

CBASIC Application ToolsCBASIC Application ToolsCBASIC Application ToolsCBASIC Application Tools
Toshiba Global Commerce SolutionsToshiba Global Commerce SolutionsToshiba Global Commerce SolutionsToshiba Global Commerce Solutions

9/10/2013

 2

1.0 Purpose...3

2.0 CBASIC Runtimes Enhancements..4

2.1 Error Trapping – Terminal and Controller ... 4

2.2 Call Tracing in Application Runtimes – Terminal and Controller .. 4

2.3 Timing in Milliseconds – Terminal and Controller .. 5

2.4 Unresumed Error Trapping – Controller ... 6

2.5 Integer Tracing – Terminal.. 7

2.6 SWI Disable Count – Terminal and Controller... 9

2.7 Timer Resolution on 4690 V6 "Enhanced" – Terminal .. 10

2.8 Heap Error Scanning – Terminal .. 10

2.9 Lock and Unlock Tracing – Terminal .. 10

2.10 Heap Allocate and Free Tracing – Terminal ... 11

2.11 Tracing of Runtime Entry Points – Terminal ... 12

3.0 Dump Analysis – APPDUMP ...15

3.1 APPDUMP Crashes. Is that Tool broken?... 17

3.2 What Application is Running?.. 17

3.3 What is the general health of the Application? .. 18

3.4 Obtaining an Interlisting ... 22

3.5 SA Global Variables useful for Problem Analysis ... 23

4.0 Other Tools...24

4.1 POSTLINK .. 24

4.2 SETTRACE... 24

4.3 SETTRAP.. 25

5.0 History of Runtimes Changes...27

5.1 Terminal Runtimes SB286LT.L86... 27

5.2 Controller Runtimes SB286L.L86 ... 28

6.0 SA Debugging Hooks ..29

6.1 EAMTRACE .. 29

7.0 License Agreement ...31

 3

1.0 Purpose

The Application Change Team has developed some tools and Serviceability improvements in the CBASIC
Runtimes that we expect will improve the serviceability and supportability of the CBASIC Applications on the
4690 Operating System (OS). The executables found at the FTP link associated with this document run on
Windows™ (.EXE) and/or 4690 OS (.286), depending on the extension.

The function in the runtimes included here is being shipped with the 4690 OS on the Optional diskettes. As
long as you have a relatively recent level of the OS (since January 2005), you have runtimes that include the
most important enhancements..

 4

2.0 CBASIC Runtimes Enhancements

There are two versions of the Runtimes; SB286L.L86, which runs on the Controller for tasks such as Menu-
driven applications, Checkout Support and Background tasks, and SB286LT.L86, which is only used in the
Terminal to support Terminal Sales activities. Serviceability improvements were added to both, however the
specific set of serviceability improvements implemented for Controller applications does not exactly match
the set of serviceability improvements for Terminal applications.

These changes were added over time, so the specific feature you want or need might not be in the version
of the Runtimes you are currently using. See the tables on page 27 to determine the changes made for a
specific version of the Runtimes.

2.1 Error Trapping – Terminal and Controller

In order to assist programmers in isolating coding errors that cannot be re-created with the debugger, it is a
usual practice to force a dump when the unique error occurs. One way is to add a test in a user exit, and a
call to ADXSERVE so that a dump occurs at that point. While this is not a ‘bad’ thing to do, it requires a
source code change. Trapping the error in this manner also causes the stack to become ‘reset’ and it
becomes difficult to determine where the problem occurred in the application. If testing for the trap can be
moved into the runtimes, then the dump can be taken while the stack is intact and the dump becomes much
more valuable.

The runtime modules (SB286LT.L86 and SB286L.L86) have benign, inactive code that can be activated by
the SETTRAP program. You do not normally have to change your source code or relink your program to
use this type of trap! When the specific runtime error occurs, and optionally a session number associated
with that error, the application abends at that point and a dump is captured if the Application Dump flag was
set to Y. The dump will have a stack that identifies the active call path and Code Address execution point
where the failure occurred. The Application dump flag is set for Controller applications in "Controller
Configuration" - "Controller Characteristics", or is set for Terminal applications in "Generic Terminal
Configuration" - "Load Definitions" - "General Settings".

This Runtime trap only has value when the error that is occurring is fairly unique (it does not happen
ordinarily). For example, you would not want to trap on an OE error unless it was for a specific session
number. You also would not want to trap an OE on session 64, because session 64 is used for many
different files.

See SETTRAP on page 25 for instructions on how to run that tool.

2.2 Call Tracing in Application Runtimes – Terminal and Controller

In the TGCS CBASIC Terminal applications, code was added many years ago to save the module call path
into a string variable so that some determination can be made about the path through which the code
flowed. However, this is rudimentary, only exists in Terminal applications, and has proven to be of limited
use. A facility has been incorporated into the CBASIC runtimes that will save the address of each subroutine
or function call in a trace buffer. GOSUBs are not saved. This happens automatically and does not require
the application programmer to make any source code changes. The amount of code that was added to save
these calls is relatively small, so performance degradation is usually unnoticeable.

Couple this tracing with the new version of the 4690 Application Debugger or Application Dump Analyzer
(APPDUMP) and you will be able to see the actual call history that the application has performed. The new

 5

versions of the debugger and dump tool have been enhanced to display the name of the function or
subprogram in indented fashion, depending upon how deep the call is. For example:

TSTPEC01
 FORMAT.AMOUNT
 BINPACK4
TSPREC01

The default number of trace entries is 250. Some problems require a much larger trace buffer to diagnose.
See SETTRACE on page 24 for instructions on how increase the number of trace entries.

The SWI disable count and an ON ERROR counter are also saved in this trace. Both help to diagnose the
source of incorrect handling in the application or its ON ERROR routines. Refer to Knowledgebase article
"Why do programs abend with ERRN = 80004186?" for more information.

In TGCS Supermarket Application, IR50909 added code to the mainline EAMTS11C to call EAMTRACE as
the first call. The runtimes will take note of the address of the first call and will never trace any calls to that
function. The purpose of this is to reduce the noise of irrelevant EAMTRACE calls in this trace. If you do not
have that APAR installed, you can add these two lines at the beginning of the mainline (EAMTS11C.BAS):

DIM TS.TRACE(25) ! MODULE TRACE ARRAY
CALL EAMTRACE(5050H)! dummy call

In GSA, similar code can be added to the initialization so that the call to EMOD is done as the first call in the
execution of the program.

Beginning with Runtimes version 67 (February 2011), the two-letter ERR code and the ERRF session
number are unconditionally saved in the Call trace each time an error occurs. Two 16-bit integers are
shown in hex for each of these trace entries. The first integer is the hex value of the ERRF session number
that caused the error. The second integer is the two-letter ERR code, shown in hex. If both characters of
the ERR code are * or A through Z, then APPDUMP also shows the ERR code as a two-character string.
Here is an example. The error being traced is a CU error on session 50 (decimal).

185 14:09:21.158 2C 01 3 Runtimes trace: 0032 4355 "CU"

2.3 Timing in Milliseconds – Terminal and Controller

Most of the time, you can compare the time stamps of entries in the Application Call Trace to determine
where performance issues are introduced. Some classes of timing problems however are difficult to solve
without the use of a high-resolution timer and capturing of points in time using global variables that you
interpret from a dump. The one-second granularity provided by TIME$ is often too imprecise to determine
where time is being consumed in an application, because many events of concern can occur within a single
second.

CBASIC Runtimes V59 provides a new function for Terminal applications to obtain an INTEGER*4 value of
time. The returned value is the number of milliseconds past midnight for the current day. Use of this
function provides much better ability to determine where time is being consumed in an application.

As an example, you might want to know the average time needed to sell an item. You can insert calls to
MILLISECONDTIMER at strategic points in your code, subtract begin/end values, and then save the results
in global variables or arrays so that you can view them in a dump or periodically write them to a file. Values
can be saved as integers or can be converted to more useful forms such as “hh:mm:ss.xxx” for easier
interpretation by a person. Here is an example of use:

 6

 INTEGER*4 GLOBAL MILLISEC ! ms past midnight
 STRING GLOBAL MILLISEC$! hh:mm:ss.xxx
 ...

 ! This Runtimes function provides the time as
 ! the number of milliseconds past midnight.
 FUNCTION MILLISECONDTIMER EXTERNAL ! in runtimes
 INTEGER*4 MILLISECONDTIMER ! returns INTEGER
 END FUNCTION !

 ! This local function obtains the time in
 ! milliseconds past midnight, and converts
 ! it to a printable string of the form
 ! HH:MM:SS.mmm
 FUNCTION MILLISECONDTIMER$! ms past midnight
 STRING MILLISECONDTIMER$! returns STRING
 INTEGER*4 HOURS, MINS, SECS, MS

 MS = MILLISECONDTIMER ! call the Runtimes
 HOURS = MS/3600000 : MS = MS - HOURS*3600000
 MINS = MS/60000 : MS = MS - MINS *60000
 SECS = MS/1000 : MS = MS - SECS *1000

 MILLISECONDTIMER$ = RIGHT$("0"+STR$(HOURS),2) + \
 ":" + RIGHT$("0"+STR$(MINS),2) + \
 ":" + RIGHT$("0"+STR$(SECS),2) + \
 "." + RIGHT$("00"+STR$(MS),3)
 END FUNCTION !
 ...
 MILLISEC = MILLISECONDTIMER ! get integer time
 MILLISEC$ = MILLISECONDTIMER$! get time string

Typically you would use only one of the two calls shown at the bottom of the code snippet above. The first
gives an INTEGER*4 result. The second gives a printable string such as "10:32:54.356". If only the first
form is desired, you do not need to code any of the function MILLISECONDTIMER$. In either case,
FUNCTION MILLISECONDTIMER EXTERNAL must be declared.

2.4 Unresumed Error Trapping – Controller

This improvement attempts to identify functions or subroutines that allow an unresumed error to occur. It
does so by saving the SWI Disable count at the beginning of each function or subroutine call and comparing
it against the count when that particular function or subroutine returns. If the count is different, it usually
means that an error was not resumed. An RN error is raised at that point.

This new capability is disabled by default, but can be enabled by running SETTRAP MR (missing resume).
An RN error will be reported when a missing resume is detected. SETTRAP RN MR now does more than
just set a trap for RN and MR, although the MR error code is never actually raised. The MR specification
merely activates the dormant code in SB286LT.L86 to look for missing resumes. SETTRAP dated
02/20/2009 or later is required.

This new capability was used to quickly locate three unresumed errors in TGCS SA Checkout Support in
February 2009 (IO10055).

 7

2.5 Integer Tracing – Terminal

There are times when a specific application variable gets undesirably changed to a 'junk' value and you
cannot determine why or where. This design change can help.

You now have the ability to automatically trace the values of your choice of up to three integers that have
static scope (GLOBAL, or defined outside all functions and subroutines). The variables are traced every
time a CBASIC function or subroutine is called, in similar fashion like an entry in the Application Call Trace.

Your application program can call a new, integer-trace subroutine to indicate what variable should be traced
each time an entry is placed in the Application Call Trace. One, two or three such calls can be inserted.
These calls do not explicitly trace the integer at that point in time; they specify the address of the integer that
is to be traced from that point forward.

While APPDUMP is interpreting the Application Call Trace in a dump, it looks for these integer-trace entries,
and interprets them on the same line associated with the Application Call Trace entry where they were
saved.

For simplicity of implementation in the Runtimes, the number of variables to trace is limited to a maximum of
3, regardless of their size (1, 2 or 4 bytes each). All three can be I*1 or I*2 or I*4, or they can be any
combination of sizes, and can be established in any order. Tracing of Strings or Real variables is not
supported. Tracing of an Integer array or any of its elements is not supported.

To do Integer Tracing, you do not need to activate anything in the Runtimes, but you must make two types
of minor source code changes:

• Declare the trace subroutine(s) you intend to call. Here is an example declaration for each of the three
different subroutines.

 ! Trace 4-byte Integer
 SUB TRACEINTEGER4(I4) EXTERNAL
 INTEGER*4 I4
 END SUB

 ! Trace 2-byte Integer
 SUB TRACEINTEGER2(I2) EXTERNAL
 INTEGER*2 I2
 END SUB

 ! Trace 1-byte Integer
 SUB TRACEINTEGER1(I1) EXTERNAL
 INTEGER*1 I1
 END SUB

• Call the appropriate TRACEINTEGERx subroutine one time for each of the variables you want to trace.
You can use up to three CALLs. You determine the name of the subroutine to call based upon the size
of the variable you want to trace. Here is an example that shows how they are called:

 8

 INTEGER*4 GLOBAL GA.WAIT.TIME
 INTEGER*4 GLOBAL TS.NEG.FS.BAL
 INTEGER*2 GLOBAL TS.IN.IPL

 CALL DUMMY1

 CALL TRACEINTEGER4(GA.WAIT.TIME)
 CALL TRACEINTEGER4(TS.NEG.FS.BAL)
 CALL TRACEINTEGER2(TS.IN.IPL)

 CALL DUMMY2

 GA.WAIT.TIME = 5
 TS.NEG.FS.BAL = 3

 CALL DUMMY3

For the example above, here is the APPDUMP output (with some columns of the Application Call Trace
removed for brevity). Notice that in the APPDUMP trace below, variables GA.WAIT.TIME and
TS.NEG.FS.BAL changed values between the DUMMY2 and DUMMY3 calls. This is confirmed by
reviewing the source code above.

 There are 3 integer variables traced:
 051F:1C4E GA.WAIT.TIME
 051F:1C56 TS.NEG.FS.BAL
 051F:1B14 TS.IN.IPL

 SUB Application Call Trace
 (listed from oldest to newest):

 ### Time Name
GA.WAIT.TIME
 TS.NEG.FS.BAL
 TS.IN.IPL
00000000 00000000 0000 1 13:52:35.226 DUMMY1
00000000 00000000 0000 2 13:52:35.226 DUMMY2
00000005 00000003 0000 3 13:52:35.226 DUMMY3

You can call TRACEINTEGERx from within any source file, including user exits. You can place the first
TRACEINTEGERx call at any point in time, provided that it occurs before the point where you want to inspect
the trace. These calls do not need to occur during initialization, although that's a good place for them.

A single buffer for storing all of the Integer-Trace information is allocated from the Heap when the first call to
TRACEINTEGERx occurs. If no integers are traced, the buffer is not allocated. The size of the buffer is 12
bytes times the number of trace entries that you specified when you ran SETTRACE. If you did not run
SETTRACE, the default of 250 entries applies.

Because of when the Integer Trace buffer is allocated and variables begin to be traced, the APPDUMP
interpretation for entries prior to that point in time are undefined and can be misleading. Undefined values
usually show zero. That does not mean that they were zero at that point! Zero is the interpretation provided
when the values were not traced yet. All values for a traced variable that occurred after the point in time
when tracing for that variable began are correct.

Because you can only trace three integers, all TRACEINTEGERx calls after the third are ignored. Choose
your variables wisely.

Do not attempt to trace an element of any type of array, or a string variable. This trace will not show you
what you want, and could even cause an abend.

 9

You must call the correct SUB based upon the size of the Integer variable you are tracing. For example, to
trace an INTEGER*2 variable, you must call TRACEINTEGER2, rather than either of the other two
subroutines. If you mix types, the compiler will implement your call by copying the current contents of the
traced variable to a temporary location, and then passing that temporary location to the trace subroutine.
You will not get what you want. APPDUMP will usually report (Not Found) as the variable name if you
make this type of calling error.

In similar fashion, do not pass a stack variable to a TRACEINTEGERx subroutine. Those variables are
stored in a section of the stack that is constantly reused for any purpose. APPDUMP will usually report (Not
Found) for the name of those variables if you make this type of calling error.

Variables that are not GLOBAL, but are declared outside all functions or subroutines can be reliably traced
but will not be reported by name unless you furnish a CDV file. APPDUMP will report (Not Found) as their
name if you furnish a SYM file. Use of a GLOBAL name is preferable, because there can be more than one
instance of any given name for a local variable. If you can make them GLOBAL (even for just this test), do
so.

Traced variables are captured only at the points in time when each BASIC function or subroutine is called.
APPDUMP may show that the value of a traced variable is the same at the beginning of two adjacent function
or subroutine calls in the trace, but that does not prove that the value never changed between those calls.
Remember, this is a trace and not a trap. If a variable changed many times during the run of a single
function and was set back to its prior value before the function returns, the trace could lead you to believe
that the variable never changed in value, which is not true for this example.

GOSUBs and certain non-BASIC subroutines such as SUBSTR and MID$ do not add an entry to the
Application Call Trace, so therefore integers are not traced at those points either. If you need better
resolution, add dummy calls before and/or after places where you think a problem might be occurring.

Furthermore, if a traced integer is set to a bad value within a function or subroutine, and a dump occurs
before the next call, this trace will not show the bad value, and will not help you to know what line of code
caused the problem. It will, however suggest that the current function or subroutine caused the problem, not
some other function prior to it. As suggested above, you can modify your source code by inserting dummy
calls at test points to help narrow down the failure point when necessary.

For simplicity of implementation, four bytes are saved for all traced integers, even those of size 1 or 2. This
will cause an abend immediately if an integer being traced is too close to the end of the Data selector
(extremely rare but possible). If an abend occurs, add an INTEGER*4 variable after the point in the source
code where that variable is declared to circumvent the abend.

TRACEINTEGERx routines must be declared SUBs and called as shown in the examples above. FUNCTION
calls do not pass addresses of the arguments, but rather addresses of temporary areas.

Integer Tracing is added only to the Terminal Runtimes SB286LT.L86 at this time. Version 61 or later
(February 2009) is required.

2.6 SWI Disable Count – Terminal and Controller

The value of the SWI Disable counter can be interrogated by the application. See heading "SB286LT.L86
Version 54 diagnostic improvements" in the KnowledgeBase article "Why do programs abend with ERRN =
80004186". Here is an example of use.

 10

 FUNCTION SWIDISABLECOUNT EXTERNAL
 INTEGER*2 SWIDISABLECOUNT ! #times disabled
 END FUNCTION
 …
 ! we expect SWIs to be enabled here.
 WHILE SWIDISABLECOUNT > 0

 ! cause a hang so that this error condition can be trapped
 ! with a manual dump.

 WEND

The SWI disable count also appears in each entry of the Application Call Trace, and can be inspected from
a dump.

2.7 Timer Resolution on 4690 V6 "Enhanced" – Terminal

The default Timer resolution reported in the Call Trace is one millisecond for 4690 V6 "Classic" and for all
versions prior to V6. In "Enhanced" mode, timer resolution is about ten milliseconds per tick. This large
granularity can make timing issues difficult to solve.

To activate millisecond reporting, set the number of trace entries to 4609.

SETTRACE T EAMTS10L.286 4609

WARNING - do not use this option in a 4690 "Classic" environment.

2.8 Heap Error Scanning – Terminal

Application programs can damage the Heap structures maintained by the CBASIC Runtimes. When that
occurs, the contents of strings or array elements of any type can be damaged, or the CBASIC Heap
Manager can abend while accessing or modifying a string or an array element. You can use this feature to
help you determine where heap-damaging code exists.

When activated, this check is called at the beginning and at the end of each CBASIC Subroutine or
Function. If an error is found, the check causes an abend. You can review the call trace from a dump to
determine what function or subroutine was in control when the damage occurred. To activate this checking,
set the number of trace entries to 4610.

SETTRACE T EAMTS10L.286 4610

An alternate way in which you can do this type of check is to modify your source code around the point
where you think an error is occurring. Add this declaration and calling code:

 SUB SCANFREEHEAPBLOCKS EXTERNAL ! Heap damage?
 END SUB
 ...
 CALL SCANFREEHEAPBLOCKS ! dump if heap damage

2.9 Lock and Unlock Tracing – Terminal

It can be difficult to determine where or why an IO Processor Lock or Unlock occurred. This new trace
captures important Lock and Unlock information in the Call Trace.

 11

To activate Lock and Unlock tracing, set the number of trace entries to 4616.

SETTRACE T EAMTS10L.286 4616

Here is sample output from APPDUMP:

2689 12:36:57.688 0167:0052 4A 00 3 JAVAEVENT
2690 12:36:57.688 4A 00 0 Runtimes trace: 0020 7004
2691 12:36:57.688 00f7:2331 4A 00 1 TSUPEC51
2692 12:36:57.688 0477:cbb3 4A 00 2 TSU51.FB
2693 12:36:57.688 4A 00 0 Runtimes trace: 0020 000A

The line at entry 2690 shows that for session #32 (0020H), a LOCKDEV (7xxxH) occurred along with a
PURGE (xxx4H). The line at entry 2693 shows that for session #32 (0020H), an UNLOCKDEV (0xxxH)
occurred and transitioned to state #10 (x00AH).

2.10 Heap Allocate and Free Tracing – Terminal

This new trace captures the address of each Heap block allocated or freed by the CBASIC Runtimes. The
trace is reported from a dump, near the end of the APPDUMP run.

The last sixteen addresses are saved and reported. To see this trace in a dump, you must specify the /dh
option when running APPDUMP.

To activate tracing for Heap Allocates and Frees, set the number of trace entries to 4624.

SETTRACE T EAMTS10L.286 4624

Here is a sample of reporting by APPDUMP. To analyze this trace, work from the wrap point backward. For
each address, find that memory block in the Heap interpretation and examine its contents to determine if it
contains what you expect it to contain.

The Nest= field is the call nesting level associated with the depth of function or subroutine calls (00 signifies
"in the mainline").

HeapTrc addr of entries=051F438C
Num entries=16
 Entry 0: Nest=01 Free 05DFCBDC
 Entry 1: Nest=00 Allocate 05D7DFF8
 Entry 2: Nest=00 Free 05D7DFF8
 Entry 3: Nest=03 Allocate 05E7966C
 Entry 4: Nest=02 Free 05E7966C
 Entry 5: Nest=03 Allocate 05E7966C
 Entry 6: Nest=04 Allocate 05E79F9C
 Entry 7: Nest=03 Free 05E7966C
 Entry 8: Nest=FF ************** wrap **************
 Entry 9: Nest=01 Allocate 05E722C8
 Entry 10: Nest=01 Free 05E791A4
 Entry 11: Nest=02 Allocate 05DFBEA4
 Entry 12: Nest=02 Free 05E722C8
 Entry 13: Nest=02 Allocate 05DFCBDC
 Entry 14: Nest=02 Free 05DFBEA4
 Entry 15: Nest=01 Allocate 05E791A4

 12

2.11 Tracing of Runtime Entry Points – Terminal

This capability was added with change CBRT066 to the Terminal Big Memory Runtimes SB286LT.L86 in
February 2011.

For selected Entry points in the Runtimes, this new trace captures the address of each Entry point, along
with the address of its caller. This trace generally is most helpful when you are getting an ABEND in a store
from your application, and you are able to capture a dump at the point of the error or shortly thereafter. It
helps you to find the specific statement which is causing the abend. The trace is interpreted by APPDUMP,
prior to the reporting of the Open sessions.

This trace is normally OFF, because it can typically consume 20% more processor time when it is activated.
If your terminals are running slowly because of the processor load on each, you might not want to use this
trace unless you are willing to accept the additional processor load that it demands. If your terminals are
lightly loaded, activation of this trace might be unnoticed by the operators.

To activate this trace, relink your Terminal Sales application with version CBRT066 or later of the Runtimes,
and set the number of trace entries to 4640. Then reload that new application in the Terminal.

SETTRACE T EAMTS10L.286 4640

The last 256 calls to the Runtimes are captured in a wrapping buffer that is allocated from Heap memory.
Using the output from APPDUMP and an Interlisting of the module in question, you can compare the source
code and the trace to determine what Runtime functions were called, and whether or not an error occurred
during the execution of each.

Here is the last part of a sample trace, as reported by APPDUMP. This was a ctl-alt-del dump that was
captured at an arbitrary point during initialization.

Runtime Entry Point trace contains 256 entries:

count time ERR Nest Caller -> Called

 …

 241 1A 1 TRR.INIT + a (0287:0193) calls _cb_prolog (0067:0000)

 242 1A 2 TRR.INIT + 362 (0287:04EB) calls _cb_epilog (0067:02CF)

 243 11:13:53.218 1A 1 EAMTRACE + a (02F7:0226) calls _cb_prolog (0067:0000)

 244 1A 2 EAMTRACE + 20 (02F7:023C) calls o.rsubs1 (0077:004A)

 245 1A 2 EAMTRACE + 46 (02F7:0262) calls o.rsubs1 (0077:004A)

 246 1A 2 EAMTRACE + 68 (02F7:0284) calls _cb_epilog (0067:02CF)

 247 1A 1 EAMTRACE + a (02F7:0226) calls _cb_prolog (0067:0000)

 248 1A 2 EAMTRACE + 20 (02F7:023C) calls o.rsubs1 (0077:004A)

 249 1A 2 EAMTRACE + 46 (02F7:0262) calls o.rsubs1 (0077:004A)

 250 1A 2 EAMTRACE + 68 (02F7:0284) calls _cb_epilog (0067:02CF)

 251 11:13:53.218 1A 1 INITBONUSOPTS + a (027F:05FE) calls _cb_prolog (0067:0000)

 252 1A 2 INITBONUSOPTS + 21 (027F:0615) calls o.dim.basic (011F:000B)

 253 1A 2 INITBONUSOPTS + 42 (027F:0636) calls o.dim.basic (011F:000B)

 254 1A 2 INITBONUSOPTS + 5f (027F:0653) calls c.set.d1 (006F:009D)

 255 1A 2 INITBONUSOPTS + 7b (027F:066F) calls c.set.d1 (006F:009D)

 256 1A 2 INITBONUSOPTS + 96 (027F:068A) calls _cb_open + 8 (00FF:075E)

Each trace entry is numbered from 1 through 256, with entry 1 the oldest and 256 the newest. The time
stamp is shown for every eighth trace entry. The ERR field is a cumulative (hex) count of the number of ON
ERROR occurrences at the point when that trace entry was captured. It wraps to 00 after FF. The Nest
level is the number of function calls deep on the stack at that point. APPDUMP then shows the symbolic
name and its selector:offset address in your application where that entry point was called, and finally the
symbolic name and its selector:offset address in the Runtimes that your application is calling.

Notice that the time stamp does not appear on every trace entry. Getting the time stamp is much more
expensive than capturing the called address. To minimize performance degradation, only one in every eight

 13

calls is time stamped. This may not be a problem for most cases because there often are many more than
eight calls completed within a single timer tick.

Only the actual subset of all Runtime Entry points that are definitely called by TGCS SA Base code and its
TGCS SA Features are traced. In the interest of minimizing Code space requirements and Runtimes
change, additional Entry points in the Runtimes that are implemented but which SA does not reference, are
not traced. NRSC enhancements or your unique add-ons could use those functions. If that is the case for a
dump you are analyzing, you will have to factor that into your analysis. If specific Runtimes functions are
missing and that makes your analysis difficult, you can request that TGCS consider adding those individual
functions to this trace. You will have to specify the exact names of every Runtimes function you want
added. TGCS makes no commitment to add those functions.

While interpreting the trace shown above, find the last entry or the entry of concern. Entry number 256 (in
the excerpt above) is a call from INITBONUSOPTS + 96 (027F:068A) to Runtimes function _cb_open + 8
(00FF:075E). INITBONUSOPTS is in file EAMTS2BC. Here is a subset of the Interlisting for EAMTS2BC that
shows offsets corresponding to entries 251 through 256 of the trace excerpt that is shown above.

2085:SUB InitBonusOpts PUBLIC
label_26:
 05f4 : 1e PUSH word ds
 05f5 : c8100000 ENTER word 010h, byte 00h
 05f9 : 8966fe MOV word [fffe+bp], sp
 05fc : 6a00 PUSH byte 00h

 05fe : 9a00000000 CALL _cb_prolog (entry 251)
2086: STRING work1$
2087: INTEGER*1 errFlag
2088:
2089:! AIRENH02 Option initialization for bonus buy
2090:! For redoing a transaction after reloading
2091: DIM BB.TOTAL(5)
 0603 : 6a05 PUSH byte 05h
 0605 : b001 MOV byte al, 01h
 0607 : 98 CBW
 0608 : 50 PUSH word ax
 0609 : 6a04 PUSH byte 04h
 060b : b004 MOV byte al, 04h
 060d : 98 CBW
 060e : 50 PUSH word ax
 060f : c41e0000 LES word bx, [0*]
 0613 : 06 PUSH word es
 0614 : 53 PUSH word bx

 0615 : 9a00000000 CALL o.dim.basic (entry 252)
 061a : 06 PUSH word es
 061b : 53 PUSH word bx
 061c : 8f060000 POP word [0*]
 0620 : 8f060200 POP word [2*]
2092: DIM BB.COMPETITORS(5)
 0624 : 6a05 PUSH byte 05h
 0626 : b001 MOV byte al, 01h
 0628 : 98 CBW
 0629 : 50 PUSH word ax
 062a : 6a04 PUSH byte 04h
 062c : b058 MOV byte al, 058h
 062e : 98 CBW
 062f : 50 PUSH word ax
 0630 : c41e0000 LES word bx, [0*]
 0634 : 06 PUSH word es
 0635 : 53 PUSH word bx

 0636 : 9a00000000 CALL o.dim.basic (entry 253)
 063b : 06 PUSH word es
 063c : 53 PUSH word bx
 063d : 8f060000 POP word [0*]
 0641 : 8f060200 POP word [2*]
2093:! Get the Bonus Buy Options and Descriptors
2094:! Open the BB Options File
2095: N% = 0 ! Init disk error flag
 0645 : c70600000000 MOV word [0*], 00h
2096: C$ = " " ! Init for SUBSTR
 064b : 0e PUSH word cs
 064c : 683b00 PUSH word 03bh*
 064f : 1e PUSH word ds
 0650 : 680000 PUSH word 00h*

 14

 0653 : 9a00000000 CALL c.set.d1 (entry 254)
2097: BB.SUMMARY.ON = 0
 0658 : c606000000 MOV byte [0*], 00h
2098: BB.TYPE.ON = 0
 065d : c606000000 MOV byte [0*], 00h
2099: BB.ENABLED = 1 ! DEFAULT TO ENABLED
 0662 : c606000001 MOV byte [0*], 01h
2100: TS.TS11WERR$ = ""
 0667 : 0e PUSH word cs
 0668 : 682600 PUSH word 026h*
 066b : 1e PUSH word ds
 066c : 680000 PUSH word 00h*

 066f : 9a00000000 CALL c.set.d1 (entry 255)
2101: TS.ER.RETURN = 0 ! Log errors
 0674 : c70600000000 MOV word [0*], 00h
2102: OPEN "R::EAMCOMPP" DIRECT RECL 843 AS 64 NOWRITE NODEL
 067a : 681803 PUSH word 0318h
 067d : 6a00 PUSH byte 00h
 067f : 6a01 PUSH byte 01h
 0681 : 6a40 PUSH byte 040h
 0683 : 684b03 PUSH word 034bh
 0686 : 0e PUSH word cs
 0687 : 683e00 PUSH word 03eh*

 068a : 9a00000000 CALL _cb_open (entry 256)
2103: IF TS.TS11WERR$ = "" then begin

 15

3.0 Dump Analysis – APPDUMP

APPDUMP is used frequently by TGCS application support personnel to do problem analysis. It is being
made available to the retailer and Business Partner community. This tool will assist programmers in isolating
the cause of problems occurring in their version of the CBASIC applications.

APPDUMP provides considerable information to assist programmers. The main sections are the state (value)
of the global variables when the dump occurred, the application call trace, and the application stack. Much
more is provided. The stack shows the most recent calls to functions along with their parameters.

This dump tool provides the following for both Controller and Terminal dumps:

1. Listing of the application's global variables along with their values at the time of the dump
2. The stack, for programmers' use
3. Files opened by the application and some of the data read or written to the file
4. Event bits (tells if you have a missing resume in your ON ERROR routine)
5. A list of processes running at the time of the dump
6. A list of recent runtime errors encountered
7. If using the trace runtimes, the listing of the CBASIC called routines for the specific application, subject

to the limits you chose (5200 max, 250 default)
8. Consoles (some shots of the text screens on the controller)
9. (only in the Controller) A disk trace for the controller

APPDUMP requires a symbols file (*.SYM) or a codeview file (*.CDV) that matches the code level of the
application running in the dump. Use of a CDV file, if available, is preferred. To help you with managing
the correct SYM file, consider using the -m option of POSTLINK, as described on page 24.

APPDUMP is somewhat fragile. It can abend if you provide a SYM or CDV file that does not match the
dump, or if the dump is incomplete, or if something in the dump occurs that it does not recognize correctly.
The tool is furnished to you as-is. Support is on a best-effort basis -- TGCS is not obligated to fix any
problems you report, and you should set your expectations accordingly. However, if you have a support
contract for SA or GSA and find a "complete" dump that this tool does not process, and you are sure that the
SYM or CDV file matches, please e-mail the output of the CPAD create problem analysis diskettes utility
along with the matching SYM or CDV (symbols file) to rssdoc@us.ibm.com and send an e-mail to
cmessi@us.ibm.com alerting us that you have sent a dump, what the files were named, and what the error
message was that you received (if any).

To obtain correct dump analysis, it is absolutely essential that the matching version of a SYM or CDV file is
available. If unavailable, correct analysis might be impossible. You should assume that the SYM and CDV
files will change with every relink of your application. Every time you send a new version of your application
to a store, you should always send the matching SYM or CDV file to that same store. When furnishing a
dump to TGCS for analysis, or when retrieving it for your own review, always retrieve and furnish the SYM or
CDV file from the same store as the dump. Do not obtain it from a different store or from your
headquarters system. Submitting the wrong SYM or CDV file will delay problem resolution. As stated
above, consider using the -m option of POSTLINK, as described on page 24.

Some customers choose to package the SYM file into the 286 file by using the –c option when post linking
the application. Please see knowledge base article "Postlink modification to include the application symbol
file in the executable" for further information. A potentially better option is to use the –m option of POSTLINK,
as described on page 24.

How do you know whether you have a complete and 'valid' dump? Verify that the dump got to the controller
or the controller came back up after the dump. Verify that the OS tool Auto Dump Analyzer processed it
successfully. The output of this automatic process is kept in ADX_SDT1 on the controller that the dump was

 16

taken on or the one that the terminal is attached to. The file names are ADXEnnCF.DAT or ADXEnnTF.DAT
(where nn = the node name, such as cc, and CF = controller and TF = terminal dump.) Read that file and
determine if the date and time match the time you believe the dump occurred. If it appears to have valid
output, then the dump is probably valid.

The input to APPDUMP is fairly straightforward. Here is sample output of APPDUMP during its initialization:

 ##
 # APPDUMP: 4690 BASIC Controller or Terminal #
 # Big Memory Model Dump Formatter #
 # 02-23-2009 #
 ##

Name of dump file (default adxcsltf.dat): m:\h60csltf.dat

Note: This is where you point to the appropriate dump name and location.

Name of BSX file (default adxrt8gl.bsx): m:\h60rt8gl.bsx

Note: You need to point to the kernal BSX file along with its location. For terminal dumps, use adxrt8gl.bsx
(adxrt1sl.bsx for 4683 terminals). For controller dumps, use adxct8sl.bsx.

Name of SYM or CDV file (default EAMTS10L.SYM.
Enter 0 if none): m:\h60ts10l.sym

Note: Depending on which application was running at the time that you need to see information about, point
to the appropriate sym file.

Application process name (default mpostapl.
Enter 0 if none): mpostapl

Note: Again, enter the name of the running application that you want to review. (use rpostapl for a mod 2
terminal application.)

Max number of array elements shown (1 - 120,
default = 25): 120

Note: In a given Global Array, how many elements should be listed.

Max length of string shown (default = 512): 512

Name of output file (default "SCREEN"): dump.out

Output shown on next page.

 Processing the SVC trace...
 Application details..........
 Checking the application heap...
 Processing the application call trace...
 Processing application variables.............
 Processing the stack
 Processing open files...
 Processing pipes...
 Processing console...

 Shall I format the serial device driver data? n
 OK!

 17

For ease of use, you may prefer to run APPDUMP with a BAT file. For example, the following set of BAT file
commands will run APPDUMP on the last controller-terminal dump and interpret the results for the SA
Terminal Sales program that was running in the Terminal section of that controller. The results are saved in
a file so that they can be retrieved to another system, and then they are displayed for you to review.

define bsx=c:\adx_spgm\adxct8sl.bsx
define sym=c:\debug\eamts10l.sym
define apl=mpostapl

c:\appdump c:\adxcslcf.dat %bsx% %sym% %apl% 0200 6500 c:\tdump.out /d
xe c:\tdump.out

In the rare case where there are two or more processes with the same name, you can specify which one to
interpret by prefixing the process name with a numeric character. Use ‘1’ for the first of that name, ‘2’ for the
second, etc. For example, if there are two processes named EAMDMMLL, specify 2EAMDMMLL if you want the
second one interpreted. If you specify EAMDMMLL (or 1EAMDMMLL), the first one will be interpreted.

3.1 APPDUMP Crashes. Is that Tool broken?

Crashing of APPDUMP is usually caused by a mismatching SYM file, although a program bug is not out of
the question. It is especially difficult to know which of the two is at fault if APPDUMP crashes before it can
perform the testing necessary to know that the message The SYM file is NOT a good match
should be given. In any case, first verify that you have the correct, matching SYM file. If you are certain that
it matches, furnish your dump and SYM file to TGCS for analysis. Please read the license agreement
beginning on page 31. TGCS does not warrant that your problem with APPDUMP will be fixed.

To help you with managing the correct SYM file, consider using the -m option of POSTLINK, as described
on page 24.

3.2 What Application is Running?

With a Terminal dump, the application that is running at the time of the failure is usually the TGCS SA
Terminal Sales Application (EAMTSxxL.286), or TGCS GSA Terminal Sales Application (EALTSxxL.286).

With a Controller dump, the failing application is often Checkout Support (e.g., EAMCSMLL) or a report (e.g.
EAMRPCRL).

To determine what application is running, look at the APPDUMP output for lines like this:

 Status PID Function Process Priority Application
 (W) 0008 appl mpostapl1 196 R::ADX_IPGM:EAMTS11L.286

The key things are
•••• (W)=waiting, (C)=Current, (R)=Ready to Run.
•••• mpostaplx is the main terminal application

If the current process is ADXTST1, it means that the operator issued a request at the controller to dump the
terminal. ADXTST1 is merely fulfilling that dump request. For this case, if exactly one application is marked
(R), you should consider it to be (C). If more than one of them are marked (R), any one of them could have
been (C) at the time of the dump request – guess; perhaps the ASR/SVC trace will help for this case.

If there are one or more processes that are marked (R), it is likely that the process marked (C) is in a hard
loop and is not relinquishing control.

 18

3.3 What is the general health of the Application?

For push-button dumps and for dumps that are forced by the operator from the controller, you will usually
see the status for TGCS-SA and TGCS-GSA as (W). This is usually the case because both SA and GSA
have a main loop that simultaneously waits on a timer (usually 1 second), the keyboard, the scanner, the
MSR, and (as needed) a serial port. When an event occurs or the timer pops, the required actions are
usually performed relatively quickly, and the main loop immediately issues another wait. Therefore, it is far
more likely that the application will be marked (W) instead of (C).

When the terminal sales application is marked (C), it is because of one of these conditions:

1. The application has much to do since it was last dispatched, or
2. There was a trap on a specific runtime error (forcing a dump), or
3. A statement caused an immediate abend (rare), or
4. luck

A terminal sales application can also be marked (R), which means ‘ready to run’. This happens when it is
not waiting for any events, but some other process is currently active and that process may have caused the
dump. Report this problem to the team who maintains that process.

From the viewpoint of the Cashier, a terminal can appear to be “hung” for a variety of reasons. A hang can
show a status of (W), (C) or (R) for the application, although (W) is usually indicated. Here are some
examples of conditions that will appear as a hang, along with the most likely state for each condition.

1. (W) the application is currently prohibiting a <CLEAR> because it is waiting for the pinpad, a host
credit pipe response, or some other task that must not be interrupted,

2. (W) the IO Processor is deliberately disabled in its current state while waiting for an event,
3. (W) a User Exit is in control, waiting for an event,
4. (C) it is in a hard loop (rare),
5. (W) a READ, WRITE or GETLONG that should normally be immediate does not complete,
6. (C) an ON ERROR routine is repeatedly called because it does not properly handle a specific error,
7. (W) a Manager Override is required,
8. (W) there is a problem with the Input Sequence Table,
9. (C) a required file is inaccessible, and there is no ON ERROR code to handle that situation

correctly,
10. (R) another application or an OS driver is preventing SA from running.

The SWI Disable Count

Look for a line like this:

SWIs disabled 1 time(s) {or}
SWIs are enabled

During normal straight-line code, SWIs are almost always enabled. There are very few exceptions, and
apply only for cases whereby the application is designed to perform a non-interruptible set of actions. One
such case is when updating hard totals and the totals save file. Another, very brief case is when a CBASIC
string is being assigned.

SWIs are always disabled while processing an ON ASYNC ERROR, while processing an ON ERROR, for
certain parts of string manipulation, and while processing a TCLOSE. (There may be other cases as well.)

If an ON ASYNC ERROR routine or an ON ERROR routine returns improperly, the SWI disable count will be
left at a positive value. This will eventually cause an abend, because printer operations in that state will
cause the application to run out of event bits. See KnowledgeBase article “Why do programs abend with
ERRN = 80004186?”. The SWI disable count is traced in the SUB Application Call Trace.

 19

Open File and Pipe Sessions

Look for a line like this:

Open sessions (trailing zeros are not formatted):

The items that follow are the I/O buffers for each session that is open. For fixed-length records, this buffer
shows the data that was last read or written. For variable-length records (such as for the printer),
interpretation can be tricky because you might be seeing data from several different reads or writes. A few
bytes from the most recent read or write can appear at the beginning of the buffer; followed by some of the
data from a previous read or write.

For SA, the following sessions might contain information that is useful for debugging the current problem.
Note that these buffers are not time-stamped, and data could be immaterial to the current problem.

• 4 - $AMITEMR. This contains the data for the item that was last read from the item record file using
session #4.

• 20 - EAMSDESC. This is the last 2x20 descriptor read from the session #20 file. Because of
buffering, it is not necessarily the last 2x20 message displayed.

• 32 - IOPROC. This describes the previous and current states, the last key pressed, and whether or
not an I/O Processor error occurred. See the BASIC Reference manual, “Input/Output Processor”
section, for a description of how to interpret this data.

• 34 - CR. This contains data for the last line that was printed on the printer receipt paper.

The Call Trace

Look for a line like this:

SUB Application Call Trace (listed from oldest to newest):

This is the most useful section to review. It shows the names of the functions that were called immediately
prior to the dump. Time stamps help to correlate specific errors with the CBASIC Error trace and with other
parts of the dump. The ‘Level’ column indicates the nesting level of function calls at that point. Indentation
also shows nesting level. With Runtimes version 55 and later, the ON ERROR count and the SWI Disable
counter are traced, instead of BP.

At the suspected point of the error, if the names of the functions are not part of TGCS-supported code, then
the customer, not TGCS, is responsible for diagnosing the cause of the error.

The default size of this trace is usually 250 or 400 entries. You can use SETTRACE to increase the number
of entries when the default size is insufficient. The maximum size you can specify is 5200.

If the correct, matching CDV file is available, use it instead of the SYM file when you run APPDUMP. Local
function/sub names and all local variables are resolved, which is a great help in debugging problems. You
need a 4690 Application Debugger license in order to be able to build CDV files.

Compare the time of the last entry against the time of the dump. If they are far apart, the application is in a
hard wait or hang, or is being prevented from running by the OS or a higher-priority task,

The Application Stack

Look for a line like this:

 20

SUB Application Stack:

Find the entry at offset (0000). The contents there should be the same as the application’s DS register.
Then look after that line for the first line that does not contain 5353. The address of that line is the number
of bytes of stack that were never used. If this address is relatively small, this application is dangerously
close to experiencing a stack fault, and one could occur in the future. There probably isn’t a stack problem
with this dump. The maximum stack is specified with linker option [STACK[MAX[FFE]]. The maximum
stack is usually best for all applications, unless memory is limited. Do not use a value larger than FFE
when linking your application. Larger values will allow the stack to wrap, which will cause an ABEND at
some point after the wrap occurs. It is better to catch the failure at the point where it tries to wrap.

What CBASIC Runtime Errors were Traced in Memory?

Look for a section like this:

 The last 15 errors recorded by the runtimes:

 FU 00000022 05-09 12:01:34.419 session 41
 ON ERROR at 0207:30f7 main + 1abf

 OE 80A50009 05-09 12:01:34.419 session 41
 ON ERROR at 0207:30f7 main + 1abf

 SS 0000006E 05-09 12:01:34.421
 ON ERROR at 0207:30f7 main + 1abf

 RN 0000007A 05-09 12:01:34.823

 ON ERROR at 0207:30f7 main + 1abf

This is also referred to as the CBASIC ERROR TRACE. There will usually be 15 errors traced in this
section of the dump. If fewer than 15 appear, the application is well-behaved or is just starting to initialize.
They are reported in chronological order. See the CBASIC Reference manual (“Appendix B. Runtime Error
Messages”), and/or the 4690 Messages Guide for a description of what “OE 80A50009” and “SS 0000006E”
mean.

Compare the time of the last entry against the time of the dump. If they are at about the same point in time,
that last error (or the error immediately preceding it) may have setup the conditions to cause the dump.

Duplicate, consecutive errors are combined so as to make the best use of the limited trace of 15 errors. If
an error is repeated, the time stamp shown is when the first error of that type occurred. The times of the
second and subsequent errors of that same type are not precisely traced; they are at that same instant of
time or later.

 OE 00000052 07-28 09:14:53.112 repeated 6 times
 ON ERROR at 0307:6343 main + 123f

 OE 00000052 07-28 09:14:56.594 repeated once
 ON ERROR at 02ff:872d TS1SEC02 + 50e9

 CU 0000000E 07-28 09:14:57.577 session 61
 ON ERROR at 0307:6343 main + 123f

The ON ERROR routine of the application typically catches all errors and is supposed to react appropriately
for each expected error. For example, a FU 00000022 error on session 41 is typically corrected in the ON
ERROR routine by opening the file that session 41 is supposed to use and then doing a RESUME RETRY.

 21

Some errors are fatal, and usually occur due to an error in program logic or missing logic to handle
unexpected, rare errors. It is possible, but very unlikely that the ON ERROR routine is designed to recover
from these errors. Some of these fatal errors are:

 AE 00000004 - an array being accessed is not dimensioned.

BW 80840017 - an IOPROC Read occurred while the driver is locked.
RN 0000007A - a RESUME was attempted, but the action is not resumable.

 SS 0000006E - a parameter of MID$ is zero or negative.
SU 0000007E - an array subscript is out of bounds.

The SETTRAP tool can be used to force a dump on any type of error, such as SU. This preserves the stack
and calling trace so that the source of the error is more easily identified. See page 25 for more information
on SETTRAP.

If you do not have the luxury of using SETTRAP SU and attempting to recreate the issue, a more difficult
method can be used to further analyze this type of error using the current dump:

1. Note the time of the SU error
2. Look through the call trace to find out what function or subroutine was running at that point in time.

If the trace does not contain that point in time (because it wrapped), you cannot proceed. If many
functions have that same time stamp, it will be very difficult to proceed.

3. Review the source code from the above step to determine what code in it may have caused that
type of error. If source code is not available (customer code?), or if there are too many places to
consider, you might not be able to proceed.

4. If GLOBAL variables were referenced at the potential error points, examine their contents to help
confirm where the error could have occurred. If their values changed since the error occurred, it will
be very difficult to proceed. If local variables were used, you cannot proceed unless you can
determine from GLOBAL variables how those local variables were set.

Sometimes, an application is in a restart loop. If you see more than one RN error, the application is in a
restart loop. It attempted to restart, but because of residual content of variables or recovery data, a fatal
error occurred again. Refer to the first RN error to try to determine what started the looping. Often, you will
not see this first error because the trace wrapped, so you can’t easily determine if a restart occurred. A
SETTRAP dump may be necessary to find the first RN error. Alternatively, the Application Event Log (if
available) will have all unexpected errors if the ON ERROR routine logs them.

IO10105 added RESTART.TRACE$ and RESTART.LAST.ERR$ to SA in January 2009 to help you determine
what errors are causing a restart. Examine the contents of those GLOBAL variables.

Finding the Point of the Error

CS:IP gives you the location of the current instruction at the time of the dump. Although this is precise, it
usually is grossly inadequate. Ideally, you would like to know the name of the current function and the
specific CBASIC source statement that is associated with that CS:IP. An interlisting is usually required to
precisely identify a source statement, but you can often make a reasonably good guess even without it.

If a trap occurred, the Sub Application Call Trace shows the names of the functions called immediately prior
to that error. An example is shown below. In this example, TSS3EC01 called ?SET.EMOD$. TSS3EC01
then called DATETIME. DATETIME called ?GETTIME$, ?GETDATE$ and CR.LINE.SPACING.
TSS3EC01 then called USER.EXIT. USER.EXIT called ?SET.EMOD$ and then called PRINT.EXIT$.
The dump occurred while PRINT.EXIT$ was executing. The current function is determined by finding the
last function that has a nest level equal to the current value of nestlevel. In this example, nestlevel is 3, so
PRINT.EXIT$ is executing. If nestlevel was 2, then USER.EXIT would be executing. If nestlevel was 1,
then TSS3EC01 would be executing. The nest level (and indentation) is incremented at each call and
decremented at each return.

 22

17 01f7:435e ff26 1 TSS3EC01
18 0317:0128 feaa 2 ?SET.EMOD$ + 5
19 01f7:34de feac 2 DATETIME
20 01f7:064e fe56 3 ?GETTIME$
21 01f7:071d fe56 3 ?GETDATE$
22 01f7:2e04 fe56 3 CR.LINE.SPACING
23 01f7:1739 feac 2 USER.EXIT
24 0317:0128 fe52 3 ?SET.EMOD$ + 5
25 049f:0013 fe4c 3 PRINT.EXIT$ + 5
 nestlevel is currently at 3 (in the SUB/FUNCTION shown above):

If a function name is shown with a (hex) offset, e.g. DATETIME + 3F4, it signifies that that function is local,
i.e. private (not public). When using a SYM file, APPDUMP cannot resolve these local names because they
are not included in the SYM file. If you want to know their names precisely, you must use either a CDV file
instead of a SYM file, or you must refer to an interlisting to find the name at that symbol+offset. You could
also make frequently-called functions PUBLIC so that their names appear in the call trace of future dumps.

You could also review the stack to determine the name of the current function. Here are the important lines
of the stack for the example above. Note that a stack grows downward, so the calls are listed in reverse
order.

(fe50) 1f7:19cd USER.EXIT + 28f calls PRINT.EXIT$ (49f:000e)
(feb0) 1f7:53da TSS3EC01 + 1079 calls USER.EXIT (1f7:1739)
(ff2a) 317:51ee main + 54 calls TSS3EC01 (1f7:435e)

If the current function is relatively small, you can usually guess which source statement is failing by finding
the last traced error and by looking in the current function for a statement in the source code that could
cause that error. For example, if the last error was SU 0000007A (array subscript), look for a statement that
accesses an array element. If there is more than one of these, look at the current IP to determine how far
into that routine the error occurred. Refer to the contents of variables to help narrow down your search.

If you need to precisely resolve the point of error to a specific CBASIC source statement, and the above
methods do not work, you will probably need an interlisting.

3.4 Obtaining an Interlisting

Here is a BAT file used by TGCS L3 support to create an interlisting for an SA file. Use it only as an
example and adapt it to your development environment. Note: there are only two statements here, SET and
BASIC. The SET BASINC… is all on the same line!

SET
BASINC=s:\satof11DB\latest\source;s:\saefte11DB\latest\source;s:\sa461012D
B\latest\source;s:\saem11DB\latest\source;s:\sa11DB\latest\source;
BASIC %1 [IDFBU,M(b),R(xxxxxxxx.lbj)] >interlst.lsu:

When reviewing an Interlisting based upon an address from a dump, you might notice that the sel:off from
the dump differs by a few bytes as compared to the offset of the equivalent point from the Interlisting. If your
Interlisting truly matches the level of code running in the dump, the discrepancy is probably due to the
attempts by the Linker to combine files on any single-byte boundary rather than a 16-byte paragraph
boundary. That behavior is not a bug, it is an attempt to generate the smallest possible 286 file. If you do
not like that behavior, and you have a few KB or more available in the 2 MB code space, you can do these
three things to ensure that the offsets match exactly:

1. Obtain the V3.15 (07/08/2010) version of the compiler, BASIC.EXE/286. Recompile all of your BAS
files and LIB86 all of your L86 files that you use. This version of the compiler always increases the
size of the code for every BAS file to an exact multiple of 16 bytes.

2. Obtain and use V 65 of SB286LT.L86 (07/09/2010).
3. If your offsets still do not match, check the size of your ADXMEL0L.L86 file. It should be 21,120

bytes in size.

 23

3.5 SA Global Variables useful for Problem Analysis

Here are some Global variables that may help you to determine from a dump what occurred recently, what is
currently occurring, or what should be occurring in TGCS Supermarket Application.

ASYNC Error Tracing

IO06213 added a trace in global string TS11C.ASYNC.ERROR.TRACE$, which captures useful information
at each ASYNC error.

Key Presses and 2x20 Displays

IO06213 added a global string array IO.PROC.LINES$ that contains the last x lines written to the 2x20 or
read from the I/O Processor. x defaults to 50 but can be changed in a user exit.

Restart Trace

An unrecoverable error causes a B000 APPLICATION ABEND guidance, and results in SA attempting to
restart itself after the operator clears the B000. IO10105 added a global string RESTART.TRACE$ to
capture the date, time and last error that occurred immediately prior to the B000.

Serial Port (Pinpad) Trace

IO04381 added a global string EE.PINPAD.TRACE$. Information traced includes a time stamp and the first
110 bytes of each read or write.

 24

4.0 Other Tools

4.1 POSTLINK

This tool modifies a recently-linked 286 file so that it loads faster. A change was made in 2010 to allow
merging of the SYM file into active code.

A “merge” of the SYM file is different from a “combine”. In previous versions, the -c option would combine
(append) the SYM file to the end of the 286 file so that you could be certain that the matching SYM file is
always available.

The new -m option actually expands the last Code segment by approximately the number of bytes required
to contain the entire SYM file, and then appends the SYM file at that position following that code area in the
286 file. This not only ensures that the matching SYM file is always available, it also ensures that the
matching SYM file is loaded into memory and appears automatically in any future dump containing that
application. This means that you do not have to furnish the matching SYM file with a dump, because it is
already included in the dump!

This new -m option has a limitation. The amount of space remaining in the last code segment must be
sufficient to contain the entire SYM file. If the SYM file is too large to fit, then POSTLINK turns OFF the –m
option and turns ON the -c option for that run. You will still have to provide the matching SYM file when the
size of your application is as stated in this paragraph.

APPDUMP was changed to automatically look for the SYM file in the dump, and uses that data when it is
available. Prior to using the SYM information, APPDUMP extracts the contents of that area of the dump to file
APPD_SYM.SYM, and then uses that file as its SYM. The SYM file you specify is not used and is irrelevant
for this case.

4.2 SETTRACE

This tool normally establishes the number of entries in the Application Call trace. The default provided by
the Runtimes is usually 250 entries. You can increase the number to a maximum of 5200 entries.

Each saved entry uses 12 bytes of heap memory. The default amount of memory that this tracing uses is
3,000 bytes for 250 entries. This can be increased (or decreased) at your discretion, by running SETTRACE.
The maximum number of entries is limited to 5,200, which will increase memory requirements of your
application by almost 64 KB. If you are using terminals that have little memory to spare, you might need to
live with 250 (or even 25) for the number of entries.

After linking a new terminal or controller module with the required SB286*.L86, you can change the default
number of trace entries by running SETTRACE. Specify the environment that this program runs in (T or C for
Terminal or Controller), the name of your application program, and the number of entries to save. For
example:

SETTRACE T EAMTS10L.286 5000

If it runs correctly, you will see:

Found it! Are you sure you want this file modified (Y/N)?

You should type y in response to this message. To review these trace entries, you can use either the latest
version of the 4690 Application Debugger, or run the Application Dump Analyzer (APPDUMP) against a dump.

 25

Relinking undoes the previous SETTRACE action, so you should rerun SETTRACE after each relink until a
problem you are experiencing is fixed.

Some customers choose to make SETTRACE 5000 a permanent part of their relinking procedure, so that
future problems are more likely to provide good documentation with the first occurrence of a dump.

A second use of SETTRACE is to turn on certain CBASIC Runtimes tracing features that are normally
dormant. The specific range of 4608 through 4863 entries (hex 1200 through 12FF) is otherwise reserved,
and is used for this purpose. Run SETTRACE and specify the number of entries as 4608 plus the number
associated with each of the options (below) that you want to invoke. This capability was first released with
Runtimes V64.

 1 – 4690 V6 Enhanced timer resolution (x1201)
 2 - SCANFREEHEAPBLOCKS in _cb_prolog and _cb_epilog (x1202)
 4 – reserved for future use
 8 - trace LOCKDEV and UNLOCKDEV (x1208)
 16 - trace heap allocates and frees (x1210)
 32 – trace calls to Runtime Entry points
 64 - reserved for future use
 128 - reserved for future use

Options can be combined in the same run. For example, to trace locks and use Enhanced timer resolution,
SETTRACE T EAMTS10L.286 4617. To trace heap allocates and frees, and heap scanning in the prolog
and epilog, SETTRACE T EAMTS10L.286 4626.

The four reserved values above will be reassigned in the future, as needed to activate additional diagnostic
features we have not yet thought of.

4.3 SETTRAP

This tool is used to specify what error code(s) should cause a dump. If the CBASIC Runtimes encounters a
condition that causes any of the errors you specify when running SETTRAP, the Runtimes do not call the
current ON ERROR routine, but instead cause an abend that results in a dump.

The steps for establishing a trap for a terminal application are:
1. Ensure that the application dump flag is set, in "Generic Terminal Configuration" - "Load Definitions" -

"General Settings" for the terminal that is experiencing the error.
2. Place the downloaded SB286LT.L86 module in the directory where you link your terminal sales

application.
3. Run LINK86 and then POSTLINK on your terminal sales application.
4. Run SETTRAP on the executable (for example, EAMTS10L.286) and specify T for the terminal

environment, the load module name, the two-letter ERR that you are interested in, and optionally, a
session number. For example:

SETTRAP T EAMTS10L.286 FU 52

The steps for establishing a trap for a controller application are:
1. Ensure that the application dump flag is set, in "Controller Configuration" - "Controller Characteristics"

for the controller that is experiencing the error.
2. Change the INP file from SH to NOSH so that the runtimes are embedded into the load module (to be

patched).
3. Place the downloaded SB286L.L86 module in the directory where you do your linking.
4. Run LINK86 and then POSTLINK on your controller module.
5. Run SETTRAP on the executable and specify C for the controller environment, the load module name,

the two-letter ERR that you are interested in, and optionally, a session number. For example:
SETTRAP C EAMCSMLL.286 RE 08

 26

From a dump, APPDUMP lists the SETTRAP codes currently in use. Look for a line like this. In this example,
only the SS error is set to trap. “yy” is a placeholder that signifies no code is set for that type of error.

SETTRAP codes are SS, yy, yy, yy.

Running SETTRAP more than once on the same .286 file will overlay the existing trap codes with the codes
from the final SETTRAP run. To cancel all trap codes, perform another link.

 27

5.0 History of Runtimes Changes

Here is a pair of tables showing some of the more recent changes made to the Controller and Terminal
Runtimes.

To help you determine if you have the desired version of Runtimes in use, you can determine what version
you are using by inspecting the APPDUMP output from a dump. Look for a line like this:

CBASIC runtimes dated 04/20/06, version 54

5.1 Terminal Runtimes SB286LT.L86

Terminal
Version

Approx.
Date

Changes

CBRT054 04/20/2006 Save the SWI disable count in the CBASIC call history trace (instead of BP);
also the number of ON ERROR occurrences. Allow the application to obtain the
SWI disable count.

CBRT055 03/23/2007 Trace calls to cb_s_enable/disable.
CBRT056 04/12/2007 Trace first and second (stacked) errors.
CBRT057 10/01/2007 Fix CBWAIT.
CBRT058 02/15/2008 Add trace code to count function/subroutine calls. Activated by SETCALLS.
CBRT059 10/17/2008 Add function MILLISECONDTIMER.
CBRT060 12/08/2008 Fix counter in the last 15 error trace.
CBRT061 02/17/2009 Add Unresumed Error checking. Add Integer tracing.
CBRT062 10/09/2009 Add Runtimes Internal tracing. Call it for Locking and Unlocking.
CBRT063 03/31/2010 Allow Serial port speeds greater than 28800 bps.
CBRT064 04/14/2010 Add tracing for Heap allocates and frees. Add optional checking of the validity

of free blocks in the Heap. Function GETNESTLEVEL returns I*2 Call Trace
nesting level. Subroutine SCANFREEHEAPBLOCKS verifies the validity of the
free Heap blocks. alloc_from_freelist is made PUBLIC for easier stack
analysis in the event of a heap error.

CBRT065 07/09/2010 Serviceability improvement when review of an Interlisting is required. Added
code to CBINIT so that the mainline program always starts at offset 0000
within its selector. Without this change and a related change to the BASIC
V3.15 compiler, addresses reported by APPDUMP can be off by zero through
15 bytes as compared to an Interlisting. Note that if you are using
ADXMEL0L.L86 in your INP file, you should use a version of that file that is
21,120 bytes in size.

CBRT066 02/28/2011 Serviceability improvement to trace Runtimes entry points.
CBRT067 02/14/2011 Serviceability improvement to trace the two-letter ERR code and the ERRF

session number values in the Application Call trace at the time of each error.

 28

5.2 Controller Runtimes SB286L.L86

Controller
Version

Approx.
Date

Changes

CBRT636 04/25/2003 Add check for session number to error trap.
CBRT637 07/13/2004 Save/restore nestlevel variable at ON ERROR GOTO and RESUME LABEL.
CBRT638 03/02/2005 Quadbyte DBCS support.
CBRT639 02/23/2009 Trap unresumed errors. Save Timestamps in the Call trace. Save time of last

SVC. Add function MILLISECONDTIMER. Trace error count and SWI disable
count instead of BP in the call trace.

 29

6.0 SA Debugging Hooks

This section describes some of the places in TGCS Supermarket Application where you can take advantage
of built-in hooks for debugging unusual problems. It is intended to include information helpful for
programmers to debug their SA base or extension code. It is not meant to tell you how to turn on existing
SA sales or reporting capabilities (such as hidden options), or to help you add new sales or reporting
capabilities to SA.

No special SA or Runtimes support is provided, or requires special activation (in most cases). You merely
add your own, appropriate code to take advantage of existing capabilities.

6.1 EAMTRACE

If a specific variable (or set of variables) is set to a "bad" value, or an undesirable state change occurs, the
result can be a quick abend, or one that is delayed by many function calls or seconds. When the abend is
delayed, finding the source-code place where that trashing occurred can be very difficult and time
consuming. A new hook was added to the EAMTRACE subroutine.

If user exit 69 is enabled, a new subroutine EAMTRACE.EXIT69 is called each time EAMTRACE is called.
This happens many times in nearly all main SA functions, and also surrounds nearly every user exit call.
Because it is called so frequently, a single test inserted into this subroutine for this "bad" condition has the
effect of being inserted in many places. A simple test using most features of SA Base code showed that this
subroutine was called more than 230 times during the sale of just one item. Your results will vary depending
upon what features, enhancements and hardware are installed, and how they are configured.

Code that you add to EAMTRACE.EXIT69 can help you to quickly narrow down when, and perhaps where
a particular error occurs. You can add whatever checks or modifications you believe are necessary to
recover from a potential problem, to capture useful diagnostic information in a file, or to dump the system
when it recognizes an "error" state.

One INTEGER*2 parameter is passed to EAMTRACE.EXIT69. It contains two characters, which are
usually the seventh and sixth characters (note the byte "swapping") of the current source file name. In
EAMTS11C, it is 3131H. When a User Exit is about to be called, it is usually 5055H (UP, i.e. eamtsUPc).
Note that some features such as Electronic Marketing do not adhere to this naming convention when calling
EAMTRACE, and some features do not always call EAMTRACE everywhere they might be expected to call it.
Your added code in EAMTRACE.EXIT69 should take this into account.

Because EAMTRACE.EXIT69 is called so frequently, including ON ERROR and ON ASYNC ERROR
context, a large amount of code added to it could introduce performance issues. Minimize your code to the
smallest amount necessary to diagnose the immediate problem and capture doc or a dump, or to repair it in
the short term until you can design and roll out a permanent fix. Furthermore, careless modification of
GLOBAL variables could cause disastrous results. It is recommended that you only modify local variables
from within that subroutine (unless you are actually trying to repair a code failure).

This new hook was integrated with SA APAR IO10105 in March 2009. That APAR also provides a stub in
EAMDUMMY so that a link error does not occur if you do not define your own EAMTRACE.EXIT69
subroutine.

 30

One good place to insert the code for your new subroutine is in EAMTSUSU.J86. Here is a sample shell.
The contrived purpose of the code shown below is to dump on the 1000th call to it.

!THIS INCLUDE FILE PROVIDES A PLACE FOR THE USER
!TO DEFINE SUBROUTINES WHICH ARE COMMON TO SEVERAL
!OF HIS USER EXIT FUNCTIONS IN EAMTSUPC.

 %INCLUDE EAMTSESU.J86 ! electronic marketing

 ! User Exit 69 enables calls to this SUB
 SUB EAMTRACE.EXIT69(TRXX) PUBLIC
 INTEGER*2 TRXX
 INTEGER*4 temp1, temp2

 exit69.called = exit69.called +1
 if (exit69.called = 1000) then begin
 exit69.called = 0 ! clear condition
 ! to prevent recursion

 ! choose one of the 2 methods to dump
 ! (NOT both!)

 ! use the code below with a
 ! controller-terminal, or a discrete terminal.
 ! must use SETTRAP T EAMTSxxL.286 DZ
 temp1 = 0
 temp1 = temp1 / temp1 ! this causes a DZ error

 ! -OR- use this statement for a discrete
 ! terminal. The SETTRAP is *not* needed
 CALL ADXSERVE(temp2, 1, 0, "")! dump terminal

 endif

 END SUB

 31

7.0 License Agreement

TGCS LICENSE AGREEMENT FOR CATEGORY 2 TOOLS INCLUDED IN THIS DOCUMENT

NOTICE:
You accept the tools included in this document with the understanding that the TGCS Corporation makes no
representations or warranties as to the suitability of the tools included in this document for your particular
purpose, and that to the extent you use or implement these tools included in this document in your own
setting, you do so at your own risk. In no event will the TGCS Corporation be liable for any direct loss and
damages, or any damages whether consequential, incidental, or special, arising out of the use of or inability
to use the material provided. Please read the LICENSE which follows to determine if you want to use the
tools included in this document.

Copyright the TGCS Corporation, 2013, All rights reserved.

DO NOT POST MODIFIED VERSIONS OF THIS MATERIAL FOR PUBLIC ACCESS.

IF YOU DOWNLOAD OR USE THE TOOLS INCLUDED IN THIS DOCUMENT, YOU AGREE TO THESE
TERMS

Toshiba Global Commerce Solutions grants you a license to use the tools included in this document only in
the country where you acquired them. The tools included in this document are copyrighted and licensed (not
sold). We do not transfer title to the tools included in this document to you. You obtain no rights other than
those granted you under this license.

Under this license, you may:

• Use the tools included in this document on one or more machines at a time.
• Make copies of the tools included in this document for use or backup purposes within your

enterprise.
• Modify the tools included in this document and merge it into another program.
• Make copies of the original file you download and distribute it only if you do not charge for copies of

the tools included in this document, provided that you transfer a copy of this license to the other
party. The other party agrees to these terms by its first use of the tools included in this document.

You must reproduce the copyright notice and any other legend of ownership on each copy or partial copy of
the tools included in this document.

You may NOT:

• Reverse assemble, reverse compile, or otherwise translate any program contained within the tools
included in this document.

 32

We do not warrant that the tools included in this document are free from claims by a third party of copyright,
patent, trademark, trade secret, or any other intellectual property infringement.

Under no circumstances are we liable for any of the following:

1. Third-party claims against you for losses or damages

2. Loss of, or damage to, your records or data

3. Economic consequential damages (including lost profits or savings) or incidental damages, even if we are
informed of their possibility.

Some jurisdictions do not allow these limitations or exclusions, so they may not apply to you.

• We do not warrant uninterrupted or error free operation of the tools included in this document. We
have no obligation to provide service, defect correction, or any maintenance for the tools included in
this document. We have no obligation to supply any tools included in this document with updates or
enhancements to you even if such are or later become available.

If you download or use the tools included in this document, you agree to these terms. There are no
warranties, express or implied, including the implied warranties of merchantability and fitness for a particular
purpose.

• If you make comments and suggestions (collectively called "Feedback") relating to your use of the
tools included in this document, you grant TGCS a non-exclusive, royalty-free, irrevocable,
unrestricted and world-wide license to use, have used and make copies in case of documents, such
Feedback in any manner as TGCS determines, including use of Feedback in the development,
manufacture, marketing, and maintenance of products and services incorporating such feedback by
TGCS.

You may terminate this license at any time. We may terminate this license if you fail to comply with any of its
terms. In either event, you must destroy all your copies of the tools included in this document.

You are responsible for the payment of any taxes resulting from this license.

You may not sell, transfer, assign, or subcontract any of your rights or obligations under this license. Any
attempt to do so is void.

If you acquired the tools included in this document in the United States, this license is governed by the laws
of the State of New York. If you acquired the tools included in this document in Canada, this license is
governed by the laws of the Province of Ontario. Otherwise, this license is governed by the laws of the
country in which you acquired the tools included in this document.

