
IBM XL Fortran for Multicore Acceleration for Linux,

V11.1

Getting Started with XL Fortran

GC23-8524-00

���

IBM XL Fortran for Multicore Acceleration for Linux,

V11.1

Getting Started with XL Fortran

GC23-8524-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

17.

First Edition

This edition applies to IBM XL Fortran for Multicore Acceleration for Linux on System p, V11.1 (Program 5724-T44),

and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using

the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1998, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document v

Who should read this document v

How to use this document v

Conventions used in this document v

Related information viii

IBM XL Fortran publications viii

Other IBM publications ix

How to send your comments ix

Chapter 1. Introducing XL Fortran . . . 1

Commonality with other IBM compilers 1

IBM XL Fortran for Multicore Acceleration for Linux,

V11.1 1

About the Cell Broadband Engine architecture . . 1

A highly configurable compiler 2

Language standards compliance 3

Enhanced support for Fortran 2003 3

Source-code migration and conformance checking 5

Tools and utilities 5

Automated program analysis and transformations . . 6

Program optimization 6

Diagnostic listings 7

Symbolic debugger support 7

Chapter 2. Setting up and customizing

XL Fortran 9

Chapter 3. Developing applications with

XL Fortran 11

The compiler phases 11

Editing Fortran source files 11

Compiling with XL Fortran 12

Invoking the compiler 12

Compiling Fortran 95, or Fortran 90 programs . . 12

Compiling Fortran 2003 programs 13

Compiling applications that require threadsafe

components (PPU only) 14

Specifying compiler options 14

XL Fortran input and output files 15

Linking your compiled applications with XL Fortran 15

Compiling and linking in separate steps 16

Embedding compiled SPU code into compiled

PPU code 16

XL Fortran compiler diagnostic aids 16

Debugging compiled applications 16

Notices 17

Trademarks and service marks 19

Index 21

© Copyright IBM Corp. 1998, 2007 iii

iv Getting Started with XL Fortran

About this document

This document contains overview and basic usage information for the IBM® XL

Fortran for Multicore Acceleration for Linux®, V11.1 compiler.

Who should read this document

This document is intended for Fortran developers who are looking for introductory

overview and usage information for XL Fortran. It assumes that you have some

familiarity with command-line compilers, a basic knowledge of the Fortran

programming language, and basic knowledge of operating system commands.

Programmers new to XL Fortran can use this document to find information on the

capabilities and features unique to the XL Fortran compiler.

How to use this document

XL Fortran provides several compiler invocation commands depending on source

code language levels and whether you are compiling for the PowerPC® Processor

Unit (PPU) or Synergistic Processor Units (SPUs). However, for convenience, this

document uses only the basic ppuxlf, and spuxlf invocation commands to describe

the actions of the Fortran compiler.

While this document covers information on configuring the compiler environment,

and compiling and linking Fortran applications using the XL Fortran compiler, it

does not include the following topics:

v Compiler installation: see the XL Fortran Installation Guide for information on

installing XL Fortran.

v Compiler options: see the XL Fortran Compiler Reference for detailed information

on the syntax and usage of compiler options.

v The Fortran programming language: see the XL Fortran Language Reference for

information on the syntax, semantics, and IBM implementation of the Fortran

programming language.

v Programming topics: see the XL Fortran Optimization and Programming Guide for

detailed information on developing applications with XL Fortran, with a focus

on program portability and optimization.

Conventions used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable

names, compiler options and

directives.

If you specify -O3, the compiler

assumes -qhot=level=0. To prevent

all HOT optimizations with -O3, you

must specify -qnohot.

© Copyright IBM Corp. 1998, 2007 v

Table 1. Typographical conventions (continued)

Typeface Indicates Example

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

The maximum length of the

trigger_constant in fixed source form

is 4 for directives that are continued

on one or more lines.

monospace Examples of program code,

command strings, or user-defined

names.

Also, specify the following runtime

options before running the program,

with a command similar to the

following: export

XLFRTEOPTS="err_recovery=no:
langlvl=90std"

Syntax diagrams

Throughout this document, diagrams illustrate XL Fortran syntax. This section will

help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

IBM XL Fortran extensions are marked by a number in the syntax diagram with

an explanatory note immediately following the diagram.

Program units, procedures, constructs, interface blocks and derived-type

definitions consist of several individual statements. For such items, a box

encloses the syntax representation, and individual syntax diagrams show the

required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([

and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

vi Getting Started with XL Fortran

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can

provide a list of these terms separated by commas.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

About this document vii

Examples

The examples in this document, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

Related information

The following sections provide information on documentation related to XL

Fortran:

v “IBM XL Fortran publications”

v “Other IBM publications” on page ix

IBM XL Fortran publications

XL Fortran provides product documentation in the following formats:

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the XL Fortran Installation Guide.

v PDF documents

PDF documents are located by default in the doc/en_US/pdf/ directory.

��

(1)

EXAMPLE

char_constant

a

b

c

d

�

 ,

e

name_list

��

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,

you must put a comma between each. (The _list syntax is equivalent to the previous

syntax for e.)

viii Getting Started with XL Fortran

The following files comprise the full set of XL Fortran product manuals:

 Table 2. XL Fortran PDF files

Document title

PDF file

name Description

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Installation

Guide, GC23-8523-00

install.pdf Contains information for installing XL Fortran

and configuring your environment for basic

compilation and program execution.

Getting Started with IBM

XL Fortran for Multicore

Acceleration for Linux,

V11.1, GC23-8524-00

getstart.pdf Contains an introduction to the XL Fortran

product, with information on setting up and

configuring your environment, compiling and

linking programs, and troubleshooting

compilation errors.

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Compiler

Reference, SC23-8522-00

cr.pdf Contains information about the various

compiler options and environment variables.

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Language

Reference, SC23-8521-00

lr.pdf Contains information about the Fortran

programming language as supported by IBM,

including language extensions for portability

and conformance to non-proprietary standards,

compiler directives and intrinsic procedures.

IBM XL Fortran for

Multicore Acceleration for

Linux, V11.1 Optimization

and Programming Guide,

SC23-8525-00

opg.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls, floating-point

operations, input/output, application

optimization and parallelization, and the XL

Fortran high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe

Reader, you can download it (subject to license terms) from the Adobe Web site

at http://www.adobe.com.

More documentation related to XL Fortran including redbooks, white papers,

tutorials, and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/fortran/xlfortran/library

Other IBM publications

v Specifications, white papers, and other technical documents for the Cell

Broadband Engine™ architecture are available at http://www.ibm.com/chips/
techlib/techlib.nsf/products/Cell_Broadband_Engine.

v The Cell Broadband Engine resource center, at http://www.ibm.com/
developerworks/power/cell, is the central repository for technical information,

including articles, tutorials, programming guides, and educational resources.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

Fortran documentation, send your comments by e-mail to compinfo@ca.ibm.com.

About this document ix

http://www.adobe.com
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/developerworks/power/cell/
http://www.ibm.com/developerworks/power/cell/

Be sure to include the name of the document, the part number of the document,

the version of XL Fortran, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

x Getting Started with XL Fortran

Chapter 1. Introducing XL Fortran

IBM XL Fortran for Multicore Acceleration for Linux, V11.1 is an advanced,

high-performance compiler that can be used for developing complex,

computationally intensive programs.

This section discusses the features of the XL Fortran compiler at a high level. It is

intended for people who are evaluating the compiler, and for new users who want

to find out more about the product.

Commonality with other IBM compilers

IBM XL Fortran for Multicore Acceleration for Linux, V11.1 is part of a larger

family of IBM C, C++, and Fortran compilers.

These compilers are derived from a common code base that shares compiler

function and optimization technologies for a variety of platforms and

programming languages, such as IBM AIX®, IBM Blue Gene/L, IBM Blue Gene/P,

IBM i5/OS®, selected Linux distributions, IBM z/OS®, and IBM z/VM®. The

common code base, along with compliance with international programming

language standards, helps support consistent compiler performance and ease of

program portability across multiple operating systems and hardware platforms.

IBM XL Fortran for Multicore Acceleration for Linux, V11.1

IBM XL Fortran for Multicore Acceleration for Linux, V11.1 is the latest addition to

the IBM XL family of compilers. It adopts proven high-performance compiler

technologies used in its compiler family predecessors, and adds new features

tailored to exploit the unique performance capabilities of processors compliant

with the new Cell Broadband Engine architecture.

This version of XL Fortran is a cross-compiler. First, you compile your applications

on an IBM System p™ compilation host running Red Hat Enterprise Linux 5.1

(RHEL 5.1). Then you move the executable application produced by the compiler

onto a Cell/B.E.™ system also running the RHEL 5.1 Linux distribution. The

Cell/B.E. system will be the execution host where you will actually run your

compiled application.

About the Cell Broadband Engine architecture

The Cell Broadband Engine architecture specification describes a new single-chip

multiprocessor designed to support media-intensive applications.

At the heart of the new multiprocessor is the PowerPC Processor Unit (PPU). The

PPU is a 64-bit processor fully compliant with the Power Architecture™ standard,

and capable of running both operating systems and applications. The

multiprocessor also incorporates a set of eight Synergistic Processor Units (SPUs)

into its design. The SPUs are optimized for running computationally intensive

applications, operate independently of each other, and can access memory shared

between all SPUs and the PPU.

© Copyright IBM Corp. 1998, 2007 1

In operation, the PPU runs the operating system and performs high-level

application control, while the SPUs divide and perform an application’s

computational work between them.

For more information on the Cell Broadband Engine architecture, see "Cell

Broadband Engine Architecture from 20,000 feet" at http://www.ibm.com/
developerworks/power/library/pa-cbea.html.

A highly configurable compiler

XL Fortran offers you a wealth of features to let you tailor the compiler to your

own unique compilation requirements.

Compiler invocation and linking commands

XL Fortran compiles PPU and SPU program code in separate steps using

compiler invocation commands targeted specifically for each type of

program code.

 Several versions of PPU-specific compiler invocation commands are

provided. In most cases, you should compile using the basic ppuxlf

compiler invocation command, but other variants are also provided to help

you meet special compilation needs.

SPU-specific invocation commands are also provided with spuxlf and its

variants.

For detailed information about compiler invocation commands provided

with XL Fortran, see ″Compiling XL Fortran programs″ in the XL Fortran

Compiler Reference.

Compiler options

You can choose from a large selection of compiler options to control

compiler behavior. Different categories of options help you to debug your

2 Getting Started with XL Fortran

http://www.ibm.com/developerworks/power/library/pa-cbea.html
http://www.ibm.com/developerworks/power/library/pa-cbea.html

applications, optimize and tune application performance, select language

levels and extensions for compatibility with non-standard features and

behaviors supported by other Fortran compilers, and perform many other

common tasks that would otherwise require changing the source code.

 XL Fortran lets you specify compiler options through a combination of

environment variables, compiler configuration files, command line options,

and compiler directive statements embedded in your program source.

For more information about XL Fortran compiler options, see ″Specifying

options on the command line″ in the XL Fortran Compiler Reference.

Language standards compliance

The compiler supports the following programming language specifications for

Fortran:

v ANSI X3.9-1978 (referred to as FORTRAN 77)

v ISO/IEC 1539-1:1991(E) and ANSI X3.198-1992 (referred to as Fortran 90 or

F90)

v ISO/IEC 1539-1:1997 (referred to as Fortran 95 or F95)

v Extensions to the Fortran 95 standard:

– Industry extensions that are found in Fortran products from various

compiler vendors

– Extensions specified in SAA® Fortran
v Most of the Fortran 2003 standard, except for derived type parameters, but

including object-oriented programming, as described in “Enhanced support

for Fortran 2003”

v Common Fortran language extensions defined by other compiler vendors,

in addition to those defined by IBM

In addition to the standardized language levels, XL Fortran supports many

industry language extensions, including extensions to support vector

programming.

See ″Language standards″ in the XL Fortran Language Reference for more

information about Fortran language specifications and extensions.

Enhanced support for Fortran 2003

XL Fortran supports many Fortran 2003 standard features, including:

v BIND(C) for portable interoperability with C code

v Allocatable objects beyond just Fortran 95 arrays

v Stream I/O support (PPU only)

v ASSOCIATE and ENUM statements

v READ with BLANK= and PAD= specifiers (PPU only)

v WRITE with DELIM= specifier (PPU only)

v IEEE and Fortran environment modules (PPU only)

This is one of the most complete Fortran 2003 implementation currently available,

with Derived Type Parameters being the only major feature not yet implemented.

Chapter 1. Introducing XL Fortran 3

Fortran 2003 compiler invocations and file types

New compiler invocation commands instruct the compiler to adhere more closely

to Fortran 2003 language standards when compiling your applications. The new

invocations are:
v ppuxlf2003, spuxlf2003

v ppuxlf2003_r (for threaded applications)

v ppuf2003, spuf2003

These invocations provide partial compliance to the Fortran 2003 standard. You can

obtain behavior that complies to the Fortran 2003 standard by doing the following:

1. Set the XLFRTEOPTS environment variable to

"err_recovery=no:langlvl=2003std:iostat_end=2003std:internal_nldelim=2003std"

2. Invoke the compiler with the following option settings: "-qlanglvl=2003std

-qnodirective -qnoescape -qextname -qfloat=nomaf:rndsngl:nofold

-qnoswapomp -qstrictieeemod"

In addition to new compiler invocations, this release of XL Fortran also adds

support for new filename extensions:
v .f03

v .F03 (invokes the C preprocessor before compiling)

Additional Fortran 2003 enhancements

XL Fortran offers enhanced compliance with the Fortran 2003 standard, including:

v Implementation of the full Fortran 2003 object-oriented programming model,

including:

– Type extension

– Type-bound procedures

– Type finalization

– Polymorphism and runtime type determination including the SELECT TYPE

construct

– Abstract and generic interfaces

– Declaration of abstract types and deferred bindings

– PASS attribute
v I/O enhancements (PPU only)

– User-defined derived type I/O

– New I/O specifiers including SIGN= and DECIMAL= (DC and DP edit

descriptors)

– Asynchronous I/O as defined by Fortran 2003 including the WAIT statement

– User-specifed control of rounding during format conversion using the

ROUND= specifier and new edit descriptors

– Handling of IEEE infinity and not-a-number in REAL and COMPLEX editing

– Support of PAD= specifier on INQUIRE operations
v Scoping and data manipulation enhancements

– Renaming of defined operators on USE statements

– Fortran 2003 VOLATILE statement

– MAX, MIN, MAXLOC, MINLOC, MAXVAL, and MINVAL intrinsics for

character types

– COMPLEX literals

– Pointer assignment and initialization expression enhancements

4 Getting Started with XL Fortran

– Improved structure constructors

– Allocatable enhancements including resizing on assignment and

MOVE_ALLOC intrinsic

– Explicit type specification in an array constructor
v Procedure enhancements

– Generic bindings for interfaces, defined operators, and defined assignment

– VALUE attribute for characters of length greater than one and derived types

with allocatable components

– Procedure pointers, procedure declaration statement, and procedure pointers

as derived type components

– Generalization of the MODULE PROCEDURE statement

– Deferred CHARACTER length
v Intrinsic Function Enhancements

– Allow REAL type for COUNT_RATE argument of SYSTEM_CLOCK

– Allow boz-literal constants on INT, REAL, CMPLX, and DBL intrinsics

– Allow a new KIND argument on all instrinsics mandated by Fortran 2003

– Returning signed zero results from the ATAN2, LOG, and SQRT intrinsics

– Added SELECTED_CHAR_KIND intrinsic
v Other enhancements

– Enhanced STOP statement (PPU only)

– Increased the maximum number of continuation lines

Source-code migration and conformance checking

XL Fortran helps protect your investment in your existing Fortran source code by

providing compiler invocation commands that instruct the compiler to compile

your application code to a specific language level and warn you if it finds

constructs and keywords that do not conform to the specified language level. You

can also use the -qlanglvl compiler option to specify a given language level, and

the compiler will issue warnings if language elements in your program source do

not conform to that language level. Additionally, you can name your source files

with common filename extensions such as .f77, .f90, f95, or .f03, then use the

generic compiler invocations such as ppuxlf or ppuxlf_r to automatically select the

appropriate language-level appropriate to the filename extension.

See ″-qlanglvl″ in the XL Fortran Compiler Reference for more information.

Tools and utilities

new_install

After you install IBM XL Fortran for Multicore Acceleration for Linux,

V11.1, running this utility will configure the compiler for use on your

system.

xlf_configure

Use this utility to create custom compiler configuration files containing

your own custom sets of compiler option default settings.

cleanpdf command (PPU only)

A command related to profile-directed feedback (PDF), cleanpdf removes

all profiling information from the directory to which profile-directed

feedback data is written.

Chapter 1. Introducing XL Fortran 5

resetpdf command (PPU only)

The current behavior of the cleanpdf command is the same as the resetpdf

command, and is retained for compatibility with earlier releases on other

platforms.

Automated program analysis and transformations

Significant performance improvements are possible with relatively little

development effort because the compiler is capable of performing sophisticated

program analysis and transformation of your program code. For example, the

compiler can:

Automatically generate code overlays for the SPUs

Specifying -qipa=overlay instructs the compiler to automatically generate

code overlays for the SPUs that allow two or more code segments to be

loaded at the same physical address as they are needed. This feature lets

developers create SPU programs that would otherwise be too large to fit in

the local memory store of the SPUs. In addition, the compiler also provides

the -qipa=overlayproc and -qipa=nooverlayproc compiler options to give

developers direct control over generation of code overlays on specified

procedures.

 See Using automatic code overlays in the XL Fortran Optimization and

Programming Guide for more information.

Perform automatic SIMD vectorization of your program code

When the -qhot=simd compiler option is in effect, the compiler takes

certain operations that are performed in a loop on successive elements of

an array, and converts them into a call to a vector instruction. This call

calculates several results at one time, which is faster than calculating each

result sequentially. Applying this suboption is useful for applications with

significant image processing demands.

 Not all loops can be successfully vectorized. However, specifying the

-qreport compiler option together with -qhot=simd will cause the compiler

to generate diagnostic information that can help you improve the efficiency

of your loops.

See for -qhot and -qreport in the XL Fortran Compiler Reference for more

information.

Use interprocedural analysis (IPA) to optimize across program files

IPA can result in significant performance improvements. You can specify

interprocedural analysis on the compile step only or on both compile and

link steps in ″whole program″ mode . Whole program mode expands the

scope of optimization to an entire program unit, which can be an

executable or shared object.

 See -qipa in the XL Fortran Compiler Reference for more information.

Program optimization

XL Fortran provides several compiler options that can help you control the

optimization of your programs. With these options, you can:

v Select different levels of compiler optimizations

v Control optimizations for loops, floating point, and other types of operations

XL Fortran also provides optimization features specifically tailored to exploit the

unique performance capabilities of Cell Broadband Engine processors, including

6 Getting Started with XL Fortran

specialized data types and highly optimized directives that you can use in your

application code to perform common computational needs.

Optimizing transformations can give your application better overall execution

performance. Fortran provides a portfolio of optimizing transformations tailored to

various supported hardware. These transformations can:

v Reduce the number of instructions executed for critical operations.

v Restructure generated object code to make optimal use of the Cell Broadband

Engine architecture.

v Improve the usage of the memory subsystem.

Note: For code targeting the SPU, we recommend compiling and linking with the

-O5 or -qopt=5 compiler options to get the maximum performance from

your application.

For more information, see:

v "Optimizing your applications" in the XL Fortran Optimization and Programming

Guide

v ″Optimization and tuning options″ in the XL Fortran Compiler Reference

v To read an article about optimizing performance, search the Power Architecture

technical library at www.ibm.com/developerworks/views/power/library.jsp for

″cell broadband tips″.

Diagnostic listings

The compiler output listing can provide important information to help you

develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or

omit. For more information about the applicable compiler options and the listing

itself, refer to ″Understanding XL Fortran compiler listings″ in the XL Fortran

Compiler Reference.

Symbolic debugger support

You can instruct XL Fortran to include debugging information in your compiled

objects. That information can be examined by the debuggers provided by the IBM

Software Developer Kit (SDK) for Multicore Acceleration V3.0 to help you debug

your programs.

Chapter 1. Introducing XL Fortran 7

http://www.ibm.com/developerworks/views/power/library.jsp

8 Getting Started with XL Fortran

Chapter 2. Setting up and customizing XL Fortran

Setting up the IBM XL Fortran for Multicore Acceleration for Linux, V11.1 compiler

on your compilation host entails the following main steps:
1. Installing the IBM Software Developer Kit (SDK) for Multicore

Acceleration V3.0 development tools on your compilation host.

2. Installing the XL Fortran compiler and runtime environment on your

compilation host.

To run completed applications, you will also need to install the SDK and the

compiler runtime onto your execution host.

For complete prerequisite and installation information, refer to the XL Fortran

Installation Guide.

© Copyright IBM Corp. 1998, 2007 9

10 Getting Started with XL Fortran

Chapter 3. Developing applications with XL Fortran

Basic Fortran application development consists of repeating cycles of editing,

compiling, linking, and running.

Note:

1. Before you can use the compiler, you must first ensure that XL Fortran and the

IBM Software Developer Kit (SDK) for Multicore Acceleration V3.0 are properly

installed and configured. For more information see the XL Fortran Installation

Guide.

2. To learn about writing Fortran programs, refer to the XL Fortran Language

Reference.

The compiler phases

A typical compiler invocation executes some or all of the following activities in

sequence. For link time optimizations, some activities will be executed more than

once during a compilation. As each program runs, the results are sent to the next

step in the sequence.

1. Preprocessing of source files

2. Compilation, which may consist of the following phases, depending on

what compiler options are specified:

a. Front-end parsing and semantic analysis

b. Loop transformations

c. High-level optimization

d. Low-level optimization

e. Register allocation

f. Final assembly
3. Assemble the assembly (.s) files, and the unpreprocessed assembler (.S)

files after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when

you compile your application. To see the amount of time the compiler spends in

each phase, specify -qphsinfo.

Editing Fortran source files

To create Fortran source programs, you can use any text editor available to your

system. Source programs must be saved using a recognized file name suffix. See

the “XL Fortran input and output files” on page 15 for a list of suffixes recognized

by XL Fortran.

For a Fortran source program to be a valid program, it must conform to the

language definitions specified in the XL Fortran Language Reference.

© Copyright IBM Corp. 1998, 2007 11

Compiling with XL Fortran

Compiling applications for a Cell/B.E. processor can involve multiple steps,

depending on the complexity of your application. For a typical application

compiling code for both the PPU and the SPU, you may need to:

1. Compile application code targeted to the PPU.

2. Compile application code targeted to the SPU, then embed the compiled SPU

code into PPU code.

3. Perform the final PPU link.

Invoking the compiler

To compile a source program, use the basic invocation syntax shown below:

��

(1)

ppuxlf

(2)

spuxlf

�

�

input_file

compiler_option

��

Notes:

1 Basic invocation to compile Fortran PPU code.

2 Basic invocation to compile Fortran SPU code.

Compile your application code using a compiler invocation command appropriate

to the type of code you are compiling. XL Fortran provides one set of compiler

invocation commands for compiling PPU application code, and another set for

compiling SPU application code. Application code targeted to the PPU must be

compiled and linked using PPU-specific compiler invocations. Similarly,

SPU-specific code must be compiled and linked using SPU-specific compiler

invocations.

The compiler invocation commands perform all necessary steps to compile Fortran

source files and link the object files and libraries into an executable program.

Compiled PPU executable objects can be run on the execution host, and will load

compiled SPU executable objects at run time as required.

For new application work, you should compile with ppuxlf, spuxlf, or a thread

safe counterpart.

Additional invocation commands are available to meet specialized compilation

needs, primarily to provide explicit compilation support for different levels and

extensions of the Fortran language. See ″Compiling XL Fortran programs″ in the

XL Fortran Compiler Reference for more information about compiler invocation

commands available to you.

Compiling Fortran 95, or Fortran 90 programs

Use the following invocations (or their variants) to conform more closely to their

corresponding Fortran language standards:

Fortran 95 ppuf95, spuf95, ppuxlf95, spuxlf95

Fortran 90 ppuf90, spuf90, ppuxlf90, spuxlf90

12 Getting Started with XL Fortran

These compiler invocations accept Fortran 90 free source form by default. To use

fixed source form with these invocations, you must specify the -qfixed

command-line option.

I/O formats are slightly different between these commands and the other

commands. I/O formats for the Fortran 95 compiler invocations are also different

from those of Fortran 90 invocations. We recommend that you switch to the

Fortran 95 formats for data files whenever possible.

By default, these invocation commands do not conform completely to their

corresponding Fortran language standards. If you need full compliance, compile

with the following additional compiler option settings:

For full Fortran 90 compliance:

-qlanglvl=90std -qnodirective -qnoescape -qextname

-qfloat=nomaf:nofold

For full Fortran 95 compliance:

-qlanglvl=95std -qnodirective -qnoescape -qextname

-qfloat=nomaf:nofold

Also, specify the following runtime options before running the program, with a

command similar to the following:

For full Fortran 90 compliance:

export XLFRTEOPTS="err_recovery=no:langlvl=90std"

For full Fortran 95 compliance:

export XLFRTEOPTS="err_recovery=no:langlvl=95std"

The default settings are intended to provide the best combination of performance

and usability, so you should change them only when absolutely required. Some of

the options mentioned above are only required for compliance in very specific

situations. For example, you would need to specify -qextname only when an

external symbol, such as a common block or subprogram, is named main.

Compiling Fortran 2003 programs

Use the following invocations (or their variants) to conform more closely to their

corresponding Fortran language standards:

Fortran 2003 ppuf2003, spuf2003, ppuxlf2003, spuxlf2003

These compiler invocations are the preferred compiler invocation commands that

you should use when creating and compiling new applications.

They accept Fortran 90 free source form by default. To use fixed source form with

these invocations, you must specify the -qfixed command-line option.

By default, these invocation commands do not conform completely to the Fortran

2003 language standard. If you need full compliance, compile with the following

additional compiler option settings:

-qlanglvl=2003std -qnodirective -qnoescape -qextname

-qfloat=nomaf:nofold -qstrictieeemod

Also, specify the following run time options before running the program, with a

command similar to the following:

Chapter 3. Developing applications with XL Fortran 13

export XLFRTEOPTS="err_recovery=no:langlvl=2003std:

 iostat_end=2003std:internal_nldelim=2003std"

The default settings are intended to provide the best combination of performance

and usability, so you should change them only when absolutely required. Some of

the options mentioned above are only required for compliance in very specific

situations. For example, you would need to specify -qextname only when an

external symbol, such as a common block or subprogram, is named main.

-qxlf2003 compiler option

The -qxlf2003 compiler option provides backward compatibility with XL Fortran

and the Fortran 2003 standard for certain aspects of the language.

When compiling with the Fortran 2003 compiler invocations, the default setting is

-qxlf2003=polymorphic. This setting instructs the compiler to allow polymorphic

items such as the CLASS type specifier and SELECT TYPE construct in your

Fortran application source.

For all other compiler invocations, the default is -qxlf2003=nopolymorphic.

Compiling applications that require threadsafe components

(PPU only)

XL Fortran provides thread safe compiler invocation commands that you can use

when compiling applications for use in multiprocessor environments. These

invocations are similar to their corresponding base compiler invocations, except

that they link and bind compiled objects to thread safe components and libraries.

The generic XL Fortran thread safe compiler invocation is:
v ppuxlf_r, spuxlf_r

XL Fortran provides additional thread safe invocations to meet specific compilation

requirements. See ″Invoking the Compiler″ in the XL Fortran Compiler Reference for

more information.

POSIX Pthreads API support

XL Fortran supports thread programming with the 1003.1- (POSIX) standard

Pthreads API.

Specifying compiler options

Compiler options perform a variety of functions, such as setting compiler

characteristics, describing the object code to be produced, controlling the diagnostic

messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command-line with command-line compiler options

v In your source code using directive statements

v In a makefile

v In the stanzas found in a compiler configuration file

v Or by using any combination of these techniques

It is possible for option conflicts and incompatibilities to occur when multiple

compiler options are specified. To resolve these conflicts in a consistent fashion, the

compiler usually applies the following general priority sequence to most options:

14 Getting Started with XL Fortran

1. Directive statements in your source file override command-line settings

2. Command-line compiler option settings override configuration file settings

3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a

command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options do not follow the priority sequence described above.

For example, the -I compiler option is a special case. The compiler searches

any directories specified with -I in the xlf.cfg file before it searches the

directories specified with -I on the command-line. The option is cumulative

rather than preemptive.

See the XL Fortran Compiler Reference for more information about compiler

options and their usage.

You can also pass compiler options to the linker, assembler, and preprocessor. See

″Specifying options on the command line″ in the XL Fortran Compiler Reference for

more information about compiler options and how to specify them.

XL Fortran input and output files

The file types listed below are recognized by XL Fortran. For detailed information

about these and additional file types used by the compiler, see ″Types of input

files″ and ″Types of output files″ in the XL Fortran Compiler Reference.

 Table 3. Input file types

Filename extension Description

.f, .F, .f77, .F77, .f90, .F90,

.f95, .F95, .f03, .F03

Fortran source files

.mod Module symbol files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

 Table 4. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.mod Module symbol files

.lst Listing files

.o Object files

.s Assembler files

Linking your compiled applications with XL Fortran

By default, you do not need to do anything special to link an XL Fortran program.

The compiler invocation commands automatically call the linker to produce an

executable output file. For example, running the following command:

ppuxlf file1.f file2.o file3.f

Chapter 3. Developing applications with XL Fortran 15

compiles and produces the object files file1.o and file3.o, then all object files

(including file2.o) are submitted to the linker to produce one executable.

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.

ppuxlf -c file1.f # Produce one object file (file1.o)

ppuxlf -c file2.f file3.f # Or multiple object files (file2.o, file3.o)

ppuxlf file1.o file2.o file3.o # Link object files with default libraries

It is usually best to execute the linker through the compiler invocation command,

because it passes additional ppu-ld or spu-ld options and library names to the

linker automatically.

Embedding compiled SPU code into compiled PPU code

The following string of compiler commands shows how you might compile an

application with both PPU and SPU program segments, and then embed the

compiled SPU application code into the compiled PPU application code.

spuxlf95 -c spu_file.f

spuxlf95 -o spu_file spu_file.o

ppu32-embedspu spu_file spu_file spu_file-embed.o

ppuxlf95 -c ppu_file.f

ppuxlf95 ppu_file.o spu_file-embed.o

For more information about compiling and linking your programs, see ″Linking XL

Fortran programs″ in the XL Fortran Compiler Reference.

XL Fortran compiler diagnostic aids

XL Fortran issues diagnostic messages when it encounters problems compiling

your application. You can use these messages and other information provided in

compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that

can help you resolve problems with your application, see the following topics in

the XL Fortran Compiler Reference:

v ″Understanding XL Fortran compiler listings″

v ″Error checking and debugging options″

v ″Listings, messages, and compiler information options″

Debugging compiled applications

Specifying the -g or -qlinedebug compiler options at compile time instructs the XL

Fortran compiler to include debugging information in compiled output.

You can then use any symbolic debugger to step through and inspect the behavior

of your compiled application.

Optimized applications pose special challenges when debugging. When debugging

highly optimized applications, you should consider using the -qoptdebug compiler

option. For more information about debugging, see "Optimizing your applications"

in the XL Fortran Optimization and Programming Guide.

16 Getting Started with XL Fortran

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2007 17

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

18 Getting Started with XL Fortran

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2007. All rights reserved.

This software and documentation are based in part on the Fourth Berkeley

Software Distribution under license from the Regents of the University of

California. We acknowledge the following institution for its role in this product’s

development: the Electrical Engineering and Computer Sciences Department at the

Berkeley campus.

Trademarks and service marks

Company, product, or service names identified in the text may be trademarks or

service marks of IBM or other companies. Information on the trademarks of

International Business Machines Corporation in the United States, other countries,

or both is located at http://www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries

in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Cell Broadband Engine is a trademark of the Sony Corporation and/or the Sony

Computer Entertainment, Inc., in the United States, other countries, or both and is

used under license therefrom.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 19

http://www.ibm.com/legal/copytrade.shtml

20 Getting Started with XL Fortran

Index

Special characters
.f and .F files 15

.i files 15

.lst files 15

.o files 15

.s files 15

.S files 15

A
assembler

source (.s) files 15

source (.S) files 15

C
code optimization 6

compilation
sequence of activities 11

compiler
architecture 1

controlling behavior of 14

invoking 12

running 12

compiler options
conflicts and incompatibilities 14

specification methods 14

D
debugger support 16

output listings 16

symbolic 7

debugging 16

debugging compiled applications 16

debugging information, generating 16

E
editing source files 11

executable files 15

executing the compiler 12

executing the linker 16

F
files

editing source 11

input 15

output 15

Fortran 2003
compiling programs written for 13

Fortran 90
compiling programs written for 12

I
input files 15

invocation commands 12

invoking the compiler 12

L
language support 3

linking process 15

listings 15

M
migration

source code 15

O
object files 15

creating 16

linking 16

optimization
programs 6

output files 15

P
performance

optimizing transformations 7

POSIX Pthreads
API support 14

problem determination 16

R
running the compiler 12

S
source files 15

source-level debugging support 7

symbolic debugger support 7

T
tools 5

cleanpdf utility 5

configuration file utility 5

new install configuration utility 5

new_install utility 5

resetpdf utility 5

xlf_configure 5

U
utilities 5

cleanpdf 5

utilities (continued)
new_install 5

resetpdf 5

xlf_configure 5

V
vac.cfg file 15

© Copyright IBM Corp. 1998, 2007 21

22 Getting Started with XL Fortran

���

Program Number: 5724-T44

GC23-8524-00

	Contents
	About this document
	Who should read this document
	How to use this document
	Conventions used in this document
	Related information
	IBM XL Fortran publications
	Other IBM publications

	How to send your comments

	Chapter 1. Introducing XL Fortran
	Commonality with other IBM compilers
	IBM XL Fortran for Multicore Acceleration for Linux, V11.1
	About the Cell Broadband Engine architecture

	A highly configurable compiler
	Language standards compliance
	Enhanced support for Fortran 2003
	Fortran 2003 compiler invocations and file types
	Additional Fortran 2003 enhancements

	Source-code migration and conformance checking

	Tools and utilities
	Automated program analysis and transformations
	Program optimization
	Diagnostic listings
	Symbolic debugger support

	Chapter 2. Setting up and customizing XL Fortran
	Chapter 3. Developing applications with XL Fortran
	The compiler phases
	Editing Fortran source files
	Compiling with XL Fortran
	Invoking the compiler
	Compiling Fortran 95, or Fortran 90 programs
	Compiling Fortran 2003 programs
	-qxlf2003 compiler option

	Compiling applications that require threadsafe components (PPU only)
	POSIX Pthreads API support

	Specifying compiler options
	XL Fortran input and output files

	Linking your compiled applications with XL Fortran
	Compiling and linking in separate steps
	Embedding compiled SPU code into compiled PPU code

	XL Fortran compiler diagnostic aids
	Debugging compiled applications

	Notices
	Trademarks and service marks

	Index

