
XL C/C++ for Multicore Acceleration for Linux, V9.0

and XL Fortran for Multicore Acceleration for Linux,

V11.1

April 2008 PTF for XL C/C++ for

Multicore Acceleration for Linux, V9.0 and

XL Fortran for Multicore Acceleration for

Linux, V11.1

���

XL C/C++ for Multicore Acceleration for Linux, V9.0

and XL Fortran for Multicore Acceleration for Linux,

V11.1

April 2008 PTF for XL C/C++ for

Multicore Acceleration for Linux, V9.0 and

XL Fortran for Multicore Acceleration for

Linux, V11.1

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 33.

First edition

This edition applies to the following:

v April 2008 PTF for IBM XL C/C++ for Multicore Acceleration for Linux on x86, V9.0

v April 2008 PTF for IBM XL C/C++ for Multicore Acceleration for Linux on System p™, V9.0

v April 2008 PTF for IBM XL Fortran for Multicore Acceleration for Linux on System p, V9.0

These PTFs update XL C/C++ for Multicore Acceleration for Linux, V9.0 and XL Fortran for Multicore Acceleration

for Linux, V11.1 (Program numbers 5724-T42, 5724-T43 & 5724-T44).

© Copyright International Business Machines Corporation 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this information v

Who should read this document v

How to use this document v

Conventions and terminology v

Related information ix

IBM XL C/C++ and XL Fortran information . . ix

Standards and specifications xi

Other IBM information xii

Other information xii

Technical support xii

How to send your comments xii

Chapter 1. Effective address space

support (SPU only) 1

Writing source code that uses effective address space

support 1

Example instructions 2

Casting pointers 2

__ea type qualifier 2

Compiler options 3

-qea32, -qea64 3

-qswcache_size 4

-qatomic_updates, -qnoatomic_updates 5

SDK 3.0 and the libc.a library 6

Sample program 6

Chapter 2. Fortran intrinsics (SPU only) 9

Mapping intrinsics with scalar operands 10

Constant formation intrinsics 11

spu_splats: Splat scalar to vector 11

Conversion intrinsics 12

spu_convtf: Convert integer vector to real vector 12

spu_convts: Convert real vector to signed integer

vector 12

spu_extend: Extend vector 12

Arithmetic intrinsics 13

spu_add: Vector add 13

spu_madd: Vector multiply and add 14

spu_msub: Vector multiply and subtract 14

spu_mul: Vector multiply 14

spu_nmsub: Negative vector multiply and

subtract 15

spu_sub: Vector subtract 15

Comparison intrinsics 16

spu_cmpeq: Vector compare equal 16

spu_cmpgt: Vector compare greater than 17

Bits and mask intrinsics 19

spu_gather: Gather bits from elements 19

spu_maskb: Form select byte mask 20

spu_maskw: Form select word mask 20

spu_sel: Select bits 20

spu_shuffle: Shuffle two vectors of bytes . . . 21

Logical intrinsics 22

spu_and: Vector bit-wise AND 22

spu_andc: Vector bit-wise AND with complement 24

spu_or: Vector bit-wise OR 24

spu_xor: Vector bit-wise exclusive OR 26

Shift and rotate intrinsics 27

spu_rlqw: Quadword rotate left by bits 27

spu_rlqwbyte: Quadword rotate left by bytes . . 28

Scalar intrinsics 29

spu_extract: Extract vector element from vector 30

spu_insert: Insert scalar into specified vector

element 30

spu_promote: Promote scalar to vector 31

Notices 33

Trademarks and service marks 35

© Copyright IBM Corp. 2008 iii

iv XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

About this information

This document provides information on the new features added to XL C/C++ for

Multicore Acceleration for Linux, V9.0 and XL Fortran for Multicore Acceleration

for Linux, V11.1 with the April 2008 PTF for those products.

Who should read this document

This document is intended for developers who want information on the April 2008

PTF for XL C/C++ for Multicore Acceleration for Linux, V9.0 and XL Fortran for

Multicore Acceleration for Linux, V11.1. It assumes that you have some familiarity

with command-line compilers and a basic knowledge of operating system

commands, the C and Fortran programming languages, and the Cell Broadband

Engine™ architecture.

How to use this document

The information in this document is divided into two sections: Chapter 1,

“Effective address space support (SPU only),” on page 1 and Chapter 2, “Fortran

intrinsics (SPU only),” on page 9. The section on effective address space support

applies only to XL C/C++ for Multicore Acceleration for Linux, V9.0 and the

section on Fortran intrinsics applies only to XL Fortran for Multicore Acceleration

for Linux, V11.1. Both sections only apply to compilations which target the

Synergistic Processor Unit (SPU).

This document describes only new features introduced in the April 2008 PTF for

XL C/C++ for Multicore Acceleration for Linux, V9.0 and XL Fortran for Multicore

Acceleration for Linux, V11.1. For information on how to install the updates

described in this document, see the IBM XL C/C++ for Multicore Acceleration for

Linux, V9.0 Installation Guide and IBM XL Fortran for Multicore Acceleration for Linux,

V11.1 Installation Guide

For more comprehensive information on the compilers, consult the references given

in “Related information” on page ix.

Conventions and terminology

Typographical conventions

The following table explains the typographical conventions used in the XL C/C++

for Multicore Acceleration for Linux, V9.0 and XL Fortran for Multicore

Acceleration for Linux, V11.1 information.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable

names, compiler options, and

directives.

The compiler provides basic

invocation commands, ppuxlc and

ppuxlC (ppuxlc++), along with

several other compiler invocation

commands to support various C/C++

language levels and compilation

environments.

© Copyright IBM Corp. 2008 v

Table 1. Typographical conventions (continued)

Typeface Indicates Example

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

Make sure that you update the size

parameter if you return more than

the size requested.

underlining The default setting of a parameter

of a compiler option or directive.

nomaf | maf

monospace Programming keywords and

library functions, compiler builtins,

examples of program code,

command strings, or user-defined

names.

To compile and optimize

myprogram.f, enter: ppuxlf

myprogram.f -O3.

UPPERCASE

bold

Fortran programming keywords,

statements, directives, and intrinsic

procedures.

The ASSERT directive applies only to

the DO loop immediately following

the directive, and not to any nested

DO loops.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ and XL Fortran syntax.

This section will help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

IBM® XL Fortran extensions are marked by a number in the syntax diagram with

an explanatory note immediately following the diagram.

Program units, procedures, constructs, interface blocks and derived-type

definitions consist of several individual statements. For such items, a box

encloses the syntax representation, and individual syntax diagrams show the

required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([

and]). For example, [UNIT=]u

vi XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can

provide a list of these terms separated by commas.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma

comment directive.

��
 (1) (2) (3) (4) (5) (9) (10)

#

pragma

comment

(

compiler

)

date

timestamp

(6)

copyright

user

(7)

(8)

,

″

token_sequence

″

��

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

About this information vii

6 The comment type must be entered only as one of the types indicated:

compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an

optional character string.

8 A character string must follow the comma. The character string must be

enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct

according to the diagram shown above:

 #pragma comment(date)

 #pragma comment(user)

 #pragma comment(copyright,"This text will appear in the module")

The following is an example of a syntax diagram with an interpretation:

How to read syntax statements

Syntax statements are read from left to right:

v Individual required arguments are shown with no special notation.

v When you must make a choice between a set of alternatives, they are enclosed

by { and } symbols.

v Optional arguments are enclosed by [and] symbols.

v When you can select from a group of choices, they are separated by | characters.

v Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement

EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

��

(1)

EXAMPLE

char_constant

a

b

c

d

�

 ,

e

name_list

��

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,

you must put a comma between each. (The _list syntax is equivalent to the previous

syntax for e.)

viii XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

The following list explains the syntax statement:

v Enter the keyword EXAMPLE.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram

representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result. Also,

examples may use different compiler invocation commands interchangeably or

simply indicate invocation. For detailed information on the commands available to

invoke the compiler see the IBM XL C/C++ for Multicore Acceleration for Linux, V9.0

Compiler Reference or IBM XL Fortran for Multicore Acceleration for Linux, V11.1

Compiler Guide.

Related information

The following sections provide related information for XL C/C++ for Multicore

Acceleration for Linux, V9.0 and XL Fortran for Multicore Acceleration for Linux,

V11.1.

IBM XL C/C++ and XL Fortran information

XL C/C++ for Multicore Acceleration for Linux, V9.0 and XL Fortran for Multicore

Acceleration for Linux, V11.1 provide product information in the following

formats:

v README files

README files contain late-breaking information, including changes and

corrections to the product information. README files are located by default in

the XL C/C++ and XL Fortran directories and in the root directories of the

installation CDs.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the products. Instructions for installing and accessing the

man pages are provided in the IBM XL C/C++ for Multicore Acceleration for Linux,

V9.0 Installation Guide and IBM XL Fortran for Multicore Acceleration for Linux,

V11.1 Installation Guide.

v Information center

The information center of searchable HTML files is viewable on the Web at:

http://publib.boulder.ibm.com/infocenter/cellcomp/v9v111/index.jsp.

v PDF documents

About this information ix

http://publib.boulder.ibm.com/infocenter/cellcomp/v9v111/index.jsp

The XL C/C++ for Multicore Acceleration for Linux PDF documents are located

by default in the /opt/ibmcmp/xlcpp/cbe/9.0/doc/en_US/pdf/ directory and

online at:

http://www.ibm.com/software/awdtools/xlcpp/library

The XL Fortran for Multicore Acceleration for Linux PDF documents are located

by default in the /opt/ibmcmp/xlf/cbe/11.1/doc/en_US/pdf/ directory and

online at:

http://www.ibm.com/software/awdtools/fortran/xlfortran/library

This document together with the following files comprise the full set of XL C/C++

for Multicore Acceleration for Linux, V9.0 and XL Fortran for Multicore

Acceleration for Linux, V11.1 product information:

 Table 2. XL C/C++ for Multicore Acceleration for Linux PDF files

Document title

PDF file

name Description

IBM XL C/C++ for

Multicore Acceleration for

Linux, V9.0 Installation

Guide, GC23-8520-00

install.pdf Contains information for installing XL C/C++

for Multicore Acceleration for Linux and

configuring your environment for basic

compilation and program execution.

Getting Started with IBM

XL C/C++ for Multicore

Acceleration for Linux,

V9.0, GC23-8518-00

getstart.pdf Contains an introduction to the XL C/C++ for

Multicore Acceleration for Linux product, with

information on setting up and configuring your

environment, compiling and linking programs,

and troubleshooting compilation errors.

IBM XL C/C++ for

Multicore Acceleration for

Linux, V9.0 Compiler

Reference, SC23-8516-00

compiler.pdf Contains information about the various

compiler options, pragmas, macros,

environment variables, and built-in functions.

IBM XL C/C++ for

Multicore Acceleration for

Linux, V9.0 Language

Reference, SC23-8519-00

langref.pdf Contains information about the C and C++

programming languages, as supported by IBM,

including language extensions for portability

and conformance to nonproprietary standards.

IBM XL C/C++ for

Multicore Acceleration for

Linux, V9.0 Programming

Guide, SC23-5827-00

proguide.pdf Contains information on advanced

programming topics, such as application

porting, library development, application

optimization, and the XL C/C++ for Multicore

Acceleration for Linux high-performance

libraries.

 Table 3. XL Fortran for Multicore Acceleration for Linux PDF files

Document title

PDF file

name Description

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Installation

Guide, GC23-5834-00

install.pdf Contains information for installing XL Fortran

for Multicore Acceleration for Linux and

configuring your environment for basic

compilation and program execution.

Getting Started with IBM

XL Fortran for Multicore

Acceleration for Linux,

V11.1, GC23-5835-00

getstart.pdf Contains an introduction to the XL Fortran for

Multicore Acceleration for Linux product, with

information on setting up and configuring your

environment, compiling and linking programs,

and troubleshooting compilation errors.

x XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/fortran/xlfortran/library

Table 3. XL Fortran for Multicore Acceleration for Linux PDF files (continued)

Document title

PDF file

name Description

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Compiler

Guide, SC23-5833-00

cr.pdf Contains information about the various

compiler options and environment variables.

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Language

Reference, SC23-5832-00

lr.pdf Contains information about the Fortran

programming language as supported by IBM,

including language extensions for portability

and conformance to nonproprietary standards,

compiler directives and intrinsic procedures.

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Optimization

and Programming Guide,

SC23-5836-00

opg.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls, floating-point

operations, input/output, application

optimization and parallelization, and the XL

Fortran high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe Reader,

you can download it (subject to license terms) from the Adobe Web site at

http://www.adobe.com.

More information related to XL C/C++ for Multicore Acceleration for Linux, V9.0

and XL Fortran for Multicore Acceleration for Linux, V11.1, including redbooks,

white papers, tutorials, and other articles, is available on the Web at:

v http://www.ibm.com/software/awdtools/fortran/xlfortran/library (Fortran),

and

v http://www.ibm.com/software/awdtools/xlcpp/library (C/C++)

Standards and specifications

XL C/C++ for Multicore Acceleration for Linux, V9.0 and XL Fortran for Multicore

Acceleration for Linux, V11.1 are designed to support the following standards and

specifications. You can refer to these standards for precise definitions of some of

the features found in this information.

v Information Technology – Programming languages – C, ISO/IEC 9899:1990, also

known as C89.

v Information Technology – Programming languages – C, ISO/IEC 9899:1999, also

known as C99.

v Information Technology – Programming languages – Extensions for the programming

language C to support new character data types, ISO/IEC DTR 19769. This draft

technical report has been accepted by the C standards committee, and is

available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1040.pdf.

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification

for vector data types, to support vector processing technology, is available at

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.
v American National Standard Programming Language FORTRAN, ANSI X3.9-1978.

v American National Standard Programming Language Fortran 90, ANSI X3.198-1992.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

v Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.

v Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991 (E).

About this information xi

http://www.adobe.com
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:1997. (This information uses its informal name, Fortran 95.)

v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:2004. (This information uses its informal name, Fortran 2003.)

v Information technology - Programming languages - Fortran - Enhanced data type

facilities, ISO/IEC JTC1/SC22/WG5 N1379.

v Information technology - Programming languages - Fortran - Floating-point exception

handling, ISO/IEC JTC1/SC22/WG5 N1378.

v Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753

(United States of America, Department of Defense standard). Note that XL

Fortran supports only those extensions documented in this standard that have

also been subsequently incorporated into the Fortran 90 standard.

Other IBM information

v IBM C/C++ Language Extensions for Cell Broadband Engine Architecture, available at

http://www.ibm.com/developerworks/power/cell/documents.html

v Specifications, white papers, and other technical informations for the Cell

Broadband Engine architecture are available at http://www.ibm.com/chips/
techlib/techlib.nsf/products/Cell_Broadband_Engine.

v The Cell Broadband Engine resource center, at http://www.ibm.com/
developerworks/power/cell/, is the central repository for technical information,

including articles, tutorials, programming guides, and educational resources.

Other information

v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support

Additional technical support is available from the XL C/C++ for Multicore

Acceleration for Linux Support page at http://www.ibm.com/software/awdtools/
xlcpp/support and the XL Fortran for Multicore Acceleration for Linux Support

page at http://www.ibm.com/software/awdtools/fortran/xlfortran/support.

These pages provide portals with search capabilities to a large selection of

Technotes and other support information.

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about XL C/C++ and XL Fortran for Multicore

Acceleration for Linux, visit the product information sites at http://
www.ibm.com/software/awdtools/xlcpp/support and http://www.ibm.com/
software/awdtools/fortran/xlfortran.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this information or any other XL

C/C++ or XL Fortran for Multicore Acceleration for Linux information, send your

comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the information, the part number of the

information, the version of the compiler, and, if applicable, the specific location of

the text you are commenting on (for example, a page number or table number).

xii XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

http://www.ibm.com/developerworks/power/cell/documents.html
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/developerworks/power/cell/
http://www.ibm.com/developerworks/power/cell/
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/software/awdtools/xlcpp/support
http://www.ibm.com/software/awdtools/xlcpp/support
http://www.ibm.com/software/awdtools/fortran/xlfortran/support
http://www.ibm.com/software/awdtools/xlcpp/support
http://www.ibm.com/software/awdtools/xlcpp/support
http://www.ibm.com/software/awdtools/fortran/xlfortran
http://www.ibm.com/software/awdtools/fortran/xlfortran

Chapter 1. Effective address space support (SPU only)

The April 2008 PTF for XL C/C++ for Multicore Acceleration for Linux, V9.0

extends the C programming language syntax to allow programs written for the

Synergistic Processor Unit (SPU) to access variables stored in the PowerPC®

Processor Element’s (PPE’s) address space. This capability is known as effective

address space support. By allowing SPU programs to access the PPE address space,

effective address space support substantially increases the amount of memory

space available to SPU programs. This feature is also known as PPE address space

support on SPE as defined in the IBM Software Development Kit (SDK) for

Multicore Acceleration V3.0 Programmer’s Guide.

Before variables stored in the PPE address space can be accessed by the SPU

program, they must be declared in SPU code using the type qualifier __ea. The

__ea type qualifier indicates that the variable being declared in SPU code already

exists in PPE address space. For more on the __ea type qualifier, see “Writing

source code that uses effective address space support.”

Effective address space support uses a software cache in combination with a cache

manager library to maximize the speed with which variables stored in the PPE

address space can be retrieved by the SPU. You can customize the size of the

software cache by using the -qswcache_size compiler option and control how the

PowerPC Processor Unit (PPU) memory is updated by the SPU software cache

manager by using the -qatomic_updates and -qnoatomic_updates compiler options.

For more on how to use effective address space support compiler options, see

“Compiler options” on page 3.

Effective address space support is only available for the XL C/C++ for Multicore

Acceleration for Linux, V9.0 C compiler. Furthermore, for effective address support

to function, the IBM Software Development Kit (SDK) for Multicore Acceleration

V3.0 must be installed and available on your system.

Writing source code that uses effective address space support

To create a variable that is stored in PPE address space but can be accessed by an

SPU program, you must first allocate some PPE address space for its use, either by

defining the variable in the PPU-targeted source code or by using an effective

address space support memory allocation subroutine.

In addition to allocating PPE address space for the variable, you must also declare

the variable in your SPU program. When you do, use the __ea type qualifier to

mark it as a variable that already exists in PPE address space.

The __ea type qualifier is a PPE address namespace identifier. The syntax for using

it is the same as for using type qualifiers const and volatile.

To create a variable that is stored in PPE address space, but can be accessed by

SPU programs, do the following:

1. Define the variable in PPU-targeted source code. This causes some of the PPE’s

address space to be allocated for the variable’s storage.

2. Declare an external variable of the same name in an SPU program that will be

linked to the PPU code. When you declare the external variable, use the __ea

© Copyright IBM Corp. 2008 1

type qualifier; this will give the SPU program access to the variable defined in

the PPU code. If you specify the __ea type qualifier for a non-pointer variable,

it is your responsibility to ensure that the variable it qualifies has been declared

and allocated by the PPU program.

Alternatively, if you use an effective address support memory allocation

subroutine, you can allocate PPU memory and declare an __ea variable in a single

statement. For example:

__ea int * p = malloc_ea(sizeof(int));

Example instructions

To declare a variable a that refers to an int in PPE address space that has been

defined in PPU code, use the following source code:

extern __ea int a;

To create a pointer ip1 in the Synergistic Processor Element (SPE) address space

that points to a PPE address, use the following code:

__ea int* ip1

To create a pointer ip2 in the PPE address space that points to an SPE address, use

the following code:

extern int *__ea ip2

Casting pointers

The address space of each SPE is mapped onto the PPE address space, effectively

making SPE address space a subset of PPE address space. As a result, all pointers

to addresses in SPE address space can be cast to __ea pointers (pointers to

addresses in PPE address space). Casting a non-null SPE pointer to an __ea pointer

has the effect of changing the address the pointer points to from one in the SPE

address space into an offset into the SPE local store mapped in the PPE address

space.

However, because SPE address space only makes up a small subset of PPE address

space, most __ea pointers cannot be cast to generic pointers. A non-null __ea

pointer can only be successfully cast to an SPE pointer if the __ea pointer being

cast points to an address inside the part of PPE address space to which the SPE’s

address space is mapped.

A null SPE address-space pointer always may be cast to a null __ea pointer, and a

null __ea pointer always may be cast to a null SPE address-space pointer.

__ea type qualifier

The __ea type qualifier is an implementation-defined intrinsic named address

space identifier, and it identifies a new type qualifier. This C Language syntax

extension is based on the ″Named address space″ syntax provided by the ISO/IEC

JTC1 SC22 WG14 Technical Report ″TR 18037: Embedded C″ (http://www.open-
std.org/JTC1/SC22/WG14/www/docs/n1169.pdf).

The following is a summary of some of the characteristics of the __ea type qualifier

based on the proposed changes to the C99 standard by the Technical Report ″TR

18037″. For more detail please refer to that document.

v __ea denotes the 32–bit or 64–bit PPE named address space.

2 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1169.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1169.pdf

v Variables declared with the __ea type qualifier have external linkage.

v Each unqualified type has several qualified versions of its type, corresponding to

the combinations of one, two, or all three of the const, volatile, and restrict

qualifiers, and all combinations of any subset of these three qualifiers with the

__ea type qualifier.

v Pointers to void in any address space (PPE or SPE) have the same representation

and alignment requirements as a pointer to a character type in the same address

space.

v Pointers to differently access-qualified versions of compatible types have the

same representation and alignment requirements.

v All pointers to structure or union types in the same address space shall have the

same representation and alignment requirements as each other.

v An __ea qualified pointer to void may be converted to or from a pointer to any

incomplete or object type.

v Operands in a Relational, Equality, or Conditional expression can be in different

address spaces.

The __ea type qualifier has the following constraints:

v The __ea type qualifier cannot be used for variable definitions or objects with

automatic storage.

v The __ea type qualifier cannot be specified for a function type.

v The __ea type qualifier cannot be used to qualify the type of a compound literal

in a function body.

v If both operands in a Simple Assignment expression are pointers to qualified or

unqualified versions of compatible types, the referenced address space of the left

encloses the referenced address space of the right, and the referenced type of the

left has all the access qualifiers of the referenced type of the right.

v If one operand in a Simple Assignment expression is a pointer to an object or

incomplete type and the other is a pointer to a qualified or unqualified version

of void, the referenced address space of the left encloses the referenced address

space of the right, and the referenced type of the left has all the access qualifiers

of the referenced type of the right.

v The __ea type qualifier cannot be used in the declaration of a structure or union

member.

Compiler options

This PTF includes support for five new compiler options not documented in the

XL C/C++ Compiler Reference.

-qea32, -qea64

Category

Pragma equivalent

None.

Purpose

Sets the compiler to compile for either a 32-bit or 64-bit PPE address space.

Chapter 1. Effective address space support (SPU only) 3

Syntax

��
 ea32

-q

ea64

��

Defaults

-qea32 is the default setting.

Parameters

-qea32 | -qea64

If you are compiling for a 32-bit PPE address space, use -qea32. If you are

compiling for a 64-bit PPE address space, use -qea64.

Usage

The compiler option -qea32 should be used if you are linking your SPU program

to a 32-bit PPU object, and -qea64 should be used if you are linking your SPU

program to a 64-bit PPU object. Only one of these options should be used at a

time. If an SPU object is compiled using -qea32 and then linked to a 64-bit PPU

object, the behavior of the overall program is undefined; this is an invalid use of

effective address space support.

These options are valid only for SPU invocation commands; for example, spuxlc.

Predefined macros

v __EA32__ is predefined when -qea32 is specified.

v __EA64__ is predefined when -qea64 is specified.

Examples

To compile a program that uses effective address space support, myprogram.c, that

can access 64-bit PPU address space, enter:

spuxlc myprogram.c -qea64

-qswcache_size

Category

Pragma equivalent

None.

Purpose

Sets the size of the software cache.

You may need to experiment with different cache sizes to determine the optimal

cache size for your SPU application. The optimal size will likely depend on the

number of PPU references in your application and how much of the SPU’s

memory you are willing to devote to the software cache.

4 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

Syntax

�� -q swcache_size =size ��

Defaults

The default size of the software cache is 64 KB.

Parameters

size

 The parameter size can be set to 8, 16, 32, 64, or 128, where the number given

corresponds the size of software cache in KB.

Predefined macros

None.

Examples

To compile the program myprogram.c with the software cache size set to 16 KB,

enter:

spuxlc myprogram.c -qswcache_size=16

-qatomic_updates, -qnoatomic_updates

Category

Pragma equivalent

None.

Purpose

Enables atomic updates to the software cache manager.

Atomic updates to the software cache ensure that the updates from SPU to PPU

are done with no interleaving from other processors, so concurrent changes to

adjacent bytes in the cache line are not lost. Atomic updates are safer, but also

slower than non-atomic updates.

If you know that all the SPUs are writing to distinct memory areas, then there is

no need for atomic updates. Similarly, if you are compiling a stand-alone SPU

executable (spulet) then atomic updates are not necessary because the PPU and

SPU will never run simultaneously.

Syntax

��
 atomic_updates

-q

noatomic_updates

��

Defaults

-qatomic_updates is the default setting.

Chapter 1. Effective address space support (SPU only) 5

Parameters

-qatomic_updates | -qnoatomic_updates

If -qatomic_updates is specified, all updates from the SPU to the PPU will be

atomic. If -qnoatomic_updates is specified then updates to the PPU need not

necessarily be atomic.

Predefined macros

None.

Examples

To compile the program myprogram.c and disable atomic updates, enter:

spuxlc myprogram.c -qnoatomic_updates

SDK 3.0 and the libc.a library

Effective address space support routines are included in the IBM Software

Development Kit (SDK) for Multicore Acceleration V3.0 library libc.a. The routines

in libc.a are declared in the header file <ea.h>.

The libc.a library contains the following system and support routines to help

manage PPU-side memory:

EA-related PPE-assisted calls

These routines, implemented via PPE assists, are available as part of libc.a

in the SDK.

EA memory and string access routines

These routines, implemented as SPU code, provide facilities analogous to

the C99 string functions for values stored in PPU address space.

Sample program

The following is a simple example program which incorporates effective address

space support. To create and compile the program, do the following:

1. Create two C files, spu.c and ppu.c.

The file spu.c:

#include <stdio.h>

#include <spu_cache.h>

#include <spu_intrinsics.h>

/* pointer in PPU address space pointing to PPU address space */

extern __ea int* __ea p;

int i = 9;

int main(unsigned long long speid, unsigned long long argp, unsigned long long envp)

{

 /* p points to PPU-object i, not local SPU-object i */

 printf("From SPU: 0x%x\n", (int) p);

 printf("From SPU: %d\n", *p);

 /* PPU pointer p assigned to point to local SPU-object i */

 p = (__ea int*) &i;

 /* p now points to local SPU-object i, not PPU-object i */

 printf("From SPU: 0x%x\n", (int) p);

6 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

printf("From SPU: %d\n", *p);

 /* flush the cache to make sure PPU sees the modified value */

 __cache_flush();

 /* pause the SPU, so that PPU can print the pointer */

 spu_stop(1);

 return 55;

}

The file ppu.c:

#include <stdio.h>

#include <libspe2.h>

int i = 5;

int *p = &i;

/* pointer to the SPE program, generated by ppu-embedspu */

extern spe_program_handle_t spu_prog;

int main()

{

 /* context returned by spe_context_create */

 spe_context_ptr_t speid;

 /* SPU program entry point - default */

 unsigned int entry = SPE_DEFAULT_ENTRY;

 /* structure used by spe_context_run to return information

 about SPU execution */

 spe_stop_info_t stop_info;

 /* create the SPE context */

 speid = spe_context_create(0, NULL);

 /* load the SPE program into the SPE context */

 spe_program_load(speid, &spu_prog);

 /* start the SPE program */

 spe_context_run(speid, &entry, 0, NULL, NULL, &stop_info);

 /* SPU program is now paused to let PPU output values */

 printf("From PPU: 0x%x\n", (int) p);

 printf("From PPU: %d\n", *p);

 /* resume the SPE program so that it finishes completely */

 spe_context_run(speid, &entry, 0, NULL, NULL, &stop_info);

 /* destroy the SPE context */

 spe_context_destroy(speid);

 return stop_info.result.spe_exit_code;

}

2. Compile and link the programs using:

ppuxlc pp.c -o ppu.o

spuxlc spu.c -o spuexe

ppu32-embedspu spu_prog spuexe spu.o

ppuxlc ppu.o spu.o -lspe2 -o cell_prog

3. Run the program cell_prog. The expected output is:

Chapter 1. Effective address space support (SPU only) 7

From SPU: 0x10030888

From SPU: 5

From SPU: 0xf7fb1c80

From SPU: 9

From PPU: 0xf7fb1c80

From PPU: 9

The PPU program declares and initializes the identifier i to a value of 5, then uses

the pointer p to hold the address of i. Next, the SPU application declares __ea

pointer p, which holds the address of the identifier i on the PPU. The SPU code

also declares and initializes an i identifier (with a value of 9).

From the output we can see that p initially contains the address of the PPU object

i, not the SPU object i. However, after p is assigned to point to (__ea int*) &i in

spu.c, p points to the address of the SPU object i. More precisely, it points to the

PPU address in which the SPU object i’s value is mapped.

After the call to __cache_flush(), which is also implicitly invoked when the SPU

program finishes, the pointer p in the PPU program still points to the address of

the SPU object i. This is demonstrated by the final two lines of output from the

PPU.

8 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

Chapter 2. Fortran intrinsics (SPU only)

The April 2008 PTF for XL Fortran for Multicore Acceleration for Linux, V11.1

introduces 26 new generic intrinsics that make the underlying Instruction Set

Architecture (ISA) and Synergistic Processor Unit (SPU) hardware accessible from

the Fortran programming language. These intrinsics make it easier for you to

access SPU hardware features and obtain the best performance from your SPU

programs.

Each generic intrinsic maps to one or more assembly instructions. The mapping of

a generic intrinsic to a specific assembly instruction or set of instructions depends

on the input arguments to the intrinsic.

This PTF also adds three new vector types to XL Fortran for Multicore Acceleration

for Linux, V11.1:

v VECTOR(INTEGER(8))

v VECTOR(UNSIGNED(8))

v VECTOR(REAL(8))

These vector types are only available for the SPU, and can only be used when

spuxlf, spuxlf90, spuxlf95, or spuxlf2003 is invoked. For a complete list of

supported vector types, see ″Vector types″ in the IBM XL Fortran for Multicore

Acceleration for Linux, V11.1 Language Reference.

The following table lists the SPU intrinsics and their classifications:

 Table 4. SPU Intrinsics for Fortran

Classification Intrinsics

“Constant formation intrinsics” on page 11 spu_splats: Splat scalar to vector

“Conversion intrinsics” on page 12 spu_convtf: Convert integer vector to vector

float

spu_convts: Convert vector float to signed

integer vector

spu_extend: Extend vector

“Arithmetic intrinsics” on page 13 spu_add: Vector add

spu_madd: Vector multiply and add

spu_msub: Vector multiply and subtract

spu_mul: Vector multiply

spu_nmsub: Negative vector multiply and

subtract

spu_sub: Vector subtract

“Comparison intrinsics” on page 16 spu_cmpeq: Vector compare equal

spu_cmpgt: Vector compare greater than

© Copyright IBM Corp. 2008 9

http://publib.boulder.ibm.com/infocenter/cellcomp/v9v111/index.jsp?topic=/com.ibm.xlcpp9.cell.doc/language_ref/altivec_types.htm

Table 4. SPU Intrinsics for Fortran (continued)

Classification Intrinsics

“Bits and mask intrinsics” on page 19 spu_gather: Gather bits from elements

spu_maskb: Form select byte mask

spu_maskw: Form select word mask

spu_sel: Select bits

spu_shuffle: Shuffle two vectors of bytes

“Logical intrinsics” on page 22 spu_and: Vector bit-wise AND

spu_andc: Vector bit-wise AND with

complement

spu_or: Vector bit-wise OR

spu_xor: Vector bit-wise exclusive OR

“Shift and rotate intrinsics” on page 27 spu_rlqw: Quadword rotate left by bits

spu_rlqwbyte: Quadword rotate left by

bytes

“Scalar intrinsics” on page 29 spu_extract: Extract vector element from

vector

spu_insert: Insert scalar into specified

vector element

spu_promote: Promote scalar to vector

Mapping intrinsics with scalar operands

SPU intrinsics with scalar arguments can be used to achieve the same effect as SPU

assembly instructions with immediate fields. For example, when the general

intrinsic spu_add is called with operands of type VECTOR(INTEGER(4)) and

INTEGER(4), it maps to the immediate-field assembly instruction ai.

For more on SPU assembly instructions and immediate fields, see the SPU

Assembly Language Specification.

Generic intrinsics support a full range of scalar operands. This support is not

dependent on whether the scalar operand can be represented within the

instruction’s immediate field. Consider the following example:

vector(unsigned(4)) :: a, d

integer(4) :: b

d = spu_and(a, b)

Depending on argument b, different instructions are generated:

v If b is a literal constant within the range supported by one of the immediate

forms, the immediate instruction form is generated. For example, if b equals 1,

then ANDI d, a, 1 is generated.

v If b is a literal constant and is out-of-range but can be folded and implemented

using an alternate immediate instruction form, the alternate immediate

instruction is generated. For example, if b equals 0x30003, then ANDHI d, a, 3 is

generated. In this context, “alternate immediate instruction form” means an

immediate instruction form having a smaller data element size.

v If b is a literal constant that can be constructed using one or two immediate load

instructions followed by the non-immediate form of the instruction, the

appropriate instructions will be used. Immediate load instructions include IL,

10 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/EFA2B196893B550787257060006FC9FB
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/EFA2B196893B550787257060006FC9FB

ILH, ILHU, ILA, IOHL, and FSMBI. Table 5 shows possible uses of the immediate

load instructions for various constants b.

 Table 5. Possible uses of immediate load instructions for various values of constant b

Constant b Generates Instructions

-6000 IL b, -6000

AND d, a, b

131074 (0x20002) ILH b, 2

AND d, a, b

131072 (0x20000) ILHU b, 2

AND d, a, b

134000 (0x20B70) ILA b, 134000

AND d, a, b

262780 (0x4027C) ILHU b, 4

IOHL b, 636

AND d, a, b

(0xFFFFFFFF, 0x0, 0x0, 0xFFFFFFFF) FSMBI b, 0xF00F

AND d, a, b

v If b is a variable (non-literal) integer, code to splat the integer across the entire

vector is generated followed by the non-immediate form of the instruction. For

example, if b is an integer of unknown value, the constant area is loaded with

the shuffle pattern (0x10203, 0x10203, 0x10203, 0x10203) at “CONST_AREA,

offset” and the following instructions are generated:

LQD pattern, CONST_AREA, offset

SHUFB b, b, b, pattern

AND d, a, b

Constant formation intrinsics

These intrinsics create a vector by replicating a scalar value across all elements of a

vector of the same type.

spu_splats: Splat scalar to vector

A single scalar value a is replicated across all elements of a vector of the same

type. The result is returned in vector d.

d = spu_splats(a)

 Table 6. Splat scalar to vector

Return/Argument Types

Assembly Mapping

d a

VECTOR(INTEGER(1)) INTEGER(1)

SHUFB d, a, a, pattern

VECTOR(INTEGER(2)) INTEGER(2)

VECTOR(INTEGER(4)) INTEGER(4)

VECTOR(INTEGER(8)) INTEGER(8)

VECTOR(REAL(4)) REAL(4)

VECTOR(REAL(8)) REAL(8)

Chapter 2. Fortran intrinsics (SPU only) 11

Conversion intrinsics

These intrinsics convert vectors from one type to another.

spu_convtf: Convert integer vector to real vector

Each element of vector a is converted to a floating-point value and divided by 2scale.

The allowable range for scale is 0 to 127. Values outside this range are flagged as

an error and compilation is terminated. The result is returned in vector d.

d = spu_convtf(a, scale)

 Table 7. Convert integer vector to real vector

Return/Argument Types Assembly

Mapping d a scale

VECTOR(REAL(4)) VECTOR(UNSIGNED(4))

INTEGER(4)

v Literal

v Range restricted

 to [0 to +127]

CUFLT d, a, scale

VECTOR(REAL(4)) VECTOR(INTEGER(4)) CSFLT d, a, scale

spu_convts: Convert real vector to signed integer vector

Each element of vector a is scaled by 2scale, and the result is converted to a signed

integer. If the intermediate result is greater than 231-1, the result saturates to 231-1.

If the intermediate value is less than -231, the result saturates to -231. The allowable

range for scale is 0 to 127. Values outside this range are flagged as an error and

compilation is terminated. The results are returned in the corresponding elements

of vector d.

d = spu_convts(a, scale)

 Table 8. Convert real vector to signed integer vector

Return/Argument Types Assembly

Mapping d a scale

VECTOR(INTEGER(4)) VECTOR(REAL(4))

INTEGER(4)

v Literal

v Range restricted

 to [0 to +127]

CUFLTS d, a, scale

spu_extend: Extend vector

For a fixed-point vector a, each odd element of vector a is extended to a double

and returned in the corresponding element of vector d. For a floating-point vector,

each even element of a is sign-extended and returned in the corresponding element

of d.

12 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

d = spu_extend(a)

 Table 9. Extend vector

Return/Argument Types

Assembly Mapping

d a

VECTOR(INTEGER(2)) VECTOR(INTEGER(1)) XSBH d, a

VECTOR(INTEGER(4)) VECTOR(INTEGER(2)) XSHW d, a

VECTOR(INTEGER(8)) VECTOR(INTEGER(4)) XSWD d, a

VECTOR(REAL(8)) VECTOR(REAL(4)) FESD d, a

Arithmetic intrinsics

These intrinsics perform simple mathematical calculations such as addition,

subtraction, and multiplication.

spu_add: Vector add

Each element of vector a is added to the corresponding element of vector b. If b is

a scalar, the scalar value is replicated for each element and then added to a.

Overflows and carries are not detected, and no saturation is performed. The results

are returned in the corresponding elements of vector d.

d = spu_add(a, b)

 Table 10. Vector add

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

A d, a, b

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

AH d, a, b

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

AI d, a, b

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

INTEGER(4)

Refer to

“Mapping

intrinsics with

scalar operands”

on page 10

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

INTEGER(2)

v Literal

v Range restricted

 to [-512 to +511]

AHI d, a, b

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

Chapter 2. Fortran intrinsics (SPU only) 13

Table 10. Vector add (continued)

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

INTEGER(2)

Refer to

“Mapping

intrinsics with

scalar operands”

on page 10

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR(REAL(4)) VECTOR(REAL(4)) VECTOR(REAL(4)) FA d, a, b

VECTOR(REAL(8)) VECTOR(REAL(8)) VECTOR(REAL(8)) DFA d, a, b

spu_madd: Vector multiply and add

Each element of vector a is multiplied by vector b and added to the corresponding

element of vector c. The result is returned to the corresponding element of vector

d. For integer multiply-and-adds, the odd elements of vectors a and b are

sign-extended to 32-bit integers prior to multiplication.

d = spu_madd(a, b, c)

 Table 11. Vector multiply and add

Return/Argument Types Assembly

Mapping d a b c

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(4))

MPYA d, a, b, c

VECTOR

(REAL(4))

VECTOR

(REAL(4))

VECTOR

(REAL(4))

VECTOR

(REAL(4))

FMA d, a, b, c

VECTOR

(REAL(8))

VECTOR

(REAL(8))

VECTOR

(REAL(8))

VECTOR

(REAL(8))

rt <--- c

DFMA rt, a, b

d <--- rt

spu_msub: Vector multiply and subtract

Each element of vector a is multiplied by the corresponding element of vector b,

and the corresponding element of vector c is subtracted from the product. The

result is returned in the corresponding element of vector d.

d = spu_msub(a, b, c)

 Table 12. Vector multiply and subtract

Return/Argument Types

Assembly Mapping

d a b c

VECTOR

(REAL(4))

VECTOR

(REAL(4))

VECTOR

(REAL(4))

VECTOR

(REAL(4))

FMS d, a, b, c

VECTOR

(REAL(8))

VECTOR

(REAL(8))

VECTOR

(REAL(8))

VECTOR

(REAL(8))

rt <--- c

DFMS rt, a, b

d <--- rt

spu_mul: Vector multiply

Each element of vector a is multiplied by the corresponding element of vector b

and returned in the corresponding element of vector d.

14 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

d = spu_mul(a, b)

 Table 13. Vector multiply

Return/Argument Types Assembly

Mapping d a b

VECTOR(REAL(4)) VECTOR(REAL(4)) VECTOR(REAL(4)) FM d, a, b

VECTOR(REAL(8)) VECTOR(REAL(8)) VECTOR(REAL(8)) DFM d, a, b

spu_nmsub: Negative vector multiply and subtract

Each element of vector a is multiplied by the corresponding element in vector b.

The result is subtracted from the corresponding element in c and returned in the

corresponding element of vector d.

d = spu_nmsub(a, b, c)

 Table 14. Negative vector multiply and subtract

Return/Argument Types Assembly

Mapping d a b c

VECTOR

(REAL(4))

VECTOR

(REAL(4))

VECTOR

(REAL(4))

VECTOR

(REAL(4))

FNMS d, a, b, c

VECTOR

(REAL(8))

VECTOR

(REAL(8))

VECTOR

(REAL(8))

VECTOR

(REAL(8))

rt <--- c

DFNMS rt, a, b

d <--- rt

spu_sub: Vector subtract

Each element of vector b is subtracted from the corresponding element of vector a.

If a is a scalar, the scalar value is replicated for each element of a, and then b is

subtracted from the corresponding element of a. Overflows and carries are not

detected. The results are returned in the corresponding elements of vector d.

d = spu_sub(a, b)

 Table 15. Vector sub

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

SFH d, b, a

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

SF d, b, a

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(4))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

VECTOR

(INTEGER(4))

SFI d, b, a

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

Chapter 2. Fortran intrinsics (SPU only) 15

Table 15. Vector sub (continued)

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(4))

INTEGER(4)

VECTOR

(INTEGER(4))

Refer to

“Mapping

intrinsics with

scalar

operands” on

page 10

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(2))

INTEGER(2)

v Literal

v Range restricted

 to [-512 to +511]

VECTOR

(INTEGER(2))

SFHI d, b, a

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(2))

INTEGER(2)

VECTOR

(INTEGER(2))

Refer to

“Mapping

intrinsics with

scalar

operands” on

page 10

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR(REAL(4)) VECTOR(REAL(4)) VECTOR(REAL(4)) FS d, a, b

VECTOR(REAL(8)) VECTOR(REAL(8)) VECTOR(REAL(8)) DFS d, a, b

Comparison intrinsics

These intrinsics compare the values in one vector to the values in another to

determine which elements are equal to or greater than the corresponding elements

in the other vector.

spu_cmpeq: Vector compare equal

Each element of vector a is compared with the corresponding element of vector b.

If b is a scalar, the scalar value is first replicated for each element, and then a and b

are compared. If the operands are equal, all bits of the corresponding element of

vector d are set to one. If they are unequal, all bits of the corresponding element of

d are set to zero.

d = spu_cmpeq(a, b)

 Table 16. Vector compare equal

Return/Argument Types Assembly

Mapping d a b

VECTOR

(UNSIGNED(1))

VECTOR(INTEGER(1)) VECTOR(INTEGER(1))

CEQB d, a, b

VECTOR(UNSIGNED(1)) VECTOR(UNSIGNED(1))

VECTOR

(UNSIGNED(2))

VECTOR(INTEGER(2)) VECTOR(INTEGER(2))

CEQH d, a, b

VECTOR(UNSIGNED(2)) VECTOR(UNSIGNED(2))

VECTOR

(UNSIGNED(4))

VECTOR(INTEGER(4)) VECTOR(INTEGER(4))

CEQ d, a, b

VECTOR(UNSIGNED(4)) VECTOR(UNSIGNED(4))

VECTOR(REAL(4)) VECTOR(REAL(4)) FCEQ d, a, b

16 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

Table 16. Vector compare equal (continued)

Return/Argument Types Assembly

Mapping d a b

VECTOR

(UNSIGNED(1))

VECTOR(INTEGER(1))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

CEQBI d, a, b

VECTOR(UNSIGNED(1))

VECTOR(INTEGER(1)) INTEGER(1)

Refer to

“Mapping

intrinsics with

scalar

operands” on

page 10

VECTOR

(UNSIGNED(2))

VECTOR(INTEGER(2))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

CEQHI d, a, b

VECTOR(UNSIGNED(2))

VECTOR(INTEGER(2)) INTEGER(2)

Refer to

“Mapping

intrinsics with

scalar

operands” on

page 10

VECTOR

(UNSIGNED(4))

VECTOR(INTEGER(4))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

CEQI d, a, b

VECTOR(UNSIGNED(4))

VECTOR(INTEGER(4)) INTEGER(4)

Refer to

“Mapping

intrinsics with

scalar

operands” on

page 10

VECTOR

(UNSIGNED(8))

VECTOR(REAL(8)) VECTOR(REAL(8)) DFCEQ d, a, b

spu_cmpgt: Vector compare greater than

Each element of vector a is compared with the corresponding element of vector b.

If b is a scalar, the scalar value is replicated for each element and then a and b are

compared. If the element of a is greater than the corresponding element of b, all

bits of the corresponding element of vector d are set to one; otherwise, all bits of

the corresponding element of d are set to zero.

Chapter 2. Fortran intrinsics (SPU only) 17

d = spu_cmpgt(a, b)

 Table 17. Vector compare greater than

Return/Argument Types Assembly

Mapping d a b

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(1))

VECTOR(INTEGER(1)) CGTB d, a, b

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

CGTBI d, a, b

INTEGER(1)

Refer to

“Mapping

intrinsics with

scalar operands”

on page 10

VECTOR

(UNSIGNED(1))

VECTOR(UNSIGNED(1)) CLGTB d, a, b

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

CLGTBI d, a, b

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(2))

VECTOR(INTEGER(2)) CGTH d, a, b

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

CGTHI d, a, b

INTEGER(2)

Refer to

“Mapping

intrinsics with

scalar operands”

on page 10

VECTOR

(UNSIGNED(2))

VECTOR(UNSIGNED(2)) CLGTH d, a, b

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

CLGTHI d, a, b

18 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

Table 17. Vector compare greater than (continued)

Return/Argument Types Assembly

Mapping d a b

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(4))

VECTOR(INTEGER(4)) CGT d, a, b

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

CGTI d, a, b

INTEGER(4)

Refer to

“Mapping

intrinsics with

scalar operands”

on page 10

VECTOR

(UNSIGNED(4))

VECTOR(UNSIGNED(4)) CLGT d, a, b

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

CLGTI d, a, b

VECTOR

(REAL(4))

VECTOR(REAL(4)) FCGT d, a, b

VECTOR

(UNSIGNED(8))

VECTOR

(REAL(8))

VECTOR(REAL(8)) DFCGT d, a, b

Bits and mask intrinsics

These intrinsics gather bits, create vector masks, or combine two vectors into one

according to a given pattern.

spu_gather: Gather bits from elements

The rightmost bit (LSB) of each element of vector a is gathered, concatenated, and

returned in the rightmost bits of element 0 of vector d. For a byte vector, 16 bits are

gathered; for a halfword vector, 8 bits are gathered; and for a word vector, 4 bits

are gathered. The remaining bits of element 0 of d and all other elements of that

vector are zeroed.

d = spu_gather(a)

 Table 18. Gather bits from elements

Return/Argument Types Assembly

Mapping d a

VECTOR(UNSIGNED(4))

VECTOR(UNSIGNED(1))

GBB d, a

VECTOR(INTEGER(1))

VECTOR(UNSIGNED(2))

GBH d, a

VECTOR(INTEGER(2))

VECTOR(UNSIGNED(4))

GB d, a VECTOR(INTEGER(4))

VECTOR(REAL(4))

Chapter 2. Fortran intrinsics (SPU only) 19

spu_maskb: Form select byte mask

For each of the least significant 16 bits of a, each bit is replicated 8 times,

producing a 128-bit vector mask that is returned in vector d.

d = spu_maskb(a)

 Table 19. Form select byte mask

Return/Argument Types

Assembly Mapping

d a

VECTOR(UNSIGNED(1))

INTEGER(2)

FSMB d, a

INTEGER(4)

spu_maskw: Form select word mask

For each of the least significant 4 bits of a, each bit is replicated 32 times,

producing a 128-bit vector mask that is returned in vector d.

d = spu_maskw(a)

 Table 20. Form select word mask

Return/Argument Types

Assembly Mapping

d a

VECTOR(UNSIGNED(4))

INTEGER(1)

FSM d, a INTEGER(2)

INTEGER(4)

spu_sel: Select bits

For each bit in the 128-bit vector pattern, the corresponding bit from either vector a

or vector b is selected. If the bit is 0, the bit from a is selected; otherwise, the bit

from b is selected. The result is returned in vector d.

20 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

d = spu_sel(a, b, pattern)

 Table 21. Convert integer vector to vector float

Return/Argument Types Assembly

Mapping d a b pattern

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1)) VECTOR

(UNSIGNED(1))

SELB d, a,

b, pattern

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2)) VECTOR

(UNSIGNED(2)) VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR(REAL(4)) VECTOR(REAL(4)) VECTOR(REAL(4))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR(REAL(8)) VECTOR(REAL(8)) VECTOR(REAL(8))

spu_shuffle: Shuffle two vectors of bytes

For each byte of pattern, the byte is examined, and a byte is produced, as shown in

Figure 2-2. The result is returned in the corresponding byte of vector d.

d = spu_shuffle(a, b, pattern)

 Table 22. Shuffle pattern

Value in the Byte of pattern (in binary) Resulting Byte

10xxxxxx 0x00

110xxxxx 0xFF

111xxxxx 0x80

otherwise The byte of (a||b) addressed by the

rightmost 5 bits of pattern

Chapter 2. Fortran intrinsics (SPU only) 21

Table 23. Shuffle two vectors of bytes

Return/Argument Types Assembly

Mapping d a b pattern

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

VECTOR

(UNSIGNED(1))

SHUFB d, a, b,

pattern

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR

(REAL(4))

VECTOR

(REAL(4))

VECTOR

(REAL(4))

VECTOR

(REAL(8))

VECTOR

(REAL(8))

VECTOR

(REAL(8))

Logical intrinsics

These intrinsics perform logical operations such as AND, OR, and XOR.

spu_and: Vector bit-wise AND

Each bit of vector a is logically ANDed with the corresponding bit of vector b. If b

is a scalar, the scalar value is first replicated for each element, and then a and b are

ANDed. The results are returned in the corresponding bit of vector d.

22 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

d = spu_and(a, b)

 Table 24. Vector bit-wise AND

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

AND d, a, b

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR(REAL(4)) VECTOR(REAL(4)) VECTOR(REAL(4))

VECTOR(REAL(8)) VECTOR(REAL(8)) VECTOR(REAL(8))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

ANDBI d, a,

b

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(1)

Refer to

“Mapping

intrinsics

with scalar

operands” on

page 10

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

ANDHI d, a,

b

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

INTEGER(2)

Refer to

“Mapping

intrinsics

with scalar

operands” on

page 10

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

ANDI d, a, b

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

Chapter 2. Fortran intrinsics (SPU only) 23

Table 24. Vector bit-wise AND (continued)

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

INTEGER(4)

Refer to

“Mapping

intrinsics

with scalar

operands” on

page 10

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

spu_andc: Vector bit-wise AND with complement

Each bit of vector a is ANDed with the complement of the corresponding bit of

vector b. The result is returned in the corresponding bit of vector d.

d = spu_andc(a, b)

 Table 25. Vector bit-wise AND

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

ANDC d, a, b

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR(REAL(4)) VECTOR(REAL(4)) VECTOR(REAL(4))

VECTOR(REAL(8)) VECTOR(REAL(8)) VECTOR(REAL(8))

spu_or: Vector bit-wise OR

Each bit of vector a is logically ORed with the corresponding bit of vector b. If b is

a scalar, the scalar value is first replicated for each element, and then a and b are

ORed. The result is returned in the corresponding bit of vector d.

24 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

d = spu_or(a, b)

 Table 26. Vector bit-wise OR

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

OR d, a, b

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR(REAL(4)) VECTOR(REAL(4)) VECTOR(REAL(4))

VECTOR(REAL(8)) VECTOR(REAL(8)) VECTOR(REAL(8))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

ORBI d, a, b

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(1)

Refer to

“Mapping

intrinsics with

scalar

operands” on

page 10

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

ORHI d, a, b

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

INTEGER(2)

Refer to

“Mapping

intrinsics with

scalar

operands” on

page 10

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

ORI d, a, b

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

Chapter 2. Fortran intrinsics (SPU only) 25

Table 26. Vector bit-wise OR (continued)

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

INTEGER(4)

Refer to

“Mapping

intrinsics with

scalar

operands” on

page 10

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

spu_xor: Vector bit-wise exclusive OR

Each element of vector a is exclusive-ORed with the corresponding element of

vector b. If b is a scalar, the scalar value is first replicated for each element. The

result is returned in the corresponding bit of vector d.

d = spu_xor(a, b)

 Table 27. Vector bit-wise exclusive OR

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

XOR d, a, b

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR(REAL(4)) VECTOR(REAL(4)) VECTOR(REAL(4))

VECTOR(REAL(8)) VECTOR(REAL(8)) VECTOR(REAL(8))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

XORBI d, a,

b

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(1)

Refer to

“Mapping

intrinsics

with scalar

operands”

on page 10

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

26 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

Table 27. Vector bit-wise exclusive OR (continued)

Return/Argument Types Assembly

Mapping d a b

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

XORHI d, a,

b

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

INTEGER(2)

Refer to

“Mapping

intrinsics

with scalar

operands”

on page 10

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

INTEGER(4)

v Literal

v Range restricted

 to [-512 to +511]

XORI d, a, b

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

INTEGER(4)

Refer to

“Mapping

intrinsics

with scalar

operands”

on page 10

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

Shift and rotate intrinsics

These intrinsics move the values inside a vector, rotating them out on one end and

in on the other.

spu_rlqw: Quadword rotate left by bits

Vector a is rotated to the left by the number of bits specified by the 3 least

significant bits of count. Bits rotated out of the left end of the vector are rotated in

on the right. The result is returned in vector d.

Chapter 2. Fortran intrinsics (SPU only) 27

d = spu_rlqw(a, count)

 Table 28. Quadword rotate left by bits

Return/Argument Types Assembly

Mapping d a count

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(4)

v Literal

v Range restricted

 to [-64 to +63]

ROTQBII d, a, count

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR(REAL(4)) VECTOR(REAL(4))

VECTOR(REAL(8)) VECTOR(REAL(8))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(4)

v Non-literal

ROTQBI d, a, count

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR(REAL(4)) VECTOR(REAL(4))

VECTOR(REAL(8)) VECTOR(REAL(8))

spu_rlqwbyte: Quadword rotate left by bytes

Vector a is rotated to the left by the number of bytes specified by the 4 least

significant bits of count. Bytes rotated out of the left end of the vector are rotated in

on the right. The result is returned in vector d.

28 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

d = spu_rlqwbyte(a, count)

 Table 29. Quadword rotate left by bytes

Return/Argument Types

Assembly Mapping

d a count

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(4)

v Literal

v Range restricted

 to [-64 to +63]

ROTQBYI d, a, count

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR(REAL(4)) VECTOR(REAL(4))

VECTOR(REAL(8)) VECTOR(REAL(8))

VECTOR

(INTEGER(1))

VECTOR

(INTEGER(1))

INTEGER(4)

v Non-literal

ROTQBY d, a, count

VECTOR

(UNSIGNED(1))

VECTOR

(UNSIGNED(1))

VECTOR

(INTEGER(2))

VECTOR

(INTEGER(2))

VECTOR

(UNSIGNED(2))

VECTOR

(UNSIGNED(2))

VECTOR

(INTEGER(4))

VECTOR

(INTEGER(4))

VECTOR

(UNSIGNED(4))

VECTOR

(UNSIGNED(4))

VECTOR

(INTEGER(8))

VECTOR

(INTEGER(8))

VECTOR

(UNSIGNED(8))

VECTOR

(UNSIGNED(8))

VECTOR(REAL(4)) VECTOR(REAL(4))

VECTOR(REAL(8)) VECTOR(REAL(8))

Scalar intrinsics

This section describes special utility intrinsics that allow programmers to efficiently

coerce scalars to vectors, or vectors to scalars. With the aid of these intrinsics,

programmers can use intrinsic functions to perform operations between vectors

and scalars without having to revert to assembly language. This is especially

Chapter 2. Fortran intrinsics (SPU only) 29

important when there is a need is to perform an operation that cannot be

conveniently expressed in Fortran, such as shuffling bytes.

spu_extract: Extract vector element from vector

The element that is specified by element is extracted from vector a and returned in

d. Depending on the size of the element, only a limited number of the least

significant bits of the element index are used. For 1-, 2-, 4-, and 8-byte elements,

only 4, 3, 2, and 1 of the least significant bits of the element index are used,

respectively.

d = spu_extract(a, element)

 Table 30. Extract vector element from vector

Return/Argument Types

Assembly Mapping

d a element

INTEGER(1) VECTOR(INTEGER(1))

INTEGER(4)

ROTQBY d, a, element

INTEGER(2) VECTOR(INTEGER(2)) SHLI t, element, 1

INTEGER(4) VECTOR(INTEGER(4)) SHLI t, element, 2

INTEGER(8) VECTOR(INTEGER(8)) SHLI t, element, 3

REAL(4) VECTOR(REAL(4)) SHLI t, element, 2

REAL(8) VECTOR(REAL(8)) SHLI t, element, 3

spu_insert: Insert scalar into specified vector element

Scalar a is inserted into the element of vector b that is specified by the element

parameter, and the modified vector is returned. All other elements of b are

unmodified. Depending on the size of the element, only a limited number of the

least significant bits of the element index are used. For 1-, 2-, 4-, and 8-byte

elements, only 4, 3, 2, and 1 of the least significant bits of the element index are

used, respectively.

30 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

d = spu_insert(a, b, element)

 Table 31. Insert scalar into specified vector element

Assembly Mapping

d a b element

VECTOR

(INTEGER(1))

INTEGER(1)

VECTOR

(INTEGER(1))

INTEGER(4)

CBD t, 0(element)

SHUFB d, a, b, t

VECTOR

(INTEGER(2))

INTEGER(2)

VECTOR

(INTEGER(2))

SHLI t, element, 1

CHD t, 0(t)

VECTOR

(INTEGER(4))

INTEGER(4)

VECTOR

(INTEGER(4))

SHLI t, element, 2

CWD t, 0(t)

SHUFB d, a, b, t

VECTOR

(INTEGER(8))

INTEGER(8)

VECTOR

(INTEGER(8))

SHLI t, element, 3

CWD t, 0(t)

SHUFB d, a, b, t

VECTOR

(REAL(4))

REAL(4)

VECTOR

(REAL(4))

SHLI t, element, 2

CWD t, 0(t)

SHUFB d, a, b, t

VECTOR

(REAL(8))

REAL(8)

VECTOR

(REAL(8))

SHLI t, element, 3

CWD t, 0(t)

SHUFB d, a, b, t

spu_promote: Promote scalar to vector

Scalar a is promoted to a vector containing a in the element that is specified by the

element parameter, and the vector is returned in d. All other elements of the vector

are undefined. Depending on the size of the element/scalar, only a limited number

of the least significant bits of the element index are used. For 1-, 2-, 4-, and 8-byte

elements, only 4, 3, 2, and 1 of the least significant bits of the element index are

used, respectively.

d = spu_promote(a, element)

 Table 32. Promote scalar to vector

Assembly Mapping

d a element

VECTOR(INTEGER(1)) INTEGER(1)

INTEGER(4)

SFI t, element, 3

ROTQBY d, a, t

VECTOR(INTEGER(2)) INTEGER(2)

SFI t, element, 1

SHLI t, t, 1

ROTQBY d, a, t

VECTOR(INTEGER(4)) INTEGER(4)

SFI t, element, 0

SHLI t, t, 2

ROTQBY d, a, t

VECTOR(INTEGER(8)) INTEGER(8)

SHLI t, element, 3

ROTQBY d, a, t

VECTOR(REAL(4)) REAL(4)

SFI t, element, 0

SHLI t, t, 2

ROTQBY d, a, t

VECTOR(REAL(8)) REAL(8)

SHLI t, element, 3

ROTQBY d, a, t

Chapter 2. Fortran intrinsics (SPU only) 31

32 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 33

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

34 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2008. All rights reserved.

This software and documentation are based in part on the Fourth Berkeley

Software Distribution under license from the Regents of the University of

California. We acknowledge the following institution for its role in this product’s

development: the Electrical Engineering and Computer Sciences Department at the

Berkeley campus.

Trademarks and service marks

Company, product, or service names identified in the text may be trademarks or

service marks of IBM or other companies. Information on the trademarks of

International Business Machines Corporation in the United States, other countries,

or both is located at http://www.ibm.com/legal/copytrade.shtml.

Microsoft® and Windows® are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel® is a trademark or registered trademark of Intel Corporation or its

subsidiaries in the United States and other countries.

UNIX® is a registered trademark of The Open Group in the United States and

other countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Cell Broadband Engine is a trademark of Sony® Computer Entertainment, Inc., in

the United States, other countries, or both and is used under license therefrom.

Adobe, the Adobe logo, PostScript®, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 35

http://www.ibm.com/legal/copytrade.shtml

36 XL C/C++ and XL Fortran: April 2008 PTFfor Multicore Acceleration for Linux

����

Printed in USA

	Contents
	About this information
	Who should read this document
	How to use this document
	Conventions and terminology
	Related information
	IBM XL C/C++ and XL Fortran information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Effective address space support (SPU only)
	Writing source code that uses effective address space support
	Example instructions
	Casting pointers
	__ea type qualifier

	Compiler options
	-qea32, -qea64
	-qswcache_size
	-qatomic_updates, -qnoatomic_updates

	SDK 3.0 and the libc.a library
	Sample program

	Chapter 2. Fortran intrinsics (SPU only)
	Mapping intrinsics with scalar operands
	Constant formation intrinsics
	spu_splats: Splat scalar to vector

	Conversion intrinsics
	spu_convtf: Convert integer vector to real vector
	spu_convts: Convert real vector to signed integer vector
	spu_extend: Extend vector

	Arithmetic intrinsics
	spu_add: Vector add
	spu_madd: Vector multiply and add
	spu_msub: Vector multiply and subtract
	spu_mul: Vector multiply
	spu_nmsub: Negative vector multiply and subtract
	spu_sub: Vector subtract

	Comparison intrinsics
	spu_cmpeq: Vector compare equal
	spu_cmpgt: Vector compare greater than

	Bits and mask intrinsics
	spu_gather: Gather bits from elements
	spu_maskb: Form select byte mask
	spu_maskw: Form select word mask
	spu_sel: Select bits
	spu_shuffle: Shuffle two vectors of bytes

	Logical intrinsics
	spu_and: Vector bit-wise AND
	spu_andc: Vector bit-wise AND with complement
	spu_or: Vector bit-wise OR
	spu_xor: Vector bit-wise exclusive OR

	Shift and rotate intrinsics
	spu_rlqw: Quadword rotate left by bits
	spu_rlqwbyte: Quadword rotate left by bytes

	Scalar intrinsics
	spu_extract: Extract vector element from vector
	spu_insert: Insert scalar into specified vector element
	spu_promote: Promote scalar to vector

	Notices
	Trademarks and service marks

