
IBM XL Fortran Advanced Edition for Linux, V11.1

Compiler Reference

SC23-5895-00

���

IBM XL Fortran Advanced Edition for Linux, V11.1

Compiler Reference

SC23-5895-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

307.

First Edition

This edition applies to IBM XL Fortran Advanced Edition for Linux, V11.1 (Program number 5724-S74) and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

© Copyright International Business Machines Corporation 1990, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document vii

Who should read this document vii

How to use this document vii

How this document is organized vii

Conventions and terminology used in this

document viii

Related information xi

IBM XL Fortran publications xi

Standards and specifications documents xii

Other IBM publications xiii

Technical support xiii

How to send your comments xiii

Chapter 1. Introduction 1

Chapter 2. Overview of XL Fortran

features 3

Hardware and operating-system support 3

Language support 3

Migration support 4

Source-code conformance checking 4

Highly configurable compiler 4

Diagnostic listings 5

Symbolic debugger support 5

Program optimization 5

Chapter 3. Setting up and customizing

XL Fortran 7

Where to find installation instructions 7

Using the compiler on a network file System . . 7

Correct settings for environment variables 7

Environment variable basics 8

Environment variables for national language

support 8

Setting library search paths 9

PDFDIR: Specifying the directory for PDF profile

information 9

TMPDIR: Specifying a directory for temporary

files 10

XLFSCRATCH_unit: Specifying names for scratch

files 10

XLFUNIT_unit: Specifying names for implicitly

connected files 10

Using custom compiler configuration files 10

Creating custom configuration files 11

Editing the default configuration file 14

Attributes 14

Determining which level of XL Fortran is installed 16

Running two levels of XL Fortran 17

Chapter 4. Editing, compiling, linking,

and running XL Fortran programs . . . 19

Editing XL Fortran source files 19

Compiling XL Fortran programs 19

Compiling Fortran 90 or Fortran 95 programs . . 21

Compiling Fortran 2003 programs 21

Compiling XL Fortran SMP programs 21

Compilation order for Fortran programs 22

Canceling a compilation 22

XL Fortran input files 22

XL Fortran Output files 23

Scope and precedence of option settings 25

Specifying options on the command line 25

Specifying options in the source file 26

Passing command-line options to the ″ld″ or ″as″

commands 27

Displaying information inside binary files

(strings) 27

Compiling for specific architectures 27

Passing Fortran files through the C preprocessor 28

cpp Directives for XL Fortran programs 29

Passing options to the C preprocessor 29

Avoiding preprocessing problems 30

Linking XL Fortran programs 30

Compiling and linking in separate Steps 30

Passing options to the ld command 30

Dynamic and Static Linking 31

Avoiding naming conflicts during linking . . . 31

Running XL Fortran programs 32

Canceling execution 32

Compiling and executing on different systems . . 32

Runtime libraries for POSIX pthreads support . . 33

Selecting the language for runtime messages . . 33

Setting runtime options 33

Other environment variables that affect runtime

behavior 44

XL Fortran runtime exceptions 44

Chapter 5. Summary of compiler

options by functional category 45

Output control 45

Input control 46

Language element control 47

Floating-point and integer control 48

Object code control 49

Error checking and debugging 50

Listings, messages, and compiler information . . . 51

Optimization and tuning 52

Linking 55

Portability and migration 56

Compiler customization 56

Deprecated options 57

Chapter 6. Detailed descriptions of the

XL Fortran compiler options 59

-# 60

-1 61

-B 62

-C 63

© Copyright IBM Corp. 1990, 2007 iii

-c 64

-D 65

-d 66

-F 67

-g 69

-I 70

-k 71

-L 72

-l 73

-NS 74

-O 75

-o 78

-p 79

-Q 80

-q32 82

-q64 83

-qalias 85

-qalias_size 88

-qalign 89

-qarch 92

-qassert 95

-qattr 96

-qautodbl 97

-qbigdata option 100

-qcache 101

-qcclines 104

-qcheck 105

-qci 106

-qcompact 107

-qcr 108

-qctyplss 109

-qdbg 111

-qddim 112

-qdescriptor 113

-qdirective 115

-qdirectstorage 117

-qdlines 118

-qdpc 119

-qenablevmx 121

-qenum 122

-qescape 123

-qessl 125

-qextern 126

-qextname 128

-qfdpr 130

-qfixed 131

-qflag 132

-qfloat 134

-qfpp 138

-qflttrap 139

-qfree 141

-qfullpath 143

-qhalt 144

-qhot 146

-qieee 149

-qinit 150

-qinitauto 151

-qinlglue 154

-qintlog 155

-qintsize 156

-qipa 158

-qkeepparm 167

-qlanglvl 168

-qlibansi 170

-qlinedebug 171

-qlist 172

-qlistopt 174

-qlog4 175

-qmaxmem 176

-qmbcs 178

-qminimaltoc 179

-qmixed 180

-qmoddir 181

-qmodule 182

-qnoprint 183

-qnullterm 184

-qobject 186

-qoldmod 187

-qonetrip 189

-qoptdebug 190

-qoptimize 191

-qpdf1, -qpdf2 192

-qphsinfo 196

-qpic 198

-qport 199

-qposition 202

-qppsuborigarg 203

-qprefetch 205

-qqcount 206

-qrealsize 207

-qrecur 209

-qreport 211

-qsaa 213

-qsave 214

-qsaveopt 216

-qsclk 218

-qshowpdf 219

-qsigtrap 220

-qsmallstack 221

-qsmp 223

-qsource 228

-qspillsize 230

-qstacktemp 231

-qstrict 233

-qstrictieeemod 234

-qstrict_induction 235

-qsuffix 237

-qsuppress 238

-qswapomp 240

-qtbtable 242

-qthreaded 244

-qtune 245

-qundef 247

-qunroll 248

-qunwind 250

-qversion 251

-qwarn64 253

-qxflag=dvz 254

-qxflag=oldtab 256

-qxlf77 257

-qxlf90 260

-qxlf2003 262

iv XL Fortran Compiler Reference

-qxlines 265

-qxref 268

-qzerosize 269

-S 270

-t 271

-U 273

-u 274

-v 275

-V 276

-W 277

-w 279

-y 280

Chapter 7. Using XL Fortran in a

64-Bit Environment 281

Compiler options for the 64-Bit environment . . . 281

Chapter 8. Problem determination and

debugging 283

Understanding XL Fortran error messages 283

Error severity 283

Compiler return code 284

Runtime return code 284

Understanding XL Fortran messages 284

Limiting the number of compile-time messages 285

Selecting the language for messages 285

Fixing installation or system environment problems 286

Fixing compile-time problems 286

Duplicating extensions from other systems . . 287

Isolating problems with individual compilation

units 287

Compiling with thread-safe commands 287

Running out of machine resources 287

Fixing link-time problems 287

Fixing runtime problems 288

Duplicating extensions from other systems . . 288

Mismatched sizes or types for arguments . . . 288

Working around problems when optimizing . . 288

Input/Output errors 288

Tracebacks and core dumps 289

Debugging a Fortran 90 or Fortran 95 program . . 289

Chapter 9. Understanding XL Fortran

compiler listings 291

Header section 291

Options section 291

Source section 292

Error messages 292

Transformation report section 293

Attribute and cross reference section 294

Object section 295

File table section 295

Compilation unit epilogue Section 295

Compilation epilogue Section 295

Appendix A. XL Fortran technical

information 297

The compiler phases 297

External names in XL Fortran libraries 297

The XL Fortran runtime environment 297

External names in the runtime environment . . 298

Technical details of the -qfloat=hsflt option . . . 298

Implementation details for -qautodbl promotion

and padding 299

Terminology 299

Examples of storage relationships for -qautodbl

suboptions 300

Appendix B. XL Fortran internal limits 305

Notices 307

Trademarks and service marks 309

Glossary 311

Index 321

Contents v

vi XL Fortran Compiler Reference

About this document

This document describes the IBM® XL Fortran Advanced Edition for Linux®, V11.1

compiler and explains how to set up the compilation environment and how to

compile, link, and run programs written in the Fortran language. This guide also

contains cross-references to relevant topics of other reference guides in the XL

Fortran documentation suite.

Who should read this document

This document is for anyone who wants to work with the XL Fortran compiler, is

familiar with the Linux operating system, and who has some previous Fortran

programming experience. Users new to XL Fortran can use this document to find

information on the capabilities and features unique to XL Fortran. This document

can help you understand what the features of the compiler are, especially the

options, and how to use them for effective software development.

How to use this document

While this document covers information about configuring the compiler, and

compiling, linking and running XL Fortran programs, it does not include

information on the following topics, which are covered in other documents:

v Installation, system requirements, last-minute updates: see the XL Fortran

Installation Guide and product README.

v Overview of XL Fortran features: see the Getting Started with XL Fortran.

v Syntax, semantics, and implementation of the XL Fortran programming

language: see the XL Fortran Language Reference.

v Optimizing, porting, OpenMP/ SMP programming: see the XL Fortran

Optimization and Programming Guide.

v Operating system commands related to the use of the compiler: consult your

Linux-specific distribution’s man page help and documentation.

How this document is organized

This document starts with an overview of the compiler and provides information

on the tasks you need to do before invoking the compiler. It then continues with

reference information about the compiler options and debugging problems.

This reference includes the following topics:

v Chapter 1, “Introduction” through Chapter 4, “Editing, compiling, linking, and

running XL Fortran programs” discuss setting up the compilation environment

and the environment variables that you need for different compilation modes,

customizing the configuration file, the types of input and output files, compiler

listings and messages and information specific to invoking the preprocessor and

linkage editor.

v Chapter 5, “Summary of compiler options by functional category” organizes the

compiler options by their functional category. You can search for options by their

name, or alternatively use the links in the functional category tables and look up

options according to their functionality. Chapter 6, “Detailed descriptions of the

© Copyright IBM Corp. 1990, 2007 vii

XL Fortran compiler options” includes individual descriptions of the compiler

options sorted alphabetically. Descriptions provide examples and list related

topics.

v Chapter 7, “Using XL Fortran in a 64-Bit Environment” discusses application

development for the 64-bit environment.

v Chapter 8, “Problem determination and debugging” addresses debugging and

understanding compiler listings.

v Appendix A, “XL Fortran technical information” and Appendix B, “XL Fortran

internal limits” provide information that advanced programmers may need to

diagnose unusual problems and run the compiler in a specialized environment.

Conventions and terminology used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

The maximum length of the

trigger_constant in fixed source form

is 4 for directives that are continued

on one or more lines.

underlining The default setting of a parameter

of a compiler option or directive.

nomaf | maf

monospace Examples of program code,

command strings, or user-defined

names.

Also, specify the following runtime

options before running the program,

with a command similar to the

following: export

XLFRTEOPTS="err_recovery=no:
langlvl=90std"

UPPERCASE

bold

Fortran programming keywords,

statements, directives, and intrinsic

procedures.

The ASSERT directive applies only to

the DO loop immediately following

the directive, and not to any nested

DO loops.

lowercase bold Lowercase programming keywords

and library functions, compiler

intrinsic procedures, file and

directory names, examples of

program code, command strings,

or user-defined names.

If you specify -O3, the compiler

assumes -qhot=level=0. To prevent

all HOT optimizations with -O3, you

must specify -qnohot.

Syntax diagrams

Throughout this document, diagrams illustrate XL Fortran syntax. This section will

help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

viii XL Fortran Compiler Reference

The ───�� symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

IBM XL Fortran extensions are marked by a number in the syntax diagram with

an explanatory note immediately following the diagram.

Program units, procedures, constructs, interface blocks and derived-type

definitions consist of several individual statements. For such items, a box

encloses the syntax representation, and individual syntax diagrams show the

required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([

and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can

provide a list of these terms separated by commas.

About this document ix

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

How to read syntax statements

Syntax statements are read from left to right:

v Individual required arguments are shown with no special notation.

v When you must make a choice between a set of alternatives, they are enclosed

by { and } symbols.

v Optional arguments are enclosed by [and] symbols.

v When you can select from a group of choices, they are separated by | characters.

v Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement

EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:

v Enter the keyword EXAMPLE.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

��

(1)

EXAMPLE

char_constant

a

b

c

d

�

 ,

e

name_list

��

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,

you must put a comma between each. (The _list syntax is equivalent to the previous

syntax for e.)

x XL Fortran Compiler Reference

Note: The same example is used in both the syntax-statement and syntax-diagram

representations.

Examples

The examples in this document are coded in a simple style that does not try to

conserve storage, check for errors, achieve fast performance, or demonstrate

recommended practice.

The examples in this document use the xlf90, xlf90_r, xlf95, xlf95_r, xlf, xlf_r,

xlf2003, xlf2003_r, f2003, f77, fort77, f90, and f95 compiler invocation commands

interchangeably. For more substantial source files, one of these commands may be

more suitable than the others, as explained in “Compiling XL Fortran programs”

on page 19.

Some sample programs from this document and some other programs that

illustrate ideas presented in this document are in the directory

/opt/ibmcmp/xlf/11.1/samples.

Notes on path names

The path names shown in this document assume the default installation path for

the XL Fortran compiler. By default, XL Fortran will be installed in the following

directory on the selected disk: /opt/ibmcmp/xlf/11.1/

You can select a different destination (relocation-path) for the compiler. If you

choose a different path, the compiler will be installed in the following directory:

relocation-path/opt/ibmcmp/xlf/11.1/

Notes on the terminology used

Some of the terminology in this document is shortened, as follows:

v The term free source form format often appears as free source form.

v The term fixed source form format often appears as fixed source form.

v The term XL Fortran often appears as XLF.

Related information

The following sections provide information on documentation related to XL

Fortran:

v “IBM XL Fortran publications”

v “Standards and specifications documents” on page xii

v “Other IBM publications” on page xiii

IBM XL Fortran publications

XL Fortran provides product documentation in the following formats:

v README files

README files contain late-breaking information, including changes and

corrections to the product documentation. README files are located by default

in the XL Fortran directory and in the root directory of the installation CD.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the XL Fortran Installation Guide.

About this document xi

v Information center

The information center of searchable HTML files can be launched on a network

and accessed remotely or locally. Instructions for installing and accessing the

online information center are provided in the XL Fortran Installation Guide. The

information center is also viewable on the Web at http://
publib.boulder.ibm.com/infocenter/lnxphelp/v9v111/index.jsp.

v PDF documents

PDF documents are located by default in the /opt/ibmcmp/xlf/11.1/doc/
LANG/pdf/ directory, where LANG is one of en_US or ja_JP. The PDF files are

also available on the Web at http://www.ibm.com/software/awdtools/fortran/
xlfortran/library.

The following files comprise the full set of XL Fortran product manuals:

 Table 2. XL Fortran PDF files

Document title

PDF file

name Description

IBM XL Fortran Advanced

Edition for Linux, V11.1

Installation Guide,

GC23-5896-00

install.pdf Contains information for installing XL Fortran

and configuring your environment for basic

compilation and program execution.

Getting Started with IBM

XL Fortran Advanced

Edition for Linux, V11.1,

GC23-5897-00

getstart.pdf Contains an introduction to the XL Fortran

product, with information on setting up and

configuring your environment, compiling and

linking programs, and troubleshooting

compilation errors.

IBM XL Fortran Advanced

Edition for Linux, V11.1

Compiler Reference,

SC23-5895-00

cr.pdf Contains information about the various

compiler options and environment variables.

IBM XL Fortran Advanced

Edition for Linux, V11.1

Language Reference,

SC23-5894-00

lr.pdf Contains information about the Fortran

programming language as supported by IBM,

including language extensions for portability

and conformance to non-proprietary standards,

compiler directives and intrinsic procedures.

IBM XL Fortran Advanced

Edition for Linux, V11.1

Optimization and

Programming Guide,

SC23-5898-00

opg.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls, floating-point

operations, input/output, application

optimization and parallelization, and the XL

Fortran high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe

Reader, you can download it (subject to license terms) from the Adobe Web site

at http://www.adobe.com.

More documentation related to XL Fortran including redbooks, white papers,

tutorials, and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/fortran/xlfortran/library

Standards and specifications documents

XL Fortran is designed to support the following standards and specifications. You

can refer to these standards for precise definitions of some of the features found in

this document.

v American National Standard Programming Language FORTRAN, ANSI X3.9-1978.

xii XL Fortran Compiler Reference

http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp
http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.adobe.com
http://www.ibm.com/software/awdtools/fortran/xlfortran/library

v American National Standard Programming Language Fortran 90, ANSI X3.198-1992.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

v Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.

v Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991 (E).

v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:1997. (This document uses its informal name, Fortran 95.)

v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:2004. (This document uses its informal name, Fortran 2003.)

v Information technology - Programming languages - Fortran - Enhanced data type

facilities, ISO/IEC JTC1/SC22/WG5 N1379.

v Information technology - Programming languages - Fortran - Floating-point exception

handling, ISO/IEC JTC1/SC22/WG5 N1378.

v Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753

(United States of America, Department of Defense standard). Note that XL

Fortran supports only those extensions documented in this standard that have

also been subsequently incorporated into the Fortran 90 standard.

v OpenMP Application Program Interface Version 2.5, available at

http://www.openmp.org

Other IBM publications

v ESSL for Linux on POWER V4.2 Guide and Reference, SA22-7904, available at

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

Technical support

Additional technical support is available from the XL Fortran Support page at

http://www.ibm.com/software/awdtools/fortran/xlfortran/support. This page

provides a portal with search capabilities to a large selection of technical support

FAQs and other support documents.

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about XL Fortran, visit the product information site at

http://www.ibm.com/software/awdtools/fortran/xlfortran.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

Fortran documentation, send your comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the document, the part number of the document,

the version of XL Fortran, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

About this document xiii

http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp
http://www.ibm.com/software/awdtools/fortran/xlfortran/support
http://www.ibm.com/software/awdtools/fortran/xlfortran

xiv XL Fortran Compiler Reference

Chapter 1. Introduction

IBM XL Fortran Advanced Edition for Linux, V11.1 is an optimizing,

standards-based, command-line compiler for the Linux operating system, running

on PowerPC® hardware with the PowerPC architecture. The XL Fortran compiler

enables application developers to create and maintain optimized 32-bit and 64-bit

applications for the Linux operating system. The compiler also offers a diversified

portfolio of optimization techniques that allow an application developer to exploit

the multi-layered architecture of the PowerPC processor.

The implementation of the Fortran programming language is intended to promote

portability among different environments by enforcing conformance to language

standards. A program that conforms strictly to its language specification will have

maximum portability among different environments. In theory, a program that

compiles correctly with one standards-conforming compiler will compile and

execute correctly under all other conforming compilers, insofar as hardware

differences permit. A program that correctly exploits the extensions to the

programming language in which it is written can improve the efficiency of its

object code.

XL Fortran can be used for large, complex, and computationally intensive

programs. It also supports interlanguage calls with C/C++. For applications that

require SIMD (single-instruction, multiple data) parallel processing, performance

improvements can be achieved through optimization techniques, which may be

less labor-intensive than vector programming. Many of the optimizations

developed by IBM are controlled by compiler options and directives.

© Copyright IBM Corp. 1990, 2007 1

2 XL Fortran Compiler Reference

Chapter 2. Overview of XL Fortran features

This section discusses the features of the XL Fortran compiler, language, and

development environment at a high level. It is intended for people who are

evaluating XL Fortran and for new users who want to find out more about the

product.

Hardware and operating-system support

The XL Fortran V11.1 compiler is supported on several Linux distributions. See the

IBM XL Fortran Advanced Edition for Linux, V11.1 Installation Guide and README

file for a list of supported distributions and requirements.

The compiler, its generated object programs, and runtime library should run on all

POWER3™, POWER4™, POWER5™, POWER5+™, POWER6™, PowerPC 970, and

PowerPC systems with the required software, disk space, and virtual storage.

The POWER3, POWER4, POWER5 , POWER5+, or POWER6 processor is a type of

PowerPC. In this document, any statement or reference to the PowerPC also

applies to the POWER3, POWER4, POWER5, POWER5+, or POWER6 processor.

To take maximum advantage of different hardware configurations, the compiler

provides a number of options for performance tuning based on the configuration

of the machine used for executing an application.

Language support

The XL Fortran language consists of the following:

v The full American National Standard Fortran 90 language (referred to as Fortran

90 or F90), defined in the documents American National Standard Programming

Language Fortran 90, ANSI X3.198-1992 and Information technology - Programming

languages - Fortran, ISO/IEC 1539-1:1991 (E). This language has a superset of the

features found in the FORTRAN 77 standard. It adds many more features that

are intended to shift more of the tasks of error checking, array processing,

memory allocation, and so on from the programmer to the compiler.

v The full ISO Fortran 95 language standard (referred to as Fortran 95 or F95),

defined in the document Information technology - Programming languages - Fortran

- Part 1: Base language, ISO/IEC 1539-1:1997.

v Extensions to the Fortran 95 standard:

– Industry extensions that are found in Fortran products from various compiler

vendors

– Extensions specified in SAA® Fortran
v Partial support of the Fortran 2003 standard

In the XL Fortran Language Reference, extensions to the Fortran 95 language and

Fortran 2003 language are marked as described in the Qualifying elements section.

© Copyright IBM Corp. 1990, 2007 3

Migration support

The XL Fortran compiler helps you to port or to migrate source code among

Fortran compilers by providing full Fortran 90 and Fortran 95 language support,

partial Fortran 2003 language support, and selected language extensions (intrinsic

functions, data types, and so on) from many different compiler vendors.

Throughout this document, we will refer to these extensions as “industry

extensions”.

To protect your investment in FORTRAN 77 source code, you can easily invoke the

compiler with a set of defaults that provide backward compatibility with earlier

versions of XL Fortran. The xlf, xlf_r, f77, and fort77 commands provide maximum

compatibility with existing FORTRAN 77 programs. The default options provided

with the f90, xlf90 and xlf90_r commands give access to the full range of Fortran

90 language features. The default options provided with the f95, xlf95 and xlf95_r

commands give access to the full range of Fortran 95 language features. The

default options provided with the f2003, xlf2003, and xlf2003_r commands give

access to the full range of Fortran 2003 language features.

Additionally, you can name your source files with extensions such as .f77, .f90,

.f95, or .f03 and use the generic compiler invocations such as xlf or xlf_r to

automatically select language-level appropriate defaults.

Source-code conformance checking

To help you find anything in your programs that might cause problems when you

port to or from different FORTRAN 77, Fortran 90, Fortran 95, or Fortran 2003

compilers, the XL Fortran compiler provides options that warn you about features

that do not conform to certain Fortran definitions.

If you specify the appropriate compiler options, the XL Fortran compiler checks

source statements for conformance to the following Fortran language definitions:

v Full American National Standard FORTRAN 77 (-qlanglvl=77std option), full

American National Standard Fortran 90 (-qlanglvl=90std option), full Fortran 95

standard (-qlanglvl=95std option), and full Fortran 2003 Standard

(-qlanglvl=2003std option)

v Fortran 90, less any obsolescent features (-qlanglvl=90pure option)

v Fortran 95, less any obsolescent features (-qlanglvl=95pure option)

v Fortran 2003, less any obsolescent features (-qlanglvl=2003pure option)

v IBM SAA FORTRAN (-qsaa option)

You can also use the langlvl environment variable for conformance checking.

Note: Fortran 2003 conformance checking is based on XL Fortran’s current, subset

implementation of this standard.

Highly configurable compiler

You can invoke the compiler by using the xlf, xlf_r, xlf90, xlf90_r, f90, xlf95,

xlf95_r, f95, xlf2003, xlf2003_r, f2003, f77, or fort77 command. The xlf, xlf_r, and

f77 commands maintain maximum compatibility with the behavior and I/O

formats of XL Fortran Version 2. The xlf90, xlf90_r, and f90 commands provide

more Fortran 90 conformance and some implementation choices for efficiency and

usability. The f95, xlf95 and xlf95_r commands provide more Fortran 95

conformance and some implementation choices for efficiency and usability. The

4 XL Fortran Compiler Reference

xlf2003, xlf2003_r, and f2003 commands provide more Fortran 2003 conformance

and some implementation choices for efficiency and usability. The f77 or fort77

command provides maximum compatibility with the XPG4 behavior.

The main difference between the set of xlf_r, xlf90_r, xlf95_r, and xlf2003_r

commands and the set of xlf, xlf90, f90, xlf95, f95, xlf2003, f2003, f77, and fort77

commands is that the first set links and binds the object files to the thread-safe

components (libraries, and so on). You can have this behavior with the second set

of commands by using the -F compiler option to specify the configuration file

stanza to use. For example:

 xlf -F/etc/opt/ibmcmp/xlf/11.1/xlf.cfg:xlf_r

You can control the actions of the compiler through a set of options. The different

categories of options help you to debug, to optimize and tune program

performance, to select extensions for compatibility with programs from other

platforms, and to do other common tasks that would otherwise require changing

the source code.

To simplify the task of managing many different sets of compiler options, you can

edit the default configuration file or use a customized configuration file instead of

creating many separate aliases or shell scripts.

Related information:

v “Using custom compiler configuration files” on page 10

v “Compiling XL Fortran programs” on page 19

v Chapter 5, “Summary of compiler options by functional category,” on page 45

and Chapter 6, “Detailed descriptions of the XL Fortran compiler options,” on

page 59

v “Understanding XL Fortran messages” on page 284

Diagnostic listings

The compiler output listing has optional sections that you can include or omit. For

information about the applicable compiler options and the listing itself, refer to

“Listings, messages, and compiler information” on page 51 and Chapter 9,

“Understanding XL Fortran compiler listings,” on page 291.

The -S option gives you a true assembler source file.

Symbolic debugger support

You can use gdb and other symbolic debuggers for your programs.

Program optimization

The XL Fortran compiler helps you control the optimization of your programs:

v You can select different levels of compiler optimizations.

v You can turn on separate optimizations for loops, floating point, and other

categories.

v You can optimize a program for a particular class of machines or for a very

specific machine configuration, depending on where the program will run.

The XL Fortran Optimization and Programming Guide provides a road map and

optimization strategies for these features.

Chapter 2. Overview of XL Fortran features 5

6 XL Fortran Compiler Reference

Chapter 3. Setting up and customizing XL Fortran

This section explains how to customize XL Fortran settings for yourself or all users.

The full installation procedure is beyond the scope of this section, which refers you

to the documents that cover the procedure in detail.

This section can also help you to diagnose problems that relate to installing or

configuring the compiler.

Some of the instructions require you to be a superuser, and so they are only

applicable if you are a system administrator.

Where to find installation instructions

To install the compiler, refer to these documents (preferably in this order):

1. Read the file called /opt/ibmcmp/xlf/11.1/doc/en_US/README, and follow any

directions it gives. It contains information that you should know and possibly

distribute to other people who use XL Fortran.

2. Read the XL Fortran Installation Guide to see if there are any important notices

you should be aware of or any updates you might need to apply to your

system before doing the installation.

3. You should be familiar with the RPM Package Manager (RPM) for installing

this product. For information on using RPM, visit the RPM Web page at URL

http://www.rpm.org/, or type rpm --help at the command line.

If you are already experienced with Linux software installation, you can use the

rpm command to install all the images from the distribution medium.

Using the compiler on a network file System

If you want to use the XL Fortran compiler on a Network File System server for a

networked cluster of machines, use the Network Install Manager.

The following directories contain XL Fortran components:

v /opt/ibmcmp/xlf/11.1/bin contains the compiler invocation commands.

v /opt/ibmcmp/xlf/11.1/exe contains executables and files that the compiler needs.

v /opt/ibmcmp/xlf/11.1/lib and /opt/ibmcmp/xlf/11.1/lib64 contain the

non-redistributable libraries.

v /opt/ibmcmp/lib/ and /opt/ibmcmp/lib64/ contain the redistributable libraries.

v /opt/ibmcmp/xlf/11.1/include contains the include files and supplied .mod files.

v /opt/ibmcmp/msg contains the message catalogues for the redistribtable runtime

libraries.

You must copy the /etc/opt/ibmcmp/xlf/11.1/xlf.cfg file from the server to the

client. The /etc/opt/ibmcmp/xlf/11.1 directory contains the configuration files

specific to a machine, and it should not be mounted from the server.

Correct settings for environment variables

You can set and export a number of environment variables for use with the

operating system. The following sections deal with the environment variables that

have special significance to the XL Fortran compiler, application programs, or both.

© Copyright IBM Corp. 1990, 2007 7

http://www.rpm.org/

Environment variable basics

You can set the environment variables from shell command lines or from within

shell scripts. (For more information about setting environment variables, see the

man page help for the shell you are using.) If you are not sure which shell is in

use, a quick way to find out is to issue echo $SHELL to show the name of the

current shell.

To display the contents of an environment variable, enter the command

echo $var_name.

Note: For the remainder of this document, most examples of shell commands use

Bash notation instead of repeating the syntax for all shells.

Environment variables for national language support

Diagnostic messages and the listings from the compiler appear in the default

language that was specified at installation of the operating system. If you want the

messages and listings to appear in another language, you can set and export the

following environment variables before executing the compiler:

LANG Specifies the locale. A locale is divided into categories. Each

category contains a specific aspect of the locale data. Setting LANG

may change the national language for all the categories.

NLSPATH Refers to a list of directory names where the message catalogs may

be found.

For example, to specify the Japanese locale, set the LANG environment variable to

ja_JP.

Substitute any valid national language code for ja_JP, provided the associated

message catalogs are installed.

These environment variables are initialized when the operating system is installed

and may be different from the ones that you want to use with the compiler.

Each category has an environment variable associated with it. If you want to

change the national language for a specific category but not for other categories,

you can set and export the corresponding environment variable.

For example:

LC_MESSAGES

Specifies the national language for the messages that are issued. It affects

messages from the compiler and XLF-compiled programs, which may be

displayed on the screen or stored in a listing, module, or other compiler

output file.

LC_TIME

Specifies the national language for the time format category. It primarily

affects the compiler listings.

LC_CTYPE

Defines character classification, case conversion, and other character

attributes. For XL Fortran, it primarily affects the processing of multibyte

characters.

LC_NUMERIC

Specifies the format to use for input and output of numeric values. Setting

8 XL Fortran Compiler Reference

this variable in the shell does not affect either the compiler or XLF-compiled

programs. The first I/O statement in a program sets the LC_NUMERIC

category to POSIX. Therefore, programs that require a different setting

must reset it after this point and should restore the setting to POSIX for all

I/O statements.

Notes:

1. Specifying the LC_ALL environment variable overrides the value of the LANG

and other LC_ environment variables.

2. If the XL Fortran compiler or application programs cannot access the message

catalogs or retrieve a specific message, the message appears in U.S. English.

3. The backslash character, \, has the same hexadecimal code, X'5C', as the Yen

symbol and can appear as the Yen symbol on the display if the locale is

Japanese.

Related information: “Selecting the language for runtime messages” on page 33.

See the Linux-specific documentation and man page help for

more information about National Language Support

environment variables and locale concepts.

Setting library search paths

If your executable program is linked with shared libraries, you need to set the

runtime library search paths. There are two ways to set runtime library search

paths. You can use:

v The -R (or -rpath) compile/link option, or

v The LD_LIBRARY_PATH and LD_RUN_PATH environment variables

Specifying search paths with the compile/link -R (or -rpath) option has the effect

of writing the specified runtime library search paths into the executable program.

If you use the -L option, library search paths are searched at link time, but are not

written into the executable as runtime library search paths. For example:

Compile and link

xlf95 -L/usr/lib/mydir1 -R/usr/lib/mydir1 -L/usr/lib/mydir2 -R/usr/lib/mydir2

 -lmylib1 -lmylib2 test.f

-L directories are searched at link time.

-R directories are searched at run time.

You can also use the LD_LIBRARY_PATH and LD_RUN_PATH environment

variables to specify library search paths. Use LD_RUN_PATH to specify the

directories that are to be searched for libraries at run time. Use

LD_LIBRARY_PATH to specify the directories that are to be searched for libraries

at both link and run time.

For more information on linker options and environment variables, see the man

pages for the ld command.

PDFDIR: Specifying the directory for PDF profile information

When you compile a Fortran program with the -qpdf compiler option, you can

specify the directory where profiling information is stored by setting the PDFDIR

environment variable to the name of the directory. The compiler creates the files to

hold the profile information. XL Fortran updates the files when you run an

application that is compiled with the -qpdf1 option.

Chapter 3. Setting up and customizing XL Fortran 9

Because problems can occur if the profiling information is stored in the wrong

place or is updated by more than one application, you should follow these

guidelines:

v Always set the PDFDIR variable when using the -qpdf option.

v Store the profiling information for each application in a different directory, or

use the -qpdf1=pdfname, -qpdf2=pdfname option to explicitly name the

temporary profiling files according to the template provided.

v Leave the value of the PDFDIR variable the same until you have completed the

PDF process (compiling, running, and compiling again) for the application.

TMPDIR: Specifying a directory for temporary files

The XL Fortran compiler creates a number of temporary files for use during

compilation. An XL Fortran application program creates a temporary file at run

time for a file opened with STATUS=’SCRATCH’. By default, these files are placed

in the directory /tmp.

If you want to change the directory where these files are placed, perhaps because

/tmp is not large enough to hold all the temporary files, set and export the

TMPDIR environment variable before running the compiler or the application

program.

If you explicitly name a scratch file by using the XLFSCRATCH_unit method

described below, the TMPDIR environment variable has no effect on that file.

XLFSCRATCH_unit: Specifying names for scratch files

To give a specific name to a scratch file, you can set the runtime option

scratch_vars=yes; then set one or more environment variables with names of the

form XLFSCRATCH_unit to file names to use when those units are opened as

scratch files. See Naming scratch files in the XL Fortran Optimization and Programming

Guide for examples.

XLFUNIT_unit: Specifying names for implicitly connected files

To give a specific name to an implicitly connected file or a file opened with no

FILE= specifier, you can set the runtime option unit_vars=yes; then set one or

more environment variables with names of the form XLFUNIT_unit to file names.

See Naming files that are connected with no explicit name in the XL Fortran

Optimization and Programming Guide for examples.

Using custom compiler configuration files

XL Fortran generates a default configuration file /etc/opt/ibmcmp/xlf/11.1/xlf.cfg

at installation time. (See the XL Fortran Installation Guide for more information on

the various tools you can use to generate the configuration file during installation.)

The configuration file specifies information that the compiler uses when you

invoke it.

If you are running on a single-user system, or if you already have a compilation

environment with compilation scripts or makefiles, you may want to leave the

default configuration file as it is.

Otherwise, especially if you want many users to be able to choose among several

sets of compiler options, you may want to use custom configuration files for

specific needs. For example, you might want to enable -qlist by default for

compilations using the xlf compiler invocation command. Rather than a user being

10 XL Fortran Compiler Reference

required to specify this option on the command line for every compilation, it

would automatically be in effect every time the compiler is invoked with the xlf

command.

You have several options for customizing configuration files:

v You can directly edit the default configuration file. In this case, the customized

options will apply for all users for all compilations. The disadvantage of this

option is that you will need to reapply your customizations to the new default

configuration file that is provided every time you install a compiler update.

v You can use the default configuration file as the basis of customized copies that

you specify at compile time with the -F option. In this case, the custom file

overrides the default file on a per-compilation basis. Again, the disadvantage of

this option is that you will need to reapply your customizations to the new

default configuration file that is provided every time you install a compiler

update.

v You can create custom, or user-defined, configuration files that are specified at

compile time with the XLF_USR_CONFIG environment variable. In this case, the

custom user-defined files complement, rather than override, the default

configuration file, and they can be specified on a per-compilation or global basis.

The advantage of this option is that you do not need to modify your existing,

custom configuration files when a new system configuration file is installed

during an update installation. Procedures for creating custom, user-defined

configuration files are provided below.

Related information:

v “-F” on page 67

Creating custom configuration files

If you use the XLF_USR_CONFIG environment variable to instruct the compiler to

use a custom user-defined configuration file, the compiler will examine and

process the settings in that user-defined configuration file before looking at the

settings in the default system configuration file.

To create a custom user-defined configuration file, you add stanzas which specify

multiple levels of the use attribute. The user-defined configuration file can

reference definitions specified elsewhere in the same file, as well as those specified

in the system configuration file. For a given compilation, when the compiler looks

for a given stanza, it searches from the beginning of the user-defined configuration

file and then follows any other stanza named in the use attribute, including those

specified in the system configuration file.

If the stanza named in the use attribute has a name different from the stanza

currently being processed, then the search for the use stanza starts from the

beginning of the user-defined configuration file. This is the case for stanzas A, C,

and D in the example shown below. However, if the stanza in the use attribute has

the same name as the stanza currently being processed, as is the case of the two B

stanzas in the example, then the search for the use stanza starts from the location

of the current stanza.

The following example shows how you can use multiple levels for the use

attribute. This example uses the options attribute to help show how the use

attribute works, but any other attribute, such as libraries could also be used.

Chapter 3. Setting up and customizing XL Fortran 11

In this example:
v stanza A uses option sets A and Z

v stanza B uses option sets B1, B2, D, A, and Z

v stanza C uses option sets C, A, and Z

v stanza D uses option sets D, A, and Z

Attributes are processed in the same order as the stanzas. The order in which the

options are specified is important for option resolution. Ordinarily, if an option is

specified more than once, the last specified instance of that option wins.

By default, values defined in a stanza in a configuration file are added to the list of

values specified in previously processed stanzas. For example, assume that the

XLF_USR_CONFIG environment variable is set to point to the user-defined

configuration file at ~/userconfig1. With the user-defined and default configuration

files shown in the example below, the compiler will reference the xlf stanza in the

user-defined configuration file and use the option sets specified in the

configuration files in the following order: A1, A, D, and C.

xlf: use=xlf

 options= <A1>

DEFLT: use=DEFLT

 options=<D>

Figure 2. Custom user-defined configuration

file ~/userconfig1

xlf: use=DEFLT

 options=<A>

DEFLT:

 options=<C>

Figure 3. Default configuration file xlf.cfg

Overriding the default order of attribute values

You can override the default order of attribute values by changing the assignment

operator(=) for any attribute in the configuration file.

 Table 3. Assignment operators and attribute ordering

Assignment

Operator

Description

-= Prepend the following values before any values determined by the default

search order.

:= Replace any values determined by the default search order with the

following values.

A: use =DEFLT

 options=<set of options A>

B: use =B

 options=<set of options B1>

B: use =D

 options=<set of options B2>

C: use =A

 options=<set of options C>

D: use =A

 options=<set of options D>

DEFLT:

 options=<set of options Z>

Figure 1. Sample configuration file

12 XL Fortran Compiler Reference

Table 3. Assignment operators and attribute ordering (continued)

Assignment

Operator

Description

+= Append the following values after any values determined by the default

search order.

For example, assume that the XLF_USR_CONFIG environment variable is set to

point to the custom user-defined configuration file at ~/userconfig2.

xlf_prepend: use=xlf

 options-=<B1>

xlf_replace:use=xlf

 options:=<B2>

xlf_append:use=xlf

 options+=<B3>

DEFLT: use=DEFLT

 options=<D>

Figure 4. Custom user-defined configuration

file ~/userconfig2

xlf: use=DEFLT

 options=

DEFLT:

 options=<C>

Figure 5. Default configuration file xlf.cfg

The stanzas in the configuration files shown above will use the following option

sets, in the following orders:

1. stanza xlf uses B, D, and C

2. stanza xlf_prepend uses B1, B, D, and C

3. stanza xlf_replace uses B2

4. stanza xlf_append uses B, D, C, and B3

You can also use assignment operators to specify an attribute more than once. For

example:

Examples of stanzas in custom configuration files

 DEFLT: use=DEFLT

 options = -g

This example specifies that the -g option is to

be used in all compilations.

xlf: use=xlf

 options+=-qlist

xlf_r: use=xlf_r

 options+=-qlist

This example specifies that -qlist be used for

any compilation invoked by the xlf and xlf_r

commands. This -qlist specification overrides

the default setting of -qlist specified in the

system configuration file.

DEFLT: use=DEFLT

 libraries=-L/home/user/lib,-lmylib

This example specifies that all compilations

should link with /home/user/lib/libmylib.a.

xlf:

 use=xlf

 options-=-Isome_include_path

 options+=some options

Figure 6. Using additional assignment operations

Chapter 3. Setting up and customizing XL Fortran 13

Editing the default configuration file

The configuration file specifies information that the compiler uses when you

invoke it. XL Fortran provides the default configuration file /etc/opt/ibmcmp/xlf/
11.1/xlf.cfg at installation time.

If you want many users to be able to choose among several sets of compiler

options, you may want to add new named stanzas to the configuration file and to

create new commands that are links to existing commands. For example, you could

specify something similar to the following to create a link to the xlf95 command:

ln -s /opt/ibmcmp/xlf/11.1/bin/xlf95 /home/username/bin/my_xlf95

When you run the compiler under another name, it uses whatever options,

libraries, and so on, that are listed in the corresponding stanza.

Notes:

1. The configuration file contains other named stanzas to which you may want to

link.

2. If you make any changes to the configuration file and then move or copy your

makefiles to another system, you will also need to copy the changed

configuration file.

3. You cannot use tabs as separator characters in the configuration file. If you

modify the configuration file, make sure that you use spaces for any

indentation.

Attributes

The configuration file contains the following attributes:

use The named and local stanzas provide the values for attributes. For

single-valued attributes, values in the use attribute apply if there is

no value in the local, or default, stanza. For comma-separated lists,

the values from the use attribute are added to the values from the

local stanza. You can only use a single level of the use attribute.

Do not specify a use attribute that names a stanza with another

use attribute.

crt When invoked in 32-bit mode, the default (which is the path name

of the object file that contains the startup code), passed as the first

parameter to the linkage editor.

crt_64 When invoked in 64-bit mode, using -q64 for example, the path

name of the object file that contains the startup code, passed as the

first parameter to the linkage editor.

mcrt Same as for crt, but the object file contains profiling code for the -p

option.

mcrt_64 Same as for crt_64, but the object file contains profiling code for

the -p option.

gcrt Same as crt, but the object file contains profiling code for the -pg

option.

gcrt_64 Same as crt_64, but the object file contains profiling code for the

-pg option.

14 XL Fortran Compiler Reference

gcc_libs When invoked in 32–bit mode, the linker options to specify the

path to the GCC libraries and to link the GCC library.

gcc_libs_64 When invoked in 64–bit mode, the linker options to specify the

path to the GCC libraries and to link the GCC library.

gcc_path Specifies the path to the 32–bit tool chain.

gcc_path_64 Specifies the path to the 64–bit tool chain.

cpp The absolute path name of the C preprocessor, which is

automatically called for files ending with a specific suffix (usually

.F).

xlf The absolute path name of the main compiler executable file. The

compiler commands are driver programs that execute this file.

code The absolute path name of the optimizing code generator.

xlfopt Lists names of options that are assumed to be compiler options, for

cases where, for example, a compiler option and a linker option

use the same letter. The list is a concatenated set of single-letter

flags. Any flag that takes an argument is followed by a colon, and

the whole list is enclosed by double quotation marks.

as The absolute path name of the assembler.

asopt Lists names of options that are assumed to be assembler options

for cases where, for example, a compiler option and an assembler

option use the same letter. The list is a concatenated set of

single-letter flags. Any flag that takes an argument is followed by a

colon, and the whole list is enclosed by double quotation marks.

You may find it more convenient to set up this attribute than to

pass options to the assembler through the -W compiler option.

ld The absolute path name of the linker.

ldopt Lists names of options that are assumed to be linker options for

cases where, for example, a compiler option and a linker option

use the same letter. The list is a concatenated set of single-letter

flags. Any flag that takes an argument is followed by a colon, and

the whole list is enclosed by double quotation marks.

 You may find it more convenient to set up this attribute than to

pass options to the linker through the -W compiler option.

However, most unrecognized options are passed to the linker

anyway.

options A string of options that are separated by commas. The compiler

processes these options as if you entered them on the command

line before any other option. This attribute lets you shorten the

command line by including commonly used options in one central

place.

cppoptions A string of options that are separated by commas, to be processed

by cpp (the C preprocessor) as if you entered them on the

command line before any other option. This attribute is needed

because some cpp options are usually required to produce output

that can be compiled by XL Fortran. The default is -C, which

preserves any C-style comments in the output. Also, refer to the

“-qfpp” on page 138 and “-qppsuborigarg” on page 203 options for

other useful cpp options.

Chapter 3. Setting up and customizing XL Fortran 15

fsuffix The allowed suffix for Fortran source files. The default is f. The

compiler requires that all source files in a single compilation have

the same suffix. Therefore, to compile files with other suffixes, such

as f95, you must change this attribute in the configuration file or

use the -qsuffix compiler option. For more information on -qsuffix,

see “-qsuffix” on page 237.

cppsuffix The suffix that indicates a file must be preprocessed by the C

preprocessor (cpp) before being compiled by XL Fortran. The

default is F.

osuffix The suffix used to recognize object files that are specified as input

files. The default is o.

ssuffix The suffix used to recognize assembler files that are specified as

input files. The default is s.

libraries -l options, which are separated by commas, that specify the

libraries used to link all programs.

smplibraries Specifies the libraries that are used to link programs that you

compiled with the -qsmp compiler option.

hot Absolute path name of the program that does array language

transformations.

ipa Absolute path name of the program that performs interprocedural

optimizations, loop optimizations, and program parallelization.

bolt Absolute path name of the binder.

defaultmsg Absolute path name of the default message files.

include Indicates the search path that is used for compilation include files

and module files.

include_32 Indicates the search path that is used for 32-bit compilation include

files.

include_64 Indicates the search path that is used for 64-bit compilation include

files.

Note: To specify multiple search paths for compilation include files, separate each

path location with a comma as follows:

include = -l/path1, -l/path2, ...

Related information: You can use the “-F” on page 67 option to select a different

configuration file, a specific stanza in the configuration file,

or both.

Determining which level of XL Fortran is installed

Sometimes, you may not be sure which level of XL Fortran is installed on a

particular machine. You would need to know this information before contacting

software support.

To check whether the latest level of the product has been installed through the

system installation procedure, issue the command:

 rpm -qa | grep xlf.cmp-11.1 | xargs rpm -qi

The result includes the version, release, modification, and fix level of the compiler

image installed on the system.

16 XL Fortran Compiler Reference

You can also use the -qversion compiler option to display the version, release, and

level of the compiler and its components.

Running two levels of XL Fortran

It is possible for two different levels of the XL Fortran compiler to coexist on one

system. This allows you to invoke one level by default and to invoke the other one

whenever you explicitly choose to.

To do this, consult the XL Fortran Installation Guide for details.

Chapter 3. Setting up and customizing XL Fortran 17

18 XL Fortran Compiler Reference

Chapter 4. Editing, compiling, linking, and running XL Fortran

programs

Most Fortran program development consists of a repeating cycle of editing,

compiling and linking (which is by default a single step), and running. If you

encounter problems at some part of this cycle, you may need to refer to the

sections that follow this one for help with optimizing, debugging, and so on.

Prerequisite information:

1. Before you can use the compiler, all the required Linux settings (for example,

certain environment variables and storage limits) must be correct for your user

ID; for details, see “Correct settings for environment variables” on page 7.

2. To learn more about writing and optimizing XL Fortran programs, refer to the

XL Fortran Language Reference and XL Fortran Optimization and Programming

Guide.

Editing XL Fortran source files

To create Fortran source programs, you can use any of the available text editors,

such as vi or emacs. Source programs must have a suffix of .f unless the fsuffix

attribute in the configuration file specifies a different suffix, or the -qsuffix

compiler option is used. You can also use a suffix of .F if the program contains C

preprocessor (cpp) directives that must be processed before compilation begins.

Source files with the .f77, .f90, .f95, or .f03 suffix are also valid.

For the Fortran source program to be a valid program, it must conform to the

language definition that is specified in the XL Fortran Language Reference.

Compiling XL Fortran programs

To compile a source program, use one of the xlf90, xlf90_r, f90, xlf95, xlf95_r, f95,

xlf2003, xlf2003_r, f2003, xlf, xlf_r, f77, or fort77 commands, which have the form:

��

xlf90

xlf90_r

f90

xlf95

xlf95_r

f95

xlf2003

xlf2003_r

f2003

xlf

xlf_r

f77

fort77

�

input_file

cmd_line_opt

��

These commands all accept essentially the same Fortran language. The main

difference is that they use different default options (which you can see by reading

the file /etc/opt/ibmcmp/xlf/11.1/xlf.cfg).

© Copyright IBM Corp. 1990, 2007 19

The invocation command performs the necessary steps to compile the Fortran

source files, assemble any .s files, and link the object files and libraries into an

executable program. In particular, the xlf_r, xlf90_r, xlf95_r, and xlf2003_r,

commands use the thread-safe components (libraries, and so on) to link and bind

object files.

The following table summarizes the invocation commands that you can use:

 Table 4. XL Fortran Invocation commands

Driver

Invocation Path or Location Chief Functionality

Linked

Libraries

xlf90, f90 /opt/ibmcmp/xlf/11.1/bin Fortran 90 libxlf90.so

f90 /opt/ibmcmp/xlf/11.1/bin Fortran 90 libxlf90.so

xlf90_r /opt/ibmcmp/xlf/11.1/bin Threadsafe Fortran 90 libxlf90_r.so

xlf95, f95 /opt/ibmcmp/xlf/11.1/bin Fortran 95 libxlf90.so

f95 /opt/ibmcmp/xlf/11.1/bin Fortran 95 libxlf90.so

xlf95_r /opt/ibmcmp/xlf/11.1/bin Threadsafe Fortran 95 libxlf90_r.so

xlf2003 /opt/ibmcmp/xlf/11.1/bin Fortran 2003 libxlf90.so

xlf2003_r /opt/ibmcmp/xlf/11.1/bin Threadsafe Fortran 2003 libxlf90.so

f2003 /opt/ibmcmp/xlf/11.1/bin Fortran 2003 libxlf90.so

xlf /opt/ibmcmp/xlf/11.1/bin FORTRAN 77 libxlf90.so

xlf_r /opt/ibmcmp/xlf/11.1/bin Threadsafe FORTRAN 77 libxlf90_r.so

f77 or fort77 /opt/ibmcmp/xlf/11.1/bin FORTRAN 77 libxlf90.so

The invocation commands have the following implications for directive triggers:

v For f77, fort77, f90, f95, f2003, xlf, xlf90, xlf95, and xlf2003, the directive trigger

is IBM* by default.

v For all other commands, the directive triggers are IBM* and IBMT by default. If

you specify -qsmp, the compiler also recognizes the IBMP, SMP$, and $OMP

trigger constants. If you specify the -qsmp=omp option, the compiler only

recognizes the $OMP trigger constant.

If you specify the -qsmp compiler option, the following occurs:

v The compiler turns on automatic parallelization.

v The compiler recognizes the IBMP, IBMT, IBM*, SMP$, and $OMP directive

triggers.

XL Fortran provides the library libxlf90_t.so, in addition to libxlf90_r.so. The

library libxlf90_r.so is a superset of libxlf90_t.so. The file xlf.cfg is set up to link to

libxlf90_r.so automatically when you use the xlf90_r, xlf95_r, and xlf_r

commands.libxlf90_t.so is a partial thread-support runtime library. It will be

installed as /opt/ibmcmp/lib/libxlf90_t.so with one restriction on its use: because

routines in the library are not thread-reentrant, only one Fortran thread at a time

can perform I/O operations or invoke Fortran intrinsics in a multithreaded

application that uses the library. To avoid the thread synchronization overhead in

libxlf90_r.so when an application is threaded, you can use libxlf90_t.so in

multithreaded applications where there is only one Fortran thread.

When you bind a multithreaded executable with multiple Fortran threads,

libxlf90_r.so should be used. Note that using the xlf_r , xlf90_r, xlf95_r, or

xlf2003_r invocation command ensures the proper linking.

20 XL Fortran Compiler Reference

Compiling Fortran 90 or Fortran 95 programs

The f90, xlf90, and xlf90_r commands make your programs conform more closely

to the Fortran 90 standard than do the xlf, xlf_r, and f77/fort77 commands. The

f95, xlf95, and xlf95_r commands make your programs conform more closely to

the Fortran 95 standard than do the xlf, xlf_r, and f77/fort77 commands. f90,

xlf90, xlf90_r, f95, xlf95, and xlf95_r are the preferred commands for compiling

any new programs. They all accept Fortran 90 free source form by default; to use

them for fixed source form, you must use the -qfixed option. I/O formats are

slightly different between these commands and the other commands. I/O formats

also differ between the set of f90, xlf90 and xlf90_r commands and the set of f95,

xlf95 and xlf95_r commands. We recommend that you switch to the Fortran 95

formats for data files whenever possible.

By default, the f90, xlf90 and xlf90_r commands do not conform completely to the

Fortran 90 standard. Also, by default, the f95, xlf95 and xlf95_r commands do not

conform completely to the Fortran 95 standard. If you need full Fortran 90 or

Fortran 95 compliance, compile with any of the following additional compiler

options (and suboptions):

-qnodirective -qnoescape -qextname -qfloat=nomaf:nofold -qnoswapomp

-qlanglvl=90std

-qlanglvl=95std

Also, specify the following runtime options before running the program, with a

command similar to one of the following:

export XLFRTEOPTS="err_recovery=no:langlvl=90std"

export XLFRTEOPTS="err_recovery=no:langlvl=95std"

The default settings are intended to provide the best combination of performance

and usability. Therefore, it is usually a good idea to change them only when

required. Some of the options above are only required for compliance in very

specific situations. For example, you only need to specify -qextname when an

external symbol, such as a common block or subprogram, is named main.

Compiling Fortran 2003 programs

The f2003, xlf2003, and xlf2003_r commands make your programs conform more

closely to the Fortran 2003 Standard than do the xlf or xlf_r commands. The

Fortran 2003 commands accept free source form by default. I/O formats for the

Fortran 2003 commands are the same as for the f95, xlf95, and xlf95_r commands.

The Fortran 2003 commands format infinity and NaN floating-point values

differently from previous commands.

By default, the f2003, xlf2003, and xlf2003_r commands do not conform completely

to the Fortran 2003 standard. If you need full compliance, compile with the

following additional compiler suboptions:

-qlanglvl=2003std -qnodirective -qnoescape -qextname -qfloat=nomaf:rndsngl:nofold

 -qnoswapomp -qstrictieeemod

Also specify the following runtime options:

XLFRTEOPTS="err_recovery=no:langlvl=2003std:iostat_end=2003std:internal_nldelim=2003std"

Compiling XL Fortran SMP programs

You can use the xlf_r, xlf90_r, xlf95_r, or xlf2003_r command to compile XL

Fortran SMP programs. The xlf_r command is similar to the xlf command; the

xlf90_r command is similar to the xlf90 command; the xlf95_r command is similar

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 21

to the xlf95 command; the xlf2003_r command is similar to the xlf2003 command.

The main difference is that the thread-safe components are used to link and bind

the object files if you specify the xlf_r, xlf90_r, xlf95_r, or xlf2003_r command.

Note that using any of these commands alone does not imply parallelization. For

the compiler to recognize the SMP directives and activate parallelization, you must

also specify -qsmp. In turn, you can only specify the -qsmp option in conjunction

with one of these six invocation commands. When you specify -qsmp, the driver

links in the libraries specified on the smplibraries line in the active stanza of the

configuration file.

POSIX pthreads API support

XL Fortran supports thread programming with the IEEE 1003.1-2001 (POSIX)

standard pthreads API.

To compile and then link your program with the standard interface libraries, use

the xlf_r, xlf90_r, xlf95_r, or xlf2003_r command. For example, you could specify:

xlf95_r test.f

Compilation order for Fortran programs

If you have a program unit, subprogram, or interface body that uses a module,

you must first compile the module. If the module and the code that uses the

module are in separate files, you must first compile the file that contains the

module. If they are in the same file, the module must come before the code that

uses it in the file. If you change any entity in a module, you must recompile any

files that use that module.

Canceling a compilation

To stop the compiler before it finishes compiling, press Ctrl+C in interactive mode,

or use the kill command.

XL Fortran input files

The input files to the compiler are:

Source Files (.f or .F suffix)

All .f, .f77, .f90, .f95, .f03, and .F, .F77, .F90, .F95, and .F03 files are source

files for compilation. The compiler compiles source files in the order you

specify on the command line. If it cannot find a specified source file, the

compiler produces an error message and proceeds to the next file, if one

exists. Files with a suffix of .F are passed through the C preprocessor (cpp)

before being compiled.

 Include files also contain source and often have different suffixes from .f.

Related information: See “Passing Fortran files through the C

preprocessor” on page 28.

The fsuffix and cppsuffix attributes in “Editing the default configuration

file” on page 14 and the “-qsuffix” on page 237 let you select a different

suffix.

Object Files (.o suffix)

All .o files are object files. After the compiler compiles the source files, it

uses the ld command to link-edit the resulting .o files, any .o files that you

specify as input files, and some of the .o and .a files in the product and

system library directories. It then produces a single executable output file.

22 XL Fortran Compiler Reference

Related information: See “Linking” on page 55 and “Linking XL Fortran

programs” on page 30.

The osuffix attribute, which is described in “Editing the default

configuration file” on page 14 and the “-qsuffix” on page 237, lets you

select a different suffix.

Assembler Source Files (.s suffix)

The compiler sends any specified .s files to the assembler (as). The

assembler output consists of object files that are sent to the linker at link

time.

Related information: The ssuffix attribute, which is described in “Editing

the default configuration file” on page 14 and the

“-qsuffix” on page 237, lets you select a different

suffix.

Shared Object or Library Files (.so suffix)

These are object files that can be loaded and shared by multiple processes

at run time. When a shared object is specified during linking, information

about the object is recorded in the output file, but no code from the shared

object is actually included in the output file.

Configuration Files (.cfg suffix)

The contents of the configuration file determine many aspects of the

compilation process, most commonly the default options for the compiler.

You can use it to centralize different sets of default compiler options or to

keep multiple levels of the XL Fortran compiler present on a system.

 The default configuration file is /etc/opt/ibmcmp/xlf/11.1/xlf.cfg.

Related information: See “Using custom compiler configuration files” on

page 10 and “-F” on page 67 for information about

selecting the configuration file.

Module Symbol Files: modulename.mod

A module symbol file is an output file from compiling a module and is an

input file for subsequent compilations of files that USE that module. One

.mod file is produced for each module, so compiling a single source file

may produce multiple .mod files.

Related information: See “-I” on page 70 and “-qmoddir” on page 181.

Profile Data Files

 The -qpdf1 option produces runtime profile information for use in

subsequent compilations. This information is stored in one or more hidden

files with names that match the pattern “.*pdf*”.

Related information: See “-qpdf1, -qpdf2” on page 192.

XL Fortran Output files

The output files that XL Fortran produces are:

Executable Files: a.out

By default, XL Fortran produces an executable file that is named a.out in

the current directory.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 23

Related information: See “-o” on page 78 for information on selecting a

different name and “-c” on page 64 for information

on generating only an object file.

Object Files: filename.o

If you specify the -c compiler option, instead of producing an executable

file, the compiler produces an object file for each specified .f source file,

and the assembler produces an object file for each specified .s source file.

By default, the object files have the same file name prefixes as the source

files and appear in the current directory.

Related information: See “-c” on page 64 and “Linking XL Fortran

programs” on page 30. For information on renaming

the object file, see “-o” on page 78.

Assembler Source Files: filename.s

If you specify the -S compiler option, instead of producing an executable

file, the XL Fortran compiler produces an equivalent assembler source file

for each specified .f source file. By default, the assembler source files have

the same file name prefixes as the source files and appear in the current

directory.

Related information: See “-S” on page 270 and “Linking XL Fortran

programs” on page 30. For information on renaming

the assembler source file, see “-o” on page 78.

Compiler Listing Files: filename.lst

By default, no listing is produced unless you specify one or more

listing-related compiler options. The listing file is placed in the current

directory, with the same file name prefix as the source file and an

extension of .lst.

Related information: See “Listings, messages, and compiler information”

on page 51.

Module Symbol Files: modulename.mod

Each module has an associated symbol file that holds information needed

by program units, subprograms, and interface bodies that USE that

module. By default, these symbol files must exist in the current directory.

Related information: For information on putting .mod files in a different

directory, see “-qmoddir” on page 181.

cpp-Preprocessed Source Files: Ffilename.f

If you specify the -d option when compiling a file with a .F suffix, the

intermediate file created by the C preprocessor (cpp) is saved rather than

deleted.

Related information: See “Passing Fortran files through the C

preprocessor” on page 28 and “-d” on page 66.

Profile Data Files (.*pdf*)

These are the files that the -qpdf1 option produces. They are used in

subsequent compilations to tune optimizations that are based on actual

execution results.

Related information: See “-qpdf1, -qpdf2” on page 192.

24 XL Fortran Compiler Reference

Scope and precedence of option settings

You can specify compiler options in any of three locations. Their scope and

precedence are defined by the location you use. (XL Fortran also has comment

directives, such as SOURCEFORM, that can specify option settings. There is no

general rule about the scope and precedence of such directives.)

 Location Scope Precedence

In a stanza of the configuration

file.

All compilation units in all files

compiled with that stanza in effect.

Lowest

On the command line. All compilation units in all files

compiled with that command.

Medium

In an @PROCESS directive.

(XL Fortran also has comment

directives, such as

SOURCEFORM, that

can specify option settings.

There is no general rule

about the scope and

precedence of such

directives.)

The following compilation unit. Highest

If you specify an option more than once with different settings, the last setting

generally takes effect. Any exceptions are noted in the individual descriptions in

the Chapter 6, “Detailed descriptions of the XL Fortran compiler options,” on page

59 and are indexed under “conflicting options”.

Specifying options on the command line

XL Fortran supports the traditional UNIX® method of specifying command-line

options, with one or more letters (known as flags) following a minus sign:

 xlf95 -c file.f

You can often concatenate multiple flags or specify them individually:

 xlf95 -cv file.f # These forms

 xlf95 -c -v file.f # are equivalent

(There are some exceptions, such as -pg, which is a single option and not the same

as -p -g.)

Some of the flags require additional argument strings. Again, XL Fortran is flexible

in interpreting them; you can concatenate multiple flags as long as the flag with an

argument appears at the end. The following example shows how you can specify

flags:

All of these commands are equivalent.

 xlf95 -g -v -o montecarlo -p montecarlo.f

 xlf95 montecarlo.f -g -v -o montecarlo -p

 xlf95 -g -v montecarlo.f -o montecarlo -p

 xlf95 -g -v -omontecarlo -p montecarlo.f

Because -o takes a blank-delimited argument,

the -p cannot be concatenated.

 xlf95 -gvomontecarlo -p montecarlo.f

Unless we switch the order.

 xlf95 -gvpomontecarlo montecarlo.f

If you are familiar with other compilers, particularly those in the XL family of

compilers, you may already be familiar with many of these flags.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 25

You can also specify many command-line options in a form that is intended to be

easy to remember and make compilation scripts and makefiles relatively

self-explanatory:

��

�

�

 -q option_keyword

:

=

suboption

,

=

argument

 ��

This format is more restrictive about the placement of blanks; you must separate

individual -q options by blanks, and there must be no blank between a -q option

and a following argument string. Unlike the names of flag options, -q option

names are not case-sensitive except that the q must be lowercase. Use an equal

sign to separate a -q option from any arguments it requires, and use colons to

separate suboptions within the argument string.

For example:

 xlf95 -qddim -qXREF=full -qfloat=nomaf:rsqrt -O3 -qcache=type=c:level=1 file.f

Specifying options in the source file

By putting the @PROCESS compiler directive in the source file, you can specify

compiler options to affect an individual compilation unit. The @PROCESS

compiler directive can override options specified in the configuration file, in the

default settings, or on the command line.

��

�

,

@PROCESS

option

(suboption_list)

��

option is the name of a compiler option without the -q.

suboption

is a suboption of a compiler option.

In fixed source form, @PROCESS can start in column 1 or after column 6. In free

source form, the @PROCESS compiler directive can start in any column.

You cannot place a statement label or inline comment on the same line as an

@PROCESS compiler directive.

By default, option settings you designate with the @PROCESS compiler directive

are effective only for the compilation unit in which the statement appears. If the

file has more than one compilation unit, the option setting is reset to its original

state before the next unit is compiled. Trigger constants specified by the

DIRECTIVE option are in effect until the end of the file (or until NODIRECTIVE

is processed).

The @PROCESS compiler directive must usually appear before the first statement

of a compilation unit. The only exceptions are when specifying SOURCE and

NOSOURCE; you can put them in @PROCESS directives anywhere in the

compilation unit.

26 XL Fortran Compiler Reference

Passing command-line options to the ″ld″ or ″as″ commands

Because the compiler automatically executes other commands, such as ld and as,

as needed during compilation, you usually do not need to concern yourself with

the options of those commands. If you want to choose options for these individual

commands, you can do one of the following:

v Include linker options on the compiler command line. When the compiler does

not recognize a command-line option other than a -q option, it passes the option

on to the linker:

 xlf95 --print-map file.f # --print-map is passed to ld

v Use the -W compiler option to construct an argument list for the command:

 xlf95 -Wl,--print-map file.f # --print-map is passed to ld

In this example, the ld option --print-map is passed to the linker (which is

denoted by the l in the -Wl option) when the linker is executed.

This form is more general than the previous one because it works for the as

command and any other commands called during compilation, by using

different letters after the -W option.

v Edit the configuration file /etc/opt/ibmcmp/xlf/11.1/xlf.cfg, or construct your

own configuration file. You can customize particular stanzas to allow specific

command-line options to be passed through to the assembler or linker.

For example, if you include these lines in the xlf95 stanza of

/etc/opt/ibmcmp/xlf/11.1/xlf.cfg:

 asopt = "W"

 ldopt = "M"

and issue this command:

 xlf95 -Wa,-Z -Wl,-s -w produces_warnings.s uses_many_symbols.f

the file produces_warnings.s is assembled with the options -W and -Z (issue

warnings and produce an object file even if there are compilation errors), and

the linker is invoked with the options -s and -M (strip final executable file and

produce a load map).

Related information: See “-W” on page 277 and “Using custom compiler

configuration files” on page 10.

Displaying information inside binary files (strings)

The strings command reads information encoded into some binary files, as follows:

v Information about the compiler version is encoded in the compiler binary

executables and libraries.

v Information about the parent module, bit mode, the compiler that created the

.mod file, the date and time the .mod file was created, and the source file is

encoded in each .mod file.

For example to see the information embedded in /opt/ibmcmp/xlf/11.1/exe/xlfentry,

issue the following command:

strings /opt/ibmcmp/xlf/11.1/exe/xlfentry | grep "@(#)"

Compiling for specific architectures

You can use -qarch and -qtune to target your program to instruct the compiler to

generate code specific to a particular architecture. This allows the compiler to take

advantage of machine-specific instructions that can improve performance. The

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 27

-qarch option determines the architectures on which the resulting programs can

run. The -qtune and -qcache options refine the degree of platform-specific

optimization performed.

By default, the -qarch setting produces code using only instructions common to all

supported architectures, with resultant settings of -qtune and -qcache that are

relatively general. To tune performance for a particular processor set or

architecture, you may need to specify different settings for one or more of these

options. The natural progression to try is to use -qarch, and then add -qtune, and

then add -qcache. Because the defaults for -qarch also affect the defaults for -qtune

and -qcache, the -qarch option is often all that is needed.

If the compiling machine is also the target architecture, -qarch=auto will

automatically detect the setting for the compiling machine. For more information

on this compiler option setting, see “-qarch” on page 92 and also -O4 and -O5

under the “-O” on page 75.

If your programs are intended for execution mostly on particular architectures, you

may want to add one or more of these options to the configuration file so that they

become the default for all compilations.

Passing Fortran files through the C preprocessor

A common programming practice is to pass files through the C preprocessor (cpp).

cpp can include or omit lines from the output file based on user-specified

conditions (“conditional compilation”). It can also perform string substitution

(“macro expansion”).

XL Fortran can use cpp to preprocess a file before compiling it.

To call cpp for a particular file, use a file suffix of .F, .F77, .F90, .F95, or .F03. If you

specify the -d option, each .F* file filename.F* is preprocessed into an intermediate

file Ffilename.f, which is then compiled. If you do not specify the -d option, the

intermediate file name is /tmpdir/F8xxxxxx, where x is an alphanumeric character

and tmpdir is the contents of the TMPDIR environment variable or, if you have not

specified a value for TMPDIR, /tmp. You can save the intermediate file by

specifying the -d compiler option; otherwise, the file is deleted. If you only want to

preprocess and do not want to produce object or executable files, specify the

-qnoobject option also.

When XL Fortran uses cpp for a file, the preprocessor will emit #line directives

unless you also specify the -d option. The #line directive associates code that is

created by cpp or any other Fortran source code generator with input code that

you create. The preprocessor may cause lines of code to be inserted or deleted.

Therefore, the #line directives that it emits can be useful in error reporting and

debugging, because they identify the source statements found in the preprocessed

code by listing the line numbers that were used in the original source.

The _OPENMP C preprocessor macro can be used to conditionally include code.

This macro is defined when the C preprocessor is invoked and when you specify

the -qsmp=omp compiler option. An example of using this macro follows:

 program par_mat_mul

 implicit none

 integer(kind=8) ::i,j,nthreads

 integer(kind=8),parameter ::N=60

 integer(kind=8),dimension(N,N) ::Ai,Bi,Ci

 integer(kind=8) ::Sumi

28 XL Fortran Compiler Reference

#ifdef _OPENMP

 integer omp_get_num_threads

#endif

 common/data/ Ai,Bi,Ci

!$OMP threadprivate (/data/)

!$omp parallel

 forall(i=1:N,j=1:N) Ai(i,j) = (i-N/2)**2+(j+N/2)

 forall(i=1:N,j=1:N) Bi(i,j) = 3-((i/2)+(j-N/2)**2)

!$omp master

#ifdef _OPENMP

 nthreads=omp_get_num_threads()

#else

 nthreads=8

#endif

!$omp end master

!$omp end parallel

!$OMP parallel default(private),copyin(Ai,Bi),shared(nthreads)

!$omp do

 do i=1,nthreads

 call imat_mul(Sumi)

 enddo

!$omp end do

!$omp end parallel

 end

See Conditional Compilation in the Language Elements section of the XL Fortran

Language Reference for more information on conditional compilation.

To customize cpp preprocessing, the configuration file accepts the attributes cpp,

cppsuffix, and cppoptions.

The letter F denotes the C preprocessor with the -t and -W options.

Related information:

v “-d” on page 66

v “-t” on page 271

v “-W” on page 277

v “-qfpp” on page 138

v “-qppsuborigarg” on page 203

v “Using custom compiler configuration files” on page 10

cpp Directives for XL Fortran programs

Macro expansion can have unexpected consequences that are difficult to debug,

such as modifying a FORMAT statement or making a line longer than 72

characters in fixed source form. Therefore, we recommend using cpp primarily for

conditional compilation of Fortran programs. The cpp directives that are most

often used for conditional compilation are #if, #ifdef, #ifndef, #elif, #else, and

#endif.

Passing options to the C preprocessor

Because the compiler does not recognize cpp options other than -I directly on the

command line, you must pass them through the -W option. For example, if a

program contains #ifdef directives that test the existence of a symbol named

LNXV1, you can define that symbol to cpp by compiling with a command like:

 xlf95 conditional.F -WF,-DLNXV1

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 29

Avoiding preprocessing problems

Because Fortran and C differ in their treatment of some sequences of characters, be

careful when using /* or */. These might be interpreted as C comment delimiters,

possibly causing problems even if they occur inside Fortran comments. Also be

careful when using three-character sequences that begin with ?? (which might be

interpreted as C trigraphs).

Consider the following example:

 program testcase

 character a

 character*4 word

 a = ’?’

 word(1:2) = ’??’

 print *, word(1:2)

 end program testcase

If the preprocessor matches your character combination with the corresponding

trigraph sequence, your output may not be what you expected.

If your code does not require the use of the XL Fortran compiler option

-qnoescape, a possible solution is to replace the character string with an escape

sequence word(1:2) = ’\?\?’. However, if you are using the -qnoescape compiler

option, this solution will not work. In this case, you require a cpp that will ignore

the trigraph sequence. XL Fortran uses the cpp that is found in

/opt/ibmcmp/xlf/11.1/exe/cpp. It is ISO C compliant and therefore recognizes

trigraph sequences.

Linking XL Fortran programs

By default, you do not need to do anything special to link an XL Fortran program.

The compiler invocation commands automatically call the linker to produce an

executable output file. For example, running the following command:

xlf95 file1.f file2.o file3.f

compiles and produces object files file1.o and file3.o, then all object files are

submitted to the linker to produce one executable.

After linking, follow the instructions in “Running XL Fortran programs” on page

32 to execute the program.

Compiling and linking in separate Steps

To produce object files that can be linked later, use the -c option.

xlf95 -c file1.f # Produce one object file (file1.o)

xlf95 -c file2.f file3.f # Or multiple object files (file1.o, file3.o)

xlf95 file1.o file2.o file3.o # Link object files with appropriate libraries

It is often best to execute the linker through the compiler invocation command,

because it passes some extra ld options and library names to the linker

automatically.

Passing options to the ld command

If you need to link with ld options that are not part of the XL Fortran default, you

can include those options on the compiler command line:

 xlf95 -Wl,<options...> file.f # xlf95 passes all these options to ld

30 XL Fortran Compiler Reference

The compiler passes unrecognized options, except -q options, to the ld command.

Dynamic and Static Linking

XL Fortran allows your programs to take advantage of the operating system

facilities for both dynamic and static linking:

v Dynamic linking means that the code for some external routines is located and

loaded when the program is first run. When you compile a program that uses

shared libraries, the shared libraries are dynamically linked to your program by

default.

Dynamically linked programs take up less disk space and less virtual memory if

more than one program uses the routines in the shared libraries. During linking,

they do not require any special precautions to avoid naming conflicts with

library routines. They may perform better than statically linked programs if

several programs use the same shared routines at the same time. They also allow

you to upgrade the routines in the shared libraries without relinking.

Because this form of linking is the default, you need no additional options to

turn it on.

v Static linking means that the code for all routines called by your program

becomes part of the executable file.

Statically linked programs can be moved to and run on systems without the XL

Fortran libraries. They may perform better than dynamically linked programs if

they make many calls to library routines or call many small routines. They do

require some precautions in choosing names for data objects and routines in the

program if you want to avoid naming conflicts with library routines (as

explained in “Avoiding naming conflicts during linking”). They also may not

work if you compile them on one level of the operating system and run them on

a different level of the operating system.

To link statically, add the --static option to the linker command. For example:

xlf95 -Wl,--static test.f

Avoiding naming conflicts during linking

If you define an external subroutine, external function, or common block with the

same name as a runtime subprogram, your definition of that name may be used in

its place, or it may cause a link-edit error.

Try the following general solution to help avoid these kinds of naming conflicts:

v Compile all files with the -qextname option. It adds an underscore to the end of

the name of each global entity, making it distinct from any names in the system

libraries.

Note: When you use this option, you do not need to use the final underscore in

the names of Service and Utility Subprograms, such as dtime_ and flush_.

v Link your programs dynamically, which is the default.

If you do not use the -qextname option, you must take the following extra

precautions to avoid conflicts with the names of the external symbols in the XL

Fortran and system libraries:

v Do not name a subroutine or function main, because XL Fortran defines an entry

point main to start your program.

v Do not use any global names that begin with an underscore. In particular, the XL

Fortran libraries reserve all names that begin with _xl.

v Do not use names that are the same as names in the XL Fortran library or one of

the system libraries. To determine which names are not safe to use in your

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 31

program, run the nm command on any libraries that are linked into the program

and search the output for names you suspect might also be in your program.

v If your program calls certain XLF-provided routines, some restrictions apply to

the common block and subprogram names that you can use:

XLF-Provided Function Name

Common Block or Subprogram Name You

Cannot Use

mclock times

rand irand

Be careful not to use the names of subroutines or functions without defining the

actual routines in your program. If the name conflicts with a name from one of the

libraries, the program could use the wrong version of the routine and not produce

any compile-time or link-time errors.

Running XL Fortran programs

The default file name for the executable program is a.out. You can select a different

name with the -o compiler option. You should avoid giving your programs the

same names as system or shell commands (such as test or cp), as you could

accidentally execute the wrong command. If a name conflict does occur, you can

execute the program by specifying a path name, such as ./test.

You can run a program by entering the path name and file name of an executable

file along with any runtime arguments on the command line.

Canceling execution

To suspend a running program, press the Ctrl+Z key while the program is in the

foreground. Use the fg command to resume running.

To cancel a running program, press the Ctrl+C key while the program is in the

foreground.

Compiling and executing on different systems

If you want to move an XL Fortran executable file to a different system for

execution, you can link statically and copy the program, and optionally the

runtime message catalogs. Alternatively, you can link dynamically and copy the

program as well as the XL Fortran libraries if needed and optionally the runtime

message catalogs. For non-SMP programs, libxlf90.so, libxlfmath.so, and

libxlomp_ser.so are usually the only XL Fortran libraries needed. For SMP

programs, you will usually need at least the libxlf90_r.so, libxlfmath.so, and

libxlsmp.so libraries. libxlfpmt*.so and libxlfpad.so are only needed if the

program is compiled with the -qautodbl option.

For a dynamically linked program to work correctly, the XL Fortran libraries and

the operating system on the execution system must be at either the same level or a

more recent level than on the compilation system.

For a statically linked program to work properly, the operating system level may

need to be the same on the execution system as it is on the compilation system.

Related information: See “Dynamic and Static Linking” on page 31.

32 XL Fortran Compiler Reference

Runtime libraries for POSIX pthreads support

There are two runtime libraries that are connected with POSIX thread support. The

libxlf90_r.so library is a thread-safe version of the Fortran runtime library. The

libxlsmp.so library is the SMP runtime library.

Depending on the invocation command, and in some cases, the compiler option,

the appropriate set of libraries for thread support is bound in. For example:

 Cmd. Libraries Used Include Directory

xlf90_r

xlf95_r

xlf_r

/opt/ibmcmp/lib/libxlf90_r.so

/opt/ibmcmp/lib64/libxlf90_r.so

/opt/ibmcmp/lib/libxlsmp.so

/opt/ibmcmp/lib64/libxlsmp.so

/opt/ibmcmp/xlf/11.1/include

Selecting the language for runtime messages

To select a language for runtime messages that are issued by an XL Fortran

program, set the LANG and NLSPATH environment variables before executing the

program.

In addition to setting environment variables, your program should call the C

library routine setlocale to set the program’s locale at run time. For example, the

following program specifies the runtime message category to be set according to

the LC_ALL, LC_MESSAGES, and LANG environment variables:

 PROGRAM MYPROG

 PARAMETER(LC_MESSAGES = 5)

 EXTERNAL SETLOCALE

 CHARACTER NULL_STRING /Z’00’/

 CALL SETLOCALE (%VAL(LC_MESSAGES), NULL_STRING)

 END

Related information: See “Environment variables for national language support”

on page 8.

Setting runtime options

Internal switches in an XL Fortran program control runtime behavior, similar to the

way compiler options control compile-time behavior. You can set the runtime

options through either environment variables or a procedure call within the

program. You can specify XL Fortran runtime option settings by using the

following environment variables: XLFRTEOPTS and XLSMPOPTS.

The XLFRTEOPTS environment variable

The XLFRTEOPTS environment variable allows you to specify options that affect

I/O, EOF error-handling, and the specification of random-number generators. You

can declare XLFRTEOPTS by using the following bash command format:

��

�

 :

XLFRTEOPTS=

runtime_option_name

=

option_setting

"

"

��

You can specify option names and settings in uppercase or lowercase. You can add

blanks before and after the colons and equal signs to improve readability.

However, if the XLFRTEOPTS option string contains imbedded blanks, you must

enclose the entire option string in double quotation marks (").

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 33

The environment variable is checked when the program first encounters one of the

following conditions:

v An I/O statement is executed.

v The RANDOM_SEED procedure is executed.

v An ALLOCATE statement needs to issue a runtime error message.

v A DEALLOCATE statement needs to issue a runtime error message.

v The multi-threaded implementation of the MATMUL procedure is executed.

Changing the XLFRTEOPTS environment variable during the execution of a

program has no effect on the program.

The SETRTEOPTS procedure (which is defined in the XL Fortran Language

Reference) accepts a single-string argument that contains the same name-value pairs

as the XLFRTEOPTS environment variable. It overrides the environment variable

and can be used to change settings during the execution of a program. The new

settings remain in effect for the rest of the program unless changed by another call

to SETRTEOPTS. Only the settings that you specified in the procedure call are

changed.

You can specify the following runtime options with the XLFRTEOPTS

environment variable or the SETRTEOPTS procedure:

aggressive_array_io={yes | no}

Controls whether or not the XL Fortran run time will take advantage of

descriptor information when deciding to apply slower or faster algorithms to

do array I/O operations. Descriptor information that specifies an array or array

section as contiguous can be used to apply the faster algorithms which would

otherwise be unsafe if the array or array section was not contiguous. The

default is to perform aggressive array I/O operations.

 Code executing under the current XL Fortran runtime but compiled with older

XL Fortran compilers can cause the aggressive array I/O operations to be

unsafe if the older compilers did not set the XL Fortran descriptor information

correctly. This can be a problem with code built with old XL Fortran compilers

no longer in service or built with XL Fortran compilers not at the latest service

levels. Older code should be recompiled, if possible, with the current compiler

instead of relying on the use of this option.

buffering={enable | disable_preconn | disable_all}

Determines whether the XL Fortran runtime library performs buffering for I/O

operations.

 The library reads data from, or writes data to the file system in chunks for

READ or WRITE statements, instead of piece by piece. The major benefit of

buffering is performance improvement.

 If you have applications in which Fortran routines work with routines in other

languages or in which a Fortran process works with other processes on the

same data file, the data written by Fortran routines may not be seen

immediately by other parties (and vice versa), because of the buffering. Also, a

Fortran READ statement may read more data than it needs into the I/O buffer

and cause the input operation performed by a routine in other languages or

another process that is supposed to read the next data item to fail. In these

cases, you can use the buffering runtime option to disable the buffering in the

XL Fortran runtime library. As a result, a READ statement will read in exactly

the data it needs from a file and the data written by a WRITE statement will

be flushed out to the file system at the completion of the statement.

34 XL Fortran Compiler Reference

Note: I/O buffering is always enabled for files on sequential access devices

(such as pipes, terminals, sockets). The setting of the buffering option has no

effect on these types of files.

 If you disable I/O buffering for a logical unit, you do not need to call the

Fortran service routine flush_ to flush the contents of the I/O buffer for that

logical unit.

 The suboptions for buffering are as follows:

enable The Fortran runtime library maintains an I/O

buffer for each connected logical unit. The

current read-write file pointers that the runtime

library maintains might not be synchronized

with the read-write pointers of the

corresponding files in the file system.

disable_preconn The Fortran runtime library does not maintain

an I/O buffer for each preconnected logical

unit (0, 5, and 6). However, it does maintain

I/O buffers for all other connected logical

units. The current read-write file pointers that

the runtime library maintains for the

preconnected units are the same as the

read-write pointers of the corresponding files

in the file system.

disable_all The Fortran runtime library does not maintain

I/O buffers for any logical units. You should

not specify the buffering=disable_all option

with Fortran programs that perform

asynchronous I/O.

 In the following example, Fortran and C routines read a data file through

redirected standard input. First, the main Fortran program reads one integer.

Then, the C routine reads one integer. Finally, the main Fortran program reads

another integer.

 Fortran main program:

integer(4) p1,p2,p3

print *,’Reading p1 in Fortran...’

read(5,*) p1

call c_func(p2)

print *,’Reading p3 in Fortran...’

read(5,*) p3

print *,’p1 p2 p3 Read: ’,p1,p2,p3

end

C subroutine (c_func.c):

#include <stdio.h>

void

c_func(int *p2)

{

 int n1 = -1;

 printf("Reading p2 in C...\n");

 setbuf(stdin, NULL); /* Specifies no buffering for stdin */

 fscanf(stdin,"%d",&n1);

 *p2=n1;

 fflush(stdout);

}

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 35

Input data file (infile):

11111

22222

33333

44444

The main program runs by using infile as redirected standard input, as

follows:

$ main < infile

If you turn on buffering=disable_preconn, the results are as follows:

Reading p1 in Fortran...

Reading p2 in C...

Reading p3 in Fortran...

p1 p2 p3 Read: 11111 22222 33333

If you turn on buffering=enable, the results are unpredictable.

cnverr={yes | no}

If you set this runtime option to no, the program does not obey the IOSTAT=

and ERR= specifiers for I/O statements that encounter conversion errors.

Instead, it performs default recovery actions (regardless of the setting of

err_recovery) and may issue warning messages (depending on the setting of

xrf_messages).

Related information: For more information about conversion errors, see Data

Transfer Statements in the XL Fortran Language Reference.

For more information about IOSTAT values, see

Conditions and IOSTAT Values in the XL Fortran Language

Reference.

cpu_time_type={usertime | systime | alltime | total_usertime | total_systime |

total_alltime}

Determines the measure of time returned by a call to CPU_TIME(TIME).

 The suboptions for cpu_time_type are as follows:

usertime

Returns the user time of a process.

systime

Returns the system time of a process.

alltime

Returns the sum of the user and system time of a process.

total_usertime

Returns the total user time of a process. The total user time is the sum

of the user time of a process and the total user times of its child

processes, if any.

total_systime

Returns the total system time of a process. The total system time is the

sum of the system time of the current process and the total system

times of its child processes, if any.

total_alltime

Returns the total user and system time of a process. The total user and

system time is the sum of the user and system time of the current

process and the total user and system times of their child processes, if

any.

36 XL Fortran Compiler Reference

default_recl={64 | 32}

Allows you to determine the default record size for sequential files opened

without a RECL= specifier. The suboptions are as follows:

64 Uses a 64-bit value as the default record size.

32 Uses a 32-bit value as the default record size.

The default_recl runtime option applies only in 64-bit mode. In 32-bit mode,

default_recl is ignored and the record size is 32-bit.

 Use default_recl when porting 32-bit programs to 64-bit mode where a 64-bit

record length will not fit into the specified integer variable. Consider the

following:

INTEGER(4) I

OPEN (11)

INQUIRE (11, RECL=i)

A runtime error occurs in the above code sample in 64-bit mode when

default_recl=64, since the default record length of 2**63-1 does not fit into the

4-byte integer I. Specifying default_recl=32 ensures a default record size of

2**31-1, which fits into I.

 For more information on the RECL= specifier, see the OPEN statement in the

XL Fortran Language Reference.

errloc={yes | no}

Controls whether the file name and line number appear in runtime error

messages when a runtime error condition occurs during I/O or an

ALLOCATE/DEALLOCATE statement and an error message is issued. By

default, the line number and file name appear prepended to the runtime error

messages. If errloc=no is specified, runtime error messages are displayed

without the source location information.

 The errloc runtime option can be specified with the SETRTEOPTS procedure,

as well.

erroreof={yes | no}

Determines whether the label specified by the ERR= specifier is to be branched

to if no END= specifier is present when an end-of-file condition is

encountered.

err_recovery={yes | no}

If you set this runtime option to no, the program stops if there is a recoverable

error while executing an I/O statement with no IOSTAT= or ERR= specifiers.

By default, the program takes some recovery action and continues when one of

these statements encounters a recoverable error. Setting cnverr to yes and

err_recovery to no can cause conversion errors to halt the program.

errthrdnum={yes | no}

When errthrdnum=yes is in effect, the thread number of the executing

OpenMP thread specified by the omp_get_thread_num routine is appended to

any XL Fortran runtime error messages generated. For single-threaded

programs, the thread number will be 0. If errloc=yes is specified, the thread

number appears in front of the file name and line number information. If the

IOMSG= specifier is present in an I/O statement, the thread number is

prepended in the message assigned to the variable specified by this option in

the same format as displayed on standard error.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 37

iostat_end={extended | 2003std}

Sets the IOSTAT values based on the XL Fortran definition or the Fortran 2003

Standard when end-of-file and end-of-record conditions occur. The suboptions

are as follows:

extended

Sets the IOSTAT variables based on XL Fortran’s definition of values

and conditions.

2003std

Sets the IOSTAT variables based on Fortran 2003’s definition of values

and conditions.

For example, setting the iostat_end=2003std runtime option results in a

different IOSTAT value from extensions being returned for the end-of-file

condition

 export XLFRTEOPTS=iostat_end=2003std

 character(10) ifl

 integer(4) aa(3), ios

 ifl = "12344321 "

 read(ifl, ’(3i4)’, iostat=ios) aa ! end-of-file condition occurs and

 ! ios is set to -1 instead of -2.

For more information on setting and using IOSTAT values, see the READ,

WRITE, and Conditions and IOSTAT Values sections in the XL Fortran Language

Reference.

intrinthds={num_threads}

Specifies the number of threads for parallel execution of the MATMUL and

RANDOM_NUMBER intrinsic procedures. The default value for num_threads

when using the MATMUL intrinsic equals the number of processors online.

The default value for num_threads when using the RANDOM_NUMBER

intrinsic is equal to the number of processors online*2.

 Changing the number of threads available to the MATMUL and

RANDOM_NUMBER intrinsic procedures can influence performance.

langlvl={ | 90std | 95std | 2003std | extended}

Determines the level of support for Fortran standards and extensions to the

standards. The values of the suboptions are as follows:

90std Specifies that the compiler should flag any extensions to the

Fortran 90 standard I/O statements and formats as errors.

95std Specifies that the compiler should flag any extensions to the

Fortran 95 standard I/O statements and formats as errors.

2003std Specifies that the compiler should accept all standard I/O

statements and formats that the Fortran 95 standard specifies,

as well as those Fortran 2003 formats that XL Fortran supports.

Anything else is flagged as an error.

 For example, setting the langlvl=2003std runtime option results

in a runtime error message.

integer(4) aa(100)

call setrteopts("langlvl=2003std")

 ... ! Write to a unit without explicitly

 ... ! connecting the unit to a file.

write(10, *) aa ! The implicit connection to a file does not

 ... ! comform with Fortran 2003 behavior.

extended Specifies that the compiler should accept the Fortran 95

38 XL Fortran Compiler Reference

language standard, Fortran 2003 features supported by XL

Fortran, and extensions, effectively turning off language-level

checking.

To obtain support for items that are part of the Fortran 95 standard and are

available in XL Fortran (such as namelist comments), you must specify one of

the following suboptions:

v 95std

v 2003std

v extended

 The following example contains a Fortran 95 extension (the file specifier is

missing from the OPEN statement):

program test1

call setrteopts("langlvl=95std")

open(unit=1,access="sequential",form="formatted")

10 format(I3)

write(1,fmt=10) 123

end

Specifying langlvl=95std results in a runtime error message.

 The following example contains a Fortran 95 feature (namelist comments) that

was not part of Fortran 90:

program test2

INTEGER I

LOGICAL G

NAMELIST /TODAY/G, I

call setrteopts("langlvl=95std:namelist=new")

open(unit=2,file="today.new",form="formatted", &

 & access="sequential", status="old")

read(2,nml=today)

close(2)

end

today.new:

&TODAY ! This is a comment

I = 123, G=.true. /

If you specify langlvl=95std, no runtime error message is issued. However, if

you specify langlvl=90std, a runtime error message is issued.

 The err_recovery setting determines whether any resulting errors are treated as

recoverable or severe.

multconn={yes | no}

Enables you to access the same file through more than one logical unit

simultaneously. With this option, you can read more than one location within a

file simultaneously without making a copy of the file.

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 39

You can only use multiple connections within the same program for files on

random-access devices, such as disk drives. In particular, you cannot use

multiple connections within the same program for:

v Files have been connected for write-only (ACTION=’WRITE’)

v Asynchronous I/O

v Files on sequential-access devices (such as pipes, terminals, sockets)

 To avoid the possibility of damaging the file, keep the following points in

mind:

v The second and subsequent OPEN statements for the same file can only be

for reading.

v If you initially opened the file for both input and output purposes

(ACTION=’READWRITE’), the unit connected to the file by the first OPEN

becomes read-only (ACCESS=’READ’) when the second unit is connected.

You must close all of the units that are connected to the file and reopen the

first unit to restore write access to it.

v Two files are considered to be the same file if they share the same device

and i-node numbers. Thus, linked files are considered to be the same file.

multconnio={tty | nulldev | combined | no }

Enables you to connect a device to more than one logical unit. You can then

write to, or read from, more than one logical unit that is attached to the same

device. The suboptions are as follows:

combined

Enables you to connect a combination of null and TTY devices to more

than one logical unit.

nulldev

Enables you to connect the null device to more than one logical unit.

tty Enables you to connect a TTY device to more than one logical unit.

Note: Using this option can produce unpredictable results.

In your program, you can now specify multiple OPEN statements that

contain different values for the UNIT parameters but the same value for

the FILE parameters. For example, if you have a symbolic link called

mytty that is linked to TTY device /dev/tty, you can run the following

program when you specify the multconnio=tty option:

PROGRAM iotest

OPEN(UNIT=3, FILE=’mytty’, ACTION="WRITE")

OPEN(UNIT=7, FILE=’mytty’, ACTION="WRITE")

END PROGRAM iotest

Fortran preconnects units 0, 5, and 6 to the same TTY device. Normally,

you cannot use the OPEN statement to explicitly connect additional units

to the TTY device that is connected to units 0, 5, and 6. However, this is

possible if you specify the multconnio=tty option. For example, if units 0,

5, and 6 are preconnected to TTY device /dev/tty, you can run the

following program if you specify the multconnio=tty option:

PROGRAM iotest

 ! /dev/pts/2 is your current tty, as reported by the ’tty’ command.

 ! (This changes every time you login.)

 CALL SETRTEOPTS (’multconnio=tty’)

 OPEN (UNIT=3, FILE=’/dev/pts/2’)

 WRITE (3, *) ’hello’ ! Display ’hello’ on your screen

END PROGRAM

40 XL Fortran Compiler Reference

namelist={new | old}

Determines whether the program uses the XL Fortran new or old NAMELIST

format for input and output. The Fortran 90 and Fortran 95 standards require

the new format.

Note: You may need the old setting to read existing data files that contain

NAMELIST output.However, use the standard-compilant new format in

writing any new data files.

With namelist=old, the nonstandard NAMELIST format is not considered an

error by the langlvl=90std, langlvl=95std, or langlvl=2003std setting.

Related information: For more information about NAMELIST I/O, see

Namelist Formatting in the XL Fortran Language Reference.

naninfoutput={2003std | old | default}

Controls whether the display of IEEE exceptional values conform to the

Fortran 2003 standard or revert to the old XL Fortran behavior. This runtime

option allows object files created with different compilation commands to

output all IEEE exceptional values based on the old behavior, or the Fortran

2003 standard. The suboptions are:

default

Exceptional values output depends on how the program is compiled.

old

Exceptional values output conforms to the old XL Fortran behavior.

2003std

Exceptional values output conforms to the Fortran 2003 standard.

nlwidth=record_width

By default, a NAMELIST write statement produces a single output record long

enough to contain all of the written NAMELIST items. To restrict NAMELIST

output records to a given width, use the nlwidth runtime option.

Note: The RECL= specifier for sequential files has largely made this option

obsolete, because programs attempt to fit NAMELIST output within the

specified record length. You can still use nlwidth in conjunction with

RECL= as long as the nlwidth width does not exceed the stated record

length for the file.

random={generator1 | generator2}

Specifies the generator to be used by RANDOM_NUMBER if

RANDOM_SEED has not yet been called with the GENERATOR argument.

The value generator1 (the default) corresponds to GENERATOR=1, and

generator2 corresponds to GENERATOR=2. If you call RANDOM_SEED with

the GENERATOR argument, it overrides the random option from that point

onward in the program. Changing the random option by calling SETRTEOPTS

after calling RANDOM_SEED with the GENERATOR option has no effect.

scratch_vars={yes | no}

To give a specific name to a scratch file, set the scratch_vars runtime option to

yes, and set the environment variable XLFSCRATCH_unit to the name of the

file you want to be associated with the specified unit number. See Naming

scratch files in the XL Fortran Optimization and Programming Guide for examples.

ufmt_littleendian={units_list}

Specifies unit numbers of unformatted data files on which little-endian I/O is

to be performed. The little-endian format data in the specified unformatted

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 41

files is converted, on-the-fly, during the I/O operation to and from the

big-endian format used on machines where XL Fortran applications are

running.

 This runtime option does not work with internal files; internal files are always

FORMATTED. Units specified must be connected by an explicit or implicit

OPEN for the UNFORMATTED form of I/O.

 The syntax for this option is as follows:

ufmt_littleendian=units_list

where:

units_list = units | units_list, units

units = unit | unit- | -unit | unit1-unit2

The unit number must be an integer, whose value is in the range 1 through 2

147 483 647.

unit Specifies the number of the logical unit.

unit- Specifies the range of units, starting from unit number unit to the

highest possible unit number

-unit Specifies the range of units, starting from unit number 1 to unit

number unit.

unit1-unit2

Specifies the range of units, starting from unit number unit1 to unit

number unit2.

Notes:

1. The byte order of data of type CHARACTER is not swapped.

2. The compiler assumes that the internal representation of values of type

REAL*4 or REAL*8 is IEEE floating-point format compliant. I/O may not

work properly with an internal representation that is different.

3. The internal representation of values of type REAL*16 is inconsistent

among different vendors. The compiler treats the internal representation of

values of type REAL*16 to be the same as XL Fortran’s. I/O may not work

properly with an internal representation that is different.

4. Conversion of derived type data is not supported. The alignment of

derived types is inconsistent among different vendors.

5. Discrepancies in implementations from different vendors may cause

problems in exchanging the little-endian unformatted data files between XL

Fortran applications running on Linux and Fortran applications running on

little-endian systems. XL Fortran provides a number of options that help

users port their programs to XL Fortran. If there are problems exchanging

little-endian data files, check these options to see if they can help with the

problem.

unit_vars={yes | no}

To give a specific name to an implicitly connected file or to a file opened with

no FILE= specifier, you can set the runtime option unit_vars=yes and set one

or more environment variables with names of the form XLFUNIT_unit to file

names. See Naming files that are connected with no explicit name in the XL Fortran

Optimization and Programming Guide for examples.

42 XL Fortran Compiler Reference

uwidth={32 | 64}

To specify the width of record length fields in unformatted sequential files,

specify the value in bits. When the record length of an unformatted sequential

file is greater than (2**31 - 1) bytes minus 8 bytes (for the record terminators

surrounding the data), you need to set the runtime option uwidth=64 to

extend the record length fields to 64 bits. This allows the record length to be

up to (2**63 - 1) minus 16 bytes (for the record terminators surrounding the

data). The runtime option uwidth is only valid for 64-bit mode applications.

xrf_messages={yes | no}

To prevent programs from displaying runtime messages for error conditions

during I/O operations, RANDOM_SEED calls, and ALLOCATE or

DEALLOCATE statements, set the xrf_messages runtime option to no.

Otherwise, runtime messages for conversion errors and other problems are sent

to the standard error stream.

The following examples set the cnverr runtime option to yes and the xrf_messages

option to no.

Basic format

 XLFRTEOPTS=cnverr=yes:xrf_messages=no

 export XLFRTEOPTS

With imbedded blanks

 XLFRTEOPTS="xrf_messages = NO : cnverr = YES"

 export XLFRTEOPTS

As a call to SETRTEOPTS, this example could be:

 CALL setrteopts(’xrf_messages=NO:cnverr=yes’)

! Name is in lowercase in case -U (mixed) option is used.

Setting OMP and SMP run time options

The XLSMPOPTS environment variable allows you to specify options that affect

SMP execution. The OpenMP environment variables, OMP_DYNAMIC,

OMP_NESTED, OMP_NUM_THREADS, and OMP_SCHEDULE, allow you to

control the execution of parallel code. For details on using these, see XLSMPOPTS

and OpenMP environment variables sections in the XL Fortran Optimization and

Programming Guide.

BLAS/ESSL environment variable

By default, the libxlopt library is linked with any application you compile with

XL Fortran. However, if you are using a third-party Basic Linear Algebra

Subprograms (BLAS) library or want to ship a binary that includes ESSL routines,

you must specify these using the XL_BLAS_LIB environment variable. For example,

if your own BLAS library is called libblas, set the environment variable as

follows:

export XL_BLAS_LIB=/usr/lib/libblas.a

When the compiler generates calls to BLAS routines, the ones defined in the

libblas library will be used at runtime instead of those defined in libxlopt.

XL_NOCLONEARCH

Use the XL_NOCLONEARCH to instruct the program to only execute the generic

code, where generic code is the code that is not versioned for an architecture. The

XL_NOCLONEARCH environment variable is not set by default; you can set it for

debugging purposes in your application. (See also the -qipa=clonearch option.)

Chapter 4. Editing, compiling, linking, and running XL Fortran programs 43

XLF_USR_CONFIG

Use the XLF_USR_CONFIG environment variable to specify the location of a

custom configuration file to be used by the compiler. The file name must be given

with its absolute path. The compiler will first process the definitions in this file

before processing those in the default system configuration file, or those in a

customized file specified by the -F option; for more information, see “Using custom

compiler configuration files” on page 10.

Other environment variables that affect runtime behavior

The LD_LIBRARY_PATH, LD_RUN_PATH, and TMPDIR environment variables

have an effect at run time, as explained in “Correct settings for environment

variables” on page 7. They are not XL Fortran runtime options and cannot be set in

either XLFRTEOPTS or XLSMPOPTS.

XL Fortran runtime exceptions

The following operations cause runtime exceptions in the form of SIGTRAP

signals, which typically result in a “Trace/breakpoint trap” message:

v Character substring expression or array subscript out of bounds after you

specified the -C option at compile time.

v Lengths of character pointer and target do not match after you specified the -C

option at compile time.

v The flow of control in the program reaches a location for which a semantic error

with severity of S was issued when the program was compiled.

v Floating-point operations that generate NaN values and loads of the NaN values

after you specify the -qfloat=nanq option at compile time.

v Fixed-point division by zero.

v Calls to the TRAP hardware-specific intrinsic procedure.

The following operations cause runtime exceptions in the form of SIGFPE signals:

v Floating-point exceptions provided you specify the appropriate -qflttrap

suboptions at compile time.

If you install one of the predefined XL Fortran exception handlers before the

exception occurs, a diagnostic message and a traceback showing the offset within

each routine called that led to the exception are written to standard error after the

exception occurs. The file buffers are also flushed before the program ends. If you

compile the program with the -g option, the traceback shows source line numbers

in addition to the address offsets.

You can use a symbolic debugger to determine the error. gdb provides a specific

error message that describes the cause of the exception.

Related information:

v “-C” on page 63

v “-qflttrap” on page 139

v “-qsigtrap” on page 220

Also see the following topics in the XL Fortran Optimization

and Programming Guide:

v Detecting and trapping floating-point exceptions for more

details about these exceptions

v Controlling the floating-point status and control register for a

list of exception handlers.

44 XL Fortran Compiler Reference

Chapter 5. Summary of compiler options by functional

category

The XL Fortran options available on the Linux platform are grouped into the

following categories:

v Output control

v Input control

v Language element control

v Floating-point and integer control

v Error checking and debugging

v Listings, messages, and compiler information

v Optimization and tuning

v Object code control

v Linking

v Portability and migration

v Compiler customization

v Deprecated options

If the option supports an equivalent @PROCESS directive, this is indicated. To get

detailed information on any option listed, see the full description page for that

option.

You can enter compiler options that start with -q, suboptions, and @PROCESS

directives in either uppercase or lowercase. However, note that if you specify the

-qmixed option, procedure names that you specify for the -qextern option are

case-sensitive.

In general, this document uses the convention of lowercase for -q compiler options

and suboptions and uppercase for @PROCESS directives.

Understanding the significance of the options you use and knowing the

alternatives available can save you considerable time and effort in making your

programs work correctly and efficiently.

For detailed information about each compiler option, see Chapter 6, “Detailed

descriptions of the XL Fortran compiler options,” on page 59.

Output control

The options in this category control the type of file output the compiler produces,

as well as the locations of the output. These are the basic options that determine

the compiler components that will be invoked, the preprocessing, compilation, and

linking steps that will (or will not) be taken, and the kind of output to be

generated.

 Table 5. Compiler output options

Option name @PROCESS directive Description

-c None. Prevents the completed object from

being sent to the linker. With this

option, the output is a .o file for

each source file.

© Copyright IBM Corp. 1990, 2007 45

Table 5. Compiler output options (continued)

Option name @PROCESS directive Description

-d None. Causes preprocessed source files that

are produced by cpp to be kept

rather than deleted.

-o None. Specifies a name for the output

object, assembler, or executable file.

-S None. Generates an assembler language file

for each source file.

-qdescriptor None. Specifies the XL Fortran internal

descriptor data structure format to

use for non object-oriented entities

in your compiled applications.

-qmoddir None. Specifies the location for any module

(.mod) files that the compiler writes.

Input control

The options in this category specify the type and location of your source files.

 Table 6. Compiler input options

Option name @PROCESS directive Description

-I None. Adds a directory to the search path for

include files and .mod files.

-qcclines CCLINES Determines whether the compiler

recognizes conditional compilation

lines in fixed source form and F90 free

source form. IBM free source form is

not supported with this option.

-qci CI Specifies the identification numbers

(from 1 to 255) of the INCLUDE lines

to process.

-qcr None. Controls how the compiler interprets

the CR (carriage return) character.

-qdirective DIRECTIVE Specifies sequences of characters,

known as trigger constants, that

identify comment lines as compiler

comment directives.

-qfixed FIXED Indicates that the input source

program is in fixed source form and

optionally specifies the maximum line

length.

-qfpp None. Controls Fortran-specific preprocessing

in the C preprocessor.

-qfree FREE Indicates that the source code is in free

source form.

-qmixed, -U MIXED Makes the compiler sensitive to the

case of letters in names.

-qppsuborigarg None. Instructs the C preprocessor to

substitute original macro arguments

before further macro expansion.

46 XL Fortran Compiler Reference

Table 6. Compiler input options (continued)

Option name @PROCESS directive Description

-qsuffix None. Specifies the source-file suffix on the

command line.

-qxlines XLINES Specifies whether fixed source form

lines with a X in column 1 are

compiled or treated as comments.

Language element control

The options in this category allow you to specify the characteristics of the source

code. You can also use these options to enforce or relax language restrictions and

enable or disable language extensions.

 Table 7. Language element control options

Option name @PROCESS directive Description

-D, -qdlines DLINES Specifies whether the compiler

compiles fixed source form lines with

a D in column 1 or treats them as

comments.

-qinit INIT Makes the initial association status of

pointers disassociated.

-qlanglvl LANGLVL Determines which language standard

(or superset, or subset of a standard)

to consult for nonconformance. It

identifies nonconforming source code

and also options that allow such

nonconformances.

-qmbcs MBCS Indicates to the compiler whether

character literal constants, Hollerith

constants, H edit descriptors, and

character string edit descriptors can

contain Multibyte Character Set

(MBCS) or Unicode characters.

-qnullterm NULLTERM Appends a null character to each

character constant expression that is

passed as a dummy argument, making

it more convenient to pass strings to C

functions.

-1, -qonetrip ONETRIP Executes each DO loop in the

compiled program at least once if its

DO statement is executed, even if the

iteration count is 0. This option

provides compatibility with

FORTRAN 66.

-qposition POSITION Positions the file pointer at the end of

the file when data is written after an

OPEN statement with no POSITION=

specifier and the corresponding

STATUS= value (OLD or

UNKNOWN) is specified.

Chapter 5. Summary of compiler options by functional category 47

Table 7. Language element control options (continued)

Option name @PROCESS directive Description

-qqcount QCOUNT Accepts the Q character-count edit

descriptor (Q) as well as the

extended-precision Q edit descriptor

(Qw.d).

-qsaa SAA Checks for conformance to the SAA

FORTRAN language definition. It

identifies nonconforming source code

and also options that allow such

nonconformances.

-qsave SAVE Specifies the default storage class for

local variables.

-qsclk None. Specifies the resolution that the

SYSTEM_CLOCK intrinsic procedure

uses in a program.

-u UNDEF Specifies that no implicit typing of

variable names is permitted.

-qxlf77 XLF77 Provides compatibility with

FORTRAN 77 aspects of language

semantics and I/O data format that

have changed.

-qxlf90 XLF90 Provides compatibility with the

Fortran 90 standard for certain aspects

of the Fortran language.

-qxlf2003 XLF2003 Provides the ability to use language

features specific to the Fortran 2003

standard when compiling with

compiler invocations that follow

earlier Fortran standards, as well as

the ability to disable these features

when compiling with compiler

invocations that follow the Fortran

2003 standard.

Floating-point and integer control

Specifying the details of how your applications perform calculations can allow you

to take better advantage of your system’s floating-point performance and precision,

including how to direct rounding. However, keep in mind that strictly adhering to

IEEE floating-point specifications can impact the performance of your application.

Using the options in the following table, you can control trade-offs between

floating-point performance and adherence to IEEE standards. Some of these

options also allow you to control certain aspects of integer calculations.

 Table 8. Floating-point and integer control options

Option name @PROCESS directive Description

-qautodbl AUTODBL Provides an automatic means of

converting single-precision

floating-point calculations to

double-precision and of converting

double-precision calculations to

extended-precision.

48 XL Fortran Compiler Reference

Table 8. Floating-point and integer control options (continued)

Option name @PROCESS directive Description

-qdpc DPC Increases the precision of real

constants for maximum accuracy,

when assigning real constants to

DOUBLE PRECISION variables.

-qenum None. Specifies the range of the enumerator

constant and enables storage size to

be determined.

-qfloat FLOAT Selects different strategies for

speeding up or improving the

accuracy of floating-point

calculations.

-qintsize None. Sets the size of default INTEGER

and LOGICAL data entities that

have no length or kind specified.

-qieee, -y IEEE Specifies the rounding mode that the

compiler will use when it evaluates

constant floating-point expressions at

compile time.

-qintlog INTLOG Specifies that you can mix integer

and logical data entities in

expressions and statements.

-qintsize INTSIZE Sets the size of default INTEGER

and LOGICAL data entities that

have no length or kind specified.

-qrealsize REALSIZE Sets the default size of REAL,

DOUBLE PRECISION, COMPLEX,

and DOUBLE COMPLEX values.

-qstrictieeemod STRICTIEEEMOD Specifies whether the compiler will

adhere to the Fortran 2003 IEEE

arithmetic rules for the

ieee_arithmetic and ieee_exceptions

intrinsic modules.

Object code control

These options affect the characteristics of the object code, preprocessed code, or

other output generated by the compiler.

 Table 9. Object code control options

Option name @PROCESS directive Description

-q32 None. Enables 32-bit compilation mode

(or, more briefly, 32-bit mode)

support in a 64-bit environment.

-q64 None. Indicates 64-bit compilation bit

mode and, together with the

-qarch option, determines the

target machines on which the

64-bit executable will run.

-qpic None. Generates Position-Independent

Code suitable for use in shared

libraries.

Chapter 5. Summary of compiler options by functional category 49

Table 9. Object code control options (continued)

Option name @PROCESS directive Description

-qsaveopt None. Saves the command-line options

used for compiling a source file,

the version and level of each

compiler component invoked

during compilation, and other

information to the corresponding

object file.

-qtbtable None. Controls the amount of debugging

traceback information that is

included in the object files.

-qthreaded None. Indicates to the compiler whether

it must generate threadsafe code.

Error checking and debugging

The options in the following table allow you to detect and correct problems in

your source code. In some cases, these options can alter your object code, increase

your compile time, or introduce runtime checking that can slow down the

execution of your application. The option descriptions indicate how extra checking

can impact performance.

To control the amount and type of information you receive regarding the behavior

and performance of your application, consult “Listings, messages, and compiler

information” on page 51.

For information on debugging optimized code, see the XL Fortran Optimization and

Programming Guide.

 Table 10. Error checking and debugging options

Option name @PROCESS directive Description

-# None. Previews the compilation steps

specified on the command line,

without actually invoking any

compiler components.

-C, -qcheck CHECK Checks each reference to an array

element, array section, or character

substring to ensure the reference

stays within the defined bounds of

the entity.

-g, -qdbg DBG Generates debug information for use

by a symbolic debugger.

-qflttrap FLTTRAP Determines what types of

floating-point exception conditions to

detect at run time.

-qfullpath FULLPATH When used with the -g option, this

option records the full, or absolute,

path names of source and include

files in object files compiled with

debugging information, so that

debugging tools can correctly locate

the source files.

50 XL Fortran Compiler Reference

Table 10. Error checking and debugging options (continued)

Option name @PROCESS directive Description

-qhalt HALT Stops compilation before producing

any object, executable, or assembler

source files if the maximum severity

of compile-time messages equals or

exceeds the severity you specify.

-qinit INIT(F90PTR) Makes the initial association status of

pointers disassociated.

-qinitauto INITAUTO Initializes uninitialized automatic

variables to a specific value, for

debugging purposes.

-qkeepparm None. When used with -O2 or higher

optimization, specifies whether

function parameters are stored on the

stack.

-qlinedebug None. Generates only line number and

source file name information for a

debugger.

-qobject OBJECT Specifies whether to produce an

object file or to stop immediately

after checking the syntax of the

source files.

“-qoptdebug” on page

190

None. When used with high levels of

optimization, produces files

containing optimized pseudocode

that can be read by a debugger.

-qwarn64 None. Displays informational messages

identifying statements that may

cause problems with 32-bit to 64-bit

migration.

-qxflag=dvz None. Causes the compiler to generate code

to detect floating-point

divide-by-zero operations.

Listings, messages, and compiler information

The options in the following table allow you control over the listing file, as well as

how and when to display compiler messages. You can use these options in

conjunction with those described in “Error checking and debugging” on page 50 to

provide a more robust overview of your application when checking for errors and

unexpected behavior.

 Table 11. Listings and messages options

Option name @PROCESS directive Description

-qattr ATTR Produces a compiler listing that

includes the attribute component

of the attribute and

cross-reference section of the

listing.

-qflag FLAG Limits the diagnostic messages to

those of a specified severity level

or higher.

Chapter 5. Summary of compiler options by functional category 51

Table 11. Listings and messages options (continued)

Option name @PROCESS directive Description

-qlist LIST Produces a compiler listing file

that includes an object listing.

-qlistopt None. Produces a compiler listing file

that includes all options in effect

at the time of compiler

invocation.

-qphsinfo PHSINFO Reports the time taken in each

compilation phase to standard

output.

-qnoprint None. Prevents the compiler from

creating the listing file, regardless

of the settings of other listing

options.

-qreport None. Produces listing files that show

how sections of code have been

optimized.

-qsource SOURCE Produces a compiler listing file

that includes the source section of

the listing and provides

additional source information

when printing error messages.

-qsuppress None. Prevents specific informational or

warning messages from being

displayed or added to the listing

file, if one is generated.

-qversion None. Displays the version and release

of the compiler being invoked.

-V None. The same as -v except that you

can cut and paste directly from

the display to create a command.

-v None. Reports the progress of

compilation, by naming the

programs being invoked and the

options being specified to each

program.

-w None. Suppresses informational,

language-level and warning

messages (equivalent to

-qflag=e:e).

-qxref XREF Produces a compiler listing that

includes the cross-reference

component of the attribute and

cross-reference section of the

listing.

Optimization and tuning

You can control the optimization and tuning process, which can improve the

performance of your application at run time, using the options in the following

table. Remember that not all options benefit all applications. Trade-offs sometimes

occur between an increase in compile time, a reduction in debugging capability,

52 XL Fortran Compiler Reference

and the improvements that optimization can provide. In addition to the option

descriptions in this section, consult the XL Fortran Optimization and Programming

Guide for details on the optimization and tuning process as well as writing

optimization friendly source code.

Some of the options in “Floating-point and integer control” on page 48 can also

improve performance, but you must use them with care to ensure your application

retains the floating point semantics it requires.

 Table 12. Optimization and tuning options

Option name @PROCESS directive Description

-qalias ALIAS(argument_list) Indicates whether a program

contains certain categories of aliasing

or does not conform to Fortran

standard aliasing rules. The compiler

limits the scope of some

optimizations when there is a

possibility that different names are

aliases for the same storage location..

-qarch None. Specifies the processor architecture,

or family of architectures, where the

code may run. This allows the

compiler to take maximum

advantage of the machine

instructions specific to an

architecture, or common to a family

of architectures.

-qassert ASSERT Provides information about the

characteristics of the files that can

help to fine-tune optimizations..

-qcache None. When specified with -O4, -O5, or

-qipa, specifies the cache

configuration for a specific execution

machine.

-qcompact COMPACT Avoids optimizations that increase

code size.

-qdirectstorage None. Informs the compiler that a given

compilation unit may reference

write-through-enabled or

cache-inhibited storage.

-qenablevmx None. Enables generation of vector

instructions for processors that

support them.

-qessl None. Allows the compiler to substitute the

Engineering and Scientific Subroutine

Library (ESSL) routines in place of

Fortran 90 intrinsic procedures.

-qhot HOT(suboptions) Performs high-order loop analysis

and transformations (HOT) during

optimization.

-qipa None. Enables or customizes a class of

optimizations known as

interprocedural analysis (IPA).

Chapter 5. Summary of compiler options by functional category 53

Table 12. Optimization and tuning options (continued)

Option name @PROCESS directive Description

-qlibansi None. Assumes that all functions with the

name of an ANSI C library function

are, in fact, the library functions and

not a user function with different

semantics.

-qmaxmem MAXMEM Limits the amount of memory that

the compiler allocates while

performing specific,

memory-intensive optimizations to

the specified number of kilobytes.

-qminimaltoc None. In in 64-bit compilation mode,

minimizes the number of entries in

the global entity table of contents

(TOC).

-O OPTIMIZE Specifies whether to optimize code

during compilation and, if so, at

which level.

-p None. Prepares the object files produced by

the compiler for profiling.

-qpdf1, -qpdf2 None. Tunes optimizations through

profile-directed feedback (PDF),

where results from sample program

execution are used to improve

optimization near conditional

branches and in frequently executed

code sections.

-qprefetch None. Inserts prefetch instructions

automatically where there are

opportunities to improve code

performance.

-Q None. Specifies whether procedures are

considered for inlining and/or the

names of particular procedures that

should or should not be considered

for inlining.

-qshowpdf None. When used with -qpdf1 and a

minimum optimization level of -O2

at compile and link steps, inserts

additional profiling information into

the compiled application to collect

call and block counts for all

procedures in the application.

-qsmallstack None. Minimizes stack usage where

possible.

-qsmp None. Enables parallelization of program

code.

-qstacktemp None. Determines where to allocate certain

XL Fortran compiler temporaries at

run time.

54 XL Fortran Compiler Reference

Table 12. Optimization and tuning options (continued)

Option name @PROCESS directive Description

-qstrict STRICT Ensures that optimizations done by

default at optimization levels -O3

and higher, and, optionally at -O2,

do not alter certain program

semantics mostly related to strict

IEEE floating-point conformance.

-qstrict_induction None. Prevents the compiler from

performing induction (loop counter)

variable optimizations. These

optimizations may be unsafe (may

alter the semantics of your program)

when there are integer overflow

operations involving the induction

variables.

-qtune TUNE Tunes instruction selection,

scheduling, and other

architecture-dependent performance

enhancements to run best on a

specific hardware architecture.

-qunroll UNROLL Specifies whether unrolling DO

loops is allowed in a program.

Unrolling is allowed on outer and

inner DO loops.

-qunwind None. Specifies that the compiler will

preserve the default behavior for

saves and restores to volatile

registers during a procedure call.

-qzerosize None. Prevents checking for zero-sized

character strings and arrays in

programs that might process such

objects.

Linking

Though linking occurs automatically, the options in the following table allow you

to direct input and output to the linker, controlling how the linker processes your

object files.

You can actually include ld options on the compiler command line, because the

compiler passes unrecognized options on to the linker.

 Table 13. Linking options

Option name @PROCESS directive Description

-qbigdata option None. Allows initialized data to be larger

than 16 MB in size.

-L None. At link time, searches the directory

path for library files specified by the

-l option.

-l None. Searches for the specified library file,

libkey.so, and then libkey.a for

dynamic linking, or just for libkey.a

for static linking.

Chapter 5. Summary of compiler options by functional category 55

Portability and migration

The options in this category can help you maintain application behavior

compatibility on past, current, and future hardware, operating systems and

compilers, or help move your applications to an XL compiler with minimal change.

 Table 14. Portability and migration options

Option name @PROCESS directive Description

-qalign ALIGN Specifies the alignment of data

objects in storage, which avoids

performance problems with

misaligned data.

-qctyplss CTYPLSS Specifies whether character constant

expressions are allowed wherever

typeless constants may be used.

-qddim DDIM Specifies that the bounds of pointee

arrays are re-evaluated each time the

arrays are referenced and removes

some restrictions on the bounds

expressions for pointee arrays.

-qdescriptor None. Specifies the XL Fortran internal

descriptor data structure format to

use for non object-oriented entities in

your compiled applications.

-qescape ESCAPE Specifies how the backslash is treated

in character strings, Hollerith

constants, H edit descriptors, and

character string edit descriptors.

-qextern EXTERN Allows user-written procedures to be

called instead of XL Fortran

intrinsics.

-qextname EXTNAME Adds an underscore to the names of

all global entities.

-qmodule None. Specifies that the compiler should use

the XL Fortran Version 8.1 naming

convention for non-intrinsic module

files.

-qport PORT Provides options to accommodate

other Fortran language extensions

when porting programs to XL

Fortran.

-qswapomp SWAPOMP Specifies that the compiler should

recognize and substitute OpenMP

routines in XL Fortran programs.

Compiler customization

The options in the following table allow you to specify alternate locations for

compiler components, configuration files, standard include directories, and internal

compiler operation. You should only need to use these options in specialized

installation or testing scenarios.

56 XL Fortran Compiler Reference

Table 15. Compiler customization options

Option name @PROCESS directive Description

-B None. Determines substitute path names for

XL Fortran executables such as the

compiler, assembler, linker, and

preprocessor.

-F None. Specifies an alternative configuration

file, which stanza to use within the

configuration file, or both.

-NS, -qspillsize SPILLSIZE Specifies the size (in bytes) of the

register spill space; the internal

program storage areas used by the

optimizer for register spills to storage.

-qalias_size ALIAS_SIZE(bytes) Specifies an appropriate initial size, in

bytes, for the aliasing table. This

option has effect only when

optimization is enabled.

-t None. Applies the prefix specified by the -B

option to the designated components.

-W None. Passes the listed options to a

component that is executed during

compilation.

Deprecated options

The compiler still accepts options listed in the following table. An asterisk marks

options with functionality that the compiler supports under another name. Options

without an asterisk can produce unexpected results and are not guaranteed to

perform as previously documented. Use with discretion.

An option is obsolete for either or both of the following reasons:

v It has been replaced by an alternative that is considered to be better. Usually this

happens when a limited or special-purpose option is replaced by one with a

more general purpose and additional features.

v We expect that few or no customers use the feature and that it can be removed

from the product in the future with minimal impact to current users.

If you do use any of these options in existing makefiles or compilation scripts, you

should migrate to the new alternatives as soon as you can to avoid any potential

problems in the future.

Chapter 5. Summary of compiler options by functional category 57

Table 16. Deprecated options

Option name Replacement option

-qcharlen=

 length

Obsolete. It is still accepted, but it has no

effect. The maximum length for character

constants and subobjects of constants is

32 767 bytes (32 KB). The maximum length

for character variables is 268 435 456 bytes

(256 MB) in 32-bit mode. The maximum

length for character variables is 2**40 bytes

in 64-bit mode. These limits are always in

effect and are intended to be high enough to

avoid portability problems with programs

that contain long strings

-qarch=com As of the V11.1 release of the compiler, this

suboption is no longer supported. Replaced

by -qarch=ppc64grsq.

-qipa=pdfname Replaced by -qpdf1=pdfname,

-qpdf2=pdfname.

-qposition=append -qposition=appendunknown replaces the

-qposition=append suboption.

-qrecur

-qnorecur

Not recommended. Specifies whether

external subprograms may be called

recursively.

For new programs, use the RECURSIVE

keyword, which provides a

standard-conforming way of using recursive

procedures. If you specify the -qrecur

option, the compiler must assume that any

procedure could be recursive. Code

generation for recursive procedures may be

less efficient. Using the RECURSIVE

keyword allows you to specify exactly which

procedures are recursive.

58 XL Fortran Compiler Reference

Chapter 6. Detailed descriptions of the XL Fortran compiler

options

This section contains descriptions of the individual options available in XL Fortran.

For each option, the following information is provided:

Category

The functional category to which the option belongs is listed here.

@process directive

For many compiler options, you can use an equivalent @PROCESS

directive to apply the option's functionality within the source code, limiting

the scope of the option's application to a single source file or compilation

unit, or even selected sections of code.

Purpose

This section provides a brief description of the effect of the option (and

equivalent directives), and why you might want to use it.

Syntax

This section provides the syntax for the command-line option and for the

equivalent @PROCESS directive, if applicable. Syntax is shown first in

command-line form, and then in @PROCESS form. For an explanation of

the notations used to represent command-line syntax, see “Conventions

and terminology used in this document” on page viii.

 For @PROCESS syntax, the following notations are used:

v Defaults for each option are underlined and in boldface type.

v Individual required arguments are shown with no special notation.

v When you must make a choice between a set of alternatives, they are

enclosed by { and } symbols.

v Optional arguments are enclosed by [and] symbols.

v When you can select from a group of choices, they are separated by |

characters.

v Arguments that you can repeat are followed by ellipses (...).

Defaults

In most cases, the default option setting is clearly indicated in the syntax

diagram. However, for many options, there are multiple default settings,

depending on other compiler options in effect. This section indicates the

different defaults that may apply.

Parameters

This section describes the suboptions that are available for the option.

Usage This section describes any rules or usage considerations you should be

aware. These can include restrictions on the option's applicability,

precedence rules for multiple option specifications, and so on.

Examples

Where appropriate, examples of the command-line syntax and use are

provided in this section.

© Copyright IBM Corp. 1990, 2007 59

-#

Category

Error checking and debugging

@PROCESS directive

None.

Purpose

Previews the compilation steps specified on the command line, without actually

invoking any compiler components.

At the points where the compiler executes commands to perform different

compilation steps, this option displays a simulation of the commands it would run

and the system argument lists it would pass, but it does not actually perform these

actions.

Syntax

Option:

�� -# ��

Defaults

Not applicable.

Usage

Examining the output of this option can help you quickly and safely determine the

following information for a particular compilation:

v What files are involved

v What options are in effect for each step

It avoids the overhead of compiling the source code and avoids overwriting any

existing files, such as .lst files. (If you are familiar with the make command, it is

similar to make -n.)

This option produces the same output as -v and -V, but does not perform the

compilation.

Note that if you specify this option with -qipa, the compiler does not display

linker information subsequent to the IPA link step. This is because the compiler

does not actually call IPA.

Related information

v “-v” on page 275

v “-V” on page 276

60 XL Fortran Compiler Reference

-1

Category

Language element control

Purpose

Executes each DO loop in the compiled program at least once if its DO statement

is executed, even if the iteration count is 0. This option provides compatibility with

FORTRAN 66.

-qonetrip is the long form of -1.

Syntax

Option:

�� -l ��

@PROCESS:

@PROCESS ONETRIP | NOONETRIP

Defaults

The default is to follow the behavior of later Fortran standards, where DO loops

are not performed if the iteration count is 0.

Restrictions

It has no effect on FORALL statements, FORALL constructs, or array constructor

implied-DO loops.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 61

-B

Category

Compiler customization

Purpose

Determines substitute path names for XL Fortran executables such as the compiler,

assembler, linker, and preprocessor.

It can be used in combination with the -t option, which determines which of these

components are affected by -B.

Syntax

�� -B

prefix
 ��

@PROCESS:

@PROCESS -Bprefix

Defaults

The default paths for the compiler executables are defined in the compiler

configuration file.

Parameters

prefix

The name of a directory where the alternative executable files reside. It must

end in a / (slash).

Usage

To form the complete path name for each component, the driver program adds

prefix to the standard program names. You can restrict the components that are

affected by this option by also including one or more -tmnemonic options.

You can also specify default path names for these commands in the configuration

file.

This option allows you to keep multiple levels of some or all of the XL Fortran

components or to try out an upgraded component before installing it permanently.

When keeping multiple levels of XL Fortran available, you might want to put the

appropriate -B and -t options into a configuration-file stanza and to use the -F

option to select the stanza to use.

Related information

v “-t” on page 271

v “-F” on page 67

v “Using custom compiler configuration files” on page 10

v “Running two levels of XL Fortran” on page 17

62 XL Fortran Compiler Reference

-C

Category

Error checking and debugging

Purpose

Checks each reference to an array element, array section, or character substring to

ensure the reference stays within the defined bounds of the entity.

-qcheck is the long form of -C.

Syntax

Option:

�� -C ��

@PROCESS:

@PROCESS CHECK | NOCHECK

Defaults

-qnocheck

Usage

At compile time, if the compiler can determine that a reference goes out of bounds,

the severity of the error reported is increased to S (severe) when this option is

specified.

At run time, if a reference goes out of bounds, the program generates a SIGTRAP

signal. By default, this signal ends the program and produces a core dump. This is

expected behavior and does not indicate there is a defect in the compiler product.

Because runtime checking can slow execution, you should decide which is the

more important factor for each program: the performance impact or the possibility

of incorrect results if an error goes undetected. You might decide to use this option

only while testing and debugging a program (if performance is more important) or

also for compiling the production version (if safety is more important).

The -C option prevents some optimizations. You may want to remove the -C

option after the debugging of your code is complete and then add any desired

optimization options for better performance.

The valid bounds for character substring expressions differ depending on the

setting of the -qzerosize option.

Related information

v “-qhot” on page 146

v “-qzerosize” on page 269

v “-qsigtrap” on page 220 and Installing an exception handler in the XL Fortran

Optimization and Programming Guide describe how to detect and recover from

SIGTRAP signals without ending the program.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 63

-c

Category

Object code control

@PROCESS directive

None.

Purpose

Prevents the completed object from being sent to the linker. With this option, the

output is a .o file for each source file.

Syntax

�� -c ��

Defaults

Not applicable.

Usage

Using the -o option in combination with -c selects a different name for the .o file.

In this case, you can only compile one source file at a time.

Related information

v “-o” on page 78.

64 XL Fortran Compiler Reference

-D

Category

Language element control

Purpose

Specifies whether the compiler compiles fixed source form lines with a D in

column 1 or treats them as comments.

-qdlines is the long form of -D.

Syntax

�� -D ��

@PROCESS:

@PROCESS DLINES | NODLINES

Usage

If you specify -D, fixed source form lines that have a D in column 1 are compiled.

The default action is to treat these lines as comment lines. They are typically used

for sections of debugging code that need to be turned on and off.

Note that in order to pass C-style -D macro definitions to the C preprocessor, for

example, when compiling a file that ends with .F, use the -W option. For example:

-WF,-DDEFINE_THIS

Chapter 6. Detailed descriptions of the XL Fortran compiler options 65

-d

Category

Output control

@PROCESS directive

None.

Purpose

Causes preprocessed source files that are produced by cpp to be kept rather than

deleted.

Syntax

�� -d ��

Defaults

Not applicable.

Results

The files that this option produces have names of the form Ffilename.f, derived

from the names of the original source files.

Related information

v “Passing Fortran files through the C preprocessor” on page 28

66 XL Fortran Compiler Reference

-F

Category

Compiler customization

@PROCESS directive

None.

Purpose

Specifies an alternative configuration file, which stanza to use within the

configuration file, or both.

The configuration file specifies different kinds of defaults, such as options for

particular compilation steps and the locations of various files that the compiler

requires.

Syntax

�� -F config_file

:

stanza

:

stanza

 ��

Defaults

By default, the compiler uses the configuration file that is configured at installation

time, and the stanza defined in that file for the invocation command currently

being used (for example, xlf2003, xlf90_r, and so on.).

Parameters

config_file

The full path name of the alternate compiler configuration file to use.

stanza

The name of the configuration file stanza to use for compilation. This directs

the compiler to use the entries under that stanza regardless of the invocation

command being used. For example, if you are compiling with xlf, but you

specify the xlf95 stanza, the compiler will use all the settings specified in the

xlf95 stanza.

Usage

A simple way to customize the way the compiler works, as an alternative to

writing complicated compilation scripts, is to add new stanzas to

/etc/opt/ibmcmp/xlf/11.1/xlf.cfg, giving each stanza a different name and a different

set of default compiler options. Or, you can specify a user-defined configuration

file with the XLF_USR_CONFIG environment variable rather than editing the

default configuration file. You may find a single, centralized file easier to maintain

than many scattered compilation scripts and makefiles.

By running the compiler with an appropriate -F option, you can select the set of

options that you want. You might have one set for full optimization, another set

for full error checking, and so on. Note that the settings in any user-defined

configuration file are processed before the ones specified by the -F option.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 67

Restrictions

Because the default configuration file is replaced each time a new compiler release

is installed, make sure to save a copy of any new stanzas or compiler options that

you add.

Alternatively, you can store customized settings in the user-defined configuration

file specified by the XLF_USR_CONFIG environment variable. This file will not be

replaced during reinstallation.

Examples

 # Use stanza debug in default xlf.cfg.

 xlf95 -F:debug t.f

Use stanza xlf95 in /home/fred/xlf.cfg.

 xlf95 -F/home/fred/xlf.cfg t.f

Use stanza myxlf in /home/fred/xlf.cfg.

 xlf95 -F/home/fred/xlf.cfg:myxlf t.f

Related information

v “Creating custom configuration files” on page 11 explains the contents of a

custom, user-defined configuration file and shows how to select different stanzas

in the file without using the -F option.

v “Editing the default configuration file” on page 14 explains how to edit the

contents of a configuration file for use with the -F option.

v “-B” on page 62

v “-t” on page 271

v “-W” on page 277

68 XL Fortran Compiler Reference

-g

Category

Error checking and debugging

Purpose

Generates debug information for use by a symbolic debugger.

-qdbg is the long form of -g.

-g implies the -Q! option.

Syntax

Option:

�� -g ��

@PROCESS:

@PROCESS DBG | NODBG

Related information

v “-qlinedebug” on page 171

v “Debugging a Fortran 90 or Fortran 95 program” on page 289

v “Symbolic debugger support” on page 5

Chapter 6. Detailed descriptions of the XL Fortran compiler options 69

-I

Category

Input control

@PROCESS directive

None.

Purpose

Adds a directory to the search path for include files and .mod files.

Syntax

�� -I path_name ��

Defaults

Not applicable.

Parameters

path_name

A valid path name (for example, /home/dir, /tmp, or ./subdir).

Usage

If XL Fortran calls cpp, this option adds a directory to the search path for #include

files. Before checking the default directories for include and .mod files, the

compiler checks each directory in the search path. For include files, this path is

only used if the file name in an INCLUDE line is not provided with an absolute

path. For #include files, refer to the cpp documentation for the details of the -I

option.

Rules

The compiler appends a / to dir and then concatenates that with the file name

before making a search. If you specify more than one -I option on the command

line, files are searched in the order of the dir names as they appear on the

command line.

The following directories are searched, in this order, after any paths that are

specified by -I options:

1. The current directory (from which the compiler is executed)

2. The directory where the source file is (if different from 1)

3. /usr/include.

Also, the compiler will search /opt/ibmcmp/xlf/11.1/include where include and

.mod files shipped with the compiler are located.

Related information

v “-qmoddir” on page 181

v “-qfullpath” on page 143

70 XL Fortran Compiler Reference

-k

Category

Input control

Purpose

Indicates that the source code is in free source form.

This option is the short form of -qfree=f90.

Syntax

Option:

�� -k ��

@PROCESS:

@PROCESS FREE(F90)

Related information

v “-qfree” on page 141

v Free Source Form in the XL Fortran Language Reference.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 71

-L

Category

Linking

@PROCESS directive

None.

Purpose

At link time, searches the directory path for library files specified by the -l option.

Syntax

Option:

�� -L path_name ��

Defaults

Not applicable.

Usage

If you use libraries other than the default ones in /opt/ibmcmp/xlf/11.1/lib or

/opt/ibmcmp/xlf/11.1/lib64, you can specify one or more -L options that point to

the locations of the other libraries. You can also specify the LD_LIBRARY_PATH

and LD_RUN_PATH environment variables for search paths for libraries.

Rules

This option is passed directly to the ld command and is not processed by XL

Fortran at all.

Related information

v “Linking” on page 55

v “Linking XL Fortran programs” on page 30

72 XL Fortran Compiler Reference

-l

Category

Linking

@PROCESS directive

None.

Purpose

Searches for the specified library file, libkey.so, and then libkey.a for dynamic

linking, or just for libkey.a for static linking.

Syntax

�� -l key ��

Defaults

The compiler default is to search only for some of the compiler runtime libraries.

The default configuration file specifies the default library names to search for with

the -l compiler option, and the default search path for libraries with the -L

compiler option.

Parameters

key

The name of the library minus the lib characters.

Rules

This option is passed directly to the ld command and is not processed by XL

Fortran at all.

Related information

v “Linking” on page 55

v “Linking XL Fortran programs” on page 30

Chapter 6. Detailed descriptions of the XL Fortran compiler options 73

-NS

Category

Compiler customization

Purpose

Specifies the size (in bytes) of the register spill space; the internal program storage

areas used by the optimizer for register spills to storage.

-qspillsize is the long form of -NS.

Syntax

Option:

�� -NS bytes ��

@PROCESS:

@PROCESS SPILLSIZE(bytes)

Defaults

By default, each subprogram stack has 512 bytes of spill space reserved.

If you need this option, a compile-time message informs you of the fact.

Parameters

bytes

The number of bytes of stack space to reserve in each subprogram, in case

there are too many variables to hold in registers and the program needs

temporary storage for register contents.

Related information

v “-qspillsize” on page 230

74 XL Fortran Compiler Reference

-O

Category

Optimization and tuning

Purpose

Specifies whether to optimize code during compilation and, if so, at which level.

-qOPTimize is the long form of -O.

Syntax

Option:

��
 0

-O

1

2

3

4

5

��

@PROCESS:

@PROCESS OPTimize[(level)] | NOOPTimize

Defaults

nooptimize or -O0 or optimize=0

Parameters

not specified

Almost all optimizations are disabled. This is equivalent to specifying -O0

or -qnoopt.

-O For each release of XL Fortran, -O enables the level of optimization that

represents the best tradeoff between compilation speed and runtime

performance. If you need a specific level of optimization, specify the

appropriate numeric value. Currently, -O is equivalent to -O2.

-O0 Almost all optimizations are disabled. This option is equivalent to

–qnoopt.

-O1 Reserved for future use. This form is ignored and has no effect on the

outcome of the compilation.

-O2 Performs a set of optimizations that are intended to offer improved

performance without an unreasonable increase in time or storage that is

required for compilation.

-O3 Performs additional optimizations that are memory intensive, compile-time

intensive, and may change the semantics of the program slightly, unless

-qstrict is specified. We recommend these optimizations when the desire

for runtime speed improvements outweighs the concern for limiting

compile-time resources.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 75

This level of optimization also affects the setting of the -qfloat option,

turning on the fltint and rsqrt suboptions by default, and sets

-qmaxmem=-1.

 Specifying -O3 implies -qhot=level=0 unless you explicitly specify -qhot or

-qhot=level=1.

-O4 Aggressively optimizes the source program, trading off additional compile

time for potential improvements in the generated code. You can specify the

option at compile time or at link time. If you specify it at link time, it will

have no effect unless you also specify it at compile time for at least the file

that contains the main program.

 -O4 implies the following other options:

v -qhot

v -qipa

v -O3 (and all the options and settings that it implies)

v -qarch=auto

v -qtune=auto

v -qcache=auto

 Note that the auto setting of -qarch, -qtune, and -qcache implies that the

execution environment will be the same as the compilation environment.

 This option follows the ″last option wins″ conflict resolution rule, so any of

the options that are modified by -O4 can be subsequently changed. For

example, specifying -O4 -qarch=ppc allows aggressive intraprocedural

optimization while maintaining code portability.

-O5 Provides all of the functionality of the -O4 option, but also provides the

functionality of the -qipa=level=2 option.

Note: Combining -O2 and higher optimizations with -qsmp=omp invokes

additional optimization algorithms, including interprocedural analysis (IPA).

These algorithms provide opportunities for the compiler to generate

additional fmadd instructions.

To obtain the same floating-point accuracy for optimized and non-optimized

applications, you must specify the -qfloat=nomaf compiler option. In cases

where differences in floating-point accuracy still occur after specifying

-qfloat=nomaf, the -qstrict compiler option allows you to exert greater

control over changes that optimization can cause in floating-point semantics.

Usage

Generally, use the same optimization level for both the compile and link steps. This

is important when using either the -O4 or -O5 optimization level to get the best

runtime performance. For the -O5 level, all loop transformations (as specified via

the -qhot option) are done at the link step.

Increasing the level of optimization may or may not result in additional

performance improvements, depending on whether the additional analysis detects

any further optimization opportunities.

An optimization level of -O3 or higher can change the behavior of the program

and potentially cause exceptions that would not otherwise occur. Use of the

76 XL Fortran Compiler Reference

-qstrict option maintains the same program behavior as with -O2, at the cost of

optimization opportunity. Refer to the -qstrict option for the list of optimizations it

disables.

If the -O option is used in an @PROCESS statement, only an optimization level of

0, 2, or 3 is allowed. Note that unlike using -O3 in command line invocation,

specifying @PROCESS OPT(3) does not imply -qhot=level=0.

Compilations with optimization may require more time and machine resources

than other compilations.

The more the compiler optimizes a program, the more difficult it is to debug the

program with a symbolic debugger.

Related information

v “-qstrict” on page 233 shows how to turn off the effects of -O3 that might

change the semantics of a program.

v “-qipa” on page 158, “-qhot” on page 146, and “-qpdf1, -qpdf2” on page 192

turn on additional optimizations that may improve performance for some

programs.

v Optimizing your applications in the XL Fortran Optimization and Programming Guide

discusses technical details of the optimization techniques the compiler uses and

some strategies you can use to get maximum performance from your code.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 77

-o

Category

Output control

@PROCESS directive

None.

Purpose

Specifies a name for the output object, assembler, or executable file.

Syntax

�� -o name ��

Defaults

The default name for an executable file is a.out. The default name for an object or

assembler source file is the same as the source file except that it has a .o or .s

extension.

Usage

To choose the name for an object file, use this option in combination with the -c

option. For an assembler source file, use it in combination with the -S option.

Rules

Except when you specify the -c or -S option, the -o option is passed directly to the

ld command, instead of being processed by XL Fortran.

Examples

xlf95 t.f # Produces "a.out"

xlf95 -c t.f # Produces "t.o"

xlf95 -o test_program t.f # Produces "test_program"

xlf95 -S -o t2.s t.f # Produces "t2.s"

78 XL Fortran Compiler Reference

-p

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Prepares the object files produced by the compiler for profiling.

The compiler produces monitoring code that counts the number of times each

routine is called. The compiler inserts a call to the monitor subroutine at the start

of each subprogram.

Syntax

�� -p

g
 ��

Defaults

Not applicable.

Usage

When you run a program compiled with -p or -pg and it ends normally, it

produces a gmon.out file with the profiling information. You can then use the

gprof command to generate a runtime profile.

Examples

Related information

v Refer to your operating system documentation for more information on profiling

and the gprof command.

$ xlf95 -pg needs_tuning.f

$ a.out

$ gprof

 .

 .

 .

detailed and verbose profiling data

 .

 .

 .

Chapter 6. Detailed descriptions of the XL Fortran compiler options 79

-Q

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Specifies whether procedures are considered for inlining and/or the names of

particular procedures that should or should not be considered for inlining.

Syntax

��

�

 -Q!

-Q

:

+

names

-

��

Defaults

-Q!

Parameters

+names

Procedure names, separated by colons, to be inlined.

-names

Procedure names, separated by colons, not to be inlined.

 The -Q option without any list inlines all appropriate procedures, subject to limits

on the number of inlined calls and the amount of code size increase as a result.

+names raises these limits for the named procedures.

You can specify more than one of these options to precisely control which

procedures are most likely to be inlined.

-Q! turns off inlining.

Usage

You must specify at least an optimization level of -O2 for inlining to take effect

with -Q.

By default, -Q only affects internal or module procedures. To turn on inline

expansion for calls to procedures in different scopes, you must also use the -qipa

option.

A procedure is not inlined by the basic -Q option unless it is quite small. In

general, this means that it contains no more than several source statements

80 XL Fortran Compiler Reference

(although the exact cutoff is difficult to define at the source level). A procedure

named by -Q+names can be up to approximately 20 times larger and still be

inlined.

Conflicting @PROCESS directives or compilation options applied to different

compilation units can impact inlining effectiveness. For example, if you specify

inlining for a procedure, some @PROCESS compiler directives can be rendered

ineffective. See theXL Fortran Optimization and Programming Guide for more

information on inlining and IPA.

Examples

xlf95 -O -Q many_small_subprogs.f # Compiler decides what to inline.

xlf95 -O -Q+bigfunc:hugefunc test.f # Inline even though these are big.

xlf95 -O -Q -Q-only_once pi.f # Inline except for this one procedure.

Related information

v “-qipa” on page 158

v Interprocedural analysis in the XL Fortran Optimization and Programming Guide

Chapter 6. Detailed descriptions of the XL Fortran compiler options 81

-q32

Category

Object code control

@PROCESS directive

None.

Purpose

Enables 32-bit compilation mode (or, more briefly, 32-bit mode) support in a 64-bit

environment.

Syntax

�� -q 32 ��

Defaults

-q32 is the default.

Usage

v The default integer and default real size are 4 bytes in 32-bit mode.

v The default integer pointer size is 4 bytes in 32-bit mode.

v 32-bit object modules are created when targeting 32-bit mode.

v -q64 will override -q32.

v All settings for -qarch are compatible with -q32. If you specify -q32, the default

suboption is ppc64grsq, and the default -qtune suboption for -q32 is .pwr4.

v The LOC intrinsic returns an INTEGER(4) value.

Examples

v Using 32-bit compilation mode and targetting a generic PowerPC architecture:

 -qarch=ppc -q32

v Now keep the same compilation mode, but change the target to POWER5:

 -qarch=ppc -q32 -qarch=pwr5

Notice that the last setting for -qarch wins.

v Now keep the same target, but change the compilation mode to 64-bit:

 -qarch=ppc -q32 -qarch=pwr5 -q64

Notice that specifying -q64 overrides the earlier instance of -q32.

Related information

v “-q64” on page 83

v “-qarch” on page 92

v “-qtune” on page 245

v “-qwarn64” on page 253

v Chapter 7, “Using XL Fortran in a 64-Bit Environment,” on page 281

82 XL Fortran Compiler Reference

-q64

Category

Object code control

@PROCESS directive

None.

Purpose

Indicates 64-bit compilation bit mode and, together with the -qarch option,

determines the target machines on which the 64-bit executable will run.

The object module will be created in 64-bit object format and that the 64-bit

instruction set will be generated. Note that you may compile in a 32-bit

environment to create 64-bit objects, but you must link them in a 64-bit

environment with the -q64 option.

Syntax

�� -q 64 ��

Purpose

Defaults

Not applicable.

Rules

v Settings for -qarch that are compatible with -q64 are as follows:

– -qarch=auto (if compiling on a 64-bit system)

– -qarch=ppc (With -q64 and -qarch=ppc, the compiler will silently upgrade the

arch to ppc64grsq.)

– -qarch=ppcgr (With -q64 and -qarch=ppcgr, the compiler will silently

upgrade the arch to ppc64grsq.)

– -qarch=ppc64

– -qarch=ppc64v

– -qarch=ppc64gr

– -qarch=ppc64grsq

– -qarch=rs64a

– -qarch=rs64b

– -qarch=rs64c

– -qarch=pwr3

– -qarch=pwr4

– -qarch=pwr5

– -qarch=pwr5x

– -qarch=pwr6

– -qarch=pwr6e

– -qarch=ppc970
v The default -qarch setting for -q64 is ppc64.

v 64-bit object modules are created when targeting 64-bit mode.

v -q32 may override -q64.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 83

v -q64 will override a conflicting setting for -qarch and will result in the setting

-q64 -qarch=ppc64 along with a warning message.

v The default tune setting for -q64 is -qtune=pwr4.

v The default integer and default real size is 4 bytes in 64-bit mode.

v The default integer pointer size is 8 bytes in 64-bit mode.

v The maximum array size increases to approximately 2**40 bytes (in static

storage) or 2**60 bytes (in dynamic allocation on the heap). The maximum

dimension bound range is extended to -2**63, 2**63-1 bytes. The theoretical

maximum array size is 2**60 bytes, but this is subject to the limitations imposed

by the operating system. The maximum array size for array constants has not

been extended and will remain the same as the maximum in 32-bit mode. The

maximum array size that you can initialize is 2**28 bytes.

v The maximum iteration count for array constructor implied DO loops increases

to 2**63-1 bytes.

v The maximum character variable length extends to approximately 2**40 bytes.

The maximum length of character constants and subobjects of constants remains

the same as in 32-bit mode, which is 32 767 bytes (32 KB).

v The LOC intrinsic returns an INTEGER(8) value.

v If you must use -qautodbl=dblpad in 64-bit mode, you should use -qintsize=8

to promote INTEGER(4) to INTEGER(8) for 8 byte integer arithmetic.

Examples

This example targets the POWER5 in 64-bit mode:

-q32 -qarch=pwr5 -q64

This 64-bit compilation example targets the common group of 64-bit architectures:

-q64 -qarch=ppc

The arch setting is silently upgraded to ppc64grsq, the most ″common″ 64-bit

mode compilation target.

Related information

v “-qarch” on page 92

v “-qtune” on page 245

v Chapter 7, “Using XL Fortran in a 64-Bit Environment,” on page 281

v “-qwarn64” on page 253

84 XL Fortran Compiler Reference

-qalias

Category

Optimization and tuning

Purpose

Indicates whether a program contains certain categories of aliasing or does not

conform to Fortran standard aliasing rules. The compiler limits the scope of some

optimizations when there is a possibility that different names are aliases for the

same storage location.

Syntax

��

�

 :

std

pteovrlp

nointptr

aryovrlp

-q

alias

=

noaryovrlp

intptr

nopteovrlp

nostd

��

@PROCESS:

@PROCESS ALIAS({ARGUMENT_LIST})

Defaults

-qalias=aryovrlp:nointptr:pteovrlp:std

Parameters

aryovrlp | noaryovrlp

Indicates whether the compilation units contain any array assignments

between storage-associated arrays. If not, specify noaryovrlp to improve

performance.

intptr | nointptr

Indicates whether the compilation units contain any integer POINTER

statements. If so, specify intptr.

pteovrlp | nopteovrlp

Indicates whether any pointee variables may be used to refer to any data

objects that are not pointee variables, or whether two pointee variables

may be used to refer to the same storage location. If not, specify

nopteovrlp.

std | nostd

Indicates whether the compilation units contain any nonstandard aliasing

(which is explained below). If so, specify nostd.

Usage

An alias exists when an item in storage can be referred to by more than one name.

The Fortran 90, Fortran 95, and Fortran 2003 standards allow some types of

aliasing and disallow some others. The sophisticated optimizations that the XL

Chapter 6. Detailed descriptions of the XL Fortran compiler options 85

Fortran compiler performs increase the likelihood of undesirable results when

nonstandard aliasing is present, as in the following situations:

v The same data object is passed as an actual argument two or more times in the

same subprogram reference. The aliasing is not valid if either of the actual

arguments becomes defined, undefined, or redefined.

v A subprogram reference associates a dummy argument with an object that is

accessible inside the referenced subprogram. The aliasing is not valid if any part

of the object associated with the dummy argument becomes defined, undefined,

or redefined other than through a reference to the dummy argument.

v A dummy argument becomes defined, undefined, or redefined inside a called

subprogram in some other way than through the dummy argument.

v A subscript to an array within a common block exceeds that array’s bounds.

Restrictions

Because this option inhibits some optimizations of some variables, using it can

lower performance.

Programs that contain nonstandard or integer POINTER aliasing may produce

incorrect results if you do not compile them with the correct -qalias settings. The

xlf_r, xlf, and f77/fort77 commands assume that integer POINTERs may be

present (-qalias=aryovrlp:pteovrlp:std:intptr), while all other invocation commands

assume that a program contains only standard aliasing

(-qalias=aryovrlp:pteovrlp:std:nointptr).

Examples

If the following subroutine is compiled with -qalias=nopteovrlp, the compiler may

be able to generate more efficient code. You can compile this subroutine with

-qalias=nopteovrlp, because the integer pointers, ptr1 and ptr2, point at

dynamically allocated memory only.

 subroutine sub(arg)

 real arg

 pointer(ptr1, pte1)

 pointer(ptr2, pte2)

 real pte1, pte2

 ptr1 = malloc(%val(4))

 ptr2 = malloc(%val(4))

 pte1 = arg*arg

 pte2 = int(sqrt(arg))

 arg = pte1 + pte2

 call free(%val(ptr1))

 call free(%val(ptr2))

 end subroutine

If most array assignments in a compilation unit involve arrays that do not overlap

but a few assignments do involve storage-associated arrays, you can code the

overlapping assignments with an extra step so that the NOARYOVRLP suboption

is still safe to use.

@PROCESS ALIAS(NOARYOVRLP)

! The assertion that no array assignments involve overlapping

! arrays allows the assignment to be done without creating a

! temporary array.

 program test

 real(8) a(100)

 integer :: j=1, k=50, m=51, n=100

 a(1:50) = 0.0d0

86 XL Fortran Compiler Reference

a(51:100) = 1.0d0

 ! Timing loop to achieve accurate timing results

 do i = 1, 1000000

 a(j:k) = a(m:n) ! Here is the array assignment

 end do

 print *, a

 end program

! We cannot assert that this unit is free

! of array-assignment aliasing because of the assignments below.

 subroutine sub1

 integer a(10), b(10)

 equivalence (a, b(3))

 a = b ! a and b overlap.

 a = a(10:1:-1) ! The elements of a are reversed.

 end subroutine

! When the overlapping assignment is recoded to explicitly use a

! temporary array, the array-assignment aliasing is removed.

! Although ALIAS(NOARYOVRLP) does not speed up this assignment,

! subsequent assignments of non-overlapping arrays in this unit

! are optimized.

@PROCESS ALIAS(NOARYOVRLP)

 subroutine sub2

 integer a(10), b(10), t(10)

 equivalence (a, b(3))

 t = b; a = t

 t = a(10:1:-1); a = t

 end subroutine

When SUB1 is called, an alias exists between J and K. J and K refer to the same

item in storage. In Fortran, this aliasing is not permitted if J or K are updated, and,

if it is left undetected, it can have unpredictable results.

 CALL SUB1(I,I)

 ...

 SUBROUTINE SUB1(J,K)

In the following example, the program might store 5 instead of 6 into J unless

-qalias=nostd indicates that an alias might exist.

 INTEGER BIG(1000)

 INTEGER SMALL(10)

 COMMON // BIG

 EQUIVALENCE(BIG,SMALL)

 ...

 BIG(500) = 5

 SMALL (I) = 6 ! Where I has the value 500

 J = BIG(500)

Related information

v See Optimizing your applications in the XL Fortran Optimization and Programming

Guide for information on aliasing strategies you should consider.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 87

-qalias_size

Category

Compiler customization

Purpose

Specifies an appropriate initial size, in bytes, for the aliasing table. This option has

effect only when optimization is enabled.

Syntax

�� -q alias_size = size ��

@PROCESS:

@PROCESS ALIAS_SIZE(bytes)

Defaults

None.

Parameters

size

The initial size of the alias table, in bytes.

Usage

Compiling very large programs with optimization can cause aliasing tables to get

very large, which may result in memory fragmentation. Use this option only when

the compiler issues an error message with a suggested value for bytes. Specifying

this option in other situations, or with values not recommended by the compiler,

may cause the compiler to run out of memory.

Related information

v “-qsaveopt” on page 216

v “-qxlf2003” on page 262

88 XL Fortran Compiler Reference

-qalign

Processing

Portability and migration

Purpose

Specifies the alignment of data objects in storage, which avoids performance

problems with misaligned data.

The [no]4k, bindc, and struct options can be specified and are not mutually

exclusive. The [no]4k option is useful primarily in combination with logical

volume I/O and disk striping.

Format

��

�

 :

no4k

-q

align

=

4k

linuxppc

bindc

=

bit_packed

natural

struct

=

packed

port

��

@PROCESS:

@PROCESS ALIGN({[NO]4K|STRUCT{(suboption)}|BINDC{(suboption)}})

Defaults

-qalign= no4k:struct=natural:bindc=linuxppc.

Parameters

[no]4k Specifies whether to align large data objects on page (4 KB) boundaries, for

improved performance with data-striped I/O. Objects are affected

depending on their representation within the object file. The affected

objects are arrays and structures that are 4 KB or larger and are in static or

bss storage and also CSECTs (typically COMMON blocks) that are 8 KB or

larger. A large COMMON block, equivalence group containing arrays, or

structure is aligned on a page boundary, so the alignment of the arrays

depends on their position within the containing object. Inside a structure of

non-sequence derived type, the compiler adds padding to align large

arrays on page boundaries.

bindc={suboption}

Specifies that the alignment and padding for an XL Fortran derived type

with the BIND(C) attribute is compatible with a C struct type that is

compiled with the corresponding XL C alignment option. The compatible

alignment options include:

 XL Fortran Option

Corresponding

XL C Option

-qalign=bindc=bit_packed -qalign=bit_packed

-qalign=bindc=linuxppc -qalign=linuxppc

Chapter 6. Detailed descriptions of the XL Fortran compiler options 89

struct={suboption}

The struct option specifies how objects or arrays of a derived type declared

using a record structure are stored, and whether or not padding is used

between components. All program units must be compiled with the same

settings of the -qalign=struct option. The three suboptions available are:

packed

If the packed suboption of the struct option is specified, objects of

a derived type are stored with no padding between components,

other than any padding represented by %FILL components. The

storage format is the same as would result for a sequence structure

whose derived type was declared using a standard derived type

declaration.

natural

If the natural suboption of the struct option is specified, objects of

a derived type are stored with sufficient padding such that

components will be stored on their natural alignment boundaries,

unless storage association requires otherwise. The natural

alignment boundaries for objects of a type that appears in the

left-hand column of the following table is shown in terms of a

multiple of some number of bytes in the corresponding entry in

the right-hand column of the table.

Type

Natural Alignment (in

multiples of bytes)

INTEGER(1), LOGICAL(1), BYTE, CHARACTER 1

INTEGER(2), LOGICAL(2) 2

INTEGER(4), LOGICAL(4), REAL(4) 4

INTEGER(8), LOGICAL(8), REAL(8), COMPLEX(4) 8

REAL(16), COMPLEX(8), COMPLEX(16) 16

Derived Maximum alignment of its

components

If the natural suboption of the struct option is specified, arrays of

derived type are stored so that each component of each element is

stored on its natural alignment boundary, unless storage

association requires otherwise.

port

 If the port suboption of the struct option is specified,

v Storage padding is the same as described above for the natural

suboption, with the exception that the alignment of components

of type complex is the same as the alignment of components of

type real of the same kind.

v The padding for an object that is immediately followed by a

union is inserted at the beginning of the first map component

for each map in that union.

Restrictions

The port suboption does not affect any arrays or structures with the AUTOMATIC

attribute or arrays that are allocated dynamically. Because this option may change

90 XL Fortran Compiler Reference

the layout of non-sequence derived types, when compiling programs that read or

write such objects with unformatted files, use the same setting for this option for

all source files.

You can tell if an array has the AUTOMATIC attribute and is thus unaffected by

-qalign=4k if you look for the keywords AUTOMATIC or CONTROLLED

AUTOMATIC in the listing of the “-qattr” on page 96. This listing also shows the

offsets of data objects.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 91

-qarch

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Specifies the processor architecture, or family of architectures, where the code may

run. This allows the compiler to take maximum advantage of the machine

instructions specific to an architecture, or common to a family of architectures.

Syntax

��
 ppc64grsq

-q

arch

=

auto

pwr3

pwr4

pwr5

pwr5x

pwr6

pwr6e

ppc

ppc64v

ppc64

ppcgr

ppc64gr

ppc970

rs64b

rs64c

��

Defaults

v -qarch=ppc64grsq

v -qarch=auto when -O4 or -O5 is in effect.

Parameters

auto

Automatically detects the specific architecture of the compiling machine. It

assumes that the execution environment will be the same as the compilation

environment. This option is implied if the -O4 or -O5 option is set or implied.

pwr3

Produces object code containing instructions that will run on any POWER3,

POWER4, POWER5, POWER5+, POWER6, or PowerPC 970 hardware platform.

pwr4

Produces object code containing instructions that will run on the POWER4,

POWER5, POWER5+, POWER6, or PowerPC 970 hardware platform.

pwr5

Produces object code containing instructions that will run on the POWER5,

POWER5+, or POWER6 hardware platforms.

92 XL Fortran Compiler Reference

pwr5x

Produces object code containing instructions that will run on the POWER5+ or

POWER6 hardware platforms.

pwr6

Produces object code containing instructions that will run on the POWER6

hardware platforms running in POWER6 architected mode.

pwr6e

Produces object code containing instructions that will run on the POWER6

hardware platforms running in POWER6 raw mode.

ppc

In 32-bit mode, produces object code containing instructions that will run on

any of the 32-bit PowerPC hardware platforms. This suboption causes the

compiler to produce single-precision instructions to be used with

single-precision data. Specifying -qarch=ppc together with -q64 silently

upgrades the architecture setting to -qarch=ppc64grsq.

ppc64

Produces object code that will run on any of the 64-bit PowerPC hardware

platforms. This suboption can be selected when compiling in 32-bit mode, but

the resulting object code may include instructions that are not recognized or

behave differently when run on 32-bit PowerPC platforms.

ppcgr

In 32-bit mode, produces object code for PowerPC processors that support

optional graphics instructions. Specifying -qarch=ppcgr together with -q64

silently upgrades the architecture setting to -qarch=ppc64grsq.

ppc64gr

Produces code for any 64-bit PowerPC hardware platform that supports

optional graphics instructions.

ppc64grsq

Produces code for any 64-bit PowerPC hardware platform that supports

optional graphics and square root instructions.

ppc64v

Generates instructions for generic PowerPC chips with vector processors, such

as the PowerPC 970. Valid in 32-bit or 64-bit mode.

ppc970

Generates instructions specific to the PowerPC 970 architecture.

rs64b

Produces object code that will run on RS64II platforms.

rs64c

Produces object code that will run on RS64III platforms.

Usage

All PowerPC machines share a common set of instructions, but may also include

additional instructions unique to a given processor or processor family. Using the

-qarch option to target a specific architecture for the compilation results in code

that may not run on other architectures, but provides the best performance for the

selected architecture. If you want maximum performance on a specific architecture

and will not be using the program on other architectures, use the appropriate

architecture option. If you want to generate code that can run on more than one

architecture, specify a -qarch suboption that supports a group of architectures.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 93

Table 17 shows the features supported by the different processor architectures and

their representative -qarch suboptions:

 Table 17. Feature support in processor architectures

Architecture Graphics

support

Square root

support

64-bit support Vector

processing

support

rs64b yes yes yes no

rs64c yes yes yes no

pwr3 yes yes yes no

pwr4 yes yes yes no

pwr5 yes yes yes no

pwr5x yes yes yes no

ppc no no no no

ppc64 no no yes no

ppc64gr yes no yes no

ppc64grsq yes yes yes no

ppc64v yes yes yes yes

ppc970 yes yes yes yes

pwr6 yes yes yes yes

pwr6e yes yes yes yes

For any given -qarch setting, the compiler defaults to a specific, matching -qtune

setting, which can provide additional performance improvements. Alternatively, if

you specify -qarch with a group argument, you can specify -qtune as either auto

or provide a specific architecture in the group. For detailed information on using

-qarch and -qtune together, see “-qtune” on page 245.

Specifying -q64 changes the effective -qarch setting as follows:

 Original -qarch setting Effective setting when -q64 is specified

ppc ppc64grsq

ppcgr ppc64grsq

For a given application program, make sure that you specify the same -qarch

setting when you compile each of its source files.

Examples

To specify that the executable program testing compiled from myprogram.f is to run

on a computer with a 32-bit PowerPC architecture, enter:

xlf -o testing myprogram.f -q32 -qarch=ppc

Related information

v “-qtune” on page 245

v "Choosing the best -qarch suboption" in the XL Fortran Optimization and

Programming Guide

94 XL Fortran Compiler Reference

-qassert

Category

Optimization and tuning

Purpose

Provides information about the characteristics of the files that can help to fine-tune

optimizations.

Syntax

Option:

��

�

 -q assert

:

deps

=

nodeps

itercount=n

 ��

@PROCESS:

@PROCESS ASSERT(suboptions)

Defaults

-qassert=deps

Parameters

deps | nodeps

Specifies whether or not any loop-carried dependencies exist.

itercnt=n Specifies a value for unknown loop iteration counts for the

optimizer to use when it cannot statically determine the loop

iteration count.

Related information

v High-order transformation in the XL Fortran Optimization and Programming Guide

for background information and instructions on using these assertions.

v The ASSERT directive in the XL Fortran Language Reference.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 95

-qattr

Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing that includes the attribute component of the attribute

and cross-reference section of the listing.

Syntax

��
 noattr

-q

attr

=

full

��

@PROCESS:

@PROCESS ATTR[(FULL)] | NOATTR

Defaults

-qnoattr

Parameters

full

Reports all identifiers in the program. If you specify -qattr without this

suboption, only those identifiers that are used are reported.

 If you specify -qattr=full, all identifiers, whether referenced or not, are reported.

Usage

If you specify -qattr after -qattr=full, the full attribute listing is still produced.

You can use the attribute listing to help debug problems caused by incorrectly

specified attributes or as a reminder of the attributes of each object while writing

new code.

Related information

v “Listings, messages, and compiler information” on page 51

v “Attribute and cross reference section” on page 294

96 XL Fortran Compiler Reference

-qautodbl

Category

Floating-point and integer control

Purpose

Provides an automatic means of converting single-precision floating-point

calculations to double-precision and of converting double-precision calculations to

extended-precision.

Syntax

��
 none

-q

autodbl

=

dbl4

dbl8

dbl

dblpad4

dblpad8

dblpad

��

@PROCESS:

@PROCESS AUTODBL(setting)

Defaults

-qautodbl=none

Parameters

The -qautodbl suboptions offer different strategies to preserve storage relationships

between objects that are promoted or padded and those that are not.

The settings you can use are as follows:

none Does not promote or pad any objects that share storage. This

setting is the default.

dbl4 Promotes floating-point objects that are single-precision (4 bytes in

size) or that are composed of such objects (for example, COMPLEX

or array objects):

v REAL(4) is promoted to REAL(8).

v COMPLEX(4) is promoted to COMPLEX(8).

This suboption requires the libxlfpmt4.a library during linking.

dbl8 Promotes floating-point objects that are double-precision (8 bytes in

size) or that are composed of such objects:

v REAL(8) is promoted to REAL(16).

v COMPLEX(8) is promoted to COMPLEX(16).

This suboption requires the libxlfpmt8.a library during linking.

dbl Combines the promotions that dbl4 and dbl8 perform.

 This suboption requires the libxlfpmt4.a and libxlfpmt8.a libraries

during linking.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 97

dblpad4 Performs the same promotions as dbl4 and pads objects of other

types (except CHARACTER) if they could possibly share storage

with promoted objects.

 This suboption requires the libxlfpmt4.a and libxlfpad.a libraries

during linking.

dblpad8 Performs the same promotions as dbl8 and pads objects of other

types (except CHARACTER) if they could possibly share storage

with promoted objects.

 This suboption requires the libxlfpmt8.a and libxlfpad.a libraries

during linking.

dblpad Combines the promotions done by dbl4 and dbl8 and pads objects

of other types (except CHARACTER) if they could possibly share

storage with promoted objects.

 This suboption requires the libxlfpmt4.a, libxlfpmt8.a, and

libxlfpad.a libraries during linking.

Usage

You might find this option helpful in porting code where storage relationships are

significant and different from the XL Fortran defaults. For example, programs that

are written for the IBM VS FORTRAN compiler may rely on that compiler’s

equivalent option.

If the appropriate -qautodbl option is specified during linking, the program is

automatically linked with the necessary extra libraries. Otherwise, you must link

them in manually.

When you have both REAL(4) and REAL(8) calculations in the same program and

want to speed up the REAL(4) operations without slowing down the REAL(8)

ones, use dbl4. If you need to maintain storage relationships for promoted objects,

use dblpad4. If you have few or no REAL(8) calculations, you could also use

dblpad.

If you want maximum precision of all results, you can use dbl or dblpad. dbl4,

dblpad4, dbl8, and dblpad8 select a subset of real types that have their precision

increased.

By using dbl4 or dblpad4, you can increase the size of REAL(4) objects without

turning REAL(8) objects into REAL(16)s. REAL(16) is less efficient in calculations

than REAL(8) is.

The -qautodbl option handles calls to intrinsics with arguments that are promoted;

when necessary, the correct higher-precision intrinsic function is substituted. For

example, if single-precision items are being promoted, a call in your program to

SIN automatically becomes a call to DSIN.

Restrictions

v Because character data is not promoted or padded, its relationship with

storage-associated items that are promoted or padded may not be maintained.

v If the storage space for a pointee is acquired through the system routine malloc,

the size specified to malloc should take into account the extra space needed to

represent the pointee if it is promoted or padded.

98 XL Fortran Compiler Reference

v If an intrinsic function cannot be promoted because there is no higher-precision

specific name, the original intrinsic function is used, and the compiler displays a

warning message.

v You must compile every compilation unit in a program with the same -qautodbl

setting.

Related information

For background information on promotion, padding, and storage/value

relationships and for some source examples, see “Implementation details for

-qautodbl promotion and padding” on page 299.

“-qrealsize” on page 207 describes another option that works like -qautodbl, but it

only affects items that are of default kind type and does not do any padding. If

you specify both the -qrealsize and the -qautodbl options, only -qautodbl takes

effect. Also, -qautodbl overrides the -qdpc option.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 99

-qbigdata option

Category

Linking

@PROCESS directive

None.

Purpose

Allows initialized data to be larger than 16 MB in size.

Syntax

��
 nobigdata

-q

bigdata

��

Defaults

-qnobigdata

100 XL Fortran Compiler Reference

-qcache

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

When specified with -O4, -O5, or -qipa, specifies the cache configuration for a

specific execution machine.

The compiler uses this information to tune program performance, especially for

loop operations that can be structured (or blocked) to process only the amount of

data that can fit into the data cache.

Syntax

��

�

 :

-q

cache

=

assoc

=

0

1

number

auto

cost

=

cycles

level

=

1

2

3

line

=

bytes

size

=

Kbytes

type

=

C

c

D

d

I

i

��

Defaults

Not applicable.

Parameters

assoc=number

Specifies the set associativity of the cache:

0 Direct-mapped cache

1 Fully associative cache

n > 1 n-way set-associative cache

auto Automatically detects the specific cache configuration of the compiling

machine. It assumes that the execution environment will be the same as

the compilation environment.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 101

cost=cycles

Specifies the performance penalty that results from a cache miss so that the

compiler can decide whether to perform an optimization that might result

in extra cache misses.

level=level

Specifies which level of cache is affected:

1 Basic cache

2 Level-2 cache or the table lookaside buffer (TLB) if the machine has

no level-2 cache

3 TLB in a machine that does have a level-2 cache

Other levels are possible but are currently undefined. If a system has more

than one level of cache, use a separate -qcache option to describe each

level.

line=bytes

Specifies the line size of the cache.

size=Kbytes

Specifies the total size of this cache.

type={C|c| D|d|I|i}

Specifies the type of cache that the settings apply to, as follows:

v C or c for a combined data and instruction cache

v D or d for the data cache

v I or i for the instruction cache

Usage

If you know exactly what type of system a program is intended to be executed on

and that system has its instruction or data cache configured differently from the

default case (as governed by the -qtune setting), you can specify the exact

characteristics of the cache to allow the compiler to compute more precisely the

benefits of particular cache-related optimizations.

For the -qcache option to have any effect, you must include the level and type

suboptions and specify the -qhot option or an option that implies -qhot.

v If you know some but not all of the values, specify the ones you do know.

v If a system has more than one level of cache, use a separate -qcache option to

describe each level. If you have limited time to spend experimenting with this

option, it is more important to specify the characteristics of the data cache than

of the instruction cache.

v If you are not sure of the exact cache sizes of the target systems, use relatively

small estimated values. It is better to have some cache memory that is not used

than to have cache misses or page faults from specifying a cache that is larger

than the target system has.

If you specify the wrong values for the cache configuration or run the program on

a machine with a different configuration, the program may not be as fast as

possible but will still work correctly. Remember, if you are not sure of the exact

values for cache sizes, use a conservative estimate.

102 XL Fortran Compiler Reference

Examples

To tune performance for a system with a combined instruction and data level-1

cache where the cache is two-way associative, 8 KB in size, and has 64-byte cache

lines:

 xlf95 -O3 -qhot -qcache=type=c:level=1:size=8:line=64:assoc=2 file.f

To tune performance for a system with two levels of data cache, use two -qcache

options:

 xlf95 -O3 -qhot -qcache=type=D:level=1:size=256:line=256:assoc=4 \

 -qcache=type=D:level=2:size=512:line=256:assoc=2 file.f

To tune performance for a system with two types of cache, again use two -qcache

options:

 xlf95 -O3 -qhot -qcache=type=D:level=1:size=256:line=256:assoc=4 \

 -qcache=type=I:level=1:size=512:line=256:assoc=2 file.f

Related information

v “-qarch” on page 92

v “-qhot” on page 146

v “-qtune” on page 245

Chapter 6. Detailed descriptions of the XL Fortran compiler options 103

-qcclines

Category

Input control

Purpose

Determines whether the compiler recognizes conditional compilation lines in fixed

source form and F90 free source form. IBM free source form is not supported with

this option.

Syntax

�� -q cclines

nocclines
 ��

@PROCESS:

@PROCESS CCLINES | NOCCLINES

Defaults

The default is -qcclines if the -qsmp=omp option is turned on; otherwise, the

default is -qnocclines.

Related information

v Conditional Compilation in the Language Elements section of the XL Fortran

Language Reference

104 XL Fortran Compiler Reference

-qcheck

Category

Error checking and debugging

Purpose

-qcheck is the long form of the -C option.

Syntax

��
 nocheck

-q

check

��

@PROCESS:

@PROCESS CHECK | NOCHECK

Defaults

-qnocheck

Chapter 6. Detailed descriptions of the XL Fortran compiler options 105

-qci

Category

Input control

Purpose

Specifies the identification numbers (from 1 to 255) of the INCLUDE lines to

process.

Syntax

��

�

 :

-q

ci

=

number

��

@PROCESS:

@PROCESS CI(number,...,number)

Defaults

Not applicable.

Usage

This option allows a kind of conditional compilation because you can put code that

is only sometimes needed (such as debugging WRITE statements, additional

error-checking code, or XLF-specific code) into separate files and decide for each

compilation whether to process them.

If an INCLUDE line has a number at the end, the file is only included if you

specify that number in a -qci option. The set of identification numbers that is

recognized is the union of all identification numbers that are specified on all

occurrences of the -qci option.

Notes:

1. Because the optional number in INCLUDE lines is not a widespread XL

Fortran feature, using it may restrict the portability of a program.

2. This option works only with the XL Fortran INCLUDE directive and not with

the #include C preprocessor directive.

Examples

REAL X /1.0/

INCLUDE ’print_all_variables.f’ 1

X = 2.5

INCLUDE ’print_all_variables.f’ 1

INCLUDE ’test_value_of_x.f’ 2

END

In this example, compiling without the -qci option simply declares X and assigns it

a value. Compiling with -qci=1 includes two instances of an include file, and

compiling with -qci=1:2 includes both include files.

Related information

v The INCLUDE directive in the XL Fortran Language Reference

106 XL Fortran Compiler Reference

-qcompact

Category

Optimization and tuning

Purpose

Avoids optimizations that increase code size.

Syntax

��
 nocompact

-q

compact

��

@PROCESS:

@PROCESS COMPACT | NOCOMPACT

Defaults

-qnocompact

Usage

By default, some techniques the optimizer uses to improve performance, such as

loop unrolling and array vectorization, may also make the program larger. For

systems with limited storage, you can use -qcompact to reduce the expansion that

takes place. If your program has many loop and array language constructs, using

the -qcompact option will affect your application’s overall performance. You may

want to restrict using this option to those parts of your program where

optimization gains will remain unaffected.

Rules

With -qcompact in effect, other optimization options still work; the reductions in

code size come from limiting code replication that is done automatically during

optimization.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 107

-qcr

Category

Input control

@PROCESS directive

None.

Purpose

Controls how the compiler interprets the CR (carriage return) character.

This option allows you to compile code written using a Mac OS or DOS/Windows

editor.

Syntax

��
 nocr

-q

cr

��

Defaults

By default, the CR (Hex value X'0d') or LF (Hex value X'0a') character, or the CRLF

(Hex value X'0d0a') combination indicates line termination in a source file.

Usage

If you specify -qnocr, the compiler recognizes only the LF character as a line

terminator. You must specify -qnocr if you use the CR character for a purpose

other than line termination.

108 XL Fortran Compiler Reference

-qctyplss

Category

Portability and migration

Purpose

Specifies whether character constant expressions are allowed wherever typeless

constants may be used.

This language extension might be needed when you are porting programs from

other platforms.

Syntax

��
 noctyplss

-q

ctyplss

noarg

=

arg

��

@PROCESS:

@PROCESS CTYPLSS[([NO]ARG)]| NOCTYPLSS

Defaults

-qnoctyplss

Parameters

arg | noarg Suboptions retain the behavior of -qctyplss. Additionally, arg

specifies that Hollerith constants used as actual arguments will be

treated as integer actual arguments.

Usage

With -qctyplss, character constant expressions are treated as if they were Hollerith

constants and thus can be used in logical and arithmetic expressions.

v If you specify the -qctyplss option and use a character-constant expression with

the %VAL argument-list keyword, a distinction is made between Hollerith

constants and character constants. Character constants are placed in the

rightmost byte of the register and padded on the left with zeros, while Hollerith

constants are placed in the leftmost byte and padded on the right with blanks.

All of the other %VAL rules apply.

v The option does not apply to character expressions that involve a constant array

or subobject of a constant array at any point.

Examples

Example 1: In the following example, the compiler option -qctyplss allows the use

of a character constant expression.

@PROCESS CTYPLSS

 INTEGER I,J

 INTEGER, PARAMETER :: K(1) = (/97/)

 CHARACTER, PARAMETER :: C(1) = (/’A’/)

 I = 4HABCD ! Hollerith constant

Chapter 6. Detailed descriptions of the XL Fortran compiler options 109

J = ’ABCD’ ! I and J have the same bit representation

! These calls are to routines in other languages.

 CALL SUB(%VAL(’A’)) ! Equivalent to CALL SUB(97)

 CALL SUB(%VAL(1HA)) ! Equivalent to CALL SUB(1627389952)

! These statements are not allowed because of the constant-array

! restriction.

! I = C // C

! I = C(1)

! I = CHAR(K(1))

 END

Example 2: In the following example, the variable J is passed by reference. The

suboption arg specifies that the Hollerith constant is passed as if it were an integer

actual argument.

@PROCESS CTYPLSS(ARG)

 INTEGER :: J

 J = 3HIBM

! These calls are to routines in other languages.

 CALL SUB(J)

 CALL SUB(3HIBM) ! The Hollerith constant is passed as if

 ! it were an integer actual argument

Related information

v Hollerith Constants in the XL Fortran Language Reference

v Passing arguments by reference or by value in the XL Fortran Optimization and

Programming Guide

110 XL Fortran Compiler Reference

-qdbg

Category

Error checking and debugging

Purpose

-qdbg is the long form of “-g” on page 69.

Syntax

��
 nodbg

-q

dbg

��

@PROCESS:

@PROCESS DBG | NODBG

Defaults

-qnodbg

Chapter 6. Detailed descriptions of the XL Fortran compiler options 111

-qddim

Category

Portability and migration

Purpose

Specifies that the bounds of pointee arrays are re-evaluated each time the arrays

are referenced and removes some restrictions on the bounds expressions for

pointee arrays.

Syntax

��
 noddim

-q

ddim

��

@PROCESS:

@PROCESS DDIM | NODDIM

Defaults

-qnoddim

Usage

By default, a pointee array can only have dimension declarators containing

variable names if the array appears in a subprogram, and any variables in the

dimension declarators must be dummy arguments, members of a common block,

or use- or host-associated. The size of the dimension is evaluated on entry to the

subprogram and remains constant during execution of the subprogram.

With the -qddim option:

v The bounds of a pointee array are re-evaluated each time the pointee is

referenced. This process is called dynamic dimensioning. Because the variables in

the declarators are evaluated each time the array is referenced, changing the

values of the variables changes the size of the pointee array.

v The restriction on the variables that can appear in the array declarators is lifted,

so ordinary local variables can be used in these expressions.

v Pointee arrays in the main program can also have variables in their array

declarators.

Examples

@PROCESS DDIM

INTEGER PTE, N, ARRAY(10)

POINTER (P, PTE(N))

DO I=1, 10

 ARRAY(I)=I

END DO

N = 5

P = LOC(ARRAY(2))

PRINT *, PTE ! Print elements 2 through 6.

N = 7 ! Increase the size.

PRINT *, PTE ! Print elements 2 through 8.

END

112 XL Fortran Compiler Reference

-qdescriptor

Category

Portability and migration

@PROCESS directive

None.

Purpose

Specifies the XL Fortran internal descriptor data structure format to use for non

object-oriented entities in your compiled applications.

Syntax

��
 v1

-q

descriptor

=

v2

��

Defaults

v -qdescriptor=v1

Parameters

v1 Use an internal descriptor data structure format that provides compatibility

with objects compiled with XL Fortran V10.1 and earlier.

v2 Use an internal descriptor data structure format that provides compatibility

with new features available in XL Fortran V11.1 and above. This setting allows

your programs to take advantage of new object-oriented features and

constructs.

Usage

Regardless of what -qdescriptor setting is in effect, applications containing

object-oriented constructs will use the v2 data structure format for those constructs,

and will not be compatible with objects compiled with XL Fortran V10.1 or earlier.

You should consider explicitly using the v2 setting if your applications do not need

to interact with objects that were compiled with earlier versions of XL Fortran.

The choice of -qdescriptor setting is an important consideration when building

libraries or modules for distribution. Users of these libraries and modules will

need to be aware of the -qdescriptor setting and compile the code that uses them

in a compatible way. It is suggested that such libraries and modules be built with

the -qsaveopt option so that the objects themselves will encode the compilation

options in a user-readable form.

If you are building modules with V11.1 or later that contain user-visible derived

types, consider building them with the -qxlf2003=polymorphic suboption. This

allows users of the module to use or extend the derived types in a Fortran

object-oriented context that uses polymorphism.

In the Fortran 2003 object-oriented programming model, the XL Fortran compiler

supports using types and type extensions from types defined in modules not

compiled with -qxlf2003=polymorphic, as long as the types are not used in a

Chapter 6. Detailed descriptions of the XL Fortran compiler options 113

context that requires polymorphism. This support extends to modules built with

older XL Fortran compilers, as well. However, if the compiler detects the attempted

use of a type or a type extension from a module not compiled with

-qxlf2003=polymorphic in a context that requires polymorphism, an error message

will be issued and compilation halted.

If a module built with the -qdescriptor=v1 setting or a module built with XL

Fortran v10.1 or earlier is used in a compilation where -qdescriptor=v2 has been

specified, the compiler will diagnose this mismatch and halt compilation after

issuing an error message.

When using the -qdescriptor=v2 option, the compiler is unable to diagnose unsafe

usage where objects built with the v2 setting are mixed with those built with the

v1 setting or with XL Fortran 10.1 or older compilers. Even if your program

appears to function properly, this usage is unsupported. The descriptor formats are

different sizes and, when used with certain constructs, data layouts will change

resulting in undefined and unsupported behavior. For example, the sizes of

allocatable and pointer entities within derived types will be different resulting a

differing size for the derived type itself.

Related information

v “-qsaveopt” on page 216

v “-qxlf2003” on page 262

114 XL Fortran Compiler Reference

-qdirective

Processing

Input control

Purpose

Specifies sequences of characters, known as trigger constants, that identify

comment lines as compiler comment directives.

A compiler comment directive is a line that is not a Fortran statement but is

recognized and acted on by the compiler.

Format

��

 nodirective

=

directive_list

-q

directive

=

directive_list

��

@PROCESS:

@PROCESS DIRECTIVE[(directive_list)] | NODIRECTIVE[(directive_list)]

Defaults

The compiler recognizes the default trigger constant IBM*.

Specifying -qsmp implies -qdirective=smp\$:\$omp:ibmp, and, by default, the

trigger constants SMP$, $OMP, and IBMP are also turned on. If you specify

-qsmp=omp, the compiler ignores all trigger constants that you have specified up

to that point and recognizes only the $OMP trigger constant. Specifying

-qthreaded implies -qdirective=ibmt, and, by default, the trigger constant IBMT is

also turned on.

Parameters

The -qnodirective option with no directive_list turns off all previously specified

directive identifiers; with a directive_list, it turns off only the selected identifiers.

-qdirective with no directive_list turns on the default trigger constant IBM* if it has

been turned off by a previous -qnodirective.

Usage

Note the following:

v Multiple -qdirective and -qnodirective options are additive; that is, you can turn

directive identifiers on and off again multiple times.

v One or more directive_lists can be applied to a particular file or compilation unit;

any comment line beginning with one of the strings in the directive_list is then

considered to be a compiler comment directive.

v The trigger constants are not case-sensitive.

v The characters (,), ', ", :, =, comma, and blank cannot be part of a trigger

constant.

v To avoid wildcard expansion in trigger constants that you might use with these

options, you can enclose them in single quotation marks on the command line.

For example:

Chapter 6. Detailed descriptions of the XL Fortran compiler options 115

xlf95 -qdirective=’dbg*’ -qnodirective=’IBM*’ directives.f

v This option only affects Fortran directives that the XL Fortran compiler provides,

not those that any preprocessors provide.

v As the use of incorrect trigger constants can generate warning messages, error

messages, or both, you should check the particular directive statement for the

suitable associated trigger constant.

Examples

! This program is written in Fortran free source form.

PROGRAM DIRECTV

INTEGER A, B, C, D, E, F

A = 1 ! Begin in free source form.

B = 2

!OLDSTYLE SOURCEFORM(FIXED)

! Switch to fixed source form for this include file.

 INCLUDE ’set_c_and_d.inc’

!IBM* SOURCEFORM(FREE)

! Switch back to free source form.

E = 5

F = 6

END

For this example, compile with the option -qdirective=oldstyle to ensure that the

compiler recognizes the SOURCEFORM directive before the INCLUDE line. After

processing the include-file line, the program reverts back to free source form, after

the SOURCEFORM(FREE) statement.

v The SOURCEFORM directive in the XL Fortran Language Reference

v The Directives section in the XL Fortran Language Reference

116 XL Fortran Compiler Reference

-qdirectstorage

Processing

Optimization and tuning

Context

None.

Purpose

Informs the compiler that a given compilation unit may reference

write-through-enabled or cache-inhibited storage.

Format

��
 nodirectstorage

-q

directstorage

��

Defaults

-qnodirectstorage

Usage

Use this option with discretion. It is intended for programmers who know how the

memory and cache blocks work, and how to tune their applications for optimal

performance. For a program to execute correctly on all PowerPC implementations

of cache organization, the programmer should assume that separate instruction

and data caches exist, and should program to the separate cache model.

Note: Using the -qdirectstorage option together with the CACHE_ZERO directive

may cause your program to fail, or to produce incorrect results.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 117

-qdlines

Processing

Language element control

Purpose

-qdlines is the long form of -D.

Format

��
 nodlines

-q

dlines

��

@PROCESS:

@PROCESS DLINES | NODLINES

Defaults

-qnodlines

118 XL Fortran Compiler Reference

-qdpc

Processing

Floating-point and integer control

Purpose

Increases the precision of real constants for maximum accuracy, when assigning

real constants to DOUBLE PRECISION variables.

This language extension might be needed when you are porting programs from

other platforms.

Format

��
 nodpc

-q

dpc

=

e

��

@PROCESS:

@PROCESS DPC[(E)] | NODPC

Defaults

-qnodpc

Usage

If you specify -qdpc, all basic real constants (for example, 1.1) are treated as

double-precision constants; the compiler preserves some digits of precision that

would otherwise be lost during the assignment to the DOUBLE PRECISION

variable. If you specify -qdpc=e, all single-precision constants, including constants

with an e exponent, are treated as double-precision constants.

This option does not affect constants with a kind type parameter specified.

-qautodbl and -qrealsize are more general-purpose options that can also do what

-qdpc does. -qdpc has no effect if you specify either of these options.

Examples

@process nodpc

 subroutine nodpc

 real x

 double precision y

 data x /1.000000000001/ ! The trailing digit is lost

 data y /1.000000000001/ ! The trailing digit is lost

 print *, x, y, x .eq. y ! So x is considered equal to y

 end

@process dpc

 subroutine dpc

 real x

 double precision y

 data x /1.000000000001/ ! The trailing digit is lost

 data y /1.000000000001/ ! The trailing digit is preserved

 print *, x, y, x .eq. y ! So x and y are considered different

Chapter 6. Detailed descriptions of the XL Fortran compiler options 119

end

 program testdpc

 call nodpc

 call dpc

 end

When compiled, this program prints the following:

 1.000000000 1.00000000000000000 T

 1.000000000 1.00000000000100009 F

showing that with -qdpc the extra precision is preserved.

v “-qautodbl” on page 97

v “-qrealsize” on page 207

120 XL Fortran Compiler Reference

-qenablevmx

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Enables generation of vector instructions for processors that support them.

These instructions can offer higher performance when used with

algorithmic-intensive tasks such as multimedia applications.

Syntax

��
 enablevmx

-q

noenablevmx

��

Defaults

-qenablevmx when -qarch is set to an architecture that supports vector processing.

-qnoenablevmx, otherwise.

Usage

If -qnoenablevmx is in effect, -qhot=simd cannot be used.

Specify -qenablevmx to use the VMX hardware intrinsics and the vector data type.

If you do not, the compiler will flag usage of the type and these intrinsics as an

error.

Related information

v “-qarch” on page 92

v “-qhot” on page 146

v VMX intrinsic procedures in the XL Fortran Language Reference

v Vector data type in the XL Fortran Language Reference

Chapter 6. Detailed descriptions of the XL Fortran compiler options 121

-qenum

Category

Floating-point and integer control

@PROCESS directive

None.

Purpose

Specifies the range of the enumerator constant and enables storage size to be

determined.

Syntax

��
 4

-q

enum

=

1

2

8

��

Defaults

-qenum=4

Usage

Regardless of its storage size, the enumerator’s value will be limited by the range

that corresponds to value. If the enumerator value exceeds the range specified, a

warning message is issued and truncation is performed as necessary.

The range limit and kind type parameter corresponding to each value is as follows:

 Table 18. Enumerator sizes and types

Value Valid range of enumerator constant value

Kind type

parameter

1 -128 to 127 4

2 -32768 to 32767 4

4 -2147483648 to 2147483647 4

8 -9223372036854775808 to 9223372036854775807 8

Related information

v ENUM / ENDENUM statement in the XL Fortran Language Reference

122 XL Fortran Compiler Reference

-qescape

Category

Portability and migration

Purpose

Specifies how the backslash is treated in character strings, Hollerith constants, H

edit descriptors, and character string edit descriptors.

It can be treated as an escape character or as a backslash character. This language

extension might be needed when you are porting programs from other platforms.

Syntax

��
 escape

-q

noescape

��

@PROCESS:

@PROCESS ESCAPE | NOESCAPE

Defaults

-qescape

Usage

When -qescape is specified, the backslash is interpreted as an escape character in

these contexts. If you specify -qnoescape, the backslash is treated as the backslash

character.

The default setting is useful for the following:

v Porting code from another Fortran compiler that uses the backslash as an escape

character.

v Including “unusual” characters, such as tabs or newlines, in character data.

Without this option, the alternative is to encode the ASCII values (or EBCDIC

values, on mainframe systems) directly in the program, making it harder to port.

If you are writing or porting code that depends on backslash characters being

passed through unchanged, specify -qnoescape so that they do not get any special

interpretation. You could also write \\ to mean a single backslash character under

the default setting.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 123

Examples

 In the first compilation, with the default setting of -qescape, \b is printed as a

backspace, and \f is printed as a formfeed character.

With the -qnoescape option specified, the backslashes are printed like any other

character.

Related information

The list of escape sequences that XL Fortran recognizes is shown in Escape sequences

for character strings in the XL Fortran Optimization and Programming Guide.

$ # Demonstrate how backslashes can affect the output

$ cat escape.f

 PRINT *,’a\bcde\fg’

 END

$ xlf95 escape.f

** _main === End of Compilation 1 ===

1501-510 Compilation successful for file escape.f.

$ a.out

cde

 g

$ xlf95 -qnoescape escape.f

** _main === End of Compilation 1 ===

1501-510 Compilation successful for file escape.f.

 $ a.out

 a\bcde\fg

124 XL Fortran Compiler Reference

-qessl

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Allows the compiler to substitute the Engineering and Scientific Subroutine Library

(ESSL) routines in place of Fortran 90 intrinsic procedures.

The ESSL is a collection of subroutines that provides a wide range of mathematical

functions for various scientific and engineering applications. The subroutines are

tuned for performance on specific architectures. Some of the Fortran 90 intrinsic

procedures have similar counterparts in ESSL. Performance is improved when

these Fortran 90 intrinsic procedures are linked with ESSL. In this case, you can

keep the interface of Fortran 90 intrinsic procedures, and get the added benefit of

improved performance using ESSL.

Syntax

��
 noessl

-q

essl

��

Defaults

-qnoessl

Usage

Use the ESSL Serial Library when linking with -lessl. Use the ESSL SMP Library

when linking with -lesslsmp.

Either -lessl or -lesslsmp must be used whenever code is being compiled with

-qessl. ESSL V4.1.1 or above is recommended. It supports both 32-bit and 64-bit

environments.

Also, since libessl.so and libesslsmp.so have a dependency on libxlf90_r.so,

compile with xlf_r, xlf90_r, or xlf95_r, which use libxlf90_r.so as the default to

link. You can also specify -lxlf90_r on the link command line if you use the linker

directly, or other commands to link.

The following MATMUL function calls may use ESSL routines when -qessl is

enabled:

 real a(10,10), b(10,10), c(10,10)

 c=MATMUL(a,b)

Related information

The ESSL libraries are not shipped with the XL Fortran compiler. For more

information on these libraries, see the following Web page:

http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html

Chapter 6. Detailed descriptions of the XL Fortran compiler options 125

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

-qextern

Category

Portability and migration

@PROCESS directive

None.

Purpose

Allows user-written procedures to be called instead of XL Fortran intrinsics.

Syntax

�� -q extern = names ��

Defaults

Not applicable.

Parameters

names

A list of procedure names separated by colons.

Usage

The procedure names are treated as if they appear in an EXTERNAL statement in

each compilation unit being compiled. If any of your procedure names conflict

with XL Fortran intrinsic procedures, use this option to call the procedures in the

source code instead of the intrinsic ones.

Because of the many Fortran 90 and Fortran 95 intrinsic functions and subroutines,

you might need to use this option even if you did not need it for FORTRAN 77

programs.

Examples

 subroutine matmul(res, aa, bb, ext)

 implicit none

 integer ext, i, j, k

 real aa(ext, ext), bb(ext, ext), res(ext, ext), temp

 do i = 1, ext

 do j = 1, ext

 temp = 0

 do k = 1, ext

 temp = temp + aa(i, k) * bb(k, j)

 end do

 res(i, j) = temp

 end do

 end do

 end subroutine

 implicit none

 integer i, j, irand

 integer, parameter :: ext = 100

 real ma(ext, ext), mb(ext, ext), res(ext, ext)

126 XL Fortran Compiler Reference

do i = 1, ext

 do j = 1, ext

 ma(i, j) = float(irand())

 mb(i, j) = float(irand())

 end do

 end do

 call matmul(res, ma, mb, ext)

 end

Compiling this program with no options fails because the call to MATMUL is

actually calling the intrinsic subroutine, not the subroutine defined in the program.

Compiling with -qextern=matmul allows the program to be compiled and run

successfully.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 127

-qextname

Category

Portability and migration

Purpose

Adds an underscore to the names of all global entities.

Syntax

��

�

 noextname

:

-q

extname

=

name

��

@PROCESS:

@PROCESS EXTNAME[(name1, name2,...)] | NOEXTNAME

Defaults

-qnoextname

Parameters

name

Identifies a specific global entity (or entities). For a list of named entities,

separate each name with a colon. For example: name1: name2:....

 The name of a main program is not affected.

Usage

The -qextname option helps to port mixed-language programs to XL Fortran

without modifications.

Use of this option avoids naming problems that might otherwise be caused by:

v Fortran subroutines, functions, or common blocks that are named main, MAIN,

or have the same name as a system subroutine

v Non-Fortran routines that are referenced from Fortran and contain an underscore

at the end of the routine name

Note: XL Fortran Service and Utility Procedures, such as flush_ and dtime_,

have these underscores in their names already. By compiling with the

-qextname option, you can code the names of these procedures without

the trailing underscores.

v Non-Fortran routines that call Fortran procedures and use underscores at the

end of the Fortran names

v Non-Fortran external or global data objects that contain an underscore at the end

of the data name and are shared with a Fortran procedure

You must compile all the source files for a program, including the source files of

any required module files, with the same -qextname setting.

128 XL Fortran Compiler Reference

If you use the xlfutility module to ensure that the Service and Utility subprograms

are correctly declared, you must change the name to xlfutility_extname when

compiling with -qextname.

If there is more than one Service and Utility subprogram referenced in a

compilation unit, using -qextname with no names specified and the

xlfutility_extname module may cause the procedure declaration check not to work

accurately.

This option also affects the names that are specified in the -qextern, -Q, and

-qsigtrap options. You do not have to include underscores in their names on the

command line.

Examples

@PROCESS EXTNAME

 SUBROUTINE STORE_DATA

 CALL FLUSH(10) ! Using EXTNAME, we can drop the final underscore.

 END SUBROUTINE

@PROCESS(EXTNAME(sub1))

program main

 external :: sub1, sub2

 call sub1() ! An underscore is added.

 call sub2() ! No underscore is added.

end program

Related information

v “-qextern” on page 126

v “-Q” on page 80

v “-qsigtrap” on page 220

Chapter 6. Detailed descriptions of the XL Fortran compiler options 129

-qfdpr

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Provides object files with information that the IBM Feedback Directed Program

Restructuring (FDPR) performance-tuning utility needs to optimize the resulting

executable file.

When -qfdpr is in effect, optimization data is stored in the object file.

Syntax

��
 nofdpr

-q

fdpr

��

Defaults

-qnofdpr

Usage

For best results, use -qfdpr for all object files in a program; FDPR will perform

optimizations only on the files compiled with -qfdpr, and not library code, even if

it is statically linked.

The optimizations that the FDPR utility performs are similar to those that the

-qpdf option performs.

The FDPR performance-tuning utility has its own set of restrictions, and it is not

guaranteed to speed up all programs or produce executables that produce exactly

the same results as the original programs.

Examples

To compile myprogram.f so it includes data required by the FDPR utility, enter:

xlf myprogram.f -qfdpr

Related information

v “-qpdf1, -qpdf2” on page 192

130 XL Fortran Compiler Reference

-qfixed

Category

Input control

Purpose

Indicates that the input source program is in fixed source form and optionally

specifies the maximum line length.

Syntax

�� -q fixed

=

right_margin
 ��

@PROCESS:

@PROCESS FIXED[(right_margin)]

Defaults

-qfixed=72 is the default for the xlf, xlf_r, f77, and fort77 commands.

-qfree=f90 is the default for the f90, f95, xlf90, xlf90_r, xlf95, xlf95_r, f2003,

xlf2003, and xlf2003_r commands.

Usage

The source form specified when executing the compiler applies to all of the input

files, although you can switch the form for a compilation unit by using a FREE or

FIXED @PROCESS directive, or switch the form for the rest of the file by using a

SOURCEFORM comment directive (even inside a compilation unit).

For source code from some other systems, you may find you need to specify a

right margin larger than the default. This option allows a maximum right margin

of 132.

Related information

v “-qfree” on page 141

v See Fixed source form in the XL Fortran Language Reference.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 131

-qflag

Category

Listings, messages, and compiler information

Purpose

Limits the diagnostic messages to those of a specified severity level or higher.

Syntax

��

 (1) (2)

i

i

-q

flag

=

l

:

l

w

w

e

e

s

s

u

u

q

q

��

Notes:

1 Minimum severity level of messages reported in listing

2 Minimum severity level of messages reported on terminal
@PROCESS:

@PROCESS FLAG(listing_severity,terminal_severity)

Defaults

-qflag=i:i, which shows all compiler messages.

Parameters

The severity levels (from lowest to highest) are:

i Informational messages. They explain things that you should know, but

they usually do not require any action on your part.

l Language-level messages, such as those produced under the -qlanglvl

option. They indicate possible nonportable language constructs.

w Warning messages. They indicate error conditions that might require action

on your part, but the program is still correct.

e Error messages. They indicate error conditions that require action on your

part to make the program correct, but the resulting program can probably

still be executed.

s Severe error messages. They indicate error conditions that require action on

your part to make the program correct, and the resulting program will fail

if it reaches the location of the error. You must change the -qhalt setting to

make the compiler produce an object file when it encounters this kind of

error.

u Unrecoverable error messages. They indicate error conditions that prevent

the compiler from continuing. They require action on your part before you

can compile your program.

q No messages. A severity level that can never be generated by any defined

132 XL Fortran Compiler Reference

error condition. Specifying it prevents the compiler from displaying

messages, even if it encounters unrecoverable errors.

Usage

You must specify both listing_severity and terminal_severity.

Only messages with severity listing_severity or higher are written to the listing file.

Only messages with severity terminal_severity or higher are written to the terminal.

The -qflag option overrides any -qlanglvl or -qsaa options specified.

The -w option is a short form for -qflag=e:e.

Related information

v “-qhalt” on page 144

v “-qlanglvl” on page 168

v “-qsaa” on page 213

v “-w” on page 279

v “Understanding XL Fortran error messages” on page 283

Chapter 6. Detailed descriptions of the XL Fortran compiler options 133

-qfloat

Category

Floating-point and integer control

Purpose

Selects different strategies for speeding up or improving the accuracy of

floating-point calculations.

Syntax

Option:

��

�

 :

nostrictnmaf

norsqrt

norrm

rngchk

nonans

maf

nohsflt

nohscmplx

nogcclongdouble

fold

nofltint

nofenv

nocomplexgcc

-q

float

=

complexgcc

fenv

fltint

nofold

gcclongdouble

hscmplx

hsflt

nomaf

nans

norngchk

rrm

rsqrt

strictnmaf

��

@PROCESS:

@PROCESS FLOAT(suboptions)

Defaults

v -qfloat=nocomplexgcc:nofenv:nofltint:fold:nogcclongdouble:

nohscmplx:nohsflt:maf:nonans:rngchk:norrm:norsqrt:nostrictnmaf

v -qfloat=fltint:rsqrt:norngchk when -qnostrict or -O3 or higher optimization

level is in effect.

Parameters

complexgcc | nocomplexgcc

Specifies whether GCC conventions for passing or returning complex numbers

134 XL Fortran Compiler Reference

are to be used. complexgcc preserves compatibility with GCC-compiled code

and the default setting of IBM XL C/C++ compilers.

Note: For this suboption, restrict intermixing of XL Fortran-compiled code

with non-XL Fortran-compiled code to small, self-contained,

mathematically-oriented subprograms that do not rely on any

runtime-library information or global data, such as module variables. Do

not expect exception handling or I/O to work smoothly across programs

compiled from different environments.

fenv | nofenv

Specifies whether the code depends on the hardware environment and whether

to suppress optimizations that could cause unexpected results due to this

dependency.

 Certain floating-point operations rely on the status of Floating-Point Status and

Control Register (FPSCR), for example, to control the rounding mode or to

detect underflow. In particular, many compiler built-in functions read values

directly from the FPSCR.

 When nofenv is in effect, the compiler assumes that the program does not

depend on the hardware environment, and that aggressive compiler

optimizations that change the sequence of floating-point operations are

allowed. When fenv is in effect, such optimizations are suppressed.

 You should use fenv for any code containing statements that read or set the

hardware floating-point environment, to guard against optimizations that could

cause unexpected behavior.

 Any directives specified in the source code (such as the standard C

FENV_ACCESS pragma) take precedence over the option setting.

fltint | nofltint

Speeds up floating-point-to-integer conversions by using an inline sequence of

code instead of a call to a library function. The library function, which is called

when nofltint is in effect, checks for floating-point values outside the

representable range of integers and returns the minimum or maximum

representable integer if passed an out-of-range floating-point value.

 The Fortran language does not require checking for floating-point values

outside the representable range of integers. In order to improve efficiency, the

inline sequence used by -qfloat=fltint does not perform this check. If passed a

value that is out of range, the inline sequence will produce undefined results.

 If you compile with -O3 or higher optimization level, fltint is enabled

automatically. To disable it, also specify -qstrict.

fold | nofold

Evaluates constant floating-point expressions at compile time, which may yield

slightly different results from evaluating them at run time. The compiler

always evaluates constant expressions in specification statements, even if you

specify nofold.

gcclongdouble | nogcclongdouble

Specifies whether the compiler uses GCC-supplied or IBM-supplied library

functions for 128-bit REAL(16) operations.

 gcclongdouble ensures binary compatibility with GCC for mathematical

calculations. If this compatibility is not important in your application, you

should use nogcclongdouble for better performance.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 135

Note: Passing results from modules compiled with nogcclongdouble to

modules compiled with gcclongdouble may produce different results for

numbers such as Inf, NaN and other rare cases. To avoid such

incompatibilities, the compiler provides built-in functions to convert

IBM long double types to GCC long double types; see for more

information.

hscmplx | nohscmplx

Speeds up operations involving complex division and complex absolute value.

This suboption, which provides a subset of the optimizations of the hsflt

suboption, is preferred for complex calculations.

hsflt | nohsflt

Speeds up calculations by preventing rounding for single-precision expressions

and by replacing floating-point division by multiplication with the reciprocal of

the divisor. It also uses the same technique as the fltint suboption for

floating-point-to-integer conversions. hsflt implies hscmplx.

 The hsflt suboption overrides the nans and spnans suboptions.

Note: Use -qfloat=hsflt on applications that perform complex division and

floating-point conversions where floating-point calculations have known

characteristics. In particular, all floating-point results must be within the

defined range of representation of single precision. Use with discretion,

as this option may produce unexpected results without warning. For

complex computations, it is recommended that you use the hscmplx

suboption (described above), which provides equivalent speed-up

without the undesirable results of hsflt.

maf | nomaf

Makes floating-point calculations faster and more accurate by using

floating-point multiply-add instructions where appropriate. The results may

not be exactly equivalent to those from similar calculations performed at

compile time or on other types of computers. Negative zero results may be

produced. This suboption may affect the precision of floating-point

intermediate results. If -qfloat=nomaf is specified, no multiply-add instructions

will be generated unless they are required for correctness.

nans | nonans

Allows you to use the -qflttrap=invalid:enable option to detect and deal with

exception conditions that involve signaling NaN (not-a-number) values. Use

this suboption only if your program explicitly creates signaling NaN values,

because these values never result from other floating-point operations.

rngchk | norngchk

At optimization level -O3 and above, and without -qstrict, controls whether

range checking is performed for input arguments for software divide and

inlined square root operations. Specifying norngchk instructs the compiler to

skip range checking, allowing for increased performance where division and

square root operations are performed repeatedly within a loop.

 Note that with norngchk in effect the following restrictions apply:

v The dividend of a division operation must not be +/-INF.

v The divisor of a division operation must not be 0.0, +/- INF, or

denormalized values.

v The quotient of dividend and divisor must not be +/-INF.

v The input for a square root operation must not be INF.

136 XL Fortran Compiler Reference

If any of these conditions are not met, incorrect results may be produced. For

example, if the divisor for a division operation is 0.0 or a denormalized

number (absolute value < 2-1022 for double precision, and absolute value < 2-126

for single precision), NaN, instead of INF, may result; when the divisor is +/-

INF, NaN instead of 0.0 may result. If the input is +INF for a sqrt operation,

NaN, rather than INF, may result.

 norngchk is only allowed when -qnostrict is in effect. If -qstrict is in effect,

norngchk is ignored.

rrm | norrm

Prevents floating-point optimizations that require the rounding mode to be the

default, round-to-nearest, at run time, by informing the compiler that the

floating-point rounding mode may change or is not round-to-nearest at run

time. You should use rrm if your program changes the runtime rounding mode

by any means; otherwise, the program may compute incorrect results.

rsqrt | norsqrt

Speeds up some calculations by replacing division by the result of a square

root with multiplication by the reciprocal of the square root.

 If you compile with -O3 or higher optimization level, rsqrt is enabled

automatically. To disable it, also specify -qstrict.

strictnmaf | nostrictnmaf

Turns off floating-point transformations that are used to introduce negative

MAF instructions, as these transformations do not preserve the sign of a zero

value. By default, the compiler enables these types of transformations.

 To ensure strict semantics, specify both -qstrict and -qfloat=strictnmaf.

Usage

Using -qfloat suboptions other than the default settings may produce incorrect

results in floating-point computations if not all required conditions for a given

suboption are met. For this reason, you should only use this option if you are

experienced with floating-point calculations involving IEEE floating-point values

and can properly assess the possibility of introducing errors in your program. See

also "Implementation details of XL Fortran floating-point processing" in the XL

Fortran Optimization and Programming Guide for more information.

If the -qstrict | -qnostrict and float suboptions conflict, the last setting specified is

used.

Examples

To compile myprogram.f so that constant floating point expressions are evaluated

at compile time and multiply-add instructions are not generated, enter:

xlf myprogram.f -qfloat=fold:nomaf

Related information

v “-qarch” on page 92

v “-qflttrap” on page 139

v “-qstrict” on page 233

Chapter 6. Detailed descriptions of the XL Fortran compiler options 137

-qfpp

Category

Input control

@PROCESS directive

None.

Purpose

Controls Fortran-specific preprocessing in the C preprocessor.

Syntax

��

�

 nofpp

-WF

,

-q

fpp

:

linecont

comment

=

nocomment

nolinecont

��

Defaults

v -qnofpp

Parameters

comment | nocomment

Instructs the C preprocessor (cpp) to recognize the ! character as a comment

delimiter in macro expansion. When this suboption is enabled, only the

comments within macro expansion are preserved or discarded in the

preprocessed output.

linecont | nolinecont

Instructs cpp to recognize the & character as a line continuation character.

When this suboption is enabled, cpp treats the & character equivalently to the

C-style \ line continuation character.

Specifying -qfpp without any suboptions is equivalent to -qfpp=comment:linecont.

Usage

-qfpp is a C preprocessor option, and must therefore be specified using the -WF

option.

Related information

v “-W” on page 277

v “-qppsuborigarg” on page 203

v “Passing Fortran files through the C preprocessor” on page 28

138 XL Fortran Compiler Reference

-qflttrap

Category

Error checking and debugging

Purpose

Determines what types of floating-point exception conditions to detect at run time.

The program receives a SIGFPE signal when the corresponding exception occurs.

Syntax

��

�

 noflttrap

-q

flttrap

:

ZEROdivide

UNDerflow

OVerflow

INValid

INEXact

=

ENable

NANQ

��

@PROCESS:

FLTTRAP[(suboptions)] | NOFLTTRAP

Defaults

-qnoflttrap

Parameters

ENable Turn on checking for the specified exceptions in the main program

so that the exceptions generate SIGFPE signals. You must specify

this suboption if you want to turn on exception trapping without

modifying your source code.

IMPrecise Only check for the specified exceptions on subprogram entry and

exit. This suboption improves performance, but it can make the

exact spot of the exception difficult to find.

INEXact Detect and trap on floating-point inexact if exception-checking is

enabled. Because inexact results are very common in floating-point

calculations, you usually should not need to turn this type of

exception on.

INValid Detect and trap on floating-point invalid operations if

exception-checking is enabled.

NANQ Detect and trap all quiet not-a-number values (NaNQs) and

signaling not-a-number values (NaNSs). Trapping code is

generated regardless of specifying the enable or imprecise

suboption. This suboption detects all NaN values handled by or

generated by floating point instructions, including those not

created by invalid operations. This option can impact performance.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 139

OVerflow Detect and trap on floating-point overflow if exception-checking is

enabled.

UNDerflow Detect and trap on floating-point underflow if exception-checking

is enabled.

ZEROdivide Detect and trap on floating-point division by zero if

exception-checking is enabled.

Usage

Specifying -qflttrap without suboptions is equivalent to

-qflttrap=inv:inex:ov:und:zero. Because this default does not include enable, it is

probably only useful if you already use fpsets or similar subroutines in your

source.

If you specify -qflttrap more than once, both with and without suboptions, the

-qflttrap without suboptions is ignored.

The -qflttrap option is recognized during linking with IPA. Specifying the option

at the link step overrides the compile-time setting.

Examples

When you compile this program:

 REAL X, Y, Z

 DATA X /5.0/, Y /0.0/

 Z = X / Y

 PRINT *, Z

 END

with the command:

xlf95 -qflttrap=zerodivide:enable -qsigtrap divide_by_zero.f

the program stops when the division is performed.

The zerodivide suboption identifies the type of exception to guard against. The

enable suboption causes a SIGFPE signal when the exception occurs. The

-qsigtrap option produces informative output when the signal stops the program.

Related information

v “-qsigtrap” on page 220

v “-qarch” on page 92

v Detecting and trapping floating-point exceptions in the XL Fortran Optimization and

Programming Guide has full instructions on how and when to use the -qflttrap

option, especially if you are just starting to use it.

140 XL Fortran Compiler Reference

-qfree

Category

Input control

Purpose

Indicates that the source code is in free source form.

Syntax

�� -q free

=

f90

ibm

 ��

@PROCESS:

@PROCESS FREE[({F90|IBM})]

Defaults

-qfree by itself specifies Fortran 90 free source form.

-qfixed=72 is the default for the xlf, xlf_r, f77, and fort77 commands.

-qfree=f90 is the default for the f90, f95, xlf90, xlf90_r, xlf95, and xlf95_r

commands.

Parameters

ibm

Specifies compatibility with the free source form defined for VS FORTRAN.

f90

Specifies compatibility with the free source form defined for Fortran 90.

 Note that the free source form defined for Fortran 90 also applies to Fortran 95,

and Fortran 2003.

Usage

The source form specified when executing the compiler applies to all of the input

files, although you can switch the form for a compilation unit by using a FREE or

FIXED @PROCESS directive or for the rest of the file by using a SOURCEFORM

comment directive (even inside a compilation unit).

Fortran 90 free source form is the format to use for maximum portability across

compilers that support Fortran 90 and Fortran 95 features now and in the future.

IBM free source form is equivalent to the free format of the IBM VS FORTRAN

compiler, and it is intended to help port programs from the z/OS® platform.

-k is equivalent to -qfree=f90.

Related information

v “-qfixed” on page 131

v “-k” on page 71

Chapter 6. Detailed descriptions of the XL Fortran compiler options 141

v Free Source Form in the XL Fortran Language Reference

142 XL Fortran Compiler Reference

-qfullpath

Category

Error checking and debugging

@PROCESS directive

None.

Purpose

When used with the -g option, this option records the full, or absolute, path names

of source and include files in object files compiled with debugging information, so

that debugging tools can correctly locate the source files.

Syntax

��
 nofullpath

-q

fullpath

��

Defaults

By default, the compiler records the relative path names of the original source file

in each .o file. It may also record relative path names for include files.

Usage

If you need to move an executable file into a different directory before debugging

it or have multiple versions of the source files and want to ensure that the

debugger uses the original source files, use the -qfullpath option in combination

with the -g option so that source-level debuggers can locate the correct source files.

Although -qfullpath works without the -g option, you cannot do source-level

debugging unless you also specify the -g option.

Examples

In this example, the executable file is moved after being created, but the debugger

can still locate the original source files:

Related information

v “-g” on page 69

$ xlf95 -g -qfullpath file1.f file2.f file3.f -o debug_version

...

$ mv debug_version $HOME/test_bucket

$ cd $HOME/test_bucket

$ gdb debug_version

Chapter 6. Detailed descriptions of the XL Fortran compiler options 143

-qhalt

Category

Error checking and debugging

Purpose

Stops compilation before producing any object, executable, or assembler source

files if the maximum severity of compile-time messages equals or exceeds the

severity you specify.

Syntax

��

 (1) (2)

i

i

-q

halt

=

l

:

l

w

w

e

e

s

s

u

u

q

q

��

Notes:

1 Minimum severity level of messages reported in listing

2 Minimum severity level of messages reported on terminal
@PROCESS:

@PROCESS HALT(severity)

Defaults

-qhalt=s, which prevents the compiler from generating an object file when

compilation fails.

Parameters

The severity levels (from lowest to highest) are:

i Informational messages. They explain things that you should know, but

they usually do not require any action on your part.

l Language-level messages, such as those produced under the -qlanglvl

option. They indicate possible nonportable language constructs.

w Warning messages. They indicate error conditions that might require action

on your part, but the program is still correct.

e Error messages. They indicate error conditions that require action on your

part to make the program correct, but the resulting program can probably

still be executed.

s Severe error messages. They indicate error conditions that require action on

your part to make the program correct, and the resulting program will fail

if it reaches the location of the error. You must change the -qhalt setting to

make the compiler produce an object file when it encounters this kind of

error.

144 XL Fortran Compiler Reference

u Unrecoverable error messages. They indicate error conditions that prevent

the compiler from continuing. They require action on your part before you

can compile your program.

q No messages. A severity level that can never be generated by any defined

error condition. Specifying it prevents the compiler from displaying

messages, even if it encounters unrecoverable errors.

Usage

The -qhalt option can override the -qobject option, and -qnoobject can override

-qhalt.

Related information

v “-qflag” on page 132

v “-qobject” on page 186

Chapter 6. Detailed descriptions of the XL Fortran compiler options 145

-qhot

Category

Optimization and tuning

Purpose

Performs high-order loop analysis and transformations (HOT) during optimization.

The -qhot compiler option is a powerful alternative to hand tuning that provides

opportunities to optimize loops and array language. This compiler option will

always attempt to optimize loops, regardless of the suboptions you specify.

Syntax

Option :

��

�

 nohot

-q

hot

:

=

noarraypad

arraypad

=

number

1

level

=

0

simd

nosimd

vector

novector

��

@PROCESS:

@PROCESS HOT[=suboptions] | NOHOT

Defaults

v -qnohot

v -qhot=noarraypad:level=0:nosimd:vector when -O3 is in effect.

v -qhot=noarraypad:level=1:nosimd:vector when -qsmp, -O4 or -O5 is in effect.

v Specifying -qhot without suboptions is equivalent to

-qhot=level=1:nosimd:noarraypad:vector. If you specify -qhot without

suboptions with -qenablevmx and a -qarch value that supports vector

processing, -qhot=simd is enabled by default.

Parameters

arraypad | noarraypad

Permits the compiler to increase the dimensions of arrays where doing so

might improve the efficiency of array-processing loops. (Because of the

implementation of the cache architecture, array dimensions that are powers of

two can lead to decreased cache utilization.) Specifying -qhot=arraypad when

your source includes large arrays with dimensions that are powers of 2 can

reduce cache misses and page faults that slow your array processing programs.

This can be particularly effective when the first dimension is a power of 2. If

you use this suboption with no number, the compiler will pad any arrays

146 XL Fortran Compiler Reference

where it infers there may be a benefit and will pad by whatever amount it

chooses. Not all arrays will necessarily be padded, and different arrays may be

padded by different amounts. If you specify a number, the compiler will pad

every array in the code.

Note: Using arraypad can be unsafe, as it does not perform any checking for

reshaping or equivalences that may cause the code to break if padding

takes place.

number

A positive integer value representing the number of elements by which each

array will be padded in the source. The pad amount must be a positive integer

value. It is recommended that pad values be multiples of the largest array

element size, typically 4, 8, or 16.

level=0

Performs a subset of the high-order transformations and sets the default to

novector:nosimd:noarraypad.

level=1

Performs the default set of high-order transformations.

simd | nosimd

When simd is in effect, the compiler converts certain operations that are

performed in a loop on successive elements of an array into a call to a vector

instruction. This call calculates several results at one time, which is faster than

calculating each result sequentially. Applying this suboption is useful for

applications with significant image processing demands.

 This suboption has effect only if you specify an architecture that supports

vector processing, and -qenablevmx is enabled.

 nosimd disables the conversion of loop array operations into calls to vector

instructions.

vector | novector

When specified with -qnostrict, or an optimization level of -O3 or higher,

vector causes the compiler to convert certain operations that are performed in

a loop on successive elements of an array (for example, square root, reciprocal

square root) into a call to a routine in the Mathematical Acceleration

Subsystem (MASS) library in libxlopt. If the operations are in a loop, the vector

version of the routine is called. If the operations are scalar, the scalar version of

the routine is called. The vector suboption supports single and

double-precision floating-point mathematics, and is useful for applications with

significant mathematical processing demands.

 novector disables the conversion of loop array operations into calls to MASS

library routines.

 Since vectorization can affect the precision of your program’s results, if you are

using -O4 or higher, you should specify -qhot=novector if the change in

precision is unacceptable to you.

Usage

If you do not also specify an optimization level when specifying -qhot on the

command line, the compiler assumes -O2.

If you specify -O3, the compiler assumes -qhot=level=0; to prevent all HOT

optimizations with -O3, you must specify -qnohot.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 147

If you want to override the default level setting of 1 when using -qsmp, -O4 or

-O5, be sure to specify -qhot=level=0 after the other options.

If -O2, -qnohot, or -qnoopt is used on the command line, specifying HOT options

in an @PROCESS directive will have no effect on the compilation unit.

The -C option turns off some array optimizations.

You can also use the -qreport option in conjunction with -qhot to produce a

pseudo-Fortran report showing how the loops were transformed; see “-qreport” on

page 211 for details.

Related information

v “-qarch” on page 92

v “-C” on page 63

v “-qenablevmx” on page 121

v “-O” on page 75

v “-qstrict” on page 233

v “-qsmp” on page 223

v "Directives for loop optimization" in the XL Fortran Language Reference

v "High-order transformation" in the XL Fortran Optimization and Programming

Guide

148 XL Fortran Compiler Reference

-qieee

Category

Floating-point and integer control

Purpose

Specifies the rounding mode that the compiler will use when it evaluates constant

floating-point expressions at compile time.

Syntax

��
 Near

-q

ieee

=

Minus

Plus

Zero

��

@PROCESS:

@PROCESS IEEE({Near | Minus | Plus | Zero})

Defaults

Near, which rounds to the nearest representable number.

Parameters

The choices are:

Near Round to nearest representable number.

Minus Round toward minus infinity.

Plus Round toward plus infinity.

Zero Round toward zero.

Usage

Use this option in combination with the XL Fortran subroutine fpsets or some

other method of changing the rounding mode at run time. It sets the rounding

mode that is used for compile-time arithmetic (for example, evaluating constant

expressions such as 2.0/3.5).

Specifying the same rounding mode for compile-time and runtime operations

avoids inconsistencies in floating-point results.

Note: Compile-time arithmetic is most extensive when you also specify the -O

option.

If you change the rounding mode from the default (round-to-nearest) at run time,

be sure to also specify -qfloat=rrm to turn off optimizations that only apply in the

default rounding mode.

Related information

v Selecting the rounding mode in the XL Fortran Optimization and Programming Guide

v “-O” on page 75

v “-qfloat” on page 134

Chapter 6. Detailed descriptions of the XL Fortran compiler options 149

-qinit

Category

Language element control

Purpose

Makes the initial association status of pointers disassociated.

Note that this option applies to Fortran 90 and above.

Syntax

�� -q init = f90ptr ��

@PROCESS:

@PROCESS INIT(F90PTR)

Defaults

Not applicable.

Usage

You can use this option to help locate and fix problems that are due to using a

pointer before you define it.

Related information

v See Pointer Association in the XL Fortran Language Reference.

150 XL Fortran Compiler Reference

-qinitauto

Category

Error checking and debugging

@PROCESS directive

None.

Purpose

Initializes uninitialized automatic variables to a specific value, for debugging

purposes.

Syntax

��
 noinitauto

-q

initauto

=

hex_value

��

Defaults

-qnoinitauto

By default, the compiler does not initialize automatic storage to any particular

value. However, it is possible that a region of storage contains all zeros.

Parameters

hex_value

A 1 to 8 digit hexadecimal number.
v If you do not specify a hex_value number, the compiler initializes the value of

each byte of automatic storage to zero.

v To initialize each byte of storage to a specific value, specify 1 or 2 digits for the

hex_value. If you specify only 1 digit, the compiler pads the hex_value on the left

with a zero.

v To initialize each word of storage to a specific value, specify 3 to 8 digits for the

hex_value. If you specify more than 2 but fewer than 8 digits, the compiler pads

the hex_value on the left with zeros.

v In the case of word initialization, if automatic variables are not a multiple of 4

bytes in length, the hex_value may be truncated on the left to fit. For example, if

you specify 5 digits for the hex_value and an automatic variable is only 1 byte

long, the compiler truncates the 3 digits on the left-hand side of the hex_value

and assigns the two right-hand digits to the variable.

v You can specify alphabetic digits as either upper- or lower-case.

Usage

This option helps you to locate variables that are referenced before being defined.

For example, by using both the -qinitauto option to initialize REAL variables with

a signaling NAN value and the -qflttrap option, it is possible to identify references

to uninitialized REAL variables at run time.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 151

Setting hex_value to zero ensures that all automatic variables are cleared before

being used. Some programs assume that variables are initialized to zero and do not

work when they are not. Other programs may work if they are not optimized but

fail when they are optimized. Typically, setting all the variables to all zero bytes

prevents such runtime errors. It is better to locate the variables that require zeroing

and insert code in your program to do so than to rely on this option to do it for

you. Using this option will generally zero more things than necessary and may

result in slower programs.

To locate and fix these errors, set the bytes to a value other than zero, which will

consistently reproduce incorrect results. This method is especially valuable in cases

where adding debugging statements or loading the program into a symbolic

debugger makes the error go away.

Setting the hex_value to FF (255) gives REAL and COMPLEX variables an initial

value of “negative not a number”, or quiet NAN. Any operations on these

variables will also result in quiet NAN values, making it clear that an uninitialized

variable has been used in a calculation.

This option can help you to debug programs with uninitialized variables in

subprograms. For example, you can use it to initialize REAL variables with a

signaling NAN value. You can initialize 8-byte REAL variables to double-precision

signaling NAN values by specifying an 8-digit hexadecimal number, that, when

repeated, has a double-precision signaling NAN value. For example, you could

specify a number such as 7FBFFFFF, that, when stored in a REAL(4) variable, has a

single-precision signaling NAN value. The value 7FF7FFFF, when stored in a

REAL(4) variable, has a single-precision quiet NAN value. If the same number is

stored twice in a REAL(8) variable (7FF7FFFF7FF7FFFF), it has a double-precision

signaling NAN value.

Restrictions

Equivalenced variables, structure components, and array elements are not

initialized individually. Instead, the entire storage sequence is initialized

collectively.

Examples

The following example shows how to perform word initialization of automatic

variables:

subroutine sub()

integer(4), automatic :: i4

character, automatic :: c

real(4), automatic :: r4

real(8), automatic :: r8

end subroutine

When you compile the code with the following option, the compiler performs

word initialization, as the hex_value is longer than 2 digits:

-qinitauto=0cf

The compiler initializes the variables as follows, padding the hex_value with zeros

in the cases of the i4, r4, and r8 variables and truncating the first hexadecimal

digit in the case of the c variable:

152 XL Fortran Compiler Reference

Variable Value

i4 000000CF

c CF

r4 000000CF

r8 000000CF000000CF

Related information

v “-qflttrap” on page 139

v The AUTOMATIC directive in the XL Fortran Language Reference

Chapter 6. Detailed descriptions of the XL Fortran compiler options 153

-qinlglue

Category

Object code control

Purpose

When used with -O2 or higher optimization, inlines glue code that optimizes

external function calls in your application.

Glue code, generated by the linker, is used for passing control between two external

functions. When -qinlglue is in effect, the optimizer inlines glue code for better

performance. When -qnoinlglue is in effect, inlining of glue code is prevented.

Syntax

��
 noinlglue

-q

inlglue

��

@PROCESS:

@PROCESS INLGLUE | NOINLGLUE

Defaults

v -qnoinlglue

v -qinlglue when -qtune=pwr4, -qtune=pwr5, -qtune=pwr6, -qtune=ppc970,

-qtune=auto, or -qtune=balanced is in effect.

Usage

If you use the -qtune option with any of the suboptions that imply -qinlglue and

you want to disable inlining of glue code, make sure to specify -qnoinlglue as

well.

Inlining glue code can cause the code size to grow. Specifying -qcompact overrides

the -qinlglue setting to prevent code growth. If you want -qinlglue to be enabled,

do not specify -qcompact.

Specifying -qnoinlglue or -qcompact can degrade performance; use these options

with discretion.

Related information

v “-q64” on page 83

v “-qcompact” on page 107

v “-qtune” on page 245

v Inlining in the XL Fortran Optimization and Programming Guide

v Managing code size in the XL Fortran Optimization and Programming Guide

154 XL Fortran Compiler Reference

-qintlog

Category

Floating-point and integer control

Purpose

Specifies that you can mix integer and logical data entities in expressions and

statements.

Syntax

��
 nointlog

-q

intlog

��

@PROCESS:

@PROCESS INTLOG | NOINTLOG

Defaults

-qnointlog

Usage

Logical operators that you specify with integer operands act upon those integers in

a bit-wise manner, and integer operators treat the contents of logical operands as

integers.

The following operations do not allow the use of logical variables:

v ASSIGN statement variables

v Assigned GOTO variables

v DO loop index variables

v Implied-DO loop index variables in DATA statements

v Implied-DO loop index variables in either input and output or array

constructors

v Index variables in FORALL constructs

You can also use the intrinsic functions IAND, IOR, IEOR, and NOT to perform

bitwise logical operations.

The MOVE_ALLOC intrinsic function cannot take one integer and one logical

argument.

Examples

INTEGER I, MASK, LOW_ORDER_BYTE, TWOS_COMPLEMENT

I = 32767

MASK = 255

! Find the low-order byte of an integer.

LOW_ORDER_BYTE = I .AND. MASK

! Find the twos complement of an integer.

TWOS_COMPLEMENT = (.NOT. I) + 1

END

Related information

v -qport=clogicals option.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 155

-qintsize

Category

Floating-point and integer control

Purpose

Sets the size of default INTEGER and LOGICAL data entities that have no length

or kind specified.

This option is not intended as a general-purpose method for increasing the sizes of

data entities. Its use is limited to maintaining compatibility with code that is

written for other systems.

Syntax

��
 4

-q

intsize

=

2

8

��

@PROCESS:

@PROCESS INTSIZE(bytes)

Defaults

-qintsize=4

Parameters

bytes

Allowed sizes are 2, 4, or 8.

Usage

This option is intended to allow you to port programs unchanged from systems

that have different default sizes for data. For example, you might need -qintsize=2

for programs that are written for a 16-bit microprocessor or -qintsize=8 for

programs that are written for a CRAY computer. The default value of 4 for this

option is suitable for code that is written specifically for many 32-bit computers.

Note that specifying the -q64 compiler option does not affect the default setting for

-qintsize.

You might need to add PARAMETER statements to give explicit lengths to

constants that you pass as arguments.

The specified size1 applies to these data entities:

v INTEGER and LOGICAL specification statements with no length or kind

specified.

v FUNCTION statements with no length or kind specified.

v Intrinsic functions that accept or return default INTEGER or LOGICAL

arguments or return values unless you specify a length or kind in an

INTRINSIC statement. Any specified length or kind must agree with the default

size of the return value.

1. In Fortran 90/95 terminology, these values are referred to as kind type parameters.

156 XL Fortran Compiler Reference

v Variables that are implicit integers or logicals.

v Integer and logical literal constants with no kind specified. If the value is too

large to be represented by the number of bytes that you specified, the compiler

chooses a size that is large enough. The range for 2-byte integers is -(2**15) to

2**15-1, for 4-byte integers is -(2**31) to 2**31-1, and for 8-byte integers is -(2**63)

to 2**63-1.

v Typeless constants in integer or logical contexts.

Examples

In the following example, note how variables, literal constants, intrinsics,

arithmetic operators, and input/output operations all handle the changed default

integer size.

@PROCESS INTSIZE(8)

 PROGRAM INTSIZETEST

 INTEGER I

 I = -9223372036854775807 ! I is big enough to hold this constant.

 J = ABS(I) ! So is implicit integer J.

 IF (I .NE. J) THEN

 PRINT *, I, ’.NE.’, J

 END IF

 END

The following example only works with the default size for integers:

 CALL SUB(17)

 END

 SUBROUTINE SUB(I)

 INTEGER(4) I ! But INTSIZE may change "17"

 ! to INTEGER(2) or INTEGER(8).

 ...

 END

If you change the default value, you must either declare the variable I as

INTEGER instead of INTEGER(4) or give a length to the actual argument, as

follows:

@PROCESS INTSIZE(8)

 INTEGER(4) X

 PARAMETER(X=17)

 CALL SUB(X) ! Use a parameter with the right length, or

 CALL SUB(17_4) ! use a constant with the right kind.

 END

Related information

v “-qrealsize” on page 207

v Type Parameters and Specifiers in the XL Fortran Language Reference

Chapter 6. Detailed descriptions of the XL Fortran compiler options 157

-qipa

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Enables or customizes a class of optimizations known as interprocedural analysis

(IPA).

IPA is a two-step process: the first step, which takes place during compilation,

consists of performing an initial analysis and storing interprocedural analysis

information in the object file. The second step, which takes place during linking,

and causes a complete recompilation of the entire application, applies the

optimizations to the entire program.

You can use -qipa during the compilation step, the link step, or both. If you

compile and link in a single compiler invocation, only the link-time suboptions are

relevant. If you compile and link in separate compiler invocations, only the

compile-time suboptions are relevant during the compile step, and only the

link-time suboptions are relevant during the link step.

Syntax

-qipa compile-time syntax

��
 noipa

-q

ipa

object

=

noobject

��

-qipa link-time syntax

158 XL Fortran Compiler Reference

��

�

�

�

�

�

�

�

�

�

 noipa

-q

ipa

:

noclonearch

,

=

clonearch

=

arch

,

nocloneproc

cloneproc

=

procedure_name

,

exits

=

procedure_name

inline

=

noauto

:

auto

limit

=

number

threshold

,

procedure_name

noinline

,

=

procedure_name

1

level

=

0

2

list

=

file_name

long

short

,

lowfreq

=

procedure_name

unknown

missing

=

safe

isolated

pure

medium

partition

=

small

large

nostdexits

stdexits

threads

auto

=

number

noauto

nothreads

,

isolated

=

procedure_name

pure

safe

unknown

file_name

��

Defaults

v -qnoipa

v -qipa=inline=auto:level=1:missing=unknown:partition=medium:threads=auto

when -O4 is in effect

v -qipa=inline=auto:level=2:missing=unknown:partition=medium:threads=auto

when -O5 is in effect

v -qipa=inline=auto:level=0:missing=unknown:partition=medium:threads=auto

when -qpdf1 or -qpdf2 is in effect

Chapter 6. Detailed descriptions of the XL Fortran compiler options 159

Parameters

Compile-time suboptions

The following parameters may be specified during a separate compile-time step

only:

object | noobject

Specifies whether to include standard object code in the output object files.

 Specifying noobject can substantially reduce overall compile time by not

generating object code during the first IPA phase. Note that if you specify -S

with -qipa=noobject, -qipa=noobject will be ignored.

 If compiling and linking are performed in the same step and you do not

specify the -S or any listing option, -qipa=noobject is implied.

 Specifying -qipa with no suboptions on the compile step is equivalent to

-qipa=object.

Link-time suboptions

The following parameters may be specified during a combined compile and link in

the same compiler invocation, or during a separate link step only:

clonearch=arch{,arch} | noclonearch

Specifies the architectures for which multiple versions of the same instruction

set are produced. Use this suboption if you require optimal performance on

multiple differing machines running the same copy of your application.

 If clonearch is in effect, during the IPA link phase, the compiler generates a

generic version of the instruction set based on the -qarch setting in effect, and

if appropriate, clones specialized versions of the instruction set for the

architectures you specify in the clonearch suboption. The compiler inserts code

into your application to check for the processor architecture at run time. When

run, the application’s version of the instruction set that is best optimized for

the runtime environment is selected.

 This suboption is disabled if -qcompact is in effect.

arch

A comma-separated list of architectures. The supported values are:

v pwr4

v pwr5

v pwr6

v ppc970

If you specify no value, an invalid value, or a value equal to the -qarch setting,

no function versioning will be performed for this option. The following table

lists allowed clonearch values for different architectures.

 Table 19. Compatible architecture and clonearch settings

-qarch setting Allowed clonearch value

ppc, pwr3, ppc64, ppcgr, ppc64gr, ppc64grsq pwr4, pwr5, pwr6, ppc970

pwr4 pwr5, pwr6, ppc970,

ppc64v pwr6, ppc970

pwr5 pwr6

160 XL Fortran Compiler Reference

Table 19. Compatible architecture and clonearch settings (continued)

-qarch setting Allowed clonearch value

ppc970 pwr6

pwr6 None

To ensure compatibility across multiple platforms, the -qarch option must be

set to a value that is a subset of the architectures specified by -qipa=clonearch.

If the case that suboptions are specified for -qipa=clonearch and -qarch that do

not match the target architecture, the compiler will generate instructions based

on the suboption that most closely matches the system on which the

application is currently running.

 You can also use the -qreport option in conjunction with -qipa=clonearch to

produce a report showing how functions were cloned; see “-qreport” on page

211 for details.

cloneproc=procedure_name{,procedure_name} |

nocloneproc[=procedure_name{,procedure_name}]

When -qipa=clonearch is in effect, cloneproc specifies that only the named

procedures are to be cloned; nocloneproc specifies procedures that should not

be cloned. Note that by default the compiler avoids cloning procedures that are

specified as low frequency procedures with the lowfreq suboption.

procedure_name

For all suboptions, the name of a procedure, or a comma-separated list of

procedures.

 Regular expression syntax can be used to specify names for all suboptions that

take procedure names as suboptions. Syntax rules for specifying regular

expressions are described below:

 Expression Description

string Matches any of the characters specified in string. For example,

test will match testimony, latest, and intestine.

^string Matches the pattern specified by string only if it occurs at the

beginning of a line.

string$ Matches the pattern specified by string only if it occurs at the end

of a line.

str.ing The period (.) matches any single character. For example, t.st

will match test, tast, tZst, and t1st.

string\special_char The backslash (\) can be used to escape special characters. For

example, assume that you want to find lines ending with a

period. Simply specifying the expression .$ would show all lines

that had at least one character of any kind in it. Specifying \.$

escapes the period (.), and treats it as an ordinary character for

matching purposes.

[string] Matches any of the characters specified in string. For example,

t[a-g123]st matches tast and test, but not t-st or tAst.

[^string] Does not match any of the characters specified in string. For

example, t[^a-zA-Z]st matches t1st, t-st, and t,st but not test

or tYst.

string* Matches zero or more occurrences of the pattern specified by

string. For example, te*st will match tst, test, and teeeeeest.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 161

Expression Description

string+ Matches one or more occurrences of the pattern specified by

string. For example, t(es)+t matches test, tesest, but not tt.

string? Matches zero or one occurrences of the pattern specified by

string. For example, te?st matches either tst or test.

string{m,n} Matches between m and n occurrence(s) of the pattern specified

by string. For example, a{2} matches aa, and b{1,4} matches b,

bb, bbb, and bbbb.

string1 | string2 Matches the pattern specified by either string1 or string2. For

example, s | o matches both characters s and o.

exits=procedure_names

Specifies names of procedures which represent program exits. Program exits

are calls which can never return and can never call any procedure which has

been compiled with IPA pass 1. The compiler can optimize calls to these

procedures (for example, by eliminating save/restore sequences), because the

calls never return to the program. These procedures must not call any other

parts of the program that are compiled with -qipa.

inline[=inline_options]

Enables function inlining by the high-level optimizer. Valid suboptions are any

of the following:

auto | noauto

Enables or disables automatic procedure inlining by the high-level

optimizer. When -qipa=inline=auto is in effect, the compiler considers all

procedure that are under the maximum size limit (see below) for inlining.

When -qipa=inline=noauto is in effect, only procedures listed in the

function_name suboption are considered for inlining.

limit=number

When -qipa=inline=auto is in effect, specifies a limit on the size of a

calling procedure after inlining.

threshold=number

When -qipa=inline=auto is in effect, specifies a limit on the size of a called

procedure for it to be considered for inlining.

number

A nonnegative integer representing the relative size of procedure before

and after inlining. The size is an arbitrary value representing a combination

of factors, including the estimated size of the called procedure, the number

of calls to the procedure, and so on. If you do not specify a size, the default

is 1024 for the threshold suboption and 8192 for the limit suboption.

Larger values for this number allow the compiler to inline larger

procedures, more function calls, or both.

Specifying -qipa=inline with no suboptions is equivalent to -qipa=inline=auto.

Note: By default, the compiler will try to inline all procedures, not just those

that you specified with the function_name suboption. If you want to turn

on inlining for only certain procedures, specify inline=noauto after you

specify inline=function_name. (You must specify the suboptions in this

order.) For example, to turn off inlining for all procedures other than for

sub1, specify -qipa=inline=sub1:inline=noauto.

162 XL Fortran Compiler Reference

noinline[=procedure_names]

When specified with no suboption, disables automatic procedure inlining by

the high-level optimizer (equivalent to -qipa=inline=noauto). (Inlining may

still be performed by the compiler front end or by the low-level optimizer; see

“-Q” on page 80 for details.) When used with the function_name suboption,

specifies procedures that are not to be considered for automatic inlining by the

high-level optimizer.

isolated=procedure_names

Specifies a comma-separated list of procedures that are not compiled with

-qipa. Procedures that you specify as isolated or procedures within their call

chains cannot refer directly to any global variable.

level[=opt_level]

Specifies the optimization level for interprocedural analysis. Valid suboptions

are one of the following:

v 0 - Performs only minimal interprocedural analysis and optimization.

v 1 - Enables inlining, limited alias analysis, and limited call-site tailoring.

v 2 - Performs full interprocedural data flow and alias analysis.

If you do not specify a level, the default is 1.

list

Specifies that a listing file be generated during the link phase. The listing file

contains information about transformations and analyses performed by IPA, as

well as an optional object listing for each partition.

 If you do not specify a list_file_name, the listing file name defaults to a.lst. If

you specify -qipa=list together with any other option that generates a listing

file, IPA generates an a.lst file that overwrites any existing a.lst file. If you have

a source file named a.f, the IPA listing will overwrite the regular compiler

listing a.lst. You can use the -qipa=list=list_file_name suboption to specify an

alternative listing file name.

 Additional suboptions are one of the following:

short Requests less information in the listing file. Generates the Object File

Map, Source File Map and Global Symbols Map sections of the listing.

long Requests more information in the listing file. Generates all of the

sections generated by the short suboption, plus the Object Resolution

Warnings, Object Reference Map, Inliner Report and Partition Map

sections.

lowfreq=procedure_names

Specifies functions that are likely to be called infrequently. These are typically

error handling, trace, or initialization functions. The compiler may be able to

make other parts of the program run faster by doing less optimization for calls

to these procedures.

missing[=procedure_behavior]

Specifies the interprocedural behavior of procedures that are not compiled with

-qipa and are not explicitly named in an unknown, safe, isolated, or pure

suboption.

 Valid suboptions are one of the following:

safe Specifies that the missing procedures do not indirectly call a visible

(not missing) procedure either through direct call or through a

procedure pointer.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 163

isolated

Specifies that the missing procedures do not directly reference global

variables accessible to visible procedures. Those bound from shared

libraries are assumed to be isolated.

pure Specifies that the missing procedures are safe and isolated and do not

indirectly alter storage accessible to visible procedures. pure procedures

also have no observable internal state.

unknown

Specifies that the missing procedures are not known to be safe, isolated,

or pure. This option greatly restricts the amount of interprocedural

optimization for calls to missing procedures.

The default is to assume unknown.

partition

Specifies the size of each program partition created by IPA during pass 2. Valid

suboptions are one of the following:

v small

v medium

v large

Larger partitions contain more procedures, which result in better

interprocedural analysis but require more storage to optimize. Reduce the

partition size if compilation takes too long because of paging.

pdfname = pdf_file_path

As of the V11.1 release of the compiler, the pdfname suboption is deprecated;

you should use -qpdf1=pdfname or -qpdf2=pdfname in your new

applications.See “-qpdf1, -qpdf2” on page 192 for more information.

pure=procedure_names

Specifies pure procedures that are not compiled with -qipa. Any procedure

specified as pure must be isolated and safe, and must not alter the internal state

nor have side-effects, defined as potentially altering any data visible to the

caller.

safe=procedure_names

Specifies safe procedures that are not compiled with -qipa and do not call any

other part of the program. Safe procedures can modify global variables and

dummy arguments, but may not call procedures compiled with -qipa.

stdexits | nostdexits

Specifies that certain predefined routines can be optimized as with the exits

suboption. The procedures are: abort, exit, _exit, and _assert.

threads | nothreads

Runs portions of the IPA optimization process during pass 2 in parallel

threads, which can speed up the compilation process on multiprocessor

systems. Valid threads suboptions are as follows:

auto

The compiler selects a number of threads heuristically based on machine

load.

noauto

The compiler spawns one thread per machine processor.

number

Instructs the compiler to use a specific number of threads. number can be

164 XL Fortran Compiler Reference

any integer value in the range of 1 to 32 767. However, number is

effectively limited to the number of processors available on your system.

Specifying threads with no suboptions implies -qipa=threads=auto.

unknown

Specifies unknown procedures that are not compiled with -qipa. Any procedure

specified as unknown can make calls to other parts of the program compiled

with -qipa, and modify global variables and dummy arguments.

file_name

Gives the name of a file which contains suboption information in a special

format.

 The file format is the following:

... comment

attribute{, attribute} = name{, name}

clonearch=arch,{arch}

cloneproc=name,{name}

nocloneproc=name,{name}

missing = attribute{, attribute}

exits = name{, name}

lowfreq = name{, name}

inline

inline [= auto | = noauto]

inline = name{, name} [from name{, name}]

inline-threshold = unsigned_int

inline-limit = unsigned_int

list [= file-name | short | long]

noinline

noinline = name{, name} [from name{, name}]

level = 0 | 1 | 2

partition = small | medium | large

where attribute is one of:

v clonearch

v cloneproc

v nocloneproc

v exits

v lowfreq

v unknown

v safe

v isolated

v pure

 Specifying -qipa with no suboptions on the link step is equivalent to

-qipa=inline=auto:level=1:missing=unknown:partition=medium:nothreads.

Note: As of the V11.1 release of the compiler, the pdfname suboption is

deprecated. Instead, use -qpdf1=pdfname or -qpdf2=pdfname in your new

applications. See “-qpdf1, -qpdf2” on page 192 for details.

Usage

Specifying -qipa automatically sets the optimization level to -O2. For additional

performance benefits, you can also specify the -Q option. The -qipa option extends

the area that is examined during optimization and inlining from a single procedure

to multiple procedures (possibly in different source files) and the linkage between

them.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 165

If any object file used in linking with -qipa was created with the -qipa=noobject

option, any file containing an entry point (the main program for an executable

program, or an exported procedure for a library) must be compiled with -qipa.

You can link objects created with different releases of the compiler, but you must

ensure that you use a linker that is at least at the same release level as the newer

of the compilers used to create the objects being linked.

Some symbols which are clearly referenced or set in the source code may be

optimized away by IPA, and may be lost to debug or nm outputs. Using IPA

together with the -g compiler will usually result in non-steppable output.

Note that if you specify -qipa with -#, the compiler does not display linker

information subsequent to the IPA link step.

For recommended procedures on using -qipa, see Optimizing your applications in the

XL Fortran Optimization and Programming Guide.

Examples

The following example shows how you might compile a set of files with

interprocedural analysis:

xlf -c *.f -qipa

xlf -o product *.o -qipa

Here is how you might compile the same set of files, improving the optimization

of the second compilation, and the speed of the first compile step. Assume that

there exist a set of routines, user_trace1, user_trace2, and user_trace3, which are

rarely executed, and the routine user_abort that exits the program:

xlc -c *.f -qipa=noobject

xlc -c *.o -qipa=lowfreq=user_trace[123]:exit=user_abort

Related information

v “-O” on page 75

v “-qarch” on page 92

v “-Q” on page 80

v “-S” on page 270

v Optimizing your applications in the XL Fortran Optimization and Programming Guide

166 XL Fortran Compiler Reference

-qkeepparm

Category

Error checking and debugging

@PROCESS directive

None.

Purpose

When used with -O2 or higher optimization, specifies whether function parameters

are stored on the stack.

A procedure usually stores its incoming parameters on the stack at the entry point.

However, when you compile code with optimization options enabled, the

optimizer may remove these parameters from the stack if it sees an optimizing

advantage in doing so.

Syntax

��
 nokeepparm

-q

keepparm

��

Defaults

-qnokeepparm

Usage

When -qkeepparm is in effect, parameters are stored on the stack even when

optimization is enabled. This option then provides access to the values of incoming

parameters to tools, such as debuggers, simply by preserving those values on the

stack. However, this may negatively impact execution performance.

When -qnokeepparm is in effect, parameters are removed from the stack if this

provides an optimization advantage.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 167

-qlanglvl

Category

Language element control

Purpose

Determines which language standard (or superset, or subset of a standard) to

consult for nonconformance. It identifies nonconforming source code and also

options that allow such nonconformances.

Syntax

��

�

 :

extended

-q

langlvl

=

77std

90std

90pure

95std

95pure

2003std

2003pure

��

@PROCESS:

@PROCESS LANGLVL({suboption})

Defaults

-qlanglvl=extended

Parameters

77std Accepts the language that the ANSI FORTRAN 77 standard

specifies and reports anything else using language-level messages.

90std Accepts the language that the ISO Fortran 90 standard specifies

and reports anything else using language-level messages.

90pure The same as 90std except that it also issues language-level

messages for any obsolescent Fortran 90 features used.

95std Accepts the language that the ISO Fortran 95 standard specifies

and reports anything else using language-level messages.

95pure The same as 95std except that it also issues language-level

messages for any obsolescent Fortran 95 features used.

2003std Accepts the language that the ISO Fortran 95 standard specifies, as

well as all Fortran 2003 features supported by XL Fortran, and

reports anything else using language-level messages.

2003pure The same as 2003std except that it also issues language-level

messages for any obsolescent Fortran 2003 features used.

extended Accepts the full Fortran 95 language standard , all Fortran 2003

features supported by XL Fortran, and all extensions, effectively

turning off language-level checking.

168 XL Fortran Compiler Reference

Usage

The langlvl runtime option, which is described in “Setting runtime options” on

page 33, helps to locate runtime extensions that cannot be checked for at compile

time.

The -qflag option can override the -qlanglvl option.

Results

The compiler issues a message with severity code L if it detects syntax that is not

allowed by the language level that you specified.

Examples

The following example contains source code that conforms to a mixture of Fortran

standards:

!--

! in free source form

program tt

 integer :: a(100,100), b(100), i

 real :: x, y

 ...

 goto (10, 20, 30), i

10 continue

 pause ’waiting for input’

20 continue

 y= gamma(x)

30 continue

 b = maxloc(a, dim=1, mask=a .lt 0)

end program

!--

The following chart shows examples of how some -qlanglvl suboptions affect this

sample program:

 -qlanglvl Suboption

Specified Result Reason

95pure Flags PAUSE statement

Flags computed GOTO

 statement

Flags GAMMA intrinsic

Deleted feature in

 Fortran 95

Obsolescent feature in

 Fortran 95

Extension to Fortran 95

95std Flags PAUSE statement

Flags GAMMA intrinsic

Deleted feature in

 Fortran 95

Extension to Fortran 95

extended No errors flagged

Related information

v “-qflag” on page 132

v “-qhalt” on page 144

v “-qsaa” on page 213

v langlvl runtime option in “Setting runtime options” on page 33

Chapter 6. Detailed descriptions of the XL Fortran compiler options 169

-qlibansi

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Assumes that all functions with the name of an ANSI C library function are, in

fact, the library functions and not a user function with different semantics.

Syntax

��
 nolibansi

-q

libansi

��

Defaults

-qnolibansi

Usage

This option will allow the optimizer to generate better code because it will know

about the behavior of a given function, such as whether or not it has any side

effects.

Note: Do not use this option if your application contains your own version of a

library function that is incompatible with the standard one.

Related information

See “-qipa” on page 158.

170 XL Fortran Compiler Reference

-qlinedebug

Category

Error checking and debugging

Purpose

Generates only line number and source file name information for a debugger.

When -qlinedebug is in effect, the compiler produces minimal debugging

information, so the resulting object size is smaller than that produced by the -g

debugging option. You can use the debugger to step through the source code, but

you will not be able to see or query variable information. The traceback table, if

generated, will include line numbers.

Syntax

��
 nolinedebug

-q

linedebug

��

@PROCESS:

@PROCESS LINEDEBUG | NOLINEDEBUG

Defaults

-qnolinedebug

Usage

When -qlinedebug is in effect, function inlining is disabled.

As with all debug information, the output of -qlinedebug may be incomplete or

misleading if the code is optimized.

The -g option overrides the -qlinedebug option. If you specify -g with

-qnolinedebug on the command line, -qnolinedebug is ignored and a warning is

issued.

Related information

v “-g” on page 69

v “-O” on page 75

Chapter 6. Detailed descriptions of the XL Fortran compiler options 171

-qlist

Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing file that includes an object listing.

When -qlist is in effect, a listing file is generated with a .lst suffix for each source

file named on the command line.

Syntax

��
 nolist

-q

list

nooffset

=

offset

��

@PROCESS:

@PROCESS LIST[([NO]OFFSET)] | NOLIST

Defaults

-qnolist

Parameters

offset | nooffset

When -qlist=offset is in effect, the listing will show the offset from the start of

the procedure rather than the offset from the start of code generation. This

suboption allows any program reading the .lst file to add the value of the

PDEF and the line in question, and come up with the same value whether

offset or nooffset is specified.

 The offset suboption is relevant only if there are multiple procedures in a

compilation unit. For example, this may occur if nested procedures are used in

a program.

 Specifying -qlist with no suboption is equivalent to -qlist=nooffset.

Usage

You can use the object listing to help understand the performance characteristics of

the generated code and to diagnose execution problems.

If you specify -qipa and want to generate the IPA listing file, use the

-qipa=list=filename suboption to get an alternative listing.

The -qnoprint compiler option overrides this option.

Related information

v “Listings, messages, and compiler information” on page 51

v “Object section” on page 295

v “-qnoprint” on page 183

v “-S” on page 270

172 XL Fortran Compiler Reference

v Program units and procedures in the XL Fortran Language Reference

Chapter 6. Detailed descriptions of the XL Fortran compiler options 173

-qlistopt

Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing file that includes all options in effect at the time of

compiler invocation.

When listopt is in effect, a listing file is generated with a .lst suffix for each

source file named on the command line. The listing shows options in effect as set

by the compiler defaults, the configuration file, and command line settings.

Syntax

��
 nolistopt

-q

listopt

��

@PROCESS:

@PROCESS LISTOPT | NOLISTOPT

Defaults

-qnolistopt

Usage

You can use the option listing during debugging to check whether a problem

occurs under a particular combination of compiler options, or during performance

testing to record the optimization options in effect for a particular compilation.

Options that are always displayed in the listing include:

v All “on/off” options that are on by default: for example, -qobject

v All “on/off” options that are explicitly turned off through the configuration file,

command-line options, or @PROCESS directives

v All options that take arbitrary numeric arguments (typically sizes)

v All options that have multiple suboptions

The -qnoprint compiler option overrides this option.

Related information

v “Listings, messages, and compiler information” on page 51

v “Options section” on page 291

174 XL Fortran Compiler Reference

-qlog4

Category

Portability and migration

Purpose

Specifies whether the result of a logical operation with logical operands is a

LOGICAL(4) or is a LOGICAL with the maximum length of the operands.

You can use this option to port code that was originally written for the IBM VS

FORTRAN compiler.

Syntax

��
 nolog4

-q

log4

��

@PROCESS:

@PROCESS LOG4 | NOLOG4

Defaults

-qnolog4, which makes the result depend on the lengths of the operands.

Usage

Specifying -qlog4 makes the result a LOGICAL(4).

If you use -qintsize to change the default size of logicals, -qlog4 is ignored.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 175

-qmaxmem

Category

Optimization and tuning

Purpose

Limits the amount of memory that the compiler allocates while performing

specific, memory-intensive optimizations to the specified number of kilobytes.

Syntax

�� -q maxmem = Kbytes ��

@PROCESS:

@PROCESS MAXMEM(Kbytes)

Defaults

v maxmem=8192 when -O2 is in effect.

v maxmem=-1 when -O3 or higher optimization is in effect.

Parameters

Kbytes

The number of kilobytes worth of memory to be used by optimizations. The

limit is the amount of memory for specific optimizations, and not for the

compiler as a whole. Tables required during the entire compilation process are

not affected by or included in this limit.

 A value of -1 permits each optimization to take as much memory as it needs

without checking for limits.

Usage

If the specified amount of memory is insufficient for the compiler to compute a

particular optimization, the compiler issues a message and reduces the degree of

optimization.

This option has no effect except in combination with the -O option.

When compiling with -O2, you only need to increase the limit if a compile-time

message instructs you to do so. When compiling with -O3, you might need to

establish a limit if compilation stops because the machine runs out of storage; start

with a value of 8192 or higher, and decrease it if the compilation continues to

require too much storage.

Notes:

1. Reduced optimization does not necessarily mean that the resulting program

will be slower. It only means that the compiler cannot finish looking for

opportunities to improve performance.

2. Increasing the limit does not necessarily mean that the resulting program will

be faster. It only means that the compiler is better able to find opportunities to

improve performance if they exist.

176 XL Fortran Compiler Reference

3. Setting a large limit has no negative effect when compiling source files for

which the compiler does not need to use so much memory during

optimization.

4. As an alternative to raising the memory limit, you can sometimes move the

most complicated calculations into procedures that are then small enough to be

fully analyzed.

5. Not all memory-intensive compilation stages can be limited.

6. Only the optimizations done for -O2 and -O3 can be limited; -O4 and -O5

optimizations cannot be limited.

7. The -O4 and -O5 optimizations may also use a file in the /tmp directory. This

is not limited by the -qmaxmem setting.

8. Some optimizations back off automatically if they would exceed the maximum

available address space, but not if they would exceed the paging space

available at that time, which depends on machine workload.

Restrictions

Depending on the source file being compiled, the size of subprograms in the

source code, the machine configuration, and the workload on the system, setting

the limit too high might fill up the paging space. In particular, a value of -1 can fill

up the storage of even a well-equipped machine.

Related information

v “-O” on page 75

v Optimizing your applications in the XL Fortran Optimization and Programming Guide

Chapter 6. Detailed descriptions of the XL Fortran compiler options 177

-qmbcs

Category

Language element control

Purpose

Indicates to the compiler whether character literal constants, Hollerith constants, H

edit descriptors, and character string edit descriptors can contain Multibyte

Character Set (MBCS) or Unicode characters.

This option is intended for applications that must deal with data in a multibyte

language, such as Japanese.

Syntax

��
 nombcs

-q

mbcs

��

@PROCESS:

@PROCESS MBCS | NOMBCS

Defaults

-qnombcs

Usage

Each byte of a multibyte character is counted as a column.

To process the multibyte data correctly at run time, set the locale (through the

LANG environment variable or a call to the libc setlocale routine) to the same

value as during compilation.

To read or write Unicode data, set the locale value to UNIVERSAL at run time. If

you do not set the locale, you might not be able to interchange data with

Unicode-enabled applications.

178 XL Fortran Compiler Reference

-qminimaltoc

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

In in 64-bit compilation mode, minimizes the number of entries in the global entity

table of contents (TOC).

Syntax

��
 nominimaltoc

-q

minimaltoc

��

Defaults

-qnominimaltoc

Usage

This compiler option applies to 64-bit compilations only.

By default, the compiler will allocate at least one TOC entry for each unique,

non-automatic variable reference in your program. Currently, only 8192 TOC

entries are available and duplicate entries are not discarded. This can cause errors

when linking large programs in 64-bit mode if your program exceeds 8192 TOC

entries.

Specifying -qminimaltoc ensures that the compiler creates only one TOC entry for

each compilation unit. Specifying this option can minimize the use of available

TOC entries, but its use impacts performance.

Use the -qminimaltoc option with discretion, particularly with files that contain

frequently executed code.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 179

-qmixed

Category

Input control

Purpose

This is the long form of the “-U” on page 273.

Syntax

��
 nomixed

-q

mixed

��

@PROCESS:

@PROCESS MIXED | NOMIXED

Defaults

-qnomixed

180 XL Fortran Compiler Reference

-qmoddir

Category

Output control

@PROCESS directive

None.

Purpose

Specifies the location for any module (.mod) files that the compiler writes.

Syntax

�� -q moddir = directory ��

Defaults

Not applicable.

Usage

If you do not specify -qmoddir, the .mod files are placed in the current directory.

To read the .mod files from this directory when compiling files that reference the

modules, use the -I option.

Related information

v “XL Fortran Output files” on page 23

v “-I” on page 70

v Modules section of the XL Fortran Language Reference.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 181

-qmodule

Category

Portability and migration

@PROCESS directive

None.

Purpose

Specifies that the compiler should use the XL Fortran Version 8.1 naming

convention for non-intrinsic module files.

Syntax

�� -q module=mangle81 ��

Defaults

Not applicable.

Usage

This option allows you to produce modules and their associated object files with

the V11.1 compiler and link these object files with others compiled with the

Version 8.1 compiler.

Use this option only if you need to link applications that were compiled with the

Version 8.1 compiler.

It is recommended that you avoid using this compiler option and recompile old

code and modules with the new version of the compiler, if possible. Doing so will

avoid any naming conflicts between your modules and intrinsic modules.

Related information

v Modules section in the XL Fortran Language Reference.

v Conventions for XL Fortran external names in the XL Fortran Optimization and

Programming Guide

v “Avoiding naming conflicts during linking” on page 31

182 XL Fortran Compiler Reference

-qnoprint

Category

Listings, messages, and compiler information

@PROCESS directive

None.

Purpose

Prevents the compiler from creating the listing file, regardless of the settings of

other listing options.

Syntax

�� -q noprint ��

Defaults

Not applicable.

Usage

Specifying -qnoprint on the command line enables you to put other listing options

in a configuration file or on @PROCESS directives and still prevent the listing file

from being created.

A listing file is usually created when you specify any of the following options:

-qattr, -qlist, -qlistopt, -qphsinfo, -qsource, -qreport, or -qxref. -qnoprint prevents

the listing file from being created by changing its name to /dev/null, a device that

discards any data that is written to it.

Related information

v “Listings, messages, and compiler information” on page 51

Chapter 6. Detailed descriptions of the XL Fortran compiler options 183

-qnullterm

Category

Language element control

Purpose

Appends a null character to each character constant expression that is passed as a

dummy argument, making it more convenient to pass strings to C functions.

This option allows you to pass strings to C functions without having to add a null

character to each string argument.

Syntax

��
 nonullterm

-q

nullterm

��

@PROCESS:

@PROCESS NULLTERM | NONULLTERM

Defaults

-qnonullterm

Usage

This option affects arguments that are composed of any of the following objects:

v Basic character constants

v Concatenations of multiple character constants

v Named constants of type character

v Hollerith constants

v Binary, octal, or hexadecimal typeless constants when an interface block is

available

v Any character expression composed entirely of these objects.

The result values from the CHAR and ACHAR intrinsic functions also have a null

character added to them if the arguments to the intrinsic function are initialization

expressions.

Rules

This option does not change the length of the dummy argument, which is defined

by the additional length argument that is passed as part of the XL Fortran calling

convention.

Restrictions

This option affects those arguments that are passed with or without the %REF

built-in function, but it does not affect those that are passed by value. This option

does not affect character expressions in input and output statements.

Examples

Here are two calls to the same C function; one with, and one without the option:

184 XL Fortran Compiler Reference

@PROCESS NONULLTERM

 SUBROUTINE CALL_C_1

 CHARACTER*9, PARAMETER :: HOME = "/home/luc"

! Call the libc routine mkdir() to create some directories.

 CALL mkdir ("/home/luc/testfiles\0", %val(448))

! Call the libc routine unlink() to remove a file in the home directory.

 CALL unlink (HOME // "/.hushlogin" // CHAR(0))

 END SUBROUTINE

 @PROCESS NULLTERM

 SUBROUTINE CALL_C_2

 CHARACTER*9, PARAMETER :: HOME = "/home/luc"

! With the option, there is no need to worry about the trailing null

! for each string argument.

 CALL mkdir ("/home/luc/testfiles", %val(448))

 CALL unlink (HOME // "/.hushlogin")

 END SUBROUTINE

!

Related information

See Passing character types between languages in the XL Fortran Optimization and

Programming Guide.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 185

-qobject

Category

Error checking and debugging

Purpose

Specifies whether to produce an object file or to stop immediately after checking

the syntax of the source files.

Syntax

��
 OBJect

-q

NOOBJect

��

@PROCESS:

@PROCESS OBJect | NOOBJect

Defaults

-qnoobject

Usage

When debugging a large program that takes a long time to compile, you might

want to use the -qnoobject option. It allows you to quickly check the syntax of a

program without incurring the overhead of code generation. The .lst file is still

produced, so you can get diagnostic information to begin debugging.

After fixing any program errors, you can change back to the default (-qobject) to

test whether the program works correctly. If it does not work correctly, compile

with the -g option for interactive debugging.

The -qhalt option can override the -qobject option, and -qnoobject can override

-qhalt.

Related information

v “Listings, messages, and compiler information” on page 51

v “Object section” on page 295

v “The compiler phases” on page 297

v “-qhalt” on page 144

186 XL Fortran Compiler Reference

-qoldmod

@PROCESS directive

None.

Purpose

Specifies that object files containing module data compiled with versions of XL

Fortran earlier than V9.1.1 either do not contain uninitialized module data, or were

ported using the convert_syms script.

Syntax

�� -q oldmod=compat ��

Defaults

Not applicable.

Usage

The mangling scheme that XL Fortran uses for uninitialized module variables was

changed with Version 9.1.1. The previous mangling scheme used the @ sign, which

confused the Linux linker when creating shared libraries. The Linux linker reserves

the @ sign for symbol versioning.

As a result of this change, XL Fortran modules containing uninitialized module

variables and any compilation units using these modules need to be recompiled

with the -qoldmod=compat option.

If recompilation is not feasible, you can port the object files created by older

compilers by using the following script:

> cat convert_syms

#!/bin/bash

if [[$# = 0 || "$1" = "-?"]]

then

 echo "Usage: $0 object-files"

 echo "e.g. $0 *.o *.a"

 exit

fi

for file in $*

do

 XLFSYMS=""

 for i in `nm $file | grep -o "&&\([NI]&\)\?@.*$"

 | sort -u`

 do

 XLFSYMS="$XLFSYMS --redefine-sym $i=`echo $i | sed -e ’s/@/\&/’`"

 done

 if [[-n "$XLFSYMS"]]; then

 echo Converting symbols in $file...

 objcopy $XLFSYMS $file

 fi

done

Module symbol files (*.mod) do not need to be ported.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 187

Examples

If old_module.o and old_module.mod were produced using the original

release of XL Fortran Advanced Edition V9.1 for Linux, you’ll get

the following error when you try to use them in new programs:

> xlf95 new_program.f old_module.o

"new_program.f", line 1.5: 1517-022 (S) Module old_module was compiled

using an incompatible version of the compiler. Please see the -qoldmod

option for information on recovery.

1501-511 Compilation failed for file new_program.f.

Convert the object file. This needs to be done only once.

> ./convert_syms old_module.o

>

You can now use the updated object file safely.

Specify -qoldmod=compat

> xlf95 new_program.f old_module.o -qoldmod=compat

** _main === End of Compilation 1 ===

1501-510 Compilation successful for file new_program.f.

>

188 XL Fortran Compiler Reference

-qonetrip

Category

Language element control

Purpose

This is the long form of the “-1” on page 61.

Syntax

��
 noonetrip

-q

onetrip

��

@PROCESS:

@PROCESS ONETRIP | NOONETRIP

Defaults

-qnoonetrip

Chapter 6. Detailed descriptions of the XL Fortran compiler options 189

-qoptdebug

Category

Error checking and debugging

@PROCESS directive

None.

Purpose

When used with high levels of optimization, produces files containing optimized

pseudocode that can be read by a debugger.

An output file with a .optdbg extension is created for each source file compiled

with -qoptdebug. You can use the information contained in this file to help you

understand how your code actually behaves under optimization.

Syntax

��

-q
 nooptdebug

optdebug

��

Defaults

-qnooptdebug

Usage

-qoptdebug only has an effect when used with an option that enables the

high-level optimizer, namely -O3 or higher optimization level, or -qhot, -qsmp,

-qipa, or -qpdf. You can use the option on both compilation and link steps. If you

specify it on the compile step, one output file is generated for each source file. If

you specify it on the -qipa link step, a single output file is generated.

You must still use the -g or -qlinedebug option to include debugging information

that can be used by a debugger.

For more information and examples of using this option, see "Using -qoptdebug to

help debug optimized programs" in the XL Fortran Optimization and Programming

Guide.

Related information

v “-qhot” on page 146

v “-qipa” on page 158

v “-qpdf1, -qpdf2” on page 192

v “-qsmp” on page 223

190 XL Fortran Compiler Reference

-qoptimize

Purpose

This is the long form of the “-O” on page 75.

Syntax

��
 NOOPTimize

-q

OPTimize

=

level

��

@PROCESS:

@PROCESS OPTimize[(level)] | NOOPTimize

Defaults

-qnooptimize

Chapter 6. Detailed descriptions of the XL Fortran compiler options 191

-qpdf1, -qpdf2

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Tunes optimizations through profile-directed feedback (PDF), where results from

sample program execution are used to improve optimization near conditional

branches and in frequently executed code sections.

PDF is a two-step process. You first compile the application with -qpdf1 and a

minimum optimization level of -O2, with linking. You then run the resulting

application with a typical data set. During the test run, profile data is written to a

profile file (by default, this file is named ._pdf and is saved in the current working

directory, or in the directory named by the PDFDIR environment variable, if it is

set). You then recompile, and/or link or relink the application with -qpdf2 and a

minimum optimization level of -O2, which fine-tunes the optimizations applied

according to the profile data collected during the program execution.

PDF is intended to be used after other debugging and tuning is finished, as one of

the last steps before putting the application into production.

Syntax

��

 nopdf2

nopdf1

-q

pdf1

=

pdfname

=

file_path

pdf2

=

pdfname

=

file_path

��

Defaults

-qnopdf1, -qnopdf2

Parameters

pdfname= file_path

Specifies the path to the file that will hold the profile data. By default, the file

name is ._pdf, and it is placed in the current working directory or in the

directory named by the PDFDIR environment variable. You can use the

pdfname suboption to allow you to do simultaneous runs of multiple

executables using the same PDF directory. This is especially useful when

tuning with PDF on dynamic libraries.

Usage

You must compile the main program with PDF for profiling information to be

collected at run time.

192 XL Fortran Compiler Reference

You must use the same compilation options for the PDF2 compilation as for the

PDF1 compilation.

If you do not want the optimized object files to be relinked during the second step,

specify -qpdf2 -qnoipa. Note, however, that if you change a source file that was

compiled previously with -qpdf1, you will need to go through the entire first pass

process again.

If you want to specify an alternate path and file name for the profile file, use the

pdfname suboption. Alternatively, you can use the PDFDIR environment variable

to specify the absolute path name for the directory. Do not compile or run two

different applications that use the same profiling directory at the same time, unless

you have used the pdfname suboption to distinguish the sets of profiling

information.

You can also use the following option with -qpdf1:

-qshowpdf

Provides additional information, such as block and function call counts, to the

profile file. See “-qshowpdf” on page 219 for more information.

For recommended procedures for using PDF, see "Profile-directed feedback" in the

XL Fortran Optimization and Programming Guide.

The following utility programs, found in /opt/ibmcmp/xlf/11.1/bin/, are

available for managing the directory to which profile data is written:

cleanpdf

�� cleanpdf

directory_path
 ��

Removes all profiling information from the directory specified by

directory_path; or if pathname is not specified, from the directory set by the

PDFDIR environment variable; or if PDFDIR is not set, from the current

directory. Removing profiling information reduces runtime overhead if you

change the program and then go through the PDF process again.

 Run cleanpdf only when you are finished with the PDF process for a

particular application. Otherwise, if you want to resume using PDF with

that application, you will need to recompile all of the files again with

-qpdf1.

mergepdf

��

�

mergepdf

input

-o

output

-r

scaling

-n

-v

��

Merges two or more PDF records into a single PDF output record.

-r scaling Specifies the scaling ratio for the PDF record file. This

value must be greater than zero and can be either an

integer or floating point value. If not specified, a ratio of

1.0 is assumed.

input Specifies the name of a PDF input record file, or a

directory that contains PDF record files.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 193

-o output Specifies the name of the PDF output record file, or a

directory to which the merged output will be written.

-n If specified, PDF record files are not normalized. If not

specified, mergepdf normalizes records based on an

internally-calculated ratio before applying any user-defined

scaling factor.

-v Specifies verbose mode, and causes internal and

user-specified scaling ratios to be displayed to standard

output.

resetpdf

�� resetpdf

directory_path
 ��

Same as cleanpdf, described above.

showpdf

�� showpdf

directory_path

-f

file_path
 ��

Displays the function call and block counts written to the profile file,

specified by the -f option, during a program run. To use this command,

you must first compile your application specifying both -qpdf1 and

-qshowpdf compiler options on the command line.

Results

None.

Examples

Here is a simple example:

Compile all files with -qpdf1.

xlf -qpdf1 -O3 file1.f file2.f file3.f

Run with one set of input data.

./a.out < sample.data

Recompile all files with -qpdf2.

xlf -qpdf2 -O3 file1.f file2.f file3.f

The program should now run faster than

without PDF if the sample data is typical.

Here is a more elaborate example.

Set the PDFDIR variable.

export PDFDIR=$HOME/project_dir

Compile most of the files with -qpdf1.

xlf -qpdf1 -O3 -c file1.f file2.f file3.f

This file is not so important to optimize.

xlf -c file4.f

Non-PDF object files such as file4.o can be linked in.

xlf -qpdf1 -O3 file1.o file2.o file3.o file4.o

194 XL Fortran Compiler Reference

Run several times with different input data.

./a.out < polar_orbit.data

./a.out < elliptical_orbit.data

./a.out < geosynchronous_orbit.data

No need to recompile the source of non-PDF object files (file4.f).

xlf -qpdf2 -O3 file1.f file2.f file3.f

Link all the object files into the final application. */

xlf -qpdf2 -O3 file1.o file2.o file3.o file4.o

Here is an example that bypasses recompiling the source with -qpdf2:

Compile source with -qpdf1.

xlf -O3 -qpdf1 -c file.f

Link in object file.

xlf -O3 -qpdf1 file.o

Run with one set of input data.

./a.out < sample.data

Link in object file from qpdf1 pass.

(Bypass source recompilation with -qpdf2.)

 xlf -O3 -qpdf2 file.o

Here is an example of using pdf1 and pdf2 objects:

Compile source with -qpdf1.

xlf -c -qpdf1 -O3 file1.f file2.f

Link in object files.

xlf -qpdf1 -O3 file1.o file2.o

Run with one set of input data.

./a.out < sample.data

Link in the mix of pdf1 and pdf2 objects.

 xlf -qpdf2 -O3 file1.o file2.o

Here is an example that creates PDF-optimized object files without relinking into

an executable:

Compile source with -qpdf1.

xlf -c -O3 -qpdf1 file1.f file2.f file3.f

Link in object files.

xlf -O3 -qpdf1 file1.o file2.o file3.o

Run with one set of input data.

./a.out < sample data

Recompile the instrumented source files

xlf -c -O3 -qpdf2 -qnoipa file1.f file2.f file3.f

Related information

v “-qshowpdf” on page 219

v “-qipa” on page 158

v “XL Fortran input files” on page 22

v “XL Fortran Output files” on page 23

v "Profile-directed feedback" in the XL Fortran Optimization and Programming Guide

Chapter 6. Detailed descriptions of the XL Fortran compiler options 195

-qphsinfo

Category

Listings, messages, and compiler information

Purpose

Reports the time taken in each compilation phase to standard output.

Syntax

��
 nophsinfo

-q

phsinfo

��

@PROCESS:

@PROCESS PHSINFO | NOPHSINFO

Defaults

-qnophsinfo

Usage

The output takes the form number1/number2 for each phase where number1

represents the CPU time used by the compiler and number2 represents the total of

the compiler time and the time that the CPU spends handling system calls.

Examples

To compile app.f, which consists of 3 compilation units, and report the time taken

for each phase of the compilation, enter:

xlf90 app.f -qphsinfo

The output will look similar to:

FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.000

** m_module === End of Compilation 1 ===

FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.000

** testassign === End of Compilation 2 ===

FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.010

** dataassign === End of Compilation 3 ===

HOT - Phase Ends; 0.000/ 0.000

HOT - Phase Ends; 0.000/ 0.000

HOT - Phase Ends; 0.000/ 0.000

W-TRANS - Phase Ends; 0.000/ 0.010

OPTIMIZ - Phase Ends; 0.000/ 0.000

REGALLO - Phase Ends; 0.000/ 0.000

AS - Phase Ends; 0.000/ 0.000

W-TRANS - Phase Ends; 0.000/ 0.000

OPTIMIZ - Phase Ends; 0.000/ 0.000

REGALLO - Phase Ends; 0.000/ 0.000

AS - Phase Ends; 0.000/ 0.000

W-TRANS - Phase Ends; 0.000/ 0.000

OPTIMIZ - Phase Ends; 0.000/ 0.000

REGALLO - Phase Ends; 0.000/ 0.000

AS - Phase Ends; 0.000/ 0.000

1501-510 Compilation successful for file app.f.

Each phase is invoked three times, corresponding to each compilation unit. FORTRAN

represents front-end parsing and semantic analysis, HOT loop transformations,

196 XL Fortran Compiler Reference

W-TRANS intermediate language translation, OPTIMIZ high–level optimization,

REGALLO register allocation and low–level optimization, and AS final assembly.

Compile app.f at the -O4 optimization level with -qphsinfo specified:

xlf90 myprogram.f -qphsinfo -O4

The following output results:

FORTRAN phase 1 ftphas1 TIME = 0.010 / 0.020

** m_module === End of Compilation 1 ===

FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.000

** testassign === End of Compilation 2 ===

FORTRAN phase 1 ftphas1 TIME = 0.000 / 0.000

** dataassign === End of Compilation 3 ===

HOT - Phase Ends; 0.000/ 0.000

HOT - Phase Ends; 0.000/ 0.000

HOT - Phase Ends; 0.000/ 0.000

IPA - Phase Ends; 0.080/ 0.100

1501-510 Compilation successful for file app.f.

IPA - Phase Ends; 0.050/ 0.070

W-TRANS - Phase Ends; 0.010/ 0.030

OPTIMIZ - Phase Ends; 0.020/ 0.020

REGALLO - Phase Ends; 0.040/ 0.040

AS - Phase Ends; 0.000/ 0.000

Note that during the IPA (interprocedural analysis) optimization phases, the

program has resulted in one compilation unit; that is, all procedures have been

inlined.

Related information

“The compiler phases” on page 297.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 197

-qpic

Category

Object code control

@PROCESS directive

None.

Purpose

Generates Position-Independent Code suitable for use in shared libraries.

Syntax

��
 nopic

-q

pic

small

=

large

��

Defaults

v -qnopic in 32-bit compilation mode.

v -qpic=small in 64-bit compilation mode.

Parameters

small

Instructs the compiler to assume that the size of the Global Offset Table is no

larger than 64 Kb.

large

Allows the Global Offset Table to be larger than 64 Kb in size, allowing more

addresses to be stored in the table. Code generated with this option is usually

larger than that generated with -qpic=small.

Specifying -qpic without any suboptions is equivalent to -qpic=small.

Usage

When -q64 is in effect, -qpic is enabled and cannot be disabled.

Related information

v “-q32” on page 82

v “-q64” on page 83

198 XL Fortran Compiler Reference

-qport

Category

Portability and migration

Purpose

Provides options to accommodate other Fortran language extensions when porting

programs to XL Fortran.

A particular -qport suboption will always function independently of other -qport

and compiler options.

Syntax

��

�

 noport

-q

port

:

notyplssarg

notypestmt

nosce

nonullarg

nomod

nohexint

noclogicals

=

clogicals

hexint

mod

nullarg

sce

typestmt

typlssarg

��

@PROCESS:

@PROCESS PORT[(suboptions)]| NOPORT

Defaults

-qnoport

Parameters

clogicals | noclogicals

When clogicals is in effect, the compiler treats all non-zero integers

that are used in logical expressions as TRUE. You must specify

-qintlog for -qport=clogicals to take effect.

 The -qport=clogicals option is useful when porting applications

from other Fortran compilers that expect this behavior. However, it

is unsafe to mix programs that use different settings for non-zero

integers if they share or pass logical data between them. Data files

already written with the default -qintlog setting will produce

unexpected behavior if read with the -qport=clogicals option

active.

hexint | nohexint

When hexint is in effect, typeless constant hexadecimal strings are

Chapter 6. Detailed descriptions of the XL Fortran compiler options 199

converted to integers when passed as an actual argument to the

INT intrinsic function. Typeless constant hexadecimal strings not

passed as actual arguments to INT remain unaffected.

mod | nomod Specifying mod relaxes existing constraints on the MOD intrinsic

function, allowing two arguments of the same data type parameter

to be of different kind type parameters. The result will be of the

same type as the argument, but with the larger kind type

parameter value.

nullarg | nonullarg

For an external or internal procedure reference, specifying nullarg

causes the compiler to treat an empty argument, which is delimited

by a left parenthesis and a comma, two commas, or a comma and

a right parenthesis, as a null argument. This suboption has no

effect if the argument list is empty.

 Examples of empty arguments are:

call foo(,,z)

call foo(x,,z)

call foo(x,y,)

The following program includes a null argument.

Fortran program:

program nularg

real(4) res/0.0/

integer(4) rc

integer(4), external :: add

rc = add(%val(2), res, 3.14, 2.18,) ! The last argument is a

 ! null argument.

if (rc == 0) then

print *, "res = ", res

else

print *, "number of arguments is invalid."

endif

end program

C program:

int add(int a, float *res, float *b, float *c, float *d)

{

 int ret = 0;

 if (a == 2)

 *res = *b + *c;

 else if (a == 3)

 *res = (*b + *c + *d);

 else

 ret = 1;

 return (ret);

}

sce | nosce By default, the compiler performs short circuit evaluation in

selected logical expressions using XL Fortran rules. Specifying sce

allows the compiler to use non-XL Fortran rules. The compiler will

perform short circuit evaluation if the current rules allow it.

typestmt | notypestmt

The TYPE statement, which behaves in a manner similar to the

PRINT statement, is supported whenever typestmt is specified.

200 XL Fortran Compiler Reference

typlssarg | notyplssarg

Converts all typeless constants to default integers if the constants

are actual arguments to an intrinsic procedure whose associated

dummy arguments are of integer type. Dummy arguments

associated with typeless actual arguments of noninteger type

remain unaffected by this option.

 Using this option may cause some intrinsic procedures to become

mismatched in kinds. Specify -qxlf77=intarg to convert the kind to

that of the longest argument.

 Related information

v “-qintlog” on page 155

v “-qxlf77” on page 257

v See the section on the INT and MOD intrinsic functions in the XL Fortran

Language Reference for further information.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 201

-qposition

Category

Language element control

Purpose

Positions the file pointer at the end of the file when data is written after an OPEN

statement with no POSITION= specifier and the corresponding STATUS= value

(OLD or UNKNOWN) is specified.

The position becomes APPEND when the first I/O operation moves the file

pointer if that I/O operation is a WRITE or PRINT statement. If it is a

BACKSPACE, ENDFILE, READ, or REWIND statement instead, the position is

REWIND.

Syntax

�� -q position = appendold

appendunknown
 ��

@PROCESS:

@PROCESS POSITION({APPENDOLD | APPENDUNKNOWN} ...)

Defaults

The default setting depends on the I/O specifiers in the OPEN statement and on

the compiler invocation command:

v -qposition=appendold for the xlf, xlf_r, and f77/fort77 commands

v The defined Fortran 90 and Fortran 95 behaviors for the xlf2003, xlf2003_r, xlf90,

xlf90_r, xlf95, xlf95_r, f2003, f90, and f95 commands.

Examples

In the following example, OPEN statements that do not specify a POSITION=

specifier, but specify STATUS=’old’ will open the file as if POSITION=’append’

was specified.

xlf95 -qposition=appendold opens_old_files.f

In the following example, OPEN statements that do not specify a POSITION=

specifier, but specify STATUS=’unknown’ will open the file as if

POSITION=’append’ was specified.

xlf95 -qposition=appendunknown opens_unknown_files.f

In the following example, OPEN statements that do not specify a POSITION=

specifier, but specify either STATUS=’old’ or STATUS=’unknown’ will open the

file as if POSITION=’append’ was specified.

xlf95 -qposition=appendold:appendunknown opens_many_files.f

Related information

v File positioning in the XL Fortran Optimization and Programming Guide

v OPEN statement in the XL Fortran Language Reference

202 XL Fortran Compiler Reference

-qppsuborigarg

Category

Input control

@PROCESS directive

None.

Purpose

Instructs the C preprocessor to substitute original macro arguments before further

macro expansion.

Syntax

��
 noppsuborigarg

-WF

,

-q

ppsuborigarg

��

Defaults

v -qnoppsuborigarg

Usage

-qppsuborigarg is a C preprocessor option, and must therefore be specified using

the -WF option.

Examples

Consider the following sample code, x.F:

#define PRINT_COMP(a) PRINT_4(SPLIT_COMP(a))

#define SPLIT_COMP(a) "Real:", real(a), "Imag:", imag(a)

#define PRINT_4(list) PRINT_LIST(list)

#define PRINT_LIST(list) print *, list

complex a

a = (3.5, -3.5)

PRINT_COMP(a)

end

If this code is compiled with -qnoppsuborigarg, the C preprocessor reports an

error because the parameter ″list″ in the function-like macro PRINT_4 is the

expanded substitution text of the macro SPLIT_COMP(a). The C preprocessor

therefore complains because PRINT_LIST is being called with four arguments but

only expects one.

> xlf95 x.F -d

"x.F", line 8.1: 1506-215 (E) Too many arguments specified for macro PRINT_LIST.

** _main === End of Compilation 1 ===

1501-510 Compilation successful for file x.F.

> cat Fx.f

complex a

a = (3.5, -3.5)

print *, "Real:"

end

When the code is compiled with -qppsuborigarg, the C preprocessor uses the text

″SPLIT_COMP(a)″ rather than the expanded substitution text of SPLIT_COMP(a) as the

Chapter 6. Detailed descriptions of the XL Fortran compiler options 203

argument to the function-like macro PRINT_LIST. Only after the macro PRINT_LIST

has been expanded, does the C preprocessor proceed to expand the macro

″SPLIT_COMP(a)″. As a result, the macro PRINT_LIST only receives the expected

single argument ″SPLIT_COMP(a)″ rather than the four arguments.

> xlf95 x.F -d -WF,-qppsuborigarg

** _main === End of Compilation 1 ===

1501-510 Compilation successful for file x.F.

> cat Fx.f

complex a

a = (3.5, -3.5)

print *, "Real:", real(a), "Imag:", imag(a)

end

Related information

v “-W” on page 277

v “-qfpp” on page 138

v “Passing Fortran files through the C preprocessor” on page 28

204 XL Fortran Compiler Reference

-qprefetch

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Inserts prefetch instructions automatically where there are opportunities to

improve code performance.

Syntax

��
 prefetch

-q

noprefetch

��

Defaults

-qprefetch

Related information

For more information on prefetch directives, see PREFETCH directives in the XL

Fortran Language Reference and The POWER4 Processor Introduction and Tuning Guide.

To selectively control prefetch directives using trigger constants, see the

“-qdirective” on page 115.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 205

-qqcount

Category

Language element control

Purpose

Accepts the Q character-count edit descriptor (Q) as well as the extended-precision

Q edit descriptor (Qw.d).

Syntax

��
 noqcount

-q

qcount

��

@PROCESS:

@PROCESS QCOUNT | NOQCOUNT

Defaults

With -qnoqcount, all Q edit descriptors are interpreted as the extended-precision Q

edit descriptor.

Usage

The compiler interprets a Q edit descriptor as one or the other depending on its

syntax and issues a warning if it cannot determine which one is specified.

Related information

v Q (Character Count) Editing in the XL Fortran Language Reference

206 XL Fortran Compiler Reference

-qrealsize

Category

Floating-point and integer control

Purpose

Sets the default size of REAL, DOUBLE PRECISION, COMPLEX, and

DOUBLE COMPLEX values.

This option is intended for maintaining compatibility with code that is written for

other systems. You may find it a useful alternative to the -qautodbl option in some

situations.

Syntax

��
 4

-q

realsize

=

8

��

@PROCESS:

@PROCESS REALSIZE(bytes)

Defaults

The default, -qrealsize=4, is suitable for programs that are written specifically for

32-bit computers.

Parameters

The allowed values for bytes are:

v 4

v 8

Usage

This option is intended to allow you to port programs unchanged from systems

that have different default sizes for data. For example, you might need

-qrealsize=8 for programs that are written for a CRAY computer.

-qautodbl is related to -qrealsize, although you cannot combine these options.

When the -qautodbl option turns on automatic doubling, padding, or both, the

-qrealsize option has no effect.

Setting -qrealsize to 8 overrides the setting of the -qdpc option.

Results

The option affects the sizes2 of constants, variables, derived type components, and

functions (which include intrinsic functions) for which no kind type parameter is

specified. Objects that are declared with a kind type parameter or length, such as

REAL(4) or COMPLEX*16, are not affected.

This option determines the sizes of affected objects as follows:

2. In Fortran 90/95 terminology, these values are referred to as kind type parameters.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 207

Data Object REALSIZE(4) in Effect REALSIZE(8) in Effect

1.2 REAL(4) REAL(8)

1.2e0 REAL(4) REAL(8)

1.2d0 REAL(8) REAL(16)

1.2q0 REAL(16) REAL(16)

REAL REAL(4) REAL(8)

DOUBLE PRECISION REAL(8) REAL(16)

COMPLEX COMPLEX(4) COMPLEX(8)

DOUBLE COMPLEX COMPLEX(8) COMPLEX(16)

Similar rules apply to intrinsic functions:

v If an intrinsic function has no type declaration, its argument and return types

may be changed by the -qrealsize setting.

v Any type declaration for an intrinsic function must agree with the default size of

the return value.

Examples

This example shows how changing the -qrealsize setting transforms some typical

entities:

@PROCESS REALSIZE(8)

 REAL R ! treated as a real(8)

 REAL(8) R8 ! treated as a real(8)

 DOUBLE PRECISION DP ! treated as a real(16)

 DOUBLE COMPLEX DC ! treated as a complex(16)

 COMPLEX(4) C ! treated as a complex(4)

 PRINT *,DSIN(DP) ! treated as qsin(real(16))

! Note: we cannot get dsin(r8) because dsin is being treated as qsin.

 END

Specifying -qrealsize=8 affects intrinsic functions, such as DABS, as follows:

INTRINSIC DABS ! Argument and return type become REAL(16).

DOUBLE PRECISION DABS ! OK, because DOUBLE PRECISION = REAL(16)

 ! with -qrealsize=8 in effect.

REAL(16) DABS ! OK, the declaration agrees with the option setting.

REAL(8) DABS ! The declaration does not agree with the option

 ! setting and is ignored.

Related information

v “-qintsize” on page 156 is a similar option that affects integer and logical objects.

v “-qautodbl” on page 97

v Type Parameters and Specifiers in the XL Fortran Language Reference

208 XL Fortran Compiler Reference

-qrecur

Category

Deprecated options

Purpose

Specifies whether external subprograms may be called recursively.

Not recommended.

Syntax

��
 norecur

-q

recur

��

@PROCESS:

@PROCESS RECUR | NORECUR

Defaults

-qnorecur

Usage

For new programs, use the RECURSIVE keyword, which provides a

standards-conforming way of using recursive procedures.

If you specify the -qrecur option, the compiler must assume that any procedure

could be recursive. Code generation for recursive procedures may be less efficient.

With the RECURSIVE keyword, you can specify exactly which procedures are

recursive.

If you use the xlf, xlf_r, f77, or fort77 command to compile programs that contain

recursive calls, specify -qnosave to make the default storage class automatic.

Examples

! The following RECUR recursive function:

 @process recur

 function factorial (n)

 integer factorial

 if (n .eq. 0) then

 factorial = 1

 else

 factorial = n * factorial (n-1)

 end if

 end function factorial

! can be rewritten to use F90/F95 RECURSIVE/RESULT features:

 recursive function factorial (n) result (res)

 integer res

 if (n .eq. 0) then

 res = 1

Chapter 6. Detailed descriptions of the XL Fortran compiler options 209

else

 res = n * factorial (n-1)

 end if

 end function factorial

210 XL Fortran Compiler Reference

-qreport

Category

Listings, messages, and compiler information

Purpose

Produces listing files that show how sections of code have been optimized.

A listing file is generated with a .lst suffix for each source file named on the

command line. When used with an option that enables automatic parallelization or

vectorization, the listing file shows a pseudo-Fortran code listing and a summary

of how program loops are parallelized and/or optimized. The report also includes

diagnostic information to show why specific loops could not be parallelized

and/or vectorized.

When used with -qipa=clonearch, produces transformation reports on the

procedures that are cloned for the architectures specified by the option.

Syntax

Option:

��

�

 noreport

-q

report

:

hotlist

=

smplist

��

@PROCESS:

@PROCESS REPORT[({SMPLIST | HOTLIST}...)] | NOREPORT

Defaults

-qnoreport

Parameters

smplist | hotlist

When -qreport=smplist is in effect, produces a pseudo-Fortran listing that

shows how the program is parallelized. This listing is produced before

loop and other optimizations are performed. It includes messages that

point out places in the program that can be modified to be more efficient.

This report is only produced if -qsmp is in effect.

 When -qreport=hotlist is in effect, produces a pseudo-Fortran listing that

shows how loops are transformed, to assist you in tuning the performance

of all loops. This report is only produced if -qhot is in effect.

 In addition, if you specify the -qreport=hotlist option when -qsmp is in

effect, a pseudo-Fortran listing will be produced that shows the calls to the

SMP runtime library and the procedures created for parallel constructs.

 Specifying -qreport with no suboptions is equivalent to -qreport=hotlist.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 211

Usage

For -qreport to generate a loop transformation listing, you must also specify one of

the following options on the command line:

v -qhot[=simd]

v -qsmp

v -O5

v -qipa=level=2

For -qreport to generate a parallel transformation listing or parallel performance

messages, you must also specify one of the following options on the command

line:

v -qsmp

v -O5

v -qipa=level=2

For -qreport to generate a function cloning listing, you must also specify

-qipa=clonearch.

If you use -qreport with -O5 or -qipa=level=2, the report will be generated after

the link step.

The pseudo-Fortran code listing is not intended to be compilable. Do not include

any of the pseudo-Fortran code in your program, and do not explicitly call any of

the internal routines whose names may appear in the pseudo-Fortran code listing.

Examples

To compile myprogram.f so the compiler listing includes a report showing how

loops are optimized, enter:

xlf -qhot -O3 -qreport myprogram.f

To compile myprogram.c so the compiler listing also includes a report showing how

parallelized loops are transformed, enter:

xlf_r -qhot -qsmp -qreport=smplist myprogram.c

Related information

v “-qhot” on page 146

v “-qipa” on page 158

v “-qsmp” on page 223

v “-qoptdebug” on page 190

v Using -qoptdebug to help debug optimized programs in the XL Fortran

Optimization and Programming Guide

212 XL Fortran Compiler Reference

-qsaa

Category

Language element control

Purpose

Checks for conformance to the SAA FORTRAN language definition. It identifies

nonconforming source code and also options that allow such nonconformances.

Syntax

��
 nosaa

-q

saa

��

@PROCESS:

@PROCESS SAA | NOSAA

Defaults

-qnosaa

Usage

The -qflag option can override this option.

Use the -qlanglvl option to check your code for conformance to international

standards.

Results

Warnings have a prefix of (L), indicating a problem with the language level.

Related information

v “-qflag” on page 132

v “-qlanglvl” on page 168

Chapter 6. Detailed descriptions of the XL Fortran compiler options 213

-qsave

Category

Language element control

Purpose

Specifies the default storage class for local variables.

Syntax

�� -q nosave

save

=

all

defaultinit

 ��

@PROCESS:

@PROCESS SAVE[({ALL | DEFAULTINIT})] | NOSAVE

Defaults

When -qnosave is in effect, the default storage class is AUTOMATIC.

The default for this option depends on the invocation used. For example, you may

need to specify -qsave to duplicate the behavior of FORTRAN 77 programs. The

xlf, xlf_r, f77, and fort77 commands have -qsave listed as a default option in

/etc/opt/ibmcmp/xlf/11.1/xlf.cfg to preserve the previous behavior.

Parameters

The -qsave suboptions include:

all The default storage class is STATIC.

defaultinit

The default storage class is STATIC for variables of derived type that have

default initialization specified, and AUTOMATIC otherwise.

 The all and defaultinit suboptions are mutually exclusive.

Usage

The -qnosave option is usually necessary for multithreaded applications and

subprograms that are compiled with the -qrecur option.

Examples

The following example illustrates the impact of the -qsave option on derived data

type:

 PROGRAM P

 CALL SUB

 CALL SUB

 END PROGRAM P

 SUBROUTINE SUB

 LOGICAL, SAVE :: FIRST_TIME = .TRUE.

 STRUCTURE /S/

214 XL Fortran Compiler Reference

INTEGER I/17/

 END STRUCTURE

 RECORD /S/ LOCAL_STRUCT

 INTEGER LOCAL_VAR

 IF (FIRST_TIME) THEN

 LOCAL_STRUCT.I = 13

 LOCAL_VAR = 19

 FIRST_TIME = .FALSE.

 ELSE

 ! Prints " 13" if compiled with -qsave or -qsave=all

 ! Prints " 13" if compiled with -qsave=defaultinit

 ! Prints " 17" if compiled with -qnosave

 PRINT *, LOCAL_STRUCT

 ! Prints " 19" if compiled with -qsave or -qsave=all

 ! Value of LOCAL_VAR is undefined otherwise

 PRINT *, LOCAL_VAR

 END IF

 END SUBROUTINE SUB

Related information

v “-qrecur” on page 209

v See Storage Classes for Variables in the XL Fortran Language Reference for

information on how this option affects the storage class of variables.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 215

-qsaveopt

Category

Object code control

@PROCESS directive

None.

Purpose

Saves the command-line options used for compiling a source file, the version and

level of each compiler component invoked during compilation, and other

information to the corresponding object file.

Syntax

��
 nosaveopt

-q

saveopt

��

Defaults

-qnosaveopt

Usage

This option has effect only when compiling to an object (.o) file (that is, using the

-c option). Though each object may contain multiple compilation units, only one

copy of the command-line options is saved. Compiler options specified with

@PROCESS directives are ignored.

Command-line compiler options information is copied as a string into the object

file, using the following format:

�� @(#) opt f invocation options

c

C

 ��

where:

f Signifies a Fortran language compilation.

c Signifies a C language compilation.

C Signifies a C++ language compilation.

invocation

Shows the command used for the compilation, for example, xlf.

options The list of command line options specified on the command line, with

individual options separated by spaces.

Compiler version and release information, as well as the version and level of each

component invoked during compilation, are also saved to the object file in the

format:

��

�

@(#)

version

Version

:

VV.RR.MMMM.LLLL

component_name

Version

:

VV.RR

(

product_name

)

Level

:

YYMMDD

��

where:

216 XL Fortran Compiler Reference

V Represents the version.

R Represents the release.

M Represents the modification.

L Represents the level.

component_name

Specifies the components that were invoked for this compilation, such as

the low-level optimizer.

product_name

Indicates the product to which the component belongs (for example, C/C++

or Fortran).

YYMMDD

Represents the year, month, and date of the installed update. If the update

installed is at the base level, the level is displayed as BASE.

If you want to simply output this information to standard output without writing

it to the object file, use the -qversion option.

Examples

Compile t.f with the following command:

xlf t.f -c -qsaveopt -qhot

Issuing the strings -a command on the resulting t.o object file produces

information similar to the following:

opt f /opt/ibmcmp/xlf/11.1/bin/xlf -c -qsaveopt -qhot t.f

version IBM XL Fortran Advanced Edition for Linux, V11.1

version Driver Version: 11.01(Fortran) Level: YYMMDD

version Fortran Transformer Version: 11.01(Fortran) Level: YYMMDD

version Fortran Front End Version : 11.01(Fortran) Level: YYMMDD

version High Level Optimizer Version: 09.00(C/C++) and 11.01(Fortran) Level: YYMMDD

version Low Level Optimizer Version: 09.00(C/C++) and 11.01(Fortran) Level: YYMMDD

In the first line, f identifies the source used as Fortran, /opt/ibmcmp/xlf/11.1/bin/
xlf shows the invocation command used, and -qhot -qsaveopt shows the

compilation options.

The remaining lines list each compiler component invoked during compilation, and

its version and level. Components that are shared by multiple products may show

more than one version number. Level numbers shown may change depending on

the updates you have installed on your system.

Related information

v “-qversion” on page 251

Chapter 6. Detailed descriptions of the XL Fortran compiler options 217

-qsclk

Category

Language element control

@PROCESS directive

None.

Purpose

Specifies the resolution that the SYSTEM_CLOCK intrinsic procedure uses in a

program.

Syntax

��
 centi

-q

sclk

=

micro

��

Defaults

The default is centisecond resolution (–qsclk=centi). To use microsecond resolution,

specify –qsclk=micro.

Related information

See SYSTEM_CLOCK in the XL Fortran Language Reference for more information

on returning integer data from a real-time clock.

218 XL Fortran Compiler Reference

-qshowpdf

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

When used with -qpdf1 and a minimum optimization level of -O2 at compile and

link steps, inserts additional profiling information into the compiled application to

collect call and block counts for all procedures in the application.

Syntax

��
 noshowpdf

-q

showpdf

��

Defaults

-qnoshowpdf

Usage

When specified together with -qpdf1, the compiler inserts additional profiling

information into the compiled application to collect call and block counts for all

procedures in the application. Running the compiled application will record the

call and block counts to the ._pdf file.

After you run your application with training data, you can retrieve the contents of

the ._pdf file with the showpdf utility. This utility is described in “-qpdf1, -qpdf2”

on page 192.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 219

-qsigtrap

Category

Error checking and debugging

@PROCESS directive

None.

Purpose

Sets up the specified trap handler to catch SIGTRAP and SIGFPE exceptions when

compiling a file that contains a main program.

This option enables you to install a handler for SIGTRAP or SIGFPE signals

without calling the SIGNAL subprogram in the program.

Syntax

�� -q sigtrap

=

trap_handler
 ��

Defaults

Not applicable.

Usage

To enable the xl__trce trap handler, specify -qsigtrap without a handler name. To

use a different trap handler, specify its name with the -qsigtrap option.

If you specify a different handler, ensure that the object module that contains it is

linked with the program. To show more detailed information in the tracebacks

generated by the trap handlers provided by XL Fortran (such as xl__trce), specify

the -qlinedebug or -g option.

Related information

v “XL Fortran runtime exceptions” on page 44 describes the possible causes of

exceptions.

v Detecting and trapping floating-point exceptions in the XL Fortran Optimization and

Programming Guide describes a number of methods for dealing with exceptions

that result from floating-point computations.

v Installing an exception handler in the XL Fortran Optimization and Programming

Guide lists the exception handlers that XL Fortran supplies.

220 XL Fortran Compiler Reference

-qsmallstack

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Minimizes stack usage where possible.

This compiler option controls two distinct, but related sets of transformations:

general small stack transformations and dynamic length variable allocation

transformations. These two kinds of transformations can be controlled

independently of each other.

Syntax

��
 nosmallstack

-q

smallstack

=

dynlenonheap

nodynlenonheap

��

Defaults

-qnosmallstack

Parameters

dynlenonheap | nodynlenonheap

The -qsmallstack=dynlenonheap suboption affects automatic objects that have

nonconstant character lengths or a nonconstant array bound (DYNamic

LENgth ON HEAP). When specified, those automatic variables are allocated on

the heap. When this suboption is not specified, those automatic variables are

allocated on the stack.

Defaults

The default, –qnosmallstack, implies that all suboptions are off.

Usage

Using this option may adversely affect program performance; it should be used

only for programs that allocate large amounts of data on the stack.

-qsmallstack with no suboptions enables only the general small stack

transformations.

-qnosmallstack only disables the general small stack transformations. To disable

dynlenonheap transformations, specify -qsmallstack=nodynlenonheap as well.

-qsmallstack=dynlenonheap enables the dynamic length variable allocation and

general small stack transformations.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 221

To enable only the dynlenonheap transformations, specify

-qsmallstack=dynlenonheap -qnosmallstack .

When both -qsmallstack and -qstacktemp options are used, the -qstacktemp

setting will be used to allocate applicable temporary variables if it is set to a

non-zero value, even if this setting conflicts with that of -qsmallstack. The

-qsmallstack setting will continue to apply transformations not affected by

-qstacktemp.

Related information

v “-qstacktemp” on page 231

222 XL Fortran Compiler Reference

-qsmp

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Enables parallelization of program code.

Syntax

��

�

 nosmp

-q

smp

:

nostackcheck

opt

norec_locks

noomp

nonested_par

auto

=

omp

nested_par

noauto

noopt

rec_locks

runtime

schedule

=

affinity

dynamic

=

n

guided

static

stackcheck

threshold

=

n

��

Defaults

-qnosmp. Code is produced for a uniprocessor machine.

Parameters

auto | noauto

Enables or disables automatic parallelization and optimization of program

code. By default, the compiler will attempt to parallelize explicitly coded DO

loops as well as those that are generated by the compiler for array language.

When noauto is in effect, only program code explicitly parallelized with

OpenMP directives is optimized. noauto is implied if you specify -qsmp=omp

or -qsmp=noopt.

nested_par | nonested_par

By default, the compiler serializes a nested parallel construct. When nested_par

is in effect, the compiler parallelizes prescriptive nested parallel constructs

(PARALLEL DO, PARALLEL SECTIONS). This includes not only the loop

constructs that are nested within a scoping unit but also parallel constructs in

Chapter 6. Detailed descriptions of the XL Fortran compiler options 223

subprograms that are referenced (directly or indirectly) from within other

parallel constructs. Note that this suboption has no effect on loops that are

automatically parallelized. In this case, at most one loop in a loop nest (in a

scoping unit) will be parallelized. nested_par does not provide true nested

parallelism because it does not cause new team of threads to be created for

nested parallel regions. Instead, threads that are currently available are reused.

 This suboption should be used with caution. Depending on the number of

threads available and the amount of work in an outer loop, inner loops could

be executed sequentially even if this option is in effect. Parallelization overhead

may not necessarily be offset by program performance gains.

 Note that the implementation of the nested_par suboption does not comply

with the OpenMP API. There is no support for OpenMP nested parallelism. As

such, the omp_get_nested routine always returns false according to the

OpenMP API. If you specify this suboption, the runtime library uses the same

threads for the nested PARALLEL DO and PARALLEL SECTIONS constructs

that it used for the enclosing PARALLEL constructs.

omp | noomp

Enforces or relaxes strict compliance to the OpenMP standard. When noomp is

in effect, auto is implied. When omp is in effect, noauto is implied and only

OpenMP parallelization directives are recognized. The compiler issues warning

messages if your code contains any language constructs that do not conform to

the OpenMP API.

 Specifying omp also has the following effects:

v Automatic parallelization is disabled.

v All previously recognized directive triggers are ignored. The only recognized

directive trigger is $OMP. However, you can specify additional triggers on

subsequent -qdirective options.

v The -qcclines compiler option is enabled.

v When the C preprocessor is invoked, the _OPENMP C preprocessor macro is

defined automatically, with the value 200505, which is useful in supporting

conditional compilation. See "Conditional Compilation" in the XL Fortran

Language Reference for more information.

opt | noopt

Enables or disables optimization of parallelized program code. When noopt is

in effect, the compiler will do the smallest amount of optimization that is

required to parallelize the code. This is useful for debugging because -qsmp

enables the -O2 and -qhot options by default, which may result in the

movement of some variables into registers that are inaccessible to the

debugger. However, if the -qsmp=noopt and -g options are specified, these

variables will remain visible to the debugger.

rec_locks | norec_locks

Determines whether recursive locks are used to avoid problems associated

with CRITICAL constructs. When rec_locks is in effect, nested critical sections

will not cause a deadlock; a thread can enter a CRITICAL construct from

within the dynamic extent of another CRITICAL construct that has the same

name. Note that the rec_locks suboption specifies behavior for critical

constructs that is inconsistent with the OpenMP API.

schedule

Specifies the type of scheduling algorithms and chunk size (n) that are used for

loops to which no other scheduling algorithm has been explicitly assigned in

the source code. Suboptions of the schedule suboption are as follows:

224 XL Fortran Compiler Reference

affinity[=n]

The iterations of a loop are initially divided into n partitions, containing

ceiling(number_of_iterations/number_of_threads) iterations. Each partition is

initially assigned to a thread and is then further subdivided into chunks

that each contain n iterations. If n is not specified, then the chunks consist

of ceiling(number_of_iterations_left_in_partition / 2) loop iterations.

 When a thread becomes free, it takes the next chunk from its initially

assigned partition. If there are no more chunks in that partition, then the

thread takes the next available chunk from a partition initially assigned to

another thread.

 The work in a partition initially assigned to a sleeping thread will be

completed by threads that are active.

 The affinity scheduling type does not appear in the OpenMP API

standard.

dynamic[=n]

The iterations of a loop are divided into chunks containing n iterations

each. If n is not specified, then the chunks consist of

ceiling(number_of_iterations/number_of_threads). iterations.

 Active threads are assigned these chunks on a ″first-come, first-do″ basis.

Chunks of the remaining work are assigned to available threads until all

work has been assigned.

 If a thread is asleep, its assigned work will be taken over by an active

thread once that thread becomes available.

guided[=n]

The iterations of a loop are divided into progressively smaller chunks until

a minimum chunk size of n loop iterations is reached. If n is not specified,

the default value for n is 1 iteration.

 Active threads are assigned chunks on a ″first-come, first-do″ basis. The

first chunk contains ceiling(number_of_iterations/number_of_threads)

iterations. Subsequent chunks consist of ceiling(number_of_iterations_left /

number_of_threads) iterations.

runtime

Specifies that the chunking algorithm will be determined at run time.

static[=n]

The iterations of a loop are divided into chunks containing n iterations

each. Each thread is assigned chunks in a ″round-robin″ fashion. This is

known as block cyclic scheduling. If the value of n is 1, then the

scheduling type is specifically referred to as cyclic scheduling.

 If n is not specified, the chunks will contain ceiling(number_of_iterations/
number_of_threads) iterations. Each thread is assigned one of these chunks.

This is known as block scheduling.

 If a thread is asleep and it has been assigned work, it will be awakened so

that it may complete its work.

n Must be an integral assignment expression of value 1 or greater.

 Specifying schedule with no suboption is equivalent to schedule=runtime.

 For more information on chunking algorithms and SCHEDULE, refer to

"Directives" in the XL Fortran Language Reference.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 225

stackcheck | nostackcheck

Causes the compiler to check for stack overflow by slave threads at run time,

and issue a warning if the remaining stack size is less than the number of

bytes specified by the stackcheck option of the XLSMPOPTS environment

variable. This suboption is intended for debugging purposes, and only takes

effect when XLSMPOPTS=stackcheck is also set; see XLSMPOPTS in the XL

Fortran Optimization and Programming Guide for more information.

threshold[=n]

When -qsmp=auto is in effect, controls the amount of automatic loop

parallelization that occurs. The value of n represents the minimum amount of

work required in a loop in order for it to be parallelized. Currently, the

calculation of ″work″ is weighted heavily by the number of iterations in the

loop. In general, the higher the value specified for n, the fewer loops are

parallelized. Specifying a value of 0 instructs the compiler to parallelize all

auto-parallelizable loops, whether or not it is profitable to do so. Specifying a

value of 100 instructs the compiler to parallelize only those auto-parallelizable

loops that it deems profitable. Specifying a value of greater than 100 will result

in more loops being serialized.

n Must be a positive integer of 0 or greater.

If you specify threshold with no suboption, the program uses a default value

of 100.

 Specifying -qsmp without suboptions is equivalent to :

-qsmp=auto:opt:noomp:norec_locks:nonested_par:schedule=runtime:nostackcheck:threshold=100

Usage

v Specifying the omp suboption always implies noauto. Specify -qsmp=omp:auto

to apply automatic parallelization on OpenMP-compliant applications, as well.

v When -qsmp is in effect, the compiler recognizes all directives with the trigger

constants SMP$, $OMP, and IBMP, unless you specify the omp suboption. If you

specify omp and want the compiler to recognize directives specified with the

other triggers, you can use the -qdirective option to do so.

v You should only use -qsmp with the _r-suffixed invocation commands, to

automatically link in all of the threadsafe components. You can use the -qsmp

option with the non-_r-suffixed invocation commands, but you are responsible

for linking in the appropriate components. . If you use the -qsmp option to

compile any source file in a program, then you must specify the -qsmp option at

link time as well, unless you link by using the ld command.

v If you use the f77 or fort77 command with the -qsmp option to compile

programs, specify -qnosave to make the default storage class automatic, and

specify -qthreaded to tell the compiler to generate threadsafe code.

v Object files generated with the -qsmp=opt option can be linked with object files

generated with -qsmp=noopt. The visibility within the debugger of the variables

in each object file will not be affected by linking.

v Specifying -qsmp implicitly sets -O2. The -qsmp option overrides -qnooptimize,

but does not override -O3, -O4, or -O5. When debugging parallelized program

code, you can disable optimization in parallelized program code by specifying

qsmp=noopt.

v The -qsmp=noopt suboption overrides performance optimization options

anywhere on the command line unless -qsmp appears after -qsmp=noopt. For

example, -qsmp=noopt -O3 is equivalent to -qsmp=noopt, while -qsmp=noopt

-O3 -qsmp is equivalent to -qsmp -O3.

226 XL Fortran Compiler Reference

Examples

In the following example, you should specify -qsmp=rec_locks to avoid a deadlock

caused by critical constructs.

 program t

 integer i, a, b

 a = 0

 b = 0

!smp$ parallel do

 do i=1, 10

!smp$ critical

 a = a + 1

!smp$ critical

 b = b + 1

!smp$ end critical

!smp$ end critical

 enddo

 end

Related information

v “-O” on page 75

v “-qthreaded” on page 244

v XLSMPOPTS environment variable and SMP directives in the XL Fortran

Optimization and Programming Guide

Chapter 6. Detailed descriptions of the XL Fortran compiler options 227

-qsource

Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing file that includes the source section of the listing and

provides additional source information when printing error messages.

Syntax

��
 nosource

-q

source

��

@PROCESS:

@PROCESS SOURCE | NOSOURCE

Defaults

-qnosource

Usage

This option displays on the terminal each source line where the compiler detects a

problem, which can be very useful in diagnosing program errors in the Fortran

source files.

You can selectively print parts of the source code by using SOURCE and

NOSOURCE in @PROCESS directives in the source files around those portions of

the program you want to print. This is the only situation where the @PROCESS

directive does not have to be before the first statement of a compilation unit.

Examples

In the following example, the point at which the incorrect call is made is identified

more clearly when the program is compiled with the -qsource option:

$ cat argument_mismatch.f

 subroutine mult(x,y)

 integer x,y

 print *,x*y

 end

 program wrong_args

 interface

 subroutine mult(a,b) ! Specify the interface for this

 integer a,b ! subroutine so that calls to it

 end subroutine mult ! can be checked.

 end interface

 real i,j

 i = 5.0

 j = 6.0

 call mult(i,j)

 end

$ xlf95 argument_mismatch.f

** mult === End of Compilation 1 ===

"argument_mismatch.f", line 16.12: 1513-061 (S) Actual argument attributes

do not match those specified by an accessible explicit interface.

** wrong_args === End of Compilation 2 ===

228 XL Fortran Compiler Reference

1501-511 Compilation failed for file argument_mismatch.f.

$ xlf95 -qsource argument_mismatch.f

** mult === End of Compilation 1 ===

 16 | call mult(i,j)

 a...

a - 1513-061 (S) Actual argument attributes do not match those specified by

an accessible explicit interface.

** wrong_args === End of Compilation 2 ===

1501-511 Compilation failed for file argument_mismatch.f.

Related information

See “Listings, messages, and compiler information” on page 51 and “Source

section” on page 292.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 229

-qspillsize

Category

Compiler customization

Purpose

-qspillsize is the long form of -NS. See “-NS” on page 74.

Syntax

�� -q spillsize = bytes ��

@PROCESS:

@PROCESS SPILLSIZE(bytes)

Defaults

Not applicable.

230 XL Fortran Compiler Reference

-qstacktemp

Category

Optimization and tuning

Purpose

Determines where to allocate certain XL Fortran compiler temporaries at run time.

Applicable compiler temporaries are the set of temporary variables created by the

compiler for its own use when it determines it can safely apply these. Most

typically, the compiler creates these kinds of temporaries to hold copies of XL

Fortran arrays for array language semantics, especially in conjunction with calls to

intrinsic functions or user subprograms.

Syntax

��
 0

-q

stacktemp

=

-1

value

��

@PROCESS:

@PROCESS STACKTEMP={0 | -1 | positive signed integer value}

Defaults

-qstacktemp=0

Parameters

The possible suboptions are:

0 Based on the target environment, the compiler determines whether it will

allocate applicable temporaries on the heap or the stack. If this setting

causes your program to run out of stack storage, try specifying a nonzero

value instead, or try using the -qsmallstack option.

-1 Allocates applicable temporaries on the stack. Generally, this is the best

performing setting but uses the most amount of stack storage.

value Allocates applicable temporaries less than value on the stack and those

greater than or equal to value on the heap. value is a positive signed

integer. A value of 1 Mb has been shown to be a good compromise

between stack storage and performance for many programs, but you may

need to adjust this number based on your application’s characteristics.

Usage

If you have programs that make use of large arrays, you may need to use this

option to help prevent stack space overflow when running them. For example, for

SMP or OpenMP applications that are constrained by stack space, you can use this

option to move some compiler temporaries onto the heap from the stack.

The compiler cannot detect whether or not the stack limits will be exceeded when

an application runs. You will need to experiment with several settings before

finding the one that works for your application. To override an existing setting,

you must specify a new setting.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 231

The -qstacktemp option can take precedence over the -qsmallstack option for

certain compiler-generated temporaries.

Related information

v “-qsmallstack” on page 221

232 XL Fortran Compiler Reference

-qstrict

Category

Optimization and tuning

Purpose

Ensures that optimizations done by default at optimization levels -O3 and higher,

and, optionally at -O2, do not alter certain program semantics mostly related to

strict IEEE floating-point conformance.

This option is intended for situations where the changes in program execution in

optimized programs produce different results from unoptimized programs. Such

situations are likely rare because they involve relatively little-used rules for IEEE

floating-point arithmetic.

Syntax

�� -q strict

nostrict
 ��

@PROCESS:

@PROCESS STRICT | NOSTRICT

Defaults

For -O3, -O4, and -O5, the default is -qnostrict. For -O2, the default is -qstrict.

This option is ignored for -qnoopt. With -qnostrict, optimizations may rearrange

code so that results or exceptions are different from those of unoptimized

programs.

Usage

With -qnostrict in effect, the following optimizations are turned on, unless -qstrict

is also specified:

v Code that may cause an exception may be rearranged. The corresponding

exception might happen at a different point in execution or might not occur at

all. (The compiler still tries to minimize such situations.)

v Floating-point operations may not preserve the sign of a zero value. (To make

certain that this sign is preserved, you also need to specify -qfloat=rrm,

-qfloat=nomaf, or -qfloat=strictnmaf.)

v Floating-point expressions may be reassociated. For example, (2.0*3.1)*4.2 might

become 2.0*(3.1*4.2) if that is faster, even though the result might not be

identical.

v The fltint and rsqrt suboptions of the -qfloat option are turned on. You can turn

them off again by also using the -qstrict option or the nofltint and norsqrt

suboptions of -qfloat. With lower-level or no optimization specified, these

suboptions are turned off by default.

Related information

v “-O” on page 75

v “-qhot” on page 146

v “-qfloat” on page 134

Chapter 6. Detailed descriptions of the XL Fortran compiler options 233

-qstrictieeemod

Category

Floating-point and integer control

Purpose

Specifies whether the compiler will adhere to the Fortran 2003 IEEE arithmetic

rules for the ieee_arithmetic and ieee_exceptions intrinsic modules.

Syntax

��
 strictieeemod

-q

nostrictieeemod

��

@PROCESS:

@PROCESS STRICTIEEEMOD | NOSTRICTIEEEMOD

Defaults

-qstrictieeemod

Usage

When you specify -qstrictieeemod, the compiler adheres to the following rules:

v If there is an exception flag set on entry into a procedure that uses the IEEE

intrinsic modules, the flag is set on exit. If a flag is clear on entry into a

procedure that uses the IEEE intrinsic modules, the flag can be set on exit.

v If there is an exception flag set on entry into a procedure that uses the IEEE

intrinsic modules, the flag clears on entry into the procedure and resets when

returning from the procedure.

v When returning from a procedure that uses the IEEE intrinsic modules, the

settings for halting mode and rounding mode return to the values they had at

procedure entry.

v Calls to procedures that do not use the ieee_arithmetic or ieee_exceptions

intrinsic modules from procedures that do use these modules, will not change

the floating-point status except by setting exception flags.

Since the above rules can impact performance, specifying –qnostrictieeemod will

relax the rules on saving and restoring floating-point status. This prevents any

associated impact on performance.

234 XL Fortran Compiler Reference

-qstrict_induction

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Prevents the compiler from performing induction (loop counter) variable

optimizations. These optimizations may be unsafe (may alter the semantics of your

program) when there are integer overflow operations involving the induction

variables.

Syntax

��
 nostrict_induction

-q

strict_induction

��

Defaults

-qnostrict_induction

Usage

You should avoid specifying -qstrict_induction unless absolutely necessary, as it

may cause performance degradation.

Examples

Consider the following two examples:

Example 1

 integer(1) :: i, j ! Variable i can hold a

 j = 0 ! maximum value of 127.

 do i = 1, 200 ! Integer overflow occurs when 128th

 j = j + 1 ! iteration of loop is attempted.

 enddo

Example 2

 integer(1) :: i

 i = 1_1 ! Variable i can hold a maximum

 ! value of 127.

100 continue

 if (i == -127) goto 200 ! Go to label 200 once decimal overflow

 i = i + 1_1 ! occurs and i == -127.

 goto 100

200 continue

 print *, i

 end

If you compile these examples with the -qstrict_induction option, the compiler

does not perform induction variable optimizations, but the performance of the

Chapter 6. Detailed descriptions of the XL Fortran compiler options 235

code may be affected. If you compile the examples with the -qnostrict_induction

option, the compiler may perform optimizations that may alter the semantics of the

programs.

Related information

v “-O” on page 75

236 XL Fortran Compiler Reference

-qsuffix

Category

Input control

@PROCESS directive

None.

Purpose

Specifies the source-file suffix on the command line.

This option saves time for the user by permitting files to be used as named with

minimal makefile modifications. Only one setting is supported at any one time for

any particular file type.

Syntax

�� -q suffix = f = source-file-suffix

o

=

object-file-suffix

s

=

assembler-source-file-suffix

cpp

=

preprocessor-source-file-suffix

 ��

Defaults

Not applicable.

Parameters

f=suffix

Where suffix represents the new source-file-suffix

o=suffix

Where suffix represents the new object-file-suffix

s=suffix

Where suffix represents the new assembler-source-file-suffix

cpp=suffix

Where suffix represents the new preprocessor-source-file-suffix

Rules

v The new suffix setting is case-sensitive.

v The new suffix can be of any length.

Examples

For instance,

 xlf a1.f2k a2.F2K -qsuffix=f=f2k:cpp=F2K

will cause these effects:

v The compiler is invoked for source files with a suffix of .f2k and .F2K.

v cpp is invoked for files with a suffix of .F2K.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 237

-qsuppress

Category

Listings, messages, and compiler information

@PROCESS directive

None.

Purpose

Prevents specific informational or warning messages from being displayed or

added to the listing file, if one is generated.

Syntax

��

�

 nosuppress

-q

suppress

:

=

message_num

cmpmsg

��

Defaults

Not applicable.

Parameters

message_num[:message_num ...]

Suppresses the display of a specific compiler message (nnnn-mmm) or a list

of messages (nnnn-mmm[:nnnn-mmm ...]). To suppress a list of messages,

separate each message number with a colon.

 nnnn-mmm is the message number, where:

v nnnn must be a four-digit integer between 1500 and 1585; this is the

range of XL Fortran message numbers.

v mmm must be any three-digit integer (with leading zeros if necessary).

cmpmsg

Suppresses the informational messages that report compilation progress

and a successful completion.

 This suboption has no effect on any error messages that are emitted.

Usage

In some situations, users may receive an overwhelming number of compiler

messages. In many cases, these compiler messages contain important information.

However, some messages contain information that is either redundant or can be

safely ignored. When multiple error or warning messages appear during

compilation, it can be very difficult to distinguish which messages should be

noted. By using -qsuppress, you can eliminate messages that do not interest you.

Note that:

238 XL Fortran Compiler Reference

v The compiler tracks the message numbers specified with -qsuppress. If the

compiler subsequently generates one of those messages, it will not be displayed

or entered into the listing.

v Only compiler and driver messages can be suppressed. Linker or operating

system message numbers will be ignored if specified with -qsuppress.

v To suppress IPA messages, enter -qsuppress before -qipa on the command line.

Examples

@process nullterm

 i = 1; j = 2;

 call printf("i=%d\n",%val(i));

 call printf("i=%d, j=%d\n",%val(i),%val(j));

 end

Compiling this sample program would normally result in the following output:

"t.f", line 4.36: 1513-029 (W) The number of arguments to "printf" differ

from the number of arguments in a previous reference. You should use the

OPTIONAL attribute and an explicit interface to define a procedure with

optional arguments.

** _main === End of Compilation 1 ===

1501-510 Compilation successful for file t.f.

When the program is compiled with -qsuppress=1513-029, the output is:

** _main === End of Compilation 1 ===

1501-510 Compilation successful for file t.f.

Related information

For another type of message suppression, see “-qflag” on page 132.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 239

-qswapomp

Category

Portability and migration

Purpose

Specifies that the compiler should recognize and substitute OpenMP routines in XL

Fortran programs.

The OpenMP routines for Fortran and C have different interfaces. To support

multi-language applications that use OpenMP routines, the compiler needs to

recognize OpenMP routine names and substitute them with the XL Fortran

versions of these routines, regardless of the existence of other implementations of

such routines.

Syntax

��
 swapomp

-q

noswapomp

��

@PROCESS:

@PROCESS SWAPOMP | NOSWAPOMP

Defaults

-qswapomp

Usage

The compiler does not perform substitution of OpenMP routines when you specify

the -qnoswapomp option.

The -qswapomp and -qnoswapomp options only affect Fortran subprograms that

reference OpenMP routines that exist in the program.

Rules

v If a call to an OpenMP routine resolves to a dummy procedure, module

procedure, an internal procedure, a direct invocation of a procedure itself, or a

statement function, the compiler will not perform the substitution.

v When you specify an OpenMP routine, the compiler substitutes the call to a

different special routine depending upon the setting of the -qintsize option. In

this manner, OpenMP routines are treated as generic intrinsic procedures.

v Unlike generic intrinsic procedures, if you specify an OpenMP routine in an

EXTERNAL statement, the compiler will not treat the name as a user-defined

external procedure. Instead, the compiler will still substitute the call to a special

routine depending upon the setting of the -qintsize option.

v An OpenMP routine cannot be extended or redefined, unlike generic intrinsic

procedures.

Examples

In the following example, the OpenMP routines are declared in an INTERFACE

statement.

240 XL Fortran Compiler Reference

@PROCESS SWAPOMP

 INTERFACE

 FUNCTION OMP_GET_THREAD_NUM()

 INTEGER OMP_GET_THREAD_NUM

 END FUNCTION OMP_GET_THREAD_NUM

 FUNCTION OMP_GET_NUM_THREADS()

 INTEGER OMP_GET_NUM_THREADS

 END FUNCTION OMP_GET_NUM_THREADS

 END INTERFACE

 IAM = OMP_GET_THREAD_NUM()

 NP = OMP_GET_NUM_THREADS()

 PRINT *, IAM, NP

 END

Related information

See the OpenMP Execution Environment Routines and Lock Routines section in the XL

Fortran Language Reference.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 241

-qtbtable

Category

Object code control

@PROCESS directive

None.

Purpose

Controls the amount of debugging traceback information that is included in the

object files.

Note: Applies to the 64–bit environment only.

Syntax

�� -q tbtable = full

none

small

 ��

Defaults

Not applicable.

Parameters

full The object code contains full traceback information. The program is

debuggable, and if it stops because of a runtime exception, it produces a

traceback listing that includes the names of all procedures in the call chain.

none The object code contains no traceback information at all. You cannot debug

the program, because a debugger or other code-examination tool cannot

unwind the program’s stack at run time. If the program stops because of a

runtime exception, it does not explain where the exception occurred.

small The object code contains traceback information but not the names of

procedures or information about procedure parameters. You can debug the

program, but some non-essential information is unavailable to the

debugger. If the program stops because of a runtime exception, it explains

where the exception occurred but reports machine addresses rather than

procedure names.

Defaults

v Code compiled with -g or without -O has full traceback information

(-qtbtable=full).

v Code compiled with -O or higher optimization contains less traceback

information (-qtbtable=small).

Usage

This option is most suitable for programs that contain many long procedure

names, such as the internal names constructed for module procedures. You may

find it more applicable to C++ programs than to Fortran programs.

242 XL Fortran Compiler Reference

You can use this option to make your program smaller, at the cost of making it

harder to debug. When you reach the production stage and want to produce a

program that is as compact as possible, you can specify -qtbtable=none.

Otherwise, the usual defaults apply:

Related information

v “-g” on page 69

v “-qcompact” on page 107

v “-O” on page 75

v Debugging optimized code in the XL Fortran Optimization and Programming Guide

Chapter 6. Detailed descriptions of the XL Fortran compiler options 243

-qthreaded

Category

Object code control

@PROCESS directive

None.

Purpose

Indicates to the compiler whether it must generate threadsafe code.

Syntax

�� -q threaded ��

Defaults

-qthreaded is the default for the xlf_r, , xlf90_r, , xlf95_r, and xlf2003_r commands.

Usage

Specifying the -qthreaded option implies -qdirective=ibmt, and by default, the

trigger_constant IBMT is recognized.

The -qthreaded option does not imply the -qnosave option. The -qnosave option

specifies a default storage class of automatic for user local variables. In general,

both of these options need to be used to generate thread-safe code. Specifying

these options ensures that variables and code created by the compiler are

threadsafe; it does not guarantee the thread safety of user-written code.

If you use the ENTRY statement to have an alternate entry point for a subprogram

and the xlf_r command to compile, also specify the -qxlf77=nopersistent option to

be thread-safe. You should implement the appropriate locking mechanisms, as

well.

244 XL Fortran Compiler Reference

-qtune

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Tunes instruction selection, scheduling, and other architecture-dependent

performance enhancements to run best on a specific hardware architecture.

Syntax

��
 balanced

-q

tune

=

auto

ppc970

pwr3

pwr4

pwr5

pwr6

rs64b

rs64c

��

Defaults

-qtune=balanced when the default -qarch setting is in effect. Otherwise, the

default depends on the effective -qarch setting. See Table 20 on page 246 for

details.

Parameters

auto

Optimizations are tuned for the platform on which the application is compiled.

balanced

Optimizations are tuned across a selected range of recent hardware.

ppc970

Optimizations are tuned for the PowerPC 970 processor.

pwr3

Optimizations are tuned for the POWER3 hardware platforms.

pwr4

Optimizations are tuned for the POWER4 hardware platforms.

pwr5

Optimizations are tuned for the POWER5 hardware platforms.

pwr6

Optimizations are tuned for the POWER6 hardware platforms.

rs64b

Optimizations are tuned for the RS64II processor.

rs64c

Optimizations are tuned for the RS64III processor.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 245

Usage

If you want your program to run on more than one architecture, but to be tuned to

a particular architecture, you can use a combination of the -qarch and -qtune

options. These options are primarily of benefit for floating-point intensive

programs.

By arranging (scheduling) the generated machine instructions to take maximum

advantage of hardware features such as cache size and pipelining, -qtune can

improve performance. It only has an effect when used in combination with options

that enable optimization.

Although changing the -qtune setting may affect the performance of the resulting

executable, it has no effect on whether the executable can be executed correctly on

a particular hardware platform.

Acceptable combinations of -qarch, and -qtune are shown in the following table.

 Table 20. Acceptable -qarch/-qtune combinations

-qarch option

Default -qtune

setting Available -qtune settings

ppc balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppcgr balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppc64 balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppc64gr balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppc64grsq balanced auto | rs64b | rs64c | pwr3 | pwr4 | pwr5 | pwr6 | ppc970

| balanced

ppc64v ppc970 auto | ppc970 | pwr6 | balanced

ppc970 ppc970 auto | ppc970 | balanced

pwr3 pwr3 auto | pwr3 | pwr4 | pwr5 | ppc970 | balanced

pwr4 pwr4 auto | pwr4 | pwr5 | ppc970 | balanced

pwr5 pwr5 auto | pwr5 | balanced

pwr5x pwr5 auto | pwr5 | balanced

pwr6 pwr6 auto | pwr6 | balanced

pwr6e pwr6 auto | pwr6 | balanced

rs64b rs64b auto | rs64b

rs64c rs64c auto | rs64c

Results

None.

Examples

To specify that the executable program testing compiled from myprogram.f is to be

optimized for a POWER3 hardware platform, enter:

xlf -o testing myprogram.f -qtune=pwr3

Related information

v “-qarch” on page 92

246 XL Fortran Compiler Reference

-qundef

Category

Language element control

Purpose

-qundef is the long form of the “-u” on page 274.

Syntax

��
 noundef

-q

undef

��

@PROCESS:

@PROCESS UNDEF | NOUNDEF

Defaults

-qnoundef

Chapter 6. Detailed descriptions of the XL Fortran compiler options 247

-qunroll

Category

Optimization and tuning

@PROCESS directive

None.

Purpose

Specifies whether unrolling DO loops is allowed in a program. Unrolling is

allowed on outer and inner DO loops.

Syntax

��

 unroll

auto

=

yes

-q

nounroll

��

Defaults

-qunroll=auto if -qunroll is not specified on the command line.

Parameters

auto The compiler performs basic loop unrolling.

yes The compiler looks for more opportunities to perform loop unrolling than

that performed with -qunroll=auto. In general, this suboption has more

chances to increase compile time or program size than -qunroll=auto

processing, but it may also improve your application’s performance.

 If you decide to unroll a loop, specifying one of the above suboptions does not

automatically guarantee that the compiler will perform the operation. Based on the

performance benefit, the compiler will determine whether unrolling will be

beneficial to the program. Experienced compiler users should be able to determine

the benefit in advance.

Usage

Specifying -qunroll with no suboptions is equivalent to -qunroll=yes.

The -qnounroll option prohibits unrolling unless you specify the

STREAM_UNROLL, UNROLL, or UNROLL_AND_FUSE directive for a

particular loop. These directives always override the command line options.

Examples

In the following example, the UNROLL(2) directive is used to tell the compiler

that the body of the loop can be replicated so that the work of two iterations is

performed in a single iteration. Instead of performing 1000 iterations, if the

compiler unrolls the loop, it will only perform 500 iterations.

248 XL Fortran Compiler Reference

!IBM* UNROLL(2)

 DO I = 1, 1000

 A(I) = I

 END DO

If the compiler chooses to unroll the previous loop, the compiler translates the loop

so that it is essentially equivalent to the following:

 DO I = 1, 1000, 2

 A(I) = I

 A(I+1) = I + 1

 END DO

Related information

See the appropriate directive on unrolling loops in the XL Fortran Language

Reference:

v STREAM_UNROLL

v UNROLL

v UNROLL_AND_FUSE

See High-order transformation in the XL Fortran Optimization and Programming Guide.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 249

-qunwind

Category

Optimization and tuning

Purpose

Specifies that the compiler will preserve the default behavior for saves and restores

to volatile registers during a procedure call.

Syntax

��
 unwind

-q

nounwind

��

@PROCESS:

@PROCESS UNWIND | NOUNWIND

Defaults

-qunwind

Usage

If you specify -qnounwind, the compiler rearranges subprograms to minimize

saves and restores to volatile registers. This rearrangement may make it impossible

for the program or debuggers to walk through or ″unwind″ subprogram stack

frame chains.

While code semantics are preserved, applications such as exception handlers that

rely on the default behavior for saves and restores can produce undefined results.

When using -qnounwind in conjunction with the -g compiler option, debug

information regarding exception handling when unwinding the program’s stack

can be inaccurate.

250 XL Fortran Compiler Reference

-qversion

Category

Listings, messages, and compiler information

@PROCESS directive

None.

Purpose

Displays the version and release of the compiler being invoked.

Syntax

��
 noversion

-q

version

=

verbose

��

Defaults

-qnoversion

Parameters

verbose

Additionally displays information about the version, release, and level of each

compiler component installed.

Usage

When you specify -qversion, the compiler displays the version information and

exits; compilation is stopped

-qversion specified without the verbose suboption shows compiler information in

the format:

product_name
Version: VV.RR.MMMM.LLLL

where:

V Represents the version.

R Represents the release.

M Represents the modification.

L Represents the level.

Example:

IBM XL Fortran Advanced Edition for Linux, V11.1

Version: 11.01.0000.0001

-qversion=verbose shows component information in the following format:

component_name Version: VV.RR(product_name) Level: component_level

where:

component_name

Specifies an installed component, such as the low-level optimizer.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 251

component_level

Represents the level of the installed component.

Example:

IBM XL Fortran Advanced Edition for Linux, V11.1

Version: 11.01.0000.0001

Driver Version: 11.01(Fortran) Level: YYMMDD

Fortran Transformer Version: 11.01(Fortran) Level: YYMMDD

Fortran Front End Version: 11.01(Fortran) Level: YYMMDD

High Level Optimizer Version: 09.00(C/C++) and 11.01(Fortran) Level: YYMMDD

Low Level Optimizer Version: 09.00(C/C++) and 11.01(Fortran) Level: YYMMDD

If you want to save this information to the output object file, you can do so with

the -qsaveopt -c options.

Related information

v “-qsaveopt” on page 216

252 XL Fortran Compiler Reference

-qwarn64

Category

Error checking and debugging

@PROCESS directive

None.

Purpose

Displays informational messages identifying statements that may cause problems

with 32-bit to 64-bit migration.

This option aids in porting code from a 32-bit to a 64-bit environment by detecting

the truncation of an 8-byte integer pointer to 4 bytes.

Syntax

��
 nowarn64

-q

warn64

��

Defaults

-qnowarn64

Usage

You can use the -qwarn64 option in both 32-bit and 64-bit modes.

The compiler flags the following situations with informational messages:

v The assignment of a reference to the LOC intrinsic to an INTEGER(4) variable.

v The assignment between an INTEGER(4) variable or INTEGER(4) constant and

an integer pointer.

v The specification of an integer pointer within a common block.

v The specification of an integer pointer within an equivalence statement.

You can use the -qextchk option and interface blocks for argument checking.

Related information

v “-q32” on page 82

v “-q64” on page 83

v Chapter 7, “Using XL Fortran in a 64-Bit Environment,” on page 281

Chapter 6. Detailed descriptions of the XL Fortran compiler options 253

-qxflag=dvz

Category

Error checking and debugging

@PROCESS directive

None.

Purpose

Causes the compiler to generate code to detect floating-point divide-by-zero

operations.

Syntax

�� -q xflag = dvz ��

Defaults

Not applicable.

Usage

This option takes effect at optimization levels of -O or higher.

With this option on, the extra code calls the external handler function __xl_dzx

when the divisor is zero. The return value of this function is used as the result of

the division. Users are required to provide the function to handle the

divide-by-zero operations. Specifying -qxflag=dvz handles only single-precision

(REAL*4) and double-precision (REAL*8) division.

The interface of the function is as follows:

 real(8) function __xl_dzx(x, y, kind_type)

 real(8), value :: x, y

 integer, value :: kind_type

 end function

where:

x is the dividend value

y is the divisor value

kind_type

specifies the size of the actual arguments associated with x and y.

A kind_type value equal to zero indicates that the actual arguments associated

with x and y are of type REAL(8). A kind_type value equal to one indicates that

the actual arguments associated with x and y are of type REAL(4).

The division always executes before the handler routine is called. This means that

any exception is posted and handled before the handler function is called.

Related information

v Implementation details of XL Fortran floating-point processing in the XL Fortran

Optimization and Programming Guide

254 XL Fortran Compiler Reference

v “-qflttrap” on page 139

v “Understanding XL Fortran error messages” on page 283

Chapter 6. Detailed descriptions of the XL Fortran compiler options 255

-qxflag=oldtab

Category

Portability and migration

Purpose

Interprets a tab in columns 1 to 5 as a single character (for fixed source form

programs).

Syntax

�� -q xflag = oldtab ��

@PROCESS:

@PROCESS XFLAG(OLDTAB)

Defaults

By default, the compiler allows 66 significant characters on a source line after

column 6. A tab in columns 1 through 5 is interpreted as the appropriate number

of blanks to move the column counter past column 6. This default is convenient for

those who follow the earlier Fortran practice of including line numbers or other

data in columns 73 through 80.

Usage

If you specify the option -qxflag=oldtab, the source statement still starts

immediately after the tab, but the tab character is treated as a single character for

counting columns. This setting allows up to 71 characters of input, depending on

where the tab character occurs.

256 XL Fortran Compiler Reference

-qxlf77

Category

Language element control

Purpose

Provides compatibility with FORTRAN 77 aspects of language semantics and I/O

data format that have changed.

Most of these changes are required by the Fortran 90 standard.

Syntax

Option:

��

 nosofteof

nopersistent

nooldboz

leadzero

nointxor

nointarg

nogedit77

blankpad

-q

xlf77

=

noblankpad

gedit77

intarg

intxor

noleadzero

oldboz

persistent

softeof

��

@PROCESS:

@PROCESS XLF77(settings)

Defaults

By default, the compiler uses settings that apply to Fortran 95, Fortran 90, Fortran

2003, and the most recent compiler version in all cases.

The default suboptions are: blankpad, nogedit77, nointarg, nointxor, leadzero,

nooldboz, nopersistent, and nosofteof.

These defaults are only used by the xlf2003, xlf2003_r, xlf95, xlf95_r, xlf90, xlf90_r,

f90, f95 and f2003 commands, which you should use to compile new programs.

Parameters

To get various aspects of XL Fortran Version 2 behavior, select the nondefault

choice for one or more of the following suboptions. The descriptions explain what

happens when you specify the nondefault choices.

blankpad | noblankpad

For internal, direct-access, and stream-access files, uses a default setting

equivalent to pad=’no’. This setting produces conversion errors when

Chapter 6. Detailed descriptions of the XL Fortran compiler options 257

reading from such a file if the format requires more characters than the

record has. This suboption does not affect direct-access or stream-access

files opened with a pad= specifier.

gedit77 | nogedit77

Uses FORTRAN 77 semantics for the output of REAL objects with the G

edit descriptor. Between FORTRAN 77 and Fortran 90, the representation

of 0 for a list item in a formatted output statement changed, as did the

rounding method, leading to different output for some combinations of

values and G edit descriptors.

intarg | nointarg

Converts all integer arguments of an intrinsic procedure to the kind of the

longest argument if they are of different kinds. Under Fortran 90/95 rules,

some intrinsics (for example, IBSET) determine the result type based on

the kind of the first argument; others (for example, MIN and MAX)

require that all arguments be of the same kind.

intxor | nointxor

Treats .XOR. as a logical binary intrinsic operator. It has a precedence

equivalent to the .EQV. and .NEQV. operators and can be extended with

an operator interface. (Because the semantics of .XOR. are identical to

those of .NEQV., .XOR. does not appear in the Fortran 90 or Fortran 95

language standard.)

 Otherwise, the .XOR. operator is only recognized as a defined operator.

The intrinsic operation is not accessible, and the precedence depends on

whether the operator is used in a unary or binary context.

leadzero | noleadzero

Produces a leading zero in real output under the D, E, L, F, and Q edit

descriptors.

oldboz | nooldboz

Turns blanks into zeros for data read by B, O, and Z edit descriptors,

regardless of the BLANK= specifier or any BN or BZ control edit

descriptors. It also preserves leading zeros and truncation of too-long

output, which is not part of the Fortran 90 or Fortran 95 standard.

persistent | nopersistent

Saves the addresses of arguments to subprograms with ENTRY statements

in static storage. This is an implementation choice that has been changed

for increased performance.

softeof | nosofteof

Allows READ and WRITE operations when a unit is positioned after its

endfile record unless that position is the result of executing an ENDFILE

statement. This suboption reproduces a FORTRAN 77 extension of earlier

versions of XL Fortran that some existing programs rely on.

Usage

If you only want to compile and run old programs unchanged, you can continue to

use the appropriate invocation command and not concern yourself with this

option.

You should only use this option if you are using existing source or data files with

Fortran 90, Fortran 95 and Fortran 2003 and the xlf90, xlf90_r, xlf95, xlf95_r,

xlf2003, xlf2003_r, f90, f95 orf2003 command and find some incompatibility

because of behavior or data format that has changed.

258 XL Fortran Compiler Reference

Eventually, you should be able to recreate the data files or modify the source files

to remove the dependency on the old behavior.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 259

-qxlf90

Category

Language element control

Purpose

Provides compatibility with the Fortran 90 standard for certain aspects of the

Fortran language.

Syntax

Option:

��

 nooldpad

signedzero

autodealloc

-q

xlf90

=

noautodealloc

nosignedzero

oldpad

��

@PROCESS:

@PROCESS XLF90(settings)

Defaults

The default suboptions for -qxlf90 depend on the invocation command that you

specify.

For the xlf2003, f2003, xlf2003_r, f95, xlf95 or xlf95_r command, the default

suboptions are signedzero, autodealloc, and nooldpad.

For all other invocation commands, the defaults are nosignedzero, noautodealloc

and oldpad.

Parameters

signedzero | nosignedzero

Determines how the SIGN(A,B) function handles signed real 0.0.If you

specify the -qxlf90=signedzero compiler option, SIGN(A,B) returns -|A|

when B=-0.0. This behavior conforms to the Fortran 95 standard and is

consistent with the IEEE standard for binary floating-point arithmetic. Note

that for the REAL(16) data type, XL Fortran never treats zero as negative

zero.

 This suboption also determines whether a minus sign is printed in the

following cases:

v For a negative zero in formatted output. Again, note that for the

REAL(16) data type, XL Fortran never treats zero as negative zero.

v For negative values that have an output form of zero (that is, where

trailing non-zero digits are truncated from the output so that the

resulting output looks like zero). Note that in this case, the signedzero

suboption does affect the REAL(16) data type; non-zero negative values

that have an output form of zero will be printed with a minus sign.

260 XL Fortran Compiler Reference

autodealloc | noautodealloc

Determines whether the compiler deallocates allocatable objects that are

declared locally without either the SAVE or the STATIC attribute and have

a status of currently allocated when the subprogram terminates. This

behavior conforms with the Fortran 95 standard. If you are certain that you

are deallocating all local allocatable objects explicitly, you may wish to turn

off this suboption to avoid possible performance degradation.

oldpad | nooldpad

When the PAD=specifier is present in the INQUIRE statement, specifying

-qxlf90=nooldpad returns UNDEFINED when there is no connection, or

when the connection is for unformatted I/O. This behavior conforms with

the Fortran 95 standard and above. Specifying -qxlf90=oldpad preserves

the Fortran 90 behavior.

Examples

Consider the following program:

PROGRAM TESTSIGN

REAL X, Y, Z

X=1.0

Y=-0.0

Z=SIGN(X,Y)

PRINT *,Z

END PROGRAM TESTSIGN

The output from this example depends on the invocation command and the

-qxlf90 suboption that you specify. For example:

 Invocation Command/xlf90 Suboption Output

xlf2003 -1.0

xlf2003 -qxlf90=signedzero -1.0

xlf2003 -qxlf90=nosignedzero 1.0

xlf95 -1.0

xlf95 -qxlf90=signedzero -1.0

xlf95 -qxlf90=nosignedzero 1.0

xlf90 1.0

xlf 1.0

Related information

v See the SIGN information in the Intrinsic Procedures section and the Arrays

Concepts section of the XL Fortran Language Reference.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 261

-qxlf2003

Category

Language element control

Purpose

Provides the ability to use language features specific to the Fortran 2003 standard

when compiling with compiler invocations that follow earlier Fortran standards, as

well as the ability to disable these features when compiling with compiler

invocations that follow the Fortran 2003 standard.

Syntax

Option:

��

�

 :

volatile

stopexcept

signdzerointr

POLYmorphic

nooldnaninf

bozlitargs

autorealloc

-q

xlf2003

=

noautorealloc

nobozlitargs

oldnaninf

NOPOLYmorphic

nosigndzerointr

nostopexcept

novolatile

��

@PROCESS:

@PROCESS XLF2003(suboption,suboption,...)

Defaults

The default suboption depends on the invocation command that you specify.

For the f2003, xlf2003, or xlf2003_r command, the defaults are:

autorealloc:bozlitargs:nooldnaninf:polymorphic:signdzerointr:stopexcept:volatile

For all other invocation commands, the defaults are:

noautorealloc:nobozlitargs:oldnaninf:nopolymorphic:nosigndzerointr:nostopexcept:novolatile

Parameters

autorealloc | noautorealloc

Controls whether the compiler automatically reallocates the left-hand-side

(LHS) with the shape of the right-hand-side (RHS) when assigning into an

allocatable variable. If the LHS variable was not allocated before the

assignment, it is allocated automatically. The default is autorealloc for the

f2003, xlf2003 and xlf2003_r commands, and noautorealloc for all other

262 XL Fortran Compiler Reference

commands. This suboption has no effect on reallocation when the values of

length type parameters in the LHS and RHS differ.

bozlitargs | nobozlitargs

The bozlitargs suboption ensures that the passing of boz-literal constants

as arguments to the INT, REAL, CMPLX, or DBLE intrinsic function

conforms to the Fortran 2003 standard. The default is bozlitargs for the

f2003, xlf2003, or xlf2003_r command. The -qlanglvl=2003pure or

-qlanglvl=2003std option must be specified, as well. If -qport=typlssarg

and -qxlf2003=bozlitargs are specified, passing boz-literal constants to the

CMPLX intrinsic will yield non-standard results.

oldnaninf | nooldnaninf

The oldnaninf suboption controls the formatting of the output of IEEE

NaN and infinity exceptional values. This suboption has no effect on input.

When oldnaninf is in effect, the compiler uses the XL Fortran V10.1 (and

earlier) behavior for output. That is, INF for infinity, NAN for a quiet or

signaling NaN.

 When nooldnaninf is in effect, the compiler output for IEEE exceptional

values is compliant with the Fortran 2003 standard. That is, Inf for infinity,

NaN(Q) for a quiet NaN, and NaN(S) for a signaling NaN.

polymorphic | nopolymorphic

When polymorphic is in effect, the compiler allows polymorphic items in

Fortran source files. You can specify the CLASS type specifier, the SELECT

TYPE construct, and use polymorphic items in other Fortran statements.

The use of the polymorphic argument also causes the compiler to produce

runtime type information for each derived type definition.

 When nopolymorphic is in effect, polymorphic items cannot be specified

in Fortran source files and no runtime type information is generated.

signdzerointr | nosigndzerointr

When signdzerointr is in effect, the passing of signed zeros to the SQRT,

LOG, and ATAN2 intrinsic functions returns results consistent with the

Fortran 2003 standard. The -qxlf90=signedzero option must be in effect, as

well. For the xlf90, xlf77 and xlf invocations, specify both options to have

the Fortran 2003 behavior.

 The following example shows the use of this suboption:

!If the Test program is compiled with -qxlf2003=signdzerointr and

-qxlf90=signedzero

!then Fortran 2003 behavior is seen.

!Otherwise, this program will demonstrate Fortran 95 behavior.

Program Test

real a, b

complex j, l

a = -0.0

j = sqrt(cmplx(-1.0,a))

b = atan2(a,-1.0)

l = log(cmplx(-1.0,a))

print *, ’j=’, j

print *, ’b=’, b

print *, ’l=’, l

end

! Fortran 95 output:

 j= (-0.0000000000E+00,1.000000000)

 b= 3.141592741

 l= (0.0000000000E+00,3.141592741)

Chapter 6. Detailed descriptions of the XL Fortran compiler options 263

! Fortran 2003 output:

 j= (0.0000000000E+00,-1.000000000)

 b= -3.141592741

 l= (0.0000000000E+00,-3.141592741)

stopexcept | nostopexcept

When stopexcept is in effect, informational messages are displayed when

IEEE floating-point exceptions are signaled by a STOP statement. Messages

have the format:

STOP [stop-code]

(OVERFLOW, DIV-BY-ZERO, INVALID, UNDERFLOW, INEXACT)

where stop-code corresponds to the optional digit string or character

constant specified in the STOP statement. OVERFLOW, DIV-BY-ZERO, INVALID,

UNDERFLOW and INEXACT appear only if the corresponding flag is set.

 The following example shows corresponding messages generated:

real :: rl1, rl2, rl3, rl4

logical :: l

rl1 = 1.3

rl2 = 0.0

rl3 = rl1 / rl2 ! divide by zero

rl4 = rl3 ! to make sure rl3 is actually used

rl4 = log(-rl1) ! invalid input for log

stop "The End"

end

Output:

STOP The End

(DIV-BY-ZERO, INVALID)

When nostopexcept is in effect, informational messages are suppressed.

volatile | novolatile

When volatile is in effect, a non-VOLATILE entity that is use- or

host-associated can be specified as VOLATILE in inner or local scope.

Usage

If the application uses F2003 polymorphism, you must compile every unit with

polymorphic specified . If the application does not use polymorphism, specify the

nopolymorphic suboption; doing so may save compilation time and potentially

improve runtime performance.

Related information

v See the CLASS type specifier and the SELECT TYPE construct in the XL Fortran

Language Reference.

264 XL Fortran Compiler Reference

-qxlines

Category

Input control

Purpose

Specifies whether fixed source form lines with a X in column 1 are compiled or

treated as comments.

This option is similar to the recognition of the character ’d’ in column 1 as a

conditional compilation (debug) character. The -D option recognizes the character

’x’ in column 1 as a conditional compilation character when this compiler option is

enabled. The ’x’ in column 1 is interpreted as a blank, and the line is handled as

source code.

Syntax

Option:

��
 noxlines

-q

xlines

��

@PROCESS:

@PROCESS XLINES | NOXLINES

Defaults

-qnoxlines

Defaults

This option is set to -qnoxlines by default, and lines with the character ’x’ in

column 1 in fixed source form are treated as comment lines.

While the -qxlines option is independent of -D, all rules for debug lines that apply

to using ’d’ as the conditional compilation character also apply to the conditional

compilation character ’x’.

The -qxlines compiler option is only applicable to fixed source form.

Usage

The conditional compilation characters ’x’ and ’d’ may be mixed both within a

fixed source form program and within a continued source line. If a conditional

compilation line is continued onto the next line, all the continuation lines must

have ’x’ or ’d’ in column 1. If the initial line of a continued compilation statement

is not a debugging line that begins with either ’x’ or ’d’ in column 1, subsequent

continuation lines may be designated as debug lines as long as the statement is

syntactically correct.

The OMP conditional compilation characters ’!$’, ’C$’, and ’*$’ may be mixed with

the conditional characters ’x’ and ’d’ both in fixed source form and within a

continued source line. The rules for OMP conditional characters will still apply in

this instance.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 265

Examples

An example of a base case of -qxlines:

 C2345678901234567890

 program p

 i=3 ; j=4 ; k=5

 X print *,i,j

 X + ,k

 end program p

 <output>: 3 4 5 (if -qxlines is on)

 no output (if -qxlines is off)

266 XL Fortran Compiler Reference

In this example, conditional compilation characters ’x’ and ’d’ are mixed, with ’x’

on the initial line:

 C2345678901234567890

 program p

 i=3 ; j=4 ; k=5

 X print *,i,

 D + j,

 X + k

 end program p

 <output>: 3 4 5 (if both -qxlines and -qdlines are on)

 3 5 (if only -qxlines is turned on)

Here, conditional compilation characters ’x’ and ’d’ are mixed, with ’d’ on the

initial line:

 C2345678901234567890

 program p

 i=3 ; j=4 ; k=5

 D print *,i,

 X + j,

 D + k

 end program p

 <output>: 3 4 5 (if both -qxlines and -qdlines are on)

 3 5 (if only -qdlines is turned on)

In this example, the initial line is not a debug line, but the continuation line is

interpreted as such, since it has an ’x’ in column 1:

 C2345678901234567890

 program p

 i=3 ; j=4 ; k=5

 print *,i

 X + ,j

 X + ,k

 end program p

 <output>: 3 4 5 (if -qxlines is on)

 3 (if -qxlines is off)

Related information

v “-D” on page 65

v Conditional Compilation in the Language Elements section of the XL Fortran

Language Reference

Chapter 6. Detailed descriptions of the XL Fortran compiler options 267

-qxref

Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing that includes the cross-reference component of the

attribute and cross-reference section of the listing.

Syntax

��
 noxref

-q

xref

=

full

��

@PROCESS:

@PROCESS XREF[(FULL)] | NOXREF

Defaults

-qnoxref

Usage

If you specify only -qxref, only identifiers that are used are reported. If you specify

-qxref=full, the listing contains information about all identifiers that appear in the

program, whether they are used or not.

If -qxref is specified after -qxref=full, the full cross-reference listing is still

produced.

You can use the cross-reference listing during debugging to locate problems such

as using a variable before defining it or entering the wrong name for a variable.

Related information

See “Listings, messages, and compiler information” on page 51 and “Attribute and

cross reference section” on page 294.

268 XL Fortran Compiler Reference

-qzerosize

Category

Optimization and tuning

Purpose

Prevents checking for zero-sized character strings and arrays in programs that

might process such objects.

Syntax

��
 zerosize

-q

nozerosize

��

@PROCESS:

@PROCESS ZEROSIZE | NOZEROSIZE

Defaults

The default setting depends on which command invokes the compiler: -qzerosize

for the xlf90, xlf90_r, xlf95, xlf95_r, xlf2003, xlf2003_r, f90, f95, and f2003

commands and -qnozerosize for the xlf, xlf_r, and f77/fort77 commands (for

compatibility with FORTRAN 77).

Usage

Use -qzerosize for Fortran 90, Fortran 95, and Fortran 2003 programs that might

process zero-sized character strings and arrays.

For FORTRAN 77 programs, where zero-sized objects are not allowed, or for

Fortran 90 and Fortran 95 programs that do not use them, compiling with

-qnozerosize can improve the performance of some array or character-string

operations.

Runtime checking performed by the -C option takes slightly longer when

-qzerosize is in effect.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 269

-S

Category

Output control

@PROCESS directive

None.

Purpose

Generates an assembler language file for each source file.

Syntax

�� -S ��

Rules

When this option is specified, the compiler produces the assembler source files as

output instead of an object or an executable file.

Restrictions

The generated assembler files do not include all the data that is included in a .o

file by -qipa or -g.

Examples

xlf95 -O3 -qhot -S test.f # Produces test.s

Related information

The “-o” on page 78 can be used to specify a name for the resulting assembler

source file.

270 XL Fortran Compiler Reference

-t

Category

Compiler customization

@PROCESS directive

None.

Purpose

Applies the prefix specified by the -B option to the designated components.

Syntax

��

�

-t

a

b

c

d

F

h

I

l

p

z

��

Defaults

The default paths for all of the compiler executables are defined in the compiler

configuration file.

Parameters

The following table shows the correspondence between -t parameters and the

component executable names:

 Parameter Description Executable name

a Assembler as

b Low-level optimizer xlfcode

c Compiler front end xlfentry

d Disassembler dis

F C preprocessor cpp

h Array language optimizer xlfhot

I High-level optimizer,

compile step

ipa

l Linker ld

z Binder bolt

Usage

This option is intended to be used together with the -Bprefix option.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 271

Note that using the p suboption causes the source code to be preprocessed

separately before compilation, which can change the way a program is compiled.

Examples

To compile myprogram.f so that the name /u/newones/compilers/ is prefixed to the

compiler and assembler program names, enter:

xlf myprogram.f -B/u/newones/compilers/ -tca

Related information

v “-B” on page 62

272 XL Fortran Compiler Reference

-U

Category

Input control

Purpose

Makes the compiler sensitive to the case of letters in names.

Syntax

�� -U ��

@PROCESS:

@PROCESS MIXED | NOMIXED

Defaults

By default, the compiler interprets all names as if they were in lowercase. For

example, Abc and ABC are both interpreted as abc and so refer to the same object.

Usage

You can use this option when writing mixed-language programs, because Fortran

names are all lowercase by default, while names in C and other languages may be

mixed-case.

If -U is specified, case is significant in names. For example, the names Abc and ABC

refer to different objects.

This option changes the link names used to resolve calls between compilation

units. It also affects the names of modules and thus the names of their .mod files.

Restrictions

The names of intrinsics must be all in lowercase when -U is in effect. Otherwise,

the compiler may accept the names without errors, but the compiler considers

them to be the names of external procedures, rather than intrinsics.

Related information

This is the short form of -qmixed. See “-qmixed” on page 180.

Chapter 6. Detailed descriptions of the XL Fortran compiler options 273

-u

Category

Language element control

Purpose

Specifies that no implicit typing of variable names is permitted.

It has the same effect as using the IMPLICIT NONE statement in each scope that

allows implicit statements.

Syntax

�� -u ��

@PROCESS:

@PROCESS UNDEF | NOUNDEF

Defaults

-qnoundef, which allows implicit typing.

Related information

See IMPLICIT in the XL Fortran Language Reference.

This is the short form of -qundef. See “-qundef” on page 247.

274 XL Fortran Compiler Reference

-v

@PROCESS directive

None.

Purpose

Reports the progress of compilation, by naming the programs being invoked and

the options being specified to each program.

Syntax

�� -v ��

Defaults

Not applicable.

Usage

For a particular compilation, examining the output that this option produces can

help you determine:

v What files are involved

v What options are in effect for each step

v How far a compilation gets when it fails

Related information

v “-#” on page 60 is similar to -v, but it does not actually execute any of the

compilation steps.

v “-V” on page 276

Chapter 6. Detailed descriptions of the XL Fortran compiler options 275

-V

Category

Listings, messages, and compiler information

Purpose

The same as -v except that you can cut and paste directly from the display to

create a command.

Defaults

Not applicable.

Syntax

�� -V ��

Related information

v “-v” on page 275

v “-#” on page 60

276 XL Fortran Compiler Reference

-W

Category

Compiler customization

@PROCESS directive

None.

Purpose

Passes the listed options to a component that is executed during compilation.

The primary purpose of this option is to construct sequences of compiler options to

pass to one of the optimizing preprocessors. It can also be used to fine-tune the

link-edit step by passing parameters to the ld command.

Syntax

��

�

-W

a

,

option

b

c

d

F

h

I

l

p

z

��

Parameters

option

Any option that is valid for the component to which it is being passed. Spaces

must not appear before the option.

 The following table shows the correspondence between -W parameters and the

component executable names:

 Parameter Description Executable name

a Assembler as

b Low-level optimizer xlfcode

c Compiler front end xlfentry

d Disassembler dis

F C preprocessor cpp

h Array language optimizer xlfhot

I High-level optimizer,

compile step

ipa

l Linker ld

z Binder bolt

Chapter 6. Detailed descriptions of the XL Fortran compiler options 277

Usage

In the string following the -W option, use a comma as the separator for each

option, and do not include any spaces. If you need to include a character that is

special to the shell in the option string, precede the character with a backslash. For

example, if you use the -W option in the configuration file, you can use the escape

sequence backslash comma (\,) to represent a comma in the parameter string.

You do not need the -W option to pass most options to the linker ld: unrecognized

command-line options, except -q options, are passed to it automatically. Only

linker options with the same letters as compiler options, such as -v or -S, strictly

require -W.

Examples

To compile the file file.f and pass the linker option -berok to the linker, enter the

following command:

xlf -Wl,-berok file.f

To compile the file uses_many_symbols.f and the assembly file

produces_warnings.s so that produces_warnings.s is assembled with the assembler

option -x (issue warnings and produce cross-reference), and the object files are

linked with the option -s (write list of object files and strip final executable file),

issue the following command:.

xlf -Wa,-x -Wl,-s produces_warnings.s uses_many_symbols.f

In the following example, the \, embeds a literal comma in the -WF string and

causes three arguments, rather than four, to be supplied to the C preprocessor.

 $ xlf -qfree=f90 ’-WF,-Dint1=1,-Dint2=2,-Dlist=3\,4’ a.F

 $ cat a.F

 print *, int1

 print *, int2

 print *, list

 end

The output from the program will be:

$./a.out

 1

 2

 3 4

Related information

v “Passing command-line options to the ″ld″ or ″as″ commands” on page 27

278 XL Fortran Compiler Reference

-w

Category

Listings, messages, and compiler information

@PROCESS directive

None.

Purpose

Suppresses informational, language-level and warning messages (equivalent to

-qflag=e:e).

Syntax

�� -w ��

Defaults

Not applicable.

Related information

v “-qflag” on page 132

Chapter 6. Detailed descriptions of the XL Fortran compiler options 279

-y

Category

Floating-point and integer control

Purpose

Specifies the rounding mode for the compiler to use when evaluating constant

floating-point expressions at compile time.

It is equivalent to the -qieee option.

Syntax

��
 n

-y

m

p

z

��

@PROCESS:

@PROCESS IEEE(Near | Minus | Plus | Zero)

Defaults

-yn

Parameters

n Round to nearest.

m Round toward minus infinity.

p Round toward plus infinity.

z Round toward zero.

Usage

If your program contains operations involving real(16) values, the rounding mode

must be set to -yn, round-to-nearest.

Related information

v “-O” on page 75

v “-qfloat” on page 134

v “-qieee” on page 149

280 XL Fortran Compiler Reference

Chapter 7. Using XL Fortran in a 64-Bit Environment

The 64-bit environment addresses an increasing demand for larger storage

requirements and greater processing power. The Linux operating system provides

an environment that allows you to develop and execute programs that exploit

64-bit processors through the use of 64-bit address space and 64-bit integers.

To support larger executables that can be fit within a 64-bit address space, a

separate, 64-bit object form is used to meet the requirements of 64-bit executables.

The linker binds 64-bit objects to create 64-bit executables. Note that objects that

are bound together must all be of the same object format. The following scenarios

are not permitted and will fail to load, or execute, or both:

v A 64-bit object or executable that has references to symbols from a 32-bit library

or shared library

v A 32-bit object or executable that has references to symbols from a 64-bit library

or shared library

v A 64-bit executable that attempts to explicitly load a 32-bit module

v A 32-bit executable that attempts to explicitly load a 64-bit module

v Attempts to run 64-bit applications on 32-bit platforms

On both 64-bit and 32-bit platforms, 32-bit executables will continue to run as they

currently do on a 32-bit platform. On 32-bit platforms, 64-bit executables can be

generated by specifying the -q64 option.

The XL Fortran compiler mainly provides 64-bit mode support through the

compiler option -q64 in conjunction with the compiler option -qarch. This

combination determines the bit mode and instruction set for the target architecture.

The -q32 and -q64 options take precedence over the setting of the -qarch option.

The -q64 option will win over a 32-bit mode only -qarch setting, and the compiler

will upgrade the -qarch setting to something that will handle 64-bit mode.

Conflicts between the -q32 and -q64 options are resolved by the ″last option wins″

rule. Setting -qarch=ppc will ensure future compatibility for applications in 32–bit

mode. For 64-bit mode applications, use -qarch=ppc64 to achieve the same effect

for all present or future supported 64-bit mode systems. -qarch settings that target

a specific architecture, like thepwr5, pwr6, ppc970, or auto settings will be more

system-dependent.

Compiler options for the 64-Bit environment

The -q32, -q64, and -qwarn64 compiler options are primarily for developers who

are targetting 64-bit platforms. They enable you to do the following:

v Develop applications for the 64-bit environment

v Help migrate source code from the 32-bit environment to a 64-bit environment

© Copyright IBM Corp. 1990, 2007 281

282 XL Fortran Compiler Reference

Chapter 8. Problem determination and debugging

This section describes some methods you can use for locating and fixing problems

in compiling or executing your programs.

Understanding XL Fortran error messages

Most information about potential or actual problems comes through messages from

the compiler or application program. These messages are written to the standard

error stream.

Error severity

Compilation errors can have the following severity levels, which are displayed as

part of some error messages:

U An unrecoverable error. Compilation failed because of an internal compiler

error.

S A severe error. Compilation failed due to one of the following:

v An unrecoverable program error has been detected. Processing of the

source file stops, and XL Fortran does not produce an object file. You can

usually correct this error by fixing any program errors that were

reported during compilation.

v Conditions exist that the compiler could not correct. An object file is

produced; however, you should not attempt to run the program.

v An internal compiler table has overflowed. Processing of the program

stops, and XL Fortran does not produce an object file.

v An include file does not exist. Processing of the program stops, and XL

Fortran does not produce an object file.

E An error that the compiler can correct. The program should run correctly.

W Warning message. It does not signify an error but may indicate some

unexpected condition.

L Warning message that was generated by one of the compiler options that

check for conformance to various language levels. It may indicate a

language feature that you should avoid if you are concerned about

portability.

I Informational message. It does not indicate any error, just something that

you should be aware of to avoid unexpected behavior or to improve

performance.

Notes:

1. The message levels S and U indicate a compilation failure.

2. The message levels I, L, W, and E indicate that compilation was successful.

By default, the compiler stops without producing output files if it encounters a

severe error (severity S). You can make the compiler stop for less severe errors by

specifying a different severity with the -qhalt option. For example, with -qhalt=e,

the compiler stops if it encounters any errors of severity E or higher severity. This

technique can reduce the amount of compilation time that is needed to check the

syntactic and semantic validity of a program. You can limit low-severity messages

© Copyright IBM Corp. 1990, 2007 283

without stopping the compiler by using the -qflag option. If you simply want to

prevent specific messages from going to the output stream, see “-qsuppress” on

page 238.

Compiler return code

The compiler return codes and their respective meanings are as follows:

0 The compiler did not encounter any errors severe enough to make it stop

processing a compilation unit.

1 The compiler encountered an error of severity E or halt_severity (whichever

is lower). Depending on the level of halt_severity, the compiler might have

continued processing the compilation units with errors.

40 An option error.

41 A configuration file error.

250 An out-of-memory error. The compiler cannot allocate any more memory

for its use.

251 A signal received error. An unrecoverable error or interrupt signal is

received.

252 A file-not-found error.

253 An input/output error. Cannot read or write files.

254 A fork error. Cannot create a new process.

255 An error while executing a process.

Runtime return code

If an XLF-compiled program ends abnormally, the return code to the operating

system is 1.

If the program ends normally, the return code is 0 (by default) or is

MOD(digit_string,256) if the program ends because of a STOP digit_string

statement.

Understanding XL Fortran messages

In addition to the diagnostic message issued, the source line and a pointer to the

position in the source line at which the error was detected are printed or displayed

if you specify the -qsource compiler option. If -qnosource is in effect, the file

name, the line number, and the column position of the error are displayed with the

message.

The format of an XL Fortran diagnostic message is:

�� 15 cc - nnn message_text

(

severity_letter

)

 ��

where:

15 Indicates an XL Fortran message

cc Is the component number, as follows:

00 Indicates a code generation or optimization message

01 Indicates an XL Fortran common message

11-20 Indicates a Fortran-specific message

25 Indicates a runtime message from an XL Fortran

application program

284 XL Fortran Compiler Reference

85 Indicates a loop-transformation message

86 Indicates an interprocedural analysis (IPA) message

nnn Is the message number

severity_letter Indicates how serious the problem is, as described in the preceding

section

’message text’ Is the text describing the error

Limiting the number of compile-time messages

If the compiler issues many low-severity (I or W) messages concerning problems

you are aware of or do not care about, use the -qflag option or its short form -w to

limit messages to high-severity ones:

E, S, and U messages go in listing; U messages are displayed on screen.

xlf95 -qflag=e:u program.f

E, S, and U messages go in listing and are displayed on screen.

xlf95 -w program.f

Selecting the language for messages

XL Fortran comes with compiler and runtime messages in U.S. English and

Japanese. If compile-time messages are appearing in U.S. English when they

should be in another language, verify that the correct message catalogs are

installed and that the LANG, LC_MESSAGES, and/or LC_ALL environment

variables are set accordingly.

If a runtime message appears in the wrong language, ensure that your program

calls the setlocale routine to set the program’s locale at run time.

To determine which XL Fortran message catalogs are installed, use the following

commands to list them:

rpm -ql xlf.cmp # compile-time messages

rpm -ql xlf.msg.rte # runtime messages

rpm -ql xlsmp.msg.rte # SMP runtime messages

The file names of the message catalogs are the same for all supported international

languages, but they are placed in different directories.

Note: When you run an XL Fortran program on a system without the XL Fortran

message catalogs, runtime error messages (mostly for I/O problems) are not

displayed correctly; the program prints the message number but not the

associated text. To prevent this problem, copy the XL Fortran message

catalogs from /opt/ibmcmp/msg to a directory that is part of the NLSPATH

environment-variable setting on the execution system.

Related information: See “Environment variables for national language support”

on page 8 and “Selecting the language for runtime

messages” on page 33.

Chapter 8. Problem determination and debugging 285

Fixing installation or system environment problems

If individual users or all users on a particular machine have difficulty running the

compiler, there may be a problem in the system environment. Here are some

common problems and solutions:

xlf90: not found

xlf90_r: not found

xlf95: not found

xlf95_r: not found

xlf: not found

xlf_r: not found

xlf2003: not found

xlf2003_r: not found

f77: not found

fort77: not found

f90: not found

f95: not found

f2003: not found

Symptom: The shell cannot locate the command to

execute the compiler.

Solution: Make sure that your PATH environment

variable includes the directory /opt/ibmcmp/xlf/11.1/
bin. If the compiler is properly installed, the commands

you need to execute it are in this directory.

Could not load program program

Error was: not enough space

Symptom: The system cannot execute the compiler or

an application program at all.

Solution: Set the storage limits for stack and data to

“unlimited” for users who experience this problem. For

example, you can set both your hard and soft limits

with these bash commands:

 ulimit -s unlimited

 ulimit -d unlimited

Or, you may find it more convenient to edit the file

/etc/security/limits.conf to give all users unlimited

stack and data segments (by entering -1 for these

fields).

 If the storage problem is in an XLF-compiled program,

using the -qsave or -qsmallstack option might prevent

the program from exceeding the stack limit.

Explanation: The compiler allocates large internal data

areas that may exceed the storage limits for a user.

XLF-compiled programs place more data on the stack

by default than in previous versions, also possibly

exceeding the storage limit. Because it is difficult to

determine precise values for the necessary limits, we

recommend making them unlimited.

Could not load program program

Could not load library library_name.so

Error was: no such file or directory

Solution: Make sure the XL Fortran libraries are

installed in /opt/ibmcmp/xlf/11.1/lib and

/opt/ibmcmp/xlf/11.1/lib64, or set the

LD_LIBRARY_PATH and LD_RUN_PATH

environment variables to include the directory where

libxlf90.so is installed if it is in a different directory.

See “Setting library search paths” on page 9 for details

of this environment variable.

Symptom: Messages from the compiler or an XL

Fortran application program are displayed in the wrong

language.

Solution: Set the appropriate national language

environment. You can set the national language for

each user with the command env. Alternatively, each

user can set one or more of the environment variables

LANG, NLSPATH, LC_MESSAGES, LC_TIME, and

LC_ALL. If you are not familiar with the purposes of

these variables, “Environment variables for national

language support” on page 8 provides details.

Symptom: A compilation fails with an I/O error.

Solution: Increase the size of the /tmp filesystem, or

set the environment variable TMPDIR to the path of a

filesystem that has more free space.

Explanation: The object file may have grown too large

for the filesystem that holds it. The cause could be a

very large compilation unit or initialization of all or

part of a large array in a declaration.

Symptom: There are too many individual makefiles

and compilation scripts to easily maintain or track.

Solution: Add stanzas to the configuration file, and

create links to the compiler by using the names of these

stanzas. By running the compiler with different

command names, you can provide consistent groups of

compiler options and other configuration settings to

many users.

Fixing compile-time problems

The following sections discuss common problems you might encounter while

compiling and how to avoid them.

286 XL Fortran Compiler Reference

Duplicating extensions from other systems

Some ported programs may cause compilation problems because they rely on

extensions that exist on other systems. XL Fortran supports many extensions like

these, but some require compiler options to turn them on. See “Portability and

migration” on page 56 for a list of these options and Porting programs to XL Fortran

in the XL Fortran Optimization and Programming Guide for a general discussion of

porting.

Isolating problems with individual compilation units

If you find that a particular compilation unit requires specific option settings to

compile properly, you may find it more convenient to apply the settings in the

source file through an @PROCESS directive. Depending on the arrangement of

your files, this approach may be simpler than recompiling different files with

different command-line options.

Compiling with thread-safe commands

Thread-safe invocation commands, like xlf_r or xlf90_r, for example, use different

search paths and call different modules than the non thread-safe invocations. Your

programs should account for the different usages. Programs that compile and run

successfully for one environment may produce unexpected results when compiled

and run for a different use. The configuration file, xlf.cfg, shows the paths,

libraries, and so on for each invocation command. (See “Editing the default

configuration file” on page 14 for an explanation of its contents.)

Running out of machine resources

If the operating system runs low on resources (page space or disk space) while one

of the compiler components is running, you should receive one of the following

messages:

1501-229 Compilation ended because of lack of space.

1517-011 Compilation ended. No more system resources available.

1501-053 (S) Too much initialized data.

1501-511. Compilation failed for file [filename].

You may need to increase the system page space and recompile your program. See

the man page information man 8 mkswap swapon for more information about

page space.

If your program produces a large object file, for example, by initializing all or part

of a large array, you may need to do one of the following:

v Increase the size of the filesystem that holds the /tmp directory.

v Set the TMPDIR environment variable to a filesystem with a lot of free space.

v For very large arrays, initialize the array at run time rather than statically (at

compile time).

Fixing link-time problems

After the XL Fortran compiler processes the source files, the linker links the

resulting object files together. Any messages issued at this stage come from the ld

command. A frequently encountered error and its solution are listed here for your

convenience:

Chapter 8. Problem determination and debugging 287

filename.o: In function ’main’:

filename.o(.text+0x14): undefined reference

 to ’p’

filename.o(.text+0x14): relocation truncated

 to fit: R_PPC_REL24 p

Symptom: A program cannot be linked because of

unresolved references.

Explanation: Either needed object files or libraries are

not being used during linking, there is an error in the

specification of one or more external names, or there is

an error in the specification of one or more procedure

interfaces.

Solution: You may need to do one or more of the

following actions:

v Compile again with the -Wl,-M option to create a file

that contains information about undefined symbols.

v Make sure that if you use the -U option, all intrinsic

names are in lowercase.

Fixing runtime problems

XL Fortran issues error messages during the running of a program in either of the

following cases:

v XL Fortran detects an input/output error. “Setting runtime options” on page 33

explains how to control these kinds of messages.

v XL Fortran detects an exception error, and the default exception handler is

installed (through the -qsigtrap option or a call to SIGNAL). To get a more

descriptive message than Core dumped, you may need to run the program from

within gdb.

The causes for runtime exceptions are listed in “XL Fortran runtime exceptions”

on page 44.

You can investigate errors that occur during the execution of a program by using a

symbolic debugger, such as gdb.

Duplicating extensions from other systems

Some ported programs may not run correctly if they rely on extensions that are

found on other systems. XL Fortran supports many such extensions, but you need

to turn on compiler options to use some of them. See “Portability and migration”

on page 56 for a list of these options and Porting programs to XL Fortranin the XL

Fortran Optimization and Programming Guide for a general discussion of porting.

Mismatched sizes or types for arguments

Arguments of different sizes or types might produce incorrect execution and

results. To do the type-checking during the early stages of compilation, specify

interface blocks for the procedures that are called within a program.

Working around problems when optimizing

If you find that a program produces incorrect results when it is optimized and if

you can isolate the problem to a particular variable, you might be able to work

around the problem temporarily by declaring the variable as VOLATILE. This

prevents some optimizations that affect the variable. (See VOLATILE in the XL

Fortran Language Reference.) Because this is only a temporary solution, you should

continue debugging your code until you resolve your problem, and then remove

the VOLATILE keyword. If you are confident that the source code and program

design are correct and you continue to have problems, contact your support

organization to help resolve the problem.

Input/Output errors

If the error detected is an input/output error and you have specified IOSTAT on

the input/output statement in error, the IOSTAT variable is assigned a value

according to Conditions and IOSTAT Values in the XL Fortran Language Reference.

288 XL Fortran Compiler Reference

If you have installed the XL Fortran runtime message catalog on the system on

which the program is executing, a message number and message text are issued to

the terminal (standard error) for certain I/O errors. If you have specified IOMSG

on the input/output statement, the IOMSG variable is assigned the error message

text if an error is detected, or the content of IOMSG variable is not changed. If this

catalog is not installed on the system, only the message number appears. Some of

the settings in “Setting runtime options” on page 33 allow you to turn some of

these error messages on and off.

If a program fails while writing a large data file, you may need to increase the

maximum file size limit for your user ID. You can do this through a shell

command, such as ulimit in bash.

Tracebacks and core dumps

If a runtime exception occurs and an appropriate exception handler is installed, a

message and a traceback listing are displayed. Depending on the handler, a core

file might be produced as well. You can then use a debugger to examine the

location of the exception.

To produce a traceback listing without ending the program, call the xl__trbk

procedure:

IF (X .GT. Y) THEN ! X > Y indicates that something is wrong.

 PRINT *, ’Error - X should not be greater than Y’

 CALL XL__TRBK ! Generate a traceback listing.

END IF

See Installing an exception handler in the XL Fortran Optimization and Programming

Guide for instructions about exception handlers and “XL Fortran runtime

exceptions” on page 44 for information about the causes of runtime exceptions.

Debugging a Fortran 90 or Fortran 95 program

You can use dbx and other symbolic debuggers to debug your programs. For

instructions on using your chosen debugger, consult the online help within the

debugger or its documentation.

Always specify the -g option when compiling programs for debugging.

Related information:

v “Error checking and debugging” on page 50

Chapter 8. Problem determination and debugging 289

290 XL Fortran Compiler Reference

Chapter 9. Understanding XL Fortran compiler listings

Diagnostic information is placed in the output listing produced by the -qlist,

-qsource, -qxref, -qattr, -qreport, and -qlistopt compiler options. The -S option

generates an assembler listing in a separate file.

To locate the cause of a problem with the help of a listing, you can refer to the

following:

v The source section (to see any compilation errors in the context of the source

program)

v The attribute and cross-reference section (to find data objects that are misnamed

or used without being declared or to find mismatched parameters)

v The transformation and object sections (to see if the generated code is similar to

what you expect)

A heading identifies each major section of the listing. A string of greater than

symbols precedes the section heading so that you can easily locate its beginning:

>>>>> SECTION NAME <<<<<<

You can select which sections appear in the listing by specifying compiler options.

Related information: See “Listings, messages, and compiler information” on page

51.

Header section

The listing file has a header section that contains the following items:

v A compiler identifier that consists of the following:

– Compiler name

– Version number

– Release number

– Modification number

– Fix number
v Source file name

v Date of compilation

v Time of compilation

The header section is always present in a listing; it is the first line and appears

only once. The following sections are repeated for each compilation unit when

more than one compilation unit is present.

Options section

The options section is always present in a listing. There is a separate section for

each compilation unit. It indicates the specified options that are in effect for the

compilation unit. This information is useful when you have conflicting options. If

you specify the -qlistopt compiler option, this section lists the settings for all

options.

© Copyright IBM Corp. 1990, 2007 291

Source section

The source section contains the input source lines with a line number and,

optionally, a file number. The file number indicates the source file (or include file)

from which the source line originated. All main file source lines (those that are not

from an include file) do not have the file number printed. Each include file has a

file number associated with it, and source lines from include files have that file

number printed. The file number appears on the left, the line number appears to

its right, and the text of the source line is to the right of the line number. XL

Fortran numbers lines relative to each file. The source lines and the numbers that

are associated with them appear only if the -qsource compiler option is in effect.

You can selectively print parts of the source by using the @PROCESS directives

SOURCE and NOSOURCE throughout the program.

Error messages

If the -qsource option is in effect, the error messages are interspersed with the

source listing. The error messages that are generated during the compilation

process contain the following:

v The source line

v A line of indicators that point to the columns that are in error

v The error message, which consists of the following:

– The 4-digit component number

– The number of the error message

– The severity level of the message

– The text that describes the error

For example:

 2 | equivalence (i,j,i,j)

 a.b.

a - "t.f", line 2.24: 1514-117 (E) Same name appears more than once in an equivalence group.

b - "t.f", line 2.26: 1514-117 (E) Same name appears more than once in an equivalence group.

If the -qnosource option is in effect, the error messages are all that appear in the

source section, and an error message contains:

v The file name in quotation marks

v The line number and column position of the error

v The error message, which consists of the following:

– The 4-digit component number

– The number of the error message

– The severity level of the message

– The text that describes the error

For example:

"doc.f", line 6.11: 1513-039 (S) Number of arguments is not

permitted for INTRINSIC function abs.

292 XL Fortran Compiler Reference

Transformation report section

If the -qreport option is in effect, a transformation report listing shows how XL

Fortran optimized the program. This section displays pseudo-Fortran code that

corresponds to the original source code, so that you can see parallelization and

loop transformations that the -qhot and/or -qsmp options have generated.

Sample Report

The following report was created for the program t.f using the

xlf -qhot -qreport t.f

command.

Program t.f:

 integer a(100, 100)

 integer i,j

 do i = 1 , 100

 do j = 1, 100

 a(i,j) = j

 end do

 end do

 end

Transformation Report:

>>>>> SOURCE SECTION <<<<<

** _main === End of Compilation 1 ===

>>>>> LOOP TRANSFORMATION SECTION <<<<<

 PROGRAM _main ()

 4| IF (.FALSE.) GOTO lab_9

 @LoopIV0 = 0

 Id=1 DO @LoopIV0 = @LoopIV0, 99

 5| IF (.FALSE.) GOTO lab_11

 @LoopIV1 = 0

 Id=2 DO @LoopIV1 = @LoopIV1, 99

 ! DIR_INDEPENDENT loopId = 0

 6| a((@LoopIV1 + 1),(@LoopIV0 + 1)) = (@LoopIV0 + 1)

 7| ENDDO

 lab_11

 8| ENDDO

 lab_9

 9| END PROGRAM _main

Source Source Loop Id Action / Information

File Line

---------- ---------- ---------- --------------------------------------

 0 4 1 Loop interchanging applied to loop nest.

Chapter 9. Understanding XL Fortran compiler listings 293

Attribute and cross reference section

This section provides information about the entities that are used in the

compilation unit. It is present if the -qxref or -qattr compiler option is in effect.

Depending on the options in effect, this section contains all or part of the following

information about the entities that are used in the compilation unit:

v Names of the entities

v Attributes of the entities (if -qattr is in effect). Attribute information may include

any or all of the following details:

– The class of the name

– The type

– The relative address of the name

– Alignment

– Dimensions

– For an array, whether it is allocatable

– Whether it is a pointer, target, or integer pointer

– Whether it is a parameter

– Whether it is volatile

– For a dummy argument, its intent, whether it is value, and whether it is

optional

– Private, public, protected, module
v Coordinates to indicate where you have defined, referenced, or modified the

entities. If you declared the entity, the coordinates are marked with a $. If you

initialized the entity, the coordinates are marked with a *. If you both declared

and initialized the entity at the same place, the coordinates are marked with a &.

If the entity is set, the coordinates are marked with a @. If the entity is

referenced, the coordinates are not marked.

Class is one of the following:

v Automatic

v BSS (uninitialized static internal)

v Common

v Common block

v Construct name

v Controlled (for an allocatable object)

v Controlled automatic (for an automatic object)

v Defined assignment

v Defined operator

v Derived type definition

v Entry

v External subprogram

v Function

v Generic name

v Internal subprogram

v Intrinsic

v Module

v Module function

v Module subroutine

v Namelist

v Pointee

v Private component

v Program

v Reference argument

v Renames

v Static

v Subroutine

294 XL Fortran Compiler Reference

v Use associated

v Value parameter

If you specify the full suboption with -qxref or -qattr, XL Fortran reports all

entities in the compilation unit. If you do not specify this suboption, only the

entities you actually use appear.

Object section

XL Fortran produces this section only when the -qlist compiler option is in effect.

It contains the object code listing, which shows the source line number, the

instruction offset in hexadecimal notation, the assembler mnemonic of the

instruction, and the hexadecimal value of the instruction. On the right side, it also

shows the cycle time of the instruction and the intermediate language of the

compiler. Finally, the total number of machine instructions that are produced and

the total cycle time (straight-line execution time) are displayed. There is a separate

section for each compilation unit.

File table section

This section contains a table that shows the file number and file name for each

main source file and include file used. It also lists the line number of the main

source file at which the include file is referenced. This section is always present.

The table also includes the file creation date and time.

Compilation unit epilogue Section

This is the last section of the listing for each compilation unit. It contains the

diagnostics summary and indicates whether the unit was compiled successfully.

This section is not present in the listing if the file contains only one compilation

unit.

Compilation epilogue Section

The compilation epilogue section occurs only once at the end of the listing. At

completion of the compilation, XL Fortran presents a summary of the compilation:

number of source records that were read, compilation start time, compilation end

time, total compilation time, total CPU time, virtual CPU time, and a summary of

diagnosed conditions. This section is always present in a listing.

Chapter 9. Understanding XL Fortran compiler listings 295

296 XL Fortran Compiler Reference

Appendix A. XL Fortran technical information

This section contains details about XL Fortran that advanced programmers may

need to diagnose unusual problems, run the compiler in a specialized environment,

or do other things that a casual programmer is rarely concerned with.

The compiler phases

The typical compiler invocation command executes some or all of the following

programs in sequence. For link-time optimizations, some of the phases will be

executed more than once during a compilation. As each program runs, the results

are sent to the next step in the sequence.

1. A preprocessor

2. The compiler, which consists of the following phases:

a. Front-end parsing and semantic analysis

b. Loop transformations

c. Interprocedural analysis

d. Optimization

e. Register allocation

f. Final assembly
3. The assembler (for any .s files)

4. The linker ld

External names in XL Fortran libraries

To minimize naming conflicts between user-defined names and the names that are

defined in the runtime libraries, the names of routines in the runtime libraries are

prefixed with an underscore (_), or _xl.

The XL Fortran runtime environment

Object code that the XL Fortran compiler produces often invokes compiler-supplied

subprograms at run time to handle certain complex tasks. These subprograms are

collected into several libraries.

The function of the XL Fortran Runtime Environment may be divided into these

main categories:

v Support for Fortran I/O operations

v Mathematical calculation

v Operating-system services

v Support for SMP parallelization

The XL Fortran Runtime Environment also produces runtime diagnostic messages

in the national language appropriate for your system. Unless you bind statically,

you cannot run object code produced by the XL Fortran compiler without the XL

Fortran Runtime Environment.

The XL Fortran Runtime Environment is upward-compatible. Programs that are

compiled and linked with a given level of the runtime environment and a given

level of the operating system require the same or higher levels of both the runtime

environment and the operating system to run.

© Copyright IBM Corp. 1990, 2007 297

External names in the runtime environment

Runtime subprograms are collected into libraries. By default, the compiler

invocation command also invokes the linker and gives it the names of the libraries

that contain runtime subprograms called by Fortran object code.

The names of these runtime subprograms are external symbols. When object code

that is produced by the XL Fortran compiler calls a runtime subprogram, the .o

object code file contains an external symbol reference to the name of the

subprogram. A library contains an external symbol definition for the subprogram.

The linker resolves the runtime subprogram call with the subprogram definition.

You should avoid using names in your XL Fortran program that conflict with

names of runtime subprograms. Conflict can arise under two conditions:

v The name of a subroutine, function, or common block that is defined in a

Fortran program has the same name as a library subprogram.

v The Fortran program calls a subroutine or function with the same name as a

library subprogram but does not supply a definition for the called subroutine or

function.

Technical details of the -qfloat=hsflt option

The -qfloat=hsflt option is unsafe for optimized programs that compute

floating-point values that are outside the range of representation of single

precision, not just outside the range of the result type. The range of representation

includes both the precision and the exponent range.

Even when you follow the rules that are stated in the preceding paragraph and in

“-qfloat” on page 134, programs that are sensitive to precision differences might

not produce expected results. Because -qfloat=hsflt is not compliant with IEEE,

programs will not always run as expected.

For example, in the following program, X.EQ.Y may be true or may be false:

 REAL X, Y, A(2)

 DOUBLE PRECISION Z

 LOGICAL SAME

 READ *, Z

 X = Z

 Y = Z

 IF (X.EQ.Y) SAME = .TRUE.

 ! ...

 ! ... Calculations that do not change X or Y

 ! ...

 CALL SUB(X) ! X is stored in memory with truncated fraction.

 IF (X.EQ.Y) THEN ! Result might be different than before.

 ...

 A(1) = Z

 X = Z

 A(2) = 1. ! A(1) is stored in memory with truncated fraction.

 IF (A(1).EQ.X) THEN ! Result might be different than expected.

 ...

If the value of Z has fractional bits that are outside the precision of a

single-precision variable, these bits may be preserved in some cases and lost in

others. This makes the exact results unpredictable when the double-precision value

298 XL Fortran Compiler Reference

of Z is assigned to single-precision variables. For example, passing the variable as a

dummy argument causes its value to be stored in memory with a fraction that is

truncated rather than rounded.

Implementation details for -qautodbl promotion and padding

The following sections provide additional details about how the -qautodbl option

works, to allow you to predict what happens during promotion and padding.

Terminology

The storage relationship between two data objects determines the relative starting

addresses and the relative sizes of the objects. The -qautodbl option tries to

preserve this relationship as much as possible.

Data objects can also have a value relationship, which determines how changes to

one object affect another. For example, a program might store a value into one

variable, and then read the value through a different storage-associated variable.

With -qautodbl in effect, the representation of one or both variables might be

different, so the value relationship is not always preserved.

An object that is affected by this option may be:

v Promoted, meaning that it is converted to a higher-precision data type. Usually,

the resulting object is twice as large as it would be by default. Promotion applies

to constants, variables, derived-type components, arrays, and functions (which

include intrinsic functions) of the appropriate types.

Note: BYTE, INTEGER, LOGICAL, and CHARACTER objects are never

promoted.

v Padded, meaning that the object keeps its original type but is followed by

undefined storage space. Padding applies to BYTE, INTEGER, LOGICAL, and

nonpromoted REAL and COMPLEX objects that may share storage space with

promoted items. For safety, POINTERs, TARGETs, actual and dummy

arguments, members of COMMON blocks, structures, pointee arrays, and

pointee COMPLEX objects are always padded appropriately depending on the

-qautodbl suboption. This is true whether or not they share storage with

promoted objects.

Space added for padding ensures that the storage-sharing relationship that

existed before conversion is maintained. For example, if array elements I(20) and

R(10) start at the same address by default and if the elements of R are promoted

and become twice as large, the elements of I are padded so that I(20) and R(10)

still start at the same address.

Except for unformatted I/O statements, which read and write any padding that

is present within structures, I/O statements do not process padding.

Note: The compiler does not pad CHARACTER objects.

Appendix A. XL Fortran technical information 299

Examples of storage relationships for -qautodbl suboptions

The examples in this section illustrate storage-sharing relationships between the

following types of entities:

v REAL(4)

v REAL(8)

v REAL(16)

v COMPLEX(4)

v COMPLEX(8)

v COMPLEX(16)

v INTEGER(8)

v INTEGER(4)

v CHARACTER(16).

Note: In the diagrams, solid lines represent the actual data, and dashed lines

represent padding.

 The figure above illustrates the default storage-sharing relationship of the compiler.

@process autodbl(none)

 block data

 complex(4) x8 /(1.123456789e0,2.123456789e0)/

 real(16) r16(2) /1.123q0,2.123q0/

 integer(8) i8(2) /1000,2000/

 character*5 c(2) /"abcde","12345"/

 common /named/ x8,r16,i8,c

 end

 subroutine s()

 complex(4) x8

 real(16) r16(2)

 integer(8) i8(2)

 character*5 c(2)

 common /named/ x8,r16,i8,c

! x8 = (1.123456e0,2.123456e0) ! promotion did not occur

! r16(1) = 1.123q0 ! no padding

! r16(2) = 2.123q0 ! no padding

! i8(1) = 1000 ! no padding

! i8(2) = 2000 ! no padding

! c(1) = "abcde" ! no padding

! c(2) = "12345" ! no padding

 end subroutine s

4 8 16 320 64

COMPLEX (16)
COMPLEX (8)
COMPLEX (4)
REAL (16)
REAL (8)
REAL (4)
INTEGER (8)
INTEGER (4)
CHARACTER (16)

Figure 7. Storage relationships without the -qautodbl option

300 XL Fortran Compiler Reference

@process autodbl(dbl)

 block data

 complex(4) x8

 real(16) r16(2) /1.123q0,2.123q0/

 real(8) r8

 real(4) r4 /1.123456789e0/

 integer(8) i8(2) /1000,2000/

 character*5 c(2) /"abcde","12345"/

 equivalence (x8,r8)

 common /named/ r16,i8,c,r4

! Storage relationship between r8 and x8 is preserved.

! Data values are NOT preserved between r8 and x8.

 end

 subroutine s()

 real(16) r16(2)

 real(8) r4

 integer(8) i8(2)

 character*5 c(2)

 common /named/ r16,i8,c,r4

! r16(1) = 1.123q0 ! no padding

! r16(2) = 2.123q0 ! no padding

! r4 = 1.123456789d0 ! promotion occurred

! i8(1) = 1000 ! no padding

! i8(2) = 2000 ! no padding

! c(1) = "abcde" ! no padding

! c(2) = "12345" ! no padding

 end subroutine s

4 8 16 320 64

COMPLEX (16)
COMPLEX (8) (promoted)
COMPLEX (4) (promoted)
REAL (16)
REAL (8) (promoted)
REAL (4) (promoted)
INTEGER (8)
INTEGER (4)
CHARACTER (16)

Figure 8. Storage relationships with -qautodbl=dbl

Appendix A. XL Fortran technical information 301

@process autodbl(dbl4)

 complex(8) x16 /(1.123456789d0,2.123456789d0)/

 complex(4) x8

 real(4) r4(2)

 equivalence (x16,x8,r4)

! Storage relationship between r4 and x8 is preserved.

! Data values between r4 and x8 are preserved.

! x16 = (1.123456789d0,2.123456789d0) ! promotion did not occur

! x8 = (1.123456789d0,2.123456789d0) ! promotion occurred

! r4(1) = 1.123456789d0 ! promotion occurred

! r4(2) = 2.123456789d0 ! promotion occurred

 end

@process autodbl(dbl8)

 complex(8) x16 /(1.123456789123456789d0,2.123456789123456789d0)/

 complex(4) x8

 real(8) r8(2)

 equivalence (x16,x8,r8)

! Storage relationship between r8 and x16 is preserved.

! Data values between r8 and x16 are preserved.

! x16 = (1.123456789123456789q0,2.123456789123456789q0)

! ! promotion occurred

! x8 = upper 8 bytes of r8(1) ! promotion did not occur

! r8(1) = 1.123456789123456789q0 ! promotion occurred

! r8(2) = 2.123456789123456789q0 ! promotion occurred

 end

4 8 16 320 64

COMPLEX (16)
COMPLEX (8)
COMPLEX (4) (promoted)
REAL (16)
REAL (8)
REAL (4) (promoted)
INTEGER (8)
INTEGER (4)
CHARACTER (16)

Figure 9. Storage relationships with -qautobl=dbl4

4 8 16 320 64

COMPLEX (16)
COMPLEX (8) (promoted)
COMPLEX (4)
REAL (16)
REAL (8) (promoted)
REAL (4)
INTEGER (8)
INTEGER (4)
CHARACTER (16)

Figure 10. Storage relationships with -qautodbl=dbl8

302 XL Fortran Compiler Reference

In the figure above, the dashed lines represent the padding.

@process autodbl(dblpad4)

 complex(8) x16 /(1.123456789d0,2.123456789d0)/

 complex(4) x8

 real(4) r4(2)

 integer(8) i8(2)

 equivalence(x16,x8,r4,i8)

! Storage relationship among all entities is preserved.

! Date values between x8 and r4 are preserved.

! x16 = (1.123456789d0,2.123456789d0) ! padding occurred

! x8 = (upper 8 bytes of x16, 8 byte pad) ! promotion occurred

! r4(1) = real(x8) ! promotion occurred

! r4(2) = imag(x8) ! promotion occurred

! i8(1) = real(x16) ! padding occurred

! i8(2) = imag(x16) ! padding occurred

 end

 In the figure above, the dashed lines represent the padding.

@process autodbl(dblpad8)

 complex(8) x16 /(1.123456789123456789d0,2.123456789123456789d0)/

 complex(4) x8

 real(8) r8(2)

 integer(8) i8(2)

 byte b(16)

 equivalence (x16,x8,r8,i8,b)

! Storage relationship among all entities is preserved.

4 8 16 320 64

COMPLEX (16) (padded)
COMPLEX (8) (padded)
COMPLEX (4) (promoted)
REAL (16) (padded)
REAL (8) (padded)
REAL (4) (promoted)
INTEGER (8) (padded)
INTEGER (4) (padded)
CHARACTER (16)

Figure 11. Storage relationships with -qautodbl=dblpad4

4 8 16 320 64

COMPLEX (16) (padded)
COMPLEX (8) (promoted)
COMPLEX (4) (padded)
REAL (16) (padded)
REAL (8) (promoted)
REAL (4) (padded)
INTEGER (8) (padded)
INTEGER (4) (padded)
CHARACTER (16)

Figure 12. Storage relationships with -qautodbl=dblpad8

Appendix A. XL Fortran technical information 303

! Data values between r8 and x16 are preserved.

! Data values between i8 and b are preserved.

! x16 = (1.123456789123456789q0,2.123456789123456789q0)

! ! promotion occurred

! x8 = upper 8 bytes of r8(1) ! padding occurred

! r8(1) = real(x16) ! promotion occurred

! r8(2) = imag(x16) ! promotion occurred

! i8(1) = upper 8 bytes of real(x16) ! padding occurred

! i8(2) = upper 8 bytes of imag(x16) ! padding occurred

! b(1:8)= i8(1) ! padding occurred

! b(9:16)= i8(2) ! padding occurred

 end

 In the figure above, the dashed lines represent the padding.

@process autodbl(dblpad)

 block data

 complex(4) x8 /(1.123456789e0,2.123456789e0)/

 real(16) r16(2) /1.123q0,2.123q0/

 integer(8) i8(2) /1000,2000/

 character*5 c(2) /"abcde","12345"/

 common /named/ x8,r16,i8,c

 end

 subroutine s()

 complex(8) x8

 real(16) r16(4)

 integer(8) i8(4)

 character*5 c(2)

 common /named/ x8,r16,i8,c

! x8 = (1.123456789d0,2.123456789d0) ! promotion occurred

! r16(1) = 1.123q0 ! padding occurred

! r16(3) = 2.123q0 ! padding occurred

! i8(1) = 1000 ! padding occurred

! i8(3) = 2000 ! padding occurred

! c(1) = "abcde" ! no padding occurred

! c(2) = "12345" ! no padding occurred

 end subroutine s

4 8 16 320 64

COMPLEX (16) (padded)
COMPLEX (8) (promoted)
COMPLEX (4) (promoted)
REAL (16) (padded)
REAL (8) (promoted)
REAL (4) (promoted)
INTEGER (8) (padded)
INTEGER (4) (padded)
CHARACTER (16)

Figure 13. Storage relationships with -qautodbl=dblpad

304 XL Fortran Compiler Reference

Appendix B. XL Fortran internal limits

 Language Feature Limit

Maximum number of iterations performed

by DO loops with loop control with index

variable of type INTEGER(n) for n = 1, 2 or

4

(2**31)-1

Maximum number of iterations performed

by DO loops with loop control with index

variable of type INTEGER(8)

(2**63)-1

Maximum character format field width (2**31)-1

Maximum length of a format specification (2**31)-1

Maximum length of Hollerith and character

constant edit descriptors

(2**31)-1

Maximum length of a fixed source form

statement

34 000

Maximum length of a free source form

statement

34 000

Maximum number of continuation lines n/a �1�

Maximum number of nested INCLUDE

lines

64

Maximum number of nested interface blocks 1 024

Maximum number of statement numbers in

a computed GOTO

999

Maximum number of times a format code

can be repeated

(2**31)-1

Allowable record numbers and record

lengths for input/output files in 32-bit mode

The record number can be up to (2**63)-1.

The maximum record length is (2**31)-1

bytes.

Allowable record numbers and record

lengths for input/output files in 64-bit mode

The record number can be up to (2**63)-1,

and the record length can be up to (2**63)-1

bytes.

However, for unformatted sequential files,

you must use the uwidth=64 runtime option

for the record length to be greater than

(2**31)-1 and up to (2**63)-1. If you use the

default uwidth=32 runtime option, the

maximum length of a record in an

unformatted sequential file is (2**31)-1 bytes.

Allowable bound range of an array

dimension

The bound of an array dimension can be

positive, negative, or zero within the range

-(2**31) to 2**31-1 in 32-bit mode, or -(2**63)

to 2**63-1 in 64-bit mode.

Allowable external unit numbers 0 to (2**31)-1 �2�

Maximum numeric format field width 2 000

Maximum number of concurrent open files 1 024 �3�

 �1� You can have as many continuation lines as you need to create a statement

with a maximum of 34 000 bytes.

© Copyright IBM Corp. 1990, 2007 305

�2� The value must be representable in an INTEGER(4) object, even if specified

by an INTEGER(8) variable.

 �3� In practice, this value is somewhat lower because of files that the runtime

system may open, such as the preconnected units 0, 5, and 6.

306 XL Fortran Compiler Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1990, 2007 307

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

308 XL Fortran Compiler Reference

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2007. All rights reserved.

This software and documentation are based in part on the Fourth Berkeley

Software Distribution under license from the Regents of the University of

California. We acknowledge the following institution for its role in this product’s

development: the Electrical Engineering and Computer Sciences Department at the

Berkeley campus.

Trademarks and service marks

Company, product, or service names identified in the text may be trademarks or

service marks of IBM or other companies. Information on the trademarks of

International Business Machines Corporation in the United States, other countries,

or both is located at http://www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries

in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 309

http://www.ibm.com/legal/copytrade.shtml

310 XL Fortran Compiler Reference

Glossary

This glossary defines terms that are commonly

used in this document. It includes definitions

developed by the American National Standards

Institute (ANSI) and entries from the IBM

Terminology web site.

A

abstract interface. An ABSTRACT INTERFACE

consists of procedure characteristics and names of

dummy arguments. Used to declare the interfaces for

procedures and deferred bindings.

abstract type. A type that has the ABSTRACT

attribute. A nonpolymorphic object cannot be declared

to be of abstract type. A polymorphic object cannot be

constructed or allocated to have a dynamic type that is

abstract.

active processor. See online processor.

actual argument. An expression, variable, procedure,

or alternate return specifier that is specified in a

procedure reference.

alias. A single piece of storage that can be accessed

through more than a single name. Each name is an

alias for that storage.

alphabetic character. A letter or other symbol,

excluding digits, used in a language. Usually the

uppercase and lowercase letters A through Z plus other

special symbols (such as $ and _) allowed by a

particular language.

alphanumeric. Pertaining to a character set that

contains letters, digits, and usually other characters,

such as punctuation marks and mathematical symbols.

American National Standard Code for Information

Interchange. See ASCII.

argument. An expression that is passed to a function

or subroutine. See also actual argument, dummy

argument.

argument association. The relationship between an

actual argument and a dummy argument during the

invocation of a procedure.

arithmetic constant. A constant of type integer, real, or

complex.

arithmetic expression. One or more arithmetic

operators and arithmetic primaries, the evaluation of

which produces a numeric value. An arithmetic

expression can be an unsigned arithmetic constant, the

name of an arithmetic constant, or a reference to an

arithmetic variable, function reference, or a combination

of such primaries formed by using arithmetic operators

and parentheses.

arithmetic operator. A symbol that directs the

performance of an arithmetic operation. The intrinsic

arithmetic operators are:

+ addition

- subtraction

* multiplication

/ division

** exponentiation

array. An entity that contains an ordered group of

scalar data. All objects in an array have the same data

type and type parameters.

array declarator. The part of a statement that describes

an array used in a program unit. It indicates the name

of the array, the number of dimensions it contains, and

the size of each dimension.

array element. A single data item in an array,

identified by the array name and one or more

subscripts. See also subscript.

array name. The name of an ordered set of data items.

array section. A subobject that is an array and is not a

structure component.

ASCII. The standard code, using a coded character set

consisting of 7-bit coded characters (8-bits including

parity check), that is used for information interchange

among data processing systems, data communication

systems, and associated equipment. The ASCII set

consists of control characters and graphic characters.

See also Unicode.

asynchronous. Pertaining to events that are not

synchronized in time or do not occur in regular or

predictable time intervals.

assignment statement. An executable statement that

defines or redefines a variable based on the result of

expression evaluation.

associate name. The name by which a selector of a

SELECT TYPE or ASSOCIATE construct is known

within the construct.

assumed-size array. A dummy array whose size is

assumed from the associated actual argument. Its last

upper bound is specified by an asterisk.

© Copyright IBM Corp. 1990, 2007 311

http://www.ibm.com/software/globalization/terminology/
http://www.ibm.com/software/globalization/terminology/

attribute. A property of a data object that may be

specified in a type declaration statement, attribute

specification statement, or through a default setting.

automatic parallelization. The process by which the

compiler attempts to parallelize both explicitly coded

DO loops and DO loops generated by the compiler for

array language.

B

base type. An extensible type that is not an extension

of another type.

binary constant. A constant that is made of one or

more binary digits (0 and 1).

bind. To relate an identifier to another object in a

program; for example, to relate an identifier to a value,

an address or another identifier, or to associate formal

parameters and actual parameters.

binding label. A value of type default character that

uniquely identifies how a variable, common block,

subroutine, or function is known to a companion

processor.

blank common. An unnamed common block.

block data subprogram. A subprogram headed by a

BLOCK DATA statement and used to initialize

variables in named common blocks.

bounds_remapping. Allows a user to view a flat,

rank-1 array as a multi-dimensional array.

bss storage. Uninitialized static storage.

busy-wait. The state in which a thread keeps

executing in a tight loop looking for more work once it

has completed all of its work and there is no new work

to do.

byte constant. A named constant that is of type byte.

byte type. A data type representing a one-byte storage

area that can be used wherever a LOGICAL(1),

CHARACTER(1), or INTEGER(1) can be used.

C

character constant. A string of one or more alphabetic

characters enclosed in apostrophes or double quotation

marks.

character expression. A character object, a

character-valued function reference, or a sequence of

them separated by the concatenation operator, with

optional parentheses.

character operator. A symbol that represents an

operation, such as concatenation (//), to be performed

on character data.

character set. All the valid characters for a

programming language or for a computer system.

character string. A sequence of consecutive characters.

character substring. A contiguous portion of a

character string.

character type. A data type that consists of

alphanumeric characters. See also data type.

chunk. A subset of consecutive loop iterations.

class. A set of types comprised of a base type and all

types extended from it.

collating sequence. The sequence in which the

characters are ordered for the purpose of sorting,

merging, comparing, and processing indexed data

sequentially.

comment. A language construct for the inclusion of

text in a program that has no effect on the execution of

the program.

common block. A storage area that may be referred to

by a calling program and one or more subprograms.

compile. To translate a source program into an

executable program (an object program).

compiler comment directive. A line in source code

that is not a Fortran statement but is recognized and

acted on by the compiler.

compiler directive. Source code that controls what XL

Fortran does rather than what the user program does.

complex constant. An ordered pair of real or integer

constants separated by a comma and enclosed in

parentheses. The first constant of the pair is the real

part of the complex number; the second is the

imaginary part.

complex number. A number consisting of an ordered

pair of real numbers, expressible in the form a+bi,

where a and b are real numbers and i squared equals

-1.

complex type. A data type that represents the values

of complex numbers. The value is expressed as an

ordered pair of real data items separated by a comma

and enclosed in parentheses. The first item represents

the real part of the complex number; the second

represents the imaginary part.

component. A constituent of a derived type.

312 XL Fortran Compiler Reference

component order. The ordering of the components of

a derived type that is used for intrinsic formatted

input/output and for structure constructors.

conform. To adhere to a prevailing standard. An

executable program conforms to the Fortran 95

Standard if it uses only those forms and relationships

described therein and if the executable program has an

interpretation according to the Fortran 95 Standard. A

program unit conforms to the Fortran 95 Standard if it

can be included in an executable program in a manner

that allows the executable program to be

standard-conforming. A processor conforms to the

standard if it executes standard-conforming programs

in a manner that fulfills the interpretations prescribed

in the standard.

connected unit. In XL Fortran, a unit that is connected

to a file in one of three ways: explicitly via the OPEN

statement to a named file, implicitly, or by

preconnection.

constant. A data object with a value that does not

change. The four classes of constants specify numbers

(arithmetic), truth values (logical), character data

(character), and typeless data (hexadecimal, octal, and

binary). See also variable.

construct. A sequence of statements starting with a

SELECT CASE, DO, IF, or WHERE statement, for

example, and ending with the corresponding terminal

statement.

continuation line. A line that continues a statement

beyond its initial line.

control statement. A statement that is used to alter the

continuous sequential invocation of statements; a

control statement may be a conditional statement, such

as IF, or an imperative statement, such as STOP.

D

data object. A variable, constant, or subobject of a

constant.

data striping. Spreading data across multiple storage

devices so that I/O operations can be performed in

parallel for better performance. Also known as disk

striping.

data transfer statement. A READ, WRITE, or PRINT

statement.

data type. The properties and internal representation

that characterize data and functions. The intrinsic types

are integer, real, complex, logical, and character. See

also intrinsic.

debug line. Allowed only for fixed source form, a line

containing source code that is to be used for

debugging. Debug lines are defined by a D or X in

column 1. The handling of debug lines is controlled by

the -qdlines and -qxlines compiler options.

decimal symbol. The symbol that separates the whole

and fractional parts of a real number.

declared type. The type that a data entity is declared

to have. May differ from the type during execution (the

dynamic type) for polymorphic data entities.

default initialization. The initialization of an object

with a value specified as part of a derived type

definition.

deferred binding . A binding with the DEFERRED

attribute. A deferred binding can only appear in an

abstract type definition.

definable variable. A variable whose value can be

changed by the appearance of its name or designator

on the left of an assignment statement.

delimiters. A pair of parentheses or slashes (or both)

used to enclose syntactic lists.

denormalized number. An IEEE number with a very

small absolute value and lowered precision. A

denormalized number is represented by a zero

exponent and a non-zero fraction.

derived type. A type whose data have components,

each of which is either of intrinsic type or of another

derived type.

digit. A character that represents a nonnegative

integer. For example, any of the numerals from 0

through 9.

directive. A type of comment that provides

instructions and information to the compiler.

disk striping. See data striping.

DO loop. A range of statements invoked repetitively

by a DO statement.

DO variable. A variable, specified in a DO statement,

that is initialized or incremented prior to each

occurrence of the statement or statements within a DO

loop. It is used to control the number of times the

statements within the range are executed.

DOUBLE PRECISION constant. A constant of type

real with twice the precision of the default real

precision.

dummy argument. An entity whose name appears in

the parenthesized list following the procedure name in

a FUNCTION, SUBROUTINE, ENTRY, or statement

function statement.

dynamic dimensioning. The process of re-evaluating

the bounds of an array each time the array is

referenced.

Glossary 313

dynamic extent. For a directive, the lexical extent of

the directive and all subprograms called from within

the lexical extent.

dynamic type. The type of a data entity during

execution of a program. The dynamic type of a data

entity that is not polymorphic is the same as its

declared type.

E

edit descriptor. An abbreviated keyword that controls

the formatting of integer, real, or complex data.

effective item . A scalar object resulting from

expanding an input/output list.

elemental. Pertaining to an intrinsic operation,

procedure or assignment that is applied independently

to elements of an array or corresponding elements of a

set of conformable arrays and scalars.

embedded blank. A blank that is surrounded by any

other characters.

entity. A general term for any of the following: a

program unit, procedure, operator, interface block,

common block, external unit, statement function, type,

named variable, expression, component of a structure,

named constant, statement label, construct, or namelist

group.

environment variable. A variable that describes the

operating environment of the process.

executable program. A program that can be executed

as a self-contained procedure. It consists of a main

program and, optionally, modules, subprograms and

non-Fortran external procedures.

executable statement. A statement that causes an

action to be taken by the program; for example, to

perform a calculation, test conditions, or alter normal

sequential execution.

explicit initialization. The initialization of an object

with a value in a data statement initial value list, block

data program unit, type declaration statement, or array

constructor.

explicit interface. For a procedure referenced in a

scoping unit, the property of being an internal

procedure, module procedure, intrinsic procedure,

external procedure that has an interface block, recursive

procedure reference in its own scoping unit, or dummy

procedure that has an interface block.

expression. A sequence of operands, operators, and

parentheses. It may be a variable, a constant, or a

function reference, or it may represent a computation.

extended-precision constant. A processor

approximation to the value of a real number that

occupies 16 consecutive bytes of storage.

extended type. An extensible type that is an extension

of another type. A type that is declared with the

EXTENDS attribute.

extensible type. A type from which new types may be

derived using the EXTENDS attribute. A nonsequence

type that does not have the BIND attribute.

extension type. A base type is an extension type of

itself only. An extended type is an extension type of

itself and of all types for which its parent type is an

extension.

external file. A sequence of records on an

input/output device. See also internal file.

external name. The name of a common block,

subroutine, or other global procedure, which the linker

uses to resolve references from one compilation unit to

another.

external procedure. A procedure that is defined by an

external subprogram or by a means other than Fortran.

F

field. An area in a record used to contain a particular

category of data.

file. A sequence of records. See also external file,

internal file.

file index. See i-node.

final subroutine. A subroutine that is called

automatically during finalization.

finalizable. A type that has final subroutines, or that

has a finalizable component. An object of finalizable

type.

finalization. The process of calling user-defined final

subroutines immediately before destroying an object.

floating-point number. A real number represented by

a pair of distinct numerals. The real number is the

product of the fractional part, one of the numerals, and

a value obtained by raising the implicit floating-point

base to a power indicated by the second numeral.

format. (1) A defined arrangement of such things as

characters, fields, and lines, usually used for displays,

printouts, or files. (2) To arrange such things as

characters, fields, and lines.

formatted data. Data that is transferred between main

storage and an input/output device according to a

specified format. See also list-directed and unformatted

record.

314 XL Fortran Compiler Reference

function. A procedure that returns the value of a

single variable or an object and usually has a single

exit. See also intrinsic procedure, subprogram.

G

generic identifier. A lexical token that appears in an

INTERFACE statement and is associated with all the

procedures in an interface block.

H

hard limit. A system resource limit that can only be

raised or lowered by using root authority, or cannot be

altered because it is inherent in the system or operating

environments’s implementation. See also soft limit.

hexadecimal. Pertaining to a system of numbers to the

base sixteen; hexadecimal digits range from 0 (zero)

through 9 (nine) and A (ten) through F (fifteen).

hexadecimal constant. A constant, usually starting

with special characters, that contains only hexadecimal

digits.

high order transformations. A type of optimization

that restructures loops and array language.

Hollerith constant. A string of any characters capable

of representation by XL Fortran and preceded with nH,

where n is the number of characters in the string.

host. A main program or subprogram that contains an

internal procedure is called the host of the internal

procedure. A module that contains a module procedure

is called the host of the module procedure.

host association. The process by which an internal

subprogram, module subprogram, or derived-type

definition accesses the entities of its host.

I

IPA. Interprocedural analysis, a type of optimization

that allows optimizations to be performed across

procedure boundaries and across calls to procedures in

separate source files.

implicit interface. A procedure referenced in a

scoping unit other than its own is said to have an

implicit interface if the procedure is an external

procedure that does not have an interface block, a

dummy procedure that does not have an interface

block, or a statement function.

implied DO. An indexing specification (similar to a

DO statement, but without specifying the word DO)

with a list of data elements, rather than a set of

statements, as its range.

infinity. An IEEE number (positive or negative)

created by overflow or division by zero. Infinity is

represented by an exponent where all the bits are 1’s,

and a zero fraction.

inherit. To acquire from a parent. Components or

procedure bindings of an extended type that are

automatically acquired from its parent type without

explicit declaration in the extended type are said to be

inherited.

inheritance association . The relationship between the

inherited components and the parent component in an

extended type.

i-node. The internal structure that describes the

individual files in the operating system. There is at

least one i-node for each file. An i-node contains the

node, type, owner, and location of a file. A table of

i-nodes is stored near the beginning of a file system.

Also known as file index.

input/output (I/O). Pertaining to either input or

output, or both.

input/output list. A list of variables in an input or

output statement specifying the data to be read or

written. An output list can also contain a constant, an

expression involving operators or function references,

or an expression enclosed in parentheses.

integer constant. An optionally signed digit string

that contains no decimal point.

interface block. A sequence of statements from an

INTERFACE statement to its corresponding END

INTERFACE statement.

interface body. A sequence of statements in an

interface block from a FUNCTION or SUBROUTINE

statement to its corresponding END statement.

interference. A situation in which two iterations

within a DO loop have dependencies upon one

another.

internal file. A sequence of records in internal storage.

See also external file.

interprocedural analysis. See IPA.

intrinsic. Pertaining to types, operations, assignment

statements, and procedures that are defined by Fortran

language standards and can be used in any scoping

unit without further definition or specification.

intrinsic module. A module that is provided by the

compiler and is available to any program.

intrinsic procedure. A procedure that is provided by

the compiler and is available to any program.

Glossary 315

K

keyword. (1) A statement keyword is a word that is

part of the syntax of a statement (or directive) and may

be used to identify the statement. (2) An argument

keyword specifies the name of a dummy argument

kind type parameter. A parameter whose values label

the available kinds of an intrinsic type.

L

lexical extent. All of the code that appears directly

within a directive construct.

lexical token. A sequence of characters with an

indivisible interpretation.

link-edit. To create a loadable computer program by

means of a linker.

linker. A program that resolves cross-references

between separately compiled or assembled object

modules and then assigns final addresses to create a

single relocatable load module. If a single object

module is linked, the linker simply makes it

relocatable.

list-directed. A predefined input/output format that

depends on the type, type parameters, and values of

the entities in the data list.

literal. A symbol or a quantity in a source program

that is itself data, rather than a reference to data.

literal constant. A lexical token that directly represents

a scalar value of intrinsic type.

load balancing. An optimization strategy that aims at

evenly distributing the work load among processors.

logical constant. A constant with a value of either

true or false (or T or F).

logical operator. A symbol that represents an

operation on logical expressions:

 .NOT. (logical negation)

 .AND. (logical conjunction)

 .OR. (logical union)

 .EQV. (logical equivalence)

 .NEQV. (logical nonequivalence)

 .XOR. (logical exclusive disjunction)

loop. A statement block that executes repeatedly.

M

_main. The default name given to a main program by

the compiler if the main program was not named by

the programmer.

main program. The first program unit to receive

control when a program is run. See also subprogram.

master thread. The head process of a group of

threads.

module. A program unit that contains or accesses

definitions to be accessed by other program units.

mutex. A primitive object that provides mutual

exclusion between threads. A mutex is used

cooperatively between threads to ensure that only one

of the cooperating threads is allowed to access shared

data or run certain application code at a time.

N

NaN (not-a-number). A symbolic entity encoded in

floating-point format that does not correspond to a

number. See also quiet NaN, signaling NaN.

name. A lexical token consisting of a letter followed

by up to 249 alphanumeric characters (letters, digits,

and underscores). Note that in FORTRAN 77, this was

called a symbolic name.

named common. A separate, named common block

consisting of variables.

namelist group name. The first parameter in the

NAMELIST statement that names a list of names to be

used in READ, WRITE, and PRINT statements.

negative zero. An IEEE representation where the

exponent and fraction are both zero, but the sign bit is

1. Negative zero is treated as equal to positive zero.

nest. To incorporate a structure or structures of some

kind into a structure of the same kind. For example, to

nest one loop (the nested loop) within another loop

(the nesting loop); to nest one subroutine (the nested

subroutine) within another subroutine (the nesting

subroutine).

nonexecutable statement. A statement that describes

the characteristics of a program unit, data, editing

information, or statement functions, but does not cause

any action to be taken by the program.

nonexisting file. A file that does not physically exist

on any accessible storage medium.

normal. A floating point number that is not denormal,

infinity, or NaN.

not-a-number. See NaN.

numeric constant. A constant that expresses an

integer, real, complex, or byte number.

numeric storage unit. The space occupied by a

nonpointer scalar object of type default integer, default

real, or default logical.

316 XL Fortran Compiler Reference

O

octal. Pertaining to a system of numbers to the base

eight; the octal digits range from 0 (zero) through 7

(seven).

octal constant. A constant that is made of octal digits.

one-trip DO-loop. A DO loop that is executed at least

once, if reached, even if the iteration count is equal to

0. (This type of loop is from FORTRAN 66.)

online processor. In a multiprocessor machine, a

processor that has been activated (brought online). The

number of online processors is less than or equal to the

number of physical processors actually installed in the

machine. Also known as active processor.

operator. A specification of a particular computation

involving one or two operands.

P

pad. To fill unused positions in a field or character

string with dummy data, usually zeros or blanks.

paging space. Disk storage for information that is

resident in virtual memory but is not currently being

accessed.

parent component. The component of an entity of

extended type that corresponds to its inherited portion.

parent type. The extensible type from which an

extended type is derived.

passed-object dummy argument . The dummy

argument of a type-bound procedure or procedure

pointer component that becomes associated with the

object through which the procedure was invoked.

PDF. See profile-directed feedback.

pointee array. An explicit-shape or assumed-size array

that is declared in an integer POINTER statement or

other specification statement.

pointer. A variable that has the POINTER attribute. A

pointer must not be referenced or defined unless it is

pointer associated with a target. If it is an array, it does

not have a shape unless it is pointer-associated.

polymorphic. Able to be of differing types during

program execution. An object declared with the CLASS

keyword is polymorphic.

preconnected file. A file that is connected to a unit at

the beginning of execution of the executable program.

Standard error, standard input, and standard output are

preconnected files (units 0, 5 and 6, respectively).

predefined convention. The implied type and length

specification of a data object, based on the initial

character of its name when no explicit specification is

given. The initial characters I through N imply type

integer of length 4; the initial characters A through H,

O through Z, $, and _ imply type real of length 4.

present. A dummy argument is present in an instance

of a subprogram if it is associated with an actual

argument and the actual argument is a dummy

argument that is present in the invoking procedure or

is not a dummy argument of the invoking procedure.

primary. The simplest form of an expression: an

object, array constructor, structure constructor, function

reference, or expression enclosed in parentheses.

procedure. A computation that may be invoked

during program execution. It may be a function or a

subroutine. It may be an intrinsic procedure, an

external procedure, a module procedure, an internal

procedure, a dummy procedure, or a statement

function. A subprogram may define more than one

procedure if it contains ENTRY statements.

procedure binding. See type-bound procedure.

procedure pointer. A procedure entity that has the

EXTERNAL and POINTER attributes. It can be pointer

associated with an external procedure, a module

procedure, a dummy procedure or another procedure

pointer.

profile-directed feedback (PDF). A type of

optimization that uses information collected during

application execution to improve performance of

conditional branches and in frequently executed

sections of code.

program unit. A main program or subprogram.

pure. An attribute of a procedure that indicates there

are no side effects.

Q

quiet NaN. A NaN (not-a-number) value that does not

signal an exception. The intent of a quiet NaN is to

propagate a NaN result through subsequent

computations. See also NaN, signaling NaN.

R

random access. An access method in which records

can be read from, written to, or removed from a file in

any order. See also sequential access.

rank. The number of dimensions of an array.

real constant. A string of decimal digits that expresses

a real number. A real constant must contain a decimal

point, a decimal exponent, or both.

Glossary 317

record. A sequence of values that is treated as a whole

within a file.

relational expression. An expression that consists of

an arithmetic or character expression, followed by a

relational operator, followed by another arithmetic or

character expression.

relational operator. The words or symbols used to

express a relational condition or a relational expression:

 .GT. greater than

 .GE. greater than or equal to

 .LT. less than

 .LE. less than or equal to

 .EQ. equal to

 .NE. not equal to

result variable. The variable that returns the value of

a function.

return specifier. An argument specified for a

statement, such as CALL, that indicates to which

statement label control should return, depending on the

action specified by the subroutine in the RETURN

statement.

S

scalar. (1) A single datum that is not an array. (2) Not

having the property of being an array.

scale factor. A number indicating the location of the

decimal point in a real number (and, on input, if there

is no exponent, the magnitude of the number).

scope. That part of an executable program within

which a lexical token has a single interpretation.

scope attribute. That part of an executable program

within which a lexical token has a single interpretation

of a particular named property or entity.

scoping unit. (1) A derived-type definition. (2) An

interface body, excluding any derived-type definitions

and interface bodies contained within it. (3) A program

unit or subprogram, excluding derived-type definitions,

interface bodies, and subprograms contained within it.

selector. The object that is associated with the

associate name in an ASSOCIATE construct.

semantics. The relationships of characters or groups of

characters to their meanings, independent of the

manner of their interpretation and use. See also syntax.

sequential access. An access method in which records

are read from, written to, or removed from a file based

on the logical order of the records in the file. See also

random access.

signaling NaN. A NaN (not-a-number) value that

signals an invalid operation exception whenever it

appears as an operand. The intent of the signaling NaN

is to catch program errors, such as using an

uninitialized variable. See also NaN, quiet NaN.

sleep. The state in which a thread completely

suspends execution until another thread signals it that

there is work to do.

SMP. See symmetric multiprocessing.

soft limit. A system resource limit that is currently in

effect for a process. The value of a soft limit can be

raised or lowered by a process, without requiring root

authority. The soft limit for a resource cannot be raised

above the setting of the hard limit. See also hard limit.

spill space. The stack space reserved in each

subprogram in case there are too many variables to

hold in registers and the program needs temporary

storage for register contents.

specification statement. A statement that provides

information about the data used in the source program.

The statement could also supply information to allocate

data storage.

stanza. A group of lines in a file that together have a

common function or define a part of the system.

Stanzas are usually separated by blank lines or colons,

and each stanza has a name.

statement. A language construct that represents a step

in a sequence of actions or a set of declarations.

Statements fall into two broad classes: executable and

nonexecutable.

statement function. A name, followed by a list of

dummy arguments, that is equated with an intrinsic or

derived-type expression, and that can be used as a

substitute for the expression throughout the program.

statement label. A number made up of one to five

digits that is used to identify a statement. Statement

labels can be used to transfer control, to define the

range of a DO, or to refer to a FORMAT statement.

storage association. The relationship between two

storage sequences if a storage unit of one is the same as

a storage unit of the other.

structure. A scalar data object of derived type.

structure component. The part of a data object of

derived-type corresponding to a component of its type.

subobject. A portion of a named data object that may

be referenced or defined independently of other

portions. It can be an array element, array section,

structure component, or substring.

subprogram. A function subprogram or a subroutine

subprogram. Note that in FORTRAN 77, a block data

program unit was called a subprogram. See also main

program.

318 XL Fortran Compiler Reference

subroutine. A procedure that is invoked by a CALL

statement or defined assignment statement.

subscript. A subscript quantity or set of subscript

quantities enclosed in parentheses and used with an

array name to identify a particular array element.

substring. A contiguous portion of a scalar character

string. (Although an array section can specify a

substring selector, the result is not a substring.)

symmetric multiprocessing (SMP). A system in which

functionally-identical multiple processors are used in

parallel, providing simple and efficient load-balancing.

synchronous. Pertaining to an operation that occurs

regularly or predictably with regard to the occurrence

of a specified event in another process.

syntax. The rules for the construction of a statement.

See also semantics.

T

target. A named data object specified to have the

TARGET attribute, a data object created by an

ALLOCATE statement for a pointer, or a subobject of

such an object.

thread. A stream of computer instructions that is in

control of a process. A multithread process begins with

one stream of instructions (one thread) and may later

create other instruction streams to perform tasks.

thread-visible variable. A variable that can be

accessed by more than one thread.

time slice. An interval of time on the processing unit

allocated for use in performing a task. After the

interval has expired, processing unit time is allocated to

another task, so a task cannot monopolize processing

unit time beyond a fixed limit.

token. In a programming language, a character string,

in a particular format, that has some defined

significance.

trigger constant. A sequence of characters that

identifies comment lines as compiler comment

directives.

procedure. A procedure binding in a type definition.

The procedure may be referenced by the binding-name

via any object of that dynamic type, as a defined

operator, by defined assignment, or as part of the

finalization process.

type compatible. All entities are type compatible with

other entities of the same type. Unlimited polymorphic

entities are type compatible with all entities; other

polymorphic entities are type compatible with entities

whose dynamic type is an extension type of the

polymorphic entity's declared type.

type declaration statement. A statement that specifies

the type, length, and attributes of an object or function.

Objects can be assigned initial values.

type parameter. A parameter of a data type. KIND

and LEN are the type parameters of intrinsic types.

U

unformatted record. A record that is transmitted

unchanged between internal and external storage.

Unicode. A universal character encoding standard that

supports the interchange, processing, and display of

text that is written in any of the languages of the

modern world. It also supports many classical and

historical texts in a number of languages. The Unicode

standard has a 16-bit international character set defined

by ISO 10646. See also ASCII.

unit. A means of referring to a file to use in

input/output statements. A unit can be connected or

not connected to a file. If connected, it refers to a file.

The connection is symmetric: that is, if a unit is

connected to a file, the file is connected to the unit.

unsafe option. Any option that could result in

undesirable results if used in the incorrect context.

Other options may result in very small variations from

the default result, which is usually acceptable.

Typically, using an unsafe option is an assertion that

your code is not subject to the conditions that make the

option unsafe.

use association. The association of names in different

scoping units specified by a USE statement.

V

variable. A data object whose value can be defined

and redefined during the execution of an executable

program. It may be a named data object, array element,

array section, structure component, or substring. Note

that in FORTRAN 77, a variable was always scalar and

named.

X

XPG4. X/Open Common Applications Environment

(CAE) Portability Guide Issue 4; a document which

defines the interfaces of the X/Open Common

Applications Environment that is a superset of

POSIX.1-1990, POSIX.2-1992, and POSIX.2a-1992

containing extensions to POSIX standards from XPG3.

Z

zero-length character. A character object that has a

length of 0 and is always defined.

Glossary 319

zero-sized array. An array that has a lower bound that

is greater than its corresponding upper bound. The

array is always defined.

320 XL Fortran Compiler Reference

Index

Special characters
_OPENMP C preprocessor macro 28

-# compiler option 60

-1 compiler option 61

-B compiler 62

-c compiler option 64

-C compiler option 63

-d compiler option 66

-D compiler option 65

-F compiler option 67

-g compiler option 69, 289

-I compiler option 70

-k compiler option 71

-l compiler option 73

-L compiler option 72

-NS compiler option 74

-o compiler option 78

-O compiler option 75

-O2 compiler option 75

-O3 compiler option 75

-O4 compiler option 76

-O5 compiler option 76

-p compiler option 79

-Q, -Q!, -Q+, -Q- compiler options 80

-q32 compiler option 82

-q64 compiler option 83

-qalias compiler option 85

-qalias_size compiler option 88

-qalign compiler option 89

-qarch compiler option 27

-qassert compiler option 95

-qattr compiler option 96, 294

-qautodbl compiler option 97, 299

-qbigdata compiler option 100

-qcache compiler option 27, 101

-qcclines compiler option 104

-qcheck compiler option 63, 105

-qci compiler option 106

-qcompact compiler option 107

-qcr compiler option 108

-qctyplss compiler option 109

-qdbg compiler option 69, 111

-qddim compiler option 112

-qdescriptor compiler option 113

-qdirective compiler option 115

-qdlines compiler option 65, 118

-qdpc compiler option 119

-qenum compiler option 122

-qescape compiler option 123

-qessl compiler option 125

-qextern compiler option 126

-qextname compiler option 128

-qfdpr compiler option 130

-qfixed compiler option 131

-qflag compiler option 132

-qflttrap compiler option 139

-qfpp option 138

-qfree compiler option 141

-qfullpath compiler option 143

-qhalt compiler option 144

-qieee compiler option 149, 280

-qinit compiler option 150

-qinitauto compiler option 151

-qinlglue compiler option 154

-qintlog compiler option 155

-qintsize compiler option 156

-qkeepparm compiler option 167

-qlanglvl compiler option 168

-qlibansi compiler option 170

-qlinedebug compiler option 171

-qlist compiler option 172, 295

-qlistopt compiler option 174, 291

-qlog4 compiler option 175

-qmaxmem compiler option 176

-qmbcs compiler option 178

-qminimaltoc compiler option 179

-qmixed compiler option 180

-qmoddir compiler option 181

-qmodule compiler option 182

-qnoprint compiler option 183

-qnullterm compiler option 184

-qobject compiler option 186

-qoldmod compiler option 187

-qonetrip compiler option 61, 189

-qoptimize compiler option 75, 191

-qphsinfo compiler option 196

-qport compiler option 199

-qposition compiler option 202

-qppsuborigarg option 203

-qprefetch compiler option 205

-qqcount compiler option 206

-qrealsize compiler option 207

-qrecur compiler option 209

-qreport compiler option 211, 293

-qsaa compiler option 213

-qsave compiler option 214

-qsclk compiler option 218

-qshowpdf compiler option 219

-qsigtrap compiler option 220

-qsmallstack compiler option 221

-qsmp compiler option 223

-qsource compiler option 228, 292

-qspillsize compiler option 74, 230

-qstacktemp compiler option 231

-qstrict compiler option 233

-qstrict_induction compiler option 235

-qstrictieeemod compiler option 234

-qsuffix compiler option 237

-qsuppress compiler option 238

-qswapomp compiler option 240

-qtbtable compiler option 242

-qthreaded compiler option 244

-qtune compiler option 27

-qundef compiler option 247, 274

-qunroll compiler option 248

-qunwind compiler option 250

-qwarn64 compiler option 253

-qxflag=dvz compiler option 254

-qxflag=oldtab compiler option 256

-qxlf2003 compiler option 262

-qxlf77 compiler option 257

-qxlf90 compiler option 260

-qxlines compiler option 265

-qxref compiler option 268, 294

-qzerosize compiler option 269

-S compiler option 270

-u compiler option 274

-U compiler option 273

-v compiler option 275

-V compiler option 276

-w compiler option 132, 279

-yn, -ym, -yp, -yz compiler options 149,

280

/tmp directory
See TMPDIR environment variable

.a files 22

.cfg files 22

.f and .F files 22

.lst files 23

.mod file names 182

.mod files 22, 23, 33, 181

.o files 22, 23

.s files 22, 23

.so files 22

.XOR. operator 257

@PROCESS compiler directive 26

#if and other cpp directives 29

Numerics
1501-229, and 1517-011 error

messages 287

15xx identifiers for XL Fortran

messages 284

4K suboption of -qalign 89

64-bit environment 281

A
a.out file 23

actual arguments
definition of 311

addresses of arguments, saving 257

aggressive array I/O 34

aggressive_array_io runtime option 34

ALIAS @PROCESS directive 85

alias table size 88

ALIGN @PROCESS directive 89

alignment of BIND(C) derived types 89

alignment of CSECTs and large arrays for

data-striped I/O 89

allocatable arrays, automatic deallocation

with -qxlf90=autodealloc 260

alphabetic character, definition of 311

alphanumeric, definition of 311

ANSI
checking conformance to the Fortran

90 standard 4, 38, 168

checking conformance to the Fortran

95 standard 4, 38, 168

appendold and appendunknown

suboptions of -qposition 202

© Copyright IBM Corp. 1990, 2007 321

architecture 92

-qarch compiler option 92

-qtune compiler option 245

architecture combination 246

archive files 22

argument addresses, saving 257

argument promotion (integer only) for

intrinsic procedures 257

arguments
definition of 311

passing null-terminated strings to C

functions 184

arrays
optimizing assignments 85

padding 146

arrays, initialization problems 287

aryovrlp suboption of -qalias 85

as attribute of configuration file 15

as command, passing command-line

options to 27

ASCII
definition of 311

asopt attribute of configuration file 15

assembler
source (.s) files 22, 23

ATTR @PROCESS directive 96

attribute section in compiler listing 294

AUTODBL @PROCESS directive 97

autodealloc suboption of -qxlf90 260

autorealloc suboption, -qxlf2003 262

B
bash shell 8

BIND(C) derived types, alignment 89

blankpad suboption of -qxlf77 257

bolt attribute of configuration file 16

bozlitargs suboption, -qxlf2003 263

bss storage, alignment of arrays in 89

buffering runtime option
description 34

using with preconnected files 34

C
C preprocessor (cpp) 28, 138, 203

carriage return character 108

CCLINES @PROCESS 104

character constants and typeless

constants 109

CHECK @PROCESS directive 63, 105

chunk
definition of 312

CI @PROCESS directive 106

cleanpdf command 193

cnverr runtime option 36

code attribute of configuration file 15

code generation for different systems 27

code optimization 5

command line options, summary 45

command line, specifying options on 25

command-line options
See compiler options

COMPACT @PROCESS directive 107

compatibility
options for compatibility 56

compilation order 22

compilation unit epilogue section in

compiler listing 295

compiler listings 291

compiler options
See also the individual options listed

under Special Characters at the start

of the index

deprecated 57

descriptions 59

obsolete or not recommended 57

scope and precedence 25

section in compiler listing 291

specifying in the source file 26

specifying on the command line 25

compiler options for 64-bit 281

compiling
cancelling a compilation 22

description of how to compile a

program 19

Fortran 2003 programs 21

problems 286

SMP programs 21

conditional compilation 28

configuration 10

custom configuration files 10

configuration file 22, 67

conflicting options
-C interferes with -qhot 63

-qautodbl overrides -qrealsize 99

-qdpc is overridden by -qautodbl and

-qrealsize 207

-qflag overrides -qlanglvl or

-qsaa 133

-qhalt is overridden by

-qnoobject 186

-qhalt overrides -qobject 186

-qhot is overridden by -C 148

-qintsize overrides -qlog4 175

-qlanglvl is overridden by -qflag 169

-qlog4 is overridden by -qintsize 175

-qnoobject overrides -qhalt 145

-qobject is overridden by -qhalt 145

-qrealsize is overridden by

-qautodbl 99, 207

-qrealsize overrides -qdpc 207

-qsaa is overridden by -qflag 213

@PROCESS overrides command-line

setting 25

command-line overrides configuration

file setting 25

specified more than once, last one

takes effect 25

conformance checking 4, 168, 213

control size of alias table 88

conversion errors 36

core file 289

could not load program (error

message) 286

cpp attribute of configuration file 15

cpp command 28

cpp, cppoptions, and cppsuffix attributes

of configuration file 15

cppsuffix attribute of configuration

file 16

cpu_time_type runtime option 36

cross reference section in compiler

listing 294

crt attribute of configuration file 14

crt_64 attribute of configuration file 14

CSECTS, alignment of 89

csh shell 8

CTYPLSS @PROCESS directive 109

customizing configuration file (including

default compiler options) 14

D
data limit 286

data striping
-qalign required for improved

performance 89

DBG @PROCESS directive 69, 111

dbl, dbl4, dbl8, dblpad, dblpad4, dblpad8

suboptions of -qautodbl 97

DDIM @PROCESS directive 112

debugger support 5

debugging 283

using path names of original

files 143

default_recl runtime option 37

defaultmsg attribute of configuration

file 16

defaults
customizing compiler defaults 14

search paths for include and .mod

files 70

search paths for libraries 9

deprecated compiler options 57

deps suboption of -qassert 95

descriptor data structure formats 113

DIRECTIVE @PROCESS directive 115

disassembly listing
from the -S compiler option 270

disk space, running out of 287

disk striping
See data striping

DLINES @PROCESS directive 65, 118

DPC @PROCESS directive 119

dummy argument
definition of 313

dynamic dimensioning of arrays 112

dynamic extent, definition of 314

dynamic linking 31

E
E error severity 283

edit descriptors (B, O, Z), differences

between F77 and F90 257

edit descriptors (G), difference between

F77 and F90 257

editing configuration file 14

editing source files 19

emacs text editor 19

enable suboption of -qflttrap 139

end-of-file, writing past 257

ENTRY statements, compatibility with

previous compiler versions 257

environment problems 286

environment variables
compile time 7

322 XL Fortran Compiler Reference

environment variables (continued)
LANG 8

NLSPATH 8

PDFDIR 9

TMPDIR 10

LD_LIBRARY_PATH 9

LD_RUN_PATH 9

runtime
LD_LIBRARY_PATH 44

LD_RUN_PATH 44

PDFDIR 9

TMPDIR 44

XLFRTEOPTS 33

XL_NOCLONEARCH 43

XLF_USR_CONFIG 44

XLFSCRATCH_unit 10

XLFUNIT_unit 10

eof, writing past 257

epilogue sections in compiler listing 295

err_recovery runtime option 37

errloc runtime option 37

error checking and debugging 50

error messages 283

1501-229 287

1517-011 287

explanation of format 284

in compiler listing 292

erroreof runtime option 37

errthrdnum runtime option 37

ESCAPE @PROCESS directive 123

example programs
See sample programs

exception handling 44

for floating point 139

exclusive or operator 257

executable files 23

executing a program 32

executing the compiler 19

external names
in the runtime environment 298

EXTNAME @PROCESS directive 128

F
f77 command

description 19

level of Fortran standard

compliance 21

faster array I/O 34

file table section in compiler listing 295

files
editing source 19

input 22

output 23

using suffixes other than .f for source

files 16

FIPS FORTRAN standard, checking

conformance to 4

FIXED @PROCESS directive 131

FLAG @PROCESS directive 132

floating-point
exception handling 44

exceptions 139

FLTTRAP @PROCESS directive 139

fort77 command
description 19

Fortran 2003
programs, compiling 21

Fortran 2003 features 38

Fortran 2003 iostat_end behavior 37

Fortran 90
compiling programs written for 21

FREE @PROCESS directive 141

fsuffix attribute of configuration file 16

full suboption of -qtbtable 242

FULLPATH @PROCESS directive 143

G
G edit descriptor, difference between F77

and F90 257

gcc_libs attribute of configuration file 15

gcc_libs_64 attribute of configuration

file 15

gcc_path attribute of configuration

file 15

gcc_path_64 attribute of configuration

file 15

gcrt attribute of configuration file 14

gcrt64 attribute of configuration file 14

gedit77 suboption of -qxlf77 257

generating code for different systems 27

H
HALT @PROCESS directive 144

hardware, compiling for different types

of 27

header section in compiler listing 291

hexint and nohexint suboptions of

-qport 199

high order transformation 146

hot attribute of configuration file 16

hsflt suboption of -qfloat 298

I
I error severity 283

i-node 40

I/O
See input/output

IEEE @PROCESS directive 149, 280

IEEE infinity output 263

IEEE NaN output 263

imprecise suboption of -qflttrap 139

include attribute of configuration file 16

include directory 33

include_32 attribute of configuration

file 16

include_64 attribute of configuration

file 16

inexact suboption of -qflttrap 139

informational message 283

INIT @PROCESS directive 150

initialize arrays, problems 287

INLGLUE @PROCESS directive 154

inlining 80

input files 22

input/output
increasing throughput with data

striping 89

runtime behavior 33

input/output (continued)
when unit is positioned at

end-of-file 257

installation problems 286

installing the compiler 7

intarg suboption of -qxlf77 257

integer arguments of different kinds to

intrinsic procedures 257

internal limits for the compiler 305

interprocedural analysis (IPA) 158

INTLOG @PROCESS directive 155

intptr suboption of -qalias 85

intrinsic procedures accepting integer

arguments of different kinds 257

intrinthds runtime option 38

INTSIZE @PROCESS directive 156

intxor suboption of -qxlf77 257

invalid suboption of -qflttrap 139

invoking a program 32

invoking the compiler 19

iostat_end runtime option 37

ipa attribute of configuration file 16

irand routine, naming restriction for 31

ISO
checking conformance to the Fortran

2003 standard 4

checking conformance to the Fortran

90 standard 4, 38, 168

checking conformance to the Fortran

95 standard 4, 38, 168

itercnt suboption of -qassert 95

K
kind type parameters 156, 207

ksh shell 8

L
L error severity 283

LANG environment variable 8

LANGLVL @PROCESS directive 168

langlvl runtime option 38

language support 3

language-level error 283

LC_* national language categories 9

ld command
passing command-line options to 27

LD_LIBRARY_PATH environment

variable 9, 44

LD_RUN_PATH environment

variable 9, 44

ldopt attributes of configuration file 15

leadzero suboption of -qxlf77 257

level of XL Fortran, determining 16

lexical extent, definition of 316

lib*.so library files 22, 73

libraries 22

default search paths 9

shared 297

libraries attribute of configuration

file 16

library path environment variable 286

libxlf90_t.so 20

libxlf90.so library 33

libxlsmp.so library 33

Index 323

limit command 286

limits internal to the compiler 305

line feed character 108

LINEDEBUG @PROCESS directive 171

linking 30

dynamic 31

problems 287

static 31

LIST @PROCESS directive 172

listing files 23

LISTOPT @PROCESS directive 174

little-endian I/O 41

locale, setting at run time 33

LOG4 @PROCESS directive 175

M
m suboption of -y 280

machines, compiling for different

types 27, 92

macro expansion 28, 138, 203

macro, _OPENMP C preprocessor 28

maf suboption of -qfloat 233

make command 60

makefiles
copying modified configuration files

along with 14

malloc system routine 98

MAXMEM @PROCESS directive 176

MBCS @PROCESS directive 178

mclock routine, naming restrictions

for 31

mergepdf 193

message suppression 238

messages
1501-053 error message 287

1501-229 error message 287

1517-011 error message 287

catalog files for 285

copying message catalogs to another

system 285

selecting the language for runtime

messages 33

migrating 4

minus suboption of -qieee 149

MIXED @PROCESS directive 180, 273

mod and nomod suboptions of

-qport 199

mod file names, intrinsic 182

mod files 22, 23, 181

modules, effect on compilation order 22

mon.out file 22

multconn runtime option 39

multconnio runtime option 40

N
n suboption of -y 280

name conflicts, avoiding 31

namelist runtime option 41

NaN values
specifying with -qinitauto compiler

option 151

naninfoutput runtime option 41

national language support
at run time 33

national language support (continued)
compile time environment 8

nearest suboption of -qieee 149

network file system (NFS)
using the compiler on a 7

Network Install Manager 7

NFS
See network file system

NIM (Network Install Manager) 7

NLSPATH environment variable
compile time 8

nlwidth runtime option 41

nodblpad suboption of -qautodbl
See none suboption instead

nodeps suboption of -qassert 95

none suboption of -qautodbl 97

none suboption of -qtbtable 242

nooldnaninf suboption, -qxlf2003 263

nooldpad suboption of -qxlf90 260

null-terminated strings, passing to C

functions 184

NULLTERM @PROCESS directive 184

O
OBJECT @PROCESS directive 186

object files 22, 23

obsolete compiler options 57

oldboz suboption of -qxlf77 257

oldpad suboption of -qxlf90 260

ONETRIP @PROCESS directive 61, 189

optimization 5

OPTIMIZE @PROCESS directive 75, 191

options attribute of configuration file 15

options for performance optimization 52

options section in compiler listing 291

options that control linking 55

options that control listings and

messages 51

osuffix attribute of configuration file 16

output files 23

overflow suboption of -qflttrap 140

P
p suboption of -y 280

pad setting, changing for internal,

direct-access and stream-access

files 257

padding of data types with -qautodbl

option 299

paging space
running out of 287

parameters
See arguments

path name of source files, preserving

with -qfullpath 143

PDFDIR environment variable 9

performance of real operations, speeding

up 98, 207

performance optimization options 52

persistent suboption of -qxlf77 257

PHSINFO @PROCESS directive 196

platform, compiling for a specific

type 92

plus suboption of -qieee 149

pointers (Fortran 90) and -qinit compiler

option 150

polymorphic suboption of -qxlf2003 262

PORT @PROCESS directive 199

POSITION @PROCESS directive 202

POSIX pthreads
API support 22

runtime libraries 33

POWER3, POWER4, POWER5, or

PowerPC systems
compiling programs for 27

PowerPC systems
compiling programs for 27

precision of real data types 98, 207

preprocessing Fortran source with the C

preprocessor 28

problem determination 283

procedure calls to other languages
See subprograms in other languages,

calling

prof command 23

profile-directed feedback (PDF) 192

-qpdf1 compiler option 192

-qpdf2 compiler option 192

profiling 79

-qpdf1 compiler option 192

-qpdf2 compiler option 192

profiling data files 23

Program Editor 19

promoting integer arguments to intrinsic

procedures 257

promotion of data types with -qautodbl

option 299

pteovrlp suboption of -qalias 85

Q
QCOUNT @PROCESS directive 206

qdirectstorage compiler option 117

quiet NaN 152

quiet NaN suboption of -qflttrap 139

R
rand routine, naming restriction for 31

random runtime option 41

READ statements past end-of-file 257

README file 7

REAL data types 98

REALSIZE @PROCESS directive 207

RECUR @PROCESS directive 209

recursion 209, 214

register flushing 167

resetpdf command 193

return code
from compiler 284

from Fortran programs 284

rpm command 16

rrm suboption of -qfloat 233

run time
exceptions 44

options 33

running a program 32

running the compiler 19

runtime
libraries 22

324 XL Fortran Compiler Reference

runtime (continued)
problems 288

runtime environment
external names in 298

S
S error severity 283

SAA @PROCESS directive 213

SAA FORTRAN definition, checking

conformance to 4

SAVE @PROCESS directive 214

scratch file directory
See TMPDIR environment variable

scratch_vars runtime option 10, 41

setlocale libc routine 33

setrteopts service and utility

procedure 33

severe error 283

sh shell 8

shared libraries 297

shared object files 22

showpdf 193

SIGN intrinsic, effect of

-qxlf90=signedzero on 260

signal handling 44

signedzero suboption of -qxlf90 260

SIGTRAP signal 44

small suboption of -qtbtable 242

SMP
programs, compiling 21

smplibraries attribute of configuration

file 16

softeof suboption of -qxlf77 257

SOURCE @PROCESS directive 228

source file options 26

source files 22

allowing suffixes other than .f 16

preserving path names for

debugging 143

specifying options in 26

source section in compiler listing 292

source-code conformance checking 4

source-level debugging support 5

space problems 286

SPILLSIZE @PROCESS directive 74, 230

ssuffix attribute of configuration file 16

stack
limit 286

static linking 31

static storage, alignment of arrays in 89

std suboption of -qalias 85

storage limits 286

storage relationship between data

objects 299

storage-associated arrays, performance

implications of 85

STRICT @PROCESS directive 233

strictieeemod @PROCESS directive 234

strings, passing to C functions 184

subprogram calls to other languages
See subprograms in other languages,

calling

suffix, allowing other than .f on source

files 16

suffixes for source files 237

summary of command line options 45

SWAPOMP @PROCESS directive 240

symbolic debugger support 5

system problems 286

T
target machine, compiling for 92

temporary arrays, reducing 85

temporary file directory 10

temporary files
See /tmp directory

text editors 19

threads, controlling 38

throughput for I/O, increasing with data

striping 89

times routine, naming restriction for 31

TMPDIR environment variable 44, 287

compile time 10

Trace/breakpoint trap 44

traceback listing 220, 289

transformation report section in compiler

listing 293

trigger_constant
IBM* 115

IBMT 244

setting values 115

trigraphs 30

tuning 245

-qarch compiler option 245

-qtune compiler option 245

typeless constants and character

constants 109

typestmt and notypestmt suboptions of

-qport 199

U
U error severity 283

ufmt_littleendian runtime option 41

ulimit command 286

UNDEF @PROCESS directive 247, 274

underflow suboption of -qflttrap 140

unformatted data files, little-endian

I/O 41

Unicode data 178

unit_vars runtime option 10, 42, 43

UNIVERSAL setting for locale 178

unrecoverable error 283

unrolling DO LOOPs 248

UNWIND @PROCESS directive 250

use attribute of configuration file 14

UTF-8 encoding for Unicode data 178

uwidth runtime option 42

V
value relationships between data

objects 299

vector processing 121

vi text editor 19

W
W error severity 283

warning error 283

what command 16

WRITE statements past end-of-file 257

X
XFLAG(OLDTAB) @PROCESS

directive 256

xl__trbk library procedure 289

xl__trce exception handler 220

XL_NOCLONEARCH environment

variable 43

xlf attribute of configuration file 15

xlf command
description 19

level of Fortran standard

compliance 21

xlf_r command
description 19

for compiling SMP programs 21

level of Fortran standard

compliance 21

XLF_USR_CONFIG environment

variable 44

xlf.cfg configuration file 14, 67

xlf.cfg.nn configuration file 67

XLF2003 @PROCESS directive 262

xlf2003 command
description 19

XLF77 @PROCESS directive 257

XLF90 @PROCESS directive 260

xlf90 command
description 19

level of Fortran standard

compliance 21

xlf90_r command
description 19

for compiling SMP programs 21

level of Fortran standard

compliance 21

xlf95 command
description 19

xlf95_r command
description 19

for compiling SMP programs 21

level of Fortran standard

compliance 21

xlfopt attribute of configuration file 15

XLFRTEOPTS environment variable 33

XLFSCRATCH_unit environment

variable 10, 41

XLFUNIT_unit environment variable 10,

42

XLINES @PROCESS 265

XOR 257

XREF @PROCESS directive 268

xrf_messages runtime option 43

Z
z suboption of -y 280

zero suboption of -qieee 149

zerodivide suboption of -qflttrap 140

zeros (leading), in output 257

ZEROSIZE @PROCESS directive 269

Index 325

326 XL Fortran Compiler Reference

����

Program Number: 5724-S74

SC23-5895-00

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions and terminology used in this document
	Related information
	IBM XL Fortran publications
	Standards and specifications documents
	Other IBM publications

	Technical support
	How to send your comments

	Chapter 1. Introduction
	Chapter 2. Overview of XL Fortran features
	Hardware and operating-system support
	Language support
	Migration support
	Source-code conformance checking
	Highly configurable compiler
	Diagnostic listings
	Symbolic debugger support
	Program optimization

	Chapter 3. Setting up and customizing XL Fortran
	Where to find installation instructions
	Using the compiler on a network file System

	Correct settings for environment variables
	Environment variable basics
	Environment variables for national language support
	Setting library search paths
	PDFDIR: Specifying the directory for PDF profile information
	TMPDIR: Specifying a directory for temporary files
	XLFSCRATCH_unit: Specifying names for scratch files
	XLFUNIT_unit: Specifying names for implicitly connected files

	Using custom compiler configuration files
	Creating custom configuration files
	Overriding the default order of attribute values
	Examples of stanzas in custom configuration files

	Editing the default configuration file
	Attributes

	Determining which level of XL Fortran is installed
	Running two levels of XL Fortran

	Chapter 4. Editing, compiling, linking, and running XL Fortran programs
	Editing XL Fortran source files
	Compiling XL Fortran programs
	Compiling Fortran 90 or Fortran 95 programs
	Compiling Fortran 2003 programs
	Compiling XL Fortran SMP programs
	POSIX pthreads API support

	Compilation order for Fortran programs
	Canceling a compilation
	XL Fortran input files
	XL Fortran Output files
	Scope and precedence of option settings
	Specifying options on the command line
	Specifying options in the source file
	Passing command-line options to the "ld" or "as" commands
	Displaying information inside binary files (strings)
	Compiling for specific architectures
	Passing Fortran files through the C preprocessor
	cpp Directives for XL Fortran programs
	Passing options to the C preprocessor
	Avoiding preprocessing problems

	Linking XL Fortran programs
	Compiling and linking in separate Steps
	Passing options to the ld command
	Dynamic and Static Linking
	Avoiding naming conflicts during linking

	Running XL Fortran programs
	Canceling execution
	Compiling and executing on different systems
	Runtime libraries for POSIX pthreads support
	Selecting the language for runtime messages
	Setting runtime options
	The XLFRTEOPTS environment variable
	Setting OMP and SMP run time options
	BLAS/ESSL environment variable
	XL_NOCLONEARCH
	XLF_USR_CONFIG

	Other environment variables that affect runtime behavior
	XL Fortran runtime exceptions

	Chapter 5. Summary of compiler options by functional category
	Output control
	Input control
	Language element control
	Floating-point and integer control
	Object code control
	Error checking and debugging
	Listings, messages, and compiler information
	Optimization and tuning
	Linking
	Portability and migration
	Compiler customization
	Deprecated options

	Chapter 6. Detailed descriptions of the XL Fortran compiler options
	-#
	-1
	-B
	-C
	-c
	-D
	-d
	-F
	-g
	-I
	-k
	-L
	-l
	-NS
	-O
	-o
	-p
	-Q
	-q32
	-q64
	-qalias
	-qalias_size
	-qalign
	-qarch
	-qassert
	-qattr
	-qautodbl
	-qbigdata option
	-qcache
	-qcclines
	-qcheck
	-qci
	-qcompact
	-qcr
	-qctyplss
	-qdbg
	-qddim
	-qdescriptor
	-qdirective
	-qdirectstorage
	-qdlines
	-qdpc
	-qenablevmx
	-qenum
	-qescape
	-qessl
	-qextern
	-qextname
	-qfdpr
	-qfixed
	-qflag
	-qfloat
	-qfpp
	-qflttrap
	-qfree
	-qfullpath
	-qhalt
	-qhot
	-qieee
	-qinit
	-qinitauto
	-qinlglue
	-qintlog
	-qintsize
	-qipa
	-qkeepparm
	-qlanglvl
	-qlibansi
	-qlinedebug
	-qlist
	-qlistopt
	-qlog4
	-qmaxmem
	-qmbcs
	-qminimaltoc
	-qmixed
	-qmoddir
	-qmodule
	-qnoprint
	-qnullterm
	-qobject
	-qoldmod
	-qonetrip
	-qoptdebug
	-qoptimize
	-qpdf1, -qpdf2
	-qphsinfo
	-qpic
	-qport
	-qposition
	-qppsuborigarg
	-qprefetch
	-qqcount
	-qrealsize
	-qrecur
	-qreport
	-qsaa
	-qsave
	-qsaveopt
	-qsclk
	-qshowpdf
	-qsigtrap
	-qsmallstack
	-qsmp
	-qsource
	-qspillsize
	-qstacktemp
	-qstrict
	-qstrictieeemod
	-qstrict_induction
	-qsuffix
	-qsuppress
	-qswapomp
	-qtbtable
	-qthreaded
	-qtune
	-qundef
	-qunroll
	-qunwind
	-qversion
	-qwarn64
	-qxflag=dvz
	-qxflag=oldtab
	-qxlf77
	-qxlf90
	-qxlf2003
	-qxlines
	-qxref
	-qzerosize
	-S
	-t
	-U
	-u
	-v
	-V
	-W
	-w
	-y

	Chapter 7. Using XL Fortran in a 64-Bit Environment
	Compiler options for the 64-Bit environment

	Chapter 8. Problem determination and debugging
	Understanding XL Fortran error messages
	Error severity
	Compiler return code
	Runtime return code
	Understanding XL Fortran messages
	Limiting the number of compile-time messages
	Selecting the language for messages

	Fixing installation or system environment problems
	Fixing compile-time problems
	Duplicating extensions from other systems
	Isolating problems with individual compilation units
	Compiling with thread-safe commands
	Running out of machine resources

	Fixing link-time problems
	Fixing runtime problems
	Duplicating extensions from other systems
	Mismatched sizes or types for arguments
	Working around problems when optimizing
	Input/Output errors
	Tracebacks and core dumps

	Debugging a Fortran 90 or Fortran 95 program

	Chapter 9. Understanding XL Fortran compiler listings
	Header section
	Options section
	Source section
	Error messages

	Transformation report section
	Attribute and cross reference section
	Object section
	File table section
	Compilation unit epilogue Section
	Compilation epilogue Section

	Appendix A. XL Fortran technical information
	The compiler phases
	External names in XL Fortran libraries
	The XL Fortran runtime environment
	External names in the runtime environment

	Technical details of the -qfloat=hsflt option
	Implementation details for -qautodbl promotion and padding
	Terminology
	Examples of storage relationships for -qautodbl suboptions

	Appendix B. XL Fortran internal limits
	Notices
	Trademarks and service marks

	Glossary
	Index

