
IBM XL C/C++ for Multicore Acceleration for Linux,

V10.1

Getting Started with XL C/C++

Version 10.1

GC23-8572-00

���

IBM XL C/C++ for Multicore Acceleration for Linux,

V10.1

Getting Started with XL C/C++

Version 10.1

GC23-8572-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 25.

First edition

This edition applies to IBM XL C/C++ for Multicore Acceleration for Linux on Power Systems, V10.1 and IBM XL

C/C++ for Multicore Acceleration for Linux on x86 Systems, V10.1 (Programs 5724-T42 & 5724-T43), and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

© Copyright International Business Machines Corporation 1996, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document v

Conventions v

Related information ix

IBM XL C/C++ information ix

Standards and specifications x

Other IBM information xi

Other information xi

Technical support xi

How to send your comments xi

Chapter 1. Introducing XL C/C++ 1

Commonality with other IBM compilers 1

IBM XL C/C++ for Multicore Acceleration for Linux,

V10.1 1

About the Cell Broadband Engine architecture . . 1

A highly configurable compiler 2

Language standards compliance 3

Compatibility with GNU 4

Source-code migration and conformance checking 5

Libraries 5

Tools and utilities 6

Automated program analysis and transformations . . 6

Program optimization 7

Diagnostic listings 8

Symbolic debugger support 8

Chapter 2. What’s new for IBM XL C/C++

for Multicore Acceleration for Linux,

V10.1 9

Operating system support 9

Single-source compiler technology 9

C++0x 11

Other XL C/C++ language-related updates 12

Performance and optimization 12

New or changed compiler options and directives . . 14

Chapter 3. Setting up and customizing

XL C/C++ 17

Chapter 4. Developing applications

with XL C/C++ 19

The compiler phases 19

Editing C/C++ source files 19

Compiling with XL C/C++ 20

Invoking the compiler 20

Compiling parallelized XL C/C++ applications 21

Specifying compiler options 22

XL C/C++ input and output files 23

Linking your compiled applications with XL C/C++ 23

Embedding compiled SPU code into compiled

PPU code 24

XL C/C++ compiler diagnostic aids 24

Debugging compiled applications 24

Notices 25

Trademarks and service marks 27

Index 29

© Copyright IBM Corp. 1996, 2008 iii

iv XL C/C++: Getting Started

About this document

This document contains overview and basic usage information for the IBM® XL

C/C++ for Multicore Acceleration for Linux®, V10.1 compiler.

Who should read this document

This document is intended for C and C++ developers who are looking for

introductory overview and usage information for XL C/C++. It assumes that you

have some familiarity with command-line compilers, a basic knowledge of the C

and C++ programming languages, and basic knowledge of operating system

commands. Programmers new to XL C/C++ can use this document to find

information on the capabilities and features unique to XL C/C++.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and

C++ languages. Where there are differences between languages, these are indicated

through qualifying text and icons, as described in “Conventions.” Additionally,

unless indicated otherwise, text in this document pertains to compilation targeting

both the PowerPC® Processing Unit (PPU) and Synergistic Processor Units (SPUs).

XL C/C++ provides several compiler invocation commands depending on source

code language levels and whether you are compiling for the PowerPC Processor

Unit (PPU) or Synergistic Processor Units (SPUs). However, for convenience, this

document uses only the basic ppuxlc, ppuxlc++, spuxlc, and spuxlc++ invocation

commands to describe the actions of the C and C++ compiler.

While this document covers information on configuring the compiler environment,

and compiling and linking C or C++ applications using the XL C/C++ compiler, it

does not include the following topics:

v Compiler installation: see the XL C/C++ Installation Guide for information on

installing XL C/C++.

v Compiler options: see the XL C/C++ Compiler Reference for detailed information

on the syntax and usage of compiler options.

v The C or C++ programming languages: see the XL C/C++ Language Reference for

information on the syntax, semantics, and IBM implementation of the C or C++

programming languages.

v Programming topics: see the XL C/C++ Optimization and Programming Guide for

detailed information on developing applications with XL C/C++, with a focus

on program portability and optimization.

Conventions

Typographical conventions

© Copyright IBM Corp. 1996, 2008 v

The following table explains the typographical conventions used in the IBM XL

C/C++ for Multicore Acceleration for Linux, V10.1 information.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable

names, compiler options, and

directives.

The compiler provides basic

invocation commands, xlc and xlC

(xlc++), along with several other

compiler invocation commands to

support various C/C++ language

levels and compilation environments.

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

Make sure that you update the size

parameter if you return more than

the size requested.

underlining The default setting of a parameter

of a compiler option or directive.

nomaf | maf

monospace Programming keywords and

library functions, compiler builtins,

examples of program code,

command strings, or user-defined

names.

To compile and optimize

myprogram.c, enter: xlc myprogram.c

-O3.

Other conventions

In addition to typographical conventions, the following conventions are used:

v (SPU only) indicates functionality that only applies to code targeting the

Synergistic Processor Unit (SPU), whether it is compiled using an spu or cbe

prefixed compiler invocation command.

v (PPU only) indicates functionality that only applies to code targeting the Power

Processor Unit (PPU), whether it is compiled using a ppu or cbe prefixed

compiler invocation command.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In

descriptions of language elements where a feature is exclusive to one language, or

where functionality differs between languages, this information uses icons to

delineate segments of text as follows:

 Table 2. Qualifying elements

Qualifier/Icon Meaning

C only, or C only

begins
C

C

C only ends

The text describes a feature that is supported in the C language only;

or describes behavior that is specific to the C language.

vi XL C/C++: Getting Started

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

C++ only, or C++

only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++ language

only; or describes behavior that is specific to the C++ language.

IBM extension

begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the standard

language specifications.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section

will help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

About this document vii

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma

comment directive.

��
 (1) (2) (3) (4) (5) (9) (10)

#

pragma

comment

(

compiler

)

date

timestamp

(6)

copyright

user

(7)

(8)

,

″

token_sequence

″

��

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:

compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an

optional character string.

8 A character string must follow the comma. The character string must be

enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct

according to the diagram shown above:

viii XL C/C++: Getting Started

#pragma comment(date)

 #pragma comment(user)

 #pragma comment(copyright,"This text will appear in the module")

Examples in this information

The examples in this information, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.Also,

examples may use different compiler invocation commands interchangeably or

simply indicate invocation. For detailed information on the commands available to

invoke the compiler see ″Invoking the compiler″ in the XL C/C++ Compiler

Reference.

The examples for installation information are labelled as either Example or Basic

example. Basic examples are intended to document a procedure as it would be

performed during a basic, or default, installation; these need little or no

modification.

Related information

The following sections provide related information for XL C/C++:

IBM XL C/C++ information

XL C/C++ provides product information in the following formats:

v README files

README files contain late-breaking information, including changes and

corrections to the product information. README files are located by default in

the XL C/C++ directory and in the root directory of the installation CD.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the IBM XL C/C++ for Multicore Acceleration for Linux,

V10.1 Installation Guide.

v Information center

The information center of searchable HTML files is viewable on the Web at

http://publib.boulder.ibm.com/infocenter/cellcomp/v101v121/index.jsp.

v PDF documents

PDF documents are located by default in the /opt/ibmcmp/xlc/cbe/10.1/doc/
en_US/pdf/ directory. The PDF files are also available on the Web at

http://www.ibm.com/software/awdtools/xlcpp/multicore/library/.

The following files comprise the full set of XL C/C++ product information:

 Table 3. XL C/C++ PDF files

Document title

PDF file

name Description

IBM XL C/C++ for

Multicore Acceleration for

Linux, V10.1 Installation

Guide, GC23-8574-00

install.pdf Contains information for installing XL C/C++

and configuring your environment for basic

compilation and program execution.

About this document ix

http://publib.boulder.ibm.com/infocenter/cellcomp/v101v121/index.jsp
http://www.ibm.com/software/awdtools/xlcpp/multicore/library/

Table 3. XL C/C++ PDF files (continued)

Document title

PDF file

name Description

Getting Started with IBM

XL C/C++ for Multicore

Acceleration for Linux,

V10.1, GC23-8572-00

getstart.pdf Contains an introduction to the XL C/C++

product, with information on setting up and

configuring your environment, compiling and

linking programs, and troubleshooting

compilation errors.

IBM XL C/C++ for

Multicore Acceleration for

Linux, V10.1 Compiler

Reference, SC23-8570-00

compiler.pdf Contains information about the various

compiler options, pragmas, macros,

environment variables, and built-in functions.

IBM XL C/C++ for

Multicore Acceleration for

Linux, V10.1 Language

Reference, SC23-8573-00

langref.pdf Contains information about the C and C++

programming languages, as supported by IBM,

including language extensions for portability

and conformance to nonproprietary standards.

IBM XL C/C++ for

Multicore Acceleration for

Linux, V10.1 Optimization

and Programming Guide,

SC23-8571-00

proguide.pdf Contains information on advanced

programming topics, such as application

porting, library development, application

optimization, and the XL C/C++

high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe

Reader, you can download it (subject to license terms) from the Adobe Web site

at http://www.adobe.com.

More information related to XL C/C++ including redbooks, white papers, tutorials,

and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/xlcpp/multicore/library/

Standards and specifications

XL C/C++ is designed to support the following standards and specifications. You

can refer to these standards for precise definitions of some of the features found in

this information.

v Information Technology – Programming languages – C, ISO/IEC 9899:1990, also

known as C89.

v Information Technology – Programming languages – C, ISO/IEC 9899:1999, also

known as C99.

v Information Technology – Programming languages – C++, ISO/IEC 14882:1998, also

known as C++98.

v Information Technology – Programming languages – C++, ISO/IEC 14882:2003(E),

also known as Standard C++.

v Information Technology – Programming languages – Extensions for the programming

language C to support new character data types, ISO/IEC DTR 19769. This draft

technical report has been accepted by the C standards committee, and is

available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1040.pdf.

v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft

technical report has been submitted to the C++ standards committee, and is

available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

x XL C/C++: Getting Started

http://www.adobe.com
http://www.ibm.com/software/awdtools/xlcpp/multicore/library/
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification

for vector data types, to support vector processing technology, is available at

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

Other IBM information

v IBM C/C++ Language Extensions for Cell Broadband Engine Architecture, available at

http://publib.boulder.ibm.com/infocenter/systems/topic/eiccg/eiccgkickoff.htm

v Specifications, white papers, and other technical information for the Cell

Broadband Engine™ architecture are available at http://www.ibm.com/chips/
techlib/techlib.nsf/products/Cell_Broadband_Engine.

v The Cell Broadband Engine resource center, at http://www.ibm.com/
developerworks/power/cell/, is the central repository for technical information,

including articles, tutorials, programming guides, and educational resources.

v The IBM Systems Information Center, at http://publib.boulder.ibm.com/
infocenter/systems/index.jsp is a resource for technical information about IBM

systems, including the Cell Broadband Engine solution.

Other information

v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support

Additional technical support is available from the XL C/C++ Support page at

http://www.ibm.com/software/awdtools/xlcpp/support. This page provides a

portal with search capabilities to a large selection of Technotes and other support

information.

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at

http://www.ibm.com/software/awdtools/xlcpp.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this information or any other XL

C/C++ information, send your comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the information, the part number of the

information, the version of XL C/C++, and, if applicable, the specific location of

the text you are commenting on (for example, a page number or table number).

About this document xi

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://publib.boulder.ibm.com/infocenter/systems/topic/eiccg/eiccgkickoff.htm
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/developerworks/power/cell/
http://www.ibm.com/developerworks/power/cell/
http://publib.boulder.ibm.com/infocenter/systems/index.jsp
http://publib.boulder.ibm.com/infocenter/systems/index.jsp
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/software/awdtools/xlcpp/support
http://www.ibm.com/software/awdtools/xlcpp

xii XL C/C++: Getting Started

Chapter 1. Introducing XL C/C++

IBM XL C/C++ for Multicore Acceleration for Linux, V10.1 is an advanced,

high-performance compiler that can be used for developing complex,

computationally intensive programs.

This section discusses the features of the XL C/C++ compiler at a high level. It is

intended for people who are evaluating the compiler, and for new users who want

to find out more about the product.

Commonality with other IBM compilers

IBM XL C/C++ for Multicore Acceleration for Linux, V10.1 is part of a larger

family of IBM C, C++, and Fortran compilers.

XL C/C++, together with XL Fortran, comprise the family of XL compilers.

These compilers are derived from a common code base that shares compiler

function and optimization technologies for a variety of platforms and

programming languages. Programming environments include IBM AIX®, IBM Blue

Gene®/L™, IBM Blue Gene®/P™, the Cell Broadband Engine architecture, IBM i,

selected Linux distributions, IBM z/OS®, and IBM z/VM®. The common code base,

along with compliance with international programming language standards, helps

support consistent compiler performance and ease of program portability across

multiple operating systems and hardware platforms.

IBM XL C/C++ for Multicore Acceleration for Linux, V10.1

IBM XL C/C++ for Multicore Acceleration for Linux, V10.1 is the latest addition to

the IBM XL family of compilers. It adopts proven high-performance compiler

technologies used in its compiler family predecessors, and adds new features

tailored to exploit the unique performance capabilities of processors compliant

with the new Cell Broadband Engine architecture.

XL C/C++ is a cross-compiler. First, you compile your applications on an x86

system or IBM Power Systems server compilation host running Red Hat Enterprise

Linux 5.2 (RHEL 5.2). Then you move the executable application produced by the

compiler onto a Cell/B.E. system also running the RHEL 5.2 Linux distribution.

The Cell/B.E. system will be the execution host where you will actually run your

compiled application.

About the Cell Broadband Engine architecture

The Cell Broadband Engine architecture specification describes a new single-chip

multiprocessor based upon the 64-bit Power Architecture® technology, but with

unique features directed toward distributed processing and media-rich

applications.

At the heart of the new multiprocessor is the Power Processor Unit (PPU). The

PPU is a 64-bit processor fully compliant with the Power Architecture standard,

and capable of running both operating systems and applications. The

multiprocessor also incorporates a set of eight high-performance SIMD Synergistic

Processor Units (SPUs) into its design. The SPUs are optimized for running

© Copyright IBM Corp. 1996, 2008 1

computationally intensive applications, operate independently of each other, and

can access memory shared between all SPUs and the PPU.

In operation, the PPU runs the operating system and performs high-level

application control, while the SPUs divide and perform an application’s

computational work between them.

For more information on the Cell Broadband Engine architecture, see ″Cell

Broadband Engine Architecture from 20,000 feet″ at http://www.ibm.com/
developerworks/power/library/pa-cbea.html.

A highly configurable compiler

You can use a variety of compiler invocation commands and options to tailor the

compiler to your unique compilation requirements.

Compiler invocation and linking commands for separate PPU and SPU

programs

If you have written separate PPU and SPU programs, you must compile

PPU and SPU program code in separate steps.

 Several versions of PPU-specific compiler invocation commands are

provided. In most cases, you should compile using the basic ppuxlc,

ppuxlC, or ppuxlc++ compiler invocation commands, but other variants

are also provided to help you meet special compilation needs.

SPU-specific invocation commands are also provided with spuxlc, spuxlC,

spuxlc++, and their variants.

The IBM Software Developer Kit for Multicore Acceleration V3.1 (SDK 3.1)

includes the ppu-embedspu command to link compiled PPU and SPU

objects together.

2 XL C/C++: Getting Started

http://www.ibm.com/developerworks/power/library/pa-cbea.html
http://www.ibm.com/developerworks/power/library/pa-cbea.html

For detailed information about compiler invocation commands provided

with XL C/C++, see ″Invoking the compiler″ in the XL C/C++ Compiler

Reference.

Compiler invocation and linking commands for combined PPU and SPU

programs

XL C/C++ can compile programs that contain both PPU and SPU code. If

you have written the SPU portions of your code using OpenMP directives,

you can compile PPU and SPU program code in one step.

 You should compile using the basic invocation commands, cbexlc, cbexlC,

or cbexlc++ for these programs.

For more information about this technology see “Single-source compiler

technology” on page 9.

Compiler options

You can choose from a large selection of compiler options to control

compiler behavior. Different categories of options help you to debug your

applications, optimize and tune application performance, select language

levels and extensions for compatibility with non-standard features and

behaviors supported by other C or C++ compilers, and perform many

other common tasks that would otherwise require changing the source

code.

 XL C/C++ lets you specify compiler options through a combination of

environment variables, compiler configuration files, command line options,

and compiler directive statements embedded in your program source.

For more information about XL C/C++ compiler options, see ″Compiler

options reference″ in the XL C/C++ Compiler Reference.

Language standards compliance

The compiler supports the following programming language specifications for

C/C++:

v ISO/IEC 9899:1999 (C99)

v ISO/IEC 9899:1990 (referred to as C89)
v ISO/IEC 14882:2003 (referred to as Standard C++)

v ISO/IEC 14882:1998, the first official specification of the language (referred

to as C++98)

In addition to the standardized language levels, XL C/C++ supports language

extensions, including:
v OpenMP V2.5 extensions to support portable parallelized programming

v Language extensions to support vector programming

v Language extensions to support SPU programming

v A subset of GNU C and C++ language extensions

See ″Language levels and language extensions″ in the XL C/C++ Language Reference

for more information about C/C++ language specifications and extensions.

The IBM XL C/C++ compiler contains a separate SPU cross-compiler that supports

the standards defined in the following documents:

v IBM C/C++ Language Extensions for Cell Broadband Engine Architecture V2.6

v SPU Application Binary Interface Specification V1.8

Chapter 1. Introducing XL C/C++ 3

v SPU Instruction Set Architecture V1.2

IBM XL C/C++ supports all language extensions described in the ″C/C++

Language Extensions for Cell Broadband Engine Architecture V2.6″ specification

except for the following:

v The Shift and Rotate Intrinsics spu_sr, spu_sra, spu_srqw, spu_srqwbyte and

spu_srqwbytebc as listed in section 2.10

v The __builtin_expect_call builtin function call

v The recommended vector printf format controls as specified in section 8.1.1 due

to library restrictions

v The C99 complex math library as specified in section 8.1.1 due to library

restrictions

v In C++ code, the XL C/C++ compiler currently supports mapping between SPU

and VMX intrinsics as defined in section 5 only.

IBM XL C/C++ supports the ″IBM Software Development Kit (SDK) for Multicore

Acceleration V3.1 Programmer’s Guide″ specification except for the following:

v The XL C/C++ compiler currently allows __ea variable declarations, but not

variable definitions.

Compatibility with GNU

XL C/C++ supports a subset of the GNU compiler command options to facilitate

porting applications developed with gcc and g++ compilers.

This support is available when the ppugxlc, ppugxlC, ppugxlc++, spugxlc,

spugxlC, or spugxlc++ invocation commands are used together with select GNU

compiler options. Where possible, the compiler maps GNU options to their XL

C/C++ compiler option counterparts before invoking the compiler.

These invocation commands use a plain text configuration file to control

GNU-to-XL C/C++ option mappings and defaults. You can customize this

configuration file to better meet the needs of any unique compilation requirements

you may have. See ″Reusing GNU C/C++ compiler options with gxlc and gxlc++″

in the XL C/C++ Compiler Reference for more information.

XL C/C++ uses GNU C and GNU C++ header files together with the GNU C and

C++ runtime libraries to produce code that is binary-compatible with that

produced by the GNU Compiler Collection (GCC). Portions of an application can

be built with XL C/C++ and combined with portions built with GCC to produce

an application that behaves as if it had been built solely with GCC.

To achieve binary compatibility with GCC-compiled code, a program compiled

with XL C/C++ includes the same headers as those used by a GNU compiler

residing on the same system. To ensure that the proper versions of headers and

runtime libraries are present on the system, the prerequisite GCC compiler must be

installed before installing XL C/C++.

Some additional noteworthy points about this relationship are:
v IBM built-in functions coexist with GNU C built-ins.

v Compilation of C and C++ programs uses the GNU C and GNU C++

header files.

v Compilation uses the GNU assembler for assembler input files.

v Compiled C code is linked to the GNU C runtime libraries.

4 XL C/C++: Getting Started

v Compiled C++ code is linked to the GNU C and GNU C++ runtime

libraries.

v Debugging uses the ppu-gdb and spu-gdb debuggers provided with the

IBM Software Developer Kit for Multicore Acceleration V3.1 (SDK 3.1).

Source-code migration and conformance checking

XL C/C++ helps protect your investment in your existing C/C++ source code by

providing compiler invocation commands that instruct the compiler to compile

your application code to a specific language level.

You can also use the -qlanglvl compiler option to specify a given language level,

and the compiler will issue warnings, errors, and severe error messages if language

or language extension elements in your program source do not conform to that

language level.

See ″qlanglvl″ in the XL C/C++ Compiler Reference for more information.

Libraries

XL C/C++ includes a runtime environment containing a number of libraries.

Mathematical Acceleration Subsystem library

The Mathematical Acceleration Subsystem (MASS) library consists of scalar and

vector mathematical intrinsic functions tuned specifically for optimum performance

on supported processor architectures and SIMD mathematical intrinsic functions

tuned specifically for the SPUs. You can choose a MASS library to support

high-performance computing on a broad range of processors, or you can select a

library tuned to support a specific processor family.

The MASS library functions support both 32-bit and 64-bit compilation modes, are

thread-safe, and offer improved performance over the default libm math library

routines. They are called automatically when you request specific levels of

optimization for your application. You can also make explicit calls to MASS library

functions regardless of whether optimization options are in effect or not.

See ″Using the Mathematical Acceleration Subsystem″ in the XL C/C++

Optimization and Programming Guide for more information.

Basic Linear Algebra Subprograms (PPU only)

The Basic Linear Algebra Subprograms (BLAS) set of high-performance algebraic

functions are shipped in the libxlopt library. These functions let you:

v Compute the matrix-vector product for a general matrix or its transpose.

v Perform combined matrix multiplication and addition for general matrices or

their transposes.

For more information about using the BLAS functions, see ″Using the Basic Linear

Algebra Subprograms″ in the XL C/C++ Optimization and Programming Guide.

Other libraries

The following are also shipped with XL C/C++:

v C++ Runtime Library contains support routines needed by the compiler.

Chapter 1. Introducing XL C/C++ 5

Tools and utilities

There are many tools and utilities that are included with XL C/C++.

new_install

After you install IBM XL C/C++ for Multicore Acceleration for Linux,

V10.1, running this utility will configure the compiler for use on your

system.

xlc_configure

Use this utility if you need to update your compiler configuration file

following SDK updates or if you want to create customized compiler

configuration files.

cleanpdf command (PPU only)

A command related to profile-directed feedback (PDF), cleanpdf removes

all profiling information from the directory to which profile-directed

feedback data is written.

resetpdf command (PPU only)

The current behavior of the cleanpdf command is the same as the resetpdf

command, and is retained for compatibility with earlier releases on other

platforms.

ppugxlc and ppugxlc++ utilities

When compiling PPU code, you can use these invocation methods to

translate a GNU C or GNU C++ invocation command and associated

options into a corresponding ppuxlc or ppuxlc++ compiler invocation.

These utilities help minimize the number of changes to your existing GNU

compiler makefiles to help you make the transition to using the XL C/C++

compiler. See in the XL C/C++ Compiler Reference for more information.

spugxlc and spugxlc++ utilities

When compiling SPU code, you can use these invocation methods to

translate a GNU C or GNU C++ invocation command and associated

options into a corresponding spuxlc or spuxlc++ compiler invocation.

These utilities help minimize the number of changes to your existing GNU

compiler makefiles to help you make the transition to using the XL C/C++

compiler. See in the XL C/C++ Compiler Reference for more information.

Automated program analysis and transformations

Significant performance improvements are possible with relatively little

development effort because the compiler is capable of performing sophisticated

program analysis and transformation of your program code. For example, the

compiler can:

Automatically generate code overlays for the SPUs

Specifying -qipa=overlay instructs the compiler to automatically generate

code overlays for the SPUs that allow two or more code segments to be

loaded at the same physical address as they are needed. This feature lets

developers create SPU programs that would otherwise be too large to fit in

the local memory store of the SPUs. In addition, the compiler also provides

the -qipa=overlayproc and -qipa=nooverlayproc compiler options to give

developers direct control over generation of code overlays on specified

procedures.

 See Using automatic code overlays in the XL C/C++ Optimization and

Programming Guide for more information.

6 XL C/C++: Getting Started

Perform automatic SIMD vectorization of your program code

When the -qhot=simd compiler option is in effect, the compiler takes

certain operations that are performed in a loop on successive elements of

an array, and converts them into a call to a vector instruction. This call

calculates several results at one time, which is faster than calculating each

result sequentially. Applying this suboption is useful for applications with

significant image processing demands. -qhot=simd is the default with -O3

for the SPU.

 Not all loops can be successfully vectorized. However, specifying the

-qreport compiler option together with -qhot=simd will cause the compiler

to generate diagnostic information that can help you improve the efficiency

of your loops.

See -qhot and -qreport in the XL C/C++ Compiler Reference for more

information.

Use interprocedural analysis (IPA) to optimize across program files

IPA can result in significant performance improvements. You can specify

interprocedural analysis on the compile step only or on both compile and

link steps in ″whole program″ mode . Whole program mode expands the

scope of optimization to an entire program unit, which can be an

executable or shared object.

 See -qipa in the XL C/C++ Compiler Reference for more information.

Program optimization

XL C/C++ provides several compiler options that can help you control the

optimization or performance of your programs.

With these options, you can perform the following tasks:

v Select different levels of compiler optimizations.

v Control optimizations for loops, floating point, and other types of operations.

XL C/C++ also provides optimization features specifically tailored to exploit the

unique performance capabilities of Cell Broadband Engine processors, including

specialized data types and highly optimized built-in functions that you can use in

your application code to perform common computational needs.

Optimizing transformations can give your application better overall execution

performance. C/C++ provides a portfolio of optimizing transformations tailored to

various supported hardware. These transformations offer the following benefits:

v Reducing the number of instructions executed for critical operations

v Restructuring generated object code to make optimal use of the Cell Broadband

Engine architecture

v Improving the usage of the memory subsystem

Note: For code targeting the SPU, we recommend compiling and linking with the

-O5 or -qopt=5 compiler options to get the maximum performance from your

application.

For more information, see these related topics:

v ″Optimizing your applications″ in the XL C/C++ Optimization and Programming

Guide

v ″Optimizing and tuning options″ in the XL C/C++ Compiler Reference

Chapter 1. Introducing XL C/C++ 7

v ″Compiler built-in functions″ in the XL C/C++ Compiler Reference

v To read an article about optimizing performance, search the Power Architecture

technical library at www.ibm.com/developerworks/views/power/library.jsp for

″cell broadband tips″.

Diagnostic listings

The compiler output listing can provide important information to help you

develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or

omit. For more information about the applicable compiler options and the listing

itself, refer to ″Compiler messages and listings″ in the XL C/C++ Compiler Reference.

Symbolic debugger support

You can instruct XL C/C++ to include debugging information in your compiled

objects. That information can be examined by the debuggers provided by the IBM

Software Developer Kit for Multicore Acceleration V3.1 (SDK 3.1) to help you

debug your programs.

8 XL C/C++: Getting Started

http://www.ibm.com/developerworks/views/power/library.jsp

Chapter 2. What’s new for IBM XL C/C++ for Multicore

Acceleration for Linux, V10.1

This section describes new added features and enhancements in IBM XL C/C++

for Multicore Acceleration for Linux, V10.1.

Operating system support

IBM XL C/C++ for Multicore Acceleration for Linux, V10.1 now supports Red Hat

Enterprise Linux 5.2 (RHEL 5.2).

Single-source compiler technology

In this release, XL C/C++ adds another compiler invocation allowing programmers

to include both PPU-specific and SPU-specific portions of their code in one

application program.

Earlier compilers for the Cell Broadband Engine architecture are considered

dual-source compilers. The compiler provides both PPU- and SPU-specific

invocations to compile the different code segments. You write, compile, and link

code segments destined to run on the PPU separately from code segments destined

for the SPUs.

In contrast, a single-source compiler can compile and link both PPU and SPU code

segments with a single compiler invocation. OpenMP API V2.5 directives can be

used to program the portions of code targeting the SPU so that code destined for

the PPU does not need to be written and compiled separately from code destined

for the SPUs. You can compile and link PPU and SPU code segments together

using a single compiler invocation.

You develop and compile your applications on an IBM Power System or Intel® x86

system running the RHEL 5.2 Linux operating system. When complete, you move

your compiled application to a system based on the Cell Broadband Engine

architecture, where that application will run.

© Copyright IBM Corp. 1996, 2008 9

PPU program SPU code

Memory Image

Data

User creates source program
containing parallel constructs

PPU
Source

PPU
Source

PPU Backend Compiler

PPU Linker

SPU
Source

SPU
Source

SPU Backend Compiler

SPU
Object

SPU
Object

SPU
Libraries

SPU Linker

SPU Exectuable

SPU Embedder

PPU
Object

PPU
Object

PPU
Libraries

PPU
Object

PPU
section

User compiles the program using
one of the cbe* invocation commands

SPU
section

For some background information on how the single-source compiler works to

compile code optimized specifically for use on the Cell Broadband Engine

architecture, see the ″Generation of Parallel Code″ section in the article ″Using

advanced compiler technology to exploit the performance of the Cell Broadband Engine

architecture″ which can be found online at http://www.research.ibm.com/journal/
sj/451/eichenberger.html.

For more information, see:

v ″Using OpenMP directives″ in the XL C/C++ Optimization and Programming Guide

v “Invoking the compiler” on page 20

v www.openmp.org

10 XL C/C++: Getting Started

http://www.research.ibm.com/journal/sj/451/eichenberger.html
http://www.research.ibm.com/journal/sj/451/eichenberger.html
http://www.openmp.org

C++0x

This release introduces support for a new version of the standard for the C++

programming language - specifically C++0x. This standard has not yet been

officially adopted but we are beginning to support some of its features.

Specifically, in this release:

v we add a new language level

v we introduce new integer promotion rules for arithmetic conversions with long

long data types

v the C++ preprocessor now supports C99 features

New language level - extended0x

The default -qlanglvl compiler option remains extended when invoking the C++

compiler.

A new suboption has been added to the -qlanglvl option in this release.

-qlanglvl=extended0x is used to allow users to try out early implementations of

any features of C++0x that are currently supported by XL C/C++.

C99 long long under C++

With this release of XL C/C++ V10.1, compiler behavior changes when performing

certain arithmetic operations with integral literal data types. Specifically, the

integer promotion rules have changed.

Previously, in C++ (and as an extension to C89), when compiling with -qlonglong,

an unsuffixed integral literal would be promoted to the first type in this list into

which it fitted:

 int

 long int

 unsigned long int

 long long int

 unsigned long long

Starting with this release and when compiling with -qlanglvl=extended0x, the

compiler now promotes unsuffixed integral literal to the first type in this list into

which it fits:

 int

 long int

 long long int

 unsigned long long

Note: Like our implementation of the C99 Standard in the C compiler, C++ will

allow promotions from long long to unsigned long long if a value cannot fit into

a long long type, but can fit in an unsigned long long. In this case, a message will

be generated.

The macro __C99_LLONG has been added for compatibility with C99. This macro is

defined to 1 with -qlanglvl=extended0x and is otherwise undefined.

Chapter 2. What’s new for IBM XL C/C++ for Multicore Acceleration for Linux, V10.1 11

For more information, see ″Integral and floating-point promotions″ in the XL

C/C++ Language Reference.

Preprocessor changes

The following changes to the C++ preprocessor make it easier to port code from C

to C++:

v Regular string literals can now be concatenated with wide-string literals.

v The #line <integer> preprocessor directive has a larger upper limit. It has been

increased from 32767 to 2147483647 for C++ .

v C++ now supports _Pragma operator.

v These macros now apply to C++ as well as C:

– __C99_MACRO_WITH_VA_ARGS (also available with -qlanglvl=extended)

– __C99_MAX_LINE_NUMBER (also available with -qlanglvl=extended)

– __C99_PRAGMA_OPERATOR

– __C99_MIXED_STRING_CONCAT

Note: Except as noted, these C++ preprocessor changes are only available when

compiling with -qlanglvl=extended0x.

For additional information about the language standards supported by XL C/C++,

see ″Language levels and extensions″ in the XL C/C++ Language Reference.

Other XL C/C++ language-related updates

Vector data types

Vector data types can now use some of the operators that can be used with base

data types such as:.

v unary operators

v binary operators

v relational operators

__ea type qualifier (C only)

The __ea type qualifier support has been added to allow programs written for the

SPU to access variables stored in the PPU address space. For additional

information on using this type qualifier see, ″__ea type qualifier (C only)″ in the

XL C/C++ Language Reference.

Performance and optimization

Some features and enhancements can assist with performance tuning and

optimization of your application.

Enhancements to -qstrict

Many suboptions have been added to the -qstrict option to allow more

fine-grained control over optimizations and transformations that violate strict

program semantics. In previous releases, the -qstrict option disabled all

transformations that violate strict program semantics. This is still the behavior if

you use -qstrict without suboptions. Likewise, in previous releases -qnostrict

allowed transformations that could change program semantics. Since higher level

12 XL C/C++: Getting Started

of optimizations may require relaxing strict program semantics, the addition of the

suboptions allow you to relax selected rules in order to get specific benefits of

faster code without turning off all semantic verification.

There are 16 new suboptions that can be used separately or by using a suboption

group. The groups are:

all Disables all semantics-changing transformations, including those controlled

by the other suboptions.

ieeefp

Controls whether individual operations conform to IEEE 754 semantics.

This is valid for code targeting the PPU or for double precison values on

the SPU.

order Controls whether or not individual operations can be reordered in a way

that may violate program language semantics.

precision

Controls optimizations and transformations that may affect the precision of

program results.

exceptions

Controls optimizations and transformations that may affect the runtime

exceptions generated by the program.

For detailed information about these suboptions, refer to ″-qstrict″ in the XL C/C++

Compiler Reference.

Performance-related compiler options and directives

The entries in the following table describe new or changed compiler options and

directives.

Information presented here is a brief overview. For detailed information about

these and other performance-related compiler options, refer to ″Optimization and

tuning options″ in the XL C/C++ Compiler Reference.

 Table 4. Performance-related compiler options and directives

Option/directive Description

-qstrict Many new suboptions have been added to give you

more control over the relaxation of program semantic

rules in order to gain some performance benefits.

-qreport The listing now contains information about how many

streams are created for each loop and which loops

cannot be SIMD vectorized due to non-stride-one

references. You can use this information to improve the

performance of your applications.

-qsmp -qsmp allows the programmer to write SPU portions of

their program using OpenMP directives. For more

information, see “Single-source compiler technology”

on page 9.

For additional information about performance tuning and program optimization,

refer to ″Optimizing your applications″ in the XL C/C++ Optimization and

Programming Guide.

Chapter 2. What’s new for IBM XL C/C++ for Multicore Acceleration for Linux, V10.1 13

New or changed compiler options and directives

Compiler options can be specified on the command line or through directives

embedded in your application source files. See the XL C/C++ Compiler Reference for

detailed descriptions and usage information for these and other compiler options.

 Table 5. New or changed compiler options and directives

Option/directive Description

-qstrict Many suboptions have been added to the -qstrict option to

allow more control over optimizations and transformations

that violate strict program semantics. See “Performance and

optimization” on page 12 for more information.

-qcheck You can now use the following suboptions for -qcheck for

both SPU and PPU code: bounds, divzero, and nullptr.

-qshowmacros When used in conjunction with the -E option, the

-qshowmacros option replaces preprocessed output with

macro definitions. There are suboptions provided to control

the emissions of predefined and user-defined macros more

precisely.

-qreport When used together with compiler options that enable

automatic parallelization or vectorization, the -qreport

option now reports the number of streams in a loop and

produces information when loops cannot be SIMD

vectorized due to non-stride-one references.

-qsmp -qsmp allows the programmer to write SPU portions of

their program using OpenMP directives. For more

information, see “Single-source compiler technology” on

page 9.

-qtimestamps This option can be used to remove timestamps from

generated binaries.

-qtls (PPU only) The thread local storage support has been enhanced to

include __attribute__((tls-model("string"))) where

string is one of local-exec, initial-exec, local-dynamic, or

global-dynamic.

-qinfo The suboptions als and noals have been added to the

qinfo option to report (or not report) possible violations of

the ANSI aliasing rule.

-qea32, -qea64 (SPU only) The compiler option -qea32 should be used if you are

linking your SPU program to a 32-bit PPU object, and

-qea64 should be used if you are linking your SPU program

to a 64-bit PPU object.

-qswcache_size (SPU only) Effective address space support uses a software cache in

combination with a cache manager library to maximize the

speed with which variables stored in the PPE address space

can be retrieved by the SPU. You can customize the size of

the software cache by using the -qswcache_size compiler

option.

-qsmallstack You can reduce SPU stack size of your program by using

the -qsmallstack=size option and compiling with a

single-source compiler invocation, such as cbexlc or

cbexlc++.

14 XL C/C++: Getting Started

Table 5. New or changed compiler options and directives (continued)

Option/directive Description

-qatomic_updates (SPU only) Using -qatomic_updates ensures that the updates from SPU

to PPU are done with no interleaving from other processors,

so concurrent changes to adjacent bytes in the cache line are

not lost. You can control how the PowerPC Processor Unit

(PPU) memory is updated by the SPU software cache

manager by using the -qatomic_updates and

-qnoatomic_updates compiler options.

Chapter 2. What’s new for IBM XL C/C++ for Multicore Acceleration for Linux, V10.1 15

16 XL C/C++: Getting Started

Chapter 3. Setting up and customizing XL C/C++

Setting up the IBM XL C/C++ for Multicore Acceleration for Linux, V10.1 compiler

on your compilation host entails the following main steps:
1. Installing the IBM Software Developer Kit for Multicore Acceleration V3.1

(SDK 3.1) development tools on your compilation host.

2. Installing the XL C/C++ compiler and runtime environment on your

compilation host.

Note: XL C/C++ is a cross compiler. The completed applications will run on

BladeCenter® servers that contain processors built on the Cell Broadband Engine

Architecture such as IBM BladeCenter QS21 and IBM BladeCenter QS22. You will

also need to install the SDK 3.1 and the compiler runtime onto your execution

host.

For complete prerequisite and installation information for XL C/C++, refer to

″Before installing″ in the XL C/C++ Installation Guide.

© Copyright IBM Corp. 1996, 2008 17

18 XL C/C++: Getting Started

Chapter 4. Developing applications with XL C/C++

C/C++ application development consists of repeating cycles of editing, compiling,

linking, and running.

Notes:

1. Before you can use the compiler, you must first ensure that XL C/C++ and the

IBM Software Developer Kit for Multicore Acceleration V3.1 (SDK 3.1) are

properly installed and configured. For more information see the XL C/C++

Installation Guide.

2. To learn about writing C/C++ programs, refer to the XL C/C++ Language

Reference.

The compiler phases

A typical compiler invocation executes some or all of these activities in sequence.

For link time optimizations, some activities will be executed more than once

during a compilation. As each program runs, the results are sent to the next step in

the sequence.

1. Preprocessing of source files

2. Compilation, which may consist of the following phases, depending on what

compiler options are specified:

a. Front-end parsing and semantic analysis

b. High-level optimization

c. Low-level optimization

d. Register allocation

e. Final assembly
3. Assemble the assembly (.s) files, and the unpreprocessed assembler (.S) files

after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when

you compile your application. To see the amount of time the compiler spends in

each phase, specify -qphsinfo.

Editing C/C++ source files

To create C/C++ source programs, you can use any text editor available to your

system.

Source programs must be saved using a recognized file name suffix. See the “XL

C/C++ input and output files” on page 23 for a list of suffixes recognized by XL

C/C++.

For a C or C++ source program to be a valid program, it must conform to the

language definitions specified in the XL C/C++ Language Reference.

© Copyright IBM Corp. 1996, 2008 19

Compiling with XL C/C++

XL C/C++ is a command-line compiler. Invocation commands and options can be

selected according to the needs of a particular C/C++ application.

Compiling applications for a Cell/B.E. processor can involve multiple steps,

depending on the complexity of your application. For a typical application

containing code written for the PPU and the SPU in separate programs, you may

need to:

1. Compile application code targeted to the PPU.

2. Compile application code targeted to the SPU, then embed the compiled SPU

code into PPU code.

3. Perform the final PPU link.

For more information on this process, see “Embedding compiled SPU code into

compiled PPU code” on page 24

If you have written the code targeting the SPU and PPU in the same program,

using OpenMP pragmas for the SPU portions, you can compile and link the

application in one step using one of the single-source compiler invocation

commands, that is, those prefixed with cbe such as, cbexlc or cbexlc++.

Invoking the compiler

The compiler invocation commands perform all necessary steps to compile C or

C++ source files and link the object files and libraries into an executable program.

Compile your application code using a compiler invocation command appropriate

to the type of code you are compiling. As with previous versions, XL C/C++

provides one set of compiler invocation commands for compiling programs

targeting only the PPU and another set for compiling code to run only on the SPU

application code. In this release, there is another set of invocation commands for

compiling applications that contain code that has some portions targeting the PPU

and that also has portions of the application that target the SPUs using OpenMP

directives.

If you choose to create separate programs for PPU code and SPU code you must

compile and link code targeted to the PPU using PPU-specific compiler

invocations. Similarly, SPU-specific code must be compiled and linked using

SPU-specific compiler invocations. You then must embed the SPU object in the

PPU object (see “Embedding compiled SPU code into compiled PPU code” on

page 24 for more information). Compiled PPU executable objects can be run on the

execution host, and will load compiled SPU executable objects at run time as

required.

To compile a source program, use the basic invocation syntax shown below:

20 XL C/C++: Getting Started

��

(1)

ppuxlc

ppuxlC

ppuxlc++

(2)

spuxlc

spuxlC

spuxlc++

(3)

cbexlc

cbexlC

cbexlc++

�

�

input_file

compiler_option

��

Notes:

1 Basic invocations to compile C and C++ code targeting only the PPU.

2 Basic invocations to compile C and C++ targeting only the SPU.

3 Basic invocations to compile C and C++ programs containing both PPU and

SPU code.

For new application work, you should compile with ppuxlc, spuxlc, cbexlc,

ppuxlc++, spuxlc++, cbexlc++, or a thread safe counterpart. You can use ppuxlc++,

cbexlc++ or spuxlc++ to compile either C or C++ program source, but compiling

C++ files with ppuxlc, cbexlc or spuxlc may result in link or run time errors

because libraries required for C++ code are not specified when the linker is called

by the C compiler.

Additional invocation commands are available to meet specialized compilation

needs, primarily to provide explicit compilation support for different levels and

extensions of the C or C++ language. See ″Invoking the compiler″ in the XL C/C++

Compiler Reference for more information about compiler invocation commands

available to you, including special invocations intended to assist developers

migrating from a GNU compilation environment to XL C/C++.

Compiling parallelized XL C/C++ applications

XL C/C++ provides thread safe compiler invocation commands that you can use

when compiling parallelized applications for use in multiprocessor environments.

These invocations are similar to their corresponding base compiler invocations,

except that they link and bind compiled objects to thread safe components and

libraries. The generic XL C/C++ thread safe compiler invocations include:
v cbexlc (for C programs where the SPU portions are written with OpenMP

directives)

v cbexlc++, cbexlC (for C++ programs where the SPU portions are written

with OpenMP directives)

v ppuxlc++_r, ppuxlC_r

v ppuxlc_r

XL C/C++ provides additional thread safe invocations to meet specific compilation

requirements. See ″Invoking the compiler″ in the XL C/C++ Compiler Reference for

more information.

Chapter 4. Developing applications with XL C/C++ 21

For more information on parallelized applications see ″Parallelizing your

programs″ in the XL C/C++ Optimization and Programming Guide.

Specifying compiler options

Compiler options perform a variety of functions, such as setting compiler

characteristics, describing the object code to be produced, controlling the diagnostic

messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command-line with command-line compiler options

v In your source code using directive statements

v In a makefile

v In the stanzas found in a compiler configuration file

v Or by using any combination of these techniques

It is possible for option conflicts and incompatibilities to occur when multiple

compiler options are specified. To resolve these conflicts in a consistent fashion, the

compiler usually applies the following general priority sequence to most options:
1. Directive statements in your source file override command-line settings

2. Command-line compiler option settings override configuration file settings

3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a

command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options do not follow the priority sequence described above.

For example, the -I compiler option is a special case. The compiler searches any

directories specified with -I in the vac.cfg file before it searches the directories

specified with -I on the command-line. The option is cumulative rather than

preemptive.

See the XL C/C++ Compiler Reference for more information about compiler options

and their usage.

You can also pass compiler options to the linker, assembler, and preprocessor. See

″Compiler options reference″ in the XL C/C++ Compiler Reference for more

information about compiler options and how to specify them.

Reusing GNU C/C++ compiler options with gxlc and gxlc++

XL C/C++ includes various features to help you transition from GNU C/C++

compilers to XL C/C++ including gxlc and gxlc++.

Each of the gxlc and gxlc++ utilities accepts GNU C or C++ compiler options and

translates them into comparable XL C/C++ options. Both utilities use the XL

C/C++ options to create an xlc or xlc++ invocation command, which is then used

to invoke the compiler. These utilities are provided to help you reuse makefiles

created for applications previously developed with GNU C/C++. However, to fully

exploit the capabilities of XL C/C++, you should use the XL C/C++ invocation

commands and their associated options.

The actions of gxlc and gxlc++ are controlled by the configuration file gxlc.cfg.

The GNU C/C++ options that have an XL C/C++ counterpart are shown in this

22 XL C/C++: Getting Started

file. Not every GNU option has a corresponding XL C/C++ option. gxlc and

gxlc++ return warnings for input options that were not translated.

The gxlc and gxlc++ option mappings are modifiable. For information on using the

gxlc or gxlc++ configuration file, see ″Reusing GNU C/C++ compiler options with

gxlc and gxlc++″ in the XL C/C++ Compiler Reference .

XL C/C++ input and output files

These file types are recognized by XL C/C++.

For detailed information about these and additional file types used by the

compiler, see ″Types of input files″ in the XL C/C++ Compiler Reference and ″Types

of output files″ in the XL C/C++ Compiler Reference.

 Table 6. Input file types

Filename extension Description

.c C source files

.C, .cc, .cp, .cpp, .cxx, .c++ C++ source files

.i Preprocessed source files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

 Table 7. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.d Make dependency file

.i Preprocessed source files

.lst Listing files

.o Object files

.s Assembler files

Linking your compiled applications with XL C/C++

By default, you do not need to do anything special to link an XL C/C++ program.

The compiler invocation commands automatically call the linker to produce an

executable output file.

For example, running the following command:

ppuxlc++ file1.C file2.o file3.C

compiles file1.C and file3.C to produce the object files file1.o and file3.o,

then all object files (including file2.o) are submitted to the linker to produce one

executable.

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.

Chapter 4. Developing applications with XL C/C++ 23

ppuxlc++ -c file1.C # Produce one object file (file1.o)

ppuxlc++ -c file2.C file3.C # Or multiple object files (file1.o, file3.o)

ppuxlc++ file1.o file2.o file3.o # Link object files with default libraries

It is usually best to execute the linker through the compiler invocation command,

because it passes additional ppu-ld or spu-ld options and library names to the

linker automatically.

For more information about compiling and linking your programs, see:

v ″Linking″ in the XL C/C++ Compiler Reference

v Documentation provided with the IBM Software Developer Kit for Multicore

Acceleration V3.1 (SDK 3.1)

Embedding compiled SPU code into compiled PPU code

If you have written separate program segments for PPU- and SPU-targeted code,

instead of using OpenMP directives for the SPU portions of your program, you

need to embed the SPU object file into the PPU object file.

The following string of compiler commands shows how you might compile an

application with both PPU and SPU program segments, and then embed the

compiled SPU application code into the compiled PPU application code.

spuxlc++ -c spu_file.C

spuxlc++ -o spu_file spu_file.o

ppu-embedspu -m32 spu_file spu_file spu_file-embed.o

ppuxlc++ -c ppu_file.C

ppuxlc++ ppu_file.o spu_file-embed.o

XL C/C++ compiler diagnostic aids

XL C/C++ issues diagnostic messages when it encounters problems compiling

your application. You can use these messages and other information provided in

compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that

can help you resolve problems with your application, see the following topics in

the XL C/C++ Compiler Reference:

v ″Compiler messages and listings″

v ″Error checking and debugging options″

v ″Listings, messages, and compiler information options″

Debugging compiled applications

You can use a symbolic debugger to debug applications compiled with XL C/C++.

Specifying the -g or -qlinedebug compiler options at compile time instructs the XL

C/C++ compiler to include debugging information in compiled output. For more

information debugging options, see ″Error checking and debugging″ in the XL

C/C++ Compiler Reference.

You can then use any symbolic debugger to step through and inspect the behavior

of your compiled application.

Optimized applications pose special challenges when debugging. When debugging

highly optimized applications, you should consider using the -qoptdebug compiler

option. For more information about optimizing your code, see ″Optimizing your

applications″ in the XL C/C++ Optimization and Programming Guide.

24 XL C/C++: Getting Started

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2008 25

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

26 XL C/C++: Getting Started

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2008. All rights reserved.

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A complete and current list of IBM trademarks is

available on the Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries

in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the

United States, other countries, or both and is used under license therefrom.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 27

http://www.ibm.com/legal/copytrade.shtml

28 XL C/C++: Getting Started

Index

Special characters
.c and .C files 23

.i files 23

.lst files 23

.o files 23

.s files 23

.S files 23

A
assembler

source (.s) files 23

source (.S) files 23

B
basic example, described ix

C
code optimization 7

compilation
sequence of activities 19

compiler
architecture 1

controlling behavior of 22

invoking 20

running 20

compiler options
conflicts and incompatibilities 22

specification methods 22

customization
for compatibility with GNU 4

D
debugger support 24

output listings 24

symbolic 8

debugging 24

debugging compiled applications 24

debugging information, generating 24

E
editing source files 19

executable files 23

executing the linker 23, 24

F
files

editing source 19

input 23

output 23

G
GNU

compatibility with 4

I
input files 23

invocation commands 20

invoking the compiler 20

L
language standards 3

language support 3

linking process 23

listings 23

M
migration

source code 22

multiprocessor systems 9

O
object files 23

creating 23, 24

linking 23, 24

OMP directives 9

optimization
programs 7

output files 23

P
parallelization 9

parallelized programs, compiling 21

performance
optimizing transformations 7

problem determination 24

R
running the compiler 20

S
shared memory parallelization 9

single-source programs, compiling 21

single-source technology 9

source files 23

source-level debugging support 8

symbolic debugger support 8

T
tools 6

cleanpdf utility 6

configuration file utility 6

new install configuration utility 6

new_install utility 6

ppugxlc and ppugxlc++ utilities 6

resetpdf utility 6

spugxlc and spugxlc++ utilities 6

xlc_configure utility 6

U
utilities 6

cleanpdf 6

configuration file 6

new_install 6

ppugxlc and ppugxlc++ 6

resetpdf 6

spugxlc and spugxlc++ 6

xlc_configure 6

V
vac.cfg file 22

X
xlc_configure 6

© Copyright IBM Corp. 1996, 2008 29

30 XL C/C++: Getting Started

����

Program Number: 5724-T42 & 5724-T43

Printed in USA

GC23-8572-00

	Contents
	About this document
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL C/C++
	Commonality with other IBM compilers
	IBM XL C/C++ for Multicore Acceleration for Linux, V10.1
	About the Cell Broadband Engine architecture

	A highly configurable compiler
	Language standards compliance
	Compatibility with GNU
	Source-code migration and conformance checking

	Libraries
	Tools and utilities
	Automated program analysis and transformations
	Program optimization
	Diagnostic listings
	Symbolic debugger support

	Chapter 2. What's new for IBM XL C/C++ for Multicore Acceleration for Linux, V10.1
	Operating system support
	Single-source compiler technology
	C++0x
	Other XL C/C++ language-related updates
	Performance and optimization
	New or changed compiler options and directives

	Chapter 3. Setting up and customizing XL C/C++
	Chapter 4. Developing applications with XL C/C++
	The compiler phases
	Editing C/C++ source files
	Compiling with XL C/C++
	Invoking the compiler
	Compiling parallelized XL C/C++ applications
	Specifying compiler options
	Reusing GNU C/C++ compiler options with gxlc and gxlc++

	XL C/C++ input and output files

	Linking your compiled applications with XL C/C++
	Embedding compiled SPU code into compiled PPU code

	XL C/C++ compiler diagnostic aids
	Debugging compiled applications

	Notices
	Trademarks and service marks

	Index

