
IBM XL Fortran for Multicore Acceleration for Linux,

V11.1

Optimization and Programming Guide

SC23-8525-00

���

IBM XL Fortran for Multicore Acceleration for Linux,

V11.1

Optimization and Programming Guide

SC23-8525-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

169.

First Edition

This edition applies to IBM XL Fortran for Multicore Acceleration for Linux on System p, V11.1 (Program 5724-T44),

and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using

the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1990, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document vii

Who should read this document vii

How to use this document vii

How this document is organized vii

Conventions and terminology used in this

document viii

Related information x

IBM XL Fortran publications xi

Standards and specifications documents xi

Other IBM publications xii

How to send your comments xii

Chapter 1. Optimizing your applications 1

Distinguishing between optimization and tuning . . 1

Optimization 1

Tuning 1

Steps in the optimization process 2

Basic optimization 2

Optimizing at level 0 3

Optimizing at level 2 3

Advanced optimization 4

Optimizing at level 3 5

An intermediate step: adding -qhot suboptions at

level 3 6

Optimizing at level 4 6

Optimizing at level 5 7

Specialized optimization techniques 8

High-order transformation (HOT) 8

Interprocedural analysis (IPA) 10

Profile-directed feedback (PDF) (PPU only) . . . 12

Debugging optimized code 15

Understanding different results in optimized

programs 15

Debugging before optimization 16

Using -qoptdebug to help debug optimized

programs 17

Getting more performance 19

Beyond performance: effective programming

techniques 19

Chapter 2. Tuning XL compiler

applications 21

Tuning for your target architecture 21

Using -qcache 22

Further option driven tuning 22

Options for providing application characteristics 22

Options to control optimization transformations 24

Options to assist with performance analysis . . 26

Options that can inhibit performance 26

Chapter 3. Advanced optimization

concepts 29

Aliasing 29

Inlining 30

Finding the right level of inlining 30

Chapter 4. Managing code size 33

Steps for reducing code size 34

Compiler option influences on code size 34

The -qipa compiler option 34

The -Q inlining option 34

The -qhot compiler option 34

The -qcompact compiler option 35

Other influences on code size 35

High activity areas 35

Computed GOTOs and CASE constructs . . . 35

Linking and code size 36

Chapter 5. Compiler-friendly

programming techniques 39

General practices 39

Variables and pointers 40

Arrays 40

Choosing appropriate variable sizes 40

Chapter 6. High performance libraries 41

Using the Mathematical Acceleration Subsystem

libraries (MASS) 41

Using the scalar library (PPU only) 41

Using the vector libraries 43

Using the SIMD library for SPU programs . . . 47

Compiling and linking a program with MASS . . 49

Using the Basic Linear Algebra Subprograms –

BLAS (PPU only) 50

BLAS function syntax 51

Linking the libxlopt library 53

Chapter 7. Using automatic code

overlays (SPU only) 55

Using custom linker scripts with overlays 57

Chapter 8. Parallel programming with

XL Fortran 59

Pthreads library module (PPU only) 59

Pthreads data structures, functions, and

subroutines 59

f_maketime(delay) 62

f_pthread_attr_destroy(attr) 62

f_pthread_attr_getdetachstate(attr, detach) . . . 62

f_pthread_attr_getguardsize(attr, guardsize) . . 63

f_pthread_attr_getinheritsched(attr, inherit) . . . 63

f_pthread_attr_getschedparam(attr, param) . . . 64

f_pthread_attr_getschedpolicy(attr, policy) . . . 64

f_pthread_attr_getscope(attr, scope) 65

f_pthread_attr_getstack(attr, stackaddr, ssize) . . 65

f_pthread_attr_init(attr) 66

f_pthread_attr_setdetachstate(attr, detach) . . . 66

f_pthread_attr_setguardsize(attr, guardsize) . . . 67

© Copyright IBM Corp. 1990, 2007 iii

f_pthread_attr_setinheritsched(attr, inherit) . . . 68

f_pthread_attr_setschedparam(attr, param) . . . 68

f_pthread_attr_setschedpolicy(attr, policy) . . . 69

f_pthread_attr_setscope(attr, scope) 69

f_pthread_attr_setstack(attr, stackaddr, ssize) . . 70

f_pthread_attr_t 71

f_pthread_cancel(thread) 71

f_pthread_cleanup_pop(exec) 71

f_pthread_cleanup_push(cleanup, flag, arg) . . . 72

f_pthread_cond_broadcast(cond) 73

f_pthread_cond_destroy(cond) 73

f_pthread_cond_init(cond, cattr) 74

f_pthread_cond_signal(cond) 74

f_pthread_cond_t 75

f_pthread_cond_timedwait(cond, mutex, timeout) 75

f_pthread_cond_wait(cond, mutex) 76

f_pthread_condattr_destroy(cattr) 76

f_pthread_condattr_getpshared(cattr, pshared) . . 76

f_pthread_condattr_init(cattr) 77

f_pthread_condattr_setpshared(cattr, pshared) . . 78

f_pthread_condattr_t 78

f_pthread_create(thread, attr, flag, ent, arg) . . . 78

f_pthread_detach(thread) 80

f_pthread_equal(thread1, thread2) 80

f_pthread_exit(ret) 81

f_pthread_getconcurrency() 81

f_pthread_getschedparam(thread, policy, param) 82

f_pthread_getspecific(key, arg) 82

f_pthread_join(thread, ret) 83

f_pthread_key_create(key, dtr) 83

f_pthread_key_delete(key) 84

f_pthread_key_t 84

f_pthread_kill(thread, sig) 85

f_pthread_mutex_destroy(mutex) 85

f_pthread_mutex_init(mutex, mattr) 86

f_pthread_mutex_lock(mutex) 86

f_pthread_mutex_t 87

f_pthread_mutex_trylock(mutex) 87

f_pthread_mutex_unlock(mutex) 87

f_pthread_mutexattr_destroy(mattr) 88

f_pthread_mutexattr_getpshared(mattr, pshared) 88

f_pthread_mutexattr_gettype(mattr, type) . . . 89

f_pthread_mutexattr_init(mattr) 90

f_pthread_mutexattr_setpshared(mattr, pshared) 90

f_pthread_mutexattr_settype(mattr, type) . . . 91

f_pthread_mutexattr_t 91

f_pthread_once(once, initr) 92

f_pthread_once_t 92

f_pthread_rwlock_destroy(rwlock) 92

f_pthread_rwlock_init(rwlock, rwattr) 93

f_pthread_rwlock_rdlock(rwlock) 93

f_pthread_rwlock_t 94

f_pthread_rwlock_tryrdlock(rwlock) 94

f_pthread_rwlock_trywrlock(rwlock) 95

f_pthread_rwlock_unlock(rwlock) 95

f_pthread_rwlock_wrlock(rwlock) 96

f_pthread_rwlockattr_destroy(rwattr) 96

f_pthread_rwlockattr_getpshared(rwattr, pshared) 97

f_pthread_rwlockattr_init(rwattr) 97

f_pthread_rwlockattr_setpshared(rwattr, pshared) 98

f_pthread_rwlockattr_t 98

f_pthread_self() 98

f_pthread_setcancelstate(state, oldstate) 99

f_pthread_setcanceltype(type, oldtype) 99

f_pthread_setconcurrency(new_level) 100

f_pthread_setschedparam(thread, policy, param) 100

f_pthread_setspecific(key, arg) 101

f_pthread_t 102

f_pthread_testcancel() 102

f_sched_param 102

f_sched_yield() 103

f_timespec 103

Chapter 9. Interlanguage calls 105

Conventions for XL Fortran external names . . . 105

Mixed-language input and output (PPU only) . . 106

Mixing Fortran and C++ 107

Making calls to C functions work 108

Passing data from one language to another . . . 109

Passing arguments between languages 109

Passing global variables between languages . . 110

Passing character types between languages . . 110

Passing arrays between languages 111

Passing pointers between languages 112

Passing arguments by reference or by value

(PPU only) 113

Passing complex values to/from gcc (PPU only) 115

Returning values from Fortran functions . . . 115

Arguments with the OPTIONAL attribute . . . 116

Assembler-level subroutine linkage conventions

(PPU only) 116

The stack 117

The Link Area and Minimum Stack Frame . . 119

The input parameter area 120

The register save area 120

The local stack area 120

The output parameter area 120

Linkage convention for argument passing (PPU

only) 121

Argument passing rules (by value) 122

Order of arguments in argument list 123

Linkage convention for function calls (PPU only) 123

Pointers to functions (PPU only) 124

Function values (PPU only) 124

The Stack floor 125

Stack overflow 125

Prolog and epilog (PPU only) 125

Traceback (PPU only) 126

Chapter 10. Implementation details of

XL Fortran Input/Output (I/O) (PPU

only) 127

Implementation details of file formats 127

File names 128

Preconnected and Implicitly Connected Files . . . 129

File positioning 129

I/O Redirection 130

How XL Fortran I/O interacts with pipes, special

files, and links 130

Default record lengths 131

File permissions 131

iv XL Fortran Optimization and Programming Guide

Selecting error messages and recovery actions . . 131

Flushing I/O buffers 132

Choosing locations and names for Input/Output

files 132

Naming files that are connected with no explicit

name 132

Naming scratch files 133

Asynchronous I/O 134

Execution of an asychronous data transfer

operation 134

Usage 134

Performance 137

Compiler-generated temporary I/O items . . . 137

Error handling 138

XL Fortran thread-safe I/O library 138

Use of I/O statements in signal handlers . . . 141

Asynchronous thread cancellation 141

Chapter 11. Implementation details of

XL Fortran floating-point processing . 143

IEEE Floating-point overview 143

Compiling for strict IEEE conformance 143

IEEE Single- and double-precision values . . . 144

IEEE Extended-precision values (PPU only) . . 144

Infinities and NaNs (PPU only) 144

Exception-handling model 145

Hardware-specific floating-point overview 146

Single- and double-precision values 146

Extended-precision values 147

How XL Fortran rounds floating-point calculations 148

Selecting the rounding mode 148

Minimizing rounding errors 150

Minimizing overall rounding 150

Delaying rounding until run time 150

Ensuring that the rounding mode is consistent 150

Duplicating the floating-point results of other

systems 151

Maximizing floating-point performance 151

Detecting and trapping floating-point exceptions

(PPU only) 152

Compiler features for trapping floating-point

exceptions 152

Installing an exception handler 153

Producing a core file 154

Controlling the floating-point status and control

register 154

xlf_fp_util Procedures 155

fpgets and fpsets subroutines 155

Sample programs for exception handling . . . 157

Causing exceptions for particular variables . . 157

Minimizing the performance impact of

floating-point exception trapping 157

Chapter 12. Porting programs to XL

Fortran 159

Outline of the porting process 159

Portability of directives 159

Common industry extensions that XL Fortran

supports 160

Mixing data types in statements 160

Date and time routines 160

Other libc routines 160

Changing the default sizes of data types . . . 161

Name conflicts between your procedures and

XL Fortran intrinsic procedures 161

Reproducing results from other systems . . . 161

Finding nonstandard extensions 161

Appendix. Sample Fortran programs 163

Example 1 - XL Fortran source file 163

Execution results 163

Example 2 - valid C routine source file 164

Programming examples using the Pthreads library

module (PPU only) 166

Notices 169

Trademarks and service marks 171

Index 173

Contents v

vi XL Fortran Optimization and Programming Guide

About this document

This document is part of the IBM® XL Fortran for Multicore Acceleration for

Linux®, V11.1 documentation suite. It provides both reference information and

practical tips for using XL Fortran’s optimization and tuning capabilities to

maximize application performance, as well as expanding on programming concepts

such as I/O and interlanguage calls.

Who should read this document

This document is for anyone who wants to exploit the XL Fortran compiler’s

capabilities for optimizing and tuning Fortran programs. Readers should be

familiar with their operating system and have extensive Fortran programming

experience with complex applications. However, users new to XL Fortran can still

use this document to help them understand how the compiler’s features can be

used for effective program optimization.

How to use this document

This guide focuses on specific programming and compilation techniques that can

maximize XL Fortran application performance. It covers optimization and tuning

strategies, recommended programming practices and compilation procedures,

debugging, and information on using XL Fortran advanced language features. This

guide also contains cross-references to relevant topics of other reference guides in

the XL Fortran documentation suite.

This guide does not include information on the following topics, which are covered

in other documents:

v Installation, system requirements, last-minute updates: see the XL Fortran

Installation Guide and product README.

v Overview of XL Fortran features: see the Getting Started with XL Fortran.

v Syntax, semantics, and implementation of the XL Fortran programming

language: see the XL Fortran Language Reference.

v Compiler setup, compiling and running programs, compiler options, diagnostics:

see the XL Fortran Compiler Reference.

How this document is organized

This guide includes the following topics:

v Chapter 1, “Optimizing your applications,” on page 1 provides an overview of

the optimization process.

v Chapter 2, “Tuning XL compiler applications,” on page 21 discusses the compiler

options available for optimizing and tuning code.

v Chapter 3, “Advanced optimization concepts,” on page 29, Chapter 4, “Managing

code size,” on page 33, and “Debugging optimized code” on page 15 discuss

advanced techniques like optimizing loops and inlining code, and debug

considerations for optimized code.

v The following sections contain information on how to write optimization

friendly, portable XL Fortran code, that is interoperable with other languages.

– Chapter 5, “Compiler-friendly programming techniques,” on page 39

– Chapter 6, “High performance libraries,” on page 41

© Copyright IBM Corp. 1990, 2007 vii

– Chapter 9, “Interlanguage calls,” on page 105
v The following sections contain information about XL Fortran and its

implementation that can be useful for new and experienced users alike, as well

as those who want to move their existing Fortran applications to the XL Fortran

compiler:

– Chapter 10, “Implementation details of XL Fortran Input/Output (I/O) (PPU

only),” on page 127

– Chapter 11, “Implementation details of XL Fortran floating-point processing,”

on page 143

– Chapter 12, “Porting programs to XL Fortran,” on page 159

Conventions and terminology used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

The maximum length of the

trigger_constant in fixed source form

is 4 for directives that are continued

on one or more lines.

underlining The default setting of a parameter

of a compiler option or directive.

nomaf | maf

monospace Examples of program code,

command strings, or user-defined

names.

Also, specify the following runtime

options before running the program,

with a command similar to the

following: export

XLFRTEOPTS="err_recovery=no:
langlvl=90std"

UPPERCASE

bold

Fortran programming keywords,

statements, directives, and intrinsic

procedures.

The ASSERT directive applies only to

the DO loop immediately following

the directive, and not to any nested

DO loops.

lowercase bold Lowercase programming keywords

and library functions, compiler

intrinsic procedures, file and

directory names, examples of

program code, command strings,

or user-defined names.

If you specify -O3, the compiler

assumes -qhot=level=0. To prevent

all HOT optimizations with -O3, you

must specify -qnohot.

Syntax diagrams

Throughout this document, diagrams illustrate XL Fortran syntax. This section will

help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

viii XL Fortran Optimization and Programming Guide

The ───�� symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

IBM XL Fortran extensions are marked by a number in the syntax diagram with

an explanatory note immediately following the diagram.

Program units, procedures, constructs, interface blocks and derived-type

definitions consist of several individual statements. For such items, a box

encloses the syntax representation, and individual syntax diagrams show the

required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([

and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can

provide a list of these terms separated by commas.

About this document ix

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

Examples

The examples in this document are coded in a simple style that does not try to

conserve storage, check for errors, achieve fast performance, or demonstrate

recommended practice. Also, examples may use different compiler invocation

commands interchangeably or simply indicate invocation. For detailed information

on the commands available to invoke the compiler see Compiling programs in the

XL Fortran Compiler Reference.

Notes on the terminology used

Some of the terminology in this document is shortened, as follows:

v The term free source form format often appears as free source form.

v The term fixed source form format often appears as fixed source form.

v The term XL Fortran often appears as XLF.

Related information

The following sections provide information on documentation related to XL

Fortran:

v “IBM XL Fortran publications” on page xi

v “Standards and specifications documents” on page xi

v “Other IBM publications” on page xii

��

(1)

EXAMPLE

char_constant

a

b

c

d

�

 ,

e

name_list

��

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,

you must put a comma between each. (The _list syntax is equivalent to the previous

syntax for e.)

x XL Fortran Optimization and Programming Guide

IBM XL Fortran publications

XL Fortran provides product documentation in the following formats:

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the XL Fortran Installation Guide.

v PDF documents

PDF documents are located by default in the doc/en_US/pdf/ directory.

The following files comprise the full set of XL Fortran product manuals:

 Table 2. XL Fortran PDF files

Document title

PDF file

name Description

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Installation

Guide, GC23-8523-00

install.pdf Contains information for installing XL Fortran

and configuring your environment for basic

compilation and program execution.

Getting Started with IBM

XL Fortran for Multicore

Acceleration for Linux,

V11.1, GC23-8524-00

getstart.pdf Contains an introduction to the XL Fortran

product, with information on setting up and

configuring your environment, compiling and

linking programs, and troubleshooting

compilation errors.

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Compiler

Reference, SC23-8522-00

cr.pdf Contains information about the various

compiler options and environment variables.

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Language

Reference, SC23-8521-00

lr.pdf Contains information about the Fortran

programming language as supported by IBM,

including language extensions for portability

and conformance to non-proprietary standards,

compiler directives and intrinsic procedures.

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Optimization

and Programming Guide,

SC23-8525-00

opg.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls, floating-point

operations, input/output, application

optimization and parallelization, and the XL

Fortran high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe

Reader, you can download it (subject to license terms) from the Adobe Web site

at http://www.adobe.com.

More documentation related to XL Fortran including redbooks, white papers,

tutorials, and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/fortran/xlfortran/library

Standards and specifications documents

XL Fortran is designed to support the following standards and specifications. You

can refer to these standards for precise definitions of some of the features found in

this document.

v American National Standard Programming Language FORTRAN, ANSI X3.9-1978.

v American National Standard Programming Language Fortran 90, ANSI X3.198-1992.

About this document xi

http://www.adobe.com
http://www.ibm.com/software/awdtools/fortran/xlfortran/library

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

v Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.

v Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991 (E).

v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:1997. (This document uses its informal name, Fortran 95.)

v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:2004. (This document uses its informal name, Fortran 2003.)

v Information technology - Programming languages - Fortran - Enhanced data type

facilities, ISO/IEC JTC1/SC22/WG5 N1379.

v Information technology - Programming languages - Fortran - Floating-point exception

handling, ISO/IEC JTC1/SC22/WG5 N1378.

v Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753

(United States of America, Department of Defense standard). Note that XL

Fortran supports only those extensions documented in this standard that have

also been subsequently incorporated into the Fortran 90 standard.

Other IBM publications

v Specifications, white papers, and other technical documents for the Cell

Broadband Engine™ architecture are available at http://www.ibm.com/chips/
techlib/techlib.nsf/products/Cell_Broadband_Engine.

v The Cell Broadband Engine resource center, at http://www.ibm.com/
developerworks/power/cell, is the central repository for technical information,

including articles, tutorials, programming guides, and educational resources.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

Fortran documentation, send your comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the document, the part number of the document,

the version of XL Fortran, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

xii XL Fortran Optimization and Programming Guide

http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/developerworks/power/cell/
http://www.ibm.com/developerworks/power/cell/

Chapter 1. Optimizing your applications

The XL compilers enable development of high performance 32-bit and 64-bit

applications by offering a comprehensive set of performance enhancing techniques

that exploit the Cell Broadband Engine architecture. These performance advantages

depend on good programming techniques, thorough testing and debugging,

followed by optimization, and tuning.

Distinguishing between optimization and tuning

You can use optimization and tuning separately or in combination to increase the

performance of your application. Understanding the difference between them is the

first step in understanding how the different levels, settings and techniques can

increase performance.

Optimization

Optimization is a compiler driven process that searches for opportunities to

restructure your source code and give your application better overall performance

at runtime, without significantly impacting development time. The XL compiler

optimization suite, which you control using compiler options and directives,

performs best on well-written source code that has already been through a

thorough debugging and testing process. These optimization transformations can:

v Reduce the number of instructions your application executes to perform critical

operations.

v Restructure your object code to make optimal use of the Cell Broadband Engine

architecture.

v Improve memory subsystem usage.

v Exploit the ability of the architecture to handle large amounts of shared memory

parallelization.

Consider that although not all optimizations benefit all applications, even basic

optimization techniques can result in a performance benefit. Consult the Steps in

the optimization process for an overview of the common sequence of steps you can

use to increase the performance of your application.

Tuning

Where optimization applies increasingly aggressive transformations designed to

improve the performance of any application in any supported environment, tuning

offers you opportunities to adjust characteristics of your application to improve

performance, or to target specific execution environments. Even at low

optimization levels, tuning for your application and target architecture can have a

positive impact on performance. With proper tuning the compiler can:

v Select more efficient machine instructions.

v Generate instruction sequences that are more relevant to your application.

For instructions, see Tuning XL compiler applications.

© Copyright IBM Corp. 1990, 2007 1

Steps in the optimization process

As you begin the optimization process, consider that not all optimization

techniques suit all applications. Trade-offs sometimes occur between an increase in

compile time, a reduction in debugging capability, and the improvements that

optimization can provide. Learning about, and experimenting with different

optimization techniques can help you strike the right balance for your XL compiler

applications while achieving the best possible performance. Also, though it is

unnecessary to hand-optimize your code, compiler-friendly programming can be

extremely beneficial to the optimization process. Unusual constructs can obscure

the characteristics of your application and make performance optimization difficult.

Use the steps in this section as a guide for optimizing your application.

1. The Basic optimization step begins your optimization processes at levels 0 and

2.

2. The Advanced optimization step exposes your application to more intense

optimizations at levels 3 through 5.

3. The High-order transformation (HOT) step can help you limit loop execution

time.

4. The Interprocedural analysis (IPA), step can optimize your entire application at

once.

5. The Profile-directed feedback (PDF) (PPU only) step focuses optimizations on

specific characteristics of your application.

6. The Debugging high-performance code step can help you identify issues and

problems that can occur with optimized code.

7. The Getting more performance section offers other strategies and tuning

alternatives to compiler-driven optimization.

The section Compiler-friendly programming techniques contains tips for writing

more easily optimized source code.

Note: When compiling and linking code targeting the SPU, we recommend that

you use the -O5 or -qopt=5 compiler options to get the maximum

performance from your application

Basic optimization

The XL compiler supports several levels of optimization, with each option level

building on the levels below through increasingly aggressive transformations, and

consequently using more machine resources. Ensure that your application compiles

and executes properly at low optimization levels before trying more aggressive

optimizations. This section discusses two optimizations levels, listed with

complementary options in the Basic optimizations table. The table also includes a

column for compiler options that can have a performance benefit at that

optimization level for some applications.

 Table 3. Basic optimizations

Optimization level Additional options

implied by default

Complementary

options

Other options with

possible benefits

-O0 None -qarch -g

-O2 -qmaxmem=8192 -qarch

 -qtune

 -qmaxmem=-1

 -qhot=level=0

Note: Specifying -O without including a level implies -O2.

2 XL Fortran Optimization and Programming Guide

Optimizing at level 0

Benefits at level 0

v Minimal performance improvement, with minimal impact on machine

resources.

v Exposes some source code problems, helping in the debugging process.

 Begin your optimization process at -O0 which the compiler already specifies by

default. This level performs basic analytical optimization by removing obviously

redundant code, and can result in better compile time, while ensuring your code is

algorithmically correct so you can move forward to more complex optimizations.

-O0 also includes constant folding. The option -qfloat=nofold can be used to

suppress folding floating-point operations. Optimizing at this level accurately

preserves all debug information and can expose problems in existing code, such as

uninitialized variables and bad casting.

Additionally, specifying -qarch at this level targets your application for a particular

machine and can significantly improve performance by ensuring your application

takes advantage of all applicable architectural benefits.

For more information on tuning, consult Tuning for Your Target Architecture.

See the -O option in the XL Fortran Compiler Reference for information on the -O

level syntax.

Optimizing at level 2

Benefits at level 2

v Eliminates redundant code

v Basic loop optimization

v Can structure code to take advantage of -qarch and -qtune settings

 After successfully compiling, executing, and debugging your application using

-O0, recompiling at -O2 opens your application to a set of comprehensive low-level

transformations that apply to subprogram or compilation unit scopes and can

include some inlining. Optimizations at -O2 are a relative balance between

increasing performance while limiting the impact on compilation time and system

resources. You can increase the memory available to some of the optimizations in

the -O2 portfolio by providing a larger value for the -qmaxmem option. Specifying

-qmaxmem=-1 allows the optimizer to use memory as needed without checking for

limits but does not change the transformations the optimizer applies to your

application at -O2.

Starting to tune at level 2

Choosing the right hardware architecture target or family of targets becomes even

more important at -O2 and higher. Targeting the proper hardware allows the

optimizer to make the best use of the hardware facilities available. If you choose a

family of hardware targets, the -qtune option can direct the compiler to emit code

consistent with the architecture choice, but will execute optimally on the chosen

Chapter 1. Optimizing your applications 3

tuning hardware target. This allows you to compile for a general set of targets but

have the code run best on a particular target.

 The -O2 option can perform a number of additional optimizations, including:

v Common subexpression elimination: Eliminates redundant instructions.

v Constant propagation: Evaluates constant expressions at compile-time.

v Dead code elimination: Eliminates instructions that a particular control flow

does not reach, or that generate an unused result.

v Dead store elimination: Eliminates unnecessary variable assignments.

v Graph coloring register allocation: Globally assigns user variables to registers.

v Value numbering: Simplifies algebraic expressions, by eliminating redundant

computations.

v Instruction scheduling for the target machine.

v Loop unrolling and software pipelining.

v Moves invariant code out of loops.

v Simplifies control flow.

v Strength reduction and effective use of addressing modes.

Even with -O2 optimizations, some useful information about your source code is

made available to the debugger if you specify -g. Conversely, higher optimization

levels can transform code to an extent to which debug information is no longer

accurate. Use that information with discretion.

The section on Debugging Optimized Code discusses other debugging strategies in

detail.

See the -O option in the XL Fortran Compiler Reference for information on the -O

level syntax.

Advanced optimization

After applying basic optimizations and successfully compiling and executing your

application, you can apply more powerful optimization tools. Higher optimization

levels can have a tremendous impact on performance, but some trade-offs can

occur in terms of code size, compilation time, resource requirements and numeric

or algorithmic precision. The XL compiler optimization portfolio includes many

options for directing advanced optimization, and the transformations your

application undergoes are largely under your control. The discussion of each

optimization level in Table 4 on page 4 includes information on not only the

performance benefits, and the possible trade-offs as well, but information on how

you can help guide the optimizer to find the best solutions for your application.

 Table 4. Advanced optimizations

Optimization Level Additional options

implied

Complementary

options

Options with

possible benefits

-O3 -qnostrict

 -qmaxmem=-1

 -qhot=level=0

 -qarch

 -qtune

 -qpdf (PPU only)

4 XL Fortran Optimization and Programming Guide

Table 4. Advanced optimizations (continued)

-O4 -qnostrict

 -qmaxmem=-1

 -qhot

 -qipa

 -qarch=auto

 -qtune=auto

 -qcache=auto

 -qarch

 -qtune

 -qcache

 -qpdf (PPU only)

-O5 All of -O4

 -qipa=level=2

 -qarch

 -qtune

 -qcache

 -qpdf (PPU only)

Optimizing at level 3

Benefits at level 3

v In-depth aliasing analysis

v Better loop scheduling

v High-order loop analysis and transformations (-qhot=level=0)

v Inlining of small procedures within a compilation unit by default

v Eliminating implicit compile-time memory usage limits

v Widening, which merges adjacent load/stores and other operations

v Pointer aliasing improvements to enhance other optimizations

 Specifying -O3 initiates more intense low-level transformations that remove many

of the limitations present at -O2. For instance, the optimizer no longer checks for

memory limits, by defaulting to -qmaxmem=-1. Additionally, optimizations

encompass larger program regions and attempt more in-depth analysis. While not

all applications contain opportunities for the optimizer to provide a measurable

increase in performance, most applications can benefit from this type of analysis.

Potential trade-offs at level 3

With the in-depth analysis of -O3 comes a trade-off in terms of compilation time

and memory resources. Also, since -O3 implies -qnostrict, the optimizer can alter

certain floating-point semantics in your application to gain execution speed. This

typically involves precision trade-offs as follows:

v Reordering of floating-point computations.

v Reordering or elimination of possible exceptions, such as division by zero or

overflow.

You can still gain most of the -O3 benefits while preserving precise floating-point

semantics by specifying -qstrict. Compiling with -qstrict is necessary if you require

the same absolute precision in floating-point computational accuracy as you get

with -O0, -O2, or -qnoopt results. The -qstrict compiler option also ensures

adherence to all IEEE semantics for floating-point operations. If your application is

sensitive to floating-point exceptions or the order of evaluation for floating-point

arithmetic, compiling with -qstrict will help assure accurate results. Without

-qstrict, the difference in computation for any one source-level operation is very

small in comparison to basic optimization. Though a small difference can

compound if the operation is in a loop structure where the difference becomes

additive, most applications are not sensitive to the changes that can occur in

floating-point semantics.

Chapter 1. Optimizing your applications 5

See the -O option in the XL Fortran Compiler Reference for information on the -O

level syntax.

An intermediate step: adding -qhot suboptions at level 3

At -O3, the optimization includes minimal -qhot loop transformations at level=0 to

increase performance. You can further increase your performance benefit by

increasing the level and therefore the aggressiveness of -qhot. Try specifying -qhot

without any suboptions, or -qhot=level=1.

The following -qhot suboptions can also provide additional performance benefits,

depending on the characteristics of your application:

v -qhot=simd to enable short vectorization

v -qhot=vector to enable long vectorization

v -qhot=arraypad to enable array padding

For more information on -qhot, see High-order transformation (HOT).

Optimizing at level 4

Benefits at level 4

v Propagation of global and parameter values between compilation units

v Inlining code from one compilation unit to another

v Reorganization or elimination of global data structures

v An increase in the precision of aliasing analysis

 Optimizing at -O4 builds on -O3 by triggering -qipa=level=1 which performs

interprocedural analysis (IPA), optimizing your entire application as a unit. This

option is particularly pertinent to applications that contain a large number of

frequently used routines.

To make full use of IPA optimizations, you must specify -O4 on the compilation

and link steps of your application build as interprocedural analysis occurs in

stages at both compile and link time.

The IPA process

1. At compilation time optimizations occur on a file-by-file basis, as well as

preparation for the link stage. IPA writes analysis information directly into the

object files the compiler produces.

2. At the link stage, IPA reads the information from the object files and analyzes

the entire application.

3. This analysis guides the optimizer on how to rewrite and restructure your

application and apply appropriate -O3 level optimizations.

The Interprocedural analysis (IPA) section contains more information on IPA

including details on IPA suboptions.

 Beyond -qipa, -O4 enables other optimization options:

v -qhot

Enables more aggressive HOT transformations to optimize loop constructs and

array language.

6 XL Fortran Optimization and Programming Guide

v -qhot=vector

Optimizes array data to run mathematical operations in parallel where

applicable.

v -qarch=auto and -qtune=auto

Optimizes your application to execute on a hardware architecture identical to

your build machine. If the architecture of your build machine is incompatible

with your application’s execution environment, you must specify a different

-qarch suboption after the -O4 option. This overrides -qarch=auto.These options

are set by the invocation command to optimize for either PPU or SPU.

v -qcache=auto

Optimizes your cache configuration for execution on specific hardware

architecture. The auto suboption assumes that the cache configuration of your

build machine is identical to the configuration of your execution architecture.

Specifying a cache configuration can increase program performance, particularly

loop operations by blocking them to process only the amount of data that can fit

into the data cache.

If you will be executing your application on a different machine, specify correct

cache values.

Potential trade-offs at level 4

In addition to the trade-offs already mentioned for -O3, specifying -qipa can

significantly increase compilation time, especially at the link step.

 See the -O option in the XL Fortran Compiler Reference for information on the -O

level syntax.

Optimizing at level 5

Benefits at level 5

v Most aggressive optimizations available

v Makes full use of loop optimizations and IPA

 As the highest optimization level, -O5 includes all -O4 optimizations and deepens

whole program analysis by increasing the -qipa level to 2. Compiling with -O5

also increases how aggressively the optimizer pursues aliasing improvements.

Additionally, if your application contains a mix of XL C/C++ and Fortran code

that you compile using XL compilers, you can increase performance by compiling

and linking your code with the -O5 option.

Note: When compiling code targeting the SPU, we recommend that you use the

-O5 or -qopt=5 compiler options to get the maximum performance from

your application

Potential trade-offs at level 5

Compiling at -O5 requires more compilation time and machine resources than any

other optimization level, particularly if you include -O5 on the IPA link step.

Compile at -O5 as the final phase in your optimization process after successfully

compiling and executing your application at -O4.

 See the -O option in the XL Fortran Compiler Reference for information on the -O

level syntax.

Chapter 1. Optimizing your applications 7

Specialized optimization techniques

While some techniques in this section are active at advanced optimization levels,

certain types of applications can receive a performance benefit even when you

apply only basic optimizations.

 Table 5. Specialized optimization techniques

Technique Benefit

HOT Minimizes loop execution time which is

beneficial to most applications that contain

large loops, or many small loops. HOT also

improves memory access patterns in your

application.

IPA Performs whole program analysis, providing

the optimization suite with a complete view

of your entire application. This applies

performance enhancements with more focus

and robustness.

PDF(PPU only) Targets the code paths your application

executes most frequently for optimization.

High-order transformation (HOT)

As part of the XL compiler optimization suite, the HOT transformations focus

specifically on loops which typically account for the majority of the execution time

for most applications. HOT transformations perform in-depth loop analysis to

minimize their execution time. Loop optimization analysis includes:

v Interchange

v Fusion

v Unrolling loop nests

v Reducing the use of temporary arrays

The goals of these optimizations include:

v Reducing memory access costs through effective cache use and translation

look-aside buffers (TLBs). Increasing memory locality reduces cache and TLB

misses.

v Overlapping computation and memory access through effective utilization of the

hardware data prefetching capabilities.

v Improving processor resource utilization by reordering and balancing the use of

instructions with complementary resource requirements. Loop computation

balance typically involves creating an equitable relationship between load/store

operations and floating-point computations.

Compiling with -O3 and higher triggers HOT transformations by default. You can

also see performance benefits by specifying -qhot with -O2, or adding more -qhot

optimizations than the default level=0 at -O3.

You can see particular -qhot benefits if your application contains Fortran 90-style

array language constructs, as HOT transformations include elimination of

intermediate temporary variables and statement fusion.

You can also use directives to assist in loop analysis. Assertive directives such as

INDEPENDENT or CNCALL allow you to describe important loop characteristics

or behaviors that HOT transformations can exploit. Prescriptive directives such as

8 XL Fortran Optimization and Programming Guide

UNROLL or PREFETCH (PPU only) allow you to direct the HOT transformations

on a loop-by-loop basis. You can also specify the -qreport compiler option to

generate information about loop transformations. The report can assist you in

deciding where best to include directives to improve the performance of your

application.

In addition to general loop transformation, -qhot supports suboptions that you can

specify to enable additional transformations detailed in this section.

HOT short vectorization (PPU only)

When targeting a PowerPC® processor that supports Vector Multimedia Extension

(VMX) , specifying -qhot=simd allows the optimizer to transform code into VMX

instructions when you are compiling with -qenablevmx. These machine

instructions can execute up to sixteen operations in parallel. The most common

opportunity for this transformation is with loops that iterate over contiguous array

data, performing calculations on each element. You can use the NOSIMD directive

to prevent the transformation of a particular loop.

HOT long vectorization (PPU only)

When you specify any of the following:

v -O4 and higher

v -O3 with -qhot=level=1 and -qnostrict

v -qhot with -qnostrict

you enable -qhot=vector by default. Specifying -qnostrict with optimizations other

than -O4 and -O5 ensures that the compiler looks for long vectorization

opportunities. This can optimize loops in source code for operations on array data

by ensuring that operations run in parallel where applicable. The compiler uses

standard machine registers for these transformations and does not restrict vector

data size; supporting both single- and double-precision floating-point vectorization.

Often, HOT vectorization involves transformations of loop calculations into calls to

specialized mathematical routines supplied with the compiler such as the

Mathematical Acceleration Subsystem (MASS) libraries. These mathematical

routines use algorithms that calculate results more efficiently than executing the

original loop code.

For more information on optimization levels like -O4 and the other compiler

options they imply, see “Advanced optimization” on page 4.

HOT array size adjustment

An array dimension that is a power of two can lead to a decrease in cache

utilization. The -qhot=arraypad suboption allows the compiler to increase the

dimensions of arrays where doing so could improve the efficiency of

array-processing loops. Using this suboption can reduce cache misses and page

faults that slow your array processing programs. The HOT transformations will not

necessarily pad all arrays, and can pad different arrays by different amounts in

order to gain performance. You can specify a padding factor to apply to all arrays.

This value is typically a multiple of the largest array element size.

Pad arrays with discretion as array padding uses more memory and the

performance trade-off does not benefit all applications. Also, these HOT

transformations do not include checks for array data overlay, as with Fortran

EQUIVALENCE, or array shaping operations.

Chapter 1. Optimizing your applications 9

Interprocedural analysis (IPA)

Interprocedural Analysis (IPA) can analyze and optimize your application as a

whole, rather than on a file-by-file basis. Run during the link step of an application

build, the entire application, including linked libraries, is available for

interprocedural analysis. This whole program analysis opens your application to a

powerful set of transformations available only when more than one file or

compilation unit is accessible. IPA optimizations are also effective on mixed

language applications.

The following are some of the link-time transformations that IPA can use to

restructure and optimize your application:

v Inlining between compilation units

v Complex data flow analyses across subprogram calls to eliminate parameters or

propagate constants directly into called subprograms.

v Improving parameter usage analysis, or replacing external subprogram calls to

system libraries with more efficient inline code.

v Restructuring data structures to maximize access locality.

In order to maximize IPA link-time optimization, you must use IPA at both the

compile and link step. Objects you do not compile with IPA can only provide

minimal information to the optimizer, and receive minimal benefit. However when

IPA is active on the compile step, the resulting object file contains program

information that IPA can read during the link step. The program information is

invisible to the system linker, and you can still use the object file and link without

invoking IPA. The IPA optimizations use hidden information to reconstruct the

original compilation and can completely analyze the subprograms the object

contains in the context of their actual usage in your application.

During the link step, IPA restructures your application, partitioning it into distinct

logical code units. After IPA optimizations are complete, IPA applies the same

low-level compilation-unit transformations as the -O2 and -O3 base optimizations

PDF info Libraries

IPA

Partitions

Low-level
optimizer

System
Linker

Optimized
Objects

IPA Objects

Other Objects
EXE

DLL

Figure 1. IPA at the link step

10 XL Fortran Optimization and Programming Guide

levels. Following those transformations, the compiler creates one or more object

files and linking occurs with the necessary libraries through the system linker.

It is important that you specify a set of compilation options as consistent as

possible when compiling and linking your application. This includes all compiler

options, not just -qipa suboptions. When possible, specify identical options on all

compilations and repeat the same options on the IPA link step. Incompatible or

conflicting options that you specify to create object files, or link-time options in

conflict with compile-time options can reduce the effectiveness of IPA

optimizations.

Using IPA on the compile step only

IPA can still perform transformations if you do not specify IPA on the link step.

Using IPA on the compile step initiates optimizations that can improve

performance for an individual object file even if you do not link the object file

using IPA. The primary focus of IPA is link-step optimization, but using IPA only

on the compile-step can still be beneficial to your application without incurring the

costs of link-time IPA.

IPA Levels and other IPA suboptions

You can control many IPA optimization functions using the -qipa option and

suboptions. The most important part of the IPA optimization process is the level at

which IPA optimization occurs. Default compilation does not invoke IPA. If you

specify -qipa without a level, or specify -O4, IPA optimizations are at level one. If

you specify -O5, IPA optimizations are at level two.

 Table 6. The levels of IPA

IPA Level Behaviors

Low-level
optimizer

IPA Object

C++ Front End Fortran Front End

Array Language
Processor

C Front End

IPA

Figure 2. IPA at the compile step

Chapter 1. Optimizing your applications 11

Table 6. The levels of IPA (continued)

qipa=level=0

 Automatically recognizes standard library functions

 Localizes statically bound variables and procedures

 Organizes and partitions your code according to call affinity,

expanding the scope of the -O2 and -O3 low-level compilation

unit optimizer

 Lowers compilation time in comparison to higher levels, though

limits analysis

qipa=level=1

 Level 0 optimizations

 Performs procedure inlining across compilation units

 Organizes and partitions static data according to reference affinity

qipa=level=2

 Level 0 and level 1 optimizations

 Performs whole program alias analysis which removes ambiguity

between pointer references and calls, while refining call side effect

information

 Propagates interprocedural constants

 Eliminates dead code

 Performs pointer analysis

 Performs procedure cloning

 Optimizes intraprocedural operations, using specifically:

– Value numbering

– Code propagation and simplification

– Code motion, into conditions and out of loops

– Redundancy elimination techniques

IPA includes many suboptions that can help you guide IPA to perform

optimizations important to the particular characteristics of your application.

Among the most relevant to providing information on your application are:

v lowfreq which allows you to specify a list of procedures that are likely to be

called infrequently during the course of a typical program run. Performance can

increase because optimization transformations will not focus on these

procedures.

v partition which allows you to specify the size of the regions within the program

to analyze. Larger partitions contain more procedures, which result in better

interprocedural analysis but require more storage to optimize.

v threads which allows you to specify the number of parallel threads available to

IPA optimizations. This can provide an increase in compilation-time performance

on multi-processor systems.

Using IPA across the XL compiler family

The XL compiler family shares optimization technology. Object files you create

using IPA on the compile step with the XL C, C++, and Fortran compilers can

undergo IPA analysis during the link step. Where program analysis shows that

objects were built with compatible options, such as -qnostrict, IPA can perform

transformations such as inlining C functions into Fortran code, or propagating C++

constant data into C function calls.

Profile-directed feedback (PDF) (PPU only)

Beginning with -O4, compiling with -qpdf to trigger profile-directed feedback is a

viable option to increase performance in many applications. Profile-directed

feedback is a two-stage compilation process that provides the compiler with the

12 XL Fortran Optimization and Programming Guide

execution path characteristic of your application’s typical behavior after a sample

execution. The optimizer uses that information to focus optimization trade-offs in

favour of code that executes more frequently.

v PDF at Stage 1: Compiling with -qpdf1 instruments your code with calls to the

PDF runtime library that are linked with your application. After compilation,

execute your application with typical input data. You can execute your

application with as many data sets as you have, each run records PDF

information in data files. Avoid using atypical data which can skew the analysis

to favour infrequently executed code paths.

v PDF at Stage 2: After collecting PDF information, recompiling or relinking your

application using -pdf2 allows the compiler to read information from the PDF

data files and makes that information available to the optimizer. Using this data,

the optimizer can better direct transformations to facilitate more intense

performance gains.

PDF walkthrough

The following steps are a guide through PDF optimization. These steps also

include the use of utilities designed to enhance the PDF process. While PDF is

recommended at -O4 and higher, you can specify -qpdf as early in the

optimization process as -O2 but will not necessarily achieve optimal results.

1. Compile your application using -qpdf1.

2. Run your application using one or more characteristic data sets.

To exert more control over the PDF process, use the following steps:

1. Compile your application with -qpdf1.

2. Run your application with one or more characteristic data sets. This produces a

PDF file in the current directory.

3. Copy your application to another directory and run it again. This produces a

PDF file in the second directory. You can repeat this step multiple times.

4. Compile the application with -qpdf2.

Alternatively, you can use -qpdf2 to link the object files the -qpdf1 pass creates

without recompiling your source on the -qpdf2 pass. This alternate approach can

save considerable time and help tune large applications for optimization. You can

create and test different styles of PDF optimized binaries by specifying different

options on the -qpdf2 pass.

To erase PDF information in a directory, use the cleanpdf or resetpdf utility.

Compile with
-qpdf1

Compile with
-qpdf2

Source
code

Instrumented
executable

Profile data

Optimized
executable

Sample runs

Figure 3. Profile-directed feedback

Chapter 1. Optimizing your applications 13

Object level profile-directed feedback (PPU only)

In addition to optimizing entire executables, profile-directed feedback (PDF) can

also be applied to specific objects. This can be an advantage in applications where

patches or updates are distributed as object files or libraries rather than as

executables. Also, specific areas of functionality in your application can be

optimized without you needing to go through the process of relinking the entire

application. In large applications, you can save the time and trouble that otherwise

would have been spent relinking the application.

The process for using object level PDF is essentially the same as the standard PDF

process but with a small change to the -qpdf2 step. For object level PDF, compile

your application using -qpdf1, execute the application with representative data,

compile the application again with -qpdf2 but now also use the -qnoipa option so

that the linking step is skipped.

The steps below outline this process:

1. Compile your application using -qpdf1. For example:

ppuxlf -c -O3 -qpdf1 file1.f file2.f file3.f

In this example, we are using the option -O3 to indicate that we want a

moderate level of optimization.

2. Link the object files to get an instrumented executable.

ppuxlf -O3 -qpdf1 file1.o file2.o file3.o

Note: you must use the same optimization options. In this example, the

optimization option -O3.

3. Run the instrumented executable with sample data that is representative of the

data you want to optimize for.

a.out < sample_data

4. Compile the application again using -qpdf2. Specify the -qnoipa option so that

the linking step is skipped and PDF optimization is applied to the object files

rather than to the entire executable. Note: you must use the same optimization

options as in the previous steps. In this example, the optimization option -O3.

ppuxlf -c -O3 -qpdf2 -qnoipa file1.f file2.f file3.f

The resulting output of this step are object files optimized for the sample data

processed by the original instrumented executable. In this example, the

optimized object files would be file1.o, file2.o, and file3.o. These can be linked

using the system loader ld or by omitting the -c option in the -qpdf2 step.

Notes:

v If you want to specify a file name for the profile that is created, use the

pdfname suboption in both the -qpdf1 and -qpdf2 steps. For example:

ppuxlf -O3 -qpdf1=pdfname=myprofile file1.f file2.f file3.f

Without the pdfname suboption, by default the file name will be ._pdf; the

location of the file will be the current working directory or whatever directory

you have set using the PDFDIR environment variable.

v You must use the same optimization options in each compilation and linking

step.

v Because -qnoipa needs to be specified in the -qpdf2 step so that linking of your

object files is skipped, you will not be able to use interprocedural analysis (IPA)

optimizations and object level PDF at the same time.

14 XL Fortran Optimization and Programming Guide

Debugging optimized code

Debugging optimized programs presents special usability problems. Optimization

can change the sequence of operations, add or remove code, change variable data

locations, and perform other transformations that make it difficult to associate the

generated code with the original source statements. For example:

Data location issues

With an optimized program, it is not always certain where the most

current value for a variable is located. For example, a value in memory

may not be current if the most current value is being stored in a register.

Most debuggers are incapable of following the removal of stores to a

variable, and to the debugger it appears as though that variable is never

updated, or possibly even set. This contrasts with no optimization where

all values are flushed back to memory and debugging can be more

effective and usable.

Instruction scheduling issues

With an optimized program, the compiler may reorder instructions. That is,

instructions may not be executed in the order the programmer would

expect based on the sequence of lines in their original source code. Also,

the sequence of instructions may not be contiguous. As the user steps

through their program with a debugger, it may appear as if they are

returning to a previously executed line in their code (interleaving of

instructions).

Consolidating variable values

Optimizations can result in the removal and consolidation of variables. For

example, if a program has two expressions that assign the same value to

two different variables, the compiler may substitute a single variable. This

can inhibit debug usability because a variable that a programmer is

expecting to see is no longer available in the optimized program.

There are a couple of different approaches you can take to improve debug

capabilities while also optimizing your program:

Debug non-optimized code first

Debug a non-optimized version of your program first, then recompile it

with your desired optimization options. See “Debugging before

optimization” on page 16 for some compiler options that are useful in this

approach.

Use -qoptdebug

When compiling with -O3 optimization or higher, use the compiler option

-qoptdebug to generate a pseudocode file that more accurately maps to

how instructions and variable values will operate in an optimized

program. With this option, when you load your program into a debugger,

you will be debugging the pseudocode for the optimized program. See

“Using -qoptdebug to help debug optimized programs” on page 17 for

more information.

Understanding different results in optimized programs

Here are some reasons why an optimized program might produce different results

from one that has not undergone the optimization process:

v Optimized code can fail if a program contains code that is not valid. For

example, failure can occur if the program passes an actual argument that also

appears in a common block in the called procedure, or if two or more dummy

Chapter 1. Optimizing your applications 15

arguments are associated with the same actual argument. The optimization

process relies on your application conforming to language standards.

v If a program that works without optimization fails when you optimize, check

the cross-reference listing and the execution flow of the program for variables

that are used before they are initialized. Compile with the -qinitauto=hex_value

option to try to produce the incorrect results consistently. For example, using

-qinitauto=FF gives REAL and COMPLEX variables an initial value of ″negative

not a number″ (-NAN). Any operations on these variables will also result in

NAN values. Other bit patterns (hex_value) may yield different results and

provide further clues as to what is going on. Programs with uninitialized

variables can appear to work properly when compiled without optimization,

because of the default assumptions the compiler makes, but can fail when you

optimize. Similarly, a program can appear to execute correctly after optimization,

but fails at lower optimization levels or when run in a different environment.

v A variation on uninitialized storage. Referring to an automatic-storage variable

by its address after the owning function has gone out of scope leads to a

reference to a memory location that can be overwritten as other auto variables

come into scope as new functions are called.

Use with caution debugging techniques that rely on examining values in storage.

The compiler might have deleted or moved a common expression evaluation. It

might have assigned some variables to registers, so that they do not appear in

storage at all.

Debugging before optimization

First debug your program, then recompile it with your desired optimization

options, and test the optimized program before placing the program into

production. If the optimized code does not produce the expected results, you can

attempt to isolate the specific optimization problems in a debugging session.

The following list presents options that provide specialized information, which can

be helpful during the development of optimized code:

-qkeepparm Ensures that procedure parameters are stored on the stack even

during optimization. This can negatively impact execution

performance. The -qkeepparm option then provides access to the

values of incoming parameters to tools, such as debuggers, simply

by preserving those values on the stack.

-qlist Instructs the compiler to emit an object listing. The object listing

includes hex and pseudo-assembly representations of the generated

instructions, traceback tables, and text constants.

-qreport Instructs the compiler to produce a report of the loop

transformations it performed and how the program was

parallelized. For -qreport to generate a listing, the options -qhot

should also be specified.

-qinitauto Instructs the compiler to emit code that initializes all automatic

variables to a given value.

-qipa=list Instructs the compiler to emit an object listing that provides

information for IPA optimization.

 You can also use the SNAPSHOT directive to ensure to that certain variables are

visible to the debugger at points in your application.

16 XL Fortran Optimization and Programming Guide

Using -qoptdebug to help debug optimized programs

Note: The -qoptdebug option can be used with both SPU and PPU programs.

The purpose of the -qoptdebug compiler option is to aid the debugging of

optimized programs. It does this by creating pseudocode that maps more closely to

the instructions and values of an optimized program than the original source code.

When a program compiled with this option is loaded into a debugger, you will be

debugging the pseudocode rather than your original source. By making

optimizations explicit in pseudocode, you can gain a better understanding of how

your program is really behaving under optimization. Files containing the

pseudocode for your program will be generated with the file suffix .optdbg. Only

line debugging is supported for this feature.

Compile your program as in the following example:

ppuxlf90 myprogram.f -O3 -qhot -g -qoptdebug

In this example, your source file will be compiled to a.out. The pseudocode for the

optimized program will be written to a file called myprogram.optdbg which can be

referred to while debugging your program.

Notes:

v The invocation example and debugger listings show compiling and debugging

for the PPU. That is, the compiler is invoked with ppuxlf90 and the program is

debugged with ppu-gdb. For the SPU, the compiler invocation would be

spuxlf90 and the debugger is spu-gdb.

v The -g or the -qlinedebug option must also be specified in order for the

compiled executable to be debuggable. However, if neither of these options are

specified, the pseudocode file <output_file>.optdbg containing the optimized

pseudocode will still be generated.

v The -qoptdebug option only has an effect when one or more of the optimization

options -qhot, , -qipa, or -qpdf are specified, or when the optimization levels

that imply these options are specified; that is, the optimization levels -O3, -O4,

and -O5. The example shows the optimization options -qhot and -O3.

Debugging the optimized program

See the figures below as an aid to understanding how the compiler may apply

optimizations to a simple program and how debugging it would differ from

debugging your original source.

Figure 4 on page 18 Original code: Represents the original non-optimized code for

a simple program. It presents a couple of optimization opportunities to the

compiler. For example, the two array elements for z are both assigned by

equivalent values for x + y. Therefore, x + y can be consolidated in the optimized

source. Also, the loop can be unrolled. In the optimized source, you would see

iterations of the loop listed explicitly.

Figure 5 on page 18 ppu-gdb debugger listing: Represents a listing of the

optimized source as shown in the debugger. Note the unrolled loop and the

consolidation of values assigned for x + y as 3.00000000E+00 in the assignments to

the elements of z.

Figure 6 on page 19 Stepping through optimized source: Shows an example of

stepping through the optimized source using the debugger. Note, there is no

Chapter 1. Optimizing your applications 17

longer a correspondence between the line numbers for these statements in the

optimized source as compared to the line numbers in the original source.

program main

real, dimension(2) :: z, x, y

x = 1.0

y = 2.0

z = x + y

do i = 1, 2

 print *, z(i)

end do

end program main

Figure 4. Original code

$ ppu-gdb a.out

GNU gdb Red Hat Linux (6.5-16.el5rh)

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "ppc64-redhat-linux-gnu"...Using host libthread_db library "/lib64/libthread_db.so.1".

(gdb) list

1

2

3 1| PROGRAM main ()

4 4| IF (.TRUE.) THEN

5 CALL __alignx(16,(z + (-4) + (4)*(1)))

6 7| z(1) = 3.00000000E+00

7 z(2) = 3.00000000E+00

8 7| ENDIF

9 10| #2 = _xlfBeginIO(",257,#1,0,NULL,0,NULL)

10 CALL _xlfWriteLDReal(%VAL(#2),(z + (-4) + (4)*(1)),",")

(gdb) list

11 _xlfEndIO(%VAL(#2))

12 #2 = _xlfBeginIO(",257,#1,0,NULL,0,NULL)

13 CALL _xlfWriteLDReal(%VAL(#2),(z + (-4) + (4)*(2)),",")

14 _xlfEndIO(%VAL(#2))

15 13| CALL _xlfExit(0)

16 CALL _trap(3)

17 END PROGRAM main

Figure 5. ppu-gdb debugger listing

18 XL Fortran Optimization and Programming Guide

Getting more performance

Whether you are already optimizing at -O5, or you are looking for more

opportunities to increase performance without the resource costs of optimizing at

higher levels, the XL compiler family offers other strategies tuning alternatives. See

the following sections for details:

v Chapter 2, “Tuning XL compiler applications,” on page 21

v Chapter 3, “Advanced optimization concepts,” on page 29

Beyond performance: effective programming techniques

Applications that perform well begin with applications that are written well. This

section contains information on how to write better code; whether your goal is to

make your code more portable, more easily optimized, or interoperable with other

languages.

v Chapter 5, “Compiler-friendly programming techniques,” on page 39

v Chapter 4, “Managing code size,” on page 33

v Chapter 8, “Parallel programming with XL Fortran,” on page 59

$ ppu-gdb a.out

GNU gdb Red Hat Linux (6.5-16.el5rh)

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "ppc64-redhat-linux-gnu"...Using host libthread_db library "/lib64/libthread_db.so.1".

(gdb) break 6

Breakpoint 1 at 0x10000664: file myprogram.o.optdbg, line 6.

(gdb) run

Starting program: a.out

[Thread debugging using libthread_db enabled]

[New Thread 268383072 (LWP 27567)]

[Switching to Thread 268383072 (LWP 27567)]

Breakpoint 1, main () at myprogram.o.optdbg:6

6 7| z(1) = 3.00000000E+00

(gdb) step

8 7| ENDIF

(gdb) step

9 10| #2 = _xlfBeginIO(",257,#1,0,NULL,0,NULL)

(gdb) step

10 CALL _xlfWriteLDReal(%VAL(#2),(z + (-4) + (4)*(1)),",")

(gdb) step

 3.000000000

11 _xlfEndIO(%VAL(#2))

(gdb) step

12 #2 = _xlfBeginIO(",257,#1,0,NULL,0,NULL)

(gdb) step

13 CALL _xlfWriteLDReal(%VAL(#2),(z + (-4) + (4)*(2)),",")

(gdb) step

 3.000000000

14 _xlfEndIO(%VAL(#2))

(gdb) cont

Continuing.

Program exited normally.

Figure 6. Stepping through optimized source

Chapter 1. Optimizing your applications 19

v Chapter 9, “Interlanguage calls,” on page 105

20 XL Fortran Optimization and Programming Guide

Chapter 2. Tuning XL compiler applications

Included as part of the XL Fortran optimization suite are options you can use to

instruct the compiler to generate code that executes optimally on a given processor

or architecture family, and to instruct the compiler on the execution characteristics

of your application. The better you can convey those characteristics, the more

precisely the compiler can tune and optimize your application. This section

assumes that you have already begun optimizing your application using the

strategies found in Chapter 1, “Optimizing your applications,” on page 1, and

discusses the next steps in increasing the performance of your application:

v Tuning for your target architecture

v Further option driven tuning

Tuning for your target architecture

By default, the compiler generates code that runs on all supported systems, though

this code does not run optimally on all supported systems. By selecting options to

target the appropriate architectures, you can optimize your application to suit the

broadest possible selection of relevant processors, a range of processors within a

given family, or a specific processor. The compiler options in the Options for

targeting your architecture table introduce how you can control optimizations

affecting individual aspects of your target architecture. This section also goes into

further detail on how you can use some of those options to ensure your

application provides the best possible performance on those targets.

 Table 7. Options for targeting your architecture

Option Behavior

-q32 Generates code for a 32-bit addressing model (32-bit execution mode).

-q64(PPU only) Generates code for a 64-bit addressing model (64-bit execution mode).

-qarch Selects a family of processor architectures, or a specific architecture that

the compiler will generate machine instructions for. If you specify

multiple architecture settings, only the last architecture is considered

valid. The default is set by the invocation command.

-qtune Focuses optimizations for execution on a given processor without

restricting the processor architectures that your application can execute

on. If you specify multiple architecture settings, only the last

architecture is considered valid. The default is set by the invocation

command.

-qcache Defines a specific cache or memory geometry. Selecting a predefined

optimization level like -O2 sets default vales for -qcache suboptions.

In addition to targeting the correct architecture for your application, it is important

to select the right level of optimization. Combining the appropriate architecture

settings with an optimization level that fits your application can vastly enhance

performance. If you have not already done so, consult Chapter 1, “Optimizing your

applications,” on page 1 in addition to this section.

© Copyright IBM Corp. 1990, 2007 21

Using -qcache

The -qcache option allows you to instruct the optimizer on the memory cache

layout of your target architecture. There are several suboptions you can specify to

describe cache characteristics such as:

v The types of cache available

v The cache size

v Cache-miss penalties

The -qcache option is only effective if you understand the cache characteristics of

the execution environment of your application. Before using -qcache, look at the

options section of the listing file with the -qlist option to see if the current cache

settings are acceptable. The settings appear in the listing when you compile with

-qlistopt. If you are unsure about how to interpret this information, do not use

-qcache, and allow the compiler to use default cache settings.

If you do not specify -qcache, the compiler makes cache assumptions based on

your -qarch and -qtune settings. If you compile with the -qcache=auto suboption,

the default at optimization levels -O4 and -O5, the compiler detects the cache

characteristics of your compilation machine and tunes cache optimizations for that

cache layout. If you do specify -qcache, also specify -qhot, or an option such as

-O4 that implies -qhot. The optimizations that -qhot performs are designed to take

advantage of your -qcache settings.

Further option driven tuning

You can use the options in this section to convey the characteristics of your

application to the compiler, tuning the optimizations that the compiler will apply.

Option driven tuning is a process that can require experimentation to find the right

combination of options to increase the performance of your application.

The XL compilers support many options that allow you to assert that your

application will not follow certain standard language rules in some instances. The

compiler assumes language standard compliance and can perform unsafe

optimizations if your application is not compliant. Standards-conforming

applications are more easily optimized and more portable, but when full

compliance is not possible, use the appropriate options to ensure your code is

optimized safely.

For complete compiler option syntax, see the XL Fortran Compiler Reference.

Options for providing application characteristics

This section provides a list of options that can dictate a wide variety of

characteristics about your application to the compiler including floating-point and

loop behaviors.

Option Description

-qalias Supports several suboptions that can help the compiler analyze the

characteristics of your application. For more information on

aliasing, see the Advanced optimization concepts section.

noaryovrlp

Asserts that your application contains no array

assignments between storage associated (overlapping)

arrays.

22 XL Fortran Optimization and Programming Guide

nointptr

Asserts that your application does not make use of integer

(Cray) pointers.

nopteovrlp

Asserts that your application does not contain pointee

variables that refer to any data objects that are not pointee

variables. Also, that your application does not contain two

pointee variables that can refer to the same storage

location.

std Asserts that your application follows all language rules for

variable aliasing. This is the default compiler setting.

Specify -qalias=nostd if your application does not follow

all variable aliasing rules.

-qassert Includes the following suboptions that can be useful for providing

some loop characteristics of your application.

nodeps

Asserts that the loops in your application do not contain

loop carry dependencies.

itercnt={number}

Gives the optimizer a value to use when estimating the

number of iterations for loops where it cannot determine

that value.

-qddim Forces the compiler to reevaluate the bounds of a pointee array

each time the application references the array. Specify this option

only if your application performs dynamic dimensioning of pointee

arrays.

-qdirectstorage (PPU only)

Asserts that your application accesses write-through-enabled or

cache-inhibited storage.

-qfloat Provides the compiler with floating-point characteristics for your

application. The following suboptions are particularly useful.

nans (PPU only)

Asserts that your application makes use of signaling NaN

(not-a-number) floating-point values. Normal floating-point

operations do not create these values, your application

must create signalling NaNs.

rrm (PPU only)

Prohibits optimization transformations that assume the

floating-point rounding mode must be the default setting

round-to-nearest. If your application changes the rounding

mode in any way, specify this option.

-qflttrap (PPU only)

Offers you the ability to control various aspects of floating-point

exception handling that your application can require if it attempts

to detect or handle such exceptions.

-qieee Specifies the preferred floating-point rounding mode when

evaluating expressions at compile time. This option is important if

your application requires a non-default rounding mode in order to

have consistency between compile-time evaluation and runtime

evaluation.

Chapter 2. Tuning XL compiler applications 23

You can also specify -y to set the preferred floating-point rounding

mode.

-qlibansi Asserts that any external function calls in your compilation that

have the same name as standard C library function calls, such as

malloc or memcpy, are in fact those functions and are not a

user-written function with that name.

-qlibessl (PPU only)

Asserts that your application will be linked with IBM’s ESSL

high-performance mathematical library and that mathematical

operations can be transformed into calls to that library. The High

performance libraries section contains more information on ESSL.

-qlibposix Asserts that any external function calls in your application that

have the same name as standard Posix library function calls are in

fact those functions and are not a user-written function with that

name.

-qonetrip Asserts that all DO loops in your application will execute at least

one iteration. You can also specify this behavior with -1.

-qnostrictieeemod (PPU only)

Allows the compiler to relax certain rules required by the Fortran

2003 standard related to the use of the IEEE intrinsic modules.

Specify this option if you application does not use these modules.

-qstrict_induction

Prevents optimization transformations that would be unsafe if DO

loop integer iteration count variables overflow and become

negative. Few applications contain algorithms that require this

option.

-qthreaded (PPU only)

Informs the compiler that your application will execute in a

multithreaded/SMP environment. Using an _r invocation, like

ppuxlf_r, adds this option automatically.

-qnounwind (PPU only)

Informs the compiler that the stack will not be unwound while any

routine in your application is active. The -qnounwind option

enables prologue tailoring optimization, which reduces the number

of saves and restores of nonvolatile registers.

-qnozerosize Asserts that this application does not require checking for

zero-sized arrays when performing array operations.

Options to control optimization transformations

There are many options available to you in addition to the base set found in the

Optimizing your applications section. Some of these options prevent an

optimization that can be unsafe for certain applications or enable one that is safe

for your application, but is not normally available as part of the optimization

process.

Option Description

-qcompact Chooses a reduction of final code size over a reduction in

execution time. You can use this option to constrain the

optimizations of -O3 and higher. For more information on

restriction code size, see the Managing code size section.

24 XL Fortran Optimization and Programming Guide

-qfdpr Prepares your object code for additional optimization by the FDPR

object code optimizer.

-qenablevmx (PPU only)

Allows you to take advantage of the VMX capabilities of chips

such as the PPU.

-qfloat This option provides a number of suboptions for controlling the

optimizations to your floating-point calculations.

norsqrt

Prevents the replacement of the division of the result of a

square-root calculation with a multiplication by the

reciprocal of the square root.

nostrictmaf

Prevents certain floating-point multiply-and-add

instructions where the sign of signed zero value would not

be preserved.

-qipa Includes many suboptions that can assist the IPA optimizations

while analyzing your application. If you are using the -qipa option

or higher optimization levels that imply IPA, it is to your benefit to

examine the suboptions available.

-qmaxmem Limits the memory available to certain memory-intensive

optimizations at low levels. Specify -qmaxmem=-1 to remove these

memory limits.

-qnoprefetch (PPU only)

Prevents the the insertion of prefetching machine instructions into

your application during optimization.

-Q Allows you to exert control over inlining optimization

transformations. For more information on inlining, see the

Advanced optimization concepts section.

-qsmallstack Instructs the compiler to limit the use of stack storage in your

application. This can increase heap usage.

-qstacktemp Allows you to limit certain compiler temporaries allocated on the

stack. Those not allocated on the stack will be allocated on the

heap. This option is useful for applications that use enough stack

space to exceed stack user or system limits.

-qstrict Limits optimizations to strict adherence to implied program

semantics. This often prevents the compiler from ignoring certain

little-used rules in the IEEE floating-point specification that few

applications require for correct behavior. For example, reordering

or reassociating a sequence of floating-point calculations can cause

floating-point exceptions at an unexpected location or mask them

completely. Do not use this option unless your application requires

strict adherence as -qstrict can severely inhibit optimization.

-qunroll Allows you to independently control loop unrolling. At -O3 and

higher, -qunroll is a default setting.

Chapter 2. Tuning XL compiler applications 25

Options to assist with performance analysis

The compiler provides a set of options that can help you analyze the performance

aspects of your application. These options are most useful when you are selecting

your level of optimization and tuning the optimization process to the particular

characteristics of your application.

-d Informs the compiler that you want to preserve the preprocessed versions

of your compilation files. Typically these files would have a .F extension.

-g inserts full debugging information into your object code. While the

optimization process can obscure original program meaning, at least some

of the information that this option produces is useful to performance

analysis tools. You can also specify this behavior with -qdbg.

-p (PPU only)

Inserts appropriate profiling information into your object to code to make

using tools for performance analysis possible. You can also specify this

behavior with -pg.

-qdpcl Prepares your object for processing by tools based on the Dynamic Probe

Class Library (DPCL).

-qlinedebug

An option similar to -g, this option inserts only minimal debug

information into your object code such as function names and line number

information.

-qlist Produces a listing file containing a pseuo-assembly listing of your object

code.

-qreport

Inserts information in the listing file showing the transformations done by

certain optimizations.

-S Produces a .s file containing the assembly version of the .o file produced

by the compilation.

-qtbtable (PPU only)

Limits the amount of debugging traceback information in object files,

which reduces the size of the program. Use -qtbtable=full if you intend to

analyze your application with a profiling utility.

Options that can inhibit performance

Some compiler options are necessary for some applications to produce correct or

repeatable results. Usually, these options instruct the compiler to enforce very strict

language semantics that few applications require. Others are supported by the

compiler to allow compilation of code that does not conform to language

standards. Avoid these options if you are trying to increase the runtime

performance of your application. In cases where these options are enabled by

default, you must disable them to increase performance. You can specify -qlistopt

to show, in the listing file, the settings of each of these options.

Consult the XL Fortran Compiler Reference or the relevant options in this section for

complete descriptions of the following options.

 Table 8. Options that can reduce performance

-qalias=nostd -qfloat=nosqrt -qstacktemp=[value

other than 0 or -1]

-qunwind

-qcompact -qfloat=nostrictmaf -qstrict -qzerosize

-qnoenablevmx -qnoprefetch -qstrictieeemod

26 XL Fortran Optimization and Programming Guide

Table 8. Options that can reduce performance (continued)

-qalias=nostd -qfloat=nosqrt -qstacktemp=[value

other than 0 or -1]

-qunwind

-qfloat=norelax -Q! -qstrict_induction

-qfloat=rrm -qsmallstack -qnounroll

Chapter 2. Tuning XL compiler applications 27

28 XL Fortran Optimization and Programming Guide

Chapter 3. Advanced optimization concepts

After you apply command-line optimizations and tuning appropriate to your

application and the constraints of your development cycle, this section can provide

you with further information on opportunities to improve the performance of your

application. See the following concepts for more information:

v “Aliasing”

v “Inlining” on page 30

Aliasing

An alias occurs when different variables point directly or indirectly to a single area

of storage. Aliasing refers to assumptions made during optimization about which

variables can point to or occupy the same storage area. When an alias exists, or the

potential for an alias occurs during the optimization process, pessimistic aliasing

occurs. This can inhibit optimizations like dead store elimination and loop

transformations on aliased variables. Also, pessimistic aliasing can generate

additional loads and stores as the compiler must ensure that any changes to the

variable that occur through the alias are not lost.

When aliasing occurs there is less opportunity for optimization transformations to

occur on and around aliased variables than variables where no aliasing has taken

place. For example, if variables A, B, and C are all aliased, any optimization must

assume that a store into or a use of A is also a store or a use of B and C, even if

that is not the case. Some of the highest optimization levels can improve alias

analysis and remove some pessimistic aliases. However, in all cases, when it is not

proven during an optimization transformation that an alias can be removed that

alias must be left in place.

Where possible, avoid programming techniques that lead to pessimistic aliasing

assumptions. These aliasing assumptions are the single most limiting factor to

optimization transformations. The following situations can lead to pessimistic

aliasing:

v When you assign a pointer the address of any variable, the pointer can be

aliased with globally visible variables and with static variables visible in the

pointer’s scope.

v When you call a procedure that has dummy arguments passed by reference,

aliasing occurs for variables used as actual arguments, and for global variables.

v The compiler will make several worst-case aliasing assumptions concerning

variables in common blocks and modules. These assumptions can inhibit

optimization.

Some compiler options like -qalias can affect aliasing directly. For more

information on how to tune the aliasing behavior in your application, see “Options

for providing application characteristics” on page 22.

© Copyright IBM Corp. 1990, 2007 29

Inlining

Inlining is the process of replacing a subroutine or function call at the call site with

the body of the subroutine or function being called. This eliminates call-linkage

overhead and can expose significant optimization opportunities. For example, with

inlining, the optimizer can replace the subroutine parameters in the function body

with the actual arguments passed. Inlining trade-offs can include code bloat and an

increase in the difficulty of debugging your source code.

If your application contains many calls to small procedures, the procedure call

overhead can sometimes increase the execution time of the application

considerably. Specifying the -qipa=inline compiler option can reduce this

overhead. Additionally, you can use the -p or -pg options and profiling tools to

determine which subprograms your application calls most frequently, and list their

names using -qipa=inline to ensure inlining.

The -qipa option can perform inlining where the calling and called procedures are

in different compilation units.

Let the compiler decide (relatively cautiously) what to inline.

ppuxlf95 -O3 -qipa=inline inline.f

Encourage the compiler to inline particular subprograms.

ppuxlf95 -O3 -qipa=inline=called_100_times,called_1000_times inline.f

Finding the right level of inlining

A common occurrence in application optimization is excessive inlining. This can

actually lead to a decrease in performance because running larger programs can

cause more frequent cache misses and page faults. Since the XL compilers contain

safeguards to prevent excessive inlining, this can lead to situations where

subprograms you want to inline are not automatically inlined when you specify

-qipa=inline.

Some common conditions that prevent -qipa=inline from inlining particular

subprograms are:

v The calling and called procedures are in different compilation units. If so, you

can use the -qipa option on the link step to enable cross-file inlining.

v After inlining expands a subprogram to a particular limit, the optimizer does not

inline subsequent calls from that subprogram. The limits depend on if the

subprogram called is named by a -qipa=inline option.

Consider an example with three procedures where : A is the caller, and B and C

are at the upper size limit for automatic inlining. They are all in the same file,

which you would compile as follows:

ppuxlf -qipa=inline file.f

Specifying -qipa=inline means that calls to C are more likely to be inlined. If B

and C were twice as large as the upper size limit for automatic inlining, no

inlining would take place for calls to B. However inlining would still take place

for some calls to C.

v Any interface errors, such as different numbers, sizes, or types of arguments or

return values, can prevent inlining for a subprogram call. You can also use

interface blocks for the programs being called.

v Actual or potential aliasing of dummy arguments or automatic variables can

limit inlining. Consider the following cases:

30 XL Fortran Optimization and Programming Guide

– You compile a file containing either the calling or called procedure with

-qalias=nostd, and the function takes parameters.

– There are more than approximately 31 arguments to the procedure your

application is calling.

– Any automatic variables in the called procedures are involved in an

EQUIVALENCE statement

– The same variable argument is passed more than once in the same call. For

example, CALL SUB(X,Y,X).
v Some procedures that use computed GO TO statements, where any of the

corresponding statement labels are also used in an ASSIGN statement.

To change the size limits that control inlining, you can specify -qipa=limit=n,

where n is 0 through 9. Larger values allow more inlining.

It is possible to inline C/C++ functions into Fortran programs and Fortran

functions into C/C++ programs during link time optimizations. You must compile

the C/C++ code using the IBM XL C/C++ compilers with -qipa and a compatible

option set to that used in the IBM XL Fortran compilation.

Chapter 3. Advanced optimization concepts 31

32 XL Fortran Optimization and Programming Guide

Chapter 4. Managing code size

Code size is often not a detriment to performance for most XL compiler

programmers. For some however, generating compact object code can be as

important as generating efficient code. Oversized programs can affect overall

performance by creating a conflict for real storage between pages of virtual storage

containing code, and pages of virtual storage containing data. On systems with a

small, combined instruction and data cache, cache collisions between code and

data can also reduce performance. This section provides suggestions on how to

achieve a balance between code efficiency and object-module size, while

identifying compiler options that can affect object-module size. Code size tuning is

most effective once you have built a stable application and run optimization at -O2

or higher.

Reasons for tuning for code size include:

v Your application design calls for an implementation with limited real memory,

instruction-cache space, or disk space.

v When loading your application, it uses enough memory to create a conflict

between code areas and data areas in real memory, and both code and data are

frequently paged in and out.

v There are high activity areas in your code large enough that instruction cache

and instruction Translation Lookaside Buffer (TLB) misses have a major effect on

performance.

v You intend your application to run on a host that serves end users, or in a batch

environment with limits on real memory.

Before tuning for code size, it is important for you to determine whether code size

is the actual problem. Very large applications tend to have small clusters of high

activity and large sections of infrequently accessed code. If a particular code page

is not accessed in a particular run, that page is never loaded into memory, and has

no negative impact on performance. If you are tuning for code size due to the high

activity code segments that cause instruction cache and instruction TLB misses that

have a major effect on performance, this can be symptomatic of a program

structure that requires improvement or hardware not suited to the resource

requirements of the application. With SPU programs, the code size is important

due to limited local storage.

If your data takes up more real storage than is available, reducing code size can

improve performance by ensuring that fewer pages of data are paged out as code

is paged in. However, data blocking strategies are likely to prove both more

effective and easier to implement. Processing data in each page as completely as

possible before moving on to the next page can reduce the number of data page

misses.

If you are coding an application for a machine with a combined instruction and

data cache, you can improve performance by applying the techniques described

later in this section, but tuning for data cache management can yield better results

than code-size tuning. Also note that highly tuning your code for the cache

characteristics of one system can lead to undesirable performance results if you

execute your application elsewhere.

© Copyright IBM Corp. 1990, 2007 33

Steps for reducing code size

This section outlines some steps for reducing code size:

v Ensure that you have built a stable application that compiles at -O2 or higher.

v Use performance analysis tools to isolate high activity code segments and tune

for performance where appropriate. Basing decisions for code size tuning on an

application that has already undergone performance analysis will give you more

information on where your application could benefit from code size tuning.

v Use compiler options like -qcompact that can help reduce code size. See

Compiler option influences on code size for more information.

v For SPU programs, use Automatic code overlays to help partition programs to fit

in the SPU local store.

Be aware that optimization can cause code to expand significantly through loop

unrolling, invariant IF floating, inlining, and other optimizations. The higher your

optimization level, the more code size can increase. For more information on

finding an optimization level appropriate for your application, see Chapter 1,

“Optimizing your applications,” on page 1.

Compiler option influences on code size

As already noted, high optimization levels can increase code size. The following

sections detail other compiler options that can influence the size of your code.

The -qipa compiler option

The -qipa option enables interprocedural analysis (IPA) by the compiler.

Interprocedural analysis analyzes the relationships between procedures and the

code that references those procedures, so that more optimizations within

procedures and across procedure references can take place. Interprocedural analysis

can decrease code size and improve performance at the same time. In some cases

however, IPA inlining can increase code size. Use with discretion.

The -Q inlining option

Using the -Q compiler option, you can specify that the optimizer consider all

Fortran 90 or Fortran 95 procedures, or a particular list of procedures for inlining.

Specifying -qipa=inline also inlines procedures and can alter the limits of -Q.

Inlining procedures can increase the performance of your application, though if

your program references a procedure from many different locations in the source

code, inlining that procedure can increase code size dramatically. You can disable

procedure inlining entirely using -Q!, or -qipa=inline=noauto. You can also

partially disable inlining with -Q-names.

However, do not assume that all inlining increases code size. When your source

code references a very small procedure a large number of times, inlining can

reduce code size, as inlining eliminates control transfer and data interface code. In

addition, inlining code facilitates other optimizations at the point of inlining, by

providing information on the values of arguments referencing the procedure. If a

procedure is very small and is referenced from a number of places, inlining can

also increase code locality and reduce code paging.

The -qhot compiler option

The loop analysis and optimization available when you specify -qhot can increase

code size. If your application contains many large loops and loop optimization

34 XL Fortran Optimization and Programming Guide

opportunities exist, -qhot code size can increase significantly along with

performance. Specifying -qhot=level=0 will perform minimal high-order

transformations if code size is an issue. The section on High-order transformation

contains more information on using -qhot effectively.

The -qcompact compiler option

The -qcompact compiler option instructs the compiler to avoid certain optimizing

transformations that expand the object code. Compiling with -qcompact, disables

many transformations, including:

v Loop unrolling

v Expansion of fixed-point multiply by more than one instruction

v Inline expansion of some string and memory manipulation functions. In some

cases -qcompact will avoid inlining opportunities entirely.

Specifying -qcompact creates a trade-off between the performance of individual

routines in your application, and overall system performance. Suppressing

transformations degrades the performance of individual routines, while overall

system performance can increase as a more compact program can provide some or

all of the following:

v Fewer instruction-cache misses

v Fewer TLB misses for pages of application code

v Fewer page faults for application code

Other influences on code size

In addition to compiler options, there are a number of ways programming and

analysis can influence the size of your source code.

High activity areas

Once you apply the techniques discussed earlier in this section, your strategy for

further code size reduction depends on your objective. Use profiling tools to locate

hot spots in your program; then follow one of the following guidelines:

v If you want to reduce code size to reduce program paging, concentrate on

minimizing branches and procedure references within those hot spots.

v If you want to reduce code size to reduce the size of your program’s files on

disk, concentrate on areas that are not hot spots. Remove any expansive

optimizations from code that does not contain hot spots.

Computed GOTOs and CASE constructs

A sparse computed GOTO can increase code size considerably. In a sparse

computed GOTO, most statement labels point to the default. Consider the

following example where label 10 is the default:

 GOTO (10,10,10,10,20,10,10,10,10,30,20,10,10,10,10,

 +10,20,10,20,10,20,30,30,10,10,10,10,10,10,20,10,10,...

 +10,20,30,10,10,10,30,10,10,10,10,10,10,10,20,10,30) IA(I)

 GOTO 10

30 CONTINUE

 ! ...

 GOTO 10

20 CONTINUE

 ! ...

10 CONTINUE

Chapter 4. Managing code size 35

Although fewer cases are shown, the following CASE construct is a functionally

equivalent to the example above. N is the value of the largest integer that the

computed GOTO or CASE construct is testing.

 INTEGER IA(10000)

 SELECT CASE (IA(I))

 CASE DEFAULT

 GOTO 10

 CASE (5)

 GOTO 20

 CASE (10)

 GOTO 30

 CASE (11)

 GOTO 20

 ! ...

 CASE (N-10)

 GOTO 30

 CASE (N-2)

 GOTO 20

 CASE (N)

 GOTO 30

 END SELECT

In both examples, the compiler builds a branch table in the object file that contains

one entry for each possibility from 1 to N, where N is the largest integer value

tested. The data section of the program stores this branch table. If N is very large,

the table can increase both the size of the object file and the effects of data-cache

misses.

If you use a CASE construct with a small number of cases and wide gaps between

the test values of the cases, the compiler selects a different algorithm to dispatch to

the appropriate location, and the resulting code can be more compact than a

functionally equivalent computed GOTO. The compiler cannot determine that a

computed GOTO has a default branch point, so the compiler assumes that any

value in the range will be selected. In a CASE construct, the compiler assumes that

cases you do not specify in the construct are handled as default.

Linking and code size

Dynamic linking

When linking your XL compiler programs, dynamic linking often ensures more

compact code than linking statically. Dynamic linking does not include library

procedures in your object file. Instead, a reference at runtime causes the operating

system to locate the dynamic library that contains the procedure, and reference

that procedure from the library of the operating system. Only one copy of the

procedure is in memory, even if several programs, or copies of a single program,

are accessing the procedure simultaneously. This can reduce paging overhead.

However, any libraries your program references must be present in your

application’s execution environment, or ship with your application.

Note that if your program references high performance libraries like BLAS or

ESSL, these procedures are dynamically linked to your program by default.

Static linking

Static linking binds library procedures into your application’s object file. This can

increase the size of your object file. If your program references only a small portion

of the procedures available in a library, static linking can eliminate the need to

provide the library to your users. However, static linking ties your application to

36 XL Fortran Optimization and Programming Guide

one version of the library which can be detrimental in situations where your

application will execute in different environments, such as different levels of the

operating system.

Chapter 4. Managing code size 37

38 XL Fortran Optimization and Programming Guide

Chapter 5. Compiler-friendly programming techniques

Writing compiler-friendly code can be as important to the performance of your

application as the compilation options that you specify. This section contains

suggestions on writing code with the optimizer and portability in mind and

contains the following:

v “General practices”

v “Variables and pointers” on page 40

v “Arrays” on page 40

v “Choosing appropriate variable sizes” on page 40

General practices

It is not necessary to hand-optimize your code, as hand-optimizing can introduce

unusual constructs that can obscure the intentions of your application from the

compiler and limit optimization opportunities.

Large programs, especially those that take advantage of 64-bit capabilities, can use

significant address space resources. Use 64-bit mode only if your application

requires the additional address space resources it provides you with.

Avoid breaking your program into too many small functions, as this can increase

the percentage of time the program spends in dealing with call overhead. If you

choose to use many small functions, compiling with -qipa can help minimize the

impact on performance. Attempting to optimize an application with many small

functions without the benefit of -qipa can severely limit the scope of other

optimizations.

Using command invocations like ppuxlf90 and ppuxlf95 will enhance standards

conformance and code portability.

Specifying -qnosave sets the default storage class of all variables to automatic. This

provides more opportunities for optimization. All compiler command invocations

except ppuf77, ppufort77, ppuxlf, ppuxlf_r, and ppuxlf_r7 use -qnosave by

default.

Use modules to group related subroutines and functions.

Use module variables instead of common blocks for global storage.

Mark all code that accesses or manipulates data objects by independent I/O

processes and independent, asynchronously interrupting processes as VOLATILE.

For example, mark code that accesses shared variables and pointers to shared

variables. Mark your code carefully however, as VOLATILE is a barrier to

optimization as accessing a VOLATILE object forces the compiler to always load

the value from storage. This prevents powerful optimizations such as constant

propagation or invariant code motion.

The XL compilers support high performance libraries that can provide significant

advantages over custom implementations or generic libraries.

© Copyright IBM Corp. 1990, 2007 39

Variables and pointers

Obey all aliasing rules. Avoid specifying -qalias=nostd. For more information on

aliasing and how it can affect performance, see “Aliasing” on page 29.

Avoid unnecessary use of global variables and pointers, including module

variables and common blocks. When using global variables and pointers in a loop,

load them into a local variable before the loop and store them back after. If you do

not use the local variable somewhere other than in the loop body, the optimization

process can usually recognize what you are doing and expose more optimization

opportunities. Replacing a global variable in a loop with a local variable reduces

the possibilities for aliasing.

Use the INTENT statement to describe the usage of dummy arguments.

Limit the use of ALLOCATABLE objects and POINTER variables to situations

demanding dynamic memory allocation.

Arrays

Where possible, use local variables instead of global variables for loop index

variables and bounds.

Whenever possible, ensure references to arrays or array sections refer to contiguous

blocks of storage. Noncontiguous memory array references, when passed as

parameters, lead to copy-in and copy-out operations.

Keep your array expressions simple so that the optimizer can deduce access

patterns more easily and reuse index calculations in whole or in part.

Frequent use of array-to-array assignment and WHERE constructs can impact

performance by increasing temporary storage and creating loops. Using -qlist or

-qreport can help you understand the performance characteristics of your code,

and where applying -qhot could be beneficial. If you are already optimizing with

-qipa, ensure you are using the list=filename option, so that the -qlist listing file is

not overwritten.

Choosing appropriate variable sizes

In most cases using INTEGER(4) in 32-bit mode and INTEGER(8) in 64-bit mode

for scalars improves the efficiency of mathematical calculations and calling

conventions when passing objects. However, if your code contains large arrays

with values that can fit in an INTERGER(1) or INTEGER(2) in 32-bit mode, or an

INTEGER(4) in 64-bit mode, using smaller kind parameters can actually improve

memory efficiency by reducing memory traffic to load or store data.

Use the lowest floating-point precision appropriate to your application. Higher

precisions can reduce performance.

On systems with VMX, using REAL(4) and -qhot=simd provides opportunities for

short vectorization not available with larger floating-point types.

40 XL Fortran Optimization and Programming Guide

Chapter 6. High performance libraries

XL Fortran is shipped with a set of libraries for high-performance mathematical

computing:

v The Mathematical Acceleration Subsystem (MASS) is a set of libraries of tuned

mathematical intrinsic routines that provide improved performance over the

corresponding standard system math library routines. MASS is described in

“Using the Mathematical Acceleration Subsystem libraries (MASS).”

v The Basic Linear Algebra Subprograms (BLAS) are a subset of routines from

IBM’s Engineering and Scientific Subroutine Library (ESSL) library, which

provides matrix/vector multiplication functions tuned for PowerPC

architectures. The BLAS functions are described in “Using the Basic Linear

Algebra Subprograms – BLAS (PPU only)” on page 50.

Note that if you are going to link your application with the ESSL libraries, using

-qessl and IPA allows the optimizer to automatically use ESSL routines.

Using the Mathematical Acceleration Subsystem libraries (MASS)

The MASS libraries consist of a library of scalar functions described in “Using the

scalar library (PPU only)”; a set of vector libraries tuned for the Cell Broadband

Engine architecture described in “Using the vector libraries” on page 43; and a

SIMD library with functions tuned for SPU programs described in “Using the

SIMD library for SPU programs” on page 47.

“Compiling and linking a program with MASS” on page 49 describes how to

compile and link a program that uses the MASS libraries, and how to selectively

use the MASS scalar library and SIMD library functions in conjuntion with the

regular system libraries.

Note: On Linux, 32-bit and 64-bit objects cannot be combined in the same library,

so two versions of the scalar and vector libraries are shipped with the

compiler: libmass.a and libmassv.a for 32-bit applications and libmass_64.a

and libmassv_64.a for 64-bit applications.

Related information

v Mathematical Acceleration Subsystem Web site at http://www.ibm.com/
software/awdtools/mass/

Using the scalar library (PPU only)

The MASS scalar libraries libmass.a (32-bit) and libmass_64.a (64-bit) contain an

accelerated set of frequently used math intrinsic functions that provide improved

performance over the corresponding standard system library functions. The MASS

scalar functions are used when explicitly linking libmass.a or libmass_64.a, but are

also available automatically when you compile programs with any of the following

options:

v -qhot -qnostrict

v -qhot -O3

v -O4

v -O5

© Copyright IBM Corp. 1990, 2007 41

http://www.ibm.com/software/awdtools/mass/

With these options, the compiler automatically uses the faster MASS functions for

most math library functions. In fact, the compiler first tries to ″vectorize″ calls to

math library functions by replacing them with the equivalent MASS vector

functions; if it cannot do so, it uses the MASS scalar functions. When the compiler

performs this automatic replacement of math library functions, it uses versions of

the MASS functions contained in the system library libxlopt.a. You do not need

to add any special calls to the MASS functions in your code, or to link to the

libxlopt library.

If you are not using any of the optimization options listed above, and want to

explicitly call the MASS scalar functions, you can do so as follows:

1. Link the MASS scalar library libmass.a with your application. For instructions,

see “Compiling and linking a program with MASS” on page 49

2. All the MASS scalar routines, except those listed in 3 are recognized by XL

Fortran as intrinsic functions, so no explicit interface block is needed. To

provide an interface block for the functions listed in 3, include mass.include in

your source file.

3. Include mass.include in your source file for the following functions:

v acosf, acosh, acoshf, asinf, asinh, asinhf, atan2f, atanf, atanh, atanhf, cbrt,

cbrtf, copysign, copysignf, cosf, coshf, cosisin, erff, erfcf, expf, expm1f,

hypot, hypotf, lgammaf, logf, log10f, log1pf, rsqrt, sinf, sincos, sinhf, tanf,

tanhf, and x**y

The MASS scalar functions accept double-precision parameters and return a

double-precision result, or accept single-precision parameters and return a

single-precision result, except sincos, which gives 2 double-precision results, and

cosisin, which returns a complex*8 result. They are summarized in Table 9.

 Table 9. MASS scalar functions

Double-
precision

function

Single-precision

function

Description

acos acosf Returns the arccosine of x

acosh acoshf Returns the hyperbolic arccosine of x

asin asinf Returns the arcsine of x

asinh asinhf Returns the hyperbolic arcsine of x

atan2 atan2f Returns the arctangent of x/y

atan atanf Returns the arctangent of x

atanh atanhf Returns the hyperbolic arctangent of x

cbrt cbrtf Returns the cube root of x

copysign copysignf Returns x with the sign of y

cos cosf Returns the cosine of x

cosh coshf Returns the hyperbolic cosine of x

cosisin Returns a complex number with the real part the

cosine of x and the imaginary part the sine of x.

dnint anint Returns the nearest integer to x, as a floating-point

type.

erf erff Returns the error function of x

erfc erfcf Returns the complementary error function of x

exp expf Returns the exponential function of x

42 XL Fortran Optimization and Programming Guide

Table 9. MASS scalar functions (continued)

Double-
precision

function

Single-precision

function

Description

expm1 expm1f Returns (the exponential function of x) − 1

hypot hypotf Returns the square root of x2 + y2

lgamma lgammaf Returns the natural logarithm of the absolute value

of the Gamma function of x

log logf Returns the natural logarithm of x

log10 log10f Returns the base 10 logarithm of x

log1p log1pf Returns the natural logarithm of (x + 1)

rsqrt Returns the reciprocal of the square root of x

sin sinf Returns the sine of x

sincos Sets *s to the sine of x and *c to the cosine of x

sinh sinhf Returns the hyperbolic sine of x

sqrt Returns the square root of x

tan tanf Returns the tangent of x

tanh tanhf Returns the hyperbolic tangent of x

x**y powf Returns x raised to the power y

The following example shows the XL Fortran interface declaration for the rsqrt

scalar function:

 interface

 real*8 function rsqrt (%val(x))

 real*8 x ! Returns the reciprocal of the square root of x.

 end function rsqrt

 end interface

Notes:

v The trigonometric functions (sin, cos, tan) return NaN (Not-a-Number) for large

arguments (where the absolute value is greater than 250pi).

v In some cases, the MASS functions are not as accurate as the libm.a library, and

they might handle edge cases differently (sqrt(Inf), for example).

v See the Mathematical Acceleration Subsystem Web site at http://www.ibm.com/
software/awdtools/mass/ for accuracy comparisons with libm.a.

Using the vector libraries

When you compile programs with any of the following options:

v -qhot -qnostrict

v -qhot -O3

v -O4

v -O5

for PPU programs, the compiler automatically attempts to vectorize calls to system

math functions by calling the equivalent MASS vector functions (with the

exceptions of functions vatan2 , vsatan2, vdnint, vdint, vsincos, vssincos,

vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt, vsrqdrt, vpopcnt4, and vpopcnt8). For

Chapter 6. High performance libraries 43

http://www.ibm.com/software/awdtools/mass/

automatic vectorization, the compiler uses versions of the MASS functions

contained in the system library libxlopt.a. You do not need to add any special

calls to the MASS functions in your code, or to link to the libxlopt library.

For PPU and SPU programs, if you are not using any of the optimization options

listed above, and want to explicitly call any of the MASS vector functions, you can

do so by including the XL Fortran massv.include file in your source files and

linking your application with the appropriate vector library. (Information on

linking is provided in “Compiling and linking a program with MASS” on page 49.)

Vector libraries

libmassv.a (SPU and PPU) and libmassv_64.a (PPU only)

The single-precision and double-precision floating-point functions contained in the

vector libraries are summarized in Table 10 on page 45. The integer functions

contained in the vector libraries are summarized in Table 11 on page 46.

With the exception of a few functions (described below), all of the floating-point

functions in the vector libraries accept three arguments:

v A double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector output argument.

v A double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector input argument.

v An integer vector-length argument. Note that for SPU programs, this parameter

must be a multiple of 4.

The functions are of the form

function_name (y,x,n)

where y is the target vector, x is the source vector, and n is the vector length. The

arguments y and x are assumed to be double-precision for functions with the

prefix v, and single-precision for functions with the prefix vs. As examples, the

following code:

include ’massv.include’

real*8 x(500), y(500)

integer n

n = 500

...

call vexp (y, x, n)

outputs a vector y of length 500 whose elements are exp(x(i)), where i=1,...,500.

The functions vdiv, vsincos, vpow, and vatan2 (and their single-precision versions,

vsdiv, vssincos, vspow, and vsatan2) take four parameters. The functions vdiv,

vpow, and vatan2 take the parameters (z,x,y,n). The function vdiv outputs a vector z

whose elements are x(i)/y(i), where i=1,...,n. The function vpow outputs a vector z

whose elements are x(i)y(i), where i=1,..,n. The function vatan2 outputs a vector z

whose elements are atan(x(i)/y(i)), where i=1,..,n. The function vsincos takes the

parameters (y,z,x,n), and outputs two vectors, y and z, whose elements are sin(x(i))

and cos(x(i)), respectively.

In vcosisin(y,x,n) and vscosisin(y,x,n), x is a vector of n elements and the

function outputs a vector y of n complex*16 elements of the form

(cos(x(i)),sin(x(i))).

44 XL Fortran Optimization and Programming Guide

Table 10. MASS floating-point vector library functions

Double-precision

function (PPU

only)

Single-precision

function Arguments Description

vacos vsacos (y,x,n) Sets y(i) to the arc cosine of x(i), for i=1,..,n

vacosh vsacosh (y,x,n) Sets y(i) to the hyperbolic arc cosine of x(i), for

i=1,..,n

vasin vsasin (y,x,n) Sets y(i) to the arc sine of x(i), for i=1,..,n

vasinh vsasinh (y,x,n) Sets y(i) to the arc hyperbolic sine of x(i), for i=1,..,n

vsatan (SPU

only)

(y,x,n) Sets y(i) to the arc tangent of x(i), i=1,...,n

vatan2 vsatan2 (z,x,y,n) Sets z(i) to the arc tangent of x(i)/y(i), for i=1,..,n

vatanh vsatanh (y,x,n) Sets y(i) to the arc hyperbolic tangent of x(i), for

i=1,..,n

vcbrt vscbrt (y,x,n) Sets y(i) to the cube root of x(i), for i=1,..,n

vcos vscos (y,x,n) Sets y(i) to the cosine of x(i), for i=1,..,n

vcosh vscosh (y,x,n) Sets y(i) to the hyperbolic cosine of x(i), for i=1,..,n

vcosisin vscosisin(PPU

only)

(y,x,n) Sets the real part of y(i) to the cosine of x(i) and the

imaginary part of y(i) to the sine of x(i), for i=1,..,n

vscosisin (SPU

only)

(y,x,n) Sets y(2*i) to the cosine of x(i) and y(2*i+1) to the sine

of x(i) for i=0, ... , n

vdint (y,x,n) Sets y(i) to the integer truncation of x(i), for i=1,..,n

vdiv vsdiv (z,x,y,n) Sets z(i) to x(i)/y(i), for i=1,..,n

vserf (SPU only) (y,x,n) Sets y(i) to the error function of x(i), i=1,...,n

vserfc (SPU only) (y,x,n) Sets y(i) to the complementary error function of x(i),

i=1,...,n

vdnint (y,x,n) Sets y(i) to the nearest integer to x(i), for i=1,..,n

vexp vsexp (y,x,n) Sets y(i) to the exponential function of x(i), for i=1,..,n

vexpm1 vsexpm1 (y,x,n) Sets y(i) to (the exponential function of x(i))-1, for

i=1,..,n

vshypot (SPU

only)

(z,x,y,n) Sets z(i) to sqrt(x(i)*x(i)+y(i)*y(i)), i=1,...,n

vslgamma (SPU

only)

(y,x,n) Sets y(i) to the natural logarithm of the absolute

value of the Gamma function of x(i), i=1,...,n

vlog vslog (y,x,n) Sets y(i) to the natural logarithm of x(i), for i=1,..,n

vlog10 vslog10 (y,x,n) Sets y(i) to the base-10 logarithm of x(i), for i=1,..,n

vlog1p vslog1p (y,x,n) Sets y(i) to the natural logarithm of (x(i)+1), for

i=1,..,n

vslog2 (SPU

only)

(y,x,n) Sets y(i) to the base-2 logarithm of x(i), i=1,...,n

vpow vspow (z,x,y,n) Sets z(i) to x(i) raised to the power y(i), for i=1,..,n

vqdrt vsqdrt (y,x,n) Sets y(i) to the 4th root of x(i), for i=1,..,n

vrcbrt vsrcbrt (y,x,n) Sets y(i) to the reciprocal of the cube root of x(i), for

i=1,..,n

vrec vsrec (y,x,n) Sets y(i) to the reciprocal of x(i), for i=1,..,n

Chapter 6. High performance libraries 45

Table 10. MASS floating-point vector library functions (continued)

Double-precision

function (PPU

only)

Single-precision

function Arguments Description

vrqdrt vsrqdrt (y,x,n) Sets y(i) to the reciprocal of the 4th root of x(i), for

i=1,..,n

vrsqrt vsrsqrt (y,x,n) Sets y(i) to the reciprocal of the square root of x(i), for

i=1,..,n

vsin vssin (y,x,n) Sets y(i) to the sine of x(i), for i=1,..,n

vsincos vssincos (y,z,x,n) Sets y(i) to the sine of x(i) and z(i) to the cosine of

x(i), for i=1,..,n

vsinh vssinh (y,x,n) Sets y(i) to the hyperbolic sine of x(i), for i=1,..,n

vsqrt vssqrt (y,x,n) Sets y(i) to the square root of x(i), for i=1,..,n

vtan vstan (y,x,n) Sets y(i) to the tangent of x(i), for i=1,..,n

vtanh vstanh (y,x,n) Sets y(i) to the hyperbolic tangent of x(i), for i=1,..,n

Integer functions are of the form function_name (x, n), where x is a vector of 4-byte

(for vpopcnt4) or 8-byte (for vpopcnt8) numeric objects (integer or floating-point),

and n is the vector length.

 Table 11. MASS integer vector library functions

Function Description Interface

vpopcnt4 Returns the total number of 1 bits in the concatenation of

the binary representation of x(i), for i=1,...,n, where x is

vector of 32-bit objects

integer*4 function vpopcnt4 (x, n)

integer*4 x(*), n

vpopcnt8 Returns the total number of 1 bits in the concatenation of

the binary representation of x(i), for i=1,...,n, where x is

vector of 64-bit objects

integer*4 function vpopcnt8 (x, n)

integer*8 x(*)

integer*4 n

The following example shows XL Fortran interface declarations for some of the

MASS double-precision vector routines:

interface

subroutine vsqrt (y, x, n)

 real*8 y(*), x(*)

 integer n ! Sets y(i) to the square root of x(i), for i=1,..,n

end subroutine vsqrt

subroutine vrsqrt (y, x, n)

 real*8 y(*), x(*)

 integer n ! Sets y(i) to the reciprocal of the square root of x(i),

 ! for i=1,..,n

end subroutine vrsqrt

end interface

The following example shows XL Fortran interface declarations for some of the

MASS single-precision vector routines:

interface

subroutine vssqrt (y, x, n)

 real*4 y(*), x(*)

 integer n ! Sets y(i) to the square root of x(i), for i=1,..,n

end subroutine vssqrt

46 XL Fortran Optimization and Programming Guide

subroutine vsrsqrt (y, x, n)

 real*4 y(*), x(*)

 integer n ! Sets y(i) to the reciprocal of the square root of x(i),

 ! for i=1,..,n

end subroutine vsrsqrt

end interface

Overlap of input and output vectors

In most applications, the MASS vector functions are called with disjoint input and

output vectors; that is, the two vectors do not overlap in memory. Another

common usage scenario is to call them with the same vector for both input and

output parameters (for example, vsin (y, y, n)). Other kinds of overlap (where

input and output vectors are neither disjoint nor identical) should be avoided,

since they may produce unexpected results:

v For calls to vector functions that take one input and one output vector (for

example, vsin (y, x, n)):

The vectors x(1:n) and y(1:n) must be either disjoint or identical, or

unexpected results may be obtained.

v For calls to vector functions that take two input vectors (for example, vatan2 (y,

x1, x2, n)):

The previous restriction applies to both pairs of vectors y,x1 and y,x2. That is,

y(1:n) and x1(1:n) must be either disjoint or identical; and y(1:n) and x2(1:n)

must be either disjoint or identical.

v For calls to vector functions that take two output vectors (for example, vsincos

(y1, y2, x, n)):

The above restriction applies to both pairs of vectors y1,x and y2,x. That is,

y1(1:n) and x(1:n) must be either disjoint or identical; and y2(1:n) and x(1:n)

must be either disjoint or identical. Also, the vectors y1(1:n) and y2(1:n) must

be disjoint.

Consistency of MASS vector functions

All the functions in the MASS vector libraries are consistent, in the sense that a

given input value will always produce the same result, regardless of its position in

the vector, and regardless of the vector length.

Using the SIMD library for SPU programs

The MASS SIMD library libmass_simd.a contains an accelerated set of frequently

used math intrinsic functions that provide improved performance over the

corresponding standard system library functions. If you want to use the MASS

SIMD functions, you can do so as follows:

1. Provide the interfaces for the functions by including mass_simd.include in your

source files.

2. Link the MASS scalar library libmass_simd.a with your application. For

instructions, see “Compiling and linking a program with MASS” on page 49

The MASS SIMD functions accept single-precision parameters and return a

single-precision results. They are summarized in Table 12.

 Table 12. SPU MASS SIMD functions

Function Description Interface

acosf4 Computes the arc cosine of each element of x. vector(real(4)) function acosf4(x)
vector(real(4)), value :: x

Chapter 6. High performance libraries 47

Table 12. SPU MASS SIMD functions (continued)

Function Description Interface

acoshf4 Computes the arc hyperbolic cosine of each

element of x.

vector(real(4)) function acoshf4(x)
vector(real(4)), value :: x

asinf4 Computes the arc sine of each element of x. vector(real(4)) function asinf4(x)
vector(real(4)), value :: x

asinhf4 Computes the arc hyperbolic sine of each

element of x.

vector(real(4)) function asinhf4(x)
vector(real(4)), value :: x

atanf4 Computes the arc tangent of each element of x. vector(real(4)) function atanf4(x)
vector(real(4)), value :: x

atan2f4 Computes the arc tangent of each element of

x/y.

vector(real(4)) function atan2f4(x, y)

vector(real(4)), value :: x

vector(real(4)), value :: y

atanhf4 Computes the arc hyperbolic tangent of each

element of x.

vector(real(4)) function atanhf4(x)
vector(real(4)), value :: x

cbrtf4 Computes the cube root of each element of x vector(real(4)) function cbrtf4(x)
vector(real(4)), value :: x

cosf4 Computes the cosine of each element of x. vector(real(4)) function cosf4(x)
vector(real(4)), value :: x

coshf4 Computes the hyperbolic cosine of each

element of x.

vector(real(4)) function coshf4(x)
vector(real(4)), value :: x

divf4 Computes the quotient x/y. vector(real(4)) function divf4(x, y)

vector(real(4)), value :: x

vector(real(4)), value :: y

erfcf4 Computes the complementary error function of

each element of x.

vector(real(4)) function erfcf4(x)
vector(real(4)), value :: x

erff4 Computes the error function of each element of

x.

vector(real(4)) function erff4(x)
vector(real(4)), value :: x

expf4 Computes the exponential function of each

element of x.

vector(real(4)) function expf4(x)
vector(real(4)), value :: x

expm1f4 Computes the exponential function of each

element of x - 1.

vector(real(4)) function expm1f4(x)
vector(real(4)), value :: x

hypotf4 For each element of x and the corresponding

element of y, computes sqrt(x*x+y*y).

vector(real(4)) function hypotf4(x, y)

vector(real(4)), value :: x

vector(real(4)), value :: y

lgammaf4 Computes the natural logarithm of the absolute

value of the Gamma function of each element

of x .

vector(real(4)) function lgammaf4(x)
vector(real(4)), value :: x

logf4 Computes the natural logarithm of each

element of x.

vector(real(4)) function logf4(x)
vector(real(4)), value :: x

log2f4 Computes the base-2 logarithm of each element

of x.

vector(real(4)) function log2f4(x)
vector(real(4)), value :: x

log10f4 Computes the base-10 logarithm of each

element of x.

vector(real(4)) function log10f4(x)
vector(real(4)), value :: x

log1pf4 Computes the natural logarithm of each

element of x +1.

vector(real(4)) function log1pf4(x)
vector(real(4)), value :: x

powf4 Computes each element of x raised to the

power of the corresponding element of y.

vector(real(4)) function powf4(x, y)

vector(real(4)), value :: x

vector(real(4)), value :: y

48 XL Fortran Optimization and Programming Guide

Table 12. SPU MASS SIMD functions (continued)

Function Description Interface

qdrtf4 Computes the quad root of each element of x. vector(real(4)) function qdrtf4(x)
vector(real(4)), value :: x

rcbrtf4 Computes the reciprocal of the cube root of

each element of x.

vector(real(4)) function rcbrtf4(x)
vector(real(4)), value :: x

recipf4 Computes the reciprocal of each element of vx. vector(real(4)) function recipf4(vx)
vector(real(4)), value :: vx

rqdrtf4 Computes the reciprocal of the quad root of

each element of x.

vector(real(4)) function rqdrtf4(x)
vector(real(4)), value :: x

rsqrtf4 Computes the reciprocal of the square root of

each element of x.

vector(real(4)) function rsqrtf4(x)
vector(real(4)), value :: x

sincosf4 Computes the sine and cosine of each element

of x.

vector(real(4)) function sincosf4(x)
vector(real(4)), value :: x

sinf4 Computes the sine of each element of x. vector(real(4)) function sinf4(x)
vector(real(4)), value :: x

sinhf4 Computes the hyperbolic sine of each element

of x.

vector(real(4)) function sinhf4(x)
vector(real(4)), value :: x

sqrtf4 Computes the square root of each element of x. vector(real(4)) function sqrtf4(x)
vector(real(4)), value :: x

tanf4 Computes the tangent of each element of x. vector(real(4)) function tanf4(x)
vector(real(4)), value :: x

tanhf4 Computes the hyperbolic tangent of each

element of x.

vector(real(4)) function tanhf4(x)
vector(real(4)), value :: x

Related information

v “Compiling and linking a program with MASS”

v “Using libmass_simd.a with libsimdmath.a (SPU only)” on page 50

Compiling and linking a program with MASS

To compile a 32-bit application that calls the functions in the MASS libraries,

specify mass and massv on the -l linker option. For 64-bit applications (PPU only),

specify mass_64 and massv_64 on the -l linker option. To compile an SPU

application that uses the SIMD library, specify -lmass_simd on the -l linker option.

For example, if the MASS libraries are installed in the default directory, you could

specify one of the following:

Linking with scalar library libmass.a and vector library libmassv.a (32-bit code)

ppuxlf progf.f -o progf -lmass -lmassv

Linking with scalar library libmass_64.a and vector library libmassv_64.a (64-bit

code)

ppuxlf progf.f -o progf -lmass_64 -lmassv_64 -q64

Link with SIMD library libmass_simd.a (SPU only) and SPU vector library

libmassv.a

spuxlf progf.f -o progf -lmass_simd -lmassv

The MASS functions must run in the default rounding mode and floating-point

exception trapping settings.

Chapter 6. High performance libraries 49

Using libmass.a with the math system library

If you wish to use the libmass.a scalar library for some functions and the normal

math library libm.a for other functions, follow this procedure to compile and link

your program:

1. Use the ppu-ar command to extract the object files of the desired functions

from libmass.a or libmass_64.a. For most functions, the object file name is the

function name followed by .s32.o (for 32-bit mode) or .s64.o (for 64-bit

mode).1 For example, to extract the object file for the tan function in 32-bit

mode, the command would be:

ppu-ar -x tan.s32.o libmass.a

2. Archive the extracted object files into another library:

 ppu-ar -qv libfasttan.a tan.s32.o

 ppu-ranlib libfasttan.a

3. Create the final executable using ppuxlf, specifying -lfasttan instead of -lmass:

ppuxlf sample.f -o sample -Ldir_containing_libfasttan -lfasttan

This links only the tan function from MASS (now in libfasttan.a) and the

remainder of the math functions from the standard system library.

Exceptions:

1. The sin and cos functions are both contained in the object files sincos.s32.o and

sincos.s64.o. The cosisin and sincos functions are both contained in the object

file cosisin.s32.o. The Fortran ** (exponentiation) operator is contained in the

object files pow_p4.s32.o and pow_p4.s64.o for real*8 and powf_p4.s32.o and

pow_p4.s64.o for real*4.

Note: The cos and sin functions will both be exported if either one is exported.

cosisin and sincos will both be exported if either one is exported.

Using libmass_simd.a with libsimdmath.a (SPU only)

If you wish to use the MASS libmass_simd.a library for some functions and the

SIMDmath library libsimdmath.a for other functions, follow this procedure to

compile and link your program:

1. Use the spu-ar command to extract the object files of the desired functions from

libmass_simd.a. The object file name is the function name followed by .s.o. For

example, to extract the object file for the tanf4 function, the command would

be:

spu-ar -x libmass_simd.a tanf4.s.o

2. Archive the extracted object files into another library:

spu-ar -qv libfasttan.a tanf4.s.o

spu-ranlib libfasttan.a

3. Create the final executable using spuxlf, specifying -lfasttan ahead of

-lsimdmath. (libfasttandir is the directory containing libfasttan.a.).

spuxlf sample.f -o sample -Llibfasttandir -lfasttan -L/usr/spu/lib -lsimdmath

This links only the tanf4 function from MASS (now in libfasttan.a) and the

remainder of the math functions from SIMDmath.

Using the Basic Linear Algebra Subprograms – BLAS (PPU only)

Four Basic Linear Algebra Subprograms (BLAS) functions are shipped with XL

Fortran in the libxlopt library. The functions consist of the following:

v SGEMV (single-precision) and DGEMV (double-precision), which compute the

matrix-vector product for a general matrix or its transpose

50 XL Fortran Optimization and Programming Guide

v SGEMM (single-precision) and DGEMM (double-precision), which perform

combined matrix multiplication and addition for general matrices or their

transposes

Note: Some error-handling code has been removed from the BLAS functions in

libxlopt, and no error messages are emitted for calls to the these functions.

“BLAS function syntax” describes the interfaces for the XL Fortran BLAS functions,

which are similar to those of the equivalent BLAS functions shipped in IBM’s

Engineering and Scientific Subroutine Library (ESSL); for more detailed

information and examples of usage of these functions, you may wish to consult the

Engineering and Scientific Subroutine Library Guide and Reference, available at

http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html .

“Linking the libxlopt library” on page 53 describes how to link to the XL Fortran

libxlopt library if you are also using a third-party BLAS library.

BLAS function syntax

The interfaces for the SGEMV and DGEMV functions are as follows:

CALL SGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

CALL DGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

The parameters are as follows:

trans

is a single character indicating the form of the input matrix a, where:

v ’N’ or ’n’ indicates that a is to be used in the computation

v ’T’ or ’t’ indicates that the transpose of a is to be used in the computation

m represents:

v the number of rows in input matrix a

v the length of vector y, if ’N’ or ’n’ is used for the trans parameter

v the length of vector x, if ’T’ or ’t’ is used for the trans parameter

The number of rows must be greater than or equal to zero, and less than the

leading dimension of the matrix a (specified in lda)

n represents:

v the number of columns in input matrix a

v the length of vector x, if ’N’ or ’n’ is used for the trans parameter

v the length of vector y, if ’T’ or ’t’ is used for the trans parameter

The number of columns must be greater than or equal to zero.

alpha

is the scaling constant α

a is the input matrix of single-precision (for SGEMV) or double-precision (for

DGEMV) real values

lda is the leading dimension of the array specified by a. The leading dimension

must be greater than zero. The leading dimension must be greater than or

equal to 1 and greater than or equal to the value specified in m.

x is the input vector of single-precision (for SGEMV) or double-precision (for

DGEMV) real values.

Chapter 6. High performance libraries 51

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

incx

is the stride for vector x. It can have any value.

beta

is the scaling constant β

y is the output vector of single-precision (for SGEMV) or double-precision (for

DGEMV) real values.

incy

is the stride for vector y. It must not be zero.

Note: Vector y must have no common elements with matrix a or vector x;

otherwise, the results are unpredictable.

The prototypes for the SGEMM and DGEMM functions are as follows:

CALL SGEMM(transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc)

CALL DGEMM(transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc)

The parameters are as follows:

transa

is a single character indicating the form of the input matrix a, where:

v ’N’ or ’n’ indicates that a is to be used in the computation

v ’T’ or ’t’ indicates that the transpose of a is to be used in the computation

transb

is a single character indicating the form of the input matrix b, where:

v ’N’ or ’n’ indicates that b is to be used in the computation

v ’T’ or ’t’ indicates that the transpose of b is to be used in the computation

l represents the number of rows in output matrix c. The number of rows must

be greater than or equal to zero, and less than the leading dimension of c.

n represents the number of columns in output matrix c. The number of columns

must be greater than or equal to zero.

m represents:

v the number of columns in matrix a, if ’N’ or ’n’ is used for the transa

parameter

v the number of rows in matrix a, if ’T’ or ’t’ is used for the transa parameter

and:

v the number of rows in matrix b, if ’N’ or ’n’ is used for the transb

parameter

v the number of columns in matrix b, if ’T’ or ’t’ is used for the transb

parameter

m must be greater than or equal to zero.

alpha

is the scaling constant α

a is the input matrix a of single-precision (for SGEMM) or double-precision (for

DGEMM) real values

lda is the leading dimension of the array specified by a. The leading dimension

must be greater than zero. If transa is specified as ’N’ or ’n’, the leading

52 XL Fortran Optimization and Programming Guide

dimension must be greater than or equal to 1. If transa is specified as ’T’ or

’t’, the leading dimension must be greater than or equal to the value specified

in m.

b is the input matrix b of single-precision (for SGEMM) or double-precision (for

DGEMM) real values.

ldb is the leading dimension of the array specified by b. The leading dimension

must be greater than zero. If transb is specified as ’N’ or ’n’, the leading

dimension must be greater than or equal to the value specified in m. If transa is

specified as ’T’ or ’t’, the leading dimension must be greater than or equal to

the value specified in n.

beta

is the scaling constant β

c is the output matrix c of single-precision (for SGEMM) or double-precision (for

DGEMM) real values.

ldc is the leading dimension of the array specified by c. The leading dimension

must be greater than zero. If transb is specified as ’N’ or ’n’, the leading

dimension must be greater than or equal to 0 and greater than or equal to the

value specified in l.

Note: Matrix c must have no common elements with matrices a or b; otherwise,

the results are unpredictable.

Linking the libxlopt library

By default, the libxlopt library is linked with any application you compile with

XL Fortran. However, if you are using a third-party BLAS library, but want to use

the BLAS routines shipped with libxlopt, you must specify the libxlopt library

before any other BLAS library on the command line at link time. For example, if

your other BLAS library is called libblas, you would compile your code with the

following command:

ppuxlf app.f -lxlopt -lblas

The compiler will call the SGEMV, DGEMV, SGEMM, and DGEMM functions from

the libxlopt library, and all other BLAS functions in the libblas library.

Chapter 6. High performance libraries 53

54 XL Fortran Optimization and Programming Guide

Chapter 7. Using automatic code overlays (SPU only)

Overview

Synergisitic Processor Units (SPU) have a local store size of 256KB. This can be a

limitation if a program and its working data set cannot fit in 256KB. One solution

is to use code overlays. With code overlays you can write SPU programs that

would normally be too large to fit in the local memory store. Overlays are

coordinated by the linker by enabling two or more code segments to be loaded at

the same physical address as they are needed. Because manually creating overlays

can be complicated, the compiler provides options for the automatic generation of

overlays.

Note: For more detailed background information on overlays and how they work,

see the IBM Software Development Kit for Multicore Acceleration Version 3.0

Programmer’s Guide. The SDK Programmer’s Guide also documents how to

manually create overlays.

Basic use: -qipa=overlay

Automatic overlays can be generated simply by using the -qipa=overlay

suboption. For example, you can compile your code as in the following command:

spuxlf foobar.f -qipa=overlay

In this example, the compiler will attempt to partition your program at a

procedure level to produce overlay segments that can be loaded as necessary.

Automatic code overlays are not enabled by default, but if you want to explicitly

disable code overlays, use the -qipa=nooverlay option. If multiple -qipa=overlay

and -qipa=nooverlay options are specified, the last option determines if automatic

code overlays are enabled or not.

Controlling which procedures are overlaid: -qipa=overlayproc

If there are specific procedures that you want to be in overlays, use the

-qipa=overlayproc suboption. In particular, you may decide to use this suboption

if, based on your analysis of the program, there are procedures that you want to be

in the same overlay. To specify multiple procedures, use this suboption with a

comma separated list. For example, to tell the compiler that you prefer the

procedures foo and bar to be in the same overlay, you could compile your

program as follows:

spuxlf foobar.f -qipa=overlay:overlayproc=foo,bar

Multiple overlayproc suboptions may be used to specify multiple overlay groups.

For example, if you wanted foo and bar to ideally be in the same overlay and foo2

and bar2 to be in another overlay, you could compile your program as follows:

spuxlf foobar.f -qipa=overlay:overlayproc=foo,bar:overlayproc=foo2,bar2

overlayproc notes:

v Although multiple procedures can be listed in the same overlayproc group, this

does not guarantee that they will be in the same overlay. For example, if the

procedures you list together are too large for one overlay, they will be put in

© Copyright IBM Corp. 1990, 2007 55

separate overlays. However, procedures that are listed in different overlayproc

groups are guaranteed to be in separate overlays.

v Fortran module procedure names must be mangled. Fortran internal procedure

names are not supported.

Controlling which procedures are not overlaid: -qipa=nooverlayproc

There may be procedures that you always want to be in the local store; that is,

procedures that you do not want overlaid. As a generalization, procedures that are

called frequently by procedures that may be in multiple overlays are useful to

always have in the local store. To specify procedures to not overlay, use the

-qipa=nooverlayproc suboption. For example, to tell the compiler that you want

the main program to never be overlaid, you could compile your program as

follows:

spuxlf foobar.f -qipa=overlay:nooverlayproc=main

To specify multiple procedures to never be overlaid, use this suboption with a

comma separated list. For example:

spuxlf foobar.f -qipa=overlay:nooverlayproc=main,foo

Note: Fortran module procedure names must be mangled. Fortran internal

procedure names are not supported.

Controlling the size of the overlay buffer:

-qipa=partition={small|medium|large}

Use -qipa=partition={small|medium|large} to indicate to the compiler the

preferred size of overlay buffer that you want to use. The actual size of the overlay

buffer may differ from what you expect, though, because the minimum size of the

overlay buffer will be the size of the largest overlaid procedure. If your preference

is for the compiler to attempt to create several small overlays, try the small setting.

If you prefer the compiler to create fewer but larger overlays if possible, try the

medium and large settings accordingly. The following example shows compiling

with automatic overlays using a small overlay buffer if possible:

spuxlf foobar.f -qipa=overlay:partition=small

Options that may be useful for reducing the size of SPU programs

If there are difficulties keeping your programs small enough for the local store size,

there are other options that may be useful. See Table 13 for some suggestions. Full

documentation for these options is available in the XL Fortran Compiler Reference.

 Table 13. Options that may help reduce program size

Option Description

-qcompact Optimizations that increase code size are

avoided.

-qnounroll Turns off loop unrolling. Unrolled loops can

increase program size.

Use a lower optimization level. With higher levels of optimization, the

compiler increasingly applies optimization

techniques such as inlining, loop unrolling,

and other changes that can increase program

size. By using a lower optimization level

such as -O3 instead of -O4, you may be able

to reduce the size of your SPU programs.

56 XL Fortran Optimization and Programming Guide

Automatic overlay additional notes:

v The suboptions -qipa=overlayproc and -qipa=nooverlayproc have no effect if

-qipa=overlay is not also specified.

v If a procedure is listed in multiple overlayproc groups, the policy is that the last

option is used. That is, the procedure will go in the group that last mentions it

on the command line.

v If contradictory information is given because a procedure is listed in

nooverlayproc and an overlayproc group, novoverlayproc with override

overlayproc for that procedure.

v If a procedure is so large that the generated SPU program will not fit in the local

store, the linker or assembler error relocation does not fit will be issued. To

address this problem, you can re-code your program to divide the large

procedure into several smaller procedures. Also, see Table 13 on page 56 for

options that may be useful for reducing the size of SPU programs.

v If only one overlay segment is generated, overlay will not be used for the

program. In the case of one segment, overlays would not be required as the

program was small enough to fit in the local memory store.

v When using automatic overlay, only one overlay region is created within which

multiple overlay segments and sections are managed. See the IBM Software

Development Kit for Multicore Acceleration Version 3.0 Programmer’s Guide for more

information on the distinctions between overlay regions, segments, and sections.

v The suboption -qipa=overlay by itself will use the default values for the other

-qipa suboptions. For example, the default value for -qipa=level is 1 and the

default value for -qipa=inline is auto. If the size of your SPU programs is too

large, adjusting the values for other -qipa suboptions may be helpful.

Related information

v -qipa in the XL Fortran Compiler Reference

v “Using custom linker scripts with overlays”

v IBM Software Development Kit for Multicore Acceleration Version 3.0 Programmer’s

Guide

Using custom linker scripts with overlays

Overview

Overlays are coordinated by the linker. If you want to use your own linker script

with automatic code overlays, you will need to annotate your script with a

comment token so that the compiler can add overlay information based on the

overlay options you choose. You will also need to compile your program with the

appropriate options so that your linker script is used.

Adding a comment token to your linker script

The comment token to add to your linker script is /*__XL_OVERLAY_TOKEN__*/ .

This is the same token that is in the default linker script that the compiler uses and

compiler modifications to your script work the same way. That is, if you are using

automatic overlays, the compiler looks for the section that has been marked with

this token and adds the overlay information there. For example, the following is a

section of a linker script:

Chapter 7. Using automatic code overlays (SPU only) 57

.text :

{

 (.text .stub .text. .gnu.linkonce.t.*)

 *(.gnu.warning)

} =0

If you wanted to use this script with automatic overlays, you could annotate it

with /*__XL_OVERLAY_TOKEN__*/ as follows:

/*__XL_OVERLAY_TOKEN__*/

.text :

{

 (.text .stub .text. .gnu.linkonce.t.*)

 *(.gnu.warning)

} =0

If you compiled your program with -qipa=overlay and specified that the foo and

bar procedures should be in overlays with overlayproc=foo:overlayproc=bar, then

your linker script will be modified by the compiler to be similar to the example

below:

OVERLAY {

 .segment1 {./foo.o(.text)}

 .segment2 {./bar.o(.text)}

}

.text :

{

 (.text .stub .text. .gnu.linkonce.t.*)

 *(.gnu.warning)

} =0

That is, /*__XL_OVERLAY_TOKEN__*/ is replaced with the overlay information to

indicate to the linker that foo.o and bar.o are in overlays.

Telling the compiler to use your linker script

Use the -Wl compiler option to indicate that there are additional options that you

want to pass to the linker. Use the -T linker option to specify the name of your

linker script. For example, if the name of the script that you have added the

overlay tokens to is myldscript, use the -Wl and -T options as follows:

spuxlf foobar.f -qipa=overlay -Wl,-Tmyldscript

Related information

v -qipa in the XL Fortran Compiler Reference

v Chapter 7, “Using automatic code overlays (SPU only),” on page 55

v Linker Scripts at: http://sourceware.org/binutils/docs-2.17/ld/Scripts.html

58 XL Fortran Optimization and Programming Guide

http://sourceware.org/binutils/docs-2.17/ld/Scripts.html

Chapter 8. Parallel programming with XL Fortran

This section details the Pthreads library module available for the PPU.

Pthreads library module (PPU only)

IBM Extension

The Pthreads Library Module (f_pthread) is a Fortran 90 module that defines data

types and routines to make it easier to interface with the system pthreads library.

The system pthreads library is used to parallelize and thread-safe your code. The

f_pthread library module naming convention is the use of the prefix f_ before the

corresponding system pthreads library routine name or type definition name.

In general, there is a one-to-one corresponding relationship between the procedures

in the Fortran 90 module f_pthread and the library routines contained in the

system pthreads library. However, some of the pthread routines have no

corresponding procedures in this module because they are not supported on

operating system. One example of these routines is the thread stack address option.

There are also some non-pthread interfacing routines contained in the f_pthread

library module. The f_maketime routine is one example and is included to return

an absolute time in a f_timespec derived type variable.

Most of the routines return an integer value. A return value of 0 will always

indicate that the routine call did not result in any error. Any non-zero return value

indicates an error. Each error code has a corresponding definition of a system error

code in Fortran. These error codes are available as Fortran integer constants. The

naming of these error codes in Fortran is consistent with the corresponding system

error code names. For example, EINVAL is the Fortran constant name of the error

code EINVAL on the system. For a complete list of these error codes, refer to the

file /usr/include/errno.h.

Pthreads data structures, functions, and subroutines

Pthreads Data Types

v f_pthread_attr_t

v f_pthread_cond_t

v f_pthread_condattr_t

v f_pthread_key_t

v f_pthread_mutex_t

v f_pthread_mutexattr_t

v f_pthread_once_t

v f_pthread_rwlock_t

v f_pthread_rwlockattr_t

v f_pthread_t

v f_sched_param

v f_timespec

© Copyright IBM Corp. 1990, 2007 59

Functions that perform operations on thread attribute objects

v f_pthread_attr_destroy(attr)

v f_pthread_attr_getdetachstate(attr, detach)

v f_pthread_attr_getguardsize(attr, guardsize)

v f_pthread_attr_getinheritsched(attr, inherit)

v f_pthread_attr_getschedparam(attr, param)

v f_pthread_attr_getschedpolicy(attr, policy)

v f_pthread_attr_getscope(attr, scope)

v f_pthread_attr_getstack(attr, stackaddr, ssize)

v f_pthread_attr_init(attr)

v f_pthread_attr_setdetachstate(attr, detach)

v f_pthread_attr_setguardsize(attr, guardsize)

v f_pthread_attr_setinheritsched(attr, inherit)

v f_pthread_attr_setschedparam(attr, param)

v f_pthread_attr_setschedpolicy(attr, policy)

v f_pthread_attr_setscope(attr, scope)

v f_pthread_attr_setstack(attr, stackaddr, ssize)

Functions and Subroutines That Perform Operations on Threads

v f_pthread_cancel(thread)

v f_pthread_cleanup_pop(exec)

v f_pthread_cleanup_push(cleanup, flag, arg)

v f_pthread_create(thread, attr, flag, ent, arg)

v f_pthread_detach(thread)

v f_pthread_equal(thread1, thread2)

v f_pthread_exit(ret)

v f_pthread_getconcurrency()

v f_pthread_getschedparam(thread, policy, param)

v f_pthread_join(thread, ret)

v f_pthread_kill(thread, sig)

v f_pthread_self()

v f_pthread_setconcurrency(new_level)

v f_pthread_setschedparam(thread, policy, param)

Functions that perform operations on mutex attribute objects

v f_pthread_mutexattr_destroy(mattr)

v f_pthread_mutexattr_getpshared(mattr, pshared)

v f_pthread_mutexattr_gettype(mattr, type)

v f_pthread_mutexattr_init(mattr)

v f_pthread_mutexattr_setpshared(mattr, pshared)

v f_pthread_mutexattr_settype(mattr, type)

Functions that perform operations on mutex objects

v f_pthread_mutex_destroy(mutex)

v f_pthread_mutex_init(mutex, mattr)

v f_pthread_mutex_lock(mutex)

v f_pthread_mutex_trylock(mutex)

60 XL Fortran Optimization and Programming Guide

v f_pthread_mutex_unlock(mutex)

Functions that perform operations on attribute objects of

condition variables

v f_pthread_condattr_destroy(cattr)

v f_pthread_condattr_getpshared(cattr, pshared)

v f_pthread_condattr_init(cattr)

v f_pthread_condattr_setpshared(cattr, pshared)

Functions that perform operations on condition variable objects

v f_maketime(delay)

v f_pthread_cond_broadcast(cond)

v f_pthread_cond_destroy(cond)

v f_pthread_cond_init(cond, cattr)

v f_pthread_cond_signal(cond)

v f_pthread_cond_timedwait(cond, mutex, timeout)

v f_pthread_cond_wait(cond, mutex)

Functions that perform operations on thread-specific data

v f_pthread_getspecific(key, arg)

v f_pthread_key_create(key, dtr)

v f_pthread_key_delete(key)

v f_pthread_setspecific(key, arg)

Functions and subroutines that perform operations to control

thread cancelability

v f_pthread_setcancelstate(state, oldstate)

v f_pthread_setcanceltype(type, oldtype)

v f_pthread_testcancel()

Functions that perform operations on read-write lock attribute

objects

v f_pthread_rwlockattr_destroy(rwattr)

v f_pthread_rwlockattr_getpshared(rwattr, pshared)

v f_pthread_rwlockattr_init(rwattr)

v f_pthread_rwlockattr_setpshared(rwattr, pshared)

Functions that perform operations on read-write lock objects

v f_pthread_rwlock_destroy(rwlock)

v f_pthread_rwlock_init(rwlock, rwattr)

v f_pthread_rwlock_rdlock(rwlock)

v f_pthread_rwlock_tryrdlock(rwlock)

v f_pthread_rwlock_trywrlock(rwlock)

v f_pthread_rwlock_unlock(rwlock)

v f_pthread_rwlock_wrlock(rwlock)

Functions that perform operations for one-time initialization

v f_pthread_once(once, initr)

Chapter 8. Parallel programming with XL Fortran 61

f_maketime(delay)

Purpose

This function accepts an integer value specifying a delay in seconds and returns an

f_timespec type object containing the absolute time, which is delay seconds from

the calling moment.

Class

Function

Argument Type and Attributes

delay INTEGER(4), INTENT(IN)

Result Type and Attributes

TYPE (f_timespec)

Result Value

The absolute time, which is delay seconds from the calling moment, is returned.

f_pthread_attr_destroy(attr)

Purpose

This function must be called to destroy any previously initialized thread attribute

objects when they will no longer be used. Threads that were created with this

attribute object will not be affected in any way by this action. Memory that was

allocated when it was initialized will be recollected by the system.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL The argument attr is invalid.

f_pthread_attr_getdetachstate(attr, detach)

Purpose

This function can be used to query the setting of the detach state attribute in the

thread attribute object attr. The current setting will be returned through argument

detach.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

detach INTEGER(4), INTENT(OUT)

62 XL Fortran Optimization and Programming Guide

Contains one of the following values:

PTHREAD_CREATE_DETACHED:

when a thread attribute object of this attribute setting is used to

create a new thread, the newly created thread will be in detached

state. This is the system default.

PTHREAD_CREATE_JOINABLE:

when a thread attribute object of this attribute setting is used to

create a new thread, the newly created thread will be in

undetached state.

 Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error:

EINVAL The argument attr is invalid.

f_pthread_attr_getguardsize(attr, guardsize)

Purpose

This function is used to get the guardsize attribute in the thread attribute object attr.

The current setting of the attribute will be returned through the argument

guardsize.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

guardsize

INTEGER(KIND=register_size), INTENT(IN)

 where register_size is the size of a pointer, in bytes, in the current

addressing mode. That is, 4 in 32-bit mode and 8 in 64-bit mode.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error:

EINVAL

The argument attr is invalid.

f_pthread_attr_getinheritsched(attr, inherit)

Purpose

This function can be used to query the inheritance scheduling attribute in the

thread attribute object attr. The current setting will be returned through the

argument inherit.

Class

Function

Chapter 8. Parallel programming with XL Fortran 63

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(OUT)

inherit

INTEGER(4)

 On return from the function, inherit contains one of the following values:

PTHREAD_INHERIT_SCHED:

indicating that newly created threads will inherit the scheduling

property of the parent thread and ignore the scheduling property

of the thread attribute object used to create them.

PTHREAD_EXPLICIT_SCHED:

the scheduling property in the thread attribute object will be

assigned to the newly created threads when it is used to create

them.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise this function returns

the following error.

EINVAL The argument attr is invalid.

f_pthread_attr_getschedparam(attr, param)

Purpose

This function can be used to query the scheduling property setting in the thread

attribute object attr. The current setting will be returned in the argument param.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

param TYPE(f_sched_param), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL The argument attr is invalid.

f_pthread_attr_getschedpolicy(attr, policy)

Purpose

This function can be used to query the scheduling policy attribute setting in the

attribute object attr. The current setting of the scheduling policy will be returned in

the argument policy.

Class

Function

64 XL Fortran Optimization and Programming Guide

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

policy INTEGER(4), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL The argument attr is invalid.

f_pthread_attr_getscope(attr, scope)

Purpose

This function can be used to query the current setting of the scheduling scope

attribute in the thread attribute object attr. The current setting will be returned

through the argument scope.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

scope INTEGER(4), INTENT(OUT)

 On return from the function, scope will contain one of the following

values:

PTHREAD_SCOPE_SYSTEM:

the thread will compete for system resources on a system wide

scope.

PTHREAD_SCOPE_PROCESS:

the thread will compete for system resources locally within the

owning process.

scope Contains the following value:

PTHREAD_SCOPE_SYSTEM:

the thread will compete for system resources on a system wide

scope.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL The argument attr is invalid.

f_pthread_attr_getstack(attr, stackaddr, ssize)

Purpose

Retrieves the values of the stackaddr and stacksize arguments from the thread

attribute object attr.

Chapter 8. Parallel programming with XL Fortran 65

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(IN)

stackaddr

Integer pointer, INTENT(OUT)

ssize INTEGER(KIND=register_size), INTENT(OUT)

 where register_size is the size of a pointer, in bytes, in the current

addressing mode. That is, 4 in 32-bit mode and 8 in 64-bit mode.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

One or more of the supplied arguments is invalid.

f_pthread_attr_init(attr)

Purpose

This function must be called to create and initialize the pthread attribute object attr

before it can be used in any way. It will be filled with system default thread

attribute values. After it is initialized, certain pthread attributes can be changed

and/or set through attribute access procedures. Once initialized, this attribute

object can be used to create a thread with the intended attributes.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL The argument attr is invalid.

f_pthread_attr_setdetachstate(attr, detach)

Purpose

This function can be used to set the detach state attribute in the thread attribute

object attr.

Class

Function

66 XL Fortran Optimization and Programming Guide

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(OUT)

detach INTEGER(4), INTENT(IN)

 Must contain one of the following values:

PTHREAD_CREATE_DETACHED:

when a thread attribute object of this attribute setting is used to

create a new thread, the newly created thread will be in detached

state. This is the system default setting.

PTHREAD_CREATE_JOINABLE:

when a thread attribute object of this attribute setting is used to

create a new thread, the newly created thread will be in

undetached state.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL The argument detach is invalid.

f_pthread_attr_setguardsize(attr, guardsize)

Purpose

This function is used to set the guardsizeattribute in the thread attributes object

attr. The new value of this attribute is obtained from the argument guardsize. If

guardsize is zero, a guard area will not be provided for threads created with attr.

If guardsize is greater than zero, a guard area of at least sizeguardsize bytes is

provided for each thread created with attr.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

guardsize

INTEGER(KIND=register_size), INTENT(IN)

 where register_size is the size of a pointer, in bytes, in the current

addressing mode. That is, 4 in 32-bit mode and 8 in 64-bit mode.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument attr or the argument guardsize is invalid.

Chapter 8. Parallel programming with XL Fortran 67

f_pthread_attr_setinheritsched(attr, inherit)

Purpose

This function can be used to set the inheritance attribute of the thread scheduling

property in the thread attribute object attr.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(OUT)

inherit

INTEGER(4), INTENT(IN)

 Must contain one of the following values:

PTHREAD_INHERIT_SCHED:

indicating that newly created threads will inherit the scheduling

property of the parent thread and ignore the scheduling property

of the thread attribute object used to create them.

PTHREAD_EXPLICIT_SCHED:

the scheduling property in the thread attribute object will be

assigned to the newly created threads when it is used to create

them.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument inherit is invalid.

f_pthread_attr_setschedparam(attr, param)

Purpose

This function can be used to set the scheduling property attribute in the thread

attribute object attr. Threads created with this new attribute object will assume the

scheduling property of argument param if they are not inherited from the creating

thread. The sched_priority field in argument param indicates the thread’s

scheduling priority. The priority field must assume a value in the range of 1-127,

where 127 is the most favored scheduling priority while 1 is the least.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

param TYPE(f_sched_param), INTENT(IN)

Result Type and Attributes

INTEGER(4)

68 XL Fortran Optimization and Programming Guide

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument param is invalid.

f_pthread_attr_setschedpolicy(attr, policy)

Purpose

After the attribute object is set by this function, threads created with this attribute

object will assume the set scheduling policy if the scheduling property is not

inherited from the creating thread.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

policy INTEGER(4), INTENT(IN)

 Must contain one of the following values:

SCHED_FIFO:

indicating a first-in first-out thread scheduling policy.

SCHED_RR:

indicating a round-robin scheduling policy.

SCHED_OTHER:

the default scheduling policy.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following error.

EINVAL

The argument policy is invalid.

f_pthread_attr_setscope(attr, scope)

Purpose

This function can be used to set the contention scope attribute in the thread

attribute object attr.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

scope INTEGER(4), INTENT(IN)

 Must contain one of the following values:

Chapter 8. Parallel programming with XL Fortran 69

PTHREAD_SCOPE_SYSTEM:

the thread will compete for system resources on a system wide

scope.

PTHREAD_SCOPE_PROCESS:

the thread will compete for system resources locally within the

owning process.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument scope is invalid.

f_pthread_attr_setstack(attr, stackaddr, ssize)

Purpose

Use this function to set the stack address and stack size attributes in the pthread

attribute object attr. The stackaddr argument represents the stack address as an

Integer pointer. The stacksize argument is an integer that represents the size of the

stack in bytes. When creating a thread using the attribute object attr, the system

allocates a minimum stack size of stacksize bytes.

Class

Function

Argument Type and Attributes

attr TYPE(f_pthread_attr_t), INTENT(INOUT)

stackaddr

Integer pointer, INTENT(IN)

ssize INTEGER(KIND=register_size)

 where register_size is the size of a pointer, in bytes, in the current

addressing mode. That is, 4 in 32-bit mode and 8 in 64-bit mode.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EINVAL

The value of one or both of the supplied arguments is invalid.

EACCES

The stack pages specified are not readable by the thread.

70 XL Fortran Optimization and Programming Guide

f_pthread_attr_t

Purpose

A derived data type whose components are all private. Any object of this type

should be manipulated only through the appropriate interfaces provided in this

module.

This data type corresponds to the POSIX pthread_attr_t, which is the type of

thread attribute object.

Class

Data Type.

f_pthread_cancel(thread)

Purpose

This function can be used to cancel a target thread. How this cancelation request

will be processed depends on the state of the cancelability of the target thread. The

target thread is identified by argument thread. If the target thread is in

deferred-cancel state, this cancelation request will be put on hold until the target

thread reaches its next cancelation point. If the target thread disables its

cancelability, this request will be put on hold until it is enabled again. If the target

thread is in async-cancel state, this request will be acted upon immediately.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

ESRCH

The argument thread is invalid.

f_pthread_cleanup_pop(exec)

Purpose

This subroutine should be paired with f_pthread_cleanup_push in using the

cleanup stack for thread safety. If the supplied argument exec contains a non-zero

value, the last pushed cleanup function will be popped from the cleanup stack and

executed, with the argument arg (from the last f_pthread_cleanup_push) passed to

the cleanup function.

If exec contains a zero value, the last pushed cleanup function will be popped

from the cleanup stack, but will not be executed.

Class

Subroutine

Chapter 8. Parallel programming with XL Fortran 71

Argument Type and Attributes

exec INTEGER(4), INTENT(IN)

Result Type and Attributes

None.

Result Value

None.

f_pthread_cleanup_push(cleanup, flag, arg)

Purpose

This function can be used to register a cleanup subroutine for the calling thread. In

case of an unexpected termination of the calling thread, the system will

automatically execute the cleanup subroutine in order for the calling thread to

terminate safely. The argument cleanup must be a subroutine expecting exactly one

argument. If it is executed, the argument arg will be passed to it as the actual

argument.

The argument arg is a generic argument that can be of any type and any rank. The

actual argument arg must be a variable, and consequently eligible as a left-value in

an assignment statement. If you pass an array section with vector subscripts to the

argument arg, the result is unpredictable.

If the actual argument arg is an array section, the corresponding dummy argument

in subroutine cleanup must be an assumed-shape array. Otherwise, the result is

unpredictable.

If the actual argument arg has the pointer attribute that points to an array or array

section, the corresponding dummy argument in subroutine cleanup must have a

pointer attribute or be an assumed-shape array. Otherwise, the result is

unpredictable.

For a normal execution path, this function must be paired with a call to

f_pthread_cleanup_pop.

The argument flag must be used to convey the property of argument arg exactly to

the system.

Class

Function

Argument Type and Attributes

cleanup

A subroutine that has one dummy argument.

flag Flag is an INTEGER(4), INTENT(IN) argument that can contain one of, or

a combination of, the following constants:

FLAG_CHARACTER:

if the entry subroutine cleanup expects an argument of type

CHARACTER in any way or any form, this flag value must be

included to indicate this fact. However, if the subroutine expects a

Fortran 90 pointer pointing to an argument of type CHARACTER,

the FLAG_DEFAULT value should be included instead.

72 XL Fortran Optimization and Programming Guide

FLAG_ASSUMED_SHAPE:

if the entry subroutine cleanup has a dummy argument that is an

assumed-shape array of any rank, this flag value must be included

to indicate this fact.

FLAG_DEFAULT:

otherwise, this flag value is needed.

arg A generic argument that can be of any type, kind, and rank.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

ENOMEM

The system cannot allocate memory to push this routine.

EAGAIN

The system cannot allocate resources to push this routine.

EINVAL

The argument flag is invalid.

f_pthread_cond_broadcast(cond)

Purpose

This function will unblock all threads waiting on the condition variable cond. If

there is no thread waiting on this condition variable, the function will still succeed,

but the next caller to f_pthread_cond_wait will be blocked, and will wait on the

condition variable cond.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

following error.

EINVAL The argument cond is invalid.

f_pthread_cond_destroy(cond)

Purpose

This function can be used to destroy those condition variables that are no longer

required. The target condition variable is identified by the argument cond. System

resources allocated during initialization will be recollected by the system.

Class

Function

Chapter 8. Parallel programming with XL Fortran 73

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

f_pthread_cond_init(cond, cattr)

Purpose

This function can be used to dynamically initialize a condition variable cond. Its

attributes will be set according to the attribute object cattr, if it is provided;

otherwise, its attributes will be set to the system default. After the condition

variable is initialized successfully, it can be used to synchronize threads.

Another method of initializing a condition variable is to initialize it statically using

the Fortran constant PTHREAD_COND_INITIALIZER.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

cattr TYPE(f_pthread_condattr_t), INTENT(IN), OPTIONAL

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EBUSY

The condition variable is already in use. It is initialized and not destroyed.

EINVAL

The argument cond or cattr is invalid.

f_pthread_cond_signal(cond)

Purpose

This function will unblock at least one thread waiting on the condition variable

cond. If there is no thread waiting on this condition variable, the function will still

succeed, but the next caller to f_pthread_cond_wait will be blocked, and will wait

on the condition variable cond.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

74 XL Fortran Optimization and Programming Guide

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument cond is invalid.

f_pthread_cond_t

Purpose

A derived data type whose components are all private. Any object of this type

should be manipulated through the appropriate interfaces provided in this module.

In addition, objects of this type can be initialized at compile time using the Fortran

constant PTHREAD_COND_INITIALIZER.

This data type corresponds to the POSIX pthread_cond_t, which is the type of

condition variable object.

Class

Data Type.

f_pthread_cond_timedwait(cond, mutex, timeout)

Purpose

This function can be used to wait for a certain condition to occur. The argument

mutex must be locked before calling this function. The mutex is unlocked

atomically and the calling thread waits for the condition to occur. The argument

timeout specifies a deadline before which the condition must occur. If the deadline

is reached before the condition occurs, the function will return an error code. This

function provides a cancelation point in that the calling thread can be canceled if it

is in the enabled state.

The argument timeout will specify an absolute date of the form: Oct. 31 10:00:53,

1998. For related information, see f_maketime and f_timespec.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

timeout

TYPE(f_timespec), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise this function returns

one of the following errors:

EINVAL

The argument cond, mutex, or timeout is invalid.

ETIMEDOUT

The waiting deadline was reached before the condition occurred.

Chapter 8. Parallel programming with XL Fortran 75

f_pthread_cond_wait(cond, mutex)

Purpose

This function can be used to wait for a certain condition to occur. The argument

mutex must be locked before calling this function. The mutex is unlocked

atomically, and the calling thread waits for the condition to occur. If the condition

does not occur, the function will wait until the calling thread is terminated in

another way. This function provides a cancelation point in that the calling thread

can be canceled if it is in the enabled state.

Class

Function

Argument Type and Attributes

cond TYPE(f_pthread_cond_t), INTENT(INOUT)

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function returns 0.

f_pthread_condattr_destroy(cattr)

Purpose

This function can be called to destroy the condition variable attribute objects that

are no longer required. The target object is identified by the argument cattr. The

system resources allocated when it is initialized will be recollected.

Class

Function

Argument Type and Attributes

cattr TYPE(f_pthread_condattr_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

on of the following errors.

EINVAL

The argument cattr is invalid.

EBUSY

Returns EBUSY if threads are waiting on the for the condition to occur.

f_pthread_condattr_getpshared(cattr, pshared)

Purpose

This function can be used to query the process-shared attribute of the condition

variable attributes object identified by the argument cattr. The current setting of

this attribute will be returned in the argument pshared.

76 XL Fortran Optimization and Programming Guide

Class

Function

Argument Type and Attributes

cattr TYPE(f_pthread_condattr_t), INTENT(IN)

pshared

INTEGER(4), INTENT(OUT)

 On successful completion, pshared contains one of the following values:

PTHREAD_PROCESS_SHARED

The condition variable can be used by any thread that has access to

the memory where it is allocated, even if these threads belong to

different processes.

PTHREAD_PROCESS_PRIVATE

The condition variable shall only be used by threads within the

same process as the thread that created it.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument cattr is invalid.

f_pthread_condattr_init(cattr)

Purpose

Use this function to initialize a condition variable attributes object cattr with the

default value for all of the attributes defined by the implementation. Attempting to

initialize an already initialized condition variable attributes object results in

undefined behavior. After a condition variable attributes object has been used to

initialize one or more condition variables, any function affecting the attributes

object (including destruction) does not affect any previously initialized condition

variables.

Class

Function

Argument Type and Attributes

cattr TYPE(f_pthread_condattr_t), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

ENOMEM

There is insufficient memory to initialize the condition variable attributes

object.

Chapter 8. Parallel programming with XL Fortran 77

f_pthread_condattr_setpshared(cattr, pshared)

Purpose

This function is used to set the process-shared attribute of the condition variable

attributes object identified by the argument cattr. Its process-shared attribute will

be set according to the argument pshared.

Class

Function

Argument Type and Attributes

cattr TYPE(f_pthread_condattr_t), INTENT(INOUT)

pshared

is an INTEGER(4), INTENT(IN) argument that must contain one of the

following values:

PTHREAD_PROCESS_SHARED

Specifies that the condition variable can be used by any thread that

has access to the memory where it is allocated, even if these

threads belong to different processes.

PTHREAD_PROCESS_PRIVATE

Specifies that the condition variable shall only be used by threads

within the same process as the thread that created it. This is the

default setting of the attribute.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The value specified by the argument cattr or pshared is invalid.

f_pthread_condattr_t

Purpose

A derived data type whose components are all private. Any object of this type

should be manipulated only through the appropriate interfaces provided in this

module.

This data type corresponds to the POSIX pthread_condattr_t, which is the type of

condition variable attribute object.

Class

Data Type

f_pthread_create(thread, attr, flag, ent, arg)

Purpose

This function is used to create a new thread in the current process. The newly

created thread will assume the attributes defined in the thread attribute object attr,

if it is provided. Otherwise, the new thread will have system default attributes.

The new thread will begin execution at the subroutine ent, which is required to

78 XL Fortran Optimization and Programming Guide

have one dummy argument. The system will pass the argument arg to the thread

entry subroutine ent as its actual argument. The argument flag is used to inform

the system of the property of the argument arg. When the execution returns from

the entry subroutine ent, the new thread will terminate automatically.

If subroutine ent was declared such that an explicit interface would be required if

it was called directly, then an explicit interface is also required when it is passed as

an argument to this function.

The argument arg is a generic argument that can be of any type and any rank. The

actual argument arg must be a variable, and consequently eligible as a left- value

in an assignment statement. If you pass an array section with vector subscripts to

the argument arg, the result is unpredictable.

If the actual argument arg is an array section, the corresponding dummy argument

in subroutine ent must be an assumed-shape array. Otherwise, the result is

unpredictable.

If the actual argument arg has the pointer attribute that points to an array or array

section, the corresponding dummy argument in subroutine ent must have a

pointer attribute or be an assumed-shape array. Otherwise, the result is

unpredictable.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(OUT)

 On successful completion of the function, f_pthread_create stores the ID of

the created thread in the thread.

attr TYPE(f_pthread_attr_t), INTENT(IN)

flag INTEGER(4), INTENT(IN)

 The argument flag must convey the property of the argument arg exactly

to the system. The argument flag can be one of, or a combination of, the

following constants:

FLAG_CHARACTER:

if the entry subroutine ent expects an argument of type

CHARACTER in any way or any form, this flag value must be

included to indicate this fact. However, if the subroutine expects a

Fortran 90 pointer pointing to an argument of type CHARACTER,

the FLAG_DEFAULT value should be included instead.

FLAG_ASSUMED_SHAPE:

if the entry subroutine ent has a dummy argument which is an

assumed-shape array of any rank, this flag value must be included

to indicate this fact.

FLAG_DEFAULT:

otherwise, this flag value is needed.

ent A subroutine that has one dummy argument.

arg A generic argument that can be of any type, kind, and rank.

Chapter 8. Parallel programming with XL Fortran 79

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EAGAIN The system does not have enough resources to create a new thread.

EINVAL The argument thread, attr, or flag is invalid.

ENOMEM The system does not have sufficient memory to create a new

thread.

f_pthread_detach(thread)

Purpose

This function is used to indicate to the pthreads library implementation that

storage for the thread whose thread ID is specified by the argument thread can be

claimed when this thread terminates. If the thread has not yet terminated,

f_pthread_detach shall not cause it to terminate. Multiple f_pthread_detach calls

on the same target thread cause an error.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

ESRCH

The argument thread is invalid.

f_pthread_equal(thread1, thread2)

Purpose

This function can be used to compare whether two thread ID’s identify the same

thread or not.

Class

Function

Argument Type and Attributes

thread1

TYPE(f_pthread_t), INTENT(IN)

thread2

TYPE(f_pthread_t), INTENT(IN)

Result Type and Attributes

LOGICAL(4)

80 XL Fortran Optimization and Programming Guide

Result Value

TRUE The two thread ID’s identify the same thread.

FALSE The two thread ID’s do not identify the same thread.

f_pthread_exit(ret)

Purpose

This subroutine can be called explicitly to terminate the calling thread before it

returns from the entry subroutine. The actions taken depend on the state of the

calling thread. If it is in non-detached state, the calling thread will wait to be

joined. If the thread is in detached state, or when it is joined by another thread, the

calling thread will terminate safely. First, the cleanup stack will be popped and

executed, and then any thread-specific data will be destructed by the destructors.

Finally, the thread resources are freed and the argument ret will be returned to the

joining threads. The argument ret of this subroutine is optional. Currently,

argument ret is limited to be an Integer pointer. If it is not an Integer pointer, the

behavior is undefined. Calling f_pthread_exit will not automatically free all of the

memory allocated to a thread. To avoid memory leaks, finalization must be

handled separately from f_pthread_exit.

This subroutine never returns. If argument ret is not provided, NULL will be

provided as this thread’s exit status.

Class

Subroutine

Argument Type and Attributes

ret Integer pointer, OPTIONAL, INTENT(IN)

Result Type and Attributes

None

Result Value

None

f_pthread_getconcurrency()

Purpose

This function returns the value of the concurrency level set by a previous call to

the f_pthread_setconcurrency function. If the f_pthread_setconcurrency function

was not previously called, this function returns zero to indicate that the system is

maintaining the concurrency level.

Class

Function

Argument Type and Attributes

None

Result Type and Attributes

INTEGER(4)

Chapter 8. Parallel programming with XL Fortran 81

Result Value

This function returns the value of the concurrency level set by a previous call to

the f_pthread_setconcurrency function. If the f_pthread_setconcurrency function

was not previously called, this function returns 0.

f_pthread_getschedparam(thread, policy, param)

Purpose

This function can be used to query the current setting of the scheduling property

of the target thread. The target thread is identified by argument thread. Its

scheduling policy will be returned through argument policy and its scheduling

property through argument param. The sched_priority field in param defines the

scheduling priority. The priority field will assume a value in the range of 1-127,

where 127 is the most favored scheduling priority while 1 is the least.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(IN)

policy INTEGER(4), INTENT(OUT)

param TYPE(f_sched_param), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

ESRCH

The target thread is invalid or has already terminated.

f_pthread_getspecific(key, arg)

Purpose

This function can be used to retrieve the thread-specific data associated with key.

Note that the argument arg is not optional in this function as it will return the

thread-specific data. After execution of the procedure, the argument arg holds a

pointer to the data, or NULL if there is no data to retrieve. The argument arg must

be an Integer pointer, or the result is undefined.

The actual argument arg must be a variable, and consequently eligible as a

left-value in an assignment statement. If you pass an array section with vector

subscripts to the argument arg, the result is unpredictable.

Class

Function

Argument Type and Attributes

key TYPE(f_pthread_key_t), INTENT(IN)

arg Integer pointer, INTENT(OUT)

82 XL Fortran Optimization and Programming Guide

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument key is invalid.

f_pthread_join(thread, ret)

Purpose

This function can be called to join a particular thread designated by the argument

thread. If the target thread is in non-detached state and is already terminated, this

call will return immediately with the target thread’s status returned in argument

ret if it is provided. The argument ret is optional. Currently, ret must be an Integer

pointer if it is provided.

If the target thread is in detached state, it is an error to join it.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(IN)

ret Integer pointer, INTENT(OUT), OPTIONAL

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EDEADLK This call will cause a deadlock, or the calling thread is trying to

join itself.

EINVAL The argument thread is invalid.

ESRCH The argument thread designates a thread which does not exist or is

in detached state.

f_pthread_key_create(key, dtr)

Purpose

This function can be used to acquire a thread-specific data key. The key will be

returned in the argument key. The argument dtr is a subroutine that will be used

to destruct the thread-specific data associated with this key when any thread

terminates after this calling point. The destructor will receive the thread-specific

data as its argument. The destructor itself is optional. If it is not provided, the

system will not invoke any destructor on the thread-specific data associated with

this key. Note that the number of thread-specific data keys is limited in each

process. It is the user’s responsibility to manage the usage of the keys. The

per-process limit can be checked by the Fortran constant

PTHREAD_DATAKEYS_MAX.

Chapter 8. Parallel programming with XL Fortran 83

Class

Function

Argument Type and Attributes

key TYPE(f_pthread_key_t), INTENT(OUT)

dtr External, optional subroutine

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EAGAIN The maximum number of keys has been exceeded.

EINVAL The argument key is invalid.

ENOMEM There is insufficient memory to create this key.

f_pthread_key_delete(key)

Purpose

This function will destroy the thread-specific data key identified by the argument

key. It is the user’s responsibility to ensure that there is no thread-specific data

associated with this key. This function does not call any destructor on the thread’s

behalf. After the key is destroyed, it can be reused by the system for

f_pthread_key_create requests.

Class

Function

Argument Type and Attributes

key TYPE(f_pthread_key_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EINVAL The argument key is invalid.

EBUSY There is still data associated with this key.

f_pthread_key_t

Purpose

A derived data type whose components are all private. Any object of this type

should be manipulated only through the appropriate interfaces provided in this

module.

This data type corresponds to the POSIX pthread_key_t, which is the type of key

object for accessing thread-specific data.

84 XL Fortran Optimization and Programming Guide

Class

Data Type

f_pthread_kill(thread, sig)

Purpose

This function can be used to send a signal to a target thread. The target thread is

identified by argument thread. The signal which will be sent to the target thread is

identified in argument sig. If sig contains value zero, error checking will be done

by the system but no signal will be sent.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(INOUT)

sig INTEGER(4), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EINVAL

The argument thread or sig is invalid.

ESRCH

The target thread does not exist.

f_pthread_mutex_destroy(mutex)

Purpose

This function should be called to destroy those mutex objects that are no longer

required. In this way, the system can recollect the memory resources. The target

mutex object is identified by the argument mutex.

Class

Function

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EBUSY The target mutex is locked or referenced by another thread.

EINVAL The argument mutex is invalid.

Chapter 8. Parallel programming with XL Fortran 85

f_pthread_mutex_init(mutex, mattr)

Purpose

This function can be used to initialize the mutex object identified by argument

mutex. The initialized mutex will assume attributes set in the mutex attribute

object mattr, if it is provided. If mattr is not provided, the system will initialize the

mutex to have default attributes. After it is initialized, the mutex object can be

used to synchronize accesses to critical data or code. It can also be used to build

more complicated thread synchronization objects.

Another method to initialize mutex objects is to statically initialize them through

the Fortran constant PTHREAD_MUTEX_INITIALIZER. If this method of

initialization is used it is not necessary to call the function before using the mutex

objects.

Class

Function

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(OUT)

mattr TYPE(f_pthread_mutexattr_t), INTENT(IN), OPTIONAL

Result Type and Attributes

INTEGER(4)

Result Value

This function always returns 0.

f_pthread_mutex_lock(mutex)

Purpose

This function can be used to acquire ownership of the mutex object. (In other

words, the function will lock the mutex.) If the mutex has already been locked by

another thread, the caller will wait until the mutex is unlocked. If the mutex is

already locked by the caller itself, an error will be returned to prevent recursive

locking.

Class

Function

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EDEADLK The mutex is locked by the calling thread already.

EINVAL The argument mutex is invalid.

86 XL Fortran Optimization and Programming Guide

f_pthread_mutex_t

Purpose

A derived data type whose components are all private. Any object of this type

should be manipulated through the appropriate interfaces provided in this module.

In addition, objects of this type can be initialized statically through the Fortran

constant PTHREAD_MUTEX_INITIALIZER.

This data type corresponds to the POSIX pthread_mutex_t, which is the type of

mutex object.

Class

Data Type

f_pthread_mutex_trylock(mutex)

Purpose

This function can be used to acquire ownership of the mutex object. (In other

words, the function will lock the mutex.) If the mutex has already been locked by

another thread, the function returns the error code EBUSY. The calling thread can

check the return code to take further actions. If the mutex is already locked by the

caller itself, an error will be returned to prevent recursive locking.

Class

Function

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EBUSY The target mutex is locked or referenced by another thread.

EINVAL The argument mutex is invalid.

f_pthread_mutex_unlock(mutex)

Purpose

This function releases the mutex object’s ownership in order to allow other threads

to lock the mutex.

Class

Function

Argument Type and Attributes

mutex TYPE(f_pthread_mutex_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Chapter 8. Parallel programming with XL Fortran 87

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EINVAL

The argument mutex is invalid.

EPERM

The mutex is not locked by the calling thread.

f_pthread_mutexattr_destroy(mattr)

Purpose

This function can be used to destroy a mutex attribute object that has been

initialized previously. Allocated memory will then be recollected. A mutex created

with this attribute will not be affected by this action.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function always returns 0.

f_pthread_mutexattr_getpshared(mattr, pshared)

Purpose

This function is used to query the process-shared attribute in the mutex attributes

object identified by the argument mattr. The current setting of the attribute will be

returned through the argument pshared.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(IN)

pshared

INTEGER(4), INTENT(IN)

 On return from this function, pshared contains one of the following values:

PTHREAD_PROCESS_SHARED

The mutex can be operated upon by any thread that has access to

the memory where the mutex is allocated, even if the mutex is

allocated in memory that is shared by multiple processes.

PTHREAD_PROCESS_PRIVATE

The mutex will only be operated upon by threads created within

the same process as the thread that initialized the mutex.

Result Type and Attributes

INTEGER(4)

88 XL Fortran Optimization and Programming Guide

Result Value

If this function completes successfully, value 0 is returned and the value of the

process-shared attribute is returned through the argument pshared. Otherwise, the

following error will be returned:

EINVAL

The argument mattr is invalid.

f_pthread_mutexattr_gettype(mattr, type)

Purpose

This function is used to query the mutex type attribute in the mutex attributes

object identified by the argument mattr.

If this function completes successfully, value 0 is returned and the type attribute

will be returned through the argument type.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(IN)

type INTEGER(4), INTENT(OUT)

 On return from this function, type contains one of the following values:

PTHREAD_MUTEX_NORMAL

This type of mutex does not detect deadlock. A thread attempting

to relock this mutex without first unlocking it will deadlock.

Attempting to unlock a mutex locked by a different thread results

in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK

This type of mutex provides error checking. A thread attempting to

relock this mutex without first unlocking it will return with an

error. A thread attempting to unlock a mutex which another thread

has locked will return an error. A thread attempting to unlock an

unlocked mutex will return with an error.

PTHREAD_MUTEX_RECURSIVE

A thread attempting to relock this mutex without first unlocking it

will succeed in locking the mutex. The relocking deadlock that can

occur with mutexes of type PTHREAD_MUTEX_NORMAL cannot

occur with this type of mutex. Multiple locks of this mutex require

the same number of unlocks to release the mutex before another

thread can acquire the mutex.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument is invalid.

Chapter 8. Parallel programming with XL Fortran 89

f_pthread_mutexattr_init(mattr)

Purpose

This function can be used to initialize a mutex attribute object before it can be used

in any other way. The mutex attribute object will be returned through argument

mattr.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function returns 0.

f_pthread_mutexattr_setpshared(mattr, pshared)

Purpose

This function is used to set the process-shared attribute of the mutex attributes

object identified by the argument mattr.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(INOUT)

pshared

INTEGER(4), INTENT(IN)

 Must contain one of the following values:

PTHREAD_PROCESS_SHARED

Specifies the mutex can be operated upon by any thread that has

access to the memory where the mutex is allocated, even if the

mutex is allocated in memory that is shared by multiple processes.

PTHREAD_PROCESS_PRIVATE

Specifies the mutex will only be operated upon by threads created

within the same process as the thread that initialized the mutex.

This is the default setting of the attribute.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument is invalid.

90 XL Fortran Optimization and Programming Guide

f_pthread_mutexattr_settype(mattr, type)

Purpose

This function is used to set the mutex type attribute in the mutex attributes object

identified by the argument mattr The argument type identifies the mutex type

attribute to be set.

Class

Function

Argument Type and Attributes

mattr TYPE(f_pthread_mutexattr_t), INTENT(INOUT)

type INTEGER(4), INTENT(IN)

 Must contain one of the following values:

PTHREAD_MUTEX_NORMAL

This type of mutex does not detect deadlock. A thread attempting

to relock this mutex without first unlocking it will deadlock.

Attempting to unlock a mutex locked by a different thread results

in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK

This type of mutex provides error checking. A thread attempting to

relock this mutex without first unlocking it will return with an

error. A thread attempting to unlock a mutex which another thread

has locked will return an error. A thread attempting to unlock an

unlocked mutex will return with an error.

PTHREAD_MUTEX_RECURSIVE

A thread attempting to relock this mutex without first unlocking it

will succeed in locking the mutex. The relocking deadlock that can

occur with mutexes of type PTHREAD_MUTEX_NORMAL cannot

occur with this type of mutex. Multiple locks of this mutex require

the same number of unlocks to release the mutex before another

thread can acquire the mutex.

PTHREAD_MUTEX_DEFAULT

The same as PTHREAD_MUTEX_NORMAL.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

One of the arguments is invalid.

f_pthread_mutexattr_t

Purpose

A derived data type whose components are all private. Any object of this type

should be manipulated only through the appropriate interfaces provided in this

module.

Chapter 8. Parallel programming with XL Fortran 91

This data type corresponds to the POSIX pthread_mutexattr_t, which is the type of

mutex attribute object.

Class

Data Type

f_pthread_once(once, initr)

Purpose

This function can be used to initialize those data required to be initialized only

once. The first thread calling this function will call initr to do the initialization.

Other threads calling this function afterwards will have no effect. Argument initr

must be a subroutine without dummy arguments.

Class

Function

Argument Type and Attributes

once TYPE(f_pthread_once_t), INTENT(INOUT)

initr A subroutine that has no dummy arguments.

Result Type and Attributes

INTEGER(4)

Result Value

This function returns 0.

f_pthread_once_t

Purpose

A derived data type whose components are all private. Any object of this type

should be manipulated through the appropriate interfaces provided in this module.

However, objects of this type can only be initialized through the Fortran constant

PTHREAD_ONCE_INIT.

Class

Data Type

f_pthread_rwlock_destroy(rwlock)

Purpose

This function destroys the read-write lock object specified by the argument rwlock

and releases any resources used by the lock.

Class

Function

Argument Type and Attributes

rwlock

TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

92 XL Fortran Optimization and Programming Guide

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EBUSY

The target read-write object is locked.

f_pthread_rwlock_init(rwlock, rwattr)

Purpose

This function initializes the read-write lock object specified by rwlock with the

attribute specified by the argument rwattr. If the optional argument rwattr is not

provided, the system will initialize the read-write lock object with the default

attributes. After it is initialized, the lock can be used to synchronize access to

critical data. With a read-write lock, many threads can have simultaneous

read-only access to data, while only one thread can have write access at any given

time and no other readers or writers are allowed.

Another method to initialize read-write lock objects is to statically initialize them

through the Fortran constant PTHREAD_RWLOCK_INITIALIZER. If this method

of initialization is used, it is not necessary to call this function before using the

read-write lock objects.

Class

Function

Argument Type and Attributes

rwlock

TYPE(f_pthread_rwlock_t), INTENT(OUT)

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(IN), OPTIONAL

Result Type and Attributes

INTEGER(4)

Result Value

This function returns 0.

f_pthread_rwlock_rdlock(rwlock)

Purpose

This function applies a read lock to the read-write lock specified by the argument

rwlock. The calling thread acquires the read lock if a writer does not hold the lock

and there are no writes blocked on the lock. Otherwise, the calling thread will not

acquire the read lock. If the read lock is not acquired, the calling thread blocks

(that is, it does not return from the f_pthread_rwlock_rdlock call) until it can

acquire the lock. Results are undefined if the calling thread holds a write lock on

rwlock at the time the call is made. A thread may hold multiple concurrent read

locks on rwlock (that is, successfully call the f_pthread_rwlock_rdlock function n

times). If so, the thread must perform matching unlocks (that is, it must call the

f_pthread_rwlock_unlock function n times).

Class

Function

Chapter 8. Parallel programming with XL Fortran 93

Argument Type and Attributes

rwlock

TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EAGAIN

The read-write lock could not be acquired because the maximum number

of read locks for rwlock has been exceeded.

EINVAL

The argument rwlock does not refer to an initialized read-write lock object.

f_pthread_rwlock_t

Purpose

A derived data type whose components are all private. Any object of this type

should be manipulated only through the appropriate interfaces provided in this

module. In addition, objects of this type can be initialized statically through the

Fortran constant PTHREAD_RWLOCK_INITIALIZER.

Class

Data Type

f_pthread_rwlock_tryrdlock(rwlock)

Purpose

This function applies a read lock like the f_pthread_rwlock_rdlock function with

the exception that the function fails if any thread holds a write lock on rwlock or

there are writers blocked on rwlock. In that case, the function returns EBUSY. The

calling thread can check the return code to take further actions.

Class

Function

Argument Type and Attributes

rwlock

TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function returns zero if the lock for reading on the read-write lock object

specified by rwlock is acquired. Otherwise, the following error will be returned:

EBUSY

The read-write lock could not be acquired for reading because a writer

holds the lock or was blocked on it.

94 XL Fortran Optimization and Programming Guide

f_pthread_rwlock_trywrlock(rwlock)

Purpose

This function applies a write lock like the f_pthread_rwlock_wrlock function with

the exception that the function fails if any thread currently holds rwlock (for

reading or writing). In that case, the function returns EBUSY. The calling thread

can check the return code to take further actions.

Class

Function

Argument Type and Attributes

rwlock

TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

This function returns zero if the lock for writing on the read-write lock object

specified by rwlock is acquired. Otherwise, the following error will be returned:

EBUSY

The read-write lock could not be acquired for writing because it is already

locked for reading or writing.

f_pthread_rwlock_unlock(rwlock)

Purpose

This function is used to release a lock held on the read-write lock object specified

by the argument rwlock. If this function is called to release a read lock from the

read-write lock object and there are other read locks currently held on this

read-write lock object, the read-write lock object remains in the read locked state. If

this function releases the calling thread’s last read lock on this read-write lock

object, then the calling thread is no longer one of the owners of the object. If this

function releases the last read lock for this read-write lock object, the read-write

lock object will be put in the unlocked state with no owners.

Class

Function

Argument Type and Attributes

rwlock

TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EPERM

The current thread does not own the read-write lock.

Chapter 8. Parallel programming with XL Fortran 95

f_pthread_rwlock_wrlock(rwlock)

Purpose

This function applies a write lock to the read-write lock specified by the argument

rwlock. The calling thread acquires the write lock if no other thread (reader or

writer) holds the read-write lock rwlock. Otherwise, the thread blocks (that is, does

not return from the f_pthread_rwlock_wrlock call) until it acquires the lock.

Results are undefined if the calling thread holds the read-write lock (whether a

read or write lock) at the time the call is made.

Class

Function

Argument Type and Attributes

rwlock

TYPE(f_pthread_rwlock_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument rwlock does not refer to an initialized read-write lock object.

f_pthread_rwlockattr_destroy(rwattr)

Purpose

This function destroys a read-write lock attributes object specified by the argument

rwattr which has been initialized previously. A read-write lock created with this

attribute will not be affected by the action.

Class

Function

Argument Type and Attributes

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(INOUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL

The argument rwattr is invalid.

96 XL Fortran Optimization and Programming Guide

f_pthread_rwlockattr_getpshared(rwattr, pshared)

Purpose

This function is used to obtain the value of the process-shared attribute from the

initialized read-write lock attributes object specified by the argument rwattr. The

current setting of this attribute will be returned in the argument pshared. pshared

will contain one of the following values:

Class

Function

Argument Type and Attributes

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(IN)

pshared

INTEGER(4), INTENT(OUT)

 On return from this function, the value of pshared will be one of the

following:

PTHREAD_PROCESS_SHARED

The read-write lock can be operated upon by any thread that has

access to the memory where it is allocated, even if these threads

belong to different processes.

PTHREAD_PROCESS_PRIVATE

The read-write lock shall only be used by threads within the same

process as the thread that created it.

Result Type and Attributes

INTEGER(4)

Result Value

If this function completes successfully, value 0 is returned and the value of the

process-shared attribute of rwattr is stored into the object specified by the

argument pshared. Otherwise, the following error will be returned:

EINVAL

The argument rwattr is invalid.

f_pthread_rwlockattr_init(rwattr)

Purpose

This function initializes a read-write lock attributes object specified by rwattr with

the default value for all of the attributes.

Class

Function

Argument Type and Attributes

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(OUT)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

Chapter 8. Parallel programming with XL Fortran 97

ENOMEM

There is insufficient memory to initialize the read-write lock attributes

object.

f_pthread_rwlockattr_setpshared(rwattr, pshared)

Purpose

This function is used to set the process-shared attribute in an initialized read-write

lock attributes object specified by the argument rwattr.

Class

Function

Argument Type and Attributes

rwattr TYPE(f_pthread_rwlockattr_t), INTENT(INOUT)

pshared

INTEGER(4), INTENT(IN)

 Must be one of the following:

PTHREAD_PROCESS_SHARED

Specifies the read-write lock can be operated upon by any thread

that has access to the memory where it is allocated, even if these

threads belong to different processes.

PTHREAD_PROCESS_PRIVATE

Specifies the read-write lock shall only be used by threads within

the same process as the thread that created it. This is the default

setting of the attribute.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors.

EINVAL

The argument rwattr is invalid.

f_pthread_rwlockattr_t

Purpose

This is a derived data type whose components are all private. Any object of this

type should be manipulated only through the appropriate interfaces provided in

this module.

Class

Data Type

f_pthread_self()

Purpose

This function can be used to return the thread ID of the calling thread.

Class

Function

98 XL Fortran Optimization and Programming Guide

Argument Type and Attributes

None

Result Type and Attributes

TYPE(f_pthread_t)

Result Value

The calling thread’s ID is returned.

f_pthread_setcancelstate(state, oldstate)

Purpose

This function can be used to set the thread’s cancelability state. The new state will

be set according to the argument state. The old state will be returned in the

argument oldstate.

Class

Function

Argument Type and Attributes

state INTEGER(4), INTENT(IN)

 Must contain one of the following:

PTHREAD_CANCEL_DISABLE:

The thread’s cancelability is disabled.

PTHREAD_CANCEL_ENABLE:

The thread’s cancelability is enabled.

oldstate

INTEGER(4), INTENT(OUT)

 On return from this function, oldstate will contain one of the following

values:

PTHREAD_CANCEL_DISABLE:

The thread’s cancelability is disabled.

PTHREAD_CANCEL_ENABLE:

The thread’s cancelability is enabled.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL The argument state is invalid.

f_pthread_setcanceltype(type, oldtype)

Purpose

This function can be used to set the thread’s cancelability type. The new type will

be set according to the argument type. The old type will be returned in argument

oldtype.

Class

Function

Chapter 8. Parallel programming with XL Fortran 99

Argument Type and Attributes

type INTEGER(4), INTENT(IN)

 Must contain one of the following values:

PTHREAD_CANCEL_DEFERRED:

Cancelation request will be delayed until a cancelation point.

PTHREAD_CANCEL_ASYNCHRONOUS:

Cancelation request will be acted upon immediately. This may

cause unexpected results.

oldtype

INTEGER(4), INTENT(OUT)

 On return from this procedure, oldtype will contain one of the following

values:

PTHREAD_CANCEL_DEFERRED:

Cancelation request will be delayed until a cancelation point.

PTHREAD_CANCEL_ASYNCHRONOUS:

Cancelation request will be acted upon immediately. This may

cause unexpected results.

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

the following error.

EINVAL The argument type is invalid.

f_pthread_setconcurrency(new_level)

Purpose

This function is used to inform the pthreads library implementation of desired

concurrency level as specified by the argument new_level. The actual level of

concurrency provided by the implementation as a result of this function call is

unspecified.

Class

Function

Argument Type and Attributes

new_level

INTEGER(4), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

f_pthread_setschedparam(thread, policy, param)

Purpose

This function can be used to dynamically set the scheduling policy and the

scheduling property of a thread. The target thread is identified by argument

100 XL Fortran Optimization and Programming Guide

thread. The new scheduling policy for the target thread is provided through

argument policy. The new scheduling property of the target thread will be set to

the value provided by argument param. The sched_priority field in param defines

the scheduling priority. Its range is 1-127.

Class

Function

Argument Type and Attributes

thread TYPE(f_pthread_t), INTENT(INOUT)

policy INTEGER(4), INTENT(IN)

param TYPE(f_sched_param), INTENT(IN)

Result Type and Attributes

INTEGER(4)

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors

ENOSYS The POSIX priority scheduling option is not implemented on Cell

Broadband Engine Processor for Linux.

ENOTSUP The value of argument policy or param is not supported.

EPERM The target thread is not permitted to perform the operation or is in

a mutex protocol already.

ESRCH The target thread does not exist or is invalid.

f_pthread_setspecific(key, arg)

Purpose

This function can be used to set the calling thread’s specific data associated with

the key identified by argument key. The argument arg, which is optional, identifies

the thread-specific data to be set. If arg is not provided, the thread-specific data

will be set to NULL, which is the initial value for each thread. Only an Integer

pointer can be passed as the arg argument. If arg is not an Integer pointer, the

result is undefined.

The actual argument arg must be a variable, and consequently eligible as a

left-value in an assignment statement. If you pass an array section with vector

subscripts to the argument arg, the result is unpredictable.

Class

Function

Argument Type and Attributes

key TYPE(f_pthread_key_t), INTENT(IN)

arg Integer pointer, INTENT(IN), OPTIONAL

Result Type and Attributes

INTEGER(4)

Chapter 8. Parallel programming with XL Fortran 101

Result Value

On successful completion, this function returns 0. Otherwise, this function returns

one of the following errors

EINVAL

The argument key is invalid.

ENOMEM

There is insufficient memory to associate the data with the key.

f_pthread_t

Purpose

A derived data type whose components are all private. Any object of this type

should be manipulated only through the appropriate interfaces provided in this

module.

This data type corresponds to the POSIX pthread_t, which is the type of thread

object.

Class

Data Type

f_pthread_testcancel()

Purpose

This subroutine provides a cancelation point in a thread. When it is called, any

pending cancelation request will be acted upon immediately if it is in the enabled

state.

Class

Subroutine

Argument Type and Attributes

None

Result Type and Attributes

None

f_sched_param

Purpose

This data type corresponds to the Cell Broadband Engine Processor for Linux

system data structure sched_param, which is a system data type.

This is a public data structure defined as:

type f_sched_param

 sequence

 integer sched_priority

end type f_sched_param

Class

Data Type

102 XL Fortran Optimization and Programming Guide

f_sched_yield()

Purpose

This function is used to force the calling thread to relinquish the processor until it

again becomes the head of its thread list.

Class

Function

Argument Type and Attributes

None.

Result Type and Attributes

INTEGER(4)

Result Value

If this function completes successfully, value 0 is returned. Otherwise, a value of -1

will be returned.

f_timespec

Purpose

This is a Fortran definition of the Cell Broadband Engine Processor for Linux

system data structure timespec. Within the Fortran Pthreads module, objects of this

type are used to specify an absolute date and time. This deadline absolute date is

used when waiting on a POSIX condition variable.

In 32–bit mode, f_timespec is defined as:

TYPE F_Timespec

 SEQUENCE

 INTEGER(4) tv_sec

 INTEGER(KIND=REGISTER_SIZE) tv_nsec

END TYPE F_Timespec

In 64–bit mode, f_timespec is defined as:

TYPE F_Timespec

 SEQUENCE

 INTEGER(4) tv_sec

 INTEGER(4) pad

 INTEGER(KIND=REGISTER_SIZE) tv_nsec

END TYPE F_Timespec

Class

Data Type

End of IBM Extension

Chapter 8. Parallel programming with XL Fortran 103

104 XL Fortran Optimization and Programming Guide

Chapter 9. Interlanguage calls

This section provides details on performing interlanguage calls from your Fortran

application, allowing you to call routines that were written in a language other

than Fortran. The guidelines assume that you are familiar with the syntax of all

applicable languages.

Note: For SPU information related to the interlanguage call topics, see the SPU

Application Binary Interface Specification in the Programming standards section

at http://www.ibm.com/developerworks/power/cell/documents.html.

Conventions for XL Fortran external names

To assist you in writing mixed-language programs, XL Fortran follows a consistent

set of rules when translating the name of a global entity into an external name that

the linker can resolve:

v Both the underscore (_) and the dollar sign ($) are valid characters anywhere in

names.

Because names that begin with an underscore are reserved for the names of

library routines, do not use an underscore as the first character of a Fortran

external name.

To avoid conflicts between Fortran and non-Fortran function names, you can

compile the Fortran program with the -qextname option. This option adds an

underscore to the end of the Fortran names. Then use an underscore as the last

character of any non-Fortran procedures that you want to call from Fortran.

v Names can be up to 250 characters long.

v Program and symbolic names are interpreted as all lowercase by default. If you

are writing new non-Fortran code, use all-lowercase procedure names to

simplify calling the procedures from Fortran.

You can use the -U option or the @PROCESS MIXED directive if you want the

names to use both uppercase and lowercase:

@process mixed

 external C_Func ! With MIXED, we can call C_Func, not just c_func.

 integer aBc, ABC ! With MIXED, these are different variables.

 common /xYz/ aBc ! The same applies to the common block names.

 common /XYZ/ ABC ! xYz and XYZ are external names that are

 ! visible during linking.

 end

v Names for module procedures are formed by concatenating __ (two

underscores), the module name, _IMOD_ (for intrinsic modules) or _NMOD_ (for

non-intrinsic modules), and the name of the module procedure. For example,

module procedure MYPROC in module MYMOD has the external name

__mymod_NMOD_myproc.

Note: Symbolic debuggers and other tools should account for this naming

scheme when debugging XL Fortran programs that contain module

procedures. For example, some debuggers default to lowercase for

program and symbolic names. This behavior should be changed to use

mixed case when debugging XL Fortran programs with module

procedures.

© Copyright IBM Corp. 1990, 2007 105

http://www.ibm.com/developerworks/power/cell/documents.html

v The XL compilers generate code that uses main as an external entry point name.

You can only use main as an external name in these contexts:

– A Fortran program or local-variable name. (This restriction means that you

cannot use main as a binding label, or for the name of an external function,

external subroutine, block data program unit, or common block. References to

such an object use the compiler-generated main instead of your own.)

– The name of the top-level main function in a C program.
v Some other potential naming conflicts may occur when linking a program. For

instructions on avoiding them, see Avoiding naming conflicts during linking in the

XL Fortran Compiler Reference.

If you are porting your application from another system and your application does

encounter naming conflicts like these, you may need to use the -qextname option.

Mixed-language input and output (PPU only)

To improve performance, the XL Fortran runtime library has its own buffers and

its own handling of these buffers. This means that mixed-language programs

cannot freely mix I/O operations on the same file from the different languages.

Mixing code compiled by multiple Fortran compilers, for example xlf and g77,

could face similar problems. The safest approach is to treat the code compiled by

another Fortran compiler as non-Fortran code. To maintain data integrity in such

cases:

v If the file position is not important, open and explicitly close the file within the

Fortran part of the program before performing any I/O operations on that file

from subprograms written in another language.

v To open a file in Fortran and manipulate the open file from another language,

call the flush_ procedure to save any buffer for that file, and then use the getfd

procedure to find the corresponding file descriptor and pass it to the

non-Fortran subprogram.

As an alternative to calling the flush_ procedure, you can use the buffering

runtime option to disable the buffering for I/O operations. When you specify

buffering=disable_preconn, XL Fortran disables the buffering for preconnected

units. When you specify buffering=disable_all, XL Fortran disables the

buffering for all logical units.

Note: After you call flush_ to flush the buffer for a file, do not do anything to

the file from the Fortran part of the program except to close it when the

non-Fortran processing is finished.

v If any XL Fortran subprograms containing WRITE statements are called from a

non-Fortran main program, explicitly CLOSE the data file, or use the flush_

subroutine in the XL Fortran subprograms to ensure that the buffers are flushed.

Alternatively, you can use the buffering runtime option to disable buffering for

I/O operations.

Related information: For more information on the flush_ and getfd procedures,

see the Service and utility procedures section in the XL Fortran

Language Reference. For more information on the buffering

runtime option, see Setting runtime options in the XL Fortran

Compiler Reference.

106 XL Fortran Optimization and Programming Guide

Mixing Fortran and C++

Most of the information in this section applies to Fortran and, languages with

similar data types and naming schemes. However, to mix Fortran and C++ in the

same program, you must add an extra level of indirection and pass the

interlanguage calls through C++ wrapper functions.

Because the C++ compiler mangles the names of some C++ objects, you must use

your C++ compiler’s invocation command, like ppuxlC or ppu-g++, to link the

final program and include -L and -l options for the XL Fortran library directories

and libraries.

 program main

 integer idim,idim1

 idim = 35

 idim1= 45

 write(6,*) ’Inside Fortran calling first C function’

 call cfun(idim)

 write(6,*) ’Inside Fortran calling second C function’

 call cfun1(idim1)

 write(6,*) ’Exiting the Fortran program’

 end

Figure 7. Main Fortran program that calls C++ (main1.f)

 #include <stdio.h>

 #include "cplus.h"

 extern "C" void cfun(int *idim){

 printf("%%Inside C function before creating C++ Object\n");

 int i = *idim;

 junk<int>* jj= new junk<int>(10,30);

 jj->store(idim);

 jj->print();

 printf("%%Inside C function after creating C++ Object\n");

 delete jj;

 return;

 }

 extern "C" void cfun1(int *idim1) {

 printf("%%Inside C function cfun1 before creating C++ Object\n");

 int i = *idim1;

 temp<double> *tmp = new temp<double>(40, 50.54);

 tmp->print();

 printf("%%Inside C function after creating C++ temp object\n");

 delete tmp;

 return;

 }

Figure 8. C++ wrapper functions for calling C++ (cfun.C)

Chapter 9. Interlanguage calls 107

Compiling this program, linking it with the ppuxlC or ppu-g++ command, and

running it produces this output:

 Inside Fortran calling first C function

%Inside C function before creating C++ Object

***Inside C++ constructor

10 30 35

%Inside C function after creating C++ Object

***Inside C++ Destructor

 Inside Fortran calling second C function

%Inside C function cfun1 before creating C++ Object

***Inside C++ temp Constructor

40 50.54

%Inside C function after creating C++ temp object

***Inside C++ temp destructor

 Exiting the Fortran program

Making calls to C functions work

When you pass an argument to a subprogram call, the usual Fortran convention is

to pass the address of the argument. Many C functions expect arguments to be

passed as values, however, not as addresses. For these arguments, specify them as

%VAL(argument) in the call to C, or make use of the standards-compiliant VALUE

attribute. For example:

 MEMBLK = MALLOC(1024) ! Wrong, passes the address of the constant

 MEMBLK = MALLOC(N) ! Wrong, passes the address of the variable

 MEMBLK = MALLOC(%VAL(1024)) ! Right, passes the value 1024

 MEMBLK = MALLOC(%VAL(N)) ! Right, passes the value of the variable

 #include <iostream.h>

 template<class T> class junk {

 private:

 int inter;

 T templ_mem;

 T stor_val;

 public:

 junk(int i,T j): inter(i),templ_mem(j)

 {cout <<"***Inside C++ constructor" << endl;}

 ~junk() {cout <<"***Inside C++ Destructor" << endl;}

 void store(T *val){ stor_val = *val;}

 void print(void) {cout << inter << "\t" << templ_mem ;

 cout <<"\t" << stor_val << endl; }};

 template<class T> class temp {

 private:

 int internal;

 T temp_var;

 public:

 temp(int i, T j): internal(i),temp_var(j)

 {cout <<"***Inside C++ temp Constructor" <<endl;}

 ~temp() {cout <<"***Inside C++ temp destructor" <<endl;}

 void print(void) {cout << internal << "\t" << temp_var << endl;}};

Figure 9. C++ code called from Fortran (cplus.h)

108 XL Fortran Optimization and Programming Guide

See “Passing arguments by reference or by value (PPU only)” on page 113 and

%VAL and %REF in the XL Fortran Language Reference for more details.

Passing data from one language to another

The Corresponding data types in Fortran and C table shows the data types

available in the XL Fortran and C languages. Further sections detail how Fortran

arguments can be passed by reference to C programs. To use the Fortran 2003

Standard interoperability features, see the BIND attribute and ISO_C_BINDING

module in the XL Fortran Language Reference.

Passing arguments between languages

When calling Fortran procedures, the C routines must pass arguments as pointers

to the types listed in the following table.

 Table 14. Corresponding data types in Fortran and C

XL Fortran Data Types XL C/C++ Data Types

INTEGER(1), BYTE signed char

INTEGER(2) signed short

INTEGER(4) signed int

INTEGER(8) signed long long

REAL, REAL(4) float

REAL(8), DOUBLE PRECISION double

REAL(16) (PPU only) long double (see note 1)

COMPLEX, COMPLEX(4) float _Complex

COMPLEX(8), DOUBLE COMPLEX double _Complex

COMPLEX(16) (PPU only) long double _Complex (see note 1)

LOGICAL(1) unsigned char

LOGICAL(2) unsigned short

LOGICAL(4) unsigned int

LOGICAL(8) unsigned long long

CHARACTER char

CHARACTER(n) char[n]

Integer POINTER void *

Array array

Sequence-derived type structure (with C/C++ -qalign=packed

option)

Notes:

1. Requires C/C++ compiler -qlongdbl option.

Notes:

1. In interlanguage communication, it is often necessary to use the %VAL built-in

function, or the standards-compliant VALUE attribute, and the %REF built-in

function that are defined in “Passing arguments by reference or by value (PPU

only)” on page 113.

2. C programs automatically convert float values to double and short integer

values to integer when calling an unprototyped C function. Because XL Fortran

does not perform a conversion on REAL(4) quantities passed by value, you

Chapter 9. Interlanguage calls 109

should not pass REAL(4) and INTEGER(2) by value to a C function that you

have not declared with an explicit interface.

3. The Fortran-derived type and the C structure must match in the number, data

type, and length of subobjects to be compatible data types.

Related information:

To use the Fortran 2003 Standard interoperability features

provided by XL Fortran, see the Language interoperability

features section in the XL Fortran Language Reference.

Passing global variables between languages

To access a C data structure from within a Fortran program or to access a common

block from within a C program, follow these steps:

1. Create a named common block that provides a one-to-one mapping of the C

structure members. If you have an unnamed common block, change it to a

named one. Name the common block with the name of the C structure.

2. Declare the C structure as a global variable by putting its declaration outside

any function or inside a function with the extern qualifier.

3. Compile the C source file to get packed structures.
 program cstruct struct mystuff {

 real(8) a,d double a;

 integer b,c int b,c;

 . double d;

 . };

 common /mystuff/ a,b,c,d

 . main() {

 .

 end }

If you do not have a specific need for a named common block, you can create a

sequence-derived type with the same one-to-one mapping as a C structure and

pass it as an argument to a C function. You must compile the C source file to get

packed structures or put #pragmas into the struct.

Passing character types between languages

One difficult aspect of interlanguage calls is passing character strings between

languages. The difficulty is due to the following underlying differences in the way

that different languages represent such entities:

v The only character type in Fortran is CHARACTER, which is stored as a set of

contiguous bytes, one character per byte. The length is not stored as part of the

entity. Instead, it is passed by value as an extra argument at the end of the

declared argument list when the entity is passed as an argument. The size of the

argument is 4 or 8 bytes, depending on the compilation mode used (32- or

64-bit, respectively).

v Character strings in C are stored as arrays of the type char. A null character

indicates the end of the string.

Note: To have the compiler automatically add the null character to certain

character arguments, you can use the -qnullterm option.

If you are writing both parts of the mixed-language program, you can make the C

routines deal with the extra Fortran length argument, or you can suppress this

extra argument by passing the string using the %REF function. If you use %REF,

110 XL Fortran Optimization and Programming Guide

which you typically would for pre-existing C routines, you need to indicate where

the string ends by concatenating a null character to the end of each character string

that is passed to a C routine:

! Initialize a character string to pass to C.

 character*6 message1 /’Hello\0’/

! Initialize a character string as usual, and append the null later.

 character*5 message2 /’world’/

! Pass both strings to a C function that takes 2 (char *) arguments.

 call cfunc(%ref(message1), %ref(message2 // ’\0’))

 end

For compatibility with C language usage, you can encode the following escape

sequences in XL Fortran character strings:

 Table 15. Escape sequences for character strings

Escape Meaning

\b Backspace

\f Form feed

\n New-line

\t Tab

\0 Null

\’ Apostrophe (does not terminate a string)

\" Double quotation mark (does not terminate a string)

\ \ Backslash

\x x, where x is any other character (the backslash is ignored)

If you do not want the backslash interpreted as an escape character within strings,

you can compile with the -qnoescape option.

Passing arrays between languages

Fortran stores array elements in ascending storage units in column-major order. C

stores array elements in row-major order. Fortran array indexes start at 1, while C

array indexes start at 0.

The following example shows how a two-dimensional array that is declared by

A(3,2) is stored in Fortran and C.

 Table 16. Corresponding array layouts for Fortran and C. The Fortran array reference

A(X,Y,Z) can be expressed in C as a[Z-1][Y-1][X-1]. Keep in mind that although C

passes individual scalar array elements by value, it passes arrays by reference.

 Fortran Element Name C Element Name

Lowest storage unit A(1,1) A[0][0]

 A(2,1) A[0][1]

 A(3,1) A[1][0]

 A(1,2) A[1][1]

 A(2,2) A[2][0]

Highest storage unit A(3,2) A[2][1]

Chapter 9. Interlanguage calls 111

To pass all or part of a Fortran array to another language, you can use Fortran

90/Fortran 95 array notation:

REAL, DIMENSION(4,8) :: A, B(10)

! Pass an entire 4 x 8 array.

CALL CFUNC(A)

! Pass only the upper-left quadrant of the array.

CALL CFUNC(A(1:2,1:4))

! Pass an array consisting of every third element of A.

CALL CFUNC(A(1:4:3,1:8))

! Pass a 1-dimensional array consisting of elements 1, 2, and 4 of B.

CALL CFUNC(B((/1,2,4/)))

Where necessary, the Fortran program constructs a temporary array and copies all

the elements into contiguous storage. In all cases, the C routine needs to account

for the column-major layout of the array.

Any array section or noncontiguous array is passed as the address of a contiguous

temporary unless an explicit interface exists where the corresponding dummy

argument is declared as an assumed-shape array or a pointer. To avoid the creation

of array descriptors (which are not supported for interlanguage calls) when calling

non-Fortran procedures with array arguments, either do not give the non-Fortran

procedures any explicit interface, or do not declare the corresponding dummy

arguments as assumed-shape or pointers in the interface:

! This explicit interface must be changed before the C function

! can be called.

INTERFACE

 FUNCTION CFUNC (ARRAY, PTR1, PTR2)

 INTEGER, DIMENSION (:) :: ARRAY ! Change this : to *.

 INTEGER, POINTER, DIMENSION (:) :: PTR1 ! Change this : to *

 ! and remove the POINTER

 ! attribute.

 REAL, POINTER :: PTR2 ! Remove this POINTER

 ! attribute or change to TARGET.

 END FUNCTION

END INTERFACE

Passing pointers between languages

Integer POINTERs always represent the address of the pointee object and must be

passed by value:

CALL CFUNC(%VAL(INTPTR))

Fortran 90 POINTERs can also be passed back and forth between languages but

only if there is no explicit interface for the called procedure or if the argument in

the explicit interface does not have a POINTER attribute or assumed-shape

declarator. You can remove any POINTER attribute or change it to TARGET and

can change any deferred-shape array declarator to be explicit-shape or

assumed-size.

Because of XL Fortran’s call-by-reference conventions, you must pass even scalar

values from another language as the address of the value, rather than the value

itself. For example, a C function passing an integer value x to Fortran must pass

&x. Also, a C function passing a pointer value p to Fortran so that Fortran can use

it as an integer POINTER must declare it as void **p. A C array is an exception:

you can pass it to Fortran without the & operator.

112 XL Fortran Optimization and Programming Guide

Passing arguments by reference or by value (PPU only)

To call subprograms written in languages other than Fortran (for example,

user-written C programs, or operating system routines), the actual arguments may

need to be passed by a method different from the default method used by Fortran.

C routines, including those in system libraries such as libc.so, require you to pass

arguments by value instead of by reference. (Although C passes individual scalar

array elements by value, it passes arrays by reference.)

You can change the default passing method by using the %VAL built-in function

or VALUE attribute and the %REF built-in function in the argument list of a CALL

statement or function reference. You cannot use them in the argument lists of

Fortran procedure references or with alternate return specifiers.

%REF Passes an argument by reference (that is, the called subprogram receives

the address of the argument). It is the same as the default calling method

for Fortran except that it also suppresses the extra length argument for

character strings.

%VAL Passes an argument by value (that is, the called subprogram receives an

argument that has the same value as the actual argument, but any change

to this argument does not affect the actual argument).

 You can use this built-in function with actual arguments that are

CHARACTER(1), BYTE, logical, integer, real, or complex expressions or

that are sequence-derived type. Objects of derived type cannot contain

pointers, arrays, or character structure components whose lengths are

greater than one byte.

You cannot use %VAL with actual arguments that are array entities,

procedure names, or character expressions of length greater than one byte.

%VAL causes XL Fortran to pass the actual argument as 32-bit or 64-bit

intermediate values.

In 32-bit Mode

If the actual argument is one of the following:

v An integer or a logical that is shorter than 32 bits, it is

sign-extended to a 32-bit value.

v An integer or a logical that is longer than 32 bits, it is passed as

two 32-bit intermediate values.

v Of type real or complex, it is passed as multiple 64-bit intermediate

values.

v Of sequence-derived type, it is passed as multiple 32-bit

intermediate values.

Byte-named constants and variables are passed as if they were

INTEGER(1). If the actual argument is a CHARACTER(1), the

compiler pads it on the left with zeros to a 32-bit value, regardless of

whether you specified the -qctyplss compiler option.

Chapter 9. Interlanguage calls 113

In 64-bit mode

If the actual argument is one of the following:

v An integer or a logical that is shorter than 64 bits, it is

sign-extended to a 64-bit value.

v Of type real or complex, it is passed as multiple 64-bit intermediate

values.

v Of sequence-derived type, it is passed as multiple 64-bit

intermediate values.

Byte-named constants and variables are passed as if they were

INTEGER(1). If the actual argument is a CHARACTER(1), the

compiler pads it on the left with zeros to a 64-bit value, regardless of

whether you specified the -qctyplss compiler option.

 If you specified the -qautodbl compiler option, any padded storage space

is not passed except for objects of derived type.

VALUE attribute

Specifies an argument association between a dummy and an actual

argument that allows you to pass the dummy argument with the value of

the actual argument. Changes to the value or definition status of the

dummy argument do not affect the actual argument.

 You must specify the VALUE attribute for dummy arguments only.

You must not use the %VAL or %REF built-in functions to reference a

dummy argument with the VALUE attribute, or the associated actual

argument.

A referenced procedure that has a dummy argument with the VALUE

attribute must have an explicit interface.

A dummy argument with the VALUE attribute can be of character type if

you omit the length parameter or specify it using an initialization

expression with a value of 1.

You must not specify the VALUE attribute with the following:

v Arrays

v Derived types with ALLOCATABLE components

v Dummy procedures
 EXTERNAL FUNC

 COMPLEX XVAR

 IVARB=6

 CALL RIGHT2(%REF(FUNC)) ! procedure name passed by reference

 CALL RIGHT3(%VAL(XVAR)) ! complex argument passed by value

 CALL TPROG(%VAL(IVARB)) ! integer argument passed by value

 END

Explicit interface for %VAL and %REF

You can specify an explicit interface for non-Fortran procedures to avoid coding

calls to %VAL and %REF in each argument list, as follows:

INTERFACE

 FUNCTION C_FUNC(%VAL(A),%VAL(B)) ! Now you can code "c_func(a,b)"

 INTEGER A,B ! instead of

 END FUNCTION C_FUNC ! "c_func(%val(a),%val(b))".

END INTERFACE

114 XL Fortran Optimization and Programming Guide

Example with VALUE attribute

Program validexm1

 integer :: x = 10, y = 20

 print *, ’before calling: ’, x, y

 call intersub(x, y)

 print *, ’after calling: ’, x, y

 contains

 subroutine intersub(x,y)

 integer, value :: x

 integer y

 x = x + y

 y = x*y

 print *, ’in subroutine after changing: ’, x, y

 end subroutine

end program validexm1

Expected output:

before calling: 10 20

in subroutine after changing: 30 600

after calling: 10 600

Passing complex values to/from gcc (PPU only)

Passing complex values between Fortran and Gnu C++ depends on what is

specified for the -qfloat=[no]complexgcc suboption. If -qfloat=complexgcc is

specified, the compiler uses Cell Broadband Engine Processor for Linux

conventions when passing or returning complex numbers. -qfloat=nocomplexgcc is

the default.

For -qfloat=complexgcc in 32-bit mode, the compiler passes COMPLEX *8 values

in 2 general-purpose registers (GPRs) and COMPLEX *16 values in 4 GPRs. In

64-bit mode, COMPLEX *8 values are passed in 1 GPR, and COMPLEX *16 in 2

GPRs. For -qfloat=nocomplexgcc, COMPLEX *8 and COMPLEX *16 values are

passed in 2 floating-point registers (FPRs). COMPLEX *32 values are always

passed in 4 FPRs for both -qfloat=complexgcc and -qfloat=nocomplexgcc (since

gcc does not support COMPLEX*32).

For -qfloat=complexgcc in 32-bit mode, COMPLEX *8 values are returned in

GPR3-GPR4, and COMPLEX *16 in GPR3-GPR6. In 64-bit mode, COMPLEX *8

values are returned in GPR3, and COMPLEX*16 in GPR 3-GPR4. For

-qfloat=nocomplexgcc, COMPLEX *8 and COMPLEX *16 values are returned in

FPR1-FPR2. For both -qfloat=complexgcc and -qfloat=nocomplexgcc, COMPLEX

*32 is always returned in FPR1-FPR4.

Returning values from Fortran functions

XL Fortran does not support calling certain types of Fortran functions from

non-Fortran procedures. If a Fortran function returns a pointer, array, or character

of nonconstant length, do not call it from outside Fortran.

You can call such a function indirectly:

SUBROUTINE MAT2(A,B,C) ! You can call this subroutine from C, and the

 ! result is stored in C.

INTEGER, DIMENSION(10,10) :: A,B,C

C = ARRAY_FUNC(A,B) ! But you could not call ARRAY_FUNC directly.

END

Chapter 9. Interlanguage calls 115

Arguments with the OPTIONAL attribute

When you pass an optional argument by reference, the address in the argument list

is zero if the argument is not present.

When you pass an optional argument by value, the value is zero if the argument is

not present. The compiler uses an extra register argument to differentiate that

value from a regular zero value. If the register has the value 1, the optional

argument is present; if it has the value 0, the optional argument is not present.

Related information: See “Order of arguments in argument list” on page 123.

Assembler-level subroutine linkage conventions (PPU only)

The subroutine linkage convention specifies the machine state at subroutine entry

and exit, allowing routines that are compiled separately in the same or different

languages to be linked. The information on subroutine linkage and system calls in

the System V Application Binary Interface: PowerPC Processor Supplement and 64–bit

PowerPC ELF Application Binary Interface Supplement are the base references on this

topic. You should consult these for full details. This section summarizes the

information needed to write mixed-language Fortran and assembler programs or to

debug at the assembler level, where you need to be concerned with these kinds of

low-level details.

The system linkage convention passes arguments in registers, taking full advantage

of the large number of floating-point registers (FPRs), general-purpose registers

(GPRs), vector registers (VPRs) and minimizing the saving and restoring of

registers on subroutine entry and exit. The linkage convention allows for argument

passing and return values to be in FPRs, GPRs, or both.

The following table lists floating-point registers and their functions. The

floating-point registers are double precision (64 bits).

 Table 17. Floating-point register usage across calls (PPU only)

Register Preserved Across Calls Use

0 no

1 no FP parameter 1, function return 1.

2 no FP parameter 2, function return 2.

...
...

...

9-13 no

14-31 yes

The following table lists general-purpose registers and their functions.

 Table 18. General-purpose register usage across calls (PPU only)

Register Preserved Across Calls Use

0 no

1 yes Stack pointer.

2 yes System-reserved.

3 no 1st word of arg list; return value 1.

116 XL Fortran Optimization and Programming Guide

Table 18. General-purpose register usage across calls (PPU only) (continued)

Register Preserved Across Calls Use

4 no 2nd word of arg list; return value 2.

...
...

...

10 no 8th word of arg list.

11-12 no

If a register is not designated as preserved, its contents may be changed during the call,

and the caller is responsible for saving any registers whose values are needed later.

Conversely, if a register is supposed to be preserved, the callee is responsible for

preserving its contents across the call, and the caller does not need any special action.

The following table lists special-purpose register conventions.

 Table 19. Special-purpose register usage across calls (PPU only)

Register Preserved Across Calls

Condition register

 Bits 0-7 (CR0,CR1)

 Bits 8-22 (CR2,CR3,CR4)

 Bits 23-31 (CR5,CR6,CR7)

no

yes

no

Link register no

Count register no

XER register no

FPSCR register no

The stack

The stack is a portion of storage that is used to hold local storage, register save

areas, parameter lists, and call-chain data. The stack grows from higher addresses

to lower addresses. A stack pointer register (register 1) is used to mark the current

“top” of the stack.

A stack frame is the portion of the stack that is used by a single procedure. The

input parameters are considered part of the current stack frame. In a sense, each

output argument belongs to both the caller’s and the callee’s stack frames. In either

case, the stack frame size is best defined as the difference between the caller’s stack

pointer and the callee’s.

The following diagrams show the storage maps of typical stack frames for 32-bit

and 64-bit environments.

In these diagrams, the current routine has acquired a stack frame that allows it to

call other functions. If the routine does not make any calls and there are no local

variables or temporaries, and it does not need to save any non-volatile registers,

the function need not allocate a stack frame. It can still use the register save area at

the top of the caller’s stack frame, if needed.

The stack frame is double-word aligned.

Chapter 9. Interlanguage calls 117

Runtime Stack for 32-bit Environment

 HIGH | |

 ADDRESSES | |

 |--------------------|

Caller’s stack --> | Back chain |

pointer | |

 | |

 |--------------------|

 | |

 -8*nfprs --> | Save area for | Ffirst = F14 for a

 | caller’s FPRs | full save

 | max 18 dblwds | F31

 | |

 |--------------------|

 | |

 -8*nfprs-4*ngprs --> | Save area for | Rfirst = R14 for full

 save | caller’s GPRs | save

 | max 18 words | R31

 | |

 |--------------------|

 | |

 | Save area for |

 | CR |

 | |

 |--------------------|

 | |

 | Locals |

 | |

 |--------------------|

 | |

 Space for parameters | Pn | OUTPUT ARGUMENT AREA

 that do not fit in | ... | <---(Used by callee

 registers | P9 | to construct

 | | argument list)

 |--------------------|

 | |

 4 | Saved LR | <-----+

 | | |

 |--------------------| Minimum stack frame

 | | "link area"

Callee’s stack --> 0 | Back chain | <-----+

pointer | |

 |--------------------|

 | |

 LOW | | Stack grows at

 ADDRESSES | | this end.

118 XL Fortran Optimization and Programming Guide

The Link Area and Minimum Stack Frame

In a 32-bit environment, the link area consists of two words at offset zero from the

callee’s stack pointer on entry to a procedure. The first word contains the caller’s

back chain (pointer to the previous stack frame). The second word is the location

where the caller saves the Link Register (LR), if it is needed.

In a 64-bit environment, this area consists of six doublewords at offset zero from

the caller’s stack pointer on entry to a procedure. The first doubleword contains

the caller’s back chain (stack pointer). The second doubleword is the location

where the callee saves the Condition Register (CR) if it is needed. The third

doubleword is the location where the callee’s prolog code saves the Link Register if

it is needed. The fourth doubleword is reserved for C SETJMP and LONGJMP

processing, and the fifth doubleword is reserved for future use. The last

doubleword (doubleword 6) is reserved for use by the global linkage routines that

are used when calling routines in other object modules (for example, in shared

libraries).

 Runtime Stack for 64-bit Environment

 Low | | Stack grows at

 Addresses | | this end.

 |--------------------|

Callee’s stack --> 0 | Back chain |

pointer 8 | Saved CR |

 16 | Saved LR |

 24-32 | Reserved | <--- LINK AREA

 40 | Saved TOC | (callee)

 |--------------------|

 Space for P1-P8 | P1 | OUTPUT ARGUMENT AREA

 is always reserved | ... | <---(Used by callee

 | Pn | to construct

 |--------------------| argument list)

 | Callee’s |

 | stack | <--- LOCAL STACK AREA

 | area |

 |--------------------|

 | | (Possible word wasted

 |--------------------| for alignment.)

 -8*nfprs-8*ngprs --> | Save area for | Rfirst = R13 for full

 save | caller’s GPR | save

 | max 19 doublewords | R31

 |--------------------|

 -8*nfprs --> | Save area for | Ffirst = F14 for a

 | caller’s FPR | full save

 | max 18 dblwds | F31

 |--------------------|

Caller’s stack --> 0 | Back chain |

 pointer 8 | Saved CR |

 16 | Saved LR |

 24-32 | Reserved | <--- LINK AREA

 40 | Saved TOC | (caller)

 |--------------------|

Space for P1-P8 48 | P1 | INPUT PARAMETER AREA

is always reserved | ... | <---(Callee’s input

 | Pn | parameters found

 |--------------------| here. Is also

 | Caller’s | caller’s arg area.)

 | stack |

 High | area |

 Addresses | |

Chapter 9. Interlanguage calls 119

The input parameter area

In a 32-bit environment, the input parameters that do not fit in registers go into the

ouput argument area (P9... Pn).

In a 64-bit environment, the input parameter area is a contiguous piece of storage

reserved by the calling program to represent the register image of the input

parameters of the callee. The input parameter area is double-word aligned and is

located on the stack directly following the caller’s link area. This area is at least 8

doublewords in size. If more than 8 doublewords of parameters are expected, they

are stored as register images that start at positive offset 112 from the incoming

stack pointer.

The first 8 doublewords only appear in registers at the call point, never in the

stack. Remaining words are always in the stack, and they can also be in registers.

The register save area

In a 32-bit environment, the register save area provides the space that is needed to

save all nonvolatile FPRs and GPRs used by the callee program. The FPRs are

saved next to caller’s minimum stack frame. The GPRs are saved below the FPRs

(in lower addresses).

In a 64-bit environment, the register save area is double-word aligned. It provides

the space that is needed to save all nonvolatile FPRs and GPRs used by the callee

program. The FPRs are saved next to the link area. The GPRs are saved below the

FPRs (in lower addresses). The called function may save the registers here even if

it does not need to allocate a new stack frame. The system-defined stack floor

includes the maximum possible save area:

 32-bit platforms: 18*8 for FPRs + 18*4 for GPRs

 64-bit platforms: 18*8 for FPRs + 19*8 for GPRs

A callee needs only to save the nonvolatile registers that it actually uses.

The local stack area

The local stack area is the space that is allocated by the callee procedure for local

variables and temporaries.

The output parameter area

In a 32-bit environment, the input parameters that do not fit in registers go into the

ouput argument area (P9... Pn).

If more than 8 words are being passed, an extension list is constructed beginning

at offset 8 from the current stack pointer.

The first 8 words only appear in registers at the call point, never in the stack.

Remaining words are always in the stack, and they can also be in registers.

In a 64-bit environment, the output parameter area (P1...Pn) must be large enough

to hold the largest parameter list of all procedures that the procedure that owns

this stack frame calls. This area is at least 8 doublewords long, regardless of the

length or existence of any argument list. If more than 8 doublewords are being

passed, an extension list is constructed, which begins at offset 112 from the current

stack pointer.

120 XL Fortran Optimization and Programming Guide

The first 8 doublewords only appear in registers at the call point, never in the

stack. Remaining doublewords are always in the stack, and they can also be in

registers.

Linkage convention for argument passing (PPU only)

The system linkage convention takes advantage of the large number of registers

available. On the U, the linkage convention passes arguments in both GPRs and

FPRs. Two fixed lists, R3-R10 and FP1-FP13, specify the GPRs and FPRs available

for argument passing. On the SPU, arguments are passed on GPRs only, VR3-VR74.

When there are more argument words than available argument GPRs and FPRs,

the remaining words are passed in storage on the stack. The values in storage are

the same as if they were in registers.

In a 64-bit environment(PPU only), the size of the parameter area is sufficient to

contain all the arguments passed on any call statement from a procedure that is

associated with the stack frame. Although not all the arguments for a particular

call actually appear in storage, it is convenient to consider them as forming a list in

this area, each one occupying one or more words.

For call by reference (as is the default for Fortran), the address of the argument is

passed in a register. The following information refers to call by value, as in C or as

in Fortran when %VAL is used. For purposes of their appearance in the list,

arguments are classified as floating-point values or non-floating-point values:

In a 32-bit Environment

v Each INTEGER(8) and LOGICAL(8) argument requires two words.

v Any other non-floating-point scalar argument of intrinsic type or

procedure/function pointers requires one word and appears in that word

exactly as it would appear in a GPR. It is signed or unsigned/extended, if

language semantics specify, and is word aligned.

v Each single-precision (REAL(4)) value occupies one word. Each

double-precision (REAL(8)) value occupies two successive words in the list.

Each extended-precision (REAL(16)) (PPU only) value occupies four

successive words in the list.

v A COMPLEX value occupies twice as many words as a REAL value with

the same kind type parameter.

v In Fortran and C, structure values are passed “val-by-ref”. That is, the

compiler actually passes the address of a copy of the structure.

Chapter 9. Interlanguage calls 121

In a 64-bit environment (PPU only)

v All non-floating-point values require one doubleword that is doubleword

aligned.

v Each single-precision (REAL(4)) value and each double-precision (REAL(8))

value occupies one doubleword in the list. Each extended-precision

(REAL(16)) value occupies two successive doublewords in the list.

v A COMPLEX value occupies twice as many doublewords as a REAL value

with the same kind type parameter.

v In Fortran and C, structure values appear in successive words as they

would anywhere in storage, satisfying all appropriate alignment

requirements. Structures are aligned to a doubleword and occupy

(sizeof(struct X)+7)/8 doublewords, with any padding at the end. A

structure that is smaller than a doubleword is left-justified within its

doubleword or register. Larger structures can occupy multiple registers and

may be passed partly in storage and partly in registers.

v Other aggregate values are passed “val-by-ref”. That is, the compiler

actually passes their address and arranges for a copy to be made in the

invoked program.

v A procedure or function pointer is passed as a pointer to the routine’s

function descriptor; its first word contains its entry point address. (See

“Pointers to functions (PPU only)” on page 124 for more information.)

Argument passing rules (by value)

From the following illustration, we state these rules:

v In a 32-bit environment, arguments to called functions are passed in the GPRs

and FPRs. Up to eight words are passed in GPR3-GPR10 and up to eight

floating-point arguments in FPR1-FPR8. If fewers arguments are passed,

unneeded registers are not loaded. If the passed arguments will not fit in

registers, only enough space to hold the arguments that do not fit is allocated in

the stack frame.

v In a 64-bit environment (PPU only) , if the called procedure treats the parameter

list as a contiguous piece of storage (for example, if the address of a parameter

is taken in C), the parameter registers are stored in the space reserved for them

in the stack.

v A register image is stored on the stack.

v In a 64–bit environment (PPU only) the argument area (P1...Pn) must be large

enough to hold the largest parameter list.

Here is an example of a call to a function (PPU only) :

f(%val(l1), %val(l2), %val(l3), %val(l4), %val(l5), %val(l6), %val(l7),

 %val(d1), %val(f1), %val(c1), %val(d2), %val(s1), %val(cx2))

where:

 l denotes integer(4) (fullword integer)

 d denotes real(8) (double precision)

 f denotes real(4) (real)

 s denotes integer(2) (halfword integer)

 c denotes character (one character)

 cx denotes complex(8) (double complex)

122 XL Fortran Optimization and Programming Guide

Order of arguments in argument list

The argument list is constructed in the following order. Items in the same bullet

appear in the same order as in the procedure declaration, whether or not argument

keywords are used in the call.

v All addresses or values (or both) of actual arguments

1

v “Present” indicators for optional arguments

v Length arguments for strings

1

Linkage convention for function calls (PPU only)

In 64–bit mode (PPU only) , a routine has two symbols associated with it: a

function descriptor (name) and an entry point (.name). When a call is made to a

routine, the program branches to the entry point directly. Excluding the loading of

parameters (if any) in the proper registers, compilers expand calls to functions to

the following two-instruction sequence:

 BL .foo # Branch to foo

 ORI R0,R0,0x0000 # Special NOP

The linker does one of two things when it encounters a BL instruction:

1. If foo is imported (not in the same object module), the linker changes the BL to

.foo to a BL to .glink (global linkage routine) of foo and inserts the .glink

into the object module. Also, if a NOP instruction (ORI R0,R0,0x0000)

1. There may be other items in this list during Fortran-Fortran calls. However, they will not be visible to non-Fortran procedures

that follow the calling rules in this section.

Storage Mapping of
Parm Area
On the Stack in
32-Bit EnvironmentWill Be Passed In:

R3

R4

R5

R6

R7

R8

R9

FP1

R10

FP2

FP3

FP4

stack

L1

L2

L3

L4

L5

L6

L7

F1

C1

D2

CX2 (real)

CX2 (imaginary)

SIGN0 S1

zero extended

sign extended
(Output Parameter Area)

Figure 10. Storage mapping of parm area on the stack in 32-bit environment

Chapter 9. Interlanguage calls 123

immediately follows the BL instruction, the linker replaces the NOP instruction

with the LOAD instruction L R2, 20(R1).

2. If foo is bound in the same object module as its caller and a LOAD instruction

L R2,20(R1) for 32-bit and L R2,40(R1) for 64-bit, or ORI R0,R0,0 immediately

follows the BL instruction, the linker replaces the LOAD instruction with a

NOP (ORI R0,R0,0).

Note: For any export, the linker inserts the procedure’s descriptor into the object

module.

Pointers to functions (PPU only)

In 64–bit mode, a function pointer is a data type whose values range over

procedure names. Variables of this type appear in several programming languages,

such as C and Fortran. In Fortran, a dummy argument that appears in an

EXTERNAL statement is a function pointer. Fortran provides support for the use

of function pointers in contexts such as the target of a call statement or an actual

argument of such a statement.

A function pointer is a fullword quantity that is the address of a function

descriptor. The function descriptor is a 3-word object. The first word contains the

address of the entry point of the procedure. The second has the address of the

TOC of the object module in which the procedure is bound. The third is the

environment pointer for some non-Fortran languages. There is only one function

descriptor per entry point. It is bound into the same object module as the function

it identifies if the function is external. The descriptor has an external name, which

is the same as the function name but with a different storage class that uniquely

identifies it. This descriptor name is used in all import or export operations.

Function values (PPU only)

For the PPU, functions return their values according to type:

v In 32-bit mode, INTEGER and LOGICAL of kind 1, 2, and 4 are returned

(sign/zero extended) in R3.

v In 64-bit mode, INTEGER and LOGICAL of kind 1, 2, and 4 are returned (right

justified) in R3.

v REAL *4 or *8 are returned in FP1. REAL *16 are returned in FP1 and FP2.

v COMPLEX *4 or *8 are returned in FP1 and FP2. COMPLEX *16 are returned in

FP1-FP4.

v In 32-bit mode when -qfloat=complexgcc is specified, COMPLEX *4 is returned

in R3-R4 and COMPLEX *8 in R3-R6. In 64-bit mode, COMPLEX*4 is returned

in R3 and COMPLEX*8 in R3-R4.

v Vector results are returned in VPR2

v Character strings are returned in a buffer allocated by the caller. The address

and the length of this buffer are passed in R3 and R4 as hidden parameters. The

first explicit parameter word is in R5, and all subsequent parameters are moved

to the next word.

v Structures are returned in a buffer that is allocated by the caller. The address is

passed in R3; there is no length. The first explicit parameter is in R4.

For SPU, functions return their values according to type:

v INTEGER and LOGICAL of kind 1, 2, 4, and 8are returned (right justified) in

VR3.

v REAL of kind 4 or 8 are returned in VR3

124 XL Fortran Optimization and Programming Guide

v COMPLEX of kind 4 or 8 are returned in VR3/VR4.

v Vector results are returned in VR2

v Character strings are returned in a buffer allocated by the caller. The address

and the length of this buffer are passed in VR3 and VR4 as hidden parameters.

The first explicit parameter word is in VR5, and all subsequent parameters are

moved to the next word.

v Structures are returned in a buffer that is allocated by the caller. The address is

passed in VR3; there is no length. The first explicit parameter is in VR4.

The Stack floor

In 64–bit mode, the stack floor is a system-defined address below which the stack

cannot grow. All programs in the system must avoid accessing locations in the

stack segment that are below the stack floor.

All programs must maintain other system invariants that are related to the stack:

v No data is saved or accessed from an address lower than the stack floor.

v The stack pointer is always valid. When the stack frame size is more than 32 767

bytes, you must take care to ensure that its value is changed in a single

instruction. This step ensures that there is no timing window where a signal

handler would either overlay the stack data or erroneously appear to overflow

the stack segment.

Stack overflow

The linkage convention requires no explicit inline check for overflow. The

operating system uses a storage protection mechanism to detect stores past the end

of the stack segment.

Prolog and epilog (PPU only)

On entry to a procedure, you might have to do some or all of the following steps:

1. Save the link register.

2. If you use any of the CR bits 8-23 (CR2, CR3, CR4, CR5), save the CR.

3. Save any nonvolatile FPRs that are used by this procedure in the FPR save

area.

4. Save all nonvolatile VPRs that are used by this procedure in the callers VPR

save area.

5. Save the VRSAVE register

6. Save all nonvolatile GPRs that are used by this procedure in the GPR save area.

7. Store back chain and decrement stack pointer by the size of the stack frame.

Note that if a stack overflow occurs, it will be known immediately when the

store of the back chain is done.

On exit from a procedure, you might have to perform some or all of the following

steps:

1. Restore all GPRs saved.

2. Restore all VPRs saved

3. Restore the VRSAVE register

4. Restore stack pointer to the value it had on entry.

5. Restore link register if necessary.

6. Restore bits 8-23 of the CR if necessary.

Chapter 9. Interlanguage calls 125

7. If you saved any FPRs, restore them.

8. Return to caller.

Traceback (PPU only)

In 64–bit mode, the compiler supports the traceback mechanism, which symbolic

debuggers need to unravel the call or return stack. Each object module has a

traceback table in the text segment at the end of its code. This table contains

information about the object module, including the type of object module, as well

as stack frame and register information.

Related information: You can make the traceback table smaller or remove it

entirely with the -qtbtable option.

126 XL Fortran Optimization and Programming Guide

Chapter 10. Implementation details of XL Fortran Input/Output

(I/O) (PPU only)

This section discusses XL Fortran support (through extensions and

platform-specific details) for the Cell Broadband Engine Processor for Linux file

system.

Related information: See the -qposition option in the XL Fortran Compiler Reference

and “Mixed-language input and output (PPU only)” on page

106.

Implementation details of file formats

XL Fortran implements files in the following manner:

Sequential-access unformatted files:

An integer that contains the length of the record precedes and follows each

record. The length of the integer is 4 bytes for 32-bit applications. For

64-bit applications, the length of the integer is 4 bytes if you set the

uwidth runtime option to 32 (the default), and 8 bytes if you set the

uwidth runtime option to 64.

Sequential-access formatted files:

XL Fortran programs break these files into records while reading, by using

each newline character (X'0A') as a record separator.

 On output, the input/output system writes a newline character at the end

of each record. Programs can also write newline characters for themselves.

This practice is not recommended because the effect is that the single

record that appears to be written is treated as more than one record when

being read or backspaced over.

Direct access files:

XL Fortran simulates direct-access files with operating system files whose

length is a multiple of the record length of the XL Fortran file. You must

specify, in an OPEN statement, the record length (RECL) of the

direct-access file. XL Fortran uses this record length to distinguish records

from each other.

 For example, the third record of a direct-access file of record length 100

bytes would start at the 201st byte of the single record of Cell Broadband

Engine Processor for Linux file and end at the 300th byte.

If the length of the record of a direct-access file is greater than the total

amount of data you want to write to the record, XL Fortran pads the

record on the right with blanks (X'20').

Stream-access unformatted files:

Unformatted stream files are viewed as a collection of file storage units. In

XL Fortran, a file storage unit is one byte.

 A file connected for unformatted stream access has the following

properties:

v The first file storage unit has position 1. Each subsequent file storage

unit has a position that is one greater than that of the preceding one.

© Copyright IBM Corp. 1990, 2007 127

v For a file that can be positioned, file storage units need not be read or

written in the order of their position. Any file storage unit may be read

from the file while it is connected to a unit, provided that the file

storage unit has been written since the file was created, and if a READ

statement for the connection is permitted.

Stream-access formatted files:

A record file connected for formatted stream access has the following

properties:

v Some file storage units may represent record markers. The record marker

is the newline character (X'0A').

v The file will have a record structure in addition to the stream structure.

v The record structure is inferred from the record markers that are stored

in the file.

v Records can have any length up to the internal limit allowed by XL

Fortran (See XL Fortran Internal limits in the XL Fortran Compiler

Reference.)

v There may or may not be a record marker at the end of the file. If there

is no record marker at the end of the file, the final record is incomplete,

but not empty.

A file connected for formatted stream access has the following properties:

v The first file storage unit has position 1. Each subsequent file storage

unit has a position that is greater than that of the preceding one. Unlike

unformatted stream access, the positions of successive file storage units

are not always consecutive.

v The position of a file connected for formatted stream access can be

determined by the POS= specifier in an INQUIRE statement.

v For a file that can be positioned, the file position can be set to a value

that was previously identified by the POS= specifier in INQUIRE.

File names

You can specify file names as either relative (such as file, dir/file, or ../file) or

absolute (such as /file or /dir/file). The maximum length of a file name (the full

path name) is characters, even if you only specify a relative path name in the I/O

statement. The maximum length of a file name with no path is 255 characters.

You must specify a valid file name in such places as the following:

v The FILE= specifier of the OPEN and INQUIRE statements

v INCLUDE lines

Related information: To specify a file whose location depends on an environment

variable, you can use the

GET_ENVIRONMENT_VARIABLE intrinsic procedure to

retrieve the value of the environment variable:

character(100) home, name

call get_environment_variable(’HOME’, value=home)

! Now home = $HOME + blank padding.

! Construct the complete path name and open the file.

name=trim(home) // ’/remainder/of/path’

open (unit=10, file=name)

...

end

128 XL Fortran Optimization and Programming Guide

Preconnected and Implicitly Connected Files

Units 0, 5, and 6 are preconnected to standard error, standard input, and standard

output, respectively, before the program runs.

All other units can be implicitly connected when an ENDFILE, PRINT, READ,

REWIND, or WRITE statement is performed on a unit that has not been opened.

Unit n is connected to a file that is named fort.n. These files need not exist, and XL

Fortran does not create them unless you use their units.

Note: Because unit 0 is preconnected for standard error, you cannot use it for the

following statements: CLOSE, ENDFILE, BACKSPACE, REWIND, and

direct or stream input/output. You can use it in an OPEN statement only to

change the values of the BLANK=, DELIM=, DECIMAL=or PAD=

specifiers.

You can also implicitly connect units 5 and 6 (and *) by using I/O statements that

follow a CLOSE:

 WRITE (6,10) "This message goes to stdout."

 CLOSE (6)

 WRITE (6,10) "This message goes in the file fort.6."

 PRINT *, "Output to * now also goes in fort.6."

10 FORMAT (A)

 END

The FORM= specifier of implicitly connected files has the value FORMATTED

before any READ, WRITE, or PRINT statement is performed on the unit. The first

such statement on such a file determines the FORM= specifier from that point on:

FORMATTED if the formatting of the statement is format-directed, list-directed, or

namelist; and UNFORMATTED if the statement is unformatted.

Preconnected files also have FORM=’FORMATTED’, STATUS=’OLD’, and

ACTION=’READWRITE’ as default specifier values.

The other properties of a preconnected or implicitly connected file are the default

specifier values for the OPEN statement. These files always use sequential access.

If you want XL Fortran to use your own file instead of the fort.n file, you can

either specify your file for that unit through an OPEN statement or create a

symbolic link before running the application. In the following example, there is a

symbolic link between myfile and fort.10:

When you run an application that uses the implicitly connected file fort.10 for

input/output, XL Fortran uses the file myfile instead. The file fort.10 exists, but

only as a symbolic link. The following command will remove the symbolic link,

but will not affect the existence of myfile:

rm fort.10

File positioning

The following table summarizes the position of the file pointer when a file is

opened with no POSITION= specifier.

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) (PPU only) 129

Table 20. Position of the file pointer when a file is opened with no POSITION= specifier

-qposition suboptions Implicit OPEN Explicit OPEN

STATUS =

’NEW’

STATUS = ’OLD’ STATUS =

’UNKNOWN’

File

exists

File

does

not

exist

File

exists

File

does

not

exist

File

exists

File

does

not

exist

File

exists

File

does

not

exist

option not specified Start Start Error Start Start Error Start Start

appendold Start Start Error Start End Error Start Start

appendunknown Start Start Error Start Start Error End Start

appendold and appendunknown Start Start Error Start End Error End Start

I/O Redirection

You can use the redirection operator on the command line to redirect input to and

output from your XL Fortran program. How you specify and use this operator

depends on which shell you are running. Here is a example:

How XL Fortran I/O interacts with pipes, special files, and links

You can access regular operating system files and blocked special files by using

sequential-access, direct-access, or stream-access methods.

You can only access pseudo-devices, pipes, and character special files by using

sequential-access methods, or stream-access without using the POS= specifier.

When you link files together, you can use their names interchangeably, as shown in

the following example:

$ cat redirect.f

 write (6,*) ’This goes to standard output’

 write (0,*) ’This goes to standard error’

 read (5,*) i

 print *,i

 end

$ ppuxlf95 redirect.f

** _main === End of Compilation 1 ===

1501-510 Compilation successful for file redirect.f.

$ # No redirection. Input comes from the terminal. Output goes to

$ # the screen.

$ a.out

 This goes to standard output

 This goes to standard error

4

 4

$ # Create an input file.

$ echo >stdin 2

$ # Redirect each standard I/O stream.

$ a.out >stdout 2>stderr <stdin

$ cat stdout

 This goes to standard output

 2

$ cat stderr

 This goes to standard error

130 XL Fortran Optimization and Programming Guide

OPEN (4, FILE="file1")

OPEN (4, FILE="link_to_file1", PAD="NO") ! Modify connection

Do not specify the POSITION= specifier as REWIND or APPEND for pipes.

Do not specify ACTION=’READWRITE’ for a pipe.

Do not use the BACKSPACE statement on files that are pseudo-devices or

character special files.

Do not use the REWIND statement on files that are pseudo-devices or pipes.

Default record lengths

If a pseudo-device, pipe, or character special file is connected for formatted or

unformatted sequential access with no RECL= specifier, or for formatted stream

access, the default record length is 32 768 rather than 2 147 483 647, which is the

default for sequential-access files connected to random-access devices. (See the

default_recl runtime option.)

In certain cases, the default maximum record length for formatted files is larger, to

accommodate programs that write long records to standard output. If a unit is

connected to a terminal for formatted sequential access and there is no explicit

RECL= qualifier in the OPEN statement, the program uses a maximum record

length of 2 147 483 646 (2**31-2) bytes, rather than the usual default of 32 768 bytes.

When the maximum record length is larger, formatted I/O has one restriction:

WRITE statements that use the T or TL edit descriptors must not write more than

32 768 bytes. This is because the unit’s internal buffer is flushed each 32 768 bytes,

and the T or TL edit descriptors will not be able to move back past this boundary.

File permissions

A file must have the appropriate permissions (read, write, or both) for the

corresponding operation being performed on it.

When a file is created, the default permissions (if the umask setting is 000) are

both read and write for user, group, and other. You can turn off individual

permission bits by changing the umask setting before you run the program.

Selecting error messages and recovery actions

By default, an XL Fortran-compiled program continues after encountering many

kinds of errors, even if the statements have no ERR= or IOSTAT= specifiers. The

program performs some action that might allow it to recover successfully from the

bad data or other problem.

To control the behavior of a program that encounters errors, set the XLFRTEOPTS

environment variable, which is described in Setting runtime options in the XL

Fortran Compiler Reference, before running the program:

v To make the program stop when it encounters an error instead of performing a

recovery action, include err_recovery=no in the XLFRTEOPTS setting.

v To make the program stop issuing messages each time it encounters an error,

include xrf_messages=no.

v To disallow XL Fortran extensions to Fortran 90 at run time, include

langlvl=90std. To disallow XL Fortran extensions to Fortran 95 at run time,

include langlvl=95std. To disallow XL Fortran extensions to Fortran 2003

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) (PPU only) 131

behavior at run time, include langlvl=2003std. These settings, in conjunction

with the -qlanglvl compiler option, can help you locate extensions when

preparing to port a program to another platform.

For example:

Switch defaults for some runtime settings.

XLFRTEOPTS="err_recovery=no:cnverr=no"

export XLFRTEOPTS

If you want a program always to work the same way, regardless of

environment-variable settings, or want to change the behavior in different parts of

the program, you can call the SETRTEOPTS procedure:

PROGRAM RTEOPTS

USE XLFUTILITY

CALL SETRTEOPTS("err_recovery=no") ! Change setting.

... some I/O statements ...

CALL SETRTEOPTS("err_recovery=yes") ! Change it back.

... some more I/O statements ...

END

Because a user can change these settings through the XLFRTEOPTS environment

variable, be sure to use SETRTEOPTS to set all the runtime options that might

affect the desired operation of the program.

Flushing I/O buffers

To protect data from being lost if a program ends unexpectedly, you can use the

FLUSH statement or the flush_ subroutine to write any buffered data to a file.

The FLUSH statement is recommended for better portability and is used in the

following example:

INTEGER, PARAMETER :: UNIT = 10

DO I = 1, 1000000

 WRITE(UNIT, *) I

 CALL MIGHT_CRASH

! If the program ends in the middle of the loop, some data

! may be lost.

END DO

DO I = 1, 1000000

 WRITE(UNIT, *) I

 FLUSH(UNIT)

 CALL MIGHT_CRASH

! If the program ends in the middle of the loop, all data written

! up to that point will be safely in the file.

END DO

END

Related information: See “Mixed-language input and output (PPU only)” on page

106 and the FLUSH statement in the XL Fortran Language

Reference.

Choosing locations and names for Input/Output files

If you need to override the default locations and names for input/output files, you

can use the following methods without making any changes to the source code.

Naming files that are connected with no explicit name

To give a specific name to a file that would usually have a name of the form

fort.unit, you must set the runtime option unit_vars and then set an environment

132 XL Fortran Optimization and Programming Guide

variable with a name of the form XLFUNIT_unit for each scratch file. The

association is between a unit number in the Fortran program and a path name in

the file system.

For example, suppose that the Fortran program contains the following statements:

 OPEN (UNIT=1, FORM=’FORMATTED’, ACCESS=’SEQUENTIAL’, RECL=1024)

 ...

 OPEN (UNIT=12, FORM=’UNFORMATTED’, ACCESS=’DIRECT’, RECL=131072)

 ...

 OPEN (UNIT=123, FORM=’UNFORMATTED’, ACCESS=’SEQUENTIAL’, RECL=997)

XLFRTEOPTS="unit_vars=yes" # Allow overriding default names.

XLFUNIT_1="/tmp/molecules.dat" # Use this named file.

XLFUNIT_12="../data/scratch" # Relative to current directory.

XLFUNIT_123="" # Somewhere besides /tmp.

export XLFRTEOPTS XLFUNIT_1 XLFUNIT_12 XLFUNIT_123

Notes:

1. The XLFUNIT_number variable name must be in uppercase, and number must

not have any leading zeros.

2. unit_vars=yes might be only part of the value for the XLFRTEOPTS variable,

depending on what other runtime options you have set. See Setting runtime

options in the XL Fortran Compiler Reference for other options that might be part

of the XLFRTEOPTS value.

3. If the unit_vars runtime option is set to no or is undefined or if the applicable

XLFUNIT_number variable is not set when the program is run, the program

uses a default name (fort.unit) for the file and puts it in the current directory.

Naming scratch files

To place all scratch files in a particular directory, set the TMPDIR environment

variable to the name of the directory. The program then opens the scratch files in

this directory. You might need to do this if your /tmp directory is too small to hold

the scratch files.

To give a specific name to a scratch file, you must do the following:

1. Set the runtime option scratch_vars.

2. Set an environment variable with a name of the form XLFSCRATCH_unit for

each scratch file.

The association is between a unit number in the Fortran program and a path name

in the file system. In this case, the TMPDIR variable does not affect the location of

the scratch file.

For example, suppose that the Fortran program contains the following statements:

 OPEN (UNIT=1, STATUS=’SCRATCH’, &

 FORM=’FORMATTED’, ACCESS=’SEQUENTIAL’, RECL=1024)

 ...

 OPEN (UNIT=12, STATUS=’SCRATCH’, &

 FORM=’UNFORMATTED’, ACCESS=’DIRECT’, RECL=131072)

 ...

 OPEN (UNIT=123, STATUS=’SCRATCH’, &

 FORM=’UNFORMATTED’, ACCESS=’SEQUENTIAL’, RECL=997)

XLFRTEOPTS="scratch_vars=yes" # Turn on scratch file naming.

XLFSCRATCH_1="/tmp/molecules.dat" # Use this named file.

XLFSCRATCH_12="../data/scratch" # Relative to current directory.

XLFSCRATCH_123="" # Somewhere besides /tmp.

export XLFRTEOPTS XLFSCRATCH_1 XLFSCRATCH_12 XLFSCRATCH_123

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) (PPU only) 133

Notes:

1. The XLFSCRATCH_number variable name must be in uppercase, and number

must not have any leading zeros.

2. scratch_vars=yes might be only part of the value for the XLFRTEOPTS

variable, depending on what other runtime options you have set. See Setting

runtime options in the XL Fortran Compiler Reference for other options that might

be part of the XLFRTEOPTS value.

3. If the scratch_vars runtime option is set to no or is undefined or if the

applicable XLFSCRATCH_number variable is not set when the program is run,

the program chooses a unique file name for the scratch file and puts it in the

directory named by the TMPDIR variable or in the /tmp directory if the

TMPDIR variable is not set.

Asynchronous I/O

You may need to use asynchronous I/O for speed and efficiency in scientific

programs that perform I/O for large amounts of data. Synchronous I/O blocks the

execution of an application until the I/O operation completes. Asynchronous I/O

allows an application to continue processing while the I/O operation is performed

in the background. You can modify applications to take advantage of the ability to

overlap processing and I/O operations. Multiple asynchronous I/O operations can

also be performed simultaneously on multiple files that reside on independent

devices. For a complete description of the syntax and language elements that you

require to use this feature, see the XL Fortran Language Reference under the topics:

v INQUIRE Statement

v OPEN Statement

v READ Statement

v WAIT Statement

v WRITE Statement

Execution of an asychronous data transfer operation

The effect of executing an asynchronous data transfer operation will be as if the

following steps were performed in the order specified, with steps (6)-(9) possibly

occurring asynchronously:

 1. Determine the direction of the data transfer.

 2. Identify the unit.

 3. Establish the format if one is present.

 4. Determine whether an error condition, end-of-file condition, or end-of-record

condition has occurred.

 5. Cause the variable that you specified in the IOSTAT= specifier in the data

transfer statement to become defined.

 6. Position the file before you transfer data.

 7. Transfer data between the file and the entities that you specified by the

input/output list (if any).

 8. Determine whether an error condition, end-of-file condition, or end-of-record

condition has occurred.

 9. Position the file after you transfer data.

10. Cause any variables that you specified in the IOSTAT= and SIZE= specifiers

in the WAIT statement to become defined.

Usage

You can use Fortran asynchronous READ and WRITE statements to initiate

asynchronous data transfers in Fortran. Execution continues after the asynchronous

I/O statement, regardless of whether the actual data transfer has completed.

134 XL Fortran Optimization and Programming Guide

A program may synchronize itself with a previously initiated asynchronous I/O

statement by using a WAIT statement. There are two forms of the WAIT statement:

1. In a WAIT statement without the DONE= specifier, the WAIT statement halts

execution until the corresponding asynchronous I/O statement has completed:

 integer idvar

 integer, dimension(1000):: a

 READ(unit_number,ID=idvar) a

 WAIT(ID=idvar)

2. In a WAIT statement with the DONE= specifier, the WAIT statement returns

the completion status of an asynchronous I/O statement:

 integer idvar

 logical done

 integer, dimension(1000):: a

 READ(unit_number,ID=idvar) a

 WAIT(ID=idvar, DONE=done)

The variable you specified in the DONE= specifier is set to ″true″ if the

corresponding asynchronous I/O statement completes. Otherwise, it is set to

″false″.

The actual data transfer can take place in the following cases:

v During the asynchronous READ or WRITE statement

v At any time before the execution of the corresponding WAIT statement

v During the corresponding WAIT statement

Because of the nature of asynchronous I/O, the actual completion time of the

request cannot be predicted.

You specify Fortran asynchronous READ and WRITE statements by using the ID=

specifier. The value set for the ID= specifier by an asynchronous READ or WRITE

statement must be the same value specified in the ID= specifier in the

corresponding WAIT statement. You must preserve this value until the associated

asynchronous I/O statement has completed.

The following program shows a valid asynchronous WRITE statement:

 program sample0

 integer, dimension(1000):: a

 integer idvar

 a = (/(i,i=1,1000)/)

 WRITE(10,ID=idvar) a

 WAIT(ID=idvar)

 end

The following program is not valid, because XL Fortran destroys the value of the

asynchronous I/O identifier before the associated WAIT statement:

 program sample1

 integer, dimension(1000):: a

 integer idvar

 a = (/(i,i=1,1000)/)

 WRITE(10,ID=idvar) a

 idvar = 999 ! Valid id is destroyed.

 WAIT(ID=idvar)

 end

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) (PPU only) 135

An application that uses asynchronous I/O typically improves performance by

overlapping processing with I/O operations. The following is a simple example:

 program sample2

 integer (kind=4), parameter :: isize=1000000, icol=5

 integer (kind=4) :: i, j, k

 integer (kind=4), dimension(icol) :: handle

 integer (kind=4), dimension(isize,icol), static :: a, a1

!

! Opens the file for both synchronous and asynchronous I/O.

!

 open(20,form="unformatted",access="direct", &

 status="scratch", recl=isize*4,asynch="yes")

!

! This loop overlaps the initialization of a(:,j) with

! asynchronous write statements.

!

! NOTE: The array is written out one column at a time.

! Since the arrays in Fortran are arranged in column

! major order, each WRITE statement writes out a

! contiguous block of the array.

!

 do 200 j = 1, icol

 a(:,j) = (/ (i*j,i=1,isize) /)

 write(20, id=handle(j), rec=j) a(:,j)

200 end do

!

! Wait for all writes to complete before reading.

!

 do 300 j = 1, icol

 wait(id=handle(j))

300 end do

!

! Reads in the first record.

!

 read(20, id=handle(1), rec=1) a1(:,1)

 do 400 j = 2, icol

 k = j - 1

!

! Waits for a previously initiated read to complete.

!

 wait(id=handle(k))

!

! Initiates the next read immediately.

!

 read(20, id=handle(j), rec=j) a1(:,j)

!

! While the next read is going on, we do some processing here.

!

 do 350 i = 1, isize

 if (a(i,k) .ne. a1(i,k)) then

 print *, "(",i,",",k,") &

 & expected ", a(i,k), " got ", a1(i,k)

 end if

350 end do

400 end do

!

! Finish the last record.

!

 wait(id=handle(icol))

136 XL Fortran Optimization and Programming Guide

do 450 i = 1, isize

 if (a(i,icol) .ne. a1(i,icol)) then

 print *, "(",i,",",icol,") &

 & expected ", a(i,icol), " got ", a1(i,icol)

 end if

450 end do

 close(20)

 end

Performance

To maximize the benefits of asynchronous I/O, you should only use it for large

contiguous data items.

It is possible to perform asynchronous I/O on a large number of small items, but

the overall performance will suffer. This is because extra processing overhead is

required to maintain each item for asynchronous I/O. Performing asynchronous

I/O on a larger number of small items is strongly discouraged. The following are

two examples:

1. WRITE(unit_number, ID=idvar) a1(1:100000000:2)

2. WRITE(unit_number, ID=idvar) (a2(i,j),j=1,100000000)

Performing asynchronous I/O on unformatted sequential files is less efficient. This

is because each record might have a different length, and these lengths are stored

with the records themselves. You should use unformatted direct access or

unformatted stream access, if possible, to maximize the benefits of asynchronous

I/O.

Compiler-generated temporary I/O items

There are situations when the compiler must generate a temporary variable to hold

the result of an I/O item expression. In such cases, synchronous I/O is performed

on the temporary variable, regardless of the mode of transfer that you specified in

the I/O statement. The following are examples of such cases:

1. For READ, when an array with vector subscripts appears as an input item:

a. integer a(5), b(3)

 b = (/1,3,5/)

 read(99, id=i) a(b)

b. real a(10)

 read(99,id=i) a((/1,3,5/))

2. For WRITE, when an output item is an expression that is a constant or a

constant of certain derived types:

a. write(99,id=i) 1000

b. integer a

 parameter(a=1000)

 write(99,id=i) a

c. type mytype

 integer a

 integer b

 end type mytype

 write(99,id=i) mytype(4,5)

3. For WRITE, when an output item is a temporary variable:

a. write(99,id=i) 99+100

b. write(99,id=i) a+b

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) (PPU only) 137

c. external ff

 real(8) ff

 write(99,id=i) ff()

4. For WRITE, when an output item is an expression that is an array constructor:

 write(99,id=i) (/1,2,3,4,5/)

5. For WRITE, when an output item is an expression that is a scalarized array:

 integer a(5),b(5)

 write(99,id=i) a+b

Error handling

For an asynchronous data transfer, errors or end-of-file conditions might occur

either during execution of the data transfer statement or during subsequent data

transfer. If these conditions do not result in the termination of the program, you

can detect these conditions via ERR=, END= and IOSTAT= specifiers in the data

transfer or in the matching WAIT statement.

Execution of the program terminates if an error condition occurs during execution

or during subsequent data transfer of an input/output statement that contains

neither an IOSTAT= nor an ERR= specifier. In the case of a recoverable error, if the

IOSTAT= and ERR= specifiers are not present, the program terminates if you set

the err_recovery runtime option to no. If you set the err_recovery runtime option

to yes, recovery action occurs, and the program continues.

If an asynchronous data transfer statement causes either of the following events, a

matching WAIT statement cannot run, because the ID= value is not defined:

v A branch to the label that you specified by ERR= or END=

v The IOSTAT= specifier to be set to a non-zero value

XL Fortran thread-safe I/O library

The XL Fortran runtime library provides support for parallel execution of Fortran

I/O statements.

Synchronization of I/O operations

During parallel execution, multiple threads might perform I/O operations on the

same file at the same time. If they are not synchronized, the results of these I/O

operations could be shuffled or merged or both, and the application might produce

incorrect results or even terminate. The XL Fortran runtime library synchronizes

I/O operations for parallel applications. It performs the synchronization within the

I/O library, and it is transparent to application programs. The purpose of the

synchronization is to ensure the integrity and correctness of each individual I/O

operation. However, the runtime does not have control over the order in which

threads execute I/O statements. Therefore, the order of records read in or written

out is not predictable under parallel I/O operations. Refer to “Parallel I/O issues”

on page 139 for details.

External files: For external files, the synchronization is performed on a per-unit

basis. The XL Fortran runtime ensures that only one thread can access a particular

logical unit to prevent several threads from interfering with each other. When a

thread is performing an I/O operation on a unit, other threads attempting to

perform I/O operations on the same unit must wait until the first thread finishes

its operation. Therefore, the execution of I/O statements by multiple threads on the

same unit is serialized. However, the runtime does not prevent threads from

operating on different logical units in parallel. In other words, parallel access to

different logical units is not necessarily serialized.

138 XL Fortran Optimization and Programming Guide

Functionality of I/O under synchronization: The XL Fortran runtime sets its

internal locks to synchronize access to logical units. This should not have any

functional impact on the I/O operations performed by a Fortran program. Also, it

will not impose any additional restrictions to the operability of Fortran I/O

statements except for the use of I/O statements in a signal handler that is invoked

asynchronously. Refer to “Use of I/O statements in signal handlers” on page 141

for details.

Parallel I/O issues

The order in which parallel threads perform I/O operations is not predictable. The

XL Fortran runtime does not have control over the ordering. It will allow

whichever thread that executes an I/O statement on a particular logical unit and

obtains the lock on it first to proceed with the operation. Therefore, only use

parallel I/O in cases where at least one of the following is true:

v Each thread performs I/O on a predetermined record in direct-access files.

v Each thread performs I/O on a different part of a stream-access file. Different

I/O statements cannot use the same, or overlapping, areas of a file.

v The result of an application does not depend on the order in which records are

written out or read in.

v Each thread performs I/O on a different file.

In these cases, results of the I/O operations are independent of the order in which

threads execute. However, you might not get the performance improvements that

you expect, since the I/O library serializes parallel access to the same logical unit

from multiple threads. Examples of these cases are as follows:

v Each thread performs I/O on a pre-determined record in a direct-access file:

 do i = 1, 10

 write(4, ’(i4)’, rec = i) a(i)

 enddo

v Each thread performs I/O on a different part of a stream-access file. Different

I/O statements cannot use the same, or overlapping, areas of a file.

 do i = 1, 9

 write(4, ’(i4)’, pos = 1 + 5 * (i - 1)) a(i)

 ! We use 5 above because i4 takes 4 file storage

 ! units + 1 file storage unit for the record marker.

 enddo

v In the case that each thread operates on a different file, since threads share the

status of the logical units connected to the files, the thread still needs to obtain

the lock on the logical unit for either retrieving or updating the status of the

logical unit. However, the runtime allows threads to perform the data transfer

between the logical unit and the I/O list item in parallel. If an application

contains a large number of small I/O requests in a parallel region, you might

not get the expected performance because of the lock contention. Consider the

following example:

 program example

 use omp_lib

 integer, parameter :: num_of_threads = 4, max = 5000000

 character*10 file_name

 integer i, file_unit, thread_id

 integer, dimension(max, 2 * num_of_threads) :: aa

 call omp_set_num_threads(num_of_threads)

!$omp parallel private(file_name, thread_id, file_unit, i) shared(aa)

 thread_id = omp_get_thread_num()

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) (PPU only) 139

file_name = ’file_’

 file_name(6:6) = char(ichar(’0’) + thread_id)

 file_unit = 10 + thread_id

 open(file_unit, file = file_name, status = ’old’, action = ’read’)

 do i = 1, max

 read(file_unit, *) aa(i, thread_id * 2 + 1), aa(i, thread_id * 2 + 2)

 end do

 close(file_unit)

!$omp end parallel

 end

The XL Fortran runtime synchronizes retrieving and updating the status of the

logical units while performing data transfer in parallel. In order to increase

performance, it is recommended to increase the size of data transfer per I/O

request. The do loop, therefore, should be rewritten as follows:

 read(file_unit, *) a(:, thread_id * 2 + 1 : thread_id * 2 + 2)

 do i = 1, max

 ! Do something for each element of array ’aa’.

 end do

v The result does not depend on the order in which records are written out or

read in:

 real a(100)

 do i = 1, 10

 read(4) a(i)

 enddo

 call qsort_(a)

v Each thread performs I/O on a different logical unit of direct access, sequential

access, or stream access:

 do i = 11, 20

 write(i, ’(i4)’) a(i - 10)

 enddo

For multiple threads to write to or read from the same sequential-access file, or to

write to or read from the same stream-access file without using the POS= specifier,

the order of records written out or read in depends on the order in which the

threads execute the I/O statement on them. This order, as stated previously, is not

predictable. Therefore, the result of an application could be incorrect if it assumes

records are sequentially related and cannot be arbitrarily written out or read in.

For example, if the following loop is parallelized, the numbers printed out will no

longer be in the sequential order from 1 to 500 as the result of a serial execution:

 do i = 1, 500

 print *, i

 enddo

Applications that depend on numbers being strictly in the specified order will not

work correctly.

The XL Fortran runtime option multconn=yes allows connection of the same file to

more than one logical unit simultaneously. Since such connections can only be

made for reading (ACCESS=’READ’), access from multiple threads to logical units

that are connected to the same file will produce predictable results.

140 XL Fortran Optimization and Programming Guide

Use of I/O statements in signal handlers

There are basically two kinds of signals in the POSIX signal model: synchronously

and asynchronously generated signals. Signals caused by the execution of some code

of a thread, such as a reference to an unmapped, protected, or bad memory

(SIGSEGV or SIGBUS), floating-point exception (SIGFPE), execution of a trap

instruction (SIGTRAP), or execution of illegal instructions (SIGILL) are said to be

synchronously generated. Signals may also be generated by events outside the

process: for example, SIGINT, SIGHUP, SIGQUIT, SIGIO, and so on. Such

events are referred to as interrupts. Signals that are generated by interrupts are

said to be asynchronously generated.

The XL Fortran runtime is asynchronous signal unsafe. This means that an XL

Fortran I/O statement cannot be used in a signal handler that is entered because of

an asynchronously generated signal. The behavior of the system is undefined when

an XL Fortran I/O statement is called from a signal handler that interrupts an I/O

statement. However, it is safe to use I/O statements in signal handlers for

synchronous signals.

Sometimes an application can guarantee that a signal handler is not entered

asynchronously. For example, an application might mask signals except when it

runs certain known sections of code. In such situations, the signal will not

interrupt any I/O statements and other asynchronous signal unsafe functions.

Therefore, you can still use Fortran I/O statements in an asynchronous signal

handler.

A much easier and safer way to handle asynchronous signals is to block signals in

all threads and to explicitly wait (using sigwait()) for them in one or more separate

threads. The advantage of this approach is that the handler thread can use Fortran

I/O statements as well as other asynchronous signal unsafe routines.

Asynchronous thread cancellation

When a thread enables asynchronous thread cancellability, any cancellation request

is acted upon immediately. The XL Fortran runtime is not asynchronous thread

cancellation safe. The behavior of the system is undefined if a thread is cancelled

asynchronously while it is in the XL Fortran runtime.

Chapter 10. Implementation details of XL Fortran Input/Output (I/O) (PPU only) 141

142 XL Fortran Optimization and Programming Guide

Chapter 11. Implementation details of XL Fortran

floating-point processing

This section answers some common questions about floating-point processing, such

as:

v How can I get predictable, consistent results?

v How can I get the fastest or the most accurate results?

v How can I detect, and possibly recover from, exception conditions?

v Which compiler options can I use for floating-point calculations?

Related information: This section makes frequent reference to the compiler

options that are grouped together in Floating-point and integer

control in the XL Fortran Compiler Reference, especially the

-qfloat option. The XL Fortran compiler also provides three

intrinsic modules for exception handling and IEEE arithmetic

support to help you write IEEE module-compliant code that

can be more portable. See IEEE Modules and Support in the

XL Fortran Language Reference for details.

The use of the compiler options for floating-point calculations affects the accuracy,

performance, and possibly the correctness of floating-point calculations. Although

the default values for the options were chosen to provide efficient and correct

execution of most programs, you may need to specify nondefault options for your

applications to work the way you want. We strongly advise you to read this

section before using these options.

Note: The discussions of single-, double-, and extended-precision calculations in

this section all refer to the default situation, with -qrealsize=4 and no

-qautodbl specified. If you change these settings, keep in mind that the size

of a Fortran REAL, DOUBLE PRECISION, and so on may change, but

single precision, double precision, and extended precision (in lowercase) still

refer to 4-, 8-, and 16-byte entities respectively.

The information in this section relates to floating-point processing on the

PowerPC family of processors.

IEEE Floating-point overview

Here is a brief summary of the ANSI/IEEE Standard for Binary Floating-Point

Arithmetic, ANSI/IEEE Std 754-1985 and the details of how it applies to XL Fortran

on specific hardware platforms. For information on the Fortran 2003 IEEE Module

and arithmetic support, see the XL Fortran Language Reference.

Compiling for strict IEEE conformance

By default, XL Fortran follows most, but not all of the rules in the IEEE standard.

To compile for strict compliance with the standard:

v Use the compiler option -qfloat=nomaf.

v If the program changes the rounding mode at run time, include rrm among the

-qfloat suboptions.

© Copyright IBM Corp. 1990, 2007 143

v If the data or program code contains signaling NaN values (NAN), include nans

among the -qfloat suboptions. (A signaling NaN is different from a quiet NaN;

you must explicitly code it into the program or data or create it by using the

-qinitauto compiler option.)

v If you are compiling with -O3, or a higher base optimization level, include the

-qstrict option also.

On SPU, an extended single-precision number range is supported. NaN and

Infinity are not supported. The only rounding mode that is supported is truncation

(round towards 0).

IEEE Single- and double-precision values

XL Fortran encodes single-precision and double-precision values in IEEE format.

For the range and representation, see Real in the XL Fortran Language Reference.

IEEE Extended-precision values (PPU only)

The IEEE standard suggests, but does not mandate, a format for

extended-precision values. XL Fortran does not use this format.

“Extended-precision values” on page 147 describes the format that XL Fortran uses.

Infinities and NaNs (PPU only)

For single-precision real values:

v Positive infinity is represented by the bit pattern X'7F80 0000'.

v Negative infinity is represented by the bit pattern X'FF80 0000'.

v A signaling NaN is represented by any bit pattern between X'7F80 0001' and

X'7FBF FFFF' or between X'FF80 0001' and X'FFBF FFFF'.

v A quiet NaN is represented by any bit pattern between X'7FC0 0000' and

X'7FFF FFFF' or between X'FFC0 0000' and X'FFFF FFFF'.

For double-precision real values:

v Positive infinity is represented by the bit pattern X'7FF00000 00000000'.

v Negative infinity is represented by the bit pattern X'FFF00000 00000000'.

v A signaling NaN is represented by any bit pattern between

X'7FF00000 00000001' and X'7FF7FFFF FFFFFFFF' or between

X'FFF00000 00000001' and X'FFF7FFFF FFFFFFFF'.

v A quiet NaN is represented by any bit pattern between X'7FF80000 00000000'

and X'7FFFFFFF FFFFFFFF' or between X'FFF80000 00000000' and

X'FFFFFFFF FFFFFFFF'.

These values do not correspond to any Fortran real constants. You can generate all

of these by encoding the bit pattern directly, or by using the ieee_value function

provided in the ieee_arithmetic intrinsic module (PPU only). Using the ieee_value

function is the preferred programming technique, as it is allowed by the Fortran

2003 standard and the results are portable. Encoding the bit pattern directly could

cause portability problems on machines using different bit patterns for the different

values. All except signaling NaN values can occur as the result of arithmetic

operations:

144 XL Fortran Optimization and Programming Guide

Exception-handling model

The IEEE standard defines several exception conditions that can occur:

OVERFLOW

The exponent of a value is too large to be represented.

UNDERFLOW

A nonzero value is so small that it cannot be represented without an

extraordinary loss of accuracy. The value can be represented only as zero

or a denormal number.

ZERODIVIDE

A finite nonzero value is divided by zero.

INVALID

Operations are performed on values for which the results are not defined.

These include:

v Operations on signaling NaN values

v infinity - infinity

v 0.0 * infinity

v 0.0 / 0.0

v mod(x,y) or ieee_rem(x,y) (or other remainder functions) when x is

infinite or y is zero

v The square root of a negative number

v Conversion of a floating point number to an integer when the converted

value cannot be represented faithfully

$ cat fp_values.f

real plus_inf, minus_inf, plus_nanq, minus_nanq, nans

real large

data plus_inf /z’7f800000’/

data minus_inf /z’ff800000’/

data plus_nanq /z’7fc00000’/

data minus_nanq /z’ffc00000’/

data nans /z’7f800001’/

print *, ’Special values:’, plus_inf, minus_inf, plus_nanq, minus_nanq, nans

! They can also occur as the result of operations.

large = 10.0 ** 200

print *, ’Number too big for a REAL:’, large * large

print *, ’Number divided by zero:’, (-large) / 0.0

print *, ’Nonsensical results:’, plus_inf - plus_inf, sqrt(-large)

! To find if something is a NaN, compare it to itself.

print *, ’Does a quiet NaN equal itself:’, plus_nanq .eq. plus_nanq

print *, ’Does a signaling NaN equal itself:’, nans .eq. nans

! Only for a NaN is this comparison false.

end

$ ppuxlf95 -o fp_values fp_values.f

** _main === End of Compilation 1 ===

1501-510 Compilation successful for file fp_values.f.

$ fp_values

 Special values: INF -INF NAN -NAN NAN

 Number too big for a REAL: INF

 Number divided by zero: -INF

 Nonsensical results: NAN NAN

 Does a quiet NaN equal itself: F

 Does a signaling NaN equal itself: F

Chapter 11. Implementation details of XL Fortran floating-point processing 145

v Comparisons involving NaN values

INEXACT

A computed value cannot be represented exactly, so a rounding error is

introduced. (This exception is very common.)

XL Fortran always detects these exceptions when they occur, but by default does

not take any special action. Calculation continues, usually with a NaN or infinity

value as the result. If you want to be automatically informed when an exception

occurs, you can turn on exception trapping through compiler options or calls to

intrinsic subprograms. However, different results, intended to be manipulated by

exception handlers, are produced:

 Table 21. Results of IEEE exceptions, with and without trapping enabled

 Overflow Underflow Zerodivide Invalid Inexact

Exceptions not

enabled (default)

INF Denormalized

number

INF NaN Rounded result

Exceptions

enabled

Unnormalized

number with

biased exponent

Unnormalized

number with

biased exponent

No result No result Rounded result

Note: Because different results are possible, it is very important to make sure that

any exceptions that are generated are handled correctly. See “Detecting and

trapping floating-point exceptions (PPU only)” on page 152 for instructions

on doing so.

Hardware-specific floating-point overview

Single- and double-precision values

The PowerPC floating-point hardware performs calculations in either IEEE

single-precision (equivalent to REAL(4) in Fortran programs) or IEEE

double-precision (equivalent to REAL(8) in Fortran programs).

Keep the following considerations in mind:

v Double precision provides greater range (approximately 10**(-308) to 10**308)

and precision (about 15 decimal digits) than single precision (approximate range

10**(-38) to 10**38, with about 7 decimal digits of precision).

v Computations that mix single and double operands are performed in double

precision, which requires conversion of the single-precision operands to

double-precision. These conversions do not affect performance.

v Double-precision values that are converted to single-precision (such as when you

specify the SNGL intrinsic or when a double-precision computation result is

stored into a single-precision variable) require rounding operations. A rounding

operation produces the correct single-precision value, which is based on the

IEEE rounding mode in effect. The value may be less precise than the original

double-precision value, as a result of rounding error. Conversions from

double-precision values to single-precision values may reduce the performance

of your code.

v Programs that manipulate large amounts of floating-point data may run faster if

they use REAL(4) rather than REAL(8) variables. (You need to ensure that

REAL(4) variables provide you with acceptable range and precision.) The

programs may run faster because the smaller data size reduces memory traffic,

which can be a performance bottleneck for some applications.

146 XL Fortran Optimization and Programming Guide

The floating-point hardware also provides a special set of double-precision

operations that multiply two numbers and add a third number to the product.

These combined multiply-add (MAF) operations are performed at the same speed

at which either an individual multiply or add is performed. The MAF functions

provide an extension to the IEEE standard because they perform the multiply and

add with one (rather than two) rounding errors. The MAF functions are faster and

more accurate than the equivalent separate operations.

Extended-precision values

XL Fortran extended precision is not in the format suggested by the IEEE standard,

which suggests extended formats using more bits in both the exponent (for greater

range) and the fraction (for greater precision).

XL Fortran extended precision, equivalent to REAL(16) in Fortran programs, is

implemented in software. Extended precision provides the same range as double

precision (about 10**(-308) to 10**308) but more precision (a variable amount, about

31 decimal digits or more). The software support is restricted to round-to-nearest

mode. Programs that use extended precision must ensure that this rounding mode

is in effect when extended-precision calculations are performed. See “Selecting the

rounding mode” on page 148 for the different ways you can control the rounding

mode.

Programs that specify extended-precision values as hexadecimal, octal, binary, or

Hollerith constants must follow these conventions:

v Extended-precision numbers are composed of two double-precision numbers

with different magnitudes that do not overlap. That is, the binary exponents

differ by at least the number of fraction bits in a REAL(8). The high-order

double-precision value (the one that comes first in storage) must have the larger

magnitude. The value of the extended-precision number is the sum of the two

double-precision values.

v For a value of NaN or infinity, you must encode one of these values within the

high-order double-precision value. The low-order value is not significant.

Because an XL Fortran extended-precision value can be the sum of two values with

greatly different exponents, leaving a number of assumed zeros in the fraction, the

format actually has a variable precision with a minimum of about 31 decimal

digits. You get more precision in cases where the exponents of the two double

values differ in magnitude by more than the number of digits in a double-precision

value. This encoding allows an efficient implementation intended for applications

requiring more precision but no more range than double precision.

Notes:

1. In the discussions of rounding errors because of compile-time folding of

expressions, keep in mind that this folding produces different results for

extended-precision values more often than for other precisions.

2. Special numbers, such as NaN and infinity, are not fully supported for

extended-precision values. Arithmetic operations do not necessarily propagate

these numbers in extended precision.

3. XL Fortran does not always detect floating-point exception conditions (see

“Detecting and trapping floating-point exceptions (PPU only)” on page 152) for

extended-precision values. If you turn on floating-point exception trapping in

programs that use extended precision, XL Fortran may also generate signals in

cases where an exception condition does not really occur.

Chapter 11. Implementation details of XL Fortran floating-point processing 147

How XL Fortran rounds floating-point calculations

Understanding rounding operations in XL Fortran can help you get predictable,

consistent results. It can also help you make informed decisions when you have to

make tradeoffs between speed and accuracy.

In general, floating-point results from XL Fortran programs are more accurate than

those from other implementations because of MAF operations and the higher

precision used for intermediate results. If identical results are more important to

you than the extra precision and performance of the XL Fortran defaults, read

“Duplicating the floating-point results of other systems” on page 151.

On SPU, the only rounding mode supported is truncation (round to 0).

Selecting the rounding mode

To change the rounding mode in a program, you can call the fpsets and fpgets

routines, which use an array of logicals named fpstat, defined in the include files

/opt/ibmcmp/xlf/cbe/11.1/include/fpdt.h and /opt/ibmcmp/xlf/cbe/11.1/include/
fpdc.h. The fpstat array elements correspond to the bits in the floating-point status

and control register.

For floating-point rounding control, the array elements fpstat(fprn1) and

fpstat(fprn2) are set as specified in the following table:

 Table 22. Rounding-mode bits to use with fpsets and fpgets

fpstat(fprn1) fpstat(fprn2) Rounding Mode Enabled

.true. .true. Round towards -infinity.

.true. .false. Round towards +infinity.

.false. .true. Round towards zero.

.false. .false. Round to nearest.

For example:

 program fptest

 include ’fpdc.h’

 call fpgets(fpstat) ! Get current register values.

 if ((fpstat(fprn1) .eqv. .false.) .and. +

 (fpstat(fprn2) .eqv. .false.)) then

 print *, ’Before test: Rounding mode is towards nearest’

 print *, ’ 2.0 / 3.0 = ’, 2.0 / 3.0

 print *, ’ -2.0 / 3.0 = ’, -2.0 / 3.0

 end if

 call fpgets(fpstat) ! Get current register values.

 fpstat(fprn1) = .TRUE. ! These 2 lines mean round towards

 fpstat(fprn2) = .FALSE. ! +infinity.

 call fpsets(fpstat)

 r = 2.0 / 3.0

 print *, ’Round towards +infinity: 2.0 / 3.0= ’, r

 call fpgets(fpstat) ! Get current register values.

 fpstat(fprn1) = .TRUE. ! These 2 lines mean round towards

 fpstat(fprn2) = .TRUE. ! -infinity.

 call fpsets(fpstat)

 r = -2.0 / 3.0

 print *, ’Round towards -infinity: -2.0 / 3.0= ’, r

 end

148 XL Fortran Optimization and Programming Guide

! This block data program unit initializes the fpstat array, and so on.

 block data

 include ’fpdc.h’

 include ’fpdt.h’

 end

XL Fortran also provides several procedures that allow you to control the

floating-point status and control register of the processor directly. These procedures

are more efficient than the fpsets and fpgets subroutines because they are mapped

into inlined machine instructions that manipulate the floating-point status and

control register (fpscr) directly.

XL Fortran supplies the get_round_mode() and set_round_mode() procedures in

the xlf_fp_util module. These procedures return and set the current floating-point

rounding mode, respectively.

For example:

 program fptest

 use, intrinsic :: xlf_fp_util

 integer(fpscr_kind) old_fpscr

 if (get_round_mode() == fp_rnd_rn) then

 print *, ’Before test: Rounding mode is towards nearest’

 print *, ’ 2.0 / 3.0 = ’, 2.0 / 3.0

 print *, ’ -2.0 / 3.0 = ’, -2.0 / 3.0

 end if

 old_fpscr = set_round_mode(fp_rnd_rp)

 r = 2.0 / 3.0

 print *, ’Round towards +infinity: 2.0 / 3.0 = ’, r

 old_fpscr = set_round_mode(fp_rnd_rm)

 r = -2.0 / 3.0

 print *, ’Round towards -infinity: -2.0 / 3.0 = ’, r

 end

XL Fortran supplies the ieee_get_rounding_mode() and ieee_set_rounding_mode()

procedures in the ieee_arithmetic module. These portable procedures retrieve and

set the current floating-point rounding mode, respectively.

For example:

 program fptest

 use, intrinsic :: ieee_arithmetic

 type(ieee_round_type) current_mode

 call ieee_get_rounding_mode(current_mode)

 if (current_mode == ieee_nearest) then

 print *, ’Before test: Rounding mode is towards nearest’

 print *, ’ 2.0 / 3.0 = ’, 2.0 / 3.0

 print *, ’ -2.0 / 3.0 = ’, -2.0 / 3.0

 end if

 call ieee_set_rounding_mode(ieee_up)

 r = 2.0 / 3.0

 print *, ’Round towards +infinity: 2.0 / 3.0 = ’, r

 call ieee_set_rounding_mode(ieee_down)

 r = -2.0 / 3.0

 print *, ’Round towards -infinity: -2.0 / 3.0 = ’, r

 end

Notes:

1. Extended-precision floating-point values must only be used in round-to-nearest

mode.

Chapter 11. Implementation details of XL Fortran floating-point processing 149

2. (PPU only) For thread-safety and reentrancy, the include file

/opt/ibmcmp/xlf/cbe/11.1/include/fpdc.h contains a THREADLOCAL directive

that is protected by the trigger constant IBMT. The invocation commands

ppuxlf_r, ppuxlf90_r, ppuxlf95_r, and ppuxlf2003_r turn on the -qthreaded

compiler option by default, which in turn implies the trigger constant IBMT. If

you are including the file /opt/ibmcmp/xlf/cbe/11.1/include/fpdc.h in code that

is not intended to be threadsafe, do not specify IBMT as a trigger constant.

Minimizing rounding errors

There are several strategies for handling rounding errors and other unexpected,

slight differences in calculated results. You may want to consider one or more of

the following strategies:

v Minimizing the amount of overall rounding

v Delaying as much rounding as possible to run time

v Ensuring that if some rounding is performed in a mode other than

round-to-nearest, all rounding is performed in the same mode

Minimizing overall rounding

Rounding operations, especially in loops, reduce code performance and may have

a negative effect on the precision of computations. Consider using double-precision

variables instead of single-precision variables when you store the temporary results

of double-precision calculations, and delay rounding operations until the final

result is computed.

Delaying rounding until run time

The compiler evaluates floating-point expressions during compilation when it can,

so that the resulting program does not run more slowly due to unnecessary

runtime calculations. However, the results of the compiler’s evaluation might not

match exactly the results of the runtime calculation. To delay these calculations

until run time, specify the nofold suboption of the -qfloat option.

The results may still not be identical; for example, calculations in DATA and

PARAMETER statements are still performed at compile time.

The differences in results due to fold or nofold are greatest for programs that

perform extended-precision calculations or are compiled with the -O option or

both.

Ensuring that the rounding mode is consistent

You can change the rounding mode from its default setting of round-to-nearest.

(See for examples.) If you do so, you must be careful that all rounding operations

for the program use the same mode:

v Specify the equivalent setting on the -qieee option, so that any compile-time

calculations use the same rounding mode.

v Specify the rrm suboption of the -qfloat option, so that the compiler does not

perform any optimizations that require round-to-nearest rounding mode to work

correctly.

For example, you might compile a program like the one in “Selecting the rounding

mode” on page 148 with this command if the program consistently uses

round-to-plus-infinity mode:

ppuxlf95 -qieee=plus -qfloat=rrm changes_rounding_mode.f

150 XL Fortran Optimization and Programming Guide

Duplicating the floating-point results of other systems

To duplicate the double-precision results of programs on systems with different

floating-point architectures (without multiply-add instructions), specify the nomaf

suboption of the -qfloat option. This suboption prevents the compiler from

generating any multiply-add instructions. This results in decreased accuracy and

performance but provides strict conformance to the IEEE standard for

double-precision arithmetic.

To duplicate the results of programs where the default size of REAL items is

different from that on systems running XL Fortran, use the -qrealsize option to

change the default REAL size when compiling with XL Fortran.

If the system whose results you want to duplicate preserves full double precision

for default real constants that are assigned to DOUBLE PRECISION variables, use

the -qdpc or -qrealsize option.

If results consistent with other systems are important to you, include norsqrt and

nofold in the settings for the -qfloat option. If you specify the option -O3, include

-qstrict too.

Maximizing floating-point performance

If performance is your primary concern and you want your program to be

relatively safe but do not mind if results are slightly different (generally more

precise) from what they would be otherwise, optimize the program with the -O

option, and specify -qfloat=rsqrt:hssngl:fltint. The following section describes the

functions of these suboptions:

v The rsqrt suboption replaces division by a square root with multiplication by the

reciprocal of the root, a faster operation that may not produce precisely the same

result.

v The hssngl suboption improves the performance of single-precision (REAL(4))

floating-point calculations by suppressing rounding operations that are required

by the Fortran language but are not necessary for correct program execution.

The results of floating-point expressions are kept in double precision where the

original program would round them to single-precision. These results are then

used in later expressions instead of the rounded results.

To detect single-precision floating-point overflows and underflows, rounding

operations are still inserted when double-precision results are stored into

single-precision memory locations. However, if optimization removes such a

store operation, hssngl also removes the corresponding rounding operation,

possibly preventing the exception. (Depending on the characteristics of your

program, you may or may not care whether the exception happens.)

The hssngl suboption is safe for all types of programs because it always only

increases the precision of floating-point calculations. Program results may differ

because of the increased precision and because of avoidance of some exceptions.

v The fltint suboption speeds up float-to-integer conversions by reducing error

checking for overflows. You should make sure that any floats that are converted

to integers are not outside the range of the corresponding integer types.

Chapter 11. Implementation details of XL Fortran floating-point processing 151

Detecting and trapping floating-point exceptions (PPU only)

As stated earlier, the IEEE standard for floating-point arithmetic defines a number

of exception (or error) conditions that might require special care to avoid or

recover from. The following sections are intended to help you make your programs

work safely in the presence of such exception conditions while sacrificing the

minimum amount of performance.

The floating-point hardware always detects a number of floating-point exception

conditions (which the IEEE standard rigorously defines): overflow, underflow,

zerodivide, invalid, and inexact.

By default, the only action that occurs is that a status flag is set. The program

continues without a problem (although the results from that point on may not be

what you expect). If you want to know when an exception occurs, you can arrange

for one or more of these exception conditions to generate a signal.

The signal causes a branch to a handler routine. The handler receives information

about the type of signal and the state of the program when the signal occurred. It

can produce a core dump, display a listing showing where the exception occurred,

modify the results of the calculation, or carry out some other processing that you

specify.

The XL Fortran compiler uses the operating system facilities for working with

floating-point exception conditions. These facilities indicate the presence of

floating-point exceptions by generating SIGFPE signals.

Compiler features for trapping floating-point exceptions

To turn on XL Fortran exception trapping, compile the program with the -qflttrap

option and some combination of suboptions that includes enable. This option uses

trap operations to detect floating-point exceptions and generates SIGFPE signals

when exceptions occur, provided that a signal handler for SIGFPE is installed.

-qflttrap also has suboptions that correspond to the names of the exception

conditions. For example, if you are only concerned with handling overflow and

underflow exceptions, you could specify something similar to the following:

 ppuxlf95 -qflttrap=overflow:underflow:enable compute_pi.f

You only need enable when you are compiling the main program. However, it is

very important and does not cause any problems if you specify it for other files, so

always include it when you use -qflttrap.

An advantage of this approach is that performance impact is relatively low. To

further reduce performance impact, you can include the imprecise suboption of the

-qflttrap option. This suboption delays any trapping until the program reaches the

start or end of a subprogram.

The disadvantages of this approach include the following:

v It only traps exceptions that occur in code that you compiled with -qflttrap,

which does not include system library routines.

v It is generally not possible for a handler to substitute results for failed

calculations if you use the imprecise suboption of -qflttrap.

152 XL Fortran Optimization and Programming Guide

Notes:

1. If your program depends on floating-point exceptions occurring for particular

operations, also specify -qfloat suboptions that include nofold. Otherwise, the

compiler might replace an exception-producing calculation with a constant

NaN or infinity value, or it might eliminate an overflow in a single-precision

operation.

2. The suboptions of the -qflttrap option replace an earlier technique that required

you to modify your code with calls to the fpsets and fpgets procedures. You no

longer require these calls for exception handling if you use the appropriate

-qflttrap settings.

Attention: If your code contains fpsets calls that enable checking for

floating-point exceptions and you do not use the -qflttrap option when

compiling the whole program, the program will produce unexpected results if

exceptions occur, as explained in Table 21 on page 146.

Installing an exception handler

When a program that uses the XL Fortran or Cell Broadband Engine Processor for

Linux exception-detection facilities encounters an exception condition, it generates

a signal. This causes a branch to whatever handler is specified by the program.

By default, Cell Broadband Engine Processor for Linux does not trap on

floating-point exceptions unless a signal handler is installed. To produce a core file,

you can use the xl__trcedump signal handler described below. If you want to

install a SIGTRAP or SIGFPE signal handler, use the -qsigtrap option. It allows

you to specify an XL Fortran handler that produces a traceback or to specify a

handler you have written:

ppuxlf95 -qflttrap=ov:und:en pi.f # No exceptions trapped

ppuxlf95 -qflttrap=ov:und:en -qsigtrap=xl__trcedump pi.f # Uses the xl__trcedump handler

 # to dump core on an exception

ppuxlf95 -qflttrap=ov:und:en -qsigtrap=return_22_over_7 pi.f # Uses any other handler

You can also install an alternative exception handler, either one supplied by XL

Fortran or one you have written yourself, by calling the SIGNAL subroutine

(defined in /opt/ibmcmp/xlf/cbe/11.1/include/fexcp.h):

 INCLUDE ’fexcp.h’

 CALL SIGNAL(SIGTRAP,handler_name)

 CALL SIGNAL(SIGFPE,handler_name)

The XL Fortran exception handlers and related routines are:

xl__ieee

Produces a traceback and an explanation of the signal and continues

execution by supplying the default IEEE result for the failed computation.

This handler allows the program to produce the same results as if

exception detection was not turned on.

xl__trce

Produces a traceback and stops the program.

xl__trcedump

Produces a traceback and a core file and stops the program.

xl__sigdump

Provides a traceback that starts from the point at which it is called and

provides information about the signal. You can only call it from inside a

Chapter 11. Implementation details of XL Fortran floating-point processing 153

user-written signal handler. It does not stop the program. To successfully

continue, the signal handler must perform some cleanup after calling this

subprogram.

xl__trbk

Provides a traceback that starts from the point at which it is called. You

call it as a subroutine from your code, rather than specifying it with the

-qsigtrap option. It requires no parameters. It does not stop the program.

All of these handler names contain double underscores to avoid duplicating names

that you declared in your program. All of these routines work for both SIGTRAP

and SIGFPE signals.

You can use the -g compiler option to get line numbers in the traceback listings.

The file /opt/ibmcmp/xlf/cbe/11.1/include/fsignal.h defines a Fortran derived type

similar to the sigcontext structure in the signal.h system header. You can write a

Fortran signal handler that accesses this derived type.

Related information: “Sample programs for exception handling” on page 157 lists

some sample programs that illustrate how to use these signal

handlers or write your own. For more information, see the

SIGNAL procedure in in the XL Fortran Language Reference.

Producing a core file

To produce a core file, specify the xl__trcedump handler.

Controlling the floating-point status and control register

Before the -qflttrap suboptions or the -qsigtrap options, most of the processing for

floating-point exceptions required you to change your source files to turn on

exception trapping or install a signal handler. Although you can still do so, for any

new applications, we recommend that you use the options instead.

To control exception handling at run time, compile without the enable suboption

of the -qflttrap option:

 xlf95 -qflttrap compute_pi.f # Check all exceptions, but do not trap.

 xlf95 -qflttrap=ov compute_pi.f # Check one type, but do not trap.

Then, inside your program, manipulate the fpstats array (defined in the include

file /opt/ibmcmp/xlf/cbe/11.1/include/fpdc.h) and call the fpsets subroutine to

specify which exceptions should generate traps.

See the sample program that uses fpsets and fpgets in “Selecting the rounding

mode” on page 148.

Another method is to use the set_fpscr_flags() subroutine in the xlf_fp_util

module. This subroutine allows you to set the floating-point status and control

register flags you specify in the MASK argument. Flags that you do not specify in

MASK remain unaffected. MASK must be of type INTEGER(FPSCR_KIND). For

example:

 USE, INTRINSIC :: xlf_fp_util

 INTEGER(FPSCR_KIND) SAVED_FPSCR

 INTEGER(FP_MODE_KIND) FP_MODE

 SAVED_FPSCR = get_fpscr() ! Saves the current value of

 ! the fpscr register.

154 XL Fortran Optimization and Programming Guide

CALL set_fpscr_flags(TRP_DIV_BY_ZERO) ! Enables trapping of

 ! ... ! divide-by-zero.

 SAVED_FPSCR=set_fpscr(SAVED_FPSCR) ! Restores fpscr register.

Another method is to use the ieee_set_halting_mode subroutine in the

ieee_exceptions module. This portable, elemental subroutine allows you to set the

halting (trapping) status for any FPSCR exception flags. For example:

USE, INTRINSIC :: ieee_exceptions

 TYPE(IEEE_STATUS_TYPE) SAVED_FPSCR

 CALL ieee_get_status(SAVED_FPSCR) ! Saves the current value of the

 ! fpscr register

 CALL ieee_set_halting_mode(IEEE_DIVIDE_BY_ZERO, .TRUE.) ! Enabled trapping

 ! ... ! of divide-by-zero.

 CALL IEEE_SET_STATUS(SAVED_FPSCR) ! Restore fpscr register

xlf_fp_util Procedures

The xlf_fp_util procedures allow you to query and control the floating-point status

and control register (fpscr) of the processor directly. These procedures are more

efficient than the fpsets and fpgets subroutines because they are mapped into

inlined machine instructions that manipulate the floating-point status and control

register directly.

The intrinsic module, xlf_fp_util, contains the interfaces and data type definitions

for these procedures and the definitions for the named constants that are needed

by the procedures. This module enables type checking of these procedures at

compile time rather than link time. The following files are supplied for the

xlf_fp_util module:

 File names File type Locations

module symbol file

(64–bit)

/opt/ibmcmp/xlf/cbe/11.1/include64

To use the procedures, you must add a USE XLF_FP_UTIL statement to your

source file. For more information, see the USE statement in the XL Fortran

Language Reference.

When compiling with the -U option, you must code the names of these procedures

in all lowercase.

For a list of the xlf_fp_util procedures, see the Service and utility procedures section

in the XL Fortran Language Reference.

fpgets and fpsets subroutines

The fpsets and fpgets subroutines provide a way to manipulate or query the

floating-point status and control register. Instead of calling the operating system

routines directly, you pass information back and forth in fpstat, an array of

logicals. The following table shows the most commonly used array elements that

deal with exceptions:

Chapter 11. Implementation details of XL Fortran floating-point processing 155

Table 23. Exception bits to use with fpsets and fpgets

Array Element to

Set to Enable

Array Element to

Check if Exception

Occurred Exception Indicated When .TRUE.

n/a fpstat(fpfx) Floating-point exception summary

n/a fpstat(fpfex) Floating-point enabled exception summary

fpstat(fpve) fpstat(fpvx) Floating-point invalid operation exception

summary

fpstat(fpoe) fpstat(fpox) Floating-point overflow exception

fpstat(fpue) fpstat(fpux) Floating-point underflow exception

fpstat(fpze) fpstat(fpzx) Zero-divide exception

fpstat(fpxe) fpstat(fpxx) Inexact exception

fpstat(fpve) fpstat(fpvxsnan) Floating-point invalid operation exception

(signaling NaN)

fpstat(fpve) fpstat(fpvxisi) Floating-point invalid operation exception

(INF-INF)

fpstat(fpve) fpstat(fpvxidi) Floating-point invalid operation exception

(INF/INF)

fpstat(fpve) fpstat(fpvxzdz) Floating-point invalid operation exception

(0/0)

fpstat(fpve) fpstat(fpvximz) Floating-point invalid operation exception

(INF*0)

fpstat(fpve) fpstat(fpvxvc) Floating-point invalid operation exception

(invalid compare)

n/a fpstat(fpvxsoft) Floating-point invalid operation exception

(software request) , PowerPC only

n/a fpstat(fpvxsqrt) Floating-point invalid operation exception

(invalid square root), PowerPC only

n/a fpstat(fpvxcvi) Floating-point invalid operation exception

(invalid integer convert), PowerPC only

To explicitly check for specific exceptions at particular points in a program, use

fpgets and then test whether the elements in fpstat have changed. Once an

exception has occurred, the corresponding exception bit (second column in the

preceding table) is set until it is explicitly reset, except for fpstat(fpfx), fpstat(fpvx),

and fpstat(fpfex), which are reset only when the specific exception bits are reset.

An advantage of using the fpgets and fpsets subroutines (as opposed to

controlling everything with suboptions of the -qflttrap option) includes control

over granularity of exception checking. For example, you might only want to test if

an exception occurred anywhere in the program when the program ends.

The disadvantages of this approach include the following:

v You have to change your source code.

v These routines differ from what you may be accustomed to on other platforms.

For example, to trap floating-point overflow exceptions but only in a certain

section of the program, you would set fpstat(fpoe) to .TRUE. and call fpsets.

After the exception occurs, the corresponding exception bit, fpstat(fpox), is

.TRUE. until the program runs:

156 XL Fortran Optimization and Programming Guide

call fpgets(fpstat)

 fpstat(fpox) = .FALSE.

 call fpsets(fpstat) ! resetting fpstat(fpox) to .FALSE.

Sample programs for exception handling

/opt/ibmcmp/xlf/11.1/samples/floating_point contains a number of sample

programs to illustrate different aspects of exception handling:

flttrap_handler.c and flttrap_test.f

A sample exception handler that is written in C

and a Fortran program that uses it.

xl__ieee.F and xl__ieee.c Exception handlers that are written in Fortran and

C that show how to substitute particular values for

operations that produce exceptions. Even when

you use support code such as this, the

implementation of XL Fortran exception handling

does not fully support the exception-handling

environment that is suggested by the IEEE

floating-point standard.

check_fpscr.f and postmortem.f

Show how to work with the fpsets and fpgets

procedures and the fpstats array.

fhandler.F Shows a sample Fortran signal handler and

demonstrates the xl__sigdump procedure.

xl__trbk_test.f Shows how to use the xl__trbk procedure to

generate a traceback listing without stopping the

program.

The sample programs are strictly for illustrative purposes only.

Causing exceptions for particular variables

To mark a variable as “do not use”, you can encode a special value called a

signaling NaN in it. This causes an invalid exception condition any time that

variable is used in a calculation.

If you use this technique, use the nans suboption of the -qfloat option, so that the

program properly detects all cases where a signaling NaN is used, and one of the

methods already described to generate corresponding SIGFPE signals.

Note: Because a signaling NaN is never generated as the result of a calculation

and must be explicitly introduced to your program as a constant or in input

data, you should not need to use this technique unless you deliberately use

signaling NaN values in it.

Minimizing the performance impact of floating-point exception

trapping

If you need to deal with floating-point exception conditions but are concerned that

doing so will make your program too slow, here are some techniques that can help

minimize the performance impact:

v Consider using only a subset of the overflow, underflow, zerodivide, invalid,

and inexact suboptions with the -qflttrap option if you can identify some

conditions that will never happen or you do not care about. In particular,

Chapter 11. Implementation details of XL Fortran floating-point processing 157

because an inexact exception occurs for each rounding error, you probably

should not check for it if performance is important.

v Include the imprecise suboption with the -qflttrap option, so that your compiler

command looks similar to this:

xlf90 -qflttrap=underflow:enable:imprecise -qsigtrap does_underflows.f

imprecise makes the program check for the specified exceptions only on entry

and exit to subprograms that perform floating-point calculations. This means

that XL Fortran will eventually detect any exception, but you will know only the

general area where it occurred, not the exact location.

When you specify -qflttrap without imprecise, a check for exceptions follows

each floating-point operation. If all your exceptions occur during calls to

routines that are not compiled with -qflttrap (such as library routines), using

imprecise is generally a good idea, because identifying the exact location will be

difficult anyway.

Note that enable has no effect if using the nanq suboption. nanq generates

trapping code after each floating point arithmetic, load instruction and

procedure returning floating point values even if imprecise is specified.

158 XL Fortran Optimization and Programming Guide

Chapter 12. Porting programs to XL Fortran

XL Fortran provides many features intended to make it easier to take programs

that were originally written for other computer systems or compilers and

recompile them with XL Fortran.

Outline of the porting process

The process for porting a typical program looks like this:

1. Identify any nonportable language extensions or subroutines that you used in

the original program. Check to see which of these XL Fortran supports:

v Language extensions are identified in the XL Fortran Language Reference.

v Some extensions require you to specify an XL Fortran compiler option; you

can find these options listed in the Portability and migration options table in

the XL Fortran Compiler Reference.
2. For any nonportable features that XL Fortran does not support, modify the

source files to remove or work around them.

3. Do the same for any implementation-dependent features. For example, if your

program relies on exact bit-pattern representation of floating-point values or

uses system-specific file names, you may need to change it.

4. Compile the program with XL Fortran. If any compilation problems occur, fix

them and recompile and fix any additional errors until the program compiles

successfully.

5. Run the XL Fortran-compiled program and compare the output with the output

from the other system. If the results are substantially different, there are

probably still some implementation-specific features that need to be changed. If

the results are only marginally different (for example, if XL Fortran produces a

different number of digits of precision or a number differs in the last decimal

place), decide whether the difference is significant enough to investigate

further. You may be able to fix these differences.

Before porting programs to XL Fortran, read the tips in the following sections so

that you know in advance what compatibility features XL Fortran offers.

Portability of directives

XL Fortran supports many directives available with other Fortran products. This

ensures easy portability between products. If your code contains trigger_constants

other than the defaults in XL Fortran, you can use the -qdirective compiler option

to specify them. For instance, if you are porting CRAY code contained in a file

xx.f, you would use the following command to add the CRAY trigger_constant:

 ppuxlf95 xx.f -qdirective=mic\$

For fixed source form code, in addition to the ! value for the trigger_head portion of

the directive, XL Fortran also supports the trigger_head values C, c, and *.

For more information, see the -qdirective option in the XL Fortran Compiler

Reference.

© Copyright IBM Corp. 1990, 2007 159

Common industry extensions that XL Fortran supports

XL Fortran allows many of the same FORTRAN 77 extensions as other popular

compilers, including:

Extension

Refer to XL Fortran

Language Reference

Section(s)

Typeless constants Typeless Literal

Constants

*len length specifiers for types The Data Types

BYTE data type BYTE

Long variable names Names

Lower case Names

Mixing integers and logicals (with -qintlog option) Evaluation of

Expressions

Character-count Q edit descriptor (with -qqcount option) Q (Character Count)

Editing

Intrinsics for counting set bits in registers and determining

data-object parity

POPCNT, POPPAR

64-bit data types (INTEGER(8), REAL(8), COMPLEX(8), and

LOGICAL(8)), including support for default 64-bit types (with

-qintsize and -qrealsize options)

Integer Real Complex

Logical

Integer POINTERs, similar to those supported by CRAY and Sun

compilers. (XL Fortran integer pointer arithmetic uses increments of

one byte, while the increment on CRAY computers is eight bytes.

You may need to multiply pointer increments and decrements by

eight to make programs ported from CRAY computers work

properly.)

POINTER(integer)

Conditional vector merge (CVMGx) intrinsic functions CVMGx (TSOURCE,

FSOURCE, MASK)

Date and time service and utility functions (rtc, irtc, jdate, clock_,

timef, and date)

Service and utility

procedures

STRUCTURE, UNION, and MAP constructs Structure Components,

Union and Map

Mixing data types in statements

The -qctyplss option lets you use character constant expressions in the same places

that you use typeless constants. The -qintlog option lets you use integer

expressions where you can use logicals, and vice versa. A kind type parameter

must not be replaced with a logical constant even if -qintlog is on, nor by a

character constant even if -qctyplss is on, nor can it be a typeless constant.

Date and time routines

Date and time routines, such as dtime, etime, and jdate, are accessible as Fortran

subroutines.

Other libc routines

A number of other popular routines from the libc library, such as flush, getenv,

and system, are also accessible as Fortran subroutines.

160 XL Fortran Optimization and Programming Guide

Changing the default sizes of data types

For porting from machines with larger or smaller word sizes, the -qintsize option

lets you specify the default size for integers and logicals. The -qrealsize option lets

you specify the default size for reals and complex components.

Name conflicts between your procedures and XL Fortran

intrinsic procedures

If you have procedures with the same names as any XL Fortran intrinsic

procedures, the program calls the intrinsic procedure. This situation is more likely

with the addition of the many new Fortran 90, Fortran 95 and Fortran 2003

intrinsic procedures.

If you still want to call your procedure, add explicit interfaces, EXTERNAL

statements, or PROCEDURE statements for any procedures with conflicting

names, or use the -qextern option when compiling.

Reproducing results from other systems

XL Fortran provides settings through the -qfloat option that help make

floating-point results consistent with those from other IEEE systems; this subject is

discussed in “Duplicating the floating-point results of other systems” on page 151.

Finding nonstandard extensions

XL Fortran supports a number of extensions to various language standards. Many

of these extensions are so common that you need to keep in mind, when you port

programs to other systems, that not all compilers have them. To find such

extensions in your XL Fortran programs before beginning a porting effort, use the

-qlanglvl option:

Related information: See the -qlanglvl and -qport options in the XL Fortran

Compiler Reference.

$ # -qnoobject stops the compiler after parsing all the source,

$ # giving a fast way to check for errors.

$ # Look for anything above the base F77 standard.

$ ppuxlf -qnoobject -qlanglvl=77std f77prog.f

 ...

$ # Look for anything above the F90 standard.

$ ppuxlf90 -qnoobject -qlanglvl=90std use_in_2000.f

 ...

$ # Look for anything above the F95 standard.

$ ppuxlf95 -qnoobject -qlanglvl=95std use_in_2000.f

 ...

Chapter 12. Porting programs to XL Fortran 161

162 XL Fortran Optimization and Programming Guide

Appendix. Sample Fortran programs

The following programs are provided as coding examples for XL Fortran. Every

attempt has been made to internally document key areas of the source to assist you

in this effort.

You can compile and execute the first program to verify that the compiler is

installed correctly and your user ID is set up to execute Fortran programs.

Example 1 - XL Fortran source file

 PROGRAM CALCULATE

!

! Program to calculate the sum of up to n values of x**3

! where negative values are ignored.

!

 IMPLICIT NONE

 INTEGER I,N

 REAL SUM,X,Y

 READ(*,*) N

 SUM=0

 DO I=1,N

 READ(*,*) X

 IF (X.GE.0.0) THEN

 Y=X**3

 SUM=SUM+Y

 END IF

 END DO

 WRITE(*,*) ’This is the sum of the positive cubes:’,SUM

 END

Execution results

Here is what happens when you run the program:

$ a.out

5

37

22

-4

19

6

 This is the sum of the positive cubes: 68376.00000

© Copyright IBM Corp. 1990, 2007 163

Example 2 - valid C routine source file

/*

 * **

 * This is a main function that creates threads to execute the Fortran

 * test subroutines.

 * **

 */

#include <pthread.h>

#include <stdio.h>

#include <errno.h>

extern char *optarg;

extern int optind;

static char *prog_name;

#define MAX_NUM_THREADS 100

void *f_mt_exec(void *);

void f_pre_mt_exec(void);

void f_post_mt_exec(int *);

void

usage(void)

{

 fprintf(stderr, "Usage: %s -t number_of_threads.\n", prog_name);

 exit(-1);

}

main(int argc, char *argv[])

{

 int i, c, rc;

 int num_of_threads, n[MAX_NUM_THREADS];

 char *num_of_threads_p;

 pthread_attr_t attr;

 pthread_t tid[MAX_NUM_THREADS];

 prog_name = argv[0];

 while ((c = getopt(argc, argv, "t")) != EOF)

 {

 switch (c)

 {

 case ’t’:

 break;

 default:

 usage();

 break;

 }

 }

 argc -= optind;

 argv += optind;

 if (argc < 1)

 {

 usage();

 }

 num_of_threads_p = argv[0];

 if ((num_of_threads = atoi(num_of_threads_p)) == 0)

 {

 fprintf(stderr,

 "%s: Invalid number of threads to be created <%s>\n", prog_name,

 num_of_threads_p);

 exit(1);

164 XL Fortran Optimization and Programming Guide

}

 else if (num_of_threads > MAX_NUM_THREADS)

 {

 fprintf(stderr,

 "%s: Cannot create more than 100 threads.\n", prog_name);

 exit(1);

 }

 pthread_attr_init(&attr);

 pthread_attr_setdetachstate(&attr,);

 /* **

 * Execute the Fortran subroutine that prepares for multi-threaded

 * execution.

 * **

 */

 f_pre_mt_exec();

 for (i = 0; i < num_of_threads; i++)

 {

 n[i] = i;

 rc = pthread_create(&tid[i], &attr, f_mt_exec, (void *)&n[i]);

 if (rc != 0)

 {

 fprintf(stderr, "Failed to create thread %d.\n", i);

 exit(1);

 }

 }

 /* The attribute is no longer needed after threads are created. */

 pthread_attr_destroy(&attr);

 for (i = 0; i < num_of_threads; i++)

 {

 rc = pthread_join(tid[i], NULL);

 if (rc != 0)

 {

 fprintf(stderr, "Failed to join thread %d. \n", i);

 }

 }

 /*

 * Execute the Fortran subroutine that does the check after

 * multi-threaded execution.

 */

 f_post_mt_exec(&num_of_threads);

 exit(0);

}

! ***

! This test case tests the writing list-directed to a single external

! file by many threads.

! ***

 subroutine f_pre_mt_exec()

 integer array(1000)

 common /x/ array

 do i = 1, 1000

 array(i) = i

 end do

 open(10, file="fun10.out", form="formatted", status="replace")

 end

 subroutine f_post_mt_exec(number_of_threads)

 integer array(1000), array1(1000)

 common /x/ array

Appendix. Sample Fortran programs 165

close(10)

 open(10, file="fun10.out", form="formatted")

 do j = 1, number_of_threads

 read(10, *) array1

 do i = 1, 1000

 if (array1(i) /= array(i)) then

 print *, "Result is wrong."

 stop

 endif

 end do

 end do

 close(10, status="delete")

 print *, "Normal ending."

 end

 subroutine f_mt_exec(thread_number)

 integer thread_number

 integer array(1000)

 common /x/ array

 write(10, *) array

 end

Programming examples using the Pthreads library module (PPU only)

!**

!* Example 5 : Create a thread with Round_Robin scheduling policy.*

!* For simplicity, we do not show any codes for error checking, *

!* which would be necessary in a real program. *

!**

 use, intrinsic::f_pthread

 integer(4) ret_val

 type(f_pthread_attr_t) attr

 type(f_pthread_t) thr

 ret_val = f_pthread_attr_init(attr)

 ret_val = f_pthread_attr_setschedpolicy(attr, SCHED_RR)

 ret_val = f_pthread_attr_setinheritsched(attr, PTHREAD_EXPLICIT_SCHED)

 ret_val = f_pthread_create(thr, attr, FLAG_DEFAULT, ent, integer_arg)

 ret_val = f_pthread_attr_destroy(attr)

Before you can manipulate a pthread attribute object, you need to create and

initialize it. The appropriate interfaces must be called to manipulate the attribute

objects. A call to f_pthread_attr_setschedpolicy sets the scheduling policy attribute

to Round_Robin. Note that this does not affect newly created threads that inherit

the scheduling property from the creating thread. For these threads, we explicitly

call f_pthread_attr_setinheritsched to override the default inheritance attribute.

The rest of the code is self-explanatory.

!***

!* Example 6 : Thread safety *

!* In this example, we show that thread safety can be achieved *

!* by using the push-pop cleanup stack for each thread. We *

!* assume that the thread is in deferred cancellability-enabled *

!* state. This means that any thread-cancel requests will be *

!* put on hold until a cancellation point is encountered. *

!* Note that f_pthread_cond_wait provides a *

!* cancellation point. *

!***

 use, intrinsic::f_pthread

 integer(4) ret_val

 type(f_pthread_mutex_t) mutex

 type(f_pthread_cond_t) cond

166 XL Fortran Optimization and Programming Guide

pointer(p, byte)

 ! Initialize mutex and condition variables before using them.

 ! For global variables this should be done in a module, so that they

 ! can be used by all threads. If they are local, other threads

 ! will not see them. Furthermore, they must be managed carefully

 ! (for example, destroy them before returning, to avoid dangling and

 ! undefined objects).

 mutex = PTHREAD_MUTEX_INITIALIZER

 cond = PTHREAD_COND_INITIALIZER

 ! Doing something

 ! This thread needs to allocate some memory area used to

 ! synchronize with other threads. However, when it waits on a

 ! condition variable, this thread may be canceled by another

 ! thread. The allocated memory may be lost if no measures are

 ! taken in advance. This will cause memory leakage.

 ret_val = f_pthread_mutex_lock(mutex)

 p = malloc(%val(4096))

 ! Check condition. If it is not true, wait for it.

 ! This should be a loop.

 ! Since memory has been allocated, cleanup must be registered

 ! for safety during condition waiting.

 ret_val = f_pthread_cleanup_push(mycleanup, FLAG_DEFAULT, p)

 ret_val = f_pthread_cond_wait(cond, mutex)

 ! If this thread returns from condition waiting, the cleanup

 ! should be de-registered.

 call f_pthread_cleanup_pop(0) ! not execute

 ret_val = f_pthread_mutex_unlock(mutex)

 ! This thread will take care of p for the rest of its life.

 ! mycleanup looks like:

 subroutine mycleanup(passed_in)

 pointer(passed_in, byte)

 external free

 call free(%val(passed_in))

 end subroutine mycleanup

Appendix. Sample Fortran programs 167

168 XL Fortran Optimization and Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1990, 2007 169

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

170 XL Fortran Optimization and Programming Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2007. All rights reserved.

This software and documentation are based in part on the Fourth Berkeley

Software Distribution under license from the Regents of the University of

California. We acknowledge the following institution for its role in this product’s

development: the Electrical Engineering and Computer Sciences Department at the

Berkeley campus.

Trademarks and service marks

Company, product, or service names identified in the text may be trademarks or

service marks of IBM or other companies. Information on the trademarks of

International Business Machines Corporation in the United States, other countries,

or both is located at http://www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries

in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Cell Broadband Engine is a trademark of the Sony Corporation and/or the Sony

Computer Entertainment, Inc., in the United States, other countries, or both and is

used under license therefrom.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 171

http://www.ibm.com/legal/copytrade.shtml

172 XL Fortran Optimization and Programming Guide

Index

Special characters
-O0 3

-O2 3

-O3 5

trade-offs 5

-O4 6

trade-offs 7

-O5 7

trade-offs 7

-Q inlining
code size 34

-qcache 6, 22

-qcompact
code size 34, 35

-qfloat compiler option 151

fltint suboption 151

hssngl suboption 151

nans suboption 157

nomaf suboption 151

rsqrt suboption 151

-qflttrap compiler option 152

-qipa 6

IPA process 6

-qpdf 12

-qposition compiler option 129

-qsigtrap compiler option 153

-qstrict 5

/opt/ibmcmp/xlf/cbe/11.1/include/
fexcp.h 153

/tmp directory
See TMPDIR environment variable

* length specifiers (FORTRAN 77

extension) 160

%REF functions 113

%VAL functions 113

Numerics
64-bit data types (FORTRAN 77

extension) 160

A
advanced optimization 4

aliasing 29

arguments
passing between languages 108, 109

passing by reference or by value 113

array initialization
code size 34

arrays
passing between languages 111

assembler
low-level linkage conventions 116

B
basic optimization 2

bitwise-identical floating-point

results 151

blocked special files, interaction of XL

Fortran I/O with 130

buffers, flushing 132

BYTE data type (FORTRAN 77

extension) 160

C
C language and interlanguage calls 105,

108

C++ and Fortran in same program 107

calling by reference or value 113

calling non-Fortran procedures 105

CASE construct
code size 35

character data, passing between

languages 110

character special files, interaction of XL

Fortran I/O with 130

character-count edit descriptor

(FORTRAN 77 extension) 160

check_fpscr.f sample file 157

code size 33

-Q inlining 34

-qcompact 34, 35

array initialization 34

blocking 33

CASE constructs 35

computed GOTOs 35

dynamic linking 36

high activity areas 35

page faults 35

static linking 36

steps for reduction 34

Compiler-friendly techniques 39

aliasing 40

arrays 40

choosing appropriate variable

sizes 40

compiler invocations 39

floating-point precision 40

PERMUTATION 40

pointers 40

variables 40

WHERE constructs 40

computed GOTO
code size 35

conditional vector merge intrinsic

functions (FORTRAN 77

extension) 160

control and status register for floating

point 155

controlling optimization

transformations 24

core file 153

CRAY functions (FORTRAN 77 extension)
conditional vector merge

intrinsics 160

date and time service and utility

functions 160

CRAY pointer (FORTRAN 77 extension),

XL Fortran equivalent 160

CVMGx intrinsic functions (FORTRAN 77

extension) 160

D
data types in Fortran, C 109

date and time functions (FORTRAN 77

extension) 160

debugging 15

disk striping
See data striping

double-precision values 144, 146

dynamic linking
code size 36

E
enable suboption of -qflttrap 154

enabling MASS 9

enabling VMX 9

example programs
See sample programs

exception handling 145

for floating point 152

installing an exception handler 153

explicit interfaces 114

extended-precision values 147

extensions to FORTRAN 77, list of

common ones 160

F
f_maketime function 62

f_pthread 59

f_pthread_attr_destroy function 62

f_pthread_attr_getdetachstate

function 62

f_pthread_attr_getguardsize function 63

f_pthread_attr_getinheritsched

function 63

f_pthread_attr_getschedparam

function 64

f_pthread_attr_getschedpolicy

function 64

f_pthread_attr_getscope function 65

f_pthread_attr_getstack function 65

f_pthread_attr_init function 66

f_pthread_attr_setdetachstate

function 66

f_pthread_attr_setguardsize 67

f_pthread_attr_setinheritsched

function 68

© Copyright IBM Corp. 1990, 2007 173

f_pthread_attr_setschedparam

function 68

f_pthread_attr_setschedpolicy

function 69

f_pthread_attr_setscope function 69

f_pthread_attr_setstack function 70

f_pthread_attr_t function 71

f_pthread_cancel function 71

f_pthread_cleanup_pop function 71

f_pthread_cleanup_push function 72

f_pthread_cond_broadcast function 73

f_pthread_cond_destroy function 73

f_pthread_cond_init function 74

f_pthread_cond_signal function 74

f_pthread_cond_t function 75

f_pthread_cond_timedwait function 75

f_pthread_cond_wait function 76

f_pthread_condattr_destroy function 76

f_pthread_condattr_getpshared

function 76

f_pthread_condattr_init function 77

f_pthread_condattr_setpshared

function 78

f_pthread_condattr_t function 78

f_pthread_create function 78

f_pthread_detach function 80

f_pthread_equal function 80

f_pthread_exit function 81

f_pthread_getconcurrency function 81

f_pthread_getschedparam function 82

f_pthread_getspecific function 82

f_pthread_join function 83

f_pthread_key_create function 83

f_pthread_key_delete function 84

f_pthread_key_t 84

f_pthread_kill function 85

f_pthread_mutex_destroy function 85

f_pthread_mutex_init function 86

f_pthread_mutex_lock function 86

f_pthread_mutex_t 87

f_pthread_mutex_trylock function 87

f_pthread_mutex_unlock function 87

f_pthread_mutexattr_destroy

function 88

f_pthread_mutexattr_getpshared

function 88

f_pthread_mutexattr_gettype

function 89

f_pthread_mutexattr_init function 90

f_pthread_mutexattr_setpshared

function 90

f_pthread_mutexattr_settype function 91

f_pthread_mutexattr_t 91

f_pthread_once function 92

f_pthread_once_t 92

f_pthread_rwlock_destroy function 92

f_pthread_rwlock_init function 93

f_pthread_rwlock_rdlock function 93

f_pthread_rwlock_t function 94

f_pthread_rwlock_tryrdlock function 94

f_pthread_rwlock_trywrlock function 95

f_pthread_rwlock_unlock function 95

f_pthread_rwlock_wrlock function 96

f_pthread_rwlockattr_destroy

function 96

f_pthread_rwlockattr_getpshared

function 97

f_pthread_rwlockattr_init function 97

f_pthread_rwlockattr_setpshared

function 98

f_pthread_rwlockattr_t function 98

f_pthread_self function 98

f_pthread_setcancelstate function 99

f_pthread_setcanceltype function 99

f_pthread_setconcurrency function 100

f_pthread_setschedparam function 100

f_pthread_setspecific function 101

f_pthread_t function 102

f_pthread_testcancel function 102

f_sched_param function 102

f_sched_yield function 103

f_timespec function 103

fexcp.h include file 153

fhandler.F sample file 157

file positioning 129

files
I/O formats 127

names 128

permissions 131

floating-point
exceptions 152

processing 143

optimizing 151

floating-point optimization 22

floating-point status and control

register 155

FLTTRAP @PROCESS directive 152

flttrap_handler.c and flttrap_test.f sample

files 157

flushing I/O buffers 132

formats, file 127

fort.* default file names 129, 133

FORTRAN 77 extensions, list of common

ones 160

fpdt.h and fpdc.h include files 148

fpgets and fpsets service and utility

subroutines 155

fpscr register 155

fpstat array 155

functions
linkage convention for calls 123

return values 115

G
get_round_mode procedure 148

GETENV intrinsic procedure 128

H
high-order transformation 8

HOT 8

I
I/O

See input/output

IEEE arithmetic 143

implicitly connected files 129

include files fpdt.h and fpdc.h 148

infinity values 144

initial file position 129

Inlining 30

input/output 143

from two languages in the same

program 106

redirection 130

XL Fortran implementation

details 127

integer POINTER (FORTRAN 77

extension) 160

interlanguage calls 105, 113

arrays 111

C++ 107

character types 110

corresponding data types 109

input and output 106

low-level linkage conventions 116

pointers 112

IPA 10

levels 11

suboptions 11

with C and C++ 12

L
libmass 50

libmass library 41

libmassv library 43

library
MASS 41

scalar 41

vector 43

links, interaction of XL Fortran I/O

with 130

long variable names (FORTRAN 77

extension) 160

long vectorization 9

loop optimization 8

lower case (FORTRAN 77 extension) 160

M
main, restriction on use as a Fortran

name 105

MASS libraries 41

scalar functions 41

vector functions 43

migrating
from other systems 159

minus infinity, representation of 144

mixing integers and logicals (FORTRAN

77 extension) 160

module procedures, external names

corresponding to 105

N
naming conventions for external

names 105

NaN values
and infinities 144

negative infinity, representation of 144

null-terminated strings, passing to C

functions 110

174 XL Fortran Optimization and Programming Guide

O
optimization

-O0 3

-O2 3

-O3 5

-O4 6

-O5 7

advanced 4

and tuning 21

basic 2

debugging 15

floating-point 22, 24

for floating-point arithmetic 151

loops 22, 24

math functions 41

options to avoid 26

PDF 12

profile directed feedback 12

optimization trade-offs
-O3 5

-O4 7

-O5 7

option driven tuning 22

OPTIONAL attribute 116

options for targeting your

architecture 21

P
parameters

See arguments

Pascal language and interlanguage

calls 105

PDF 12

walkthrough 13

performance analysis 26

performance of floating-point

arithmetic 151

permissions of files 131

pipes, interaction of XL Fortran I/O

with 130

plus infinity, representation of 144

pointers (integer POINTER) (FORTRAN

77 extension) 160

portability 159

porting to XL Fortran 159

POSITION @PROCESS directive 129

position of a file after an OPEN

statement 129

positive infinity, representation of 144

postmortem.f sample file 157

preconnected files 129

providing your application

characteristics 22

pseudo-devices, interaction of XL Fortran

I/O with 130

pthreads library module 166

Pthreads Library Module
descriptions of functions in 59

f_maketime function 62

f_pthread_attr_destroy function 62

f_pthread_attr_getdetachstate

function 62

f_pthread_attr_getguardsize

function 63

Pthreads Library Module (continued)
f_pthread_attr_getinheritsched

function 63

f_pthread_attr_getschedparam

function 64

f_pthread_attr_getschedpolicy

function 64

f_pthread_attr_getscope function 65

f_pthread_attr_getstack 65

f_pthread_attr_init function 66

f_pthread_attr_setdetachstate

function 66

f_pthread_attr_setguardsize

function 67

f_pthread_attr_setinheritsched

function 68

f_pthread_attr_setschedparam

function 68

f_pthread_attr_setschedpolicy

function 69

f_pthread_attr_setscope function 69

f_pthread_attr_setstack function 70

f_pthread_attr_t function 71

f_pthread_cancel function 71

f_pthread_cleanup_pop function 71

f_pthread_cleanup_push function 72

f_pthread_cond_broadcast

function 73

f_pthread_cond_destroy function 73

f_pthread_cond_init function 74

f_pthread_cond_signal function 74

f_pthread_cond_t function 75

f_pthread_cond_timedwait

function 75

f_pthread_cond_wait function 76

f_pthread_condattr_destroy

function 76

f_pthread_condattr_getpshared

function 76

f_pthread_condattr_init function 77

f_pthread_condattr_setpshared

function 78

f_pthread_condattr_t function 78

f_pthread_create function 78

f_pthread_detach function 80

f_pthread_equal function 80

f_pthread_exit function 81

f_pthread_getconcurrency

function 81

f_pthread_getschedparam

function 82

f_pthread_getspecific function 82

f_pthread_join function 83

f_pthread_key_create function 83

f_pthread_key_delete function 84

f_pthread_key_t 84

f_pthread_kill function 85

f_pthread_mutex_destroy function 85

f_pthread_mutex_init function 86

f_pthread_mutex_lock function 86

f_pthread_mutex_t 87

f_pthread_mutex_trylock function 87

f_pthread_mutex_unlock function 87

f_pthread_mutexattr_destroy

function 88

f_pthread_mutexattr_getpshared

function 88

Pthreads Library Module (continued)
f_pthread_mutexattr_gettype

function 89

f_pthread_mutexattr_init function 90

f_pthread_mutexattr_setpshared

function 90

f_pthread_mutexattr_settype

function 91

f_pthread_mutexattr_t 91

f_pthread_once function 92

f_pthread_once_t 92

f_pthread_rwlock_destroy

function 92

f_pthread_rwlock_init function 93

f_pthread_rwlock_rdlock function 93

f_pthread_rwlock_t function 94

f_pthread_rwlock_tryrdlock

function 94

f_pthread_rwlock_trywrlock

function 95

f_pthread_rwlock_unlock function 95

f_pthread_rwlock_wrlock function 96

f_pthread_rwlockattr_destroy

function 96

f_pthread_rwlockattr_getpshared

function 97

f_pthread_rwlockattr_init function 97

f_pthread_rwlockattr_setpshared

function 98

f_pthread_rwlockattr_t function 98

f_pthread_self function 98

f_pthread_setcancelstate function 99

f_pthread_setcanceltype function 99

f_pthread_setchedparam

function 100

f_pthread_setconcurrency

function 100

f_pthread_setspecific function 101

f_pthread_t function 102

f_pthread_testcancel function 102

f_sched_param function 102

f_sched_yield function 103

f_timespec function 103

Pthreads Library, Cell Broadband Engine

Processor for Linux 59

Q
Q (character-count) edit descriptor

(FORTRAN 77 extension) 160

quiet NaN 144

R
real arithmetic 143

REAL(16) values 147

REAL(4) and REAL(8) values 144, 146

record lengths 131

redirecting input/output 130

reference, passing arguments by 113

rounding 148

rounding errors 150

rounding mode 148, 150

Index 175

S
sample programs 163

floating-point exception

handling 157

scalar MASS library 41

scratch file directory
See TMPDIR environment variable

scratch_vars runtime option 133

short vectorization 9

SIGFPE signal 152, 153

signal handling
for floating point 152

installing an exception handler 153

signaling NaN 144, 157

SIGTRAP signal 152, 153

single-precision values 144, 146

special files, interaction of XL Fortran I/O

with 130

stack 117

standard error, input, and output

streams 129

star length specifiers 160

static linking
code size 36

status and control register for floating

point 155

stderr, stdin, and stdout streams 129

strings, passing to C functions 110

subprograms in other languages,

calling 105, 108

Sun pointer (FORTRAN 77 extension), XL

Fortran equivalent 160

symbolic links, interaction of XL Fortran

I/O with 130

system Pthreads Library 59

T
tctl command 131

thread-safing
pthreads library module 59

time and date functions (FORTRAN 77

extension) 160

Trace/BPT trap 153

traceback listing 154

tuning 21

-qcache 22

controlling optimization

transformations 24

option driven tuning 22

options to avoid 26

performance analysis 26

providing your application

characteristics 22

typeless constants (FORTRAN 77

extension) 160

U
unit_vars runtime option 133

V
VALUE attribute 113

value, passing arguments by 113

vector MASS library 43

vectorization
long 9

short 9

X
xl__ieee exception handler 154

xl__ieee.F and xl__ieee.c sample

files 157

xl__sigdump exception handler 154

xl__trbk exception handler 154

xl__trbk_test.f sample file 157

xl__trce exception handler 154

xl__trcedump exception handler 154

XLFSCRATCH_unit environment

variable 133

XLFUNIT_unit environment

variable 133

176 XL Fortran Optimization and Programming Guide

����

Program Number: 5724-T44

SC23-8525-00

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions and terminology used in this document
	Related information
	IBM XL Fortran publications
	Standards and specifications documents
	Other IBM publications

	How to send your comments

	Chapter 1. Optimizing your applications
	Distinguishing between optimization and tuning
	Optimization
	Tuning

	Steps in the optimization process
	Basic optimization
	Optimizing at level 0
	Optimizing at level 2
	Starting to tune at level 2

	Advanced optimization
	Optimizing at level 3
	Potential trade-offs at level 3

	An intermediate step: adding -qhot suboptions at level 3
	Optimizing at level 4
	The IPA process
	Potential trade-offs at level 4

	Optimizing at level 5
	Potential trade-offs at level 5

	Specialized optimization techniques
	High-order transformation (HOT)
	HOT short vectorization (PPU only)
	HOT long vectorization (PPU only)
	HOT array size adjustment

	Interprocedural analysis (IPA)
	Using IPA on the compile step only
	IPA Levels and other IPA suboptions
	Using IPA across the XL compiler family

	Profile-directed feedback (PDF) (PPU only)
	PDF walkthrough
	Object level profile-directed feedback (PPU only)

	Debugging optimized code
	Understanding different results in optimized programs
	Debugging before optimization
	Using -qoptdebug to help debug optimized programs

	Getting more performance
	Beyond performance: effective programming techniques

	Chapter 2. Tuning XL compiler applications
	Tuning for your target architecture
	Using -qcache

	Further option driven tuning
	Options for providing application characteristics
	Options to control optimization transformations
	Options to assist with performance analysis
	Options that can inhibit performance

	Chapter 3. Advanced optimization concepts
	Aliasing
	Inlining
	Finding the right level of inlining

	Chapter 4. Managing code size
	Steps for reducing code size
	Compiler option influences on code size
	The -qipa compiler option
	The -Q inlining option
	The -qhot compiler option
	The -qcompact compiler option

	Other influences on code size
	High activity areas
	Computed GOTOs and CASE constructs
	Linking and code size
	Dynamic linking
	Static linking

	Chapter 5. Compiler-friendly programming techniques
	General practices
	Variables and pointers
	Arrays
	Choosing appropriate variable sizes

	Chapter 6. High performance libraries
	Using the Mathematical Acceleration Subsystem libraries (MASS)
	Using the scalar library (PPU only)
	Using the vector libraries
	Overlap of input and output vectors
	Consistency of MASS vector functions

	Using the SIMD library for SPU programs
	Compiling and linking a program with MASS
	Using libmass.a with the math system library
	Using libmass_simd.a with libsimdmath.a (SPU only)

	Using the Basic Linear Algebra Subprograms – BLAS (PPU only)
	BLAS function syntax
	Linking the libxlopt library

	Chapter 7. Using automatic code overlays (SPU only)
	Using custom linker scripts with overlays

	Chapter 8. Parallel programming with XL Fortran
	Pthreads library module (PPU only)
	Pthreads data structures, functions, and subroutines
	Pthreads Data Types
	Functions that perform operations on thread attribute objects
	Functions and Subroutines That Perform Operations on Threads
	Functions that perform operations on mutex attribute objects
	Functions that perform operations on mutex objects
	Functions that perform operations on attribute objects of condition variables
	Functions that perform operations on condition variable objects
	Functions that perform operations on thread-specific data
	Functions and subroutines that perform operations to control thread cancelability
	Functions that perform operations on read-write lock attribute objects
	Functions that perform operations on read-write lock objects
	Functions that perform operations for one-time initialization

	f_maketime(delay)
	f_pthread_attr_destroy(attr)
	f_pthread_attr_getdetachstate(attr, detach)
	f_pthread_attr_getguardsize(attr, guardsize)
	f_pthread_attr_getinheritsched(attr, inherit)
	f_pthread_attr_getschedparam(attr, param)
	f_pthread_attr_getschedpolicy(attr, policy)
	f_pthread_attr_getscope(attr, scope)
	f_pthread_attr_getstack(attr, stackaddr, ssize)
	f_pthread_attr_init(attr)
	f_pthread_attr_setdetachstate(attr, detach)
	f_pthread_attr_setguardsize(attr, guardsize)
	f_pthread_attr_setinheritsched(attr, inherit)
	f_pthread_attr_setschedparam(attr, param)
	f_pthread_attr_setschedpolicy(attr, policy)
	f_pthread_attr_setscope(attr, scope)
	f_pthread_attr_setstack(attr, stackaddr, ssize)
	f_pthread_attr_t
	f_pthread_cancel(thread)
	f_pthread_cleanup_pop(exec)
	f_pthread_cleanup_push(cleanup, flag, arg)
	f_pthread_cond_broadcast(cond)
	f_pthread_cond_destroy(cond)
	f_pthread_cond_init(cond, cattr)
	f_pthread_cond_signal(cond)
	f_pthread_cond_t
	f_pthread_cond_timedwait(cond, mutex, timeout)
	f_pthread_cond_wait(cond, mutex)
	f_pthread_condattr_destroy(cattr)
	f_pthread_condattr_getpshared(cattr, pshared)
	f_pthread_condattr_init(cattr)
	f_pthread_condattr_setpshared(cattr, pshared)
	f_pthread_condattr_t
	f_pthread_create(thread, attr, flag, ent, arg)
	f_pthread_detach(thread)
	f_pthread_equal(thread1, thread2)
	f_pthread_exit(ret)
	f_pthread_getconcurrency()
	f_pthread_getschedparam(thread, policy, param)
	f_pthread_getspecific(key, arg)
	f_pthread_join(thread, ret)
	f_pthread_key_create(key, dtr)
	f_pthread_key_delete(key)
	f_pthread_key_t
	f_pthread_kill(thread, sig)
	f_pthread_mutex_destroy(mutex)
	f_pthread_mutex_init(mutex, mattr)
	f_pthread_mutex_lock(mutex)
	f_pthread_mutex_t
	f_pthread_mutex_trylock(mutex)
	f_pthread_mutex_unlock(mutex)
	f_pthread_mutexattr_destroy(mattr)
	f_pthread_mutexattr_getpshared(mattr, pshared)
	f_pthread_mutexattr_gettype(mattr, type)
	f_pthread_mutexattr_init(mattr)
	f_pthread_mutexattr_setpshared(mattr, pshared)
	f_pthread_mutexattr_settype(mattr, type)
	f_pthread_mutexattr_t
	f_pthread_once(once, initr)
	f_pthread_once_t
	f_pthread_rwlock_destroy(rwlock)
	f_pthread_rwlock_init(rwlock, rwattr)
	f_pthread_rwlock_rdlock(rwlock)
	f_pthread_rwlock_t
	f_pthread_rwlock_tryrdlock(rwlock)
	f_pthread_rwlock_trywrlock(rwlock)
	f_pthread_rwlock_unlock(rwlock)
	f_pthread_rwlock_wrlock(rwlock)
	f_pthread_rwlockattr_destroy(rwattr)
	f_pthread_rwlockattr_getpshared(rwattr, pshared)
	f_pthread_rwlockattr_init(rwattr)
	f_pthread_rwlockattr_setpshared(rwattr, pshared)
	f_pthread_rwlockattr_t
	f_pthread_self()
	f_pthread_setcancelstate(state, oldstate)
	f_pthread_setcanceltype(type, oldtype)
	f_pthread_setconcurrency(new_level)
	f_pthread_setschedparam(thread, policy, param)
	f_pthread_setspecific(key, arg)
	f_pthread_t
	f_pthread_testcancel()
	f_sched_param
	f_sched_yield()
	f_timespec

	Chapter 9. Interlanguage calls
	Conventions for XL Fortran external names
	Mixed-language input and output (PPU only)
	Mixing Fortran and C++
	Making calls to C functions work
	Passing data from one language to another
	Passing arguments between languages
	Passing global variables between languages
	Passing character types between languages
	Passing arrays between languages
	Passing pointers between languages
	Passing arguments by reference or by value (PPU only)
	Explicit interface for %VAL and %REF
	Example with VALUE attribute

	Passing complex values to/from gcc (PPU only)
	Returning values from Fortran functions
	Arguments with the OPTIONAL attribute

	Assembler-level subroutine linkage conventions (PPU only)
	The stack
	The Link Area and Minimum Stack Frame
	The input parameter area
	The register save area
	The local stack area
	The output parameter area

	Linkage convention for argument passing (PPU only)
	Argument passing rules (by value)
	Order of arguments in argument list

	Linkage convention for function calls (PPU only)
	Pointers to functions (PPU only)
	Function values (PPU only)
	The Stack floor
	Stack overflow

	Prolog and epilog (PPU only)
	Traceback (PPU only)

	Chapter 10. Implementation details of XL Fortran Input/Output (I/O) (PPU only)
	Implementation details of file formats
	File names
	Preconnected and Implicitly Connected Files
	File positioning
	I/O Redirection
	How XL Fortran I/O interacts with pipes, special files, and links
	Default record lengths
	File permissions
	Selecting error messages and recovery actions
	Flushing I/O buffers
	Choosing locations and names for Input/Output files
	Naming files that are connected with no explicit name
	Naming scratch files

	Asynchronous I/O
	Execution of an asychronous data transfer operation
	Usage
	Performance
	Compiler-generated temporary I/O items
	Error handling
	XL Fortran thread-safe I/O library
	Synchronization of I/O operations
	Parallel I/O issues

	Use of I/O statements in signal handlers
	Asynchronous thread cancellation

	Chapter 11. Implementation details of XL Fortran floating-point processing
	IEEE Floating-point overview
	Compiling for strict IEEE conformance
	IEEE Single- and double-precision values
	IEEE Extended-precision values (PPU only)
	Infinities and NaNs (PPU only)
	Exception-handling model

	Hardware-specific floating-point overview
	Single- and double-precision values
	Extended-precision values

	How XL Fortran rounds floating-point calculations
	Selecting the rounding mode
	Minimizing rounding errors
	Minimizing overall rounding
	Delaying rounding until run time
	Ensuring that the rounding mode is consistent

	Duplicating the floating-point results of other systems
	Maximizing floating-point performance
	Detecting and trapping floating-point exceptions (PPU only)
	Compiler features for trapping floating-point exceptions
	Installing an exception handler
	Producing a core file
	Controlling the floating-point status and control register
	xlf_fp_util Procedures
	fpgets and fpsets subroutines
	Sample programs for exception handling
	Causing exceptions for particular variables
	Minimizing the performance impact of floating-point exception trapping

	Chapter 12. Porting programs to XL Fortran
	Outline of the porting process
	Portability of directives
	Common industry extensions that XL Fortran supports
	Mixing data types in statements
	Date and time routines
	Other libc routines
	Changing the default sizes of data types
	Name conflicts between your procedures and XL Fortran intrinsic procedures
	Reproducing results from other systems
	Finding nonstandard extensions

	Appendix. Sample Fortran programs
	Example 1 - XL Fortran source file
	Execution results

	Example 2 - valid C routine source file
	Programming examples using the Pthreads library module (PPU only)

	Notices
	Trademarks and service marks

	Index

