduction and effective use of addressing modes.

Even with -O2 optimizations, some useful information about your source code is

made available to the debugger if you specify -g. Conversely, higher optimization

levels can transform code to an extent to which debug information is no longer

accurate. Use that information with discretion.

Advanced optimization

After applying basic optimizations and successfully compiling and executing your

application, you can apply more powerful optimization tools. Higher optimization

levels can have a tremendous impact on performance, but some trade-offs can

occur in terms of code size, compilation time, resource requirements and numeric

or algorithmic precision. The XL compiler optimization portfolio includes many

options for directing advanced optimization, and the transformations your

application undergoes are largely under your control. The discussion of each

optimization level in Table 12 on page 36 includes information on not only the

performance benefits, and the possible trade-offs as well, but information on how

you can help guide the optimizer to find the best solutions for your application.

 Table 12. Advanced optimizations

Optimization Level Additional options

implied

Complementary

options

Options with

possible benefits

-O3 -qnostrict

 -qmaxmem=-1

 -qhot=level=0

 -qarch

 -qtune

 -qpdf

-O4 -qnostrict

 -qmaxmem=-1

 -qhot

 -qipa

 -qarch=auto

 -qtune=auto

 -qcache=auto

 -qarch

 -qtune

 -qcache

 -qpdf

 -qsmp=auto

-O5 All of -O4

 -qipa=level=2

 -qarch

 -qtune

 -qcache

 -qpdf

 -qsmp=auto

36 XL C/C++ Programming Guide

Optimizing at level 3

Benefits at level 3

v In-depth memory access analysis

v Better loop scheduling

v High-order loop analysis and transformations (-qhot=level=0)

v Inlining of small procedures within a compilation unit by default

v Eliminating implicit compile-time memory usage limits

v Widening, which merges adjacent load/stores and other operations

v Pointer aliasing improvements to enhance other optimizations

 Specifying -O3 initiates more intense low-level transformations that remove many

of the limitations present at -O2. For instance, the optimizer no longer checks for

memory limits, by defaulting to -qmaxmem=-1. Additionally, optimizations

encompass larger program regions and attempt more in-depth analysis. While not

all applications contain opportunities for the optimizer to provide a measurable

increase in performance, most applications can benefit from this type of analysis.

Potential trade-offs at level 3

With the in-depth analysis of -O3 comes a trade-off in terms of compilation time

and memory resources. Also, since -O3 implies -qnostrict, the optimizer can alter

certain floating-point semantics in your application to gain execution speed. This

typically involves precision trade-offs as follows:

v Reordering of floating-point computations.

v Reordering or elimination of possible exceptions, such as division by zero or

overflow.

You can still gain most of the -O3 benefits while preserving precise floating-point

semantics by specifying -qstrict. Compiling with -qstrict is necessary if you require

the same absolute precision in floating-point computational accuracy as you get

with -O0, -O2, or -qnoopt results. The -qstrict compiler option also ensures

adherence to all IEEE semantics for floating-point operations. If your application is

sensitive to floating-point exceptions or the order of evaluation for floating-point

arithmetic, compiling with -qstrict will help assure accurate results. Without

-qstrict, the difference in computation for any one source-level operation is very

small in comparison to basic optimization. Though a small difference can

compound if the operation is in a loop structure where the difference becomes

additive, most applications are not sensitive to the changes that can occur in

floating-point semantics.

An intermediate step: adding -qhot suboptions at level 3

At -O3, the optimization includes minimal -qhot loop transformations at level=0 to

increase performance. You can further increase your performance benefit by

increasing the level and therefore the aggressiveness of -qhot. Try specifying -qhot

without any suboptions, or -qhot=level=1.

For more information on -qhot, see Using high-order loop analysis and

transformations .

Chapter 7. Optimizing your applications 37

Optimizing at level 4

Benefits at level 4

v Propagation of global and parameter values between compilation units

v Inlining code from one compilation unit to another

v Reorganization or elimination of global data structures

v An increase in the precision of aliasing analysis

 Optimizing at -O4 builds on -O3 by triggering -qipa=level=1 which performs

interprocedural analysis (IPA), optimizing your entire application as a unit. This

option is particularly pertinent to applications that contain a large number of

frequently used routines.

To make full use of IPA optimizations, you must specify -O4 on the compilation

and link steps of your application build as interprocedural analysis occurs in

stages at both compile and link time.

The IPA process

1. At compilation time optimizations occur on a file-by-file basis, as well as

preparation for the link stage. IPA writes analysis information directly into the

object files the compiler produces.

2. At the link stage, IPA reads the information from the object files and analyzes

the entire application.

3. This analysis guides the optimizer on how to rewrite and restructure your

application and apply appropriate -O3 level optimizations.

The Using interprocedural analysis section contains more information on IPA

including details on IPA suboptions.

 Beyond -qipa, -O4 enables other optimization options:

v -qhot

Enables more aggressive HOT transformations to optimize loop constructs and

array language.

v -qarch=auto and -qtune=auto

Optimizes your application to execute on a hardware architecture identical to

your build machine. If the architecture of your build machine is incompatible

with your application’s execution environment, you must specify a different

-qarch suboption after the -O4 option. This overrides -qarch=auto.

v -qcache=auto

Optimizes your cache configuration for execution on specific hardware

architecture. The auto suboption assumes that the cache configuration of your

build machine is identical to the configuration of your execution architecture.

Specifying a cache configuration can increase program performance, particularly

loop operations by blocking them to process only the amount of data that can fit

into the data cache.

If you will be executing your application on a different machine, specify correct

cache values.

Potential trade-offs at level 4

In addition to the trade-offs already mentioned for -O3, specifying -qipa can

significantly increase compilation time, especially at the link step.

38 XL C/C++ Programming Guide

Optimizing at level 5

Benefits at level 5

v Most aggressive optimizations available

v Makes full use of loop optimizations and IPA

 As the highest optimization level, -O5 includes all -O4 optimizations and deepens

whole program analysis by increasing the -qipa level to 2. Compiling with -O5

also increases how aggressively the optimizer pursues aliasing improvements.

Additionally, if your application contains a mix of XL C/C++ and Fortran code

that you compile using XL compilers, you can increase performance by compiling

and linking your code with the -O5 option.

Potential trade-offs at level 5

Compiling at -O5 requires more compilation time and machine resources than any

other optimization level, particularly if you include -O5 on the IPA link step.

Compile at -O5 as the final phase in your optimization process after successfully

compiling and executing your application at -O4.

Tuning for your system architecture

You can instruct the compiler to generate code for optimal execution on a given

microprocessor or architecture family. By selecting appropriate target machine

options, you can optimize to suit the broadest possible selection of target

processors, a range of processors within a given family of processor architectures,

or a specific processor. The following table lists the optimization options that affect

individual aspects of the target machine. Using a predefined optimization level sets

default values for these individual options.

 Table 13. Target machine options

Option Behavior

-q32 Generates code for a 32-bit (4 byte integer / 4 byte long / 4 byte pointer)

addressing model (32-bit execution mode). This is the default setting.

-q64 Generates code for a 64-bit (4 byte integer / 8 byte long / 8 byte pointer)

addressing model (64-bit execution mode).

-qarch Selects a family of processor architectures for which instruction code

should be generated. This option restricts the instruction set generated to

a subset of that for the PowerPC architecture. The default on all Linux

distributions is -qarch=ppc64grsq. Using -O4 or -O5 sets the default to

-qarch=auto. See “Getting the most out of target machine options” on

page 40 below for more information on this option.

-qipa=clonearch Allows you to specify multiple specific processor architectures for which

instruction sets will be generated. At runtime, the application will detect

the specific architecture of the operating environment and select the

instruction set specialized for that architecture. The advantage of this

option is that it allows you to optimize for several architectures without

recompiling your code for each target architecture. See “Using

interprocedural analysis ” on page 43 for more information on this

option.

-qtune Biases optimization toward execution on a given microprocessor, without

implying anything about the instruction set architecture to use as a

target. See “Getting the most out of target machine options” on page 40

below for more information on this option.

Chapter 7. Optimizing your applications 39

Table 13. Target machine options (continued)

Option Behavior

-qcache Defines a specific cache or memory geometry. The defaults are

determined through the setting of -qtune. See “Getting the most out of

target machine options” below for more information on this option.

For a complete listing of valid hardware-related suboptions and combinations of

suboptions, see “Specifying Compiler Options for Architecture-Specific, 32- or

64-bit Compilation”, and “Acceptable -qarch/-qtune combinations” in the XL

C/C++ Compiler Reference.

Getting the most out of target machine options

Using -qarch options

If your application will run on the same machine on which you are compiling it,

you can use the -qarch=auto option, which automatically detects the specific

architecture of the compiling machine, and generates code to take advantage of

instructions available only on that machine (or on a system that supports the

equivalent processor architecture). Otherwise, try to specify with -qarch the

smallest family of machines possible that will be expected to run your code

reasonably well, or use the -qipa=clonearch option, which will generate

instructions for multiple architectures. Note that if you use -qipa=clonearch, the

-qarch value must be in the family of architectures specified by the clonearch

suboption.

Using -qtune options

If you specify a particular architecture with -qarch, -qtune will automatically select

the suboption that generates instruction sequences with the best performance for

that architecture. If you specify a group of architectures with -qarch, compiling with

-qtune=auto will generate code that runs on all of the architectures in the specified

group, but the instruction sequences will be those with the best performance on

the architecture of the compiling machine.

Try to specify with -qtune the particular architecture that the compiler should

target for best performance but still allow execution of the produced object file on

all architectures specified in the -qarch option. For information on the valid

combinations of -qarch and -qtune, see “Acceptable -qarch/-qtune combinations”

in the XL C/C++ Compiler Reference.

If you need to create a single binary that will run on a range of PowerPC

hardware, consider using the -qtune=balanced option. With this option in effect,

optimization decisions made by the compiler are not targeted to a specific version

of hardware. Instead, tuning decisions try to include features that are generally

helpful across a broad range of hardware and avoid those optimizations that may

be harmful on some hardware. Note that you should verify the performance of

code compiled with the -qtune=balanced option before distributing it.

Using -qcache options

Before using the -qcache option, use the -qlistopt option to generate a listing of the

current settings and verify if they are satisfactory. If you decide to specify your

own -qcache suboptions, use -qhot or -qsmp along with it. For the full set of

suboptions, option syntax, and guidelines for use, see -qcache in the XL C/C++

Compiler Reference.

40 XL C/C++ Programming Guide

Related information

v “Using the Mathematical Acceleration Subsystem libraries (MASS) ” on page 63

v -qarch, -qcache, -qtune, and -qlistopt in the XL C/C++ Compiler Reference

Using high-order loop analysis and transformations

High-order transformations are optimizations that specifically improve the

performance of loops through techniques such as interchange, fusion, and

unrolling. The goals of these loop optimizations include:

v Reducing the costs of memory access through the effective use of caches and

translation look-aside buffers.

v Overlapping computation and memory access through effective utilization of the

data prefetching capabilities provided by the hardware.

v Improving the utilization of microprocessor resources through reordering and

balancing the usage of instructions with complementary resource requirements.

v Generating vector instructions.

To enable high-order loop analysis and transformations, you use the -qhot option,

which implies an optimization level of -O2. The following table lists the suboptions

available for -qhot.

 Table 14. -qhot suboptions

Suboption Behavior

level=1 This is the default suboption if you specify -qhot with no suboptions. This

level is also automatically enabled if you compile with -O4 or -O5. This is

equivalent to specifying -qhot=vector and -qhot=simd.

level=0 Instructs the compiler to perform a subset of high-order transformations

that enhance performance by improving data locality. This suboption

implies -qhot=novector, -qhot=noarraypad and -qhot=nosimd. This level is

automatically enabled if you compile with -O3.

vector When specified with -qnostrict and -qignerrno, or -O3 or a higher

optimization level, instructs the compiler to transform some loops to use

the optimized versions of various math functions contained in the MASS

libraries, rather than use the system versions. The optimized versions make

different trade-offs with respect to accuracy and exception-handling versus

performance. This suboption is enabled by default if you specify -qhot with

no suboptions. Also, specifying -qhot=vector with -O3 implies

-qhot=level=1.

arraypad Instructs the compiler to pad any arrays where it infers there might be a

benefit and to pad by whatever amount it chooses.

simd Instructs the compiler to attempt automatic SIMD vectorization; that is,

converting certain operations in a loop that apply to successive elements of

an array into a call to a VMX instruction. This call calculates several results

at one time, which is faster than calculating each result sequentially. This

suboption is enabled by default on Linux if you set -qarch to a target

architecture that supports VMX instructions (and -qenablevmx is in effect,

which it is by default).

Getting the most out of -qhot

Here are some suggestions for using -qhot:

v Try using -qhot along with -O3 for all of your code. It is designed to have a

neutral effect when no opportunities for transformation exist.

Chapter 7. Optimizing your applications 41

v If the runtime performance of your code can significantly benefit from automatic

inlining and memory locality optimizations, try using -O4 with -qhot=level=0 or

-qhot=novector.

v If you encounter unacceptably long compile times (this can happen with

complex loop nests), try -qhot=level=0.

v If your code size is unacceptably large, try using -qcompact along with -qhot.

v If necessary, deactivate -qhot selectively, allowing it to improve some of your

code.

Related information

v -qhot, -qenablevmx, and -qstrict in XL C/C++ Compiler Reference

Using shared-memory parallelism (SMP)

Some IBM pSeries® machines are capable of shared-memory parallel processing.

You can compile with -qsmp to generate the threaded code needed to exploit this

capability. The option implies an optimization level of at least -O2.

The following table lists the most commonly used suboptions. Descriptions and

syntax of all the suboptions are provided in -qsmp in the XL C/C++ Compiler

Reference. An overview of automatic parallelization, as well as of OpenMP

directives is provided in Chapter 11, “Parallelizing your programs,” on page 75.

 Table 15. Commonly used -qsmp suboptions

suboption Behavior

auto Instructs the compiler to automatically generate parallel code where possible

without user assistance. Any SMP programming constructs in the source

code, including OpenMP directives, are also recognized. This is the default

setting if you do not specify any -qsmp suboptions, and it also implies the

opt suboption.

omp Instructs the compiler to enforce strict conformance to the OpenMP API for

specifying explicit parallelism. Only language constructs that conform to the

OpenMP standard are recognized. Note that -qsmp=omp is currently

incompatible with -qsmp=auto.

opt Instructs the compiler to optimize as well as parallelize. The optimization is

equivalent to -O2 -qhot in the absence of other optimization options.

noopt All optimization is turned off. During development, it can be useful to turn

off optimization to facilitate debugging.

fine_tuning Other values for the suboption provide control over thread scheduling,

nested parallelism, locking, etc.

Getting the most out of -qsmp

Here are some suggestions for using the -qsmp option:

v Before using -qsmp with automatic parallelization, test your programs using

optimization and -qhot in a single-threaded manner.

v If you are compiling an OpenMP program and do not want automatic

parallelization, use -qsmp=omp:noauto .

v Always use the reentrant compiler invocations (the _r invocations) when using

-qsmp.

v By default, the runtime environment uses all available processors. Do not set the

XLSMPOPTS=PARTHDS or OMP_NUM_THREADS environment variables

42 XL C/C++ Programming Guide

unless you want to use fewer than the number of available processors. You

might want to set the number of executing threads to a small number or to 1 to

ease debugging.

v If you are using a dedicated machine or node, consider setting the SPINS and

YIELDS environment variables (suboptions of the XLSMPOPTS environment

variable) to 0. Doing so prevents the operating system from intervening in the

scheduling of threads across synchronization boundaries such as barriers.

v When debugging an OpenMP program, try using -qsmp=noopt (without -O) to

make the debugging information produced by the compiler more precise.

Related information

v ″Environment variables for parallel processing″ in XL C/C++ Compiler Reference

v ″Invoking the compiler″ in XL C/C++ Compiler Reference

Using interprocedural analysis

Interprocedural analysis (IPA) enables the compiler to optimize across different

files (whole-program analysis), and can result in significant performance

improvements. You can specify interprocedural analysis on the compile step only

or on both compile and link steps in “whole program” mode (with the exception

of the clonearch and cloneproc suboptions, which must be specified on the link

step). Whole program mode expands the scope of optimization to an entire

program unit, which can be an executable or shared object. As IPA can significantly

increase compilation time, you should limit using IPA to the final performance

tuning stage of development.

You enable IPA by specifying the -qipa option. The most commonly used

suboptions and their effects are described in the following table. The full set of

suboptions and syntax is described in the -qipa section of the XL C/C++ Compiler

Reference.

The steps to use IPA are:

1. Do preliminary performance analysis and tuning before compiling with the

-qipa option, because the IPA analysis uses a two-pass mechanism that

increases compile and link time. You can reduce some compile and link

overhead by using the -qipa=noobject option.

2. Specify the -qipa option on both the compile and the link steps of the entire

application, or as much of it as possible. Use suboptions to indicate

assumptions to be made about parts of the program not compiled with -qipa.

 Table 16. Commonly used -qipa suboptions

Suboption Behavior

level=0 Program partitioning and simple interprocedural optimization, which

consists of:

v Automatic recognition of standard libraries.

v Localization of statically bound variables and procedures.

v Partitioning and layout of procedures according to their calling

relationships. (Procedures that call each other frequently are

located closer together in memory.)

v Expansion of scope for some optimizations, notably register

allocation.

Chapter 7. Optimizing your applications 43

Table 16. Commonly used -qipa suboptions (continued)

Suboption Behavior

level=1 Inlining and global data mapping. Specifically:

v Procedure inlining.

v Partitioning and layout of static data according to reference

affinity. (Data that is frequently referenced together will be located

closer together in memory.)

This is the default level if you do not specify any suboptions with

the -qipa option.

level=2 Global alias analysis, specialization, interprocedural data flow:

v Whole-program alias analysis. This level includes the

disambiguation of pointer dereferences and indirect function calls,

and the refinement of information about the side effects of a

function call.

v Intensive intraprocedural optimizations. This can take the form of

value numbering, code propagation and simplification, moving

code into conditions or out of loops, and elimination of

redundancy.

v Interprocedural constant propagation, dead code elimination,

pointer analysis, code motion across functions, and interprocedural

strength reduction.

v Procedure specialization (cloning).

v Whole program data reorganization.

inline=suboptions Allows precise control over function inlining.

clonearch=arch_list Allows you to specify multiple architectures for which optimized

instructions can be generated. Supported architecture values are

PWR4, PWR5, PWR6, and PPC970. For every function in your

program, the compiler generates a generic version of the instruction

set, according to the -qarch value in effect, and, if appropriate, clones

specialized versions of the instruction set for the architectures you

specify in this suboption. The compiler inserts code into your

application to check for the processor architecture at run time, and

selects the version of the generated instructions that is optimized for

the runtime environment.

cloneproc=func_list Allows you to specify the exact functions which should be cloned for

the specified architectures in the clonearch suboption.

fine_tuning Other values for -qipa provide the ability to specify the behavior of

library code, tune program partitioning, read commands from a file,

etc.

Getting the most from -qipa

It is not necessary to compile everything with -qipa, but try to apply it to as much

of your program as possible. Here are some suggestions:

v Specify the -qipa option on both the compile and link steps of the entire

application. Although you can also use -qipa with libraries, shared objects, and

executable files, be sure to use -qipa to compile the main and exported

functions.

v When compiling and linking separately, use -qipa=noobject on the compile step

for faster compilation.

v When specifying optimization options in a makefile, remember to use the

compiler driver (xlc) to link, and to include all compiler options on the link step.

44 XL C/C++ Programming Guide

v As IPA can generate significantly larger object files than traditional compilations,

ensure that there is enough space in the /tmp directory (at least 200 MB). You

can use the TMPDIR environment variable to specify a directory with sufficient

free space.

v Try varying the level suboption if link time is too long. Compiling with

–qipa=level=0 can still be very beneficial for little additional link time.

v Use -qipa=list=long to generate a report of functions that were inlined. If too

few or too many functions are inlined, consider using –qipa=inline or

–qipa=noinline. To control inlining of specific functions, use

-qipa=[no]inline=function_name.

Note: While IPA’s interprocedural optimizations can significantly improve

performance of a program, they can also cause incorrect but previously

functioning programs to fail. Here are examples of programming practices

that can work by accident without aggressive optimization but are exposed

with IPA:

v Relying on the allocation order or location of automatic variables, such as

taking the address of an automatic variable and then later comparing it

with the address of another local variable to determine the growth

direction of a stack. The C language does not guarantee where an

automatic variable is allocated, or its position relative to other automatic

variables. Do not compile such a function with IPA.

v Accessing a pointer that is either invalid or beyond an array’s bounds.

Because IPA can reorganize global data structures, a wayward pointer

which might have previously modified unused memory might now

conflict with user-allocated storage.

Related information

v -qipa, -Q, and -qlist in the XL C/C++ Compiler Reference

Using profile-directed feedback

You can use profile-directed feedback (PDF) to tune the performance of your

application for a typical usage scenario. The compiler optimizes the application

based on an analysis of how often branches are taken and blocks of code are

executed. The PDF process is intended to be used after other debugging and

tuning is finished, as one of the last steps before putting the application into

production. Other optimizations such as -qipa and optimization levels -O4 and

-O5 can also benefit when used in conjunction with PDF.

The following diagram illustrates the PDF process.

Figure 2. Profile-directed feedback

Chapter 7. Optimizing your applications 45

Compile with
-qpdf1

Compile with
-qpdf2

Source
code

Instrumented
executable

Profile data

Optimized
executable

Sample runs

You first compile the program with the -qpdf1 option (with a minimum

optimization level of -O2), which generates profile data by using the compiled

program in the same ways that users will typically use it. You then compile the

program again, with the -qpdf2 option. This optimizes the program based on the

profile data. Alternatively, if you want to save considerable time by avoiding a full

recompilation in the -qpdf2 step, you can simply relink the object files produced

by the -qpdf1 step.

To use PDF, follow these steps:

1. Compile some or all of the source files in a program with the -qpdf1 option.

You need to specify at least the -O2 optimizing option and you also need to

link with at least -O2 in effect. Note the compiler options that you use to

compile the files; you will need to use the same options later.

2. Run the program all the way through using data that is representative of the

data that will be used during a normal run of your finished program. The

program records profiling information when it finishes. You can run the

program multiple times with different data sets, and the profiling information

is accumulated to provide a count of how often branches are taken and blocks

of code are executed, based on the input data used. When the application exits,

by default, it writes profiling information to the PDF file in the current working

directory or the directory specified by the PDFDIR environment variable. The

default name for the instrumentation file is ._pdf . To override the defaults, use

the -qipa=pdfname option in the -qpdf1 step.

3. Recompile your program using the same compiler options as before, but

change -qpdf1 to -qpdf2. In this second compilation, the accumulated profiling

information is used to fine-tune the optimizations. The resulting program

contains no profiling overhead and runs at full speed.

Note: The options-L, -l, and some others are linker options, and you can

change them at this point.

As an intermediate step, you can use -qpdf2 to link the object files created by the

-qpdf1 pass without recompiling the source on the -qpdf2 pass. This can save

considerable time and help fine tune large applications for optimization. You can

create and test different flavors of PDF optimized binaries by using different

options on the -qpdf2 pass.

Notes:

v You do not need to compile all of the application’s code with the -qpdf1 option

to benefit from the PDF process. In a large application, you might want to

concentrate on those areas of the code that can benefit most from optimization.

46 XL C/C++ Programming Guide

v When compiling your program with -qpdf1 or -qpdf2, by default, the -qipa

option is also invoked with level=0

v To avoid wasting compilation and execution time, make sure that the PDFDIR

environment variable is set to an absolute path. Otherwise, you might run the

application from the wrong directory, and it will not be able to locate the profile

data files. When that happens, the program may not be optimized correctly or

may be stopped by a segmentation fault. A segmentation fault might also

happen if you change the value of the PDFDIR variable and execute the

application before finishing the PDF process.

v You must use the same set of compiler options at all compilation steps for a

particular program. Otherwise, PDF cannot optimize your program correctly and

may even slow it down. All compiler settings must be the same, including any

supplied by configuration files.

v Avoid mixing PDF files created by the current version level of XL C/C++ with

PDF files created by other version levels of the compiler.

v If you compile a program with -qpdf1, remember that it will generate profiling

information when it runs, which involves some performance overhead. This

overhead goes away when you recompile with -qpdf2 or with no PDF at all.

You can take more control of the PDF file generation, as follows:

1. Compile some or all of the source files in the application with -qpdf1 and a

minimum of -O2.

2. Run the application using a typical data set or several typical data sets. By

default, this produces a PDF file in the current directory. The default name of

the PDF file is ._pdf.

3. Change the PDF file location specified by the PDFDIR environment variable or

the -qipa=pdfname option to produce a PDF file in a different location.

4. Recompile or relink the application with -qpdf1 and a minimum of -O2.

5. Repeat steps 3 and 4 as often as you want.

6. Use the mergepdf utility to combine the PDF files into one PDF file. For

example, if you produce three PDF files that represent usage patterns that will

occur 53%, 32%, and 15% of the time respectively, you can use this command:

 mergepdf -r 53 path1 -r 32 path2 -r 15 path3

7. Recompile or relink the application with -qpdf2 and a minimum of -O.

To erase the information in the PDF directory, use the cleanpdf utility or the

resetpdf utility.

Viewing profiling information with showpdf

To collect and view detailed information on function call and block statistics,

compile with the -qshowpdf option and then use the showpdf utility. The

following example shows how you can use profile-directed feedback (PDF) with

the showpdf utility to view the call and block statistics for a “Hello World”

application.

The source for the program file hello.c is as follows:

#include <stdio.h>

void HelloWorld()

{

printf("Hello World");

}

main()

Chapter 7. Optimizing your applications 47

{

HelloWorld();

return 0;

}

1. Compile the source file.

xlc -qpdf1 -qshowpdf -O hello.c

2. Run the resulting executable program a.out using a typical data set or several

typical data sets.

3. Run the showpdf utility to display the call and block counts for the executable

file. If you used the -qipa=pdfname option during compilation, use the -f

option to indicate the instrumentation file.

showpdf -f instr1

The results will look similar to this:

HelloWorld(4): 1 (hello.c)

Call Counters:

5 | 1 printf(6)

Call coverage = 100% (1/1)

Block Counters:

3-5 | 1

6 |

6 | 1

Block coverage = 100% (2/2)

main(5): 1 (hello.c)

Call Counters:

10 | 1 HelloWorld(4)

Call coverage = 100% (1/1)

Block Counters:

8-11 | 1

11 |

Block coverage = 100% (1/1)

Total Call coverage = 100% (2/2)

Total Block coverage = 100% (3/3)

Related information

v -qpdf and -showpdf in the XL C/C++ Compiler Reference

Object level profile-directed feedback

In addition to optimizing entire executables, profile-directed feedback (PDF) can

also be applied to specific objects. This can be an advantage in applications where

patches or updates are distributed as object files or libraries rather than as

executables. Also, specific areas of functionality in your application can be

optimized without you needing to go through the process of relinking the entire

application. In large applications, you can save the time and trouble that otherwise

would have been spent relinking the application.

The process for using object level PDF is essentially the same as the standard PDF

process but with a small change to the -qpdf2 step. For object level PDF, compile

48 XL C/C++ Programming Guide

your application using -qpdf1, execute the application with representative data,

compile the application again with -qpdf2 but now also use the -qnoipa option so

that the linking step is skipped.

The steps below outline this process:

1. Compile your application using -qpdf1. For example:

xlc -c -O3 -qpdf1 file1.c file2.c file3.c

In this example, we are using the option -O3 to indicate that we want a

moderate level of optimization.

2. Link the object files to get an instrumented executable.

xlc -O3 -qpdf1 file1.o file2.o file3.o

Note: you must use the same optimization options. In this example, the

optimization option -O3.

3. Run the instrumented executable with sample data that is representative of the

data you want to optimize for.

a.out < sample_data

4. Compile the application again using -qpdf2. Specify the -qnoipa option so that

the linking step is skipped and PDF optimization is applied to the object files

rather than to the entire executable. Note: you must use the same optimization

options as in the previous steps. In this example, the optimization option -O3.

xlc -c -O3 -qpdf2 -qnoipa file1.c file2.c file3.c

The resulting output of this step are object files optimized for the sample data

processed by the original instrumented executable. In this example, the

optimized object files would be file1.o, file2.o, and file3.o. These can be linked

using the system loader ld or by omitting the -c option in the -qpdf2 step.

Notes:

v If you want to specify a file name for the profile that is created, use the

pdfname suboption in both the -qpdf1 and -qpdf2 steps. For example:

xlc -O3 -qpdf1=pdfname=myprofile file1.c file2.c file3.c

Without the pdfname suboption, by default the file name will be ._pdf; the

location of the file will be the current working directory or whatever directory

you have set using the PDFDIR environment variable.

v You must use the same optimization options in each compilation and linking

step.

v Because -qnoipa needs to be specified in the -qpdf2 step so that linking of your

object files is skipped, you will not be able to use interprocedural analysis (IPA)

optimizations and object level PDF at the same time.

Other optimization options

The following options are available to control particular aspects of optimization.

They are often enabled as a group or given default values when you enable a more

general optimization option or level. For more information on these options, see

the heading for each option in the XL C/C++ Compiler Reference XL C/C++ Compiler

Reference.

Chapter 7. Optimizing your applications 49

Table 17. Selected compiler options for optimizing performance

Option Description

-qignerrno Allows the compiler to assume that errno is not modified by library

function calls, so that such calls can be optimized. Also allows

optimization of square root operations, by generating inline code

rather than calling a library function. (For processors that support

sqrt.)

-qsmallstack Instructs the compiler to compact stack storage. Doing so may increase

heap usage.

-qinline Controls inlining by the low-level optimizer.

-qunroll Independently controls loop unrolling. -qunroll is implicitly activated

under -O3.

-qtbtable Controls the generation of traceback table information. 64-bit mode

only.

C++

-qnoeh

Informs the compiler that no C++ exceptions will be thrown and that

cleanup code can be omitted. If your program does not throw any C++

exceptions, use this option to compact your program by removing

exception-handling code.

-qnounwind Informs the compiler that the stack will not be unwound while any

routine in this compilation is active. This option can improve

optimization of non-volatile register saves and restores. In C++, the

-qnounwind option implies the -qnoeh option.

-qnostrict Allows the compiler to reorder floating-point calculations and

potentially excepting instructions. A potentially excepting instruction is

one that might raise an interrupt due to erroneous execution (for

example, floating-point overflow, a memory access violation).

-qnostrict is used by default for optimization levels -O3 and higher.

50 XL C/C++ Programming Guide

Chapter 8. Debugging optimized code

Debugging optimized programs presents special usability problems. Optimization

can change the sequence of operations, add or remove code, change variable data

locations, and perform other transformations that make it difficult to associate the

generated code with the original source statements. For example:

Data location issues

With an optimized program, it is not always certain where the most

current value for a variable is located. For example, a value in memory

may not be current if the most current value is being stored in a register.

Most debuggers are incapable of following the removal of stores to a

variable, and to the debugger it appears as though that variable is never

updated, or possibly even set. This contrasts with no optimization where

all values are flushed back to memory and debugging can be more

effective and usable.

Instruction scheduling issues

With an optimized program, the compiler may reorder instructions. That is,

instructions may not be executed in the order the programmer would

expect based on the sequence of lines in their original source code. Also,

the sequence of instructions may not be contiguous. As the user steps

through their program with a debugger, it may appear as if they are

returning to a previously executed line in their code (interleaving of

instructions).

Consolidating variable values

Optimizations can result in the removal and consolidation of variables. For

example, if a program has two expressions that assign the same value to

two different variables, the compiler may substitute a single variable. This

can inhibit debug usability because a variable that a programmer is

expecting to see is no longer available in the optimized program.

There are a couple of different approaches you can take to improve debug

capabilities while also optimizing your program:

Debug non-optimized code first

Debug a non-optimized version of your program first, then recompile it

with your desired optimization options. See “Debugging before

optimization” on page 52 for some compiler options that are useful in this

approach.

Use -qoptdebug

When compiling with -O3 optimization or higher, use the compiler option

-qoptdebug to generate a pseudocode file that more accurately maps to

how instructions and variable values will operate in an optimized

program. With this option, when you load your program into a debugger,

you will be debugging the pseudocode for the optimized program. See

“Using -qoptdebug to help debug optimized programs” on page 53 for

more information.

Understanding different results in optimized programs

Here are some reasons why an optimized program might produce different results

from one that has not undergone the optimization process:

© Copyright IBM Corp. 1998, 2007 51

v Optimized code can fail if a program contains code that is not valid. The

optimization process relies on your application conforming to language

standards.

v If a program that works without optimization fails when you optimize, check

the cross-reference listing and the execution flow of the program for variables

that are used before they are initialized. Compile with the -qinitauto=hex_value

option to try to produce the incorrect results consistently. For example, using

-qinitauto=FF gives variables an initial value of ″negative not a number″

(-NAN). Any operations on these variables will also result in NAN values. Other

bit patterns (hex_value) may yield different results and provide further clues as

to what is going on. Programs with uninitialized variables can appear to work

properly when compiled without optimization, because of the default

assumptions the compiler makes, but can fail when you optimize. Similarly, a

program can appear to execute correctly after optimization, but fails at lower

optimization levels or when run in a different environment.

v A variation on uninitialized storage. Referring to an automatic-storage variable

by its address after the owning function has gone out of scope leads to a

reference to a memory location that can be overwritten as other auto variables

come into scope as new functions are called.

Use with caution debugging techniques that rely on examining values in storage.

The compiler might have deleted or moved a common expression evaluation. It

might have assigned some variables to registers, so that they do not appear in

storage at all.

Debugging before optimization

First debug your program, then recompile it with your desired optimization

options, and test the optimized program before placing the program into

production. If the optimized code does not produce the expected results, you can

attempt to isolate the specific optimization problems in a debugging session.

The following list presents options that provide specialized information, which can

be helpful during the development of optimized code:

-qsmp=noopt If you are debugging SMP code, -qsmp=noopt ensures that the

compiler performs only the minimum transformations necessary to

parallelize your code and preserves maximum debug capability.

-qkeepparm Ensures that procedure parameters are stored on the stack even

during optimization. This can negatively impact execution

performance. The -qkeepparm option then provides access to the

values of incoming parameters to tools, such as debuggers, simply

by preserving those values on the stack.

-qlist Instructs the compiler to emit an object listing. The object listing

includes hex and pseudo-assembly representations of the generated

instructions, traceback tables, and text constants.

-qreport Instructs the compiler to produce a report of the loop

transformations it performed and how the program was

parallelized. For -qreport to generate a listing, the options -qhot or

-qsmp should also be specified.

-qinitauto Instructs the compiler to emit code that initializes all automatic

variables to a given value.

52 XL C/C++ Programming Guide

-qipa=list Instructs the compiler to emit an object listing that provides

information for IPA optimization.

 You can also use the snapshot pragma to ensure to that certain variables are visible

to the debugger at points in your application.

Using -qoptdebug to help debug optimized programs

The purpose of the -qoptdebug compiler option is to aid the debugging of

optimized programs. It does this by creating pseudocode that maps more closely to

the instructions and values of an optimized program than the original source code.

When a program compiled with this option is loaded into a debugger, you will be

debugging the pseudocode rather than your original source. By making

optimizations explicit in pseudocode, you can gain a better understanding of how

your program is really behaving under optimization. Files containing the

pseudocode for your program will be generated with the file suffix .optdbg. Only

line debugging is supported for this feature.

Compile your program as in the following example:

xlc myprogram.c -O3 -qhot -g -qoptdebug

In this example, your source file will be compiled to a.out. The pseudocode for the

optimized program will be written to a file called myprogram.optdbg which can be

referred to while debugging your program.

Notes:

v The -g or the -qlinedebug option must also be specified in order for the

compiled executable to be debuggable. However, if neither of these options are

specified, the pseudocode file <output_file>.optdbg containing the optimized

pseudocode will still be generated.

v The -qoptdebug option only has an effect when one or more of the optimization

options -qhot, -qsmp, -qipa, or -qpdf are specified, or when the optimization

levels that imply these options are specified; that is, the optimization levels -O3,

-O4, and -O5. The example shows the optimization options -qhot and -O3.

Debugging the optimized program

See the figures below as an aid to understanding how the compiler may apply

optimizations to a simple program and how debugging it would differ from

debugging your original source.

Figure 3 on page 54 Original code: Represents the original non-optimized code for

a simple program. It presents a couple of optimization opportunities to the

compiler. For example, the variables z and d are both assigned by the equivalent

expressions x + y. Therefore, these two variables can be consolidated in the

optimized source. Also, the loop can be unrolled. In the optimized source, you

would see iterations of the loop listed explicitly.

Figure 4 on page 54 dbx debugger listing: Represents a listing of the optimized

source as shown in the dbx debugger. Note the unrolled loop and the

consolidation of values assigned by the x + y expression.

Figure 5 on page 55 Stepping through optimized source: Shows an example of

stepping through the optimized source using the dbx debugger. Note, there is no

Chapter 8. Debugging optimized code 53

longer a correspondence between the line numbers for these statements in the

optimized source as compared to the line numbers in the original source.

#include "stdio.h"

void foo(int x, int y, char* w)

{

 char* s = w+1;

 char* t = w+1;

 int z = x + y;

 int d = x + y;

 int a = printf("TEST\n");

 for (int i = 0; i < 4; i++)

 printf("%d %d %d %s %s\n", a, z, d, s, t);

 }

int main()

{

 char d[] = "DEBUG";

 foo(3, 4, d);

 return 0;

}

Figure 3. Original code

dbx> list

 1 3 | void foo(long x, long y, char * w)

 2 9 | {

 3 a = printf("TEST/n");

 4 12 | @CSE0 = x + y;

 5 printf("%d %d %d %s %s/n",a,@CSE0,@CSE0,((char *)w + 1),((char *)w + 1));

 6 printf("%d %d %d %s %s/n",a,@CSE0,@CSE0,((char *)w + 1),((char *)w + 1));

 7 printf("%d %d %d %s %s/n",a,@CSE0,@CSE0,((char *)w + 1),((char *)w + 1));

 8 printf("%d %d %d %s %s/n",a,@CSE0,@CSE0,((char *)w + 1),((char *)w + 1));

 9 13 | return;

 10 } /* function */

 11 15 | long main()

 12 17 | {

 13 d$init$0 = "DEBUG";

 14 18 | foo(3,4,&d)

 15 19 | rstr = 0;

 16 return rstr;

 17 20 | } /* function */

Figure 4. dbx debugger listing

54 XL C/C++ Programming Guide

dbx> stop at 3

[1] stop at "myprogram.o.optdbg":3

dbx> run

TEST

[1] stopped in foo(int,int,char*) at line 3 in file "myprogram.o.optdbg" ($t1)

 3 16 | @CSE0 = x + y;

dbx> step

stopped in foo(int,int,char*) at line 4 in file "myprogram.o.optdbg" ($t1)

 4 printf("%d %d %d %s %s/n",a,@CSE0,@CSE0,((char *)w + 1),((char *)w + 1));

dbx> step

3 7 7 EBUG EBUG

stopped in foo(int,int,char*) at line 5 in file "myprogram.o.optdbg" ($t1)

 5 printf("%d %d %d %s %s/n",a,@CSE0,@CSE0,((char *)w + 1),((char *)w + 1));

dbx> cont

3 7 7 EBUG EBUG

3 7 7 EBUG EBUG

3 7 7 EBUG EBUG

execution completed

Figure 5. Stepping through optimized source

Chapter 8. Debugging optimized code 55

56 XL C/C++ Programming Guide

Chapter 9. Coding your application to improve performance

Chapter 7, “Optimizing your applications,” on page 33 discusses the various

compiler options that XL C/C++ provides for optimizing your code with minimal

coding effort. If you want to take your application a step further, to complement

and take the most advantage of compiler optimizations, the following sections

discuss C and C++ programming techniques that can improve performance of your

code:

v “Find faster input/output techniques”

v “Reduce function-call overhead”

v “Manage memory efficiently” on page 59

v “Optimize variables” on page 59

v “Manipulate strings efficiently” on page 60

v “Optimize expressions and program logic” on page 61

v “Optimize operations in 64-bit mode ” on page 61

Find faster input/output techniques

There are a number of ways to improve your program’s performance of input and

output:

v Use binary streams instead of text streams. In binary streams, data is not

changed on input or output.

v Use the low-level I/O functions, such as open and close. These functions are

faster and more specific to the application than the stream I/O functions like

fopen and fclose. You must provide your own buffering for the low-level

functions.

v If you do your own I/O buffering, make the buffer a multiple of 4K, which is

the size of a page.

v When reading input, read in a whole line at once rather than one character at a

time.

v If you know you have to process an entire file, determine the size of the data to

be read in, allocate a single buffer to read it to, read the whole file into that

buffer at once using read, and then process the data in the buffer. This reduces

disk I/O, provided the file is not so big that excessive swapping will occur.

Consider using the mmap function to access the file.

v Instead of scanf and fscanf, use fgets to read in a string, and then use one of

atoi, atol, atof, or _atold to convert it to the appropriate format.

v Use sprintf only for complicated formatting. For simpler formatting, such as

string concatenation, use a more specific string function.

Reduce function-call overhead

When you write a function or call a library function, consider the following

guidelines:

v Call a function directly, rather than using function pointers.

v Pass a value to a function as an argument, rather than letting the function take

the value from a global variable.

© Copyright IBM Corp. 1998, 2007 57

v Use constant arguments in inlined functions whenever possible. Functions with

constant arguments provide more opportunities for optimization.

v Use the #pragma expected_value preprocessor directive so that the compiler can

optimize for common values used with a function.

v Use the #pragma isolated_call preprocessor directive to list functions that have

no side effects and do not depend on side effects.

v Use #pragma disjoint within functions for pointers or reference parameters that

can never point to the same memory.

v Declare a nonmember function as static whenever possible. This can speed up

calls to the function.

v

C++

Usually, you should not declare all your virtual functions inline. If all

virtual functions in a class are inline, the virtual function table and all the virtual

function bodies will be replicated in each compilation unit that uses the class.

v

C++

When declaring functions, use the const specifier whenever possible.

v

C

Fully prototype all functions. A full prototype gives the compiler and

optimizer complete information about the types of the parameters. As a result,

promotions from unwidened types to widened types are not required, and

parameters can be passed in appropriate registers.

v

C

Avoid using unprototyped variable argument functions.

v Design functions so that the most frequently used parameters are in the leftmost

positions in the function prototype.

v Avoid passing by value structures or unions as function parameters or returning

a structure or a union. Passing such aggregates requires the compiler to copy

and store many values. This is worse in C++ programs in which class objects are

passed by value because a constructor and destructor are called when the

function is called. Instead, pass or return a pointer to the structure or union, or

pass it by reference.

v Pass non-aggregate types such as int and short by value rather than passing by

reference, whenever possible.

v If your function exits by returning the value of another function with the same

parameters that were passed to your function, put the parameters in the same

order in the function prototypes. The compiler can then branch directly to the

other function.

v Use the built-in functions, which include string manipulation, floating-point, and

trigonometric functions, instead of coding your own. Intrinsic functions require

less overhead and are faster than a function call, and often allow the compiler to

perform better optimization.

C++

Your functions are automatically mapped to built-in functions if you

include the XL C/C++ header files.

C

Your functions are mapped to built-in functions if you include math.h

and string.h.

v Selectively mark your functions for inlining, using the inline keyword. An

inlined function requires less overhead and is generally faster than a function

call. The best candidates for inlining are small functions that are called

frequently from a few places, or functions called with one or more compile-time

constant parameters, especially those that affect if, switch or for statements.

You might also want to put these functions into header files, which allows

automatic inlining across file boundaries even at low optimization levels. Be sure

to inline all functions that only load or store a value, or use simple operators

58 XL C/C++ Programming Guide

such as comparison or arithmetic operators. Large functions and functions that

are called rarely might not be good candidates for inlining.

v Avoid breaking your program into too many small functions. If you must use

small functions, seriously consider using the -qipa compiler option, which can

automatically inline such functions, and uses other techniques for optimizing

calls between functions.

v

C++

Avoid virtual functions and virtual inheritance unless required for class

extensibility. These language features are costly in object space and function

invocation performance.

Related information

v #pragma isolated_call, #pragma disjoint, and -qipa in the XL C/C++ Compiler

Reference

Manage memory efficiently

Because C++ objects are often allocated from the heap and have limited scope,

memory use affects performance more in C++ programs than it does in C

programs. For that reason, consider the following guidelines when you develop

C++ applications:

v In a structure, declare the largest members first.

v In a structure, place variables near each other if they are frequently used

together.

v

C++

Ensure that objects that are no longer needed are freed or otherwise

made available for reuse. One way to do this is to use an object manager. Each

time you create an instance of an object, pass the pointer to that object to the

object manager. The object manager maintains a list of these pointers. To access

an object, you can call an object manager member function to return the

information to you. The object manager can then manage memory usage and

object reuse.

v Storage pools are a good way of keeping track of used memory (and reclaiming

it) without having to resort to an object manager or reference counting.

v

C++

Avoid copying large, complicated objects.

v

C++

Avoid performing a deep copy if a shallow copy is all you require. For an

object that contains pointers to other objects, a shallow copy copies only the

pointers and not the objects to which they point. The result is two objects that

point to the same contained object. A deep copy, however, copies the pointers

and the objects they point to, as well as any pointers or objects contained within

that object, and so on.

v

C++

Use virtual methods only when absolutely necessary.

Optimize variables

Consider the following guidelines:

v Use local variables, preferably automatic variables, as much as possible.

The compiler must make several worst-case assumptions about a global variable.

For example, if a function uses external variables and also calls external

functions, the compiler assumes that every call to an external function could

change the value of every external variable. If you know that a global variable is

not affected by any function call, and this variable is read several times with

function calls interspersed, copy the global variable to a local variable and then

use this local variable.

Chapter 9. Coding your application to improve performance 59

v If you must use global variables, use static variables with file scope rather than

external variables whenever possible. In a file with several related functions and

static variables, the optimizer can gather and use more information about how

the variables are affected.

v If you must use external variables, group external data into structures or arrays

whenever it makes sense to do so. All elements of an external structure use the

same base address.

v The #pragma isolated_call preprocessor directive can improve the runtime

performance of optimized code by allowing the compiler to make less

pessimistic assumptions about the storage of external and static variables.

Isolated call functions with constant or loop-invariant parameters can be moved

out of loops, and multiple calls with the same parameters can be replaced with a

single call.

v Avoid taking the address of a variable. If you use a local variable as a temporary

variable and must take its address, avoid reusing the temporary variable. Taking

the address of a local variable inhibits optimizations that would otherwise be

done on calculations involving that variable.

v Use constants instead of variables where possible. The optimizer will be able to

do a better job reducing runtime calculations by doing them at compile-time

instead. For instance, if a loop body has a constant number of iterations, use

constants in the loop condition to improve optimization (for (i=0; i<4; i++)

can be better optimized than for (i=0; i<x; i++)).

v Use register-sized integers (long data type) for scalars. For large arrays of

integers, consider using one- or two-byte integers or bit fields.

v Use the smallest floating-point precision appropriate to your computation.

Related information

v #pragma isolated_call in XL C/C++ Compiler Reference

Manipulate strings efficiently

The handling of string operations can affect the performance of your program.

v When you store strings into allocated storage, align the start of the string on an

8-byte boundary.

v Keep track of the length of your strings. If you know the length of a string, you

can use mem functions instead of str functions. For example, memcpy is faster than

strcpy because it does not have to search for the end of the string.

v If you are certain that the source and target do not overlap, use memcpy instead

of memmove. This is because memcpy copies directly from the source to the

destination, while memmove might copy the source to a temporary location in

memory before copying to the destination (depending on the length of the

string).

v When manipulating strings using mem functions, faster code will be generated if

the count parameter is a constant rather than a variable. This is especially true

for small count values.

v Make string literals read-only, whenever possible. This improves certain

optimization techniques and reduces memory usage if there are multiple uses of

the same string. You can explicitly set strings to read-only by using #pragma

strings (readonly) in your source files or -qro (this is enabled by default) to

avoid changing your source files.

Related information

v #pragma strings (readonly) and -qro in the XL C/C++ Compiler Reference

60 XL C/C++ Programming Guide

Optimize expressions and program logic

Consider the following guidelines:

v If components of an expression are used in other expressions, assign the

duplicated values to a local variable.

v Avoid forcing the compiler to convert numbers between integer and

floating-point internal representations. For example:

float array[10];

float x = 1.0;

int i;

for (i = 0; i< 9; i++) { /* No conversions needed */

 array[i] = array[i]*x;

 x = x + 1.0;

 }

for (i = 0; i< 9; i++) { /* Multiple conversions needed */

 array[i] = array[i]*i;

 }

When you must use mixed-mode arithmetic, code the integer and floating-point

arithmetic in separate computations whenever possible.

v Avoid goto statements that jump into the middle of loops. Such statements

inhibit certain optimizations.

v Improve the predictability of your code by making the fall-through path more

probable. Code such as:

if (error) {handle error} else {real code}

should be written as:

if (!error) {real code} else {error}

v If one or two cases of a switch statement are typically executed much more

frequently than other cases, break out those cases by handling them separately

before the switch statement.

v

C++

Use try blocks for exception handling only when necessary because

they can inhibit optimization.

v Keep array index expressions as simple as possible.

Optimize operations in 64-bit mode

The ability to handle larger amounts of data directly in physical memory rather

than relying on disk I/O is perhaps the most significant performance benefit of

64-bit machines. However, some applications compiled in 32-bit mode perform

better than when they are recompiled in 64-bit mode. Some reasons for this

include:

v 64-bit programs are larger. The increase in program size places greater demands

on physical memory.

v 64-bit long division is more time-consuming than 32-bit integer division.

v 64-bit programs that use 32-bit signed integers as array indexes might require

additional instructions to perform sign extension each time the array is

referenced.

Some ways to compensate for the performance liabilities of 64-bit programs

include:

v Avoid performing mixed 32- and 64-bit operations. For example, adding a 32-bit

data type to a 64-bit data type requires that the 32-bit type be sign-extended to

clear the upper 32 bits of the register. This slows the computation.

Chapter 9. Coding your application to improve performance 61

v Use long types instead of signed, unsigned, and plain int types for variables

which will be frequently accessed, such as loop counters and array indexes.

Doing so frees the compiler from having to truncate or sign-extend array

references, parameters during function calls, and function results during returns.

62 XL C/C++ Programming Guide

Chapter 10. Using the high performance libraries

IBM XL C/C++ Advanced Edition for Linux, V9.0 is shipped with a set of libraries

for high-performance mathematical computing:

v The Mathematical Acceleration Subsystem (MASS) is a set of libraries of tuned

mathematical intrinsic functions that provide improved performance over the

corresponding standard system math library functions. MASS is described in

“Using the Mathematical Acceleration Subsystem libraries (MASS) .”

v The Basic Linear Algebra Subprograms (BLAS) are a set of routines which

provide matrix/vector multiplication functions tuned for PowerPC architectures.

The BLAS functions are described in “Using the Basic Linear Algebra

Subprograms (BLAS)” on page 71.

Using the Mathematical Acceleration Subsystem libraries (MASS)

The MASS libraries consist of a library of scalar XL C/C++ functions described in

“Using the scalar library”; and a set of vector libraries tuned for specific

architectures, described in “Using the vector libraries” on page 66. The functions

contained in both scalar and vector libraries are automatically called at certain

levels of optimization, but you can also call them explicitly in your programs. Note

that the accuracy and exception handling might not be identical in MASS functions

and system library functions.

“Compiling and linking a program with MASS” on page 71 describes how to

compile and link a program that uses the MASS libraries, and how to selectively

use the MASS scalar library functions in concert with the regular system library

scalar functions.

Note: On Linux, 32-bit and 64-bit objects cannot be combined in the same library,

so two versions of the scalar and vector libraries are shipped with the

compiler: libmass.a and libmassv.a for 32-bit applications and libmass_64.a

and libmassv_64.a for 64-bit applications.

Using the scalar library

The MASS scalar libraries libmass.a (32-bit) and libmass_64.a (64-bit) contain an

accelerated set of frequently used math intrinsic functions that provide improved

performance over the corresponding standard system library functions. These

functions are available when you compile programs with any of the following

options:

v -qhot -qignerrno -qnostrict

v -qhot -O3

v -O4

v -O5

the compiler automatically uses the faster MASS functions for most math library

functions. In fact, the compiler first tries to ″vectorize″ calls to math library

functions by replacing them with the equivalent MASS vector functions; if it

cannot do so, it uses the MASS scalar functions. When the compiler performs this

automatic replacement of math library functions, it uses versions of the MASS

functions contained in the system library libxlopt.a. You do not need to add any

special calls to the MASS functions in your code, or to link to the libxlopt library.

© Copyright IBM Corp. 1998, 2007 63

If you are not using any of the optimization options listed above, and want to

explicitly call the MASS scalar functions, you can do so as follows:

1. Provide the prototypes for the functions (except anint, cosisin, dnint, sincos,

and rsqrt), by including math.h in your source files.

2. Provide the prototypes for anint, cosisin, dnint, sincos, and rsqrt, by

including mass.h in your source files.

3. Link the MASS scalar library libmass.a (or the 64-bit version, libmass_64.a) with

your application. For instructions, see “Compiling and linking a program with

MASS” on page 71.

The MASS scalar functions accept double-precision parameters and return a

double-precision result, or accept single-precision parameters and return a

single-precision result, except sincos which gives 2 double-precision results. They

are summarized in Table 18.

 Table 18. MASS scalar functions

Double-
precision

function

Single-
precision

function

Description Double-
precision

function

prototype

Single-precision

function

prototype

acos acosf Returns the

arccosine of x

double acos

(double x);

float acosf (float

x);

acosh acoshf Returns the

hyperbolic

arccosine of x

double acosh

(double x);

float acoshf (float

x);

anint Returns the

rounded integer

value of x

float anint (float

x);

asin asinf Returns the

arcsine of x

double asin

(double x);

float asinf (float

x);

asinh asinhf Returns the

hyperbolic

arcsine of x

double asinh

(double x);

float asinhf (float

x);

atan2 atan2f Returns the

arctangent of x/y

double atan2

(double x, double

y);

float atan2f (float

x, float y);

atan atanf Returns the

arctangent of x

double atan

(double x);

float atanf (float

x);

atanh atanhf Returns the

hyperbolic

arctangent of x

double atanh

(double x);

float atanhf (float

x);

cbrt cbrtf Returns the cube

root of x

double cbrt

(double x);

float cbrtf (float

x);

copysign copysignf Returns x with

the sign of y

double copysign

(double x,double

y);

float copysignf

(float x);

cos cosf Returns the

cosine of x

double cos

(double x);

float cosf (float

x);

cosh coshf Returns the

hyperbolic cosine

of x

double cosh

(double x);

float coshf (float

x);

64 XL C/C++ Programming Guide

Table 18. MASS scalar functions (continued)

Double-
precision

function

Single-
precision

function

Description Double-
precision

function

prototype

Single-precision

function

prototype

cosisin Returns a

complex number

with the real part

the cosine of x

and the

imaginary part

the sine of x.

double_Complex

cosisin (double);

dnint Returns the

nearest integer to

x (as a double)

double dnint

(double x);

erf erff Returns the error

function of x

double erf

(double x);

float erff (float x);

erfc erfcf Returns the

complementary

error function of

x

double erfc

(double x);

float erfcf (float

x);

exp expf Returns the

exponential

function of x

double exp

(double x);

float expf (float

x);

expm1 expm1f Returns (the

exponential

function of x) − 1

double expm1

(double x);

float expm1f

(float x);

hypot hypotf Returns the

square root of x2

+ y2

double hypot

(double x, double

y);

float hypotf (float

x, float y);

lgamma lgammaf Returns the

natural logarithm

of the absolute

value of the

Gamma function

of x

double lgamma

(double x);

float lgammaf

(float x);

log logf Returns the

natural logarithm

of x

double log

(double x);

float logf (float

x);

log10 log10f Returns the base

10 logarithm of x

double log10

(double x);

float log10f (float

x);

log1p log1pf Returns the

natural logarithm

of (x + 1)

double log1p

(double x);

float log1pf (float

x);

pow powf Returns x raised

to the power y

double pow

(double x, double

y);

float powf (float

x);

rsqrt Returns the

reciprocal of the

square root of x

double rsqrt

(double x);

sin sinf Returns the sine

of x

double sin

(double x);

float sinf (float x);

Chapter 10. Using the high performance libraries 65

Table 18. MASS scalar functions (continued)

Double-
precision

function

Single-
precision

function

Description Double-
precision

function

prototype

Single-precision

function

prototype

sincos Sets *s to the

sine of x and *c

to the cosine of x

void sincos

(double x,

double* s,

double* c);

sinh sinhf Returns the

hyperbolic sine of

x

double sinh

(double x);

float sinhf (float

x);

sqrt Returns the

square root of x

double sqrt

(double x);

tan tanf Returns the

tangent of x

double tan

(double x);

float tanf (float

x);

tanh tanhf Returns the

hyperbolic

tangent of x

double tanh

(double x);

float tanhf (float

x);

Notes:

v The trigonometric functions (sin, cos, tan) return NaN (Not-a-Number) for large

arguments (where the absolute value is greater than 250pi).

v In some cases, the MASS functions are not as accurate as the libm.a library, and

they might handle edge cases differently (sqrt(Inf), for example).

Using the vector libraries

When you compile programs with any of the following options:

v -qhot -qignerrno -qnostrict

v -qhot -O3

v -O4

v -O5

the compiler automatically attempts to vectorize calls to system math functions by

calling the equivalent MASS vector functions (with the exceptions of functions

vdnint, vdint, vsincos, vssincos, vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt,

vsrqdrt, vpopcnt4, and vpopcnt8). For automatic vectorization, the compiler uses

versions of the MASS functions contained in the system library libxlopt.a. You do

not need to add any special calls to the MASS functions in your code, or to link to

the libxlopt library.

If you are not using any of the optimization options listed above, and want to

explicitly call any of the MASS vector functions, you can do so by including the XL

C/C++ header massv.h file in your source files and linking your application with

the appropriate vector library. (Information on linking is provided in “Compiling

and linking a program with MASS” on page 71.)

libmassvp4.a

Contains functions that have been tuned for the POWER4™ architecture. If

you are using a PPC970 machine, this library is the recommended choice.

libmassvp5.a

Contains functions that have been tuned for the POWER5™ architecture.

66 XL C/C++ Programming Guide

libmassvp6.a

Contains functions that have been tuned for the POWER6™ architecture.

On Linux, 32-bit and 64-bit objects must not be mixed in a single library, so a

separate 64-bit version of each vector library is provided: libmassvp4_64.a,

libmassvp5_64.a, and libmassvp6_64.a

The single-precision and double-precision floating-point functions contained in the

vector libraries are summarized in Table 19. The integer functions contained in the

vector libraries are summarized in Table 20 on page 70. Note that in C and C++

applications, only call by reference is supported, even for scalar arguments.

With the exception of a few functions (described below), all of the floating-point

functions in the vector libraries accept three parameters:

v a double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector output parameter

v a double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector input parameter

v an integer vector-length parameter

The functions are of the form

function_name (y,x,n)

where y is the target vector, x is the source vector, and n is the vector length. The

parameters y and x are assumed to be double-precision for functions with the

prefix v, and single-precision for functions with the prefix vs. As examples, the

following code:

#include <massv.h>

double x[500], y[500];

int n;

n = 500;

...

vexp (y, x, &n);

outputs a vector y of length 500 whose elements are exp(x[i]), where i=0,...,499.

The functions vdiv, vsincos, vpow, and vatan2 (and their single-precision versions,

vsdiv, vssincos, vspow, and vsatan2) take four parameters. The functions vdiv,

vpow, and vatan2 take the parameters (z,x,y,n). The function vdiv outputs a vector z

whose elements are x[i]/y[i], where i=0,..,*n–1. The function vpow outputs a vector

z whose elements are x[i]y[i], where i=0,..,*n–1. The function vatan2 outputs a vector

z whose elements are atan(x[i]/y[i]), where i=0,..,*n–1. The function vsincos takes

the parameters (y,z,x,n), and outputs two vectors, y and z, whose elements are

sin(x[i]) and cos(x[i]), respectively.

 Table 19. MASS floating-point vector functions

Double-
precision

function

Single-
precision

function

Description Double-precision

function prototype

Single-precision

function prototype

vacos vsacos Sets y[i] to the arc

cosine of x[i], for

i=0,..,*n–1

void vacos (double y[],

double x[], int *n);

void vsacos (float

y[], float x[], int *n);

Chapter 10. Using the high performance libraries 67

Table 19. MASS floating-point vector functions (continued)

Double-
precision

function

Single-
precision

function

Description Double-precision

function prototype

Single-precision

function prototype

vacosh vsacosh Sets y[i] to the

hyperbolic arc

cosine of x[i], for

i=0,..,*n–1

void vacosh (double

y[], double x[], int *n);

void vsacosh (float

y[], float x[], int *n);

vasin vsasin Sets y[i] to the arc

sine of x[i], for

i=0,..,*n–1

void vasin (double y[],

double x[], int *n);

void vsasin (float y[],

float x[], int *n);

vasinh vsasinh Sets y[i] to the

hyperbolic arc sine

of x[i], for

i=0,..,*n–1

void vasinh (double

y[], double x[], int *n);

void vsasinh (float

y[], float x[], int *n);

vatan2 vsatan2 Sets z[i] to the arc

tangent of

x[i]/y[i], for

i=0,..,*n–1

void vatan2 (double z[],

double x[], double y[],

int *n);

void vsatan2 (float

z[], float x[], float

y[], int *n);

vatanh vsatanh Sets y[i] to the

hyperbolic arc

tangent of x[i], for

i=0,..,*n–1

void vatanh (double

y[], double x[], int *n);

void vsatanh (float

y[], float x[], int *n);

vcbrt vscbrt Sets y[i] to the

cube root of x[i],

for i=0,..,*n-1

void vcbrt (double y[],

double x[], int *n);

void vscbrt (float y[],

float x[], int *n);

vcos vscos Sets y[i] to the

cosine of x[i], for

i=0,..,*n–1

void vcos (double y[],

double x[], int *n);

void vscos (float y[],

float x[], int *n);

vcosh vscosh Sets y[i] to the

hyperbolic cosine

of x[i], for

i=0,..,*n–1

void vcosh (double y[],

double x[], int *n);

void vscosh (float

y[], float x[], int *n);

vcosisin vscosisin Sets the real part of

y[i] to the cosine

of x[i] and the

imaginary part of

y[i] to the sine of

x[i], for i=0,..,*n–1

void vcosisin (double

_Complex y[], double

x[], int *n);

void vscosisin (float

_Complex y[], float

x[], int *n);

vdint Sets y[i] to the

integer truncation

of x[i], for

i=0,..,*n–1

void vdint (double y[],

double x[], int *n);

vdiv vsdiv Sets z[i] to

x[i]/y[i], for

i=0,..,*n–1

void vdiv (double z[],

double x[], double y[],

int *n);

void vsdiv (float z[],

float x[], float y[], int

*n);

vdnint Sets y[i] to the

nearest integer to

x[i], for i=0,..,n–1

void vdnint (double

y[], double x[], int *n);

vexp vsexp Sets y[i] to the

exponential

function of x[i],

for i=0,..,*n–1

void vexp (double y[],

double x[], int *n);

void vsexp (float y[],

float x[], int *n);

68 XL C/C++ Programming Guide

Table 19. MASS floating-point vector functions (continued)

Double-
precision

function

Single-
precision

function

Description Double-precision

function prototype

Single-precision

function prototype

vexpm1 vsexpm1 Sets y[i] to (the

exponential

function of x[i])-1,

for i=0,..,*n–1

void vexpm1 (double

y[], double x[], int *n);

void vsexpm1 (float

y[], float x[], int *n);

vlog vslog Sets y[i] to the

natural logarithm

of x[i], for

i=0,..,*n–1

void vlog (double y[],

double x[], int *n);

void vslog (float y[],

float x[], int *n);

vlog10 vslog10 Sets y[i] to the

base-10 logarithm

of x[i], for

i=0,..,*n–1

void vlog10 (double

y[], double x[], int *n);

void vslog10 (float

y[], float x[], int *n);

vlog1p vslog1p Sets y[i] to the

natural logarithm

of (x[i]+1), for

i=0,..,*n–1

void vlog1p (double

y[], double x[], int *n);

void vslog1p (float

y[], float x[], int *n);

vpow vspow Sets z[i] to x[i]

raised to the power

y[i], for i=0,..,*n-1

void vpow (double z[],

double x[], double y[],

int *n);

void vspow (float

z[], float x[], float

y[], int *n);

vqdrt vsqdrt Sets y[i] to the

fourth root of x[i],

for i=0,..,*n-1

void vqdrt (double y[],

double x[], int *n);

void vsqdrt (float

y[], float x[], int *n);

vrcbrt vsrcbrt Sets y[i] to the

reciprocal of the

cube root of x[i],

for i=0,..,*n-1

void vrcbrt (double y[],

double x[], int *n);

void vsrcbrt (float

y[], float x[], int *n);

vrec vsrec Sets y[i] to the

reciprocal of x[i],

for i=0,..,*n–1

void vrec (double y[],

double x[], int *n);

void vsrec (float y[],

float x[], int *n);

vrqdrt vsrqdrt Sets y[i] to the

reciprocal of the

fourth root of x[i],

for i=0,..,*n-1

void vrqdrt (double y[],

double x[], int *n);

void vsrqdrt (float

y[], float x[], int *n);

vrsqrt vsrsqrt Sets y[i] to the

reciprocal of the

square root of x[i],

for i=0,..,*n–1

void vrsqrt (double y[],

double x[], int *n);

void vsrsqrt (float

y[], float x[], int *n);

vsin vssin Sets y[i] to the

sine of x[i], for

i=0,..,*n–1

void vsin (double y[],

double x[], int *n);

void vssin (float y[],

float x[], int *n);

vsincos vssincos Sets y[i] to the

sine of x[i] and

z[i] to the cosine

of x[i], for

i=0,..,*n–1

void vsincos (double

y[], double z[], double

x[], int *n);

void vssincos (float

y[], float z[], float

x[], int *n);

vsinh vssinh Sets y[i] to the

hyperbolic sine of

x[i], for i=0,..,*n–1

void vsinh (double y[],

double x[], int *n);

void vssinh (float

y[], float x[], int *n);

Chapter 10. Using the high performance libraries 69

Table 19. MASS floating-point vector functions (continued)

Double-
precision

function

Single-
precision

function

Description Double-precision

function prototype

Single-precision

function prototype

vsqrt vssqrt Sets y[i] to the

square root of x[i],

for i=0,..,*n–1

void vsqrt (double y[],

double x[], int *n);

void vssqrt (float y[],

float x[], int *n);

vtan vstan Sets y[i] to the

tangent of x[i], for

i=0,..,*n-1

void vtan (double y[],

double x[], int *n);

void vstan (float y[],

float x[], int *n);

vtanh vstanh Sets y[i] to the

hyperbolic tangent

of x[i], for

i=0,..,*n–1

void vtanh (double y[],

double x[], int *n);

void vstanh (float

y[], float x[], int *n);

Integer functions are of the form function_name (x[], *n), where x[] is a vector of

4-byte (for vpopcnt4) or 8-byte (for vpopcnt8) numeric objects (integral or

floating-point), and *n is the vector length.

 Table 20. MASS integer vector library functions

Function Description Prototype

vpopcnt4 Returns the total number of 1 bits in the

concatenation of the binary

representation of x[i], for i=0,..,*n–1 ,

where x is a vector of 32-bit objects.

unsigned int vpopcnt4 (void *x,

int *n)

vpopcnt8 Returns the total number of 1 bits in the

concatenation of the binary

representation of x[i], for i=0,..,*n–1 ,

where x is a vector of 64-bit objects.

unsigned int vpopcnt8 (void *x,

int *n)

Overlap of input and output vectors

In most applications, the MASS vector functions are called with disjoint input and

output vectors; that is, the two vectors do not overlap in memory. Another

common usage scenario is to call them with the same vector for both input and

output parameters (for example, vsin (y, y, &n)). Other kinds of overlap (where

input and output vectors are neither disjoint nor identical) should be avoided,

since they may produce unexpected results:

v For calls to vector functions that take one input and one output vector (for

example, vsin (y, x, &n)):

The vectors x[0:n-1] and y[0:n-1] must be either disjoint or identical, or

unexpected results may be obtained.

v For calls to vector functions that take two input vectors (for example, vatan2 (y,

x1, x2, &n)):

The previous restriction applies to both pairs of vectors y,x1 and y,x2. That is,

y[0:n-1] and x1[0:n-1] must be either disjoint or identical; and y[0:n-1] and

x2[0:n-1] must be either disjoint or identical.

v For calls to vector functions that take two output vectors (for example, vsincos

(y1, y2, x, &n)):

The above restriction applies to both pairs of vectors y1,x and y2,x. That is,

y1[0:n-1] and x[0:n-1] must be either disjoint or identical; and y2[0:n-1] and

x[0:n-1] must be either disjoint or identical. Also, the vectors y1[0:n-1] and

y2[0:n-1] must be disjoint.

70 XL C/C++ Programming Guide

Consistency of MASS vector functions

All the functions in the MASS vector libraries are consistent, in the sense that a

given input value will always produce the same result, regardless of its position in

the vector, and regardless of the vector length.

Compiling and linking a program with MASS

To compile an application that calls the functions in the MASS libraries, specify

mass and massvp4, massvp5, or massvp6) (32-bit), or mass_64 and massvp4_64,

massvp5_64, or massvp6_64) (64-bit) on the -l linker option.

For example, if the MASS libraries are installed in the default directory, you could

specify one of the following:

xlc progc.c -o progc -lmass -lmassvp4

xlc progc.c -o progc -lmass_64 -lmassvp4_64 -q64

The MASS functions must run in the default rounding mode and floating-point

exception trapping settings.

Using libmass.a with the math system library

If you wish to use the libmass.a (or libmass_64.a) scalar library for some functions

and the normal math library libm.a for other functions, follow this procedure to

compile and link your program:

1. Use the ar command to extract the object files of the desired functions from

libmass.a or libmass_64.a. For most functions, the object file name is the

function name followed by .s32.o (for 32-bit mode) or .s64.o (for 64-bit

mode).1 For example, to extract the object file for the tan function in 32-bit

mode, the command would be:

ar -x tan.s32.o libmass.a

2. Archive the extracted object files into another library:

 ar -qv libfasttan.a tan.s32.o

 ranlib libfasttan.a

3. Create the final executable using xlc, specifying -lfasttan instead of -lmass:

xlc sample.c -o sample dir_containing_libfasttan -lfasttan

This links only the tan function from MASS (now in libfasttan.a) and the

remainder of the math functions from the standard system library.

Exceptions:

1. The sin and cos functions are both contained in the object files sincos.s32.o and

sincos.s64.o. The cosisin and sincos functions are both contained in the object

file cosisin.s32.o.

2. The XL C/C++ pow function or XL Fortran ** (exponentiation) operator is

contained in the object files dxy.s32.o and dxy.s64.o.

Note: The cos and sin functions will both be exported if either one is exported.

cosisin and sincos will both be exported if either one is exported.

Using the Basic Linear Algebra Subprograms (BLAS)

Four Basic Linear Algebra Subprograms (BLAS) functions are shipped with XL

C/C++ in the libxlopt library. The functions consist of the following:

v sgemv (single-precision) and dgemv (double-precision), which compute the

matrix-vector product for a general matrix or its transpose

Chapter 10. Using the high performance libraries 71

v sgemm (single-precision) and dgemm (double-precision), which perform combined

matrix multiplication and addition for general matrices or their transposes

Because the BLAS routines are written in Fortran, all parameters are passed to

them by reference, and all arrays are stored in column-major order.

Note: Some error-handling code has been removed from the BLAS functions in

libxlopt, and no error messages are emitted for calls to the these functions.

“BLAS function syntax” describes the prototypes and parameters for the XL

C/C++ BLAS functions. The interfaces for these functions are similar to those of

the equivalent BLAS functions shipped in IBM’s Engineering and Scientific

Subroutine Library (ESSL); for more detailed information and examples of usage of

these functions, you may wish to consult the Engineering and Scientific Subroutine

Library Guide and Reference, available at http://publib.boulder.ibm.com/clresctr/
windows/public/esslbooks.html.

“Linking the libxlopt library” on page 74 describes how to link to the XL C/C++

libxlopt library if you are also using a third-party BLAS library.

BLAS function syntax

The prototypes for the sgemv and dgemv functions are as follows:

void sgemv(const char *trans, int *m, int *n, float *alpha,

 void *a, int *lda, void *x, int *incx,

 float *beta, void *y, int *incy);

void dgemv(const char *trans, int *m, int *n, double *alpha,

 void *a, int *lda, void *x, int *incx,

 double *beta, void *y, int *incy);

The parameters are as follows:

trans

is a single character indicating the form of the input matrix a, where:

v ’N’ or ’n’ indicates that a is to be used in the computation

v ’T’ or ’t’ indicates that the transpose of a is to be used in the computation

m represents:

v the number of rows in input matrix a

v the length of vector y, if ’N’ or ’n’ is used for the trans parameter

v the length of vector x, if ’T’ or ’t’ is used for the trans parameter

The number of rows must be greater than or equal to zero, and less than the

leading dimension of the matrix a (specified in lda)

n represents:

v the number of columns in input matrix a

v the length of vector x, if ’N’ or ’n’ is used for the trans parameter

v the length of vector y, if ’T’ or ’t’ is used for the trans parameter

The number of columns must be greater than or equal to zero.

alpha

is the scaling constant for matrix a

a is the input matrix of float (for sgemv) or double (for dgemv) values

lda is the leading dimension of the array specified by a. The leading dimension

72 XL C/C++ Programming Guide

http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html
http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html

must be greater than zero. The leading dimension must be greater than or

equal to 1 and greater than or equal to the value specified in m.

x is the input vector of float (for sgemv) or double (for dgemv) values.

incx

is the stride for vector x. It can have any value.

beta

is the scaling constant for vector y

y is the output vector of float (for sgemv) or double (for dgemv) values.

incy

is the stride for vector y. It must not be zero.

Note: Vector y must have no common elements with matrix a or vector x;

otherwise, the results are unpredictable.

The prototypes for the sgemm and dgemm functions are as follows:

void sgemm(const char *transa, const char *transb,

 int *l, int *n, int *m, float *alpha,

 const void *a, int *lda, void *b, int *ldb,

 float *beta, void *c, int *ldc);

void dgemm(const char *transa, const char *transb,

 int *l, int *n, int *m, double *alpha,

 const void *a, int *lda, void *b, int *ldb,

 double *beta, void *c, int *ldc);

The parameters are as follows:

transa

is a single character indicating the form of the input matrix a, where:

v ’N’ or ’n’ indicates that a is to be used in the computation

v ’T’ or ’t’ indicates that the transpose of a is to be used in the computation

transb

is a single character indicating the form of the input matrix b, where:

v ’N’ or ’n’ indicates that b is to be used in the computation

v ’T’ or ’t’ indicates that the transpose of b is to be used in the computation

l represents the number of rows in output matrix c. The number of rows must

be greater than or equal to zero, and less than the leading dimension of c.

n represents the number of columns in output matrix c. The number of columns

must be greater than or equal to zero.

m represents:

v the number of columns in matrix a, if ’N’ or ’n’ is used for the transa

parameter

v the number of rows in matrix a, if ’T’ or ’t’ is used for the transa parameter

and:

v the number of rows in matrix b, if ’N’ or ’n’ is used for the transb

parameter

v the number of columns in matrix b, if ’T’ or ’t’ is used for the transb

parameter

m must be greater than or equal to zero.

Chapter 10. Using the high performance libraries 73

alpha

is the scaling constant for matrix a

a is the input matrix a of float (for sgemm) or double (for dgemm) values

lda is the leading dimension of the array specified by a. The leading dimension

must be greater than zero. If transa is specified as ’N’ or ’n’, the leading

dimension must be greater than or equal to 1. If transa is specified as ’T’ or

’t’, the leading dimension must be greater than or equal to the value specified

in m.

b is the input matrix b of float (for sgemm) or double (for dgemm) values.

ldb is the leading dimension of the array specified by b. The leading dimension

must be greater than zero. If transb is specified as ’N’ or ’n’, the leading

dimension must be greater than or equal to the value specified in m. If transa is

specified as ’T’ or ’t’, the leading dimension must be greater than or equal to

the value specified in n.

beta

is the scaling constant for matrix c

c is the output matrix c of float (for sgemm) or double (for dgemm) values.

ldc is the leading dimension of the array specified by c. The leading dimension

must be greater than zero. If transb is specified as ’N’ or ’n’, the leading

dimension must be greater than or equal to 0 and greater than or equal to the

value specified in l.

Note: Matrix c must have no common elements with matrices a or b; otherwise,

the results are unpredictable.

Linking the libxlopt library

By default, the libxlopt library is linked with any application you compile with

XL C/C++. However, if you are using a third-party BLAS library, but want to use

the BLAS routines shipped with libxlopt, you must specify the libxlopt library

before any other BLAS library on the command line at link time. For example, if

your other BLAS library is called libblas.a, you would compile your code with

the following command:

xlc app.c -lxlopt -lblas

The compiler will call the sgemv, dgemv, sgemm, and dgemm functions from the

libxlopt library, and all other BLAS functions in the libblas.a library.

74 XL C/C++ Programming Guide

Chapter 11. Parallelizing your programs

The compiler offers you three methods of implementing shared memory program

parallelization. These are:

v Automatic parallelization of countable program loops, which are defined in

“Countable loops.” An overview of the compiler’s automatic parallelization

capabilities is provided in “Enabling automatic parallelization” on page 77.

v Explicit parallelization of C and C++ program code using pragma directives

compliant to the OpenMP Application Program Interface specification. An

overview of the OpenMP directives is provided in “Using OpenMP directives”

on page 77.

All methods of program parallelization are enabled when the -qsmp compiler

option is in effect without the omp suboption. You can enable strict OpenMP

compliance with the -qsmp=omp compiler option, but doing so will disable

automatic parallelization.

Note: The -qsmp option must only be used together with thread-safe compiler

invocation modes (those that contain the _r suffix).

Parallel regions of program code are executed by multiple threads, possibly

running on multiple processors. The number of threads created is determined by

environment variables and calls to library functions. Work is distributed among

available threads according to scheduling algorithms specified by the environment

variables. For any of the methods of parallelization, you can use the XLSMPOPTS

environment variable and its suboptions to control thread scheduling; for more

information on this environment variable, see ″XLSMPOPTS environment variable

suboptions for parallel processing″ in the XL C/C++ Compiler Reference. If you are

using OpenMP constructs, you can use the OpenMP environment variables to

control thread scheduling; for information on OpenMP environment variables, see

″OpenMP environment variables for parallel processing″ in the XL C/C++ Compiler

Reference. For more information on OpenMP built-in functions, see ″Built-in

functions for parallel processing″ in the XL C/C++ Compiler Reference.

For a complete discussion on how threads are created and utilized, refer to the

OpenMP Application Program Interface Language Specification, available at

www.openmp.org.

Related information

v “Using shared-memory parallelism (SMP)” on page 42

Countable loops

Loops are considered to be countable if they take any of the following forms:

Countable for loop syntax with single statement

�� for (; exit_condition ; increment_expression)

iteration_variable
 �

� statement ��

© Copyright IBM Corp. 1998, 2007 75

http://www.openmp.org

Countable for loop syntax with statement block

�� for (;)

iteration_variable

expression
 �

� { increment_expression }

declaration_list

statement_list

statement_list
 ��

Countable while loop syntax

�� while (exit_condition) �

� { increment_expression }

declaration_list

statement_list
 ��

Countable do while loop syntax

�� do { increment_expression } while (exit_condition)

declaration_list

statement_list
 ��

The following definitions apply to the above syntax diagrams:

iteration_variable

is a signed integer that has either automatic or register storage class, does not

have its address taken, and is not modified anywhere in the loop except in the

increment_expression.

exit_condition

takes the following form:

 increment_variable <= expression

<

>=

>

where expression is a loop-invariant signed integer expression. expression cannot

reference external or static variables, pointers or pointer expressions, function

calls, or variables that have their address taken.

increment_expression

takes any of the following forms:

v ++iteration_variable

v --iteration_variable

v iteration_variable++

v iteration_variable--

v iteration_variable += increment

v iteration_variable -= increment

v iteration_variable = iteration_variable + increment

v iteration_variable = increment + iteration_variable

v iteration_variable = iteration_variable - increment

where increment is a loop-invariant signed integer expression. The value of the

expression is known at run time and is not 0. increment cannot reference

external or static variables, pointers or pointer expressions, function calls, or

variables that have their address taken.

76 XL C/C++ Programming Guide

Enabling automatic parallelization

The compiler can automatically locate and where possible parallelize all countable

loops in your program code. A loop is considered to be countable if it has any of

the forms shown in “Countable loops” on page 75, and:

v There is no branching into or out of the loop.

v The increment expression is not within a critical section.

In general, a countable loop is automatically parallelized only if all of the following

conditions are met:

v The order in which loop iterations start or end does not affect the results of the

program.

v The loop does not contain I/O operations.

v Floating point reductions inside the loop are not affected by round-off error,

unless the -qnostrict option is in effect.

v The -qnostrict_induction compiler option is in effect.

v The -qsmp=auto compiler option is in effect.

v The compiler is invoked with a thread-safe compiler mode.

Using OpenMP directives

OpenMP directives exploit shared memory parallelism by defining various types of

parallel regions. Parallel regions can include both iterative and non-iterative

segments of program code.

Pragmas fall into four general categories:

1. Pragmas that let you define parallel regions in which work is done by threads

in parallel (#pragma omp parallel). Most of the OpenMP directives either

statically or dynamically bind to an enclosing parallel region.

2. Pragmas that let you define how work will be distributed or shared across the

threads in a parallel region (#pragma omp section, #pragma omp ordered,

#pragma omp single).

3. Pragmas that let you control synchronization among threads (#pragma omp

atomic, #pragma omp master, #pragma omp barrier, #pragma omp critical,

#pragma omp flush).

4. Pragmas that let you define the scope of data visibility across threads (#pragma

omp threadprivate).

OpenMP directive syntax

��

�

 ,

#pragma omp

pragma_name

clause

statement_block

��

Pragma directives generally appear immediately before the section of code to

which they apply. For example, the following example defines a parallel region in

which iterations of a for loop can run in parallel:

Chapter 11. Parallelizing your programs 77

#pragma omp parallel

{

 #pragma omp for

 for (i=0; i<n; i++)

 ...

}

This example defines a parallel region in which two or more non-iterative sections

of program code can run in parallel:

#pragma omp sections

{

 #pragma omp section

 structured_block_1

 ...

 #pragma omp section

 structured_block_2

 ...

}

For a pragma-by-pragma description of the OpenMP directives, refer to ″Pragma

directives for parallel processing″ in the XL C/C++ Compiler Reference.

Shared and private variables in a parallel environment

Variables can have either shared or private context in a parallel environment.

Variables in shared context are visible to all threads running in associated parallel

loops. Variables in private context are hidden from other threads. Each thread has

its own private copy of the variable, and modifications made by a thread to its

copy are not visible to other threads.

The default context of a variable is determined by the following rules:

v Variables with static storage duration are shared.

v Dynamically allocated objects are shared.

v Variables with automatic storage duration are private.

v Variables in heap allocated memory are shared. There can be only one shared

heap.

v All variables defined outside a parallel construct become shared when the

parallel loop is encountered.

v Loop iteration variables are private within their loops. The value of the iteration

variable after the loop is the same as if the loop were run sequentially.

v Memory allocated within a parallel loop by the alloca function persists only for

the duration of one iteration of that loop, and is private for each thread.

The following code segments show examples of these default rules:

int E1; /* shared static */

void main (argvc,...) { /* argvc is shared */

 int i; /* shared automatic */

void *p = malloc(...); /* memory allocated by malloc */

 /* is accessible by all threads */

 /* and cannot be privatized */

#pragma omp parallel firstprivate (p)

 {

 int b; /* private automatic */

 static int s; /* shared static */

78 XL C/C++ Programming Guide

#pragma omp for

 for (i =0;...) {

 b = 1; /* b is still private here ! */

 foo (i); /* i is private here because it */

 /* is an iteration variable */

 }

#pragma omp parallel

 {

 b = 1; /* b is shared here because it */

 /* is another parallel region */

 }

 }

 }

int E2; /*shared static */

void foo (int x) { /* x is private for the parallel */

 /* region it was called from */

int c; /* the same */

 ... }

The compiler can privatize some shared variables if it is possible to do so without

changing the semantics of the program. For example, if each loop iteration uses a

unique value of a shared variable, that variable can be privatized. Privatized

shared variables are reported by the -qinfo=private option. Use critical sections to

synchronize access to all shared variables not listed in this report.

Some OpenMP preprocessor directives let you specify visibility context for selected

data variables. A brief summary of data scope attribute clauses are listed below:

 Data scope

attribute clause

Description

private The private clause declares the variables in the list to be private to

each thread in a team.

firstprivate The firstprivate clause provides a superset of the functionality

provided by the private clause.

lastprivate The lastprivate clause provides a superset of the functionality

provided by the private clause.

shared The shared clause shares variables that appear in the list among all the

threads in a team. All threads within a team access the same storage

area for shared variables.

reduction The reduction clause performs a reduction on the scalar variables that

appear in the list, with a specified operator.

default The default clause allows the user to affect the data scope attributes of

variables.

For more information, see the OpenMP directive descriptions in ″Pragma directives

for parallel processing″ in the XL C/C++ Compiler Reference or the OpenMP

Application Program Interface Language Specification.

Chapter 11. Parallelizing your programs 79

Reduction operations in parallelized loops

The compiler can recognize and properly handle most reduction operations in a

loop during both automatic and explicit parallelization. In particular, it can handle

reduction statements that have either of the following forms:

�� variable = variable + expression

-

*

^

|

&

 ��

�� variable += expression

-=

*=

^=

|=

&=

 ��

where:

variable

is an identifier designating an automatic or register variable that does not have

its address taken and is not referenced anywhere else in the loop, including all

loops that are nested. For example, in the following code, only S in the nested

loop is recognized as a reduction:

 int i,j, S=0;

for (i= 0 ;i < N; i++) {

 S = S+ i;

 for (j=0;j< M; j++) {

 S = S + j;

 }

}

expression

is any valid expression.

Recognized reductions are listed by the -qinfo=reduction option. OpenMP

directives provide you with mechanisms to specify reduction variables explictly.

80 XL C/C++ Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2007 81

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

82 XL C/C++ Programming Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2007. All rights reserved.

Trademarks and service marks

Company, product, or service names identified in the text may be trademarks or

service marks of IBM or other companies. Information on the trademarks of

International Business Machines Corporation in the United States, other countries,

or both is located at http://www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries

in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Industry standards

The following standards are supported:

v The C language is consistent with the International Standard for Information

Systems-Programming Language C (ISO/IEC 9899-1990).

v The C language is also consistent with the International Standard for

Information Systems-Programming Language C (ISO/IEC 9899-1999 (E)).

v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).

v The C++ language is also consistent with the International Standard for

Information Systems-Programming Language C++ (ISO/IEC 14882:2003 (E)).

v The C and C++ languages are consistent with the OpenMP C and C++

Application Programming Interface Version 2.5.

Notices 83

http://www.ibm.com/legal/copytrade.shtml

84 XL C/C++ Programming Guide

Index

Special characters
__align specifier 12

-O0 34

-O2 35

-O3 37

trade-offs 37

-O4 38

trade-offs 38

-O5 39

trade-offs 39

-q32 1, 39

-q64 1

-qalign 9

-qarch 39, 40

-qcache 38, 39, 40

-qfloat 18, 20

IEEE conformance 18

multiply-add operations 17

-qflttrap 20

-qhot 41

-qipa 38, 39, 43

IPA process 38

-qlongdouble
corresponding Fortran types 5

-qmkshrobj 27

-qpdf 45

-qpriority 28

-qsmp 42, 75, 77

-qstrict 18, 37

-qtempinc 21

-qtemplaterecompile 24

-qtemplateregistry 21

-qtune 39, 40

-qwarn64 1

-y 18

Numerics
64-bit mode 4

alignment 4

bit-shifting 3

data types 1

Fortran 4

long constants 2

long types 2

optimization 61

pointers 3

A
advanced optimization 36

aggregate
alignment 4, 9, 10

Fortran 6

aligned attribute 12

alignment 4, 9

bit fields 11

modes 9

modifiers 12

architecture
optimization 39

arrays, Fortran 6

attribute
aligned 12

init_priority 28

packed 12

B
basic optimization 34

bit field 11

alignment 11

bit-shifting 3

BLAS library 71

C
cloning, function 39, 43

constants
folding 18

long types 2

rounding 18

D
data types

32-bit and 64-bit modes 1

64-bit mode 1

Fortran 4, 5

long 2

size and alignment 9

debugging 51

dynamic library 27

E
errors, floating-point 20

exceptions, floating-point 20

F
floating-point

exceptions 20

folding 18

IEEE conformance 18

range and precision 17

rounding 18

folding, floating-point 18

Fortran
64-bit mode 4

aggregates 6

arrays 6

data types 4, 5

function calls 7

function pointers 7

identifiers 5

function calls
Fortran 7

function calls (continued)
optimizing 57

function cloning 39, 43

function pointers, Fortran 7

H
hardware optimization 39

I
IEEE conformance 18

init_priority attribute 28

initialization order of C++ static

objects 28

input/output
optimizing 57

instantiating templates 21

interlanguage calls 7

interprocedural analysis (IPA) 43

L
libmass 71

libmass library 63

libmassv library 66

library
BLAS 71

MASS 63

scalar 63

shared (dynamic) 27

static 27

vector 66

linear algebra functions 71

long constants, 64-bit mode 2

long data type, 64-bit mode 2

loop optimization 41, 75

M
MASS libraries 63

scalar functions 63

vector functions 66

matrix multiplication functions 71

memory
management 59

mergepdf 45

multithreading 42, 75

O
OpenMP 42, 78, 80

OpenMP directives 77

optimization 57

-O0 34

-O2 35

-O3 37

-O4 38

-O5 39

© Copyright IBM Corp. 1998, 2007 85

optimization (continued)
64-bit mode 61

across program units 43

advanced 36

architecture 39

basic 34

debugging 51

hardware 39

loop 41

loops 75

math functions 63

optimization trade-offs
-O3 37

-O4 38

-O5 39

P
packed attribute 12

parallelization 42, 75

automatic 77

OpenMP directives 77

performance tuning 57

pointers
64-bit mode 3

Fortran 7

pragma
align 9

implementation 21

omp 77

pack 12

priority 28

precision, floating-point numbers 17

priority of static objects 28

profile-directed feedback (PDF) 45

profiling 45

R
range, floating-point numbers 17

rounding, floating-point 18

S
scalar MASS library 63

shared (dynamic) library 27

shared memory parallelism (SMP) 42,

75, 77, 78, 80

showpdf 45

static library 27

static objects, C++ 28

strings
optimizing 60

structure alignment 10

64-bit mode 4

T
template instantiation 21

tuning for performance 39

V
vector MASS library 66

X
xlopt library 71

86 XL C/C++ Programming Guide

����

Program Number: 5724-S73

SC23-5890-00

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions used in this document
	Related information
	IBM XL C/C++ publications
	Standards and specifications documents
	Other IBM publications
	Other publications

	Technical support
	How to send your comments

	Chapter 1. Using 32-bit and 64-bit modes
	Assigning long values
	Assigning constant values to long variables
	Bit-shifting long values

	Assigning pointers
	Aligning aggregate data
	Calling Fortran code

	Chapter 2. Using XL C/C++ with Fortran
	Identifiers
	Corresponding data types
	Character and aggregate data
	Function calls and parameter passing
	Pointers to functions
	Sample program: C/C++ calling Fortran

	Chapter 3. Aligning data
	Using alignment modes
	Alignment of aggregates
	Alignment of bit fields
	Rules for Linux PowerPC alignment
	Rules for bit-packed alignment
	Example of bit-packed alignment

	Using alignment modifiers
	Guidelines for determining alignment of scalar variables
	Guidelines for determining alignment of aggregate variables

	Chapter 4. Handling floating point operations
	Floating-point formats
	Handling multiply-add operations
	Compiling for strict IEEE conformance
	Handling floating-point constant folding and rounding
	Matching compile-time and runtime rounding modes

	Handling floating-point exceptions

	Chapter 5. Using C++ templates
	Using the -qtempinc compiler option
	Example of -qtempinc
	Template declaration file: stack.h
	Template implementation file: stack.c
	Function declaration file: stackops.h
	Function implementation file: stackops.cpp
	Main program file: stackadd.cpp

	Regenerating the template instantiation file
	Using -qtempinc with shared libraries

	Using the -qtemplateregistry compiler option
	Recompiling related compilation units
	Switching from -qtempinc to -qtemplateregistry

	Chapter 6. Constructing a library
	Compiling and linking a library
	Compiling a static library
	Compiling a shared library
	Linking a library to an application
	Linking a shared library to another shared library

	Initializing static objects in libraries (C++)
	Assigning priorities to objects
	Using priority numbers
	Example of object initialization within a file
	Example of object initialization across multiple files

	Order of object initialization across libraries
	Example of object initialization across libraries

	Chapter 7. Optimizing your applications
	Distinguishing between optimization and tuning
	Optimization
	Tuning

	Steps in the optimization process
	Basic optimization
	Optimizing at level 0
	Optimizing at level 2
	Starting to tune at O2

	Advanced optimization
	Optimizing at level 3
	Potential trade-offs at level 3

	An intermediate step: adding -qhot suboptions at level 3
	Optimizing at level 4
	The IPA process
	Potential trade-offs at level 4

	Optimizing at level 5
	Potential trade-offs at level 5

	Tuning for your system architecture
	Getting the most out of target machine options
	Using -qarch options
	Using -qtune options
	Using -qcache options

	Using high-order loop analysis and transformations
	Getting the most out of -qhot

	Using shared-memory parallelism (SMP)
	Getting the most out of -qsmp

	Using interprocedural analysis
	Getting the most from -qipa

	Using profile-directed feedback
	Viewing profiling information with showpdf
	Object level profile-directed feedback

	Other optimization options

	Chapter 8. Debugging optimized code
	Understanding different results in optimized programs
	Debugging before optimization
	Using -qoptdebug to help debug optimized programs

	Chapter 9. Coding your application to improve performance
	Find faster input/output techniques
	Reduce function-call overhead
	Manage memory efficiently
	Optimize variables
	Manipulate strings efficiently
	Optimize expressions and program logic
	Optimize operations in 64-bit mode

	Chapter 10. Using the high performance libraries
	Using the Mathematical Acceleration Subsystem libraries (MASS)
	Using the scalar library
	Using the vector libraries
	Overlap of input and output vectors
	Consistency of MASS vector functions

	Compiling and linking a program with MASS
	Using libmass.a with the math system library

	Using the Basic Linear Algebra Subprograms (BLAS)
	BLAS function syntax
	Linking the libxlopt library

	Chapter 11. Parallelizing your programs
	Countable loops
	Enabling automatic parallelization
	Using OpenMP directives
	Shared and private variables in a parallel environment
	Reduction operations in parallelized loops

	Notices
	Trademarks and service marks
	Industry standards

	Index

