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 1 Introduction
This document describes the High Level Design (HLD) for the Red Hat® Enterprise Linux®  Version 5 
operating system.  For ease of reading, this document uses the phrase Red Hat Enterprise Linux as a 
synonym for Red Hat Enterprise Linux 5. 

This document summarizes the design and Target of Evaluation Security Functions (TSF) of the Red Hat 
Enterprise Linux (RHEL) operating system. Used within the Common Criteria evaluation of Red Hat 
Enterprise Linux at Evaluation Assurance Level (EAL) 4, it describes the security functions defined in the 
Common Criteria Security Target document.

 1.1 Purpose of this document
The RHEL distribution is designed to provide a secure and reliable operating system for a variety of 
purposes. This document describes the high-level design of the product and provides references to other, 
more detailed design documentation that describe the structure and functions of the system.  This document 
is consistent with additional high-level design documents, as well as with the supporting detailed design 
documents for the system. There are pointers to those documents in this document.

The RHEL HLD is intended as a source of information about the architecture of the system for any 
evaluation team. 

 1.2 Document overview 
This HLD contains the following chapters:

Chapter 2 presents an overview of the IBM® eServer™ systems, including product history, system 
architecture, and TSF identification.

Chapter 3 summarizes the eServer hardware subsystems, characterizes the subsystems with respect to 
security relevance, and provides pointers to detailed hardware design documentation.

Chapter 4 expands on the design of the TSF software subsystems, particularly the kernel, which is identified 
in Chapter 2.

Chapter 5 addresses functional topics and describes the functionality of individual subsystems, such as 
memory management and process management.

Chapter 6 maps the Target of Evaluation (TOE) summary specification from the Red Hat Enterprise Linux 
Security Target to specific sections in this document.

 1.3 Conventions used in this document
The following font conventions are used in this document:

Constant Width (Monospace) shows code or output from commands, and indicates source-code 
keywords that appear in the code.

Italic indicates file and directory names, program and command names, command-line options, URLs, book 
titles, and introduces new terms.

 1.4 Terminology
For definitions of technical terms and phrases that have specific meaning for Common Criteria evaluation, 
refer to the Security Target.



 2 System overview
The Target of Evaluation (TOE) is Red Hat Enterprise Linux (RHEL) running on an IBM eServer host 
computer.  The RHEL product is available on a wide range of hardware platforms. This evaluation covers 
the RHEL product on the IBM eServer System x™, System p™, and System z™, and eServer 326 
(Opteron).  (Throughout this document, RHEL refers only to the specific evaluation platforms). 

Multiple TOE systems can be connected via a physically-protected Local Area Network (LAN).  The 
IBM eServer line consists of Intel processor-based System x systems, POWER5™ and POWER5+™ 
processor-based System p systems, IBM mainframe System z systems, and AMD Opteron processor-
based systems that are intended for use as networked workstations and servers.

Figure 2-1 shows a series of interconnected TOE systems.  Each TOE system is running the RHEL 
operating system on an eServer computer. Each computer provides the same set of local services, such as 
file, memory, and process management.  Each computer also provides network services, such as remote 
secure shells and file transfers, to users on other computers. A user logs in to a host computer and requests 
services from the local host and also from other computers within the LAN.

User programs issue network requests by sending Transmission Control Protocol (TCP) or User Datagram 
Protocol (UDP) messages to another computer. Some network protocols, such as Secure Shell (SSH), can 
start a shell process for the user on another computer, while others are handled by trusted server daemon 
processes.

The TOE system provides a user Identification and Authentication (I&A) mechanism by requiring each 
user to log in with proper password at the local workstation, and also at any remote computer where the 
user can enter commands into a shell program (for example, remote SSH sessions). Each computer 
enforces a coherent Discretionary Access Control (DAC) policy, based on UNIX®-style mode bits and an 
optional Access Control List (ACL), Mandatory Access Control (MAC) policy and Role Based Access 
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Figure 2-1: Series of TOE systems connected by a physically protected LAN



Control (RBAC) policy, using Security Enhanced Linux (SELinux) extensions of RHEL for the named 
objects under its control.

This chapter documents the RHEL and eServer product histories, provides an overview of the TOE 
system, and identifies the portion of the system that constitutes the TOE Security Functions (TSF).

 2.1 Product history
This section gives a brief history of the RHEL and the IBM eServer series systems.

 2.1.1 Red Hat Enterprise Linux
Red Hat Enterprise Linux (RHEL) version 5 is based on version 2.6 of the Linux kernel.  Linux is a 
UNIX-like open-source operating system originally created in 1991 by Linus Torvalds of Helsinki, 
Finland.  Red Hat was founded in 1994 and is one of the largest developers of Linux-based operating 
system software and services.

For more detailed information about RHEL products and a technical summary, see the Red Hat Web site 
at http://www.redhat.com.

RHEL5 includes Security Enhanced Linux (SELinux).  SELinux was developed by the United States 
National Security Agency (NSA), and forms the basis of RHEL5 Mandatory Access Control (MAC) and 
Role-Based Access Control (RBAC) mechanisms.  For a history of SELinux, refer to chapter 1 of 
SELINUX, NSA’s Open Source Security Enhanced Linux [MCTY].

 2.1.2 eServer systems
IBM eServer systems were introduced in 2000. The IBM eServer product line brings technological 
innovation, application flexibility, and autonomic capabilities for managing the heterogeneous mix of 
servers required to support dynamic, on-demand business.  It enables customers to meet their business 
needs by providing unlimited scalability, support for open standards, and mission-critical qualities of 
service.  

Following are systems in the IBM eServer product line that are included in the TOE:

• system z:  Mainframe-class servers running mission-critical applications.

• system p: Technologically advanced POWER5 and POWER5+ processor-based UNIX servers for 
commercial and technical computing applications.

• system x:  Intel-based servers with high performance and outstanding availability.

• eServer 326:  AMD Opteron-based servers with outstanding value in high performance 
computing in both 32-bit and 64-bit environments.

• BladeCenter®:  Intel Xeon, AMD Opteron, PowerPC, POWER5, and POWER5+ processor-based 
servers.

Since introducing eServers in 2000, new models with more powerful processors have been added to the 
System x, System p, and System z lines.  The AMD Opteron processor-based eServer 326 was added to 
the eServer series in 2003. The AMD Opteron eServer 326 is designed for powerful scientific and 
technical computing. The Opteron processor supports both 32-bit and 64-bit architectures, thus allowing 
easy migration to 64-bit computing.
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 2.2 High-level product overview
The TOE consists of RHEL running on an eServer computer.  The TOE system can be connected to other 
systems by a protected LAN.  RHEL provides a multi-user, multi-processing environment, where users 
interact with the operating system by issuing commands to a command interpreter. Users issue the 
commands by running system utilities, or by developing their own software to run in their own protected 
environments.

The Common Criteria for Information Technology Security Evaluation [CC] and the Common 
Methodology for Information Technology Security Evaluation [CEM] demand breaking the TOE into 
logical subsystems that can be either (a) products, or (b) logical functions performed by the system. 

The approach in this section is to break the system into structural hardware and software subsystems that 
include, for example, pieces of hardware such as planars and adapters, or collections of one or more 
software processes such as the base kernel and kernel modules.  Chapter 4 explains the structure of the 
system in terms of these architectural subsystems. Although the hardware is also described in this 
document, the reader should be aware that while the hardware itself is part of the TOE environment, it is 
not part of the TOE.

The following subsections present a structural overview of the hardware and software that make up an 
individual eServer host computer. This single-computer architecture is one of the configurations permitted 
under this evaluation.

 2.2.1 eServer host computer structure
This section describes the structure of RHEL for an individual eServer host computer. As shown in Figure
2-2, the system consists of eServer hardware, the RHEL kernel, trusted non-kernel processes, TSF 
databases, and untrusted processes.  In this figure, the TOE itself consists of Kernel Mode software, User 
Mode software, and hardware. The TOE Security Functions (TSF) are shaded in gray.  Details such as 
interactions within the kernel, inter-process communications, and direct user access to the hardware are 
omitted.
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The planar components, including CPUs, memory, busses, onboard adapters, and support circuitry; 
additional adapters, including LAN and video; and, other peripherals, including storage devices, monitors, 
keyboards, and front-panel hardware, constitute the hardware. 

The RHEL kernel includes the base kernel and separately-loadable kernel modules and device drivers. 
(Note that a device driver can also be a kernel module.)  The kernel consists of the bootable kernel image 
and its loadable modules.  The kernel implements the RHEL system call interface, which provides system 
calls for file management, memory management, process management, networking, and other TSF 
(logical subsystems) functions addressed in the Functional Descriptions chapter of this document. The 
structure of the RHEL kernel is described further in the Software Architecture chapter of this document.

Non-kernel TSF software includes programs that run with the administrative privilege, such as the sshd, 
crond, and vsftpd daemons.  The TSF also includes the configuration files that define authorized users, 
groups of users, services provided by the system, and other configuration data.  Not included as TSF are 
shells used by administrators, and standard utilities invoked by administrators.

The RHEL system, which includes hardware, kernel-mode software, non-kernel programs, and databases, 
provides a protected environment in which users and administrators run the programs, or sequences of 
CPU instructions.  Programs execute as processes with the identity of the users that started them (except 
for some exceptions defined in this document), and with privileges as dictated by the system security 
policy.  Programs are subject to the access control and accountability processes of the system.
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 2.2.2 eServer system structure
The system is an eServer computer, which permits one user at a time to log in to the computer console. 
Several virtual consoles can be mapped to a single physical console.  Different users can simultaneously 
login through different virtual consoles.  The system can be connected to other computers via physically 
and logically protected LANs.  The eServer hardware and the physical LAN connecting the different 
systems running RHEL are not included within the evaluation boundary of this document. External 
routers, bridges, and repeaters are also not included in the evaluation boundary of this document.

A standalone host configuration operates as a CC-evaluated system, which can be used by multiple users 
at a time. Users can operate by logging in at the virtual consoles or serial terminals of a system, or by 
setting-up background execution jobs.  Users can request local services, such as file, memory, and process 
management, by making system calls to the kernel.  Even though interconnection of different systems 
running RHEL is not included in the evaluation boundary, the networking software is loaded.  This aids in 
a user’s request for network services (for example, FTP) from server processes on the same host.

Another configuration provides a useful network configuration, in which a user can log in to the console 
of any of the eServer host computers, request local services at that computer, and also request network 
services from any of the other computers.  For example, a user can use SSH to log into one host from 
another, or transfer files from one host to another.  The configuration extends the single LAN architecture 
to show that RHEL provides Internet Protocol (IP) routing from one LAN segment to another. For 
example, a user can log in at the console of a host in one network segment and establish an SSH 
connection to a host in another network segment.  Packets on the connection travel across a LAN 
segment, and they are routed by a host in that segment to a host on another LAN segment.  The packets 
are eventually routed by the host in the second LAN segment to a host on a third LAN segment, and from 
there are routed to the target host.  The number of hops from the client to the server are irrelevant to the 
security provided by the system, and are transparent to the user.  

The hosts that perform routing functions have statically-configured routing tables.  When the hosts use 
other components for routing (for example, a commercial router or switches), then those components are 
assumed to perform the routing functions correctly, and do not alter the data part of the packets.

If other systems are to be connected to the network, with multiple TOE systems connected via a 
physically protected LAN, then they need to be configured and managed by the same authority using an 
appropriate security policy that does not conflict with the security policy of the TOE.

 2.2.3 TOE services
Each host computer in the system is capable of providing the following types of services:

• Local services to the users who are currently logged in to the system using a local computer 
console, virtual consoles, or terminal devices connected through physically protected serial lines.

• Local services to the previous users via deferred jobs; an example is the crond daemon.

• Local services to users who have accessed the local host via the network using a protocol such as 
SSH, which starts a user shell on the local host.

• Network services to potentially multiple users on either the local host or on remote hosts.

Figure 2-3 illustrates the difference between local services that take place on each local host computer, 
versus network services that involve client-server architecture and a network service layer protocol.  For 
example, a user can log in to the local host computer and make file system requests or memory 
management requests for services via system calls to the kernel of the local host. All such local services 
take place solely on the local host computer and are mediated solely by trusted software on that host. 
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Network services, such as SSH or ftp, involve client-server architecture and a network service-layer 
protocol.  The client-server model splits the software that provides a service into a client portion that 
makes the request, and a server portion that carries out the request, usually on a different computer.  The 
service protocol is the interface between the client and server.  For example, User A can log in at Host 1, 
and then use SSH to log in to Host 2.  On Host 2, User A is logged in from a remote host. 

On Host 1, when User A uses SSH to log in to Host 2, the SSH client on Host 1 makes protocol requests 
to an SSH server process on Host 2.  The server process mediates the request on behalf of User A, carries 
out the requested service, if possible, and returns the results to the requesting client process.

Also, note that the network client and server can be on the same host system. For example, when User B 
uses SSH to log in to Host 2, the user's client process opens an SSH connection to the SSH server process 
on Host 2. Although this process takes place on the local host computer, it is distinguished from local 
services because it involves networking protocols.

 2.2.4 Security policy
A user is an authorized individual with an account.  Users can use the system in one of three ways: 

• By interacting directly with the system through a session at a computer console (in which case the 
user can use the graphical display provided as the console), or 

• By interacting directly with system through a session at a serial terminal, or 

• Through deferred execution of jobs using the crond utility. 

A user must log in at the local system in order to access the protected resources of the system. Once a user 
is authenticated, the user can access files or execute programs on the local computer, or make network 
requests to other computers in the system.

The only subjects in the system are processes.  A process consists of an address space with an execution 
context.  The process is confined to a computer; there is no mechanism for dispatching a process to run 
remotely (across TCP/IP) on another host.  Every process has a process ID (PID) that is unique on its 
local host computer, but PIDs are not unique throughout the system.  As an example, each host in the 
system has an init process with PID 1.  Section 5.2 of this document explains how a parent process creates 
a child by making a fork() or a vfork() system call; the child can then call execve() to load a new program.

Objects are passive repositories of data. The TOE defines three types of objects: named objects, storage 
objects, and public objects. Named objects are resources, such as files and IPC objects, which can be 
manipulated by multiple users using a naming convention defined at the TSF interface.  A storage object 
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is an object that supports both read and write access by multiple non-trusted subjects. Consistent with 
these definitions, all named objects are also categorized as storage objects, but not all storage objects are 
named objects.  A public object is an object that can be publicly read by non-trusted subjects and can be 
written only by trusted subjects.

RHEL enforces a DAC policy and a MAC policy for all named objects under its control, and an object 
reuse policy for all storage objects under its control.  DAC policy is enforced first, while MAC is enforced 
only if DAC permits the operation.  MAC policy is non-authoritative; that is, a DAC policy denial cannot 
be overridden by the MAC policy.

While the DAC policy that is enforced varies among different object classes, in all cases it is based on 
user identity and on group membership associated with the user identity.  Similarly, while the MAC 
policy that is enforced varies among different object classes, in all cases it is based on the domain of the 
user and the type of the object.  To allow for enforcement of the DAC and the MAC policy, all users must 
be identified, and their identities must be authenticated. The TOE uses both hardware and software 
protection mechanisms. 

The hardware mechanisms used by Red Hat Enterprise Linux to provide a protected domain for its own 
execution include a multistate processor, memory segment protection, and memory page protection. The 
TOE software relies on these hardware mechanisms to implement TSF isolation, non-circumventability, 
and process address-space separation.

A user can log in at the console, at other directly attached terminals, or through a network connection. 
Authentication is based on a password entered by the user and authentication data stored in a protected 
file.  Users must log in to a host before they can access any named objects on that host. Some services, 
such as SSH, to obtain a shell prompt on another host, or ftp, to transfer files between hosts in the 
distributed system, require the user to re-enter authentication data to the remote host.  RHEL permits the 
user to change passwords (subject to TOE enforced password guidelines), change identity, submit batch 
jobs for deferred execution, and log out of the system. The Strength of Function Analysis [VA] shows that 
the probability of guessing a password is sufficiently low given the minimum password length and 
maximum password lifetime.

The system architecture provides TSF self-protection and process isolation mechanisms.

 2.2.5 Operation and administration
The eServer networks can be composed of one, several, or many different host computers, each of which 
can be in various states of operation, such as being shut down, initializing, being in single-user mode, or 
online in a secure state.  Thus, administration involves the configuration of multiple computers and the 
interactions of those computers, as well as the administration of users, groups, files, printers, and other 
resources for each eServer system.

The TOE provides the useradd, usermod, and userdel commands to add, modify, and delete a user 
account.  It provides the groupadd, groupmod, and groupdel commands to add, modify, and delete a group 
form the system, and the semanage command to configure elements of the system security policy.  These 
commands accept options to set up or modify various parameters for accounts, groups, and security 
policy. The commands modify the appropriate TSF databases and provide a safer way than manual editing 
to update authentication databases.  Refer to the appropriate command man pages for detailed information 
about how to set up and maintain users and groups.

 2.2.6 TSF interfaces
The TSF interfaces include local interfaces provided by each host computer, and the network client-server 
interfaces provided by pairs of host computers.

The local TSF interfaces provided by an individual host computer include:
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• Files that are part of the TSF database that define the configuration parameters used by the 
security functions.

• System calls made by trusted and untrusted programs to the privileged kernel-mode software.  As 
described separately in this document, system calls are exported by the base RHEL kernel and by 
kernel modules.

• Interfaces to trusted processes and trusted programs

• Labeled communication using IPSec and CIPSO protocols

• Interfaces to the RHEL kernel through the /proc and the /selinux pseudo file systems

External TSF interfaces provided by pairs of host computers include SSH v2 and SSL v3.

For more detailed information about these interfaces, refer to:

• SSH v2 Draft http://www.ietf.org/ids.by.wg/secsh.html 

• SSLv3 Draft  http://wp.netscape.com/eng/ssl3/draft302.txt 

• RFC 3268 Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security 
(TLS) http://www.ietf.org/rfc/rfc3268.txt   

The following are interfaces that are not viewed as TSF interfaces:

• Interfaces between non-TSF processes and the underlying hardware.  Typically, user processes do 
not interface directly with the hardware; exceptions are processor and graphics hardware.  User 
processes interact with the processor by executing CPU instructions, reading and modifying CPU 
registers, and modifying the contents of physical memory assigned to the process. User processes 
interact with graphics hardware by modifying the contents of registers and memory on the 
graphics adapter.  Unprivileged processor instructions are externally visible interfaces.  However, 
the unprivileged processor instructions do not implement any security functionality, and the 
processor restricts these instructions to the bounds defined by the processor.  Therefore, this 
interface is not considered as part of the TSF.

• Interfaces between different parts of the TSF that are invisible to normal users (for example, 
between subroutines within the kernel) are not considered to be TSF interfaces. This is because 
the interface is internal to the trusted part of the TOE and cannot be invoked outside of those 
parts. Those interfaces are therefore not part of the functional specification, but are explained in 
this HLD.

• The firmware (PR/SMTM, z/VMTM, P5-LPAR), while part of the TOE, are not considered as 
providing TSF interfaces because they do not allow direct unprivileged operations to them. 

• System z processor exceptions reflected to the firmware, including z/VM, PR/SM, and LPAR, are 
not considered to be TSF interfaces. They are not relevant to security because they provide access 
to the z/VM kernel, which does not implement any security functionality.

• The System z z/VM DIAGNOSE code interface is not considered a TSF interface because it is 
not accessible by unprivileged processes in the problem state, and does not provide any security 
functionality.

TSF interfaces include any interface that is possible between untrusted software and the TSF.

 2.3 Approach to TSF identification
This section summarizes the approach to identification of the TSF.

As stated in Section 2.2.6, while the hardware and firmware (z/VM, PR/SM, and LPAR) are part of the 
TOE, they are not considered as providing TSF interfaces.  The RHEL operating system, on the other 
hand, does provide TSF interfaces. 

9

http://www.ietf.org/ids.by.wg/secsh.html
http://www.ietf.org/rfc/rfc3268.txt
http://wp.netscape.com/eng/ssl3/draft302.txt


The RHEL operating system is distributed as a collection of packages.  A package can include programs, 
configuration data, and documentation for the package.  Analysis is performed at the file level, except 
where a particular package can be treated collectively.  A file is included in the TSF for one or more of 
the following reasons:

• It contains code, such as the kernel, kernel module, and device drivers, that runs in a privileged 
hardware state.

• It enforces the security policy of the system.

• It allows setuid or setgid to a privileged user (for example, root) or group.

• It started as a privileged daemon; an example is one started by /etc/rc.d/init.d.

• It is software that must function correctly to support the system security mechanisms.

• It is required for system administration.

• It consists of TSF data or configuration files.

• It consists of libraries linked to TSF programs.

There is a distinction between non-TSF user-mode software that can be loaded and run on the system, and 
software that must be excluded from the system.  The following methods are used to ensure that excluded 
software cannot be used to violate the security policies of the system:

• The installation software will not install any device drivers except those required for the installed 
hardware.  Consequently, excluded device drivers will not be installed even if they are on the 
installation media.

• The installation software may change the configuration (for example, mode bits) so that a 
program cannot violate the security policy.
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 3 Hardware architecture
The TOE includes the IBM system x, system p, system z, and eServer 326.  This section describes the 
hardware architecture of these eServer systems.  For more detailed information about Linux support and 
resources for the entire eServer line, refer to http://www.ibm.com/systems/browse/linux. 

 3.1 System x
IBM System x systems are Intel processor-based servers with X-architecture technology enhancements 
for reliability, performance, and manageability.  X-architecture is based on technologies derived from the 
IBM ESTM-, RSTM-, and ASTM-series servers.

 3.1.1 System x hardware overview
The IBM System x servers offer a range of systems, from entry-level to enterprise class.  The high-end 
systems offer support for gigabytes of memory, large RAID configurations of SCSI and fiber channel 
disks, and options for high-speed networking.  IBM System x servers are equipped with a real-time 
hardware clock.  The clock is powered by a small battery and continues to tick even when the system is 
switched off.  The real-time clock maintains reliable time for the system.  For the specification of each of 
the System x servers, refer to the system x hardware Web site at http://www.ibm.com/systems/x/. 

 3.1.2 System x hardware architecture
The IBM System x servers are powered by Intel Xeon® and Xeon MP processors.  For detailed 
specification information for each of these processors, refer to the Intel processor spec-finder Web site at 
http://processorfinder.intel.com/scripts/default.asp.

The Intel Xeon processor is mainly based on EM64 technology, which has the following three operating 
modes:

• 32-bit legacy mode: In this mode, both AMD64 and EM64T processors will act just like any other 
IA32-compatible processor.  One can install this 32-bit operating system and run 32-bit 
applications on such a system, but it fails to make use of new features such as flat memory 
addressing above 4 GB or the additional general Purpose Registers (GPRs).  32-bit applications 
will run just as fast as they would on any current 32-bit processor.

• Compatibility mode: This is an intermediate mode of the full 64-bit mode described next. In this 
mode one has to install a 64-bit operating system and 64-bit drivers.  If a 64-bit operating system 
and drivers are installed, Xeon processors will be enabled to support a 64-bit operating system 
with both 32-bit applications or 64-bit applications.  Hence this mode has the ability to run a 64-
bit operating system while still being able to run unmodified 32-bit applications.  Each 32-bit 
application will still be limited to a maximum of 4 GB of physical memory.  However, the 4 GB 
limit is now imposed on a per-process level, not at a system-wide level.

• Full 64-bit mode: This mode is referred  as IA-32e mode. This mode is operative when a 64-bit 
operating system and 64-bit application are used.  In the full 64-bit operating mode, an 
application can have a virtual address space of up to 40 bits, which equates to 1 TB of addressable 
memory.  The amount of physical memory will be determined by how many Dual In-line 
Memory Module (DIMM) slots the server has, and the maximum DIMM capacity supported and 
available at the time.
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In this mode, applications may access:

• 64-bit flat linear addressing

• 8 new general-purpose registers (GPRs)

• 8 new registers for streaming Single Instruction/Multiple Data (SIMD) extensions (SSE, SSE2, 
and SSE3)

• 64-bit-wide GPRs and instruction pointers

• uniform byte-register addressing

• fast interrupt-prioritization mechanism

• a new instruction-pointer relative-addressing mode.

For architectural details about all System x models, and for detailed information about individual 
components such as memory, cache, and chipset, refer to the “Accessories & Upgrades” section at 
http://www.ibm.com/systems/x/ 

USB (except keyboard and mouse), PCMCIA, and IEEE 1394 (Firewire) devices are not supported in the 
evaluated configuration.

 3.2 System p
The IBM System p systems are PowerPC, POWER5 and POWER5+ processor-based systems that 
provide high availability, scalability, and powerful 64-bit computing performance. 

For more detailed information about the System p hardware, refer to the System p hardware Web site at 
http://www.ibm.com/systems/p/.

 3.2.1 System p hardware overview
The IBM System p servers offer a range of systems, from entry level to enterprise class.  The high-end 
systems offer support for gigabytes of memory, large RAID configurations of SCSI and fiber channel 
disks, and options for high-speed networking.  The IBM System p servers are equipped with a real-time 
hardware clock. The clock is powered by a small battery, and continues to tick even when the system is 
switched off.  The real-time clock maintains reliable time for the system.  For the specification of each of 
the System p servers, refer to the corresponding data sheets on the System p literature website: 
http://www.ibm.com/systems/p/library/index_lit.html.

For a detailed look at various peripherals such as storage devices, communications interfaces, storage 
interfaces, and display devices supported on these System p models, refer to the Linux on POWER 
website at   http://www.ibm.com/systems/linux/power/  . 

 3.2.2 System p hardware architecture
The IBM System p servers are powered by PowerPC™, POWER5™, and POWER5+™ processors.  For 
detailed specification information for each of these processors, refer to the PowerPC processor 
documentation at http://www.ibm.com/chips/power/powerpc/ and POWER documentation at 
http://www.ibm.com/chips/power/aboutpower/.

For architectural details about all System p models, and for detailed information about individual 
components such as memory, cache, and chipset, refer to the IBM System p technical documentation at 

http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/hardware.htm or 
http://www.ibm.com/servers/eserver/pseries/library/. 

12

http://www.ibm.com/servers/eserver/pseries/library/
http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/hardware.htm
http://www.ibm.com/chips/power/aboutpower/
http://www.ibm.com/chips/power/powerpc/
http://www.ibm.com/systems/linux/power/
http://www.ibm.com/systems/p/library/index_lit.html
http://www.ibm.com/systems/p/
http://www.ibm.com/systems/x/


USB (except keyboard and mouse), PCMCIA, and IEEE 1394 (Firewire) devices are not supported in the 
evaluated configuration.

 3.3 The System z
The IBM System z is designed and optimized for high-performance data and transaction serving 
requirements.  On a System z system, Linux can run on native hardware, in a logical partition, or as a 
guest of the z/VM® operating system.  RHEL runs on System z as a guest of the z/VM Operating System.

For more detailed information about the System z hardware, refer to the System z hardware website at 
http://www.ibm.com/systems/z/.

 3.3.1 System z hardware overview
The System z hardware runs z/Architecture™ and the S/390™ Enterprise Server Architecture (ESA) 
software.  The IBM System z server is equipped with a real-time hardware clock.  The clock is powered 
by a small battery, and continues to tick even when the system is switched off.  The real-time clock 
maintains reliable time for the system.  For a more detailed overview of the System z hardware models, or 
detailed information about specific models, refer to the http://www.ibm.com/systems/z/hardware/ site.

 3.3.2 System z hardware architecture
The System z servers are powered by IBM’s multi-chip module (MCM), which contains up to 20 
processing units (PUs).  These processing units contain the z/Architecture logic.  There are three modes in 
which Linux can be run on a System z server: native hardware mode, logical partition mode, and z/VM 
guest mode.  The following paragraphs describe these modes.

• Native hardware mode:  In native hardware mode, Linux can run on the entire machine without 
any other operating system.  Linux controls all I/O devices, and needs support for their 
corresponding device drivers.

• Logical partition mode:  A System z system can be logically partitioned into a maximum of 30 
separate Logical Partitions (LPARs).  A single System z server can then host the z/OS operating 
system in one partition, and Linux in another.  Devices can be dedicated to a particular logical 
partition, or they can be shared among several logical partitions.  The Linux operating system 
controls devices allocated to its partition, and thus needs support for their corresponding device 
drivers.

• z/VM guest mode:  Linux can run in a virtual machine using the z/VM operating system as a 
hypervisor.  The hypervisor provides virtualization of CPU processors, I/O subsystems, and 
memory. In this mode, hundreds of Linux instances can run on a single System z system.  RHEL 
runs on System z in the z/VM guest mode.  Virtualization of devices in the z/VM guest mode 
allows RHEL to operate with generic devices. The z/VM maps these generic devices to actual 
devices. 

Figure 3-1 from the Linux Handbook [LH] illustrates z/VM concepts:
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For more details about z/Architecture, refer to the z/Architecture document z/Architecture "Principles of 
Operation" at http://publibz.boulder.ibm.com/epubs/pdf/dz9zr002.pdf.

USB (except keyboard and mouse), PCMCIA, and IEEE 1394 (Firewire) devices are not supported in the 
evaluated configuration.

 3.4 eServer 326
The IBM eServer 326 systems are AMD Opteron processor-based systems that provide high performance 
computing in both 32-bit and 64-bit environments.  The eServer 326 significantly improves performance 
of existing 32-bit applications, and excels at 64-bit computing in performance, allowing for easy 
migration to 64-bit computing.

For more detailed information about eServer 326 hardware, refer to the eServer 326 hardware Web site at 
http://www.ibm.com/servers/eserver/opteron/.

 3.4.1 eServer 326 hardware overview
The IBM eServer 326 systems offer support for up to two AMD Opteron processors, up to twelve GB of 
memory, hot-swap SCSI or IDE disk drives, RAID-1 mirroring, and options for high-speed networking. 
The IBM eServer 326 server is equipped with a real-time hardware clock.  The clock is powered by a 
small battery and continues to tick even when the system is switched off.  The real-time clock maintains 
reliable time for the system. 

 3.4.2 eServer 326 hardware architecture
The IBM eServer 326 systems are powered by AMD Opteron processors.  For detailed specifications of 
the Opteron processor, refer to the processor documentation at 
http://www.amd.com/us-en/Processors/TechnicalResources/0,,30_182_739_9003,00.html.

The Opteron is based on the AMD x86-64 architecture.  The AMD x86-64 architecture is an extension of 
the x86 architecture, extending full support for 16-bit, 32-bit, and 64-bit applications running 
concurrently.
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The x86-64 architecture adds a mode called the long mode.  The long mode is activated by a global 
control bit called Long Mode Active (LMA).  When LMA is zero, the processor operates as a standard 
x86 processor and is compatible with the existing 32-bit RHEL operating system and applications.  When 
LMA is one, 64-bit processor extensions are activated, allowing the processor to operate in one of two 
sub-modes of LMA.  These are the 64-bit mode and the compatibility mode.

In 64-bit mode, the processor supports 64-bit virtual addresses, a 64-bit instruction pointer, 64-bit general-
purpose registers, and eight additional general-purpose registers, for a total of 16 general-purpose 
registers.

Compatibility mode allows the operating system to implement binary compatibility with existing 32-bit 
x86 applications.  These legacy applications can run without recompilation.  This coexistence of 32-bit 
legacy applications and 64-bit applications is implemented with a compatibility thunking layer.

The thunk layer is a library provided by the operating system.  The library resides in a 32-bit process 
created by the 64-bit operating system to run 32-bit applications. A 32-bit application, transparent to the 
user, is dynamically linked to the thunk layer and implements 32-bit system calls. The thunk layer 
translates system call parameters, calls the 64-bit kernel, and translates results returned by the kernel 
appropriately and transparently for a 32-bit application.

For detailed information about the x86-64 architecture, refer to the AMD Opteron technical 
documentation at 
http://www.amd.com/us-en/Processors/TechnicalResources/0,,30_182_739_7044,00.html.

USB (except keyboard and mouse), PCMCIA, and IEEE 1394 (Firewire) devices are not supported in the 
evaluated configuration.
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 4 Software architecture
This chapter summarizes the software structure and design of the RHEL system and provides references 
to detailed design documentation.

The following subsections describe the TOE Security Functions (TSF) software and the TSF databases for 
the RHEL system.  The descriptions are organized according to the structure of the system and describe 
the RHEL kernel that controls access to shared resources from trusted (administrator) and untrusted (user) 
processes.  This chapter provides a detailed look at the architectural pieces, or subsystems, that make up 
the kernel and the nonkernel TSF.  This chapter also summarizes the databases that are used by the TSF.

The Functional Description chapter that follows this chapter describes the functions performed by the 
RHEL logical subsystems.  These logical subsystems generally correspond to the architectural subsystems 
described in this chapter.  The two topics were separated into different chapters in order to emphasize that 
the material in the Functional Descriptions chapter describes how the system performs certain key 
security-relevant functions.  The material in this chapter provides the foundation information for the 
descriptions in the Functional Description chapter.

 4.1 Hardware and software privilege
This section describes the terms hardware privilege and software privilege as they relate to the RHEL 
operating system. These two types of privileges are critical for the RHEL system to provide TSF self-
protection.  This section does not enumerate the privileged and unprivileged programs.  Rather, the TSF 
Software Structure identifies the privileged software as part of the description of the structure of the 
system.

 4.1.1 Hardware privilege
The eSeries servers are powered by different types of processors.  Each of these processors provides a 
notion of user mode execution and supervisor, or kernel, mode execution.  The following briefly describes 
how these user- and kernel-execution modes are provided by the System x, System p,  System z, and 
eServer 326 systems.

 4.1.1.1 Privilege level

This section describes the concept of privilege levels by using Intel-based processors as an example.  The 
concept of privilege is implemented by assigning a value of 0 to 3 to key objects recognized by the 
processor.  This value is called the privilege level.  The following processor-recognized objects contain 
privilege levels:

• Descriptors contain a field called the descriptor privilege level (DPL).

• Selectors contain a field called the requestor’s privilege level (RPL).  The RPL is intended to 
represent the privilege level of the procedure that originates ? the selector.

• An internal processor register records the current privilege level (CPL).   Normally the CPL is 
equal to the DPL of the segment the processor is currently executing.   The CPL changes as 
control is transferred to segments with differing DPLs.

Figure 4-1 shows how these levels of privilege can be interpreted as layers of protection.  The center is for 
the segments containing the most critical software, usually the kernel of the operating system. Outer 
layers are for the segments of less critical software.  

16



System x:  The System x servers are powered by Intel processors.  Intel processors provide four execution 
modes, identified with processor privilege levels 0 through 3.  The highest privilege level execution mode 
corresponds to processor privilege level 0; the lowest privilege level execution mode corresponds to 
processor privilege level 3.  The RHEL kernel, as with most other UNIX-variant kernels, utilizes only two 
of these execution modes.  The highest, with the processor privilege level of 0, corresponds to the kernel 
mode; the lowest, with the processor privilege of 3, corresponds to the user mode.

System p:  The System p servers are powered by PowerPC, POWER5, and POWER5+ processors.  These 
processors provide three execution modes, identified by the PR bit (bit 49) and the HV bit (bit 3) of the 
Machine State Register of the processor.  Values of 0 for both PR and HV bits indicate a hypervisor 
execution mode.  An HV bit value of 1, and a PR bit value of 0, indicate a supervisor, or kernel, execution 
mode.  An HV bit value of 1 and a PR bit value of 1 indicate a user execution mode.

System z:  The System z systems also provide two execution modes identified by the Problem State bit 
(bit 15) of the processor’s Program Status Word (PSW).  A value of 0 indicates a supervisor, or kernel, 
execution mode, and the value of 1 indicates a problem state, or user, execution mode.

eServer 326: The eServer 326 servers are powered by AMD Opteron processors.  These processors 
provide four execution modes identified with processor privilege levels 0 through 3. 

The highest privilege level execution mode corresponds to processor privilege level 0; the lowest 
privilege level execution mode corresponds to processor privilege level 3.  The RHEL kernel, as with 
most other UNIX-variant kernels, only utilizes two of these execution modes.  The highest, with processor 
privilege level of 0, corresponds to the kernel mode; the lowest, with processor privilege of 3, corresponds 
to the user mode.

User and kernel modes, which are offered by all of the eSeries systems, implement hardware privilege as 
follows:

17

Figure 4-1: Levels of Privilege



• When the processor is in kernel mode, the program has hardware privilege because it can access 
and modify any addressable resources, such as memory, page tables, I/O address space, and 
memory management registers. This is not possible in the user mode.

• When the processor is in kernel mode, the program has hardware privilege because it can execute 
certain privileged instructions that are not available in user mode.

Thus, any code that runs in kernel mode executes with hardware privileges.  Software that runs with 
hardware privileges includes:

• The base RHEL kernel.  This constitutes a large portion of software that performs memory 
management file I/O and process management.

• Separately loaded kernel modules, such as ext3 device driver modules.  A module is an object file 
whose code can be linked to, and unlinked from, the kernel at runtime.  The module code is 
executed in kernel mode on behalf of the current process, like any other statically-linked kernel 
function.

All other software on the system normally runs in user mode, without hardware privileges, including user 
processes such as shells, networking client software, and editors.  User-mode processes run with hardware 
privileges when they invoke a system call.  The execution of the system call switches the mode from user 
to kernel mode, and continues the operation at a designated address within the kernel where the code of 
the system call is located.

 4.1.2 Software privilege
Software privilege in RHEL involves the ability to override the kernel’s access control mechanisms. 
RHEL implements an access control model that enforces Discretionary Access Control and Mandatory 
Access Control.  Discretionary Access Control (DAC) is applied first, and the Mandatory Access Control 
(MAC) is applied if and only if the DAC check grants access.  The kernel implements software privileges 
for both the DAC policy and the MAC policy.  This section first describes the RHEL access control 
model, and then describes the DAC and MAC control models and their respective software privileges. 

The following illustrates the RHEL access control model:
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As illustrated in diagram 4-2, access control is applied every time a subject attempts to access an object. 
Both subjects and objects carry security attributes that are relevant for the DAC policy and the MAC 
policy.  The kernel evaluates access based on these attributes and access control rules.  If access is granted 
by DAC policy, an LSM hook is called to evaluate access based on the SELinux LSM.  SELinux LSM 
goes through a multi-step process, described in Section 4.1.2.2, to determine if access should be allowed.

 4.1.2.1  DAC

The DAC model allows the owner of the object to decide who can access that object, and in what manner. 
Like any other access control model, DAC implementation can be explained by which subjects and 
objects are under the control of the model, security attributes used by the model, access control and 
attribute transition rules, and the override (software privilege) mechanism to bypass those rules.

 4.1.2.1.1 Subjects and objects

Subjects in RHEL are regular processes and kernel threads.  They are both represented by the task_struct 
structure.  Kernel threads run only in the kernel mode, and are not constrained by the DAC policy.  All 
named objects such as regular files, character and block files, directories, sockets, and IPC objects are 
under the control of the DAC policy.

 4.1.2.1.2 Attributes

Subject attributes used to enforce DAC policy are the process UID, GID, supplementary groups, and 
process capabilities.  These attributes are stored in the task_structure of the process, and are affected by 
the system calls as described in Section 5.2.  Object attributes used to enforce DAC policy are owner, 
group owner, permission bits, and POSIX.1e Access Control Lists (ACLs).  These attributes are stored in-
core and, for appropriate disk-based file systems, in the on-disk inode.

 4.1.2.1.3 Access control rules

DAC access control rules specify how a certain process with appropriate DAC security attributes can 
access an object with a set of DAC security attributes.  In addition, DAC access control rules also specify 
how subject and object security attributes transition to new values and under what conditions.  DAC 
access control lists are described in detail in Section 5.1.5.

 4.1.2.1.4 Software privilege

Software privilege for DAC policy is based on the user ID of the process.  At any time, every process has 
an effective user ID, an effective group ID, and a set of supplementary group IDs.  These IDs determine 
the privileges of the process.  A process with a user ID of 0 is a privileged process, with capabilities of 
bypassing the access control policies of the system.  The root user name is commonly associated with user 
ID 0, but there can be other users with this ID.

Additionally, the RHEL kernel has a framework for providing software privilege for DAC policy through 
capabilities.  These capabilities, which are based on the POSIX.1e draft, allow breakup of the kernel 
software privilege associated with user ID zero into a set of discrete privileges based on the operation 
being attempted.  

For example, if a process is trying to create a device special file by invoking the mknod() system call, 
then instead of checking to ensure that the user ID is zero, the kernel checks to ensure that the process is 
capable of creating device special files.  In the absence of special kernel modules that define and use 
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capabilities, as is the case with the TOE, capability checks revert back to granting kernel software 
privilege based on the user ID of the process. 

 4.1.2.2 Mandatory Access Control

With Mandatory Access Control (MAC), it is the system security policy, unlike the owner in DAC, that 
controls who should be allowed access to what information.  The RHEL mandatory access control model 
is implemented using SELinux.  SELinux provides a general-purpose MAC enforcement framework using 
Type Enforcement (TE).  The SELinux MAC model completely separates the enforcement engine from 
the security policy.  The enforcement engine extends the traditional TE mechanism to support security 
policies that implement role-based access control and Bell-LaPadula style hierarchical Multilevel Security 
(MLS).  This section describes the enforcement engine of the RHEL MAC model by using the subjects 
and objects for which the MAC is performed, the attributes that are used for this check, access control 
rules, and override rules.  RHEL security policy is described with the kernel implementation of different 
subjects and objects in Chapter 5.

 4.1.2.2.1 Subjects and objects

Subjects in RHEL are regular processes and kernel threads.  They are both represented by the task_struct 
structure.  Kernel threads run only in the kernel mode and are not constrained by the MAC policy.  All 
named objects such as regular files, character and block files, directories, sockets, and IPC objects are 
under the control of the MAC policy.  In addition to named objects, the MAC policy can also control 
access to certain kernel data structures such as file descriptors, IPC messages, and file systems to allow 
granular expression of the system security policy.

 4.1.2.2.2 Attributes

Subject and object security attributes, also referred to as the security context, have the same format.  In 
user-readable and external form, the security context is an ASCII string.  The kernel, for performance 
reasons, converts the string into a 32-bit integer at run-time; however, this document uses the ASCII 
version of the security context to describe the enforcement engine and the security policy.

The security context consists of four colon-separated components.  They correspond to user, role, type, 
and MLS range of the subject or object.

• User:  The user component is the SELinux user name. 

• Role:  The role component is the SELinux role corresponding to the subject or object.  For 
subjects, the role is used to implement role-based access control by allowing the role to control 
access to domains.  For objects, the role component is not used, and is all object_r.  

• Type:  The type field represents the subject domain or object type.  Domains and types are 
equivalent classes for processes and resources, respectively.  Access decisions in the kernel are 
made based on subject domain and object type.
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• MLS label range:  The MLS label range contains two complete MLS labels.  They are arranged 
with the low label on the left and the high label, which dominates the low label, on the right.  The 
two labels are separated by a dash and form a label range.  For subjects, the low label of the range 
corresponds to the effective MLS label of the subject, while the high label corresponds to the 
clearance of the subject. The subject clearance maps to the clearance of the user on whose behalf 
the subject is acting.  
For objects such as regular files, the security policy dictates that the low label and the high label 
are equal, thus making the object, effectively, single level.  Objects such as directories, devices, 
and sockets may have a high label that is not equal to the low label.  These objects are multilevel, 
and their MLS label range requires that the sensitivity level of any information that passes 
through them dominates the low label and is dominated by the high label.

Each MLS label consists of two components, a hierarchical classification level (or sensitivity level), and a 
non-hierarchical set of categories.

Between any two MLS labels, four possible relationships can exist, as follows:

• L1 is equal to L2 (levels are equal, category sets are equal)

• L1 dominates L2 (level of L1 >= level of L2, L2 category set equal or subset of L1 category set)

• L1 is dominated by L2 (level of L2 >= level of L1, L1 category set equal or subset of L2 
category set)

• L1 is incomparable to L2 (L1 and L2 are not equal and neither dominates the other)

For example, 

If L1 = Secret:cat1,cat2,cat5, L2 = Confidential:cat1,cat2, and L3 = Unclassified:cat1,cat5, then 

• L1 dominates L2

• L2 is dominated by L1

• L2 is incomparable to L3

 4.1.2.2.2.1 Attribute storage

SELinux attributes are stored in the task_struct process structure for subjects, and in in-core and on-disk 
inode for file system objects. They are stored in the kern_ipc_perm structure for system V IPC objects, 
in the sock structure for sockets, and in the xfrm_state structure for netlink sockets.  SELinux maps 
invalid contexts to the system_u:object_r:unlabeled_t:s0 context.
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 4.1.2.2.3 Access control rules

MAC access control implementation is based on Type Enforcement (TE).  TE provides fine-grained 
access control over subjects and objects.  For additional information about the TE MAC  model, refer to 
http://www.nsa.gov/selinux/papers/policy2/x84.html.  At a high level, SELinux TE can be illustrated as 
the following:

Where Type Enforcement rules are expressed as:

In addition to the above simple access rules between a domain and a type, the SELinux policy language 
provides a rich grammar to express the system security policy.  One of the features allows the policy to 
express an additional constraint to an access control.  The Bell-LaPadula MLS policy is expressed as a 
constraint on top of the TE.  Therefore, the total access control check happens in three logical steps, as 
follows.

The first is the DAC check using DAC attributes, followed by the TE check using domains and types of 
the SELinux security context, followed by the Bell-LaPadula MLS policy check using the MLS range of 
the SELinux security context.  

Each check is non-authoritative.  That is, permissions are only reduced at each stage; a DAC denial cannot 
be overridden by TE, and a TE denial cannot be overridden by MLS.  The following illustrates this 
progressive reduction of permissions in an access check:
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For example, if the system contains a domain named project_member, a set of project_files files, and a 
policy that allows project_member domain read access to all files with the project_files type, then a 
process with effective sensitivity level of Secret in the project_member domain will be able to read only 
files whose sensitivity levels are dominated by the process sensitivity level of Secret.

 4.1.2.2.4 Software privilege

Software privilege for the MAC policy is implemented with the domain of the process and security policy 
rules associated with that domain.  For example, processes running in the init_t domain are allowed to 
read objects whose sensitivity label dominates the process sensitivity label.  This override is achieved by 
domain attributes.  The policy rule expresses the domain’s access to type with the override tied to an 
attribute of the domain.  For example, the following policy rule can be used to allow a process to override 
the Bell-LaPadula restriction of “no-read-up” when it tries to read a regular file:

mlsconstrain {file} {read} ((l1 dom l2) or (t1 == mlsfileread));

The above statement sets the security policy that label l1 (belonging to the subject) must dominate label l2 
(belonging to the object) for the read operation to succeed, unless the process domain has the mlsfileread 
attribute.

System security policy for different subject and object types is described with the functional description 
of those subjects and objects.

 4.1.2.3 Programs with software privilege

Examples of programs running with software privilege are:

• Programs that are run by the system, such as the crond and init daemons.

• Programs that are run by trusted administrators to perform system administration.

• Programs that run with privileged identity by executing setuid programs.
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All software that runs with hardware privileges or software privileges, and that implements security 
enforcing functions, is part of the TOE Security Functions (TSF).  All other programs are either 
unprivileged programs that run with the identity of the user that invoked the program, or software that 
executes with privileges but does not implement any security functions.  

In a properly administered system, unprivileged software is subject to the security policies of the system 
and does not have any means of bypassing the enforcement mechanisms.  This unprivileged software need 
not be trusted in any way, and is thus referred to as untrusted software.  Trusted processes that do not 
implement any security function need to be protected from unauthorized tampering using the security 
functions of RHEL.  They need to be trusted to not perform any function that violates the security policy 
of RHEL.

 4.2  TOE Security Functions software structure
This section describes the structure of the RHEL software that constitutes the TOE Security Functions 
(TSF).  The RHEL system is a multi-user operating system, with the kernel running in a privileged 
hardware mode, and the user processes running in user mode.  The TSF includes both the kernel software 
and certain trusted non-kernel processes.

Figure 4-4 depicts the TSF and non-TSF portions of software.   Subsequent sections provide more 
detailed descriptions of the kernel and non-kernel TSF architectural subsystems.

The concept of breaking the TOE product into logical subsystems is described in the Common Criteria. 
These logical subsystems are the building blocks of the TOE, and are described in the Functional Descriptions 
chapter of this document.  They include logical subsystems and trusted processes that implement security 
functions.  A logical subsystem can implement or support one or more functional components.  For example, 
the File and I/O subsystem is partly implemented by functions of the Virtual Memory Manager.

24

Figure 4-4: TSF and non-TSF software



 4.2.1 Kernel TSF software
The kernel is the core of the operating system.  It interacts directly with the hardware, providing common 
services to programs, and prevents programs from directly accessing hardware-dependent functions. 
Services provided by the kernel include the following:

• Control of the execution of processes by allowing their creation, termination or suspension, and 
communication.  These include:

• Fair scheduling of processes for execution on the CPU. 

• Share of processes in the CPU in a time-shared manner. 

• CPU execution of a process.

• Kernel suspension when its time quantum elapses. 

• Kernel schedule of another process to execute. 

• Later kernel rescheduling of the suspended process.

• Allocation of the main memory for an executing process.  These include:

• Kernel allowance of processes to share portions of their address space under certain 
conditions, but protection of the private address space of a process from outside tampering. 

• If the system runs low on free memory, the kernel frees memory by writing a process 
temporarily to secondary memory, or a swap device. 

• Coordination with the machine hardware to set up a virtual-to-physical address that maps the 
compiler-generated addresses to their physical addresses. 

• File system maintenance.  These include:

• Allocation of secondary memory for efficient storage and retrieval of user data. 

• Allocation of secondary storage for user files. 

• Reclamation of unused storage. 

• Structure of the file system in a well-understood manner. 

• Protection of user files from illegal access. 

• Allowance of processes’ controlled access to peripheral devices such as terminals, tape drives, 
disk drives, and network devices.

• Mediation of access between subjects and objects, allowing controlled access based on DAC and 
MAC policy.

The RHEL kernel is a fully preemptible kernel.  In non-preemptive kernels, kernel code runs until 
completion.  That is, the scheduler is not capable of rescheduling a task while it is in the kernel. 
Moreover, the kernel code is scheduled cooperatively, not preemptively, and it runs until it finishes and 
returns to user-space, or explicitly blocks.  In preemptive kernels, it is possible to preempt a task at any 
point, so long as the kernel is in a state in which it is safe to reschedule.

 4.2.1.1 Logical components

The kernel consists of logical subsystems that provide different functionalities.  Even though the kernel is 
a single executable program, the various services it provides can be broken into logical components. 
These components interact to provide specific functions.

Figure 4-5 schematically describes logical kernel subsystems, their interactions with each other, and with 
the system call interface available from user space.
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The kernel consists of the following logical subsystems:

• File and I/O subsystem:  This subsystem implements functions related to file system objects. 
Implemented functions include those that allow a process to create, maintain, interact, and delete 
file-system objects.  These objects include regular files, directories, symbolic links, hard links, 
device-special files, named pipes, and sockets.

• Process subsystem:  This subsystem implements functions related to process and thread 
management.  Implemented functions include those that allow the creation, scheduling, execution, 
and deletion of process and thread subjects.

• Memory subsystem:  This subsystem implements functions related to the management of memory 
resources of a system.  Implemented functions include those that create and manage virtual 
memory, including management of page tables and paging algorithms.

• Networking subsystem:  This subsystem implements UNIX and Internet domain sockets, as well 
as algorithms for scheduling network packets.

• IPC subsystem:  This subsystem implements functions related to IPC mechanisms.  Implemented 
functions include those that facilitate controlled sharing of information between processes, 
allowing them to share data and synchronize their execution, in order to interact with a common 
resource.

• Kernel modules subsystem:  This subsystem implements an infrastructure to support loadable 
modules. Implemented functions include those that load, initialize, and unload kernel modules.

• SELinux: While technically a kernel module, SELinux is an important logical subsystem. This 
subsystem implements mandatory access control functions to mediate access between all subjects 
and objects.

• Device driver subsystem:  This subsystem implements support for various hardware and software 
devices through a common, device-independent interface.

• Audit subsystem:  This subsystem implements functions related to recording of security-critical 
events on the system. Implemented functions include those that trap each system call to record 
security-critical events and those that implement the collection and recording of audit data.
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 4.2.1.2 Execution components

The execution components of the kernel can be divided into three components: base kernel, kernel 
threads, and kernel modules, depending on their execution perspective.

 4.2.1.2.1 Base kernel

The base kernel includes the code that is executed to provide a service, such as servicing a user’s system 
call invocation, or servicing an interrupt or exception event. A majority of the compiled kernel code falls 
under this category.

 4.2.1.2.2 Kernel threads

In order to perform certain routine tasks such as flushing disk caches, or reclaiming memory by swapping 
out unused page frames, the kernel creates internal processes, or threads. 

Threads are scheduled just like regular processes, but they do not have context in user mode. Kernel 
threads execute specific C kernel functions.  Kernel threads reside in kernel space, and only run in the 
kernel mode.  Following are some of the kernel threads:

• keventd is a process context bottom-half handler that executes tasks created by interrupt handlers, 
which are queued in the scheduler task queue.

• kapmd is a special idle task that handles the events related to Advanced Power Management.

• kswapd is a kernel swap daemon responsible for reclaiming pages when memory is running low. 
The physical page allocator awakens it when the number of free pages for a memory zone falls 
below a specific threshold.

• bdflush is a kernel daemon that flushes “dirty” buffers to disk when memory is low, or the 
number of buffers is too large.

• kjournald is a process that manages the logging device journal, periodically commits the current 
state of the file system to disk, and reclaims space in the log by flushing buffers to disk.

• Kernel threads are created with a call to kernel_thread(), and users can list them with the ps axu 
command.  The command shows the kernel threads in square brackets, and can be recognized by 
their virtual memory size (VSZ) of 0; an example is kjournald.

 4.2.1.2.3 Kernel modules and device drivers

Kernel modules are pieces of code that can be loaded and unloaded into and out of the kernel upon 
demand.  They extend the functionality of the kernel without the need to reboot the system.  Once loaded, 
the kernel module object code can access other kernel code and data in the same manner as statically-
linked kernel object code. 
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A device driver is a special type of kernel module that allows the kernel to access the hardware connected 
to the system. These devices can be hard disks, monitors, or network interfaces.  The driver interacts with 
the remaining part of the kernel through a specific interface, which allows the kernel to deal with all 
devices in a uniform way, independently of their underlying implementations.

 4.2.2 Non-kernel TSF software
The non-kernel TSF software consists of trusted programs that are used to implement security functions. 
Note that shared libraries, including PAM modules in some cases, are used by trusted programs.  The 
trusted commands can be grouped as follows.

• Daemon processes that do not directly run on behalf of a user, but are started at system startup or 
upon demand of a system administrator.  Daemon processes are responsible for setting the 
appropriate user identity when performing a service on behalf of a user.  Following are the 
daemon processes that provide TSF functionality:

• The auditd daemon reads audit records from the kernel buffer through the audit device and 
writes them to disk in the form of audit logs.

• The crond daemon reads the crontab files for all users and performs tasks specified in the 
crontab files on behalf of the user.  The init program starts the crond daemon during system 
initialization.  The crontab file and crond daemon are the client-server pair that allow the 
execution of commands on a recurring basis at a specified time.

• The cupsd daemon provides printer services to the TOE.  It applies MLS banners and per-
page markings to printed output.

• The init program is the userspace process that is the ancestor of all other userspace processes. 
It starts processes as specified in the /etc/inittab file.

• The mcstransd daemon transforms MLS labels from a set of levels and categories to 
symbolic names specified in the /etc/selinux/mls/mcstransd.conf file.

• The racoon daemon is an implementation of the IKE daemon described in RFC 2409.  It 
negotiates IPsec Security Associations (SAs) and has been extended in the TOE to negotiate 
MLS labels.

• The restorecond daemon detects file creation and sets the appropriate context on the newly 
created files according to the SELinux MAC policy.

• The restorecond utility is used to alter the kernel SAD and SPD.

• The sshd daemon is the program for SSH. The ssh command and sshd daemon are the client-
server pair that allow authorized users to log in from remote systems using secure encrypted 
communications.  The ssh command supports extended syntax that allows a user to select a 
login role and level from among those permitted by the SELinux MLS policy.

• The vsftpd daemon is the Very Secure File Transfer Protocol daemon that allows authorized 
users to transfer files to and from remote systems.

• The xinetd daemon accepts incoming network connections and dispatches the appropriate 
child daemon to service each connection request.  xinetd had been enhanced to spawn child 
processes based on the connection label provided by labeled IPsec or CIPSO.

• Following are programs that are executed by an unprivileged user and need access to certain 
protected databases to complete their work.

• The chage command allows the system administrator to change the user password expiry 
information. Refer to the chage man page for more detailed information.
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• The crontab program is the program used to install, uninstall, or list the tables used to drive 
the crond daemon.  Users can have their own crontab files that set the time and frequency of 
execution, as well as the command or script to execute.

• The gpasswd command administers the /etc/group file and /etc/gshadow file if compiled with 
SHADOWGRP defined.  The gpasswd command allows system administrators to designate 
group administrators for a particular group.  Refer to the gpasswd man page for more detailed 
information.

• The login program is used when signing on to a system.  If root is trying to log in, the 
program makes sure that the login attempt is being made from a secure terminal listed 
in /etc/securetty.  The login program prompts for the password and turns off the terminal echo 
in order to prevent the password from being displayed as the user types it.  The login program 
then verifies the password for the account; although three attempts are allowed before login 
dies, the response becomes slower after each failed attempt. Once the password is 
successfully verified, various password aging restrictions, which are set in the /etc/login.defs 
file, are checked.  If the password age is satisfactory, then the program sets the user ID and 
group ID of the process, changes the current directory to the user’s home directory, and 
executes a shell specified in the /etc/passwd file.  Refer to the login man page for more 
detailed information.

• The passwd command updates a user’s authentication tokens, and is configured to work 
through the PAM API.  It then configures itself as a password service with PAM, and uses 
configured password modules to authenticate and then update a user’s password.  The passwd 
command turns off terminal echo while the user is typing the old as well as the new 
password, in order to prevent displaying the password typed by the user.  Refer to the passwd 
man page for more detailed information.

• The su command allows a user to run a shell with substitute user and group IDs.  It changes 
the effective user and group IDs to those of the new user.  Refer to the su man page for more 
detailed information.

• The following are trusted programs that do not fit into the above two categories.

• The alternative Linux form of getty, agetty opens a tty port, prompts for a login name, and 
invokes the /bin/login command.  The /sbin/init program invokes it when the system becomes 
available in a multi-user mode.

• The amtu program is a special tool provided to test features of the underlying hardware that 
the TSF depends on.  The test tool runs on all hardware architectures that are targets of 
evaluation and reports problems with any underlying functionalities.

• In addition to setting the audit filter rules and watches on file system objects, auditctl can be used 
to control the audit subsystem behavior in the kernel, even when auditd is running. Only an 
administrative user is allowed to use this command.

• The ausearch command finds audit records based on different criteria from the audit log. 
Only an administrative user is allowed to use this command.

• The aureport command produces reports of the audit system logs.  The init program is the 
first program to run after the kernel starts running.  It is the parent of all processes, and its 
primary role is to create processes from a script stored in the /etc/inittab file. This file usually 
has entries that cause init to spawn getty on each line that users can log in.

• The chcat command modifies the MLS categories for filesystem objects.  Use of chcat in the 
TOE is restricted to adminstrative users.

• The checkmodule command checks and compiles SELinux policy modules.

29



• The checkpolicy command checks and compiles SELinux policy into the final binary form 
that is loaded into the kernel.

• The chcon command changes the SELinux MAC label on objects.

• The chsh command allows users to change their login shells.  If a shell is not given on the 
command line, chsh prompts for one.

• The chfn command allows users to change their finger information.  The finger command 
displays that information, which is stored in the /etc/passwd file.

• The date command is used to print or set the system date and time.  Only an administrative 
user is allowed to set the system date and time.

• The fixfiles command corrects MAC labels on the filesystem.

• genhomedircon generates file context configuration entries for home directories of a user. 
These entries are generated based on their default roles.

• getsebool reports the status of a particular SELinux boolean, or list of booleans.  Booleans 
can be disabled, enabled, or pending, which is a transition state between both.

• The groupadd, groupmod, and groupdel commands allow an administrator to add, modify, or 
delete a group, respectively.  Refer to their respective man pages for more detailed 
information.

• The hwclock command is used to query and set the hardware clock.  Only an administrative 
user is allowed to set the system hardware clock.

• load_policy loads or replaces the policy in the kernel.

• matchpathcon prints the path of a given file and the default security context of the file.

• The minimal form of getty, mingetty is for consoles, and provides the same functionality as 
agetty.  However, unlike agetty, which is used for serial lines, mingetty is used for virtual 
consoles.

• The newgrp command logs into another groupid.

• newrole executes a new shell in a new context.  The new context is derived from the initial 
context in which the newrole command was executed.  Use of newrole in the TOE is 
restricted to administrative users only.

• The netlabelctl utility manipulates CIPSO network labeling.

• The openssl program is a command-line tool for using the various cryptography functions of 
the Secure Socket Layer (SSL v3) and Transport Layer Security (TSL v1) network protocols.

• pam_tally2 manages the /var/log/tallylog file to reset the failed login counter.

• The ping and ping6 commands, for IPv4 and IPv6 respectively, use the mandatory 
ECHO_REQUEST datagram of the Internet Control Message Protocol (ICMP) to elicit an 
ICMP_ECHO_RESPONSE from a host or a gateway.

• The pstops command performs transformations on PostScript data.  pstops is used by CUPS 
in the TOE  in the process of applying MLS labels to printed output.

• The rbac-self-test utility tests various aspects of the TOE to comply with RBACPP 
requirement.  It runs a set of tests to verify that SELinux is in MLS enforcing mode, auditd is 
running, and that BLP rules are being enforced on filesystem objects.  It calls the aide utility 
to verify the integrity of TSF data and code.

• restorecon primarily sets the security context of specified files.  It can be also used to correct 
errors or to add support for new a policy.
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• rnano is a simple restricted-function full-screen text editor.

• The runcon command executes a program as a desired user, role, type, and level.

• run_init runs an init script in the proper context, specified 
in /etc/selinux/POLICYTYPE/contexts/initrc_context.

• setenforce sets the mode SELinux is running.  The modes can be the enforcing mode or the 
permissive mode.

• semanage manages SELinux, configuring and customizing its policy.

• semodule manages SELinux policy modules, enabling users to install, upgrade, list, or 
remove modules.  It can also be used to force a rebuild or reload of the policy.

• setsebool sets the state of a particular SELinux boolean or of a list of booleans. This value can 
be set to 1, or true, to enable the boolean; or, 0, or false, to disable it.

• The ssh command is a program for logging into a remote machine and for executing 
commands on a remote machine.  It provides secure encrypted communications between two 
untrusted hosts over an insecure network.

• star is a version of the tar command that preserves extended attributes.  Extended attributes 
are the means by which the ACL and SELinux security attributes are associated with 
filesystem objects.

• The stunnel program is designed to work as an SSL encryption wrapper between remote 
clients and local or remote servers.

• togglesebool flips the current value of a boolean, changing it from 1 to 0 or vice-versa.  Only 
values resident in memory are changed.

• The useradd, usermod, and userdel commands allow an administrator to add, modify, or 
delete a user account, respectively.  Refer to their respective man pages for more detailed 
information.

• udevd is the event serialization daemon, which allows the serialization of hotplug events. 
These come in a random order from kernel to user space and need to be reordered.

• unix_chkpwd is the helper program for the pam_unix PAM module that checks the validity of 
passwords at login time.  It is not designed to be directly executed.

 4.3 TSF databases
This section identifies the primary TSF databases used in RHEL and their purposes.  These are listed 
either as individual files, by pathname, or as collections of files.

With the exception of databases listed with the User attribute (which indicates that a user can read, but not 
write, the file), all of these databases are only accessible to administrative users.  None of these databases 
is modifiable by a user other than an administrative user.  Access control is performed by the file system 
component of the RHEL kernel.  For more information about the format of these TSF databases, refer to 
their respective man pages.

 4.4 Definition of subsystems for the CC evaluation
Previous sections of this document defined various logical subsystems that constitute the RHEL system. 
One of these logical subsystems alone can provide, or two or more can combine and provide, security 
functionalities.  This section briefly describes the functional subsystems that implement the required 
security functionalities and the logical subsystems that are part of each of the functional subsystems.
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The subsystems are structured into those implemented within the RHEL kernel, and those implemented as 
trusted processes.

 4.4.1 Hardware
The hardware consists of the physical resources such as CPU, main memory, registers, caches, and 
devices that effectively make up the computer system.  Chapter 3 details the various hardware 
architectures supported in this evaluation. 

 4.4.2 Firmware
The firmware consists of the software residing in the hardware that is started when the system goes 
through a power-on reset.  In addition to initializing the hardware and starting the operating system, on 
the partitioning-capable platforms the firmware provides LPAR support as well. 

 4.4.3 Kernel subsystems
This section describes the subsystems implemented as part of the Red Hat Enterprise Linux kernel.

• File and I/O:  This subsystem includes only the file and I/O management kernel subsystem.

• Process control:  This subsystem includes the process control and management kernel subsystem.

• Inter-process communication:  This subsystem includes the IPC kernel subsystem.

• Networking:  This subsystem contains the kernel networking subsystem.

• Memory management:  This subsystem contains the kernel memory management subsystem.

• Kernel modules:  This subsystem contains routines in the kernel that create an infrastructure to 
support loadable modules.

• SELinux: This subsystem contains routines that implement mandatory access control.

• Device drivers:  This subsystem contains the kernel device driver subsystem.

• Audit:  This subsystem contains the kernel auditing subsystem.
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 4.4.4 Trusted process subsystems
This section describes the subsystems implemented as trusted processes.

• System initialization:  This subsystem consists of the boot loader (GRUB, LILO, Yaboot, 
OS/400, or z/IPL) and the init program.

• Identification and authentication:  This subsystem contains the su, passwd, and login trusted 
commands, as well as the agetty trusted process.  This subsystem also includes PAM shared 
library modules.

• Network applications:  This subsystem contains vsftpd and sshd trusted processes, which interact 
with PAM modules to perform authentication.  It also includes the ping program. 

• Batch processing:  This subsystem contains the trusted programs used for the processing of batch 
jobs. They are crontab and crond.

• System management:  This subsystem contains the trusted programs used for system management 
activities. Those include the following programs:

• gpasswd

• chage

• useradd, usermod, userdel

• groupadd, groupmode, groupdel

• chsh

• chfn

• openssl

 4.4.5 User-level audit subsystem
This subsystem contains the portion of the audit system that lies outside the kernel.  This subsystem 
contains the auditd trusted process, which reads audit records from the kernel buffer, and transfers them to 
on-disk audit logs, the ausearch trusted search utility, the autrace trace utility, the audit configuration file, 
and audit libraries.
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 5 Functional descriptions
The Red Hat Enterprise Linux kernel structure, its trusted software, and its Topic of Evaluation (TOE) 
Security Functions (TSF) databases provide the foundation for the descriptions in this chapter.

 5.1 File and I/O management
The file and I/O subsystem is a management system for defining objects on secondary storage devices. 
The file and I/O subsystem interacts with the memory subsystem, the network subsystem, the inter-
process communication (IPC) subsystem, the process subsystem, and the device drivers.

A file system is a container for objects on the secondary storage devices.  The implementation of the Red 
Hat Enterprise Linux (RHEL) file system allows for the management of a variety of types of file systems. 
The file systems supported by the TOE are ext3, proc, tmpfs, sysfs, devpts, CD-ROM, rootfs, 
binfmt_misc, and selinuxfs.

At the user-interface level, a file system is organized as a tree with a single root, called a directory.  A 
directory contains other directories and files, which are the leaf nodes of the tree. Files are the primary 
containers of user data.  Additionally, files can be symbolic links, named pipes, sockets, or special files 
that represent devices.

This section briefly describes the RHEL file system implementation, and focuses on how file system 
object attributes support the kernel’s implementation of the Discretionary Access Checks (DAC) policy of 
the kernel.  This section also highlights how file system data and metadata are allocated and initialized to 
satisfy the object reuse requirement.
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In order to shield user programs from the underlying details of different types of disk devices and disk-
based file systems, the RHEL kernel provides a software layer that handles all system calls related to a 
standard UNIX file system.  This common interface layer, called the Virtual File System, interacts with 
disk-based file systems whose physical I/O devices are managed through device special files.

This section of this document is divided into three subsections: Virtual File System, Disk-Based File 
Systems, and Discretionary Access Control.  The subsections describe data structures and algorithms that 
comprise each subsystem, with special focus on access control and allocation mechanisms.

 5.1.1 Virtual File System
The Virtual File System (VFS) provides a common interface to users for performing all file-related 
operations, such as open, read, write, change owner, and change mode.  The key idea behind the VFS is 
the concept of the common file model, which is capable of representing all supported file systems. 

For example, consider a RHEL system where an ext3 file system is mounted on the ext3mnt directory, 
and a CD-ROM file system is mounted on the cdmnt directory, as in Figure 5-2.

To a user program, the virtual file system appears as follows:
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The root directory is contained in the root file system, which is ext3 in this TOE.  All other file systems can 
be mounted on subdirectories of the root file system.

The VFS allows programs to perform operations on files without having to know the implementation of 
the underlying disk-based file system.  The VFS layer redirects file operation requests to the appropriate 
file system-specific file operation. An example is in Figure 5-4.

Almost all of the system call interfaces available to a user program in the common file model of VFS 
involve the use of a file pathname.  The file pathname is either an absolute pathname, such 
as /ext3mnt/file1, or a relative pathname, such as ext3mnt/file1.  The translation of a pathname to file data 
is relevant to security, because the kernel performs access checks as part of this translation mechanism.

The following list describes the security-relevant data structures of the VFS.

• super_block:  Stores information about each mounted file system, such as file system type, block 
size, maximum size of files, and dentry object (described below) of the mount point. The actual 
data structure in RHEL is called struct super_block.
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Figure 5-3: ext3 and CD-ROM file systems after mounting

Figure 5-4: Virtual file system



• inode: Stores general information about a specific file, such as file type and access rights, file 
owner, group owner, length in bytes, operations vector, time of last file access, time of last file 
write, and time of last inode change.  An inode is associated to each file and is described in the 
kernel by a struct inode data structure.

• file: Stores the interaction between an open file and a process, such as the pointer to a file 
operation table, current offset (position within the file), user id, group id, and the dentry object 
associated with the file.  A file exists only in kernel memory during the period when each process 
accesses a file. An open file is described in the RHEL kernel by a struct file item.

• dentry:  Stores information about the linking of a directory entry with the corresponding file, such 
as a pointer to the inode associated with the file, filename, pointer to dentry object of the parent 
directory, or pointer to directory operations.

• vfsmount:  Stores information about a mounted file system, such as dentry objects of the mount 
point and the root of the file system, the name of device containing the file system, and mount 
flags.

The kernel uses the above data structures while performing pathname translation and file system 
mounting operations relevant to security.

 5.1.1.1 Pathname translation

When performing a file operation, the kernel translates a pathname to a corresponding inode. The 
pathname translation process performs access checks appropriate to the intended file operation.  For 
example, any file system function that results in a modification to a directory, such as creating a file or 
deleting a file, checks to make sure that the process has write access to the directory being modified. 
Directories cannot be directly written into.

Access checking in VFS is performed while an inode is derived from the corresponding pathname.  Each 
access check involves checking DAC policy first, and if access is permitted by DAC policy, then 
checking the MAC policy.  Pathname lookup routines break up the pathname into a sequence of file 
names, and depending on whether the pathname is absolute or relative, the lookup routines start the search 
from the root of the file system or from the current directory of the process, respectively. The dentry 
object for this starting position is available through the fs field of the current process. 

Using the inode of the initial directory, the code looks at the entry that matches the first name to derive 
the corresponding inode.  Then the directory file that has that inode is read from the disk, and the entry 
matching the second name is looked up to derive the corresponding inode.  This procedure is repeated for 
each name included in the path.  At each file lookup within a directory stage, an access check is made to 
ensure that the process has appropriate permission to perform the search.  The last access check 
performed depends on the system call.  

For example, when a new file is created, an access check is performed to ensure that the process has write 
access to the directory.  If an existing file is being opened for read, a permission check is made to ensure 
that the process has read access to that file.

The example in Figure 5-5 is a simplified description of a pathname lookup.  In reality, the algorithm for 
lookup becomes more complicated because of the presence of symbolic links, dot (.), dot dot (..) and extra 
slash (/) characters in the pathname. Even though these objects complicate the logic of the lookup routine, 
the access check mechanism remains the same.
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 5.1.1.2 open()

The following describes the call sequence of an open() call to create a file:

1. Call the open() system call with a relative pathname and flags to create a file for read and write.

2. open() calls open_namei(), which ultimately derives the dentry for the directory in which the file 
is being created.  If the pathname contains multiple directories, search permission for all 
directories in the path is required to get access to the file.  
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This search permission check is performed for each directory dentry by calling permission().  If 
the operation vector of the inode, which contains pointers to valid inode operation routines, is set, 
then each call to permission() is diverted to the disk-based file system-specific permission call. 
Otherwise, generic_permission() is called, to ensure that the process has the appropriate 
permission.  If at this stage the process has the DAC permission, because either the generic or 
disk-based file system granted the permission, then MAC permission is checked through the 
security_inode_permission() LSM call.

3. Once the directory dentry is found, permission() is called to make sure the process is authorized 
to write in this directory.  Again, if the operation vector of the inode is set, then the call to 
permission() is diverted to the disk-based file system-specific permission call; otherwise 
generic_permission() is called to ensure that the process has the appropriate permission.  If at this 
stage the process has the DAC permission, because either the generic or disk-based file system 
granted the permission, then MAC permission is checked through the 
security_inode_permission() LSM call.

4. If the user is authorized to create a file in this directory, then get_empty_filp() is called to get a 
file pointer. get_empty_filp() calls memset() to ensure that the newly allocated file pointer is 
zeroed out, thus taking care of the object reuse requirement.  To create the file, get_empty_filp() 
calls the disk-based file system-specific open routine through the file operations vector in the file 
pointer.

At this point, data structures for the file object, dentry object, and inode object for the newly created file 
are set up correctly, whereby the process can access the inode by following a pointer chain leading from 
the file object to the dentry object to the inode object.  The following diagram shows the simplified 
linkage:

 5.1.1.3 write()

Another example of a file system operation is a write() system call to write to a file that was opened for 
writing. The write() system call in VFS is very straightforward, because access checks have already been 
performed by open(). The following list shows the call sequence of a write() call:

1. Call the write() system call with the file descriptor that was returned by open().

2. Call fget() to get the file pointer corresponding to the file descriptor.

3. If the file operation vector of the file pointer is set, use the inode operation vector to call the disk-
based file system’s write() routine of the disk-based file system.
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 5.1.1.4 mount()

An administrator mounts file systems using the mount() system call.  The mount() system call provides 
the kernel with the following:

• The file system type 

• The pathname of the mount point 

• The pathname of the block device that contains the file system 

• The flags that control the behavior of the mounted file system 

• A pointer to a file system dependent data structure (that may be NULL). 

For each mount operation, the kernel saves the mount point and the mount flags in mounted file system 
descriptors.  Each mounted file system descriptor is a vfsmount type of data structure.  The sys_mount() 
function in the kernel copies the value of the parameters into temporary kernel buffers, acquires the big 
kernel lock, and invokes the do_mount() function to perform the mount. 

There are no object reuse issues to handle during file system mounting because the data structures created 
are not directly accessible to user processes.  However, there are security-relevant mount flags that affect 
access control.  Following are the security-relevant mount flags and their implications for access control.

• MS_RDONLY:  The file system is mounted in read-only mode.  Write operations are prohibited 
for all files regardless of their mode bits.

• MS_NOSUID:  the kernel ignores suid and sgid bits on executables when executing files from 
this file system.

• MS_NODEV:  Device access to a character or block device is not permitted from files on this file 
system.

• MS_NOEXEC:  Execution of any programs from this file system is not permitted, even if the 
execute bit is set for the program binary.

• MS_POSIXACL:  Indicates if ACLs on files on this file system are to be honored or ignored.

 5.1.1.5 Shared subtrees

Shared subtrees have been implemented in VFS.  This allows an administrator to configure the way the 
file system mounts will coexist in the tree, the relationships between them, and how they propagate in 
different namespaces.  This increases flexibility in the way namespaces can be populated and presented to 
users.  For detailed information about the shared-subtree feature, see http://lwn.net/Articles/159077 and 
http://lwn.net/Articles/159092. 

The shared-subtree feature introduces new types of mounts:

• Unbindable Mount:  This mount does not forward or receive propagation.  This mount type 
cannot be bind-mounted, and it is not valid to move it under a shared mount.

• Slave Mount:  A slave mount remains tied to its parent mount and receives new mount or 
unmount events from there. The mount or unmount events in a slave mount do not propagate 
elsewhere.

• Shared Mount:  When this mount is used, all events generated are automatically propagated to the 
shared mount subtree.  Shared mounts are able to propagate events to others belonging to the 
same peer group.

• Private Mount:  Private mounts cannot be propagated to any other mounts, except when forced by 
administrators using the bind operation. Any kind of mount can be converted to a private mount.
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 5.1.2 Disk-based file systems
Disk-based file systems deal with how data is stored on a disk.  Different disk-based file systems employ 
different layouts and support different operations on them.  For example, the CD-ROM file system does 
not support the write operation.  The TOE supports two disk-based file systems: ext3, and the ISO 9660 
File System for CD-ROM.

This section looks at data structures and algorithms used to implement these two disk-based file systems 
and continues the description of open() and write() system calls in the context of disk-based file systems.

 5.1.2.1 Ext3 file system

The RHEL kernel’s ext3 file system kernel is a robust and efficient file system that supports the 
following: 

• Automatic consistency checks

• Immutable files

• Preallocation of disk blocks to regular files

• Fast symbolic links

• ACLs

• Journaling

The file system partitions disk blocks into groups.  Each group includes data blocks and inode blocks in 
adjacent tracks, which allow files to be accessed with a lower average disk seek time.  In addition to the 
traditional UNIX file object attributes such as owner, group, permission bits, and access times, the RHEL 
ext3 file system supports Access Control Lists (ACLs) and Extended Attributes (EAs).   ACLs provide a 
flexible method for granting or denying access, which is granular down to an individual user, directory, or 
file.  

 5.1.2.1.1 Extended Attributes

An extended attribute (EA, also known as xattr) provides a mechanism for setting special flags on a 
directory or a file.  Some of these improve the usability of the system, while others improve the security 
of the system.  EAs also provide DAC ACLs and MAC labels, which allow persistent storage of security 
attributes—.

The EA namespace is partitioned.  Both ACLs and SELinux labels make use of reserved namespaces with 
access restricted to administrative users .  The security.selinux namespace is reserved for SELinux 
metadata.    Special checks are performed in the xattr syscalls to ensure that only administrative users and 
privileged system services can access the reserved namespace.

The system.posix_acl_access and system.posix_acl_default namespaces are reserved for ACL metadata. 
This namespace is restricted to the object owner and is accessible by administrative users..

 5.1.2.1.1.1 Access Control Lists

ACLs provide a way of extending directory and file access restrictions beyond the traditional owner, 
group, and world permission settings.  For more details about the ACL format, refer to Discretionary 
Access Control, Section 5.1.5, of this document, and section 6.2.4.3 of the Red Hat Enterprise Linux 
Security Target document.  EAs are stored on disk blocks allocated outside of an inode.  Security-relevant 
EAs provide the following functionality:

• Immutable:  if this attribute is set, the file cannot be modified, no link can be created to it, and it 
cannot be renamed or removed.  Only an administrator can change this attribute.
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• Append only:  if this attribute is set, the file may only be modified in append mode. The append 
only attribute is useful for system logs.

 5.1.2.1.1.2 MAC Labels

SELinux MAC labels are stored in the security.selinux extended attribute namespace.  The are used and 
managed by SELinux for enforcing the MAC security policy.  For more details about the SELinux 
security attributes and how they are used in enforcing the MAC policy, see sections 2.1 and 8.2 of 
SELinux by Example, by Frank Mayer, Karl Macmillan, and David Caplan [MAYE].  The ext3 file system 
also has an online resizing capability, which allows an administrator to dynamically increase or decrease 
the size of a running ext3 file system.

 5.1.2.1.2 Data structures

The following data structures and inode operations illustrate how the ext3 file system performs DAC and 
object reuse.

• ext3_super_block:  The on-disk counterpart of the superblock structure of VFS, ext3_super_block 
stores file system-specific information such as the total number of inodes, block size, and 
fragment size.
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• ext3_group_desc:  Disk blocks are partitioned into groups.  Each group has its own group 
descriptor.  ext3_group_desc stores information such as the block number of the inode bitmap, 
and the block number of the block bitmap.

• ext3_inode:  The on-disk counterpart of the inode structure of VFS, ext3_inode stores information 
such as file owner, file type and access rights, file length in bytes, time of last file access, number 
of data blocks, pointer to data blocks, and file access control list.

• ext3_xattr_entry:  This structure describes an extended attribute entry.  The ext3_xattr_entry 
stores information such as attribute name, attribute size, and the disk block that stores the 
attribute.  ACLs are stored on disk using this data structure, and associated with an inode by 
pointing the inode’s i_file_acl field to this allocated extended attribute block.

• ext3_create():  This routine is called when a file create operation makes a transition from VFS to 
a disk-based file system.  ext3_create() starts journaling, and then calls ext3_new_inode() to 
create the new inode.

• ext3_lookup():  This routine is called when VFS real_lookup() calls the disk-based file system 
lookup routine of the disk-based file system through the inode operation vector.  The 
ext3_find_entry() is called by ext3_lookup() to locate an entry in a specified directory with the 
given name.

• ext3_permission():  This is the entry point for all Discretionary Access Checks (DACs). This 
routine is invoked when VFS calls to the permission() routine are diverted based on the ext3 
inode’s inode operation vector i_op of the ext3 inode.

• ext3_get_block():  This is the general-purpose routine for locating data that corresponds to a 
regular file. ext3_get_block() is invoked when the kernel is looking for, or allocating, a new data 
block.  The routine is called from routines set up in the address-space operations vector, a_ops, 
which is accessed through the inode’s i_mapping field of the inode.  ext3_get_block() calls 
ext3_get_block_handle(), which in turn calls ext3_alloc_branch() if a new data block needs to be 
allocated.  ext3_alloc_branch() explicitly calls memset() to zero-out the newly allocated block, 
thus taking care of the object reuse requirement.

Figure 5-8 illustrates how new data blocks are allocated and initialized for an ext3 file.
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Figure 5-8: New data blocks are allocated and initialized for an ext3 field



Figure 5-9 shows how inode_operations map to ext3_file_inode_operations for a file on the ext3 file 
system.

Similarly, for directory, symlink, and special-file types of objects, inode operations map to 
ext3_dir_inode_operations, ext3_symlink_inode_operations, and ext3_special_inode_operations, 
respectively.

ext3_truncate() is the entry point for truncating a file. The ext3_truncate() routine is invoked when VFS 
calls to the sys_truncate() routine are diverted based on the ext3 inode’s inode operation vector i_op of the 
ext3 inode.  This routine prevents the truncation of inodes whose extended attributes mark them as being 
append-only or immutable.

 5.1.2.2 ISO 9660 file system for CD-ROM

The RHEL kernel supports the ISO 9660 file system for CD-ROM.  Refer to the HOWTO document by 
Martin Hinner on the Linux Documentation Project Web site for a detailed specification of the ISO 9660 
file system: http://www.tldp.org/HOWTO/Filesystems-HOWTO.html.

 5.1.2.2.1 Data structures and algorithms

The following data structures and inode operations implement the file system on the RHEL kernel.

• vfs_permission():  Because the file system is a read-only file system, there are no object reuse 
implications with respect to allocating data blocks.  The discretionary access check is performed 
at the VFS layer with the vfs_permission() routine, which grants permission based on a process’s 
fsuid field.

• isofs_sb_info:  The CD-ROM file system super block isofs_sb_info stores file system-specific 
information, such as the number of inodes, number of zones, maximum size, and fields for the 
mount command-line option to prohibit the execution of suid programs.

• iso_inode_info:  The iso_inode_info is in-core inode information for CD-ROM file objects. 
iso_inode_info stores information, such as file format, extent location, and a link to the next 
inode.

• isofs_lookup():  The isofs_lookup() inode is called when the pathname translation routine is 
diverted from the VFS layer to the isofs layer.  isofs_lookup() sets the inode operation vector 
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Figure 5-9: Access control on ext3 file system



from the superblock’s s_root field of the superblock, and then invokes isofs_find_entry() to 
retrieve the object from the CD-ROM.

On a CD-ROM file system, inode_operations map to isofs_dir_inode_operations.

 5.1.3 Pseudo file systems

 5.1.3.1 procfs

The proc file system is a special file system that allows system programs and administrators to manipulate 
the data structures of the kernel.  The proc file system is mounted at /proc, and provides the Virtual File 
System access to information about current running processes and kernel data structures. 

An administrator can change kernel parameters, such as IP_FORWRDING, by editing files in /proc.  For 
each active process, the kernel creates a directory entry, named after the process ID, in the /proc directory. 
This directory contains pseudo files that can be used to read the status of the process.  

The Process ID directory is created with a mode of 555 and is owned by the user ID and group ID of the 
process.  Access control is performed by the VFS pathname translation mechanism function 
vfs_permission(), which prevents access by normal users to data of other processes. In addition to 
vfs_permission(), different files in the proc file system define their own access control service functions. 
These service functions sometimes perform an additional access check that may restrict DAC decisions 
further.

Root can change permissions for files in /proc.  The pseudo files within the process directory are only 
readable for others as far as they provide information similar to the ps command.  Because files in /proc 
are not real disk-based files with user data, there is no object reuse issue.

 5.1.3.2 tmpfs

tmpfs is a memory-based file system that uses virtual memory (VM) resources to store files.  tmpfs is 
designed primarily as a performance enhancement to allow short-lived files to be written and accessed 
without generating disk or network I/O.  tmpfs maximizes file manipulation speed while preserving file 
semantics.  

tmpfs also has dynamic file system size.  As a file gets created, the tmpfs file system driver will allocate 
more VM resources and dynamically increase file system size.  In the same way as files get deleted, the 
file system driver shrinks the size of file system and de-allocates VM resources.
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Since VM is volatile in nature, tmpfs data is not preserved between reboots.  Hence this file system is 
used to store short-lived temporary files.  An administrator is allowed to specify the memory placement 
policies (the policy itself and the preferred nodes to be allocated) for this file system.

 5.1.3.3 sysfs

sysfs is an in-memory file system, which acts as repository for system and device status information, 
providing a hierarchical view of the system device tree.  The system information that is dynamically 
maintained in the sysfs file system is analogous to the process status information that is dynamically 
maintained in the proc file system.

sysfs is typically mounted on /sys.  It is a window into the kernel, and into the data objects that the kernel 
creates and controls.  

sysfs is created on boot, and automatically populated when internal objects are registered with their 
subsystems.  Because of its nature and its design, the hierarchy it creates is a completely accurate 
representation of the kernel's internals.  An administrator can change kernel object parameters by editing 
files in /sys.  Access Control is performed by the VFS pathname translation mechanism function 
vfs_permission(), which prevents access by normal users to data belonging to the kernel.  

The kernel initially determines permissions for files in /sys, but these can be changed.  Since files in /sys 
are not real disk-based files, there is no object reuse issue with user data.

 5.1.3.4 devpts

The devpts file system is a special file system that provides pseudo terminal support.  Pseudo terminals 
are implemented as character devices.   A pair of character device-special files, one corresponding to the 
master device and the other corresponding to the slave device, represent a pseudo terminal.  The slave 
device provides a terminal interface.  Instead of a hardware interface and associated hardware supporting 
the terminal functions, a process that manipulates the master device of the pseudo terminal implements 
the interface. 

Any data written on the master device is delivered to the slave device, as though it had been received from 
a hardware interface.  Any data written on the slave device can be read from the master device.

In order to acquire a pseudo terminal, a process opens the /dev/ptmx master device.  The system then 
makes available to the process number a slave, which can be accessed as /dev/pts/number.  An 
administrator can mount the devpts special file system by providing uid, gid, and mode values on the 
mount command line.  If specified, these values set the owner, group, and mode of the newly created 
pseudo terminals to the specified values.

In terms of access control, pseudo terminal devices are identical to device special files.  Therefore, access 
control is performed by the VFS pathname translation mechanism function vfs_permission(). Because 
files in /dev/pts are not real disk-based files with user data, there is no object reuse issue.

 5.1.3.5 rootfs

rootfs is a special file system that the kernel mounts during system initialization.  This file system 
provides an empty directory that serves as an initial mount point, where temporary files can be stored 
during the boot process.  Then, the kernel mounts the real root file system over the empty directory.  The 
rootfs file system allows the kernel to easily change the root file system.  Because rootfs uses an empty 
directory that is replaced by the real root file system before the init process starts, there is no issue of 
object reuse.

The rootfs is used internally in the kernel when doing root mounting.  Because a real file system uses and 
replaces rootfs before the init process, there is no mechanism to access it.
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 5.1.3.6 binfmt_misc

binfmt_misc provides the ability to register additional binary formats to the kernel without compiling an 
additional module or kernel.  Therefore, binfmt_misc needs to know magic numbers at the beginning, or 
the filename extension of the binary.

binfmt_misc works by maintaining a linked list of structs that contain a description of a binary format, 
including a magic number with size, or the filename extension, offset and mask, and the interpreter name. 
On request it invokes the given interpreter with the original program as an argument.  Because 
binfmt_misc does not define any default binary-formats, you have to register an additional binary-format. 
Because files in /proc/sys/binfmt_misc are not real disk-based files with user data, there is no object reuse 
issue.

Refer to kernel-2.6.18/linux-2.6.18/Documentation/binfmt_misc.txt for a detailed specification of 
binfmt_misc. 

 5.1.3.7 selinuxfs

selinuxfs is a pseudo file system for exporting the security policy API.  Its purpose is to allow scripts to 
determine which version of policy to load.  Also, selinuxfs is used for kernel-to-user-space 
communication, enabling and disabling SELinux, and querying the kernel policy database. It is similar to 
procfs or sysfs, and it is usually mounted at /selinux. Because files in /selinux are not real disk-based files 
with user data, there is no object reuse issue.

 5.1.3.8 securityfs

Linux Security Modules (LSMs) use securityfs, which is a new virtual file system, avoiding some of the 
other LSMs to create their own file systems.  securityfs must be mounted on /sys/kernel/security.  To 
users it appears to be part of the sysfs, but it is a new and distinct one.

 5.1.3.9 configfs

configfs is a RAM-based pseudo file system manager of kernel objects.  It provides a converse of sysfs 
functionality through a user-space driver kernel object configuration.  For additional information about 
configfs, refer to http://lwn.net/Articles/148973 and http://lwn.net/Articles/149005.

 5.1.4 inotify
inotify is a mechanism for watching and communicating file system events to user space.  It is an 
improvement and replacement of the dnotify tool, which had the same purpose.  inotify is relevant 
because different sorts of applications might want or need to know when events such as file changes or 
creation happen.  An example of the use of inotify is with security monitoring applications that must 
know of, and can benefit from being told about, file system changes.

inotify uses a syscall interface.  Applications open a watch file descriptor via the inotify_init() call and 
register watches via the inotify_add_watch() call.  To add a watch, an application must have DAC read 
permission on the inode.  It must also have MAC permission to read the inode as specified in the SELinux 
MLS policy.  The access checks are performed by the vfs_permission() function.    For more information 
about inotify, see the inotify(7) manage, Documentation/filesystems/inotify.txt and fs/inotify.c in the 
RHEL kernel source.  These are available at 
file:///usr/src/redhat/BUILD/kernel-2.6.18/linux-2.6.18.ppc64/Documentation/filesystems/inotify.txt and 
file:///usr/src/redhat/BUILD/kernel-2.6.18/linux-2.6.18.ppc64/fs/inotify.c respectively if the kernel source 
RPM is installed and rpmbuild has been invoked on its spec file with the “-bp” option.
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 5.1.5  Discretionary Access Control (DAC)
Previous sections have described how appropriate *_permission() functions are called to perform access 
checks for non-disk-based and disk-based file systems.  Access checks are based on the credentials of the 
process attempting access, and access rights assigned to the object.  

When a file system object is created, the creator becomes the owner of the object.  The  group ownership 
(group ID) of the object is set either to the effective group ID of the creator, or to the group ID of the 
parent directory, depending on the mount options and the mode of the parent directory. 

If the file system is mounted with the grpid option, then the object takes the group ID of the directory in 
which it is created; otherwise, by default, the object takes the effective group ID of the creator, unless the 
directory has the setgid bit set, in which case the object takes the GID from the parent directory, and also 
gets the setgid bit set if it is a directory itself.  This ownership can be transferred to another user by 
invoking the chown() system call.  The owner and the root user are allowed to define and change access 
rights for an object.

This following subsection looks at the kernel functions implementing the access checks. The function 
used depends on the file system; for example, vfs_permission() performs access checks for the ISO 9660, 
procfs, and devpts file systems, and ext3_permission() performs access checks for the ext3 disk-based file 
system.  Note that access rights are checked when a file is opened and not on each access.  Therefore, 
modifications to the access rights of file system objects become effective at the next request to open the 
file.

The TOE runs with SELinux turned on using the strict MLS security policy.  Under the strict MLS 
security policy, every subject and object runs in a domain confined by the security policy.

SELinux allows the objects on the system that are in the unconfined_t domain to have no restrictions, and 
fall back to using standard Linux security; that is, Discretionary Access Control (DAC).  In this way, 
SELinux will not influence the DAC decision.  If DAC denies the action, SELinux will not be even 
called.  With the targeted policy, if DAC has allowed the action, SELinux will allow it as well, because all 
objects and subjects run in the unconfined_t domain.  

The daemons that are part of the targeted policy run in their own domains and are restricted in every 
operation they perform on the system.  These daemons are dhcpd, httpd, mysqld, named, nscd, ntpd, 
portmap, postgres, snmpd, squid, syslogd, and winbind.  None of these daemons is part of the TOE, and 
none of these daemons contribute to the security-enforcing function of the system.  In summary, SELinux 
can run with the targeted policy without affecting the TOE security functions for the following reasons:

• SELinux will only add restrictions, it will not allow what is denied.  Actually, whenever DAC 
denies an operation, SELinux is not even consulted. 

• The system uses SELinux pre-defined policy that does not allow changes by the administrator.

• The services affected by the security enforcement policy of SELinux do not contribute to the 
security function of the TOE.

For more info about the RHEL targeted policy, refer to 
http://www.redhat.com/docs/manuals/enterprise/RHEL-5-
manual/Security_And_Authentication/rhlcommon-chapter-0051.html.

 5.1.5.1 Permission bits

vfs_permission() implements standard UNIX permission bits to provide DAC for file system objects for 
the procfs, devpts, sysfs, tmpfs, selinuxfs, binfmt_misc, and ISO 9660 file systems.  As noted in Section 
5.1.3.5, there is no mechanism for accessing rootfs.

The ext3 file system uses the permission bits ACL algorithm for files that do not have associated ACL 
information.  This is implemented in the ext3_permission() function.
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There are three sets of three bits that define access for three categories of users: the owning user, users in 
the owning group, and other users.  The three bits in each set indicate the access permissions granted to 
each user category: one bit for read (r), one for write (w), and one for execute (x).  Note that write access 
to file systems mounted as read only, such as CDROM, is always rejected.  Each subject’s access to an 
object is defined by some combination of these bits: 

rwx indicates read, write, and execute 

r-x indicates read and execute 

r-- indicates read

--- indicates null 

When a process attempts to reference an object protected only by permission bits, the access is 
determined as follows: 

• Users with an effective user ID of 0 are able to read and write all files, ignoring the permission 
bits.  Users with an effective user ID of 0 are also able to execute any file if it is executable for 
someone. 

• If the file system UID equals the object-owning UID, and the owning user permission bits allow 
the type of access requested, then access is granted with no further checks. 

• If the file system GID, or any supplementary groups of the process equal an object’s owning GID, 
and the owning group permission bits allow the type of access requested, then access is granted 
with no further checks. 

• If the process is neither the owner nor a member of an appropriate group, and the permission bits 
for world allow the type of access requested, then the subject is permitted access. 

• If none of the conditions above are satisfied, and the effective UID of the process is not zero, then 
the access attempt is denied. 

For newly-created filesystem objects, the permission bits are derived from the umask setting.

 5.1.5.2 Access Control Lists 

The ext3 file system supports Access Control Lists (ACLs) that offer more flexibility than the traditional 
permission bits.  An ACL can enforce specific access rights for multiple individual users and groups, not 
just for the single user and group defined for permission-bit based access control.

The ext3_permission() function checks if an object has an associated ACL.  If it does not have one, the 
system uses the standard permission bits algorithm as described in the previous section.

If the file system object has an associated ACL, the kernel calls the posix_acl_permission() function to 
enforce POSIX ACLs.  ACLs are created, maintained, and used by the kernel.  For more detailed 
information about the POSIX ACLs, refer to the http://acl.bestbits.at and 
http://wt.xpilot.org/publications/posix.1e sites.

An ACL entry contains the following information: 

• A type of tag that specifies the type of the ACL entry.

• A qualifier that specifies an instance type of an ACL entry. 

• A permission set that specifies the discretionary access rights for processes identified by the type 
of tag and qualifier. 

 5.1.5.2.1 Types of ACL tags

The following types of tags exist: 
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• ACL_GROUP:  This defines access rights for processes whose file system group ID or any 
supplementary group IDs match the one in the ACL entry qualifier. 

• ACL_GROUP_OBJ:  This defines access rights for processes whose file system group ID or any 
supplementary group IDs match the group ID of the group of the file. 

• ACL_MASK:  This defines the maximum discretionary access rights for a process in the file 
group class. 

• ACL_OTHER:  This defines access rights for processes whose attributes do not match any other 
entry in the ACL. 

• ACL_USER:  This type defines access rights for processes whose file system user ID matches the 
ACL entry qualifier. 

• ACL_USER_OBJ:  This type defines access rights for processes whose file system user ID 
matches the user ID of the owner of the file. 

 5.1.5.2.2 ACL qualifier 

The qualifier is required for the ACL_GROUP and ACL_USER ACL types of entries, and contain either 
the user ID or the group ID for which the access rights are defined. 

 5.1.5.2.3 ACL permissions 

An ACL entry can define separate permissions for read, write, and execute or search. 

 5.1.5.2.4 Relationship to file permission bits

An ACL contains exactly one entry for each of the ACL_USER_OBJ, ACL_GROUP_OBJ, and 
ACL_OTHER types of tags, called the required ACL entries.  An ACL can have between zero and a 
defined maximum number of the ACL_GROUP and ACL_USER types of entries.  An ACL that has only 
the three required ACL entries is called a minimum ACL.  ACLs with one or more ACL entries of the 
ACL_GROUP or ACL_USER types are called extended ACLs.

The standard UNIX file permission bits as described in the previous section are equivalent to the entries 
in the minimum ACL.  The owner permission bits correspond to the ACL_USER_OBJ type of entry.  The 
ACL_GROUP_OBJ type of entry represents the permission bits of the file group. The ACL_OTHER type 
of entry represents the permission bits of processes running with an effective user ID and effective group 
ID or supplementary group ID different from those defined in ACL_USER_OBJ and ACL_GROUP_OBJ 
entries.

Minimum ACLs do not need to be stored on disk.  The permission information contained in the inode is 
sufficient for the access check.  When adding ACL entries to a file system object that did not previously 
have an explicit ACL, the kernel creates a minimum ACL based on the inode attributes, and then adds the 
new entries to that.

 5.1.5.2.5 ACL_MASK 

If an ACL contains an ACL_GROUP or ACL_USER type of entry, then exactly one entry of the 
ACL_MASK type is required in the ACL.  Otherwise, the ACL_MASK type of entry is optional. 

 5.1.5.2.6 Default ACLs and ACL inheritance 

A default ACL is an additional ACL, which can be associated with a directory.  This default ACL has no 
effect on the access to this directory.  Instead, the default ACL is used to initialize the ACL for any file 
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that is created in this directory.  When an object is created within a directory, and the ACL is not defined 
with the function creating the object, then the new object inherits the default ACL of its parent directory 
as its initial ACL.  This is implemented by ext3_create(), which invokes ext3_new_inode(), which in turn 
invokes ext3_init_acl() to set the initial ACL. 

 5.1.5.2.7 ACL representations and interfaces 

ACLs are represented in the kernel as extended attributes.  The kernel provides system calls such as 
getxattr(), setxattr(), listxattr(), and removexattr() to create and manipulate extended attributes.  User-
space applications can use these system calls to create and maintain ACLs and other extended attributes. 
However, ACL applications, instead of directly calling system calls, use library functions provided by the 
POSIX 1003.1e compliant libacl.so.  Inside the kernel, the system calls are implemented using the 
getxattr, setxattr, listxattr, and removexattr inode operations.  The kernel provides two additional inode 
operations, get_posix_acl() and set_posix_acl(), to allow other parts of the kernel to manipulate ACLs in 
an internal format that is more efficient to handle than the format used by the inode xattr operations. 

In the ext3 disk-based file system, extended attributes are stored in a block of data accessible through the 
i_file_acl field of the inode.  This extended attribute block stores name-value pairs for all extended 
attributes associated with the inode.  These attributes are retrieved and used by appropriate access control 
functions.

 5.1.5.2.8 ACL enforcement

The ext3_permission() function uses ACLs to enforce DAC.  The algorithm goes through the following 
steps: 

1. Performs checks such as “no write access if read-only file system” and “no write access if the file 
is immutable.” 

2. For ext3 file systems, the kernel calls the ext3_get_acl() to get the ACL corresponding to the 
object. ext3_get_acl() calls ext3_xattr_get(), which in turn calls ext3_acl_from_disk() to retrieve 
the extended attribute from the disk.  If no ACL exists, the kernel follows the permission bits 
algorithm described previously.

3. For ext3 file systems, the kernel invokes posix_acl_permission().  It goes through the following 
algorithm: 

If the file system user ID of the process matches the user ID of the file object owner, 
then 

if the ACL_USER_OBJ entry contains the requested permissions, access is granted,

else access is denied. 

else if the file system user ID of the process matches the qualifier of any entry of type 
ACL_USER, then 

if the matching ACL_USER entry and the ACL_MASK entry contain the requested permissions, 
access is granted, 

else access is denied. 

else if the file system group ID or any of the supplementary group IDs of the process match the 
qualifier of the entry of type ACL_GROUP_OBJ, or the qualifier of any entry of type 
ACL_GROUP, 
then 

if the ACL_MASK entry and any of the matching ACL_GROUP_OBJ or ACL_GROUP entries 
contain all the requested permissions, access is granted, 
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else access is denied. 

else if the ACL_OTHER entry contains the requested permissions, access is granted. 

else access is denied. 

The ACL checking function cycles through each ACL entry to check if the process is authorized to access 
the object in the attempted mode.  Root is always allowed to override any read or write access denials 
based on the ACL entry.  Root is allowed to override an attempted execute access only if an execute bit is 
set for owner, group, or other. 

For example, consider a file named /aclfile, with mode of 640.  The file is owned by root and belongs to 
the group root.  Its default ACL, without the extended POSIX ACL, would be: 

# owner: root 
# group: root
user:: rw-
group::r--
other::---

The file is readable and writeable by the root user, and readable by users belonging to the root group. 
Other users have no access to the file.  With POSIX ACLs, a more granular access control can be 
provided to this file by adding ACLs with the setfacl command.  For example, the following command 
gives a user named john read access to this file, even if john does not belong to the root group. 

#setfacl –m user:john:4,mask::4 /aclfile 

The ACL on file will look like: 

# owner: root 
# group: root 
user:: rw-
user:john:r— 
group::r-- 
mask::r--
other::---

The mask field reflects the maximum permission that a user can get.  Hence, per the ACL, even though 
john is not part of the root group, john is allowed read access to the /aclfile file. 

 5.1.6 Mandatory Access Control (MAC)
RHEL implements Mandatory Access Control (MAC) using the SELinux LSM.  The MAC access control 
methodology used by the SELinux LSM is described in Section 4.1.2.2.  This section describes parts of 
the TOE security policy file relating to file system objects. For general SELinux architecture information, 
see Chapter 3 of SELnux by Example, by Frank Mayer, Karl Macmillan, and David Caplan [MAYE].

The TOE security policy file, in conjunction with the MAC access control model, implements MAC 
requirements.  The MAC model first checks the Type Enforcement (TE) policy, and then further restricts 
access based on a Bell-LaPadula MLS policy. For additional information about the TE policy, see Chapter 
5 of SELinux by Example, by Frank Mayer, Karl Macmillan, and David Caplan [MAYE].

In the TOE security policy, TE is used mainly for role management, and to provide overrides to the MLS 
policy.  Thus, access decisions for unprivileged subjects and objects are mainly performed based on the 
Bell-LaPadula Multilevel Security (MLS) policy.  The MLS policy is implemented using constraints on 
the TE. For information about constraints as a feature of the SELinux policy language,  see Chapter 7 of 
SELinux by Example, by Frank Mayer, Karl Macmillan, and David Caplan [MAYE]. 
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The following subsections here describe the MLS policy constraints that are applied to file system objects 
such as files and directories.  Only representative MLS policy constraints are described below in detail. 
For background information about the whole MLS policy implementation using constraints, see Chapter 8 
of SELinux by Example, by Frank Mayer, Karl Macmillan, and David Caplan [MAYE].  

 5.1.6.1 Sensitivity levels, categories, and syntax words

For background on key components of MLS policy in SELinux and for explanation of the terminology 
used to describe the MLS policy implementation,  see section 2.4 of SELinux by Example, by Frank 
Mayer, Karl Macmillan, and David Caplan [MAYE].

The TOE security policy file defines 16 hierarchical sensitivity levels, and 1024 non-hierarchical 
categories.  The policy language defines the following:

• Four syntax words, eq, dom, domby, and incomp, that respectively define the four possible 
relationships, equal, dominates, dominated by, and incomparable, between two MLS labels.

• Letter “l” to designate the low label of an MLS range

• Letter “h” to designate the high label of an MLS range

• Letter “t” to designate an associated attribute of the subject or object type

• Number “1” to designate source label

• Number “2” to designate target label

• Number “3” to designate the subject in label transition decisions

 5.1.6.2 Read operations

The following policy rule implements restrictions on the read, get attribute, or execute operations based 
on subject and object MLS labels.  

The rule states that for these operations to succeed, the subject label (l1) must dominate the object label 
(l2), or the subject domain (t1) must have the mlsfilereadtoclr attribute and the subject clearance (h1) 
must dominate the object label (l2), or the subject domain (t1) must have the mlsfileread attribute, or the 
object type (t2) must have the mlstrustedobject attribute. 

# the file "read" ops (note the check is dominance of the low level)
mlsconstrain { dir file lnk_file chr_file blk_file sock_file fifo_file } { read 
getattr execute }
        (( l1 dom l2 ) or
         (( t1 == mlsfilereadtoclr ) and ( h1 dom l2 )) or
         ( t1 == mlsfileread ) or
         ( t2 == mlstrustedobject ));

The following policy rule implements restrictions on the search operation based on subject and object 
MLS labels.  

The rule states that for these operations to succeed, the subject label (l1) must dominate the object label 
(l2), or the subject domain (t1) must have the mlsfilereadtoclr attribute and the subject clearance (h1) 
must dominate the object label (l2), or the subject domain (t1) must have the mlsfileread attribute, or the 
object type (t2) must have the mlstrustedobject attribute. 

mlsconstrain dir search
        (( l1 dom l2 ) or
         (( t1 == mlsfilereadtoclr ) and ( h1 dom l2 )) or
         ( t1 == mlsfileread ) or
         ( t2 == mlstrustedobject ));
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 5.1.6.3 Write operations

The following policy rule implements restrictions on the write family of operations such as write, set 
attribute, create, append, link, and so on, based on subject and object MLS labels.  

The rule states that for these operations to succeed, the subject label (l1) must equal the object label 
(l2),or,  the subject domain (t1) must have the mlsfilewritetoclr attribute and the subject clearance (h1) 
must dominate the object label (l2) and the subject label (l1) must be dominated by the object label (l2), 
or, the subject domain (t1) must have the mlsfilewrite attribute,.or, the object type (t2) must have the 
mlsrangedobject attribute and the subject label (l1) must dominate the object label (l2) and the subject 
clearance (h1) must be dominated by the object clearance (h2), or the object type (t2) must have the 
mlstrustedobject attribute. mlsconstrain { file lnk_file fifo_file dir chr_file blk_file sock_file } { write create setattr 
relabelfrom append unlink link rename mounton }

        (( l1 eq l2 ) or
         (( t1 == mlsfilewritetoclr ) and ( h1 dom l2 ) and ( l1 domby l2 )) or
         ( t1 == mlsfilewrite ) or
         (( t2 == mlsrangedobject ) and ( l1 dom l2 ) and ( h1 domby h2 )) or
         ( t2 == mlstrustedobject ));

The following policy rule implements restrictions on the write family of operations for a directory such as 
adding a directory entry, removing a directory entry, changing a parent, or removing a directory based on 
subject and object MLS labels.  

The rule states that for these operations to succeed, the subject label (l1) must equal the object label (l2), 
or the subject domain must (t1) have the attribute mlsfilewriteranged and the subject label (l1) must 
dominate the object label (l2) and the subject label (l1) must be dominated by the object clearance (h2), or 
the subject domain (t1) must have the mlsfilewritetoclr attribute and the subject clearance (h1) must 
dominate the object label (l2) and the subject label (l1) must be dominated by the object label (l2), or the 
subject domain (t1) must have the mlsfilewrite attribute, or the object type (t2) must have the 
mlstrustedobject attribute.

# Directory "write" ops
mlsconstrain dir { add_name remove_name reparent rmdir }
        (( l1 eq l2 ) or
         (( t1 == mlsfilewriteranged ) and ( l1 dom l2 ) and ( l1 domby h2 )) 
or
         (( t1 == mlsfilewritetoclr ) and ( h1 dom l2 ) and ( l1 domby l2 )) or
         ( t1 == mlsfilewrite ) or
         ( t2 == mlstrustedobject ));

 5.1.6.4 Attribute transitions

The following policy rule implements restrictions on the change label operation for a file system object 
such as a file, directory, socket file, and so on, based on the old (current) object MLS label, new 
(intended) object MLS label, and subject MLS label.  

The rule states that for this operation to succeed, the old low object label (l1) must equal to the new low 
object label (l2), or the subject domain (t3) must have the mlsfileupgrade attribute and the old object label 
(l1) must be dominated by the new object label (l2), or the subject domain (t3) must have the 
mlsfiledowngrade attribute and the old object label (l1) must dominate the new object label (l2), or the 
subject domain (t3) must have the mlsfiledowngrade attribute and the old object label (l1) must be 
incomparable with the new object label (l2); at the same time the old object clearance (h1) must equal the 
new object clearance (h2), or the subject domain (t3) must have the mlsfileupgrade attribute and the old 
object clearance (h1) must be dominated by the new object clearance (h2), or the subject domain (t3) must 
have the mlsfiledowngrade attribute and the old object clearance (h1) must dominate the new object 
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clearance (h2), or the subject domain (t3) must have the mlsfiledowngrade attribute and the old object 
clearance (h1) must be incomparable with the new object clearance(h2). 

# the file upgrade/downgrade rule
mlsvalidatetrans { dir file lnk_file chr_file blk_file sock_file fifo_file }
        ((( l1 eq l2 ) or
          (( t3 == mlsfileupgrade ) and ( l1 domby l2 )) or
          (( t3 == mlsfiledowngrade ) and ( l1 dom l2 )) or
          (( t3 == mlsfiledowngrade ) and ( l1 incomp l2 ))) and
         (( h1 eq h2 ) or
          (( t3 == mlsfileupgrade ) and ( h1 domby h2 )) or
          (( t3 == mlsfiledowngrade ) and ( h1 dom h2 )) or
          (( t3 == mlsfiledowngrade ) and ( h1 incomp h2 ))));

There is an additional rule to handle the setfscreate case.  The rule states that for the create operation to 
succeed, the subject label (l1) must equal the object label (l2), or the subject domain (t1) must have the 
mlsfileupgrade attribute and the subject label (l1) must be dominated by the object label (l2), or the 
subject domain (t1) must have the mlsfiledowngrade attribute and the subject label (l1) must dominate the 
object label (l2), or the subject domain (t1) must have the mslfieldowngrade attribute and the subject label 
(l1) must be incomparable with the object label (l2); at the same time the subject label (l1) must equal the 
object clearance (h2), or the subject domain (t1) must have the mlsfileupgrade attribute and the subject 
label (l1) must be dominated by the object clearance (h2), or the subject domain (t1) must have the 
mlsfiledowngrade attribute and the subject label must dominate (l1) the object clearance (h2), or the 
subject domain (t1) must have the mlsfiledowngrade attribute and the subject label (l1) must be 
incomparable with the object clearance (h2).

# create can also require the upgrade/downgrade checks if the creating process
# has used setfscreate (note that both the high and low level of the object
# default to the process sensitivity level)
mlsconstrain { dir file lnk_file chr_file blk_file sock_file fifo_file } create
        ((( l1 eq l2 ) or
          (( t1 == mlsfileupgrade ) and ( l1 domby l2 )) or
          (( t1 == mlsfiledowngrade ) and ( l1 dom l2 )) or
          (( t1 == mlsfiledowngrade ) and ( l1 incomp l2 ))) and
         (( l1 eq h2 ) or
          (( t1 == mlsfileupgrade ) and ( l1 domby h2 )) or
          (( t1 == mlsfiledowngrade ) and ( l1 dom h2 )) or
          (( t1 == mlsfiledowngrade ) and ( l1 incomp h2 ))));

 5.1.7 Asynchronous I/O 
Asynchronous I/O (AIO) enables even a single application thread to overlap I/O operations with other 
processing.  It does this by providing an interface for submitting one or more I/O requests in one system 
call (io_submit()) without waiting for completion, and a separate interface (io_getevents()) to reap 
completed I/O operations associated with a given completion group.

General operation of asynchronous I/O proceeds as follows:

• Process sets up asynchronous I/O context, for files opened with O_DIRECT, using io_setup 
system call.

• Process uses io_submit system call to submit a set of I/O operations.

• Process checks the completion of I/O operations using io_getevents.

• Process destroys the asynchronous I/O context using the io_destroy system call.

AIO uses the kernel bottom half mechanism of work queues to perform deferred work of AIO. io_setup 
sets up a work queue named aio, to which AIO work is submitted.
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Some of the capabilities and features provided by AIO are:

• The ability to submit multiple I/O requests with a single system call.

• The ability to submit an I/O request without waiting for its completion, and to overlap the request 
with other processing.

• Optimization of disk activity by the kernel through combining or reordering the individual 
requests of a batched I/O variety.

• Better CPU utilization and system  throughput by eliminating extra threads  and reducing context 
switches.

 5.1.8 I/O scheduler
The I/O scheduler in Linux forms the interface between the generic block layer and the low-level device 
drivers.  The block layer provides functions that are utilized by the file systems and the virtual memory 
manager to submit I/O requests to block devices.  These requests are transformed by the I/O scheduler and 
made available to the low-level device drivers.  The device drivers consume the transformed requests and 
forward them, by using device-specific protocols, to the actual device controllers that perform the I/O 
operations.  As prioritized resource management seeks to regulate the use of a disk subsystem by an 
application, the I/O scheduler is considered an important kernel component in the I/O path.  RHEL 5 
includes four I/O scheduler options to optimize system performance.

 5.1.8.1 Deadline I/O scheduler

The deadline I/O scheduler available in the Linux 2.6 kernel incorporates a per-request expiration-based 
approach, and operates on five I/O queues.  The basic idea behind the implementation is to aggressively 
reorder requests to improve I/O performance, while simultaneously ensuring that no I/O request is being 
starved.  More specifically, the scheduler introduces the notion of a per-request deadline, which is used to 
assign a higher preference to read than write requests.  

As stated earlier, the deadline I/O scheduler maintains five I/O queues.  During the enqueue phase, each 
I/O request gets associated with a deadline, and is inserted into I/O queues that are either organized by 
starting block (a sorted list) or by the deadline factor (a first-in-first-out [FIFO]) list.  The scheduler 
incorporates separate sort and FIFO lists for read and write requests, respectively. The fifth I/O queue 
contains the requests that are to be handed to the device driver.  During a dequeue operation, in the case 
that the dispatch queue is empty, requests are moved from one of the four I/O lists (sort or FIFO) in 
batches.  The next step consists of passing the head request on the dispatch queue to the device driver.  

The logic behind moving the I/O requests from either the sort or the FIFO lists is based on the scheduler’s 
goal to ensure that each read request is processed by its effective deadline without actually starving the 
queued-up write requests.  In this design, the goal of economizing on the disk seek time is accomplished 
by moving a larger batch of requests from the sort list, which is sector sorted, and balancing it with a 
controlled number of requests from the FIFO list.  

 5.1.8.2 Anticipatory I/O scheduler

The design of the anticipatory I/O scheduler attempts to reduce the per-thread read response time.  It 
introduces a controlled delay component into the dispatching equation.  The delay is invoked on any new 
request to the device driver, thereby allowing a thread that just finished its I/O request to submit a new 
request.  

Implementation of the anticipatory I/O scheduler is similar to, and may be considered as, an extension to 
the deadline scheduler.  In general, the scheduler follows the basic idea that if the disk drive just operated 
on a read request, the assumption can be made that there is another read request in the pipeline, and hence 
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it is worthwhile to wait.  The I/O scheduler starts a timer, and at this point there are no more I/O requests 
passed down to the device driver.  If a close read request arrives during the wait time, it is serviced 
immediately, and in the process, the actual distance that the kernel considers as close grows as time 
passes, which is the adaptive part of the heuristic.  Eventually the close requests dry out, causing the 
scheduler to submit some of the write requests, converging back to what is considered a normal I/O 
request dispatching scenario.

 5.1.8.3 Completely Fair Queuing scheduler

The Completely Fair Queuing (CFQ) I/O scheduler can be considered  an extension to the Stochastic Fair 
Queuing (SFQ) scheduler implementation.  The focus of both implementations is on the concept of fair 
allocation of I/O bandwidth among all the initiators of I/O requests.  The actual implementation utilizes n 
(normally 64) internal I/O queues, as well as a single I/O dispatch queue. 

During an enqueue operation, the PID of the currently running process (the actual I/O request producer) is 
utilized to select one of the internal queues, which is normally hash-based, and, hence, the request is 
inserted into one of the queues in FIFO order.  During dequeue, it calls for a round-robin based scan 
through the non-empty I/O queues, and selects requests from the head of the queues.  To avoid 
encountering too many seek operations, an entire round of requests is first collected, sorted, and 
ultimately merged into the dispatch queue. 

Next, the head request in the dispatch queue is passed to the actual device driver.  The CFQ I/O scheduler 
implements time sharing, in which the processes possess time slices during which they can dispatch I/O 
requests.  This capability makes it behaves similarly to the Anticipatory I/O scheduler.  I/O priorities are 
also considered for the processes, which are derived from their CPU priorities.

 5.1.8.4 Noop I/O scheduler

The noop I/O scheduler can be considered as a rather minimal I/O scheduler that  provides basic merging 
and sorting functionalities.  The main usage of the noop scheduler revolves around non-disk-based block 
devices, such as memory devices, as well as specialized software or hardware environments that 
incorporate their own I/O scheduling and large caching functionality, thus requiring only minimal 
assistance from the kernel.

 5.1.9 I/O interrupts
The Linux kernel supports concurrent execution of multiple tasks.  Each active task gets a portion of the 
CPU time to advance its execution.  Apart from this, the CPU also has to respond to address space 
violations, page faults, synchronous signals from the CPU control unit, and asynchronous signals from 
devices such as a keyboard or a network card.  This section describes how the Linux kernel handles these 
asynchronous interrupts generated by I/O devices. 

Various I/O devices, such as the keyboard, communicate with the CPU regarding events occurring in the 
device, such as a key typed at the keyboard.  They do this by sending special electrical signals to the CPU. 
The CPU receives the signals and communicates them to the kernel for processing.  Depending on the 
signals, the kernel executes an appropriate interrupt handler to process the event.

Responsiveness of the system can be increased by promptly handling the interrupts.  However, depending 
on the type of the interrupt, not all actions associated with handling an interrupt must be executed 
immediately.  Therefore, an interrupt handler can be thought to consist of two sets of operations.  

The first set, which is called the top half, consists of operations that must be executed immediately.  The 
second set, which is called the bottom half, consists of operations that can be deferred.  The top half 
usually includes the most critical tasks, such as acknowledging the signal. The Linux kernel provides 
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three mechanisms for implementing a bottom half of an interrupt handler. They are softirqs, tasklets, and 
work queues.

 5.1.9.1 Top halves

Top halves perform critical parts of interrupt-related tasks such as acknowledging interrupts to the PIC, 
reprogramming the PIC or device controller, and updating data structures accessed by both device and 
processor.

 5.1.9.2 Bottom halves

Bottom halves perform interrupt-related tasks that were not performed by the top half of the interrupt 
handler.  That is, bottom halves perform the work that was deferred by the top halves because it was not 
absolutely necessary to perform it in the top half.

 5.1.9.3 Softirqs

Softirqs are statically linked (defined at compile time) bottom halves that execute in the interrupt context. 
Many softirqs can always be executed concurrently on several CPUs even if they are of same type.

 5.1.9.4 Tasklets

Tasklets are dynamically linked and built on top of softirq mechanisms.  Tasklets differ from softirqs in 
that a tasklet is always serialized with respect to itself.  In other words, a tasklet cannot be executed by 
two CPUs at the same time.  However, different tasklets can be executed concurrently on several CPUs. 

 5.1.9.5 Work queue

The work queue mechanism was introduced in the 2.6 Linux kernel.  Work queues execute in process 
context, as opposed to the interrupt context of softirqs and tasklets.  Work queues defer work to kernel 
threads, which are schedulable, and can therefore sleep.  Thus, work queues provide an interface to create 
kernel threads to handle work queued from other operations. The work queue infrastructure allows a 
device driver to create its own kernel thread or to use generic worker threads, one per processor, provided 
by the kernel.

 5.1.10 Processor interrupts
A symmetrical multiprocessing (SMP) system sets slightly different requirements to interrupt handling by 
hardware and software than an ordinary uniprocessing (UP) system.  Distributed handling of hardware 
interrupts has to be implemented to take advantage of parallelism, and an efficient mechanism for 
communicating between CPUs must be provided.

Inter-processor interrupts (IPIs) are used to exchange messages between CPUs in SMP system. The 
following group of functions helps in issuing IPIs:

• send_IPI_all() Sends an IPI to all CPUs (including the sender)

• send_IPI_allbutself() Sends an IPI to all CPUs except the sender

• send_IPI_self() Sends an IPI to the sender CPU

• send_IPI_single() Sends an IPI to a single, specified CPU

On a multiprocessor system, Linux defines the following five types of  IPIs:
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• CALL_FUNCTION_VECTOR(vector 0xfb)  Used to call functions with a given argument on 
other CPUs like flush tlb_all_ipi() and stop_this_cpu().  Handler: smp_call_function_interrupt().

• RESCHEDULE_VECTOR(0xfc)  Used at least when the best CPU for the woken up task is not 
this CPU. Handler: smp_reschedule_interrupt().

• INVALIDATE_TLB_VECTOR(VECTOR 0xfd)  Used when the TLBs of the other CPU need to 
be invalidated. Handler: smp_invalidate_interrupt().

• ERROR_APIC_VECTOR(vector 0xfe)  This interrupt should never occur.

• SPURIOUS_APIC_VECTOR(vector 0xff)  This interrupt should  never occur.

 5.1.11 Machine check
A machine check exception is an imprecise non-recoverable exception, which means that the CPU does 
not guarantee it will give a coherent set of register values after the exception occurs.  A machine check 
exception occurs when something goes wrong inside the CPU, such as cosmic rays causing bits to 
randomly flip, or the CPU overheating causing electrons to drift.

 5.2 Process control and management
A process is an instance of a program in execution.  Process management consists of creating, 
manipulating, and terminating a process.  Process management is handled by the process management 
subsystems of the kernel.  The kernel interacts with the memory subsystem, the network subsystem, the 
file and I/O subsystem, and the inter-process communication (IPC) subsystem.

The kernel treats a process as a subject.  A subject is an active entity that can access and manipulate data 
and data repositories, which are objects.  System resources, such as CPU time and memory, are allocated 
to objects.  The kernel manages a process through a number of data structures.  These data structures are 
created, manipulated, and destroyed to give processes viability.
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This section briefly describes how a process is given credentials that are used in access mediation, and 
how the credentials are affected by process and kernel actions during the life cycle of the process. 

This section is divided into four subsections. Data Structures lists important structures that are used to 
implement processes and highlight security relevant credentials fields.  Process Creation and Destruction 
describes creation, destruction, and maintenance of a process, with emphasis on how security-relevant 
credentials are affected by state transitions.  Process Switch describes how the kernel switches the current 
process that is executing on the processor, with emphasis on mechanisms that ensure a clean switch (that 
is, ensuring that the latest process executing is not using any resources from the switched out process). 
Kernel Threads describes special-purpose subjects that are created to perform critical system tasks.

 5.2.1 Data structures
The RHEL kernel provides two abstractions for subject constructs: a regular process and a lightweight 
process.  A lightweight process differs from a regular process in its ability to share some resources, such 
as address space and open files.  With respect to security relevance, if differences exist between regular 
processes and lightweight processes, those differences are highlighted.  Otherwise, both regular and 
lightweight processes are simply referred to as processes for better readability.

The RHEL kernel maintains information about each process in a task_struct process type of descriptor. 
Each process descriptor contains information such as run-state of process, address space, list of open files, 
process priority, which files the process is allowed to access, and security-relevant credentials fields, 
including the following:

• uid and gid, which describe the user ID and group ID of a process.

• euid and egid, which describe the effective user ID and effective group ID of a process.

• fsuid and fsgid, which describe the file system user ID and file system group ID of a process.

• suid and sgid, which describe the saved user ID and saved group ID of a process.

• groups, which lists the groups to which the process belongs.

• state, which describes the run state of the process.

• pid, which is the process identifier used by the kernel and user processes for identification.

• security, which points to the information relating to the process domain and other attributes used 
and managed by SELinux as part of enforcing the MAC policy.

The credentials are used every time a process tries to access a file or IPC objects. Process credentials, 
along with the access control data and ownership of the object, determine if access is allowed.

Refer to  include/linux/sched.h for information about other task_struct fields. 

Figure 5-12 schematically shows the task_struct structure, with fields relevant for access control.
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The kernel maintains a circular doubly-linked list of all existing process descriptors. The head of the list is 
the init_task descriptor referenced by the first element of the task array.  The init_task descriptor belongs 
to process 0 or the swapper, the ancestor of all processes.

 5.2.2 Process creation and destruction
The RHEL kernel provides the clone(), fork(), and vfork() system calls for creating new processes.  When 
a new process is created, resources owned by the parent process are duplicated in the child process. 
Because this duplication is done using memory regions and demand paging, the object reuse requirement 
is satisfied.  

The vfork() system call differs from fork() by sharing the address space of its parent.  To prevent the 
parent from overwriting data needed by the child, the execution of the parent is blocked until the child 
exits or executes a new program.  Lightweight processes are created using the clone() system call, which 
allows both the parent and the child to share many per-process kernel data structures such as paging 
tables, open file tables, and signal dispositions. 

 5.2.2.1 Control of child processes

The child process inherits the parent’s security-relevant credentials, including uid, euid, gid, and egid, as 
well as the SELinux security context, which includes process domain and other attributes used in the 
enforcement of the MAC policy.  Because these credentials are used for access control decisions in the 
DAC policy and the MAC policy, the child is given the same level of access to objects as the parent. The 
credentials of a child changes when it starts executing a new program or issues suitable system calls, 
which are listed as follows:
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 5.2.2.2 DAC controls

 5.2.2.2.1 setuid()and setgid()

These set the effective user and group ID of the current process.  If the effective user ID of the caller is 
root, then the real and saved user and group IDs are also set.

 5.2.2.2.2 seteuid()and setegid()

These set the effective user and group ID of the current process.  Normal user processes may only set the 
effective user and group ID to the real user and group ID, the effective user and group ID, or the saved 
user and group ID.

 5.2.2.2.3 setreuid()and setregid()

These set the real and effective user and group IDs of the current process.  Normal users may only set the 
real user and group ID to the real user and group ID or the effective user and group ID, and can only set 
the effective user and group ID to the real user and group ID, the effective user and group ID or the saved 
user and group ID.  If the real user and group ID is set or the effective user and group ID is set to a value 
not equal to the previous real user and group ID, the saved user and group ID is set to the new effective 
user and group ID.

 5.2.2.2.4 setresuid()and setresgid()

These set the real user and group ID, the effective user and group ID, and the saved set-user and group ID 
of the current process.  Normal user processes (that is, processes with real, effective, and saved user IDs 
that are nonzero) may change the real, effective, and saved user and group IDs to either the current uid 
and gid, the current effective uid and gid, or the current saved uid and gid.  An administrator can set the 
real, effective, and saved user and group ID to an arbitrary value.

 5.2.2.3 MAC Controls

 5.2.2.3.1 setcon()and setexeccon()

setcon() and setexeccon() are interfaces to the kernel through the /proc file system. setcon() sets the 
current security context of the process to a new value. This security context is used to enforce the MAC 
policy. Only administrative processes are allowed to set their context explicitly using this interface to the 
kernel.   This restriction is implemented through the TE policy, where the process domain is required to 
possess TE permission to set current process context.  setexeccon() sets the security context that will be 
used for the next execve call. setexeccon() does not affect the current process and its ability to access 
objects, but sets the context which the process will assume after performing the next execve. 

 5.2.2.3.2 Process Transition Control

The TOE security policy applies the following constraint on a process attempting to change its label.  The 
rule states that the current clearance (h1) must dominate the new clearance (h2); at the same time either 
the old (current) effective label (l1) must be equal to the new label (l2) or the old process domain (t1) 
must have the mlsprocsetsl attribute, or the old process domain (t1) must have the privrangetrans attribute 
and the new domain (t2) must have the mlsrangetrans attribute.

# new process labels must be dominated by the relabeling subjects clearance
# and sensitivity level changes require privilege
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mlsconstrain process transition
        (( h1 dom h2 ) and
         (( l1 eq l2 ) or ( t1 == mlsprocsetsl ) or
          (( t1 == privrangetrans ) and ( t2 == mlsrangetrans ))));

 5.2.2.4 execve()

This invokes the exec_mmap() function to release the memory descriptor, all memory regions, and all 
page frames assigned to the process, and to clean up the page tables of a process.  The execve()function 
invokes the do_mmap() function twice, first to create a new memory region that maps the text segment of 
the executable, and then to create a new memory region that maps the data segment of the executable file. 
The object reuse requirement is satisfied because memory region allocation follows the demand paging 
technique described in Section 5.4.7.7.  

execve() can also alter the credentials of the process if the setuid bit of the executable file is set.  If the 
setuid bit is set, the current euid and fsuid of the process are set to the identifier of the owner of the file. 
This change of credentials affects process permissions for the DAC policy.

This system call may also alter the security context of the executed process based on the domain transition 
rules set in the SELinux security policy. The SElinux security policy allows specifications of rules that 
transition the domain of the execved process, based on the old domain of the process before execve(), the 
type of the executable file, and whether the process had performed a setexeccon().

The SELinux LSM allows the security policy to set automatic domain transition through the execve() 
system call.  For example, the passwd command runs in the passwd_t domain to gain access to the 
shadow file.  However, the user’s shell process is not allowed to change its domain to the passwd_t 
domain directly or by executing anything other than the passwd command.  Only when the user executes 
the passwd command does the execve() system call transition the domain to passwd_t.

 5.2.2.5 do_exit()

Process termination is handled in the kernel by the do_exit() function.  The do_exit() function removes 
most references to the terminating process from the kernel data structures and releases resources, such as 
memory, open files, and semaphores held by the process.

 5.2.3 Process switch
To control the execution of multiple processes, the RHEL kernel suspends the execution of the process 
currently running on the CPU and resumes the execution of some other process previously suspended.  In 
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performing a process switch, the RHEL kernel ensures that each register is loaded with the value it had 
when the process was suspended.  The set of data that must be loaded into registers is called the hardware 
context, which is part of the larger process execution context.  Part of the hardware context is contained in 
the task structure of a process; the rest is saved in the kernel mode stack of a process, which allows for the 
separation needed for a clean switch.  In a three-step process, the switch is performed by:

1. installation of a new address space

2. switching the Kernel Mode Stack

3. switching the hardware context

 5.2.4 Kernel threads
The RHEL kernel delegates certain critical system tasks, such as flushing disk caches, swapping out 
unused page frames, and servicing network connections, to kernel threads.  Because kernel threads 
execute only in kernel mode, they do not have to work with credentials.  Kernel threads satisfy the object 
reuse requirement by allocating memory from the kernel memory pool, as described in the kernel memory 
management section of this document.

 5.2.5 Scheduling
Scheduling is one of the features that is improved in the RHEL 2.6 kernel over the 2.4 kernel.  It  uses a 
new scheduler algorithm, called the O (1) algorithm, that provides greatly increased scheduling 
scalability.  The O (1) algorithm achieves this by taking care that the time taken to choose a process for 
placing into execution is constant, regardless of the number of processes. The new scheduler scales well, 
regardless of process count or processor count, and imposes a low overhead on the system.

In the Linux 2.6 scheduler, time to select the best task and get it on a processor is constant, regardless of 
the load on the system or the number of CPUs for which it is scheduling.

Instead of one queue for the whole system, one active queue is created for each of the 140 possible 
priorities for each CPU.  As tasks gain or lose priority, they are dropped into the appropriate queue on the 
processor on which they last ran. Now it is easy for a processor to find the highest priority task.  As tasks 
complete their time slices, they go into a set of 140 parallel queues, named the expired queues, per 
processor.  When the active queue is empty, a simple pointer assignment can cause the expired queue to 
become the active queue again, making turnaround quite efficient.
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Figure 5-13: O(1) scheduling



For more information about O(1) scheduling, refer to Linux Kernel Development - A Practical guide to the 
design and implementation of the Linux Kernel, Chapter 3, by Robert Love, or “Towards Linux 2.6:  A 
look into the workings of the next new kernel” by Anand K. Santhanam at 
http://www-106.ibm.com/developerworks/linux/library/l-inside.html#h1.

The RHEL kernel also provides support for hyperthreaded CPUs that improves hyperthreaded CPU 
performance.  Hyperthreading is a technique in which a single physical processor masquerades at the 
hardware level as two or more processors.  It enables multi-threaded server software applications to 
execute threads in parallel within each individual server processor, thereby improving transaction rates 
and response times.

Hyperthreading scheduler

Scheduler support for hyperthreaded CPUs is another feature that has been incorporated by Red Hat. 
Hyperthreading support ensures that the scheduler can distinguish between physical CPUs and logical, or 
hyperthreaded, CPUs.  Scheduler compute queues are implemented for each physical CPU, rather than 
each logical CPU as was previously the case.  This results in processes being evenly spread across 
physical CPUs, thereby maximizing utilization of resources such as CPU caches and instruction buffers.

For more information about hyperthreading, refer to  http://www.intel.com/technology/hyperthread/.
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Figure 5-14: Hyperthreaded scheduling
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 5.2.6 Kernel preemption
The kernel preemption feature has been implemented in the Linux 2.6 kernel.  This should significantly 
lower latency times for user-interactive applications, multimedia applications, and the like.  This feature is 
especially good for real-time systems and embedded devices.  In previous versions of the kernel, it was 
not possible to preempt a task executing in kernel mode, including user tasks that had entered into kernel 
mode via system calls, until or unless the task voluntarily relinquished the CPU. 

Because the kernel is preemptible, a kernel task can be preempted so that some important user 
applications can continue to run.  The main advantage of this is that there will be a big boost to user 
interactiveness of the system, and the user will feel that things are happening at a faster pace for a key 
stroke or mouse click. 

Of course, not all sections of the kernel code can be preempted.  Certain critical sections of the kernel 
code are locked against preemption.  Locking should ensure that both per-CPU data structures and state 
are always protected against preemption. 
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The following code snippet demonstrates the per-CPU data structure problem, in an SMP system: 

          int arr[NR_CPUS];

          arr[smp_processor_id()] = i;
          /* kernel preemption could happen here */
          j = arr[smp_processor_id()]; 
          /* i and j are not equal as smp_processor_id() may not be the same */

In this situation, if kernel preemption had happened at the specified point, the task would have been 
assigned to some other processor upon re-schedule, in which case smp_processor_id() would have 
returned a different value.  This situation should be prevented by locking. 

FPU mode is another case where the state of the CPU should be protected from preemption. When the 
kernel is executing floating point instructions, the FPU state is not saved.  If preemption happens here, 
then upon reschedule, the FPU state is completely different from what was there before preemption.  So, 
FPU code must always be locked against kernel preemption. 

Locking can be done by disabling preemption for the critical section and re-enabling it afterwards.  The 
Linux 2.6 kernel has provided the following #defines to disable and enable preemption: 

• preempt_enable() -- decrements the preempt counter

• preempt_disable() -- increments the preempt counter

• get_cpu() -- calls preempt_disable() followed by a call to smp_processor_id()

• put_cpu() -- re-enables preemption()

Using these #defines we could rewrite the above code as 

         int cpu, arr[NR_CPUS];

         arr[get_cpu()] = i;  /* disable preemption */
         j = arr[smp_processor_id()];
         /* do some critical stuff here */
         put_cpu()    /* re-enable preemption

Note that preempt_disable() and enable() calls are nested.  That is, preempt_disable() can be called n 
number of times, and preemption will only be re-enabled when the nth preempt_enable() is encountered. 

Preemption is implicitly disabled if any spin locks are held.  For instance, a call to spin_lock_irqsave() 
implicitly prevents preemption by calling preempt_disable(); a call to spin_unlock_irqrestore() re-enables 
preemption by calling preempt_enable().

 5.3 Inter-process communication 
The RHEL kernel provides a number of Inter-process communication (IPC) mechanisms that allow 
processes to exchange arbitrary amounts of data and synchronize execution.  The IPC mechanisms 
include unnamed pipes, named pipes (FIFOs), the System V IPC mechanisms (consisting of message 
queues, semaphores and shared memory regions), signals, and sockets.

This section describes the general functionality and implementation of each IPC mechanism and focuses 
on DAC, MAC, and object reuse handling.
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 5.3.1 Pipes
Pipes allow the transfer of data in a FIFO manner.  The pipe() system call creates unnamed pipes. 
Unnamed pipes are only accessible to the creating process and its descendants through file descriptors. 
Once a pipe is created, a process may use the read() and write() VFS system calls to access it. 

In order to allow access from the VFS layer, the kernel creates an inode object and two file objects for 
each pipe.  One file object is used for reading (reader) and the other for writing (writer).  It is the 
responsibility of the process to use the appropriate file descriptor for reading and writing.  

Processes access unnamed pipes through their VFS file descriptors.  Hence, access control, both DAC and 
MAC, is performed at the VFS layer in the same manner as for regular files, as described in Sections 5.1.5 
and 5.1.6.

The internal implementation of pipes has changed with the 2.6 kernel.  Before, a pipe used a single page 
to buffer data between the file object reader and writer.  For a process writing more than a single page, it 
became blocked until the file object reader consumed the amount of data necessary to allow the rest to fit 
in the buffer.  In the new implementation, known as circular pipes, a circular buffer is used.

In a simple scenario, a curbuf pointer indicates the first buffer that contains data in the array, and nrbufs 
indicates the number of buffers that contain data.  The page structures are allocated and used as necessary. 
In order to serialize access, the pipe semaphore is used, since file object writers and readers are able to 
manipulate nrbufs.  Length and offset fields compose the pipe buffer structure in order for each entry in 
the circular buffer to be able to contain less than a full page of data.

This circular implementation improves pipe bandwidth from 30% to 90%, with a small increase in latency 
because pages are allocated when data passes through the pipe.  The better results in performance are 
attributable to the large buffering, since file object readers and writers block less often when passing data 
through the pipe.

This new functionality implemented in circular pipes is intended to become a general mechanism for 
transmitting data streams through the kernel.

 5.3.1.1 Data structures and algorithms

The inode object refers to a pipe with its i_pipe field, which points to a pipe_inode_info structure. The 
pipe() system call invokes do_pipe() to create a pipe. The read() and write() operations performed on the 
appropriate pipe file descriptors invoke, through the file operations vector f_op of the file object, the 
pipe_read() and pipe_write() routines, respectively.
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Figure 5-15: Pipes Implementation



• pipe_inode_info:  Contains generic state information about the pipe with fields such as base 
(which points to the kernel buffer), len (which represents the number of bytes written into the 
buffer and yet to be read), wait (which represents the wait queue), and start (which points to the 
read position in the kernel buffer).

• do_pipe():  Invoked through the pipe() system call, do_pipe() creates a pipe that performs the 
following actions:

1. Allocates and initializes an inode.

2. Allocates a pipe_inode_info structure and stores its address in the i_pipe field of the inode.

3. Allocates a page-frame buffer for the pipe buffer using _get_free_page(), which in turn invokes 
alloc_pages() for the page allocation.  Even though the allocated page is not explicitly zeroed-out, 
because of the way pipe_read() and pipe_write() are written, it is not possible to read beyond 
what the write channel writes.  Therefore, there are no object reuse issues.

• pipe_read():  Invoked through the read() system call, pipe_read() reads the pipe buffer that the 
base field of the pipe_info_structure points to.

• pipe_write():  Invoked through the write() system call, pipe_write() writes in the pipe buffer 
pointed to by the base field of the pipe_info_structure. 

Because unnamed pipes can only be used by a process and its descendants that share file descriptors, there 
are no DAC issues. Children inherit parent's MLS label, and only privileged processes can alter their MLS 
label hence there are no MLS issues.  Process label transitions are governed by the process transition rules 
described in Section 5.2.2.1.

 5.3.2 First-In First-Out Named pipes
A First-In First-Out (FIFO) named pipe is very similar to the unnamed pipe described in Section 5.3.1. 
Unlike the unnamed pipe, a FIFO has an entry in the disk-based file system.  A large portion of the 
internal implementation of a FIFO pipe is identical to that of the unnamed pipe. Both use the same data 
structure, pipe_inode_info, and the pipe_read() and pipe_write() routines. The only differences are that 
FIFOs are visible on the system directory tree and are a bi-directional communication channel.  Access 
control, both DAC and MAC, on named pipes is also performed using interaction of processes with file 
descriptors in a similar manner as for those of access control on regular files, as explained in Sections 
5.1.5 (DAC) and 5.1.6 (MAC).

 5.3.2.1 FIFO creation

FIFO exists as a persistent directory entry on the system directory tree. A FIFO is created with the VFS 
mknod() system call, as follows:

1. The mknod() call uses the path name translation routines to obtain the dentry object of the 
directory where the FIFO is to be created, and then invokes vfs_mknod().

2. The vfs_mknod() call crosses over to the disk-based file system layer by invoking the disk-based 
file system version of mknod (ext3_mknod()) through the inode operations vector i_op.

3. A special FIFO inode is created and initialized.  The file operation vector of the inode is set to 
def_fifo_fops by a call to function init_special_inode().  The only valid file operation in 
def_fifo_fops is fifo_open().

The creator of the FIFO becomes its owner. This ownership can be transferred to another user using the 
chown() system call.  The owner and root user are allowed to define and modify access rights associated 
with the FIFO. 
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The inode allocation routine of the disk-based file system does the allocation and initialization of the 
inode object; thus, object reuse is handled by the disk-based file system.

 5.3.2.2 FIFO open

A call to the open() VFS system call performs the same operation as it does for device special files. 
Regular DACs when the FIFO inode is read are identical to access checks performed for other file system 
objects, such as files and directories.  If the process is allowed to access the FIFO inode, the kernel 
proceeds by invoking init_special_inode(), because a FIFO on disk appears as a special file.  The 
init_special_inode() system call sets the file operation vector i_fop of the inode to def_fifo_fops.  The 
only valid function in def_fifo_fops is the fifo_open() function.  fifo_open() appropriately calls the 
pipe_read() or pipe_write() functions, depending on the access type.  Access control is performed by the 
disk-based file system.

 5.3.3 System V IPC
The System V IPC consists of message queues, semaphores, and shared memory regions. Message queues 
allow formatted data streams to be sent between processes.  Semaphores allow processes to synchronize 
their execution.  Shared memory segments allow multiple processes to share portions of their virtual 
address spaces.

This section describes data structures and algorithms used by the RHEL kernel to implement the System 
V IPC.  This section also focuses on the implementation of the enforcement of DAC, MAC and handling 
of object reuse by the allocation algorithms.

The IPC mechanisms share the following common properties:

• Each mechanism is represented by a table in kernel memory whose entries define an instance of 
the mechanism.

• Each table entry contains a numeric key, which is used to reference a specific instance of the 
mechanism.

• Each table entry has an ownership designation and access permissions structure associated with it. 
The creator of an IPC object becomes its owner.  This ownership can be transferred by the control 
system call of the IPC mechanism.  The owner and root user are allowed to define and modify 
access permissions to the IPC object.  Credentials of the process attempting access, ownership 
designation, and access permissions are used for enforcing DAC.  The root user is allowed to 
override DAC setup through access permissions.

• Each table entry has a pointer to an ipc_security_struct type, which contains SELinux security 
context used for MAC enforcement.

• Each table entry includes status information such as time of last access or update.

• Each mechanism has a control system call to query and set status information, and to remove an 
instance of a mechanism.

 5.3.3.1 Common data structures

The following list describes security-relevant common data structures that are used by all three IPC 
mechanisms:

• ipc_ids:  The ipc_ids data structure fields, such as size, which indicates the maximum number of 
allocatable IPC resources; in_use, which holds the number of allocated IPC resources; and, 
entries, which points to the array of IPC resource descriptors.
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• ipc_id:  The ipc_id data structure describes the security credentials of an IPC resource with the p 
field, which is a pointer to the credential structure of the resource.

• kern_ipc_perm:  The kern_ipc_perm data structure is a credential structure for an IPC resource 
with fields such as key, uid, gid, cuid, cgid, mode, seq, and security.  uid and cuid represent the 
owner and creator user ID.  gid and cgid represent the owner and creator group ID.  The mode 
field represents the permission bit mask and the seq field identifies the slot usage sequence 
number.  The security field is a pointer to a structure that contains the SELinux security context of 
the IPC resource.  The kernel uses this security context when enforcing MAC policy.

 5.3.3.2 Common functions

Common security-relevant functions are ipc_alloc() and ipcperms().

 5.3.3.2.1 ipc_alloc()

The ipc_alloc() function is invoked from the initialization functions of all three IPC resources to allocate 
storage space for respective arrays of IPC resource descriptors of the IPC resource.  The ipc_ids data 
structure field entries point to the IPC resource descriptors.  Depending on the size, computed from the 
maximum number of IPC resources, ipc_alloc() invokes either kmalloc() with the GFP_KERNEL flag, or 
vmalloc().  There are no object reuse issues, because in both cases the memory allocated is in the kernel 
buffer and the kernel uses the memory for the kernel’s internal purposes.

 5.3.3.2.2 ipcperms()

The ipcperms() function is called when a process attempts to access an IPC resource. ipcperms() first 
enforces the DAC policy, and if DAC grants access, it calls security_ipc_permission() to enforce the 
MAC policy.  Discretionary access to the IPC resource is granted based on the same logic as that of 
regular files, using the owner, group, and access mode of the object.  The only difference is that the owner 
and creator of the IPC resource are treated equivalently, and the execute permission flag is not used. 
Mandatory access to the IPC resource is granted based on the domain of the process, the type of the IPC 
resource, and the security policy rules that are set between that domain and that type. 

 5.3.3.3 MAC Rules enforced on IPC

The following subsections describe two classes of MAC rules enforced on IPC.

 5.3.3.3.1 Read family of operations

For the read family of operations, including getting attributes, reading individual items within an IPC 
object, and reading the information pertaining to the entire IPC object, the rule states that the subject label 
(l1) must dominate the object label (l2), or the subject domain (t1) must have the mlsipcreadtoclr attribute 
and the subject clearance (h1) must dominate the object label (l2), or the subject domain (t1) must have 
the mlsipcread attribute.

# the ipc "read" ops (implicit single level)
mlsconstrain { ipc sem msgq shm } { getattr read unix_read }
        (( l1 dom l2 ) or
         (( t1 == mlsipcreadtoclr ) and ( h1 dom l2 )) or
         ( t1 == mlsipcread ));

 5.3.3.3.2 Write family of operations

For the write family of operations, including create, destroy, setting attributes, writing individual items 
within an IPC object, and writing the information pertaining to the entire IPC object, the rule states that 
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the subject label (l1) must be equal to the object label (l2), or the subject domain It1) must have the 
mlsipcwritetoclr attribute and the subject clearance (h1) must dominate the object label (l2) and the 
subject label (l1) must be dominated by the object label (l2), or the subject domain (t1) must have the 
mlsipcwrite attribute.

# the ipc "write" ops (implicit single level)
mlsconstrain { ipc sem msgq shm } { create destroy setattr write unix_write }
        (( l1 eq l2 ) or
         (( t1 == mlsipcwritetoclr ) and ( h1 dom l2 ) and ( l1 domby l2 )) or
         ( t1 == mlsipcwrite ));

 5.3.3.4 Message queues

Important data structures for message queues are msg_queue, which describes the structure of a message 
queue, and msg_msg, which describes the structure of the message.  Important functions for message 
queues are msgget(), msgsnd(), msgrcv(), and msgctl().  Once marked for deletion, no further operation 
on a message queue is possible.

 5.3.3.4.1 msg_queue

This structure describes the format of a message queue with fields such as q_perm, which points to the 
kern_ipc_perm data structure; q_stime, which contains the time of the last msgsnd(); q_qcbytes, which 
contains the number of bytes in queue, q; and, qnum, which contains the number of messages in a queue.

 5.3.3.4.2 msg_msg

This structure describes the format of a message with fields such as m_type, which specifies the message 
type; m_ts, which specifies message text size; m_list, which points to the  message list; and, next, which 
points to msg_msgseg corresponding to the next page frame containing the message. 

 5.3.3.4.3 msgget()

This function is invoked to create a new message queue, or to get a descriptor of an existing queue based 
on a key.  The newly created credentials of the message queue are initialized from the credentials of the 
creating process.  The SELinux security context of a new message queue is set based on the process 
domain and the security policy rules.

 5.3.3.4.4 msgsnd()

This function is invoked to send a message to a message queue.  DAC and MAC are performed by 
invoking the ipcperms() function.  A message is copied from the user buffer into the newly allocated 
msg_msg structure.  Page frames are allocated in the buffer space of the kernel using kmalloc() and the 
GFP_KERNEL flag.  Thus, no special object reuse handling is required.

 5.3.3.4.5 msgrcv()

This function is invoked to receive a message from a message queue.  DAC and MAC are performed by 
invoking the ipcperms() function.

 5.3.3.4.6 msgctl()

This function is invoked to set attributes of, query status of, or delete a message queue. Message queues 
are not deleted until the process waiting for the message has received it. DAC and MAC is performed by 
invoking the ipcperms() function.
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 5.3.3.5 Semaphores

Semaphores allow processes to synchronize execution by performing a set of operations atomically on 
themselves.  An important data structure implementing semaphores in the kernel is sem_array, which 
describes the structure of the semaphore.  Important functions are semget(), semop(), and semctl().  Once 
marked for deletion, no further operation on a semaphore is possible.

 5.3.3.5.1 sem_array

Describes the structure and state information for a semaphore object. sem_array contains fields including 
sem_perm, the kern_ipc_perm data structure; sem_base, which is a pointer to the first semaphore; and, 
sem_pending, which is a pointer to pending operations.

 5.3.3.5.2 semget()

A function that is invoked to create a new semaphore or to get a descriptor of an existing semaphore 
based on a key.  The newly created semaphore’s credentials are initialized from the creating process’s 
credentials.  Security context of a new semaphore is set based on the process domain and the security 
policy rules.  The newly allocated semaphores are explicitly initialized to zero by a call to memset().

 5.3.3.5.3 semop()

This function is invoked to perform atomic operations on semaphores.  DAC and MAC are performed by 
invoking the ipcperms() function.

 5.3.3.5.4 semctl()

A function that is invoked to set attributes, query status, or delete a semaphore.  A semaphore is not 
deleted until the process waiting for a semaphore has received it.  DAC and MAC are performed by 
invoking the ipcperms() function.

 5.3.3.6 Shared memory regions

Shared memory regions allow two or more processes to access common data by placing the processes in 
an IPC-shared memory region. Each process that wants to access the data in an IPC-shared memory 
region adds a new memory region to its address space. The new memory region maps the page frames 
associated with the IPC shared memory region. Shared memory regions are implemented in the kernel 
using the shmid_kernel data structure, and the shmat(), shmdt(), shmget() and shmctl() functions.

 5.3.3.6.1 shmid_kernel

Describes the structure and state information of a shared memory region with fields including shm_perm, 
which stores credentials in the kern_ipc_perm data structure; shm_file, which is the special file of the 
segment; shm_nattach, which holds the number of current attaches; and, shm_segsz, which is set to the 
size of the segment.

 5.3.3.6.2 shmget()

A function that is invoked to create a new shared memory region or to get a descriptor of an existing 
shared memory region based on a key.  A newly created shared memory segment’s credentials are 
initialized from the creating process’s credentials.  

Security context of a new shared memory segment is set based on the process domain and the security 
policy rules.  shmget() invokes newseg() to initialize the shared memory region.  newseg() invokes 
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shmem_file_setup() to set up the shm_file field of the shared memory region.  shmem_file_setup() calls 
get_empty_filp() to allocate a new file pointer, and explicitly zeroes it out to ensure that the file pointer 
does not contain any residual data.

 5.3.3.6.3 shmat()

A process invokes shmat() to attach a shared memory region to its address space.  DAC and MAC are 
performed by invoking the ipcperms() function. 

The pages are added to a process with the demand paging technique described in Section 5.4.9.11. Hence, 
the pages are dummy pages.  The function adds a new memory region to the address space of the process, 
but actual memory pages are not allocated until the process tries to access the new address for a write 
operation.  When the memory pages are allocated, they are explicitly zeroed out, satisfying the object 
reuse requirement, as described in Section 5.4.9.11.

 5.3.3.6.4 shmdt()

A process invokes shmdt() to detach a shared memory region from its address space.  DAC and MAC are 
performed by invoking the ipcperms() function.

 5.3.3.6.5 shmctl()

A function that is invoked to set attributes, query status, or delete a shared memory region.  A shared 
memory segment is not deleted until the last process detaches it.  DAC and MAC are performed by 
invoking the ipcperms() function.

 5.3.4 Signals
Signals offer a means of delivering asynchronous events to processes.  Processes can send signals to each 
other with the kill() system call, or the kernel can internally deliver the signals.  Events that cause a signal 
to be generated include keyboard interrupts via the interrupt, stop, or quit keys, exceptions from invalid 
instructions, or termination of a process.  Signal transmission can be broken into two phases:

• Signal generation phase:  The kernel updates appropriate data structures of the target process to 
indicate that a signal has been sent.

• Signal delivery phase:  The kernel forces the target process to react to the signal by changing its 
execution state and or the execution of a designated signal handler is started.

Signal transmission does not create any user-visible data structures, so there are no object reuse issues. 
However, signal transmission does raise access control issues.  This section describes relevant data 
structures and algorithms used to implement DAC and MAC. 

 5.3.4.1 Data structures

Access control is implemented in the signal generation phase. The main data structure involved in signal 
transmission access control is the task_struct process descriptor structure.  The  task_struct of each 
process contains fields that designate the real and effective user ID of the process for DAC access check 
and SELinux security context (process domain) for MAC access check.  These fields are used to 
determine if one process is allowed to send a signal to another process.

 5.3.4.2 Algorithms

Access control is performed at the signal generation phase. Signal generation, either from the kernel or 
from another process, is performed by invoking the send_sig_info() routine.  The kill() system call, along 
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with signal generation by the kernel, ultimately invokes send_sig_info().   send_sig_info() in turn calls 
check_kill_permission, which allows signal generation if the kernel is trying to generate a signal for a 
process.  For user processes, check_kill_permission() delivers the signal after ensuring that at least one of 
the following is true:

• Sending and receiving processes belong to the same user.

• An administrator is the owner of the sending process.

• The signal is SIGCONT (to resume execution of a suspended process), and the receiving process 
is in the same login session of the sending process.

• If one of the above three conditions are met, then DAC access is allowed.   Therefore, the system 
performs MAC access check based on sending and receiving process domain and security policy 
rules set for those domains.  

The TOE security policy enforces this MAC check with the following rule, which states that 
either the sending process label (l1) must equal the receiving process label (l2), or the sending 
process domain must have the mlsprocwritetoclr attribute and the sending process clearance (h1) 
must domainate the receiving process label (l2) and the sending process label (h1) must be 
dominated by the receiving process label (l2), or the sending process domain (t1) must have the 
mlsprocwrite attribute.

# all the process "write" ops (note the check is equality on the low level)
mlsconstrain process { sigkill sigstop signal setsched setpgid setcap setexec 
setfscreate setcurrent ptrace share }
        (( l1 eq l2 ) or
         (( t1 == mlsprocwritetoclr ) and ( h1 dom l2 ) and ( l1 domby l2 )) or
         ( t1 == mlsprocwrite ));

If the above conditions are not met, access is denied.

 5.3.5 Sockets
A socket is an endpoint for communication.  Two sockets must be connected to establish a 
communications link.  Sockets provide a common interface to allow process communication across a 
network, such as an Internet domain, or on a single machine, such as a single UNIX domain.  

Processes that communicate using sockets use a client-server model.  A server provides a service, and 
clients make use of that service.  A server that uses sockets first creates a socket and then binds a name to 
it.  An Internet domain socket has an IP port address bound to it.  The registered port numbers are listed in 
/etc/services.  For example, the default port number for an ftp server is 21. 

Having bound an address to the socket, the server then listens for incoming connection requests 
specifying the bound address.  The originator of the request, the client, creates a socket and makes a 
connection request on it, specifying the target address of the server.  For an Internet domain socket, the 
address of the server is its IP address and its port number.

Sockets are created using the socket() system call.  Depending on the type of socket, either  UNIX domain 
or internet domain, the socket family operations vector invokes either unix_create() or inet_create().  

unix_create() and inet_create() invoke sk_alloc() to allocate the sock structure.  sk_alloc() calls 
kmem_cache_alloc() to allocate memory, and then zeros the newly allocated memory by invoking 
memset(), thus taking care of object reuse issues associated with sockets created by users.
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Calls to bind() and connect() to a UNIX domain socket file requires write access to it.  UNIX domain 
sockets can be created in the ext3 file system, and therefore may have an ACL associated with them.  For 
a more detailed description of client-server communication methods and the access control performed by 
them, refer to Section 5.10 of this document.

For background information about socket labeling, see “Leveraging IPsec for Distributed Authorizations,” 
Jaeger et al., http://nsrc.cse.psu.edu/tech_report/NAS-
TR-0037-2006.pdf.http://nsrc.cse.psu.edu/tech_report/NAS-TR-0037-2006.pdf.

 5.4 Network subsystem
The network subsystem allows Linux systems to connect to other systems over a network.  It provides a 
general purpose framework within which network services are implemented.  There are a number of possible 
hardware devices that can be connected, and a number of network protocols that can be used.  The network 
subsystem abstracts both of these implementation details, so user processes and other kernel subsystems can 
access the network without knowing the physical devices and the protocol being used.

The various modules in the network subsystem are:

• Network device drivers that communicate with the hardware devices; there is one device driver 
module for each possible hardware device.

• The device-independent interface module provides a consistent view of all of the hardware devices, 
so higher levels in the subsystem do not need specific knowledge of the hardware in use. 

• The network protocol modules are responsible for implementing each of the possible network 
transport protocols.

• The protocol-independent interface module provides an interface that is independent of hardware 
devices and network protocol.  This is the interface module that is used by other kernel subsystems to 
access the network without having a dependency on particular protocols or hardware.  Finally, the 
system call interface module restricts the exported routines that user process can access.
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Figure 5-16: Object reuse handling in socket allocation
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Network services include transmission and reception of data, network-independent support for message 
routing, and network-independent support for application software.  The following subsections present an 
overview of the network stack and describe how various layers of the network stack are used to implement 
network services.

For more information, see the TCP/IP Tutorial and Technical Overview IBM Redbook by Adolfo, John & 
Roland.  It is at the http://www.redbooks.ibm.com/abstracts/gg243376.html website.

 5.4.1 Overview of the network protocol stack
The network protocol stack, which forms the carrier and pipeline of data from one host to another, is designed 
in such a way that you can interact with different layers at a desired level.  This section describes the 
movement of data through these stacked layers.

The physical layer and link layer work hand-in-hand.  They consist of the network card and associated device 
driver, most often Ethernet, but also Token Ring, PPP (for dial-up connections), and others. 

The next layer, the network layer, implements the Internet Protocol, which is the basis of all Internet 
communications, along with related protocols, including Internet Control Message Protocol (ICMP). 

The transport layer consists of the TCP, UDP and similar protocols. 

The application layer consists of all the various application clients and servers, such as the Samba file and 
print server, the Apache web server, and others.  Some of the application-level protocols include Telnet, for 
remote login; FTP, for file transfer; and, SMTP, for mail transfer.

Network devices form the bottom layer of the protocol stack.  They use a link-layer protocol, usually 
Ethernet, to communicate with other devices to send and receive traffic.  The interface put up by the 
network device driver copies packets from a physical medium, performs some error checks, and then puts 
up the packets to the network layer. 
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Figure 5-17: Network subsystem and its interaction with other subsystems
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Output interfaces receive packets from the network layer, perform error checks, and then send the packets 
out over the physical medium.  The main functionality of IP is routing.

• IP checks incoming packets to see if they are for the host computer or if they need to be 
forwarded. 

• IP defragments packets if necessary and delivers them to the transport protocols. 

• IP has a dynamic database of routes for outgoing packets.

• IP addresses and fragments them if necessary before sending them down to the link layer. 

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the most commonly used 
transport layer protocols.  UDP simply provides a framework for addressing packets to ports within a 
computer, whereas TCP allows more complex connection-based operations such as the recovery of lost 
packets, and also traffic management implementations. Both UDP and TCP copy the application packet 
for transporting. 

Moving up the transport layer, next is the INET (for internet) layer, which forms the intermediate layer 
between the transport layer and application sockets. The INET layer implements the sockets owned by the 
applications.  All socket-specific operations are implemented here.

Each layer of the protocol stack adds a header containing layer-specific information to the data packet.  A 
header for the network layer might include information such as source and destination addresses.  The 
process of prepending data with headers is called encapsulation. Figure 5-18 shows how data is 
encapsulated by various headers. During decapsulation, the inverse occurs: the layers of the receiving 
stack extract layer-specific information and accordingly process the encapsulated data.  Note that the 
process of encapsulation increases the overhead involved in transmitting data.

 5.4.2 Transport layer protocols
The transport layer protocols supported by the RHEL kernel are TCP and UDP.
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Figure 5-18: How data travels through the Network protocol stack



 5.4.2.1 TCP

TCP is a connection-oriented, end-to-end, reliable protocol designed to fit into a layered hierarchy of 
protocols that support multi-network applications.  TCP provides for reliable IPC  between pairs of processes 
in host computers attached to distinct but interconnected computer communication networks.  TCP is used 
along with the Internet Protocol (IP) to send data in the form of message units between computers over the 
Internet.  While IP takes care of handling the actual delivery of the data, TCP takes care of keeping track of 
the individual units of data, or packets, that a message is divided into for efficient routing through the 
Internet.  For more information about TCP, refer to RFC 793.

 5.4.2.2 UDP

UDP is a connectionless protocol that, like TCP, runs on top of IP networks.  UDP/IP provides very few error 
recovery services, offering instead a direct way to send and receive datagrams over an IP network.  It is used 
primarily for broadcasting messages over a network. This protocol provides a procedure for application 
programs to send messages to other programs with a minimum of protocol mechanism.  The protocol is 
transaction oriented, and delivery and duplicate protection are not guaranteed.  For more information about 
UDP, look into RFC 768.

 5.4.3 Network layer protocols
The network layer protocols supported by the RHEL kernel are IP and ICMP.

 5.4.3.1 Internet Protocol Version (IPv4)

IPv4, also known simply as IP, is the standard that defines the manner in which the network layers of two 
hosts interact.  These hosts can be on the same network, or reside on physically distinct heterogeneous 
networks. In fact, IP was designed from the very beginning with inter-networking in mind.

IP provides a connectionless, unreliable, best-effort packet delivery service.  Its service is called 
connectionless because in some ways it resembles the Postal Service.  IP packets, like telegrams or mail 
messages, are treated independently.  Each packet is stamped with the addresses of the receiver and the 
sender.  Routing decisions are made on a packet-by-packet basis.  IP is quite different from connection-
oriented and circuit-switched phone systems that explicitly establish a connection between two users 
before any conversation, or data exchange, takes place, and maintain a connection for the entire length of 
exchange.  For information about IP packets, IP addresses, and addressing formats refer to RFC 1883.

 5.4.3.2 Internet Protocol Version 6 (IPv6)

The RHEL kernel supports Internet Protocol version 6.  IPv6 is the standard that defines the manner in 
which network layers of two hosts interact, and is an update to the existing IPv4.  The TOE is in 
compliance with IPv6 source address selection as documented in RFC 3484, and implements several new 
socket options (IPV6_RECVPKTINFO, IPV6_PKTINFO, IPV6_RECVHOPOPTS, IPV6_HOPOPTS, 
IPV6_RECVDSTOPTS, IPV6_DSTOPTS, IPV6_RTHDRDSTOPTS, IPV6_RECVRTHDR, 
IPV6_RTHDR, IPV6_RECVHOPOPTS, IPV6_HOPOPTS, IPV6_{RECV,}TCLASS) and ancillary data 
in order to support advanced IPv6 applications including ping, traceroute, routing daemons and others. 
The following section introduces Internet Protocol Version 6 (IPv6).  For additional information about 
referenced socket options and advanced IPv6 applications, see RFC 3542.

Internet Protocol Version 6 (IPv6) was designed to improve upon and succeed Internet Protocol Version 4 
(IPv4). 

IPv4 addresses consist of 32 bits.  This accounts for about 4 billion available addresses. The growth of the 
Internet and the delegation of blocks of these addresses has consumed a large amount of the available 
address space.  There has been a growing concern that someday we will run out of IPv4 addresses.  IPv6 
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was an initiative to produce a protocol that improved upon the flaws and limitations of IPv4 and is 
flexible enough to withstand future growth. 

This introduction briefly addresses some of the features of IPv6.  For further information, see RFC 2460, 
which contains the IPv6 specifications. 

 5.4.3.2.1 Addressing

IPv6 addresses are comprised of 128 bits, providing for more levels of an addressing hierarchy as well as 
space for future growth.  A scope field has been added to multicast addresses to make for increased 
scalability.  The scope identifies whether the packet should be multicast only on the link, site, or globally, 
which are levels of the addressing hierarchy. 

IPv6 also introduces automatic configuration of IPv6 addresses.  It uses the concept of network prefixes, 
interface identifiers, and MAC addresses to form and configure the host’s IPv6 address. This IPv6 address 
is advertised to local IPv6 routers on the link, thus making for dynamic routing.

 5.4.3.2.2 IPv6 Header

Some of the fields and options in an IPv4 header were removed from the IPv6 header.  This helped to 
reduce the bandwidth required for IPv6, because the addresses themselves are larger.  IP options are now 
placed in extension headers in IPv6.  The extension header format is flexible and therefore will more 
easily  include additional options in the future.  The extension headers are placed after the IP header and 
before any upper-layer protocol fields.  

81



RFC 2460 defines the following extension headers for IPv6:

• Hop-by-Hop

• Routing

• Fragment

• Destination Option

• Authentication

• Encapsulating Security Payload

IPv6 Header

 5.4.3.2.3 Flow Labels

The IPv6 header has a field to in which to enter a flow label.  This provides the ability to identify packets 
for a connection or a traffic stream for special processing.

 5.4.3.2.4 Security

The IPv6 specifications mandate IP security.  IP security must be included as part of an IPv6 
implementation.  IP security provides authentication, data integrity, and data confidentiality to the 
network through the use of the Authentication and Encapsulating Security Payload extension headers.  IP 
security is described in the next section.

 5.4.3.3 Transition between IPv4 and IPv6

IPv4 addresses eventually need to be replaced with IPv6 ones.  Due to the size of the Internet, it would be 
almost impossible to have a controlled roll out.  So, IPv6 specifications incorporate a transition period in 
which IPv4 hosts and IPv6 hosts can communicate and reside together.  RFC 4213 defines two 
mechanisms to accommodate the transition from IPv4 to IPv6: dual stack, and configured tunneling. 

In a dual stack, both IPv4 and IPv6 are implemented in the operating system. Linux implements both IPv4 
and IPv6. 

The second mechanism uses tunnels.  The IPv4 network exists while the IPv6 infrastructure is in progress. 
IPv6 packets are encapsulated in IPv4 packets and tunneled through IPv4 networks to final destination.  
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These mechanisms only accommodate the transition period that will be required as IPv6 infrastructure 
progresses and replaces IPv4.  They allow for a more flexible deployment of IPv6.

 5.4.4 IP Security (IPsec)
IP Security is an architecture developed for securing packets at the IP layer of the TCPIP protocol stack. 
It is comprised of several protocols and services, all working together to provide confidentiality, integrity, 
and authentication of IP datagrams. 

The phrase data confidentiality refers to data that is secret or private, and that is read or seen only by the 
intended recipients.  Unsecured packets traveling the internet can be easily intercepted by a network 
sniffer program and the contents viewed.  The intended recipient would never know the received packet 
had been intercepted and read.  The IP security architecture provides data confidentiality through 
encryption algorithms.

The phrase data integrity implies that the data received is as it was when sent, and that it has not been 
tampered, altered, or impaired in any way.  Data authentication ensures that the sender of the data is really 
who you believe it to be.  Without data authentication and integrity, someone can intercept a datagram 
and alter the contents to reflect something other than what was sent, as well as who sent it.  IP Security 
provides data authentication and integrity through the use of hash functions in message authentication 
codes (HMACs). 

The encryption algorithms and HMACs require several shared symmetric encryption keys.  Thus IP 
Security also takes into consideration key management, and the secure exchange of keys through its 
services.

This introduction briefly describes the collection of protocols and services offered in IP Security. 

 5.4.4.1 Functional Description of IPsec

IP Security provides security at the IP Layer through the use of the AH and ESP protocols.  These 
protocols operate in transport and tunnel mode.

In transport mode, AH and ESP provide security to the upper-layer protocols of the TCPIP protocol stack 
(that is, UDP and TCPIP).  Therefore, only part of the IP datagram is protected. Transport mode is usually 
used for security between two hosts. 

In tunnel mode, AH and ESP provide security to the entire IP datagram.  The entire original  IP datagram 
is encapsulated, and an outer IP header attached.  Tunnel mode is usually for security between two 
gateways (that is, networks) or between a host and a gateway.

 5.4.4.1.1 AH Protocol (AH)

The IP Authentication (AH) Header is described in RFC 2402.  Besides providing data integrity and 
authentication of source, it also protects against replay attacks via the use of a sequence number and 
replay window.

The contents of the IP datagram, along with the shared secret key, are hashed, resulting in a digest. This 
digest is placed in the AH header, and the AH header is then included in the packet.   

Verification occurs when the receiving end removes the AH header, then hashes its shared secret key with 
the IP datagram to produce a temporary digest and compare it with the digest in the AH header.  If the two 
digests are identical, verification has succeeded.

AH Header
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When used in transport mode, the AH header is placed before the upper-layer protocol, which it will 
protect, and after the IP header and any options, for IPv4.  In the context of IPv6, according to RFC 2402, 
AH is viewed as an end-to-end payload.  Therefore, the AH header should appear after the IP headers and 
hop-by-hop, routing, and fragmentation extension headers if present.

An IP Packet with transport mode AH

In tunnel mode, the entire IP datagram is encapsulated, protecting the entire IP datagram. 

An IP Packet with tunnel mode AH

 5.4.4.1.2 Encapsulating Security Payload Protocol (ESP)

The Encapsulating Security Payload (ESP) header is defined in RFC 2406.  Besides data confidentiality, 
ESP also provides authentication and integrity as an option.  The encrypted datagram is contained in the 
Data section of the ESP header.  When authentication is also chosen within the ESP protocol, the data is 
encrypted first and then authenticated.  The authenticated data is placed in the authentication data field.  If 
no authentication is specified within the ESP protocol, then this field is not used.
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ESP Header

When used in transport mode, the ESP header is inserted after the IP header and before any upper-layer 
protocols, protecting only the upper layer protocols.

An IP Packet with transport mode ESP

In tunnel mode, the original IP header and any upper-layer protocols are encrypted and then authenticated 
if specified.

An IP Packet with tunnel mode ESP

 5.4.4.1.3 Security Associations

RFC2401 defines a Security Association (SA) as a simplex, or one-way, connection that affords security 
services to the traffic it carries.  Separate SAs must exist for each direction.  IPSec stores the SAs in the 
Security Association Database (SAD), which resides in the Linux kernel. 

 5.4.4.1.4 Security Policy 

A Security Policy is a general plan that guides the actions taken on an IP datagram.  Upon processing an 
incoming or outgoing IP datagram, the security policy is consulted to determine what to do with the IP 
datagram.  One of three actions can occur: the datagram is discarded, the datagram bypasses IPSec 
processing, or IPSec processing is applied. 

If IPSec processing is to be done, the policy will indicate which SA to access in the SAD.  This SA will 
indicate the keys and service and other information related to the securing of the IP datagram.  Security 
policies are stored in the Security Policy Database (SPD), which resides in the Linux kernel.

 5.4.4.1.5 SA, SP, and Key Management

There are services for both manual and automated SA creation and maintenance.  Manual management 
refers to an administrative user interface that allows for the creation and deletion of policy, SAs, and keys. 
Automated SA and key management is done through the IKE protocol. 

 5.4.4.1.6 Internet Key Exchange Protocol (IKE)

The Internet Key Exchange (IKE) protocol is designed to negotiate SAs on behalf of any service, such as 
IPSec, RIPv2, or OSPF.  Each service has a Domain of Interpretation (DOI) document describing the 
attributes required to establish an SA.  IPSec’s DOI is RFC 2407. 
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IKE has two basic phases, which it takes from Internet Security Association and Key Management 
Protocol (ISAKMP).  The first phase establishes an authenticated and secure channel between two remote 
peers.  During this phase the two peers exchange necessary information and keying material with each 
other.  The result is an ISAKMP SA for each peer. This ISAKMP SA is then used to set up a secure and 
authenticated traffic stream when the two peers negotiate an IPSec SA or an SA for any other service. 

 5.4.4.1.7 Socket API

The PF_KEY API, defined in RFC 2367, is a socket protocol family that allows userspace manual and 
automated key management tools to communicate with the kernel.  

Linux also has xfrm_user, which makes use of the Netlink API, to communicate with the kernel.

The PF_KEY API defines interfaces for adding, deleting, updating, and retrieving SAs as well as 
maintaining the state and lifetime of the SAs. The API has been extended in the Linux kernel to include 
SPD management too.

 5.4.4.1.8 Cryptographic subsystem

The cryptographic subsystem performs several cryptographic-related assignments, including Digital 
Signature Algorithm (DSA) signature verification, in-kernel key management, arbitrary-precision integer 
arithmetic, and verification of kernel module signatures.

This subsystem was initially designed as a general-purpose mechanism, preserving the design ideas of 
simplicity and flexibility, including security-relevant network and file system services such as encrypted files 
and file systems, network file system security, strong file system integrity, and other kernel networking 
services where cryptography was required.

The ability to enforce cryptographic signatures on loadable modules has a couple of security uses:

• It prevents the kernel from loading corrupted modules

• It makes it difficult for an attacker to install a rootkit on a system

The kernel can be configured for checking or not checking the signatures of modules, so these signatures 
are only useful once the system is able to check it.  For a signature to be checked and the new module 
accepted, it is first necessary that the kernel decrypt the signature with a public key.  This public key is 
contained within the kernel, and the key must also to have the same checksum.

The in-kernel key management service allows cryptographic keys, authentication tokens, cross-domain 
user mappings, and other related security information to be cached in the kernel for when the file system 
uses other kernel services. 

A special kind of key, called a keyring, which contains a list of keys and support links to others keys, is 
also permitted.  The keys represent cryptographic data, authentication tokens, keyrings, and similar 
information.

The in-kernel key management service possesses two special types of keys: the above-mentioned keyring, 
and the user key.  Userspace programs can directly create and manipulate keys and keyrings through a 
system call interface, using three new system calls: add_key, request, and key_keyctl.  Services can 
register types and search for keys through a kernel interface. There also exists an optional file system in 
which the key database can be manipulated and viewed.

For manipulating the key attributes and permissions it is necessary to be the key owner or to have 
administrative privileges.
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 5.4.4.1.9 Mandatory Access Control of Network Communications using IP Security

The Linux Security Modules (LSM) framework and SELinux module were extended to leverage Linux’s 
IPSec implementation to enable MAC of network packets.  

Types are represented in access control labels, often referred to as security contexts.  SELinux policy is 
consulted to determine whether a labeled subject may access a labeled object to perform a specified 
operation.  IPSec has been extended to recognize these labels.  These labels are part of the info contained 
in the IPSec policies and security associations.  If no label is specified in the security policy and security 
association, then the default unlabeled_t is used when this feature is enabled in the Linux kernel. 

A network communication occurs through the use of a socket.  In SELinux, a socket inherits the label of 
its process.  When a packet is being sent or received, IPSec policy is consulted.  If the policy contains an 
access control label, then SELinux authorizes that the socket can be used to send or receive with that 
access control label.  The access control label in the security association must match that in the policy. 
This restricts access to sockets through the access control labels contained in the IPSec security policy and 
security associations. 

 5.4.4.1.10 Extensions to IPSec

The pfkeyv2 and xfrm_user socket APIs have been extended in the Linux kernel to recognize security 
contexts contained in policy and security associations.  The IKE daemon was extended to include a 
security context in its negotiations to establish an IPSec SA.  This is further discussed in Section 5.4.5.

 5.4.5 Mandatory Access Control
TOE supports two protocols to label network packets: IPsec and CIPSO.  Labeled IPsec has extensions to 
standard IPsec for conveyance of TE and MLS label information by associating SELinux security 
contexts with IPsec SAs.  CIPSO is a packet labeling mechanism that add explicit MLS label information 
into the options field of IP headers.

For background information and high level design of labeling network packets using IPsec, see 
“Leveraging IPsec for Distributed Authorization”:  http://nsrc.cse.psu.edu/tech_report/NAS­
TR­0037­2006.pdf.  The Jaeger presentation “Leveraging IPSec for Network Access Control for 
SELinux” shows schematic diagrams of the hooks and racoon interaction:  http://selinux-
symposium.org/2005/presentations/session2/2-3-jaeger.pdf.

For background information and high level design of labeling networking packets using CIPSO protocol, 
see the Documentation/netlabel/ directory in the RHEL kernel source RPM.  It is available at 
file:///usr/src/redhat/BUILD/kernel-2.6.18/linux-2.6.18.ppc64/Documentation/netlabel if the kernel source 
RPM is installed and rpmbuild has been invoked on its spec file with the “­bp” option.

 5.4.6 Internet Control Message Protocol (ICMP)
Internet Control Message Protocol (ICMP) is an extension to IP that provides a messaging service.  The 
purpose of these control messages is to provide feedback about problems in the communication 
environment.  ICMP messages are sent in following situations:

• When a datagram cannot reach its destination.

• When the gateway does not have the buffering capacity to forward a datagram.

• When the gateway can direct the host to send traffic on a shorter route.

For more information about the ICMP, refer to RFC 792.
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 5.4.6.1 Link layer protocols

The Address Resolution Protocol (ARP) is the link layer protocol that is supported on the RHEL system.

 5.4.6.1.1 Address Resolution Protocol (ARP)

Address Resolution Protocol (ARP) is a protocol for mapping an IP address to a physical machine address 
that is recognized in the local network.  For example, in IP Version 4, the most common level of IP in use 
today, an address is 32 bits long.  In an Ethernet local area network, however, addresses for attached 
devices are 48 bits long.  (The physical machine address is also known as a Media Access Control [MAC] 
address.)  A table, usually called the ARP cache, is used to maintain a correlation between each MAC 
address and its corresponding IP address.  ARP provides the protocol rules for making this correlation and 
providing address conversion in both directions.

There is also Reverse ARP (RARP), which can be used by a host to discover its IP address.  In this case, 
the host broadcasts its physical address and a RARP server replies with the host's IP address. 

 5.4.7 Network services interface
The RHEL kernel provides networking services through socket interfaces.  When sockets are used to 
establish a connection between two programs across a network, there is always an asymmetry between the 
two ends.  One end, on the server, creates a communication endpoint at a known address, and waits 
passively for connection requests. The other end, on the client, creates its own communication endpoint 
and actively connects to the server endpoint at its known address.

Figure 5-19 shows the steps taken by both server and client to establish a connection, along with the 
system calls used at each stage.

A communication channel is established using ports and sockets, which are needed to determine which 
local process at a given host actually communicates with which process, on which remote host, and using 
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Figure 5-19: Server and client operations using socket interface



which protocol.  A port is a 16-bit number, used by the host-to-host protocol to identify to which higher-
level protocol or application program it must deliver incoming messages.  Sockets, described in Section 
5.3.5, are communications end points.  Ports and sockets provide a unique and uniform way to identify 
connections and the program and hosts that are engaged in them.

The following subsections describe access control and object reuse handling associated with establishing 
a communications channel.

 5.4.7.1 socket()

socket() creates an endpoint of communication using the desired protocol type.  Object reuse handling 
during socket creation is described in Section 5.3.5.  socket() performs MAC mediation by calling the 
security_socket_create() and security_socket_post_create() LSM hooks.

 5.4.7.2 bind()

bind() associates a name (address) to a socket that was created with the socket system call.  It is necessary 
to assign an address to a socket before it can accept connections.  Depending on the domain type of the 
socket, the bind function gets diverted to the domain-specific bind function.

If the port number being associated with a socket is below PROT_SOCK (defined at compile time as 
1024), then inet_bind() ensures that the calling process possesses the CAP_NET_BIND_SERVICE 
capability.  On the TOE, the CAP_NET_BIND_SERVICE capability maps to a uid of zero.
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Figure 5-20: bind() function for internet domain TCP socket



Similarly, for UNIX domain sockets, bind() invokes unix_bind().  unix_bind() creates an entry in the regular 
ext3 file system space.  This process of creating an entry for a socket in the regular file system space has to 
undergo all file system access control restrictions.  The socket exists in the regular ext3 file system space, and 
honors DAC policies of the ext3 file system.  Bind() performs MAC mediation by calling the 
security_socket_bind() LSM hook.  bind() does not create any data objects that are accessible to users, so 
there are no object reuse issues to handle.

 5.4.7.3 listen()

listen() indicates a willingness to accept incoming connections on a particular socket.  A queue limit for 
the number of incoming connections is specified with listen().  Other than checking the queue limit, 
listen() does not perform DAC.  It performs MAC mediation by calling the security_socket_listen() LSM 
hook.  listen() does not create any data objects that are accessible to users, so there are no object reuse 
issues to handle.  Only TCP sockets support the listen() system call.

 5.4.7.4 accept()

accept() agrees to receive a connection on a socket.  accept() does not perform DAC.  It performs MAC 
mediation by calling the security_socket_accept() and security_socket_post_accept() LSM hooks. 
accept() does not create any data objects that are accessible to users, so there are no object reuse issues to 
handle.  Only TCP sockets support accept() system calls.

 5.4.7.5 connect()

connect() initiates a connection on a socket.  The socket must be listening for connections; otherwise, the 
system call returns an error.  Depending upon the type of the socket (stream for TCP or datagram for 
UDP), connect() invokes the appropriate domain type-specific connection function.  connect() does not 
perform DAC.  It performs MAC mediation by calling the security_socket_connect()  LSM hook. 
connect() does not create any data objects that are accessible to users, so there are no object reuse issues 
to handle.

 5.4.7.6 Generic calls

read(), write() and close() are generic I/O system calls that operate on a file descriptor.  Depending on the 
type of object, whether regular file, directory, or socket, appropriate object-specific functions are invoked.
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Figure 5-21: bind() function for UNIX domain TCP socket



 5.4.7.7 Access control

DAC mediation is performed at bind() time.  The socket(), bind(), connect(), listen(), accept(), sendmsg(), 
recvmsg(), getsockname(), getpeername(), getsockopt(), setsockopt(), and shutdown() syscalls perform 
MAC mediation by calling LSM hooks implemented by SELinux.   SELinux in turn makes decisions 
based on subject and object labels and the rules implemented in the SELinux MLS policy.  read(), write(), 
and close() operations on sockets do not perform any access control.

Memory management

The memory manager subsystem is responsible for controlling process access to the hardware memory 
resources.  This is accomplished through a hardware memory-management system that provides a 
mapping between process memory references and the machine's physical memory.  The memory manager 
subsystem maintains this mapping on a per-process basis, so two processes can access the same virtual 
memory address and actually use different physical memory locations.  In addition, the memory manager 
subsystem supports swapping; it moves unused memory pages to persistent storage to allow the computer 
to support more virtual memory than there is physical memory.

The memory manager subsystem is composed of three modules:

• The architecture-specific module presents a virtual interface to the memory management 
hardware .

• The architecture-independent manager performs all of the per-process mapping and virtual 
memory swapping.  This module is responsible for determining which memory pages will be 
evicted when there is a page fault; there is no separate policy module, since it is not expected that 
this policy will need to change. 

• A system call interface is provided to provide restricted access to user processes.  This interface 
allows user processes to allocate and free storage, and also to perform memory-mapped file I/O.
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Figure 5-22: Mapping read, write and close calls for sockets



This section highlights the implementation of the system architecture requirements of a) allowing the 
kernel software to protect its own memory resources and b) isolating memory resources of one process 
from those of another, while allowing controlled sharing of memory resources between user processes.

This section is divided into four subsections. Memory addressing illustrates the RHEL kernel’s memory 
addressing scheme and highlights how segmentation and paging are used to prevent unauthorized access 
to a memory address.  The second subsection, Kernel memory management, describes how the kernel 
allocates dynamic memory for its own use, and highlights how the kernel takes care of object reuse while 
allocating new page frames.  The third subsection, Process address space, describes how a process views 
dynamic memory and what the different components of a process’s address space are.  The third 
subsection also highlights how the kernel enforces access control with memory regions and handles object 
reuse with demand paging.  The fourth subsection, Symmetric multiprocessing and synchronization, 
describes various SMP synchronization techniques used by the RHEL kernel.

Because implementations of a portion of the memory management subsystem are dependent on the 
underlying hardware architecture, the following subsections identify and describe, where appropriate, how 
the hardware-dependent part of the memory management subsystem is implemented for the System x, 
System p, System z, and eServer 326 line of servers, which are all part of the TOE.

 5.4.8 Four-Level Page Tables
Before the current implementation of four-level page tables, the kernel implemented a three-level page 
table structure for all architectures.  The three-level page table structure that previously existed was 
constituted, from top to bottom, for the page global directory (PGD), page middle directory (PMD), and 
PTE.  
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Figure 5-23: Memory subsystem and its interaction with other subsystems



In this implementation, the PMD is absent on systems that only present two-level page tables, so the 
kernel was able to recognize all architectures as if they possessed three-level page tables.

The new page table structure actually implemented includes a new level, called PUD, immediately below 
the top-level PGD directory.  The PGD remains the top-level directory, and the PUD only exists on 
architectures that are using four-level page tables.  The PMD and PTE levels present the same function as 
in previous kernels’ implementations.  Each of the levels existent in a page table hierarchy is indexed with 
a subset of the bits in the virtual address of interest.
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Figure 5-24: Previous three-level page-tables architecture

Figure 5-25: New page-table implementation: the four-level page-table 
architecture



The creation and insertion of a new level, the PUD level, immediately below the top-level PGD directory 
aims to maintain portability and transparency once all architectures have an active PGD at the top of 
hierarchy and an active PTE at the bottom.  The PMD and PUD levels are only used in architectures that 
need them.  These levels are optimized on systems that do not use them.

It is a less intrusive way to update the page tables’ hierarchy, since it can be ignored by systems not using 
these levels.  This is the same characteristic maintained by the kernel in the previous implementation of 
three-level page table architecture.

With this new implementation, architectures that use four-level page tables can have a virtual address 
space covering 128 TB of memory, far more than the 512 GB of virtual address space available with the 
old one.

 5.4.9 Memory addressing
The main memory of a computer is a collection of cells that store data and machine instructions. Each cell 
is uniquely identified by a number or its memory address.  

As part of executing a program, a processor accesses memory to fetch instructions or to fetch and store 
data.  Addresses used by the program are virtual addresses.  The memory management subsystem 
provides translation from virtual to real addresses.  The translation process, in addition to computing valid 
memory locations, also performs access checks to ensure that a process is not attempting an unauthorized 
access.

Memory addressing is highly dependent on the processor architecture.  The memory addressing for 
System x, System p, System z, and eServer 326 systems is described in the following sections.

 5.4.9.1 System x

RHEL provides enhanced handling of user process and kernel virtual address space for Intel x86-
compatible systems (32 bit x86 systems only).  Traditionally, 32-bit x86 systems had a fixed 4 GB virtual 
address space, which was allocated so the kernel had 1 GB and each user process 3 GB (referred to as the 
3-1 split).  This allocation has become restrictive because of the growing physical memory sizes.  With 
RHEL version 3 or later, it is possible to configure a 4-4 split, where each user process and the kernel are 
allocated 4 GB of virtual address space.  There are two important benefits to this new feature:

The larger kernel virtual address space allows the system to manage more physical memory. Up to 64 GB 
of main memory is supported by RHEL 5 on x86-compatible systems.

The larger user virtual address space allows applications to use approximately 30% more memory (3.7—
3.8 GB), improving performance for applications that take advantage of the feature. This feature is unique 
to RHEL, and means that x86-compatible systems can be expected to have a longer life-span and better 
performance.
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This section briefly explains the System x memory addressing scheme.  The three kinds of addresses on 
System x are:

• Logical address:  A logical address is included in the machine language instructions to specify the 
address of an operand or an instruction. It consists of a segment and an offset (or displacement) 
that denotes the distance from the start of the segment to the actual address.

• Linear address:  A single 32-bit unsigned integer that can address up to 4 GB.  That is, up to 
4,294,967,296 memory cells.

• Physical address:  A 32-bit unsigned integer that addresses memory cells in physical memory 
chips.

In order to access a particular memory location, the CPU uses its segmentation unit to transform a logical 
address into a linear address, and then a paging unit to transform a linear address into a physical address 
(see Figure 5-27).

 5.4.9.1.1 Segmentation

The segmentation unit translates a logical address into a linear address. A logical address consists of two 
parts: a 16 bit segment identifier called the segment selector, and a 32-bit offset. For quick retrieval of the 
segment selector, the processor provides six segmentation registers whose purpose is to hold segment 
selectors.  Three of these segmentation registers have specific purpose.  For example, the code segment 
(cs) register points to a memory segment that contains program instructions.  The cs register also includes 
a 2-bit field that specifies the Current Privilege Level (CPL) of the CPU.  The CPL value of 0 denotes the 
highest privilege level, corresponding to the kernel mode; the CPL value of 3 denotes the lowest privilege 
level, corresponding to the user mode.
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Figure 5-26: System x virtual addressing space

Figure 5-27: Logical Address Translation



Each segment is represented by an 8-byte Segment Descriptor that describes the segment characteristics. 
Segment Descriptors are stored in either the Global Descriptor Table (GDT) or the Local Descriptor Table 
(LDT).  The system has one GDT, but may create an LDT for a process if it needs to create additional 
segments besides those stored in the GDT.  The GDT is accessed through the GDTR processor register, 
while the LDT is accessed through the LDTR processor register. 

From the perspective of hardware security access, both GDT and LDT are equivalent.  Segment 
descriptors are accessed through their 16-bit segment selectors.  A segment descriptor contains 
information, such as segment length, granularity for expressing segment size, and segment type, which 
indicates whether the segment holds code or data.  Segment descriptors also contain a 2-bit Descriptor 
Privilege Level (DPL), which restricts access to the segment.  The DPL represents the minimal CPU 
privilege level required for accessing the segment.  Thus, a segment with a DPL of 0 is accessible only 
when the CPL is 0.

Figure 5-28 schematically describes access control as enforced by memory segmentation.

Paging

The paging unit translates linear addresses into physical addresses.  It checks the type of requested access 
against the access rights of the linear address.  Linear addresses are grouped in fixed-length intervals 
called pages.  To allow the kernel to specify the physical address and access rights of a page instead of 
addresses and access rights of all the linear addresses in the page, continuous linear addresses within a 
page are mapped to continuous physical addresses.
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Figure 5-28: Access control through segmentation



The paging unit sees all RAM as partitioned into fixed-length page frames. A page frame is a container 
for a page.  A page is a block of data that can be stored in a page frame in memory or on disk.  Data 
structures that map linear addresses to physical addresses are called page tables. Page tables are stored in 
memory and are initialized by the kernel when the system is started.

The System x supports two types of paging: regular paging and extended paging.  The regular paging unit 
handles 4 KB pages, and the extended paging unit handles 4 MB pages. Extended paging is enabled by 
setting the Page Size flag of a Page Directory Entry.

In regular paging, 32 bits of linear address are divided into three fields:

• Directory:  The most significant 10 bits represents directory.

• Table:  The intermediate 10 bits represents table.

• Offset:  The least significant 12 bits represents offset.
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Figure 5-29: Contiguous linear addresses map to contiguous physical 
addresses

Figure 5-30: Regular paging



In extended paging, 32 bits of linear address are divided into two fields:

• Directory:  The most significant 10 bits represents directory.

• Offset:  The remaining 22 bits represents offset.

Each entry of the page directory and of the page table is represented by the same data structure. This data 
structure includes fields that describe the page table or page entry, such as accessed flag, dirty flag, and 
page size flag.  The two important flags for access control are the Read/Write flag and the 
User/Supervisor flag.

Read/Write flag:  Holds access rights of the page or the page table.  The Read/Write flag is either 
read/write or read. If set to 0, the corresponding page or page table can only be read; otherwise, the 
corresponding page table can be written to or read. 

User-Supervisor flag:  This flag contains the privilege level that is required for accessing the page or page 
table.  The User-Supervisor flag is either 0, which indicates that the page can be accessed only in kernel 
mode, or 1, which indicates that it can always be accessed.
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Figure 5-31: Extended paging



 5.4.9.1.1.1 Paging in the RHEL kernel

The RHEL kernel is based on Linux version 2.6.18, and implements three-level paging to support 64-bit 
architectures.  The linear address is divided into the page global directory, the page middle directory, the 
page table, and the offset.  On the TOE configuration of the RHEL kernel running on System x systems, 
the page middle directory field is eliminated when it is set to zero.

 5.4.9.1.1.2 Access control for control transfers through call gates

Call gates act as an interface layer between code segments at different privilege levels.  They define entry 
points in more privileged code, to which control can be transferred.  Intel processors use these call gates, 
which control CPU transitions from one level of privilege to other.  Call gates are descriptors that contain 
pointers to code-segment descriptors and control access to those descriptors.

Operating systems can use call gates to establish secure entry points into system service routines. Before 
loading the code register with the code segment selector located in the call gate, the processor performs 
the following three privilege checks:

1. Compares the CPL with the call-gate DPL from the call-gate descriptor.  The CPL must be less 
than or equal to the DPL.

2. Compares the RPL in the call-gate selector with the DPL.  The RPL must be less than or equal to 
the DPL.

3. Calls or jumps through a call gate, to a conforming segment requires that the CPL must be greater 
than or equal to the DPL.  A call or jump through a call gate requires that the CPL must be equal 
to the DPL.

For more information about call gates, refer to the 
http://www.csee.umbc.edu/~plusquel/310/slides/micro_arch4.html Web site.

 5.4.9.1.1.3 Translation lookaside buffers

The System x processor includes other caches, in addition to the hardware caches.  These caches are 
called Translation Lookaside Buffers (TLBs), and they speed up the linear-to-physical address translation. 
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Figure 5-32: Access control through paging

http://www.csee.umbc.edu/~plusquel/310/slides/micro_arch4.html


The TLB is built up as the kernel performs linear-to physical translations.  Using the TLB, the kernel can 
quickly obtain a physical address corresponding to a linear address, without going through the page 
tables.  Because address translations obtained from the TLB do not go through the paging access control 
mechanism, the kernel flushes the TLB buffer every time a process switch occurs between two regular 
processes.  This process enforces the access control mechanism implemented by paging.

 5.4.9.1.1.4 Address translations in 64-bit mode

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 64-bit addresses. 
Address calculations are first truncated to the effective address size of the current mode (64-bit mode or 
compatibility mode), as overridden by any address-size prefix.  The result is then zero-extended to the full 
64-bit address width.  Because of this, 16-bit and 32-bit applications running in compatibility mode can 
only access the low 4 GBs of the 64-bit mode effective addresses.  Likewise, a 32-bit address generated in 
64-bit mode can access only the low 4 GB of the 64-bit mode effective-address space.

 5.4.9.1.1.5 Paging in EM64T 

The 64-bit extension architecture expands physical address extension (PAE) paging structures to 
potentially support mapping a 64-bit linear address to a 52-bit physical address.  In the first 
implementation of the Intel EM64T, PAE paging structures are extended to support translation of a 48-bit 
linear address into a 40-bit physical address.

Prior to activating IA-32e mode, PAE must be enabled by setting CR4.PAE = 1.  PAE expands the size of 
an individual page-directory entry (PDE) and page-table entry (PTE) from 32 bits to 64 bits to support 
physical-address sizes of greater than 32 bits.  Attempting to activate IA-32e mode prior to enabling PAE 
results in a general-protection exception.

64-bit extension architecture adds a new table, called the page map level 4 (PML4) table, to the linear-
address translation hierarchy.  The PML4 table sits above the page directory pointer (PDP) table in the 
page-translation hierarchy.  The PML4 contains 512 eight-byte entries, with each entry pointing to a PDP 
table.  Nine linear-address bits are used to index into the PML4.  

PML4 tables are used in page translation only when IA-32e mode is activated.  They are not used when 
IA-32e mode is disabled, regardless of whether or not PAE is enabled.  The existing page-directory 
pointer table is expanded by the 64-bit extensions to 512 eight-byte entries from four entries.  As a result, 
nine bits, rather than two bits, of the linear address are used to index into a PDP table.  The size of both 
page-directory entry (PDE) tables and page-table entry (PTE) tables remains 512 eight-byte entries, each 
indexed by nine linear-address bits.  The total of linear-address index bits into the collection of paging 
data structures (PML4 + PDP + PDE + PTE + page offset) defined  above is 48.  The method for 
translating the high-order 16 linear-address bits into a physical address is currently reserved.
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The PS flag in the page directory entry (PDE.PS) selects between 4 KB and 2 MB page sizes.

 5.4.9.2 System p

Linux on POWER5 System p systems runs only in Logical Partitioning (LPAR) mode.  System p offers 
the ability to partition one system into several independent systems through LPAR.  LPAR divides the 
processors, memory, and storage into multiple sets of resources, so each set of resources can be operated 
independently with its own OS instance and applications.

LPAR allows multiple, independent operating system images of Linux to run on a single System p server. 
This section describes logical partitions and their impact on memory addressing and access control.  

To learn more about System p systems, see “PowerPC 64-bit Kernel Internals” by David Engebretson, 
Mike Corrigan, and Peter Bergner at http://lwn.net/2001/features/OLS/pdf/pdf/ppc64.pdf.  For more about 
the Linux for i5, see http://www-1.ibm.com/servers/eserver/iseries/linux/.

System p systems can be partitioned into as many as 32 logical partitions. Partitions share processors and 
memory.  A partition can be assigned processors in increments of 0.01.   Figure 5-41 represents a 4 CPU 
system that is split into 4 logical partitions.  The hypervisor provides pre-emptive time slicing between 
partitions sharing a processor, guaranteeing that a partition gets the exact allocated share of the CPU, not 
more or less, even if the remainder of the processor is unused.
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Figure 5-34: Logical partitions

Figure 5-33: Paging data structures



On System p systems without logical partitions, the processor has two operating modes, user and 
supervisor. The user and supervisor modes are implemented using the PR bit of the Machine State 
Register (MSR).  Logical partitions on both System p and iSeries systems necessitate a third mode of 
operation for the processor.  This third mode, called the hypervisor mode, provides all the partition 
control and partition mediation in the system.  It also affects access to certain instructions and memory 
areas.  These operating modes for the processor are implemented using the PR and HV bits of the MSR.

PR – Problem state. 

• 0 The processor is in privileged state (supervisor mode).

• 1 The processor is in problem state (user mode).

HV – Hypervisor state. 

• 0 The processor is not in hypervisor state.

• 1 If MSRPR= 0 the processor is in hypervisor state; otherwise, the processor is not in hypervisor 
state.

The hypervisor takes the value of 1 for hypervisor mode and 0 for user and supervisor mode. The 
following table describes the privilege state of the processor as determined by MSR [HV] and MSR [PR] 
as follows:

 HV PR Privilege State

 0  0 privileged(supervisor mode)

 0  1 problem (user mode)

 1  0 privileged and hypervisor

 1  1 Problem(user mode)
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Figure 5-35: Machine state register



Determination of processor mode in LPAR

Just as certain memory areas are protected from access in user mode, some memory areas, such as hardware 
page tables, are accessible only in hypervisor mode.  The PowerPC and POWER architecture provides only 
one system call instruction.  This system call instruction, sc, is used to perform system calls from the user 
space intended for the RHEL kernel, as well as hypervisor calls from the kernel space intended for the 
hypervisor.  Hypervisor calls can only be made from the supervisor state.  This access restriction to 
hypervisor calls is implemented with general purpose registers GPR0 and GPR3, as follows.

Actual physical memory is shared between logical partitions.  Therefore, one more level of translation 
apart from the four levels described by System p section 5.4.9.2 is required to go from the effective 
address to the hardware address of the memory.  This translation is done by the hypervisor, which keeps a 
logical partition unaware of the existence of other logical partitions.

Because iSeries uses the same PowerPC processor described in the System p section 5.4.9.2, the iSeries 
mechanism for translating effective-to-virtual and virtual-to-physical is identical to that of the native 
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Figure 5-36: Determination of processor mode in LPAR

Figure 5-37: Transition to supervisor or hypervisor state



System p.  The only addition is the physical-to-absolute address translated by the hypervisor, as illustrated 
below.

Address Translation on LPARs

On iSeries and System p systems running with logical partitions, the effective address, the virtual address, 
and the physical address format and meaning are identical to those of System p systems running in native 
mode.  The kernel creates and translates them from one another using the same mechanisms described in 
Section 5.4.9.2. Access control by Block Address Translation and Page Address Translation, described in 
Section 5.4.9.2, are performed here as well. 

The Block Address Translation and Page Address Translation mechanisms provide iSeries and System p 
logical partitions with the same block- and page-level memory protection capabilities, granular to no-
access, read access, and read-write access.  These capabilities allow the majority of the kernel code to 
remain common between System p native mode and iSeries and System p LPAR mode.

The LPAR-specific code splits memory into 256 KB chunks.  To map these chunks to physical addresses 
expected by the kernel memory model, the iSeries hypervisor code builds a translation table, called 
msChunks array, to translate physical addresses to absolute addresses.  

The msChunks array is indexed by (logical_address >> 18) and provides a translation from the logical 
address (kernel logical view of the address, i.e., physical address) to the absolute address, as follows:

Absolute address = (msChunks [logical_address>>18] <<18) | (logical_address&0x3ffff)

The physical address is not the final address used by the processor to access a memory cell; the kernel is 
not aware of the physical address.  When the kernel attempts an access using the physical address, the 
hypervisor intercepts the access and converts the physical address to the absolute address using the 
msChunks array.  This process allows it to appear to the kernel that there is contiguous memory starting at 
physical address zero, while in fact the absolute addresses are not contiguous, as illustrated in Figure
5-39.

104

Figure 5-38: Address translation in LPAR



 5.4.9.2.1 Hypervisor

The hypervisor interacts with the operating system in the logical partition through two data structures that 
are used to store system-wide and processor-specific information.  The first data structure, the node 
address communications area (NACA), is used to hold system-wide information, such as the number of 
processors in the system or partition, the size of real memory available to the kernel, and cache 
characteristics.  The NACA also contains a field used by the iSeries hypervisor, which is initialized to 
point to the data area used by the hypervisor to communicate system configuration data to the kernel.  The 
NACA is located at the fixed real address of 0x4000. The second data structure, the processor address 
communications area (PACA), contains information pertaining to each processor.  Depending on the 
number of processors, an array of PACA structures is created.

Because the hypervisor is accessible only through the kernel mode, no specific access control is 
performed when the kernel interacts with the hypervisor.  The kernel does provide a Run Time 
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Figure 5-39: Absolute addresses



Abstraction Services (RTAS) system call to authorized programs for interacting with the hardware. 
RTAS is a firmware interface that shields the operating system from details of the hardware.  The RTAS 
ensures that the calling process possesses the CAP_SYS_ADMIN capability.

The hypervisor program is stored in a system flash module in the server hardware.  During system 
initialization, the hypervisor is loaded into the first physical address region of system memory. The 
hypervisor program is trusted to create partition environments, and is the only program that can directly 
access special processor registers and translation table entries.  Partition programs have no way to access 
the hypervisor instructions or data, other than through controlled hypervisor service calls that are part of 
the processor architecture.  These protections allow the hypervisor to perform its duties in a simple and 
rigorous manner, resulting in the confinement of each operating system to a tight, inescapable box.

 5.4.9.2.2 Real mode addressing

Each operating system image requires a range of memory that can be accessed in real addressing mode. 
In this mode, no virtual address translation is performed, and addresses start at address 0. Operating 
systems typically use this address range for startup kernel code, fixed kernel structures, and interrupt 
vectors.  Since multiple partitions cannot be allowed to share the same memory range at physical address 
0, each partition must have its own real mode addressing range. 

As each partition is started, the hypervisor assigns that partition a unique real mode address offset and 
range value, and then sets these offset and range values into registers in each processor in the partition. 
These values map to a physical memory address range that has been exclusively assigned to that partition. 

When partition programs access instructions and data in real addressing mode, the hardware automatically 
adds the real mode offset value to each address before accessing physical memory. In this way, each 
logical partition programming model appears to have access to physical address 0, even though addresses 
are being transparently redirected to another address range.  Hardware logic prevents modification of 
these registers by operating system code running in the partitions. Any attempt to access a real address 
outside the assigned range results in an addressing exception interrupt, which is handled by the operating 
system exception handler in the partition.

 5.4.9.2.3 Virtual mode addressing 

Operating systems use another type of addressing, virtual addressing, to give user applications an 
effective address space that exceeds the amount of physical memory installed in the system. The operating 
system does this by paging infrequently used programs and data from memory out to disk, and bringing 
them back into memory on demand. 

When applications access instructions and data in virtual addressing mode, they are not aware that their 
addresses are being translated by virtual memory management using page translation tables.  These tables 
reside in system memory, and each partition has its own exclusive page table.  Processors use these tables 
to transparently convert the virtual address for a program into the physical address where that page has 
been mapped into physical memory.  In this case, if the page has been moved out of physical memory 
onto disk, the operating system receives a page fault.  In a logical partitioning operation, the page 
translation tables are placed in reserved physical memory regions that are only accessible to the 
hypervisor.  In other words, the page table for a partition is located outside the real mode address range of 
that partition.  The register that provides the physical address of its page table to a processor is also 
protected by hardware logic, so it cannot be modified by partition programs, and can only be modified by 
the hypervisor. 

When the operating system needs to create a page translation mapping, it must execute a specially-
designed hypervisor service call instruction on one of its processors, which transfers execution to a 
hypervisor program.  The hypervisor program creates the page table entry on behalf of the partition, and 
adds a logical-to-physical offset to the table entry before storing it.  Partition programs can also make 
hypervisor calls to modify or delete existing page table entries.  Page table entries only map into specific 
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physical memory regions, called logical address regions, which have been assigned in granular chunks to 
that partition.  These logical address regions provide the physical memory that backs up the virtual page 
address spaces for the partition.  Memory for a partition, therefore, is composed of one contiguous real 
mode addressing region, plus some number of logical address regions, which can be assigned in any order 
from anywhere in memory. 

 5.4.9.2.4 Access to I/O address space

In addition to mapping virtual page addresses into the physical memory for a partition, the operating 
system can make hypervisor calls to map page table addresses into the physical register and buffer address 
spaces on PCI I/O adapters.  Device drivers directly read and write these adapter registers and buffers, 
which is how they set up and control I/O operations on the PCI devices.  In LPAR, the PCI I/O adapter 
must be assigned to a given partition before that operating system can make a mapping request service 
call; otherwise, the hypervisor will not permit the creation of the page table entry. 

 5.4.9.2.5 Direct Memory Access addressing 

PCI I/O adapter direct memory access (DMA) operations move data between I/O adapters and system 
memory, and they use a similar address relocation mechanism to page tables.  PCI host bridge hardware 
translates addresses generated by I/O devices into physical memory addresses. 

The I/O bridge makes this translation with a translation control entry (TCE) table, which is also stored in 
physical memory.  As with page tables, this TCE table resides in a physical address region of system 
memory that is inaccessible by partitions, and only accessible by the hypervisor.  Unlike page tables, 
however, TCE tables are not tied to any one partition.  By calling a hypervisor service, partition programs 
can create, modify, or delete TCE table entries for the specific PCI adapters assigned to that partition. 
The hypervisor adds a physical address offset to the DMA target address provided by the partition 
program.  When the I/O bridge translates an I/O adapter DMA address into physical memory, the 
resulting address falls within the physical memory space assigned to that partition.
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 5.4.9.2.6 Run-Time Abstraction Services 

System p hardware platforms provide a set of firmware Run-Time Abstraction Services (RTAS) calls.  In 
an LPAR, these calls perform additional validation checking and resource virtualization for the partitioned 
environment.  For example, although there is only one physical non-volatile RAM chip, and one physical 
battery-powered Time-of-Day chip, RTAS makes it appear to each partition as though it has its own non-
volatile RAM area, and its own uniquely settable Time-of-Day clock. Because RTAS calls run inside a 
partition with the operating system, even they are not allowed to access anything outside the partition 
without a call to the hypervisor. 

 5.4.9.2.7 Preventing denial of service

LPARs run on top of an advanced symmetrical multiprocessor architecture, and some resources are also 
implicitly shared by the partitions.  The hypervisor is designed to keep partitions from using shared 
resources in a way that would deny or restrict access to those resources by other partitions.  A key 
example is the hypervisor itself, which is implemented as a library of services shared by the partitions. 
These services are called within the context of the operating system running in each partition.  Each 
service call is dispatched on the specific processor from which the call was made, so hypervisor calls 
execute only on processors owned by the calling partition. Therefore, regardless of the type and frequency 
of hypervisor calls made by a partitioned operating system, they can have no effect on hypervisor usage or 
access in other partitions. 

In a similar fashion, the hypervisor and hardware mechanisms protect shared hardware resources.  No 
operation within a partition can take exclusive control of a shared hardware resource, or use a shared 
resource in a way that inhibits other partitions' access. 
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 5.4.9.3 System p native mode

This section describes memory addressing and memory management of System p in native mode. Note 
that RHEL5 runs on System p in LPAR mode.

For further information about the PowerPC 64 bit processor, see "PowerPC 64-bit Kernel Internals" by 
David Engebretson, Mike Corrigan, and Peter Bergner at 
http://lwn.net/2001/features/OLS/pdf/pdf/ppc64.pdf.  You can find further in formation about System p 
hardware at 
http://www-1.ibm.com/servers/eserver/pseries/linux/.

The following describes the four address types used in System p systems.  They are effective, virtual, 
physical, and block:

• Effective address:  The effective address, also called the logical address, is a 64-bit address 
included in the machine language instruction of a program to fetch an instruction, or to fetch and 
store data.  It consists of an effective segment ID (bits 0-35), a page offset within the segment 
(bits 36-51), and a byte offset within the page (bits 52-63).

• Virtual address:  The virtual address, which is equivalent to the linear address of System x, is a 
64-bit address used as an intermediate address while converting an effective address to a physical 
address.  It consists of a virtual segment ID (bits 0-35), a page offset within the segment (bits 
36-51), and a byte offset within the page (bits 52-63).  All processes are given a unique set of 
virtual addresses.  This allows a single hardware page table to be used for all processes.  Unique 
virtual addresses for processes are computed by concatenating the effective segment ID (ESID) of 
the effective address with a 23-bit field, which is the context number of a process.  All processes 
are defined to have a unique context number.  The result is multiplied by a large constant and 
masked to produce a 36-bit virtual segment ID (VSID).  In the case of kernel addresses, the high 
order nibble is used in place of the context number of the process.

• Physical address:  The physical address is a 64-bit address of a memory cell in a physical memory 
chip. 

• Block address:  A block is a collection of contiguous effective addresses that map to contiguous 
physical addresses.  Block sizes vary from 128 KB to 256 MB. The block address is the effective 
address of a block.
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Figure 5-41: Effective address

Figure 5-42: Virtual address
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To access a particular memory location, the CPU transforms an effective address into a physical address 
using one of the following address translation mechanisms. 

• Real mode address translation, where address translation is disabled.  The physical address is the 
same as the effective address.

• Block address translation, which translates the effective address corresponding to a block of 128 
KB to 256 MB size.

• Page address translation, which translates a page-frame effective address corresponding to a 4-
Kbyte page.

The translation mechanism is chosen based on the type of effective address (page or block) and settings in 
the processor Machine State Register (MSR).  

Settings in the MSR and page, segment, and block descriptors are used in implementing access control. 
The following describes the MSR, page descriptor, segment descriptor, and block descriptor structures, 
and identifies fields that are relevant for implementing access control.

 5.4.9.3.1 Machine State Register 

The Machine State Register (MSR) is a 64-bit register. The MSR defines the state of the processor.

• PR: Privilege Level.  The Privilege Level takes the value of 0 for the supervisor level and 1 for 
the user level.

• IR: Instruction Address Translation.  The value of 0 disables translation, and the value of 1 
enables translation.
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Figure 5-43: Block address

Figure 5-44: Machine state register



• DR: Data Address Translation.  The value of 0 disables translation, and the value of 1 enables 
translation.

 5.4.9.3.2 Page descriptor

Pages are described by Page Table Entries (PTEs).  The operating system generates and places PTEs in a 
page table in memory.  A PTE on SLES is 128 bits in length.  Bits relevant to access control are Page 
protection bits (PP), which are used with MSR and segment descriptor fields to implement access control.

 5.4.9.3.3 Segment descriptor

Segments are described by Segment Table Entries (STEs).  The operating system generates and places 
STEs in segment tables in memory.  Each STE is a 128-bit entry that contains information for controlling 
segment search process, and for implementing the memory-protection mechanism.

Ks:  Supervisor-state protection key

• Kp:  User-state protection key

• N:  No-execute protection bit

 5.4.9.3.4 Block descriptor

For address translation, a pair of special-purpose registers called upper and lower Block Address 
Translation (BAT) registers, which contain effective and physical addresses for the block, define each 
block.
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Figure 5-45: Page table entry

Figure 5-46: Segment Table Entry



• Vs:  Supervisor mode valid bit. Used with MSR[PR] to restrict translation for some block 
addresses.

• Vp:  User mode valid bit. Used with MSR[PR] to restrict translation for some block addresses.

• PP:  Protection bits for block. 

 5.4.9.3.5 Address translation mechanisms

The following simplified flowchart describes the process of selecting an address translation mechanism 
based on the MSR settings for instruction (IR) or data (DR) access.  For performance measurement, the 
processor concurrently starts both Block Address Translation (BAT) and Segment Address Translation. 
BAT takes precedence; therefore, if BAT is successful, Segment Address Translation result is not used.

 

The following sections describe the three address translation mechanisms, and the access controls they 
perform.
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Figure 5-48: Address translation method selection 

Figure 5-47: Block Address Translation entry



Real Mode Address Translation:  Real Mode Address Translation is not technically the translation of any 
addresses. Real Mode Address Translation signifies no translation.  That is, the physical address is the 
same as the effective address. The operating system uses this mode during initialization and some 
interrupt processing.  Because there is no translation, there is no access control implemented for this 
mode.  However, because only the super user can alter MSR[IR] and MSR[DR], there is no violation of 
security policy.

Block Address Translation (BAT) and access control:  BAT checks to see if the effective address is within 
a block defined by the BAT array.  If it is, BAT goes through the steps described in Figure 5-39 to 
perform the access check for the block and get its physical address. 

BAT allows an operating system to designate blocks of memory for use in user mode access only, for 
supervisor mode access only, or for user and supervisor access.  In addition, BAT allows the operating 
system to protect blocks of memory for read access only, read-write access, or no access. 

BAT treats instruction or data fetches equally. That is, using BAT, it is not possible to protect a block of 
memory with the no-execution access (no instruction fetches, only data load and store operations 
allowed).  Memory can be protected with the no-execution bit on a per-segment basis, allowing the PAT 
mechanism to implement access control based on instruction or data fetches.

 5.4.9.3.6 Page Address Translation and access control

If BAT is unable to perform address translation, Page Address Translation is used.  Page Address 
Translation provides access control at the segment level and at the individual page level.  Segment level 
access control allows the designation of a memory segment as data only.  Page Address Translation 
mechanism prevents instructions from being fetched from these data only segments. 
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Figure 5-49: Block Address Translation access control



Page address translation begins with a check to see if the effective segment ID, corresponding to the 
effective address, exists in the Segment Lookaside Buffer (SLB). The SLB provides a mapping between 
Effective Segment Ids (ESIDs) and Virtual Segment Ids (VSIDs).  If the SLB search fails, a segment fault 
occurs.  This is an Instruction Segment exception or a data segment exception, depending on whether the 
effective address is for an instruction fetch or for a data access. The Segment Table Entry (STE) is then 
located with the Address Space Register and the segment table.

Page-level access control uses a key bit from Segment Table Entry (STE), along with the Page Protection 
(PP) bits from the Page Table Entry, to determine whether supervisor and user programs can access a 
page.  Page access permissions are granular to no access, read only access, and read-write access.  The 
key bit is calculated from the Machine State Register PR bit and Kp and Ks bits from the Segment Table 
Entry, as follows:

Key = (Kp & MSR[PR]) | (Ks & ~MSR[PR])

That is, in supervisor mode, use the Ks bit from the STE and ignore the Kp bit.  In user mode, use the Kp 
bit and ignore the Ks bit.

The following diagram shows the Page Address Translation mechanism and the access control performed 
by it.
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Figure 5-50: Page Address Translation and access control



 5.4.9.4 System z 

RHEL on System z systems can run either in native mode or in LPAR.  Additionally, it can run as z/VM 
guests, which is specific to this series.  This section briefly describes these three modes and how they 
address and protect memory.  For more detailed information about System z architecture, refer to 
Z/Architecture Principle of Operation, at http://publibz.boulder.ibm.com/epubs/pdf/dz9zr002.pdf, or 
System z hardware documents at http://www-1.ibm.com/servers/eserver/zseries/.

 5.4.9.4.1 Native hardware mode

RHEL runs directly on System z hardware in native hardware mode.  Only one instantiation of RHEL can 
run at one time.  All CPUs, memory, and devices are directly under the control of the RHEL operating 
system.  Native Hardware mode is useful when a single server requires a large amount of memory. 
Native Hardware mode is not very common, because it requires device driver support in RHEL for all 
attached devices, and Native Hardware does not provide the flexibility of the other two modes.

 5.4.9.4.2 LPAR mode

In LPAR mode, System z hardware is partitioned into up to thirty different partitions.  The partitioned 
hardware is under the control of a hypervisor called the control program.  Each partition is allocated a 
certain number of CPUs and a certain amount of memory.  Devices can be dedicated to a particular 
partition, or they can be shared among several partitions.  The control program provides preemptive time 
slicing between the partitions sharing a processor.  It also ensures that each partition gets the exact 
allocated share of the CPU, even if the remainder of the processor is unused.  RHEL runs in one of these 
logical partitions.  LPAR mode provides more flexibility than Native Hardware mode, but still requires 
device driver support for devices dedicated to a partition.

 5.4.9.4.3 z/VM Guest mode

In z/VM Guest mode, RHEL runs as a guest operating system on one or more z/VM virtual machines. 
z/VM virtualizes the hardware by providing the same interface definition provided by the real hardware to 
a guest operating system.  Guests operate independently of each other, even though they share memory, 
processors, and devices.  The z/VM Guest mode provides even more flexibility than LPAR mode because, 
unlike LPAR, z/VM virtual machines allow dynamic addition or deletion of memory and devices.  The 
z/VM Guest mode is the most commonly deployed mode because of the flexibility that it provides.

In terms of memory addressing, all three modes believe they are operating directly on the System z 
hardware.  The control program (either LPAR or VM, or both) sets up their paging tables and zoning 
array so the Start Interpretive Execution (SIE) instruction can do the address conversion. The control 
program does not actively convert any addresses.

 5.4.9.4.4 Address types

z/Architecture defines four types of memory addresses: virtual, real, absolute, and effective. These 
memory addresses are distinguished on the basis of the transformations that are applied to the address 
during a memory access.

• Virtual address:  A virtual address identifies a location in virtual memory.  When a virtual address 
is used to access main memory, it is translated by a Dynamic Address Translation (DAT) 
mechanism to a real address, which in turn is translated by prefixing to an absolute address. The 
absolute address of a virtualized system is, in turn, subjected to dynamic address translation in 
VM or to zoning in LPAR.

• Real address:  A real address identifies a location in real memory. When a real address is used to 
access main memory, it is converted by the prefixing mechanism to an absolute address.
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• Absolute address:  An absolute address is the address assigned to a main memory location. An 
absolute address is used for a memory access without any transformations performed on it.

• Effective address:  An effective address is the address that exists before any transformation takes 
place by dynamic address translation or prefixing.  An effective address is the result of the 
address arithmetic of adding the base register, the index register, and the displacement.  If DAT is 
on, the effective address is the same as the virtual address.  If DAT is off, the effective address is 
the same as the real address.

 5.4.9.4.5 Address sizes

z/Architecture supports 24-bit, 31-bit, and 64-bit virtual, real, and absolute addresses.  Bits 31 and 32 of 
the Program Status Word (PSW) control the address size.  If they are both zero, then the addressing mode 
is 24-bit.  If they are 0 and 1, the addressing mode is 31-bit.  If they are both 1, then the addressing mode 
is 64-bit.  When addressing mode is 24-bit or 31-bit, 40 or 33 zeros, respectively, are appended on the left 
to form a 64-bit virtual address.  The real address that is computed by dynamic address translation, and 
the absolute address that is then computed by prefixing, are always 64-bit.

 5.4.9.4.6 Address spaces

An address space is a consecutive sequence of integer numbers, or virtual addresses, together with the 
specific transformation parameters, which allow each number to be associated with a byte location in 
memory.  The sequence starts at zero and proceeds left to right.  The z/Architecture provides the means to 
access different address spaces.  In order to access these address spaces, there are four different 
addressing modes: primary, secondary, home, and access-register. 

In the access-register mode, any number of address spaces can be addressed, limited only by the number 
of different Access List Entry Tokens (ALET) and the size of the main memory.  The conceptual 
separation of kernel and user space of RHEL is implemented using these address spaces.  The kernel 
space corresponds to the primary address space, and the user space corresponds to the home address 
space.  

Access-register address space is used to implement a memory area that transfers data between kernel and 
user space.  The secondary address space is not used in RHEL.  User programs, which run in the home-
space translation mode, can only translate virtual addresses of the home address space.  This separation 
protects the kernel memory resources from user-space programs.

 5.4.9.4.7 Address translations

Address translation on z/Architecture can involve two steps.  The first step, if dynamic address translation 
is turned on, involves the use of hierarchical page tables to convert a virtual address to a real address.  The 
second step involves conversion of a real address to an absolute address, using prefixing.  If dynamic 
address translation is turned off, the address translation consists of just one step, that of converting a real 
address to an absolute address.

117



 5.4.9.4.7.1 Dynamic address translation

Bit 5 of the current PSW indicates whether a virtual address is to be translated using paging tables.  If it 
is, bits 16 and 17 control which address space translation mode (primary, secondary, access-register, or 
home) is used for the translation.
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Figure 5-51: System z address types and their translation

Figure 5-52: Program Status Word



The following diagram illustrates the logic used to determine the translation mode.  If the DAT mode bit 
is not set, then the address is treated as a real address (Virtual = Real).

Each address-space translation mode translates virtual addresses corresponding to that address space.  For 
example, primary address-space mode translates virtual addresses from the primary address space, and 
home address space mode translates virtual addresses belonging to the home address space.  

Each address space has an associated Address Space Control Element (ASCE).  For primary address 
translation mode, the Primary Address Space Control Element (PASCE) is obtained from the CR1.  For 
secondary address translation mode, the Secondary Address Space Control Element (SASCE) is obtained 
from the CR7.  For home address translation mode, the Home Address Space Control Element (HASCE) 
is obtained from the CR13.  In access-register translation mode, the Access List Entry Token (ALET) in 
the access register is checked.  If it is the special ALET 0, PASCE is used.  If it is the special ALET 1, 
SASCE is used.  Otherwise, the ASCE found in the Address Space Number (ASN) table is used.  RHEL 
does not use the translation by the Address Space Number feature of the z/Architecture.

After the appropriate ASCE is selected, the translation process is the same for all of the four address 
translation modes.  The ASCE of an address space contains the region table origin, for 64-bit addresses, or 
the segment table origin, for 31-bit addresses.  
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Figure 5-53: Address translation modes



DAT uses that table-origin address to translate a virtual address to a real address, as illustrated below.
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Figure 5-54: 64-bit or 31-bit Dynamic Address Translation



 5.4.9.4.7.2 Prefixing

Prefixing provides the ability to assign a range of real addresses to a different block in absolute memory 
for each CPU, thus permitting more than one CPU sharing main memory to operate concurrently with a 
minimum of interference.  Prefixing is performed with the help of a prefix register.  No access control is 
performed while translating a real address to an absolute address.

For a detailed description of prefixing as well as implementation details, see z/Architecture Principles of 
Operation at http://publibz.boulder.ibm.com/epubs/pdf/dz9zr002.pdf.

 5.4.9.4.8 Memory protection mechanisms

In addition to separating the address space of user and supervisor states, the z/Architecture provides 
mechanisms to protect memory from unauthorized access.  Memory protections are implemented using a 
combination of the PSW register, a set of sixteen control registers (CRs), and a set of sixteen access 
registers (ARs).  The remainder of this section describes memory protection mechanisms and how they 
are implemented using the PSW, CRs, and ARs.

z/Architecture provides three mechanisms for protecting the contents of main memory from destruction or 
misuse by programs that contain errors or are unauthorized.  These mechanisms are low-address 
protection, page table protection, and key-controlled protection.  The protection mechanisms are applied 
independently at different stages of address translation.  Access to main memory is only permitted when 
none of the mechanisms prohibit access.

Low-address protection is applied to effective addresses, page table protection is applied to virtual 
addresses while they are being translated into real addresses, and key-controlled protection is applied to 
absolute addresses.

 5.4.9.4.8.1 Low-address protection

The low-address protection mechanism provides protection against the destruction of main memory 
information used by the CPU during interrupt processing.  This is implemented by preventing instructions 
from writing to addresses in the ranges 0 through 511 and 4096 through 4607 (the first 512 bytes of each 
of the first and second 4 KB address blocks).

Low-address protection is applied to effective addresses only if the following bit positions are set in 
control register 0 and in the ASCE of the address space to which the effective address belongs.
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Page table protection

The page table protection mechanism is applied to virtual addresses during their translation to real 
addresses.  The page table protection mechanism controls access to virtual storage by using the page 
protection bit in each page-table entry and segment-table entry.  Protection can be applied to a single page 
or an entire segment (a collection of contiguous pages).  Once the ASCE is located, the following 
dynamic address translation is used to translate virtual address to a real address. Page table protection (for 
a page or a segment) is applied at this stage.  The first diagram illustrates the DAT process for 31-bit 
addresses and the second diagram for the 64-bit addresses.
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Figure 5-55: Low-address protection on effective address
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Figure 5-56: 31-bit Dynamic Address Translation with page table protection
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Figure 5-57: 64-bit Dynamic Address Translation with page table protection



Key-controlled protection

When an access attempt is made to an absolute address, which refers to a memory location, key-controlled 
protection is applied.  Each 4K page, real memory location, has a 7-bit storage key associated with it. 
These storage keys for pages can only be set when the processor is in the supervisor state.  The Program 
Status Word contains an access key corresponding to the current running program.  Key-controlled 
protection is based on using the access key and the storage key to evaluate whether access to a specific 
memory location is granted.

The 7-bit storage key consists of access control bits (0, 1, 2, and 3), fetch protection bit (4), reference bit 
(5), and change bit (6).  The following two diagrams show the key-controlled protection process.

The z/Architecture allows for fetch protection override for key-controlled protection. The following 
diagram describes how fetch protection override can be used. Currently, RHEL does not set the fetch 
protection bit of the storage key.
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Figure 5-58: Key match logic for key-controlled protection

Figure 5-59: Fetch protection override for key-controlled



 5.4.9.5 eServer 326

eServer 326 systems use AMD Opteron processors.  The Opteron processors can either operate in legacy 
mode to support 32-bit operating systems, or in long mode to support 64-bit operating systems.  Long 
mode has two possible sub modes, the 64-bit mode, which runs only 64-bit applications, and 
compatibility mode, which can run both 32-bit and 64-bit applications simultaneously.  

In legacy mode, the Opteron processor complies with the x86 architecture described in the System x 
sections of this document.  RHEL on eServer 326 uses the compatibility mode of the Opteron processor. 
The compatibility mode complies with x86-64 architecture, which is an extension of x86 architecture to 
support 64-bit applications, along with legacy 32-bit applications. The following description corresponds 
to the x86-64 architecture.

This section briefly describes the eServer 326 memory addressing scheme.  For more detailed information 
about the eServer 326 memory management subsystem, see AMD64 Architecture, Programmer’s Manual 
Volume 2: System Programming, at http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/24593.pdf and “Porting Linux to x86-64,” by Andi 
Kleen, at http://old.lwn.net/2001/features/OLS/pdf/pdf/x86-64.pdf. 

Access control and protection mechanisms are part of both segmentation and paging. The following 
sections describe the four address types on IBM eServer 326 computers (logical, effective, linear, and 
physical), and how segmentation and paging are used to provide access control and memory resource 
separation by Red Hat Enterprise Linux on IBM eServer 326 systems.

 5.4.9.6 Logical address

A logical address is a reference into a segmented-address space. It is comprised of the segment selector 
and the effective address. Notationally, a logical address is represented as

Logical Address = Segment Selector: Offset

The segment selector specifies an entry in either the global or local descriptor table. The specified 
descriptor-table entry describes the segment location in virtual-address space, its size, and other 
characteristics.  The effective address is used as an offset into the segment specified by the selector.

 5.4.9.7 Effective address

The offset into a memory segment is referred to as an effective address.  Effective addresses are formed 
by adding together elements comprising a base value, a scaled-index value, and a displacement value. 
The effective address computation is represented by the equation:

Effective Address = Base + (Scale x Index) + Displacement

Long mode supports 64-bit effective-address length.

 5.4.9.8 Linear address

The linear address, which is also referred as virtual address, is a 64-bit address computed by adding the 
segment base address to the segment offset.

 5.4.9.9 Physical address

A physical address is a reference into the physical-address space, typically main memory. Physical 
addresses are translated from virtual addresses using page translation mechanisms.
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 5.4.9.10 Segmentation

Segmentation is a method by which system software can isolate software processes, or tasks, and the data 
used by those processes, from one another.  This is done in an effort to increase the reliability of systems 
simultaneously running multiple processes.  Segmentation is used both in compatibility mode and legacy 
mode.

The segment protection mechanism uses the concept of privilege levels that is similar to the one used by 
x86 architecture.  The processor supports four different privilege levels with a numerical value from 0 to 
3, with 0 being the most privileged, and 3 being the least privileged.  RHEL only needs two privilege 
levels, kernel and user, and implements them by assigning user level to privilege level 3, and kernel level 
to privilege levels 0, 1 and 2.  The x86-64 architecture defines three types of privilege levels to control 
access to segments: current, requestor, and descriptor.

• Current Privilege Level (CPL): CPL is the privilege level at which the processor is currently 
executing.  The CPL is stored in an internal processor register.

• Requestor Privilege Level (RPL): RPL represents the privilege level of the program that created 
the segment selector.  The RPL is stored in the segment selector used to reference the segment 
descriptor.

• Descriptor Privilege Level (DPL): DPL is the privilege level that is associated with an individual 
segment.  The system software assigns this DPL, and it is stored in the segment descriptor.

CPL, RPL, and DPL are used to implement access control on data accesses and control transfers as 
follows.

 5.4.9.10.1 Access control for data access

When loading a data segment register, the processor checks privilege levels to determine if the load 
should succeed.  The processor computes the subject’s effective privilege as the higher numerical value, 
or lower privilege, between the CPL and the RPL.  The effective privilege value is then compared with 
the object’s privilege value, the DPL of the segment.  Access is granted if the effective privilege value is 
lower than the DPL value (higher privilege).  Otherwise, a general protection exception occurs, and the 
segment register is not loaded.  The following diagram from [AMD64] illustrates data-access privilege 
checks.
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Figure 5-60: eServer 326 address types and their conversion units



 5.4.9.10.2 Access control for stack segments

When loading a stack segment register, the processor ensures that the CPL and the stack selector RPL are 
equal.  If they are not equal, a general protection exception occurs.  If CPL and RPL are equal, then the 
processor compares the CPL with the DPL in the descriptor table entry that the segment selector 
references.  If the two are equal, then the stack segment register is loaded.  Otherwise, a general protection 
exception occurs, and the stack segment is not loaded.

 5.4.9.10.3 Access control for direct control transfer

The processor performs privilege checks when control transfer is attempted between different code 
segments.  Control transfer occurs with CALL/JMP instructions and SYSCALL/SYSRET instructions. 
Unlike the x86 architecture, the AMD Opteron provides the SYSCALL and SYSRET specific instructions 
to perform system calls.  If the code segment is non-conforming (with conforming bit C set to zero in the 
segment descriptor), then the processor first checks to ensure that CPL is equal to DPL.  If CPL is equal to 
DPL, then the processor performs the next check to see if the RPL value is less than or equal to the CPL. 
A general protection exception occurs if either of the two checks fail.  If the code segment is conforming 
(with conforming bit C set to one in the segment descriptor), then the processor compares the target code-
segment descriptor DPL with the currently executing program CPL.  If the DPL is less than or equal to the 
CPL, then access is allowed.  Otherwise, a general protection exception occurs.  RPL is ignored for 
conforming segments.

 5.4.9.10.4 Access control for control transfers through call gates

The AMD Opteron processor uses call gates for control transfers to higher privileged code segments.  Call 
gates are descriptors that contain pointers to code-segment descriptors and control access to those 
descriptors.  Operating systems can use call gates to establish secure entry points into system service 
routines.  Before loading the code register with the code segment selector located in the call gate, the 
processor performs the following three privilege checks:

1. Compare the CPL with the call-gate DPL from the call-gate descriptor.  The CPL must be less 
than or equal to the DPL.

128

Figure 5-61: Data access privilege checks



2. Compare the RPL in the call-gate selector with the DPL.  The RPL must be less than or equal to 
the DPL.

3. A call or jump through a call gate to a conforming segment requires that the CPL be greater than 
or equal to the DPL.  Otherwise, a call or jump through a call gate requires that the CPL be equal 
to the DPL.

 5.4.9.10.5 Access control through type check

After a segment descriptor is loaded into one of the segment registers, reads and writes into the segments 
are restricted based on type checks, as follows:

• Prohibit write operations into read-only data segment types.

• Prohibit write operations into executable code segment types.

• Prohibit read operations from code segments if the readable bit is cleared to 0.

 5.4.9.11 Paging

The paging unit translates a linear address into a physical address.  Linear addresses are grouped in fixed 
length intervals called pages.  To allow the kernel to specify the physical address and access rights of a 
page instead of addresses and access rights of all the linear addresses in the page, continuous linear 
addresses within a page are mapped to continuous physical addresses.

The eServer 326 supports a four-level page table.  The uppermost level is kept private to the architecture-
specific code of RHEL.  The page-table setup supports up to 48 bits of address space. The x86-64 
architecture supports page sizes of 4 KB and 2 MB.

Figure 5-63 illustrates how paging is used to translate a 64-bit virtual address into a physical address for 
the 4 KB page size.
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Figure 5-62: Contiguous linear addresses map to contiguous physical addresses



When the page size is 2 MB, bits 0 to 20 represent the byte offset into the physical page.  That is, page 
table offset and byte offset of the 4 KB page translation are combined to provide a byte offset into the 2 
MB physical page.   Figure 5-64 illustrates how paging is used to translate a 64-bit linear address into a 
physical address for the 2 MB page size.
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Figure 5-63: 4 KB page translation, virtual to physical address translation



Each entry of the page map level-4 table, the page-directory pointer table, the page-directory table, and 
the page table is represented by the same data structure.  This data structure includes fields that interact in 
implementing access control during paging.  These fields are the Read/Write (R/W) flag, the 
User/Supervisor (U/S) flag, and the No Execute (NX) flag.

The following diagram shows the bit positions in a page map level-4 entry.  The flags hold the same bit 
positions for page directory pointer, page directory, page table, and page entries for both 4 KB page and 2 
MB page sizes.
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Figure 5-64: 2 MB page translation, virtual to physical address translation

Figure 5-65: Page map level four entry



• Read/Write flag:  This flag contains access rights of the physical pages mapped by the table entry. 
The R/W flag is either read/write or read.  If set to 0, the corresponding page can only be read; 
otherwise, the corresponding page can be written to or read.  The R/W flag affects all physical 
pages mapped by the table entry.  That is, the R/W flag of the page map level-4 entry affects 
access to all the 128 MB (512 x 512 x 512) physical pages it maps through the lower-level 
translation tables.

• User/Supervisor flag:  This flag controls the privilege level that is required to access the page or 
page table.  The U/S flag is either 0, which indicates that the page can be accessed only in kernel 
mode, or 1, which indicates that it can always be accessed.  This flag controls user access to all 
physical pages mapped by the table entry.  That is, the U/S flag of the page map level-4 entry 
affects access to all the 128 MB (512 x 512 x 512) physical pages it maps through the lower-level 
translation tables.

• No Execute flag:  This flag controls the ability to execute code from physical pages mapped by 
the table entry.  When No Execute (NX) is set to 0, code can be executed from the mapped 
physical pages.  Otherwise, when set to one, it prevents code from being executed from the 
mapped physical pages.  This flag controls code execution from all physical pages mapped by the 
table entry.  That is, the NX flag of the page map level-4 entry affects all 128 MB (512 x 512 x 
512) physical pages it maps through the lower-level translation tables.  The NX bit can only be set 
when the no-execute page-protection feature is enabled.  You do this by setting the NXE bit of the 
Extended Feature Enable Register (EFER).

In addition to the R/W, U/S, and NX flags of the page entry, access control is also affected by the Write 
Protect (WP) bit of register CR0.  If the write protection is not enabled (Write Protect bit set to 0), a 
process in kernel mode (CPL 0, 1 or 2) can write any physical page, even if it is marked as read-only. 
With write protection enabled, a process in kernel mode cannot write into read-only, user, or supervisor 
pages.

 5.4.9.12 Translation Lookaside Buffers

The AMD Opteron processor includes an address translation cache called the Translation Lookaside 
Buffer (TLB) to expedite linear-to-physical address translation.  The TLB is built up as the kernel 
performs linear to physical translations. Using the TLB, the kernel can quickly obtain a physical address 
corresponding to a linear address, without going through the page tables. Because address translations 
obtained from the TLB do not go through the paging access control mechanism described in Section 
5.4.9.1.1, the kernel flushes the TLB buffer every time a process switch occurs between two regular 
processes.  This process enforces the access control mechanism implemented by paging, as described in 
Section 5.4.9.1.1.

 5.4.10  Kernel memory management
A portion of the RAM is permanently assigned to the RHEL kernel.  This memory stores kernel code and 
static data.  The remaining part of RAM, called dynamic memory, is needed by the processes and the 
kernel itself.

Kernel memory management is highly improved in the RHEL 2.6 kernel.  Better memory management 
capabilities include support for Non Uniform Memory Access (NUMA) servers, Reverse map Virtual 
Memory (Rmap VM), huge TLBs, and Remap_file_pages.  The following sections describe these 
improvements, and also describe page frame management, memory area management, and noncontiguous 
memory area management.
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 5.4.10.1 Support for NUMA servers

NUMA is an architecture wherein the memory access time for different regions of memory from a given 
processor varies according to the nodal distance of the memory region from the processor.  Each region of 
memory, to which access times are the same from any CPU, is called a node.  The NUMA architecture 
surpasses the scalability limits of SMP (Symmetric Multi-Processing) architecture. 

With SMP, all memory accesses are posted to the same shared memory bus.  This works fine for a 
relatively small number of CPUs, but there is a problem with hundreds of CPUs competing for access to 
this shared memory bus.  NUMA alleviates these bottlenecks by limiting the number of CPUs on any one 
memory bus and connecting the various nodes by means of a high-speed interconnect.  NUMA allows 
RHEL Server to scale more efficiently for systems with dozens or hundreds of CPUs, because CPUs can 
access a dedicated memory bus for local memory.  It also supports multiple interconnected memory 
nodes, each supporting a smaller number of CPUs.

Figure 5-66 shows a sample NUMA design.  Each node in the system is simply a 4 processor SMP 
system.  Each CPU in the node contains an L1 and an L2 cache.  The node contains an L3 cache, which is 
shared by all processors in the node.  Nodes are connected together via an Interface-Node, which contains 
the SCI interface.

The RHEL kernel includes various data structures and macros for determining the layout of the memory 
and processors on the system.  These enable the VM subsystem to make decisions about the optimal 
placement of memory for processes.  For more information about NUMA, see 
http://lse.sourceforge.net/numa/.

 5.4.10.2 Reverse map Virtual Memory

Reverse map Virtual Memory (Rmap VM), also developed by Red Hat engineers, improves the operation 
of the kernel memory management subsystem, resulting in improved performance for memory 
constrained systems, NUMA systems, and systems with large aggregate virtual address spaces. 
Previously, the Linux memory management system could efficiently perform virtual-to-physical address 
translation using page tables.  However, translating a physical address to its corresponding virtual 
addresses was inefficient and time consuming, because it required the memory management software to 
traverse every page table in the system.  In today's large systems, this operation is unacceptably slow. 
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Figure 5-66: NUMA Design



With Rmap VM, additional memory management structures have been created that enable a physical 
address to be back-translated to its associated virtual address quickly and easily.

For more information about Rmap VM, see http://lwn.net/Articles/23732/ and 
http://www-106.ibm.com/developerworks/linux/library/l-mem26/.

 5.4.10.3 Huge Translation Lookaside Buffers

This memory management feature is valuable for applications that use a large virtual address space.  It is 
especially useful for database applications.  The CPU Translation Lookaside Buffer (TLB) is a small 
cache used for storing virtual-to-physical mapping information.  By using the TLB, a translation can be 
performed without referencing the in-memory page table entry that maps the virtual address.  However, to 
keep translations as fast as possible, the TLB is typically quite small, so it is not uncommon for large 
memory applications to exceed the mapping capacity of the TLB.  The HugeTLB feature permits an 
application to use a much larger page size than normal, so a single TLB entry can map a correspondingly 
larger address space.  A HugeTLB entry can vary in size, but, as an example, in an Itanium 2 system a 
huge page might be 1000 times larger than a normal page.  This allows the TLB to map 1000 times the 
virtual address space of a normal process without incurring a TLB cache miss.  For simplicity, this feature 
is exposed to applications by means of a file system interface.

Huge TLB File system (hugetlbfs) is a pseudo file system, implemented in fs/hugetlbfs/inode.c. The basic 
idea behind the implementation is that large pages are being used to back up any file that exists in the file 
system.

During initialization, init_hugetlbfs_fs() registers the file system and mounts it as an internal file system 
with kern_mount(). 
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There are two ways that a process can access huge pages.  The first is by using shmget() to set up a shared 
region backed by huge pages, and the second is the mmap() call on a file opened in the huge page file 
system. 

When a shared memory region should be backed by huge pages, the process should call shmget() and pass 
SHM_HUGETLB as one of the flags.  This results in hugetlb_zero_setup() being called, which creates a 
new file in the root of the internal hugetlbfs.  A file is created in the root of the internal file system.  The 
name of the file is determined by an atomic counter called hugetlbfs_counter, which is incremented every 
time a shared region is set up. 

To create a file backed by huge pages, the system administrator must first mount a hugetlbfs type of file 
system.  Instructions about how to perform this task are detailed in Documentation/vm/hugetlbpage.txt on 
RHEL systems.  

After the file system is mounted, files can be created as normal with the open() system call.  When 
mmap() is called on the open file, the file_operations struct hugetlbfs_file_operations ensures that 
hugetlbfs_file_ mmap() is called to set up the region properly. 

Huge TLB pages have their own function for the management of page tables, address space operations, 
and file system operations.  The names of the functions for page table management can all be seen in 
linux/hugetlb.h, and they are named very similarly to their normal page equivalents.  The implementation 
of the hugetlbfs functions are located near their normal page equivalents, so they are easy to find.
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 5.4.10.4 Remap_file_pages

Remap_file_pages is another memory management feature that is suitable for large memory and database 
applications.  It is primarily useful for x86 systems that use the shared memory file system (shmemfs).  A 
shmemfs memory segment requires kernel structures for control and mapping functions, and these 
structures can grow unacceptably large given a large enough segment and multiple sharers.  

For example, a 512 MB segment requires approximately 1 MB of kernel mapping structures per accessor. 
Large database applications that create hundreds of concurrent threads (one for each SQL query, for 
example) can quickly consume all available free kernel address space.  The Remap_file_pages feature 
modifies the shmemfs management structures, so they are significantly smaller (less than 100 bytes). 
This permits much larger shmemfs segments, and thousands of concurrent users to be supported.

This section describes dynamic memory used by the kernel, and describes the object reuse requirement.  This 
section also discusses the three sections of kernel memory management: Page Frame Management, Memory 
Area Management, and Noncontiguous Memory Area Management. 

 5.4.11 Page frame management
The fundamental unit of memory under Linux is the page, a non-overlapping region of contiguous 
memory.  RHEL uses 4 KB pages for most processors as the standard memory allocation unit.  The kernel 
keeps track of the current status of each page frame and distinguishes the page frames that are used to 
contain pages that belong to processes from those that contain kernel code and data.  Page frames that are 
to be used by processes are allocated with the get_zeroed_page() routine.  The routine invokes the 
function alloc_pages().  The routine then fills the page frame it obtained with zeros by calling 
clear_page(), thus satisfying the object reuse requirement.

 5.4.12 Memory area management
Memory areas are sequences of memory cells having contiguous physical addresses with an arbitrary 
length.  The RHEL kernel uses the Buddy algorithm for dealing with relatively large memory requests, 
but in order to satisfy kernel needs of small memory areas, a different scheme, called Slab allocator, is 
used.  

The slab allocator views memory areas as objects with data and methods.  Most of the kernel functions 
tend to repeatedly request objects of the same type, such as process descriptors, file descriptors, and so on. 
The slab allocator does not discard objects, but caches them so that they can be reused. 
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The slab allocator interfaces with the page frame allocator algorithm, Buddy System, to obtain free 
contiguous memory.  The slab allocator calls the kmem_getpages() function with a flag parameter that 
indicates how the page frame is requested.  This flag diverts the call to get_zeroed_page() if the memory 
area is to be used for a user-mode process.  As noted before, get_zeroed_page() initializes the newly 
allocated memory area with zero, thus satisfying the object reuse requirement.

 5.4.13 Noncontiguous memory area management
In order to satisfy infrequent memory requests, RHEL kernel uses noncontiguous memory area allocation 
methods that will reduce external fragmentation.  The RHEL kernel provides a mechanism via the 
vmalloc() function where non-contiguous physically memory can be used that is contiguous in virtual 
memory. 

To allocate memory for kernel use, vmalloc() calls __vmalloc() with a gfp_mask flag that is always set to 
GFP_KERNEL __GFP_HIGHMEM.  _vmalloc() in turn calls vmalloc_area_pages(), which will allocate 
the PTEs for the page requested.

 5.4.14 Process address space
The address space of a process consists of all logical addresses that the process is allowed to use. Each 
process has its own address space, unless it is shared.  The kernel allocates logical addresses to a process 
in intervals called memory regions.  Memory regions have an initial logical address, a length, and some 
access rights.

This section highlights how the RHEL kernel enforces separation of address spaces belonging to different 
processes using memory regions.  It also highlights how the kernel prevents unauthorized disclosure of 
information by handling object reuse for newly allocated memory regions. 

Some of the typical situations in which a process gets new memory regions are:

• Creating a new process (fork())

• Loading an entirely new program (execve() )

• Memory mapping a file (mmap())

• Creating shared memory (shmat())

• Expanding its heap (malloc()) and for growing its stack

All information related to the process address space is included in the memory descriptor (mm_struct) 
referenced by the mm field of the process descriptor.  Memory descriptors are allocated from the slab 
allocator cache using mm_alloc().  Each memory region, represented by the vm_area_struct structure, 
identifies a linear address interval.  Memory regions owned by a process never overlap.

To grow or shrink a process’s address space, the kernel uses the do_mmap() and do_unmap() functions. 
The do_mmap() function calls arch_get_unmapped_area() to find an available linear address interval. 
Because linear address intervals in memory regions do not overlap, it is not possible for the linear address 
returned by arch_get_unmapped_area() to contain a linear address that is part of another process’s address 
space.  

In addition to this process compartmentalization, the do_mmap() routine also makes sure that when a new 
memory region is inserted, it does not cause the size of the process address space to exceed the threshold 
set by the rlimit system parameter.  The do_mmap() function only allocates a new valid linear address to 
the address space of a process.  Actual page-frame allocation is deferred until the process attempts to 
access that address for a write operation.  This technique is called demand paging.  When accessing the 
address for a read operation, the kernel gives the address an existing page called Zero Page, which is filled 
with zeros.  When accessing the address for a write operation, the kernel invokes the alloc_page() routine 
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and fills the new page frame with zeros by using the memset() macro, thus satisfying the object reuse 
requirement.

The following diagram shows a simplified view of what occurs when a process tries to increase its 
address space and, if successful, tries to access the newly allocated linear address.

Symmetric multiprocessing and synchronization

The RHEL kernel allows multiple processes simultaneously to execute in the kernel (the kernel is 
reentrant).  It also supports symmetric multiprocessing (SMP), in which two or more processors share the 
same memory and have equal access to I/O devices.  Because of reentrancy and SMP synchronization, 
issues arise.  This section describes various synchronization techniques used by the RHEL kernel. 

A kernel control path denotes the sequence of instructions executed by the kernel to handle a system call, 
an exception, or an interrupt.  If a kernel control path is suspended while acting on a kernel data structure, 
no other kernel control path should be allowed to act on the same data structure.  A critical region is any 
section of code that must be completely executed by any kernel control path that enters it before another 
kernel control path can enter it.  A critical region could be as small as code to update a global variable, or 
larger multi-instruction code to remove an element from a linked list.  Depending on the size of, or the 
type of, operation performed by a critical region, the RHEL kernel uses the following methods to 
implement synchronization.
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 5.4.14.1  Atomic operations

Operations that are completed without any interruption are called atomic operations.  They constitute one 
of the synchronization techniques of Linux, and operate at the chip level.  The operation is executed in a 
single instruction without being interrupted in the middle and avoids accesses to the same memory 
location by other CPUs.  The RHEL kernel provides a special atomic_t data type and special functions 
that act on atomic_t variables.  

The compiler for the System x processor generates assembly language code with a special lock byte 
(0xf0) around instructions involving atomic_t type variables and functions.  When executing these 
assembly instructions, the presence of the lock byte causes the control unit to lock the memory bus, 
preventing other processors from accessing the same memory location.

 5.4.14.2 Memory barriers

Compilers and assemblers reorder instructions to optimize code. A memory barrier ensures that all 
instructions are completed before reaching the memory barrier, before starting the instructions after the 
memory barrier. This is to ensure that compilers do not reorder instructions when dealing with critical 
sections. All synchronization primitives act as memory barriers.

The eServer series processors provide the following kinds of assembly language instructions that act as 
memory barriers:

• Instructions that operate on I/O ports.

• Instructions prefixed by a lock byte.

• Instructions that write into control registers, system registers, or debug registers.

• Special assembly languages instructions. An example is iret.

• Memory barrier primitives, such as mb(), rmb(), and wmb(), which provide memory barriers, read 
memory barriers, and write memory barriers, respectively, for multiprocessor or uniprocessor 
systems.

• Memory barrier primitives, such as smp_mb(), smp_rmb(), and smp_wmb(), which provide 
memory barriers, read memory barriers, and write memory barriers, respectively, for 
multiprocessor systems only.

 5.4.14.3 Spin locks

Spin locks provide an additional synchronization primitive for applications running on SMP systems.  A 
spin lock is a simple flag.  When a kernel control path tries to claim a spin lock, it first checks whether or 
not the flag is already set.  If not, then the flag is set, and the operation succeeds immediately.  If it is not 
possible to claim a spin lock, then the current thread spins in a tight loop, repeatedly checking the flag 
until it is clear.  The spinning prevents more than one thread of execution from entering the critical region 
at any one time.

 5.4.14.4 Kernel semaphores

A kernel semaphore is also a simple flag.  If a kernel control path can acquire the semaphore, because the 
flag is not set, then it proceeds with its normal operation.  Otherwise, the corresponding process is 
suspended.  It becomes runnable again once the semaphore is available.  Semaphores are used to protect 
critical regions of code or data structures that allow just one process at a time to access critical regions of 
code and data; all other processes wishing to access this resource will be made to wait until it becomes 
free. This technique is called mutual exclusion of threading, and is often abbreviated as mutex.  The Linux 
kernel from version 2.6 provides a mutex abstraction layer. For additional information on kernel mutexes, 
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see “Mutex Conundrum in the Linux Kernel,” at 
http://developer.osdl.org/dev/mutexes/docs/MutexSIG.pdf.

 5.5 Audit subsystem
An auditing facility records information about actions that may affect the security of a computer system. 
In particular, an auditing facility records any action by any user that may represent a breach of system 
security.  For each action, the auditing facility records enough information about those actions to verify 
the following:

• The user who performed the action 

• The kernel object on which the action was performed

• The exact date and time it was performed 

• The success or failure of the action 

• The identity of the object involved 

The TOE includes a comprehensive audit framework called Linux Audit Framework (LAF), which is 
composed of user-space and kernel-space components.  The framework records security events in the 
form of an audit trail and provides tools for an administrative user.  These tools enable the administrator 
to configure the subsystem and to search for particular audit records, providing the administrator with the 
ability to identify attempted and realized violations of the system’s security policy.

This section describes the design and operation of the audit subsytem at a high level.

 5.5.1  Audit components
Figure 5-71 illustrates the various components that make up the audit framework and how they interact 
with each other.  In general, there are user-space components and kernel-space components that use a 
netlink socket for communication.  Whenever a security event of interest occurs, the kernel queues a 
record describing the event and its result to the netlink socket.  If listening to the netlink, the audit 
daemon, auditd, reads the record and writes it to the audit log.

This section describes the various components of the audit subsystem, starting with the kernel 
components and then followed by the user-level components.
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 5.5.1.1 Audit kernel components

The RHEL kernel includes three components relating to the audit functionality.  The first component is a 
generic mechanism for creating audit records and communicating with user space.  The communication is 
achieved via netlink socket interface. Netlink enables the transfer of information between kernel modules 
and user-space processes.  It provides kernel-user space bidirectional communication links.  Linux Audit 
consists of a standard sockets-based interface for user processes and an internal kernel API for kernel 
modules.

 5.5.1.1.1 Kernel-userspace interface

On top of netlink, there exists the generic netlink family that provides simplified access for less 
demanding users.  This introduces a control for ID management and name resolution, and possesses a new 
type of safety interface for netlink messages and attributes handling.  This interface also features 
simplified message constructing, validation capabilities, and documentation.

This first component also receives user-space commands to control the operation of the audit framework 
and to set the audit filter rules and file system watch points.

The kernel checks the effective capabilities of the sender process.  If the sender does not possess the right 
capability, the netlink message is discarded.
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 5.5.1.1.2 Syscall auditing

The second component is a mechanism that addresses system call auditing.  It uses the generic logging 
mechanism for creating audit records and communicating with user space. 

 5.5.1.1.3 Filesystem watches

The third component adds file system auditing support to the audit subsystem.  It employs the kernel 
inotify mechanism (see section 5.1.4) to track of all the objects being watched and a hash table to store the 
audit information for the inodes of the objects.  The inotify watches are also used to keep the audit watch 
rule list up-to-date when filesystem objects are deleted or moved.  Although the audit userspace interface 
references filesystem objects by either device and inode or pathname, the actual inotify implementation 
always references watches by device and inode.

At kernel startup four lists are created to hold the filter rules.  One list is checked at task creation, another 
is checked at syscall entry time, the third is checked at syscall exit time, and the fourth is used to filter 
user messages.  These lists hold the filter rules set by user-space components. Multiple variables are used 
to control the operation of audit.

 5.5.2 Task structure
The Audit subsystem extends the task structure to potentially include an audit context.  By default, on task 
creation, the audit context is built, unless specifically denied by the per-task filter rules.  Then, during 
system calls, the audit context data is filled.  The audit subsystem further extends the audit context to 
allow for more auxiliary audit information, which might be needed for specific audit events.
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 5.5.2.1.1 Audit context fields

• Login ID:  Login ID is the user ID of the logged-in user.  It remains unchanged through the 
setuid() or seteuid() system calls.  Login ID is required by the Controlled Access Protection 
Profile to irrefutably associate a user with that user’s actions, even across su (8) calls or use of 
setuid binaries.

• state:  State represents the audit state that controls the creation of per-task audit context and filling 
of system call specifics in the audit context.  It can take the following values:

AUDIT_DISABLED Do not create per-task audit_context. No 
syscall-specific audit records will be 
generated for the task 

AUDIT_SETUP_CONTEXT Create the per-task audit_context, but 
don't necessarily fill it in a syscall entry 
time (i.e., filter instead). 

AUDIT_BUILD_CONTEXT Create the per-task audit_context, and 
always fill it in at syscall entry time.  This 
makes a full syscall record available if 
some other part of the kernel decides it 
should be recorded.

AUDIT_RECORD_CONTEXT Create the per-task audit_context, always 
fill it in at syscall entry time, and always 
write out the audit record at syscall exit 
time. 

Table 5-1: Audit Context States

• in_syscall:  States whether the process is running in a syscall versus in an interrupt. 

• serial:  A unique number that helps identify a particular audit record.Along with ctime, it can 
determine which pieces belong to the same audit record.  The (timestamp, serial) tuple is unique 
for each syscall and it lives from syscall entry to syscall exit.
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• ctime:  Time at system call entry

• major:  System call number

• argv array:  The first 4 arguments of the system call.

• name_count:  Number of names. The maximum defined is 20.

• audit_names:  An array of audit_names structure which holds the data copied by getname().

• auditable:  This field is set to 1 if the audit_context needs to be written on syscall exit.

• pwd:  Current working directory from where the task has started.

• pwdmnt:  Current working directory mount point.  Pwdmnt and pwd are used to set the cwd field 
of FS_WATCH audit record type.

• aux:  A pointer to auxiliary data structure to be used for event specific audit information.

• pid:  Process ID.

• arch:  The machine architecture.

• personality:  The OS personality number.

• Other fields:  The audit context also holds the various user and group real, effective, ser and file 
system id’s: uid, euid, suid, fsuid, gid, egid, sgid, fsgid.

 5.5.3 File system audit components
File system auditing is implemented using of the inotify kernel file modification notification system (see 
section 5.1.4).  The audit_init() kernel audit subsystem initialization routine registers a vector of inotify 
operations using the inotify_init() function.  The operations vector contains the audit_handle_ievent() 
audit subsystem inotify event notification function and the audit_free_parent() audit subsystem inotify 
destroy function.  The audit subsystem inotify handle is returned by a successful audit_init() call.  When 
audit inotify events occur, audit_handle_event() updates audit context inode data to reflect changes in 
watched file status.

When the audit subsystem receives an instruction from auditctl to set a watch on a file system object, the 
audit_recieve_skb() function receives the netlink packet in the kernel.  It in turn calls 
audit_receive_message(), which dispatches the appropriate function based upon the operation requested. 
For audit rule updates, it calls audit_receive_filter().  The audit_receive_filter() routine calls 
audit_data_to_entry(), which converts the audit data to a watch and calls audit_to_watch() to initialize the 
audit watch data structure, and then calls audit_add_rule().  The audit add_rule_function() adds the inotify 
watch for the watch rule by calling audit_add_watch(), which scans the list of active audit inotify watch 
parents and adds the parent if it does not already exist by calling audit_init_parent().  The 
audit_init_parent() function calls inotify_init_watch() and inotify_add_watch() to initialize the inotify 
watch and register it with the inotify subsystem.  It finally adds the watch to the parent by calling  the 
audit_add_to_parent() function, which associates the watch rule with the watch parent.

When a filesystem object the audit subsystem is watching changes, the inotify subsystem calls the 
audit_handle_event() function.  audit_handle_event() in turn updates the audit subsystem's watch data for 
the watched entity.  This process is detailed in section 5.5.5.2.3.
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 5.5.4 User space audit components
The main user-level audit components consist of a daemon (auditd), a control program (auditctl), a library 
(libaudit), a configuration file (auditd.conf), and an initial setup file (auditd.rules). There is also an init 
script that is used to start and stop auditd, /etc/init.d/auditd.  When run, this script sources another 
file, /etc/sysconfig/auditd, to set the locale, and to set the variable AUDIT_CLEAN_STOP, which 
controls whether to delete the watch points and the filter rules when auditd stops.

On startup, auditd reads the configuration file to set the various configuration options that pertain to the 
daemon.  Then, the auditd reads the auditd.rules to set the initial rules.  The auditd.conf man page 
describes all the configurable options, and the auditctl man page lists all the supported control options.

Audit operation and configuration options

 5.5.4.1 Configuration

There are many ways to control the operation of the audit subsystem. The controls are available at 
compilation time, boot time, daemon startup time, and while the daemon is running. 

At compilation time, the RHEL kernel provides three kernel configuration options that control the level of 
audit support compiled into the kernel.  The options are the following:

• CONFIG_AUDIT:  This enables the base level of audit support.

• CONFIG_AUDITSYSCALL:  This enables the ptrace hooks for the full syscall audit trace.  The 
currently supported architectures include X86, PPC64, S390x, IA64, X86_64.

• CONFIG_AUDITFILESYSTEM: This enables file system auditing.

At boot time, LAF provides the option audit, which enables the system call and file system auditing 
support.  If audit is set to 1, system call and file system auditing are enabled; otherwise, both system call 
and file system auditing are disabled.  After the system is up and running, the administrator has the ability 
to enable and disable syscall and file system auditing by using auditctl with the -e option.

On startup, auditd reads the /etc/auditd.conf file, which holds options that can be set by the administrator 
to control the behavior of the daemon.  Table 5-2 lists the various configuration options.  In addition, 
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auditd reads /etc/audit.rules file, which holds any command supported by auditctl.  The auditd and auditctl 
man pages give more detailed info.

Option Description Possible values

log_file name of the log file

log_format How to flush the data from 
auditd to the log.

RAW. Only RAW is supported in this 
version.

priority_boost The nice value for auditd. Used 
to run auditd at a certain 
priority.

flush Method of writing data to disk. none, interval, data, sync

freq Used when flush is incremental, 
states how many records 
written before a forced flush to 
disk.

num_logs Number of log files to use

max_log_file Maximum log size in 
megabytes.

max_log_file_action Action to take when the 
maximum log space is reached. 

ignore, syslog, suspend, rotate

space_left Low water mark 

space_left_action What action to take when low 
water mark is reached

ignore, syslog, suspend, single, halt

admin_space_left High water mark 

admin_space_left_action What action to take when high 
water mark is reached

ignore, syslog, suspend, single, halt

disk_full_action What action to take when disk 
is full

ignore, syslog, suspend, single, halt

Disk_error_action What action to take when an 
error is encountered while 
writing to disk.

Table 5-2: /etc/auditd.conf options

In addition to setting the audit filter rules, auditctl can be used to control the audit subsystem behavior in 
the kernel even when auditd is running.  These settings are listed in Table 5-3.
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Option description Possible values

-b Sets max number of outstanding 
buffer allowed. If all buffers are 
exhausted, the failure flag is 
checked.

Default 64

-e Set enabled flag 0|1

-f Sets failure flag Silent, printk panic

-r Sets the rate of messages/second. 
If 0 no rate is set. If > 0 and rate 
exceeded, the failure flag is 
checked.

 

Table 5-3: audictl  control arguments

Operation

The audit framework operation consists of the following steps:

On kernel startup, if audit support was compiled into the kernel, the following are initialized:

1. The netlink socket is created. 

2. Four lists that hold the filter rules in the kernel are initialized. 

3. The audit initialized flag is set to true.

4. The audit enabled flag is set according to audit_default or to the boot parameter audit.  No syscall 
or file system auditing takes place without audit_enabled being set to true.  The audit_enabled 
flag can also be set from the command line using auditctl –e 1. 

5. The file system auditing is initialized by creating the watch lists and the hash table for the file 
system auditing. 

auditd does the following on startup:

1. Registers its PID with the kernel, so the kernel starts sending all audit events to the daemon (to 
the netlink).

2. Enables auditing.

3. Opens the netlink socket, and spawns a thread that continuously waits on the condition of audit 
record data availability on the netlink.  Once the data is available, it signals the thread that writes 
out the audit records. 

4. Reads the /etc/auditd.conf configuration file, which holds the configuration parameters that 
define, among other things, what to do when errors are encountered, or when the log files are full. 

5. Usually, auditd is run by the /etc/init.d/auditd init script, which issues auditctl –R /etc/audit.rules, 
if the file /etc/auditd.rules exists.

6. The auditctl command can be used at any time, even before auditd is running, to add and build 
rules associated with possible actions for system calls and file system operations, as well as 
setting the behavior of the audit subsystem in the kernel.

7. If audit is enabled, the kernel intercepts the system calls, and generates audit records according to 
the filter rules.  Or, the kernel generates audit records for watches set on particular file system 
files or directories.

8. Trusted programs can also write audit records for security relevant operation via the audit netlink, 
not directly to the audit log. 
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9. The auditctl -m option is another way to write messages to the log.

 5.5.5  Audit records 
The kernel, as well as user space, generates the audit records.  The records can take various formats 
depending on the information they hold, and from where they are generated.  This section highlights the 
areas from where the audit records are generated, and the various audit record formats.

 5.5.5.1 Audit record generation

The audit framework is an event-based system in which data is recorded whenever an auditable event 
occurs.  An event represents a single action that might affect the security of the system.  Either system 
calls or user-level trusted programs trigger events.

In order to catch all security-relevant events, audit is designed to record actions of the kernel as well as 
those of the security-relevant trusted programs.  As such, there are two sources that generate audit 
records: the kernel and trusted user programs. 

All actions are recorded in the form of audit records.  Each audit record contains information pertaining to 
the security-relevant action, which allows the administrator to irrefutably attribute the action to a 
particular user and ascertain the time that the action was taken. 

The audit subsystem, by default, has the general logging mechanism active.  This mechanism offers a set 
of APIs that can be used by other kernel subsystems, such as SELinux.  If the audit daemon is not 
listening, or Netlink is not configured, then the records are logged to syslog via printk. 

The following sections describe how records are generated through the kernel and user space.

 5.5.5.2 Kernel record generation

The kernel component of Linux Audit consists of extensions to the process task structure for storing 
additional audit-related attributes.  The kernel provides intercept functions, or hooks, to trap entry into and 
exit from the system calls interface, hooks to the VFS to track file system related events, and hooks for 
IPC and socket operations.  The kernel evaluates the security events and, if allowed by the filters, 
generates audit records. 

To begin auditing, a process attaches itself to the audit framework. Attaching means the process extends 
the task structure to include an audit context.  By default, the task builds the audit context, if audit is 
enabled.  Only when specifically stated that auditing should be disabled for the task will the audit context 
not be built for the task.  As mentioned in the Linux Audit Operation section, at kernel initialization, four 
lists of rules are created.  The per-task list holds filter rules that are checked on task creation to see 
whether auditing should be disabled for the process.

An audit context can be in one of the following four states:

• Disabled; no syscall audit will be generated for the task.  The audit context is NULL.

• Build the audit context, but do not fill in the sycall info at syscall entry.

• Build the audit context and always fill it on syscalls entry.

• Build the audit context, fill it at syscalls entry, and always write it out at syscalls exit.
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 5.5.5.2.1 Syscall audit record generation

Once attached, every security-relevant system call performed by the process is evaluated in the kernel. 
The process’s descendents maintain their attachments to the audit subsystem.

All security-relevant system calls made by the process are intercepted at the beginning or at the exit of the 
system call code.  The intercept routine then evaluates the intended action, and an audit context 
corresponding to the system call is built to be used in the corresponding audit record.

The process invokes a system call service routine to perform the intended system call. The audit record is 
placed in a netlink; from there, it is transferred to the audit trail by the audit daemon.

 5.5.5.2.2 System call interface intercept functions

In order to evaluate each system call as a potential audit candidate, the RHEL kernel’s system call 
interface functions are extended with calls to audit framework functions.  Ordinarily, system calls are 
performed in a three step process. 

The first step changes from user to kernel mode, copies system call arguments, and sets up appropriate 
kernel registers.  The second step calls the system call service routine to perform the system call, and the 
third step switches from the kernel to user space after copying the result of the system call.  

The LAF extensions to the previous steps involve calling the audit subsystem function 
audit_syscall_entry() between step one and two, and calling the audit subsystem function 
audit_syscall_exit() between steps two and three.  This is done by adding hooks to the ptrace system.  The 
do_syscall trace() function is called twice, once before the system call is performed, at which time it calls 
audit_syscall_entry() and once again after the system call is performed.  At that time it calls 
audit_syscall_exit.  audit_syscall_entry() stores relevant audit data needed to create the audit record. 
audit_syscall_exit(), which is invoked after the system call is performed, generates the audit record, and 
sends the record to netlink socket.  Both audit_syscall_entry and audit_syscall_exit call 
audit_filter_syscall to apply filter logic, in order to check whether to audit or not to audit the call.
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Filtering logic allows an administrative user to filter out events based on the rules set, as described in the 
auditctl man page.

 5.5.5.2.3 File system audit record generation

The file system code is hooked with the inotify subsystem.  The audit subsystem registers its notification 
function audit_handle_ievent(), which the inotify subsystem calls when a security-relevant operation 
occurs on a watched object.  The notification function covers creation, deletion, moving, renaming, link, 
and unlink. 

Permission changes, as well as access and modification of the object security attributes chown, chmod, 
setxattr, and removexattr, are audited by audit_inode() hooks inserted into the system calls.  The hooks 
directly update the inode information in the audit context.

When a watched object is accessed by a system call, the audit subsystem's information about the inode 
and its watches is updated.  A typical sequence of file system operations that generates audit records for a 
watched object follows these steps:

1. A system call is entered.

2. The system call modifies a watched file's inode information, triggering an inotify event that calls 
the audit_handle_ievent() function with the inotify watch event information, which updates the 
audit context's inode information. In certain cases, a hooked system call updates the audit 
context's inode information.

3. At syscall exit, audit_log_exit() detects the updated inode information in the audit context and 
emits PATH and SYSCALL records for the watch event via the audit netlink interface.

 5.5.5.3 Socket call and IPC audit  record generation

Some system calls pass an argument to the kernel specifying which function the system call is requesting 
from the kernel.  These system calls request multiple services from the kernel through a single entry point. 
For example, the first argument to the ipc call specifies whether the request is for semaphore operation, 
shared memory operation, and so forth.  In the same manner, the socketcall system call is a common 
kernel entry point for the socket system calls.  The socketcall and the ipc call are extended to audit the 
arguments and therefore audit the exact service being performed.  Following is a typical flow:
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1. The kernel encounters a socket or ipc call.

2. The kernel invokes an audit framework function to collect appropriate data to be used in the 
auxiliary audit context.

3. The call is processed. 

4. On exit the audit record that includes the auxiliary audit information is placed on the netlink.

 5.5.5.4 Record generation by trusted programs 

Trusted programs create their own audit records in which their actions are described.  The following 
describes a typical trusted program operation with respect to audit:

To begin auditing after a security relevant action, a trusted process opens the Netlink socket, checks 
whether the audit is enabled, formats an audit message describing the action, then writes the audit 
message to the kernel.  In turns, the kernel checks the user message filter list and, if appropriate, the 
kernel sends the audit message back to auditd for logging.

 5.5.5.5 Audit record format

Each audit record consists of the type of record, a time stamp, login ID, and process ID, along with 
variable audit data depending on the audit record type.  In other words, the record depends on the audit 
event.  Since audit records are written to user-space as soon as they are generated,  a complete audit 
record might be written in several pieces.  A time stamp and a serial number pair identify the various 
pieces of  the audit records.  The timestamp of the record and the serial number are used by the user-space 
daemon to determine which pieces belong to the same audit record.  The tuple is unique for each syscall 
and lasts from syscall entry to syscall exit.  The tuple is composed of the timestamp and the serial number.

Each audit record for system calls contains the system call return code, which indicates if the call was 
successful or not. The following table lists security-relevant events for which an audit record is generated 
on the TOE.
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Event Description LAF audit events

Startup and shutdown of audit functions DAEMON_START, DAEMON_END, generated 
by auditd

Modification of audit configuration files DAEMON_CONFIG, DAEMON_RECONFIG 
generated by auditd. Syscalls open, link, unlink, 
rename, truncate, (write access to configuration 
files)

Successful and unsuccessful file read/write Syscall open

Audit storage space exceeds a threshold Space_left_action, admin_space_left_action 
configuration parameters for auditd.

Audit storage space failure Disk_full_action, disk_error_action configuration 
parameters for auditd.

Operation on file system objects Syscalls chmod, chown, setxattr, removexattr, link, 
symlink, mknod, open, rename, truncate, unlink, 
rmdir, mount, umount, semtimedop

Operations on message queue Syscalls msgctl, msgget

Operations on semaphores Syscalls semget, semctl, semop, semtimedop.

Operations on shared memory segments Syscalls shmget, shmctl

Rejection or acceptance by the TSF of any tested 
secret. 

Audit record type: USER_AUTH from PAM 
Framework and audit record type: 
USER_CHAUTHTOK from shadow util.

Use of identification and authentication 
mechanism

Audit record type: USER_AUTH, 
USER_CHAUTHTOK from PAM framework.

Success and failure of binding user security 
attributes to a subject (e.g. success and failure to 
create a subject)

Audit record type: LOGIN from pam_login.so 
module. Syscalls: fork and clone.

All modification of subject security values Syscalls chmod, chown, setxattr, msgctl, semctl, 
shmctl, removexattr, truncate

Modifications of the default setting of 
permissive of restrictive rules 

Syscalls umask, open

Modification of TSF data Syscalls open, rename, link, unlink, truncate, 
chmod, chown, setxattr, removexattr (of audit log 
files and audit configuration files), messages from 
shadow suites, audit record type: 
USER_CHAUTHTOK. 

Modifications to the group of users that are part 
of a role

Audit messages from trusted programs in the 
shadow suite, audit record type: 
USER_CHAUTHTOK.

Execution of the test of the underlying machine 
and the result of the test

Audit message from AMTU utility: audit record 
type: USER.

Changes to system time Syscall settimeofday, adjtimex

Setting up a trusted channel Sycall exec (of stunnel program)
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Event Description LAF audit events

 

Table 5-4: Audit Subsystem event codes

 5.5.6 Audit tools
In addition to the main components, the user level provides a search utility, ausearch, and a trace utility, 
autrace.  While ausearch finds audit records based on different criteria from the audit log, autrace audits 
all syscalls issued by the process being traced.  The man pages for these two utilities detail all the options 
that can be used for each.  In this section we briefly describe how they operate.

 5.5.6.1 auditctl

The auditctl command configures and examines the kernel audit subsystem.  It allows the setting of 
syscall rules, file watches, various audit characteristics, and the sending of userspace messages.  It 
communicates with the kernel using the netlink socket interface via the audit library.  For more 
information about auditctl, see the auditctl(8) man page.  Use of auditctl is restricted in the TOE to 
administrative users.

 5.5.6.2 ausearch

Only root has the ability to run this tool.  First ausearch checks the validity of the parameters passed, 
whether they are supported or not.  Then it opens either the logs or the administrator-specified files.  The 
logs’ location is extracted from the /etc/auditd.conf file.  After that, ausearch starts to process the records, 
one record at a time, matching the parameters passed to it.  Each audit record can be written into the log 
as multiple file records.  The tool collates all the file records into a linked list before it checks whether the 
record matches the requested search criteria.  For more information about ausearch,  see the ausearch(8) 
man page.

 5.5.7 Login uid association
The pam_loginuid.so module writes the login uid of the process that was authenticated to the /proc system 
(/proc/session id/loginuid).  The loginuid file is only writable by root and is readable by everyone. 
The /proc file system triggers the kernel function audit_set_loginuid() to set the login uid for the user in 
the audit context.  From then on, this login uid is maintained throughout the session to trace back all 
operations done in the session to the login user. 

 5.6  Kernel modules
Kernel modules are pieces of object code that can be linked to, and unlinked from, the kernel at runtime. 
Kernel modules usually consist of a set of functions that implement a file system, a device driver, or other 
functions at the kernel’s upper layer.  

Lower-layer functions, such as scheduling and interrupt management, cannot be modularized. Kernel 
modules can be used to add or replace system calls.  The RHEL kernel supports dynamically-loadable 
kernel modules that are loaded automatically on demand.  Loading and unloading occurs as follows:

1. The kernel notices that a requested feature is not resident in the kernel.

2. The kernel executes the modprobe program to load a module that fits this symbolic description.

153



3. Modprobe looks into its internal alias translation table to see if there is a match.  This translation 
table is configured by alias lines in /etc/modprobe.conf.

4. Modprobe then inserts the modules that the kernel needs.  The modules are configured according 
to options specified in /etc/modprobef.conf.

By default, the RHEL system does not automatically remove kernel modules that have not been used for a 
period of time. The RHEL system does, however, provide a mechanism by which an administrator can 
periodically unload unused modules.  

Each module automatically linked into the kernel has the MOD_AUTOCLEAN flag set in the flags field 
of the module object set.  The administrator can set a crond job to periodically execute rmmod –a to tag 
unused modules as to be cleaned, and to remove already tagged modules.  Modules stay tagged if they 
remain unused since the previous invocation of rmmod -a. This two-step cleanup approach avoids 
transiently unused modules.

Only the root administrator can modify the /etc/modprobe.conf file, allowing the administrator complete 
control over which modules can be loaded, and with what configuration options.  In the kernel, the 
sys_create_module() (for manual load operation) and sys_init_module() (called by modprobe during 
automatic load operation) module load functions are protected by a process uid check of 0.  Thus, only a 
privileged process can initiate the loading of modules in the kernel.

 5.6.1 Linux Security Module framework
The Linux kernel (from 2.6 onwards) provides a general kernel framework to support security modules. 
In particular, the Linux Security Module (LSM) framework provides the infrastructure to support access 
control modules.

The LSM kernel patch adds security fields to kernel data structures, and inserts calls to hook functions at 
critical points in the kernel code to manage the security fields, and to perform access control.  It also adds 
functions for registering and unregistering security modules, and adds a general security system call to 
support new system calls for security-aware applications.  The LSM security fields are simply void* 
pointers. Table 5-5 shows the kernel data structures that the LSM kernel patch modifies, and the 
corresponding abstract objects.

STRUCTURE OBJECT

task_struct Task(Process)

linux_binprm Program

super_block File system

inode Pipe, File, or Socket

File Open File

sk_buff Network Buffer(Packet)

net_device Network Device

kern_ipc_perm Semaphore, Shared Memory 
Segment, or Message Queue 

msg_msg Individual Message 

Table 5-5: Kernel data structures modified by the LSM kernel patch and the corresponding abstract objects
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The security_operations structure is the main security structure that provides security hooks for various 
operations such as program execution, file system, inode, file, task, netlink, UNIX domain networking, 
socket, and System V IPC mechanisms. 

Each LSM hook is a function pointer in the security_ops global table.  This table is a security_operations 
structure defined in include/linux/security.h.  The global security_ops table is initialized to a set of hook 
functions provided by a dummy security module that provides traditional super user logic.  

A register_security function (in security/security.c) is provided to allow a security module to set 
security_ops to refer to its own hook functions, and an unregister_security function is provided to revert 
security_ops to the dummy module hooks.  This mechanism is used to set the primary security module, 
which is responsible for making the final decision for each hook.

LSM also provides a simple mechanism for stacking additional security modules with the primary 
security module.  It defines register_security and unregister_security hooks in the security_operations 
structure, and provides mod_reg_security and mod_unreg_security functions that invoke these hooks after 
performing some checking.  A security module can call these functions in order to stack with other 
modules.

LSM hooks fall into two major categories: hooks that are used to manage the security fields, and hooks 
that are used to perform access control.  Examples of the first category of hooks include the alloc_security 
and free_security hooks defined for each kernel data structure that has a security field.  These hooks are 
used to allocate and free security structures for kernel objects.  The first category of hooks also includes 
hooks that set information in the security field after allocation, such as the post_lookup hook in struct 
inode_security_ops.  This hook is used to set security information for inodes after successful lookup 
operations. An example of the second category of hooks is the permission hook in struct 
inode_security_ops.  This hook checks permission when accessing an inode.

Figure 5-78 depicts the LSM hook architecture in which an LSM hook makes a call to a function that the 
LSM module (xyz) must provide, just before the kernel would have accessed an internal object.  The 
module can either let the access occur, or deny access, forcing an error code return.
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LSM adds a general security system call that simply invokes the sys_security hook.  This system call and 
hook permits security modules to implement new system calls for security-aware applications.

 5.6.2 LSM capabilities module 
The LSM kernel patch moves most of the existing POSIX.1e capabilities logic into an optional security 
module stored in the file security/capability.c.  This change allows users who do not want to use 
capabilities to omit this code entirely from their kernels, instead using the dummy module for traditional 
super user logic or any other module that they desire.  

The capabilities logic for computing process capabilities on execve and set*uid, checking capabilities for 
a particular process, saving and checking capabilities for netlink messages, and handling the capget and 
capset system calls, have been moved into the capabilities module.

 5.6.3 LSM SELinux module
The TOE includes Security-Enhanced Linux (SELinux), which is an add-on security module from the 
National Security Agency (NSA) implementing Mandatory Access Control.  For more detailed 
information about this, see http://lsm.immunix.org/docs/overview/linuxsecuritymodule.html, 
http://lsm.immunix.org/lsm_doc.html, or http://www.nsa.gov/selinux/info/docs.cfm.
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 5.7 SELinux
The SELinux logical subsystem consists of the SELinux access control functions, provided by the 
SELinux LSM module and the /selinux pseudo file system. The SELinux LSM modules provides security 
functions that implement mandatory access control when subjects access objects, and the SELinux pseudo 
file system provides a mechanism for user-level commands and libraries to interact with the kernel 
component of SELinux.

For background information about SELinux and concepts of mandatory access control, see chapters 1 and 
2 of SELinux by Example, by Frank Mayer, Karl Macmillan, and David Caplan [MAYE].

For information about the architecture of the SELinux logical subsystem, see chapter 3 of SELinux by 
Example, by Frank Mayer, Karl Macmillan, and David Caplan [MAYE].

 5.7.1 SELinux access control functions
SELinux access control functions are called through LSM hooks from various points in the kernel when 
new subjects and objects are created, when access between subject and object is mediated, and when 
subject and object security attributes transition to different values.

For understanding different object classes and the granularity of permissions provided by SELinux, see 
chapter 4 of SELinux by Example, by Frank Mayer, Karl Macmillan, and David Caplan [MAYE].

For background information about how different types of objects support creation, storage, and transition 
of mandatory access control security attributes, see chapter 10 of SELinux by Example, by Frank Mayer, 
Karl Macmillan, and David Caplan [MAYE].

For understanding how SELinux implements Multilevel Security Policy to satisfy LSPP requirements, see 
chapter 8 of SELinux by Example, by Frank Mayer, Karl Macmillan, and David Caplan [MAYE].

 5.7.2 /selinux file system
The SELinux file system is used for kernel-to-user-space communication.  The SELinux file system is a 
pseudo file system similar to /proc or /sys, and provides interfaces to SELinux kernel operations such as 
enabling and disabling SELinux, and querying the kernel policy database. 

Device drivers

A device driver is a software layer that makes a hardware device respond to a well-defined programming 
interface.  The kernel interacts with the device only through these well-defined interfaces.  For detailed 
information about device drivers, see Linux Device Drivers, 2nd Edition, by Alessandro Rubini and 
Jonathan Corbet.

The TOE supports many different I/O devices, such as disk drives, tape drives, and network adapters. 
Each of these hardware devices can have its own methods of handling data.  

The device driver subsystem provides a layer of abstraction to other kernel subsystems, so they can 
interact with hardware devices without being knowing of their internal workings.  Each supported 
hardware device has a device driver that is loaded into the kernel during system initialization.  The device 
driver subsystem provides access to these supported hardware devices from user space through special 
device files in the /dev directory.  Valid operations on the device-special files are initialized to point to 
appropriate functions in the device driver for the corresponding hardware device.

Other kernel subsystems, such as the File, I/O, and the Networking subsystems, have direct access to 
these device driver functions because the device driver is loaded into the kernel space at system 
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initialization time.  The File, I/O, and Networking subsystems interact with these device driver functions 
to drive the hardware device.  

For example, when a file is to be written to a hard drive, data blocks corresponding to the file are queued 
in the buffer cache of the File and I/O subsystems.  From there, the File and I/O subsystems invoke the 
function to flush the data to the desired device. The device driver corresponding to that device then takes 
that data and invokes the device-specific functions to transfer the data to the hard drive.  Similarly, the 
Networking subsystem interacts with the device driver subsystem to transfer networking traffic to a 
network adapter.  The physical layer of the networking stack invokes appropriate functions to send and 
receive networking packets through a network adapter.  The device driver corresponding to the network 
adapter invokes appropriate adapter-specific functions to send or receive network packets through the 
network adapter.

Device drivers provide a generic interface to the rest of the kernel consisting of device methods for the 
start-up of a device (open method), shutdown of a device (release method), flushing contents of internal 
buffers (flush method), reading data from the device (read method), writing data to the device (write 
method), and performing device-specific control operations (ioctl method).

RHEL running on iSeries, System p, and System z supports virtual devices.  From the perspective of 
RHEL, these devices are treated no differently than other devices.  That is, the RHEL kernel thinks that it 
is directly controlling devices.  However, the hypervisor on iSeries and the z/VM on System z map these 
virtual devices to real devices, allowing RHEL access to devices supported by OS/400 when running on 
iSeries, and devices supported by z/VM when running on System z.  The following subsections briefly 
describe this virtualization of I/O, followed by brief descriptions of device drivers for character and block 
devices.

 5.7.3 I/O virtualization on System z
RHEL runs on System z as a guest of the z/VM operating system.  The z/VM operating system can 
provide each end user with an individual working environment known as virtual machine.  Virtual 
machines communicate with the outside world through virtual devices.  The Control Program 
transparently handles mapping of virtual-to-real devices and resources.

 5.7.3.1 Interpretive-execution facility

The interpretive-execution facility provides complete handling of many aspects of the architecture of an 
interpreted machine or, when such handling is not provided, presents virtual-machine status in a form 
convenient for further support-program processing.

The interpreted machine is viewed as a virtual system called the guest.  The term host refers to the real 
machine and to the control program, which both manage real-machine resources, and provide services to 
the guest program or interpreted machine.  The interpreted and host machines execute guest and host 
programs, respectively.

The interpretive-execution facility is invoked by executing the Start Interpretive Execution (SIE) 
processor instruction, which causes the CPU to enter the interpretive-execution mode and to begin 
execution of the guest program under control of the operant of the instruction, called the state description. 

Certain operations encountered in the guest cannot be performed in the interpretive-execution mode, and 
some may optionally have been designated to cause interpretive-execution to be discontinued.  In these 
cases, the CPU exits from the interpretive-execution mode, the execution of the SIE instruction is 
completed, and the instruction in the host program that follows the SIE instruction, or that follows an 
Execute instruction, as appropriate, is designated as the next instruction to be executed.  This process is 
called interception, and it includes saving the state of the guest in the state description and providing 
information about the reason for exiting from the interpretive-execution mode.
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The CPU may also exit from the interpretive-execution mode (a host I/O interruption, for example) by 
interrupting execution of the SIE instruction.  The SIE instruction is an interruptible instruction; that is, 
there are parameters in the state description for continuing in such a way that if the host old PSW is 
loaded, causing the SIE instruction (or an Execute instruction as appropriate) to be reexecuted, execution 
resumes at the interrupted point in the guest.

The state description specifies:

• The type of system to be interpreted

• The area of host storage representing guest main storage

• The contents of some of the program-addressable guest registers

• The addresses of related control tables

• Bits for controlling the operation of optional facilities

• Areas for displaying information concerning and interception

• Information about other aspects of the operation (including the expiry timer that causes the 
exiting of the interpretive-execution facility by interrupting the SIE instruction upon expiry of the 
timer)

 5.7.3.2 State description

The SIE instruction designates an operant called the state description, which is located in the host's real 
storage.  Fields in the state description provide information about the guest's initial state on entry to the 
interpretive-execution mode, provide guest control and status information used in the interpretive-
execution mode, and are used to store information about the guest's state on exit from the interpretive-
execution mode.

After the CPU enters the interpretive-execution mode, it is undefined whether changes to the state 
description by the channel subsystem or by another CPU will affect the guest.  Fetch references to the 
state description by the channel subsystem or by another CPU may or may not obtain the current state of 
the guest.  However, bits in the field labeled intervention requests and TCH control may be set to ones by 
means of an interlocked update by the CPU, while the fields are concurrently being used to control 
interpretive-execution in another CPU, with the assurance that the change will be observed by the CPU in 
the interpretive-execution mode.  The contents of these two fields are said to be dynamically observed or 
recognized.

The state description contains the following parameters, along with others:

• Definition of the guest memory structure in 64 KB increments.

• General registers 14 and 15, and the PSW.

• Residue counter, holding the remainder of the time spent in interpretive-execution mode that has 
not yet been accounted for.  This counter is ignored when the interval timer is not active.

• Conditional interceptions refer to functions that are executed for the guest unless a specified 
condition is encountered that causes control to be returned to the host by the process that called 
the interception.  Following are some of the controls that can cause interception when the related 
function is handled for the guest:

• Supervisor Call (SVC) instruction: It is to be specified whether all guest SVC instructions cause 
an instruction interception or only those for which the effective I field matches a code.

• Load Control (LCTL) instruction: The state description bits for this instruction are numbered to 
correspond to control-register numbers. When a bit is one and a guest LCTC instruction 
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designates the corresponding control register in the range of registers to be loaded, instructions-
execution is suppressed, and instruction interception is recognized.

• Interception Controls: A bit value of one results in interception when the associated function is 
encountered in the guest.  The interception code field stores the code that indicates the reason for 
the interception. The contents of this field are changed only at interception.

 5.7.3.3 Hardware virtualizing and simulation

The Control Program (CP) maintains all virtual machines by using the SIE instruction supported by the 
underlying abstract machine.

Access to resources that must be shared among virtual machines is virtualized by the CP.  The CP must 
ensure the following:

• Each accessing virtual machine is provided with a consistent view to the virtualized resource, 
such as the timer.

• Each accessing virtual machine must be limited to its configured resources. Access to other 
resources must be prohibited (such as I/O).

Each access to such a virtualized resource causes the SIE instruction to terminate on the requesting 
processor and to return control back to the CP.  Based on CP’s internal state information about the virtual 
machine, the access request is mediated by CP.  Upon completion of the request, the return information is 
forwarded to the requesting virtual machine by the CP, according to the rules applicable for z/Architecture 
systems.

 5.7.4 Character device driver
A character device driver is one that transfers data directly to and from a user process, without 
sophisticated buffering strategies and disk caches.  The file_operations structure is defined in linux/fs.h, 
and holds pointers to functions defined by the driver that performs various operations on the device.  Each 
field of the structure corresponds to the address of some function defined by the driver to handle a 
requested operation.

Programs operate on character devices by opening their file system entries.  Each file system entry 
contains a major and a minor number, by which the kernel identifies the device.  The Virtual File System 
sets up the file object for the device, and points the file operations vector to def_chr_fops table. 
def_chr_fops contains only one method, chrdev_open(), which rewrites the f_op field of the file object 
with the address stored in the chrdevs table element that corresponds to the major number, and minor 
number if the major is shared  among multiple device drivers, of the character device file. 

Ultimately the file object’s f_op field points to the appropriate file_operations defined for that particular 
character device.  The file_operations structure provides pointers to generic operations that can be 
performed on a file.  Each device driver defines the file operations that are valid for the type of device that 
the driver manages.

This extra level of indirection is needed for character devices, but not for block devices, because of the 
large variety of character devices and the operations they support.  The following diagram illustrates how 
the kernel maps the file operations vector of the device file object to the correct set of operations routines 
for that device.
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 5.7.5 Block device driver
Block drivers provide access to the block-oriented devices that transfer data in randomly accessible, 
fixed-size blocks, such as a disk drive.  All I/O-to-block devices are normally buffered by the system (the 
only exception is with raw devices); user processes do not perform direct I/O to these devices.

Programs operate on block devices by opening their file system entries.  The file system entry contains a 
major and a minor number by which the kernel identifies the device.  The kernel maintains a hash table, 
indexed by major and minor number, of block-device descriptors. One of the fields of the block device 
descriptor is bd_op, which is pointer to the block_device_operations structure.  The 
block_device_operations structure contains methods to open, release, llseek, read, write, mmap, fsync, 
and ioctl that control the block device.  Each block device driver needs to implement these block device 
operations for the device being driven.

The Virtual File System sets up the file object for the device and points the file operations vector to the 
appropriate block device operations, as follows:
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Figure 5-79: Setup of f_op for character device specific file operations



 5.8  System initialization
When a computer with RHEL is turned on, the operating system is loaded into memory by a special 
program called a boot loader.  A boot loader usually exists on the system's primary hard drive, or other 
media device, and has the sole responsibility of loading the Linux kernel with its required files or, in some 
cases, other operating systems, into memory.

Each architecture capable of running RHEL uses a different boot loader.  The following table lists the 
boot loaders available for architectures relevant to the target of evaluation:

Architecture Boot Loaders 

AMD® AMD64 GRUB 

IBM eServer System p YABOOT 

IBM eServer System z z/IPL 

x86 GRUB or LILO 

Table 5-6: Boot Loaders by Architecture

This section describes the system initialization process of eServer systems.  Because part of the 
initialization is dependent on the hardware architecture, the following subsections identify and describe, 
where appropriate, how the hardware-dependent part of the system initialization is implemented for 
System x, System p, System z, and eServer 326 lines of servers, which are all part of the TOE.

 5.8.1 init
The init process is the ancestor of all userspace processes and is process ID 1.  Its main functions are to 
load the SELinux MLS policy, to start child processes based on the contents of /etc/inittab, to reap child 
processes, to switch between the runlevels defined in /etc/inittab, and to react to certain signals, such as 
power failure signals.  If it is executed as a PID other than PID 1, it acts as a control program that allows 
administrative users to manage the system runlevel by controling PID 1.  For more information about 
the /etc/inittab file, see the inittab(5) man page.  For more information about the init program, see the 
init(8) manpage.

The init program generally follows these startup steps:

1. Gets its own name.

2. Sets its umask.

3. Checks for root identity.

4. Checks to see if it is PID 1 (init, the daemon) or not PID 1 (telinit, the control program).

5. If it is telinit, runs telinit processing and exits; continues if it is init.

6. Handles re-execs by setting proc title appropriately, etc.

7. Processes command-line arguments.

8. If the SELINUX_INIT environment variable is set, skips loading SELinux policy.

9. Loads SELinux policy.  libseinux and the SELinux policy must be available and correctly labeled 
for this step to succeed.  Otherwise, init panics the kernel.

10. Sets the proc title to the “init boot” message.
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11. Begins running init_main() and never exits.  Continues with init_main(): 

12. Tells the kernel to send Ctrl-Alt-Delete to init for processing.

13. Sets up signal handling.

14. Initializes the console.

15. Sets a default PATH environment variable.

16. Initializes the /var/run/utmp/file.

17. Outputs a boot message.

18. Checks for an emergency shell request, and if there is one, opens the shell.

19. Reads inittab.

20. Starts child processes.

21. Performs boot transitions.

22. Checks for child processes being waited on.

23. Checks the init fifo.

24. Checks failing flags.

25. Processes signals.

26. Checks once again to see of any children need to be started.

27. Goes back to step 21.

 5.8.2 Maintenance mode
A maintenance mode is provided for secure recovery as required by the RBACPP.  If the system goes 
down dirty, it can be configured to boot into single user before it boots into the default runlevel specified 
in /etc/inittab.  At boot time, if the /.autofsck file is present and AUTOFSCK_SINGLEUSER variable is 
set, /etc/rc.sysinit will run a single user mode shell for system recovery before allowing the boot sequence 
to continue.  This can be accomplished by adding “AUTOFSCK_SINGLEUSER=1” to 
the /etc/selinux/config file.

 5.8.3 System x
This section briefly describes the system initialization process for System x servers. For detailed 
information about system initialization, see “Booting Linux: History and the Future” 2000 Ottawa Linux 
Symposium by Almesberger, Werner and /usr/src/linux/Documentation/i386/boot.txt on a RHEL system.

 5.8.3.1 Boot methods

RHEL supports booting from a hard disk, a CD-ROM, or a floppy disk.  CD-ROM and floppy disk boots 
are used for installation, and to perform diagnostics and maintenance.  A typical boot is from a boot image 
on the local hard disk.

 5.8.3.2 Boot loader

A boot loader is a program that resides in the starting sectors of a disk, that is, the Master Boot Record 
(MBR) of the hard disk.  After testing the system during boot, the Basic Input-Output System (BIOS) 
transfers control to the MBR if the system is set to be booted from there.  Then the program residing in 
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MBR gets executed.  This program is called the boot loader. Its duty is to transfer control to the operating 
system, which will then proceed with the boot process. 

RHEL supports the GRUB (GRand Unified Boot Loader) boot loader.  GRUB lets you set pointers in the 
boot sector to the kernel image and to the RAM file system image.  GRUB is a part of the TSF.  For 
detailed information about GRUB, refer to their Web site at http://www.gnu.org/software/grub/ and, on 
RHEL systems, /usr/share/info/grub.info.

 5.8.3.3 Boot process

The boot process consists of the following steps when the CPU is powered on or reset:

1. The BIOS probes the hardware, establishes which devices are present, and runs the Power-On 
Self Test (POST).  BIOS is not part of the TOE.

2. The BIOS initializes hardware devices and makes sure they operate without IRQ or I/O port 
conflicts.

3. The BIOS searches for the operating system to boot in an order predefined by the BIOS setting. 
Once a valid device is found, the BIOS copies the contents of its first sector containing the boot 
loader into RAM, and starts executing the code just copied.

4. The boot loader is invoked by BIOS to load the kernel and the initial RAM file system into the 
system’s Random Access Memory (RAM). It then jumps to the setup() code.

5. The setup() function reinitializes the hardware devices in the computer and sets up the 
environment for the execution of the kernel program. The setup() function initializes and 
configures hardware devices, such as the keyboard, video card, disk controller, and floating point 
unit.

6. The boot loader reprograms the Programmable Interrupt Controller and maps the 16 hardware 
interrupts to the range of vectors from 32 to 47. The boot loader switches the CPU from Real 
Mode to Protected Mode and then jumps to the startup_32() function.

7. The boot loader initializes the segmentation registers and provisional stack.  It fills the area of 
uninitialized data of the kernel with zeros.

8. The boot loader decompresses the kernel, moves it into its final position at 0x00100000, and 
jumps to that address.

9. The boot loader calls the second startup_32() function to set the execution environment for 
process 0.

10. The boot loader initializes the segmentation registers.

11. The boot loader sets the kernel mode stack for process 0.

12. The boot loader initializes the provisional Page Tables and enables paging.

13. The boot loader fills the bss segment of the kernel with zeros.

14. The boot loader sets the IDT with null interrupt handlers.  It puts the system parameters obtained 
from the BIOS and the parameters passed to the operating system into the first page frame.

15. The boot loader identifies the model of the processor.  It loads the gdtr and idtr registers with the 
addresses of the Global Descriptor Table and Interrupt Descriptor Table, and jumps to the 
start_kernel() function.

16. start_kernel() completes the kernel initialization by initializing Page Tables, Memory Handling 
Data Structures, IDT tables, the slab allocator (described in Section 5.4.12), system date, and 
system time.
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17. The boot loader uncompress the initial initrd RAM file system, mounts it, and then 
executes /linuxrc.

18. The boot loader unmounts initrd, mounts the root file system, and executes /sbin/init. It resets the 
pid table to assign process ID one to the init process.

19. /sbin/init determines the default run level from /etc/inittab and performs the following basic 
system initialization by executing the script /etc/rc.d/rc.sysinit.

1. Allows an administrator to perform interactive debugging of the startup process by executing 
the /etc/sysconfig/init script.

2. Mounts the /proc special file system.

3. Mounts the /dev/pts special file system.

4. Executes /etc/rc.d/rc.local, which was set by an administrator to perform site-specific setup 
functions.

5. Performs run-level specific initialization by executing startup scripts defined in /etc/inittab. 
The scripts are named /etc/rc.d/rcX.d, where X is the default run level.  The default run level 
for a  RHEL system in the evaluated configuration is 3.  The following lists some of the 
initializations performed at run level 3.  

• Saves and restores the system entropy tool for higher quality random number generation.

• Configures network interfaces.

• Starts the system logging daemons.

• Starts the sshd daemon.

• Starts the crond daemon.

• Probes hardware for setup and configuration.

• Starts the agetty program.

For more detail about services started at run level 3, refer to the scripts in /etc/rc.d/rc3.d on a 
RHEL system.

For detailed information about the boot process, see http://tldp.org/HOWTO/Linux-Init-
HOWTO.html#toc1.

 Figure 5-81 schematically describes the boot process of System x servers.
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Figure 5-81: System x Red Hat Enterprise Linux boot sequence



 5.8.4 System p
This section briefly describes the system initialization process for System p servers.

 5.8.4.1 Boot methods

RHEL supports booting from a hard disk or from a CD-ROM.  CD-ROM boots are used for installation 
and to perform diagnostics and maintenance.  A typical boot is from a boot image on the local hard disk.

 5.8.4.2 Boot loader

A boot loader is the first program that is run after the system completes the hardware diagnostics setup in 
the firmware.  The boot loader is responsible for copying the boot image from hard disk and then 
transferring control to it.  System p systems boot using a boot loader called Yaboot, which is an 
abbreviation of Yet Another Boot Loader.  Yaboot is an OpenFirmware boot loader for open firmware-
based machines.  Yaboot a part of the TSF.  For detailed information on Yaboot, see 
http://penguinppc.org/bootloaders/yaboot/.

 5.8.4.3 Boot process

For an individual computer, the boot process consists of the following steps when the CPU is powered on 
or reset:

1. The system runs power-on self tests.

2. Yaboot loads the kernel into a contiguous block of real memory and gives control to it, with 
relocation disabled.

3. Yaboot interacts with OpenFirmware and determines the system configuration, including real 
memory layout and the device tree.

4. Yaboot instantiates the Run-Time Abstraction Services (RTAS), a firmware interface that allows 
the operating system to interact with the hardware platform without learning details of the 
hardware architecture.

5. Yaboot relocates the kernel to real address 0x0.

6. Yaboot creates the initial kernel stack and initializes TOC and NACA pointers.

7. Yaboot builds the hardware page table (HPT) and the segment page table (STAB) to map real 
memory from 0x0 to HPT itself.

8. Yaboot enables relocation.

9. Yaboot starts kernel initialization by invoking start_kernel().

10. start_kernel() completes the kernel initialization by initializing Page Tables, Memory Handling 
Data Structures, IDT tables, the slab allocator (described in Section 5.4.12), system date, and 
system time.

11. Yaboot uncompresses the initial initrd RAM file system, mounts it, and then executes /linuxrc.

12. Yaboot unmounts initrd, mounts the root file system, and executes /sbin/init.  Yaboot resets the 
pid table to assign process ID one to the init process.

13. /sbin/init determines the default run level from /etc/inittab and performs the following basic 
system initialization by executing the /etc/rc.d/rc.sysinit script.
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1. Yaboot allows an administrator to perform interactive debugging of the startup process by 
executing the /etc/sysconfig/init script.

2. Mounts the /proc special file system.

3. Mounts the /dev/pts special file system.

4. Executes /etc/rc.d/rc.local, which was set by an administrator to perform site-specific setup 
functions.  Performs run-level specific initialization by executing startup scripts defined 
in /etc/inittab.  The scripts are named /etc/rc.d/rcX.d, where X is the default run level.  The 
default run level for a RHEL system in the evaluated configuration is 3.  Following are some 
of the initializations performed at run level 3.  

• Saves and restores the system entropy tool for higher quality random number generation.

• Configures network interfaces.

• Starts the system logging daemons.

• Starts the sshd daemon.

• Starts the crond daemon.

• Probes hardware for setup and configuration.

• Starts the agetty program.

For more details about services started at run level 3, see the scripts in /etc/rc.d/rc3.d on an 
RHEL system.

Figure 5-82 schematically describes the boot process of System p servers.
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 5.8.4.4 System p in LPAR

RHEL runs in a logical partition on a System p system.  The hypervisor program creates logical partitions, 
and interacts with actual hardware and provides virtual versions of hardware to operating systems running 
in different logical partitions. As part of an Initial Program Load, the hypervisor performs certain 
initializations, described in the following sections, before handing control over to the operating system.
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 5.8.4.5 Boot process

For an individual computer, the boot process consists of the following steps when the CPU is powered on 
or reset:

1. The hypervisor assigns memory to the partition as a 64 MB contiguous load area and the balance 
in 256 KB chunks.

2. The boot loader loads the RHEL kernel into the load area.

3. The boot loader provides system configuration data to the RHEL kernel via several data areas 
provided within the kernel.

4. The boot loader sets up hardware translations to the RHEL kernel space address 0xc000 for the 
first 32 MB of the load area.

5. The boot loader gives control to the RHEL kernel with relocation enabled.

6. The boot loader builds the msChunks array to map the kernel view of real addresses to the actual 
hardware addresses.

7. The boot loader builds an event queue, which is used by the hypervisor to communicate I/O 
interrupts to the partition.

8. The boot loader opens a connection to a hosting partition through the hypervisor to perform any 
virtual I/O.

9. The boot loader starts kernel initialization by invoking start_kernel().

10. start_kernel() completes the kernel initialization by initializing Page Tables, Memory Handling 
Data Structures, IDT tables, slab allocator (described in Section 5.4.12), system date, and system 
time.

11. The boot loader uncompresses the system initrd initial RAM file, mounts it, and then 
executes /linuxrc.

12. The boot loader unmounts initrd, mounts the root file system, and executes /sbin/init.  Resets the 
pid table to assign process ID one to the init process.

13. /sbin/init determines the default run level from /etc/inittab and performs the following basic 
system initialization by executing the script /etc/rc.d/rc.sysinit:

1. Allows an administrator to perform interactive debugging of the startup process by executing 
the /etc/sysconfig/init script.

2. Mounts the /proc special file system.

3. Mounts the /dev/pts special file system.

4. Executes /etc/rc.d/rc.local, which was set by an administrator to perform site-specific setup 
functions.

5. Performs run-level specific initialization by executing startup scripts defined in /etc/inittab. 
The scripts are named /etc/rc.d/rcX.d, where X is the default run level.  The default run level 
for a typical RHEL system is 3.  The following lists some of the initializations the system 
performs at run level 3.  

• Saves and restores the system entropy tool for higher quality random number generation.

• Configures network interfaces.

• Starts the system logging daemons.

• Starts the sshd daemon.
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• Starts the crond daemon.

• Probes hardware for setup and configuration.

• Starts the agetty program.

For more details about services started at run level 3, see the scripts in /etc/rc.d/rc3.d on a 
RHEL system.

Figure 5-83 schematically shows the boot process of System p LPARs.
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 5.8.5 System z
This section briefly describes the system initialization process for System z servers. 

 5.8.5.1 Boot methods

Linux on System z supports three installation methods:  native, LPAR, and z/VM guest installations. 
RHEL only supports z/VM guest installation.  The process described below corresponds to the z/VM 
guest mode.  

The boot method for the RHEL guest partition involves issuing an Initial Program Load (IPL) instruction 
to the Control Program (CP), which loads the kernel image from a virtual disk (DASD) device.  The zipl 
Linux utility is responsible for creating the boot record used during the IPL process.

 5.8.5.2 Control program

On a System z system, RHEL runs in as a guest of the z/VM operating system.  The control program, 
which is the System z hypervisor, interacts with real hardware and provides RHEL with the same 
interfaces that real hardware would provide.  As part of the IPL, the control program performs 
initializations before handing control over to the operating system.

 5.8.5.3 Boot process

For an individual computer, the boot process consists of the following steps when the CPU is powered on 
or reset:

1. For an individual RHEL guest partition, on issuing an IPL instruction, the CP reads the boot 
record written to the DASD virtual disk by the zipl utility.

2. Based on the boot record, CP loads the RHEL kernel image into memory and jumps to the 
initialization routine, handing control over to the RHEL OS code.

3. zipl auto-detects all the devices attached to the system.

4. zipl obtains information about the CPUs.

5. zipl obtains information about disk devices and disk geometry.

6. zipl obtains information about network devices.

7. zipl jumps to the start_kernel() function to continue kernel data structure initialization.

8. start_kernel() completes the kernel initialization by initializing Page Tables, Memory Handling 
Data Structures, IDT tables, slab allocator (described in Section 5.4.12), system date, and system 
time.

9. zipl uncompresses the initrd initial RAM file system, mounts it, and then executes /linuxrc.

10. zipl unmounts initrd, mounts the root file system, and executes /sbin/init.  zipl resets the pid table 
to assign process ID one to the init process.

11. /sbin/init determines the default run level from /etc/inittab and performs the following basic 
system initialization by executing the script /etc/rc.d/sysyinit:

1. Allows an administrator to perform interactive debugging of the startup process by executing 
the /etc/sysconfig/init script.

2. Mounts the /proc special file system.

3. Mounts the /dev/pts special file system.
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4. Executes /etc/rc.d/rc.local, which was set by an administrator to perform site-specific setup 
functions.

5. Performs run-level specific initialization by executing startup scripts defined in /etc/inittab. 
The scripts are named  /etc/rc.d/rcX.d, where X is the default run level.  The default run level 
for a  RHEL system in the evaluated configuration is 3.  The following lists some of the 
initializations performed at run level 3.  

• Saves and restores the system entropy tool for higher quality random number generation.

• Configures network interfaces.

• Starts the system logging daemons.

• Starts the sshd daemon.

• Starts the crond daemon.

• Probes hardware for setup and configuration.

• Starts the agetty program.

For more details about services started at run level 3, see the scripts in /etc/rc.d/rc3.d on an 
RHEL system.

Figure 5-84 describes the boot process for RHEL as a z/VM guest.
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 5.8.6 eServer 326
This section briefly describes the system initialization process for eServer 326 servers. For detailed 
information about system initialization, see AMD64 Architecture, Programmer’s Manual Volume 2: 
System Programming, at http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/24593.pdf.

 5.8.6.1 Boot methods

RHEL supports booting from a hard disk, a CD-ROM, or a floppy disk.  CD-ROM and floppy disk boots 
are used for installation and to perform diagnostics and maintenance.  A typical boot is from a boot image 
on the local hard disk.
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 5.8.6.2 Boot loader

After the system completes the hardware diagnostics setup in the firmware, the first program that runs is 
the boot loader.  The boot loader is responsible for copying the boot image from the hard disk and then 
transferring control to that boot image. RHEL supports GRUB, which lets you set pointers in the boot 
sector to the kernel image and to the RAM file system image.

 5.8.6.3 Boot process

The boot process consists of the following steps when the CPU is powered on or reset:

1. The BIOS probes hardware, establishes which devices are present, and runs Power-On Self Test 
(POST). BIOS is not part of TOE.

2. The BIOS initializes hardware devices and makes sure they operate without IRQ or I/O port 
conflicts.

3. The BIOS searches for the operating system to boot in an order predefined by the BIOS setting. 
Once a valid device is found, the BIOS copies the contents of its first sector, containing the boot 
loader, into RAM and starts executing that code.

4. The boot loader is invoked by the BIOS to load the kernel and the initial RAM file system into 
the system’s RAM.  It then jumps to the setup() code.

5. The setup() function reinitializes the hardware devices in the computer and sets the environment 
for the execution of the kernel program. The setup() function initializes and configures hardware 
devices, such as the keyboard, video card, disk controller, and floating point unit.

6. The boot loader reprograms the Programmable Interrupt Controller and maps the 16 hardware 
interrupts to the range of vectors from 32 to 47.  The boot loader switches the CPU from Real 
Mode to Protected Mode and then jumps to the startup_32() function.

7. The boot loader initializes the segmentation registers and provisional stack.  It fills the area of 
uninitialized data of the kernel with zeros.

8. The boot loader decompresses the kernel, moves it into its final position at 0x00100000, and 
jumps to that address.

9. The boot loader calls the second startup_32() function to set the execution environment for 
process 0.

10. The boot loader prepares to enable long mode by enabling Physical Address Extensions and Page 
Global Enable.

11. The boot loader sets early boot stage 4 level page tables, enables paging, and Opteron long mode. 
It jumps to reach_compatibility_mode(), loads GDT with 64-bit segment, and starts operating in 
64-bit mode.

12. The boot loader initializes the segmentation registers.

13. The boot loader sets up the kernel mode stack for process 0.

14. The boot loader fills the bss segment of the kernel with zeros.

15. The boot loader sets the IDT with null interrupt handlers. It puts the system parameters obtained 
from the BIOS and the parameters passed to the operating system into the first page frame.

16. The boot loader identifies the model of the processor.  It loads the gdtr and idtr registers with the 
addresses of the Global Descriptor Table (GDT) and Interrupt Descriptor Table (IDT), and jumps 
to the x86_64_start_kernel() function.
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17. x86_64_start_kernel() completes the kernel initialization by initializing Page Tables, Memory 
Handling Data Structures, IDT tables, the slab allocator (described in Section 5.4.12), system 
date, and system time.

18. The boot loader uncompress the initrd initial RAM file system, mounts it, and then 
executes /linuxrc.

19. The boot loader unmounts initrd, mounts the root file system, and executes /sbin/init.  It resets the 
pid table to assign process ID one to the init process.

20. /sbin/init determines the default run level from /etc/inittab and performs the following basic 
system initialization by executing the /etc/rc.d/rc.sysinit script.

1. Allows an administrator to perform interactive debugging of the startup process by executing 
the /etc/sysconfig/init script.

2. Mounts the /proc special file system.

3. Mounts the /dev/pts special file system.

4. Executes /etc/rc.d/rc.local, which was set by an administrator to perform site-specific setup 
functions.

5. Performs run-level specific initialization by executing startup scripts defined in /etc/inittab. 
The scripts are named /etc/rc.d/rcX.d, where X is the default run level. The default run level 
for a typical RHEL system is 3.  The following are some of the initializations the system 
performs at run level 3.  

• Saves and restores the system entropy tool for higher quality random number generation.

• Configures network interfaces.

• Starts the system logging daemons.

• Starts the sshd daemon.

• Starts the crond daemon.

• Probes hardware for setup and configuration.

• Starts the agetty program.

For more details about services started at run level 3, see the scripts in /etc/rc.d/rc3.d on an RHEL 
system.

For detailed information about the boot process, see http://tldp.org/HOWTO/Linux-Init-
HOWTO.html#toc1.

Figure 5-85 schematically shows the boot process of eServer 326.
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 5.9 Identification and authentication
When a user possesses an identity in a system in the form of a login ID, that user has  Identification. 
Identification establishes user accountability and access restrictions for actions on a system. 
Authentication is verification that the user’s claimed identity is valid, and is implemented through a user 
password at login time. 

All discretionary access-control decisions made by the kernel are based on the process’s user ID 
established at login time and all mandatory access control decisions made by the kernel are based on the 
process domain established through login, which make the authentication process a critical component of 
a system. 

The TOE implements identification and authentication through a set of trusted programs and protected 
databases. These trusted programs use an authentication infrastructure called the Pluggable Authentication 
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Module (PAM).  PAM allows different trusted programs to follow a consistent authentication policy. 
PAM provides a way to develop programs that are independent of the authentication scheme.  These 
programs need authentication modules to be attached to them at run-time in order to work.  Which 
authentication module is to be attached is dependent upon the local system setup and is at the discretion of 
the local system administrator. 

This section briefly describes PAM, protected databases and their functions, trusted programs and their 
high-level design implementation, and interaction of the identification and authentication subsystem with 
audit.  For more detailed information, see Linux System Security, 2nd Edition, by Scott Mann, Ellen 
Mitchell, and Michell Krell; and, the Linux Security HOWTO at http://www.tldp.org/HOWTO/Security-
HOWTO/index.html by Kevin Fenzi and Dave Wreski.

 5.9.1 Pluggable Authentication Module
PAM is responsible for the identification and authentication subsystem.  PAM provides a centralized 
mechanism for authenticating all services.  PAM allows for limits on access to applications and alternate, 
configurable authentication methods.  For more detailed information about PAM, see the PAM project 
Web site at http://www.kernel.org/pub/linux/libs/pam.

 5.9.1.1 Overview

PAM consists of a set of shared library modules, which provide appropriate authentication and audit 
services to an application.  Applications are updated to offload their authentication and audit code to 
PAM, which allows the system to enforce a consistent identification and authentication policy, as well as 
to generate appropriate audit records.  The following trusted programs are enhanced to use PAM:

• login

• passwd

• su

• useradd, usermod, userdel

• groupadd, groupmod, groupdelsshd

• vsftpd

• chage

• chfn

• chsh

• newrole

A PAM-aware application generally goes through the following steps:

1. The application makes a call to PAM to initialize certain data structures.

2. The PAM module locates the configuration file for that application 
from /etc/pam.d/application_name and obtains a list of PAM modules necessary for servicing that 
application.  If it cannot find an application-specific configuration file, then it uses /etc/pam.d/.

3. Depending on the order specified in the configuration file, PAM loads the appropriate modules. 
Refer to Section 5.14 for the mechanics of loading a shared library.

4. The pam_loginuid.so object associates the login uid with the login session.
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5. The authentication module code performs the authentication, which, depending on the type of 
authentication, may require input from the user.

6. Each authentication module performs its action and relays the result back to the application.

7. The PAM library is modified to create a USER_AUTH type of audit record to note the success or 
failure from the authentication module.

8. The application takes appropriate action based on the aggregate results from all authentication 
modules.

 5.9.1.2 Configuration terminology

PAM configuration files are stored in /etc/pam.d.  Each application is configured with a file of its own in 
the /etc/pam.d directory.  For example, the login configuration file is /etc/pam.d/login, and the passwd 
configuration file is /etc/pam.d/passwd.  Each configuration file can have four columns that correspond to 
the entry field’s module-type, control-flag, module-path, and arguments.

1. module-type:  Module types are auth, which tells the application to prompt users for their 
passwords to determine that they are whom they claim to be; account, which verifies various 
account parameters, such as password age; session, which manages resources associated with a 
service by running specified code at the start and end of the session; and, password, which 
updates users’ authentication tokens.

2. control-flag: Control flags specify the action to be taken based on the result of a PAM module 
routine.  When multiple modules are stacked for an application, the control flag specifies the 
relative importance of the modules in the stack.  

Control flags take a value, such as required, which indicates that the module must return success 
for service to be granted; requisite, which is similar to required, but PAM executes the rest of the 
module stack before returning failures to the application; optional, which indicates that the 
module is not required; and, sufficient, which indicates that if the module is successful, there is no 
need to check other modules in the stack.

3. module_path:  Module path specifies the exact path name of the shared library module, or only 
the name of the module in /lib/security.

4. arguments:  The argument field passes arguments or options to PAM.  Arguments can take values 
such as debug, to generate debug output, or no_warn, to prevent PAM from passing any warning 
messages to the application.  On the evaluated RHEL system, the md5 option allows longer 
passwords than the usual UNIX limit of eight characters.

 5.9.1.3 Modules

RHEL is configured to use the following PAM modules:

• pam_unix.so:  Supports all four module types, and provides standard password-based 
authentication.  pam_unix.so uses standard calls from the system libraries to retrieve and set 
account information as well as to perform authentication.  Authentication information about 
RHEL is obtained from the /etc/passwd and /etc/shadow files.  To perform the authentication, the 
pam_unix module calls the unix_chkpwd helper program (see section 5.11.1.5.6.2).

• pam_stack.so:  pam_stack.so module performs normal password authentication through recursive 
stacking of modules.  The argument service=system-auth passed to the pam_stack.so module 
indicates that the user must pass through the PAM configuration for system authentication, found 
in /etc/pam.d/system-auth.

• pam_passwdqc.so:  Performs additional password strength checks.  For example, it rejects 
passwords such as “1qaz2wsx” that follow a pattern on the keyboard. In addition to checking 
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regular passwords it offers support for passphrases and can provide randomly generated 
passwords.

• pam_env.so:  Loads a configurable list of environment variables, and is configured with 
the /etc/security/pam_env.conf file.

• pam_shells.so:  Authentication is granted if the user’s shell is listed in /etc/shells.  If no shell is 
in /etc/passwd (empty), then /bin/sh is used.  It also checks to make sure that /etc/shells is a plain 
file and not world-writable.

• pam_limits.so:  This module imposes user limits on login.  It is configured using 
the /etc/security/limits.conf file.  Each line in this file describes a limit for a user in the form: 
<domain> <type> <item> <value>.  No limits are imposed on UID 0 accounts.

• pam_rootok.so:  This module is an authentication module that performs one task: if the id of the 
user is 0, then it returns PAM_SUCCESS.  With the sufficient /etc/pam.conf control flag, it can 
be used to allow password-free access to some service for root.

• pam_xauth.so:  This module forwards xauth cookies from user to user.  Primitive access control is 
provided by ~/.xauth/export in the invoking user's home directory, and ~/.xauth/import in the 
target user's home directory.  For more information, refer 
to /usr/share/doc/pam-0.75/txts/README.pam_xauth on an RHEL system.

• pam_wheel.so:  Permits root access only to members of the wheel group.  By default, 
pam_wheel.so permits root access to the system if the applicant user is a member of the wheel 
group.  First, the module checks for the existence of a wheel group.  Otherwise, the module 
defines the group with group ID 0 to be the wheel group.  The TOE is configured with a wheel 
group of GID = 10.

• pam_nologin.so:  Provides standard UNIX nologin authentication. If the /etc/nologin file exists, 
only root is allowed to log in; other users are turned away with an error message (and the module 
returns PAM_AUTH_ERR or PAM_USER_UNKNOWN). All users (root or otherwise) are 
shown the contents of /etc/nologin.

• pam_loginuid.so:  Sets the login uid for the process that was authenticated. See Section 5.5.7.

• pam_securetty.so:  Provides standard UNIX securetty checking, which causes authentication for 
root to fail unless the calling program has set PAM_TTY to a string listed in the /etc/securetty 
file.  For all other users, pam_securetty.so succeeds.

• pam_tally2.so:  Keeps track of the number of login attempts made and denies access based on the 
number of failed attempts, which is specified as an argument to pam_tally2.so module (deny  = 
5). This is addressed at the account module interface.  The pam_tally2 program allows 
administrative users to examine and control the pam_tally2 PAM module's tally file.

• pam_listfile.so:  Allows the use of ACLs based on users, ttys, remote hosts, groups, and shells.

• pam_deny.so:  Always returns a failure.

• pam_selinux.so:  The pam_selinux PAM offers role and level selection and sets the default 
security context for the session managed by PAM.  pam_selinux prompts users to enter a non-
default role and level, and calls into the SELinux libraries to obtain the default security context 
for the next executed shell in the session.  It is not used for multilevel SSH sessions.  Role 
selection for SSH sessions uses the extended SSH syntax described in Section 5.10.2.

• pam_namespace.so:  Allows configuration of polyinstantiated directories using a per-session 
private namespace.  A polyinstantiated directory provides an instance of itself to a process based 
on the user ID and/or the security context of the process.  Directories to be polyinstantiated, 
location, and names of instance directories and the method used for polyinstantiation can be 
configured by modifying the /etc/security/namespace.conf file.  The pam_namespace module 
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relies on the per-session private namespace feature. pam_namespace invokes the unshare(2) 
system call disassociates from the parent namespace, creates an instance directory as configured 
by the namespace.conf, assigns the security context to what is returned by the 
security_compute_member(3) library routine, and binds it on top of the directory to 
polyinstantiate.  security_compute_member is an interface to the system security policy to query 
its type member rules. 
For additional information about instance directory configuration, refer to the namespace.conf 
man page. For additional information about the unshare(2) system call, refer to the 
Documentation/unshare.txt file in the kernel source on a RHEL system, at 
file:///usr/src/redhat/BUILD/kernel­2.6.18/linux­2.6.18.ppc64/Documentation/unshare.txt (if the 
kernel source RPM is installed and rpmbuild has been invoked on its spec file with the “-bp” 
option).

For detailed information about all of these modules, refer 
to /usr/share/doc/pam-0.75/txts/README.ModuleName on a RHEL system.

 5.9.2 Protected databases
The following databases are consulted by the identification and authentication subsystem during user 
session initiation:

• /etc/passwd stores the login name, user ID, primary group ID, real name, home directory, and 
shell for all system users.  Each user’s entry occupies one line, and fields are separated by a colon 
(:).  The file is owned by the root user and root group, and its mode is 644.

• /etc/security/opasswd stores X number of most recent passwords in order to force password 
change history and keep the users from alternating between the same password too frequentlyor 
all system users.  (Remember = X; this is one of the options supported by pam_unix.so.)  The file 
is owned by the root user and root group, and its mode is 644.

• /etc/security/namespace.conf is the configuration file for the pam_namespace pam module. 
Namespace.conf specifies which directories are polyinstantiated, how they are polyinstantiated, 
location and names of instance directories, and overrides users for whom polyinstantiation is not 
performed.  The file is owned by the root user and root group, and its mode is 644.

• /etc/security/namespace.init is an executable script.  If it exists, it is invoked every time a new 
instance directory is created by the pam_namespace PAM to initialize the namespace.  The script 
receives polyinstantiated directory path and the instance directory path as its arguments.  The file 
is owned by the root user and the root group, and its mode is 755.

• /etc/group  stores group names, group IDs, supplemental group IDs, and group memberships for 
system groups.  Each group’s entry occupies one line, and fields are separated by a colon (:). The 
file is owned by the root user and root group, and its mode is 644.

• /etc/shadow stores the user name, hashed password, last password change time (in days since 
epoch), minimum number of days that must pass before password can be changed again, 
maximum number of days after which the password must be changed, number of days before the 
password expires when the user is warned, number of days after the password expires that the 
account is locked, and total lifetime of the account for all system users.  The MD5 hashing 
algorithm is used to build the password checksum.  The file is owned by the root user and shadow 
group, and its mode is 400.

• /etc/gshadow is the group counterpart of the shadow file.  For all system groups, it stores group 
names, group hashed passwords, and membership information.  The MD5 hashing algorithm is 
used to build the password checksum.  The file is owned by the root user and shadow group, and 
its mode is 400.  Group passwords are not used in the TOE.
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• /var/log/lastlog stores the time and date of the last successful login for each user.  The file is 
owned by the root user and tty group, and its mode is 644.

• /var/log/tallylog maintains the count of login failures and the limits for each user account. The file 
is a fixed length record, indexed by numerical UID.  Each record contains the count of login 
failures since the last successful login, the maximum number of failures before the account is 
disabled, the line the last login failure occurred on, and the date the last login failure occurred. 
The file is owned by the root user and root group, and its mode is 644.

• /etc/login.defs  is a database that defines various configuration options for the login process, such 
as minimum and maximum user ID for automatic selection by the command useradd, minimum 
and maximum group ID for automatic selection by the command groupadd, password aging 
controls, default location for mail, and whether to create a home directory when creating a new 
user.  The file is owned by the root user and root group, and its mode is 644.

• /etc/securetty lists tty connections from which the root user can log in.  Device names are listed 
one per line, without the leading /dev/.  The file is owned by the root user and root group, and its 
mode is 644.

• /var/run/utmp stores information about who is currently using the system.  The utmp file contains 
a sequence of entries with the name of the special file associated with the user's terminal, the 
user's login name, and the time of login in the form of time.  The file is owned by the root user 
and tty group, and its mode is 664.

• /var/log/wtmp records all logins and logouts.  Its format is exactly like utmp except that a null 
user name indicates a logout on the associated terminal.  Furthermore, the terminal name tilde (~) 
with a user name of "shutdown" or "reboot" indicates a system shutdown or reboot, and the pair 
of terminal names "|"/"}" logs the old new system time when the command date changes it.  The 
file is owned by the root user and tty group, and its mode is 664.

• /etc/vsftpd.ftpusers is a text file that contains a list of users who cannot log in using the File 
Transfer Protocol (FTP) server daemon.  The file is owned by the root user and root group, and its 
mode is 644.

• /etc/selinux/* is a directory that contains several configuration files that are used by the SELinux 
LSM modules.  The files include information such as the default role and default sensitivity level 
of a new user session, which roles give access to which domains, and which roles are accessible 
from other roles.  The directory is owned by the root user and root group, and its mode is 755.

 5.9.3  Access control rules

 5.9.3.1 DAC

Discretionary Access Checks (DAC) access control rules specify how a certain process with appropriate 
DAC security attributes can access an object with a set of DAC security attributes.  In addition, DAC 
access control rules specify how subject and object security attributes transition to new values and under 
what conditions.  DAC access control lists are described in detail in Section 5.1.5.2.

 5.9.3.2 Software privilege

Software privilege for DAC policy is based on the user ID of the process. At any time, each process has 
an effective user ID, an effective group ID, and a set of supplementary group IDs.  These IDs determine 
the privileges of the process.  A process with a user ID of 0 is a privileged process, with capabilities of 
bypassing the access control policies of the system.  The root user name is commonly associated with user 
ID 0, but there can be other users with this ID.
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Additionally, the RHEL kernel has a framework for providing software privilege for DAC policy through 
capabilities.  These capabilities, which are based on the POSIX.1e draft, allow the breakup of the kernel 
software privilege associated with user ID zero into a set of discrete privileges based on the operation 
being attempted.  

For example, if a process is trying to create a device special file by invoking the mknod() system call, 
then instead of checking to ensure that the user ID is zero, the kernel checks to ensure that the process is 
capable of creating device special files.  In the absence of special kernel modules that define and use 
capabilities, as is the case with the TOE, capability checks revert back to granting kernel software 
privilege based on the user ID of the process. 

 5.9.3.3 MAC

With Mandatory Access Control (MAC), it is the system security policy, unlike the owner in DAC, that 
controls who should be allowed access to what information.  The RHEL mandatory access control model 
is implemented using SELinux.  SELinux provides a general-purpose MAC enforcement framework using 
Type Enforcement (TE).  The SELinux MAC model completely separates the enforcement engine from 
the security policy.  The enforcement engine extends the traditional TE mechanism to support security 
policies that implement role-based access control and Bell-LaPadula style hierarchical Multilevel Security 
(MLS).  This section describes the enforcement engine of the RHEL MAC model by using the subjects 
and objects for which the mandatory access control is performed, the attributes that are used for this 
check, access control rules, and override rules.  

 5.9.3.3.1 Subjects and objects

Subjects in RHEL are regular processes and kernel threads.  The task_struct structure represents both of 
them.  Kernel threads run only in the kernel mode and the MAC policy does not constrain them.  All 
named objects such as regular files, character and block files, directories, sockets, and IPC objects are 
under the control of the MAC policy.  In addition to named objects, the MAC policy can also control 
access to certain kernel data structures such as file descriptors, IPC messages, and file systems to allow 
granular expression of the system security policy.

 5.9.3.3.2 Attributes

Subject and object security attributes, also referred to as the security context, are of the same format. In 
user-readable and external form, the security context is an ASCII string. 

 5.9.3.3.3 Role, level, and clearance assignment

Login programs map userids to SELinux users and assign a role and an MLS level.  There are different 
mechanisms for assigning these security attributes to a subject depending on the login program.  If a user 
logs in at a directly attached terminal, the pam_selinux PAM module will prompt for a role and level 
selection.  If the user logs in via SSH, the extended SSH syntax for role and level selection may be used to 
select a role and level.  If the user opts not to select a role or level, defaults are assigned using 
the /etc/selinux/mls/contexts/users/selinux_user file, or if that does not exist, the 
/etc/selinux/mls/contexts/default_contexts file.  The context files contain mappings between login process 
contexts and the context into which the user should be placed upon successful login.  The first usable 
context is selected.

An SELinux user and MLS range are associated with a subject by mapping the userid to attributes 
contained in the /etc/selinux/mls/modules/seusers file.  This is done via the semanage command, which 
edits the seusers file on behalf of administrative users using libsemanage, and then rebuilds and reloads 
the SELinux MLS policy.  The seusers file consists of tuples of the form 
userid:selinux_user:low_level:high_level.  The userid is assigned an SELinux user, which in turn maps the 
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userid to one or more permitted SELinux roles.  If the userid matches none of the entries, then the 
attributes from the default entry are used.  SELinux roles are defined in the SELinux MLS policy and 
provide access to SELinux TE domains.

For more information, see “SELinux applications: Login Process” at 
http://danwalsh.livejournal.com/2983.html.

 5.9.4 Trusted commands and trusted processes
The Identification and Authentication subsystem contains the agetty and mingetty trusted processes and 
the gpasswd, login, passwd, su, and newrole trusted commands.

 5.9.4.1 agetty

agetty, the alternative Linux getty, is invoked from /sbin/init when the system transitions from a single-
user mode to a multi-user mode.  agetty opens a tty port, prompts for a login name, and invokes /bin/login 
to authenticate.  Refer to the agetty man page for more detailed information. agetty follows these steps:

1. Sets language.

2. Parses command-line setup options such as timeout and the alternate login program.

3. Updates the utmp file with tty information.

4. Initializes terminal I/O characteristics.  Examples are modems or regular terminals.

5. Prompts for login name.

6. Executes the login program.

The steps that are relevant to the identification and authorization subsystem are step 5, which prompts for 
the user’s login name, and step 6, which executes the login program. The administrator can also use a 
command-line option to terminate the program if a user name is not entered within a specific amount of 
time.

 5.9.4.2 gpasswd

The gpasswd program administers the /etc/group and /etc/gshadow files.  gpasswd allows system 
administrators to designate group administrators for a particular group.  Refer to the gpasswd man page 
for more detailed information.  Group passwords are not used on the TOE.

 5.9.4.3 login

The login program is used to authenticate a user who signs in to the TOE.  If root is trying to log in, the 
program makes sure that the login attempt is being made from a secure terminal listed in /etc/securetty. 
The login program prompts for the password and turns off the terminal echo in order to prevent displaying 
the password as it is being typed by the user.  login then verifies the password for the account.  If an initial 
password is not set for a newly created account, the user is not allowed to log in to that account. 
Unsuccessful login attempts are tallied, and access is denied, if the number of failed attempts exceeds the 
number specified as argument to the pam_tally2.so module (deny=5).  Once the password is successfully 
verified, various password aging restrictions, which are set in /etc/login.defs, are checked.  If the 
password has expired, the login program requests the user to change his or her password.  If the password 
age is satisfactory, the program sets the user ID and group ID of the process, changes the current directory 
to the user’s home directory, and executes the shell specified in the /etc/passwd file.  Refer to the login 
man page for more detailed information. Login generally follows these steps:

1. Login sets language.
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2. Login parses command-line options.

3. Login checks the tty name.

4. Login sets the process group ID.

5. Login gets control of the tty by killing processes left on this tty.

6. Login calls Pam start() to initialize PAM data structures, including hostname and tty.

7. If a password is required and a username is not yet set, it prompts for a user name.

8. It calls pam_authenticate() in a loop to cycle through all configured methods.  Audit records are 
created with the success and failure result of each configured authentication method. 

9. If failed attempts exceed the maximum allowed, it exits.

10. Login performs account management by calling pam_acct_mgmt().

11. Login sets up the supplementary group list.

12. Login updates the utmp and wtmp files.

13. Login changes ownership of the tty to the login user.  When the user logs off, the ownership of 
the tty reverts back to root.

14. Login changes the access mode of the tty.

15. Login sets the primary group ID.

16. Login sets environment variables.

17. Login sets effective, real, and saved user IDs.

18. Login changes directories to the user’s home directory.

19. Login executes the shell.

 5.9.4.4 mingetty

mingetty, the minimal Linux getty, is invoked from /sbin/init when the system transitions from single-user 
mode to multi-user mode.  mingetty opens a pseudo tty port, prompts for a login name, and 
invokes /bin/login to authenticate.  Refer to the mingetty man page for more detailed information. 
mingetty follows these steps:

1. Sets language.

2. Parses command-line setup options such as timeout and the alternate login program.

3. Updates the utmp file with pseudo tty information.

4. Prompts for login name.

5. Executes the login program.

The steps that are relevant to the identification and authorization subsystem are step 4, which prompts for 
the user’s login name, and step 5, which executes the login program.  The administrator can also use a 
command-line option to terminate the program if a user name is not entered within a specific amount of 
time.

 5.9.4.5 newgrp

The newgrp command changes the group ID using the group password for authentication.  If run with a 
command, it runs the command as a child shell and control returns to the parent, whose GID remains 
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unaltered.  If run without a command argument, it executes an interactive shell.  If no group is specified, 
the GID from /etc/passwd is used.  For more information on newgrp, see the newgrp(8) man page.

newgrp typically follows these processing steps:

1. Opens audit.

2. Sets its locale and message catalog information.

3. Gets its own name.

4. Opens its log file.

5. Gets its own GID.

6. Initializes environment variable handling.

7. Gets its own passwd entry.

8. Exits if there is no passwd entry.

9. Processes the command line.

10. Gets the group name of the group.

11. Checks all groups with same GID for user membership.

12. Gets the shadow group name.

13. Checks to see if the user needs to authenticate to take on the new GID.

14. Prompts for a password if authentication is necessary.

15. Logs the result.

16. Sets up signals.

17. Forks a child.

18. Parent waits on child's return; child continues.

19. Adds the new GID to the group list.

20. Sets the GID.

21. Logs an audit record.

22. Starts a shell if the -c flag was specified.

23. Looks for the SHELL environment variable or, if SHELL is not set, defaults to /bin/sh.

24. Gets the basename of the shell for argv[0].

25. Closes the password and group files.

26. Changes to home directory if doing a login.

27. Logs an audit record.

28. Execs a shell with a command.

29. Closes its log.

30. Exits.

 5.9.4.6 newrole

newrole allows a user to switch role, domain, or current sensitivity label.  Refer to the newrole man page 
for more detailed information.  The users are authenticated via PAM.   Use of newrole in the TOE is 
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restricted to administrative users on terminals designated as secure in 
the /etc/selinux/mls/contexts/securetty_types file.

newrole generally follows these steps:

1. Handles command-line arguments.

2. Identifies if SELinux is enabled.

3. Authenticates the user through PAM:

1. Initializes PAM.

2. Checks user authentication.

3. Checks account authentication.

4. Verifies the specified shell.

5. Sets user permissions or capabilities for the new shell, and creates the new context.

6. Handles relabelling of tty such that the new role, domain, or level can continue to use the 
terminal. Just like the transition to the new context, the terminal relabel operation must also be 
authorized by the system security policy.

7. Verifies the tty context.

8. Executes a new shell with the specified context.

 5.9.4.7 passwd

passwd updates a user’s authentication tokens.  passwd is configured to work through the PAM API. 
passwd configures itself as a password service with PAM, and uses configured password modules to 
authenticate and then update a user’s password.  passwd turns off terminal echo, while the user is typing 
the old as well as the new password, in order to prevent the password from being displayed as it is being 
typed by the user.  Refer to the passwd man page for more detailed information.  passwd generally 
follows these steps.

1. Parses command-line arguments.

2. Handles requests for locking, unlocking, and clearing of passwords for an account.

3. If so requested, displays account status.

4. If so requested, updates password aging parameters

5. Reads new password from standard input.

6. Starts PAM session with a call to pam_start().

7. Calls pam_chauthtok() to perform password strength checks and to update the password.

8. Generates audit record indicating successful update of the password.

 5.9.4.8 su

su allows a user to switch identity.  su changes the effective and real user and group ID to those of the 
new user.  Refer to the su man page for more detailed information.  su generally follows these steps:

1. Sets language.

2. Sets up a variable indicating whether the application user is the root user.

3. Gets current tty name for logging.
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4. Processes command-line arguments.

5. Sets up the environment variable array.

6. Invokes pam_start() to initialize the PAM library, and to identify the application with a particular 
service name.

7. Invokes pam_set_item() to record the tty and user name.

8. Validates the user that the application invoker is trying to become.

9. Invokes pam_authenticate() to authenticate the application user.  Terminal echo is turned off 
while the user is typing his or her password.  Generates audit record to log the authentication 
attempt and its outcome.

10. Invokes pam_acct_mgmt() to perform module-specific account management.

11. If the application user is not root, it checks to make sure that the account permits su.

12. Makes new environment active.

13. Invokes setup_groups() to set primary and supplementary groups.

14. Invokes pam_setcred() to set parameters such as resource limits, console groups, and so on.

15. Becomes the new user by invoking change_uid().  For normal users, change_uid() sets the real 
and effective user ID.  If the caller is root, real and saved user ID are set as well.

 5.9.5 Interaction with audit
Trusted processes and trusted commands of the identification and authentication subsystem are 
responsible for setting the credentials for a process.  Once a user is successfully authenticated, these 
trusted processes and trusted commands associate the user’s identity to the processes, which are 
performing actions on behalf of the user.  

The audit subsystem tries to record security-relevant actions performed by users.  Because the user 
identity attributes such as UID can be changed by an appropriately privileged process, the audit subsystem 
in RHEL provides a mechanism by which actions can be associated, irrefutably, to a login user.  

This is achieved by extending the process task structure to contain a login id.  This login id can only be set 
once, and once set cannot be changed, regardless of process privileges.  Trusted processes and trusted 
programs that perform authentication set it.  Programs such as login, crond, and sshd, which authenticate a 
user and associate a UID with the user process, set this login ID to that UID corresponding to the login 
user.

 5.10 Network applications
This section describes the network applications subsystem.  The network applications subsystem contains 
the Secure Socket Layer (SSL) interface, and the sshd and vsftpd trusted processes, which interact with 
the PAM modules to perform authentication.  The network application subsystem also includes the ping 
program.  These trusted processes and trusted programs recognize different hosts in the LAN by their IP 
addresses or their names.  Host names are associated with IP addresses using the /etc/hosts file.

 5.10.1 OpenSSL Secure socket-layer interface
Network communications take place through well-known standards that form the network stack. While 
public standards allow different systems to communicate with each other, they also open up the possibility 
of various kinds of attacks. 
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Cryptography can be used to neutralize some of these attacks and to ensure confidentiality and integrity of 
network traffic.  Cryptography can also be used to implement authentication schemes using digital 
signatures.  The TOE supports a technology based on cryptography called OpenSSL.

OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer (SSL) versions 2 and 3, and 
Transport Layer Security (TLS) version 1 network protocols and related cryptography standards required 
by them. 

SSL, which is encryption-based, is a technology that provides message encryption, server authentication, 
message integrity, and optional client authentication. This section briefly describes the SSL protocol and 
how it is used to provide secure communication to and from an RHEL system.  For more detailed 
information about SSL, refer to the following:

• The Open SSL Web site at http://www.openssl.org/docs.

• The IBM Redbook TCP/IP Tutorial and Technical Overview, by Adolfo Rodriguez, et al. at 
http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf.

• “The TLS Protocol version 1.1” by Tim Dierks and Eric Rescorla at 
http://www.ietf.org/rfc/rfc2246.txt?number=2246.

• Internet Security Protocols: SSLeay & TLS, by Eric Young.

• Cryptography and Network Security Principles and Practice, 2nd Edition, by William Stallings.

SSL was originally designed by Netscape.  SSL version 3 was designed with public input. As SSL gained 
in popularity, a Transport Layer Security (TLS) working group was formed to submit the protocol for 
Internet standardization.  OpenSSL implements Secure Socket Layer (SSL versions 2 and 3) and 
Transport Layer Security (TLS version 1) protocols, as well as a full-strength general purpose 
cryptography library.  Because TLS is based on SSL, the rest of this section uses the term SSL to describe 
both the SSL and TLS protocols.  Where the protocols differ, TLS protocols are identified appropriately.

SSL is a socket-layer security protocol that is implemented at the transport layer.  SSL is a reliable 
connection-based protocol and therefore available on top of TCP but not UDP.
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 5.10.1.1 Concepts

SSL is used to authenticate endpoints and to secure the contents of the application-level communication. 
An SSL-secured connection begins by establishing the identities of the peers, and establishing an 
encryption method and key in a secure way.  Application-level communication can then begin.  All 
incoming traffic is decrypted by the intermediate SSL layer and then forwarded on to the application; 
outgoing traffic is encrypted by the SSL layer before transmission.

SSL uses encryption with symmetric keys for data transfer, encryption with asymmetric keys for 
exchanging symmetric keys, and one-way hash functions for data integrity.  The following sections 
briefly describe encryption and message-digest concepts, and how they are used to implement data 
confidentiality, data integrity, and the authentication mechanism.

 5.10.1.1.1 Encryption

Encryption is a process of disguising a message.  Encryption transforms a clear-text message into cipher 
text.

Decryption converts cipher text back into the original, comprehensible clear text.

Most encryption processes involve the use of an algorithm and a key.  For example, in the previous 
illustration, the algorithm was “replace alphabets by moving forward,” and the key was 2.
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Figure 5-88: Decryption

Figure 5-87: Encryption



Data confidentiality can be maintained by keeping the algorithm, the key, or both, secret from 
unauthorized people.  In most cases, including when using OpenSSL, the algorithm used is well known, 
but the key is protected from unauthorized people.

 5.10.1.1.1.1 Encryption with symmetric keys

A symmetric key, also known as a secret key, is a single key that is used for both encryption and 
decryption.  For example, key = 2 used in the above illustration is a symmetric key.  Only the parties 
exchanging messages have access to this symmetric key.

 5.10.1.1.1.2 Encryption with asymmetric keys

Asymmetric key encryption and decryption, also known as public key cryptography, involves the use of a 
key pair.  Encryption performed with one of the keys of the key pair can only be decrypted with the other 
key of the key pair.  The two keys of the key pair are  the public key and the private key.  A user 
generates public and private keys from a key pair.  The user then makes the public key available to others 
while keeping the private key a secret. 

Figure 5-90 conceptually illustrates the creation of asymmetric keys for encryption and decryption.

191

Figure 5-89: Encryption Algorithm and Key



If encryption is done with a public key, only the corresponding private key can be used for decryption. 
This allows a user to communicate confidentially with another user by encrypting messages with the 
intended receiver’s public key.  Even if messages are intercepted by a third party, the third party cannot 
decrypt them.  Only the intended receiver can decrypt messages with his or her private key. The following 
diagram illustrates encryption with a public key to provide confidentiality.
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Figure 5-90: Asymmetric keys

Figure 5-91: Encryption with private key provides authentication



 5.10.1.1.2 Message digest

A message digest is text in the form of a single string of digits created with a one-way hash function. 
One-way hash functions are algorithms that transform a message of arbitrary length into a fixed length tag 
called a message digest. 

A good hash function can detect even a small change in the original message to generate a different 
message digest.  The hash function is one-way; it is not possible to deduce the original message from its 
message digest.  

Message digests are used to provide assurance of message integrity.  The sender generates a message 
digest for each of the messages being sent.  Each message is transmitted, along with its message digest. 
The receiver separates the message digest from the message, generates a new message digest from the 
received message using the same algorithm used by the sender, and compares the received message digest 
with the newly generated one. 

If the two message digests are different, then the message was altered on the way.  If the two message 
digests are identical, then the receiver can be assured that the message’s integrity was not compromised 
during transmission.

 5.10.1.1.3 Message Authentication Code (MAC)

A message authentication code (MAC) is a type of message digest that is created by encrypting the output 
of a one-way hash function with a symmetric key.

 5.10.1.1.4 Digital certificates and certificate authority

Cryptography with an asymmetric key depends on public keys being authentic.  If two people are 
exchanging their public keys over an untrusted network, then that process introduces a security 
vulnerability.  Intruders can intercept messages between them, replace their public keys with their own 
public keys, or monitor their network traffic.  The solution for this vulnerability is the digital certificate. 
A digital certificate is a file that ties an identity to the associated public key. 

This association of identity to a public key is validated by a trusted third party known as the certificate 
authority.  The certificate authority signs the digital certificate with its private key.  In addition to a public 
key and an identity, a digital certificate contains the date of issue and expiration date.  OpenSSL supports 
the ISO X.509 international standard for digital certificates.

 5.10.1.2 SSL architecture

SSL occupies a space between the transport and application layers in the network stack, and consists of 
two layers. Both layers use services provided by the layer below them to provide functionality to the 
layers above them.  The lower layer consists of the SSL Record Protocol, which uses symmetric key 
encryption to provide confidentiality to data communications over a reliable, connection-oriented, 
transport protocol TCP.  The upper layer of SSL consists of the SSL Handshake Protocol, the SSL 
Change Cipher Spec Protocol, and the SSL Alert Protocol.  

The SSL Handshake Protocol is used by the client and server to authenticate each other, and to agree on 
encryption and hash algorithms to be used by the SSL Record Protocol.  The authentication method 
supported by SSL in the evaluated configuration is client and server authentication using X.509 
certificates. 

The SSL Change Cipher Spec changes the Cipher suite of encryption and hash algorithms used by the 
connection.  The SSL Alert Protocol reports SSL-related errors to communicating peers.

Figure 5-92 depicts different SSL protocols and their relative positions in the network stack.
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The SSL architecture differentiates between an SSL session and an SSL connection.  A connection is a 
transient transport device between peers.  

A session is an association between a client and a server.  Sessions define a set of cryptographic security 
parameters, which can be shared among multiple connections.  Sessions are used to avoid the expensive 
negotiation of security parameters for each new connection.  A session is identified with a session 
identifier, peer certificate, compression method, cipher spec, master secret, and is_resumable flag.  A 
connection is identified with a server and client random numbers, a server write MAC secret key, a client 
write MAC secret key, a server write key, a client write key, initialization vectors, and sequence numbers.

 5.10.1.2.1 SSL handshake protocol

The SSL handshake protocol is responsible for performing authentication of peers that are attempting 
secure communications.  The SSL handshake protocol negotiates security parameters (encryption and 
hash algorithms) to be used by the SSL record protocol, and exchanges PreMasterSecret, which is used to 
generate authentication and encryption keys.

The handshake protocol is the most complex part of SSL.  It starts with mandatory authentication of the 
server.  Client authentication is optional.  After successful authentication, the negotiation for the cipher 
suite, with the encryption algorithm, MAC algorithm, and cryptographic keys, takes place.  Security 
parameters, set up by the handshake protocol, are used for all connections in a session.  The following 
diagram illustrates the handshake protocol. 
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Figure 5-92: SSL Protocol



Following is an explanation of the preceding figure.

1. Client hello message: The CipherSuite list, passed from the client to the server in the client hello 
message, contains the combinations of cryptographic algorithms supported by the client in order 
of the client's preference (first choice first).  Each CipherSuite defines both a key exchange 
algorithm and a CipherSpec.  The server selects a cipher suite or, if no acceptable choices are 
presented, returns a handshake failure alert and closes the connection.

2. Server key exchange message: The server key exchange message is sent by the server if it has no 
certificate, has a certificate only used for signing (that is, DSS [DSS] certificates, or signing-only 
RSA [RSA] certificates), or FORTEZZA KEA key exchange.  This message is not used if the 
server certificate contains Diffie-Hellman [DH1] parameters.

3. Client key exchange message (RSA encrypted premaster secret message): In the evaluated 
configuration, RSA is used for key agreement and authentication.  The client generates a 48-byte 
pre-master secret, encrypts it under the public key from the server's certificate or temporary RSA 
key from a server key exchange message, and sends the result in an encrypted premaster secret 
message.

4. Certificate verify message: This message is used to provide explicit verification of a client 
certificate.  This message is only sent following any client certificate that has signing capability 
(that is, all certificates except those containing fixed Diffie-Hellman parameters).
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Figure 5-93: Handshake protocol (optional or content-dependent handshake  messages 
are in italic type)



For a list of supported Cipher suites, see FCS_COP.1(2) in the Security Target.

5. SSL Change cipher spec protocol: The SSL change cipher spec protocol signals transitions in the 
security parameters.  The protocol consists of a single message, which is encrypted with the 
current security parameters.  Using the change cipher spec message, security parameters can be 
changed by either the client or the server.  The receiver of the change cipher spec message 
informs the SSL record protocol of the updates to security parameters.

6. SSL alert protocol: The SSL alert protocol communicates SSL-specific errors, such as errors 
encountered during handshake or message verification, to the appropriate peer.

7. SSL record protocol: The SSL record protocol takes messages to be transmitted, fragments them 
into manageable blocks, and optionally compresses them.  Then, using all the negotiated security 
parameters, the SSL record protocol applies a message authentication code (MAC), encrypts the 
data, and transmits the result to the transport layer (TCP).  The received data is decrypted, 
verified, decompressed, and reassembled. It is then delivered to a higher layer.

The SSL record protocol provides confidentiality by encrypting the message with the shared 
secret key negotiated by the handshake protocol.  The SSL record protocol provides message 
integrity by attaching a MAC to the message.  The MAC is created with another shared secret key 
negotiated by the handshake protocol.

Figure 5-94 [STALLS] shows the operation of the SSL record protocol.

196

Figure 5-94: SSL protocol action



 5.10.1.3 OpenSSL algorithms

This section briefly describes various encryption and hash algorithms supported by OpenSSL on the TOE.

 5.10.1.4 Symmetric ciphers

OpenSSL on the TOE supports the following symmetric key encryption algorithms.  For a detailed 
description of each of these algorithms, refer to their man pages.

• blowfish is a block cipher that operates on 64-bit blocks of data.  It supports variable key sizes, 
but generally uses 128-bit keys.

• Data Encryption Standard (DES) is a symmetric key cryptosystem derived from the Lucifer 
algorithm developed at IBM.  DES describes the Data Encryption Algorithm (DEA). DEA 
operates on a 64-bit block size and uses a 56-bit key.

• TDES (3DES), or Triple DES, encrypts a message three times using DES.  This encryption can be 
accomplished in several ways.  For example, using two keys, the message can be encrypted with 
key 1, decrypted with key 2, and encrypted again with key 1. With three keys, the message can be 
encrypted 3 times with each encryption using a different key.

• International Data Encryption Algorithm (IDEA):  The IDEA cipher is a secret key block 
encryption algorithm developed by James Massey and Xuejia Lai.  IDEA operates on 64-bit 
plaintext blocks and uses a 128-bit key.

• RC4, owned by RSA Security Inc., is a stream cipher with a variable key length.  A typical key 
length of 128-bit is used for strong encryption.

• RC5 is a cryptographic algorithm invented by Ronald Rivest of RSA Security Inc.  RC5 is a block 
cipher of variable block length and encrypts through integer addition, the application of a bit-wise 
eXclusive OR, and variable rotations. The key size and number of rounds are also variable.

• Advanced encryption standard (AES) is a cryptographic algorithm created by researchers Joan 
Daemen and Vincent Rijmen.  AES is an iterative, symmetric-key block cipher that can use keys 
of 128, 192, and 256 bits, and encrypts and decrypts data in blocks of 128 bits (16 bytes).

 5.10.1.4.1 Asymmetric ciphers

OpenSSL on the TOE supports the following asymmetric key encryption algorithms.  For a detailed 
description of each of these algorithms, refer to their man pages.

• Digital Signature Algorithm (DSA) is based on a modification to the El Gamal digital signature 
methodology, which is based on discrete logarithms.  DSA conforms to US Federal Information 
Processing Standard FIPS 186, and ANSI X9.30.

• Diffie-Hellman Key Exchange is a method for exchanging secret keys over a non-secure medium, 
without exposing the keys.

• RSA, derived from the last names of its inventors, Rivest, Shamir, and Addleman, is a public key 
cryptography system, which is based on the difficulty of factoring a number that is the product of 
two large prime numbers.

 5.10.1.4.2 Certificates

OpenSSL on the TOE supports the X.509 certificate format.  For a detailed description of this format, 
refer to its man page.
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The X.509 certificate is a structured grouping of information.  X.509 contains subject information, the 
public key of the subject, the name of the issuer, and the active key lifetime.  An X.509 certificate is 
digitally signed by the certificate authority.

 5.10.1.4.3 Hash functions

OpenSSL on the TOE supports the following hash functions to generate message authentication codes. 
For detailed descriptions of these functions, refer to their man pages.

MD2, MD4, and MD5 are cryptographic message-digest algorithms that take a message of arbitrary 
length and generate a 128-bit message digest.  In MD5, the message is processed in 512-bit blocks in four 
distinct rounds.

MDC2 is a method to construct hash functions with 128-bit output from block ciphers. These functions 
are an implementation of MDC2 with DES.

RIPEMD is a cryptographic hash function with 160-bit output.

The Secure Hash Algorithm (SHA) is a cryptographic hash function with 160-bit output.  It is defined in 
the Federal Information Processing Standard - FIPS 180.  SHA-1 sequentially processes blocks of 512 bits 
when computing a message digest.

 5.10.2 Secure Shell 
Secure Shell (SSH) is a network protocol that provides a replacement for insecure remote login and 
command execution facilities such as telnet, rlogin, and Remote Shell (RSH).  SSH encrypts traffic, 
preventing traffic sniffing and password theft.

On a local system, the user starts the SSH client to open a connection to a remote server running the sshd 
daemon.  If the user is authenticated successfully, an interactive session is initiated, allowing the user to 
run commands on the remote system.  SSH is not a shell in the sense of a command interpreter, but it 
permits the use of a shell on the remote system.

In addition to interactive logins, the user can tunnel TCP network connections through the existing 
channel, allowing the use of X11 and other network-based applications, and copy files through the use of 
the scp and sftp tools.  OpenSSH is configured to use the PAM framework for authentication, 
authorization, account maintenance, and session maintenance.  Password expiration and locking are 
handled through the appropriate PAM functions.

Communication between the SSH client and SSH server uses the SSH protocol, version 2.0.  The SSH 
protocol requires that each host have a host-specific key.  When the SSH client initiates a connection, the 
keys are exchanged using the Diffe-Hellman protocol.  A session key is generated, and all traffic is 
encrypted using this session key and the agreed-upon algorithm.

Default encryption algorithms supported by SSH are 3DES (triple DES) and blowfish.  The default can be 
overridden by providing the list in the server configuration file with the “ciphers” keyword.  

The default message authentication code algorithms supported by SSH are SHA-1 and MD5.  The default 
can be overridden by providing the list in the server configuration file with the keyword MACs.  Refer to 
Section 5.10.1.4.3 of this document for brief descriptions of these algorithms.

Encryption is provided by the OpenSSL package, which is a separate software package.  The following 
briefly describes the default SSH setup with respect to encryption, integrity check, certificate format, and 
key exchange protocol.

• Encryption:  The default cipher used by SSH is 3des-cbc (three-key 3DES in CBC mode).  The 
3des-cbc cipher is three key triple-DES (encrypt-decrypt-encrypt), where the first 8 bytes of the 
key are used for the first encryption, the next 8 bytes for the decryption, and the following 8 bytes 
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for the final encryption.  This requires 24 bytes of key data, of which 168 bits are actually used. 
To implement CBC mode, outer chaining must be used.  That is, there is only one initialization 
vector.  This is a block cipher with 8 byte blocks. This algorithm is defined in [SCHNEIR].

• Integrity check:  Data integrity is protected by including a message authentication code (MAC) 
with each packet that is computed from a shared secret, packet sequence number, and the contents 
of the packet.  The message authentication algorithm and key are negotiated during key exchange. 
Initially, no MAC will be in effect, and its length must be zero.  After key exchange, the selected 
MAC will be computed before encryption from the concatenation of packet data:

mac = MAC (key, sequence_number || unencrypted_packet) where unencrypted_packet is the entire 
packet without MAC (the length fields, payload and padding), and sequence_number is an implicit packet 
sequence number represented as uint32. The sequence number is initialized to zero for the first packet, 
and is incremented after every packet, regardless of whether encryption or MAC is in use.  It is never 
reset, even if keys or algorithms are renegotiated later.  It wraps around to zero after every 2^32 packets. 
The packet sequence number itself is not included in the packet sent over the wire.

The MAC algorithms for each direction must run independently, and implementations must allow 
choosing the algorithm independently for both directions.  The MAC bytes resulting from the MAC 
algorithm must be transmitted without encryption as the last part of the packet.  The number of MAC 
bytes depends on the algorithm chosen.  The default MAC algorithm defined is the hmac-sha1 (with 
digest length = key length = 20).

• Certificate format:  The default certificate format used is ssh-dss signed with Simple DSS. 
Signing and verifying using this key format is done according to the Digital Signature Standard 
[FIPS-186] using the SHA-1 hash.  A description can also be found in [SCHNEIR].

• Key exchange protocol:  The default key exchange protocol is diffie-hellman-group1-sha1.  The 
diffie-hellman-group1- sha1 method specifies Diffie-Hellman key exchange with SHA-1 as 
HASH.

Sections 5.10.2.1 and 5.10.2.2 briefly describe the implementation of SSH client and SSH server. For 
detailed information about the SSH Transport Layer Protocol, SSH Authentication Protocol, SSH 
Connection Protocol, and SSH Protocol Architecture, refer to the corresponding protocol documents at 
http://www.ietf.org/ids.by.wg/secsh.html.

 5.10.2.1 SSH client

The SSH client first parses arguments and reads the configuration (readconf.c), then calls ssh_connect (in 
sshconnect*.c) to open a connection to the server, and performs authentication (ssh_login in 
sshconnect.c).  Terminal echo is turned off while users type their passwords, which prevents the password 
from being displayed on the terminal as it is being typed.  The SSH client then makes requests such as 
allocating a pseudo-tty, forwarding X11 connections, forwarding TCP-IP connections and so on, and 
might call code in ttymodes.c to encode current tty modes. Finally, the SSH client calls client_loop in 
clientloop.c.

The client is typically installed with suid as root.  The client temporarily gives up this right while reading 
the configuration data.  The root privileges are used to make the connection from a privileged socket, 
which is required for host-based authentication and to read the host key for host-based authentication 
using protocol version 1.  Any extra privileges are dropped before calling ssh_login.  Because .rhosts 
support is not included in the TSF, the SSH client is not suid root on the system.

 5.10.2.2  SSH server daemon

The sshd daemon starts by processing arguments and reading the /etc/ssh/sshd_config configuration file. 
The configuration file contains keyword-argument pairs, one per line.  Refer to the sshd_config man page 
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for available configuration options.  The daemon then reads the host key, starts listening for connections, 
and generates the server key.   An alarm regenerates the server key every hour.

When the server receives a connection, it forks a process, disables the regeneration alarm, and starts 
communicating with the client.  The server and client first perform identification string exchange, and 
then negotiate encryption and perform authentication.  If authentication is successful, the forked process 
sets the effective user ID to that of the authenticated user, performs preparatory operations, and enters the 
normal session mode by calling server_loop in serverloop.c.

The sshd daemon in the TOE supports extended user/role/range@hostname login syntax for MLS role and 
level selection.  Because newrole is restricted to administrative users, the extended role and level selection 
syntax is the method by which ordinary ordinary users select role and level.

 5.10.3 Very Secure File Transfer Protocol daemon
Very Secure File Transfer Protocol daemon (VSFTPD) provides a secure, fast, and stable file transfer 
service to and from a remote host.  The behavior of VSFTPD can be controlled by 
its /etc/vsftpd/vsftpd.conf configuration file.  The remainder of this section describes some of the security-
relevant features of VSFTPD.  For additional information, on RHEL systems see the documents 
in /usr/share/doc/packages/vsftpd/SECURITY/*, and also http://vsftpd.beasts.org.

VSFTPD provides the following security-relevant features:

• Ability to use PAM to perform authentication.

• Ability to disable anonymous logins. If enabled, prevents anonymous users from writing.

• Ability to lock certain users in chroot jail in their home directories.

• Ability to hide all user and group information in the directory listing.

• Ability to set the secure tunneling scheme.

• Ability to perform enhanced logging.

• Ability to set connection timeout values.

The daemon generally follows these steps:

1. Parses command-line arguments.

2. Parses the configuration file.

3. Performs sanity checks such as ensuring that standard input is a socket.

4. Initializes the session.

5. Sets up the environment.

6. Starts logging.

7. Depending on the configuration, starts one or multiple process sessions.

8. Invokes appropriate functions to initiate connections.

9. Invokes handle_local_login() for non-anonymous users.

10. handle_local_login() invokes vsf_sysdep_check_auth() to perform authentication.

11. Performs authentication by PAM and starts the session. PAM does the following:

a) Invokes pam_start() to initialize the PAM library and to identify the application with a 
particular service name.
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b) Invokes pam_authenticate() to authenticate the application user. Terminal echo is turned off 
while users are typing their passwords.

c) Invokes pam_acct_mgmt() to perform module specific account management.

d) Invokes pam_setcred() to set credentials.

e) Invokes pam_end().

 5.10.4 CUPS
CUPS, the Common UNIX Printing System, is a portable printing layer for operating systems based on 
UNIX.  It provides command-line interfaces for System V and BSD.

For background on CUPS labeled printing,  see:  http://free.linux.hp.com/~mra/docs/   .  

CUPS uses the Internet Printing Protocol (IPP) that was designed to replace the Line Printer Daemon 
(LPD) protocol, as a basis for managing print jobs.  CUPS also supports LPD, Server Message Block 
(SMB), and AppSocket protocols with reduced functionality.  For an overview of CUPS, refer to 
http://www.cups.org/documentation.php/overview.html or 
http://en.wikipedia.org/wiki/Common_Unix_Printing_System.  For further information, refer to 
http://www.tldp.org/HOWTO/Printing-HOWTO/index.html or http://www.cups.org web sites.

 5.10.4.1 DAC

CUPS controls access to printers via its configuration file.  Access to the printer device is controlled via 
mode bits on the printer device node.  In the TOE, the DAC permissions on the printer device node are 
configured to prevent CUPS bypass by ordinary users.

 5.10.4.2 MAC

CUPS uses SELinux for MAC.  The file to be printed has a MAC label.  The subject must have MAC 
permission to read the file to be printed.  The print client command reads the file and sends it over a local 
labeled socket to cupsd.  The socket transmits the MLS portion of the label from the subject's context. 
The server then receives the job.  It performs a getsockopt( . . . SO_PEERCRED . . . ) on the socket to 
obtain the job's label.  The getsockopt() call returns the MAC  label of print client's socket.  

The job is stored in a spool file in the CUPS queue directory using the context coming from the 
getsockopt() call as the spool file's context.  The cups server then reads data from the print queue.  The 
print job data are sanitized and sensitivity labels applied as described in Section 5.10.4.3.  The printer 
device node has a MAC label.  cupsd checks that the spool file's label is within the range of the printer 
device node, and the job is rejected if not.  cupsd then outputs the labeled job to the printer.  Note that, 
because the printer MAC check is performed against the printer device node, network printing is 
disallowed in the TOE.

CUPS also supports an unlabeled mode in which it suppresses the sensitivity label on the job banner 
headers and footers of each page.  Unlabeled mode allows printout onto stock with preprinted sensitivity 
markings.  Only jobs at the level of the print device are accepted in this mode.  Switching to unlabeled 
mode requires configuration by the administrator and generates an audit record.
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 5.10.4.3 cupsd

The cupsd daemon is the CUPS print server.  It accepts local and remote print jobs, performs 
transformations on the data, and sends the final data to a printer.  Daemon management is restricted to 
administrative users.  Jobs are accepted only if they pass both CUPS and MAC access checks.  In the 
TOE, cupsd prints data sensitivity label banner and trailer pages and prints MAC sensitivity labels on the 
header and footer of each page.  

The sensitivity level comes from the submitting subject's level.  An administrative user can also override 
the label, which generates an audit record.  When printing user-supplied PostScript, CUPS sanitizes the 
print job by filtering it first with the pstopdf filter and then with the pdftops filter.  The conversion process 
guarantees that a malicious PostScript print job cannot print over sensitivity labels because the PostScript 
print job is completely rendered in PDF with the pstopdf filter and rendered back to PostScript with the 
pdftops filter.  The job banner is printed with the sensitivity label obtained from the MAC label.  

Running classification level headers and footers are applied to the scrubbed data with pstops.  Images are 
printed with classification level headers and footers with imagetops.  cupsd observes the label of the print 
device.  Thus in unlabeled mode, the cupsd allows only jobs at the single level of the print device.  For 
more information on the cupsd daemon, see the cupsd(8) man page.  

In the TOE, the job label is the MLS label of the submitting subject.  The job is submitted over a local 
socket.  CUPS is configured to listen only on a local socket so the label range checking cannot be 
bypassed.

The cupsd daemon typically follows these processing steps:

1. Processes command-line arguments.

2. Sets up signal handlers.

3. Forks a child.

4. The parent waits for the child to complete initialization (SIGUSR1) or die trying (SIGCHLD) and 
exits.

5. The child changes its working directory to /.

6. The daemon disables core dumps.

7. The daemon disconnects from the controlling terminal by running in a new session.

8. The daemon closes all files.

9. The daemon gets an audit fd.

10. The daemon sets the timezone.

11. The daemon sets the locale.

12. The daemon sets the resource limit for the maximum number of files.

13. The daemon allocates memory for select() fd sets.

14. The daemon eads its configuration file.

15. The daemon starts the server.

16. The daemon sets up signal handlers.

17. The daemon initializes authentication certificates.

18. The daemon sends a SIGUSR1 to the parent process so the parent can exit.

19. The daemon starts any pending jobs.

20. The daemon reaps dead children.
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21. The daemon closes idle clients.

22. The daemon checks for new jobs.

23. The daemon restarts the server if there are no active clients or jobs, or the reload timeout has been 
reached – this causes cupd to stop the server, reread the configuration file, and restart the server.

24. The daemon checks for input or output requests with select().

25. If select() fails,the daemon logs error messages, notifies clients, and exits the main loop for 
shutdown processing.

26. The daemon gets the current time.

27. The daemon checks print status of print jobs.

28. The daemon updates CGI data.

29. The daemon updates notifier messages.

30. The daemon expires subscriptions and removes completed jobs.

31. The daemon updates the browse list.

32. The daemon checks for new incoming connections on listening sockets and accepts them.

33. The daemon checks for new data on client sockets.

34. The daemon processes the client input.

35. The daemon writes data back to the clients.

36. The daemon closes inactive clients.

37. The daemon updates pending multi-file documents.

38. The daemon updates the root certificate every time a 5 minute timer has elapsed.

39. The daemon oes back to step 20.

40. Upon exit from the main loop:The daemon logs a status message.

41. The daemon stops the server.

42. The daemon frees all jobs.

43. The daemon frees fd sets.

44. The daemon closes audit fd.

45. The daemon exits.

 5.10.4.4 imagetops

The imagetops program is a CUPS filter that transforms input image data to PostScript.  It is used by the TOE 
to apply sensitivity labels to the header and footer of each page.  The job classification level is passed to it via 
the CLASSIFICATION environment variable.

The imagetops program typically performs these processing steps:

1. Turns off stderr buffering.

2. Checks if command-line arguments are either 6 or 7 in number.

3. If there are 7 arguments, uses the last argument as a filename.

4. If there are 6 arguments, copies stdin to a temporary file.
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5. Processes command-line arguments.

6. Opens the input image.

7. Gets the image color space.

8. Scales the image.

9. Rotates the image, if necessary.

10. Computes the number of pages to print and page sizes.

11. Collates, if necessary.

12. Writes any exit server options.

13. Writes any necessary JCL commands.

14. Writes a PostScript header and prologue.

15. Writes out pages.

16. Ends the job with a JCL command or Ctrl-D.

17. Closes input and output files.

18. Exits.

 5.10.4.5 pstops

The pstops program is a CUPS filter that accepts PostScript input, transforms it, and outputs it.  It is used 
by cupsd in the TOE to apply sensitivity labels to the header and footer of each page.  The job 
classification level is passed to it via the CLASSIFICATION environment variable.

The pstops program typically performs these processing steps:

1. Turns off stderr buffering.

2. Checks if command-line arguments are either 6 or 7 in number.

3. If there are 7 arguments, uses the last argument as a filename and opens it for input.

4. If there are 6 arguments, it uses stdin for input.

5. Checks the first line of input file for DSC comments.

6. Processes command-line arguments.

7. Writes out any exit server options.

8. Writes out any necessary JCL commands.

9. Writes a DSC header.

10. Skips the leading PJL on input.

11. Validates the document with respect to Adobe Document Structuring Conventions.

12. Filters the document.

13. Sends an EOF if needed.

14. Closes input, output, and temporary files.

15. Exits.
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 5.10.5 Other Trusted Programs
This subsection contains networking trusted programs not documented in subsections above.

 5.10.5.1 netlabelctl

The netlabelctl program controls the CIPSO IP labeling protocol.  Its use is restricted to administrative users. 
For more information about netlabelctl, see the netlabelctl(1) man 
pageand /usr/share/doc/netlabel_tools-0.17/netlabelctl.txt.  For more information about CIPSO, see the 
Documentation/netlabel/ directory in the kernel source, which is available at 
file:///usr/src/redhat/BUILD/kernel-2.6.18/linux-2.6.18.ppc64/Documentation/netlabel on a RHEL5 system if 
the kernel source RPM is installed and rpmbuild invoked on its spec file with the “-bp” option.

The netlabelctl program typically follows these processing steps:

1. Saves its own name.

2. Processes command-line arguments.

3. Performs initialization.

4. Selects a module based on the command-line arugments.

5. Calls the selected module.

• If the module is cipsov4, it adds, deletes, or lists a CIPSO for IPv4 sensitivity label mappings 
and returns.

• If the module is map, it adds, deletes, or lists mappings from a domain to a sensitivity level 
and returns.

• If the module is mgmt, it shows supported protocols or version and returns.

• If the module is unlbl, it sets, resets, or lists acceptance of unlabeled packets and returns.

6. Exits.

 5.10.5.2 ping

ping opens a raw socket and uses the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit an 
ICMP ECHO_RESPONSE from a host or a gateway.  An ECHO_REQUEST datagram, or ping, has an IP 
and an ICMP header, followed by a struct timeval, and then an arbitrary number of pad bytes used to fill 
out the packet.  For more information about the ping command, see the ping(8) man page.

 5.10.5.3 ping6

The ping6 is the IPv6 counterpart to the IPv4 ping command.  It sends ICMPV6 ECHO_REQUESTs to 
elicit ECHO_RESPONSEs.  Use of ping6 requires the CAP_NET_RAWIO  capability.  For more 
information about the ping6 command, see the ping6(8) man page.

 5.10.5.4 openssl

openssl is a command-line interface to the OpenSSL cryptography toolkit, which implements the Secure 
Socket Layer (SSL v2j and v3) and Transport Layer Security (TLS v1) network protocols and related 
cryptography standards that they require.  The openssl command can be used by an administrative user for 
the following:

• Creation of RSA, DH, and DSA parameters.

• Generation of 1024-bit RSA keys.
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• Creation of X.509 certificates, CSRs, and CRLs.

• Calculation of message digests.

• Encryption and Decryption with ciphers.

• SSL and TLS client and server tests.

• Handling of S/MIME signed or encrypted mail.

For detailed information about the openssl command and its usage, see 
http://www.openssl.org/docs/apps/openssl.html.

 5.10.5.5 racoon

The racoon daemon is an implementation of the IKE daemon described in RFCs 2407, 2408, and 2409. 
For more information about racoon, see the racoon(8) man page and the RFCs, 
http://tools.ietf.org/html/rfc2407, http://tools.ietf.org/html/rfc2408, and http://tools.ietf.org/html/rfc2409.

In the TOE, racoon has been extended to negotiate MAC labels for labeled IPsec connections.  For a high 
level discussion, see “Leveraging IPsec for Distributed Authorizations”, Jaeger et al., 
http://nsrc.cse.psu.edu/tech_report/NAS-TR-0037-2006.pdf..

 5.10.5.6 setkey

The setkey utility allows administrators to configure IPsec policies and Security Associations.  It 
manipulates entries in the IPsec SPD and SAD, which are stored in the kernel, via the PF_KEY socket 
interface.  For more information about setkey, see the setkey(8) man page.

The setkey utility generally performs these steps during the course of normal operation:

1. Checks that the number of command-line arguments is not zero.  If no command-line arguments 
are given, it prints usage.

2. Obtains the difference between GMT and time in the local timezone.

3. Processes the command-line arguments.

4. If a filename exists after the processing of all other command-line arguments, takes the filename 
and dumps SPD and SAD entries contained in it.

5. Opens a PF_KEY socket.

6. If the requested operation mode is dump, it sends a dump message to the kernel, which dumps the 
SAD.

7. If the requested operation mode is flush, it sends a flush message to the kernel, which flushes the 
SAD.

8. If the requested operation mode is to process input from a file, it determines if PF_KEY is 
supported, and parses the file, carrying out the specified operations.

9. If the requested operation mode is to process input from stdin, it processes stdin data until the end 
of file for stdin, parsing and carrying out the specified operations.

10. If the requested operation mode is promiscuous, it dumps messages transmitted via the PF_KEY 
socket.

11. Prints usage if no legal mode of operation is specified by the command-line arguments.

12. Exits.

206

http://nsrc.cse.psu.edu/tech_report/NAS-TR-0037-2006.pdf.http://nsrc.cse.psu.edu/tech_report/NAS-TR-0037-2006.pdf
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc2408
http://tools.ietf.org/html/rfc2407
http://www.openssl.org/docs/apps/openssl.html


 5.10.5.7 stunnel

stunnel is designed to work as an SSL encryption wrapper between remote clients and local or remote 
servers.  stunnel can be used to add SSL functionality to commonly used daemons such as POP and IMAP 
servers, to standalone daemons like SMTP and HTTP, and in tunneling PPP over network sockets without 
changes to the source code. 

The most common use of stunnel is to listen on a network port and to establish communications with 
either a new port via the connect option, or a new program via the exec option.  There is also an option 
that allows a program to accept incoming connections and then launch stunnel.

Each SSL-enabled daemon needs to present a valid X.509 certificate to the peer.  The SSL-enabled 
daemon also needs a private key to decrypt incoming data.  stunnel is built on top of SSL, so on the TOE 
the private key and the certificate can be generated by OpenSSL utilities. These private keys are stored in 
the /etc/stunnel/stunnel.pem file.

stunnel uses the openssl library, and therefore can use the cipher suites implemented by that library.  They 
are:

• SSL_RSA_WITH_RC4_128_SHA

• TLS_RSA_WITH_AES_128_CBC_SHA

• TLS_RSA_WITH_AES_256_CBC_ 

• SSL_RSA_WITH_3DES_EDE_CBC_SHA

The /etc/stunnel/stunnel.conf file configures stunnel.  The file is a simple ASCII file that can be edited by 
the administrative user to secure SSL-unaware servers.  Each service to be secured is named in a square 
bracket, followed by “option_name = option_value” pairs for that service. Global parameters such as 
location of the private key file are listed at the beginning of the file. An example follows:

# Global parameters

cert = /etc/stunnel/stunnel.pem

pid = /tmp/stunnel.pid

setuid = nobody

setgid = nogroup

# Service-level configuration

# ---------------------------

[ssmtp]

accept = 465

connect = 25

The above configuration secures localhost-SMTP when someone connects to it via port 465.  The 
configuration tells stunnel to listen to the SSH port 465, and to send all info to the plain port 25 on 
localhost.

For additional information about stunnel, refer to its man page as well as http://stunnel.mirt.net and 
http://www.stunnel.org.
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 5.10.5.8 xinetd

The xinetd daemon dispatches children to service incoming requests.  For more information about xinetd, 
see the RHEL5 Security Guide at http://www.redhat.com/docs/manuals/enterprise/RHEL-5-
manual/Security_And_Authentication/ch-tcpwrappers.html#s1-tcpwrappers-xinetd, or the xinetd(8) man 
page.

In the TOE, xinetd has been enhanced to execute child processes at the level of the incoming connection 
request.  xinetd accopmplishes this by calling getpeercon() to obtain the label supplied by labeled IPsec or 
CIPSO.  More of a description of this process can be found in the paper “Leveraging IPsec for Distributed 
Authorizations,” Jaeger et al., http://nsrc.cse.psu.edu/tech_report/NAS-
TR-0037-2006.pdf.http://nsrc.cse.psu.edu/tech_report/NAS-TR-0037-2006.pdf.  The MLS label is 
extracted from the connecting subject's socket.

 5.11 System management

 5.11.1 Trusted Programs

 5.11.1.1 Account Management

 5.11.1.1.1 chage

The chage program allows a system administrator to alter a user’s password expiration data. See the chage 
man page for more information.  chage generally follows these steps.

1. Sets language.

2. Sets up a variable indicating whether the application user is the root user.

3. Parses command-line arguments.

4. Performs a check on command-line arguments.

5. If the application user is not root, chage allows only the listing of the user’s own password age 
parameters.

6. Invokes getpwuid (getuid()) to obtain the application user’s passwd structure.

7. Invokes pam_start() to initialize the PAM library and to identify the application with a particular 
service name.

8. Invokes pam_authenticate() to authenticate the application user.  Generates an audit record to log 
the authentication attempt and its outcome.

9. Invokes pam_acct_mgmt() to perform module-specific account management.

10. If called to list password age parameters, lists them now and exits.

11. Locks and opens authentication database files.

12. Updates appropriate database files with new password age parameters.

13. Closes database files.

14. Invokes pam_chauthok() to rejuvenate user’s authentication tokens.

15. Exits.
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 5.11.1.1.2 chfn

The chfn program allows users to change their finger information.  The finger command displays the 
information, stored in the /etc/passwd file.  Refer to the chfn man page for detailed information.  chfn 
generally follows these steps:

1. Sets language.

2. Gets invoking user’s ID.

3. Parses command-line arguments.

4. Performs a check that a non-root user is not trying to change finger information of another user.

5. Invokes pam_start() to initialize the PAM library and to identify the application with a particular 
service name.

6. Invokes pam_authenticate() to authenticate the application user.  Generates an audit record to log 
the authentication attempt and its outcome.

7. Invokes pam_acct_mgmt() to perform module-specific account management.

8. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.

9. Invokes pam_setcred() to set credentials.

10. Prompts for new finger information if not supplied on the command line.

11. Updates appropriate database files with new finger information.

12. Exits.

 5.11.1.1.3 chsh

The chsh program allows users to change their login shells.  If a shell is not given on the command line, 
chsh prompts for one.  Refer to the chsh man page for detailed information.  chsh generally follows these 
steps:

1. Sets language.

2. Gets invoking user’s ID.

3. Parses command-line arguments.

4. Performs a check that a non-root user is not trying to change the shell of another user.

5. Performs a check to ensure that a non-root user is not trying to set his or her shell to a non-
standard shell.

6. Invokes pam_start() to initialize the PAM library and to identify the application with a particular 
service name.

7. Invokes pam_authenticate() to authenticate the application user.  Generates an audit record to log 
the authentication attempt and its outcome.

8. Invokes pam_acct_mgmt() to perform module-specific account management.

9. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.

10. Checks the shell to make sure that it is accessible.

11. Invokes setpwnam() to update appropriate database files with the new shell.

12. Exits.
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 5.11.1.2 User management

 5.11.1.2.1 useradd

The useradd program allows an authorized user to create new user accounts on the system.  Refer to the 
useradd man page for more information.  useradd generally follows these steps:

1. Sets language.

2. Invokes getpwuid (getuid()) to obtain the application user’s passwd structure.

3. Invokes pam_start() to initialize the PAM library, and to identify the application with a particular 
service name.

4. Invokes pam_authenticate() to authenticate the application user.  Generates an audit record to log 
the authentication attempt and its outcome.

5. Invokes pam_acct_mgmt() to perform module-specific account management.

6. Gets the default parameters for a new user account from /etc/default/useradd.

7. Processes command-line arguments.

8. Ensures that the user account being created does not already exist.

9. Invokes open_files() to lock and open authentication database files.

10. Invokes usr_update() to update authentication database files with new account information.

11. Generates audit records to log actions of the useradd command.  The actions include addition of 
new user, addition of user to a group, update of default user parameters, and creation of a user’s 
home directory.

12. Invokes close_files() to close authentication database files.

13. Creates a home directory for the new user.

14. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.

15. Exits.

 5.11.1.2.2 usermod

The usermod allows an administrator to modify an existing user account.  Refer to the usermod man page 
for more detailed information about the usage of the command.  usermod generally follows these steps:

1. Sets language.

2. Invokes getpwuid (getuid()) to obtain the application user’s passwd structure.

3. Invokes pam_start() to initialize the PAM library, and to identify the application with a particular 
service name.

4. Invokes pam_authenticate() to authenticate the application user.  Generates an audit record to log 
the authentication attempt and its outcome.

5. Invokes pam_acct_mgmt() to perform module-specific account management.

6. Processes command-line arguments.

7. Ensures that the user account being modified exists.

8. Invokes open_files() to lock and open authentication database files.

9. Invokes usr_update() to update authentication database files with updated account information.
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10. Generates audit record to log actions of the usermod command.  The logged actions include 
locking and unlocking of the user account, changing of user password, user name, user ID, default 
user group, user shell, user home directory, user comment, inactive days, expiration days, mail 
file owner, and moving of the user’s home directory.

11. If updating group information, usermod invokes grp_update() to update group information.

12. Invokes close_files() to close authentication database files.

13. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.

14. Exits.

 5.11.1.2.3 userdel

The userdel program allows an administrator to delete an existing user account.  Refer to the userdel man 
page for more information.  userdel generally follows these steps:

1. Sets language.

2. Invokes getpwuid (getuid()) to obtain the application user’s passwd structure.

3. Invokes pam_start() to initialize the PAM library and to identify the application with a particular 
service name.

4. Invokes pam_authenticate() to authenticate the application user.  userdel generates an audit record 
to log the authentication attempt and its outcome.

5. Invokes pam_acct_mgmt() to perform module-specific account management.

6. Processes command-line arguments.

7. Ensures that the user being deleted does exist, and is currently not logged on.

8. Invokes open_files() to lock and open authentication database files.

9. Invokes usr_update() to update authentication database files with updated account information.

10. Invokes grp_update() to update group information.

11. Generates an audit record to log deletion of a user and the deletion of user’s mail file.

12. Invokes close_files() to close authentication database files.

13. If called with the -r flag, removes the user’s mailbox by invoking remove_mailbox() and removes 
the user’s home directory tree by invoking remove_tree().

14. Cancels any crond or at jobs that the user created.

15. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.

16. Exits.
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 5.11.1.3 Group management

 5.11.1.3.1 groupadd

The groupadd program allows an administrator to create new groups on the system.  Refer to the 
groupadd man page for more detailed information on usage of the command.  groupadd generally follows 
these steps:

1. Sets language.

2. Invokes getpwuid (getuid()) to obtain an application user’s passwd structure.

3. Invokes pam_start() to initialize the PAM library, and to identify the application with a particular 
service name.

4. Invokes pam_authenticate() to authenticate the application user.  Generates an audit record to log 
the authentication attempt and its outcome.

5. Invokes pam_acct_mgmt() to perform module-specific account management.

6. Processes command-line arguments.

7. Ensures that the group being created does not already exist.

8. Invokes open_files() to lock and open authentication database files.

9. Invokes grp_update() to update authentication database files with new group information. 
Generates an audit record to log creation of new group.

10. Invokes close_files() to close the authentication database files.

11. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.

12. Exits.

212



 5.11.1.3.2 groupmod

The groupmod program allows an administrator to modify existing groups on the system.  Refer to the 
groupmod man page for more information.  groupmod generally follows these steps:

1. Sets language.

2. Invokes getpwuid (getuid()) to obtain an application user’s passwd structure.

3. Invokes pam_start() to initialize the PAM library, and to identify the application with a particular 
service name.

4. Invokes pam_authenticate() to authenticate the application user.  Generates an audit record to log 
the authentication attempt and its outcome.

5. Invokes pam_acct_mgmt() to perform module-specific account management.

6. Processes command-line arguments.

7. Ensures that the group being modified exists.

8. Invokes open_files() to lock and open authentication database files.

9. Invokes grp_update() to update authentication database files with updated group information. 
Generates an audit record to log updates to existing groups.

10. Invokes close_files() to close authentication database files.

11. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.

12. Exits.

 5.11.1.3.3 groupdel

The groupdel program allows an administrator to delete existing groups on the system.  Refer to the 
groupdel man page for more information.  groupdel generally follows these steps:

1. Sets language.

2. Invokes getpwuid (getuid()) to obtain the application user’s passwd structure.

3. Invokes pam_start() to initialize the PAM library and to identify the application with a particular 
service name.

4. Invokes pam_authenticate() to authenticate the application user.  Generates an audit record to log 
the authentication attempt and its outcome.

5. Invokes pam_acct_mgmt() to perform module-specific account management.

6. Processes command-line arguments.

7. Ensures that the group being deleted exists, and that it is not the primary group for any users.

8. Invokes open_files() to lock and open authentication database files.

9. Invokes grp_update() to update group information.  Generates an audit record to log deletion of 
existing groups.

10. Invokes close_files() to close the authentication database files.

11. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.

12. Exits.

System Time management
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 5.11.1.3.4 date

The date program, for a normal user, displays current date and time.  For an administrative user, date can 
also set the system date and time.  Refer to the date man page for more information.  date generally 
follows these steps:

1. Sets language.

2. Parses command-line arguments.

3. Validates command-line arguments.

4. If any command-line options indicate a system time set operation, date invokes the stime() system 
call to set the system time.  The system call handler routine for stime() checks if the process 
possesses the CAP_SYS_TIME capability.  If it does, the operation is allowed; otherwise, an 
error is returned.

5. Processes returns from the stime() system call.  Prints current time or error, depending on the 
return value from the system call.

6. Exits.

 5.11.1.3.5 hwclock

The hwclock command displays the current hardware clock time for a normal user.  For an administrative 
user, hwclock can also set the hardware clock time.  It also allows the administrative user to set system 
time from the hardware clock time.  The hwclock man page gives more information.  hwclock follows 
these steps:

1. Sets language

2. Parses command-line arguments

3. Validates command-line arguments

4. If command-line options indicate a hardware clock set operation, then it opens the /dev/rtc device 
special file, performs I/O to set the value, and ensures that the process has CAP_SYS_TIME 
capability. 

5. Or, if a user uses the -directisa option, then hwclock uses explicit I/O instructions to access 
CMOS memory registers, which set the clock value.  Here also the kernel ensures that the process 
has CAP_SYS_TIME capability.

6. If hwclock succeeds, it sets the value of hardware clock; otherwise, it gives the appropriate error 
message.

7. Exits.  

 5.11.1.4 SELinux management

 5.11.1.4.1 chcat

The chcat utility is a python program to conveniently add, delete, and list MLS categories for files and 
users.  For more information about the chcat utility,  see the chcat(8) man page.

chcat typically follows these steps in its execution:

1. Checks if the SELinux MLS policy is enabled.

2. Parses command-line options.
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3. Replaces, adds, or removes categories specified by the command-line options by calling chcat if 
processing a file, or by calling methods in the SELinux seobject python class if processing a user.

4. Exits.

 5.11.1.4.2 chcon

The chcon program changes SELinux file contexts.  For more information about the chcon utility, see the 
chcon(8) man page.

chcon typically follows these steps in its execution:

1. Sets up message catalog support.

2. Parses command-line arguments.

3. If using a reference file, gets the context of the reference file.

4. Changes the file or directory context by continuing with these steps:Gets the existing file context.

5. Checks that there is sufficient information in the existing context to fulfill sparse requests.

6. Computes a new file context.

7. Converts the new file context to a string.

8. Sets the new file context.

9. Reports results.

10. Exits.

 5.11.1.4.3 checkmodule

The checkmodule utility parses, checks, and compiles SELinux policy modules into binary policy 
modules that can be linked with the base SELinux policy.  It performs the same founction for SELinx 
policy module that the checkpolicy program (see section 5.11.1.4.4) performs for the base policy.  For 
more information about the checkmodule program, see the checkmodule(8) man page.

checkmodule typically follows these processing steps:

1. Processes command-line arguments.

2. Sets up the policydb module database structure and sidtab structures used by libspol.

3. If the module type is binary, reads the binary policy into the module database structure and 
continues. 

4. If the module type is source, initializes the binary module database.

5. Reads in the source module file, parses it, and transforms it to binary module database.

6. Checks module hierarchy constraints.

7. If the module type if base, verifies that the base policy can be fully expanded by initializing a test 
policy database, linking in all the modules, and expanding the entire policy.

8. Loads initial SIDs into the module database.

9. Destroys the sidtab data structure.

10. Writes out the binary module file.

11. Destroys the module database.

12. Exits.
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 5.11.1.4.4 checkpolicy

The checkpolicy utility parses, checks, and compiles the SELinux policy into a binary policy that can be 
loaded into the kernel.  Compilation is optional and controlled by the presence of the -o command-line 
argument.  Binary policies can also be checked for validity using the -b argument.  MLS policy is 
specified with the -M argument.  There is also a debug mode invoked with the -d argument.  For more 
information on the checkpolicy program,  see the checkpolicy(8) man page.

checkpolicy typically follows these processing steps:

1. Processes command-line arguments.

2. Sets up policydb and sidtab structures used by libspol.

3. If the policy type is binary, opens the binary policy.

4. mmaps the binary policy file.

5. Initializes the binary policy database.

6. Reads the mmaped binary policy file as a policy database.

7. Checks the database consistency.

8. Goes to step 17.

9. If the policy type is not binary:

10. Initializes the policy database data structure for the source policy.

11. Reads in the source policy file, parses it, and transforms it to binary policy database.

12. Sets up the binary policy database hash table.

13. Initializes the binary policy database data structure.

14. Links in modules.

15. Expands the policy.

16. Destroys the source policy data structure.

17. Loads initial SIDs into the policy database.

18. If not just a check, writes the binary policy out to a file.

19. If not debug, destroys the binary policy data structure and exits.

20. If debug, presents a menu of data structures for examination.

21. Reads from stdin a menu selection.

22. Prints the selected data structure.

23. Goes back to step 20.

24. Exits when the exit option is selected.
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 5.11.1.4.5 fixfiles

The fixfiles utility is a wrapper script for the restorecon and setfiles utilities, as described in Sections 
5.11.1.4.9 and 5.11.1.4.16, respectively.  It calls the binaries to repair contexts on files based on the 
SELinux policy, and provides somewhat higher-level functionality.  It examines file systems with the 
mount command to determine which are candidates for repair.  It prompts for the removal of files in 
the /tmp directory because label drift problems occur most easily there.  It can also examine an RPM and 
only label the files in the package.  For more information about the fixfiles utility,  see the fixfiles(8) 
manpage.

The fixfiles script follows these steps in its execution:

1. Determines the SELinux policy type from the /etc/selinux/config file.

2. Parses command-line arguments.

3. Performs a restore, verify, check, or relabel operation.

4. For a restore operation, changes incorrect file context labels to correct labels.

5. For a verify operation, lists files with incorrect file context labels.

6. For the check operation, prints incorrect file context labels showing old and new contexts.

7. For the relabel operation, prompts for the removal of /tmp directory contents and changes 
incorrect file context labels to correct labels.

8. Exits.

 5.11.1.4.6 genhomedircon

genhomedircon generates file context configuration entries for home directories of a user.  These entries 
are generated based on their default roles.  Refer to the genhomedircon man page for more detailed 
information.  genhomedircon generally follows these steps:

1. Parses command-line arguments.

2. Obtains a list of valid shells.

3. Obtains user ID and home shell.

4. Checks the user, if its root then.

5. Gets home directory context and user context.

6. Generates file context configuration entries.

7. Exits.

 5.11.1.4.7 load_policy

load_policy loads or replaces the policy in the kernel.  Refer to the load_policy man page for more 
detailed information. load_policy generally follows these steps:

1. Handles command-line arguments.

2. Checks options, use defaults if none specified.

3. Checks command-line arguments.

4. Loads the specified policy.
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 5.11.1.4.8 mcstransd

The mcstransd daemon provides translation between MLS labels and symbolic names while at the same 
time preventing direct access to the potentially sensitive translation configuration file.  For example, 
SystemLow can be mapped to s0, which is the system low label defined in the MLS policy.  mcstransd 
reads the /etc/selinux/mls/setrans.conf file to establish the associations between MLS labels and names. 
The file contains tuples of the form label=name.

mcstransd generally follows these processing steps:

1. Checks for root identity.

2. Opens its log file.

3. Logs a start message.

4. Initializes, including the linked list of labels generated from the contents of the setrans.conf file.

5. Drops its capabilities.

6. Daemonizes itself.

7. Begins polling for UNIX domain socket connections from libselinux.

8. As connections are made, performs forward or reverse lookups as requested and returns results.

 5.11.1.4.9 restorecon

restorecon primarily sets the security context of specified files.  It can be also used to correct errors, to 
check current file contexts or to add support for new policy.  Refer to the restorecon man page for more 
detailed information.  sestorecon generally follows these steps:

1. Handles command-line arguments.

2. Checks if SELinux is enabled.

3. Checks options.

4. Loads specified files.

5. Sets the files’ security context.

 5.11.1.4.10 restorecond

The restorecond daemon monitors the filesystem for file creations using the inotify mechanism  and sets 
the contexts of newly-created files in accordance with the SELinux policy.  For more information about 
restorecond,  see the restorecond(8) man page.

The restorecond daemon follows these steps in processing:

1. Checks for root identity.

2. Checks that SELinux is enabled.

3. Sets up signal handlers.

4. Sets up matchpathcon flags.

5. Initializes an inotify fd.

6. Parses command-line arguments.

7. Reads its /etc/selinux/restorecond.conf configuration file and initializes the inotify watch list.

8. Checks for debug mode.

218



9. Writes out its PID file.

10. Waits for inotify events on the watch list and processes file context changes; exits when a signal 
is received that causes the signal handler to invalide the watch file descriptor, exiting the watch 
loop.

11. Frees the inotify watch list.

12. Closes the inotify file descriptor.

13. Unlinks the PID file.

14. Exits.

 5.11.1.4.11 runcon

The runcon command runs programs in a subshell with a specified context.  The subject must have 
permission to transition into the domain and MLS level or runcon returns an error.  For more information 
on the runcon command, see the runcon(8) man page.

runcon typically follows these processing steps:

1. Processes the command-line arguments.

2. Checks that SELinux is enabled.

3. If a context argument was passed, generates a context from it and goes to step 7.

4. If no context argument was passed, gets the current context and computes a domain transition 
from the SELinux policy.

5. Creates a new context from the current context.

6. Overwrites various parts of the current context as controlled by the command-line arguments.

7. Validates the new context.

8. Uses setexeccon() to set up the new context for the child process.

9. Frees the context.

10. Execs the child with execvp().

11. Exits.

 5.11.1.4.12 run_init

run_init runs an init script in the proper context.  This context should be specified 
in /etc/selinux/POLICYTYPE/contexts/initrc_context.  Refer to the run_init man page for more detailed 
information.  sun_init generally follows these steps:

1. Checks if SELinux is enabled.

2. Handles command-line arguments.

3. User authentication:

a) Initializes PAM. 

b) Checks user authentication.

c) Checks account authentication.

4. Gets the context of the script that is going to run.

5. Executes the command in the correct context.
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 5.11.1.4.13 semanage

semanage is used to manage SELinux configuration files.  It allows the configuration and customization 
of its policy.  Refer to the semanage man page for more detailed information. semanage generally follows 
these steps:

1. Handles command-line arguments.

2. Checks command-line arguments..

3. Loads audit subsystem rules

4. Checks if it is an MLS machine.

5. Starts required transaction.

6. Verifies policy permissions.

7. Executes the required transaction.

 5.11.1.4.14 semodule

semodule is used to manage SELinux policy modules.  It can be used to install, upgrade, list, or remove 
modules.  It can further be used to force a rebuild or reload of the policy.  Refer to the semodule man page 
for more detailed information.  semodule generally follows these steps:

1. Establishes signal handlers for the process.

2. Parses command-line arguments.

3. Sets global options.

4. Checks if SELinux policy is managed.

5. Executes required operation.

6. Commits the changes.

 5.11.1.4.15 setenforce

setenforce sets the mode that SELinux is running.  The modes can be enforcing or permissive.  Refer to 
the setenforce man page for more detailed information.  setenforce generally follows these steps:

1. Parses command-line arguments.

2. Checks if SELinux is enabled.

3. Sets the mode SELinux is going to run.
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 5.11.1.4.16 setfiles

setfiles is used to initialize the security context database on one or more file systems.  It can be also used 
to check current file contexts, to correct errors, or to add support for a new policy.  Refer to the setfiles 
man page for more detailed information.  setfiles generally follows these steps:

1. Handles command-line arguments.

2. Checks options.

3. Loads and checks files’ security context specifications against active policy, or a binary policy 
file.

4. Applies specifications to the files or file systems.

 5.11.1.4.17 setsebool

setsebool sets the state of a particular SELinux boolean or of a list of booleans.  This value can be set to 1 
or true, to enable the boolean; or, 0, or false, to disable it.  Refer to the setsebool man page for more 
detailed information.  setsebool generally follows these steps:

1. Checks if SELinux is enabled.

2. Handles command-line arguments.

3. Checks if it is a list of booleans to be set or a single one.

4. Sets the new booleans’ values.

5. Creates a log of the changes.

 5.11.1.4.18 togglesebool

togglesebool flips the current value of a boolean, changing it from 1 to 0 or vice-versa.  Only values 
resident in memory are changed.  Refer to the togglesebool man page for more detailed information. 
togglesebool generally follows these steps:

1. Checks if SELinux is enabled.

2. Parses command-line arguments.

3. If the required booleans exist, flips the current value.

4. Commits the changes.

5. Creates a system log of changes.

 5.11.1.5 System management

 5.11.1.5.1 AIDE

The Advanced Intrusion Detection Environment (AIDE) checks the integrity of files specified in its 
configuration file /etc/aide.conf.  AIDE is useful in detecting malicious or inadvertent modifications to 
programs and databases critical for system operation.  The AIDE database is initialized with the -init 
command-line flag .  File characteristics such as owner, group, mode, and other attributes are stored in the 
database, typically named  /var/lib/aide/aide.db.gz.new, along with the one or more cryptographic hashes 
of the file contents and associated system extended attributes including the security extended attribute 
namespace for SELinux.  
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In the TOE, the configuration file has been tailored to meet the self-test requirements of RBACPP.  The 
AIDE database must be manually moved to its standard name /var/lib/aide/aide.db.gz to avoid inadvertent 
modification.  When either no flag or the -check flag are given on the command line, files are checked 
against the characteristics stored in the AIDE database.  If any file does not match its characteristics in the 
AIDE database, AIDE returns an error.   For more information about AIDE, see the aide(1) man page, and 
the AIDE README and manual in /usr/share/doc/aide-0.12 and /etc/aide.conf.

 5.11.1.5.2 Abstract machine test utility (AMTU)

The TOE security functions are implemented using underlying hardware.  The TSF depends on the 
hardware to provide certain functionalities in order for the security functions to work properly.  Because 
the TOE includes different hardware architectures, a special tool is provided to test features of the 
underlying hardware that the TSF depends on. 

This tool works from the premise that it is working on an abstract machine that is providing functionality 
to the TSF.  The test tool runs on all hardware architectures that are targets of evaluation, and reports 
problems with any underlying functionalities.  For more detailed information about the Abstract Machine 
Test, refer to Emily Ratliff, “Abstract Machine Testing: Requirements and Design.”  The AMTU test tool 
performs detailed in the  subsections that follow.

 5.11.1.5.2.1 Memory

AMTU allocates 20% of the free memory of the system, and then writes a pattern of random bytes.  The 
tool reads back the memory and ensures that what was read matches what was written. If they do not 
match, the tool reports a memory failure.

 5.11.1.5.2.2 Memory separation

To fulfill the memory separation requirement, AMTU performs the following: As a normal user, the tool 
picks random areas of memory in the ranges reported in /proc/ksyms to ensure that user-space programs 
cannot read from, or write to, areas of memory utilized by such things as Video RAM and kernel code. 
The tool reports a failure if any of the above attempts succeed.

 5.11.1.5.2.3 I/O controller and network

Because portions of the TSF depend on the reliability of the network devices and the disk controllers, 
AMTU also checks I/O devices.  This section describes how the network devices are tested. 

When the kernel detects an attempt to open a network connection to an address that is configured on the 
local machine, the kernel short-circuits the packets rather than sending them to the physical device.  To 
evade this optimization without requiring a remote server, the tool specifies the PF_PACKET 
communication domain (see packet (7)) when opening the socket. AMTU performs the following:

1. Using the PF_PACKET communication domain, opens another connection to the listening server and

2. Ensures that the random data transmitted is also the data received.  Steps 1 and 2 are repeated for each 
configured network device.

 5.11.1.5.2.4 I/O controller and disk

In order to check the disk controllers (IDE and SCSI only), AMTU opens a file on each read-write 
mounted file system, writes a 10 MB random string, syncs the file and directory, closes the file, re-opens 
the file, and reads it to validate that the string is unchanged.  

The 10 MB string size is chosen so that the file exceeds the size of the device's buffer.  AMTU prints a 
warning to the administrator if it has determined that a disk controller (IDE only) was not tested, unless 
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that disk controller is dedicated to floppy and CD-ROM devices.  This might happen if a disk controller 
only controls read-only file systems.  More than one test is performed on disk controllers that control 
more than one r/w file system.

 5.11.1.5.2.5 Supervisor mode instructions

Certain instructions are only available in supervisor mode.  The kernel has the ability to switch to 
supervisor mode to use the instructions, but user-space tools should not be able to use these instructions. 
A subset of these privileged instructions should be tested to confirm that that is true. 

The list of instructions that are available in only supervisor mode is architecture-dependent. The subset of 
the privileged instructions that are tested per platform is listed below. In addition, to generically test that 
privileged instructions cannot be executed while  in non-supervisor mode, the test ensures that the CPU 
control registers, task registers, and interrupt descriptor tables cannot be changed while not in supervisor 
mode.  Supervisor instructions available for each of the architectures are described in subsections below.

 5.11.1.5.2.5.1 System p

The instruction set for the PowerPC processor is given in the book at the following URL: 
http://www.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600682CC7/$file/bo
oke_rm.pdf

For each instruction, the description in the book lists whether it is available only in supervisor mode or 
not. The following instructions are tested by the AMTU:

• TLBSYNC:  TLB Synchronize

• MFSR:  Move from Segment Register

• MFMSR:  Move From Machine State Register

The expected outcome from attempting to execute these instructions is an ILLEGAL Instruction signal 
(SIGILL – 4).

 5.11.1.5.2.5.2 System z

The book entitled Principles of Operation is a handy reference for the System z architecture:

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR006/CCONTENTS

The following privileged instructions are tested by this tool:

• PTLB:  Purge TLB

• RRBE:  Reset reference bit extended

• PALB:  Purge ALB

• EPAR:  Extract Primary ASN

• HSCH:  Halt subchannel

• LPSW:  Load PSW (To test the CPU control register).

The expected outcome from attempting to execute these instructions is an ILLEGAL Instruction signal 
(SIGILL – 4).
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 5.11.1.5.2.5.3 System x

Section 4.9 from the Intel Architecture Software Developer's Manual Volume 3: System Programming book 
at ftp://download.intel.com/design/PentiumII/manuals/24319202.pdf gives a list of privileged instructions 
available for the x86 architecture.

This tool tests the following privileged instructions:

• HLT: halt the processor

• RDPMC: read performance-monitoring counter

• CLTS:  Clear task-switched flag in register CR0.

• LIDT:  Load Interrupt Descriptor Table Register

• LGDT: Load Global Descriptor Table Register

• LTR: Load Task Register

• LLDT: Load Local Descriptor Table Register

To test CPU control registers, use MOVL %cs, 28(%esp).  This overwrites the value of the register that 
contains the code segment.  The register that contains the address of the next instruction (eip) is not 
directly addressable.  Note that in the Intel documentation of MOV it is explicitly stated that MOV cannot 
be used to set the CS register.  Attempting to do so will cause an exception (SIGILL rather than 
SIGSEGV).

The expected outcome of attempting to execute these instructions is a Segmentation Violation signal 
(SIGSEGV – 11).

 5.11.1.5.2.5.4 eServer 326

Chapter 4 of the AMD Architecture Programmer’s Manual Volume 3: General Purpose and System 
instructions at  http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24594.pdf 
gives the list of privileged instructions available for the AMD64 architecture.

This tool tests the following privileged instructions:

• HLT:  Halt the processor

• RDPMC:  Read performance-monitoring counter

• CLTS:  Clear task-switched flag in register CR0.

• LIDT:  Load Interrupt Descriptor Table Register

• LGDT: Load Global Descriptor Table Register

• LTR:  Load Task Register

• LLDT:  Load Local Descriptor Table Register

To test CPU control registers, use MOVL %cs, 28(%esp).  This overwrites the value of the register that 
contains the code segment.  The register that contains the address of the next instruction (eip) is not 
directly addressable.  Note that in the Intel documentation of MOV it is explicitly stated that MOV cannot 
be used to set the CS register.  Attempting to do so will cause an exception (SIGILL rather than 
SIGSEGV).

The expected outcome of attempting to execute these instructions is a Segmentation Violation signal 
(SIGSEGV – 11).
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 5.11.1.5.2.6 AMTU output

For each of these subsystems, the AMTU tool reports what aspect of the system it is currently testing and 
then reports either success or failure. This message is also logged to the audit subsystem. In the case of 
failure, any additional information available is reported to the system administrator to help troubleshoot 
the problem.

 5.11.1.5.3 rbac-self-test

The rbac-self-test utility is a python program that performs a series of tests to meet the self-test 
requirement of the RBACPP.  If any of the tests fail, the system can be placed in single user mode 
depending on the contents of the /etc/security/rbac-self-test.conf configuration file.  rbac-self-test.conf can 
contain either the string “log” or the string “shutdown” to indicate the desired action upon failure.  The 
rbac-self-test performs these steps:

1. Checks that SELlinux is enabled, enforcing, and running an MLS policy.

2. Checks that the audit daemon is up.

3. Checks the integrity of critical configuration files by calling the AIDE program (see section 
5.11.1.5.1).

4. Checks that BLP rules are enforced in the filesystem by creating files at one level and attempting 
to perform operations on them at another via the specialized rbac-self-test-helper program.

5. If it detects a failure, rbac-self-test logs an error and, optionally, places the system in single-user 
mode.

 5.11.1.5.4 rbac-self-test-helper

The rbac-self-test helper is a python program intended only to be called by the rbac-self -test.  It reads, 
writes, and deletes test files in the /var/run directory.  The /var/run directory is used for the test files 
because it is one of the few MLS-ranged directories in the filesystem.  The rbac-self-test-helper generally 
follows these steps in its operation:

1. Checks that exactly 2 command-line arguments are given.

2. Processes the command-line arguments.  The first is an SELinux file context and the second is the 
read, write, or delete operation specified with “r,” “w,” or “d,” respectively.

3. Constructs a test file name of the form /var/run/rbac-self-test-helper-<context>, where <context> 
is the context passed as the first command-line argument.

4. Validates that the operation specified is valid.

5. If the specified operation is delete, unlinks the test file.

6. If the specified operation is write or read, opens the data file with the operation specified on the 
command line.

7. If the specified operation is write, writes the context passed as the first argument as test data to 
the test file.

8. If the specified operation is read, reads the contents of the test file into a dummy variable.

9. If the specified operation is write or read, closes the test file.

10. Exits.
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 5.11.1.5.5 rnano

The rnano editor is the designated system editor for the TOE.  It offers full screen editing capabilities. 
However, its functions are restricted; it will not write to files other than those specified as command-line 
arguments; will not process nanorc files; does not permit itself to be suspended; does not permit files to be 
appended, prepended, or written to another name; and, does not support backup files or spell checking. 
For more information about rnano, see the rnano(1) man page.

The rnano editor typically follows these processing steps:

1. Sets the locale.

2. Initializes messages catalog support.

3. Processes command-line arguments.

4. Checks its own program name for an “r” prefix, which indicates it is running in restricted mode.

5. Sets restricted mode.

6. Processes its rc file.

7. Performs various initializations depending on the options passed.

8. Initializes the screen.

9. Sets up signal handlers.

10. Sets up shortcut lists.

11. Loads the first file on the command line into an edit buffer, or opens an empty edit buffer.

12. Displays the main list.

13. Displays the main buffer.

14. Resets the cursor.

15. Sets the jump buffer for SIGWINCH handling.

16. Displays the current cursor position if cursor is on, and no keys ready for processing.

17. Reads and interprets characters.

18. Goes back to step 14.

19. Exits when the exit key sequence is provided in the read and interpret function.

 5.11.1.5.5.1 star

The star utility is an extended version of the tape archive command.  It can save and restore the extended 
attributes that the ext3 filesystem uses to store SELinux MAC attributes.  For more information about the 
star utility, see the star(1) man page.

The star utility typically follows these processing steps:

1. Saves the command-line arguments.

2. Gets its EUID and UID.

3. Transforms old-style command-line argument syntax into new-style syntax.

4. Processes the command-line arguments.

5. Sets up signal handling.

6. Initializes the FIFO.
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7. Initializes any remote connection.

8. Sets back the real UID.

9. Checks if SELinux is enabled.

10. Opens the archive.

11. Initializes data structures.

12. Checks for multivolume format; logs an error and exits if so, because it is unsupported.

13. Initializes device macro handling.

14. Initializes extended headers buffer.

15. Initializes UID and GID handling.

16. Gets the working directory.

17. Gets the current time.

18. Initializes the date name.

19. Initializes the volume header.

20. Checks for a FIFO; forks and runs operation if so.

21. Checks for a copy flag; copies the archive if so.

22. Checks for TOC, create, or xtract flags.

23. If a list file argument was passed, opens that and uses it as the list of files to process.

24. If no file list was given, does a find for each of the command-line arguments.

25. Closes the pattern.

26. If the TOC flag was given, lists the files.

27. If doing an extract, changes to the change dir argument, if present, and extracts the files,

28. If doing a diff, shows the file differences.

29. Closes the pattern.

30. Performs tape manipulation.

31. If it is a create, creates the archive.

32. Checks archive links.

33. Closes the archive.

34. Prints any statistics requested.

35. Checks for errors and prints error codes.

36. Flushes stdout if on a terminal.

37. Writes out dump dates if necessary.

38. Exits.
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 5.11.1.5.6 I&A support

 5.11.1.5.6.1 pam_tally2

The pam_tally2 utility allows administrative users to reset the failed login counter kept in 
the /var/log/tallylog.  See the /usr/share/doc/pam-0.99.6.2/txts/README.pam_tally2 file on a RHEL 
system for more information.

 5.11.1.5.6.2 unix_chkpwd

The unix_chkpwd helper program works with the pam_unix PAM module (see section 5.9.1.3).  It is 
intended only to be executed by the pam_unix PAM module and logs an error if executed otherwise.  For 
more information about the unix_chkpwd helper program,  see the unix_chkpwd(8) man page.

The unix_chkpwd helper program typically follows these processing steps:

1. Sets up a signal handler.

2. Checks that it is not running on a TTY.

3. Gets the user's name.

4. Verifies the password if passed the verify command-line arugument.

5. Updates the shadow file if passed the update command-line argument.

6. Reads the password from stdin.

7. Validates the length of the password.

8. Verifies the password against the shadow database.

9. Zeroes the password memory.

10. Exits.

 5.12 Batch processing
Batch processing on the RHEL system means to submit a job that will be run when the system load 
permits.  Batch processing allows users to perform CPU-intensive tasks while the system load is low; it 
also allows users and system administrators to automate routine maintenance tasks.  While batch 
processing provides a convenient feature, it also raises a security issue, because a privileged process has 
to perform a task ordered by a normal user.

This section describes different trusted commands and processes that implement the batch processing 
feature.  Mechanisms are highlighted that ensure that normal users are prevented from performing actions 
for which they are not authorized.  Batch processing is implemented with the crontab user command, and 
the crond trusted process. 

 5.12.1 Batch processing user commands
crontab is the batch processing user command.  crontab uses a control file to dictate when repeated jobs 
will execute.

The crontab program is used to install, uninstall, or list the tables used to drive the crond daemon in Vixie 
Cron.  The crontab program allows an administrator to perform specific tasks on a regularly-scheduled 
basis without logging in.  Users can have their own crontabs that allow them to create jobs that will run at 
given times.  A user can create a crontab file with the help of this command.  The crontab command 
generally goes through these steps:
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1. Parses command-line options to determine if the crontab file is to be created, listed, edited or 
replaced.

2. Checks if the user is authorized to use this command.  If the /etc/cron.allow file exists, only users 
listed in that file are allowed to use this command.  If the /etc/cron.deny file exists, then users 
listed in that file are not allowed to use this command.  It generates an audit record if a user is not 
allowed to use it.

3. If listing, crontab invokes the list_cmd() routine to list the existing crontab file.  It generates an 
audit record to log the listing of crontab files.

4. If deleting, crontab invokes the delete_cmd() routine to delete the existing crontab file.  It 
generates an audit record to log the deletion of an existing crontab file.

5. If editing a crontab, it invokes the edit_cmd() routine to edit the existing crontab file.  It generates 
audit record to log modification of an existing crontab file.

6. If replacing a crontab, crontab invokes the replace_cmd() routine to replace the existing crontab 
file.  After the edit and replace option, crontab ensures that the modified new crontab file is 
owned by root and has an access mode of 600.  It generates an audit record to log the replacement 
of an existing crontab file. 

crontab files are created in the /var/spool/cron/ directory and are created with the login name of the 
respective user. Depending on a command-line option, the current process security context is saved in the 
crotab file.  The crond daemon uses the name of the file and the process security context, if it exists in the 
crontab file.  If the crontab file does not contain security context, then the users default login security 
context is used by the crond daemon. This establishes the identity of the user, with appropriate security 
context, on whose behalf commands will be executed.  Since the /var/spool/cron directory is owned by 
root and has an access mode of 700, normal users cannot schedule jobs in the name of other users.

 5.12.2 Batch processing daemons
The crond daemon executes commands scheduled through crontab or listed in /etc/crontab for standard 
system crond jobs.

The crond trusted process daemon processes users’ crontab files.  The crond daemon ensures that the 
system DAC policy is not violated by duplicating the login environment of the user whose crontab file is 
being processed. The crond daemon depends on the crontab trusted command to create the crontab file of 
each user with his or her name.  The /var/spool/cron/tabs/root file contains the crontab for root, and 
therefore is critical.  The crond daemon also depends on the kernel’s file system subsystem, to prevent 
normal users from creating or modifying other users’ crontab files. The crond daemon starts during 
system initialization, and generally follows these steps:

1. Sits in an infinite loop, waking up after one minute to process crontab files.

2. Sets the system’s crond jobs by reading crontab files in the /etc/cron.d/ directory.

3. Sets crond jobs to be executed weekly, hourly, daily, or monthly by reading their respective 
crontab files from directories in /etc/cron {weekly hourly daily monthly}.

4. Calls the load_database() routine to read crontab files in the /var/spool/cron/tabs directory.

5. For every crontab file, invokes getpwnam() to get the user’s identity information.

6. For each crontab file, at the appropriate time, which is set in the file, the daemon forks a child to 
execute commands listed in the crontab file.  The child sets its credentials based on the user’s 
login environment, including the session security context, before executing any commands.  It 
generates audit records to log execution of crond jobs.
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 5.13 User-level audit subsystem
The main user-level audit components consist of the auditd daemon, the auditctl control program, the 
libaudit library, the auditd.conf configuration file, and the auditd.rules initial setup file.  There is also 
the /etc/init.d/auditd init script that is used to start and stop auditd.  When run, this script sources another 
file, /etc/sysconfig/auditd, to set the locale, and to set the AUDIT_CLEAN_STOP variable, which 
controls whether to delete the watch points and the filter rules when auditd stops.

On startup, auditd reads the configuration file to set the various configuration options that pertain to the 
daemon. Then, it reads the auditd.rules to set the initial rules.  The auditd.conf man page describes all the 
configurable options.  The auditctl man page lists all the supported control options.

 5.13.1 Audit daemon
The auditd daemon does the following on startup:

1. Registers its PID with the kernel, so the kernel starts sending all audit events to the daemon (to 
the netlink).

2. Enables auditing.

3. Opens the netlink socket, and spawns a thread that continuously waits on the condition of audit 
record data availability on the netlink.  Once the data is available it signals the thread, which 
writes out the audit records. 

4. Reads the /etc/auditd.conf configuration file, which holds the configuration parameters that 
define, among other things, what to do when errors are encountered, or when the log files are full. 

5. Usually, the /etc/init.d/auditd init script runs auditd, which issues 
auditctl -R /etc/audit.rules, if /etc/auditd.rules exists.

6. suditctl can be used at any time, even before auditd is running, to add and build rules associated 
with possible actions for system calls and file system operations.  It also sets the behavior of the 
audit subsystem in the kernel.

7. If audit is enabled, the kernel intercepts the system calls and generates audit records according to 
the filter rules.  Or, it generates audit records for watches set on particular file system files or 
directories.

8. Trusted programs can also write audit records for security-relevant operations through the audit 
netlink, and not directly to the audit log. 

 5.13.2 Audit utilities 
In addition to the main components, the user level provides the ausearch search utility and the autrace 
trace utility.  While ausearch finds audit records based on different criteria from the audit log, autrace 
audits all syscalls issued by the process being traced.  The man pages for these two utilities detail all the 
options that can be used.  This section only describes how they operate.

 5.13.2.1 aureport 

The aureport utility provides summary information from audit log files.  Use of aureport is restricted to 
administrative users.  For more information about the aureport utility, see the aureport(8) man page.

aureport typically follows these processing steps:

1. Sets the locale.

2. Processes the command-line arguments.
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3. Attempts to raise its resource limits.

4. Sets its umask.

5. Resets its internal counters.

6. Emits a title.

7. Processes audit records from an audit log file or stdin, incrementing counters depending on audit 
record contents.

8. Prints a message and exits if there are no useful events.

9. Prints a summary report.

10. Destroys its data structures and frees memory.

11. Exits.

 5.13.2.2 ausearch

Only root has the ability to run this tool.  First, ausearch checks the validity of the parameters passed, 
whether they are supported or not.  Then, it opens either the logs or the administrator-specified files.  The 
log’s location is extracted from the /etc/auditd.conf file.   For more information about ausearch, see the 
ausearch(8) man page.

After that, ausearch starts to process the records one record at a time, matching the parameters passed to 
it.  Because each audit record can be written into the log as multiple file records, the tool collates all the 
file records into a linked list before it checks whether the record matches the requested search criteria.

 5.13.2.3 autrace

Only root can run this command. Autrace executes the program passed to it after setting a filter to audit all 
system calls for the new process.  If any rules or watches were previously set, autrace will not run; it 
requires that all rules and watches be cleared first.  For more information about autrace, see the autrace(8) 
man page.

 5.13.3 Audit configuration files
On startup, auditd reads the /etc/auditd.conf file, which holds options that can be set by an administrator 
to control the behavior of the daemon.  

Table 5-7 lists the various configuration options. In addition, auditd reads the /etc/audit.rules file, which 
holds any command supported by auditctl.  The auditd and auditctl man pages give more detailed 
information.
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Option Description Possible values

log_file name of the log file

log_format How to flush the data from auditd to the 
log.

RAW. Only RAW is supported 
in this version.

priority_boost The nice value for auditd. Used to run 
auditd at a certain priority.

flush Method of writing data to disk. none, interval, data, sync

freq Used when flush is incremental, states 
how many records written before a 
forced flush to disk.

num_logs Number of log files to use

max_log_file Maximum log size in megabytes.

max_log_file_action Action to take when the maximum log 
space is reached. 

ignore, syslog, suspend, rotate

space_left Low water mark 

space_left_action What action to take when low water 
mark is reached

ignore, syslog, suspend, single, 
halt

admin_space_left High water mark 

admin_space_left_action What action to take when high water 
mark is reached

ignore, syslog, suspend, single, 
halt

disk_full_action What action to take when disk is full ignore, syslog, suspend, single, 
halt

Disk_error_action What action to take when an error is 
encountered while writing to disk.

Table 5-7: /etc/auditd.conf options

In addition to setting the audit filter rules, auditctl can be used to control the audit subsystem behavior in 
the kernel, even when auditd is running.  These settings are listed in Table 5-8.

Option Description Possible values

-b Sets max number of outstanding buffer 
allowed. If all buffers are exhausted, 
the failure flag is checked.

Default 64

-e Set enabled flag 0|1

-f Sets failure flag Silent, printk panic

-r Sets the rate of messages/second. If 0 
no rate is set. If > 0 and rate exceeded, 
the failure flag is checked.

Table 5-8: audictl  control arguments
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 5.13.4 Audit logs
LAF audit logs, also known as audit trails, are the final repository of audit records generated by the kernel 
and the trusted programs.  An administrative user can use the ausearch on audit logs to extract and 
analyze security-relevant events.

Audit logs are protected by their DAC mode, in order to protect them from unauthorized deletion or 
modification.

An administrator can specify in the auditd.conf file what actions auditd should perform whenever audit 
logs reach a specified size.  Also, the administrator can specify what happens when the process of writing 
to the audit logs encounters an error.

 5.14 Supporting functions
Trusted programs and trusted processes in an RHEL system use libraries.  Libraries do not form a 
subsystem in the notation of the Common Criteria, but they provide supporting functions to trusted 
commands and processes.

A library is an archive of link-edited objects and their export files.  A shared library is an archive of 
objects that has been bound as a module with imports and exports, and is marked as a shared object. 
When an object exported by a shared library is referenced, the loader checks for the object in the calling 
process’s shared library segment.  

If the library is there, the links are resolved, and the program can call the shared library code.  If the 
library isn’t there, the loader pages the library into the shared memory segment, where it can subsequently 
be used by other programs.  This section briefly describes the library and system-call linking mechanism 
in user and kernel space, and illustrates any security implications.

 5.14.1 TSF libraries
The following table lists some of the libraries that are used by trusted programs and processes.  The 
libraries may also be used by untrusted programs, but are still part of the TSF.  The libraries are protected 
from modification by the file system DAC mechanism. 

233



Library Description 

/lib/libc.so.6 C Run time library functions.

/lib/libcrypt.so.1 Library that performs one-way encryption of user and group 
passwords.

/lib/libcrypt.so.o.9.8b Replacement library for libcrypt.so.1 Supports bigcrypt and 
blowfish password encryption.

/lib/security/pam_unix.so Modules that perform basic password-based authentication, 
configured with the MD5 hashing algorithm.

/lib/security/pam_passwdqc.so Modules that enforce additional stricter password rules. For 
example, reject passwords that follow keyboard patterns such as 
“1az2pqr”.

/lib/security/pam_wheel.so Modules that restrict use of the su command to members of the 
wheel group.

/lib/security/pam_nologin.so Modules that allow the administrator to disable all logins with 
the /etc/nologin file.

/lib/security/pam_securetty.so Modules that restrict root access to specific terminals.

/lib/security/pam_tally2.so Modules that deny access based on the number of failed login 
attempts.

/lib/security/pam_listfile.so Modules that allow use of ACLs based on users, ttys, remote hosts, 
groups, and shells.

/lib/security/pam_deny.so Module that always returns a failure.

/lib/security/pam_env.so Module that loads a configurable list of environment variables.

/lib/security/pam_xauth.so Module that forwards xauth cookies from user to user.

/lib/security/pam_limits.so Module that imposes user limits on login.

/lib/security/pam_shells.so Module that grants authentication if the users shell is listed in  /etc/
shells

/lib/security/pam_stack.so Module that performs normal password authentication through 
recursive stacking of modules.

/lib/security/pam_rootok.so An authentication module that performs one task: if the id of the 
user is '0' then it returns 'PAM_SUCCESS'

/lib/security/pam_selinux.so Module that sets the default security context of the session

/lib/security/pam_namespace.so Module that sets per session namespace with polyinstantiated 
directories

/usr/lib/libssl3.so OpenSSL library with interfaces to Secure Socket Layer version 3 
and Transport Layer Security version 1 protocols.

/lib/libcrypto.so.4 OpenSSL crypto library with interfaces to wide range of 
cryptographic algorithms used in various Internet standards.

/lib/libselinux.so Core SELinux library

/lib/libsemanage.so SELinux library with interfaces to system management functions

/lib/libsepol.so SELinux library with interfaces to policy management functions

/lib/libsetrans.so SELinux library with interfaces to context translation functions
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Table 5-9: TSF libraries

 5.14.2 Library linking mechanism
On Red Hat Enterprise Linux (RHEL), a binary executable automatically causes the program 
loader /lib/ld-linux.so.2 to be loaded and run.  This loader takes care of analyzing the library names in the 
executable file, locating the library in the system directory tree, and making requested code available to 
the executing process.  The loader does not copy the library object code, but instead performs a memory 
mapping of the appropriate object code into the address space of the executing process.  This mapping 
allows the page frames containing the object code of the library to be shared among all processes that 
invoke that library function. 

Page frames included in private regions can be shared among several processes with the Copy On Write 
mechanism.  That is, the page frames can be shared as long as they are not modified.  The page frames 
containing the library object code are mapped in the text segment of the linear address space of the 
program.  Because the text segment is read-only, it is possible to share executable code from the library 
among all currently executing processes.

The kernel carries out this mapping of page frames in a read-only text segment, without any input from 
the user.  Object code is shared in read-only mode, preventing one process from making an unauthorized 
modification to another process’s execution context, thus satisfying the DAC requirement.  Page frames 
used for this mapping are allocated with the demand paging technique, described in Section 5.4.9.11, 
which satisfies the object reuse requirement.

On RHEL systems, the administrator can control the list of directories that are automatically searched 
during program startup.  The directories searched are listed in the /etc/ld.so.conf file.  A normal user is not 
allowed write access to the /etc/ld.so.conf file.  The loader also allows certain functions to be overridden 
from shared libraries with the LD_PRELOAD and LD_LIBRARY_PATH environment variables. 

The LD_PRELOAD variable lists object files with functions that override the standard set.  The 
LD_LIBRARY_PATH variable sets up lists of directories that are searched before loading from the 
standard directory list.  In order to prevent a normal user from violating the security policy, these 
variables are ignored, and removed from the process’s environment when the program being executed is 
either setuid or setgid. 

The system determines if a program is setuid or setgid by checking the program's credentials; if the UID 
and EUID differ, or the GID and the EGID differ, then the system presumes the program is setuid or 
setgid, or descended from one, and does not allow preloading of user-supplied functions to override ones 
from the standard libraries. 

Similarly, if the program execution results in domain transition, then the system checks to see if the 
resulting domain possesses the type enforcement permission noatsecure. If noatsecure is not present then 
the system clears LD_PRELOAD and LD_LIBRARY_PATH variables and thus does not allow 
preloading of user-supplied functions to override ones from the standard libraries.

When an executable is created by linking with a static library, the object code from the library is copied 
into the executable.  Because there is no sharing of page frames with other executing processes, there are 
no DAC or object reuse issues with static libraries.

 5.14.3 System call linking mechanism
A system call is an explicit request to the kernel made via a software interrupt.  The implementation of 
this interrupt is dependent on the hardware architecture.  The following subsections briefly describe the 
system call interrupt setup for the different hardware architectures that are part of the TOE.
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 5.14.3.1 System x

On System x systems, the Interrupt Descriptor Table (IDT) for the Intel processors is initialized to allow a 
trap gate that can be accessed by a user-mode process.  The trap_init() routine does this mapping at 
system initialization, and sets the IDT entry corresponding to vector 128 (Ox80) to invoke the system call 
exception handler.  

When compiling and linking a program that makes a system call, the libc library wrapper routine for that 
system call stores the appropriate system call number in the eax register, and executes the int 0x80 
assembly language instruction to generate the hardware exception.  The exception handler in the kernel 
for this vector is the system_call() system call handler.  

System_call() saves the contents of registers in the kernel-mode stack, handles the call by invoking a 
corresponding C function in the kernel, and exits the handler by means of the ret_from_sys_call() 
function. 

 5.14.3.2 System p

On System p systems, the PowerPC and POWER architecture provides the assembly instruction 
supervisor call (SC) to make a system call.  The kernel also uses the sc instruction to make hypervisor 
calls when the RHEL system is running in a logical partition.  The processor distinguishes between 
hypervisor calls and system calls by examining the general purpose register 0 (GPR0). 

If the GPR0 contains -1, and the processor is in privileged state, then the sc instruction is treated as a 
hypervisor call.  Otherwise, it is treated as a system call request from user space.  The sc instruction 
without -1 in GPR0 generates an exception.  The exception handler in the kernel redirects the call to the 
system_call() system call handler.  System_call() saves the contents of registers in the kernel mode stack, 
handles the call by invoking a corresponding C function in the kernel, and exits the handler by means of 
the ret_from_sys_call() function.

 5.14.3.3  System z

On System z, z/Architecture provides the SuperVisor Call assembly instruction SVC() to make a system 
call.  The SVC instruction generates an exception.  The exception handler in the kernel redirects the call 
to the system call handler, system_call().  System_call() saves the contents of registers in the kernel mode 
stack, handles the call by invoking a corresponding C function in the kernel, and exits the handler by 
means of the  ret_from_sys_call() function.

 5.14.3.4  eServer 326

The AMD Opteron processors differ significantly from x86 architecture with respect to the entry point 
into the kernel.  The Opteron processor provides the SYSCALL and SYSRET special instructions instead 
of using the interrupt 0x80.  The SYSCALL assembly instruction performs a call to the system_call() 
system call handler running at CPL level 0. 

The address of the target procedure is specified implicitly through Model Specific Registers (MSRs). 
System_call() saves the contents of registers in the kernel mode stack, handles the call by invoking a 
corresponding C function in the kernel, and executes the SYSRET privileged instruction to return control 
to the user space.

 5.14.4 System call argument verification
The process of transferring control from user mode to kernel mode does not generate any user-accessible 
objects; thus, there are no object reuse issues to handle.  However, because system calls often require 
input parameters, which may consist of addresses in the address space of the user-mode process, an illegal 
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access violation can occur as a result of a bad parameter.  For example, a user-mode process might pass 
an address belonging to the kernel-address space as a parameter, and because the kernel routines are able 
to address all pages present in memory, the address is able to read or write any page present in the 
memory without causing a page fault exception.  

The RHEL kernel prevents these kinds of access violations by validating addresses passed as system-call 
parameters.  For the sake of efficiency, and satisfying the access control requirement, the RHEL kernel 
performs validation in a two-step process, as follows:

1. Verifies that the linear address (virtual address for iSeries, System p, and System z) passed as a 
parameter does not fall within the range of interval addresses reserved for the kernel.  That is, that 
the linear address is lower than PAGE_OFFSET.

2. Because bad addresses lower than PAGE_OFFSET cause a page fault, the kernel consults the 
exception table and verifies that the address of the instruction that triggered the exception is NOT 
included in the table.  Exception tables are automatically generated by the C compiler when 
building the kernel image.  They contain addresses of instructions that access the process address 
space.
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 6 Mapping the TOE summary specification to the High-Level 
Design

This chapter provides a mapping of the security functions of the TOE summary specification to the 
functions described in this High-Level Design document.

 6.1  Identification and authentication
Section 5.9 provides details of the Red Hat Enterprise Linux (RHEL) Identification and Authentication 
subsystem.

 6.1.1 User identification and authentication data management (IA.1)
Section 5.9.2 provides details of the configuration files for user and authentication management.

Section 5.9.3.3.2 explains how a password can be changed.

 6.1.2 Common authentication mechanism (IA.2)
Section 5.9.1 provides a description of PAM, which is used to implement the common authentication 
mechanism for all the activities that create a user session.

 6.1.3 Interactive login and related mechanisms (IA.3)
Section 5.9.3.3.2 provides a description of the interactive login process. Section 5.10.2 describes the 
process of obtaining a shell from the remote system.

 6.1.4 User identity changing (IA.4)
Section 5.9.3.3.2 provides a description of changing identity on the local system using the su command.

 6.1.5 Login processing (IA.5)
Section 5.9.3.3.2 provides details of the login process and also a description of changing identity on the 
local system.

 6.2 Audit
Section 5.5 provides details of the Red Hat Enterprise Linux Audit subsystem.

 6.2.1 Audit configuration (AU.1)
Section 5.5.4 provides details of configuration of the audit subsystem to select events to be audited based 
on rules defined in /etc/audit.rules audit configuration file. Section 5.13.3 describes how configuration 
parameters are loaded into the Red Hat Enterprise Linux kernel.
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 6.2.2 Audit processing (AU.2)
Sections 5.5.1 and 5.5.3 provide details of how processes attach and detach themselves from the audit 
subsystem. Section 5.13.1 describes the audit daemon and how it reads audit data from the kernel buffer 
and writes audit records to a disk file.

 6.2.3 Audit record format (AU.3) 
Section 5.5.5.5 describes information stored in each audit record.

 6.2.4 Audit post-processing (AU.4)
Section 5.13.2 describes audit subsystem utilities provided for post-processing of audit data.

 6.3  Discretionary Access Control
Sections 5.1 and 5.2 provide details on Discretionary Access Control (DAC) on the Red Hat Enterprise 
Linux system.

 6.3.1 General DAC policy (DA.1)
Sections 5.1 and 5.2.2 provides details on the functions that implement general Discretionary Access 
policy.

 6.3.2 Permission bits (DA.2)
Sections 4.1.2.1.2, 4.1.2.1.3, 5.1.2.1,  5.1.5.1, and 5.9.3 provide details on calls that perform DAC based 
on permission bits.

 6.3.3 ACLs (DA.3)
Sections 5.1.2.1, 5.1.5.2, and 5.1.5.2.1 provide details on DAC based on ACLs on file system objects.

 6.3.4 DAC: IPC objects (DA.4)
Section 5.3 provides details on DAC for IPC objects.

 6.4 Role-Based Access Control (RA) (LSPP mode only)
The TOE makes use of SELinux RBAC.  Section 4.1.2.2 discusses SELinux RBAC.

 6.5 Mandatory Access Control (MA) (LSPP mode only) 
The TOE uses SELinux to enforce MAC rules.  Sections 4.1.2.2, 5.1.6, 5.2.2.3,5.3.3.3, 5.4.5, 5.9.3.3, and 
5.9.3.3.2 discuss MAC.

 6.5.1 Information Flow Control (MA.1) (LSPP mode only)
Sections 5.1.6discuss MAC information flow control.
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 6.5.2 Import/Export of labeled data (MA.2) (LSPP mode only)
Sections 5.4.5 and   discuss MAC information flow.

 6.6 Object reuse
Sections 5.1, 5.2, 5.3,  and 5.4.7.7 provide details on object reuse handling by the RHEL kernel.

 6.6.1 Object reuse: file system objects (OR.1)
Section 5.1.2.1 provides details on object reuse handling for data blocks for file system objects.

 6.6.2 Object reuse: IPC objects (OR.2)
Sections 5.3.3.2, 5.3.3.4, 5.3.3.5, and 5.3.3.6 provide details on object reuse handling for message queues, 
semaphores, and shared-memory segments.

 6.6.3 Object reuse: memory objects (OR.3)
Sections 5.4.9.1, 5.4.9.2, and 5.4.9.4 provide details on object reuse handling for memory objects.

 6.7 Security management
Section 5.11 provides details about various commands used to perform security management.

 6.7.1 Roles (SM.1)
Section 5.11 provides details on various commands that support the notion of an administrator and a 
normal user.

 6.7.2 Access control configuration and management (SM.2)
Sections 5.1.1 and 5.1.2.1 provide details on the system calls of the file system that are used to set 
attributes on objects to configure access control.

 6.7.3 Management of user, group and authentication data (SM.3)
Sections 5.9.2 and 5.11 provide details on various commands used to manage authentication databases.

 6.7.4 Management of audit configuration (SM.4)
Sections 5.13.1 and 5.13.2 describe utilities used to upload audit configuration parameters to the Red Hat 
Enterprise Linux kernel and utilities used by trusted processes to attach and detach from the audit 
subsystem.

 6.7.5 Reliable time stamps (SM.5)
Sections 3.1.1, 3.2.1, 3.3.1, and 3.4.1 describe the use of hardware clocks, by eServer hardware, to 
maintain reliable time stamps.
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 6.8 Secure communications
Sections 5.10.1 and 5.10.2 describe secure communications protocols supported by Red Hat Enterprise 
Linux.

 6.8.1 Secure protocols (SC.1)
Section 5.10.2 describes the Secure Shell (SSH) protocol.  Section 5.10.1 describes the Secure Socket 
Layer (SSL) protocol.  Section 5.10.1.3 describes cipher suites and cryptographic algorithms supported by 
Red Hat Enterprise Linux.

 6.9 TSF protection
Chapter 4 provides details on TSF protection.

 6.9.1 TSF invocation guarantees (TP.1)
Section 4.2 provides details of the TSF structure.  Section 4.2 also provides a mechanism to separate TSF 
software from non-TSF software.

 6.9.2 Kernel (TP.2)
Section 4.2.1 provides details on the Red Hat Enterprise Linux kernel.

 6.9.3 Kernel modules (TP.3)
Section 4.2.1.2 provides details on kernel modules on the Red Hat Enterprise Linux system.

 6.9.4 Trusted processes (TP.4)
Section 4.2.2 provides details on the non-kernel trusted process on the Red Hat Enterprise Linux system.

 6.9.5 TSF Databases (TP.5)
Section 4.3 provides details on the TSF databases on the Red Hat Enterprise Linux system.

 6.9.6 Internal TOE protection mechanisms (TP.6)
Section 4.1.1 describes hardware privilege implementation for the System x, System p, System z and 
Opteron eServer 326.  Section 5.4.7.7 describes memory management and protection.  Section 5.2 
describes process control and management.

 6.9.7 Testing the TOE protection mechanisms (TP.7)
Section 5.11 describes the AMTU tool available to administrative user to test the protection features of 
the underlying abstract machine. 

 6.10 Security enforcing interfaces between subsystems
This section identifies the security enforcing interfaces between subsystems in the high-level design of 
RHEL.  The individual functions exported by each subsystem are described with the subsystem itself. 
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This section therefore only discusses in general how the individual subsystems work together to provide 
the security functions of the TOE.  This section is mainly used to identify those internal interfaces 
between subsystems that are security enforcing in the sense that the subsystems work together to provide 
a defined security function.  Interfaces that are not security enforcing are interfaces between subsystems 
where the interface is not used to implement a security function. 

There is also the situation where a kernel subsystem A invokes functions from another kernel subsystem 
B using the external interface of the kernel subsystem.  This, for example, is the case when a kernel 
subsystem needs to open and read or write files, using the File and I/O kernel subsystem, or when a kernel 
subsystem sets the user ID or group ID of a process, using the Process Control subsystem.  

In those cases, all the security checks performed by those interface functions apply.  Note that a system 
call function in the kernel operates with the real and effective user ID and group ID of the caller unless the 
kernel function that implements the system call changes this.

This section describes the interfaces between subsystems, but it only discusses interfaces between kernel 
components that directly implement security functions. Note that kernel subsystems can use the kernel 
internal interfaces described in the individual subsystems as well as the externally visible interfaces 
(system calls).

The subsystems are:

• Kernel subsystems:

• File and I/O

• Process Control

• Inter-Process Communication

• Networking

• Memory Management

• Audit

• Kernel Modules

• Device Drivers

• Trusted process subsystems:

• System Initialization

• Identification and Authentication

• Network Applications

• System Management

• Batch Processing

• User-level audit subsystem

 6.10.1 Summary of kernel subsystem interfaces 
This section identifies the kernel subsystem interfaces and structures them per kernel subsystem into:

External Interfaces:  System calls associated with the various kernel subsystems form the external 
interfaces.  They are structured into TSFI System Calls and Non-TSFI System Calls.

Internal Interfaces:  These are the interfaces that cannot be exported as system calls that are intended to be 
used by other kernel subsystem.  Note that other kernel subsystems may of course also use the system 
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calls by calling the kernel internal entry point of the system call.  This entry point can be the name of the 
system call prefixed with sys_, or the name of the system call, prefixed with ppcX_ (X can be 32 or 64) or 
ppc_ (PowerPC kernel).  For example, for a system call abc, the kernel internal entry point is sys_abc, 
ppcX_abc, or ppc_abc.

Data Structures:  The kernel subsystem maintains data structures that can be read directly by other kernel 
subsystems to obtain specific information.  They are considered to be data interfaces.  Data structures are 
defined in header files.

The system calls are not described any further in this chapter.  For more information about the purpose of 
the system call, its parameter, return code, restrictions, and effects, see the man page for that particular 
system call.  The spreadsheet delivered as part of the functional specification also shows on which 
platform the different system calls are available.

This chapter contains a reference to the internal interfaces, describing where to find the description of the 
function implementing this internal interface.  

Concerning the data structures, this chapter contains the name of the header file within the TOE source 
tree that defines the data structure.  This document, as well as the other documents provided as references 
within this chapter, provides details of the purpose of those data structures.

 6.10.1.1 Kernel subsystem file and I/O

This section lists external interfaces, internal interfaces, and data structures of the file and I/O subsystem.

 6.10.1.1.1 External Interfaces

TSFI system calls

Non-TSFI system calls

System calls are listed in the Functional Specification mapping table.

 6.10.1.1.2 Internal Interfaces

 6.10.1.1.3 

Internal function Interfaces defined in

permission This document, Section  5.1.1.1

vfs_permission This document, Sections 5.1.1.1 and 5.1.5.1

get_empty_filp This document, Section  5.1.1.1

fget This document, Section  5.1.1.1

do_mount This document, Section 5.1.2.1

Specific ext3 methods Interfaces defined in

ext3_create This document, Section 5.1.2.1

ext3_lookup This document, Section 5.1.2.1

ext3_get_block This document, Section 5.1.2.1

ext3_permission This document, Sections 5.1.2.1, 5.1.5.1, and 5.1.5.2
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ext3_truncate This document, Section 5.1.2.1

Specific isofs methods Interfaces defined in

isofs_lookup This document, Section 5.1.2.2

Basic inode operations.  The create through the revalidate operations are described in Section 5.1.1, 
attribute and extended attribute functions are described in this document in Section 5.1.2.1 in the context 
of the ext3 file system.

create followlink

lookup truncate

link permission

unlink revalidate

symlink setattr

mMkdir getattr

rmdir setxattr

mknod getxattr

rename listxattr

readlink removexattr

Inode: note that these are super-user operations, which are not used by other subsystems, so there is no 
subsystem interface:

read_inode write_super

read_inode2 write_super_lockfs

dirty_inode unlockfs

write_inode statfs

put_inode remount_fs

delete_inode clear_inode

Dentry operations:  Note that they are not used by other subsystems, so there is no subsystem interface:

• d_revalidate 

• d_hash 

• d_compare 

• d_delete 

• d_release 

• d_iput
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 6.10.1.1.4 Data Structures

super_block Include/linux/fs.h

ext3_super_block Include/linux/ext3_fs.h

isofs_sb_info Include/linux/iso_fs_sb.h

inode Include/linux/fs.h

ext3_inode Include/linux/ext3_fs.h

iso_inode_info Include/linux/iso_fs_i.h

ext3_xattr_entry Include/linux/ext3_xattr.h

file Include/linux/fs.h

dentry Include/linux/dcache.h

vfsmount Include/linux/mount.h

 6.10.1.2 Kernel subsystem process control and management

This section lists external interfaces, internal interfaces, and data structures of the process control and 
management subsystem.

 6.10.1.2.1 External interfaces (system calls)

TSFI system calls

Non-TSFI system calls

System calls are listed in the Functional Specification mapping table. 

 6.10.1.2.2 Internal Interfaces

Internal function Interfaces defined in

Current Understanding the LINUX KERNEL, Chapter 3, 2nd Edition, Daniel P. 
Bovet, Marco Cesati, ISBN# 0-596-00213-0

request_irq Linux Device Drivers, O’Reilly, Chapter 9, 2nd Edition June 2001, 
Alessandro Rubini

free_irq Linux Device Drivers, O’Reilly, Chapter 9, 2nd Edition June 2001, 
Alessandro Rubini

send_sig_info && 
check_kill_permission 

Understanding the LINUX KERNEL, Chapter 10, 2nd Edition, Daniel P. 
Bovet, Marco Cesati, ISBN# 0-596-00213-0/ and this document, chapter 
5.3.4.2

 6.10.1.2.3 Data Structures

task_struct and include/linux/sched.h
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 6.10.1.3 Kernel subsystem inter-process communication

This section lists external interfaces, internal interfaces, and data structures of the inter-process 
communication subsystem.External interfaces (system calls)

• TSFI system calls

• Non-TSFI system calls

System calls are listed in the Functional Specification mapping table.

 6.10.1.3.1 Internal Interfaces

Internal function Interfaces defined in

do_pipe Understanding the LINUX KERNEL, Chapter 19, 2nd Edition, Daniel P. Bovet, 
Marco Cesati, ISBN# 0-596-00213-0/ and this document, Section 5.3.1.1

pipe_read Understanding the LINUX KERNEL, Chapter 19, 2nd Edition, Daniel P. Bovet, 
Marco Cesati, ISBN# 0-596-00213-0/ and this document, Section 5.3.1.1

pipe_write Understanding the LINUX KERNEL, Chapter 19, 2nd Edition, Daniel P. Bovet, 
Marco Cesati, ISBN# 0-596-00213-0/ and this document, Section 5.3.1.1

init_special_inode This document, Section 5.3.2.1

fifo_open This document, Section 5.3.2.2

ipc_alloc This document, Section 5.3.2.2

ipcperms This document, Section 5.3.2.2

send_sig_info This document, Section 5.3.2.2

unix_create This document, Section 5.3.5

inet_create This document, Section 5.3.5

sk_alloc This document, Section 5.3.5

 6.10.1.3.2 Data Structures

ipc_ids ipc/util.h

ipc_id ipc/util.h

kern_ipc_perm include/linux/ipc.h

msg_queue ipc/msg.c

msg_msg ipc/msg.c

sem_array include/linux/sem.h

Shmid_kernel ipc/shm.c

Sock include/net/sock.h

 6.10.1.4 Kernel subsystem networking

This section lists external interfaces, internal interfaces and data structures of the networking subsystem.
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 6.10.1.4.1 External interfaces (system calls)

• TSFI system calls

• Non-TSFI system calls

System calls are listed in the Functional Specification mapping table.

 6.10.1.4.2 Internal interfaces

Sockets are implemented within the inode structure as specific types of inodes.  Inode.u, in the case of an 
inode for a socket, points to a structure of type socket.  This structure contains a pointer to the proto_ops 
struct, in which the following methods of the socket are included:

release listen

bind shutdown

connect setsockopt

socketpair getsockopt

accept sendmsg

getname recvmsg

poll mmap

ioctl sendpage

The socket system call creates the inode.  The system calls, such as bind, connect, poll, listen, setsockopt, 
getsockopt, ioctl, and accept, are directly implemented by the methods registered for the socket. 

Read and write, as well as send, sendmsg, sendto and recv, recvfrom, and recvmsg are implemented by 
the methods registered for sendmsg and recvmsg.  Close is implemented by the methods registered for 
shutdown and release, and getsockname is implemented by the method registered for getname.  Note that 
send is an alias for sendmsg, and recv is an alias for recvfrom.

 6.10.1.4.3 Data Structures

Socket include/linux/net.h

proto_ops include/linux/net.h

 6.10.1.5 Kernel subsystem memory management

This section lists the external interfaces, internal interfaces and data structures of the memory 
management subsystem.

 6.10.1.5.1 External interfaces (system calls)

• TSFI system calls

• Non-TSFI system calls

System calls are listed in the Functional Specification mapping table

 6.10.1.5.2 Internal interfaces

Internal interfaces Interfaces defined in
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get_zeroed_page Linux Device Drivers, O’Reilly, Chapter 7, 2nd Edition June 2001, 
Alessandro Rubini /this document, chapter 5.5.2.1

__vmalloc Linux Device Drivers, O’Reilly, Chapter 7, 2nd Edition June 2001, 
Alessandro Rubini

vfree Linux Device Drivers, O’Reilly, Chapter 7, 2nd Edition June 2001, 
Alessandro Rubini

kmalloc Linux Device Drivers, O’Reilly, Chapter 7, 2nd Edition June 2001, 
Alessandro Rubini

kfree Linux Device Drivers, O’Reilly, Chapter 7, 2nd Edition June 2001, 
Alessandro Rubini

__ get_free_pages Linux Device Drivers, O’Reilly, Chapter 7, 2nd Edition June 2001, 
Alessandro Rubini

free_pages Linux Device Drivers, O’Reilly, Chapter 7, 2nd Edition June 2001, 
Alessandro Rubini

 6.10.1.5.3 Data Structures

mm_struct and include/linux/sched.h

 6.10.1.6 Kernel subsystem audit

This section lists external interfaces, internal interfaces, and data structures of the audit subsystem.

 6.10.1.6.1 External interfaces

There are two external interfaces to the audit subsystem.

• Netlink socket calls, by which  all kernel user-space communication takes place.

• Communication thru /proc to associate the login uid with the login session and therefore with all 
tasks forked or executed under the session.

 6.10.1.6.2 Internal interfaces

The audit kernel provides a set of interfaces to other kernel subsystems to:

• Format and send audit records to user space, audit_log_* functions.

• Allocate per task audit context, audit_alloc which is  called by copy_proc.

• Audit syscalls on entry and exit, audit_syscall_exit and audit_syscall_entry.

• Audit file system watched objects, audit_notify_watch and audit_notify_update.

• Add additional audit information for specific audit events: 

• Audit_socketcall

• Audit_sockaddr

• Audit_avc_path

• Audit_ipc_perms
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 6.10.1.6.3 Data structures

• audit_sock:  The netlink socket through which all user space communication is done. 

• audit_buffer:  The audit buffer is used when formatting an audit record to send to user space.  The 
audit subsystem pre-allocates audit buffers to enhance performance.

• audit_context:  The audit subsystem extends the task structure to potentially include an 
audit_context.  On task creation, by default the audit context is built, unless specifically denied by 
the per-task filter rules.  The audit subsystem further extends the audit_context to allow for more 
auxiliary audit information that may be needed for specific audit events.  While the auxiliary 
information is collected during the execution of the system call, all other audit_context 
information is filled on entry and exit of the system call. 

• audit_filter_list:  An array of filter lists to store various filter rules for various type of filters. 
Current filters supported are task creation time filter, syscall entry filter, syscall exit filter, file 
system watch filter, and user message filter.

• audit_watch:  A structure that holds audit information associated with an inode to watch.

• watchlist:  Per-directory list associated with directories that have watched children.

• master_watchlist:  A linked list that holds all the watches in the system.

• auditfs_hash_table:  A hash table of hashed inode addresses to store and retrieve inode audit data. 

 6.10.1.7 Kernel subsystem device drivers

 6.10.1.7.1 External interfaces (system calls)

No direct interface. 

• Device driver-specific commands can be passed from a user-space program to the device driver 
using the ioctl system call, which is a system call of the File and I/O subsystem.  

• File and I/O first checks for some generic ioctl commands it can handle itself, and calls the device 
driver ioctl method if the request by the user program is not one of those generic requests.  To 
issue an ioctl system call, the calling process must first have opened the device, which requires 
full access rights to the device itself.  Those access checks are performed by the open system call 
within the File and I/O subsystem.

 6.10.1.7.2 Internal interfaces

Device drivers implement a set of methods that other kernel subsystems can directly use.  In most cases, 
the File and I/O subsystem will use those methods after processing a user’s request, including checking 
the user’s right to perform the requested action.  The internal interfaces are therefore the methods 
implemented by the various device drivers.

All checks, according to the security policy, have to be performed by the kernel subsystem, invoking a 
method of a specific device driver before it calls the function.  For a description of the purpose of the 
device driver methods for character device drivers and block device drivers, see [RUBN].  Chapter 3 
describes the methods for character devices and chapter 6 describes the methods for block devices.

 6.10.1.7.2.1 Character Devices

Possible Character Device methods are:
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llseek flush

read release

write fsync

readdir fasync

poll lock

ioctl readv

mmap writev

open owner

Other functions:

register_chrdev Linux Device Drivers, O’Reilly, Chapter 3, 2nd Edition June 2001, 
Alessandro Rubini

unregister_chrdev Linux Device Drivers, O’Reilly, Chapter 3, 2nd Edition June 2001, 
Alessandro Rubini

 6.10.1.7.2.2 Block Devices

Possible Block Device Methods are:

• open

• release

• ioctl

• check_media_change

• revalidate

In addition to this, the programmer needs to define the device-specific function request().

Other functions include the following:

register_blkdev Linux Device Drivers, O’Reilly, Chapter 12, 2nd Edition June 2001, Alessandro 
Rubini

unregister_blkdev Linux Device Drivers, O’Reilly, Chapter 12, 2nd Edition June 2001, Alessandro 
Rubini
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 6.10.1.7.3 Data structures

device_struct fs/devices.c

file_operations include/linux/fs.h

block_device_operations include/linux/fs.h

 6.10.1.8 Kernel subsystems kernel modules

This section lists external interfaces, internal interfaces, and data structures of the kernel modules 
subsystem.

 6.10.1.8.1 External interfaces (system calls)

• TSFI system calls

• Non_TSFI system calls

System calls are listed in the Functional Specification mapping table.

 6.10.1.8.2 Internal interfaces

Module dependent.

 6.10.1.8.3 Data structures 

Module dependent.

 6.10.2 Summary of trusted processes interfaces
Trusted processes need to use system calls when they need the functions of a kernel subsystem. The 
interfaces to the kernel subsystems, therefore, are only the system calls.  Trusted processes can 
communicate with each other using the named objects provided by the kernel, which are files and IPC 
objects.  There is no way for trusted processes to communicate with others without using those primitives 
provided by the kernel.

As described in the functional specification, trusted processes use configuration files as an external 
interface to define their behaviors.  Those configuration files are described in man pages in the functional 
specification, and their use by the trusted processes is described in this document in the sections about the 
individual trusted processes. 
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